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ABSTRACT 

Innovation is essential for fostering sustainable and environmentally conscious growth in copper 

production, particularly for operations employing resource-intensive direct copper electrowinning. A 

dynamic model can be coupled with advanced control strategies in an innovative approach to addressing 

the control and optimisation challenges associated with copper electrowinning. Previous studies have 

primarily focused on steady-state models, and limited research has been conducted on dynamic models 

for copper electrowinning. Consequently, this project aimed to develop a dynamic model for copper 

electrowinning, with a specific focus on the direct electrowinning process. 

The main original contribution of this project is the validated semi-empirical dynamic copper 

electrowinning model. The model can be calibrated for a specific tankhouse, including direct 

electrowinning operations. An offline parameter-fitting approach was developed for fitting initial model 

parameters, and for use when limited data are available. The project also introduced an accompanying 

online parameter-fitting approach that uses moving horizon estimation to continuously adjust the model 

parameters based on evolving input data. The approach ensures the parameters remain up to date as 

process conditions change. The least-squares error objective function was selected for use in the online 

approach, with two types of system models investigated: fundamental and surrogate. The surrogate 

models were investigated mainly as a future-orientated strategy for online parameter-fitting using 

computationally intensive datasets. 

The model incorporated a conceptual resistance network, mass conservation equations, and reaction-

rate and mass-transfer kinetics. Key performance indicators (copper yield, current efficiency, and 

specific energy consumption) were used to quantify electrowinning performance. The model included 

input variables such as current, and the concentrations of copper, iron, nickel, cobalt, and sulfuric acid. 

The effect of nickel and cobalt were accounted for through existing empirical density and conductivity 

correlations, and a newly regressed limiting-current density correlation.  

Validation using dynamic industrial tankhouse data showed the credibility of the model for representing 

real-life systems. The average normalised residual mean square errors over the five 14-day validation 

cycles investigated (with the online approach activated) were 10.0%, 29.3%, 79.2%, and 3.9%, for the 

current efficiency, copper plating rate, specific energy consumption, and potential, respectively. The 

quantifier values for the specific energy consumption were consistently above the threshold for 

acceptable model fit. Caution was, therefore, advised in interpreting the model-predicted specific 

energy consumption values. Overall, the model's performance, particularly with inclusion of the online 

parameter-fitting approach, however, exhibited satisfactory agreement with the industrial data. 
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The developed model has the potential to make a meaningful contribution to the field. The model's 

versatility and accuracy make it a valuable tool for use in operator training, process monitoring, and 

early-fault detection. It also opens avenues for exploration of advanced control strategies. By leveraging 

these potential benefits, operations can enhance productivity, reduce costs, and minimise environmental 

impact. It is recommended that future work should focus on developing online data validation strategies 

to further enhance model fidelity, as well as exploring advanced surrogate model structures. 
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OPSOMMING 

Innovasie is noodsaaklik om volhoubare en omgewingsbewuste groei in koperproduksie te kweek, veral 

vir bedrywe wat hulpbron-intensiewe direkte koperelektroherwinning gebruik. ’n Dinamiese model kan 

gepaar word met gevorderde beheerstrategieë in ’n innoverende oplossing tot die beheer en 

optimaliseringsuitdagings geassosieer met koperelektroherwinning. Vorige studies het hoofsaaklik op 

bestendige toestand modelle gefokus, en beperkte navorsing is uitgevoer op dinamiese modelle vir 

koperelektroherwinning. Vervolgens het hierdie projek beoog om ’n dinamiese model vir 

koperelektroherwinning te ontwikkel, met ’n spesifieke fokus op die direkte elektroherwinningproses. 

Die hoof oorspronklike bydrae van hierdie projek is die gevalideerde semi-empiriese dinamiese 

koperelektroherwinningsmodel. Die model kan gekalibreer word vir ’n spesifieke tenkhuis, insluitend 

direkte elektroherwinningsbedrywe. ’n Aflyn parameter-passing benadering is ontwikkel vir die passing 

van aanvanklike modelparameters, en vir gebruik wanneer beperkte data beskikbaar is. Die projek het 

ook ’n gepaardgaande aanlyn parameter-passing benadering bekendgestel wat bewegende 

horisonberaming gebruik om aanhoudend die modelparameters aan te pas gebaseer op dinamiese 

insetdata. Die benadering verseker dat die parameters op datum bly soos proseskondisies verander. Die 

minste kwadraatfout doelfunksie is gekies vir gebruik in die aanlynbenadering, met twee tipes 

sisteemmodelle: fundamenteel en surrogaat. Die surrogaatmodelle is hoofsaaklik ondersoek as ’n 

toekomsgeoriënteerdestrategie vir aanlyn parameter-passing met rekeningkundige intensiewe 

datastelle.  

Die model het ’n konseptuele weerstandnetwerk, massabehoudvergelykings, en reaksietempo en massa-

oordrag kinetika geïnkorporeer. Sleuteldoeltreffendheidindikators (koperopbrengs, 

stroomdoeltreffendheid, en spesifieke energiegebruik) is gebruik om die doeltreffendheid van die proses 

te kwantifiseer. Die model het insetveranderlikes soos stroom, en die konsentrasies van koper, yster, 

nikkel, kobalt, en swaelsuur, ingesluit. Die effek van nikkel en kobalt is in rekening gebring deur  

bestaande empiriese digtheid en konduktiwiteitskorrelasies, sowel as ’n oorspronklike beperkte-

stroomdigtheidskorrelasie. 

