
Decision Support for Generator
Maintenance Scheduling in the

Energy Sector

Evert Barend Schlünz

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science (Operations Research)

in the Department of Logistics at Stellenbosch University

Supervisor: Prof JH van Vuuren December 2011



Stellenbosch University  http://scholar.sun.ac.za



Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein
is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise
stated), that reproduction and publication thereof by Stellenbosch University will not infringe
any third party rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

December 2011

Copyright c© 2011 Stellenbosch University

All rights reserved

i

Stellenbosch University  http://scholar.sun.ac.za



ii

Stellenbosch University  http://scholar.sun.ac.za



Abstract
As the world-wide consumption of electricity continually increases, more and more pressure is
put on the capabilities of power generating systems to maintain their levels of power provision.
The electricity utility companies operating these power systems are faced with numerous chal-
lenges with respect to ensuring reliable electricity supply at cost-effective rates. One of these
challenges concerns the planned preventative maintenance of a utility’s power generating units.

The generator maintenance scheduling (GMS) problem refers to the problem of finding a sched-
ule for the planned maintenance outages of generating units in a power system (i.e. determining
a list of dates corresponding to the times when every unit is to be shut down so as to undergo
maintenance). This is typically a large combinatorial optimisation problem, subjected to a
number of power system constraints, and is usually difficult to solve.

A mixed-integer programming model is presented for the GMS problem, incorporating con-
straints on maintenance windows, the meeting of load demand together with a safety margin,
the availability of maintenance crew and general exclusion constraints. The GMS problem is
modelled by adopting a reliability optimality criterion, the goal of which is to level the reserve
capacity. Three objective functions are presented which may achieve this reliability goal; these
objective functions are respectively quadratic, nonlinear and linear in nature.

Three GMS benchmark test systems (of which one is newly created) are modelled accordingly,
but prove to be too time consuming to solve exactly by means of an off-the-shelf software
package. Therefore, a metaheuristic solution approach (a simulated annealing (SA) algorithm)
is used to solve the GMS problem approximately. A new ejection chain neighbourhood move
operator in the context of GMS is introduced into the SA algorithm, along with a local search
heuristic addition to the algorithm, which results in hybridisations of the SA algorithm.

Extensive experiments are performed on different cooling schedules within the SA algorithm,
on the classical and ejection chain neighbourhood move operators, and on the modifications
to the SA algorithm by the introduction of the local search heuristic. Conclusions are drawn
with respect to the effectiveness of each variation on the SA algorithm. The best solutions
obtained during the experiments for each benchmark test case are reported. It is found that
the SA algorithm, with ejection chain neighbourhood move operator and a local search heuristic
hybridisation, achieves very good solutions to all instances of the GMS problem.

The hybridised simulated annealing algorithm is implemented in a computerised decision support
system (DSS), which is capable of solving any GMS problem instance conforming to the general
formulation described above. The DSS is found to determine good maintenance schedules when
utilised to solve a realistic case study within the context of the South African power system.
A best schedule attaining an objective function value within 6% of a theoretical lowerbound, is
thus produced.

iii

Stellenbosch University  http://scholar.sun.ac.za



iv

Stellenbosch University  http://scholar.sun.ac.za



Uittreksel
Met die wêreldwye elektrisiteitsverbruik wat voortdurend aan die toeneem is, word daar al
hoe meer druk geplaas op die vermoë van kragstelsels om aan kragvoorsieningsaanvraag te
voldoen. Nutsmaatskappye wat elektrisiteit opwek, word deur talle uitdagings met betrekking
tot betroubare elektrisiteitsverskaffing teen koste-effektiewe tariewe in die gesig gestaar. Een
van hierdie uitdagings het te make met die beplande, voorkomende instandhouding van ’n
nutsmaatskappy se kragopwekkingseenhede.

Die generator-instandhoudingskeduleringsprobleem (GISP) verwys na die probleem waarin ’n
skedule vir die beplande instandhouding van kragopwekkingseenhede binne ’n kragstelsel gevind
moet word (’n lys van datums moet tipies gevind word wat ooreenstem met die tye wanneer
elke kragopwekkingseenheid afgeskakel moet word om instandhoudingswerk te ondergaan). Hier-
die probleem is tipies ’n groot kombinatoriese optimeringsprobleem, onderworpe aan ’n aantal
beperkings van die kragstelsel, en is gewoonlik moeilik om op te los.

’n Gemengde, heeltallige programmeringsmodel vir die GISP word geformuleer. Die beperkings
waaruit die formulering bestaan, sluit in: venstertydperke vir instandhouding, bevrediging van
die vraag na elektrisiteit tesame met ’n veiligheidsgrens, die beskikbaarheid van instandhou-
dingspersoneel en algemene uitsluitingsbeperkings. Die GISP-model neem as optimaliteitskri-
terium betroubaarheid en het ten doel om die reserwekrag wat gedurende elke tydperk beskik-
baar is, gelyk te maak. Drie doelfunksies word gebruik om laasgenoemde doel te bereik (naamlik
doelfunksies wat onderskeidelik kwadraties, nie-lineêr en lineêr van aard is).

Drie GISP-maatstaftoetsstelsels (waarvan een nuut geskep is) is dienooreenkomstig gemodelleer,
maar dit blyk uit die oplossingstye dat daar onprakties lank gewag sal moet word om eksakte
oplossings deur middel van kommersiële programmatuur vir hierdie stelsels te kry. Gevolg-
lik word ’n metaheuristiese oplossingsbenadering (’n gesimuleerde temperingsalgoritme (GTA))
gevolg om die GISP benaderd op te los. ’n Nuwe uitwerpingsketting-skuifoperator word in die
konteks van GISP in die GTA gebruik. Verder word ’n lokale soekheuristiek met die GTA
vermeng om ’n basteralgoritme te vorm.

Uitgebreide eksperimente word uitgevoer op verskeie afkoelskedules binne die GTA, op die
klassieke en uitwerpingsketting-skuifoperators en op die verbasterings van die GTA meegebring
deur die lokale soekheuristiek. Gevolgtrekkings word oor elke variasie van die GTA se effekti-
witeit gemaak. Die beste oplossings vir elke toetsstelsel wat gedurende die eksperimente verkry
is, word gerapporteer. Daar word bevind dat die GTA met uitwerpingsketting-skuifoperator en
lokale soekheuristiek-verbastering baie goeie oplossings vir die GISP lewer.

Die verbasterde GTA word in ’n gerekenariseerde besluitsteunstelsel (BSS) gëımplementeer wat
’n gebruiker in staat stel om enige GISP van die vorm soos in die wiskundige programme-
ringsmodel hierbo beskryf, op te los. Daar word bevind dat die BSS goeie skedules lewer wan-
neer dit gebruik word om ’n realistiese gevallestudie binne die konteks van die Suid-Afrikaanse
kragstelsel, op te los. ’n Beste skedule met ’n doelfunksiewaarde wat binne 6% vanaf ’n teoretiese
ondergrens is, word ondermeer bepaal.

v

Stellenbosch University  http://scholar.sun.ac.za



vi

Stellenbosch University  http://scholar.sun.ac.za



Acknowledgements

The author hereby wishes to express his deepest gratitude towards those who played a significant
role during the progress of work towards this thesis:

• My supervisor, Prof Jan van Vuuren, for his guidance and support throughout the duration
of this project. I appreciate his time, dedication and hard work in ensuring that work of
a high standard is delivered.

• The Department of Logistics for the use of their excellent computing facilities and office
space.

• The South African Nuclear Energy Corporation (NECSA) for their financial support over
the past two years.

• All of my GOReLAB office colleagues over the past two years for their support and tech-
nical assistance, for the new friendships that have formed and for a number of wonderful
experiences that I could share with them.

• Finally, my friends and family for their moral support and encouragement during the past
two years, and their understanding during times (especially the last two months) of great
pressure and unavailability on my part.

vii

Stellenbosch University  http://scholar.sun.ac.za



viii

Stellenbosch University  http://scholar.sun.ac.za



Table of Contents

List of Figures xiii

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

List of Reserved Symbols xxiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Informal problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9

2.1 General model considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The planning period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 The time sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Model formulations in the literature . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Constraint formulations in the literature . . . . . . . . . . . . . . . . . . . 13

2.2.2 Objective function formulations in the literature . . . . . . . . . . . . . . 16

2.2.3 Other problem formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Model extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Typical solution techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix

Stellenbosch University  http://scholar.sun.ac.za



x Table of Contents

2.4.2 Mathematical programming techniques . . . . . . . . . . . . . . . . . . . . 21

2.4.3 A dynamic programming variant . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Fuzzy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.6 Knowledge-based/expert systems . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Mathematical Problem Formulation 43

3.1 The GMS problem in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Problem assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Unit commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Economic dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Transmission line maintenance . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Transmission constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.6 Load shedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.7 Generating capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.8 Precedence constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 A simple GMS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 A more advanced GMS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Solution Methodology 57

4.1 Exact solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 LINGO’s simplex solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 LINGO’s integer solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 LINGO’s general nonlinear solver . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.4 LINGO’s global solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.5 LINGO’s quadratic solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Approximate solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 The soft constraint approach . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 The neighbourhood move operators . . . . . . . . . . . . . . . . . . . . . 60

Stellenbosch University  http://scholar.sun.ac.za



Table of Contents xi

4.2.3 Generating a random initial solution . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Random search heuristic implementation . . . . . . . . . . . . . . . . . . 64

4.2.5 Simulated annealing algorithmic implementation . . . . . . . . . . . . . . 66

4.2.6 Proposed modifications for investigation . . . . . . . . . . . . . . . . . . . 71

4.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Parameter evaluation 75

5.1 Benchmark test systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 The 21-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 The 22-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.3 The IEEE-RTS inspired system . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 The penalty weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 The 21-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 The 22-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 The IEEE-RTS inspired system . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Parameter optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Random search heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Simulated annealing algorithm . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Summary of parameter values . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Experimental results 121

6.1 Performance analysis of the cooling schedules . . . . . . . . . . . . . . . . . . . . 121

6.2 Performance analysis of the new neighbourhood move . . . . . . . . . . . . . . . 124

6.3 Performance analysis of the proposed modifications . . . . . . . . . . . . . . . . . 127

6.4 Benchmark system solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.1 The exact solution approach results . . . . . . . . . . . . . . . . . . . . . 132

6.4.2 The 21-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.3 The 22-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.4 The IEEE-RTS inspired system . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 The decision support system 139

7.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1.1 The penalty weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.2 The solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Stellenbosch University  http://scholar.sun.ac.za



xii Table of Contents

7.2 The implementation of the decision support system . . . . . . . . . . . . . . . . . 142

7.2.1 The “Options” panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.2 The “System data” panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.3 The “Penalty weights” panel . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.4 Solving a problem instance . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 A real case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.1 The nature of the problem instance . . . . . . . . . . . . . . . . . . . . . . 149

7.3.2 Results achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusion 157

8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3.1 Suggestions on modelling and formulating the GMS problem . . . . . . . 160

8.3.2 Suggestions regarding the solution techniques of the GMS problem . . . . 162

Bibliography 165

A Advanced problem formulations 173

A.1 Mixed-integer quadratic program . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.2 Mixed-integer nonlinear program . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.3 Mixed-integer linear program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B Pseudo-code listings 177

C Alternative best solutions for the 21-unit test system 181

D Input format for the DSS 183

E System specifications of the case study 187

F Contents of the accompanying compact disc 193

Stellenbosch University  http://scholar.sun.ac.za



List of Figures

1.1 The Venus Grotto within the gardens of Linderhof Palace . . . . . . . . . . . . . 2

1.2 Thomas Edison and Nikola Tesla . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Three Gorges Dam in China . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Flow diagram of Benders’ decomposition method . . . . . . . . . . . . . . . . . . 29

2.2 Flow chart of the DPSA algorithm for the GMS problem . . . . . . . . . . . . . . 30

2.3 Flow chart of a generic genetic algorithm . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Flow chart of the simulated annealing technique for a minimisation problem . . . 34

2.5 Flow chart of a simple tabu search algorithm . . . . . . . . . . . . . . . . . . . . 36

2.6 Flow chart of a simple ant colony system algorithm . . . . . . . . . . . . . . . . . 39

2.7 Membership function of a triangular fuzzy number . . . . . . . . . . . . . . . . . 40

2.8 Expert system structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Dependency diagram for operation scheduling in a power system . . . . . . . . . 44

3.2 Dependency diagram for a simple GMS problem . . . . . . . . . . . . . . . . . . 50

3.3 Dependency diagram for a more advanced GMS problem . . . . . . . . . . . . . . 54

4.1 Illustration of the ejection chain move on a GMS schedule . . . . . . . . . . . . . 62

5.1 Maintenance window penalty weight analysis for the 21-unit system . . . . . . . 81

5.2 Maintenance crew penalty weight analysis for the 21-unit system . . . . . . . . . 82

5.3 Maintenance window penalty weight analysis for the IEEE system . . . . . . . . 84

5.4 Maintenance crew penalty weight analysis for the IEEE system . . . . . . . . . . 85

5.5 Exclusion penalty weight analysis for the IEEE system . . . . . . . . . . . . . . . 86

5.6 Minimum incumbent objective function values in 21-RS-E . . . . . . . . . . . . . 88

5.7 Average incumbent objective function values in 21-RS-E . . . . . . . . . . . . . . 89

5.8 Average solution times in 21-RS-E . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 Minimum incumbent objective function values in 22-RS-E . . . . . . . . . . . . . 90

xiii

Stellenbosch University  http://scholar.sun.ac.za



xiv List of Figures

5.10 Average incumbent objective function values in 22-RS-E . . . . . . . . . . . . . . 91

5.11 Average solution times in 22-RS-E . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.12 Average incumbent objective function values in IEEE-RS-E . . . . . . . . . . . . 92

5.13 The effect of the number of iterations in IEEE-RS-E . . . . . . . . . . . . . . . . 92

5.14 Average solution times in IEEE-RS-E . . . . . . . . . . . . . . . . . . . . . . . . 93

5.15 Minimum incumbent objective function values in IEEE-RS-E . . . . . . . . . . . 93

5.16 Initial temperature analysis for the geometric cooling schedule in 21-SA-E . . . . 94

5.17 Parameter optimisation for the geometric cooling schedule in 21-SA-E . . . . . . 95

5.18 Termination criteria for the geometric cooling schedule in 21-SA-E . . . . . . . . 96

5.19 Initial temperature analysis for the Huang cooling schedule in 21-SA-E . . . . . . 96

5.20 Parameter optimisation for the Huang cooling schedule in 21-SA-E . . . . . . . . 97

5.21 Termination criteria for the Huang cooling schedule in 21-SA-E . . . . . . . . . . 97

5.22 Initial temperature analysis for the Van Laarhoven cooling schedule in 21-SA-E . 98

5.23 Parameter optimisation for the Van Laarhoven cooling schedule in 21-SA-E . . . 98

5.24 Termination criteria for the Van Laarhoven cooling schedule in 21-SA-E . . . . . 99

5.25 Parameter optimisation for the Triki cooling schedule in 21-SA-E: µ2 . . . . . . . 100

5.26 Parameter optimisation for the Triki cooling schedule in 21-SA-E: µ1 . . . . . . . 101

5.27 Termination criteria for the Triki cooling schedule in 21-SA-E . . . . . . . . . . . 102

5.28 Initial temperature analysis for the geometric cooling schedule in 22-SA-E . . . . 103

5.29 Parameter optimisation for the geometric cooling schedule in 22-SA-E . . . . . . 103

5.30 Termination criteria for the geometric cooling schedule in 22-SA-E . . . . . . . . 104

5.31 Initial temperature analysis for the Huang cooling schedule in 22-SA-E . . . . . . 104

5.32 Parameter optimisation for the Huang cooling schedule in 22-SA-E . . . . . . . . 105

5.33 Termination criteria for the Huang cooling schedule in 22-SA-E . . . . . . . . . . 105

5.34 Initial temperature analysis for the Van Laarhoven cooling schedule in 22-SA-E . 106

5.35 Parameter optimisation for the Van Laarhoven cooling schedule in 22-SA-E . . . 106

5.36 Termination criteria for the Van Laarhoven cooling schedule in 22-SA-E . . . . . 107

5.37 Parameter optimisation for the Triki cooling schedule in 22-SA-E: µ2 . . . . . . . 108

5.38 Parameter optimisation for the Triki cooling schedule in 22-SA-E: µ1 . . . . . . . 109

5.39 Termination criteria for the Triki cooling schedule in 22-SA-E . . . . . . . . . . . 110

5.40 Initial temperature analysis for the geometric cooling schedule in IEEE-SA-E . . 110

5.41 Parameter optimisation for the geometric cooling schedule in IEEE-SA-E . . . . 111

5.42 Termination criteria for the geometric cooling schedule in IEEE-SA-E . . . . . . 111

5.43 Initial temperature analysis for the Huang cooling schedule in IEEE-SA-E . . . . 112

5.44 Parameter optimisation for the Huang cooling schedule in IEEE-SA-E . . . . . . 112

Stellenbosch University  http://scholar.sun.ac.za



List of Figures xv

5.45 Termination criteria for the Huang cooling schedule in IEEE-SA-E . . . . . . . . 113

5.46 Initial temperatures for the Van Laarhoven cooling schedule in IEEE-SA-E . . . 113

5.47 Parameter optimisation for the Van Laarhoven cooling schedule in IEEE-SA-E . 114

5.48 Termination criteria for the Van Laarhoven cooling schedule in IEEE-SA-E . . . 115

5.49 Parameter optimisation for the Triki cooling schedule in IEEE-SA-E: µ2 . . . . . 116

5.50 Parameter optimisation for the Triki cooling schedule in IEEE-SA-E: µ1 . . . . . 117

5.51 Termination criteria for the Triki cooling schedule in IEEE-SA-E . . . . . . . . . 118

6.1 Comparison of cooling schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Typical distributions of the ejection chain lengths for each test system . . . . . . 125

6.3 Comparison of neighbourhood move operators . . . . . . . . . . . . . . . . . . . . 126

6.4 Comparison of random versus good random initial solutions: classical . . . . . . 130

6.5 Comparison of random versus good random initial solutions: ejection chain . . . 131

6.6 The best maintenance schedule found for the 21-unit test system . . . . . . . . . 133

6.7 The available capacities for the best solution for the 21-unit system . . . . . . . . 133

6.8 The reserve levels for the best solution for the 21-unit system . . . . . . . . . . . 134

6.9 The best maintenance schedule found for the 22-unit test system . . . . . . . . . 134

6.10 The available capacities for the best solution for the 22-unit system . . . . . . . . 135

6.11 The reserve levels for the best solution for the 22-unit system . . . . . . . . . . . 135

6.12 The best maintenance schedule found for the IEEE-RTS inspired test system . . 136

6.13 The available capacities for the best solution for the IEEE system . . . . . . . . 136

6.14 The reserve levels for the best solution for the IEEE system . . . . . . . . . . . . 137

7.1 Screenshot of the graphical user interface of the DSS upon opening . . . . . . . . 142

7.2 Screenshot of the progress bar during the calculation of the penalty weights . . . 144

7.3 Screenshot of the progress bar during the execution of the solution algorithm . . 145

7.4 Examples of the output figures generated by the DSS . . . . . . . . . . . . . . . . 146

7.5 Screenshot of the “Schedule” worksheet in the DSS results . . . . . . . . . . . . . 147

7.6 Screenshot of the “Capacities” worksheet in the DSS results . . . . . . . . . . . . 148

7.7 Screenshot of the “Crew” worksheet in the DSS results . . . . . . . . . . . . . . . 148

7.8 Screenshot of the “Exclusions” worksheet in the DSS results . . . . . . . . . . . . 149

7.9 The best maintenance schedule found (sum of squares) for the case study . . . . 153

7.10 The best maintenance schedule found (absolute differences) for the case study . . 154

7.11 The available capacities for both best solutions found for the case study . . . . . 155

D.1 Screenshot of the “System” worksheet in the DSS input file . . . . . . . . . . . . 183

Stellenbosch University  http://scholar.sun.ac.za



xvi List of Figures

D.2 Screenshot of the “Capacity” worksheet in the DSS input file . . . . . . . . . . . 184

D.3 Screenshot of the “Demand” worksheet in the DSS input file . . . . . . . . . . . 184

D.4 Screenshot of the “Windows” worksheet in the DSS input file . . . . . . . . . . . 184

D.5 Screenshot of the “Crew” worksheet in the DSS input file . . . . . . . . . . . . . 185

D.6 Screenshot of the “Exclusions” worksheet in the DSS input file . . . . . . . . . . 185

Stellenbosch University  http://scholar.sun.ac.za



List of Tables

5.1 Data for the 21-unit test system . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Data for the 22-unit test system . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The weekly peak load demands for the 22-unit system . . . . . . . . . . . . . . . 78

5.4 Data for the IEEE inspired test system . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Exclusion data for the IEEE inspired system . . . . . . . . . . . . . . . . . . . . 79

5.6 The weekly peak load demands for the IEEE inspired system . . . . . . . . . . . 80

5.7 Optimised parameter values for the random search heuristic . . . . . . . . . . . . 115

5.8 Optimised parameter values for the simulated annealing algorithm . . . . . . . . 118

6.1 Comparison of cooling schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Comparison of neighbourhood move operators . . . . . . . . . . . . . . . . . . . . 124

6.3 Performance analysis of the first algorithmic hybridisation . . . . . . . . . . . . . 128

6.4 Performance analysis of the second algorithmic hybridisation . . . . . . . . . . . 129

6.5 The benchmark test system solutions obtained from an exact solution approach . 132

7.1 Results obtained by the DSS on the Eskom case study . . . . . . . . . . . . . . . 150

7.2 The best solutions obtained by the DSS for the Eskom case study . . . . . . . . . 152

C.1 List of alternative best solution vectors for the 21-unit system . . . . . . . . . . . 181

E.1 Data for the Eskom case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

E.3 Exclusion data for the Eskom case study . . . . . . . . . . . . . . . . . . . . . . . 190

E.4 The daily peak load demands for the Eskom case study . . . . . . . . . . . . . . 191

xvii

Stellenbosch University  http://scholar.sun.ac.za



xviii List of Tables

Stellenbosch University  http://scholar.sun.ac.za



List of Algorithms

2.1 Generic genetic algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Simulated annealing algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Simple tabu search algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Simple ant colony system algorithm outline . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Function checkFeasibilityAndCalculatePenalty(x, dataset) . . . . . . . . . . . . . . 61

4.2 Function createClassicalNeighbourhoodList(n, e, `,Wext) . . . . . . . . . . . . . . 61

4.3 Function createEjectionChainList(unit, n, e, `,Wext,x) . . . . . . . . . . . . . . . . 63

4.4 Function generateRandomSolution(dataset) . . . . . . . . . . . . . . . . . . . . . . 65

4.5 The GMS random search heuristic with ejection chain neighbourhood . . . . . . . 66

4.6 Function initialTemperature(x, xObj, dataset) . . . . . . . . . . . . . . . . . . . . 68

4.7 The GMS simulated annealing algorithm . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 The GMS local search heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Function generateGoodRandomSolution(number, dataset) . . . . . . . . . . . . . . 73

B.1 The GMS random search heuristic with classical neighbourhood . . . . . . . . . . 178

B.2 Simulated annealing with targeted average decrease in cost . . . . . . . . . . . . . 179

xix

Stellenbosch University  http://scholar.sun.ac.za



xx List of Algorithms

Stellenbosch University  http://scholar.sun.ac.za



List of Acronyms

AC Alternating current
ACO Ant colony optimisation
ACS Ant colony system
AIM Average increase method
B&B Branch-and-bound
BSS Besluitsteunstelsel
CSP Constraint satisfaction problem
DC Direct current
DP Dynamic programming
DPSA Dynamic programming with successive approximations
DSS Decision support system
ED Economic dispatch
ES Expert system
GA Genetic algorithm
GISP Generator-instandhoudingskeduleringsprobleem
GMS Generator maintenance scheduling
GTA Gesimuleerde temperingsalgoritme
GUI Graphical user interface
IEEE Institute of Electrical and Electronics Engineers
IP Integer program
LP Linear program
MILP Mixed-integer linear program
MINP Mixed-integer nonlinear program
MIQP Mixed-integer quadratic program
MW Megawatt
NLP Nonlinear program
RTS Reliability Test System
SA Simulated annealing
SDM Standard deviation method
SLP Successive linear programming
TS Tabu search
TSP Travelling salesman problem
UC Unit commitment

xxi

Stellenbosch University  http://scholar.sun.ac.za



xxii List of Acronyms

Stellenbosch University  http://scholar.sun.ac.za



List of Reserved Symbols

The symbols listed below are reserved for a specific use, unless specified otherwise in a localised
section where its meaning is apparent. Other symbols may be used throughout the thesis in an
unreserved fashion.

Symbols in this thesis conform to the following font conventions:
A Symbol denoting a set (Calligraphic capitals)
a,A Symbol denoting a vector (Boldface lower case letters or capitals)

Symbol Meaning

Indices
i The index of generating units.
j The index of time periods.
k The index of generating unit subsets.

Sets
I The set of indices of generating units.
J The set of indices of time periods.
K The set of indices of generating unit subsets.
Ik The subset of indices of generating unit subset k.

Variables
xi,j A binary variable taking the value 1 if maintenance of generating unit i

commences at time period j, or zero otherwise.
yi,j A binary variable taking the value 1 if generating unit i is in maintenance

at time period j, or zero otherwise.
rj The unused power during time period j, excluding the safety margin capac-

ity.
r The mean reserve load.
oj A slack variable defined as the overachievement of the actual reserve from

the mean reserve level during time period j.
uj A slack variable defined as the underachievement of the actual reserve from

the mean reserve level during time period j.
P iw The maintenance window constraint violation penalty term for unit i.
Pw The overall maintenance window penalty.

xxiii

Stellenbosch University  http://scholar.sun.ac.za



xxiv List of Reserved Symbols

P j` The load and reliability constraint violation penalty term during time period
j.

P` The overall load and reliability penalty term.

P jc The maintenance crew constraint violation penalty term during time period
j.

Pc The overall maintenance crew penalty term.

P k,je The exclusion constraint violation penalty term for generating unit subset
k during time period j.

Pe The overall exclusion penalty term.

Parameters
n The number of generating units.
m The number of time periods in the planning horizon.
ei The earliest time period during which maintenance of generating unit i may

start.
`i The latest time period during which maintenance of generating unit i may

start.
Wext The number of time periods by which the earliest and latest starting times

for each unit are extended in a soft constraint approach.
di The maintenance duration for generating unit i.
gi,j The power generating capacity of unit i during time period j.
g′p,i,j The power generating capacity lost during time period j if maintenance of

unit i commenced at time period p.
Dj The demand at time period j.
S The safety margin as a proportion of the demand for the power system.
mi,j The manpower required by unit i when undergoing maintenance during time

period j.
mk
i The manpower required by unit i during its k-th period of maintenance.

m′p,i,j The manpower required by unit i when undergoing maintenance during time
period j if maintenance commenced at time period p.

Mj The maximum available manpower during time period j.
K The number of generating unit subsets.
Kk The maximum number of units within generating unit subset k that are

allowed to be in simultaneous maintenance during any time period.
wiw The maintenance window violation penalty weight for unit i.
w` The load and reliability penalty weight.
wc The maintenance crew penalty weight.
we The exclusion penalty weight.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Informal problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The first written account of an electrical effect — the shocks from electric fish — is found
in ancient Egyptian texts, dating from 2750 BC. In these texts, the fish are referred to as
the “Thunderers of the Nile” [90]. However, knowledge of electricity only developed in later
millenia. It was known by ancient cultures around the Mediterranean that certain objects, such
as rods of amber, could attract light objects like feathers after they had been rubbed in cat’s
fur [90]. Only in 1600 AD did William Gilbert coin the New Latin word electricus, meaning “of
amber” (from the word ήλεκτρoν [elektron], Greek for “amber”), to refer to amber’s attractive
properties [92]. The introduction of the word electric into the English language was used to
describe materials like amber that attracted other objects. This led to the first use of the English
word electricity in 1646, which at that stage, referred to the property of behaving like an electric
[92]. The term “electricity” has changed in definition since then, due to non-scientific usage by
electric utility companies and the general public. According to the Oxford Dictionaries Online,
electricity today refers to a form of energy resulting from the existence of charged particles
(such as electrons or protons), either statically as an accumulation of charge or dynamically as
a current [69].

1.1 Background

The production of electricity in early years was an expensive and inefficient process, since
electricity could only be produced by means of the chemical reactions in electrochemical cells1

or electrostatic generators2. However, in 1831, Michael Faraday created a machine capable of

1A Galvanic cell, or Voltaic cell, is an electrochemical cell which converts chemical energy into electrical energy
through spontaneous chemical reactions taking place at the electrodes of the cell [91]. The first electrical battery
was the voltaic pile — a set of individual Galvanic cells placed in series, invented by Alessandro Volta in 1800
[100].

2An electrostatic generator operates by using moving electrically charged belts, plates and disks to carry charge
to a high potential electrode [88]. Such a generator typically generates very high voltages and low currents. The
Van de Graaff generator is an example of such a machine.

1

Stellenbosch University  http://scholar.sun.ac.za



2 Chapter 1. Introduction

generating electricity by means of a rotary motion [96]. The machine (a generator) converts
mechanical energy into electrical energy by using electromagnetic principles. A number of years
later, the technology became commercially viable.

The first power station in the world became operational in 1878 and was built in the Bavarian
town of Ettal. The station consisted of 24 dynamo electrical generators, driven by a steam
engine and its purpose was to provide electricity for illuminating the “Venus Grotto” in chang-
ing colours, located in the gardens of Linderhof Palace3 [96]. The Venus Grotto is shown in
Figure 1.1 with its different colours.

Figure 1.1: The Venus Grotto within the gardens of Linderhof Palace [95].

In September 1881, the world’s first public electricity supply was established in the town God-
alming in England. This electrical system was powered by a water wheel on the river Wey,
driving a Siemens alternator and it provided electricity to light up a number of lamps within
the town [89]. However, it was Thomas Edison (see Figure 1.2(a)) who opened the world’s first
public power station in London, January 1882 [96]. A 27 ton generator, called Jumbo, was driven
by a steam-powered engine in the power station and the electricity supply was direct current4

(DC). Later in the same year, Edison opened a power station in New York to provide the lower
Manhattan Island area with electrical lighting, and again, the electricity supply was DC.

Although DC power supply had a number of advantages in the early years of electricity distri-
bution, it also had flaws — the greatest being its distribution capability. Using a higher voltage
reduces the current, resulting in less power loss caused by resistance in the transmission cables.
Edison did not have any means of voltage conversion for his DC power supply and the result
was that the electricity generation had to occur close to the consumer [89].

The other form of electricity supply, is alternating current5 (AC). A former employee of Edison,
named Nikola Tesla (see Figure 1.2(b)), devised an electrical system using AC, which remains
the primary means of electricity distribution throughout the world today [89]. The AC system
allows for the transformation between voltage levels in different parts of the system, thereby
allowing efficient distribution of electricity over long distances by means of high-voltage AC
current.

When Edison’s DC system was introduced, there was no practical AC electrical motor available
and his DC distribution became the standard for the United State of America [101]. By 1887,
there were 121 power stations in the United States of America using Edison’s DC system.

3Linderhof Palace is the smallest of three palaces built by King Ludwig II of Bavaria [95].
4Direct current is the undirected flow of electric charge.
5In alternating current, the flow of electric charge periodically reverses in direction.

Stellenbosch University  http://scholar.sun.ac.za



1.1. Background 3

However, firm believers in AC technology started emerging at this time. George Westinghouse
invested in the technology [101] and he partnered with Tesla in 1888, commercialising Tesla’s
AC system, which included a practical AC motor. This led to the so-called War of Currents
over electrical power distribution, with Edison’s DC on the one side and Tesla’s AC on the
other.

The War of Currents involved companies in Europe and the United States of America which
had invested large amounts of resources into AC or DC power supply. The most notable business
rivalries developed between Westinghouse Electric, Siemens and Oerlikon (favouring AC), and
the mighty Edison General Electric (favouring DC). However, the war is often personified by
the personal rivalry which developed between Tesla and Edison [101]. This rivalry originated
from events that occurred while Tesla was an employee of Edison. During the War of Currents,
Edison carried out a publicity campaign, primarily focused on the notion that AC systems were
more dangerous than his DC systems, so as to discourage the use of AC [101]. Included in this
campaign, was the public AC-driven killings of animals. Edison even became involved in the
development and promotion of the electric chair (AC-driven) for capital punishment in order to
promote the idea that AC had greater lethal potential than DC [101].

(a) Thomas Edison (c. 1932) (b) Nikola Tesla (c. 1896)

Figure 1.2: Thomas Edison [98] and Nikola Tesla [101].

Ultimately, the War of Currents resolved in favour of AC and the end of the war was marked
by the International Electro-Technical Exhibition in 1891, held in Frankfurt. The first long
distance transmission of high-power, three-phase alternating electric current was featured at the
exhibition, being generated by a power station in Lauffen am Neckar, 175 kilometers away [101].
Corporate technical representatives (including from Thomson-Houston Electric Company) were
thoroughly impressed by this demonstration. The following year, General Electric was formed
by the merger of Edison General Electric and Thomson-Houston Electric Company, and it
immediately invested in AC. Thomas Edison could no longer influence the company direction,
as the General Electric president, Charles Coffin, and the board of directors muted his opinions
[101]. In 1893, Almarian Decker designed a new three-phase generator and system (based on
Tesla’s experimental work) which was used for the Mill Creek No. 1 Hydro-electric Plant in
California [85]. It was the first commercial power plant in the United States of America using
three-phase alternating current. The design of Decker’s three-phase system established the
standards for the complete system of generation, transmission and motors used today [86].

Stellenbosch University  http://scholar.sun.ac.za



4 Chapter 1. Introduction

Power stations became increasingly larger during the early 20th century and relied on intercon-
nections of a number of stations to improve the reliability and cost of electricity generation. The
steam turbine arrived on the power generation scene around 1906 and it allowed for significant
expansion of generating capacity in power stations [96]. Over the years, new and improved
power generation technologies appeared, increasing the efficiency of electricity generation and
the number of generation methods and fuel sources. Having originally only used water power
and coal, power stations today rely on a variety of different fossil fuels, nuclear fission, biomass,
geothermal power, water power, wind power or solar power.

In order to meet the rising demand for electricity, the generating capacities of power stations
have increased considerably over the years, where technology and fuel sources have allowed such
expansion. Seven of the ten largest power stations in the world today are hydro-electric stations.
At present, the largest power station in the world is the hydro-electric Three Gorges Dam power
station in China (see Figure 1.3) with a capacity of 18 460 MW [7]. The Kashiwazaki-Kariwa
Nuclear Power Plant in Japan, at number five on the list of largest power stations, is the largest
non-renewable power station in the world with a capacity of 8 206 MW. The future may herald
in an even larger power station than the Three Gorges Dam for the world. The proposed
Grand Inga Dam on the Congo River in the Democratic Republic of Congo has been earmarked
for hydro-electric power generation [93]. This dam has an expected generating capacity of
39 000 MW, more than double the capacity of the currently largest power station. To put this
figure into perspective — the total electricity consumption of the African continent in 2007 was
estimated at 58 090 MW [103]. Therefore, the Grand Inga Dam, with its 39 000 MW capacity,
would have provided 67% of the African continent’s power demand in 2007.

(a) (b)

Figure 1.3: The Three Gorges Dam in China [12, 80].

1.2 Informal problem description

In South Africa, the state-owned electricity utility Eskom generates approximately 95% of the
country’s electricity. Eskom generates, transmits and distributes electricity to customers in all
sectors of society. The company was established by the government in 1923 as the Electric
Supply Commission (ESCOM) and was responsible for establishing and maintaining electricity
supply undertakings on a regional basis [44]. Over the years, the company has grown into one
of the largest electricity utilities in the world in terms of generating capacity and sales today.

However, in recent years, Eskom has faced challenges with respect to sufficient power generation
for South Africa. In 2006 and 2007, power outages arose due to higher than expected electricity

Stellenbosch University  http://scholar.sun.ac.za



1.3. Scope and objectives 5

demand, unplanned generating unit outages, and a diminished reserve capacity [45]. The reserve
margin for generating capacity had decreased from the desired 15% down to less than 8%. Then
President Thabo Mbeki publicly apologised in 2007 for the government not heeding Eskom’s
timeous recommendation to build new power stations to match the country’s growth rate.
Eskom warned that power interruptions were highly likely over the following five years as new
base-load stations were expected to come online only from 2012 onwards.

Emergency load shedding was implemented between October 2007 and February 2008 in order
to avoid a potential nationwide blackout. A national electricity emergency was declared on
24 January 2008 [45]. According to Eskom’s annual report of 2008 [27], load shedding may
be attributed mainly to the low reserve margin of the power system. This low margin meant
that the system could not adequately deal with the external events affecting its efficiency at
that time. These events comprised increased unplanned outages6, coal stock piles reaching
unacceptably low levels and unusually high rainfall, causing moisture levels in the coal so as to
severely hamper efficient power generation.

Since the events of 2008, South Africa has not experienced any load shedding, mainly due to
the recovery plan implemented by Eskom. It comprised three phases — the first two phases
being short-term solutions which ended in 2008. The current phase is a medium-term solution
scheduled to last to 2012 when the first of the new base-load stations is expected to come online.
Ultimately, the challenge remains to achieve and maintain a reserve margin of 15% [27].

In view of the South African electricity challenge described above, a key area of concern is the
planned maintenance outages of generation plants. Since planned maintenance is a power system
requirement, it is an unavoidable duty for an electricity utility to perform. The relatively old
age and higher load factor of the South African power stations, significantly increase the need
for plant maintenance, thereby reducing the opportunity (leverage) for planned maintenance.
Combined with the diminished safety margin of the capacity, these two factors render the task
of scheduling planned maintenance outages of power generating units a daunting endeavour at
best. Furthermore, scheduling the planned maintenance outages in such a way that the system
supply still satisfies the demand, is the simplest form of the problem — additional factors and
constraints may also influence the scheduling process, such as limited maintenance resources.

The problem of finding a schedule for the planned maintenance outages of generating units in a
power system is known as the generator maintenance scheduling (GMS) problem. The challenges
currently faced by Eskom in South Africa may easily occur in other power systems across the
world. As power systems become larger and demand for electricity increases continually, so does
the difficulty in finding maintenance schedules increase in complexity, especially in systems with
small reserve margins and/or high levels of constriction.

1.3 Scope and objectives

The following objectives are persued in this thesis in order to lend decision support to a power
system operations planner tasked with generator maintenance scheduling:

• Objective I:
To provide a list of essential general modelling considerations for the GMS problem in
order to be able to formulate a suitable model for the problem.

6South Africa’s system of power stations is relatively old and requires above-average levels of maintenance. In
view of South Africa’s system conditions, the stations also run continuously at very high load factors (how hard
a plant is being run on a percentage basis). These two aspects contribute significantly to unplanned outages.

Stellenbosch University  http://scholar.sun.ac.za



6 Chapter 1. Introduction

• Objective II:
To perform a literature survey of previous formulations of GMS models and their exten-
sions.

• Objective III:
To perform a literature survey of typical solution techniques previously applied with a
view to solving the GMS problem.

• Objective IV:
To develop a suitable model for the GMS problem and present and motivate its mathe-
matical problem formulation.

• Objective V:
To propose an approximate solution approach towards solving the GMS problem and to
compare its effectiveness in solving benchmark GMS test problems of the form described
in Objective IV to that of exact solution approaches currently commercially available.

• Objective VI:
To propose a new neighbourhood move operator in the context of the GMS problem and to
investigate its effectiveness, as well as the effectiveness of classical variations and proposed
modifications to the solution algorithm.

• Objective VII:
To design a generic decision support system capable of solving a GMS problem instance
of the form in Objective IV approximately, based on the results of persuing Objectives V
and VI.

• Objective VIII:
To implement the decision support system of Objective VII on a personal computer and
to use it to solve approximately a GMS case study in the South African power system.

The scope of this thesis shall be restricted to the GMS problem, contained within the broader
area of power system operations scheduling, and shall exclude the remaining scheduling problems
of transmission line maintenance, unit commitment and economic dispatch.

Deterministic power system values shall be presented in any results, but the reliability key
performance indicators of Eskom shall not be used.

The decision support system shall be designed for any electricity utility with a power generating
system of the form described in Objective IV.

Finally, the decision support system shall be implemented to assist a power system operations
planner tasked with generator maintenance scheduling, by suggesting maintenance schedules;
the idea is not to replace him/her.

1.4 Thesis organisation

This thesis comprises seven further chapters and a number of appendices, following this intro-
ductory chapter. In Chapter 2, the reader is introduced to the different modelling considera-
tions that have to be addressed in order to derive a model formulation for the GMS problem.
A comprehensive literature review on GMS model formulations is presented, containing the
mathematical programming formulations of individual constraint sets and objective functions.

Stellenbosch University  http://scholar.sun.ac.za



1.4. Thesis organisation 7

Formulations other than that of a mathematical program are briefly presented, along with model
extensions to the problem — moving beyond the consideration of only generator maintenance
in the problem. The final section of the chapter contains a concise, but thorough literature
review on the solution techniques that are typically applied to the GMS problem. Both exact
and approximate solution approaches of varying complexity — from simple heuristics to more
complicated mathematical programming techniques, and from artificial intelligence techniques
to fuzzy logic and expert systems — are presented.

Chapter 3 contains the derivation of the GMS model adopted for further use in this thesis. In
the first section, the GMS problem is placed in its proper context within the broader area of
power system operations scheduling. The next section contains a motivation of the necessary
assumptions in order to reduce the GMS problem into a managable power system operations
scheduling subproblem for use in this thesis. Two GMS models — a simple model, and a more
advanced model — are presented in the concluding sections of the chapter, each with a choice
of three objective functions. The difference between the two models involves the constraint
sets that are included. Furthermore, a significant change in the mathematical programming
formulation occurs from the one model to the next, namely the introduction of a second set
of dependent variables, thereby increasing the problem dimensions considerably. A total of six
formal mathematical programming formulations are therefore presented for the GMS problem
adopted in this thesis.

The exact and the approximate solution approaches to be considered in this thesis are presented
in Chapter 4. The first section contains descriptions of the algorithms typically employed by
an off-the-shelf software package to solve the GMS problem exactly. Following the section, the
full approximate solution approach adopted in this thesis towards solving the GMS problem, is
explained. This approach comprises a random search heuristic implementation, mainly used for
comparative purposes, and a simulated annealing algorithmic implementation — the primary
solution technique employed in this thesis. Additionally, the details of a new neighbourhood
move operator in the context of GMS are presented, along with other functions containing mod-
ifications to the standard simulated annealing approach, including different cooling schedules.
Every noteworthy function and algorithm described in the chapter, is presented additionally as
a pseudo-code listing for ease of grasp.

Three GMS benchmark test systems are introduced in Chapter 5, two of which have been pre-
viously studied in the literature. The third test system is newly established by the author.
Within the approximate solution approach considered in this thesis, a soft constraint approach
is adopted, necessitating the use of a penalty weight associated with each constraint violation.
The second section of this chapter contains a description of the methodology for determining
these weight values and the subsequent calculation thereof for each test system. Typically, the
application of the two approximate solution techniques introduced in the previous chapter con-
tain parameters whose values are problem instance-specific. A detailed parameter optimisation
procedure for each test system is presented in the final section of the chapter, along with the
optimised parameter values for each of the three benchmark test systems and each solution
technique variation.

In the sixth chapter, the performance of each solution technique variation is analised. These
variations comprise the different cooling schedules within the simulated annealing algorithm, a
new ejection chain neighbourhood move operator and a number of proposed modifications to
the simulated annealing algorithm by means of the introduction of a local search heuristic and
good initial solutions. In the section following the performance analyses of the various solution
technique variations, the results of the exact solution approach to the benchmark test systems

Stellenbosch University  http://scholar.sun.ac.za



8 Chapter 1. Introduction

are presented, as well as the best solutions obtained for each benchmark test system during the
course of the work towards this thesis — in each case obtained via the approximate solution
approach.

In Chapter 7, a computerised decision support system (DSS) for solving GMS problem instances,
in any power system having the form described in Chapter 3, is presented. The general frame-
work of the DSS is described in the first section, as well as how the difficulties in creating a
generic solution scheme for GMS problems were overcome, in order to create the DSS. The
implementation, appearance and working of the DSS are described in the second section via
the use of screenshots and bulleted lists containing procedural steps to be followed by the user.
Finally, the chapter is concluded with an application of the DSS to a realistic GMS scenario
case study within the context of the South African national power generating system.

The thesis closes in Chapter 8 with a summary of the work contained therein, the contributions
that were made in the thesis, as well as suggestions for future work in the field of generator
maintenance scheduling.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2

Literature Review

Contents
2.1 General model considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The planning period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 The time sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Model formulations in the literature . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Constraint formulations in the literature . . . . . . . . . . . . . . . . . . 13

2.2.2 Objective function formulations in the literature . . . . . . . . . . . . . 16

2.2.3 Other problem formulations . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Model extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Typical solution techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Mathematical programming techniques . . . . . . . . . . . . . . . . . . . 21

2.4.3 A dynamic programming variant . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Fuzzy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.6 Knowledge-based/expert systems . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

This chapter introduces the reader to the different modelling considerations that are required
to formulate the generator maintenance scheduling (GMS) problem. A literature review is
presented to illustrate how these different considerations are typically modelled and formulated
in the literature. This is followed by a description of the popular solution techniques that may
be employed to solve the GMS problem.

2.1 General model considerations

The GMS problem is formulated in [46] as the time sequence of preventive maintenance outages
for a given set of generating units in a power system over a planning period, so that all con-
straints are satisfied and the objective function obtains an extreme value. There are four general

9

Stellenbosch University  http://scholar.sun.ac.za



10 Chapter 2. Literature Review

considerations which have to be addressed before formulating a model for the GMS problem,
namely the time sequence, the planning period, various constraints and the objective function.

2.1.1 The planning period

The simplest attribute is the planning period. It depends mainly on the electric power utility
how far it wants to plan into the future. Generally, the planning period or planning horizon is
taken as one year [11, 21, 47] since power generating units are usually serviced annually [49].
Since load demand is typically calculated in year-format so as to include all the seasons, this
could also bias the planning horizon towards one year. However, there is nothing that prohibits
one to choose any length of time as the planning period. Mathematically, it has no effect other
than increasing or decreasing the dimensionality of the problem. In the literature, the planning
horizon varies from eight weeks for a small test problem [23] to five years for a captive power plant
case study [62]. It is also possible to wrap the maintenance around to the following planning
horizon [9] which endows the formulation an air of continual maintenance or periodicity.

The length of a time unit within the planning horizon, likewise, has no mathematical effect other
than influencing the dimensionality of the model formulation. What is more relevant, however,
is the availability of data corresponding to the time unit (hourly, daily, weekly, monthly, etc.)
and practical implications such as the minimum maintenance time (one day, five days, etc.).
Weekly time units are most commonly used in practice and in the literature [46]. Examples of
other time units are single-day [32], five-day [36] and monthly time units [2]. Typically, shorter
time units allow for greater flexibility in schedules but at the cost of increased dimensionality.

2.1.2 The time sequence

The time sequence indicates when a generating unit is in service (i.e. producing electricity) or
out of service for maintenance. Most GMS models have decision variables corresponding to the
starting time of maintenance for each unit [46]. Two representations can be used, namely a
binary variable xi,j taking the value 1 if maintenance of generating unit i commences at time
period j (and zero otherwise) or an integer variable xi taking the value j if maintenance of
generating unit i commences at time period j. Auxiliary variables may be introduced in the
form of a binary variable yi,j taking the value 1 if generating unit i is in maintenance at time
period j (and zero otherwise). This formulation with auxiliary variables increases the problem
dimensionality in the sense that it necessitates the inclusion of more constraints which explicitly
dictate that maintenance is not interrupted for the required duration [46].

2.1.3 Model constraints

The constraints of a GMS problem can vary in number depending on the complexity of the
model, assumptions and the requirements of the utility. Probably the most basic form of the
problem requires maintenance window constraints which ensure that each unit is scheduled for
maintenance between an earliest and latest time period, along with so-called load constraints in
order to ensure that the load demand is met for each time period. Depending on the choice of
variables, it may be necessary to add constraints so as to ensure that maintenance is performed
during consecutive time periods and only once during a maintenance window for each unit. The
planning horizon may consist of multiple maintenance windows for each unit, but these windows
are not allowed to overlap.

Stellenbosch University  http://scholar.sun.ac.za



2.1. General model considerations 11

Reliability constraints may be added by including a reserve/safety margin in the load constraints.
General resource constraints typically specify limits on the resources required for maintenance
during each period. In a broader sense, these constraints limit the number of units that may be
in maintenance simultaneously due to some “resource” being in scarce supply. Maintenance crew
constraints consider the availability of manpower to perform the maintenance tasks at a given
time and may also be considered as a resource constraint (the resource is manpower). If certain
units are not allowed to be in a state of simultaneous maintenance (e.g. in the same power
station or geographical region) then exclusion constraints may be added. Similarly, precedence
constraints ensure that certain units are scheduled for maintenance before others.

The above-mentioned constraints are listed in [17, 46] and almost all GMS models contain a
subset of these. A fairly recent addition to GMS constraint set are transmission/network con-
straints which receive attention in [2, 49, 51, 59, 60]. Lastly, specific constraints not mentioned
above, arise whenever the given GMS environment is adapted to be more problem-specific. As
an example, consider [64] where an equilibrium constraint is added for pumped-storage units.

2.1.4 The objective function

The objective function attribute represents an optimality criterion. Unfortunately, GMS nat-
urally presents conflicting requirements which means that a trade-off solution must typically
be found. Ultimately this makes the GMS problem multiobjective in nature. The dominant
objective is usually chosen as the optimality criterion, with the lesser objectives being incorpo-
rated into the model as constraints [46]. However, alternative multiobjective approaches will be
discussed later in this section.