Die geldigheid van die model is bevestig deur validasie wat, onder andere, dinamiese industriële 

tenkhuisdata gebruik het. Die gemiddelde genormaliseerde residu gemiddelde vierkantsfoute oor die 

valideringsiklusse (met die aanlynbenadering geaktiveer) was 10.0%, 29.3%, 79.2%, en 3.9%, vir die 

stroomdoeltreffendheid, koperplateringtempo, spesifieke energiegebruik, en potensiaal, onderskeidelik. 

Die waardes vir die spesifieke energiegebruik was konstant bo die drumpel vir aanvaarbare 

modelpassing. Oor die algemeen het die model, veral met insluiting van die aanlyn parameter-passing 

benadering, egter bevredigende ooreenstemming met die industriële data getoon. 
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Die ontwikkelde model het die potensiaal om ’n betekenisvolle bydra tot die veld te maak. Die model 

se veelsydigheid en akkuraatheid maak dit ’n waardevolle hulpmiddel vir gebruik in operateurafrigting, 

prosesmonitering en vroeë foutopsporing. Die model kan verder ook gebruik word vir die ondersoek 

van gevorderde beheerstrategieë. Deur middel van vir hierdie potensiële modeltoepassings kan 

produktiwiteit verhoog word, kostes verminder word, en omgewingsimpak geminimeer word. Dit word 

voorgestel dat toekomstige werk moet fokus op die ontwikkeling van aanlyndatavalideringstrategieë 

om die modelgetrouheid te verbeter, sowel as op die ondersoek van gevorderde 

surrogaatmodelstrukture. 
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CHAPTER 1 

INTRODUCTION  

1.1 BACKGROUND 

The demand for copper is expected to reach 36.6 Mt annually by 2031 (Crooks et al., 2023). High-

purity copper is thermally and electrically conductive, has high ductility and is corrosion-resistant, 

making it ideal for use in the electronics, telecommunications, energy, construction, and automotive 

industries (Kulczycka et al., 2016). The use thereof in the growing electric vehicle and renewable energy 

industries, as well as novel applications in hospital infrastructure, will continue to drive the demand 

(Lee and Shin, 2018; Michels et al., 2015; Van Doremalen et al., 2020).  

The production of high-purity copper from copper-containing ores involves either a hydrometallurgical 

or pyrometallurgical method. The hydrometallurgical method currently produces approximately 20% 

of the total copper processed globally. This method is expected to see an increase in popularity due to 

its perceived reduced environmental impact and ability to extract copper from low-grade ores and scrap 

(Schlesinger et al., 2011a). The final process in the hydrometallurgical method for copper extraction is 

electrowinning.  

Electrowinning is an energy-intensive process with approximately 2 MWh used per t copper produced 

(Wiechmann et al., 2010). All the energy is, however, not used in the deposition of copper. Up to 30% 

of the energy is wasted due to electrolyte resistance and subsidiary reactions (which are associated with 

impurities), short circuits, and stray currents (Schlesinger et al., 2011b). This wastage is specifically 

relevant to direct copper electrowinning operations where efficiencies are commonly low, largely due 

to the absence of preceding processing steps.  

Direct copper electrowinning, where copper is recovered directly from a leach solution without the use 

of solvent extraction, typically entails high concentrations of impurities such as iron and nickel. This 

impure electrolyte produces copper of a lower purity, at a lower current efficiency, and higher specific 

energy consumption (SEC). Whilst current efficiencies for post-solvent extraction electrowinning 

operations can be as high as 95%, those for direct electrowinning operations can be as low as 65% 

(Beukes and Badenhorst, 2009). Capital expenditure to improve efficiency (such as the inclusion of 

upstream purification) is often either not justifiable, or not viable. Consequently, innovation is important 

to ensure operations employing direct electrowinning, mainly situated in developing African countries 

(Schlesinger et al., 2011b), produce copper at an acceptable quality and efficiency, whilst aligning with 

global sustainability goals.  
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The reactive-based control strategies, usually employed in electrowinning processes, often lead to 

suboptimal tankhouse performance (Komulainen et al., 2009). In recent years, advanced control 

strategies, such as model predictive control (MPC), have gained traction for application in the mineral 

processing and extractive metallurgical industries (Crooks et al., 2023; Hodouin, 2011). This includes 

electrowinning tankhouses, where the implementation of advanced process control is also increasingly 

being considered (Schlesinger et al., 2022). The lack of adequate process models has, however, 

contributed to the stunted implementation of MPC in industrial copper electrowinning tankhouses 

(Bergh and Yianatos, 2001; Komulainen et al., 2009). A suitable dynamic model is not only required 

for the development of MPC strategies, but it can also be used to compare MPC to conventional 

controllers, quantifying the advantage of using the more complex strategy before the investment of 

resources (Appl et al., 2020; Hodouin, 2011).  

Steady-state semi-empirical models for the copper electrowinning process have previously been 

developed using fundamental relationships and experimental data (Aminian et al., 2000; Free et al., 

2006; Tucker, 2019). These models present the foundation for the prediction of electrowinning process 

performance at an industrial scale. Limited research has, however, been conducted on the development 

of dynamic models for the prediction of copper electrowinning performance (Filianin et al., 2017; Lie 

and Hauge, 2008; Wiebe, 2015; Wu et al., 2021, 2020).  

Dynamic modelling has the potential to improve processes throughout the whole value chain (Sánchez 

and Hartlieb, 2020). The focus should, however, be on processes where the potential value is the greatest 

(Klein and Walsh, 2017). Consequently, the resource-intensive, low-efficiency nature of direct copper 

electrowinning confirms it as an ideal candidate. Nevertheless, despite direct electrowinning still being 

investigated as a feasible technology for select new applications (Åkre and Rosseland, 2019; 

Fathima et al., 2022; Gorgievski et al., 2009; Holmin et al., 2019; Marsden et al., 2007), the majority 

of traditional tankhouses currently in operation purify their advance electrolyte using a solvent 

extraction step before electrowinning (Sole et al., 2019). It is, therefore, important to note that 

developing a dynamic model specifically for direct electrowinning operations does not exclude it from 

use for post-solvent extraction plants.  

1.2 PROBLEM STATEMENT 

A dynamic model of the direct copper electrowinning process presents an opportunity to address the 

control and optimisation challenges associated with the resource-intensive, low-efficiency 

electrowinning process. The model can be used to develop advanced control strategies, such as MPC, 

which will enable real-time optimisation and the generation of adaptive control actions. There is scope 

in the current body of literature for the development of a dynamic semi-empirical model that accurately 

predicts the process performance of a full-scale direct copper electrowinning tankhouse. The semi-

empirical nature of the model allows for the incorporation of the theoretical basis required to make the 
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model easily adaptable for use in different full-scale copper electrowinning tankhouses, whilst requiring 

less development than a purely theoretical model. The model accommodates the complex chemistry 

associated with the direct electrowinning electrolyte to predict the key performance indicators (KPIs) 

(current efficiency, copper yield, and SEC) with high fidelity. Moreover, the model uses only input 

variables that are readily available in industrial tankhouses, or that have the potential to be readily 

measured using available technologies. The developed model is validated using a combination of bench-

scale and industrial electrowinning data to ensure that it is sufficiently accurate for its intended purpose. 

1.3 AIM AND OBJECTIVES 

A semi-empirical steady-state model for the prediction of copper electrowinning performance has 

previously been developed as an initial step towards the development of a dynamic model for 

application in process control (Tucker, 2019). This project aims to apply the understanding developed 

in previous studies on copper electrowinning to develop a dynamic semi-empirical model for copper 

electrowinning operations, with a specific focus on the direct electrowinning process. 

Four objectives followed to achieve this aim: 

i. Evaluation of existing, or development of new, property correlations to describe the complex 

physicochemical relationships in direct copper electrowinning electrolytes. 

ii. Development of a high-fidelity conceptual semi-empirical dynamic model for direct copper 

electrowinning operations, that can also be applied to post-solvent extraction electrowinning, and 

computerising the model using appropriate software. 

iii. Development of an online parameter-fitting approach as a means of continuously updating the 

model parameters based on an evolving dataset. 

iv. Validation of the dynamic model and parameter-fitting approach using qualitative consistency 

checks and quantitative model accuracy indicators, as measured against dynamic experimental 

and industrial tankhouse data. 

1.4 SCIENTIFIC CONTRIBUTIONS 

The following summarises the original scientific contributions presented in this dissertation. 

i. Research efforts have shown the value of dynamic models for the leaching and solvent extraction 

processes in process monitoring and control applications (Knoblauch, 2015; Komulainen, 2007; 

Miskin, 2016; Strydom, 2017). Very few dynamic models, however, exist for copper 

electrowinning (Filianin et al., 2017; Lie and Hauge, 2008; Wiebe, 2015; Wu et al., 2021, 2020). 

Moreover, the validity of the models that do exist is restricted to specific industrial copper 
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production plants, or their predictive performance is inadequate. The semi-empirical nature of the 

predictive high-fidelity dynamic model, developed and validated in this project, means that it can 

be fit to a specific copper electrowinning tankhouse, ensuring versatility. Consequently, the 

developed model is expected to make a meaningful contribution to industry. 

ii. The physicochemical properties of copper electrowinning electrolytes hold considerable economic 

importance. Accurate models of the physicochemical electrolyte properties are required for use in 

the electrowinning model developed in this project but could also be used in other industrial 

applications, such as aiding the development of process optimisation strategies.  

A considerable amount of literature has been published on modelling the effect of composition and 

temperature on the physicochemical properties of copper electrolytes. The component 

concentrations investigated by Kalliomäki et al. (2021) (the current state-of-the-art) do not, 

however, encompass the full range of operating conditions applicable to typical direct copper 

electrowinning operations (Robinson et al., 2013; Sole et al., 2019). This observation is notable 

because the empirical model form tends to lack robustness of prediction and is limited to 

interpolation based on the data used for model development (Eksteen and Reuter, 2003; 

Tsamandouras et al., 2013).  

Moreover, although a correlation for predicting the limiting-current density for electrorefining 

applications has previously been developed and validated by Kalliomäki et al. (2019), no such 

model is known to exist for predicting the limiting-current density of direct electrowinning 

operations. The inclusion of components such as arsenic, and omission of iron and cobalt are 

expected to limit the applicability of the existing model for electrowinning operations. 

Accordingly, this project extends the literature by validating the existing physicochemical property 

correlations for the full range of applicable conditions and regressing a correlation for predicting 

the limiting-current density of direct copper electrowinning operations. 

iii. The availability of a suitable parameter-fitting approach is required to fit the developed model to 

a specific tankhouse, thereby leveraging the flexibility of the semi-empirical modelling approach. 

Additionally, online parameter-fitting is often required to obtain a model that is sufficiently 

accurate for advanced predictive control applications (Hedengren and Eaton, 2017). Tucker et al. 