The optimality criteria most often used may be grouped into three categories, namely conve-
nience criteria, economic criteria and reliability criteria [17, 46] and may be employed in single
or multiobjective settings.

Within the class of convenience criteria, the objective could be to minimise the degree of con-
straint violations or to minimise possible disruptions to the existing schedule. The author could
not find any reference in the literature to single objective formulations using this criterion.
However, the multiobjective formulations in [47, 48, 51] include it as an optimality criterion.

Under the heading of the economic criteria in GMS, the objective is commonly chosen as the
minimisation of the operating cost which consists of the production cost and maintenance cost
[17, 46]. The deregulation of the electric power market in many countries has perhaps shifted the
focus away from operating cost and reliability more towards profitability. Competitive market
environments typically cause an objective change to the maximisation of profit [34, 42, 106].
GMS formulations which consider economic criteria (operating cost of some composition) as a
single objective formulation are wide-spread [9, 11, 19, 21, 25, 33, 49, 59, 65].

Reliability criteria may either be deterministic or stochastic [63]. Deterministic reliability ob-
jectives are commonly chosen as the levelling of the reserve load over all the time periods, which
is generally achieved by minimising the sum of squares of the reserve. This approach is success-
fully used in the single objective formulations found in [14, 15, 17, 18, 32, 62, 63]. An alternative
objective is to maximise the minimum reserve during any time period [68]. As stochastic re-
liability objective, the effective load carrying capacity (ELCC) for each unit and an equivalent
load (EL) is used to level the risk of exceeding the available capacity [17], and it is applied as a
single objective model formulation in [63]. Alternatively, the loss of load probability/expectation
(LOLP/LOLE) is a commonly used reliability index. Adopting as objective the minimisation of
the total LOLP for the planning horizon [17, 82] is effective for the single objective formulation.

Stellenbosch University  http://scholar.sun.ac.za



12 Chapter 2. Literature Review

In a multiobjective context, objectives from any of the above three criterion categories may be
combined to form a multiobjective formulation for the GMS problem. Examples of combinations
are: economic and reliability objectives in [36, 38, 64]; economic, reliability and convenience
objectives in [47, 48], and economic and convenience objectives in [31, 51].

2.2 Model formulations in the literature

Due to the suitable nature of the GMS problem, it can easily be formulated as a mathematical
program in which one or more objective functions are optimised, subject to certain constraints,
as described in the previous section. Many scheduling problems share similarities with classical
optimisation problems, such as the assignment problem1, the travelling salesman problem2 and
the vehicle routing problem3 (and all their variations). As a result, many scheduling problems
have traditionally been formulated in terms of one of these optimisation problems. The GMS
problem, however, does not follow these traditional scheduling problem formulations. The
author could find no reference in the literature containing such a formulation for a GMS problem
and, furthermore, no explanation why such formulations are not (or may not be) used.

A possible reason why the GMS problem is not formulated as one of the classical optimisation
problems may be because the GMS problem differs from typical maintenance problems. The
authors in [46] describe it as “The peculiarity of maintenance scheduling of . . . units . . . ” and
attribute it to the following properties of power systems: generated electricity is impossible
to store, the transmission network is limited and the required amount of electricity must be
generated at every instant, an adequate amount of reserve capacity has to be available, and the
parallel nature of electricity supply within a power system (due to multiple generating units).
Furthermore, the GMS problem can be highly variable in its composition — different objective
functions may be employed, the formulation may be linear or nonlinear, different combinations
of various constraints may be included, and adopting a deterministic or stochastic approach all
lead to the conclusion that the GMS problem should be modelled in its own fashion. A last
possible reason may be that a classical problem formulation adds unnecessary complexity to the
GMS problem, whereas a direct mathematical programming formulation of the GMS constraints
and objective function tends to be of a simpler form.

Since many different formulations for the GMS problem appear in the literature, depending on
the scope of the model, the individual constraint and objective function formulations found in
the literature are presented seperately in this section, in a similar fashion as in §2.1. These
formulations are all presented in the context of a mathematical program.

1The classical assignment problem consists of assigning a number of agents to perform the same number of
tasks. Any agent can perform any task at some cost, depending on the agent-task assignment. In order to solve
the problem, an assignment of exactly one agent to each task has to be obtained such that the total cost of the
assignment is minimised [87].

2Given a number of cities and the distances between these cities, the travelling salesman problem asks for a
shortest (closed) tour in which each city is visited exactly once [99].

3The vehicle routing problem contains a set of customers to be serviced by a fleet of vehicles, which are initially
located in one or more depots. The vehicles may move along a road network associated with travelling costs and
the task is to find all the vehicles’ servicing routes, starting and ending at their respective depots, such that the
total travelling cost is minimised [78].

Stellenbosch University  http://scholar.sun.ac.za



2.2. Model formulations in the literature 13

2.2.1 Constraint formulations in the literature

In order to present mathematical representations of the various GMS problem constraints, de-
fine xi,j as the binary decision variable taking the value 1 if maintenance of generating unit i
commences at time period j, and zero otherwise. Alternatively, define xi as the integer decision
variable denoting the starting time period of the maintenance of generating unit i. Let yi,j be
a binary variable taking the value 1 if generating unit i is in maintenance at time period j, and
zero otherwise. If there are n generating units and m time periods in the planning horizon, let
I = {1, . . . , n} be the set of indices of generating units and let J = {1, . . . ,m} be the set of
indices of time periods. Then i ∈ I and j ∈ J in the variables defined above.

The maintenance window constraint set ensures that the maintenance of a generating unit occurs
in a pre-specified time-window. This is achieved by specifying that maintenance of unit i must
start between an earliest time period (denoted by ei) and latest period (denoted by `i), both
inclusive. The binary variable constraint set

∑

j∈Ji

xi,j = 1, i ∈ I (2.1)

achieves this requirement, where Ji is the set of time periods during which the maintenance of
unit i may start [15]. Therefore, Ji = {j ∈ J | ei ≤ j ≤ `i}. One may also explicitly specify
that the variables should be zero when maintenance is not allowed [2, 3], that is requiring that

xi,j = 0, i ∈ I, j /∈ Ji, (2.2)

yi,j = 0, i ∈ I, j < ei or j > `i + di − 1. (2.3)

If the integer variables are used, the constraint set simply bounds the variables [2, 48, 83] by
requiring that

ei ≤ xi ≤ `i, i ∈ I. (2.4)

If the maintenance of unit i starts, the maintenance must occur for a given duration di. Fur-
thermore, this maintenance must occur contiguously for the given duration. When the binary
variables are used [11], the duration constraint set is

∑

j∈J
yi,j = di, i ∈ I, (2.5)

while the non-stop maintenance constraint set is given by

yi,j − yi,j−1 ≤ xi,j , i ∈ I, j ∈ J \{1}, (2.6)

yi,1 ≤ xi,1, i ∈ I. (2.7)

A simpler formulation may be given if the integer variables are used. The constraint set is then
formulated [19, 25] as

yi,j =

{
1 for xi ≤ j ≤ xi + di − 1

0 for all other j.
(2.8)

This constraint set may be written more quantitively than in (2.8). The formulation presented
in [48] presents two constraint sets. The first set is identical to the duration constraint set (2.5).
The second set formulates the non-stop restriction as

xi+di−1∏

j=xi

yi,j = 1, i ∈ I. (2.9)

Stellenbosch University  http://scholar.sun.ac.za



14 Chapter 2. Literature Review

However, this approach is undesirable since the constraints are nonlinear. If possible, one
should avoid nonlinear constraints as it becomes much more difficult to solve a problem bound
by such restrictions. There is a linear constraint formulation that can include the duration and
continuous maintenance requirements into one constraint [46, 65]. This elegant constraint set is

xi+di−1∑

j=xi

yi,j = di, i ∈ I. (2.10)

The load constraints ensure that the forecasted load demand for each time period is met. Two
approaches are presented in the literature. Firstly, let gi,j denote the generating capacity of unit
i during time period j. To ensure the demand is at least met, the total generating capacity less
the capacities in maintenance should generate enough electricity [32], that is

∑

i∈I
gi,j −

∑

i∈I
gi,jyi,j ≥ Dj , j ∈ J , (2.11)

where the demand at time period j is denoted by Dj . If Rj denotes the reserve margin/safety
level required during time period j, the reliability constraints may be combined with the load
constraints [23, 32] in (2.11) as

∑

i∈I
gi,j −

∑

i∈I
gi,jyi,j ≥ Dj +Rj , j ∈ J . (2.12)

A formulation, similar in form to (2.12), but using the binary decision variables xi,j is presented
in [15]. Let S ′i,j be the set of start time periods such that if the maintenance of unit i starts
at time period k then unit i will be in maintenance during time period j, therefore S ′i,j = {k ∈
Ji | j − di + 1 ≤ k ≤ j}. Also, let I ′j be the set of indices of generating units which are allowed
to be in maintenance during time period j, so I ′j = {i | j ∈ Ji}. The constraint set (2.12) may
then be replaced by

∑

i∈I
gi,j −

∑

i∈I′j

∑

k∈S′i,j

gi,kxi,k ≥ Dj +Rj , j ∈ J . (2.13)

The second approach to formulate the load constraints is to assume that the output level of
a generating unit is not fixed at its capacity [9, 19, 66]. This leads to the introduction of a
variable pi,j which denotes the output level of generating unit i during time period j. Since the
specific output levels are computed, the generated output must equal the demand. This may
be achieved by requiring that ∑

i∈I
pi,j = Dj , j ∈ J , (2.14)

while the additional constraint set specifying the limits of each unit’s output level is given by

0 ≤ pi,j ≤ gi,j(1− yi,j), i ∈ I, j ∈ J . (2.15)

The output level must be less than the generating capacity and zero whenever the unit is in
maintenance. In this case, the reliability constraint, incorporating a reserve margin, must be
specified separately from the load constraints [9, 19, 66]. However, the constraint set is identical
to (2.12).

General resource constraints ensure that the maximum resources available for maintenance
during any time period are not exceeded. Let qi,j denote the quantity of the resources required

Stellenbosch University  http://scholar.sun.ac.za



2.2. Model formulations in the literature 15

by generating unit i during time period j when in maintenance. The resource constraint set
[3, 32] may then be formulated as

∑

i∈I
qi,jyi,j ≤ Qj , j ∈ J , (2.16)

where Qj denotes the available resources during time period j. Since manpower may be consid-
ered as a resource, crew constraints [25] are typically formulated in this fashion. The constraint
set may also be formulated in terms of the decision variables xi,j , according to the crew con-
straints in [15], as ∑

i∈I′j

∑

k∈S′i,j

qi,kxi,k ≤ Qj , j ∈ J . (2.17)

There may be a number of reasons why certain units are not allowed to be in maintenance
simultaneously. Typically, there are certain sets of units (for example, units within the same
power plant, units within the same class or units within the same geographical region). As a
result, define Ik as the subset of generating units that belong to some specific grouping k of
units. If there are K different groupings, let K denote the set of indices of these groupings with
K = {1, . . . ,K}. Then k ∈ K. The exclusion constraint set then takes the form

∑

i∈Ik

yi,j ≤ Kk, j ∈ J , k ∈ K, (2.18)

where Kk denotes the maximum number of units within grouping k that is allowed to be in
maintenance simultaneously [11, 48].

It may be required that some generating units should be in maintenance before others (i.e.
implementing different priority levels). If maintenance of unit i1 has to start before that of unit
i2, the following pair of constraint sets ensures this precedence when using the binary decision
variables

j∑

p=1

xi1,p − xi2,j ≥ 0, j ∈ J , (2.19)

xi1,j + xi2,j ≤ 1, j ∈ J . (2.20)

Constraint set (2.19) ensures that the maintenance of unit i2 does not start before the mainte-
nance of unit i1, while constraint set (2.20) prevents the maintenance of two units from starting
simultaneously [11]. The precedence constraints are much simpler to formulate using the integer
decision variables. The following precedence constraint formulation specifies that maintenance
of unit i2 may only start after the maintenance of unit i1 has been completed [48, 66], i.e.

xi1 + di1 ≤ xi2 . (2.21)

Should one require that the maintenance of unit i1 only starts before the maintenance of unit
i2, the constraint formulation becomes

xi1 < xi2 . (2.22)

Lastly, as mentioned in §2.1.3, transmission/network constraints have recently been receiving
attention in GMS problem formulations. These constraints ensure that the flow on all the
transmission lines are kept within their limits (i.e. capacity constraints). The output levels

Stellenbosch University  http://scholar.sun.ac.za



16 Chapter 2. Literature Review

of the generating units are necessary for implementation of such constraints — therefore the
transmission contraints may only be applied in conjunction with constraint sets (2.14) and (2.15).
From these output levels, a load flow problem is solved to obtain the line flows. Let L =
{1, . . . , L} be the set of indices of transmission lines. These computed line flows must adhere to
the transmission constraint set

|f`| ≤ F`, ` ∈ L, (2.23)

where f` denotes the flow on transmission line ` and F` denotes the maximum flow limit of
transmission line ` in the power network [24, 51].

2.2.2 Objective function formulations in the literature

A number of economic objectives appear in the literature within a single objective environment.
Let cpi,j denote the production cost associated with generating unit i during time period j and
let cmi,j denote the maintenance cost incurred if unit i is in maintenance during time period j.
An objective function presented in [49] is formulated with the requirement to

minimise
∑

i∈I

∑

j∈J

(
cpi,j(1− yi,j) + cmi,jyi,j

)
. (2.24)

A similar objective function is presented in [21], but the authors only considered the production
cost. On the other hand, in [65] the only cost considered in the objective function is the
maintenance cost. However, the maintenance cost is multiplied by the generating capacity of
the unit (in their case gi,j = gi), giving rise to an objective that should

minimise
∑

i∈I

∑

j∈J
cmi,jgiyi,j . (2.25)

According to the model, the cost coefficients are at a minimum when a unit is in maintenance
during its preferred period of maintenance. Outside this preference window, the costs increase
linearly. The generating capacity factor in the objective function results in a heavier penalty
attributed to larger generating units. Therefore, a good schedule will give preference to the
larger units’ preferred maintenance periods.

Since fuel costs tend to dominate the value of production costs, some models simply use the
fuel costs directly. This approach is adopted in the objective function in [19]. Let cfj denote the
fuel cost per unit megawatt output during time period j. The objective function employs the
integer decision variables and is defined to

minimise
∑

j∈J

(
cfj
∑

i∈I
pi,j

)
+
∑

i∈I
cmi,(xi), (2.26)

targeting the minimisation of the overall fuel cost (production cost) and overall maintenance
cost — therefore having the same form as (2.24). The maintenance cost cmi,(j) in this objective
function, however, is defined as the maintenance cost of unit i if its maintenance commenced
during time period j, which is slightly different than in (2.24).

If a GMS formulation includes start-up and shut-down considerations, an important financial
quantity is the start-up cost of a generating unit, as it may be a considerable amount. The
objective function presented in [11] includes such costs. In that model development, the author
determined that the maintenance costs were insignificant in comparison with the start-up costs

Stellenbosch University  http://scholar.sun.ac.za



2.2. Model formulations in the literature 17

and production costs and hence, the maintenance costs were disregarded. The objective function
has the same general form as (2.26) with production costs replacing the fuel costs and start-up
costs replacing the maintenance costs.

The deterministic reliability objective approaches in the literature are all concerned with the
reserve load. In almost all single objective cases, the objective is to level the reserve load over
the planning period. The most common objective function is the sum of squares of the reserve
loads, which is to be minimised. Since the reserve load during a given time period j is calculated
by substracting the demand from the available generating capacity (i.e. total capacity minus
capacity in maintenance minus demand), the objective function is to

minimise
∑

j∈J

(∑

i∈I
gi,j −

∑

i∈I
gi,jyi,j −Dj

)2

, (2.27)

as presented in [32]. The formulation in [15] involves this same sum of squares objective function,
only in terms of the starting binary variables xi,j . One may also include the reserve margin
within the sum of squares objective function, whereby a pseudo-reserve load is levelled [63]. The
reserve margin Rj is simply subtracted as well.

Another objective function that can also level the reserve is the sum of the differences between
the average reserve load and the reserve loads for every time period [23]. The average reserve
load r̄ is calculated by

r̄ =
1

m

∑

j∈J
rj , (2.28)

where the reserve load during time period j is given by

rj =
∑

i∈I
gi,j −

∑

i∈I
gi,jyi,j −Dj , j ∈ J . (2.29)

Note that r̄ and rj are merely used here for notational purposes to correspond closely to the
formulation presented in [23]. The objective is then to

minimise
∑

j∈J
(r̄ − rj) . (2.30)

This objective function is not as strong as the sum of squares objective function for two reasons.
Firstly, each term in (2.27) is positive, whereas terms in (2.30) may be negative. In the sum-
mation, large negative or positive terms may be cancelled by other terms and result in a low
objective function value when minimised. However, the reserve loads might be very different
from one another. This cannot happen in the objective function in (2.30). Secondly, outlier
reserve loads are penalised much more in (2.27) than in (2.30) because of the square.

A different reliability objective than levelling the reserve loads is to maximise the smallest
reserve load during any time period [68]. The objective is therefore to

maximise min
j∈J

{∑

i∈I
gi,j −

∑

i∈I
gi,jyi,j −Dj

}
(2.31)

and is an attractive objective if a utility wishes to maintain the largest possible reserve during
any given time period.

The various single objective GMS models in the literature are formulated from the constraint
and objective function formulations presented in this section. Since all the presented economic

Stellenbosch University  http://scholar.sun.ac.za



18 Chapter 2. Literature Review

objective functions are linear, GMS problems may be formulated as integer or mixed-integer
linear programs, depending on the decision variables that are chosen and assuming that con-
straint set (2.9) is not included. However, all the reliability objective functions are nonlinear.
Depending on the reliability objective and choice of decision variables, GMS problems may also
be formulated as integer/mixed-integer quadratic/nonlinear programs.

Numerous multiobjective formulations also appear in the literature. The approach followed
in [47] defines an objective function vector F (X) = [F1(X) . . . Ft(X) . . . FT (X)] containing the
values of T different objectives under a maintenance schedule X. Each objective is calculated
by

Ft(X) =
∑

j∈J
ft,j(y1,j , . . . , yn,j) (2.32)

where ft,j(y1,j , . . . , yn,j) denotes the value of objective t during time period j. The formulation
specified three objectives, namely fuel costs, expected unserved energy and constraint violations
in terms of a penalty function. More objectives may, however, be added to the vector. A
solution is found by minimising the Euclidian distance between the ideal point F ∗(X) and the
objective function vector.

A goal programming approach is presented in [64] involving two objectives, namely minimising
an economic cost and levelling the reserve margin. The economic cost includes the fuel, start-up
and storage costs, as well as penalties for constraint violations. In the model, the reserve margin
for each period is defined as the total available generating capacity divided by the period’s peak
load demand. The first stage of the problem is solved adopting the cost as objective function.
This function is similar in nature to (2.24) but with many more different components. The
second stage of the problem is solved adopting the reserve margin as objective function for a
fixed minimum cost objective function value. Using the notation in [64], let mrp denote the
reserve margin at time period p. The relation between consecutive periods’ reserve margins is
given by the constraint

mrp −mrp+1 + hp − ap = 0, for all periods p. (2.33)

The objective is to minimise the sum of the slack variables in this constraint over all time
periods, i.e. to

minimise
∑

p

(hp + ap) . (2.34)

Therefore the sum of the differences between the reserve margins of consecutive periods is
minimised. By minimising this objective function, the reserve margins may be levelled.

2.2.3 Other problem formulations

A different problem formulation than the ones mentioned in the previous section is a constraint
satisfaction problem (CSP) formulation [33]. The GMS problem may be encoded into the
constraint satisfaction framework, consisting only of hard constraints — ones that must be
satisfied for a solution to be feasible. The GMS problem is encoded as a CSP with 3 × n ×m
variables. Three sets of variables may be distinguished and the notation in [33] is used to define
them. The variables Xi,j may take on values in the set {on, off, maint} corresponding to
the state of unit i during time period j. Variables Yi,j ∈ {first, subsequent, not} signify
the state of unit i during time period j. If Yi,j = first, then maintenance of unit i starts
during time period j; if Yi,j = subsequent then unit i is scheduled for maintenance during
time period j and for at least one prior time period, while if Yi,j = not, then the unit is not in

Stellenbosch University  http://scholar.sun.ac.za



2.3. Model extensions 19

maintenance. Lastly, the variables Zi,j are boolean variables that may take on values in the set
{none, full}, indicating whether unit i is producing power during time period j or not. With
these variable definitions and domain values, the GMS problem is encoded in a CSP framework.

Another class of problem formulations in the literature is found by applying fuzzy logic to the
GMS problem [14, 25, 36]. If one uses a fuzzy approach, the objective(s) and/or certain con-
straints may be fuzzified to incorporate uncertainty into the problem. A membership function
must be defined for the chosen fuzzy numbers (for example, the load demand, manpower re-
quirements or operating costs). An explanation of the basic concepts of fuzzy sets is presented
later in this chapter. Typically, the constraint set and objective function formulations are the
same as in §2.2.1 and §2.2.2; the only difference is that the fuzzy numbers are used instead of
the deterministic values. The variable definitions remain exactly the same.

2.3 Model extensions

The GMS problem has received considerable attention in the literature over the years [1, 46]
and continues to play a central role in decision making at electrical power utilities world-wide.
As technologies evolve, electricity demand invariably increases and competitive markets emerge,
and so the effectiveness of GMS models also has to stay abreast of developments by expanding
the models so as to include other processes.

As mentioned in §2.1.3, transmission considerations have only recently been introduced into
GMS modelling and then only in the form of constraints. Since electricity provision depends on
both the generating units and the transmission lines, a logical step would be to formulate the
maintenance scheduling of both these components as a single problem. This notion has been
proposed in [24, 59]. In order to model these two scheduling problems in a single optimisation
problem, the objective function will have to be altered and certain constraints will have to be
added. The details of this formulation may be found in the two mentioned sources. However,
a brief description of these additions is given here. Since transmission lines do not induce
production costs, the economic objective function is defined as the sum of the production costs,
maintenance costs of the generating units and maintenance costs of the transmission lines. The
objective is to

minimise
∑

j∈J

(∑

i∈I
cpi,jpi,j(1− yi,j) +

∑

i∈I
cmi,jyi,y +

∑

`∈L
ct`,jT`,j

)
, (2.35)

where T`,j is a binary variable taking the value 1 if transmission line ` is in maintenance during
time period j and ct`,j denotes the maintenance cost if transmission line ` is in maintenance
during time period j. The additional constraints include constraint sets identical to (2.4),
(2.8) and (2.16), but now also in terms of coefficients and variables of the transmission system.
Furthermore, for the specific formulation in [24], the power output constraints (2.11) and (2.15)
are replaced with

∑

i∈I
pi,j(1− yi,j) = Dj , j ∈ J , (2.36)

0 ≤ pi,j ≤ gi,j , i ∈ I, j ∈ J , (2.37)

in order to correspond with the new objective function.

Coordination between separate generation and transmission companies with respect to their
maintenance schedules is proposed in [34]. Maintenance scheduling problems for a generation

Stellenbosch University  http://scholar.sun.ac.za



20 Chapter 2. Literature Review

and a transmission company are formulated separately as mathematical programs with con-
straints (notably with transmission constraints included) similar to those presented earlier in
this chapter. These two solutions are compared with so-called preferred schedules from a co-
ordinator. After possible modifications to the schedules, the generation company’s schedule is
inserted as a constraint into the transmission company’s problem, or vice versa. The combined
problem is resolved and should any violations occur, the inserted schedule is modified until a
final solution is found.

Another extension that has received attention in the literature is generation planning along with
maintenance scheduling. The formulation proposed in [70] combines the constraints for each
problem and considers a quadratic profit objective function.

2.4 Typical solution techniques

Large modern-day power systems typically exhibit a number of generating units — generally
exceeding 100 [64] — with typical planning horizons of 52 weeks. The number of independent
variables in a GMS problem are determined by these values, giving rise to very large combi-
natorial optimisation problem. Suitable solution techniques should be able to obtain good or
optimal solutions for such large problems while keeping the computational time within reason.
A comprehensive survey of GMS literature is given in [1], stating many of the solution techniques
employed in the context of GMS, and is used as base reference for this section.

2.4.1 Heuristics

The application of heuristic techniques4 are based on trail and error. Sequential maintenance
is usually scheduled in a unit-by-unit manner [46] and possible corrections are made according
to a previously defined scheduling order. In its simplest form, the scheduling order/priority list
is found by arranging the units in decreasing order of capacity. These methods are typically
simple to understand and very straight-forward to apply, requiring very little computational
time. An example of a heuristic with the objective of levelling the reserve is presented here, as
described in [13].

The units in the power system are classified into to six categories:

1. Units on fixed maintenance,

2. Units available only part of the year and requiring one maintenance occurence,

3. Units available only part of the year and requiring two maintenance occurences,

4. Units fully available for the year and requiring one maintenance occurence,

5. Units fully available for the year and requiring two maintenance occurences,

6. Units not requiring maintenance during the year.

The assumption is that if a unit requires two maintenance occurences, one occurence must be
scheduled during the first half of the year, while the other occurence must be scheduled during

4Heuristic is derived from the Greek word heuriskein which means “to find.” A heuristic technique finds (or
attempts to find) a solution to a problem by means of loosely defined rules-of-thumb.

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 21

the second half. It is assumed that no unit requires more than two maintenance occurences.
Furthermore, the problem constraints are ranked according to their severity. The heuristic
proceeds as follows:

STEP 1: Determine a scheduling priority list for the units.

Arrange the units in ascending order of category. For units within the same
category, arrange them in descending order of maintenance duration. For units
within the same category and with equal maintenance durations, arrange them
in descending order of capacity.

STEP 2: Develop the maintenance schedule according to the priority list.

Schedule a unit for maintenance over successive intervals (equal to the mainte-
nance duration) such that the sum of reserves is a maximum without violating
any of the constraints. If this causes an infeasibility, schedule the maintenance
over the intervals which violates the least severe constraints.

Many of these heuristic methods were designed years ago when the complexity of the GMS
problem seemed overwhelming. Today, despite the existence of sophisticated optimisation algo-
rithms, many heuristic models are nevertheless still used [1].

2.4.2 Mathematical programming techniques

As demonstrated in §2.2, the GMS problem can easily be formulated as a mathematical program,
thereby paving the way for the use of mathematical programming solution techniques.

The single-objective mixed-integer programs in [2, 21, 65] are all solved by algorithms that em-
ploy the branch-and-bound method. Although not formulated as a mathematical program, [47]
employs a multiobjective branch-and-bound algorithm to solve the GMS problem. Unfortu-
nately this algorithm is used in conjunction with successive approximations, and hence the
solution is not necessarily globally optimal. Modern software packages that are available for
solving integer optimisation problems generally use branch-and-bound methods, as they are
still the most viable methods known for integer problems. Other popular and effective algo-
rithms are used within these software packages to solve general mathematical programs.

The single-objective programs in [11, 34, 49, 60] employ a decomposition method called Benders’
decomposition to solve the GMS problem. As GMS typically gives rise to a large-scale problem,
decomposition seems a very attractive approach in order to reduce computational solution time.

The branch-and-bound method

The branch-and-bound (B&B) method is a general algorithm that may be applied to combi-
natorial optimisation problems and it guarantees an optimal solution. The method was first
proposed by Land and Doig [50] in 1960. A general description of the method is presented
here. Assume, without loss of generality, that an objective function f(x) has to be minimised,
where the decision variable x lies within some set S of candidate solutions (known as the search
space or feasible region). The algorithm applies two procedures to the problem. Firstly, the
branching procedure (given a subset S ′ ⊆ S) returns two or more smaller sets S ′1,S ′2, . . . whose
union covers S ′. The minimum value of f(x) over S ′ is then attained at min{x1,x2, . . . }, where

Stellenbosch University  http://scholar.sun.ac.za



22 Chapter 2. Literature Review

f(xi) is the minimum value of f(x) for x ∈ S ′i. The recursive application of branching leads
to a datastructure resembling a rooted tree, whose nodes are the subsets of S, hence the name
branching. The second procedure is known as bounding and it provides a method for calculating
upper and lower bounds on the minimum value of f(x) within a given subset S ′ ⊆ S.

The main idea of the B&B method is that if the lower bound for some node (subset of candidate
solutions) A is greater than the upper bound for some other node B, then A may be discarded
from the search (i.e. node A and its entire subtree may be removed). This step is known as
pruning. The recursion (branching) stops when the current set of candidate solutions S is
reduced to a single element or when the upper bound on f(x) over S matches its lower bound.
In both cases, a minimum value of f(x) is found over S.

Since the GMS problem requires maintenance of units to occur over discrete integer time inter-
vals, its mathematical programming formulations employ integer variables for the starting times
of maintenance or binary variables indicating when a unit is in maintenance, as stated in §2.1.2.
Therefore, the GMS problem is often moulded in the shape of an integer program (IP). IPs are
often solved by using the branch-and-bound method [102]. A brief description of the method in
terms of an integer programming paradigm is presented below.

Consider a general integer program and assume that the objective is to minimise a linear function
of the decision variables. The B&B method starts by solving the linear programming (LP)
relaxation5 of the IP. If an optimal solution to the LP relaxation comprises integer values for
all the integer variables, this relaxed optimal solution is also an optimal solution to the IP.
Should this not be the case, branching occurs on any integer variable with a non-integer value
in the relaxed optimal solution. For a pure integer problem, branching may occur on any of
the variables, however, in a mixed-integer problem the branching should only occur on integer
variables.

The branching procedure partitions the feasible solution space into smaller, mutually exclusive
subsets [40]. Each partition is represented by a node in a datastructure resembling a rooted tree
and corresponds to a new subproblem. The root node represents the LP relaxation problem of
the IP. If an integer variable x has a non-integer value a, then branching may occur by steering
the value away from the interval (bac < x < dae), leading to a branch for x ≤ bac and a branch
for x ≥ dae. Each inequality is included as a constraint in the respective new subproblems.

The bounding procedure computes a lower bound on the optimal objective function value of
the IP at any node (i.e. for that subset of the solution space). This is achieved by solving
the LP relaxation of the subproblem. Generally, branching occurs from the unterminated node
with the smallest lower bound [40], a traversal protocol called jumptracking. However, there
are also other traversal protocols (e.g. depth-first). If the solution to the LP relaxation of a
node has integer values for all the integer variables, that solution is feasible for the IP and
further branching on the node is terminated. Should any node in the search tree achieve a
lower bound no better than the value of the best feasible solution uncovered up to that point,
further branching on such a node may also be terminated (in which case the node is said to
be fathomed), because subsequent branching will not lead to a solution with a better objective
function value than that of the best encountered feasible solution. Branching continues until
all nodes are fathomed or the value of the best lower bound is no better than that of the best
feasible solution [40].

5The linear program obtained by omitting all integer or binary constraints on variables is called the LP
relaxation of the integer program [102].

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 23

An advantage of the B&B method is that it guarantees a globally optimal solution. The method
is also computationally acceptable (it should terminate within a acceptable amount of time)
even for problems with a large number of variables and constraints [46]. The reason lies in
the fact that potentially large subsets of solutions are discarded by means of the lower bounds
(bounding procedure), thereby reducing computational time. This is, however, not necessarily
always the case as it is possible to enumerate almost all of the solutions of the subproblems for
pathologically difficult IPs (if most bounds obtained during the search are not useful). Different
traversal protocols may also be beneficial in reducing computational time, since it allows a
tailored approach to the problem, depending on the branch structure of the decision tree.

The simplex algorithm

The simplex algorithm was developed by George Dantzig in 1947 and it is generally an efficient
method for solving linear programming problems. For most problems in practice, the simplex
algorithm converges in expected polynomial time; however, its worst-case time complexity is
exponential, as demontrated with specific examples by Klee and Minty [43] in 1972. The algo-
rithm searches for an optimal solution along the extreme points of the feasible region of an LP6.
The relevant terminologies are defined below, followed by a description of the basic algorithm
when applied to a maximisation problem, following in [102].

An LP is said to be in standard form if all its constraints are equalities and all variables are
nonnegative. The conversion of an LP into standard form is performed as follows:

• If constraint i is a “≤” constraint, a slack variable si is added to the i-th constraint
together with the sign restriction si ≥ 0.

• If constraint i is a “≥” constraint, an excess variable ei is subtracted from the i-th con-
straint and the sign restriction ei ≥ 0 is imposed.

• If a variable xi is unrestricted in sign, it is replaced by x′i − x′′i in the objective function,
as well as all constraints, together with the sign restrictions are x′i ≥ 0 and x′′i ≥ 0.

Consider a system Ax = b of m linear equations in n variables (assume n ≥ m). A basic solution
to the system is obtained by setting n−m variables equal to 0 and solving for the values of the
remaining m variables. This assumes that setting the n−m variables equal to 0 yields unique
values for the remaining m variables or, equivalently, the columns for the remaining m variables
are linearly independent [102]. The n−m variables set to equal 0 are referred to as the nonbasic
variables, while the m variables solved for values are referred to as the basic variables. Any
basic solution in which all the variables are nonnegative is called a basic feasible solution7.

The simplex algorithm proceeds as follows:

1. The LP is converted into standard form. Furthermore, a canonical form8 of the LP is
determined from the standard form. The objective function is added as a equation in row

6The feasible region for any LP is a convex set. For any convex set S, a point P ∈ S is an extreme point if
each line segment that lies completely in S and contains the point P has P as an endpoint of the line segment
[102]. Furthermore, if an LP has an optimal solution, then it has an optimal solution corresponding to an extreme
point [102].

7A point in the feasible region of an LP is an extreme point if and only if it is a basic feasible solution to the
LP [102].

8A system of linear equations in which each equation has a variable with a coefficient of 1 in that equation,
and a zero coefficient in all other equations, is said to be in canonical form.

Stellenbosch University  http://scholar.sun.ac.za



24 Chapter 2. Literature Review

zero above the canonical form, expressed as z−cTx = 0, where z is the objective function
value, c is the problem coefficient matrix and x the solution vector.

2. An initial basic feasible solution is obtained, if possible.

3. The current basic feasible solution is tested for optimality. This is achieved by determining
whether a unit increase in any nonbasic variable (while keeping the other nonbasic variables
at zero) will increase the objective function value. A nonbasic variable with a negative
coefficient in row 0 will achieve this. The solution is optimal if the objective function value
cannot be increased.

4. A nonbasic variable is sought to enter the basis (entering variable) and a basic variable
is sought to exit the basis, if the current solution is not optimal. The entering variable is
chosen as the nonbasic variable which will increase the objective function value the most
(i.e. the nonbasic variable with the most negative coefficient in row 0). A ratio test is used
to determine how large the entering variable can be made. This is achieved by computing,
for any row in which the entering variable has a positive coefficient, the ratio

Right-hand side of row

Coefficient of entering variable in row
. (2.38)

The row (constraint) with the smallest ratio is the winner of the ratio test.

5. A new basic feasible solution is determined. The entering variable is made a basic variable
in the winning row of the ratio test. This is done by a procedure called pivoting which
consists of elementary row operations to render a coefficient of 1 for the entering variable
in the winning row. A new canonical form is created after the procedure is performed.
The new basic feasible solution is tested for optimality in step 3 and the process repeats.

The algorithm continues until an optimal solution is found, provided the LP is not unbounded
or that cycling does not occur. Furthermore, note that the right-hand side of any row (except
the objective function row) may not be negative.

The dual simplex algorithm

Any LP (called the primal problem) is associated with another LP, called its dual problem.
Consider the (primal) maximisation problem:

maximise cTx

subject to Ax ≤ b,
x ≥ 0.

Then its dual is given by:

minimise yTb

subject to ATy ≥ c,
y ≥ 0.

If x∗ is a feasible solution to the primal problem, and y∗ is a feasible solution to the dual
problem and cTx∗ = y∗Tb, then x∗ is optimal for the primal problem and y∗ is optimal for the
dual problem [102].

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 25

The simplex algorithm described above (applied to a maximisation problem, referred to here
as the primal problem) starts with a primal feasible solution, since all the constraints have
nonnegative right-hand sides in the initial iteration. Furthermore, at least one nonbasic variable
may increase the objective function value (negative coefficient in row 0); therefore, the initial
primal solution is not dual feasible. Since the right-hand sides never become negative during the
simplex algorithm, primal feasibility is maintained, and the algorithm terminates at an optimal
solution when a nonnegative row 0 is attained (no further improvement is possible), i.e. when
dual feasibility has been achieved.

The dual simplex method may be used when each variable in row 0 has a nonnegative coefficient
(dual feasibility) and at least one constraint (row) has a negative right-hand side (primal infeasi-
ble). The dual simplex algorithm maintains the nonnegative row 0 (dual feasibility) and at some
point reaches an iteration where all the right-hand sides are nonnegative (primal feasibility). At
this point, an optimal solution has been obtained [102].

The generalised reduced gradient algorithm

The generalised reduced gradient algorithm is a solution method that extends the reduced
gradient algorithm for nonlinear programming (NLP) problems having the standard form that
aims to

minimise f(x)

subject to h(x) = 0,

a ≤ x ≤ b,

where h(x) has dimension m. Note that a general NLP problem can always be expressed in
the standard form above by including slack variables and allowing some components of a and
b to take the values +∞ or −∞, if necessary [58]. The description of the generalised reduced
gradient algorithm presented here, is paraphrased from [58].

The algorithm requires a nondegeneracy assumption stating that, at each point x, a partition
of x into x = (y, z) exists with the properties:

• y has dimension m and z has dimension n−m,

• if a = (ay,az) and b = (by, bz) are the corresponding partitions of a and b, then ay <
y < by,

• the m×m matrix ∇yh(y, z) is nonsingular at x = (y, z).

The vectors y and z consist of the dependent and independent variables, respectively. The idea
behind the generalised reduced gradient method is to consider the problem only in terms of the
independent variables z at each stage. If z is specified, h(y, z) = 0 can be solved uniquely for
the dependent variables y and as such, the objective function may be considered a function of z
only. By accounting for the constraints, a simple modification of the method of steepest descent
may be executed. The reduced gradient, with respect to the independent variables z, is

rT = ∇zf(y, z) + λT∇zh(y, z), (2.39)

where λ satisfies

∇yf(y, z) + λT∇yh(y, z) = 0. (2.40)

Stellenbosch University  http://scholar.sun.ac.za



26 Chapter 2. Literature Review

Equivalently, the reduced gradient is

rT = ∇zf(y, z)

λT

︷ ︸︸ ︷
−∇yf(y, z)[∇yh(y, z)]−1∇zh(y, z). (2.41)

Therefore, moves are taken by changing z in the direction of the negative reduced gradient and
components of z on their boundary are held fixed if the movement would violate the bound. The
independent variables vector z moves along a straight line; however, the dependent variables
vector y must move nonlinearly in order to satisfy the equality constraints. This is achieved
by first moving linearly along the tangent to the constraint surface by means of the moves
z → z + ∆z, y → y + ∆y where ∆y = −[∇yh]−1∇zh∆z. Next, a correction procedure is
applied to return to the constraint surface and the magnitude bounds on the dependent variables
are tested for feasibility. Furthermore, a feasibility tolerance has to be introduced to address
the enforced return to the constraint surface.

An iterative scheme is used to return to the surface. If xk is the point at the previous step,
then from any point x = (v,w) near xk one returns to the constraint surface by solving the
nonlinear equation

h(y,w) = 0, (2.42)

for y with w being fixed. This is done through the iterative process

yj+1 = yj − [∇yh(xk)]
−1h(yj ,w), (2.43)

which produces a sequence {yj} with yj → y, solving (2.42), if it is started close enough to xk.

The method of successive linear programming

The method of successive linear programming (SLP), also known as sequential linear program-
ming, is an extension of linear programming in order to solve NLPs. In the method of SLP, the
nonlinear functions in an NLP are linearised so that the resulting problem is linear and may be
solved using traditional linear programming techniques.

A general nonlinear function f(x) may be linearly approximated about the point xc by the
first-order Taylor polynomial

f(x) ≈ f(xc) + [∇f(xc)]
T (x− xc). (2.44)

The method of SLP starts by linearising the NLP about an initial estimate of the optimal
solution. The resulting LP is solved and the solution (an improved estimate of the optimal) is
used to create a new linearisation of the NLP. Continuing in this manner, a sequence of NLP
linear approximations are solved whereby each new solution is closer to the optimal solution of
the NLP. However, the linearisations need not be bounded; therefore, trust regions9 or similar
techniques may be required to ensure convergence to a globally optimal solution [97].

Barrier methods

Barrier methods, also known as interior point methods, approximate constrained problems (lin-
ear or nonlinear) by unconstrained problems. A term is added to the objective function that

9If an objective function is replaced by a suitable model of it (i.e. an approximation) the model may only be
“trusted” within a certain trust region around the current point, specified by a trust region radius.

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 27

favours points lying in the interior of the feasible region over those that lie near the boundary,
thereby creating a “barrier” on the boundary that prevents a search procedure from leaving the
feasible region.

Barrier methods may be applied to problems that

minimise f(x)

subject to x ∈ S,

}
(2.45)

where the constraint set S has a nonempty interior such that any boundary point may be reached
by approaching it from the interior. A barrier function B is defined on the interior of S, with
the properties that

• B is continuous,

• B(x) ≥ 0 for all x ∈ S, and

• B(x)→∞ as x approaches the boundary of S.

The corresponding barrier method approximation for the problem in (2.45) may require one to

minimise f(x) +
1

c
B(x)

subject to x ∈ interior of S,

where c is a large positive constant. In the formulation, the problem is still constrained, but
the advantage is that it may be solved using unconstrained search techniques [58].

The barrier method for a problem of the form presented in (2.45) proceeds as follows. Let {ck}
be a sequence of real numbers tending to infinity such that ck ≥ 0 and ck+1 > ck for each
k ∈ {1, 2, 3, . . . }. Furthermore, define the function

r(c,x) = f(x) +
1

c
B(x), (2.46)

and for each k, solve the problem

minimise r(ck,x)

subject to x ∈ interior of S,

to obtain a sequence {xk}. The result [58] is that any limit point of a sequence {xk} generated
by the barrier method is a solution to the problem in (2.45).

A decomposition method

Benders’ decomposition is a method that allows one to solve hard optimisation problems which
have a certain substructure. As with any decomposition method, Benders’ decomposition parti-
tions the problem into multiple smaller problems which are easier (and faster) to solve. There-
fore it is especially suitable for large-scale problems [76]. Benders’ decomposition was initially
developed for solving linear programs and, as such, is explained here within the context of a
mixed-integer linear program (MILP).

Stellenbosch University  http://scholar.sun.ac.za



28 Chapter 2. Literature Review

In order to apply Benders’ decomposition to a linear program, the problem has to have the
following structure:

minimise cTx+ fTy

subject to Ax+By = b,

x ≥ 0,

y ∈ Y ⊆ Rq,





(2.47)

where q is the number of y-variables and Rq is the subspace of vectors having q real-valued
elements. This means the problem may be partitioned in terms of the variables, where the
y-variables are complicating variables in the sense that the problem becomes easier to solve if
the y-variables are fixed [76]. In the MILP context, y ∈ Zq with Zq being the subspace of
vectors having q integer-valued elements. Benders’ decomposition partitions (decomposes) the
problem in (2.47) into a master problem and a subproblem. The master problem is an MILP
containing the y-variables. It contains only a few constraints and may therefore be considered as
a relaxation of the original problem [49]. By solving the master problem, a preliminary solution
is generated which attains a lower bound on the optimal objective function value for the original
problem. This trial solution (i.e. values for y) is used to solve the subproblem, an LP containing
only the x-variables.

If the subproblem has an infeasible solution, a constraint referred to as a Benders feasibility
cut is added to the relaxed master problem. If the subproblem has a feasible solution, but the
objective function value of the original problem is not sufficiently close to the lower bound, a
constraint referred to as a Benders optimality cut is added to the relaxed master problem. In
this manner, the master problem is iteratively solved with additional constraints until a solution
is found, satisfying all the constraints, and which is close enough to the lower bound. Since
there are a finite number of Benders cuts and since cuts are generated in each iteration, the
method converges to an optimal solution in a finite number of iterations [76].

A flow diagram of the Benders’ decomposition method is presented in Figure 2.1. Accord-
ing to [76], the master problem may also be nonlinear or a constraint programming problem.
Likewise, the subproblem may be extended to a convex program. These characteristics make
Benders’ decomposition method an effective method to use in respect of a wide range of prob-
lems.

2.4.3 A dynamic programming variant

It has been suggested in [1, 46, 104, 105] that dynamic programming (DP) suits maintenance
problems best, based on the following properties: “(1) DP is especially suitable for problems
where a sequence of decisions is involved, (2) the objective function need not be a continuous
function of decision and state variables, and (3) analytic forms for the objective functions are
not required (provided one can obtain the function values at a given state) [104].”

In order to apply DP to the GMS problem it has to be formulated as a dynamic programming
model. A control vector U(j) = [u1(j) u2(j) . . . un(j)] is defined, with ui(j) being control
binary variables, for all i ∈ I, j ∈ J , attaining a value of 1 if unit i is in maintenance during
time period j, and 0 otherwise. The state vector is defined as X(j) = [x1(j) x2(j) . . . xn(j)]
where xi(j) is the state variable indicating the degree of maintenance completion for unit i at
the beginning of time period j. The maintenance scheduling process may then be expressed by
the recursive relation

X(j + 1) = X(j) +U(j), j ∈ J , (2.48)

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 29

Initial
master problem

Solve the master
problem

Use the solution to
solve the subproblem

Feasible?

Converge?

Optimal solution

Generate
optimality cut

Generate
feasibility cut

YES

NO

YES

NO

Figure 2.1: Flow diagram of Benders’ decomposition method.

together with the boundary conditions

X(1) = 0 and X(m+ 1) = [d1 d2 . . . dn], (2.49)

where di denotes the maintenance duration of unit i ∈ I.

The DP model for the GMS problem contains a large number of control and state variables
and, as such, the DP approach suffers greatly under the “curse of dimensionality”. As a result,
a direct application of dynamic programming is not manageable on account of computational
requirements. This has led to the application of dynamic programming with successive approx-
imations (DPSA) to reduce the problem dimensions. This technique converges, but does not
guarantee a global optimum [46].

The DPSA algorithm achieves a trade-off between scheduling units sequentially (as heuristic
methods do according to a priority list) and applying simultaneous scheduling of units. The
algorithm solves a sequence of DP problems, where the elements of the sequence are disjoint
subsets of the units. If the units are grouped into small subsets, a reduction of the state space is
achieved. The algorithm starts with a user-given initial solution. In each iteration, most of the
control and state variables (i.e. all those not in the current subset) have fixed values and values
are found for the remaining variables by means of DP. Each iteration continues onto the next
subset of units. The algorithm stops if two successive iterations produce the same schedule or
if no significant change in the objective function value is achieved. A flow chart describing the
working of the DPSA algorithm for the GMS problem is presented in Figure 2.2. Ultimately,
the DPSA method for solving the GMS problem should only be considered as an advanced
heuristic, due to the use of successive approximations. The method was successfully used in the
earlier years of GMS, as in [104, 107].

Stellenbosch University  http://scholar.sun.ac.za



30 Chapter 2. Literature Review

Initial solution

Determine N subsets of units

n← 1

Solve GMS problem using
dynamic programming,
keeping the schedules of

units not in subset n fixed

Significant
improvement in

objective function
value?

n←
{
n + 1 if n < N

1 if n ≥ N

Solution

NO

YES

Figure 2.2: Flow chart of the DPSA algorithm for the GMS problem.

2.4.4 Metaheuristics

The “curse of dimensionality” of the GMS problem prohibits exact solution methodologies to
obtain results within acceptable computation time frames. A relatively new approach to counter
problems (typically combinatorial in nature) with this attribute is to apply metaheuristic10

techniques. These techniques typically obtain very good solutions (although not necessarily
optimal) within more acceptable computation time frames. Most metaheuristics are inspired
by analogies from nature [20], e.g. from physics, biology or ethology. Unfortunately, there is no
exact definition of the notion of a metaheuristics. However, the United States National Institute
of Standards and Technology [8] defines a metaheuristic as

1. “A high-level algorithmic framework or approach that can be specialized to solve
optimization problems.”

2. “A high-level strategy that guides other heuristics in a search for feasible solu-
tions.”

In recent years, metaheuristics have been shown to be capable of solving GMS problems to close
optimality within very limited computation time budgets. A review of some of these techniques
may be found in [17].

Genetic algorithms

A genetic algorithm (GA) is an example of a metaheuristic also oftenly called an evolutionary
algorithm and is based on the biological analogy of evolution and natural selection proposed

10The word metaheuristic is derived from the Greek prefix meta which means “position beyond or something
of a higher or second-order kind” and the Greek word heuriskein which means “to find.”

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 31

by Charles Darwin [20]. His theory states that evolution in a species occurs as a result of the
competition which selects the best adapted individuals to survive, ensuring the continuation of
the species by transmitting the useful characteristics of these individuals to their offspring. A
form of cooperative sexual reproduction ensures that this inheritance carries on strongly [20].

In terms of the analogy, the solutions of a given problem are the individuals of a species and
constitute candidate solutions in the search space. A fitness level is associated with each in-
dividual. This fitness specifies its desirability of being chosen for reproduction or replacement
and is determined by a fitness function which depends on the objective function. The subset of
individuals that are considered simultaneously by the algorithm is referred to as a population.
The population iteratively evolves until some termination criterion is met and each iteration is
called a generation.

During each generation, specific operators act on the individuals of a population to create
the new population for the next generation. A new population is generated by individuals
reproducing, surviving or disappearing from the current population. If an operator acts on one
or more individuals, they are called parents while individuals that are created by these operators
are called offspring.

The selection operator determines how many times an individual will be chosen for reproduction,
while the replacement operator determines which individuals will have to be discarded from the
new population so as to maintain a fixed population size. These two operators are known as
the selection operators. Since the aim of the genetic algorithm is to obtain better solutions at
each generation until a best solution is found, the individuals in a population must undergo
some transformation. This is achieved by applying variation operators or search operators to
the population. Two categories of variation operators exist, namely mutation operators and
crossover operators. The mutation operators modify one individual to form another while the
crossover operators generate one or more offspring from combinations of two or more parents
(i.e. analogous to sexual reproduction).

Lastly, GAs also utilise a genotype-phenotype transcription of individuals, inspired by genetics.
According to Wikipedia, “Genotype is an organism’s full hereditary information, even if not
expressed. Phenotype is an organism’s actual observed properties” [84]. In terms of the algo-
rithm, a genotype is typically a binary string which is used by all the operators. The string is
then decoded to form an actual solution of a problem represented in its natural formalism. This
represents the phenotype of an individual. This phenotype is evaluated by the fitness function
to obtain an individual’s fitness.

A flow chart illustrating the working of a generic GA is given in Figure 2.3. The squares indicate
the application of the selection operators, while the hexagonal forms indicate the application
of the variation operators. The GA is also presented as pseudo-code form in Algorithm 2.1.
For more detail on GAs and their variations, the reader is referred to [20]. GAs are the most
commonly applied metaheuristic to the GMS problem [9, 82, 83]. The binary nature of the
problem (a unit either being in maintenance or not) facilitates an easy genotype-phenotype
representation, although developing a suitable crossover operator is much more difficult.

Simulated annealing

Simulated annealing (SA) is a metaheuristic technique for solving combinatorial optimisation
problems based on the physical phenomenon of annealing. Annealing is a process whereby a
physical system is led to a low energy state by controlling its temperature [20]. It is explained

Stellenbosch University  http://scholar.sun.ac.za



32 Chapter 2. Literature Review

NO

YES

best individual(s)

µ individuals

λ offspring
+

µ parents

µ
individuals λ + µ

individuals

Initialise
population:
µ genotypes

Genotype
↓

Phenotype
decoding

Selection for the
reproduction
(selection)

Fitness
evaluation
of the µ

individuals

Crossover of
the λ selected

individuals

Mutation of
the λ selected

individuals

Genotype
↓

Phenotype
decoding

Fitness
evaluation
of the λ
offspring

Selection for the
replacement

(replacement)

Stopping
criteria?

Figure 2.3: Flow chart of a generic genetic algorithm.

here in the context of strengthening materials (e.g. metals). The technique of annealing starts
by heating a material to bestow a high energy to it. The material is then cooled slowly in stages
by keeping the temperature constant during each stage for a sufficient duration. This controlled
decrease in temperature leads to the material obtaining a stable solid state, corresponding to an
absolute minimum energy configuration. In this state, the material becomes uniform in density
and typically contains very few defects.

Simulated annealing may be used to solve combinatorial optimisation problems in a manner that
is analogous to the process of annealing as described above. A control parameter is introduced
to mimic the temperature of the system. This temperature controls the number of accessible
energy states and should lead towards an optimal state when lowered gradually. The objective
function in a minimisation problem corresponds to the free energy in the system, while a feasible
solution to the problem corresponds to a certain state of the material. The final (possibly
globally optimal) solution corresponds to the system being frozen in its ground state.

The SA algorithm is based on two results from statistical physics. Firstly, when thermodynamic
balance is reached, the probability of the system having a given energy E, is proportional to
the Boltzmann factor exp(−E/kBT ), where kB denotes the Boltzmann constant corresponding
to the material in question and T is the temperature in Kelvin. The energy states follow
a Boltzmann distribution at the given temperature [20]. Secondly, the so-called Metropolis
algorithm is utilised to simulate the evolution of a physical system towards its thermodynamic

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 33

Algorithm 2.1: Generic genetic algorithm outline

1 Initialise population as genotypes;
2 Decode genotypes to phenotypes;
3 Evaluate fitness of individuals;
4 while stopping criteria not met do
5 Select individuals for reproduction;
6 Apply crossover operator;
7 Apply mutation operator;
8 Decode genotypes to phenotypes;
9 Evaluate fitness of offspring;

10 Select individuals for replacement;

11 end
12 Solution ← best individual;

balance at a given temperature [20]: from a given configuration (feasible solution), the system
experiences a small modification (e.g. elements of the solution are exchanged or relocated) —
if the modification causes a decrease in energy (objective function value), the configuration is
accepted with probability 1 (i.e. with certainty); however, an increase ∆E in energy is only
accepted with a probability of exp(−∆E/T ). This occasional increase in objective function
value results in the system avoiding becoming trapped in a local minimum. Repeated iterations
of the Metropolis algorithm gives rise to a sequence of configurations which constitutes a Markov
chain (each configuration depends only on the previous configuration). If the chain is of infinite
length, the system can reach thermodynamic balance at a given temperature, thereby leading
to a Boltzmann distribution of the energy states at the given temperature. Practically, the word
“infinite” above is substituted with the word sufficient and the word “reach” is substituted with
the word approach.

The effect of the temperature is now apparent — at a high temperature, the factor exp(−∆E/T )
is close to 1, causing the Metropolis algorithm to accept the majority of modifications (similar
to a rondom walk), whereas a low temperature results in exp(−∆E/T ) being close to 0, hence
leading to the rejection of the majority of increasing energy (worsening objective function value)
modifications. In this manner, the SA algorithm starts at a high temperature and considers as
many solutions as possible in a bid to explore the solution space, after which the temperature
is gradually lowered in order to converge to a configuration which gives a minimum objective
value (local or possibly global).

The working of the SA technique is illustrated by means of a flow chart in Figure 2.4. It may
be seen that the technique consists of an outer temperature loop and an inner Metropolis loop.
A pseudo-code listing for the SA technique is given in Algorithm 2.2 and provides an outline
for the implementation. There are different approaches in SA with respect to choosing the
initial temperature, cooling schedule and termination criteria. More detail is available in [20].
Simulated annealing has been implemented successfully in a GMS context in [9] and is often
used in hybrid metaheuristic techniques such as GA/SA combinations [15, 51, 63]. These hybrid
techniques may lead to improved results.

Stellenbosch University  http://scholar.sun.ac.za



34 Chapter 2. Literature Review

Initial solution

Initial temperature T

Small modification
Calculate energy

variation ∆E

Thermodynamic
equilibrium?

System
frozen?

Solution

Cooling schedule
NO

YES

YES

NO

Metropolis acceptance rule

• if ∆E ≤ 0→ accept modification

• if ∆E > 0 → accept modification

with probability e
−∆E

T

Figure 2.4: Flow chart of the simulated annealing technique for a minimisation problem.

Tabu search

Tabu search (TS) is a metaheuristic that falls within the category of local search methods. The
main idea behind the algorithm is that it incorporates a memory structure in order to prohibit
revisiting certain recent solutions or moves. Non-improving solutions are allowed during the
search only if no improving solution is found in the neighbourhood of the current solution,
thereby allowing the search to possibly escape from a local optima. The memory structure
employed by the search ensures that it does not periodically return to the same local optima [20].

As mentioned, a TS explores the solutions in a neighbourhood of a current candidate solution,
in search of a better solution. A neighbourhood N of a solution is obtained from a move set M .

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 35

Algorithm 2.2: Simulated annealing algorithm outline

1 Generate initial solution;
2 Determine initial temperature T ;
3 while system not frozen do
4 while thermodynamic balance not achieved do
5 Apply small modification to solution;
6 Calculate energy variation ∆E;
7 if ∆E ≤ 0 then
8 Accept modified solution;
9 else

10 Accept modified solution with probability e
−∆E

T ;
11 end

12 end
13 Decrease temperature T ;

14 end

This set defines how elementary modifications should be made to a solution in order to generate
solutions that are “close” to it, which constitutes the neighbourhood. Mathematically, if s is any
feasible solution and S is the entire set of feasible solutions, then N(s) is the neighbourhood of s
and N(s) ⊆ S. An alternative approach, instead of using the solutions in N(s), is to consider
the move set of s. A move is a single modification of s. Expressing the neighbourhood in terms
of the moves may reduce the size of the neighbourhood (e.g. candidate solutions in the form of
permutations with a transposition neighbourhood11).

Generally, a TS does not necessarily have to evaluate the full neighbourhood. If N(s) is large,
a subset of N(s) may be evaluated. One policy may be to randomly select a small number
of solutions from N(s). Another approach is to use a candidate list which keeps track of high
quality moves. After the subset of neighbouring solutions has been calculated, the best solution
therein is chosen as the new solution, provided it does not appear in the tabu list. The tabu list
is the short term memory of the TS algorithm and has a specified size n, called the tabu tenure.
The memory may be recency-based (the last n solutions or moves) or frequency-based (the n
most frequently visited solutions or moves). The tabu list uses a first-in-first-out (FIFO) rule
when resetting previous tabu solutions as non-tabu.

An incumbent solution keeps track of the best solution found thus far and the termination cri-
terion is typically activated when the incumbent solution remains unchanged for a pre-specified
number of iterations. Additional considerations for a TS are aspiration criteria, intensifica-
tion strategies and diversification strategies. Aspiration criteria allow execution of a move that
appears in the tabu list to be considered (e.g. if a move leads to a better solution than the
incumbent). Intensification and diversification strategies may be implemented to equip the TS
with long term memory. Both are frequency-based, with intensification strategies exploring
promising areas in the solution space more in-depth, while diversification strategies steer the
search towards areas seldomly visited, should the search start to stagnate [20].

The working of a simple TS algorithm is illustrated in the flow chart in Figure 2.5. Notice that
the additional considerations, as mentioned above, are not included. The outline of the simple

11A transposition neighbourhood is obtained from a move set which interchanges two elements in a candidate
solution (e.g. a transposition neighbour of the permutation 5812 may be 5218 because the elements in positions
two and four interchanged).

Stellenbosch University  http://scholar.sun.ac.za



36 Chapter 2. Literature Review

Initial solution s

Tabu list ← ∅

Create neighbourhood;
Evaluate non-tabu

neighbours

Select best neighbour t

Update incumbent solution

Stopping
criteria
met?

Insert solution t or
move t→ s
into tabu list

Set new current solution
s = t

YES

NO

Incumbent solution

Figure 2.5: Flow chart of a simple tabu search algorithm.

tabu search is given in pseudo-code form in Algorithm 2.3. A more detailed description of the
TS, including implementation issues and a worked example, is presented in [20]. The TS is
very successful in its application to the travelling salesman problem (TSP) and has been applied
traditionally to scheduling and routing problems. It has also been utilised in the GMS context
in [23].

Algorithm 2.3: Simple tabu search algorithm outline

1 Generate initial solution s;
2 Tabu list ← ∅;
3 while stopping criteria not met do
4 Generate neighbourhood N(s);
5 Evaluate non-tabu elements of N(s);
6 Select best neighbour t;
7 Update incumbent solution;
8 Update tabu list;
9 s← t

10 end

Ant colony optimisation

Ant colony optimisation (ACO) techniques are quite new to the study of difficult optimisation
problems. It is inspired by the behaviour of ants, always seemingly to be able to find the

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 37

shortest path between a food source and their anthill/nest. Moreover, all the ants follow this
path. The key to the ants’ success lie in their indirect communication with one another by
means of dynamic modifications of their environment, which is known as stygmergy [20].

The ants naturally optimise their routes by means of pheremone trails. Ants use volatile sub-
stances called pheromones to communicate and these pheromones may be deposited on the
ground to form an odorous trail which other ants may follow. Pheromone levels, however, evap-
orate over time, unless other ants deposit more of it along the same path. This is exactly where
the optimisation occurs. Ants typically follow paths along which pheromone levels are higher
with a larger probability, and since the quantity of pheromone on a shorter path will be slighty
more significant than on a longer path due to evaporation, ants will travel along the shorter
paths more frequently. As a result, the pheromone deposits along these shorter paths will in-
crease due to more ants travelling along the paths, while the pheromone levels will decrease
along longer paths. Therefore, the system reinforces itself until all the ants follow a single path.

The original ant colony algorithm, the “Ant System,” was specifically designed for the travelling
salesman problem [20]. It is easy to see the analogy — the cities are different foodsources and
the ants have to find the shortest path connecting all the cities, with each city being visited only
once. Since then, many variations and improvements have been made on the algorithm, and
it has been applied successfully to problems such as scheduling, routing, assignment and graph
colouring problems. In theory, any problem that may be represented by a connected graph with
an objective of minimising a path in the graph, may be solved by the method of ACO.

In terms of an algorithm, the ant colony system (ACS) algorithm is presented here, as it was
originally introduced as an improvement on the Ant System. Consider a complete graphG(N,A)
where the cities are the N nodes and the paths between cities are the A edges. Each ant
k ∈ {1, . . . ,m} traverses the graph and builds a path at each iteration t ∈ {1, . . . , tmax} of the
algorithm. For each ant, the path between city i and city j depends on the list of remaining
cities Jki when ant k is at city i, the visibility of each city ηij = 1

dij
, and the quantity of

pheromone deposited on each edge, called the trail intensity τij(t). An ant k at city i will travel
to city j according to the rule

j =

{
arg maxu∈Jk

i

[
(ηiJ)β(τiu(t))

]
if q ≤ q0

J if q > q0
(2.50)

where q0 ∈ [0, 1] is a parameter which defines the balance between diversification and intensifi-
cation, q is a random variable uniformly distributed on the interval [0,1], and J ∈ Jki is a city
randomly selected according to the probability

pkiJ(t) =
(ηiJ)β(τiJ(t))∑
l∈Jk

i
(ηil)β(τil(t))

. (2.51)

If q > q0, the system leans toward a diversification and if q ≤ q0, the system leans towards
an intensification. In fact, for q ≤ q0, the algorithm exploits the information collected by the
system (pheromone trails) more and it cannot choose a hitherto unexplored path [20].

The pheromone levels on the trails are updated on both a local and a global level. When an
ant traverses an edge (i, j), the pheromone level on that edge is locally updated immediately
according to the rule

τij(t+ 1) = (1− ρ)τij(t) + ρτ0, (2.52)

where τ0 is the initial pheromone level of the trail and ρ ∈ (0, 1) a parameter at which the
pheromone level drops. Diversification takes place because only the visited edges decrease in

Stellenbosch University  http://scholar.sun.ac.za



38 Chapter 2. Literature Review

pheromone quantity. The global update occurs at the end of each iteration, according to the
rule

τij(t+ 1) = (1− ρ)τij(t) + ρ∆τij(t), (2.53)

where the edge (i, j) only belongs to the best tour found T+, which has length L+, and where
∆τij(t) = 1

L+ . Only the best trail is updated, thus promoting an intensification of the best
solution.

As the best tour found is constantly updated, the algorithm produces that tour as the answer
when the termination criteria are met. In this case, the termination criterion is a pre-specified
number of iterations.

A flow chart of a simple ant colony system algorithm is presented in Figure 2.6. A pseudo-code
listing for an ACS algorithm is presented in Algorithm 2.4. There are many variations of ant
colony algorithms based on elitism, different pheromone update rules and a hybridisation with
local search algorithms. These variations and more detailed information regarding ACO may be
found in [20]. Since the GMS problem may be represented as a graph, ant colony optimisation
algorithms have been implemented in [31, 32] to good effect.

Algorithm 2.4: Simple ant colony system algorithm outline

1 Calculate initial pheremone level;
2 for t← 1 to tmax do
3 for each ant k ← 1 to m do
4 Choose a node at random;
5 while node i not visited do
6 Choose a node j ∈ Jki according to the rule of transition;
7 Apply local pheromone update on edge (i, j);

8 end

9 end
10 Update best tour found;
11 Apply global pheromone update on the best trail;

12 end

2.4.5 Fuzzy systems

It has already been established that the GMS problem may have multiple conflicting objectives.
Furthermore, there is an inherent uncertainty in GMS as a result of uncertain load demand,
maintenance windows, manpower and other resources. These constraints are not necessarily
as rigid as conventional deterministic techniques treat them because of assumptions and sim-
plifications that are typically made to treat these parameters in a deterministic manner. By
introducing fuzzy sets, both the objective function and constraint concerns are addressed since
a fuzzy environment is able to deal with multiple objectives and the uncertainties in many of
the constraints [17].

According to [57], “Fuzzy-set theory is a mathematical theory designed to model the vagueness
or imprecision of human cognitive processes.” Fuzzy-set theory (or fuzzy logic) is concerned
with the degree of truth according to which an outcome belongs to a certain category. It should
not be confused with the degree of likelihood that the outcome will be observed. The building
block of fuzzy logic is the membership function of a fuzzy set or fuzzy number. Consider the

Stellenbosch University  http://scholar.sun.ac.za



2.4. Typical solution techniques 39

Initial pheromone level

Choose node at random

Choose next node j
from Jk

i according to
rule of transition

Local pheromone
update on edge (i, j)

Remaining
node?

Ants
remaining?

Update best tour

Global pheromone
update on the

best tour

Stopping
criteria?

YES

NO

YES

NO

YESNO
Best tour

new iteration

new ant

new node

Figure 2.6: Flow chart of a simple ant colony system algorithm.

statement: the element x belongs to the set A. In classical set theory, the characteristic function
χA of a set A in the universe of discourse U is defined by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A.

(2.54)

Therefore the characteristic function has only a true or false answer to the statement, for each
element in U . In this context the set A is referred to as a crisp set. However, this concept may
be extended towards a fuzzy set A where the statement x belongs to A is not necessarily true

Stellenbosch University  http://scholar.sun.ac.za



40 Chapter 2. Literature Review

or false only. The fuzzy set A has a membership function µA defined as

0 ≤ µA(x) ≤ 1 for any x ∈ U, (2.55)

where the truth value µA(x) represents the degree of truth, subjectively assigned by a human
referee, of the statement [57]. An interpretation of the truth value may be that it is the fraction
of a sufficiently large number of referees agreeing with the statement x belongs to A.

In order to define a fuzzy number, the following definition is necessary: the α-level subset of a
fuzzy set A is the crisp set of elements in U such that µA(x) ≥ α. Now, a fuzzy number is a
fuzzy set A in the one-dimensional universe of discourse U such that

(a) the α-level subsets are intervals monotonously shrinking as α→ 1, and

(b) there is at least one x ∈ U such that µA(x) = 1.

A fuzzy number generally has a membership function associated with it which increases mono-
tonically from 0 to 1 on the left-hand side, has a single top or plateau at 1 therafter, and finally
decreases monotonically to 0 on the right-hand side. As an example, consider a triangular fuzzy
number ã — that is, the number has a triangular membership function. The fuzzy number ã
is characterised by three parameters, namely the lower value al, the modal value am and the
upper value au. Figure 2.7 illustrates this triangular membership function.

0

1

al am au

0 x

µã

Figure 2.7: Membership function of a triangular fuzzy number.

A fuzzy approach towards GMS is taken in [36] by fuzzifying the multiple objectives and soft
constraints. This means that a membership function is obtained for each of the above. The
problem is then typically solved by means of a fuzzy dynamic programming technique as the
problem is now too difficult for conventional mathematical algorithms to solve. A combination
of metaheuristics and a fuzzy approach is adopted in [14, 38, 39]. These combinations typically
fuzzify either the objective function(s) for evaluation purposes or some of the constraints that
may have an inherent uncertainty associated with them, while the metaheuristic obtains different
solutions. Fuzzy logic seems to be a promising approach to GMS [1] as many of the uncertainties
in GMS can be addressed, as well as multiobjective goals.

2.4.6 Knowledge-based/expert systems

Power systems have been managed for many years and invaluable experience is locked inside
the field experts charged with this task. Their knowledge may be included in an expert system
(ES) in order to attempt solving the GMS problem. It is imperative that the system should

Stellenbosch University  http://scholar.sun.ac.za



2.5. Chapter summary 41

have powerful rules in its knowledge base [1] in order to ensure that correct and logical decisions
are made.

As an example, an expert system for GMS has been presented in [52] and applied to the Taiwan
Power Company’s (TPC’s) network. Its developement is solely based on TPC constraints and
the solution does not consider a generalised application to other systems. After the ES was
applied to the TPC case study, the resulting GMS solution closely resembled the nature of
historical decisions and it required only 30 minutes for execution.

In their expert system, the objective function varies as the power system conditions change. The
ES calculates an operation index, based on expert experience, so as to select a suitable objective
function under different load conditions and constraints. There are four conditions that the ES
has to consider, depending on the value of the operation index value. Within each condition
there are steps and rules to follow in order to satisfy the system demands and possibly obtain
a new operation index. A branch-and-bound or dynamic programming technique is used within
the ES during the optimisation process, depending on the objective function. The structure of
the ES for solving the GMS problem is illustrated in Figure 2.8.

Proposed
Algorithms

Utility Planners
(domain experts)

EXPERT SYSTEM

INFERENCE
ENGINE

KNOWLEDGE BASE
(Rule-Based)
(Logic-Based)

Generator
Data Base

Expert System
User

Figure 2.8: Expert system structure [52].

Expert systems have not been applied widely in the GMS context. However, some advances
have been made (for example, by combining expert knowledge with a fuzzy environment [75]
and probabilistic rules [6]).

2.5 Chapter summary

The aim in this chapter was to provide the reader with the necessary background in terms of the
rich array of facets of the GMS problem in the literature. Having done so, one may proceed to
formulate a model for a new case of the GMS problem with the necessary awareness in respect
of previous approaches towards solving the general problem.

The general GMS model considerations were stated in §2.1. These considerations form the
basis of providing the model formulations from the literature in §2.2. Since there has been a

Stellenbosch University  http://scholar.sun.ac.za



42 Chapter 2. Literature Review

considerable number of different approaches toward tackling the GMS problem, the formulations
have been subdivided into individual constraint and objective function formulations.

In §2.3 some extensions to the GMS problem were briefly discussed. An assortment of different
solution techniques applicable to the GMS problem was presented in §2.4. Each technique
was explained in moderate detail and in some cases were accompanied by an example in the
literature. Where algorithms were introduced, basic pseudo-code listings were provided.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3

Mathematical Problem Formulation

Contents
3.1 The GMS problem in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Problem assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Unit commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Economic dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Transmission line maintenance . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Transmission constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.6 Load shedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.7 Generating capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.8 Precedence constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 A simple GMS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 A more advanced GMS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Model constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 The objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A brief description of where the generator maintenance scheduling (GMS) problem fits into the
operations scheduling of a power system is presented in this chapter. A number of necessary
assumptions are presented in order to formulate the GMS problem mathematically. Several
mathematical formulations are presented, based on different objective functions.

3.1 The GMS problem in context

Before a mathematical model may be developed for any problem, certain assumptions are nec-
essary in order to simplify the problem and/or address uncertainties. Maintenance scheduling is
only one component of the overall operations scheduling in a power system. A basic diagram of
the components of operations scheduling in a power system, and their interdependencies, may be
found in Figure 3.1. The outer blocks, with arrows pointing toward the operations scheduling

43

Stellenbosch University  http://scholar.sun.ac.za



44 Chapter 3. Mathematical Problem Formulation

Unit
Commitment

Economic
Dispatch

Maintenance
Scheduling

Power System Operations Scheduling

Transmission Exclusions

Resources

Precedence Capacity

Unit type Output levels

ReliabilityCrewWindows

Load
Shedding

Demand

Generating units

Transmission lines

Figure 3.1: Dependency diagram for operation scheduling in a power system.

block, represent various constraints that may influence operations scheduling. Within power
system operations scheduling, there are generally three components: maintenance scheduling,
unit commitment and economic dispatch. The generating units and transmission lines of a
power system are considered within the maintenance scheduling component. Should the process
of operations scheduling fail, the power system typically has to resort to load shedding in order
to compensate for any shortage in electricity supply.

3.2 Problem assumptions

Based on the context of the GMS problem within the broader operations scheduling problem
in a power system, a number of assumptions are made in this section to reduce the complexity
of the problem. The aim is to arrive at managable levels of dependencies such that the GMS
problem may be modelled effectively, without significant short-comings in the broader operations
scheduling problem in which it resides. The following general assumptions are made in order to
develop a model.

3.2.1 Unit commitment

The problem of determining which generating units should be in service during each time interval
of the planning period in order to meet the system demand, is referred to as unit commitment
(UC) [74]. It is performed on a small time scale, typically on a day-to-day or week-to-week
basis, and is based on advanced load demand forecasting. The UC problem is thus very similar
to the GMS problem. However, it functions on a much smaller time scale (planning period) and
may have different constraint sets. For example, in the UC problem, the start-up and shut-down

Stellenbosch University  http://scholar.sun.ac.za



3.2. Problem assumptions 45

times of generating units are very important, whereas in the GMS environment, these start-up
and shut-down times are significantly less than a single time unit of the problem and, as such,
are unimportant.

In short, the UC problem determines which units should be in service during each time period
over the short-term, while the GMS problem determines which units should be in maintenance
during what time period over the mid- to long-term. Clearly, these two problems affect each
other and may therefore be modelled as a single problem. Should this approach be taken, an
integrated schedule is obtained. However, there are drawbacks to such an integrated approach.
Due to the large planning period of GMS, less accurate load demand forecasts have to be used
and the long-term UC schedule may be too inaccurate for a given time period. Furthermore,
for UC a very small time unit has to be used in the problem which, in combination with a large
planning period, causes the dimensionality of the problem to escalate beyond practicality.

If one adopts a separate segregated modelling approach, the UC problem has no influence on
the GMS problem and the maintenance schedule obtained is then typically used as a constraint
in the UC problem — an availability constraint. The GMS problem is not significantly affected
by excluding the UC problem, because GMS lies much higher in the temporal hierarchy of
operations scheduling. Therefore, it is assumed that UC has no influence on the GMS problem
and hence may be excluded from the problem. The UC problem is therefore considered to be a
separate problem for the purposes of this thesis.

3.2.2 Economic dispatch

The economic dispatch (ED) problem is the allocation of the load demand among the generating
units that are in service during each time interval, as determined by the UC problem. ED
focuses on the cost-efficiencies of the available generating units and is determined for short
time periods. The UC and ED problems are interdependent and may be modelled as a single
problem. Therefore, ED has an indirect effect on GMS. However, since it is assumed that UC
and GMS are separate problems, the ED problem may be excluded from the model.

3.2.3 Transmission line maintenance

Like generating units, transmission lines and substations must also undergo regular maintenance.
The scheduling of such transmission maintenance is contained in the “maintenance scheduling”
component in Figure 3.1. If a generating unit is in maintenance, the transmission lines connected
to it is not in use and it may provide an opportunity to perform maintenance on these lines,
and vice versa. Therefore, generator and transmission line maintenance may be modelled as
a single problem, because of this interdepency between the two problems. Transmission line
maintenance does not, however, fall within the scope of this thesis. As such, it is considered to
be a separate problem, not influencing generator maintenance, and is excluded from the GMS
problem formulations that follow.

3.2.4 Transmission constraints

There are two types of transmission constraints. The first type concerns the transmission
capabilities of the electrical network (e.g. bus loads, voltage, etc.). A transmission network
is designed to accomodate the power flow of a system within its normal operating conditions.
Since it has already been assumed that no transmission line maintenance occurs, one may also

Stellenbosch University  http://scholar.sun.ac.za



46 Chapter 3. Mathematical Problem Formulation

assume that the transmission network will always function at its proper capability. As such, any
transmission constraints which ensure that the power flow in the system is maintained within
specified limits, are assumed to be satisfied at all times and may therefore be excluded from the
GMS problem formulations.

The second type of transmission constraint involves the physical transmission network. Since
power stations typically serve multiple cities and towns, the transmission network ensures that
the electricity from a power station is sent to the respective geographic regions in its service
area. However, should a power station be offline (in this case in maintenance), electricity is
provided to the affected geographic regions from other power stations through the transmission
lines. Should a line failure occur under these circumstances, the result would be that some
areas are left without any electricity and cause the system demand to be not met. To avoid
such infeasibilities, it is assumed that there will always be full connectivity in the transmission
network at all times. This assumption is very reasonable because line failures are random events
of short duration and should not influence long term maintenance scheduling of generating units.

3.2.5 Resources

The most important resource pertaining to electricity generation is the fuel. Different types
of units require different kinds of fuels e.g. coal, natural gas, water or uranium. Since a unit
cannot produce electricity without sufficient fuel, it is safe to assume that having sufficient fuel
available at a power station is of the highest priority to a power utility. Therefore, it is assumed
that a generating unit will always have a sufficient fuel stockpile in order to enable it to generate
electricity at a given capacity. This may be an unrealistic assumption for renewable energy units
such as hydro, solar or wind generating units because their fuel sources are less controllable.
However, the assumption is made across the board for the sake of simplicity.

Resources required specifically for maintenance during any time period, are assumed to be
limited to crew availability. Since the GMS problem may be viewed as planned, preventative
maintenance, all preparations are made well in advance of a unit’s maintenance window. As
a result, the necessary spare parts for a unit, maintenance equipment and any other resources
required to complete the maintenance process, are assumed to be available. It may therefore be
assumed that all these resources, necessary for generator maintenance, are available and within
their limits during any time period.

3.2.6 Load shedding

It is very possible for a country/region to have a higher power demand than supply at a given
time. There may be different factors that cause such a shortage, but ultimately the operations
scheduling of the power system fails. One of the strategies that a power electrical utility may
use in such a scenario, usually as a last resort [71], is load shedding. This strategy consists of
causing deliberate power outages to smaller regions on a rotating basis, thereby avoiding a total
blackout of the entire power system. These power outages effectively reduce the load demand
to a level less than the power supply. The load shedding problem is governed by its own set of
constraints and objectives, and is therefore a problem on its own.

Load shedding may last for days, weeks or even months, depending on the power system and
its demand. As a result, any unit that is in maintenance during times of load shedding will
have a significant effect on the system. It may be more beneficial to postpone any generator
maintenance until the load shedding is discontinued. Should this not be possible, an alternative

Stellenbosch University  http://scholar.sun.ac.za



3.3. A simple GMS model 47

approach may be to schedule the maintenance such that it has the least negative effect on the
power system.

The intricacies and unpredictability of load shedding make it very complex to incorporate such
requirements along with the problem of GMS in a single model. For the sake of simplicity, it
is assumed that load shedding will not occur and may therefore be excluded from the GMS
problem formulations.

3.2.7 Generating capacity

The generating capacity of a generating unit may fluctuate over time and decrease as the unit
ages, regardless of adequate levels of maintenance throughout its lifetime. The fluctuation may
be due to the fuel quality [28] and auxiliary power consumption of the unit. As a result, all
generating units provide less power to the grid than their nominal installed capacities. Further-
more, generating units typically do not have to operate at a 100% output level — the longevity
of a unit may be increased if it is operated at lower levels. These lower output levels may es-
pecially occur during times of low demand and is typically part of the ED problem. Lastly, the
unit type also has a significant effect on its generating capacity. Renewable energy generating
units vary much more in output levels than conventional generating units, due to the variability
in fuel supply.

Ideally, the generating capacity of a generating unit should be treated stochastically. However,
within the scope of this thesis, a deterministic approach is followed. Therefore it is assumed that
the generating capacity of each unit is fixed for a given time period. This assumption does not
exclude the use of a probabilistic simulation of the power system to calculate expected values
for the generating capacities that may be used as input for the GMS model. Variability may be
introduced by fixing different capacities during different time periods (e.g. a unit may have a
capacity of 200 MW during time period 1, but 150 MW during time period 2, etc.). How these
capacities are calculated, be it via a probabilistic simulation or some other method, is up to the
power utility, as the model only depends on deterministic parameters. By using deterministic
parameters, discrete optimisation techniques may be utilised to solve the GMS problem. Monte
Carlo simulations with respect to the generating capacities may be used to solve a stochastic
version of the GMS problem, but are very time-consuming and as such have not been considered
here.

3.2.8 Precedence constraints

In order to simplify the model, precedence constraints are not considered in this thesis. These
constraints are not very common in practice and are therefore excluded. The assumption still
allows one to include a certain degree of precedence requirements (should it be required). The
maintenance windows of units may be specified such that certain windows are explicitly earlier
than others, thereby enforcing precedence constraints. However, this approach is only successful
if the maintenance windows do not overlap.

3.3 A simple GMS model

In any modelling environment, it is good practice to start with the simplest form of the problem.
This observation may be motivated as follows. Firstly, a simpler form of the problem is much

Stellenbosch University  http://scholar.sun.ac.za



48 Chapter 3. Mathematical Problem Formulation

easier to model, because less detail and fewer constraints have to be taken into account. Secondly,
a successful simpler model provides a solid foundation on which to build more complexity. A
simple model also provides an effective means for understanding the underlying structure of the
problem and typically improves one’s ability to draw conclusions with respect to the behaviour
of the problem variables in responce to variation of its parameters. As such, a simple model for
the GMS problem is provided as a basis in this section.

The GMS problem has an inherent structure which calls naturally for a mathematical program-
ming modelling approach: a schedule must be obtained that optimises some goal, subject to
restrictions or constraints on that schedule. To this end, the mathematical model of scheduling
the generator maintenance in a power network is formulated as a mathematical program below.

3.3.1 Model constraints

As stated in §2.2, even the simplest GMS model must include a set of maintenance window con-
straints to specify when each unit may be scheduled for maintenance, as well as load constraints
which ensure that the load demand is met. The decision variables are chosen to represent the
starting time of maintenance of each unit. Define xi,j as a binary decision variable taking the
value 1 if maintenance of unit i commences during time period j, and zero otherwise. If there
are n generating units and m time periods in the planning horizon, and I = {1, . . . , n} is the
set of generating unit indices and J = {1, . . . ,m} is the set of time period indices, then i ∈ I
and j ∈ J .

A maintenance window is defined by two time periods. Let ei and `i denote the earliest and
latest time periods, repectively, during which maintenance of generating unit i may start. If
di is the maintenance period duration of generating unit i, then ei, `i ∈ {1, . . . ,m − di}. Since
maintenance is allowed only once during a window, the maintenance window constraint set may
be formulated mathematically by requiring that

`i∑

j=ei

xi,j = 1, i ∈ I. (3.1)

It is known that a unit will not be in maintenance outside its maintenance window. To this
effect, one may include the explicit constraints

xi,j = 0, j < ei or j > `i, i ∈ I, (3.2)

which will reduce the number of decision variables [21]. Such an inclusion decreases the solution
space of the problem and may lead to shorter solution times. The constraints are not mandatory,
since the objective function is expected to drive a good solution to the point where the decision
variables take the value zero outside the maintenance window, but it is recommended.

The load constraints restrict the maintenance schedule so that the total demand for electricity
is at least met during every time period. Therefore, all the generating units less those in
maintenance should produce enough power to meet the forecasted demand. Let gi,j denote
the power generating capacity of unit i during time period j, and let g′p,i,j denote the power
generating capacity lost during time period j if maintenance of unit i commenced at time period
p. These parameters are calculated by

g′p,i,j =

{
gi,j if j − p < di,

0 otherwise.
(3.3)

Stellenbosch University  http://scholar.sun.ac.za



3.3. A simple GMS model 49

If the load demand at time period j is denoted by Dj , then the relevant constraint set may be
formulated as

n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p ≥ Dj , j ∈ J . (3.4)

With constraint sets (3.1) and (3.4), the requirements for the GMS problem are stated in its
most simplistic form. There is another constraint set which may be added without increasing
the complexity, namely the reliability constraint set. Reliability is obtained by specifying a
reserve or safety margin that needs to be adhered to. Let S denote the safety margin as a
proportion of the demand for the power system. This constraint may be incorporated into the
load constraints without affecting the model complexity, because the safety margin only induces
a higher demand level. The resulting constraint set is

n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p ≥ Dj(1 + S), j ∈ J (3.5)

and replaces (3.4) in the formulation.

An important quantity for an electrical utility is the amount of reserve power. Although a safety
margin has been introduced to compensate for variations in the actual demand or unplanned
unit outages, the actual reserve levels at any given time hold significant value. To this end, the
reserve level variables rj are defined as the unused power during time period j, excluding the
safety margin. Of course, a separate variable is not necessary for the incorporation of reserve
levels into the model, because the reserve levels may easily be calculated as the available power
less the demand. However, for ease of use, reserve level variables are nevertheless used in the
model. Constraint set (3.5) changes from inequalities to a set of equalities of the form

n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p = Dj(1 + S) + rj , j ∈ J , (3.6)

where it is required that rj ≥ 0 for all j ∈ J . To obtain the actual reserve levels at any given
time period, calculating DjS + rj is now much simpler than calculating the quantity

n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p −Dj . (3.7)

Lastly, constraint sets that specify the nature of the variables are given by

xi,j ∈ {0, 1}, i ∈ I, j ∈ J (3.8)

rj ≥ 0, j ∈ J , (3.9)

as mentioned above.

To summarise, the simple GMS model presented here contains the constraint sets (3.1), (3.2),
(3.6), (3.8) and (3.9) in its mathematical program formulation. It is thus further assumed that
no exclusions are present and that there are always sufficient maintenance crews available. The
GMS problem has therefore been simplified from being a component in operations scheduling,
as presented in Figure 3.1, to the singular problem presented in Figure 3.2. The remaining task
is to define a suitable objective function.

Stellenbosch University  http://scholar.sun.ac.za



50 Chapter 3. Mathematical Problem Formulation

Generator
Maintenance
Scheduling

Generating Capacity

System Reliability

Maintenance Windows

Load Demand

Figure 3.2: Dependency diagram for a simple GMS problem.

3.3.2 The objective function

The choice of an optimality criterion lies between convenience, economic and reliability con-
siderations, or a combination of these, as stated in §2.1.4. In keeping with the notion of a
simple model, the optimality criterion will be a single objective. In terms of priority in a single
objective environment, an economic or reliability criterion significantly outweighs a convenience
criterion. The risk of extreme behaviour within a schedule is too great if a schedule is computed
solely on the basis of convenience (e.g. too expensive or reserve levels reaching a minimum).
Therefore, convenience will not be considered as an objective for the simple GMS model.

The choice between economic and reliability considerations is more difficult. Typically, economic
considerations include production costs (which may consist of fuel costs, salaries/wages, start-
up and shut-down costs, etc.) and maintenance costs (which may include wages, replacement
parts, etc.). All of these costs may vary over some or even over all the generating units and, as
such, combined with the potentially high variability in some of these costs (e.g. fuel prices), the
necessary problem data may be very difficult to obtain. In strong contrast to this observation,
reliability considerations typically rely on the power reserve levels — a quantity that is very
easily obtainable. Ultimately, the choice depends on the power utility — which consideration is
more important in their strategy or business philosophy.

Since the GMS problem is investigated here from a South African viewpoint (although not re-
stricted to such a point of view), the views of Eskom carry significant weight. According to [61],
Eskom considers reliability considerations much more important than economic considerations
for the GMS problem. This may be due to the fact that South Africa still has a regulated elec-
tric power market, with Eskom being a state-owned enterprise providing approximately 95%
of the country’s electricity. One of Eskom’s strategic objectives is “Ensuring reliable supply of
electricity to all South Africans” [28]. In light of this, and along with the possible data compli-
cations mentioned in the previous paragraph, the optimality criterion is chosen as reliability for
the purposes of this thesis.

As stated in §2.1.4, the reliability objective is commonly chosen as levelling the reserve load over
the planning horizon; a view shared by Eskom [61]. This may be achieved in a number of ways.
The typical method is to minimise the sum of squares of the reserves. However, this method

Stellenbosch University  http://scholar.sun.ac.za



3.3. A simple GMS model 51

results in a nonlinear (quadratic) objective function. An attempt is made in this section to derive
a linear objective function yielding similar results, from this quadratic objective function. A
method using the sum of over- and underachievements from the mean reserve level is presented;
which is analogous to the sum of the absolute differences between the reserve levels and the
mean reserve.

Sum of squares approach

The sum of squares of the reserves should not be confused with the statistical criterion of the
sum of squares, perhaps more appropriately called the sum of squared differences. The objective
function for the simple GMS model, may be expressed mathematically as

m∑

j=1

(DjS + rj)
2, (3.10)

whereas the sum of squared differences would be given by

m∑

j=1

(DjS + rj − r)2, (3.11)

where r denotes the mean reserve level over the planning horizon. If one adopts the sum of
squares approach, a solution is obtained for which the reserve levels are close to one another
in value during all the time periods, thereby producing a level reserve. The main advantage
of using a sum of squares approach is that outliers are penalised more severely and thus add a
much larger value to the objective.

Therefore, the first GMS problem formulation to be considered in this thesis is given by the
mixed-integer quadratic program (MIQP) in which the objective is to

minimise

m∑

j=1

(DjS + rj)
2

subject to the constraints

`i∑

j=ei

xi,j = 1, i ∈ I

xi,j = 0, j < ei or j > `i, i ∈ I
n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p = Dj(1 + S) + rj , j ∈ J

xi,j ∈ {0, 1}, i ∈ I, j ∈ J
rj ≥ 0, j ∈ J .





(3.12)

Sum of absolute differences approach

Unlike the sum of squares approach, using absolute values requires some baseline to level the
reserve. The sum of squares of the reserves naturally levels the reserves towards the mean
reserve without actually calculating that mean. However, the same is not necessarily true when

Stellenbosch University  http://scholar.sun.ac.za



52 Chapter 3. Mathematical Problem Formulation

using absolute values instead of squares. If one only uses the absolute differences of consecutive
reserve levels, one might find a solution which forms hills and valleys in the reserve. To rectify
this situation, one should use the absolute differences between each reserve level and every other
reserve level. This, however, leads to a very inefficient objective function. Instead, one may
follow the “statistical” route, mentioned above. This approach measures the absolute difference
between the reserve level during each time period and mean reserve. In this case the objective
may be to

minimise
m∑

j=1

|DjS + rj − r|. (3.13)

By minimising the above sum of absolute differences, the solution is steered towards reserve
levels which are close to the mean reserve (and one another), thus inducing a level reserve.
Unfortunately in this case, outliers are penalised with the same severity as any other values.
The additional constraint

r =
1

m

m∑

j=1

(DjS + rj) (3.14)

should also be added to the formulation in order to define the mean reserve level.

Therefore, the second GMS problem formulation to be considered in this thesis is given by the
mixed-integer nonlinear program (MINP) in which the objective is to

minimise
m∑

j=1

|DjS + rj − r|

subject to the constraints

r =
1

m

m∑

j=1

DjS + rj ,

`i∑

j=ei

xi,j = 1, i ∈ I

xi,j = 0, j < ei or j > `i, i ∈ I
n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p = Dj(1 + S) + rj , j ∈ J

xi,j ∈ {0, 1}, i ∈ I, j ∈ J
rj ≥ 0, j ∈ J .





(3.15)

Sum of over- and underachievements approach

Adopting the sum of absolute differences approach above may be viewed as an intermediate
step towards formulating a linear objective function which attempts to level the reserve. To
this effect, the same principle may be applied — the difference between the reserve level and
mean reserve during each time period is calculated. Negative differences cause trouble and is the
reason why absolute values are used in the formulation above. One can, however, reformulate
the problem in order to achieve positive deviations only. This may be achieved by introducing
slack variables in a similar fashion as in goal programming. Define oj as the overachievement
of the actual reserve from the mean reserve level during time period j and define uj as the

Stellenbosch University  http://scholar.sun.ac.za



3.4. A more advanced GMS model 53

underachievement of the actual reserve from the mean reserve level during time period j. Both
these sets of variables are non-negative. The constraint set

r = (DjS + rj) + uj − oj , j ∈ J (3.16)

is added to the formulation in order to define the slack variables’ relationships to the reserve
levels along with the constraint set

oj , uj ≥ 0, j ∈ J (3.17)

to specify the nature of the slack variables. Since there can never be both an over- and under-
achievement at any given time, at least one of the two variables oj and uj should be zero during
time period j, for all j ∈ J . By transforming the differences between the reserve levels and the
mean reserve into non-negative deviations, the objective is to

minimise

m∑

j=1

(oj + uj), (3.18)

which is a linear objective function. Solutions obtained using this objective function may be
compared directly with solutions obtained using the objective function (3.13).

The third GMS problem formulation to be considered in this thesis is given by the mixed-integer
linear program (MILP) in which the objective is to

minimise
m∑

j=1

(oj + uj)

subject to the constraints

r =
1

m

m∑

j=1

DjS + rj ,

`i∑

j=ei

xi,j = 1, i ∈ I

xi,j = 0, j < ei or j > `i, i ∈ I
n∑

i=1

gi,j −
n∑

i=1

j∑

p=1

g′p,i,jxi,p = Dj(1 + S) + rj , j ∈ J

r = (DjS + rj) + uj − oj , j ∈ J
xi,j ∈ {0, 1}, i ∈ I, j ∈ J

rj , oj , uj ≥ 0, j ∈ J .





(3.19)

3.4 A more advanced GMS model

Now that three base models have been established in §3.3, the GMS problem may be expanded
to include crew and exclusion constraints. In terms of the GMS problem’s original context, as
presented in Figure 3.1, the more advanced model simplifies it to the singular problem presented
in Figure 3.3. In order to model these additional constraints, auxiliary variables are introduced.
Define yi,j as a binary variable taking the value 1 if unit i is in maintenance during time period j,

Stellenbosch University  http://scholar.sun.ac.za



54 Chapter 3. Mathematical Problem Formulation

Generator
Maintenance
Scheduling

Maintenance
Crew

System
Reliability

Generating
Capacity

Maintenance
Exclusions

Load
Demand

Maintenance
Windows

Figure 3.3: Dependency diagram for a more advanced GMS problem.

and zero otherwise. Before the new constraints are formulated, it is necessary to reformulate
some of the existing constraints in terms of the new auxiliary variables as well as to present
additional technical constraints. The formulation of the model is loosely based on the ones
presented in [11, 48].

3.4.1 Model constraints

The maintenance window constraint sets (3.1) and (3.2) remain unchanged. An additional
constraint set, similar to (3.2), may be added in order to ensure that the auxiliary variables are
also set to zero outside the maintenance window of a unit. The constraint set

yi,j = 0, j < ei or j > `i + di − 1, i ∈ I (3.20)

fulfills the role of reducing the number of variables.

Technical constraints concerned with when a unit is in maintenance, have to be included in the
problem. Since the maintenance of each unit must last for a given duration, the maintenance
duration constraint set

`i+di−1∑

j=ei

yi,j = di, i ∈ I (3.21)

should be included. However, the maintenance of a generating unit must occur over consecutive
time periods (continuously). A non-stop maintenance constraint set of the form

yi,j − yi,j−1 ≤ xi,j , i ∈ I, j ∈ J \ {1},
yi,1 ≤ xi,1, i ∈ I (3.22)

should therefore also be included.

The combination of the load and reliability constraints in constraint set (3.6) may be reformu-
lated in terms of the auxiliary variables as a slightly simpler set of equalities. The structure

Stellenbosch University  http://scholar.sun.ac.za



3.4. A more advanced GMS model 55

of the constraints remains exactly the same, but the parameters g′p,i,j are no longer necessary.
Constraint set (3.6) is therefore replaced by

n∑

i=1

gi,j(1− yi,j) = Dj(1 + S) + rj , j ∈ J . (3.23)

The first new constraint set deals with the availability of manpower for maintenance work during
any given time period. There are two possible approaches, depending on the crew requirements
of the power system. A simple approach may be used if a generating unit has crew requirements
that only depend on the current time period in the planning horizon (i.e. if unit i requires a
specified level of manpower when undergoing maintenance during time period j). If mi,j denotes
the manpower required by unit i when undergoing maintenance during time period j, the crew
constraint set to be included is

n∑

i=1

mi,jyi,j ≤Mj , j ∈ J , (3.24)

where Mj denotes the maximum available manpower during time period j.

However, if the crew requirements of a generating unit depend on how much time it has already
spent in maintenance (i.e. unit i requires a specified level of manpower in its k-th time period
of maintenance) the constraints are slightly more complicated. Let m′p,i,j denote the required
manpower of unit i when in maintenance during time period j if unit i commenced at time
period p. If mk

i denotes the required manpower of unit i in its k-th period of maintenance, the
parameters m′p,i,j are calculated as

m′p,i,j =

{
mj−p+1
i if j − p < di,

0 otherwise.
(3.25)

The crew constraint set may now be formulated as

n∑

i=1

j∑

p=1

m′p,i,jxi,p ≤Mj , j ∈ J . (3.26)

Exclusion constraints restrict certain units to be in a state of simultaneous maintenance. Con-
sider the more general exclusion constraints where at most some specified number of units,
within some subset of units, are allowed to be in a state of simultaneous maintenance. Let K
denote the set of indices of generating unit subsets. These subsets typically contain homoge-
neous units (e.g. all units are nuclear, all units are coal-fired, etc.). If there are K subsets then
K = {1, . . . ,K}. Define Ik ∈ I as the k-th subset of generating units with k ∈ K. The exclusion
constraint set may be formulated as

∑

i∈Ik

yi,j ≤ Kk, j ∈ J , k ∈ K (3.27)

where Kk denotes the maximum number of units within subset k that are allowed to be in
simultaneous maintenance during any time period.

Again, the final additional constraint set specifies the binary nature of the auxiliary variables
as

yi,j ∈ {0, 1}, i ∈ I, j ∈ J . (3.28)

Stellenbosch University  http://scholar.sun.ac.za



56 Chapter 3. Mathematical Problem Formulation

3.4.2 The objective function

The three objective functions, defined for the simple GMS model in §3.3.2, remain unchanged
with the introduction of auxiliary variables in the more advanced model. Therefore, the objec-
tive functions (3.10), (3.13) and (3.18) may be applied directly in the more advanced model.
Furthermore, the constraint sets that define the quantities within these objective functions also
remain unchanged, that is constraint (3.14) and constraint sets (3.16) and (3.17).

Problem formulations (3.12), (3.15) and (3.19) are now extended into more advanced models by
problem formulations (A.1), (A.2) and (A.3), respectively. These formulations may be found in
Appendix A.

3.5 Chapter summary

In this chapter, six formal mathematical model formulations were presented for the GMS prob-
lem. The formulations took the form of mathematical programs and vary in terms of their
objective functions and complexity. Before the problem assumptions were presented in §3.2,
the context of the GMS problem was briefly discussed with respect to power system operations
scheduling in §3.1.