(2021) has previously highlighted the value of steady-state parameter-fitting for calibrating the 

corresponding steady-state electrowinning model to bench-scale electrowinning data. Nonetheless, 

no dynamic online parameter-fitting approach specifically applied to electrowinning processes 

could be found in literature. Consequently, an original parameter-fitting approach, based on 

existing methods, was developed that can continuously refit for the model parameters using a 

dynamic input dataset. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter, the fundamental principles that form the theoretical basis of the developed 

electrowinning model are discussed (Section 2.2). Following this, the copper electrowinning process is 

considered in an industrial context to ensure that the model is usable on an industrial scale (Section 2.3). 

The majority of available literature regarding industrial copper electrowinning is specifically applicable 

to post-solvent extraction electrowinning operations. As such, the discussion undertaken in this chapter 

includes information pertaining to post-solvent extraction electrowinning operations but highlights 

where direct electrowinning operations may differ. Lastly, existing models are assessed (Section 2.4) 

in order to demonstrate the original contribution made by this project (Section 2.5). 

2.2 FUNDAMENTAL ELECTROWINNING PRINCIPLES 

2.2.1 General Electrochemical Principles 

Electrowinning involves immersing metal cathodes and inert anodes in an electrolyte, applying an 

electrical current between the electrodes, and plating pure copper from the electrolyte onto the cathodes 

(Schlesinger et al., 2011b). Electrowinning is an example of a commercial process that utilises 

electrolytic cells, a type of electrochemical cell in which an external voltage (greater than the open-

circuit potential of the cell) is to be present for electrochemical reactions to occur. Electrolytic cells 

consist of two electrodes separated by an electrolyte, with electrochemical reactions occurring at the 

interface of the electrode and electrolyte. Therefore, the overall electrochemical reaction is broken up 

into two half-cell reactions, with reduction occurring at one electrode and oxidation at the other. 

Equation 2.1 gives the general form of an electrochemical reaction (Beukes and Badenhorst, 2009). 

 O + 𝑛e ↔ R  [ 2.1 ] 

where O is the oxidised species, R is the reduced species, and 𝑛 is the stoichiometric coefficient. 

Each half-cell reaction is associated with a specific standard potential, defined as the potential of the 

reduction reaction relative to the normal hydrogen electrode, which is assigned a potential of 0.00 V 

(Ciobanu et al., 2007). The overall standard cell potential is calculated as the difference between the 

standard potentials of the half-cell reactions occurring at the anode and cathode (Equation 2.2) 

(Newman and Thomas-Alyea, 2004). The overall standard cell potential is a measure of the energy 

available to externally drive charge between the electrodes, under standard conditions (Bard and 

Faulkner, 2001). The standard conditions are defined as all dissolved substances having an activity of 
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1, and all gaseous substances partaking in the reaction having an effective pressure of 1 atm (Carmo, 

2019). A spontaneous reaction is characterised by a positive overall standard cell potential and 

corresponding negative change in Gibbs free energy (Ciobanu et al., 2007). 

 𝐸 = 𝐸 − 𝐸   [ 2.2 ] 

where 𝐸  is the standard reduction potential (V). 

The Nernst equation is used to correct for the reduction potential under non-standard conditions 

(Equation 2.3) (Beukes and Badenhorst, 2009). It gives the reduction potential as a function of the 

standard reduction potential, the activity of the species at the electrode surface, temperature, and number 

of electrons exchanged in the electrochemical reaction. The Nernst equation presupposes fast, reversible 

reactions, which imply that the concentration of species at the electrode surface is maintained close to 

their equilibrium values (Bard and Faulkner, 2001).  

 𝐸 = 𝐸 + ln    [ 2.3 ] 

where 𝐸 is the reduction potential (V), 𝐸  is the standard reduction potential (V), 𝐹 is Faraday’s constant 

(96 485 C per equivalent mol), 𝑅 is the gas constant (8.314 J/(mol K)), 𝑇 is the temperature (K), 𝑛 is 

the stoichiometric coefficient (dimensionless), and 𝑎 is the activity (dimensionless). 

The activity is a measure of the effective concentration of a species in a solution under non-ideal 

conditions. The activity of a species is calculated using Equation 2.4 (Werner et al., 2018). The activity 

coefficient accounts for the deviation from ideal behaviour; it is, therefore, unity for ideal solutions 

(Samson et al., 1999). An ideal solution will have interactions equal to those of the pure components 

(Kugel, 1998). 

 𝑎 = 𝛾    [ 2.4 ] 

where 𝑎  is the activity of the species (dimensionless), 𝛾  is the activity coefficient of the species 

(dimensionless), 𝐶  is the molar concentration (mol/L), and 𝐶  is the reference concentration (1 mol/L). 

The activity coefficients of species in non-ideal electrolytic solutions can be determined using various 

models. The conventional Debye-Hückel model can predict the activity coefficient of a solution with 

an ionic strength of 10 mmol/L or less (Aqion, 2016). The ionic strength is a measure of the total ion 

concentration in the solution, with ions that have more charge having stronger electrostatic interactions 

with other ions. The Davies equation is a modified version of the Debye-Hückel model with an 

additional term accounting for more phenomena. The Davies equation can predict the activity 

coefficient of a solution with an ionic strength of up to 500 mmol/L (Aqion, 2016). The Pitzer model 

is, however, one of the only proposed models that appears to accurately predict the thermodynamic 
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behaviour of concentrated electrolytic solutions (Samson et al., 1999). The Pitzer model can predict the 

activity of a solution with an ionic strength higher than 1 mol/L. Samson et al. (1999) proposed a 

modified version of the Davies equation with a range of validity similar to the Pitzer model, but that is 

mathematically simpler. The Samson et al. (1999) model was, therefore, selected for use in this project 

(Equations 2.5, 2.6, and 2.7). The dielectric constant, required to calculate the model parameters, was 

determined using an empirical relationship developed by Werner et al. (2018) (Equation 2.8). The 

empirical relationship is valid for a dielectric constant between 140 and 170. 

 ln(𝛾 ) =  −
 √

  √
+

. .  ×    

√
   [ 2.5 ] 

 𝐼𝑆 = 0.5 Σ𝑧  𝐶    [ 2.6 ] 

 𝐴 =
√   

  (    )
      and     𝐵 =

 

   
   [ 2.7 ] 

 𝜖 = 127.9614 + 0.01378 𝐼𝑆 + 5.6111 × 10  𝑟 + 2.5422|𝑧 |   [ 2.8 ] 

where 𝐴 is the A parameter in the Debye-Hückel model (dimensionless), 𝐵 is the B parameter in the 

extended Debye-Hückel model (dimensionless), 𝑧  is the charge of the species (dimensionless),  𝐼𝑆 is 

the ionic strength (mol/m3), 𝑟  is the species radius (m), 𝐶  is the molar concentration (mol/m3), 𝜖  is 

the permittivity of the vacuum (8.85 × 10−12 F/m), 𝜖  is the dielectric constant (dimensionless), and 𝑇 

is the temperature (K). 

2.2.2 Electrowinning Reactions 

A simplified representation of the electrolytic cell used in copper electrowinning is given in Figure 2.1. 

The preceding leaching and optional solvent extraction steps produce a CuSO4—H2SO4—H2O 

electrolyte, with sulfuric acid as the main component (Schlesinger et al., 2011a). When the external 

potential is present, current flows through the electrolyte between the electrodes, initiating the 

electrochemical reactions required to produce the plated copper. The electrons in the cathode and cupric 

ions in the electrolyte react at the cathode–solution interface, forming solid copper. Simultaneously, the 

oxidation of water occurs at the anode forming hydrogen ions and oxygen gas. Sulfate-based solutions 

generate sulfuric acid (Wollschlaeger, 2018). The oxygen gas bubbles rise to the surface of the 

electrolyte, burst, and release droplets of sulfuric acid, which results in acid mist.  
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Figure 2.1: Schematic representation of a simplified electrolytic cell showing the reduction of Cu2+ to solid copper at 
the cathode, and the oxidation of water to form oxygen bubbles at the anode (adapted from Bard and Faulkner, 2001). 

The half-cell reactions for copper reduction and water oxidation, with their respective standard 

reduction potentials, are given in Equations 2.9 and 2.10 (Schlesinger et al., 2011a). The overall 

standard cell potential is calculated to be −0.89 V (Equation 2.2). The negative overall standard cell 

potential, and corresponding positive change in Gibbs free energy, implies that the reaction for the 

electrowinning of copper is non-spontaneous. 

 Cu( ) + 2e →   Cu( )        𝐸 = +0.34 V  [ 2.9 ] 

 2H( ) + O ( ) + 2e → H O( )      𝐸 = +1.23 V  [ 2.10 ] 

The overall cell reaction, obtained by combining Equations 2.9 and 2.10, and considering the sulfate 

ions originating from the copper sulfate in the electrolyte, is given in Equation 2.11. The products 

formed are solid plated copper, oxygen gas, and dissociated sulfuric acid (sulfate ions and hydrogen 

ions). 

 Cu( ) + SO + H O →   Cu( ) + O + 2H + SO            𝐸 = −0.89 V  [ 2.11 ] 

The electrolyte used in the electrowinning process, however, contains impurities originating from the 

ore. Iron is a major impurity in copper-containing ores. Iron undergoes cyclic reduction and oxidation 

at the cathode and anode, respectively (Equation 2.12) (Schlesinger et al., 2011a). Notably, the 

reduction of ferric (Fe3+) to ferrous (Fe2+) ions occurs more readily than copper reduction, due to the 

higher reduction potential of 0.77 V (compared with the 0.34 V of the copper reduction). The presence 

of iron, therefore, has a significant impact on the key performance indicators (KPIs) of the process and 

should be considered in any model attempting to simulate copper electrowinning operations.  

 Fe( ) + e  ↔  Fe( )            𝐸 = +0.77 V  [ 2.12 ] 
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2.2.3 Kinetic Mechanisms 

The two kinetic mechanisms involved in copper electrowinning are the mass-transfer and 

electrochemical reaction mechanisms. The overall mechanism comprises the following steps: the mass 

transfer of the ion of interest to the electrode surface, the electrochemical charge-transfer reaction, and 

the deposition of a solid (or the mass transfer of a product away from the electrode into the bulk 

electrolyte). The slowest step will determine the overall rate. 

2.2.3.1 Mass-Transfer Mechanism 

The mass transfer of a species from the bulk electrolyte to the electrode surface occurs via convection, 

diffusion, and migration, as shown for cupric ions undergoing reduction in Figure 2.2. The first step in 

the mass-transfer mechanism is the convection of cupric ions from the bulk electrolyte to the electrode 

surface region. Convection is divided into natural convection, which occurs through a concentration or 

temperature gradient, and forced convection, which occurs through mechanical stirring. Diffusion 

predominantly occurs once the ions are in the electrode surface region, with the concentration gradient 

being the driving force. The cupric ions diffuse from the bulk electrolyte to the surface of the electrode 

where the electrochemical reaction occurs (Newman and Thomas-Alyea, 2004). The final mass-transfer 

mechanism, migration, occurs in addition to diffusion and takes place in the bulk electrolyte away from 

the electrode, where the concentration gradients are generally small (Bard and Faulkner, 2001; Newman 

and Thomas-Alyea, 2004). Migration refers to the movement of ions in response to the gradient in 

electrical potential, which results from the external current applied to the electrowinning cell. 