Following the GMS problem assumptions, three simple models were presented in §3.3 with
different objective functions. These objective functions all aim to level the reserve. However, the
formulations differ in classification — the first formulation is quadratic, the second is nonlinear
while the third is linear.

In §3.4, the simple models were extended to more advanced models. This was achieved by the
introduction of additional constraints to the model, because the simple models only considered
the bare essentials in terms of the constraints for the GMS problem. These more advanced
formulations provide one with an essential mathematical platform for generator maintenance
scheduling.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4

Solution Methodology

Contents
4.1 Exact solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 LINGO’s simplex solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 LINGO’s integer solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 LINGO’s general nonlinear solver . . . . . . . . . . . . . . . . . . . . . . 58

4.1.4 LINGO’s global solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.5 LINGO’s quadratic solver . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Approximate solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 The soft constraint approach . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 The neighbourhood move operators . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Generating a random initial solution . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Random search heuristic implementation . . . . . . . . . . . . . . . . . 64

4.2.5 Simulated annealing algorithmic implementation . . . . . . . . . . . . . 66

4.2.6 Proposed modifications for investigation . . . . . . . . . . . . . . . . . . 71

4.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

In this chapter, an exact and an approximate solution approach are proposed for solving the
GMS problem. The exact approach consists of utilising an off-the-shelf software package to
solve the problem; the algorithms employed by the software package are described in §4.1. A
random search heuristic and a simulated annealing algorithm are proposed for solving the GMS
problem approximately. The specific implementations of these proposed methods for the GMS
problem are presented in §4.2. As most parameter values within the methods are typically
problem-dependent, these values are not estimated here.

4.1 Exact solution approach

Since the GMS problem may be formulated as a mathematical program, as was done in Chap-
ter 3, mathematical programming solution techniques may theoretically be applied to solve the
GMS problem to optimality. However, due to the integer-valued, and large scale nature of the
GMS problem, it may take an unpractical amount of time to obtain such an optimal (or even a
good) solution, especially if the objective function is nonlinear.

57

Stellenbosch University  http://scholar.sun.ac.za



58 Chapter 4. Solution Methodology

Even so, the inclusion of an exact solution approach to the GMS problem in this thesis is
for comparative purposes and to provide possible bounds on the objective function values of
the problem for a given instance. An off-the-shelf software package, featuring different solvers,
called LINGO [53, 55] was used to implement the mathematical programming formulations and
to solve the GMS problem. However, restrictions were placed on the allowed computational
time for practical reasons.

LINGO utilises various built-in solvers to solve a wide variety of problems [54, 56]. It interprets
problem formulations and automatically passes the problem to the appropriate solver, based on
the type of problem. Alternatively, the user may specify the solver to be used for a particular
problem instance. Short descriptions of the relevant solvers, which may be used for the GMS
problem, are presented below.

4.1.1 LINGO’s simplex solvers

The Primal and Dual Simplex solvers feature advanced implementations of the primal and dual
simplex algorithms (see §2.4.2). These solvers are the primary means for solving linear models.

4.1.2 LINGO’s integer solver

Models containing general and/or binary integer variables are solved via an integer solver that
works in conjunction with the linear and nonlinear solvers. LINGO uses a branch-and-bound
solution procedure (see §2.4.2) when integer models are solved. If the model is linear, the integer
solver employs preprocessing strategies, heuristics and advanced constraint “cut” generation
routines that may reduce solution times significantly.

4.1.3 LINGO’s general nonlinear solver

The primary underlying technique used by the nonlinear solver is based upon a generalised
reduced gradient algorithm (see §2.4.2). LINGO also incorporates successive linear programming
(see §2.4.2) to compute new search directions and to find a good feasible solution quickly. The
nonlinear solver is classified as a local search solver and can only guarantee locally optimal
solutions.

4.1.4 LINGO’s global solver

Instead of discontinuing the search when a local optimum is found, as the nonlinear solver would
do, the global solver continues searching until a global optimum is confirmed. The global solver
uses a series of range bounding and range reduction techniques to convert the original non-
convex, nonlinear problem into several convex, linear subproblems [56]. An exhaustive search
is then done within a branch-and-bound framework over these subproblems to find a global
optimum.

4.1.5 LINGO’s quadratic solver

The quadratic solver uses a barrier or interior point method (see §2.4.2) to solve a model with
a quadratic objective function and/or some constraints with quadratic terms. LINGO takes
advantage of the quadratic structure to solve such problems much faster than the nonlinear
solver would.

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 59

4.2 Approximate solution approach

A number of different solution techniques for the GMS problem were reviewed in §2.4, most
of which were non-exact methods. Two local search methods for solving the GMS problem
are presented in more detail here — a random search heuristic designed to serve as a simple
starting point, followed by a simulated annealing algorithm which is more advanced (a meta-
heuristic method). In the implementation of these methods, a solution to the GMS problem
(i.e. maintenance schedule) is denoted by a vector x = (x1, . . . , xn) of length n where the entry
xi is an integer value representing the starting time period of maintenance for unit i ∈ I.

Two constraint approaches to the GMS problem may be adopted, namely a hard constraint ap-
proach and a soft constraint approach. Within the hard constraint approach, all the constraints
of the GMS problem are satisfied. A candidate solution that violates any of the constraints is
deemed infeasible and not considered by the algorithm. On the other hand, the soft constraint
approach allows for limited constraint violation. If a candidate solution violates any of the
constraints, a corresponding penalty value is added to the objective function value associated
with the solution and the algorithm continues the search process. A more detailed explanation
of the soft constraint approach is presented below as this is the approach adopted in this thesis.

4.2.1 The soft constraint approach

When a candidate solution violates a constraint in the GMS problem, a penalty is incurred for
that violation. This penalty is imposed in such a manner that a larger violation receives a larger
penalty value in order to discourage infeasible solutions. The total penalty value of a solution is
calculated as a weighted sum of the various constraint penalty values. This total penalty value
P is then added to the objective function value associated with the candidate solution.

For the maintenance window constraint set, the earliest and latest maintenance commencement
times for each unit are extended by a parameter Wext. As such, the allowable maintenance
window [ei, `i] is extended to [ei −Wext, `i + Wext] for each unit i ∈ I. The window violation
penalty term P iw for unit i is the number of time periods before the earliest starting time ei or
after the latest starting time `i within this extended window at which maintenance of the unit
commences, that is

P iw =





ei − xi if xi < ei,

0 if ei ≤ xi ≤ `i,
xi − `i if xi > `i,

for all i ∈ I. A different weight wiw (linearly increasing as a function of P iw) is associated with
each of these maintenance window violations. The overall maintenance window penalty Pw is
calculated as the sum of the weighted window violation penalty terms P iw over all the units,
that is

Pw =

n∑

i=1

wiwP
i
w. (4.1)

The load and reliability constraint violation penalty term P j` during time period j is simply the
shortfall in load, that is

P j` = max{−rj , 0},

for all j ∈ J , since rj is negative during a shortfall in power supply. The overall load and

Stellenbosch University  http://scholar.sun.ac.za



60 Chapter 4. Solution Methodology

reliability penalty term P` is the sum of these violations over all time periods, that is

P` =
m∑

j=1

P j` . (4.2)

Similarly, the crew constraint violation penalty term P jc during time period j is the shortfall in
manpower during that time period, that is

P jc =





max





n∑

i=1

mi,jyi,j −Mj , 0



 if constraint set (3.24) is used,

max





n∑

i=1

j∑

p=1

m′p,i,jxi,p −Mj , 0



 if constraint set (3.26) is used,

for all j ∈ J . The overall crew penalty term Pc is the sum of these crew constraint violation
penalty terms over all time periods, that is

Pc =
m∑

j=1

P jc . (4.3)

Lastly, the exclusion constraint violation penalty term P k,je for the subset of units k during
time period j is the number of units in simultaneous maintenance beyond the maximum of the
subset. Thus

P k,je = max




∑

i∈Ik

yi,j −Kk, 0



 ,

for all k ∈ K and j ∈ J . The overall exclusion penalty term Pe is calculated as the sum of these
exclusion constriant violation penalty terms over all subsets and time periods, that is

Pe =

K∑

k=1

m∑

j=1

P k,je . (4.4)

As mentioned earlier, the total penalty value associated with a candidate solution is the weighted
sum of all the penalty terms above. If w`, wc and we are the corresponding weights for the load
and reliability, crew and exclusion penalties, respectively, then the total penalty term is

P = Pw + w`P` + wcPc + wePe, (4.5)

where the values of Pw, P`, Pc and Pe are taken as in (4.1)–(4.4). Note that the window
penalty Pw is already weighted due to the varying values of window violation weights. The
method adopted to determine values for all these weights is described later as it is typically prob-
lem instance-dependent. The function checkFeasibilityAndCalculatePenalty, for which a
pseudo-code listing is given in Function 4.1, may be called after a candidate solution has been
generated in order to determine its corresponding penalty value.

4.2.2 The neighbourhood move operators

Since both the random search heuristic and the simulated annealing algorithm are local search
methods, some form of neighbourhood structure or move operator has to be defined. The

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 61

Function 4.1: checkFeasibilityAndCalculatePenalty(x, dataset)

Input: The current solution vector, the problem’s full dataset
Output: The total penalty term for the current solution

1 Pw ← 0
2 P` ← 0
3 Pc ← 0
4 Pe ← 0
5 if x violates maintenance window constraint then Calculate overall maintenance

window penalty term Pw
6 if x violates load and reliability constraint then Calculate overall load and reliability

penalty term P`
7 if x violates crew constraint then Calculate overall crew penalty term Pc
8 if x violates exclusion constraint then Calculate overall exclusion penalty term Pe
9 totalPenalty ← Pw + w`P` + wcPc + wePe

10 return totalPenalty

purpose of a move operator is to generate a new candidate solution by perturbing the current
solution in some specified manner. The solutions obtained from all possible perturbations
according to the operator are collectively known as the neighbourhood of the current solution.

The author could find only two neighbourhood move operators present in GMS literature
[10, 15, 17, 23, 41, 72, 73], with the one being a simplification of the other. According to
the first of these move operators, one unit is randomly selected according to a uniform dis-
tribution and its maintenance starting time is then randomly changed to a new value within
the allowed range (maintenance window) according to a uniform distribution. This neighbour-
hood move operator will hereafter be referred to as the classical neighbourhood move operator.
The function createClassicalNeighbourhoodList, for which a pseudo-code listing is given
in Function 4.2, illustrates how to generate the list that contains all the moves to create the
classical neighbourhood of a candidate solution. The other operator restricts the new value to
the two adjacent time periods. These two moves are classified as elementary moves.

Function 4.2: createClassicalNeighbourhoodList(n, e, `,Wext)

Input: The number of units, the vectors containing the earliest and latest maintenance
starting times for all units, the maintenance commencement extension
parameter

Output: The list of elementary moves that creates the full classical neighbourhood

1 counter ← 1
2 for i← 1 to n do
3 for j ← (ei −Wext) to (`i +Wext) do
4 moves(counter) ← {i, j}
5 counter ← counter + 1

6 end

7 end
8 return moves

Although the elementary neighbourhood move operators described above have been used with
success in the literature, a new neighbourhood move operator for solutions in a GMS context is

Stellenbosch University  http://scholar.sun.ac.za



62 Chapter 4. Solution Methodology

proposed in this thesis. This operator diminishes the locality of elementary moves by including
more global information on the entire maintenance schedule in order to search the solution space
more effectively.

The move operator presented below generates a so-called ejection chain and it may be classified
as a compound move. Consider a solution vector x represented on a n×m grid where the rows
represent the generating units and the columns represent the time periods of the maintenance
schedule. An occupied cell in row i and column j indicates that unit i commences its main-
tenance during time period j, that is xi = j. The ejection chain move operator generates a
sequence of alternating horizontal and vertical steps within the grid, an example of which may
be seen in Figure 4.1. In the description of the ejection chain that follows, any reference to a

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

Time period

(start)

(a) Schedule before the ejection chain move is applied

1 2 3 4 5 6 7 8 9 10 11

Time period

(start)

(b) Schedule after the ejection chain move is applied

U
n
it

1

2

3

4

5

U
n
it

Figure 4.1: Illustration of the ejection chain move on a GMS schedule.

random selection is assumed to be performed according to a uniform distribution. The starting
point of the sequence (start) is determined by randomly selecting an occupied cell (i.e. choosing
a unit at random and selecting an occupied cell in its row randomly). From this occupied cell,

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 63

an unoccupied time period (column) is randomly selected within the same row (unit) from the
allowable range of starting times for the unit. This selection step is referred to as taking a hor-
izontal step. From this unoccupied cell, a random occupied cell in the same column is selected,
referred to as taking a vertical step. This process of taking horizontal and vertical steps in
alternating fashion is repeated until either a horizontal step is made from an occupied cell to an
unoccupied cell in the same column as start, thus closing the sequence, or until a vertical step
cannot be performed due to a lack of occupied cells in the relevant column. The neighbouring
solution is generated by applying the ejection chain move along the sequence — every cell value
at the head of an arrow in the chain, is replaced by the cell value at the tail of that same arrow
in Figure 4.1. Should the chain be open-ended, as in the example in Figure 4.1, the starting cell
value is replaced by an empty cell value. The function createEjectionChainList, for which a
pseudo-code listing is given in Function 4.3, illustrates how to create such an ejection chain.

Function 4.3: createEjectionChainList(unit, n, e, `,Wext,x)

Input: The unit at the head of an ejection chain, the number of units, the vectors
containing the earliest and latest maintenance starting times for all units, the
maintenance commencement extension parameter, the current solution vector

Output: The list of moves in an ejection chain

1 chain ← ∅
2 possibleTimes ← {(eunit −Wext), . . . , (`unit +Wext)} \ xunit
3 newTime ← rand(possibleTimes)
4 counter ← 1
5 chain(counter) ← {unit, newTime}
6 remainingUnits ← {1, . . . , n} \ unit
7 notDone ← true
8 while notDone = true do
9 potentialUnits ← ∅

10 for i ∈ remainingUnits do
11 if xi = newTime then
12 potentialUnits ← potentialUnits ∪ i
13 end

14 end
15 if potentialUnits 6= ∅ then
16 counter ← counter + 1
17 newUnit ← rand(potentialUnits)
18 possibleTimes ← {(enewUnit −Wext), . . . , (`newUnit +Wext)} \ xnewUnit
19 newTime ← rand(possibleTimes)
20 chain(counter) ← {newUnit, newTime}
21 remainingUnits ← {1, . . . , n} \ newUnit
22 if newTime = chain (1, 2) // first entry, second element

23 then
24 notDone ← false
25 end

26 else
27 notDone ← false
28 end

29 end
30 return chain

Stellenbosch University  http://scholar.sun.ac.za



64 Chapter 4. Solution Methodology

To summarise, the ejection chain move operator generates a list of units whose maintenance
starting times are randomly altered (horizontal steps). However, adjacent units in the list are
connected in such a way that the preceding unit’s new maintenance starting time is the same
as the succeeding unit’s old maintenance starting time (vertical steps). Furthermore, there are
no restrictions with respect to horizontal and vertical steps crossing one another or, as a result,
on the direction of any of the steps. The example in Figure 4.1 illustrates this fact.

A natural question that arises from the ejection chain move operator described above is how
one guarantees that a significant number of non-trivial ejection chains are generated during the
course of the SA algorithm? If the length of an ejection chain is defined as the number of altered
maintenance starting times, i.e. the number of horizontal moves, then a trivial ejection chain
has a length of one. This is the minimum length of any ejection chain for a solution of the GMS
problem, provided that all the units have a maintenance window larger than one time period.
Due to the typical large-scale nature of the GMS problem, it is a natural occurence that many
columns in a solution grid are completely unoccupied. This occurence presents a problem for
any ejection chain. However, the problem may be resolved if more columns are available for the
vertical steps. As such, the proposed SA algorithm is implemented by additionally including a
certain number of adjacent columns (depending on the problem instance) when performing the
vertical steps in an ejection chain.

4.2.3 Generating a random initial solution

Consider firstly the hard constraint approach. For unit i, a random maintenance starting time xi
is chosen between its earliest and latest starting times, according to a uniform distribution. The
resulting candidate solution vector x is then tested for feasibility. Note that the maintenance
window constraint set will always be satisfied. If the solution is feasible, it is adopted as the
initial solution. Otherwise, all units involved in unsatisfied constraints are isolated. From these
units, one is chosen randomly according to a uniform distribution. A new random maintenance
starting time for this unit is chosen in the same manner as before, with the current time excluded.
The new candidate solution vector is again tested for feasibility. This process is repeated until
a feasible solution is obtained. Unfortunately, this process may be very time consuming (even
taking impractically long), especially if the problem instance is highly constrained.

Consider now the soft constraint approach. Again, for each unit i, a random maintenance
starting time xi is chosen according to a uniform distribution. However, the starting time
is chosen between the extended earliest and latest starting times. The constraint violations
are calculated from this solution vector x in order to determine the solution’s feasibility. If
the solution is feasible, its penalty value is set to zero, otherwise, the value of the penalty is
calculated accordingly as in (4.5). Furthermore, the solution is immediately set as the initial
solution. Clearly, this process is much faster than that of the hard constraint approach. The
function generateRandomSolution, for which a pseudo-code listing is given in Function 4.4,
may be called to create a random solution and its objective function value which may then be
set as the initial solution.

4.2.4 Random search heuristic implementation

A random search method is one of the simplest solution methods one may adopt in order to
solve a combinatorial optimisation problem approximately. Such an approach is often used as a
baseline for further solution methods which employ more complicated techniques, since a random

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 65

Function 4.4: generateRandomSolution(dataset)

Input: The problem’s full dataset
Output: A random solution vector and it’s objective function value

1 for i← 1 to n do
2 possibleTimes ← {(ei −Wext), . . . , (`i +Wext)}
3 xi ← rand(possibleTimes)

4 end
5 P ← checkFeasibilityAndCalculatePenalty(x, dataset)
6 Calculate objFunctionValue
7 objFunctionValue ← objFunctionValue + P
8 return [x, objFunctionValue]

search is simply a method that randomly searches the solution space of a problem by generating
new solutions according to some neighbourhood structure without any other enhancements.
The algorithmic implementation of the random search heuristic adopted in this thesis for the
GMS problem is presented in this section.

Initialisation

The random search heuristic is initialised by generating an initial solution to an instance of the
GMS problem. A random initial solution is generated, as described in §4.2.3, by the function
generateRandomSolution.

Determining the next candidate solution

In order to find the new candidate solution for the next iteration in the heuristic, a best improve-
ment approach is adopted. A truncated neighbourhood of user-defined size is generated from
the current solution. Both neighbourhood move operators described in §4.2.2 are implemented
in the random search heuristic to create the neighbourhood (for comparative purposes). The
candidate solution within this truncated neighbourhood having the best objective function value
(i.e. the best neighbour) is selected as the new current solution for the next iteration. Note that
the best neighbour does not have to be an improving solution.

Termination criteria

The random search heuristic terminates as soon as one of the following two conditions is satisfied:

• the number of iterations exceeds a pre-specified number,

• the number of consecutive iterations without uncovering an improving solution reaches a
pre-specified number,

During each iteration, the best neighbour is compared with the best solution found so far
(the incumbent solution), and when necessary, the incumbent solution is updated. When the
heuristic terminates, the incumbent solution is the final solution returned. The pseudo-code
listing for the generator maintenance scheduling random search heuristic with an ejection chain
neighbourhood is provided in Algorithm 4.5. Similarly, the pseudo-code listing for the generator
maintenance scheduling random search heuristic with a classical neighbourhood is provided in
Algorithm B.1 in Appendix B.

Stellenbosch University  http://scholar.sun.ac.za



66 Chapter 4. Solution Methodology

Algorithm 4.5: The GMS random search heuristic with ejection chain neighbourhood

Input: A power system scenario for which to solve the generator maintenance
scheduling problem

Output: The best maintenance schedule found

1 dataset ← declareSystemData()
2 [current, currentObj] ← generateRandomSolution(dataset)
3 [incumbent, incumbentObj] ← [current, currentObj]
4 iterationCounter ← 0
5 nonImproveCounter ← 0
6 while (iterationCounter < maxIteration) and (nonImproveCounter < maxNonImprove)

do
7 bestNeighbour ← ∅
8 bestNeighbourObj ← some very large number
9 for neighbourCounter ← 1 to neighbourhoodSize do

10 neighbour ← current
11 unit ← rand([1, n])
12 chain ← createEjectionChainList(unit, n, e, `,Wext,neighbour)
13 Apply chain on neighbour to create new neighbour
14 P ← checkFeasibilityAndCalculatePenalty(neighbour, dataset)
15 Calculate neighbourObj
16 neighbourObj ← neighbourObj + P
17 if neighbourObj < bestNeighbourObj then
18 [bestNeighbour, bestNeighbourObj] ← [neighbour, neighbourObj]
19 end

20 end
21 if bestNeighbourObj < incumbentObj then
22 [incumbent, incumbentObj] ← [bestNeighbour, bestNeighbourObj]
23 nonImproveCounter ← 0

24 else
25 nonImproveCounter ← nonImproveCounter + 1
26 end
27 [current, currentObj] ← [bestNeighbour, bestNeighbourObj]
28 iterationCounter ← iterationCounter + 1

29 end

4.2.5 Simulated annealing algorithmic implementation

The general framework of working for the method of SA was presented in §2.4.4. A more detailed
description of the SA algorithmic implementation adopted for scheduling purposes in this thesis
is presented here.

Initialisation

The initialisation step of the SA algorithm consists of generating an initial solution to an instance
of the GMS problem, as well as computing an initial temperature for the system. A random
initial solution is generated, as described in §4.2.3, by the function generateRandomSolution.
After this has been done, an initial temperature is computed by using this initial solution.

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 67

Given an initial solution, an initial temperature T0 may be determined by using the method
described in [79]. This method, hereafter referred to as the average increase method, relies on
an initial acceptance ratio χ0, which is defined as the number of accepted worsening solutions1

divided by the number of attempted worsening solutions, and on the average increase in energy

(worsening of objective function value), denoted by ∆E
(+)

. The value of ∆E
(+)

is estimated
by executing a random walk over the solution space, using the initial solution is as the starting

point. Once the value of ∆E
(+)

is estimated, the initial temperature may be calculated as

χ0 = exp

(
−∆E

(+)

T0

)
,

which yields

T0 = −∆E
(+)

ln(χ0)
. (4.6)

A second method for the initial temperature, namely White’s formula, is also considered [79],
hereafter referred to as the standard deviation method. According to this formula, the initial
temperature is set as the standard deviation σ0 in the objective function value during an initial
random walk over the solution space, that is

T0 = σ0. (4.7)

The function initialTemperature, for which a pseudo-code listing is given in Function 4.6,
illustrates these two methods.

The cooling schedule

The outer loop of the SA algorithm, starting at line 7 in Algorithm 4.7, consists of the gradual
lowering of the temperature of the system. A decreasing temperature function, also known as
the law of decrease of the temperature, is thus defined. The well-known and widely adopted
geometric law of decrease [20] was initially chosen for use in the proposed SA algorithm due to
its simplicity and effectiveness. The updating rule for this law is

Ts+1 = αTs, (4.8)

where Ts is the temperature at stage s and α ∈ (0, 1) is a constant called the cooling parameter.
Typically, the value of α is taken between 0.8 and 0.99 when used in practice [22]. This cooling
law was also adopted in [9, 15, 73] within a GMS context.

Three additional temperature functions reported in [79] are investigated for use in the context of
the GMS problem. These methods are called adaptive as they use feedback from the algorithm to
calculate the next temperature. Such an adaptive schedule attempts to meet two contradicting
goals, namely to

• keep the annealing as close to equilibrium as possible, and

• execute the annealing process in as short a time as possible.

1In a minimisation problem, a worsening solution increases the objective function value.

Stellenbosch University  http://scholar.sun.ac.za



68 Chapter 4. Solution Methodology

Function 4.6: initialTemperature(x, xObj, dataset)

Input: The initial solution vector, the initial objective function value, the problem’s full
dataset

Output: Two initial temperatures calculated using the average increase method and
using the standard deviation method

1 [current, currentObj] ← [x, xObj]
2 j ← 0
3 for i← 1 to length of random walk do
4 previousObj ← currentObj
5 unit ← rand([1, n])
6 chain ← createEjectionChainList(unit, n, e, `,Wext, current)
7 Apply chain on current to create new solution
8 P ← checkFeasibilityAndCalculatePenalty(current, dataset)
9 Calculate currentObj

10 currentObj ← currentObj + P
11 ∆E ← currentObj − previousObj
12 if ∆E > 0 then
13 j ← j + 1
14 increasesj ← ∆E

15 end
16 valuesj ← currentObj

17 end

18 avgIncTemperature← −average(increases)

ln(χ0)
19 stdDevTemperature ← stdDeviation(values)
20 return [avgIncTemperature, stdDevTemperature]

Firstly, the updating rule proposed by Huang et al. [37] is given by

Ts+1 = Ts exp

(
−λTs
σs

)
, (4.9)

where λ ∈ (0, 1] is a constant with a typical value of 0.7 and σs is the standard deviation
observed in the changing values of the objective function when reaching stage s. The rule is
based on the average objective function values achieved during consecutive temperature stages.
It is expected that by setting the difference between the average objective function value at
the current temperature stage and at the next temperature stage to be less than the standard
deviation of the objective function value at the current temperature stage, quasi-equilibrium2

will be maintained.

Secondly, Van Laarhoven et al. [81] proposed the updating rule

Ts+1 = Ts
1

1 + ln(1+δ)
3σs

Ts
, (4.10)

2Based on the analogy of simulated annealing to real annealing, as described in §2.4.4, the quasi-equilibrium
is analogous to the thermodynamic balance at a temperature stage, i.e. the probability distribution of objective
function values is close to a Boltzmann distribution.

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 69

where δ is a “small” real number. If qx(Ts) represents the stationary distribution3 at temperature
stage s, then the decrement rule guarantees that

1

1 + δ
<

qx(Ts)

qx(Ts+1)
< 1 + δ, for all x.

It is expected that by maintaining the homogeneous Markov chains close to each other, the num-
ber of attempted solutions should be few in order to reach equilibrium between each temperature
decrement.

Finally, the updating rule proposed by Triki et al. [79] is given by

Ts+1 = Ts

(
1− Ts

∆

σ2s

)
, (4.11)

where ∆ is the expected decrease in the average objective function value when reaching the
next temperature stage of the search process. The theoretical progression of the expected
objective function value is set once for all the temperature stages by the choice of ∆. If the
observed average expected objective function value at temperature Ts corresponds well with the
theoretical value during the search process, then equilibrium is still achieved. However, if the
gap between the observed and theoretical values becomes significant, equilibrium has not been
achieved and the temperature decrement must be adapted. Four options may be considered:
increasing the number of attempted solutions at the current temperature stage, increasing the
current temperature, choosing a new smaller expected decrease ∆, or terminating the algorithm
and initialising a greedy algorithm. The authors in [79] provide an algorithm in which the
rule (4.11) may be implemented efficiently. A slightly modified version of their algorithm was
applied in this thesis, a pseudo-code of which may be found in Algorithm B.2 in Appendix B.
Typically, the initial value of the expected decrease in the objective function value is taken as
σ0/µ2, with µ2 ∈ [1, 20]. Equilibrium has not been reached if the ratio between the average
objective function value and the expected average objective function value is larger than ζ, with
ζ ∈ [1, 1.1]. Lastly, if the expected decrease ∆ is modified during some temperature stage, it is
decreased by a factor of µ1 with µ1 ∈ [2, 20].

The length of the inner loop of the SA algorithm is determined by the number of repeated
iterations of the Metropolis algorithm (length of the Markov chain). In other words, this length
is the criterion for the change of temperature stage [20]. According to Eglese [22], the length of
the Markov chain is determined by a sufficient number of solutions being accepted subject to
a constant upper bound in order to bring the system close to equilibrium at that temperature.
Following the suggested scheme presented in [20], the inner Metropolis loop in the proposed SA
algorithm terminates during each temperature stage when one of the following two conditions
is satisfied

• a maximum of 12N solutions are accepted,

• a maximum of 100N solutions are attempted,

where N denotes the number of degrees of freedom of the problem. In this case N = n.

3The existence of, and convergence to, a stationary distribution for the Markov chains formed at each tem-
perature stage have been formally established in the literature [81] by various authors [20].

Stellenbosch University  http://scholar.sun.ac.za



70 Chapter 4. Solution Methodology

The rule of acceptance

Since candidate solutions that cause a decrease in energy are accepted with probability 1, the
rule of acceptance only applies to solutions causing an increase in energy. Although different
rules of acceptance (or acceptance probabilities) may be adopted in the method of SA, the
proposed algorithm implements the classical Metropolis rule described in §2.4.4. Practically,
this rule is implemented as follows. Whenever a candidate solution causes an increase in energy
(∆E > 0), a random number r ∈ (0, 1) is generated according to a uniform distribution.
If r < exp(−∆E/Ts), then the candidate solution is accepted as the new current solution;
otherwise it is rejected and the current solution remains the same.

The neighbourhood move operator

Both neighbourhood move operators described in §4.2.2 are implemented in the SA algorithm
for comparative purposes. The aim with the new ejection chain move operator is to improve
upon the results obtained by using the elementary move operator. Note that candidate solutions
within the classical neighbourhood of a solution are sampled without re-insertion. This means
that a neighbourhood move applied to the current solution may only be repeated once all
possible moves in the neighbourhood have been attempted. This is not the case with candidate
solutions in the ejection chain neighbourhood, since the nature of the ejection chain moves does
not make this an easy task — if there are k units within an ejection chain, the neighbourhood
size is

(m− 1)k
k−1∏

i=0

(n− i),

while the size of the classical neighbourhood is only nm.

Termination criteria

The SA algorithm terminates when the outer temperature loop terminates. This may occur if
the system has reached its ground state, corresponding to its lowest energy (smallest objective
function value). As stated in §2.4.4, the system is said to be frozen in this case because no
further change in the solution is likely.

Two termination criteria are implemented in the proposed SA algorithm. The temperature loop
terminates as soon as one of the following two conditions is satisfied:

• the temperature at the current stage reaches the pre-specified minimum temperature Tmin,

• a pre-specified number, Ωfrozen, of successive temperature stages occur without the oc-
curence of any acceptance.

On completion of a standard SA algorithm, the current solution is reported as an approximate
solution to the GMS problem instance. However, the proposed SA algorithm is implemented
with a slight modification of the final solution, as described in below.

Modification to the standard SA algorithm

A modification in the proposed SA algorithm is to store the best solution found so far, called the
incumbent solution. This simple modification [22] is not computationally expensive and may pro-

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 71

duce improved solutions at a similar computational time than that of a standard SA algorithm.
The reason why this may occur, is the fact that the algorithm can accept worsening solutions
and it is therefore possible that the final solution is worse than the best solution obtained
during the entire algorithmic execution. A pseudo-code listing for the generator maintenance
scheduling simulated annealing algorithm with an ejection chain neighbourhood is provided in
Algorithm 4.7. Since the difference in pseudo-code between using the ejection chain neigh-
bourhood versus using the classical neighbourhood is so small, as seen between Algorithm 4.5
and Algorithm B.1, no listing is provided for the simulated annealing algorithm with a classical
neighbourhood. The neighbourhood implementation would be similar to that in Algorithm B.1.

4.2.6 Proposed modifications for investigation

Additional modifications to the simulated annealing algorithm are investigated in this thesis.
These modifications attempt to improve the solution method without incurring excessive com-
putational costs.

Introduction of a local search heuristic

A local search heuristic may be introduced into the SA solution method described above in
order to obtain a hybrid solution method. The proposed hybridisation may be applied in two
different ways. In the first, the local search is applied on the incumbent solution each time a
new incumbent solution is encountered during the algorithm’s execution, that is after line 26
in Algorithm 4.7. Only the incumbent solution is updated by means of the local search, the
current solution remains unaffected in order to prevent premature convergence. In the second,
the local search is applied at the end of the algorithm, on the final incumbent solution, that
is after line 42 in Algorithm 4.7. It may be possible to improve on the solution, since its full
neighbourhood has typically not been explored in the SA algorithm.

The implementation of the local search heuristic adopts the classical neighbourhood move oper-
ator presented in §4.2.2. That is, the elementary move in which one generating unit is randomly
selected according to a uniform distribution and its maintenance starting time is then changed
to a random new value within the allowed range (maintenance window). The local search heuris-
tic receives the incumbent solution as initial solution. The full neighbourhood of the solution
(with a maximum size of nm) is then searched in order to find the best neighbour. If the best
neighbour improves the current solution, it is set as the new current solution and the process
repeats. The search terminates if no further improvement can be made. A pseudo-code listing
of the local search heuristic is provided in Algorithm 4.8.

Improved initial solution

Instead of simply using a random solution as initial solution, the local search heuristic introduced
above may be applied to the random solution. This is expected to improve the objective function
value of the solution, resulting in a “good” random initial solution. The possible impact of
applying this enhancement to the solution methods may include faster solution times (fewer
iterations) and improved incumbent solutions because the algorithm already started with a
good solution. In the implementation, a user-defined number of random solutions are generated
according to the process described in §4.2.3, each undergoing the local search heuristic presented
above. The best solution from this set is then chosen as the initial solution for the algorithm to

Stellenbosch University  http://scholar.sun.ac.za



72 Chapter 4. Solution Methodology

Algorithm 4.7: The GMS simulated annealing algorithm

Input: A power system scenario for which to solve the generator maintenance
scheduling problem

Output: The best maintenance schedule found

1 dataset ← declareSystemData()
2 [current, currentObj ] ← generateRandomSolution(dataset)
3 [avgT0, stdT0] ← initialTemperature(current, currentObj, dataset)
4 T ← avgT0 // or stdT0
5 [incumbent, incumbentObj] ← [current, currentObj]
6 notAcceptCounter ← 0
7 while (T > Tmin) and (notAcceptCounter < Ωfrozen) do
8 numberAccept ← 0
9 numberAttempt ← 0

10 accepted ← false
11 while (numberAccept < 12n) and (numberAttempt < 100n) do
12 numberAttempt ← numberAttempt + 1
13 neighbour ← current
14 unit ← rand([1, n])
15 chain ← createEjectionChainList(unit, n, e, `,Wext,neighbour)
16 Apply chain on neighbour to create new neighbour
17 P ← checkFeasibilityAndCalculatePenalty(neighbour, dataset)
18 Calculate neighbourObj
19 neighbourObj ← neighbourObj + P
20 ∆E ← neighbourObj − currentObj
21 if ∆E ≤ 0 then
22 [current, currentObj] ← [neighbour, neighbourObj]
23 numberAccept ← numberAccept + 1
24 accepted ← true
25 if currentObj < incumbentObj then
26 [incumbent, incumbentObj] ← [current, currentObj]
27 end

28 else
29 if rand((0, 1)) < exp(∆E/T ) then
30 [current, currentObj] ← [neighbour, neighbourObj]
31 numberAccept ← numberAccept + 1
32 accepted ← true

33 end

34 end

35 end
36 if accepted = true then
37 notAcceptCounter ← 0
38 else
39 notAcceptCounter ← notAcceptCounter + 1
40 end
41 Update temperature T

42 end

Stellenbosch University  http://scholar.sun.ac.za



4.2. Approximate solution approach 73

Algorithm 4.8: The GMS local search heuristic

Input: The incumbent solution vector, the incumbent objective function value, the
problem’s full dataset

Output: The possibly improved incumbent solution vector and corresponding objective
function value

1 [current, currentObj] ← [incumbent, incumbentObj]
2 improved ← true
3 moves ← createClassicalNeighbourhoodList(n, e, `,Wext)
4 while improved = true do
5 bestNeighbour ← ∅
6 bestNeighbourObj ← some very large number
7 for i← 1 to number of elements in moves do
8 neighbour ← current
9 Apply moves(i) on neighbour to create new neighbour // i-th move

10 P ← checkFeasibilityAndCalculatePenalty(neighbour, dataset)
11 Calculate neighbourObj
12 neighbourObj ← neighbourObj + P
13 if neighbourObj < bestNeighbourObj then
14 [bestNeighbour, bestNeighbourObj] ← [neighbour, neighbourObj]
15 end

16 end
17 if bestNeighbourObj < incumbentObj then
18 [incumbent, incumbentObj] ← [bestNeighbour, bestNeighbourObj]
19 else
20 improved ← false
21 end

22 end
23 return [incumbent, incumbentObj]

follow. The function generateGoodRandomSolution, for which a pseudo-code listing is given in
Function 4.9, illustrates how the initial solution is improved and it replaces the call to function
generateRandomSolution in line 2 in Algorithm 4.7.

Function 4.9: generateGoodRandomSolution(number, dataset)

Input: The number of solutions to compare, the problem’s full dataset
Output: The good random solution vector, the objective function value

1 bestObj ← some very large number
2 for i← 1 to number do
3 [solution, solutionObj] ← generateRandomSolution(dataset)
4 Apply the local search heuristic in Algorithm 4.8 on [solution, solutionObj]
5 if solutionObj < bestObj then
6 [best, bestObj] ← [solution, solutionObj]
7 end

8 end
9 return [best, bestObj]

Stellenbosch University  http://scholar.sun.ac.za



74 Chapter 4. Solution Methodology

4.3 Chapter summary

The details of the solution methodology employed in this thesis were presented in this chapter.
An exact off-the-shelf solution approach to the GMS problem was described in §4.1. The vari-
ous solvers utilised by the software package LINGO, in which the mathematical programming
formulations were implemented, were briefly described.

In §4.2, the algorithmic implementations of a random search heuristic and a simulated annealing
algorithm for solving the GMS problem were presented. Functions utilised within these two
solution methods were detailed, as well as a new neighbourhood move operator for solutions
in a GMS context. Two modifications to the algorithms were also proposed for investigation,
the aim being to enhance the solution quality obtained by the algorithms. Finally, pseudo-code
listings were provided for all the algorithms and functions in the chapter.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5

Parameter evaluation

Contents
5.1 Benchmark test systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 The 21-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 The 22-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.3 The IEEE-RTS inspired system . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 The penalty weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 The 21-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2 The 22-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 The IEEE-RTS inspired system . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Parameter optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Random search heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Simulated annealing algorithm . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Summary of parameter values . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Three GMS benchmark test systems are presented in this chapter. As the application of the
approximate solution approach requires problem instance-dependent parameter settings in the
solution techniques, an extensive evaluation of the parameter values is presented in the chapter.
This computational evaluation was performed on a personal computer with a 3.0 GHz Intel R©
CoreTM 2 Duo E8400 processor and 3.25 GB RAM, running on Microsoft Windows XP Profes-
sional (Version 2002, Service Pack 3). The approximate solution approach was implemented in
the software package MATLAB [77].

5.1 Benchmark test systems

The solution techniques described in Chapter 4 are applied to two GMS benchmark test systems
that have previously been studied in the literature [14, 15, 16, 18, 23, 29, 30]. In addition, a new
GMS test system is established here, based on the IEEE-RTS data set [4, 5], and the solution
techniques are also applied to this new benchmark instance.

75

Stellenbosch University  http://scholar.sun.ac.za



76 Chapter 5. Parameter evaluation

5.1.1 The 21-unit system

Dahal and McDonald [17] created a 21-unit GMS test system loosely derived from the system
presented in [104] with some simplifications and additional constraints. The GMS problem
assumes reliability as the optimality criterion and the objective is to minimise the sum of squares
of the reserve levels over the planning period. This objective attempts to level the reserves
over the planning period. Constraints of the test problem are restricted to the adherence to
maintenance windows of each unit, the system meeting the load demand and the availability of
maintenance crew.

Unit Capacity Earliest starting Latest starting Duration Manpower required during
(MW) time (week) time (week) (weeks) each week of maintenance

1 555 1 20 7 10, 10, 5, 5, 5, 5, 3
2 555 27 48 5 10, 10, 10, 5, 5
3 180 1 25 2 15, 15
4 180 1 26 1 20
5 640 27 48 5 10, 10, 10, 10, 10
6 640 1 24 3 15, 15, 15
7 640 1 24 3 15, 15, 15
8 555 27 47 6 10, 10, 10, 5, 5, 5
9 276 1 17 10 3, 2, 2, 2, 2, 2, 2, 2, 2, 3
10 140 1 23 4 10, 10, 5, 5
11 90 1 26 1 20
12 76 27 50 3 10, 15, 15
13 76 1 25 2 15, 15
14 94 1 23 4 10, 10, 10, 10
15 39 1 25 2 15, 15
16 188 1 25 2 15, 15
17 58 27 52 1 20
18 48 27 51 2 15, 15
19 137 27 52 1 15
20 469 27 49 4 10, 10, 10, 10
21 52 1 24 3 10, 10, 10

Table 5.1: Data for the 21-unit test system.

The test system consists of 21 power generating units with specifications and maintenance
requirements as presented in Table 5.1. The planning period covers 52 weeks and the system’s
peak load demand remains constant at 4739 MW during the entire planning period. The allowed
windows, during which maintenance may occur, are either during the first half of the year (weeks
1–26) or during the second half of the year (weeks 27–52). Lastly, a maximum of 20 maintenance
personnel are available for maintenance work during each week.

Due to the complexity of the test system, an optimal solution for this problem is still unknown.
A theoretical lower bound may be calculated from the average weekly reserve level of 477.6 MW.
This average reserve level provides a uniform reserve margin over the planning period, disregard-
ing the discrete unit capacities, maintenance windows and crew constraints [15]. A lower bound
for the objective function value (sum of squares of the reserves) is therefore 11 861 100 MW2.

Stellenbosch University  http://scholar.sun.ac.za



5.1. Benchmark test systems 77

5.1.2 The 22-unit system

A second GMS test system, containing 22 units, was reportedly [29] first solved by Escudero et
al. [26] in 1980 using an implicit enumeration algorithm. Two optimality criteria are specified,
namely one of reliability and one of economic considerations. However, only the reliability
criterion is considered in this thesis. Again, the goal is to level the reserves, but the objective in
this GMS test problem is to minimise the sum of absolute differences between the reserve levels
during the various time periods and the mean reserve. The planning period covers 52 weeks
and the constraints present in the problem include the specification of maintenance windows for
each unit, the system meeting the load demand together with a safety margin, the availability
of maintenance crew and precedence relationships.

Unit Capacity Earliest starting Latest starting Duration
(MW) time (week) time (week) (weeks)

1 100 1 47 6
2 100 1 50 3
3 100 1 50 3
4 100 1 50 3
5 90 1 47 6
6 90 1 49 4
7 95 1 50 3
8 100 1 49 4
9 650 27 48 5
10 610 6 11 12
11 91 1 49 4
12 100 1 45 8
13 100 1 50 3
14 100 1 47 6
15 220 1 48 5
16 220 1 47 6
17 100 1 48 5
18 100 1 48 5
19 220 1 50 3
20 220 1 50 3
21 240 1 50 3
22 240 1 48 5

Table 5.2: Data for the 22-unit test system.

The specifications of this 22 power generating unit system are presented in Table 5.2. Only two
crew constraints are applicable for this test system and they are, in fact, exclusion constraints.
Units 15 and 16 are not allowed to be in a state of simultaneous maintenance, and neither are
units 21 and 22. The precedence constraints for this test problem state that the maintenance
of unit 2 has to precede that of unit 3, and that the maintenance of unit 5 has to precede that
of unit 6. Table 5.3 contains the weekly peak load demand of the power system. Finally, a
minimum safety margin of 20% of the peak load demand has to be maintained throughout the
planning period.

Unfortunately, due to the objective function no longer being the sum of squares of the reserve
levels, no meaningful lower bound can be obtained for this test system. If one uses the average
reserve level of 1791.4 MW, the lower bound is simply zero.

Stellenbosch University  http://scholar.sun.ac.za



78 Chapter 5. Parameter evaluation

Week Demand Week Demand Week Demand Week Demand
(MW) (MW) (MW) (MW)

1 1 694 14 1 396 27 1 737 40 1 982
2 1 714 15 1 443 28 1 927 41 1 672
3 1 844 16 1 273 29 2 137 42 1 782
4 1 694 17 1 263 30 1 927 43 1 772
5 1 684 18 1 655 31 1 907 44 1 556
6 1 763 19 1 695 32 1 888 45 1 706
7 1 663 20 1 675 33 1 818 46 1 806
8 1 583 21 1 805 34 1 848 47 1 826
9 1 543 22 1 705 35 2 118 48 1 906
10 1 586 23 1 766 36 1 879 49 1 999
11 1 690 24 1 946 37 2 089 50 2 109
12 1 496 25 2 116 38 1 989 51 2 209
13 1 456 26 1 916 39 1 999 52 1 779

Table 5.3: The weekly peak load demands for the 22-unit system.

5.1.3 The IEEE-RTS inspired system

In order to fully demonstrate the efficiency and effectiveness of the approximate solution tech-
niques presented in this thesis, a test system containing all the constraint sets in the advanced
model formulations, as presented in Appendix A, was additionally created.

In 1979, the IEEE Reliability Test System (RTS-79) was developed and published [4] by the
Application of Probability Methods Subcommittee of the IEEE Power System Engineering Com-
mittee. The report was developed to satisfy the need for standardised data in power system
reliability evaluation. It describes a load model, generation system and transmission network.
Two revisions of the original test system were published in later years, namely the RTS-86 [5]
and the RTS-96 [35] systems.

The author created a test system derived from the load model and generation system in the RTS-
79 with additional constraints and parameter values. As in the 21-unit system, the objective in
the new system is to level the reserves by minimising the sum of squares of the reserve levels
over the planning period (i.e. assuming a reliability optimality criterion). The constraints of
the system consist of the specification of maintenance windows, the meeting of the load demand
together with a safety margin, adhering to the availability of maintenance crew and respecting
exclusion constraints.

A total of 32 generating units have to be in maintenance over a planning period of 52 weeks.
The specifications of the generating system are presented in Tables 5.4 and 5.5. In Table 5.4, the
generating unit capacities and maintenance durations are consistent with the RTS-79 system.
A maintenance schedule was included in the RTS-86 revision system to analyse the effect of
scheduled maintenance and was derived using a levelled risk criterion [5], complying with the
maintenance rate of the original RTS system. Given this schedule, the author roughly extrap-
olated maintenance windows around each unit’s scheduled maintenance for use in the new test
system.

The manpower parameters were selected such that the test system is relatively highly con-
strained by manpower considerations. A maximum of 25 maintenance personnel are available
for maintenance work during each week. The exclusion sets presented in Table 5.5 correspond to
the units within each power station in the RTS-79. The author selected the maximum number

Stellenbosch University  http://scholar.sun.ac.za



5.1. Benchmark test systems 79

Unit Capacity Earliest starting Latest starting Duration Manpower required during
(MW) time (week) time (week) (weeks) each week of maintenance

1 20 1 25 2 7, 7
2 20 1 25 2 7, 7
3 76 1 24 3 12, 10, 10
4 76 27 50 3 12, 10, 10
5 20 1 25 2 7, 7
6 20 27 51 2 7, 7
7 76 1 24 3 12, 10, 10
8 76 27 50 3 12, 10, 10
9 100 1 50 3 10, 10, 15
10 100 1 50 3 10, 10, 15
11 100 1 50 3 15, 10, 10
12 197 1 23 4 8, 10, 10, 8
13 197 1 23 4 8, 10, 10, 8
14 197 27 49 4 8, 10, 10, 8
15 12 1 51 2 4, 4
16 12 1 51 2 4, 4
17 12 1 51 2 4, 4
18 12 1 51 2 4, 4
19 12 1 51 2 4, 4
20 155 1 23 4 5, 15, 10, 10
21 155 27 49 4 5, 15, 10, 10
22 400 1 21 6 15, 10, 10, 10, 10, 5
23 400 27 47 6 15, 10, 10, 10, 10, 5
24 50 1 51 2 6, 6
25 50 1 51 2 6, 6
26 50 1 51 2 6, 6
27 50 1 51 2 6, 6
28 50 1 51 2 6, 6
29 50 1 51 2 6, 6
30 155 1 23 4 12, 12, 8, 8
31 155 1 49 4 12, 12, 8, 8
32 350 1 48 5 5, 10, 15, 15, 5

Table 5.4: Data for the IEEE inspired test system.

of units allowed in simultaneous maintenance within each set as being no more than half of the
units in each set. The load model is taken directly from the RTS-79 system and has a peak load

Exclusion set Units Maximum

1 1, 2, 3, 4 2
2 5, 6, 7, 8 2
3 9, 10, 11 1
4 12, 13, 14 1
5 15, 16, 17, 18, 19, 20 3
6 24, 25, 26, 27, 28, 29 3
7 30, 31, 32 1

Table 5.5: Exclusion data for the IEEE inspired system.

demand of 2850 MW during week 51. Table 5.6 contains the weekly peak load demand of the
power system and it represents a typical pattern with two seasonal peaks [4]. Finally, a safety

Stellenbosch University  http://scholar.sun.ac.za



80 Chapter 5. Parameter evaluation

margin of 15% of the peak load demand has to be maintained throughout the planning period,
as selected by the author.

Week Demand Week Demand Week Demand Week Demand
(MW) (MW) (MW) (MW)

1 2 457 14 2 138 27 2 152 40 2 063
2 2 565 15 2 055 28 2 326 41 2 118
3 2 502 16 2 280 29 2 283 42 2 120
4 2 377 17 2 149 30 2 508 43 2 280
5 2 508 18 2 385 31 2 058 44 2 511
6 2 397 19 2 480 32 2 212 45 2 522
7 2 371 20 2 508 33 2 280 46 2 591
8 2 297 21 2 440 34 2 078 47 2 679
9 2 109 22 2 311 35 2 069 48 2 537
10 2 100 23 2 565 36 2 009 49 2 685
11 2 038 24 2 528 37 2 223 50 2 765
12 2 072 25 2 554 38 1 981 51 2 850
13 2 006 26 2 454 39 2 063 52 2 713

Table 5.6: The weekly peak load demands for the IEEE inspired system.