 

Figure 2.2: Schematic representation of the mass transfer of cupric ions undergoing reduction from the bulk electrolyte 
to electrode surface occurring via convection, diffusion, and migration (adapted from Bard and Faulkner, 2001 and 
Werner et al., 2018) 
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After the ions are transported to the electrode surface via the mass-transfer mechanisms, the 

electrochemical reaction takes place. In the case of a solid product forming, such as when the cupric 

ion is reduced to form solid copper, deposition of the atom on the electrode surface occurs. For a product 

that remains in solution, such as the ferric or ferrous iron ion, the product diffuses back into the bulk 

electrolyte.  

The rate of mass transfer of the ions from the bulk electrolyte to the electrode surface is described by 

the Nernst–Planck equation for one-dimensional mass transfer along the x-axis (Equation 2.13) (Bard 

and Faulkner, 2001). In industrial applications, a circulation tank is used to minimise the concentration 

gradient over the y- and z- axes (the axes parallel to the electrode surface), motivating their exclusion 

from the Nernst–Planck equation (Beukes and Badenhorst, 2009). The three terms on the right-hand 

side of the equation describe the contributions of diffusion, migration, and convection to the ionic flux, 

or overall transport of ions from the bulk electrolyte to the electrode surface. 

 𝐽 (𝑥) =  −𝐷  
( )

−
 

 
 𝐷  𝐶  

( )
+ 𝐶 (𝑥)𝑣(𝑥)    [ 2.13 ] 

where 𝐽 (𝑥) is the flux (mol/(s.cm2)), 𝐷  is the diffusion coefficient (cm2/s), 𝐶 (𝑥) is the molar 

concentration (mol/cm3), 𝑛  is the stoichiometric coefficient (dimensionless), 𝐹 is Faraday’s constant 

(96 485 C per equivalent mol), 𝑅 is the universal gas constant (8.314 J/(mol K)), 𝑇 is the 

temperature (K), 𝜙(𝑥) is the potential (V), and 𝑣(𝑥) is the velocity (cm/s). 

The Nernst–Planck equation can be simplified for application in industrial electrowinning by excluding 

the effects of migration and convection. The effect of migration can be minimised by providing a large 

quantity of inert electrolyte that does not interfere with the electrochemical reactions at the electrode 

(Beukes and Badenhorst, 2009). Najim (2016) supports this by stating that the inert sulfuric acid, present 

in the electrolyte, has a high solution conductivity and a large number of ions that serve as the major 

current carrier, eliminating the effect of migration on the flux of cupric ions to the electrode surface. 

The effect of convection is eliminated by assuming that the solution velocity at the electrode surface is 

negligible. This elimination is based on the assumption that mixing is ineffective at the electrode surface 

due to the existence of a stagnant layer, termed the Nernst diffusion layer, at the electrode surface (Bard 

and Faulkner, 2001; Beukes and Badenhorst, 2009). Taking the contributions of migration and 

convection to be negligible greatly reduces the complexity of the Nernst–Planck equation, leaving 

diffusion as the only contributor to the ionic flux. The rate of mass transfer is, therefore, proportional 

to the concentration gradient at the electrode surface, as per the first term in Equation 2.13, yielding 

Equation 2.14 (Bard and Faulkner, 2001). 
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 𝑣 =  𝐷      [ 2.14 ] 

where 𝑣  is the rate of mass transfer to a surface (mol/(s.cm2)) and 𝑥 is the distance from the electrode 

surface (cm). 

Moreover, a linear concentration gradient can be assumed within the Nernst diffusion layer (Bard and 

Faulkner, 2001) (Figure 2.3). The concentration profiles (solid lines) and diffusion layer approximations 

(dashed lines) are plotted on the figure for two different electrode potentials. The first electrode potential 

(Figure 2.3, line 1) is where the species concentration at the surface (Ci,surface) is approximately half of 

the bulk species concentration (Ci,bulk). The second potential (Figure 2.3, line 2) is where the surface 

concentration is zero, and the current density is equal to the limiting-current density. The profiles reach 

steady-state outside the Nernst diffusion layer because mixing maintains the concentration of the 

species in the bulk electrolyte.  

 

Figure 2.3: Concentration profiles (solid lines) and diffusion layer approximation (dashed lines) at two different 
electrode potentials. The electrode surface corresponds to x = 0, whilst δi represents the boundary layer thickness 
(redrawn from Bard and Faulkner, 2001). 

The equation resulting from the linear approximation describes the ionic flux as a function of the 

diffusion coefficient, boundary layer thickness at the electrode surface, and the change in concentration 

between the bulk electrolyte and the electrolyte at the electrode surface (Equation 2.15) (Bard and 

Faulkner, 2001). The boundary layer thickness is a function of the fluid flow and the cell geometry 

(Free et al., 2006). The boundary layer thickness can be combined with the diffusion coefficient to 

produce a proportionality constant called the mass-transfer coefficient (Equation 2.16) (Bard and 

Faulkner, 2001). The mass-transfer coefficient for diffusion can be considered as an effective mass-

transfer coefficient, which includes all applicable mass-transfer effects when used in an electrochemical 

model (Tucker, 2019). It can be shown that the rate of the reaction and, therefore, the rate of mass 

transfer when it is the limiting step, is a function of the current density (Equation 2.17) (Bard 

Stellenbosch University https://scholar.sun.ac.za



12 
 

and Faulkner, 2001). Equation 2.17 is, in turn, a form of Faraday’s law. Combining Equations 2.16 and 

2.17 yields Equation 2.18. 