A theoretical lower bound for the objective function value (sum of squares of the reserves)
has been determined from the average weekly reserve level of 801 MW. This lower bound is
33 363 252 MW2.

5.2 The penalty weights

As described in §4.2.1, a soft constraint approach is adopted in the approximate solution ap-
proach for the GMS problem. Accordingly, a penalty value defined in (4.5) is added to the
objective function value associated with a candidate solution that violates any of the con-
straints. The penalty weights within this expression are typically problem instance-dependent
and must therefore be calculated for each test system accordingly. The method that was used
to determine these weights is described below.

Consider a hard constraint approach (i.e. all the constraints of the problem have to be satisfied).
A feasible initial solution is determined via a selected solution technique, either by setting the
penalty weights in the soft approach to be extremely large (in order to strongly discourage
infeasible solutions) or by only using hard constraints. The latter option may take an unpractical
amount of time to obtain such a solution if the problem is heavily constrained.

Each constraint set is allowed to be violated (i.e. viewed as a soft constraint set) while keeping all
the other constraint sets hard (i.e. assuming extremely large penalty weights for these constraint
sets). The problem instance is then solved over a range of penalty weights for that constraint
set. This range is the problem instance-specific element in the process as the objective function
values for different problem instances will vary in order of magnitude and the problem instances
may be more (or less) constrained, thereby eliminating the use of a general rule of thumb for
the GMS problem. As the weights in the range become larger, more incumbent solutions will
be feasible (i.e. have a zero penalty value) and the aim is to select a weight such that most
incumbent solutions returned by a solution technique are feasible. It is not desirable that the
weight should be too large as this discourages a broad exploration of the solution space of

Stellenbosch University  http://scholar.sun.ac.za



5.2. The penalty weights 81

a problem, but also not too small as this increases the likelihood of an infeasible incumbent
solution. The process is repeated for each constraint set, resulting in penalty weights for each
set to use in the original soft constraint approach.

The results of each test system’s penalty weight analysis is presented below. For each weight
in each range, a total of 20 problem instances were solved in order to obtain average objective
function and penalty values as well as the frequency of infeasible solution occurences.

5.2.1 The 21-unit system

The constraint sets involved in the 21-unit system, as presented in §5.1.1, include adherence
to specified maintenance windows, load demand requirements and maintenance crew limita-
tions. The window penalty weights considered ranged from 250 000 to 2 000 000 in increments
of 250 000. In Figure 5.1, the average and minimum objective function values of both feasi-
ble and infeasible incumbent solutions obtained over this range of weights in the 20 instances
are illustrated. The frequency of infeasible solutions was not significant enough to represent
visually — at the weights of 250 000 and 500 000 there were three and one infeasible solutions,
respectively, and for the remaining weights all solutions were feasible. Based on these results,
the window penalty weight was chosen as 500 000 to ensure a high probability of a feasible
incumbent solution while maintaining an opportunity for the solution technique to explore the
infeasible solution space.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

×106

1.36

1.38

1.4

1.42

1.44

1.46

1.48

×107

Weight

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Infeasible (average) Feasible (average)

Infeasible (minimum) Feasible (minimum)

Figure 5.1: Penalty weight analysis involving the maintenance window constraint set for the 21-unit
system.

The penalty weight for the load demand constraint set was chosen as 1, because the analysis
uncovered a single infeasible solution at a weight of 1 with no infeasible solutions present in the
rest of the range (intervals of 100 up to 1 000). An advantage of having a load demand penalty
term present is that the constraint violation has the same scaling as the reserve used in the
objective function. Therefore, it does not come as a surprise that the penalty weight is chosen
as 1, since the penalty requires no scaling.

Stellenbosch University  http://scholar.sun.ac.za



82 Chapter 5. Parameter evaluation

For the penalty weights of the maintenance crew constraint set, values ranging from 20 000 to
220 000 in increments of 5 000 were considered. The graph in Figure 5.2(a) shows the average
and minimum objective function values of both feasible and infeasible incumbent solutions
obtained over the range of weights. The minimum feasible objective function values only cross
the minimum infeasible objective function values at a weight of 65 000 and as such, weights below
that point do not have to be considered. From there onwards, the minimum infeasible values
slowly deteriorate, while the minimum feasible values remain approximately level. Purely from
the frequency perspective, one would at least want 75% of the incumbent values to be feasible.
As indicated in Figure 5.2(b), this only occurs consistently at a weight of 160 000 or more.
The penalty weight for the maintenance crew constraint set was therefore chosen as 200 000 to
ensure a high probability of a feasible incumbent solution while maintaining an opportunity for
the solution technique to explore the infeasible solution space.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

×105

1.36

1.38

1.4

1.42

1.44

×107

Weight

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Infeasible (average) Feasible (average)

Infeasible (minimum) Feasible (minimum)

(a) Objective function values of the average and minimum feasible and infeasible solutions.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

×105

0

4

8

12

16

20

24

Weight

N
u

m
b

er
of

so
lu

ti
on

s

Feasible Infeasible

(b) The number of feasible and infeasible solutions.

Figure 5.2: Penalty weight analysis involving the maintenance crew constraint set for the 21-unit
system.

Stellenbosch University  http://scholar.sun.ac.za



5.2. The penalty weights 83

5.2.2 The 22-unit system

The constraint sets involved in the 22-unit system, as presented in §5.1.2, include adherence
to specified maintenance windows, load demand with safety margin requirements, respecting
exclusion constraints and adherence to precedence relationships. However, the precedence rela-
tionships were implemented as hard constraints in order to restrict the solution techniques to
consider constraints specified in the advanced GMS model formulation presented in §3.4 only.

The penalty weights for the maintenance window constraint set and exclusion constraint set
ranged from 10 to 100 in increments of 10. In both cases, the analysis uncovered intermittent
single occurences of infeasible solutions spread over the entire range of weights (5 and 3 oc-
curences, respectively). As a result, the penalty weight for the maintenance window constraint
set was chosen as 10 and the penalty weight for the exclusion constraint set was also chosen as
10.

For the load demand with safety margin constraint set, the penalty weight ranged from 1 to 10
and the analysis uncovered no infeasible solutions. Therefore, the penalty weight for the load
demand with safety margin constraint set was chosen as 1.

5.2.3 The IEEE-RTS inspired system

Lastly, the constraint sets involved in the IEEE-RTS inspired system, as presented in §5.1.3,
include adherence to specified maintenance windows, load demand with safety margin require-
ments, restrictions on maintenance crew availability and respecting exclusion constraints. The
weights for the maintenance window constraint set ranged from 5 000 to 50 000 in increments of
5 000. As illustrated in Figure 5.3(b), the frequency of feasible solutions only becomes acceptable
from a weight of 20 000 and above. The difference between the minimum feasible and infeasible
(as well as average feasible and infeasible) objective function values also increases more from
this weight on, as illustrated in Figure 5.3(a). In view of the above information, the penalty
weight of the maintenance window constraint set was chosen as 40 000 to ensure that a high
probability of the minimum objective function value is obtained from a feasible solution.

Again, the penalty weight for the load demand with safety margin was chosen as 1, because the
analysis uncovered no infeasible solutions over an interval of values ranging from 1 to 500 in
increments of 100.

In the analysis involving the maintenance crew constraint set, penalty weight values ranging
from 2 500 to 20 000 in increments of 2 500 were considered. The graph in Figure 5.4(a) shows
that the minimum and average infeasible objective function values follow a steady deterioration,
except at the weight of 12 500, with the difference between the minimum feasible and infeasible
objective function values being very small. Even though the minimum feasible objective function
values over the range are mostly smaller than this infeasible value, one should be careful not to
choose a weight around this point as it indicates that outlier behaviour still occurs. From the
frequency results in Figure 5.4(b), a progression from an entire set of infeasible solutions to an
entire set of feasible solutions over a relatively short range is visible. Since the differences in
objective function values are not very large (as mentioned above), the choice of penalty weight
for the maintenance crew constraint set was largely based on the frequency result and was
therefore chosen as 20 000 to ensure a feasible incumbent solution with very highy likelihood.

The penalty weights for the exclusion constraint set ranged from 2 500 to 30 000 in increments
of 2 500 (similar to the range of the maintenance crew penalty weights discussed above). The

Stellenbosch University  http://scholar.sun.ac.za



84 Chapter 5. Parameter evaluation

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×104

3.36

3.37

3.38

3.39

3.4

3.41
×107

Weight

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Infeasible (average) Feasible (average)

Infeasible (minimum) Feasible (minimum)

(a) Objective function values of the average and minimum feasible and infeasible solutions.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×104

0

4

8

12

16

20

24

Weight

N
u

m
b

er
of

so
lu

ti
on

s

Feasible Infeasible

(b) The number of feasible and infeasible solutions.

Figure 5.3: Penalty weight analysis involving the maintenance window constraint set for the IEEE-RTS
inspired system.

minimum and average objective function values of the feasible and infeasible solutions are pre-
sented in Figure 5.5(a). As before, a clear deterioration pattern may be seen with a sharp
increase in infeasible objective function values from a weight of 12 500 and above. It is also
from this weight onwards that the frequency of feasible incumbent solution become acceptable.
The penalty weight of the exclusion constraint set was chosen as 20 000 because of the large
difference in minimum feasible and infeasible objective function values, while maintaining the
opportunity for the solution technique to explore the infeasible solution space.

5.3 Parameter optimisation

The methodology followed and results obtained by choosing the best parameter values for each
solution technique are described in this section. These values are typically problem instance-

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 85

0.25 0.5 0.75 1 1.25 1.5 1.75 2

×104

3.36

3.365

3.37

3.375

3.38

3.385
×107

Weight

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Infeasible (average) Feasible (average)

Infeasible (minimum) Feasible (minimum)

(a) Objective function values of the average and minimum feasible and infeasible solutions.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

×104

0

4

8

12

16

20

24

Weight

N
u

m
b

er
of

so
lu

ti
on

s

Feasible Infeasible

(b) The number of feasible and infeasible solutions.

Figure 5.4: Penalty weight analysis involving the maintenance crew constraint set for the IEEE-RTS
system.

dependent and therefore have to be analysed for each benchmark test system separately. Fur-
thermore, since two different neighbourhood structures are compared in this thesis, the para-
meter values may be different for each structure in the solution techniques. Within this section,
only the results of the ejection chain neighbourhood structure are presented in detail. The
parameter values for the classical neighbourhood are simply presented in table form at the con-
clusion of this section. However, the classical neighbourhood underwent the same analysis as
the ejection chain neighbourhood.

The following notation regarding each test system and solution technique is used in the re-
mainder of this chapter. An instance of the 21-unit test system, solved by the random search
heuristic using the ejection chain neighbourhood, is referred to as 21-RS-E, while when using
the classical neighbourhood, is referred to as 21-RS-C. For the simulated annealing algorithm,
the notations are 21-SA-E and 21-SA-C. Likewise for the 22-unit test system, the notations are

Stellenbosch University  http://scholar.sun.ac.za



86 Chapter 5. Parameter evaluation

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

×104

3.36

3.37

3.38

3.39

×107

Weight

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Infeasible (average) Feasible (average)

Infeasible (minimum) Feasible (minimum)

(a) Objective function values of the average and minimum feasible and infeasible solutions.

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

×104

0

4

8

12

16

20

24

Weight

N
u

m
b

er
of

so
lu

ti
on

s

Feasible Infeasible

(b) The number of feasible and infeasible solutions.

Figure 5.5: Penalty weight analysis involving the exclusion constraint set for the IEEE-RTS system.

22-RS-E, 22-RS-C, 22-SA-E and 22-SA-C. Finally, the notations for the IEEE-RTS inspired
test system are IEEE-RS-E, IEEE-RS-C, IEEE-SA-E and IEEE-SA-C.

5.3.1 Random search heuristic

The random search heuristic has three parameters that may be optimised, namely the neigh-
bourhood size, the number of iterations, I, in a solution instance and the number of iterations
without an improving solution (the latter two being the only termination criteria). A total of 50
problem instances were solved for each parameter value combination in order to obtain average
results.

The ejection chain neighbourhood size was varied over the range {0.5n, n, 1.5n, 2n}, the number
of iterations I from 1 000 to 10 000 in increments of 1 000 and the number of iterations without
improvement over the range {0.5I, 0.6I, 0.7I, 0.8I, 0.9I, I}, thus giving rise to 240 parameter

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 87

combinations. The reason for choosing the neighbourhood size in factors of n is to relate the
number of generated neighbours to the number of units in the problem, since a neighbour
(ejection chain) starts at a randomly chosen unit. For example, if the neighbourhood size is n,
one may roughly think of every unit as being a starting point for an ejection chain (although
this is not truly the case due to the use of random choice).

For the classical neighbourhood, its size was varied over the range {m, 1.5m, 2m, 2.5m, 3m},
while the number of iterations, I, and the number of iterations without improvement was varied
in the same fashion as described above. This gave rise to 300 parameter combinations. The
neighbourhood size was chosen as factors of m to relate the number of created neighbours to
the number of units in the problem and their maintenance windows, since the maintenance of
a unit during any time period in the year has m possible starting points. For example, if the
neighbourhood size is 2m, one may roughly think of the situation as two units whose starting
times are varied over their entire allowable range (although this is not truly the case due to the
use of random choice and the fact that many maintenance windows are smaller than m).

The 21-unit system

The progression of how the neighbourhood size affects the minimum incumbent objective func-
tion value of the problem is illustrated in Figure 5.6. A high level of degeneracy in solution
quality is observed at the smaller two neighbourhood sizes. As the neighbourhood size increases,
the objective function values level off at much smaller values than at the larger neighbourhood
sizes. The axes are all scaled the same over the neighbourhood sizes. Therefore, the poor ob-
jective function values at the small neighbourhood size are easily visible. Solely based on these
four graphs, the neighbourhood size should be chosen as 2n.

In Figure 5.7, additional confirmation with respect to the choice of 2n as neighbourhood size
is provided. The graphs illustrate the progression of the average penalty values corresponding
to the average incumbent solutions. Most likely, none of the incumbent solutions were feasible
(nonzero penalty) at a neighbourhood size of 0.5n, as indicated in Figure 5.7(a). In contrast,
at a neighbourhood size of 2n, as shown in Figure 5.6(d), most of the incumbent solutions after
7 000 iterations were feasible — a result not easily detected from Figure 5.6. The effect of the
number of iterations without improvement is yet to be seen in the results.

The average solution times required at a neighbourhood size of 2n, restricted by the number of
iterations ranging between 7 000 and 10 000, are considered in Figure 5.8. The average solution
times level off after about 0.7I iterations without improvement. This is an indication that the
incumbent solution does not necessarily improve if more iterations are performed. From this
observation, in combination with the feasibility observation from Figure 5.6(d), the number of
iterations was chosen as 7 000 and the number of iterations without an improving solution was
chosen as 0.8I. There is not enough of a benefit in the solution quality beyond this choice to
warrant more of a trade-off with the average solution time.

The 22-unit system

The effect of the neighbourhood size on the minimum incumbent objective function value of the
problem is illustrated in Figure 5.9. Unlike the results in 21-RS-E, no significant degeneracy is
present in these objective function values over all the neighbourhood size instances. However,
the observation is still made of the dramatic improvement in collective objective function values
as the neighbourhood size increases to 2n. Again, this progression of graphs is more than
sufficient to warrent a choice of the neighbourhood size as 2n.

Stellenbosch University  http://scholar.sun.ac.za



88 Chapter 5. Parameter evaluation

1 000
4 000

7 000
10 000

0.5I
0.75I

I
1.37

1.42

1.47

1.52

1.57

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(a) Neighbourhood size = 0.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
1.37

1.42

1.47

1.52

1.57

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(b) Neighbourhood size = n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
1.37

1.42

1.47

1.52

1.57

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(c) Neighbourhood size = 1.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
1.37

1.42

1.47

1.52

1.57

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(d) Neighbourhood size = 2n

Figure 5.6: The minimum incumbent objective function value for each parameter combination in 21-
RS-E.

In the 22-RS-E instance case, the graphs of the average penalty values corresponding to the
average incumbent solutions provide inconclusive results and therefore, no conclusions may be
drawn from them. However, in Figure 5.10, the progression of the average incumbent objective
function values as the neighbourhood size increases is illustrated. The collective improvement
in objective function values is much more noticable in these four graphs, but more importantly,
the superior solution quality obtained at the top end of the number of iterations is clear to see,
even at the small neighbourhood size of 0.5n in Figure 5.10(a). An acceptable range of choice
would therefore be between 7 000 and 10 000 iterations.

The graph in Figure 5.11 illustrates how the average solution times vary at a neighbourhood size
of 2n and a total number of iterations, I, of between 7 000 and 10 000 (the acceptable range).
Note how the solution times level off from 0.8I iterations without an improvement above this
value, indicating that there is little benefit in allowing more iterations. Since no noticable
improvement in solution quality may be seen between the 9 000 and 10 000 iteration counts, a
value of 9 000 iterations was chosen as the number of iterations, since the associated solution
time is less. Furthermore, as illustrated in Figure 5.11, the number of iterations without an
improvement was chosen as 0.8I.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 89

1 000
4 000

7 000
10 000

0.5I
0.75I

I
0

0.5

1

1.5

2

×106

Iterations (I)
No improve

P
en

a
lt

y
va

lu
e

(M
W

2
)

(a) Neighbourhood size = 0.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
0

0.5

1

1.5

2

×106

Iterations (I)
No improve

P
en

a
lt

y
va

lu
e

(M
W

2
)

(b) Neighbourhood size = n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
0

0.5

1

1.5

2

×106

Iterations (I)
No improve

P
en

a
lt

y
va

lu
e

(M
W

2
)

(c) Neighbourhood size = 1.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
0

0.5

1

1.5

2

×106

Iterations (I)
No improve

P
en

a
lt

y
va

lu
e

(M
W

2
)

(d) Neighbourhood size = 2n

Figure 5.7: The average incumbent penalty value for each parameter combination in 21-RS-E.

0.5I 0.6I 0.7I 0.8I 0.9I I
60

75

90

105

120

Iterations without improvement

T
im

e
(s

)

I = 7 000 I = 9 000
I = 8 000 I = 10 000

Figure 5.8: The average solution times for a truncated set of parameter combinations in 21-RS-E.

The IEEE-RTS inspired system

The average incumbent objective function values are presented in Figure 5.12, with the sub-
graphs progressing over the neighbourhood size. Unlike the corresponding graphs in the 21-
and 22-unit systems, the effect of the neighbourhood size is not apparent at all, as the objective
function values all lie within the same range. However, what is noticable is the continuous
improvement in solution quality up to the limit of the iteration range of 10 000.

Stellenbosch University  http://scholar.sun.ac.za



90 Chapter 5. Parameter evaluation

1 000
4 000

7 000
10 000

0.5I
0.75I

I
3 000

3 500

4 000

4 500

5 000

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(a) Neighbourhood size = 0.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
3 000

3 500

4 000

4 500

5 000

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(b) Neighbourhood size = n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
3 000

3 500

4 000

4 500

5 000

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(c) Neighbourhood size = 1.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I
3 000

3 500

4 000

4 500

5 000

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(d) Neighbourhood size = 2n

Figure 5.9: The minimum incumbent objective function values for each parameter combination in
22-RS-E.

In order to see this effect more clearly, assume that the maximum number of iterations with-
out an improving solution does not play a role and consider determining its average objective
function value at each iteration count. The resulting graph is displayed in Figure 5.13. Now,
the continuous improvement in average incumbent objective function value over the number of
iterations is apparent. As such, the number of iterations may be chosen as 10 000 in order to
obtain the best solution quality.

In Figure 5.14, the average solution times for each neighbourhood size, at an iteration count of
10 000 is considered. The graph shows that the average solution times remain level after about
0.7I iterations without improvement. As before, this indicates that the solution technique does
not necessarily improve upon the incumbent solution if the search continues for longer. From
this observation, the number of iterations without an improving solution was chosen as 0.8I.

As mentioned above, the neighbourhood size seems not to have an apparent effect on the solution
quality. Due to this observation, the choice in neighbourhood size may be restricted to 0.5n and
n, based on the average solution times in Figure 5.14. If the attention is turned to the minimum
incumbent objective function value obtained by these two neighbourhood sizes in Figure 5.15,
it is observed that the neighbourhood size of n obtained the superior results between the two
sizes. Therefore, the neighbourhood size was chosen as n.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 91

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3 700

4 000

4 300

4 600

4 900

5 200

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(a) Neighbourhood size = 0.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3 700

4 000

4 300

4 600

4 900

5 200

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(b) Neighbourhood size = n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3 700

4 000

4 300

4 600

4 900

5 200

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(c) Neighbourhood size = 1.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3 700

4 000

4 300

4 600

4 900

5 200

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

(d) Neighbourhood size = 2n

Figure 5.10: The average incumbent objective function values for each parameter combination in 22-
RS-E.

0.5I 0.6I 0.7I 0.8I 0.9I I
70

85

100

115

130

145

160

Iterations without improvement

T
im

e
(s

)

I = 7 000 I = 9 000
I = 8 000 I = 10 000

Figure 5.11: The average solution times for a truncated set of parameter combinations in 22-RS-E.

5.3.2 Simulated annealing algorithm

The simulated annealing algorithm employs two sets of parameters. The first set contains
the parameters involved in the specific cooling schedule, while the second set contains the
termination criteria parameters of the algorithm. A total of 50 problem instances were solved
for each cooling schedule parameter value combination, followed by 20 problem instances for
each termination criteria parameter combination in order to obtain average results.

Stellenbosch University  http://scholar.sun.ac.za



92 Chapter 5. Parameter evaluation

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3.375

3.38

3.385

3.39

3.395

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(a) Neighbourhood size = 0.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3.375

3.38

3.385

3.39

3.395

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(b) Neighbourhood size = n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3.375

3.38

3.385

3.39

3.395

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(c) Neighbourhood size = 1.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3.375

3.38

3.385

3.39

3.395

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(d) Neighbourhood size = 2n

Figure 5.12: The average incumbent objective function values for each parameter combination in
IEEE-RS-E.

1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

3.38

3.383

3.386

3.389

3.392

3.395
×107

Iterations (I)

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

0.5n
n
1.5n
2n

Figure 5.13: The effect of the number of iterations on the average incumbent objective function values
in IEEE-RS-E when the number of iterations without an improving solution is averaged out.

As stated in §4.2.5, four different cooling schedules are investigated in this thesis, each employing
its own parameters. An initial temperature parameter T0 is present in all four schedules and
may be determined by the two methods described in §4.2.5, herafter referred to as the average
increase method (AIM) and the standard deviation method (SDM). In the schedule proposed by

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 93

0.5I 0.6I 0.7I 0.8I 0.9I I
40

80

120

160

200

240

280

Iterations without improvement

T
im

e
(s

)
0.5n n 1.5n 2n

Figure 5.14: The average solution times for a truncated set of parameter combinations in IEEE-RS-E.

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3.365

3.37

3.375

3.38

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(a) Neighbourhood size = 0.5n

1 000
4 000

7 000
10 000

0.5I
0.75I

I

3.365

3.37

3.375

3.38

×107

Iterations (I)
No improve

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

(b) Neighbourhood size = n

Figure 5.15: The minimum incumbent objective function values obtained from two neighbourhood sizes
in IEEE-RS-E.

Triki et al. [79] the initial temperature has to be determined by the SDM. Therefore, the initial
temperature was only varied over the other three schedules between the AIM and the SDM.
The ranges for each parameter in the different cooling schedules, were varied as follows:

• For the geometric schedule, the parameter α was varied over the range {0.8, 0.81, . . . , 0.99}
for 21-SA-E and 22-SA-E, and over the range {0.8, 0.82, . . . , 0.96} for IEEE-SA-E.

• The parameter λ within the schedule proposed by Huang et al. [37] was varied over the
range {0.5, 0.52, . . . , 0.9} for 21-SA-E and 22-SA-E, and over the range {0.5, 0.54, . . . , 0.9}
for IEEE-SA-E.

• In the schedule proposed van Van Laarhoven et al. [81] the parameter δ was varied over the
range {0.1, 0.12, . . . , 0.7} for 21-SA-E and 22-SA-E, and over the range {0.1, 0.15, . . . , 0.7}
for IEEE-SA-E.

• Lastly, in the schedule proposed by Triki et al. [79] the parameter ζ was varied over the
range {1.02, 1.04, 1.06, 1.08} for 21-SA-E and 22-SA-E, and over the range {1.02, 1.04, 1.06}
for IEEE-SA-E. For all three problems, the parameters µ1 and µ2 were varied over the
range {5, 10, 15}.

Stellenbosch University  http://scholar.sun.ac.za



94 Chapter 5. Parameter evaluation

Identical parameter ranges were used in the analysis of the instances with the classical neigh-
bourhood move operator.

Three termination criteria parameters are present in the SA algorithm. These are the final
temperature Tmin, the maximum number of attempted solutions during each temperature stage
(hereafter referred to as max attempt) and the maximum number of accepted solutions during
each temperature stage. However, to reduce the number of adjustable parameters, the maximum
number of accepted solutions was fixed at 12% of the maximum number of attempted solutions (a
generalisation of the proposed number suggested in [20] and proposed in §4.2.5). Therefore, only
the final temperature and the maximum number of attempted solutions during each temperature
stage were varied — Tmin over the range {0.5T0, 0.4T0, 0.3T0, 0.2T0, 0.1T0, 1} and max attempt
over the range {10n, 20n, . . . , 100n}.
Before the analysis results for each test system is reported, a concept regarding the initial tem-
perature analysis is introduced. Since a problem instance is solved for each possible parameter
combination, a minimum and average incumbent objective function value is obtained for both
initial temperature methods at the same cooling schedule parameter. In the analysis, the ob-
jective function value obtained by the SDM is subtracted from the objective function value
obtained from the AIM. Since the GMS problem being considered is a minimisation problem, a
positive difference necessarily indicates that the SDM obtained the better solution, while a neg-
ative difference indicates the AIM obtained the better solution. These differences over the entire
parameter range are then used to determine which method was superior. Furthermore, the av-
erage solution times do not factor into the decision process as both methods take approximately
the same amount of time to execute.

Finally, a number of graphs below have two vertical axes — in all such cases, time is measured
on the right-hand axis and all other data on the left-hand axis.

The 21-unit system

Consider firstly the geometric cooling schedule. In Figure 5.16, the difference in incumbent
objective function values (average and minimum) between using the AIM and the SDM to
calculate the initial temperature is illustrated. Since the negative bars are more prevalent in
this case, the AIM was chosen for determining the initial temperature.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

×105

Parameter α

D
iff

er
en

ce
in

ob
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(M

W
2
)

Average
Minimum

Figure 5.16: Initial temperature analysis for the geometric cooling schedule in 21-SA-E.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 95

The graph in Figure 5.17 illustrates how the incumbent solution quality and average solution
time varies over the different parameter values of α. The minimum incumbent objective function
value remains very consistent over the whole range and even unchanged at a minimum level
from an α-value of 0.91 onwards. The average incumbent objective function value improves
significantly as α increases and the average feasibility of the incumbent solutions also improve.
This is indicated by the average penalty values which correspond to the average incumbent
solutions. In the graph, the penalty values are added to the average incumbent objective
function values for scaling purposes in order to render it visible on the same set of axes. This
feasibility improvement culminates in all 50 problem instances obtaining a feasible incumbent
solution at α = 0.98 and α = 0.99. However, the average solution time increases exponentially
as α increases, making 0.98 or 0.99 undesirable choices as values of α due to their long solution
times. Any value in the range between [0.9, 0.95] would be a good choice for α, considering the
trade-off between solution quality and execution time. The value of α was chosen as 0.92.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
1.36

1.37

1.38

1.39

1.4

1.41

1.42
×107

Parameter α

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

120

240

360

480

600

720

T
im

e
(s

)

Figure 5.17: Parameter optimisation for the geometric cooling schedule in 21-SA-E.

The final step in the parameter optimisation process for the geometric cooling schedule is to
choose the termination criteria parameter values. The penalty values corresponding to the
minimum incumbent solutions are illustrated in Figure 5.18(a). One may observe that in-
stances with a final temperature of 1 represent the only parameter combination for which the
algorithm consistently finds feasible incumbent solutions. The final temperature was therefore
chosen as Tmin = 1. In order to choose max attempt, one may analyse the graph in Fig-
ure 5.18(b) which illustrates the incumbent solution quality and average solution time over
the different max attempt-values, fixed at Tmin = 1. The average solution time increases lin-
early as max attempt increases, which is to be expected as each attempt typically requires the
same amount of execution time. The minimum incumbent objective function value remains
level from a parameter value of 60n and more, while the average incumbent objective function
value approximately levels out only from 70n onwards. Taking these observations into account,
the maximum number of attempted solutions during each temperature stage was chosen as
max attempt = 80n.

The next cooling schedule to consider is the one proposed by Huang et al. [37]. The difference
in incumbent objective function values (average and minimum) between those obtained using

Stellenbosch University  http://scholar.sun.ac.za



96 Chapter 5. Parameter evaluation

1
0.2T0

0.5T0

10n
40n

70n
100n

0

1.5

3

4.5

6

×106

Final temperature

Maximum
number

of attempts

P
en

a
lt

y
va

lu
e

(M
W

2
)

(a) Minimum incumbent solution’s penalty values.

10n 40n 70n 100n
1.36

1.38

1.4

1.42

1.44

1.46

×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Average

Average + Penalty

Minimum

Average time

0

20

40

60

80

100

T
im

e
(s

)

(b) Parameter analysis at Tmin = 1.

Figure 5.18: Termination criteria parameter analysis for the geometric cooling schedule in 21-SA-E.

the AIM and those using the SDM is shown in Figure 5.19. In this case, there is not much to
choose between the two methods, as neither the positive nor negative bars seem to dominate.
Therefore, the method to determine the initial temperature was arbitrarily chosen as the AIM.

0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86 0.9

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4

×105

Parameter λ

D
iff

er
en

ce
in

ob
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(M

W
2
)

Average
Minimum

Figure 5.19: Initial temperature analysis for the cooling schedule of Huang et al. [37] in 21-SA-E.

The incumbent solution quality and average solution time over the different parameter values
of λ are illustrated in Figure 5.20. The average solution time varies so little in maximum and
minimum values (only about 3 seconds) that it may be regarded as not having an influence
on the choice of parameter value. The minimum incumbent objective function value remains
consistently low and level up to approximately λ = 0.83. However, the average incumbent
objective function value and penalty value already start deteriorating from a λ-value of 0.7 and
above. Any λ-value between 0.5 and 0.7 would be a good choice. Therefore, the value of λ was
chosen as 0.6.

Figure 5.21 contains graphs for the termination criteria parameter analysis. As before, instances
with a final temperature of Tmin = 1 in the parameter combination are the only ones which give
consistent feasible minimum incumbent solutions. This is seen in Figure 5.21(a) which contains
the graph of penalty values corresponding to the minimum incumbent solutions. Therefore,

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 97

0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86 0.9
1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5
×107

Parameter λ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

2

4

6

8

10

12

14

T
im

e
(s

)

Figure 5.20: Parameter optimisation for the cooling schedule of Huang et al. [37] in 21-SA-E.

the final temperature was chosen to be Tmin = 1. In Figure 5.21(b), the incumbent solution
quality and average solution time over the different parameter values of max attempt, but only
at Tmin = 1, are illustrated. Again, the average solution time varies insignificantly from its
minimum to maximum value over the parameter range. The minimum incumbent objective
function value levels off at 50n and above, but the average incumbent objective function value
keeps on slowly declining up to the parameter value of 100n. Since the average solution time
is insignificant at its maximum (only 7 seconds), the maximum number of attempted solutions
was chosen as 100n in order to obtain the best incumbent solution quality.

1
0.2T0

0.5T0

10n
40n

70n
100n

0

0.2

0.4

0.6

0.8

1

×107

Final temperature

Maximum
number

of attempts

P
en

a
lt

y
va

lu
e

(M
W

2
)

(a) Minimum incumbent solution’s penalty values.

10n 40n 70n 100n
1.36

1.4

1.44

1.48

1.52

1.56

1.6

1.64
×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Average

Average + Penalty

Minimum

Average time

0

2

4

6

8

10

12

14
T

im
e

(s
)

(b) Parameter analysis at Tmin = 1.

Figure 5.21: Termination criteria parameter analysis for the cooling schedule of Huang et al. [37] in
21-SA-E.

For the cooling schedule of Van Laarhoven et al. [81], consider Figure 5.22 which contains a
graph of the difference in incumbent objective function values (average and minimum) between
those obtained using the AIM and those using the SDM. The negative bars are more prevalent
in the figure and therefore, the method of determining the initial temperature was chosen as
the AIM.

Stellenbosch University  http://scholar.sun.ac.za



98 Chapter 5. Parameter evaluation

0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

×105

Parameter δ

D
iff

er
en

ce
in

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

Average
Minimum

Figure 5.22: Initial temperature analysis for the cooling schedule of Van Laarhoven et al. [81] in
21-SA-E.

Consider next the incumbent solution quality and average solution time over the range of δ-
parameter values in Figure 5.23. The average solution time decreases exponentially over the
range of δ-values. As the average solution time decreases, the average incumbent objective
function value climbs steadily with a deterioration in feasibility as well, indicated by the increase
of the average penalty value added to the average incumbent objective function value. However,
the minimum incumbent objective function value remains very consistent throughout the δ-
value range. Therefore, an acceptable trade-off between average incumbent solution quality and
average solution time must be determined. A value of λ = 0.16 was chosen, obtaining a very
good solution quality within approximately 60 seconds of solution time.

0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7
1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44
×107

Parameter δ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

15

30

45

60

75

90

105

120
T

im
e

(s
)

Figure 5.23: Parameter optimisation for the cooling schedule of Van Laarhoven et al. [81] in 21-SA-E.

The termination criteria parameters are considered for analysis in Figure 5.24. A final tempera-
ture of Tmin = 1 is the only parameter value resulting in consistent feasible minimum incumbent
solutions, as seen in Figure 5.24(a) which contains the penalty values corresponding to the min-

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 99

imum incumbent solutions. Therefore, the final temperature was chosen as Tmin = 1. Consider
now the graph in Figure 5.24(b) of the incumbent solution quality and average solution time
over the parameter range of max attempt, at Tmin = 1. The average solution time increases
linearly over the parameter range. However, there is a sharp improvement in minimum and
average incumbent solution objective function values from 10n to 40n. From there upwards,
the minimum incumbent objective function value remains relatively level, close to the minimum
objective function value found, while the average incumbent objective function value continues
to decrease (improve) but at a slower rate than before. Since the solution quality improves up
to the end of the parameter range, and an average solution time of approximately 60 seconds is
acceptable, the maximum number of attempted solutions was chosen to be 100n.

1
0.2T0

0.5T0

10n
40n

70n
100n

0
1
2
3
4
5
6

×106

Final temperature

Maximum
number

of attempts

P
en

a
lt

y
va

lu
e

(M
W

2
)

(a) Minimum incumbent solution’s penalty values.

10n 40n 70n 100n
1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Average

Average + Penalty

Minimum

Average time

0

12

24

36

48

60

72

84

T
im

e
(s

)

(b) Parameter analysis at Tmin = 1.

Figure 5.24: Termination criteria parameter analysis for the cooling schedule of Van Laarhoven et al.
[81] in 21-SA-E.

Finally, the cooling schedule proposed by Triki et al. [79] is considered. In contrast with the
other cooling schedules which each employ only one parameter, this schedule has three peram-
eters to be optimised concurrently. This requires a somewhat different visual representation of
the analysis results than used above. Consider the parameter analysis results in Figures 5.25
and 5.26. In both figures, the parameters µ2 and µ1 are grouped together as a single “unit”
(µ2, µ1) and alongside the remaining parameter ζ for analysis. In Figure 5.25, the parameters
µ2 and µ1 are grouped together in increasing order of µ2, while in Figure 5.26 they are grouped
together in increasing order of µ1. When considering the two average solution time graphs in
Figures 5.25(a) and 5.26(a), it may be concluded that an increase in µ1 causes the algorithm to
increase significantly in solution time. This is to be expected, since µ1 is the factor by which the
expected decrease in temperature is decreased (see §4.2.5) and smaller decrements (∆ = σ/µ1)
mean more temperature stages. This also explains why the solution quality improves with larger
values of µ1, as observed in Figures 5.25(c) and 5.25(d), since the solution space is explored in
more detail due to the increased number of temperature stages. Furthermore, an increase in ζ-
value seems to increase the solution time. This may be because equilibrium is found more often
between temperature stages, causing the algorithm to continue normally instead of defaulting to
a (faster) greedy algorithm (see §4.2.5). A value of µ2 = 10 seems to deliver the most consistent
results over all parameter combinations. Based on these observations, the parameter selection
which obtains an acceptable trade-off in solution quality and time, is ζ = 1.02, µ2 = 10 and
µ1 = 10.

Stellenbosch University  http://scholar.sun.ac.za



100 Chapter 5. Parameter evaluation

1.02 1.04 1.06 1.08
0

200

400

600

800

1 000

1 200

Parameter ζ

T
im

e
(s

)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(a) Average solution time

1.02 1.04 1.06 1.08
1.365

1.366

1.367

1.368
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(b) Minimum incumbent objective function value

1.02 1.04 1.06 1.08
1.37

1.375

1.38

1.385

1.39

1.395

1.4

1.405
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(c) Average incumbent objective function value

1.02 1.04 1.06 1.08
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

×105

Parameter ζ

P
en

al
ty

va
lu

e
(M

W
2
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(d) Average incumbent penalty

Figure 5.25: Parameter optimisation for the cooling schedule of Triki et al. [79] in 21-SA-E. Legend
entries in increasing order of the parameter µ2.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 101

1.02 1.04 1.06 1.08
0

200

400

600

800

1 000

1 200

Parameter ζ

T
im

e
(s

)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(a) Average solution time

1.02 1.04 1.06 1.08
1.365

1.366

1.367

1.368
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(b) Minimum incumbent objective function value

1.02 1.04 1.06 1.08
1.37

1.375

1.38

1.385

1.39

1.395

1.4

1.405
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(c) Average incumbent objective function value

1.02 1.04 1.06 1.08
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

×105

Parameter ζ

P
en

al
ty

va
lu

e
(M

W
2
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(d) Average incumbent penalty

Figure 5.26: Parameter optimisation for the cooling schedule of Triki et al. [79] in 21-SA-E. Legend
entries in increasing order of the parameter µ1.

Stellenbosch University  http://scholar.sun.ac.za



102 Chapter 5. Parameter evaluation

The termination criteria parameters are considered for analysis in Figure 5.27. Again, the
parameter value of Tmin = 1 is the only value resulting in consistent feasible minimum incumbent
solutions, as illustrated in Figure 5.27(a) which contains penalty values corresponding to the
the minimum incumbent solutions. The final temperature was therefore chosen as 1. The

1
0.2T0

0.5T0

10n
40n

70n
100n

0

2

4

6

8

×106

Final temperature

Maximum
number

of attempts

P
en

a
lt

y
va

lu
e

(M
W

2
)

(a) Minimum incumbent solution’s penalty values.

10n 40n 70n 100n
1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54
×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Average

Average + Penalty

Minimum

Average time

0

40

80

120

160

200

240

280

320

360

T
im

e
(s

)

(b) Parameter analysis at Tmin = 1.

Figure 5.27: Termination criteria parameter analysis for the cooling schedule of Triki et al. [79] in
21-SA-E.

graph in Figure 5.27(b) illustrates the incumbent solution quality and average solution time
over the parameter values of max attempt, specifically at Tmin = 1. The average solution
time is somewhat erratic in behaviour; however, an increase in time is nevertheless observed
as the parameter values increase. The minimum incumbent objective function value remains
approximately level at 30n and above, but the average incumbent objective function value
improves rapidly up to 60n, after which it levels off. Due to the erratic behaviour of the average
solution time, the choice of max attempt was based more on the average incumbent solution
quality, and was subsequently therefore chosen to be 100n in order to obtain the best results.

The 22-unit system

The same analysis performed for parameter optimisation in the 21-unit system above, is now
repeated for the 22-unit system. Before the individual cooling schedules are analysed, it is worth
mentioning that the behaviour of the final temperature Tmin in the 22-unit system is exactly
the same as for the 21-unit system, i.e. Tmin = 1 is the only value for which the minimum
incumbent solutions are consistently feasible. Therefore, in all four cooling schedules, the final
temperature was chosen as Tmin = 1.

Starting with the geometric cooling schedule, Figure 5.28 contains the graph illustrating the
difference in incumbent objective function value (average and minimum) obtained by using the
AIM and the SDM to determine the initial temperature. Clearly, it may be observed that the
negative bars are more prevalent. Therefore the AIM was chosen as the method for determining
the initial temperature.

In Figure 5.29, the incumbent solution quality and average solution time over the range of α-
values are illustrated. Unfortunately, the scaling of the penalty values are not as convenient as
in the 21-unit system. However, the average incumbent objective function values still provide
one with a clear picture of the solution quality — a steady improvement in quality as α increases

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 103

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
−150

0

150

300

450

Parameter α

D
iff

er
en

ce
in

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

)
Average
Minimum

Figure 5.28: Initial temperature analysis for the geometric cooling schedule in 22-SA-E.

in value. The minimum incumbent objective function values follow the same downward trend,
but the values are a bit erratic. Furthermore, the average solution time increases exponentially
over the parameter values. In order to achieve an acceptable trade-off between solution quality
and the execution time, the value of α was chosen as 0.96 in order to limit the solution time to
more or less 60 seconds.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
2 800

3 000

3 200

3 400

3 600

3 800

4 000

Parameter α

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

0

50

100

150

200

250

300

T
im

e
(s

)

Figure 5.29: Parameter optimisation for the geometric cooling schedule in 22-SA-E.

For the geometric cooling schedule, the value of max attempt is determined from Figure 5.30.
In the graph, the incumbent solution quality and average solution time over the parameter
range of max attempt at Tmin = 1 are considered. The maximum average solution time over
the range is about 80 seconds and therefore still acceptable. The average incumbent objective
function value seems to level at 70n and above, while the minimum incumbent objective function
value is somewhat erratic. Therefore, the maximum number of attempted solutions during each
temperature stage was chosen as 80n.

The cooling schedule proposed by Huang et al. [37] is considered next, with the difference
between objective function value (average and minimum) obtained by using the AIM and the

Stellenbosch University  http://scholar.sun.ac.za



104 Chapter 5. Parameter evaluation

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
2 900

3 100

3 300

3 500

3 700

3 900

4 100

Maximum number of attempts with Tmin = 1

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

0

20

40

60

80

100

120

T
im

e
(s

)

Figure 5.30: Termination criteria parameter analysis at Tmin = 1 for the geometric cooling schedule in
22-SA-E.

SDM to determine the initial temperature as illustrated in Figure 5.31. The positive bars,
indicating the superiority of the SDM, are slightly more prevalent in this case. Therefore, the
method for determining the initial temperature was chosen as the SDM.

0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86 0.9
−200

−100

0

100

200

300

Parameter λ

D
iff

er
en

ce
in

ob
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(M

W
)

Average
Minimum

Figure 5.31: Initial temperature analysis for the cooling schedule of Huang et al. [37] in 22-SA-E.

The incumbent solution quality and average solution time over the parameter values of λ are
shown in Figure 5.32. Since the average solution time differs by only 4 seconds between its
maximum and minimum values, the solution quality does not have to be traded off against the
solution time. The minimum incumbent objective function value is obtained at 0.72 but overall
it had erratic behaviour. The average incumbent objective function value remains approximately
level over the values of λ, obtains minimum levels at 0.7 and 0.72, and slowly increases from
0.74 onwards. Considering the above, the parameter value of λ was chosen as 0.72.

In Figure 5.33, the incumbent solution quality and average solution time over the paremeter
values of max attempt are presented, at a final temperature of Tmin = 1. Once again, the

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 105

0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86 0.9
3 100

3 300

3 500

3 700

3 900

4 100

Parameter λ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

5

6

7

8

9

10

T
im

e
(s

)

Figure 5.32: Parameter optimisation for the cooling schedule of Huang et al. [37] in 22-SA-E.

average solution time does not influence any trade-off arguments due to its small scale, and is
accepted as a fast solution time. Both the minimum and average incumbent objective function
values steadily decrease as the number of attempts increase. Thus, the maximum number of
attempted solutions was chosen as 100n to ensure the best solution quality.

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3 000

3 500

4 000

4 500

5 000

5 500

Maximum number of attempts with Tmin = 1

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

0

2

4

6

8

10

T
im

e
(s

)

Figure 5.33: Termination criteria parameter analysis at Tmin = 1 for the cooling schedule of Huang et
al. [37] in 22-SA-E.

Within the cooling schedule proposed by Van Laarhoven et al. [81] the difference in objective
function value (average and minimum) between using the AIM and the SDM for determining
the initial temperature is presented in Figure 5.34. It may be observed that the negative bars
(indicating the superiority of the AIM) are more prevalent than the positive bars. Therefore,
the method for determining the initial temperature was chosen as the AIM.

Stellenbosch University  http://scholar.sun.ac.za



106 Chapter 5. Parameter evaluation

0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7
−200

−150

−100

−50

0

50

100

150

200

Parameter δ

D
iff

er
en

ce
in

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

)
Average
Minimum

Figure 5.34: Initial temperature analysis for the cooling schedule of Van Laarhoven et al. [81] in
22-SA-E.

Consider the incumbent solution quality and average solution time over the range of δ-parameter
values in Figure 5.35. The average solution time decreases exponentially as the value of δ
increases. There is very little variation in the average incumbent objective function values as
they slowly worsen over the increasing parameter values with the minimum incumbent objective
function values generally following the same trend (and having slightly erratic behaviour). It
seems that the highest solution quality is achieved within the range of δ ∈ [0.1, 0.22] and in
order to keep the solution time acceptable, the value of δ was chosen as 0.2.

0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7
3 000

3 200

3 400

3 600

3 800

Parameter δ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

0

40

80

120

160

T
im

e
(s

)

Figure 5.35: Parameter optimisation for the cooling schedule of Van Laarhoven et al. [81] in 22-SA-E.

The parameter analysis for the max attempt parameter is illustrated in Figure 5.36. The graph
contains the incumbent solution quality and average solution time over the range of parameter
values fixed at Tmin = 1. As the average solution time reaches an acceptable maximum of
around 60 seconds, the steady decline in average and minimum incumbent objective function
values are of more importance when considering a decision with respect to the parameter value.
The objective function values level off more or less from a parameter value of 80n. Therefore,
the maximum number of attempted solutions was chosen as 90n.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 107

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3 000

3 300

3 600

3 900

4 200

4 500

Maximum number of attempts with Tmin = 1

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

0

15

30

45

60

75

T
im

e
(s

)

Figure 5.36: Termination criteria parameter analysis at Tmin = 1 for the cooling schedule of Van
Laarhoven et al. [81] in 22-SA-E.

Consider Figures 5.37 and 5.38 for the parameter analysis of the schedule proposed by Triki et
al. [79]. The graphs include results on the incumbent solution quality and average time over the
different parameter combinations. As before, the parameters µ2 and µ1 are grouped together
in single (µ2, µ1) “units” with those in Figure 5.37 grouped together in increasing order of µ2
and those in Figure 5.38 in increasing order of µ1. Consider first the average solution times
in Figures 5.37(a) and 5.38(a). Irrespective of the values of µ2 and µ1, the choice of a ζ-value
may already be restricted to 1.02 or 1.04 based on these solution times. As before, the solution
quality seems generally to improve as the value of µ1 increases, as seen in Figures 5.37(c) and
5.37(d). An increase in the value of µ2 also seems to improve the solution quality, as seen in
Figures 5.38(c) and 5.38(d). In order to obtain a good solution quality within an acceptable
solution time, the parameter values for the cooling schedule proposed by Triki et al. [79] were
chosen as ζ = 1.02, µ2 = 10 and µ1 = 10.

Finally, the analysis of max attempt is performed from the graph in Figure 5.39. In the figure,
an illustration is given of the incumbent solution quality and average solution time over the
parameter range of max attempt at a final temperature of 1. The average and minimum incum-
bent objective function values improve steadily up to the limit of the parameter range. Since the
maximum average solution time is of an acceptable magnitude of approximately 60 seconds, the
maximum number of attempted solutions during each temperature stage was chosen as 100n,
in order to obtain the best solution quality.

The IEEE-RTS inspired system

The analysis for the parameter optimisation in the IEEE-RTS inspired system is performed here
in the same fashion as for the 21- and 22-unit systems above. Furthermore, the behaviour of
the final temperature Tmin in the IEEE-RTS inspired system is exactly the same as for the 21-
and 22-unit systems, thus Tmin = 1 is assumed in all four cooling schedules below.

Starting with the geometric cooling schedule, an illustration of the difference in incumbent
objective function values (average and minimum) between using the AIM and the SDM for

Stellenbosch University  http://scholar.sun.ac.za



108 Chapter 5. Parameter evaluation

1.02 1.04 1.06 1.08
0

500

1 000

1 500

2 000

2 500

3 000

Parameter ζ

T
im

e
(s

)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(a) Average solution time

1.02 1.04 1.06 1.08
2 900

3 000

3 100

3 200

3 300

3 400

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(b) Minimum incumbent objective function value

1.02 1.04 1.06 1.08
3 400

3 500

3 600

3 700

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(c) Average incumbent objective function value

1.02 1.04 1.06 1.08
0

1

2

3

4

5

6

7

8

Parameter ζ

P
en

al
ty

va
lu

e
(M

W
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(d) Average incumbent penalty

Figure 5.37: Parameter optimisation for the cooling schedule of Triki et al. [79] in 22-SA-E. Legend
entries in increasing order of the parameter µ2.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 109

1.02 1.04 1.06 1.08
0

500

1 000

1 500

2 000

2 500

3 000

Parameter ζ

T
im

e
(s

)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(a) Average solution time

1.02 1.04 1.06 1.08
2 900

3 000

3 100

3 200

3 300

3 400

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(b) Minimum incumbent objective function value

1.02 1.04 1.06 1.08
3 400

3 500

3 600

3 700

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(c) Average incumbent objective function value

1.02 1.04 1.06 1.08
0

1

2

3

4

5

6

7

8

Parameter ζ

P
en

al
ty

va
lu

e
(M

W
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(d) Average incumbent penalty

Figure 5.38: Parameter optimisation for the cooling schedule of Triki et al. [79] in 22-SA-E. Legend
entries in increasing order of the parameter µ1.

Stellenbosch University  http://scholar.sun.ac.za



110 Chapter 5. Parameter evaluation

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3 000

3 300

3 600

3 900

4 200

4 500

Maximum number of attempts with Tmin = 1

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

) Average Minimum
Average + Penalty Average time

0

15

30

45

60

75

T
im

e
(s

)

Figure 5.39: Termination criteria parameter analysis at Tmin = 1 for the cooling schedule of Triki et
al. [79] in 22-SA-E.

determining the initial temperature may be found in Figure 5.40. In the graph, the negative
bars are slightly more prevalent than the positive bars, therefore the method for determining
the initial temperature was chosen as the AIM.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
×104

Parameter α

D
iff

er
en

ce
in

ob
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(M

W
2
)

Average
Minimum

Figure 5.40: Initial temperature analysis for the geometric cooling schedule in IEEE-SA-E.

The variations in incumbent solution quality and average solution time over the range of α-values
are shown in Figure 5.41. The average solution time increases exponentially as the parameter
values increase, already reaching approximately three minutes at 0.94. With the steady decline
in average incumbent objective function value over the parameter value range and the minimum
incumbent objective function value remaining relatively level over the entire range, a trade-off
between solution quality and execution time may be achieved by selecting the value α = 0.92,
since the solution time simply becomes too large at larger values of α.

In Figure 5.42, the incumbent solution quality and average solution time over the range of
max attempt, are presented. These values were obtained using a final temperature of Tmin = 1.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 111

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
3.363

3.367

3.371

3.375

3.379

×107

Parameter α

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

100

200

300

400

T
im

e
(s

)

Figure 5.41: Parameter optimisation for the geometric cooling schedule in IEEE-SA-E.

The minimum incumbent objective function value remains more or less level between the pa-
rameter values of 50n and 100n, but the average incumbent objective function values only reach
a level state at 70n and above. By choosing max attempt = 80n, the solution quality remains
very good and a decrease in solution time is achieved.

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3.36

3.37

3.38

3.39
×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

60

120

180

T
im

e
(s

)

Figure 5.42: Termination criteria parameter analysis at Tmin = 1 for the geometric cooling schedule in
IEEE-SA-E.

The next cooling schedule considered is that of Huang et al. [37]. In Figure 5.43, the difference in
incumbent objective function values (average and minimum) between solutions obtained through
the use of the AIM and the SDM for calculating the initial temperature, is portrayed. Since the
negative bars are more prevalent in the graph, indicating the AIM to be the superior of the two
methods, the AIM was chosen for calculating the initial temperature.

Stellenbosch University  http://scholar.sun.ac.za



112 Chapter 5. Parameter evaluation

0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86 0.9
−3

−2

−1

0

1

2

3

4

5

×104

Parameter λ

D
iff

er
en

ce
in

o
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

Average
Minimum

Figure 5.43: Initial temperature analysis for the cooling schedule of Huang et al. [37] in IEEE-SA-E.

An illustration of how the incumbent solution quality and average solution time change over
the range of λ-values may be found in Figure 5.44. The average solution time decreases linearly
over the parameter values; however, at its maximum value (of approximately 40 seconds) it
is still of an acceptable magnitude. It may be observed that the average incumbent objective
function value remains relatively level over the parameter range with a very slight increase in
value, whereas the minimum incumbent objective function value is good within the subrange
of [0.5, 0.62]. Based on these observations, the value of λ was chosen as 0.54 in order to ensure
solutions of high quality.

0.5 0.54 0.58 0.62 0.66 0.7 0.74 0.78 0.82 0.86 0.9
3.363

3.368

3.373

3.378

3.383
×107

Parameter λ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

10

20

30

40

50

T
im

e
(s

)

Figure 5.44: Parameter optimisation for the cooling schedule of Huang et al. [37] in IEEE-SA-E.

The termination criteria parameter max attempt may be analised in Figure 5.45. The graph
depicts the incumbent solution quality and average solution time (with Tmin = 1) over the range
of parameter values. With the average solution time obtaining an acceptable maximum value
of less than 30 seconds at the end of the parameter range, one only has to consider the solution
quality when choosing a value for max attempt. The average incumbent objective function

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 113

value continues to improve up to the end of the parameter range, with the minimum incumbent
objective function value also following this trend. The value of the max attempt parameter was
therefore chosen as 100n.

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3.36

3.37

3.38

3.39

3.4
×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

10

20

30

40

T
im

e
(s

)

Figure 5.45: Termination criteria parameter analysis at Tmin = 1 for the cooling schedule of Huang et
al. [37] in IEEE-SA-E.

The cooling schedule proposed by Van Laarhoven et al. [81] is analysed next. In the graph
in Figure 5.46, the difference in incumbent objective function values (average and minimum)
between solutions obtained from using the AIM and the SDM for determining the initial tem-
perature is shown. Since the graph displays a much larger prevalence in positive bars, the SDM
was chosen for determining the initial temperature.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
−1.5

−1

−0.5

0

0.5

1

1.5

2

×104

Parameter δ

D
iff

er
en

ce
in

ob
je

ct
iv

e
fu

n
ct

io
n

va
lu

e
(M

W
2
)

Average
Minimum

Figure 5.46: Initial temperature analysis for the cooling schedule of Van Laarhoven et al. [81] in
IEEE-SA-E.

In Figure 5.47, the variations in incumbent solution quality and average solution time over the
different values of the parameter δ are analysed. An exponential decrease in average solution

Stellenbosch University  http://scholar.sun.ac.za



114 Chapter 5. Parameter evaluation

time may be observed in the graph. Unfortunately, the cooling schedule requires a considerable
amount of solution time. The solution quality, however, is very good and consistent — the
minimum incumbent objective function values are very close to one another over the range of
values of δ and the average incumbent objective function values slowly increase, with negligible
penalty values, as δ increases. In order to keep the solution time within an acceptable range,
the value of δ was chosen as 0.35; however, any value within the range [0.2, 0.4] will provide
very good results in less than 5 minutes of solution time.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
3.363

3.365

3.367

3.369

3.371

3.373

3.375

×107

Parameter δ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

100

200

300

400

500

600

T
im

e
(s

)

Figure 5.47: Parameter optimisation for the cooling schedule of Van Laarhoven et al. [81] in IEEE-SA-E.

In order to choose a value for the parameter max attempt, one may consider the graph in
Figure 5.48. An illustration is given of the incumbent solution quality and average solution
time over the range of parameter values with the final temperature chosen as Tmin = 1. Very
good average incumbent objective function values are only reached near the end of the parameter
range (values of 90n and 100n). The minimum incumbent objective function values level off at
70n and above, while the average solution time increases linearly. A decrease in computational
time may be achieved without affecting the solution quality by choosing max attempt = 90n.

Finally, the cooling schedule of Triki et al. [79] is considered for analysis. Consider the graphs in
Figures 5.37 and 5.38 which contain the incumbent solution quality and average solution time
over the different parameter combinations. The parameters µ2 and µ1 are grouped together
again in single (µ2, µ1) “units” with those in Figure 5.49 grouped together in increasing order of
µ2 and those in Figure 5.50 in increasing order of µ1. When considering the average solution
times in Figures 5.49(a) and 5.50(a), it may be observed that the values are much more evenly
spread over the different ζ-values than before. As before, an increase in µ1 generally causes the
solution time to increase as well, along with an improvement in solution quality, as observed in
Figures 5.49(c) and 5.50(c). The benefit of shorter solution times, however, does not outweigh
the deterioration in solution quality that a value of µ1 = 5 provides. Unfortunately, there is
no visible effect in these graphs which may be attributed to the influence of µ2. Based on the
collective impression obtained from the parameter analysis, the parameter value combination
was chosen as ζ = 1.06, µ2 = 10 and µ1 = 10.

Finally, an analysis of the parameter max attempt is performed via the graph in Figure 5.51. It
provides one with the variations in incumbent solution quality and average solution time over the

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 115

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3.36

3.37

3.38

3.39
×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

60

120

180

T
im

e
(s

)

Figure 5.48: Termination criteria parameter analysis at Tmin = 1 for the cooling schedule of Van
Laarhoven et al. [81] in IEEE-SA-E.

parameter range at a final temperature of Tmin = 1. A relatively sharp improvement in solution
quality is obtained during the initial parameter values up to 50n. From there upwards, both the
average and minimum incumbent objective function values remain relatively level. However, the
average penalty values only become acceptable at 90n and above. Since the average solution
time increases approximately linearly, a value of max attempt = 90n was selected.

5.3.3 Summary of parameter values

A summary of the optimised parameter values for all the methods are presented in Table 5.7
for the random search heuristic and in Table 5.8 for the simulated annealing algorithm. These

The 21-unit system The 22-unit system The IEEE-RTS
inspired system

Parameter Classical Ejection Classical Ejection Classical Ejection
chain chain chain

Neighbourhood size m 2n m 2n m n
Iterations (I) 8 000 7 000 9 000 9 000 10 000 10 000

Number of iterations
0.8I 0.8I 0.8I 0.8I 0.9I 0.8I

without improvement

Table 5.7: Optimised parameter values for the random search heuristic.

values are used for the investigation into the different cooling schedules on the GMS problem,
how the new ejection chain neighbourhood operator performs against the classical operator, and
the effects of the modifications to the simulated annealing algorithm.

Stellenbosch University  http://scholar.sun.ac.za



116 Chapter 5. Parameter evaluation

1.02 1.04 1.06
0

75

150

225

300

375

450

Parameter ζ

T
im

e
(s

)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(a) Average solution time

1.02 1.04 1.06
3.363

3.364

3.365

3.366

3.367
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(b) Minimum incumbent objective function value

1.02 1.04 1.06
3.368

3.37

3.372

3.374

3.376

3.378

3.38
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(c) Average incumbent objective function value

1.02 1.04 1.06
0

1 000

2 000

3 000

4 000

5 000

6 000

Parameter ζ

P
en

al
ty

va
lu

e
(M

W
2
)

5,5

5,10

5,15

10,5

10,10

10,15

15,5

15,10

15,15

(d) Average incumbent penalty

Figure 5.49: Parameter optimisation for the cooling schedule of Triki et al. [79] in IEEE-SA-E. Legend
entries in increasing order of the parameter µ2.

Stellenbosch University  http://scholar.sun.ac.za



5.3. Parameter optimisation 117

1.02 1.04 1.06
0

75

150

225

300

375

450

Parameter ζ

T
im

e
(s

)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(a) Average solution time

1.02 1.04 1.06
3.363

3.364

3.365

3.366

3.367
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(b) Minimum incumbent objective function value

1.02 1.04 1.06
3.368

3.37

3.372

3.374

3.376

3.378

3.38
×107

Parameter ζ

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(c) Average incumbent objective function value

1.02 1.04 1.06
0

1 000

2 000

3 000

4 000

5 000

6 000

Parameter ζ

P
en

al
ty

va
lu

e
(M

W
2
)

5,5

10,5

15,5

5,10

10,10

15,10

5,15

10,15

15,15

(d) Average incumbent penalty

Figure 5.50: Parameter optimisation for the cooling schedule of Triki et al. [79] in IEEE-SA-E. Legend
entries in increasing order of the parameter µ1.

Stellenbosch University  http://scholar.sun.ac.za



118 Chapter 5. Parameter evaluation

10n 20n 30n 40n 50n 60n 70n 80n 90n 100n
3.36

3.37

3.38

3.39

3.4
×107

Maximum number of attempts

O
b

je
ct

iv
e

fu
n

ct
io

n
va

lu
e

(M
W

2
) Average Minimum

Average + Penalty Average time

0

50

100

150

200

T
im

e
(s

)

Figure 5.51: Termination criteria parameter analysis at Tmin = 1 for the cooling schedule of Triki et
al. [79] in IEEE-SA-E.

The 21-unit system The 22-unit system The IEEE-RTS
inspired system

Cooling schedule Parameter Classical Ejection Classical Ejection Classical Ejection
chain chain chain

Geometric Method for T0 AIM AIM AIM AIM AIM AIM
α 0.95 0.92 0.97 0.96 0.95 0.92

max attempt 100n 100n 80n 80n 90n 80n
Huang Method for T0 AIM AIM AIM SDM AIM AIM

λ 0.6 0.6 0.62 0.72 0.54 0.54
max attempt 100n 100n 100n 100n 100n 100n

Van Laarhoven Method for T0 AIM AIM AIM AIM AIM SDM
δ 0.16 0.16 0.16 0.2 0.15 0.35

max attempt 90n 100n 80n 90n 90n 90n
Triki Method for T0 SDM SDM SDM SDM SDM SDM

ζ 1.02 1.02 1.02 1.02 1.06 1.06
µ1 10 10 10 10 10 10
µ2 10 10 5 10 10 10

max attempt 100n 100n 100n 100n 100n 90n

Table 5.8: Optimised parameter values for the simulated annealing algorithm.

5.4 Chapter summary

In this chapter, the parameter evaluation was presented with respect to the application of the
approximate solution approach towards solving the GMS benchmark test systems. Three GMS
benchmark test systems were described in §5.1, two being systems previously studied in the
literature, and one being newly created.

Since a soft constraint approach was adopted in the approximate solution approach for the GMS
problem, problem instance-dependent penalty weights had to be determined for each test system.
The methodology of determining these penalty weights, and the subsequent computation thereof

Stellenbosch University  http://scholar.sun.ac.za



5.4. Chapter summary 119

for each system, were presented in §5.2.

The solution techniques of the approximate solution approach for the GMS problem require a
number of parameter values to be set in order for the techniques to perform optimally. These
values are also typically problem instance-dependent and the results of a detailed parameter
optimisation process for each test system was performed and presented in §5.3.

Stellenbosch University  http://scholar.sun.ac.za



120 Chapter 5. Parameter evaluation

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 6

Experimental results

Contents
6.1 Performance analysis of the cooling schedules . . . . . . . . . . . . . . . . . . . 121

6.2 Performance analysis of the new neighbourhood move . . . . . . . . . . . . . . 124

6.3 Performance analysis of the proposed modifications . . . . . . . . . . . . . . . . 127

6.4 Benchmark system solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.1 The exact solution approach results . . . . . . . . . . . . . . . . . . . . 132

6.4.2 The 21-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.3 The 22-unit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4.4 The IEEE-RTS inspired system . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

An analysis of the different cooling schedules, the new ejection chain neighbourhood move
operator and the proposed modifications in the simulated annealing algorithm are presented in
this chapter. Each variation of the solution techniques was used to solve 50 problem instances for
each benchmark test system using the optimised parameter values, as determined in Chapter 5.
In each case, the same set of 50 random initial solutions were used.

Following the performance analysis of the variations in solution technique, the results of an ap-
plication of the exact solution approach described in §4.1 are presented for the three benchmark
test systems introduced in §5.1. The chapter is concluded with the presentation of the best
solutions obtained for each benchmark test system.

Again, this computational evaluation was performed on a personal computer with a 3.0 GHz
Intel R© CoreTM 2 Duo E8400 processor and 3.25 GB RAM, running on Microsoft Windows XP
Professional (Version 2002, Service Pack 3). The exact solution approach was implemented in
the software package LINGO and the approximate solution approach was implemented in the
software package MATLAB.

6.1 Performance analysis of the cooling schedules

Four SA cooling schedules were introduced in §4.2.5 of which only one had been adopted within a
GMS context before, namely the geometric law of decrease. In order to establish which schedule
performs the best, consider Figure 6.1. The graphs in the figure represent the minimum and

121

Stellenbosch University  http://scholar.sun.ac.za



122 Chapter 6. Experimental results

average incumbent objective function values obtained for each test system over all four cooling
schedules, for each neighbourhood structure. Each horizontal pair of graphs correspond to one
of the test systems and the graphs in a pair should not be compared with each other. The aim is
to determine which cooling schedule performs the best, irrespective of neighbourhood structure.

Geo Huang VanL Triki

1.36

1.38

1.4

1.42

1.44
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Minimum

Average

(a) The 21-unit system (classical)

Geo Huang VanL Triki

1.36

1.38

1.4

1.42

1.44
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Minimum

Average

(b) The 21-unit system (ejection chain)

Geo Huang VanL Triki

3 000

3 500

4 000

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Minimum

Average

(c) The 22-unit system (classical)

Geo Huang VanL Triki

3 000

3 500

4 000

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Minimum

Average

(d) The 22-unit system (ejection chain)

Geo Huang VanL Triki

3.34

3.36

3.38

3.4
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Minimum

Average

(e) The IEEE system (classical)

Geo Huang VanL Triki

3.34

3.36

3.38

3.4
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Minimum

Average

(f) The IEEE system (ejection chain)

Figure 6.1: Comparison of cooling schedules by means of incumbent objective function values. In the
graphs, “Geo” refers to the geometric cooling schedule, “Huang” refers to the cooling schedule proposed
by Huang et al. [37], “VanL” refers to the cooling schedule proposed by Van Laarhoven et al. [81] and
“Triki” refers to the cooling schedule proposed by Triki et al. [79].

Stellenbosch University  http://scholar.sun.ac.za



6.1. Performance analysis of the cooling schedules 123

In each test system, the cooling schedule of Huang et al. [37] performs the worst — at minimum
level as well as on average. However, in each instance, the minimum objective function value
is very close to those of the others (within 1% in the 21-unit and IEEE system and within
5% in the 22-unit system. Therefore, the cooling schedule of Huang et al. [37] should not be
dismissed off-hand. Table 6.1 contains the average solution times (with standard deviations)
corresponding to the objective function values in Figure 6.1. The schedule of Huang et al. [37]
achieves an average solution time that is in most cases approximately ten times faster than that
of the other schedules and it is very consistent (as seen by its small standard deviation) unlike
that of the schedule proposed by Triki et al. [79]. The loss in objective function value accuracy
may be considered acceptable in view of the large benefit in solution time. As mentioned above,
the standard deviation in average solution time for the schedule of Triki et al. [79] is very high,
potentially resulting in erratic solution times — a phenomenon best avoided. Furthermore, its
average incumbent objective function value levels are second to worst, although its minimum
objective function values are the best in some cases.

Classical Ejection chain
Average Standard Average Standard

System Schedule time (s) deviation time (s) deviation

21-unit Geo 48.35 0.19 59.1 7.13
Huang 2.98 0.33 7.19 0.76
VanL 23.84 1.52 66.74 4.66
Triki 17.61 24.93 59.79 119.97

22-unit Geo 35.67 0.98 35.76 5.49
Huang 3.98 0.44 8.49 1.06
VanL 43.12 2.83 65.39 3.96
Triki 41.5 52.37 42.91 38.01

IEEE Geo 78.95 3.49 131.9 9.45
Huang 13.78 1.19 37.3 2.72
VanL 119.89 6.74 151.25 7.3
Triki 286.01 1008.9 170.2 187.35

Table 6.1: Comparison of cooling schedules by means of average solution times. In the table, “Geo”
refers to the geometric cooling schedule, “Huang” refers to the cooling schedule proposed by Huang et
al. [37], “VanL” refers to the cooling schedule proposed by Van Laarhoven et al. [81] and “Triki” refers
to the cooling schedule proposed by Triki et al. [79].

Of the remaining two schedules, the schedule proposed by Van Laarhoven et al. [81] provides the
best solution quality over all the test systems. It attains the lowest average incumbent objective
function value level in four of the six cases, the lowest minimum objective function value in three
of the six cases and achieves a very consistent solution time. The only drawback is its relatively
long average solution time — requiring slightly more time than the geometric schedule. The
geometric schedule achieves the second to best average incumbent objective function value levels
and attains the lowest minimum incumbent objective function value in two of the cases. As
with the schedules of Huang et al. [37] and Van Laarhoven et al. [81], the geometric schedule is
very consistent in its average solution time according the standard deviations in Table 6.1.

Based on the above analysis, there is little to choose between the geometric schedule and the
schedule of Van Laarhoven et al. [81] as both attain best minimum incumbent objective function
values, with the geometric schedule requiring slightly less solution time. However, the schedule

Stellenbosch University  http://scholar.sun.ac.za



124 Chapter 6. Experimental results

of Van Laarhoven et al. [81] obtains a better average incumbent solution quality. As such,
any of these two schedules may be the schedule of choice to obtain a very good solution. If
the objective is to find a number of good solutions, preference should be given to the schedule
of Van Laarhoven et al. [81]. The alternative to these two schedules, should a single, quick,
good solution (not necessarily the best possible) be required, is to choose the schedule of Huang
et al. [37] as it competes very favourably in terms of minimum incumbent objective function
value, but is far superior in terms of solution time. Due to its unpredictable (and potentially
long) solution times and not achieving any advantage above the other schedules with respect to
average incumbent solution quality, the schedule of Triki et al. [79] is determined te be the least
desirable cooling schedule in a GMS context.

6.2 Performance analysis of the new neighbourhood move

The first step in analysing the new ejection chain neighbourhood move operator is to compare
it to the classical operator in the (simple) random search heuristic. The comparative results
are presented in Table 6.2. It may firstly be noticed that the ejection chain operator’s average
solution times were nearly double that of the classical operator in each test system. This is
not unexpected, as an ejection chain is a compound move, involving more than one unit’s
starting time to be modified, which in turn causes more time-consuming constraint evaluations.
Secondly, in two of the three test systems, the classical operator achieved better minimum
incumbent objective function values. However, the value of the ejection chain neighbourhood
may clearly be seen in the quality of the solutions — the average incumbent objective function
values obtained via the ejection chain operator are significantly better than those obtained
via the classical operator, and the standard deviations are more than halved. Furthermore,
the ejection chain operator achieved a considerable reduction in penalty values, suggesting
that more of the incumbent solutions obtained by the random search heuristic were feasible.
These preliminary findings illustrate the potential of the ejection chain operator for use in more
sophisticated algorithms.

Minimum Average
incumbent incumbent

Neigh- objective objective
bour- Average Standard function function Standard Average Standard

System hood time (s) deviation value value deviation penalty deviation

21-unit Classical 25.66 1.61 13 679 339 14 209 078 294 150 90 000 194 044
Ejection 80.64 9.50 13 889 975 14 126 540 139 933 30 000 119 949

22-unit Classical 48.41 3.09 3 161.31 4 065.30 670.90 17.20 28.43
Ejection 95.84 8.45 3 413.31 3 658.86 251.45 3.80 9.23

IEEE Classical 51.38 3.41 33 860 134 34 261 904 241 620 50 400 51 625
Ejection 90.70 1.58 33 653 082 33 819 405 102 335 7 200 16 542

Table 6.2: Comparison of neighbourhood move operators within the random search heuristic.

In the implementation of the ejection chain neighbourhood move operator, only one column
(time period) is used when performing the vertical steps in the ejection chain. Figure 6.2
contains the typical distributions of the ejection chain lengths which were selected during the
SA algorithm execution for each test system. In all three test systems, the concern regarding
the generation of a significant number of non-trivial ejection chains (see §4.2.2) is not applicable,
mainly due to the number of generating units not being significantly less than the number of

Stellenbosch University  http://scholar.sun.ac.za



6.2. Performance analysis of the new neighbourhood move 125

time periods. The graphs in Figure 6.2 illustrate that the number of non-trivial ejection chains
are satisfactory.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Ejection chain length

P
er

ce
n
ta

ge
(%

)

(a) The 21-unit system

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Ejection chain length
P

er
ce

n
ta

ge
(%

)

(b) The 22-unit system

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

10

20

30

40

Ejection chain length

P
er

ce
n
ta

ge
(%

)

(c) The IEEE system

Figure 6.2: Typical distributions of the ejection chain lengths for each test system.

Consider the results obtained from using the two neighbourhood structures within the simulated
annealing algorithm. In Figure 6.3, the minimum incumbent objective function values obtained
by means of the two neighbourhood structures are compared in the left-hand column of graphs,
while the average incumbent objective function values are compared in the right-hand column
of graphs. In order to grasp the scope on the neighbourhood effect, all four cooling schedules’
results are provided for each test system. However, the effect of the neighbourhood structures
should be determined irrespective of the cooling schedule. Figures 6.3(a) and 6.3(b) illustrate the
superiority of the ejection chain operator over the classical operator in the 21-unit system (seven
out of eight cases). Although the minimum incumbent objective function values remain quite
close to each other (except for the schedule of Huang et al. [37]), the average incumbent objective
function values are significantly improved by the ejection chain moves. The 22-unit system,
however, shows the complete opposite picture — in both minimum and average incumbent
solutions, the classical neighbourhood obtained significantly better results over all the cooling
schedules. Lastly, the results from the IEEE inspired system in Figures 6.3(e) and 6.3(f) show the
same behaviour as in the 21-unit system — the ejection chain neighbourhood clearly outperforms
the classical neighbourhood in that system (all eight cases).

Stellenbosch University  http://scholar.sun.ac.za



126 Chapter 6. Experimental results

Geo Huang VanL Triki

1.36

1.363

1.366

1.369

1.372

1.375
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Classical

Ejection chain

(a) The 21-unit system (minimum)

Geo Huang VanL Triki

1.36

1.38

1.4

1.42

1.44
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Classical

Ejection chain

(b) The 21-unit system (average)

Geo Huang VanL Triki

2 800

3 000

3 200

3 400

3 600

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Classical

Ejection chain

(c) The 22-unit system (minimum)

Geo Huang VanL Triki

3 000

3 300

3 600

3 900

4 200

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Classical

Ejection chain

(d) The 22-unit system (average)

Geo Huang VanL Triki

3.355

3.36

3.365

3.37

3.375
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Classical

Ejection chain

(e) The IEEE system (minimum)

Geo Huang VanL Triki

3.36

3.37

3.38

3.39

×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Classical

Ejection chain

(f) The IEEE system (average)

Figure 6.3: Comparison of neighbourhood move operators by means of incumbent objective function
values. In the graphs, “Geo” refers to the geometric cooling schedule, “Huang” refers to the cooling
schedule proposed by Huang et al. [37], “VanL” refers to the cooling schedule proposed by Van Laarhoven
et al. [81] and “Triki” refers to the cooling schedule proposed by Triki et al. [79].

A question arises as to why the ejection chain neighbourhood did not show the same superior
results in the 22-unit system as it did in the other two test systems. A brief investigation into
the objective function of the test system was performed. When a sum of squares of reserve levels
objective function is used instead for the 22-unit system, the differences between the objective
function values obtained using the two move operators were proportionally significantly smaller
than in the case above, using the sum of absolute differences objective function. However, the

Stellenbosch University  http://scholar.sun.ac.za



6.3. Performance analysis of the proposed modifications 127

classical move operator still outperformed the ejection chain move operator consistently. A
possible reason for this behaviour may be the different natures of the solution spaces of the
three problems. The 21-unit system is highly constrained by its maintenance crew constraint
set and the IEEE system by its load demand and maintenance crew constraint sets. The 22-unit
system, on the other hand, does not have a maintenance crew constraint set and furthermore
is not highly constrained by the constraint sets it does have. As such, the 22-unit system
has a much larger feasible solution space than the other two systems. Why the ejection chain
neighbourhood should fail to find very good solutions in such a larger solution space is, however,
unknown. It may be that the ejection chains execute too many “global” jumps in the solution
space and never locally deepen the search to obtain those very good solutions that the classical
neighbourhood explores. However, without the benefit of having more benchmark test systems,
a deeper investigation into this phenomenon is not possible within the scope of this thesis.

The average solution times required when using the ejection chain neighbourhood in the SA
algorithm, in contrast with the observation made in the random search heuristic results, are not
nearly double those observed when using the classical neighbourhood. This may be seen from
the solution times presented in Table 6.1. The average solution times of the two neighbourhood
structures range from almost remaining the same (geometric schedule in the 22-unit system) to
almost triplicating (schedule of Van Laarhoven et al. [81] in the 21-unit system). However, the
ejection chain neighbourhood move operator will necessarily be the operator that requires more
time.

An analysis was also conducted with respect to the average penalty values. However, these
results do not provide additional insight — for the 21- and 22-unit systems, the average penalty
values remained more or less the same between the two neighbourhood structures, while the
IEEE system experienced a slight improvement over all four cooling schedules by using the
ejection chain neighbourhood.

The performance analysis of the new ejection chain neighbourhood move operator presented
above, illustrates its effectiveness and mostly superior results over that of the classical neigh-
bourhood operator. Although it requires more solution time, the ejection chain operator may
provide a valuable increase in solution quality over that of the classical operator. However, the
ejection chain operator may be considered in conjunction with the classical operator, as some
problems may utilise the classical operator more effectively, as seen in the 22-unit test system.

6.3 Performance analysis of the proposed modifications

The first proposed modification to the SA algorithm was the introduction of a local search
heuristic, thereby hybridising the SA algorithm, as described in §4.2.6. This local search heuris-
tic was applied in two ways — in the first hybridisation the local search heuristic was applied
to every new incumbent solution encountered during the algorithm’s execution. The results of
this hybridisation are presented in Table 6.3. The results indicate that this hybridisation is
able to achieve an effective improvement over the SA algorithm since a significant number of
incumbent solutions uncovered by both neighbourhood structures in all three test systems were
improved upon. In most cases over 50% of the incumbent solutions were improved upon. The
average objective function value improvement percentage depends on the test system, therefore
the “small” improvements should not be regarded as insignificant — the point is that many of
the solutions were improved upon. Typically, these small improvements guide the search into a
local optimum. The maximum improvement percentages provides one with a good impression
of the potential of this hybridisation — up to a 29% improvement in one case.

Stellenbosch University  http://scholar.sun.ac.za



128 Chapter 6. Experimental results

Classical neighbourhood Ejection chain neighbourhood
Percentage Avg OFV Max OFV Percentage Avg OFV Max OFV

Cooling underwent improve- improve- underwent improve- improve-
System schedule improvement ment ment improvement ment ment

21-unit Geo 38% 0.49% 1.27% 18% 0.50% 1.48%
Huang 46% 1.25% 3.94% 62% 0.82% 3.49%
VanL 54% 0.73% 2.59% 32% 0.43% 1.39%
Triki 42% 0.80% 2.86% 44% 0.87% 2.90%

22-unit Geo 42% 2.82% 8.74% 94% 3.00% 12.68%
Huang 56% 3.74% 29.18% 94% 4.96% 13.85%
VanL 50% 1.91% 8.34% 100% 4.26% 11.45%
Triki 36% 2.94% 19.73% 96% 3.62% 14.37%

IEEE Geo 54% 0.03% 0.22% 100% 0.02% 0.08%
Huang 56% 0.05% 0.42% 100% 0.05% 0.34%
VanL 82% 0.03% 0.18% 100% 0.03% 0.16%
Triki 58% 0.09% 0.75% 98% 0.03% 0.23%

Table 6.3: Performance analysis of the first algorithmic hybridisation. In the table, “Geo” refers to
the geometric cooling schedule, “Huang” refers to the cooling schedule proposed by Huang et al. [37],
“VanL” refers to the cooling schedule proposed by Van Laarhoven et al. [81] and “Triki” refers to the
cooling schedule proposed by Triki et al. [79].

Additionally, it is not suprising that the ejection chain neighbourhood has such a significant per-
centage of incumbent solutions that underwent an improvement, as the move operator typically
functions more globally over the solution space than does the classical operator (which shares
the same move operator as the local search), without necessarily intensifying the search at a
certain position in the solution space. Therefore, many of the solutions found may be improved
upon by the local search heuristic.

The second hybridisation, which applies the local search heuristic to the final incumbent solution
obtained by the solution SA algorithm, may be analysed from the results in Table 6.4. Again, the
local search heuristic obtains improvements on incumbent solutions in all the cases considered. It
is noticeable that the number of incumbent solutions which underwent the second hybridisation
is smaller than that in the first hybridisation, which is to be expected since the search is only
a applied to single solution in each instance, whereas in the first hybridisation, it is applied to
numerous solutions within each instance. Furthermore, the maximum improvement percentages
are also lower due to the same reason. However, the average improvement percentages compare
very favourably to those of the first hybridisation.

Based on the frequency with which incumbent solutions are improved by both the hybridisations,
either one may be included in the simulated annealing algorithm as a good method to improve
upon the quality of solutions. The difference in solution times do not vary significantly between
the two hybridisations. As such, one may consider the first hybridisation to be the superior of
the two. Note, however, that the first hybridisation does not necessarily reduce to the second
hybridisation in a worst case scenario and should therefore not be considered as a generalisation
of the second hybridisation.

Finally, the proposed modification of introducing a “good” random initial solution is analysed.
Figures 6.4 and 6.5 contain graphs comparing the minimum and average incumbent objective
function values obtained by using the original initial random solutions and the modified good
initial solutions for each test system. Each horizontal pair of graphs correspond to one of the
test systems.

Stellenbosch University  http://scholar.sun.ac.za



6.3. Performance analysis of the proposed modifications 129

Classical neighbourhood Ejection chain neighbourhood
Percentage Avg OFV Max OFV Percentage Avg OFV Max OFV

Cooling underwent improve- improve- underwent improve- improve-
System schedule improvement ment ment improvement ment ment

21 unit Geo 16% 0.59% 1.12% 14% 0.73% 1.48%
Huang 10% 1.33% 2.56% 50% 0.59% 1.75%
VanL 24% 0.49% 1.04% 20% 0.35% 1.08%
Triki 26% 0.89% 2.86% 38% 0.77% 2.90%

22 unit Geo 22% 0.92% 1.88% 80% 3.97% 13.33%
Huang 16% 1.36% 4.40% 82% 4.74% 10.45%
VanL 24% 1.14% 4.37% 96% 3.53% 15.87%
Triki 16% 2.21% 7.12% 90% 4.20% 17.51%

IEEE Geo 30% 0.01% 0.03% 100% 0.03% 0.08%
Huang 18% 0.00% 0.01% 100% 0.04% 0.10%
VanL 48% 0.02% 0.18% 100% 0.03% 0.13%
Triki 18% 0.02% 0.11% 96% 0.03% 0.16%

Table 6.4: Performance analysis of the second algorithmic hybridisation. In the table, “Geo” refers to
the geometric cooling schedule, “Huang” refers to the cooling schedule proposed by Huang et al. [37],
“VanL” refers to the cooling schedule proposed by Van Laarhoven et al. [81] and “Triki” refers to the
cooling schedule proposed by Triki et al. [79].

In Figure 6.4, the results of using the classical neighbourhood indicate that using good initial
solutions has a minimal impact, with only 7 of the 24 cases showing improved results. For the
other cases, the solution qualities are very close to each other. However, in Figures 6.4(a) and
6.4(c) the minimum incumbent solution qualities are actually significantly worsened by the good
initial solutions.

The results, when using the ejection chain neighbourhood, are presented in the graphs of Fig-
ure 6.5. Now, the impact of using a good initial solution is much more prevalent. In the
21-unit system, Figure 6.5(b) shows that the good initial solutions significantly worsened the
average incumbent solution quality. The same can be said for the IEEE system, where both the
minimum and average incumbent solutions’ qualities are significantly worsened, as illustrated
in Figures 6.5(e) and 6.5(f). However, the 22-unit system consistently yielded contradicting
behaviour, but in this case for the better. The good initial solutions resulted in a consider-
able improvement in incumbent solution quality, making the results comparable to those via
the classical neighbourhood, which obtained far superior results to those of the ejection chain
neighbourhood for the 22-unit system, as mentioned in §6.2.

The reason for the contrasting behaviour of the good initial solutions in the 22-unit system
with ejection chain neighbourhood is unknown, as the worsening behaviour may be attributed
to the solution algorithm converging prematurely from the good initial solution. The solution
times were almost identical, when measured from the step in the algorithm following the initial
solution declaration. Since the solution time required to obtain a good initial solution is not
necessarily insignificant, a larger amount of time is actually spent solving the problem without
the benefit of improved solution quality.

Since the negative contradicting behaviour of the ejection chain neighbourhood move operator
in the 22-unit test system may be negated to a certain extent by the positive contradicting be-
haviour of having a good initial solution, one may consider using the two methods in conjunction
with each other. By doing so, a general solution methodology towards GMS problems only has
to include the ejection chain neighbourhood move operator. Unfortunately, due to a shortage
of benchmark test systems, it is not possible, within the scope of this thesis, to investigate

Stellenbosch University  http://scholar.sun.ac.za



130 Chapter 6. Experimental results

Geo Huang VanL Triki

1.36

1.365

1.37

1.375

1.38
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(a) The 21-unit system (minimum)

Geo Huang VanL Triki

1.36

1.38

1.4

1.42

1.44
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(b) The 21-unit system (average)

Geo Huang VanL Triki

2 800

2 900

3 000

3 100

3 200

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Normal

Good initial

(c) The 22-unit system (minimum)

Geo Huang VanL Triki

3 000

3 200

3 400

3 600

3 800

4 000

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Normal

Good initial

(d) The 22-unit system (average)

Geo Huang VanL Triki

3.35

3.36

3.37

3.38
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(e) The IEEE system (minimum)

Geo Huang VanL Triki

3.36

3.37

3.38

3.39

3.4
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(f) The IEEE system (average)

Figure 6.4: Comparison of random versus good random initial solutions when using the classical
neighbourhood. In the graphs, “Geo” refers to the geometric cooling schedule, “Huang” refers to the
cooling schedule proposed by Huang et al. [37], “VanL” refers to the cooling schedule proposed by Van
Laarhoven et al. [81] and “Triki” refers to the cooling schedule proposed by Triki et al. [79].

whether this negating behaviour will hold in general for systems that are not highly constrained
(of which the 22-unit system is an example). On the other hand, it may be concluded that good
initial solutions should not be used with the SA algorithm on highly constrained GMS problems
as it typically results in premature convergence and potentially worsening incumbent solutions.

Stellenbosch University  http://scholar.sun.ac.za



6.4. Benchmark system solutions 131

Geo Huang VanL Triki

1.36

1.365

1.37

1.375

1.38
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(a) The 21-unit system (minimum)

Geo Huang VanL Triki

1.36

1.38

1.4

1.42

1.44
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(b) The 21-unit system (average)

Geo Huang VanL Triki

2 800

3 000

3 200

3 400

3 600

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Normal

Good initial

(c) The 22-unit system (minimum)

Geo Huang VanL Triki

3 000

3 200

3 400

3 600

3 800

4 000

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
)

Normal

Good initial

(d) The 22-unit system (average)

Geo Huang VanL Triki

3.35

3.36

3.37

3.38
×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(e) The IEEE system (minimum)

Geo Huang VanL Triki

3.34

3.36

3.38

3.4

×107

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e
(M

W
2
)

Normal

Good initial

(f) The IEEE system (average)

Figure 6.5: Comparison of random versus good random initial solutions when using the ejection chain
neighbourhood. In the graphs, “Geo” refers to the geometric cooling schedule, “Huang” refers to the
cooling schedule proposed by Huang et al. [37], “VanL” refers to the cooling schedule proposed by Van
Laarhoven et al. [81] and “Triki” refers to the cooling schedule proposed by Triki et al. [79].

6.4 Benchmark system solutions

In this section, the best solutions obtained during the course of work towards this thesis are
presented for each benchmark test system. The results of the exact solution approach are
presented firstly, followed by the results of the approximate solution approach, having obtained
the best solutions overall.

Stellenbosch University  http://scholar.sun.ac.za



132 Chapter 6. Experimental results

6.4.1 The exact solution approach results

As stated in §4.1, the LINGO software package employs different solvers to solve a variety of
problems and therefore each benchmark test system was solved separately by employing the
appropriate solvers. Furthermore, the computational time restriction adopted for obtaining
a solution was set at 12 hours. The results are presented in Table 6.5, which contains the
objective function values of the best solutions found via LINGO after 12 hours of solution time.
Additionally, the entries in the final column are lower bounds on the objective function values
obtained by LINGO. The theoretical bound on the 21-unit system, as calculated in §5.1.1, was
improved upon, the 22-unit system now has a lower bound and the theoretical bound on the
IEEE system, as calculated in §5.1.3, was also improved upon. Entries in the table marked with
an asterisk (*) are locally optimal solutions.

Solver
System Linear Nonlinear Global Quadratic Lower bound

21-unit (MW2) n/a 14 800 440 13 884 370* 13 973 150 11 977 600
22-unit (MW) 3 578.24 6 645.28 4 153.04 n/a 2 007.76
IEEE (MW2) n/a 35 175 960 35 462 640* 33 904 230 33 479 440

Table 6.5: The benchmark test system solutions obtained from an exact solution approach.

The best exact approach solution obtained for the 21-unit system is 16.67% away from the lower
bound. For the 22-unit system, the best solution obtained is 78.22% away from the lower bound,
and finally for the IEEE system, the best solution obtained is 1.27% away from the lower bound.

6.4.2 The 21-unit system

The best solution obtained for the 21-unit test system has an objective function value of
13 664 879 MW2, which is 14.09% away from the lower bound — an improvement from the
16.67% obtained by LINGO. This solution matches the best solution found for the 21-unit sys-
tem in the literature (13.665 × 106 MW2), as reported in [29] using ant colony optimisation
algorithms to solve the problem.

In a number of instances alternative incumbent solutions were found, also attaining this best ob-
jective function value. Having alternative good solutions is always beneficial to decision makers,
as it allows greater flexibility should conflicting opinions arise with respect to a given solution.
The solution vector of the best solution presented in Figure 6.6 is [6, 37, 20, 2, 47, 3, 24, 30, 13, 14,
1, 27, 12, 16, 9, 22, 52, 35, 42, 43, 6]. A list containing all the alternative best solution vectors ob-
tained in this study may be found in Appendix C. Figure 6.6 is a visual representation of the
maintenance schedule over the planning year.

In Figure 6.7, the corresponding load demand for the planning year is depicted, along with the
available capacity during each time period when the best solution (the schedule in Figure 6.6)
is followed. Finally, in Figure 6.8, the corresponding reserve levels during each time period are
shown.

6.4.3 The 22-unit system

The best solution obtained for the 22-unit test system has an objective function value of
2 899.08 MW, which is 44.39% away from the lower bound — significantly better than the 78.22%

Stellenbosch University  http://scholar.sun.ac.za



6.4. Benchmark system solutions 133

1 5 10 15 20 25 30 35 40 45 50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Week

U
n

it

Figure 6.6: The best maintenance schedule found for the 21-unit test system.

1 5 10 15 20 25 30 35 40 45 50

4 500

5 000

5 500

6 000

Week

C
ap

ac
it

y
(M

W
)

Demand Available

Figure 6.7: The available capacities for the best solution depicted in Figure 6.6 for the 21-unit test
system.

obtained by LINGO. This best solution vector is [17, 14, 27, 26, 22, 33, 26, 12, 41, 6, 30, 30, 18, 18, 1,
16, 46, 30, 22, 38, 46, 1]. Unfortunately, due to a confliction in the literature [23, 29] and the au-
thor’s unsuccessful attempts at establishing a correspondence with the these authors, the value
of the best solution found in the literature for the 22-unit system is unknown. Unlike the 21-unit
system, no alternative best solutions were obtained for this test system. Figure 6.9 is a visual
representation of the maintenance schedule corresponding to the above solution vector over the
planning year.

The corresponding load demand and safety margin for the year are depicted in Figure 6.10,
along with the available capacity during each time period. Finally, the corresponding reserve
levels during each time period are illustrated in Figure 6.11.

Stellenbosch University  http://scholar.sun.ac.za



134 Chapter 6. Experimental results

1 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1 000

Week

R
es

er
ve

ca
p

a
ci

ty
(M

W
)

Actual reserve Average reserve

Figure 6.8: The reserve levels for the best solution depicted in Figure 6.6 for the 21-unit test system.

1 5 10 15 20 25 30 35 40 45 50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Week

U
n

it

Figure 6.9: The best maintenance schedule found for the 22-unit test system.

6.4.4 The IEEE-RTS inspired system

The best solution obtained for the IEEE-RTS inpired test system has an objective function value
of 33 627 292 MW2, which is 0.44% away from the lower bound — an improvement from the
1.27% obtained by LINGO. The corresponding solution vector is [6, 25, 1, 44, 3, 31, 22, 36, 41, 27, 9,
14, 4, 37, 43, 26, 34, 34, 25, 15, 27, 8, 31, 34, 42, 26, 17, 13, 36, 12, 19, 38]. This solution is therefore
very close to being optimal. No alternative best solutions were obtained, but two “near-best-
found” solutions with objective function values of 33 627 838 MW2 and 33 628 094 MW2, re-
spectively, were found. Since the IEEE-RTS inspired test system was newly created for the
purposes of this thesis, the best solution above is currently the best solution known for the test
system. Figure 6.12 is a visual representation of the corresponding maintenance schedule over
the planning year.

Stellenbosch University  http://scholar.sun.ac.za



6.5. Chapter summary 135

1 5 10 15 20 25 30 35 40 45 50
0

1 000

2 000

3 000

4 000

5 000

Week

C
a
p

a
ci

ty
(M

W
)

Demand Safety margin Available

Figure 6.10: The available capacities for the best solution depicted in Figure 6.9 for the 22-unit test
system.

1 5 10 15 20 25 30 35 40 45 50
0

500

1 000

1 500

2 000

2 500

Week

R
es

er
ve

ca
p

ac
it

y
(M

W
)

Actual reserve Average reserve

Figure 6.11: The reserve levels for the best solution depicted in Figure 6.9 for the 22-unit test system.

The corresponding load demand and safety margin for the planning year are depicted in Figure
6.13, along with the available capacity during each time period. Finally, the corresponding
reserve levels during each time period are shown in Figure 6.14.

6.5 Chapter summary

In this chapter, the results of performance analyses into different variations of the proposed
approximate solution techniques for solving the GMS problem were presented.

Stellenbosch University  http://scholar.sun.ac.za



136 Chapter 6. Experimental results

1 5 10 15 20 25 30 35 40 45 50

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Week

U
n

it

Figure 6.12: The best maintenance schedule found for the IEEE-RTS inspired test system.

1 5 10 15 20 25 30 35 40 45 50
1 500

2 000

2 500

3 000

3 500

Week

C
ap

ac
it

y
(M

W
)

Demand Safety margin Available

Figure 6.13: The available capacities for the best solution depicted in Figure 6.12 for the IEEE-RTS
inspired test system.

The results of a performance analysis of the various cooling schedules were presented in §6.1.
The section concluded with recommendations on a choice of cooling schedule within the context
of GMS.

In §6.2, comparative results obtained via the new ejection chain and the classical neighbourhood
move operators were presented, illustrating that the ejection chain operator is highly effective
and in some instances significantly superior to the classical operator.

Stellenbosch University  http://scholar.sun.ac.za



6.5. Chapter summary 137

1 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1 000

Week

R
es

er
ve

ca
p

a
ci

ty
(M

W
)

Actual reserve Average reserve

Figure 6.14: The reserve levels for the best solution depicted in Figure 6.12 for the IEEE-RTS inspired
test system.

The performance analysis of the proposed modifications to the basic simulated annealing algo-
rithm was presented in §6.3. These modifications consisted of the introduction of a local search
heuristic and an improved initial solution.

Finally, in §6.4, the results obtained by the exact solution approach for each benchmark test
system was presented. This was followed by the presentation of best solutions obtained during
the course of the thesis for each GMS benchmark test system.

Stellenbosch University  http://scholar.sun.ac.za



138 Chapter 6. Experimental results

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 7

The decision support system

Contents
7.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1.1 The penalty weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1.2 The solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 The implementation of the decision support system . . . . . . . . . . . . . . . . 142

7.2.1 The “Options” panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.2 The “System data” panel . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.3 The “Penalty weights” panel . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.4 Solving a problem instance . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 A real case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.1 The nature of the problem instance . . . . . . . . . . . . . . . . . . . . . 149

7.3.2 Results achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

In this chapter, a computerised decision support system (DSS) is presented which may be used
to solve a GMS problem instance, having the generalised form of (A.1) or (A.2), in any power
system. The difficulties encountered in designing such a decision support tool within a GMS
context are touched upon, as well as how they were partially overcome, in order to create the
DSS. This is followed by a description of the DSS implementation on a personal computer and
its working.

Finally, a case study of a realistic GMS scenario in the context of the South African national
power system, provided by the South African electricity utility Eskom [67], is solved via the
DSS and the associated results are presented.

7.1 General framework

The focus in this chapter is turned away from solving GMS benchmark test systems for solu-
tion technique validation purposes towards the implemention of a general, computerised GMS
solution platform for use in any power system. As indicated in Chapter 5, one of the difficul-
ties inherent to a GMS problem instance is the unknown, unique penalty weight values for its
different constraint sets and, unfortunately, a general rule-of-thumb does not exist to determine
these values. Furthermore, different GMS problems instances perform differently for certain

139

Stellenbosch University  http://scholar.sun.ac.za



140 Chapter 7. The decision support system

parameter values when employing the techniques described in Chapter 4, thereby increasing
the difficulty in designing a general GMS solution platform which will perform well across the
board.

To that extent, the results obtained in Chapters 5 and 6 are utilised in order to derive a solution
methodology and parameter setting which should provide acceptable to good solutions to any
GMS problem instance.

7.1.1 The penalty weights

The first problem regarding the set of penalty weights of a GMS problem instance, is the
scale of this set. Depending on whether the objective function is chosen from a sum of squares
approach (i.e. employing the objective function (3.10)) or selecting a sum of absolute differences
approach (i.e. employing the objective function (3.13)), the penalty weights may differ by orders
of magnitude. Consider, as an example, the penalty weights associated with the maintenance
window constraint set of the 21-unit and 22-unit systems in §5.2. Due to a difference in the
nature of the objective function, the same constraint set has a penalty weight of 500 000 in the
one problem instance and 10 in the other problem instance.