 𝑣 =  𝐶 , − 𝐶 ,    [ 2.15 ] 

 𝑣 = 𝑚  𝐶 , − 𝐶 ,    [ 2.16 ] 

 𝑣 = 𝑣 =
 

    [ 2.17 ] 

 𝑖 = 𝑛 𝐹 𝑚  𝐶 , − 𝐶 ,    [ 2.18 ] 

where 𝛿  is the boundary layer thickness at the electrode surface (cm), 𝑚  is the mass-transfer coefficient 

(cm/s), 𝑣  is the net rate of the electrode reaction (mol/(s.cm2)), and 𝑖 is the current density (A/cm2). 

2.2.3.2 Electrochemical Reaction Mechanism 

An electrochemical reaction occurs after the mass transfer of the ions from the bulk electrolyte to the 

electrode surface. Coupled reactions such as adsorption, desorption, nucleation, and crystallisation 

occur in addition to the electrochemical reaction. According to Bard and Faulkner (2001), the applicable 

coupled reactions can be included in the heterogeneous electron-transfer reaction-rate mechanism. The 

electrochemical reaction for the reduction of copper entails the heterogeneous transfer of electrons from 

the electrode to the cupric ion, located at the surface of the electrode. Additionally, the reduction of 

copper involves adsorption, nucleation, and crystallisation to form a solid copper product that deposits 

on the electrode surface. The deposited copper product changes the electrode surface and, as a result, 

affects the rate of electron transport (Burheim, 2017; Doloi and Bhattacharyya, 2020). 

The driving force for a non-spontaneous electrochemical reaction is overpotential, with the rate of the 

reaction controlled by the magnitude of the potential difference between the two electrodes (Bard and 

Faulkner, 2001). Overpotential refers to the magnitude of the change from a system’s equilibrium 

potential resulting from the resistance to an introduced electrical current (Doloi and Bhattacharyya, 

2020). The total overpotential consists of the activation, concentration, and resistance overpotentials 

(Burheim, 2017). The activation overpotential refers to the energy required to drive the electron transfer 

(Bard and Faulkner, 2001). The concentration overpotential is the energy required to drive the transport 

of ions to and from the electrode surface, and the resistance overpotential refers to the potential drop 

across the thin oxide layer that forms on the electrode surface over time (Doloi and Bhattacharyya, 

2020). The overpotential for a system is calculated using Equation 2.19 (Bard and Faulkner, 2001). 

 𝜂 = 𝑈 − 𝐸    [ 2.19 ] 

where 𝜂 is the overpotential (V), 𝑈 is the potential (V), and 𝐸 is the reduction potential (V). 
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The Butler–Volmer equation (Equation 2.20), offers an indirect method to determine the rate of an 

electrochemical reaction, assuming that the reaction is not mass-transfer limited. The current density, 

determined via Equation 2.20, can be used to calculate the reaction rate (i.e., the mass of species reacted 

over time), using Faraday’s law (Equation 2.21). The Butler–Volmer equation is a good approximation 

of the current density required for the specific reaction, given a certain overpotential at the electrode, 

when the current density is less than approximately 10% of the smaller limiting-current density at the 

anode and cathode (Bard and Faulkner, 2001). 

 𝑖 = 𝑖  exp
  

 
 𝜂 − exp

( )  

 
 𝜂     [ 2.20 ] 

where 𝑖 is the current density (A/m2), 𝑖  is the exchange current density (A/m2), and 𝛼 is the charge-

transfer coefficient (dimensionless). 

 𝑣 = −
  

 
   [ 2.21 ] 

where 𝑣 is the rate of the electrochemical reaction (g/s), 𝑠  is the stoichiometric coefficient (negative if 

formed), 𝑀  is the molecular mass (g/mol), and 𝐼 is the current (A). 

The right-hand side of the Butler–Volmer equation can be divided into two terms. The first term 

describes the rate of the cathodic component of the reaction and the second term the rate of the anodic 

component. For a reduction reaction the calculated current density is positive, as the first term dominates 

over the second term at the associated negative overpotential. Conversely, for an oxidation reaction, 

and the associated positive overpotential, the calculated current density is negative (Bard and Faulkner, 

2001). The Butler–Volmer equation for an arbitrary system, showing the current density as a function 

of overpotential, is represented in Figure 2.4. It is noted that at a sufficiently negative or positive 

overpotential, the respective anodic or cathodic term of the Butler–Volmer equation is negligibly small 

(Tucker, 2019). 

 

Figure 2.4: Schematic representation of a current density–overpotential curve, showing the cathodic, anodic, and net 
components of the Butler–Volmer equation (adapted from Bard and Faulkner, 2001 and Tucker, 2019). 

The Butler–Volmer equation contains two parameters that are dependent on the individual 

electrowinning cell: the exchange current density (i0) and charge-transfer coefficient (α). The exchange 
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current density is dependent on the concentrations of reactants and products, temperature, the 

electrolyte–electrode interface, and impurities on the electrode surface. According to Newman and 

Thomas-Alyea (2004), the exchange current densities for real-life systems can vary from less than 

1×10−8 A/m2 to more than 100 000 A/m2. The effect of the exchange current density on the reaction-

rate kinetics, described by the Butler–Volmer equation, is shown graphically in Figure 2.5. Lower 

values of the exchange current density correspond to a more horizontal curve, alluding that a higher 

overpotential is required to deliver a current density, and vice versa for higher values of exchange 

current density. As the mass-transfer effects are not included, the overpotential associated with any 

reaction consists only of the activation overpotential. Lower exchange current densities result in slower 

reaction kinetics, therefore, requiring a larger activation overpotential for any particular current (Bard 

and Faulkner, 2001). 