Moreover, the scale of penalty weights may differ by orders of magnitude even if the same
objective function is used. In such cases, the level of constriction in different GMS problem
instances cause the difference in scale. An example of such an occurence may be seen in the
penalty weights associated with the maintenance window constraint set of the 21-unit and IEEE-
RTS inpired systems in §5.2. With the same objective function in both problem instances, the
same constraint set has a penalty value of 500 000 in the one instance and 40 000 in the other
instance, due to a difference in problem constriction.

Ultimately, these results indicate that a penalty weight analysis is unavoidable before embarking
on an attempt to solve a GMS problem instance. However, performing such an analysis is very
time consuming as suitable penalty weight ranges have to be explored in order to find the
correct magnitudes and intervals. Such experiments typically consist of repeatedly solving a
GMS problem instance and evaluating the solution quality, as described in §5.2. Therefore, the
smaller the range interval in the experiments, the more accurate the penalty will be, but the
longer the required computional time will be. An acceptable trade-off between penalty accuracy
and computational time should therefore be implemented.

The adopted trade-off, implemented in the DSS presented in this chapter, functions as follows.
The penalty weight of a constraint set is set as 10k, with k initially equal to zero. Ten problem
instances are solved using an unmodified version of the simulated annealing algorithm with the
classical neighbourhood move operator, utilising the geometric cooling schedule with α = 0.7. If
seven or more of the problem instances obtain feasible incumbent solutions, the penalty weight
is chosen at its current value, otherwise the value of k is incremented by one and the process is
repeated until a value for the penalty weight is chosen which results in seven or more feasible
incumbent solutions, or when k = 10. The assumption is that no constraint set in any GMS
problem instance will reach a penalty weight of 1010. Due to the exponential increase in weight,
the nature of the classical neighbourhood structure and the small α-value in the geometric
cooling schedule, this trade-off attempts to keep the computational time for determining the
penalty weights as short as possible.

Stellenbosch University  http://scholar.sun.ac.za



7.1. General framework 141

7.1.2 The solution method

In order to select the most appropriate solution method (i.e. variation of the simulated annealing
algorithm) for a given GMS problem instance, the results of Chapter 6 are considered.

It was concluded in §6.2 that the ejection chain neighbourhood move operator is superior over
the classical operator in highly constrained GMS problem instances. Due to the ejection chain
operator’s contradictory behaviour in the 22-unit system, it was deemed prudent to consider
use of the operator in conjunction with the classical operator in order to accommodate systems
with similar behaviour. Unfortunately, unless both operators are applied to a problem instance
and their solutions compared, one will not be able to tell whether the ejection chain performed
in a superior fashion or not. Instead of implementing both operators in the DSS, which adds
unnecessary complications for a user, only the ejection chain operator was implemented, based
on the assumption that most GMS problems will be highly constrained. However, in order to
accommodate systems where the ejection chain operator is not superior, the conclusion in §6.3
with respect to the negating effect of a “good” initial solution on such systems is heeded. An
optional choice for the user on whether to use a good initial solution in the SA algorithm or
not is implemented in the DSS, thereby applying the local search heuristic to the random initial
solution, if chosen, to obtain a good initial solution.

Two cooling schedules were implemented in the DSS in order to add functionality to user. These
two schedules are represented in the DSS by a choice between a “quick” or “standard” solution
method. In §6.1, it was concluded that the cooling schedule proposed by Huang et al. [37]
may be used to obtain a relatively good solution quickly. The reason was due to its average
computational time being far less than those associated with the other schedules, while still
providing good incumbent solutions in comparison. If one considers the schedule’s optimised
parameter values in Table 5.8, a good choice of generic values may be the AIM for calculating
the initial temperature, λ = 0.6 and max attempt = 100n.

However, the preferred cooling schedule in terms of solution quality was found to be either the
geometric schedule or the schedule proposed by Van Laarhoven et al. [81]. As the schedule
proposed by Huang et al. [37] provides an option for fast results, the schedule of Van Laarhoven
et al. [81] with its superior solution quality was chosen above the geometric schedule with its
slightly shorter solution time. Considering again the optimised parameter values in Table 5.8,
a good choice of generic values may be the AIM for calculating the initial temperature and
max attempt = 90n. However, a good generic choice of value for the parameter δ, when using
the ejection chain neighbourhood move operator, is more difficult. The value of δ is directly
linked to the solution time required by the SA algorithm. Unfortunately, a value resulting in
acceptable solution times for a problem instance having only maintenance window and load
demand constraint sets (for example), may cause unacceptably long solution times in a problem
instance employing additional maintenance crew and/or exclusions constraints. Therefore, the
optimised values for each test system in Table 5.8 are the only guidelines to go by. As such,
those values are assumed to be representative for each respective problem type. In the DSS
implementation, a value of δ = 0.15 was chosen if maintenance window, load demand and safety
margin constraints are present. The value is kept the same if maintenance crew constraints are
added, while δ = 0.25 if exclusion constraints are added. Finally, δ = 0.35 if both of these
constraint sets are added.

In §6.3, it was concluded that the introduction of a local search heuristic into the SA algo-
rithm improved the quality of incumbent solutions. Therefore, since the first hybridisation is
considered to be the superior of the two hybridisations, it was implemented in the DSS.

Stellenbosch University  http://scholar.sun.ac.za



142 Chapter 7. The decision support system

7.2 The implementation of the decision support system

In this section, the appearance and functionality of the DSS implementation are elucidated.
The correct procedures to follow at each step towards solving a GMS problem instance via the
DSS are described, along with the errors that may occur when using the DSS.

The DSS implementation is a collection of MATLAB scripts1 with a corresponding graphical
user interface (GUI). Furthermore, the input and output files are Microsoft Excel workbooks.
As such, the DSS requires an installation of MATLAB and Microsoft Excel 2007 (or later) on
a personal computer in order to function.

Figure 7.1: Screenshot of the graphical user interface of the DSS upon opening.

Upon executing the DSS, the GUI, illustrated by the screenshot in Figure 7.1, appears on
the computer screen. The GUI contains three panels (each with specific options) that have
to be addressed sequentially by the user in order to finally solve the GMS problem instance.
Upon conclusion of each panel’s option selection, the following panel is activated, culminating
in the activation of the “4. Solve” button. The relevant procedures to follow within the GUI’s
respective panels are described in the sections that follow.

1A script file is an external file that contains a sequence of MATLAB statements.

Stellenbosch University  http://scholar.sun.ac.za



7.2. The implementation of the decision support system 143

7.2.1 The “Options” panel

The first panel in the DSS GUI contains characteristics of the GMS problem instance which are
required for the data importing and solution method. Initially, it is the only active panel.

• The “Objective function” sub-panel contains a choice (implemented as radio buttons)
between the two objective functions that may be used. The default selection is the sum
of squares of the reserve levels objective function.

• The “Constraint sets” sub-panel contains a check-box listing of the possible GMS con-
straint sets. Depending on the problem to be considered, the user ticks the relevant
boxes. This selection directly affects the importing of the GMS problem instance data.
The default setting ticks the maintenance windows, and load demand and safety margin
constraint sets, which is the minimum requirement for any GMS problem instance. If
the user unticks one or both of these two boxes, an error message will be displayed upon
left-clicking the “1. Process options” button.

• The “Columns” sub-panel contains a drop-down menu from which the user selects the
number of columns to be used in the vertical steps of the ejection chain calculation in the
solution algorithm. This option is included, based on the concern with respect to non-
trivial ejection chains expressed in §4.2.2. It is recommended that the user only selects
“2” or “3” columns for problem instances where the number of time periods is much larger
than the number of generating units. An error message will be displayed upon left-clicking
the “1. Process options” button if no selection is made.

• The “Solution method” sub-panel contains a choice (implemented as radio buttons) be-
tween the two solution methods that may be used. These two methods, standard and
quick, utilise the cooling schedules proposed by Van Laarhoven et al. [81] and Huang et
al. [37], repectively, as described above. The default selection is the standard method.

• The “Number of instances” sub-panel contains a drop-down menu from which the user
selects the number of problem replications that should be solved. The options are 1, 5,
10, 20, 30, 40 and 50. Each replication starts with a different random initial solution in
the solution algorithm and the best incumbent solution over all instances is returned by
the DSS. Furthermore, if more than one replication is selected, the three best incumbent
solutions are returned. An error message will be displayed upon left-clicking the “1.
Process options” button if no selection is made.

• The “Initial solution” sub-panel contains a check-box for selecting whether a good initial
solution should be used in the solution algorithm or not, as discussed above. It has a
default setting of being unticked.

• After all the options described above have been addressed, the user left-clicks the “1.
Process options” button. If all the procedures in the “Options” panel have been followed
correctly, the relevant variables are initialised according to the selected options, the text
on the button changes to “Process options... Done” and the next panel, “System data”,
is activated.

7.2.2 The “System data” panel

In the second panel of the DSS GUI, the user may read the power system data of the GMS
problem instance into the DSS. The data is required to be in a very specific format, contained in

Stellenbosch University  http://scholar.sun.ac.za



144 Chapter 7. The decision support system

a Microsoft Excel workbook. This format is demonstrated in Appendix D. Both the old “.xls”,
and the new “.xlsx” file formats, are accepted by the DSS.

• The user is required to type the name of a file, with its extension (i.e. filename.xls or
filename.xlsx), into the edit box and then to press ‘Enter’ on the keyboard. The full
pathname is required, unless the file is contained in the same working directory on the
computer as the DSS. If an incorrect file extension has been entered, an error message will
appear, otherwise the “2. Read data from Excel” button is activated.

• When the user left-clicks the “2. Read data from Excel” button, the DSS opens the
specified Microsoft Excel workbook and reads the data, as specified by the check-boxes
in the “Constraint sets” sub-panel of the “Options” panel, into the DSS. As this data
transferral process between Excel and MATLAB may take several seconds, a message box
containing a progress bar is displayed. After the data have been read in successfully,
the text on the button changes to “Read data from Excel... Done” and the next panel,
“Penalty weights”, is activated. However, if the specified file does not exist, an error
message will appear and the “2. Read data from Excel” button is deactivated.

7.2.3 The “Penalty weights” panel

The third and final panel in the DSS GUI addresses the penalty weights of the GMS problem
instance. As the penalty weights need only be calculated once for a specific problem instance, the
user is presented with the option of entering suitable penalty weights, if known or guestimated,
otherwise these weights have to be calculated. Typically, the calculation process is rather time
consuming, taking several minutes for each constraint.

• Initially, the only active item in the panel is a drop-down menu from which the user selects
“YES” if the penalty weights of the current GMS problem instance are known or “NO” if
they are not and need to be calculated.

• Upon selection of “YES” in the drop-down menu, the edit boxes of the constraint sets
corresponding to ticked check-boxes in the “Constraint sets” sub-panel of the “Options”
panel are activated, as well as the “3. Read penalty weights” button. The user is required
to type the known penalty weight values of the constraint sets into the correct edit boxes.
When the user left-clicks on the “3. Read penalty weights” button, the weight values are
read into the DSS. If a non-numeric value was entered into any of the edit boxes, an error
message will appear, otherwise the text in the button change to “Read penalty weights...
Done” and the “4. Solve” button in the GUI is activated.

Figure 7.2: Screenshot of the progress bar displayed during the calculation of the penalty weights.

Stellenbosch University  http://scholar.sun.ac.za



7.2. The implementation of the decision support system 145

• Upon selection of “NO” in the drop-down menu, the “3. Calculate penalty weights” but-
ton is activated. When the user left-clicks on the button, the procedure for calculating
the penalty weight values of each constraint set, as presented in §7.1.1, is executed. As
this procedure is also rather time-consuming, a message box containing a progress bar is
displayed, as illustrated by the screenshot in Figure 7.2. A new progress bar is displayed
when the following constraint set is reached within the procedure. Additional information
is provided in the message box, namely the current weight, current iteration and esti-
mated maximum time remaining. The value displayed as the current weight, corresponds
to the current weight iteration (i.e. from §7.1.1, the first iteration is when k = 0 up to
the tenth and final iteration when k = 9). The value displayed as the current iteration,
corresponds to the current problem replication being solved — ten for each penalty weight
value. Lastly, the estimated maximum time remaining provides a worst case amount of
time remaining, i.e. if the procedure continues up to the tenth weight iteration for the
current constraint set. However, this is very unlikely to happen and the procedure typi-
cally moves on to the following constraint set when a smaller, suitable weight-value has
been reached.

If the user left-clicks the “Cancel” button in the message box, the procedure terminates at
the end of the current iteration, after which an error message is displayed, stating that the
calculation of the penalty weight values have not been completed. Otherwise, when the
procedure completes the calculation of the penalty weight values, the text on the button
in the panel changes to “Calculate penalty weights... Done” and the “4. Solve” button in
the GUI is activated.

7.2.4 Solving a problem instance

At this stage, if all the procedures at each panel have been followed correctly, the “4. Solve”
button is activated and the GMS problem instance is ready to be solved. When the user left-
clicks the button, the DSS executes the solution algorithm presented in §7.1.2 according to the
specified settings in the “Options” panel. When the problem has been solved, the DSS generates
a number of figures and saves the results to an Excel workbook.

A message box, containing a progress bar, is displayed upon executing the solution algorithm.
Figure 7.3 contains a screenshot of such a box. Progress on the number of instances that have
been solved, is displayed in the message box. Therefore, the progress bar will only be meaningful

Figure 7.3: Screenshot of the progress bar displayed during execution of the solution algorithm.

when more than one instance has been selected in the “Options” panel. The additional infor-
mation contained in the message box consists of the current instance replication being solved,
the best incumbent objective function value obtained up to the current stage, its corresponding
penalty value and the estimated solution time remaining. If the user left-clicks the “Cancel”

Stellenbosch University  http://scholar.sun.ac.za



146 Chapter 7. The decision support system

button in the message box, the solution algorithm terminates at the end of the current instance
replication and user-control is returned to the GUI.

Upon completion of the solution algorithm over the specified number of instances, the DSS
generates a number of MATLAB figures containing results from the best solution found. Ex-
amples of these figures are presented in Figure 7.4 in the order in which they are generated.
These figures may be manipulated within the figure-environment of MATLAB and saved for
future use by the user, either as MATLAB “.fig” files or exported as graphics files. The first

(a) Best schedule found (b) Demand and available capacity levels

(c) Reserve levels (d) Maintenance crew utilised

(e) Number of units in simultaneous maintenance

Figure 7.4: Examples of the output figures generated by the DSS.

Stellenbosch University  http://scholar.sun.ac.za



7.2. The implementation of the decision support system 147

figure, illustrated in Figure 7.4(a) is a visual depiction of the best schedule found. The second
figure, illustrated in Figure 7.4(b) is a graph of the load demand, safety margin and available
generating capacity under the best schedule. In the third figure, the reserve levels during each
time period under the best schedule is graphed, as illustrated in Figure 7.4(c). These three
generated figures correspond directly to the three figures presented in §6.4 for each benchmark
test system. The additional two figures (fourth and fifth) provide visual representations of the
maintenance crew and exclusion constraint sets, respectively, under the best schedule. A graph
of the amount of utilised manpower during each time period is shown in Figure 7.4(d), while
the number of units within each exclusion set that are in a state of simultaneous maintenance
is depicted in the graphs of Figure 7.4(e).

As stated in §7.2.1, if more than one instance is selected in the “Options” panel, the DSS
returns the best three solutions found. Therefore, when this is the case, two additional figures
are generated by the DSS in the same fashion as the graph in Figure 7.4(a), depicting the second
and third best schedules found.

After the figures have been generated, the DSS saves the results of the solution to a Microsoft
Excel workbook (“.xlsx” file format). As the data transferral between MATLAB and Excel
may take several seconds, a message box is displayed which, only upon the completion of the
transferral, closes automatically. The DSS creates a new workbook for the results and it re-
ceives a unique filename of the format “Solution yyyymmdd HHMMSS.xlsx” which corresponds
to the date-time-stamp when the problem was solved. As an example, a file named “Solu-
tion 20110825 062641.xlsx” contains the results of a problem solved by the DSS on 2011/08/25
at 06:26:41.

Within the workbook, at least two worksheets are present, irrespective of the selected constraint
sets. These worksheets are titled “Schedule” and “Capacities.” If the GMS problem instance
employs a maintenance crew constraint set, an additional worksheet titled “Crew” is present and
if the problem includes an exclusion constraint set, an additional worksheet titled “Exclusions”
is present.

Figure 7.5: Screenshot of the “Schedule” worksheet in the DSS results.

Stellenbosch University  http://scholar.sun.ac.za



148 Chapter 7. The decision support system

Figure 7.5 contains a screenshot of an example of the “Schedule” worksheet. The top part of
the sheet contains the settings of the DSS that were chosen by the user, as well as the penalty
values for each constraint set. Additionally, the date and time when the problem was solved are
included, along with the total solution time required. The bottom part of the sheet contains the
actual schedule (best solution) found by the DSS (and second and third best schedules when
more than one replication was solved). The corresponding objective function and penalty values
are listed, followed by the commencement and completion time periods of each generating unit’s
maintenance period over the planning horizon.

Figure 7.6: Screenshot of the “Capacities” worksheet in the DSS results.

An example of the second worksheet, “Capacities”, is provided in Figure 7.6. Shortened column-
headers are used, the definitions of which are listed at the top of the sheet. The results consist of
the system capacity out on maintenance, the resulting available system capacity, the system load
demand and the corresponding reserve capacity levels during each time period, under the best
solution found. From these data, the graphs in Figures 7.4(b) and 7.4(c) may be reproduced.

Figure 7.7: Screenshot of the “Crew” worksheet in the DSS results.

The additional “Crew” worksheet is illustrated by means of an example screenshot in Figure 7.7.
Again, shortened column-headers are used and their definitions are listed at the top of the sheet.
The number of utilised maintenance crews and corresponding maintenance crews still available
during each time period under the best solution found, are listed in this sheet. These data may
be used to reproduce the graph in Figure 7.4(d).

Stellenbosch University  http://scholar.sun.ac.za



7.3. A real case study 149

Figure 7.8: Screenshot of the “Exclusions” worksheet in the DSS results.

Finally, the additional worksheet entitled “Exclusions” is illustrated by means of an example
screenshot in Figure 7.8. The results contained in this worksheet consist of the number of units
that are in simultaneous maintenance within each exclusion subset, and number of units that
are additionally allowed to be in simultaneous maintenance within each exclusion subset, during
each time period under the best solution found. Once more, the shortened column-headers used
in the sheet are defined at the top. The data of each exclusion subset in the sheet may be used
to produce each subgraph in Figure 7.4(e).

7.3 A real case study

The DSS was used to solve a real case study, provided by Eskom [67], within the context of the
South African national power generation system. Due to confidentiality concerns, the data do
not represent an exact description of the current Eskom generation system, but the case study
does represent a realistic GMS scenario. Constraints in the problem instance are restricted to the
adherence to maintenance windows, the system meeting the load demand together with a safety
margin, and respecting exclusion constraints. The system data are presented in Appendix E
due to its large dimensions affecting readability.

7.3.1 The nature of the problem instance

The generation system consists of 105 power generating units with a total installed capacity of
39 949 MW. A number of units must undergo multiple maintenance outages over the planning
period of 365 days, while some units require no maintenance outages. In order to solve the GMS
problem, the DSS requires each unit to have a single maintenance outage — therefore, dummy
units were added to the system for each additional maintenance occurence of a unit, increasing
the number of units in the system to 157. The resulting additional capacity that these dummy
units provide to the system was subtracted from the new total capacity in order to render the
system unaffected. Furthermore, units not requiring maintenance over the planning period,
receive earliest and latest starting times of zero. Table E.1 contains the generation system
specifications and maintenance requirements.

The exclusion constraints of the problem restrict a unit with multiple maintenance outages,
whose maintenance windows overlap, such that its different maintenance outages do not occur
simultaneously. The exclusion sets are presented in Table E.3.

Stellenbosch University  http://scholar.sun.ac.za



150 Chapter 7. The decision support system

Table E.4 contains the daily peak load demand of the power system. A minimum safety margin
capacity of 2 000 MW was translated into a safety margin of 8% of the peak load demand and
has to be maintained throughout the planning period.

Finally, a theoretical lower bound on the objective function value (if the sum of squares of the
reserve levels is used as the objective function) has been determined from the average daily
reserve level of 5 364 MW. This lower bound is 10 501 819 298 MW2.

7.3.2 Results achieved

A number of solution settings were chosen in the DSS to solve the case study. As no preference
was given to which objective function should be used, both were selected. All four combinations
of solution method and good initial solution were attempted over a selection of 1, 10 and 50
replications. Only one column was selected for the vertical steps in the ejection chains.

The best solution obtained by the DSS using the sum of squares objective function, attained
an objective function value of 11 101 712 702 MW2 with zero penalty. This objective function
value lies 5.7% away from the theoretical lower bound. Although the DSS obtained this best
objective function value twice, the solution vectors were identical.

In the case of the sum of absolute differences objective function, the DSS obtained a best solution
with an objective function value of 368 546.58 MW and zero penalty. Again, the DSS obtained
this best objective function value twice, but the solution vectors were identical.

A summary of the DSS results on the Eskom data set is provided in Table 7.1. Instead of
listing the objective function values (the largely scaled values affect readibility), the percentage
by which each objective function value lies away from that of the best solution found is listed.
Considering that the average solution time (Van Laarhoven et al. [81] solution method) for the
IEEE-RTS inpired test system (dimension of 32 units by 52 weeks) was two and a half minutes,
the DSS performs quite well timewise in solving the Eskom system, since its dimension is almost
35 times larger, but is solved in a time only 23 times greater.

Sum of squares Sum of absolute differences
Solution Instances Time Percentage Feasible Time Percentage Feasible
method (minutes) from best (minutes) from best

Quick 1 8.49 0.07% No 6.18 1.80% No
10 105.06 0.04% Yes 80.34 0.86% No
50 517.54 0.02% Yes 396.65 0.04% Yes

Quick 1 8.58 0.01% Yes 5.50 1.04% Yes
(Good Initial) 10 100.57 0.03% Yes 80.87 0.45% No

50 516.37 0.02% Yes 395.96 0.04% Yes
Standard 1 56.40 0.10% No 43.52 0.76% No

10 551.98 0.01% Yes 411.62 0.18% No
50 2756.82 0% Yes 2047.87 0% Yes

Standard 1 56.66 0.10% No 40.56 0.26% Yes
(Good Initial) 10 424.88 0.01% Yes 407.73 0.18% No

50 2762.33 0% Yes 2028.06 0% Yes

Table 7.1: Results obtained by the DSS on the Eskom case study.

The solution vectors of the best solutions obtained from using both objective function values are
listed next to each other in Table 7.2, in order to display the difference caused by the objective

Stellenbosch University  http://scholar.sun.ac.za



7.4. Chapter summary 151

function. In Figures 7.9 and 7.10, visual representations of the corresponding maintenance
schedules are given. Finally, Figure 7.11 contains graphs of the load demand and the available
generating capacities for the two best solutions.

7.4 Chapter summary

A computerised decision support system for solving generator maintenance scheduling problems
was presented in this chapter. The DSS was implemented in the software package, MATLAB,
as a graphical user interface along with a collection of scripts, while the input and output files
containing the system data and results were created in Microsoft Excel.

In §7.1, a generic penalty weight procedure, parameter setting and solution methodology for
solving a general GMS problem were derived from the problem-specific GMS instances con-
sidered in Chapters 5 and 6. These generic methods were required before an attempt could
be made to solve a general GMS problem instance satisfactorily, without performing problem-
specific solution technique optimisation.

The computer implementation of the DSS and its working were described in §7.2 by means of
screenshots and bulleted procedures to follow during each step of the solution process. Examples
of the output produced by the DSS were also presented while the correct input format for the
DSS, was described in Appendix D.

Finally, the DSS was used in §7.3 to solve a case study containing a realistic GMS scenario
within the context of the South African national power generation system. This system was
considerably larger than the test systems considered in Chapters 5 and 6. The results obtained
are very promising, as the DSS computed a best solution with an objective function value only
5.7% away from the theoretical lower bound associated with the problem instance, when using
the sum of squares objective function. As a lower bound for the sum of absolute differences
objective function was unknown, the quality of the best solution obtained by the DSS could
not be determined in a similar fashion. Furthermore, the solution time of the larger system
increased at a lower rate than the increase in problem size, indicating the effectiveness of the
solution methods implemented.

Stellenbosch University  http://scholar.sun.ac.za



152 Chapter 7. The decision support system
A

b
so

lu
te

A
b
so

lu
te

A
b
so

lu
te

A
b
so

lu
te

A
b
so

lu
te

U
n
it

S
q
u
a
re

s
d
iff

er
en

ce
s

U
n
it

S
q
u
a
re

s
d
iff

er
en

ce
s

U
n
it

S
q
u
a
re

s
d
iff

er
en

ce
s

U
n
it

S
q
u
a
re

s
d
iff

er
en

ce
s

U
n
it

S
q
u
a
re

s
d
iff

er
en

ce
s

1
2
5

2
7

3
3

0
0

6
5

1
1
1

7
9

9
7

0
0

1
2
9

6
6

5
9

2
1
9

1
5

3
4

0
0

6
6

2
1
1

2
2
9

9
8

8
5

5
5

1
3
0

1
5
3

1
5
1

3
1
7
3

1
7
1

3
5

1
1

6
7

0
0

9
9

0
0

1
3
1

2
3
7

2
3
7

4
2
8
5

2
9
2

3
6

1
2
2

1
2
1

6
8

3
4
4

3
2
0

1
0
0

1
1
2

1
1
0

1
3
2

5
4

6
0

5
2
5

1
5

3
7

5
4

1
9

6
9

0
0

1
0
1

2
9

2
9

1
3
3

1
2
3

1
4
1

6
2
7

2
5

3
8

1
3
9

1
4
5

7
0

0
0

1
0
2

9
9

9
9

1
3
4

1
8
0

1
8
6

7
1
7
3

1
8
0

3
9

2
8
6

2
8
6

7
1

0
0

1
0
3

3
3
8

3
3
8

1
3
5

2
9
9

2
9
9

8
2
8
5

2
9
2

4
0

3
2
6

3
3
4

7
2

1
3

2
2

1
0
4

2
3

2
3

1
3
6

7
8

6
4

9
2
5

1
5

4
1

1
9

4
7

7
3

0
0

1
0
5

2
5
7

2
5
7

1
3
7

6
8

6
1

1
0

3
2

3
0

4
2

3
3
5

3
3
5

7
4

9
8

1
2
0

1
0
6

6
7

1
3
8

1
8
7

1
8
3

1
1

1
8
0

1
8
4

4
3

3
2

3
3

7
5

2
5
8

2
0
4

1
0
7

1
2
2

1
2
2

1
3
9

3
0
6

3
0
6

1
2

2
9
7

2
9
5

4
4

2
9
3

2
9
3

7
6

0
0

1
0
8

2
7
0

2
6
4

1
4
0

6
6

5
7

1
3

0
0

4
5

1
3

1
1

7
7

1
2
2

1
2
2

1
0
9

1
2
0

1
2
0

1
4
1

1
8
7

1
9
4

1
4

0
0

4
6

6
0

5
3

7
8

8
8

1
1
0

9
2

9
2

1
4
2

3
0
6

3
1
2

1
5

0
0

4
7

3
2
8

3
2
8

7
9

2
8
7

2
7
0

1
1
1

3
3
0

3
4
6

1
4
3

8
7

9
5

1
6

0
0

4
8

0
0

8
0

2
8
7

2
8
9

1
1
2

3
5
8

3
5
6

1
4
4

3
0
6

2
7
6

1
7

4
6

4
7

4
9

1
1
1

1
1
1

8
1

2
5
0

2
5
5

1
1
3

1
1

1
4
5

1
1
5

1
0
1

1
8

2
3
4

2
3
5

5
0

2
3
9

2
3
9

8
2

3
3
8

3
1
9

1
1
4

3
2
3

3
0
8

1
4
6

3
5
4

3
5
3

1
9

5
3

5
3

5
1

0
0

8
3

3
4
1

3
4
1

1
1
5

7
6

8
5

1
4
7

7
3

7
3

2
0

2
5
6

2
6
2

5
2

1
1

8
4

2
2

2
2

1
1
6

3
3
1

3
3
1

1
4
8

2
4
1

2
4
1

2
1

4
7

4
6

5
3

2
6
3

2
6
3

8
5

3
2
0

3
2
7

1
1
7

7
1

7
6

1
4
9

2
0

2
2
2

2
8
4

2
8
4

5
4

9
5

9
4

8
6

3
3
3

3
2
5

1
1
8

1
2
6

1
2
4

1
5
0

2
6
2

2
5
6

2
3

7
5

8
2

5
5

2
4
6

2
4
6

8
7

1
3

1
2

1
1
9

1
9
0

1
9
3

1
5
1

8
1

8
1

2
4

3
1
2

3
0
5

5
6

2
5

2
6

8
8

8
6

8
6

1
2
0

2
3
0

2
3
1

1
5
2

1
2
3

1
2
3

2
5

2
2

2
2

5
7

2
4
4

2
4
6

8
9

2
3
6

2
8
2

1
2
1

0
0

1
5
3

3
2
5

3
3
3

2
6

2
6
9

2
6
0

5
8

5
9

6
6

9
0

0
0

1
2
2

0
0

1
5
4

2
2

5
1

2
7

1
1
0

1
1
6

5
9

2
9
7

2
9
6

9
1

1
5

1
6

1
2
3

1
1

1
5
5

1
5
1

1
5
5

2
8

2
7
7

2
7
7

6
0

5
4

9
2

2
9
7

2
9
8

1
2
4

1
0
6

1
0
6

1
5
6

2
7
5

2
6
9

2
9

0
0

6
1

1
2
6

1
2
5

9
3

1
9

1
2
5

2
6
8

2
4
0

1
5
7

9
5

9
3

3
0

0
0

6
2

0
0

9
4

3
4
5

3
4
5

1
2
6

2
4

2
4

3
1

6
1

7
1

6
3

0
0

9
5

0
0

1
2
7

1
3
2

1
3
9

3
2

2
5
9

2
3
4

6
4

0
0

9
6

0
0

1
2
8

2
5
1

2
4
4

T
a
b

le
7
.2

:
T

h
e

b
es

t
so

lu
ti

on
s

o
b

ta
in

ed
b
y

th
e

D
S

S
fo

r
th

e
E

sk
om

ca
se

st
u

d
y

u
si

n
g

b
ot

h
ob

je
ct

iv
e

fu
n

ct
io

n
s.

“S
q
u

ar
es

”
in

d
ic

at
es

th
e

so
lu

ti
on

co
rr

es
p

on
d

in
g

to
th

e
su

m
of

sq
u

ar
es

ob
je

ct
iv

e
fu

n
ct

io
n

,
w

h
il

e
“A

b
so

lu
te

d
iff

er
en

ce
s”

in
d

ic
at

es
th

e
so

lu
ti

on
co

rr
es

p
on

d
in

g
to

th
e

su
m

of
ab

so
lu

te
d

iff
er

en
ce

s
ob

je
ct

iv
e

fu
n

ct
io

n
.

Stellenbosch University  http://scholar.sun.ac.za



7.4. Chapter summary 153

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

D
a y

Unit

F
ig

u
re

7
.9

:
T

h
e

b
es

t
m

ai
n
te

n
an

ce
sc

h
ed

u
le

fo
u

n
d

u
si

n
g

th
e

su
m

of
sq

u
ar

es
ob

je
ct

iv
e

fu
n

ct
io

n
fo

r
th

e
E

sk
om

ca
se

st
u

d
y.

Stellenbosch University  http://scholar.sun.ac.za



154 Chapter 7. The decision support system

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

D
a y

Unit

F
ig

u
re

7
.1

0
:

T
h

e
b

es
t

m
ai

n
te

n
an

ce
sc

h
ed

u
le

fo
u

n
d

u
si

n
g

th
e

su
m

of
ab

so
lu

te
d
iff

er
en

ce
s

ob
je

ct
iv

e
fu

n
ct

io
n

fo
r

th
e

E
sk

om
ca

se
st

u
d

y.

Stellenbosch University  http://scholar.sun.ac.za



7.4. Chapter summary 155

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

2

2
.53

3
.54

×
1
0

4

D
ay

Capacity(MW)

L
o
a
d

d
em

a
n
d

S
a
fe

t y
m

a
rg

in

A
va

il
a
b
le

ca
p
a
ci

ty

(a
)

S
u
m

o
f

sq
u
a
re

s
o
b

je
ct

iv
e

fu
n
ct

io
n

1
1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

2

2
.53

3
.54

×
1
0

4

D
ay

Capacity(MW)

L
o
a
d

d
em

a
n
d

S
a
fe

ty
m

a
rg

in

A
va

il
a
b
le

ca
p
a
ci

ty

(b
)

S
u
m

o
f

a
b
so

lu
te

d
iff

er
en

ce
s

o
b

je
ct

iv
e

fu
n
ct

io
n

F
ig

u
re

7
.1

1
:

T
h

e
lo

ad
d

em
an

d
,

sa
fe

ty
m

a
rg

in
an

d
av

a
il

a
b

le
ca

p
ac

it
ie

s
fo

r
th

e
b

es
t

so
lu

ti
on

s
u

n
d

er
b

ot
h

ob
je

ct
iv

e
fu

n
ct

io
n

s
fo

r
th

e
E

sk
om

ca
se

st
u

d
y.

Stellenbosch University  http://scholar.sun.ac.za



156 Chapter 7. The decision support system

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 8

Conclusion

Contents
8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3.1 Suggestions on modelling and formulating the GMS problem . . . . . . 160

8.3.2 Suggestions regarding the solution techniques of the GMS problem . . . 162

This chapter concludes the thesis with a summary of the work contained therein, a list of the
contributions of the thesis and finally, proposals for future work to further this study.

8.1 Thesis summary

In the introductory chapter to this thesis, a brief history of the generation and supply of electric-
ity was presented, including the so-called War of Currents between Thomas Edison’s DC power
supply and Nikola Tesla’s AC power supply. An informal problem description of the scheduling
problem considered in this thesis, called the generator maintenance scheduling (GMS) problem
in the literature, was presented in the second section of the chapter. This was followed by the
objectives that were persued during the work towards this thesis.

A comprehensive literature review on the GMS problem was presented in Chapter 2. The
chapter contained a discussion on the general modelling considerations that have to be addressed
before attempting to formulate a GMS model (in fulfilment of Thesis Objective I, as stated in
§1.3), followed by previously considered mathematical programming formulations of the various
constraint sets and objective functions typically associated with the GMS problem (in partial
fulfilment of Thesis Objective II). Formulations other than that of a mathematical programming
nature were briefly described, as well as extensions to the GMS problem which may be considered
(in final fulfilment of Thesis Objective II). The various solution techniques that had previously
been applied to the GMS problem were presented (in fulfilment of Thesis Objective III) which
included both exact and approximate solution approaches.

In Chapter 3, the GMS problem was placed in its proper context within the broader scope of
power system operations scheduling. The necessary problem assumptions were discussed and
motivated in order to develop a suitable GMS model within the scope of this thesis (in partial
fulfilment of Thesis Objective IV). Two models were derived, based on the constraint sets of the

157

Stellenbosch University  http://scholar.sun.ac.za



158 Chapter 8. Conclusion

GMS problem — a simple model which included only the essential constraint sets required for a
general GMS problem formulation, as well as a more advanced model which included additional
constraint sets. For each model, three mixed-integer mathematical programming formulations
were presented (in final fulfilment of Thesis Objective IV) which differed from one another
in their objective functions. Having the same goal, the objective functions were quadratic,
nonlinear and linear in nature.

The solution methodology adopted in this thesis was presented in Chapter 4. An exact solution
approach utilising a commercial off-the-shelf software package, was one of the adopted solution
methods and, hence the various algorithms employed by this software package were described.
The other solution method was approximate in nature and consisted of a random search heuristic
(functioning as a baseline method) and a simulated annealing algorithm (in partial fulfilment
of Thesis Objective V). Within the approximate approach towards solving the GMS problem, a
soft constraint approach was adopted, which meant that constraints were allowed to be violated,
subject to some corresponding penalty incursion. The algorithmic implementation designs of the
two approximate solution techniques were presented in the chapter, which included a description
on a so-called ejection chain neighbourhood move operator, newly proposed in the context of
GMS problems (in partial fulfilment of Thesis Objective VI). Additionally, two modifications to
the simulated annealing algorithm were proposed (in partial fulfilment of Thesis Objective V)
which revolved around the introduction of a local search heuristic applied to incumbent solutions
uncovered by the simulated annealing algorithm.

Three GMS benchmark test systems were presented in Chapter 5. Two of these systems had
previously been studied in the literature, while the third system was newly created. As a result of
the soft constraint approach adopted in the approximate solution approach, described in Chapter
4, penalty weight values had to be obtained for the constraint sets in each of the benchmark
test systems. The methodology for determining these penalty weights was presented and the
subsequent values of the penalty weights were determined for each test system. The approximate
solution techniques also contain several parameters which have to be fixed at appropriate values
in order for the techniques to perform optimally. However, these values are typically problem
instance-dependent. As such, the results of a comprehensive parameter optimisation process
was also presented for each test system.

Some of the main results of this thesis were presented in Chapter 6, where the solution methods
presented in Chapter 4 were applied to the benchmark test systems of Chapter 5 in order to
investigate the effectiveness of the variations in the approximate solution techniques, and to
solve the GMS benchmark test systems approximately. A performance analysis of the new
ejection chain neighbourhood move operator was also presented (in partial fulfilment of Thesis
Objective VI) and it was concluded that the operator was effective and yielded results that were
mostly superior to those obtained by using the classical neighbourhood move operator that had
previously been utilised in the literature. In addition, a performance analysis was also performed
with respect to the use of different cooling schedules within the simulated annealing algorithm
and in conjunction the proposed modifications to the simulated annealing algorithm (in final
fulfilment of Thesis Objective VI). A presentation of the best solutions found during work
towards this thesis for each benchmark test system concluded the chapter (in final fulfilment
of Thesis Objective V), indicating that the approximate solution approach was superior to the
exact solution approach.

In Chapter 7, a computerised decision support system for solving GMS problem instances in any
power system conforming to the models in Chapter 3, was introduced. The results in Chapters 5
and 6 were used to derive the penalty weight calculation procedure and the GMS solution

Stellenbosch University  http://scholar.sun.ac.za



8.2. Thesis contributions 159

methodology adopted in the DSS (in fulfilment of Thesis Objective VII). The appearance and
functionality of the DSS (as implemented on a personal computer) were described by means of
screenshots and bulleted procedural lists containing the steps to be followed by a user during the
solution process (in partial fulfilment of Thesis Objective VIII). Finally, the solutions obtained
by the DSS, when applied to a realistic case study provided by Eskom within the context of the
South African national power generation system, were presented (in final fulfilment of Thesis
Objective VIII) along with a brief discussion and interpretation of the DSS results. The DSS
computed a best solution with an objective function value only 5.7% away from the theoretical
lower bound associated with the problem instance, when using the sum of squares objective
function.

8.2 Thesis contributions

The main contributions of this thesis are outlined in this section.

Contribution 1: A modular constraint and objective function overview of GMS problem for-
mulations in the literature in §2.2.1 and §2.2.2.

A difficulty experienced by the author during his research towards this thesis, was that almost
all of the GMS models in the literature share some portion of formulation, but ultimately
differ from one another because the nature of the specific power systems under consideration,
and because the priorities of the electricity utilities differ. Therefore, different constraint sets
under different objective functions in a number of combinations are scattered throughout the
literature, making it a tedious and difficult task to investigate GMS models from one’s own
perspective. The literature review in this thesis is modular with respect to constraint sets and
objective functions instead of presenting entire GMS models as is typically done in the different
literature. Future researchers may benefit from this easy access to different formulations of a
specific constraint set or objective function.

Contribution 2: A mathematical programming formulation for load constraints in §3.3.1 and
crew constraints in §3.4.1 which requires binary starting decision variables and do not require
any sets to be defined.

The author could not find the constraint set formulations (3.6) or (3.26) in GMS literature and
therefore these are assumed to be newly proposed in this thesis. The first advantage of these
formulations lies in the fact that the decision variables xi,j are the only variables required. As a
result, the auxiliary variables yi,j need not be introduced into a model formulation which would
otherwise have doubled in number of variables. As illustrated §2.2.1, other formulations using
only the decision variables xi,j do exist for these constraint sets. However, (2.13) and (2.17)
require the definition of three groups of sets (the total number of sets being n + nm + m) in
order to achieve the same result as (3.6) and (3.26). Herein lies the second advantage of the
formulations in this thesis — the parameters g′p,i,j and m′p,i,j replace the need for numerous sets
to be defined.

Contribution 3: A hybridised simulated annealing algorithm utilising a new neighbourhood
move operator in the context of generator maintenance scheduling in §4.2.

The standard simulated annealing algorithm, previously used in the literature for solving a
GMS problem, was improved upon by the utilisation of an ejection chain neighbourhood move
operator and a hybridisation with a local search heuristic, utilising the classical neighbourhood
move operator. In the performance analysis in §6.2, it was concluded that the ejection chain

Stellenbosch University  http://scholar.sun.ac.za



160 Chapter 8. Conclusion

neighbourhood move operator performed superior to the classical neighbourhood move operator
in highly constrained systems. The hybridisation consistently improved upon most incumbent
solutions obtained by the standard SA algorithm, as presented in §6.3.

Contribution 4: A new GMS benchmark test system in §5.1.3.

The literature on generator maintenance scheduling contains very few benchmark test systems,
probably due to the fact that the majority of research is conducted with respect to specific
(different) power system problem instances. A new benchmark test system was introduced in
this thesis with constraints for maintenance windows, meeting of load demand, adherence to a
safety margin, the availability of maintenance crew (or general resource) and general exclusion
constraints. This test system may be used in future GMS research.

Contribution 5: An investigation into the effectiveness of different cooling schedules in a
simulated annealing algorithm within the context of solving GMS problems in §6.1.

The author could find no reference in the GMS literature of simulated annealing algorithms
utilising any cooling schedule other than the geometric schedule, or any indication that experi-
mentation with various schedules had been performed, finding that the geometric schedule was
the superior schedule. Therefore, this investigation into four different cooling schedules within
a GMS context was the first of its kind and it revealed very useful results, as concluded in §6.1.

Contribution 6: A computerised GMS decision support tool in Chapter 7.

The main contribution of this thesis is a computerised decision support system capable of solving
GMS problem instances for any power system conforming to the general model formulation (A.1)
or (A.2). A power system operations scheduler tasked with GMS may utilise this DSS to assist
him/her by suggesting good maintenance schedules.

8.3 Future work

A number of suggestions for possible future work with respect to the GMS problem, which
emerged during the compilation of this thesis, are presented in this section. Two categories of
suggestions arose: the first category is concerned with the modelling and formulation of the
GMS problem itself, while the second category is concerned with the solution techniques for the
GMS problem.

8.3.1 Suggestions on modelling and formulating the GMS problem

The GMS problem encompasses such a large array of dynamics within a power system that
its modelling considerations are rather extensive. A number of suggestions towards future
possibilities to extend and/or improve upon the GMS model and formulation adopted in this
thesis are presented below.

Suggestion 1: Consider incorporating unplanned maintenance allowances.

One of the reasons why a power system retains a specific reserve safety margin throughout
the year, is to ensure it can accommodate unforeseen reductions in power supply. Extraneous
events may cause a generating unit to break down and require reactive maintenance. Such
maintenance is referred to as unplanned maintenance and it is an unavoidable part of the
functioning of any power system. As a result, electricity utilities typically employ predictive
models so as to ensure a certain level of preparedness. The results of these predictive models may

Stellenbosch University  http://scholar.sun.ac.za



8.3. Future work 161

be incorporated into the GMS model to enhance the power system’s robustness with respect
to such events. Incorporating an unplanned maintenance allowance may take the form of a
stochastic variable modelling different properties for different generating units, which will result
in dimished capacity.

Suggestion 2: Consider incorporating the effect that deferred maintenance has on the perfor-
mance of a power generating unit.

The efficiency and reliability of a generating unit is directly related to its regular preventative
maintenance. As units grow older or run at very high output levels for a long period of time,
these preventative maintenance occurrences become vital to the effective functioning of the unit.
Therefore, should the planned maintenance of a unit be deferred for some reason, a negative
effect is incurred on that unit. This negative effect is twofold: firstly, the power generating
effiency of the unit may deminish to a level below its expected contributing capacity, and
secondly, the risk of an unforeseen break-down increases and the predictive models relating to
unplanned maintenance for the unit are rendered deficient. In order to incorporate these deferred
maintenance effects into the GMS model, models which provide the correlation between the
actual service time beyond maintenance date and power output efficiency, as well as between
the actual service time beyond maintenance date and the failure rate of a unit have to be
developed. These models may then be included in the GMS model.

Suggestion 3: Consider a frequency-based maintenance outage formulation.

Current formulations of GMS problems in the literature explicitly specify a time window during
which a unit is required to undergo maintenance. However, these window specifications are
calculated from each generating unit’s maintenance frequency (typically specified by the man-
ufacturer), when it completed its previous maintenance outage and some subjective range of
acceptable time periods that may pass before the unit is expressly required to undergo mainte-
nance. The subjective element in this process may be circumvented if the frequency of mainte-
nance is modelled instead of specified windows. In such a model, the formulation would require a
minimum number of time periods to pass between maintenance outages of a unit; the maximum
number of time periods to pass between maintenance outages is addressed by the frequency
of maintenance itself. Solving the problem would then result in a schedule where the mainte-
nance outages are automatically spread out correctly, not being subjected to the possibility of
ill-defined and hampering windows.

Suggestion 4: Consider a multiobjective modelling approach.

During the initial stages of research conducted towards this thesis, interviews with an Eskom
employee [61] revealed their need for the assurance of reliability in the South African power
system during the planned maintenance outages of generating units. Economic considerations
were deemed to be subservient to their reliability concerns. It was also evident from correspon-
dence with this employee that it would be very challenging to obtain the necessary economic
data required for an economic optimality criterion. Therefore, the decision was made to em-
ploy a single objective reliability-orientated modelling approach to the GMS problem, since the
final decision support system was to be beneficial from a South African viewpoint. Much later
(very near the completion date of this thesis), however, correspondence with another Eskom
employee [67] revealed that the minimisation of production costs should also be a priority. At
this stage there was not sufficient time remaining to incorporate changes to the general mod-
elling approach. However, a multiobjective modelling approach, considering both reliability and
production costs as objectives, would be of great interest and functionality as a possible future
enhancement to the GMS model adopted in this thesis. Success in this respect has also been

Stellenbosch University  http://scholar.sun.ac.za



162 Chapter 8. Conclusion

achieved in the literature in terms of modelling multiobjective goals by means of fuzzy sets
within a GMS context.

Suggestion 5: Consider deriving an integrated model containing components of the power sys-
tem operations scheduling problem other than just the GMS subproblem.

In the literature the GMS problem has typically been considered as a segregated problem within
the context of power system operations scheduling, mainly because it lies much higher in the
temporal hierarchy of operations scheduling than do UC or ED problems. However, an inte-
grated model would represent the more realistic modelling approach as there is unquestion-
ably feedback between the various problems contained in operations scheduling. As computing
power increases over time, the drawback of increased problem dimensions when considering an
integrated approach is expected to become less of a constraining factor. Furthermore, since
transmission constraints have been included in recent GMS models, a limited form of the UC
problem already had to be considered in such models. One may as well include the entire scope
of the UC problem in those cases. An integrated model would provide interesting results, as
it would increase the accuracy of the GMS and transmission maintenance solutions, as well as
provide a good baseline solution for the UC problem. Unfortunately, the UC problem would
need additional attention as the level of detail provided by an integrated model would not nec-
essarily be good enough for the UC problem. The ED problem requires an even greater level of
detail, specifically in the temporal domain. Therefore, the computing power would have to be
extremely powerful in order to incorporate ED into the model as well.

8.3.2 Suggestions regarding the solution techniques of the GMS problem

The realm of combinatorial solution techniques is vast and there surely exist methods which may
obtain better solutions than the method adopted in this thesis. Two suggestions for possible
future study in terms of solution methodology for the GMS problem are presented in this section.

Suggestion 6: Consider the use of Monte Carlo simulation for modelling uncertainty in capacity
and/or demand.

A concern in any GMS model is the uncertainty present in much of the data, such as uncertain
demand and variable generating capacity levels. Deterministic formulations can only attempt to
accommodate these uncertainties by including as many parameter variations into the formulation
as possible (e.g. instead of using a generating capacity gi for unit i, one may consider using a
generating capacity gi,j for unit i during time period j). Both instances are deterministic, but
the latter contains the option of different values for the same unit during different times over the
planning period. The appeal of deterministic formulations lies in the fact that they are easier
to formulate and to solve, since deterministic solution methods may be utilised.

In order to preserve the advantage of the deterministic formulation and solution technique,
but still introduce a deeper level of uncertainty into the problem, one may consider using
Monte Carlo simulation. The generating capacities and/or load demand of the power system
may be replaced by randomly drawn values (according to some probability distribution to be
determined) and may be solved deterministically, thereby creating one step in a Monte Carlo
simulation. Such a Monte Carlo method approach will lend more realism to the model while
retaining the advantages of a deterministic formulation and solution method. However, the
drawback in such an approach is the potential that it may become very time consuming. This
depends on the problem dimensions and the efficiency of the solution algorithm, since many
problem instances need to be solved for a Monte Carlo simulation in order to provide adequate
results.

Stellenbosch University  http://scholar.sun.ac.za



8.3. Future work 163

Suggestion 7: Consider the use of hyperheuristic solution methods.

It has been well established in the literature that metaheuristic methods perform very well
in solving instances of the GMS problem. The simulated annealing algorithm used in this
thesis, further demonstrates this observation. Furthermore, this good level of performance is
not limited to one or two methods, but also apply to genetic algorithms, tabu searches, and
ant colony optimisation. A number of hybridisations have also performed very successfully. A
natural next step would be to consider a heuristic approach at a higher level than than that
of metaheuristics in order to solve the GMS problem. According to [94], a hyperheuristic is a
heuristic search method that seeks to automate the process of selecting, combining, generating
or adapting several simpler heuristic methods (or components of heuristic methods) so as to
efficiently solve computational search problems.

Considering the effectiveness of the various metaheuristic methods in solving the GMS problem,
these methods may be employed as the “simpler heuristics” contained in a hyperheuristic.
The fact that GMS models vary in almost every new study from those previously considered,
reinforces the suggestion of adopting a hyperheuristic solution framework for the GMS problem,
since the aim of hyperheuristics is to search for a “generally applicable methodology [94]” which
is able to accommodate classes of problems (e.g. the GMS class of problems) rather than being
capable of solving just one problem instance. Such a methodology, in all likelihood, would
perform very well in a GMS decision support system.

Stellenbosch University  http://scholar.sun.ac.za



164 Chapter 8. Conclusion

Stellenbosch University  http://scholar.sun.ac.za



Bibliography

[1] Ahmad A & Kothari DP, 1998, A review of recent advances in generator maintenance
scheduling, Electric Power Components and Systems, 26(4), pp. 373–387.

[2] Ahmad A & Kothari DP, 2000, A practical model for generator maintenance scheduling
with transmission constraints, Electric Power Components and Systems, 28(6), pp. 501–
513.

[3] Alardhi M & Labib AW, 2008, Preventive maintenance scheduling of multi-
cogeneration plants using integer programming, Journal of the Operational Research So-
ciety, 59(4), pp. 503–509.

[4] Albrecht PF, Bhavaraju MP, Biggerstaff BE, Billington R, Jorgensen GE,
Reppen ND & Shortley PB, 1979, IEEE Reliability test system, IEEE Transactions
on Power Apparatus and Systems, PAS-98(6), pp. 2047–2054.

[5] Allan RN, Billinton R & Abdel-Gawad NMK, 1986, The IEEE Reliability test
system — Extensions to and evaluation of the generating system, IEEE Transactions on
Power Systems, PWRS-1(4), pp. 1–7.

[6] Arueti S & Okrent D, 1990, A knowledge-based prototype for optimization of preventive
maintenance scheduling, Reliability Engineering and System Safety, 30, pp. 93–114.

[7] Bergesen C, 2011, The world’s largest power plants, [Online], [Cited August 30th, 2011],
Available from http://www.industcards.com/top-100-pt-1.htm.

[8] Black PE, 2009, Dictionary of algorithms and data structures, [Online], [Cited Septem-
ber 10th, 2010], Available from http://www.itl.nist.gov/div897/sqg/dads/HTML/

metaheuristic.html.

[9] Burke EK, Clark JA & Smith AJ, 1998, Four methods for maintenance scheduling,
Proceedings of the International Conference on Artificial Neural Networks and Genetic
Algorithms, Springer, New York (NY), pp. 264–269.

[10] Burke EK & Smith AJ, 2000, Hybrid evolutionary techniques for the maintenance
scheduling problem, IEEE Transactions on Power Systems, 15(1), pp. 122–128.

[11] Canto SP, 2008, Application of Benders’ decomposition to power plant preventive main-
tenance scheduling, European Journal of Operational Research, 184, pp. 759–777.

[12] china guide — about beautiful country, 2011, The Three Gorges Dam, [On-
line], [Cited August 30th, 2011], Available from http://www.china-consulates.com/

gallery/the-three-gorges-dam-nsGI8.html.

165

Stellenbosch University  http://scholar.sun.ac.za



166 BIBLIOGRAPHY

[13] Contaxis GC, Kavatza SD & Vournas CD, 1989, An interactive package for risk eval-
uation and maintenance scheduling, IEEE Transactions on Power Systems, 4(2), pp. 389–
395.

[14] Dahal KP, Aldridge CJ & McDonald JR, 1999, Generator maintenance scheduling
using a genetic algorithm with a fuzzy evaluation function, Fuzzy Sets and Systems, 102,
pp. 21–29.

[15] Dahal KP & Chakpitak N, 2007, Generator maintenance scheduling in power sys-
tems using metaheuristic-based hybrid approaches, Electric Power Systems Research, 77,
pp. 771–779.

[16] Dahal KP & McDonald JR, 1997, Generational and steady state genetic algorithms
for generator maintenance scheduling problems, Paper presented at the International Con-
ference on Artificial Neural Networks and Genetic Algorithms, Norwich.

[17] Dahal KP & McDonald JR, 1997, A review of generator maintenance scheduling
using artificial intelligence techniques, Paper presented at the 32nd Universities Power
Engineering Conference (UPEC ’97), University of Manchester, Manchester.

[18] Dahal KP, McDonald JR & Burt GM, 2000, Modern heuristic techniques for schedul-
ing generator maintenance in power systems, Transactions of the Institute of Measurement
and Control, 22(2), pp. 179–194.

[19] Digalakis JG & Margaritis KG, 2002, A multipopulation cultural algorithm for the
electrical generator scheduling problem, Mathematics and Computers in Simulation, 60,
pp. 293–301.

[20] Dréo J, Pétrowski A, Siarry P & Taillard E, 2006, Metaheuristics for hard opti-
mization — Methods and case studies, Springer-Verlag, Berlin.

[21] Edwin KW & Curtius F, 1990, New maintenance-scheduling method with production
cost minimization via integer linear programming, Electrical Power & Energy Systems,
12(3), pp. 165–170.

[22] Eglese RW, 1990, Simulated annealing: A tool for operational research, European Jour-
nal of Operational Research, 46, pp. 271–281.

[23] El-Amin I, Duffuaa S & Abbas M, 2000, A tabu search algorithm for maintenance
scheduling of generating units, Electric Power Systems Research, 54, pp. 91–99.

[24] El-Sharkh MY & El-Keib AA, 2003, An evolutionary programming-based solution
methodology for power generation and transmission maintenance scheduling, Electric
Power Systems Research, 65, pp. 35–40.

[25] El-Sharkh MY, El-Keib AA & Chen H, 2003, A fuzzy evolutionary programming-
based solution methodology for security-constrained generation maintenance scheduling,
Electric Power Systems Research, 67, pp. 67–72.

[26] Escudero LF, Horton JW & Scheiderich JF, 1980, On maintenance scheduling for
energy generators, Proceedings of the IEEE-PES Winter Meeting, New York (NY), (IEEE
Catalog 80 CH-1523-0 PWR, paper A-90-11-7).

Stellenbosch University  http://scholar.sun.ac.za



BIBLIOGRAPHY 167

[27] Eskom Holdings Limited, 2008, Eskom Holdings Limited: Annual report 2008, [On-
line], [Cited August 31st, 2011], Available from http://www.financialresults.co.za/

eskom ar2008/ar 2008/downloads.htm.

[28] Eskom Holdings Limited, 2010, Eskom Holdings Limited: Integrated Report 2010,
[Online], [Cited September 3rd, 2010], Available from http://www.eskom.co.za/

annreport10/.

[29] Foong WK, 2007, Ant colony optimisation for power plant maintenance scheduling, Doc-
toral Dissertation, The University of Adelaide, Adelaide.

[30] Foong WK, Maier HR & Simpson AR, 2005, Ant colony optimization for power plant
maintenance scheduling optimization, Proceedings of the 2005 conference on Genetic and
evolutionary computation (GECCO ’05), ACM, New York (NY), pp. 249–256.

[31] Foong WK, Maier HR & Simpson AR, 2008, Power plant maintenance scheduling us-
ing ant colony optimization: An improved formulation, Engineering Optimization, 40(4),
pp. 309–329.

[32] Foong WK, Simpson AR, Maier HR & Stolp S, 2008, Ant colony optimization for
power plant maintenance scheduling optimization — A five-station hydropower system,
Annals of Operations Research, 159, pp. 433–450.

[33] Frost D & Dechter R, 1998, Optimizing with constraints: A case study in scheduling
maintenance of electric power units, Proceedings of the 4th International Conference on
Principles and Practice of Constraint Programming, Springer-Verlag, London, pp. 469–
488.

[34] Geetha T & Swarup KS, 2009, Coordinated preventive maintenance scheduling of
GENCO and TRANSCO in restructured power systems, Electrical Power & Energy Sys-
tems, 31, pp. 626–638.

[35] Grigg C, Wong P, Albrecht P, Allan R, Bhavaraju M, Billinton R, Chen Q,
Fong C, Haddad S, Kuruganty S, Li W, Mukerji R, Patton D, Rau N, Rep-
pen D, Schneider A, Shahidehpour M & Singh C, 1999, The IEEE Reliability test
system — 1996, IEEE Transactions on Power Systems, 14(3), pp. 1010–1020.

[36] Huang CJ, Lin CE & Huang CL, 1992, Fuzzy approach for generator maintenance
scheduling, Electric Power Systems Research, 24, pp. 31–38.

[37] Huang MD, Romeo F & Sangiovanni-Vincentelli AL, 1986, An efficient general
cooling schedule for simulated annealing, Proceedings of the IEEE International Confer-
ence on Computer-Aided Design, IEEE, Santa Clara (CA), pp. 381–384.

[38] Huang SJ, 1997, Generator maintenance scheduling: A fuzzy system approach with ge-
netic enhancement, Electric Power Systems Research, 41, pp. 233–239.

[39] Huang SJ, 1998, A genetic-evolved fuzzy system for maintenance scheduling of generating
units, Electrical Power & Energy Systems, 20(3), pp. 191–195.

[40] Ignizio JP, 1982, Linear programming in single- & multiple-objective systems, Prentice-
Hall International Series in Industrial and Systems Engineering, Prentice-Hall, Englewood
Cliffs (NJ).

Stellenbosch University  http://scholar.sun.ac.za



168 BIBLIOGRAPHY

[41] Kim H, Hayashi Y & Nara K, 1997, An algorithm for thermal unit maintenance schedul-
ing through combined use of GA, SA and TS, IEEE Transactions on Power Systems, 12(1),
pp. 329–335.

[42] Kim JH, Park JB, Park JK & Chun YH, 2005, Generating unit maintenance schedul-
ing under competitive market environments, Electrical Power & Energy Systems, 27,
pp. 189–194.

[43] Klee V & Minty GJ, 1972, How good is the simplex algorithm?, Proceedings of the
Third Symposium on Inequalities (Inequalities III), Academic Press, New York (NY),
pp. 159–175.

[44] Kolb J, 2004, ESCOM 1923–1929: The early years of establishment, [Online],
[Cited August 31st, 2011], Available from http://heritage.eskom.co.za/heritage/

escom 1923.htm.

[45] Kolb J, 2009, Eskom 2000–2008: Our recent past, [Online], [Cited August 31st, 2011],
Available from http://heritage.eskom.co.za/heritage/eskom 2000.htm.

[46] Kralj BL & Petrović R, 1988, Optimal preventive maintenance scheduling of ther-
mal generating units in power systems — A survey of problem formulations and solution
methods, European Journal of Operational Research, 35, pp. 1–15.

[47] Kralj BL & Petrović R, 1995, A multiobjective optimization approach to thermal
generating units maintenance scheduling, European Journal of Operational Research, 84,
pp. 481–493.

[48] Kralj BL & Rajaković N, 1994, Multiobjective programming in power system opti-
mization: New approach to generator maintenance scheduling, Electrical Power & Energy
Systems, 16(4), pp. 211–220.

[49] Kuzle I, Pandzic H & Brezovec M, 2007, Implementation of the benders decompo-
sition in hydro generating units maintenance scheduling, Paper presented at the Hydro
2007 Conference: New Approaches for a New Era, Cairns.

[50] Land AH & Doig AG, 1960, An automatic method of solving discrete programming
problems, Econometrica, 28(3), pp. 497–520.

[51] Leou RC, 2006, A new method for unit maintenance scheduling considering reliability
and operation expense, Electrical Power & Energy Systems, 28, pp. 471–481.

[52] Lin CE, Huang CJ, Huang CL, Liang CC & Lee SY, 1992, An expert system for
generator maintenance scheduling using operation index, IEEE Transactions on Power
Systems, 7(3), pp. 1141–1148.

[53] LINDO Systems Inc, 2005, LINGO 9.0 — Optimisation modelling tool for linear,
non-linear, and integer modelling, [Online], [Cited September 9th, 2010], Available from
http://www.lindo.com.

[54] LINDO Systems Inc, 2008, LINGO user’s guide, LINDO Systems Inc, Chicago (IL).

[55] LINDO Systems Inc, 2009, LINGO 11.0.1.3 — Optimisation modelling tool for linear,
non-linear, and integer modelling, [Online], [Cited September 9th, 2010], Available from
http://www.lindo.com.

Stellenbosch University  http://scholar.sun.ac.za



BIBLIOGRAPHY 169

[56] LINDO Systems Inc, 2011, Powerful LINGO solvers, [Online], [Cited June 25th,
2011], Available from http://www.lindo.com/index.php?view=article&catid=4%

3Alingo&id=13% 3Apowerful-lingo-solvers&option=com content&Itemid=3.

[57] Lootsma FA, 1997, Fuzzy logic for planning and decision making, Volume 8 of Applied
Optimization, Kluwer Academic Publishers, Dordrecht.

[58] Luenberger DG & Ye Y, 2008, Linear and nonlinear programming, 3rd Edition,
Springer, New York (NY).

[59] Marwali MKC & Shahidehpour SM, 1998, A deterministic approach to generation
and transmission maintenance scheduling with network constraints, Electric Power Sys-
tems Research, 47, pp. 101–113.

[60] Marwali MKC & Shahidehpour SM, 1999, A probabilistic approach to generation
maintenance scheduler with network constraints, Electrical Power & Energy Systems, 21,
pp. 533–545.

[61] Micali V, Corporate Consultant (Business Sciences) at Eskom, [Personal Communica-
tion], Contactable at Vince.Micali@eskom.co.za.

[62] Mohanta DK, Sadhu PK & Chakrabarti R, 2004, Fuzzy reliability evaluation of
power plant maintenance scheduling incorporating uncertain forced outage rate and load
representation, Electric Power Systems Research, 72, pp. 73–84.

[63] Mohanta DK, Sadhu PK & Chakrabarti R, 2007, Deterministic and stochastic ap-
proach for safety and reliability optimization of captive power plant maintenance scheduling
using GA/SA-based hybrid techniques: A comparison of results, Reliability Engineering
and System Safety, 92, pp. 187–199.

[64] Moro LM & Ramos A, 1999, Goal programming approach to maintenance scheduling
of generating units in large scale power systems, IEEE Transactions on Power Systems,
14(3), pp. 1021–1028.

[65] Mromlinski LR, 1985, Transportation problem as a model for optimal schedule of main-
tenance outages in power systems, Electrical Power & Energy Systems, 7(3), pp. 161–164.

[66] Mytakidis T & Vlachos A, 2008, Maintenance scheduling by using the bi-criterion
algorithm of preferential anti-pheromones, Leonardo Journal of Sciences, 12, pp. 143–164.

[67] Narotam R, Senior Advisor (Generation Division) at Eskom, [Personal Communication],
Contactable at NarotaR@eskom.co.za.

[68] Negnevitsky M & Kelareva G, 1999, Genetic algorithms for maintenance scheduling
in power systems, Proceedings of the Australasian Universities Power Engineering Con-
ference and IEAust Electric Energy Conference, Northern Territory University, Darwin,
pp. 184–189.

[69] Oxford Dictionaries Online, 2011, electricity, [Online], [Cited August 29th, 2011],
Available from http://oxforddictionaries.com/definition/electricity.

[70] Pages̀ A, Nabona N & Ferrer A, 2007, Joint solution to the long-term power gen-
eration planning and maintenance scheduling, Paper presented at the 23rd International
Federation for Information Processing TC7 Conference, Krakow.

Stellenbosch University  http://scholar.sun.ac.za



170 BIBLIOGRAPHY

[71] Pretorius V, 2010, What is system management, [Online], [Cited September 3rd, 2010],
Available from http://www.eskom.co.za/live/content.php?Category ID=759.

[72] Saraiva JT, Pereira ML, Mendes VT & Sousa JC, 2011, A simulated annealing
based approach to solve the generator maintenance scheduling problem, Electric Power
Systems Research, Article in Press.

[73] Satoh T & Nara K, 1991, Maintenance scheduling by using simulated annealing method,
IEEE Transactions on Power Systems, 6, pp. 850–857.

[74] Sen S & Kothari DP, 1998, Optimal thermal generating unit commitment: A review,
Electrical Power & Energy Systems, 20(7), pp. 443–451.

[75] Sergaki A & Kalaitzakis K, 2002, A fuzzy knowledge based method for maintenance
planning in a power system, Reliability Engineering and System Safety, 77, pp. 19–30.

[76] Taşkın ZC, 2010, Benders decomposition, in Cochran JJ (Ed), Wiley Encyclopedia of
Operations Research and Management Science. John Wiley & Sons, Malden (MA).

[77] The MathWorks Inc, 2009, MATLAB R2009a — The language of technical computing,
[Online], [Cited September 9th, 2010], Available from http://www.mathworks.com.

[78] Toth P & Vigo D, 2002, The Vehicle Routing Problem, SIAM, Philadelphia (PA).

[79] Triki E, Collette Y & Siarry P, 2005, A theoretical study on the behaviour of sim-
ulated annealing leading to a new cooling schedule, European Journal of Operational Re-
search, 166, pp. 77–92.

[80] USA Today, 2007, China’s Three Gorges Dam to require more moves, [Online],
[Cited August 30th, 2011], Available from http://www.usatoday.com/news/world/

2007-10-12-china-dam N.htm.

[81] Van Laarhoven PJM & Aarts EHL, 1987, Simulated annealing: Theory and applica-
tions, Reidel, Dordrecht.

[82] Volkanovski A, Mavko B, Boševski T, Čauševski A & Čepin M, 2008, Genetic al-
gorithm optimisation of the maintenance scheduling of generating units in a power system,
Reliability Engineering and System Safety, 93, pp. 757–767.

[83] Wang Y & Handschin E, 2000, A new genetic algorithm for preventive unit maintenance
scheduling of power systems, Electrical Power & Energy Systems, 22, pp. 343–348.

[84] Wikipedia The Free Encyclopedia, 2010, Genotype-phenotype distinction, [On-
line], [Cited September 10th, 2010], Available from http://en.wikipedia.org/

wiki/Genotype-phenotype distinction.

[85] Wikipedia The Free Encyclopedia, 2011, Almarian Decker, [Online], [Cited August
30th, 2011], Available from http://en.wikipedia.org/wiki/Almarian Decker.

[86] Wikipedia The Free Encyclopedia, 2011, Alternating current, [Online],
[Cited August 30th, 2011], Available from http://en.wikipedia.org/wiki/

Alternating current.

[87] Wikipedia The Free Encyclopedia, 2011, Assignment problem, [Online], [Cited Jan-
uary 18th, 2011], Available from http://en.wikipedia.org/wiki/Assignment problem.

Stellenbosch University  http://scholar.sun.ac.za



BIBLIOGRAPHY 171

[88] Wikipedia The Free Encyclopedia, 2011, Electric generator, [Online], [Cited August
29th, 2011], Available from http://en.wikipedia.org/wiki/Electrical generator.

[89] Wikipedia The Free Encyclopedia, 2011, Electric power industry, [On-
line], [Cited August 29th, 2011], Available from http://en.wikipedia.org/wiki/

Electric power industry.

[90] Wikipedia The Free Encyclopedia, 2011, Electricity, [Online], [Cited August 29th,
2011], Available from http://en.wikipedia.org/wiki/Electricity.

[91] Wikipedia The Free Encyclopedia, 2011, Electrolytic cell, [Online], [Cited August
29th, 2011], Available from http://en.wikipedia.org/wiki/Electrolytic cell.

[92] Wikipedia The Free Encyclopedia, 2011, Etymology of electricity, [On-
line], [Cited August 29th, 2011], Available from http://en.wikipedia.org/wiki/

Etymology of electricity.

[93] Wikipedia The Free Encyclopedia, 2011, Grand Inga Dam, [Online], [Cited August
30th, 2011], Available from http://en.wikipedia.org/wiki/Grand Inga Dam.

[94] Wikipedia The Free Encyclopedia, 2011, Hyper-heuristic, [Online], [Cited September
1st, 2011], Available from http://en.wikipedia.org/wiki/Hyper-heuristic.

[95] Wikipedia The Free Encyclopedia, 2011, Linderhof Palace, [Online], [Cited August
30th, 2011], Available from http://en.wikipedia.org/wiki/Linderhof Palace.

[96] Wikipedia The Free Encyclopedia, 2011, Power station, [Online], [Cited August
29th, 2011], Available from http://en.wikipedia.org/wiki/Power station.

[97] Wikipedia The Free Encyclopedia, 2011, Successive linear programming, [On-
line], [Cited July 28th, 2011], Available from http://en.wikipedia.org/wiki/

Successive linear programming.

[98] Wikipedia The Free Encyclopedia, 2011, Thomas Edison, [Online], [Cited August
30th, 2011], Available from http://en.wikipedia.org/wiki/Thomas Edison.

[99] Wikipedia The Free Encyclopedia, 2011, Travelling salesman problem, [On-
line], [Cited January 18th, 2011], Available from http://en.wikipedia.org/wiki/

Travelling salesman problem.

[100] Wikipedia The Free Encyclopedia, 2011, Voltaic pile, [Online], [Cited August 29th,
2011], Available from http://en.wikipedia.org/wiki/Voltaic pile.

[101] Wikipedia The Free Encyclopedia, 2011, War of Currents, [Online], [Cited August
30th, 2011], Available from http://en.wikipedia.org/wiki/War of Currents.

[102] Winston WL, 2004, Operations research: Applications and algorithms, 4th Edition,
Brooks/Cole, Belmont (CA).

[103] WolframAlpha computational knowledge engine, 2011, Africa elec-
tricity consumption, [Online], [Cited August 30th, 2011], Available from
http://www.wolframalpha.com/input/?i=Africa+electricity+consumption.

[104] Yamayee Z, Sidenblad K & Yoshimura M, 1983, A computationally efficient optimal
maintenance scheduling method, IEEE Transaction on Power Apparatus and Systems,
PAS-102(2), pp. 330–338.

Stellenbosch University  http://scholar.sun.ac.za



172 BIBLIOGRAPHY

[105] Yamayee ZA, 1982, Maintenance scheduling: Description, literature survey, and interface
with overall operations scheduling, IEEE Transaction on Power Apparatus and Systems,
PAS-101(8), pp. 2770–2779.

[106] Zhao Y, Volovoi V, Waters M & Mavris D, 2006, A sequential approach for gas
turbine power plant preventative maintenance scheduling, Journal of Engineering for Gas
Turbines and Power, 128, pp. 796–805.

[107] Zurn HH & Quintana VH, 1975, Generator maintenance scheduling via successive ap-
proximations dynamic programming, IEEE Transaction on Power Apparatus and Systems,
PAS-94(2), pp. 665–671.

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A

Advanced problem formulations

This appendix contains the three problem formulations for the more advanced GMS model
presented in §3.4.

A.1 Mixed-integer quadratic program

The fourth GMS problem formulation in §3.4.2 extends the problem formulation (3.12) and is
the MIQP in which the objective is to

minimise

m∑

j=1

(DjS + rj)
2 (A.1)

subject to the constraints

`i∑

j=ei

xi,j = 1, i ∈ I

xi,j = 0, j < ei or j > `i, i ∈ I
yi,j = 0, j < ei or j > `i + di − 1, i ∈ I

`i+di−1∑

j=ei

yi,j = di, i ∈ I

yi,j − yi,j−1 ≤ xi,j , i ∈ I, j ∈ J \{1}
yi,1 ≤ xi,1, i ∈ I

n∑

i=1

gi,j(1− yi,j) = Dj(1 + S) + rj , j ∈ J

n∑

i=1

j∑

p=1

m′p,i,jxi,p ≤Mj , j ∈ J
∑

i∈Ik

yi,j ≤ Kk, j ∈ J , k ∈ K

xi,j , yi,j ∈ {0, 1}, i ∈ I, j ∈ J
rj ≥ 0, j ∈ J .

173

Stellenbosch University  http://scholar.sun.ac.za



174 Appendix A. Advanced problem formulations

A.2 Mixed-integer nonlinear program

The fifth GMS problem formulation in §3.4.2 extends the problem formulation (3.15) to the
MINP in which the objective is to

minimise
m∑

j=1

|DjS + rj − r| (A.2)

subject to the constraints

r =
1

m

m∑

j=1

DjS + rj

`i∑

j=ei

xi,j = 1, i ∈ I

xi,j = 0, j < ei or j > `i, i ∈ I
yi,j = 0, j < ei or j > `i + di − 1, i ∈ I

`i+di−1∑

j=ei

yi,j = di, i ∈ I

yi,j − yi,j−1 ≤ xi,j , i ∈ I, j ∈ J \{1}
yi,1 ≤ xi,1, i ∈ I

n∑

i=1

gi,j(1− yi,j) = Dj(1 + S) + rj , j ∈ J

n∑

i=1

j∑

p=1

m′p,i,jxi,p ≤Mj , j ∈ J
∑

i∈Ik

yi,j ≤ Kk, j ∈ J , k ∈ K

xi,j , yi,j ∈ {0, 1}, i ∈ I, j ∈ J
rj ≥ 0, j ∈ J .

Stellenbosch University  http://scholar.sun.ac.za



A.3. Mixed-integer linear program 175

A.3 Mixed-integer linear program

The sixth and final GMS problem formulation in §3.4.2 extends the problem formulation (3.19)
to the MILP in which the objective is to

minimise
m∑

j=1

oj + uj (A.3)

subject to the constraints

r =
1

m

m∑

j=1

DjS + rj

`i∑

j=ei

xi,j = 1, i ∈ I

xi,j = 0, j < ei or j > `i, i ∈ I
yi,j = 0, j < ei or j > `i + di − 1, i ∈ I

`i+di−1∑

j=ei

yi,j = di, i ∈ I

yi,j − yi,j−1 ≤ xi,j , i ∈ I, j ∈ J \{1}
yi,1 ≤ xi,1, i ∈ I

n∑

i=1

gi,j(1− yi,j) = Dj(1 + S) + rj , j ∈ J

n∑

i=1

j∑

p=1

m′p,i,jxi,p ≤Mj , j ∈ J
∑

i∈Ik

yi,j ≤ Kk, j ∈ J , k ∈ K

r = (DjS + rj) + uj − oj , j ∈ J
xi,j , yi,j ∈ {0, 1}, i ∈ I, j ∈ J
rj , oj , uj ≥ 0, j ∈ J .

Note that in all three problem formulations presented in this appendix, the crew constraint set
(3.26) is used and may be substituted with the alternative crew constraint set of (3.24), namely

n∑

i=1

mi,jyi,j ≤Mj , j ∈ J ,

depending on the requirements of the problem.

Stellenbosch University  http://scholar.sun.ac.za



176 Appendix A. Advanced problem formulations

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B

Pseudo-code listings

This appendix contains the pseudo-code listings of two algorithms that were touched upon in
Chapter 4, but which were not presented in the main text so as to improve for readability.

In Algorithm B.1, a pseudo-code listing of the GMS random search heuristic with the incorpo-
ration of the classical neighbourhood move operator is presented. The random search method’s
implementation is presented in §4.2.4 and Algorithm B.1 differs from Algorithm 4.5 only in its
neighbourhood structure.

A pseudo-code listing of the algorithmic implementation adopted in this thesis of the cooling
schedule proposed by Triki et al. [79], is presented in Algorithm B.2. It is a slight modification of
the original algorithm presented in [79]. The updating rule of the cooling schedule in question,
is the rule (4.11), as presented in §4.2.5.

177

Stellenbosch University  http://scholar.sun.ac.za



178 Appendix B. Pseudo-code listings

Algorithm B.1: The GMS random search heuristic with classical neighbourhood

Input: A power system scenario for which to solve the generator maintenance
scheduling problem

Output: The best maintenance schedule found

1 dataset ← declareSystemData()
2 [current, currentObj] ← generateRandomSolution(dataset)
3 [incumbent, incumbentObj] ← [current, currentObj]
4 iterationCounter ← 0
5 nonImproveCounter ← 0
6 while (iterationCounter < maxIteration) and (nonImproveCounter < maxNonImprove)

do
7 bestNeighbour ← ∅
8 bestNeighbourObj ← some very large number
9 moves ← createClassicalNeighbourhoodList (n, e, `,Wext)

10 moves ← randShuffle(moves)
11 for neighbourCounter ← 1 to neighbourhoodSize do
12 neighbour ← current
13 Apply moves(neighbourCounter) on neighbour to create new neighbour
14 P ← checkFeasibilityAndCalculatePenalty(neighbour, dataset)
15 Calculate neighbourObj
16 neighbourObj ← neighbourObj + P
17 if neighbourObj < bestNeighbourObj then
18 [bestNeighbour, bestNeighbourObj] ← [neighbour, neighbourObj]
19 end

20 end
21 if bestNeighbourObj < incumbentObj then
22 [incumbent, incumbentObj] ← [bestNeighbour, bestNeighbourObj]
23 nonImproveCounter ← 0

24 else
25 nonImproveCounter ← nonImproveCounter + 1
26 end
27 [current, currentObj] ← [bestNeighbour, bestNeighbourObj]
28 iterationCounter ← iterationCounter + 1

29 end

Stellenbosch University  http://scholar.sun.ac.za



179

Algorithm B.2: Simulated annealing with targeted average decrease in cost

1 dataset ← declareSystemData()
2 [current, currentObj ] ← generateRandomSolution(dataset)
3 [avgT0, stdT0] ← initialTemperature(current, currentObj, dataset)
4 T ← stdT0
5 σ ← stdT0
6 ∆← σ/µ2
7 negativeTemperature ← 0
8 reinitialising ← true
9 doGeometric ← false

10 while system not frozen do
11 Do the inner loop of SA and return the standard deviation // Metropolis loop

12 σ ← standard deviation
13 if doGeometric = false then
14 if reinitialising = false then
15 if currentAverageCost/(previousAverageCost−∆) > ζ then
16 equilibriumNotReached ← equilibriumNotReached + 1
17 else
18 equilibriumNotReached ← 0
19 end

20 end
21 if equilibriumNotReached > K1 then
22 reinitialising ← true
23 equilibriumNotReached ← 0
24 T ← geometricCooling(λ1, T ) // reheating (λ1 > 1)
25 ∆← σ/µ1
26 else if T∆/σ2 > 1 then
27 negativeTemperature ← negativeTemperature + 1
28 reinitialising ← true
29 if negativeTemperature < K2 then
30 T ← geometricCooling(λ1, T ) // reheating (λ1 > 1)
31 ∆← σ/µ1
32 else
33 doGeometric ← true
34 end

35 else
36 reinitialising ← false
37 previousAverageCost ← currentAverageCost
38 T ← TrikiCooling(∆, σ, T )

39 end

40 else
41 T ← geometricCooling(λ2, T )
42 end

43 end

Stellenbosch University  http://scholar.sun.ac.za



180 Appendix B. Pseudo-code listings

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX C

Alternative best solutions for
the 21-unit test system

In this appendix, a listing of all the alternative best solutions obtained in this study for the
21-unit test system, as stated in §6.4.2, is presented. The solutions are listed in Table C.1 in
column vector format.

Unit 01 02 03 04 05 06 07 08 09 10 11 12 13 14

1 1 5 5 9 6 1 5 3 8 4 2 6 1 2
2 42 42 39 47 47 42 40 47 27 27 45 27 33 30
3 15 13 13 17 14 15 13 11 16 12 16 14 15 10
4 26 26 23 1 5 19 4 1 4 25 1 1 22 1
5 28 27 31 34 27 47 35 33 32 42 38 48 27 48
6 19 23 24 6 2 20 24 24 1 22 20 3 23 20
7 22 2 2 3 24 23 1 21 5 1 23 24 19 23
8 36 35 46 27 40 35 46 27 44 47 27 40 46 42
9 8 12 12 16 13 8 12 10 15 11 9 13 8 9
10 9 15 15 19 16 9 15 13 18 14 10 16 9 12
11 25 1 1 2 1 26 23 2 26 26 26 2 26 26
12 33 32 36 39 37 28 32 43 41 38 50 33 38 27
13 7 11 11 15 12 7 11 9 14 10 8 12 7 8
14 11 17 17 21 18 11 17 15 20 16 12 18 11 14
15 4 9 9 13 10 5 9 7 12 8 6 10 5 6
16 17 21 21 25 22 17 21 19 24 20 18 22 17 18
17 48 48 45 33 36 52 45 46 51 41 44 32 45 41
18 46 46 51 51 51 40 51 51 49 31 32 45 51 34
19 27 41 44 42 46 27 31 42 52 33 43 47 32 40
20 49 49 27 43 32 31 27 38 37 34 34 36 41 36
21 1 6 6 10 7 2 6 4 9 5 3 7 2 3

Table C.1: List of alternative best solution vectors for the 21-unit system.

181

Stellenbosch University  http://scholar.sun.ac.za



182 Appendix C. Alternative best solutions for the 21-unit test system

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX D

Input format for the DSS

In this appendix, the specific format of the input data for the DSS, referred to in §7.2.2, is
illustrated in order to ensure that the DSS can read and solve a problem instance properly. As
stated in §7.2, the data input file is required to be a Microsoft Excel workbook. Four mandatory
worksheets are required in the workbook, having the specific sheetnames of: “System”, “Ca-
pacity”, “Demand” and “Windows.” Two optional worksheets may be appended, having the
specific sheetnames of “Crew” and “Exclusions,” should those constraint sets be present in the
problem being considered.

Figure D.1 contains a screenshot example of the “System” sheet and it contains the number of
units (n), the number of time periods during the planning horizon (m) and the maintenance
duration of each generating unit (di).

Figure D.1: Screenshot of the “System” worksheet in the DSS input file.

In Figure D.2, a screenshot example of the “Capacity” worksheet is presented. It contains the
capacity of each unit during each time period (gi,j) as well as the total additional capacity (i.e.
the repeated capacity), in the event of dummy units being present in the system.

The safety margin (S) and the peak load demand during each time period over the planning
horizon (Dj) are contained within the “Demand” worksheet. A screenshot example may be
found in Figure D.3.

183

Stellenbosch University  http://scholar.sun.ac.za



184 Appendix D. Input format for the DSS

Figure D.2: Screenshot of the “Capacity” worksheet in the DSS input file.

Figure D.3: Screenshot of the “Demand” worksheet in the DSS input file.

An example of the final mandatory worksheet entitled “Windows,” is illustrated in Figure D.4.
It contains the number of time periods by which window constraints may be violated (Wext) as
well as the earliest (ei) and latest (`i) maintenance starting times for each unit.

Figure D.4: Screenshot of the “Windows” worksheet in the DSS input file.

An example of the optional worksheet entitled “Crew,” is shown in Figure D.5. The maximum
available manpower during each time period (Mj) and the required manpower for maintenance
of each unit in its k-th week of maintenance (mk

i ) are contained in the worksheet.

Finally, Figure D.6 contains an example screenshot of the optional “Exclusions” worksheet. The
number of exclusion subsets (K), the subsets themselves (Ik), the maximum number of units

Stellenbosch University  http://scholar.sun.ac.za



185

Figure D.5: Screenshot of the “Crew” worksheet in the DSS input file.

within each subset that are allowed to be in simultaneous maintenance during any time period
(Kk) and a listing of which subset each unit belongs to are all contained in the worksheet.

Figure D.6: Screenshot of the “Exclusions” worksheet in the DSS input file.

These screenshots all illustrate the specific format of the input data, but more importantly, they
illustrate the specific cell locations in the Excel workbook (worksheet name and cell address)
where each data value has to lie or data range has to start. Failure to have the file in this
format may not necessarily result in an immediate error. However, when the penalty procedure
or solution algorithm commences, an incorrect data input will cause errors in the DSS.

Stellenbosch University  http://scholar.sun.ac.za



186 Appendix D. Input format for the DSS

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX E

System specifications of the case study

This appendix contains the data of the Eskom case study presented in §7.3. In Table E.1, the
generation system and maintenance specification are presented. The power system consists of
105 power generating units, as seen in the “Unit name” column of Table E.1. However, as stated
in §7.3, dummy units are added to the system for each additional maintenance outage of the
same unit. As a result, the data contains 157 units. The additional capacity of these dummy
units is 12 422 MW. Table E.3 contains the exclusion sets, while Table E.4 contains the daily
peak load demand of the power system.

Unit Capacity Earliest starting Latest starting Duration
Unit name (MW) time (day) time (day) (days)

1 A1 57 8 29 9
2 A1 57 15 29 2
3 A1 57 169 183 2
4 A1 57 281 295 2
5 A2 57 15 29 2
6 A2 57 15 36 9
7 A2 57 169 183 2
8 A2 57 281 295 2
9 A3 57 15 29 2
10 A3 57 29 50 9
11 A3 57 176 190 2
12 A3 57 288 309 7
13 B1 148 0 0 0
14 B2 148 0 0 0
15 B3 148 0 0 0
16 B4 148 0 0 0
17 C1 330 36 50 4
18 C1 330 225 239 4
19 C2 350 29 57 14
20 C2 350 253 267 4
21 C3 380 36 50 4
22 C3 380 281 295 4
23 C4 350 71 85 2
24 C4 350 302 316 3
25 C5 350 8 22 4
26 C5 350 239 282 84
27 C6 350 106 120 2

Table E.1: Data for the Eskom case study.

187

Stellenbosch University  http://scholar.sun.ac.za



188 Appendix E. System specifications of the case study

Unit Capacity Earliest starting Latest starting Duration
Unit name (MW) time (day) time (day) (days)

28 C6 350 274 288 3
29 D1 190 0 0 0
30 D2 190 0 0 0
31 D3 185 50 92 30
32 D4 180 218 267 42
33 D5 180 0 0 0
34 D6 160 0 0 0
35 D7 170 1 50 42
36 D8 180 85 134 42
37 E1 250 8 64 44
38 E1 250 134 148 1
39 E1 250 281 295 1
40 E1 250 316 344 14
41 E2 250 8 64 44
42 E2 250 330 344 1
43 E3 250 29 43 1
44 E3 250 267 295 14
45 E4 250 8 22 1
46 E4 250 50 64 3
47 E4 250 309 337 14
48 F1 575 0 0 0
49 F2 575 71 148 70
50 F3 575 211 239 14
51 F4 575 0 0 0
52 F5 575 1 78 70
53 F6 575 232 288 45
54 G1 90 71 99 11
55 G1 90 246 246 120
56 G2 90 15 29 2
57 G2 90 232 246 120
58 G3 90 43 71 11
59 G3 90 295 323 14
60 G4 90 1 85 121
61 G4 90 113 127 2
62 H1 148 0 0 0
63 H2 148 0 0 0
64 H3 148 0 0 0
65 I1 190 78 113 21
66 I2 190 211 246 21
67 I3 190 0 0 0
68 I4 190 309 344 21
69 I5 190 0 0 0
70 I6 190 0 0 0
71 J1 190 0 0 0
72 J2 185 1 78 92
73 J3 190 0 0 0
74 J4 190 92 120 14
75 J5 190 204 267 50
76 J6 190 0 0 0
77 J7 190 113 141 14
78 J8 190 1 43 28
79 J8 190 260 288 14
80 J9 190 281 309 14
81 J10 190 218 260 28

Table E.1: (continued) Data for the Eskom case study.

Stellenbosch University  http://scholar.sun.ac.za



189

Unit Capacity Earliest starting Latest starting Duration
Unit name (MW) time (day) time (day) (days)

82 J10 190 302 338 28
83 K1 640 330 343 23
84 K2 640 1 22 7
85 K3 640 295 330 23
86 K4 640 323 344 5
87 K5 640 1 71 57
88 K6 640 85 106 5
89 L1 900 225 282 84
90 L2 900 0 0 0
91 M1 475 1 36 21
92 M1 475 288 330 28
93 M2 475 1 78 84
94 M3 475 323 345 21
95 M4 475 0 0 0
96 M5 475 0 0 0
97 M6 475 0 0 0
98 N1 593 43 85 28
99 N2 593 0 0 0
100 N3 593 99 141 28
101 N4 593 29 50 7
102 N5 593 78 99 7
103 N5 593 316 338 28
104 N6 593 15 36 7
105 N6 593 218 260 28
106 O1 612 1 43 28
107 O2 612 106 127 7
108 O2 612 260 310 56
109 O3 612 99 120 7
110 O4 669 64 113 35
111 O5 669 330 351 7
112 O6 669 351 358 8
113 P1 615 1 50 42
114 P1 615 302 323 7
115 P2 615 71 92 7
116 P3 615 323 331 35
117 P4 615 43 85 28
118 P5 615 85 127 28
119 P6 615 190 211 7
120 Q1 575 218 239 7
121 Q2 575 0 0 0
122 Q3 575 0 0 0
123 Q4 575 1 50 42
124 Q5 575 85 106 7
125 Q6 575 239 282 84
126 R1 200 22 57 25
127 R1 200 127 141 1
128 R1 200 239 253 1
129 R2 200 36 71 25
130 R2 200 141 155 1
131 R2 200 232 246 1
132 S1 57 50 64 2
133 S1 57 85 141 45
134 S1 57 176 190 2
135 S1 57 295 309 2
136 S2 57 15 85 56

Table E.1: (continued) Data for the Eskom case study.

Stellenbosch University  http://scholar.sun.ac.za



190 Appendix E. System specifications of the case study

Unit Capacity Earliest starting Latest starting Duration
Unit name (MW) time (day) time (day) (days)

137 S2 57 57 71 2
138 S2 57 183 197 2
139 S2 57 302 316 2
140 S3 57 57 78 7
141 S3 57 183 197 2
142 S3 57 302 316 2
143 T1 585 85 99 4
144 T1 585 274 306 60
145 T2 585 92 120 12
146 T2 585 344 358 4
147 T3 585 64 78 4
148 T3 585 218 246 12
149 T4 585 1 64 50
150 T4 585 253 267 4
151 T5 585 71 85 4
152 T6 585 120 134 4
153 T6 585 323 337 4
154 U1 120 22 57 21
155 U1 120 120 162 31
156 U1 120 267 288 5
157 U2 120 85 106 5

Table E.2: (continued) Data for the Eskom case study.

Exclusion set Units Maximum

1 1, 2 1
2 5, 6 1
3 9, 10 1
4 60, 61 1
5 133, 134 1
6 136, 137 1

Table E.3: Exclusion data for the Eskom case study.

Stellenbosch University  http://scholar.sun.ac.za



191

Demand Demand Demand Demand Demand Demand
Day (MW) Day (MW) Day (MW) Day (MW) Day (MW) Day (MW)

1 31 252 62 28 546 123 27 505 184 34 008 245 34 179 306 29 321
2 30 890 63 31 000 124 27 454 185 34 197 246 34 333 307 29 839
3 31 962 64 31 062 125 27 056 186 34 043 247 34 187 308 32 542
4 31 704 65 30 857 126 28 862 187 32 829 248 34 625 309 32 344
5 29 997 66 30 594 127 31 694 188 32 798 249 32 802 310 32 173
6 29 114 67 31 061 128 31 554 189 34 902 250 31 153 311 31 974
7 31 389 68 29 416 129 32 251 190 34 722 251 30 232 312 31 424
8 31 116 69 29 007 130 31 283 191 35 453 252 32 849 313 30 186
9 30 684 70 32 158 131 29 811 192 35 352 253 35 701 314 30 414
10 30 558 71 31 917 132 29 779 193 33 711 254 35 199 315 32 626
11 30 390 72 31 747 133 32 324 194 33 140 255 35 326 316 32 706
12 29 515 73 31 780 134 32 555 195 32 558 256 33 948 317 33 061
13 28 311 74 31 820 135 32 404 196 35 203 257 32 314 318 32 610
14 30 548 75 30 198 136 32 907 197 35 841 258 32 033 319 31 614
15 29 778 76 29 399 137 32 138 198 35 034 259 33 618 320 30 730
16 28 690 77 32 039 138 30 351 199 35 654 260 33 651 321 31 031
17 29 537 78 31 650 139 30 164 200 35 621 261 33 605 322 33 101
18 29 835 79 31 440 140 33 279 201 34 464 262 33 359 323 32 462
19 28 380 80 31 722 141 32 842 202 33 522 263 32 557 324 32 416
20 27 703 81 31 073 142 33 674 203 36 036 264 30 996 325 31 818
21 29 374 82 30 108 143 33 133 204 35 806 265 30 715 326 31 919
22 27 893 83 29 823 144 32 864 205 35 636 266 33 649 327 30 761
23 26 775 84 31 917 145 31 830 206 35 799 267 33 884 328 29 970
24 25 588 85 32 275 146 30 963 207 34 406 268 33 102 329 32 701
25 24 438 86 31 295 147 32 722 208 32 743 269 32 686 330 33 105
26 24 992 87 31 249 148 32 455 209 32 834 270 31 114 331 32 253
27 25 364 88 30 709 149 33 312 210 35 522 271 29 267 332 32 076
28 27 468 89 29 318 150 33 114 211 35 457 272 29 380 333 31 155
29 27 609 90 29 275 151 31 759 212 35 334 273 31 994 334 29 880
30 27 674 91 32 305 152 30 672 213 35 478 274 31 586 335 29 126
31 27 249 92 31 975 153 30 451 214 34 220 275 31 670 336 31 840
32 25 544 93 32 390 154 33 942 215 32 366 276 31 427 337 31 946
33 25 955 94 32 321 155 33 531 216 32 535 277 30 396 338 32 344
34 26 510 95 31 425 156 33 509 217 35 619 278 29 107 339 31 781
35 28 693 96 29 767 157 33 316 218 35 400 279 29 673 340 31 472
36 29 705 97 29 864 158 32 459 219 35 136 280 31 929 341 29 975
37 29 552 98 31 895 159 31 256 220 35 659 281 32 468 342 30 062
38 29 846 99 31 456 160 30 527 221 34 236 282 32 321 343 32 479
39 30 191 100 32 071 161 33 938 222 33 097 283 32 348 344 32 070
40 28 515 101 31 894 162 33 627 223 32 942 284 31 243 345 32 521
41 28 397 102 31 483 163 34 135 224 36 463 285 30 344 346 31 878
42 30 494 103 30 314 164 33 903 225 36 559 286 30 245 347 30 996
43 31 515 104 30 051 165 32 549 226 36 664 287 32 083 348 29 800
44 31 149 105 32 312 166 31 609 227 36 256 288 32 003 349 29 781
45 31 757 106 32 413 167 31 188 228 36 127 289 32 129 350 32 225
46 31 064 107 31 702 168 33 431 229 34 199 290 32 594 351 32 198
47 29 494 108 32 563 169 33 806 230 33 408 291 31 676 352 32 321
48 28 916 109 31 525 170 33 822 231 35 680 292 30 495 353 32 751
49 30 910 110 30 029 171 33 373 232 35 632 293 30 223 354 31 669
50 31 111 111 28 841 172 33 151 233 36 104 294 32 420 355 30 478
51 31 030 112 31 007 173 31 752 234 35 364 295 32 446 356 29 857
52 31 862 113 32 273 174 31 774 235 33 695 296 32 189 357 31 587
53 31 204 114 32 663 175 33 665 236 32 559 297 30 878 358 31 564
54 29 352 115 32 301 176 33 731 237 32 611 298 29 227 359 32 430
55 29 132 116 31 699 177 33 504 238 35 252 299 28 879 360 32 055
56 31 156 117 29 685 178 33 543 239 34 638 300 28 932 361 31 912
57 30 873 118 29 318 179 32 954 240 34 811 301 32 250 362 29 682
58 30 899 119 32 605 180 31 560 241 34 183 302 32 562 363 29 684
59 30 338 120 31 914 181 32 974 242 33 005 303 31 798 364 31 908
60 30 577 121 31 675 182 34 836 243 31 906 304 31 785 365 31 798
61 29 170 122 30 420 183 34 173 244 31 701 305 30 952

Table E.4: The daily peak load demands for the Eskom case study.

Stellenbosch University  http://scholar.sun.ac.za



192 Appendix E. System specifications of the case study

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX F

Contents of the accompanying compact disc

This appendix contains a brief description of the contents of the compact disc included with this
thesis. The compact disc contains the personal computer implementation of the DSS presented
in Chapter 7, Excel workbooks populated with input data, the unabridged Eskom case study
results, and an electronic version of the thesis in “.pdf ” file format. The DSS was created in
MATLAB version R2009a and may be executed in this version or later. A version of Microsoft
Excel 2007 or later is required by the DSS in order to create the output file. There are four
directories on the compact disc and their contents are described here by their directory names.

Thesis. This directory contains an electronic copy of the thesis in “.pdf ” format.

Data sets. This directory contains four Excel workbooks populated with the system data
for the Eskom case study, the 21-unit system, the 22-unit system and the IEEE-RTS inspired
system in the correct input format for the DSS. Note that, since the DSS does not consider
precedence constraints (which are present in the 22-unit system), any 22-unit system results
obtained by the DSS should not be compared to the results obtained in §6.4.3.

Decision support system. This directory contains the DSS implementation as MATLAB
script files (“.m” format). These files are unprotected and may be opened in the MATLAB
editor for modification. The DSS GUI is a MATLAB “.fig” file which may be opened in the
MATLAB GUI design environment (GUIDE). In order to execute the DSS, the user is required
to copy this directory onto his/her own computer, because the DSS will write the output file
to this directory, and the compact disc is read-only. After the directory has been copied onto
the computer, the current directory in MATLAB should be changed to that directory and
“RunGMSDSS” should be entered into the MATLAB command line in order to execute the
DSS. The procedures presented in §7.2 may be followed in order to solve a GMS problem
instance by means of the DSS. Should the user require the DSS to terminate immediately,
he/she may enter the MATLAB interrupt command keystroke “Ctrl + c” into the command
line. However, it will cause any visible message box to be unclosable until MATLAB itself has
been terminated.

Case study results. This directory contains the unabridged Eskom case study results ob-
tained by the DSS. An abridged version of these results were presented in §7.3. There are 24
subdirectories in this directory, corresponding to each solution instance that was considered,
respectively. The subdirectories contain the Excel output file and MATLAB figures generated
by the DSS for each solution instance.

193

Stellenbosch University  http://scholar.sun.ac.za