 

Figure 2.5: Schematic representation of the effect of a change in the exchange current density (i0) on the Butler–Volmer 
equation (adapted from Bard and Faulkner, 2001 and Tucker, 2019). 

The charge-transfer coefficient is the fraction of the electrostatic potential energy affecting the reduction 

rate in an electrode reaction, with the remaining fraction affecting the corresponding oxidation rate 

(Guidelli et al., 2014). Figure 2.6 presents the effect of the charge-transfer coefficient on the reaction-

rate kinetics, as described by the Butler–Volmer equation. A larger charge-transfer coefficient results 

in faster kinetics for cathodic reactions (top left quadrant), with a less negative overpotential translating 

into a larger current density and, therefore, plating rate. A larger charge-transfer coefficient, however, 

results in the opposite effect for the anodic reactions (bottom right quadrant), with a more positive 

overpotential required to translate into a more negative current density (Tucker, 2019). For copper 

reduction, the charge-transfer coefficient must have a value between 0 and 2 to ensure the forward and 

reverse components of the Butler–Volmer equation have the correct sign in the exponent of each term. 

Typical values of the charge-transfer coefficient for copper reduction lie between 0.2 and 2 (Newman 

and Thomas-Alyea, 2004). 
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Figure 2.6: Schematic representation of the effect of a change in the charge-transfer coefficient (α) on the Butler–Volmer 
equation (adapted from Bard and Faulkner, 2001 and Tucker, 2019). 

2.2.3.3 Combined Mass-Transfer and Reaction Mechanism 

The ionic flux density, which is proportional to the current density (as described in Section 2.2.3.1), 

reaches a limit when the surface concentration of the corresponding species approaches zero. This mass-

transfer limit to the current is known as the limiting-current density (Free et al., 2013). In other words, 

when the limiting-current density is applied, the electrochemical reaction is occurring at the maximum 

possible rate for the current mass-transfer conditions (Ettel, 1981). Therefore, any potential increase 

after the limiting-current density is reached will not increase the rate of the electrochemical reaction 

(Das and Gopala, 1996). The limiting-current density is influenced by the hydrodynamics of the system, 

such as the Nernst diffusion layer thickness, the concentration of ions, and the temperature (Cifuentes 

and Simpson, 2005; Gopala and Das, 1992).  

The effect of the limiting-current density is graphically shown in Figure 2.7 for an arbitrary cathodic 

reduction reaction. When the Butler–Volmer equation is used to relate the current density to the 

overpotential the relationship is exponential, as shown by the solid line. A more realistic representation 

of the relationship is, however, given when combining the reaction-rate and mass-transfer kinetics, as 

shown by the black dashed line. Combining the reaction-rate and mass-transfer kinetics results in the 

reaction rate levelling off as it approaches the limiting-current density, represented by the grey dashed 

horizontal line.  
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Figure 2.7: Schematic representation of current density–overpotential curves comparing the mixed effects of mass-
transfer and reaction kinetics, and only reaction kinetics (Butler–Volmer equation) (redrawn from Tucker, 2019).  

The Butler–Volmer equation can be modified to include the mass-transfer kinetics, as shown in 

Equation 2.22. The standard Butler–Volmer equation presupposes that the ion concentration at the 

electrode surface does not differ significantly from that in the bulk solution. The modified Butler–

Volmer equation, however, includes a mass-transfer factor. The mass-transfer factor is the 

concentration of the respective ion at the electrode surface per the concentration in the bulk electrolyte. 

 𝑖 = 𝑖  𝐶  exp
  

 
 𝜂 − C   exp

( )  

 
 𝜂     [ 2.22 ] 

where 𝐶 = ,

,
 (1 when the species is plated) and 𝐶 = ,

,
, for O + 𝑛𝑒 ↔ R 

During copper electrowinning, the ferric ions, present as an impurity in the ore, are reduced more readily 

than the cupric ions when current is applied. As discussed in Section 2.2.2, this is because ferric 

reduction has a higher reduction potential. The limiting-current density is, therefore, first reached for 

the reduction of iron and only thereafter will any additional applied current be allocated for the reduction 

of the cupric ions (Gopala and Das, 1992). The current that is applied to the electrowinning cell should, 

therefore, translate to a current density high enough such that the desired copper reduction rate is 

attained, but not exceed the limiting-current density for copper reduction.  

Industrial electrowinning plants generally operate at below 50% of the limiting-current density for 

copper reduction, otherwise the current becomes unevenly distributed and the deposited copper has a 

rough surface with nodular formations (Aqueveque et al., 2015; Gopala and Das, 1992). Once the 

limiting-current density is exceeded, the process becomes electrically inefficient and copper powder is 

formed, instead of adherent copper plating (Gopala and Das, 1992).  
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The concentration of the respective ion at the electrode surface, required in the modified Butler–Volmer 

equation, is not easily determined.  Consequently, in this project, the standard Butler–Volmer equation 

was selected for modelling industrial electrowinning. As previously mentioned, it is a good 

approximation of the current density if the current density is less than approximately 10% of the smaller 

limiting-current density at the anode and cathode (Bard and Faulkner, 2001). The limiting-current 

density is, therefore, used to comment on the use of the standard Butler–Volmer equation during model 

validation (Chapter 9).  

2.3 INDUSTRIAL COPPER ELECTROWINNING 

2.3.1 Process Description 

The hydrometallurgical method for extraction of copper consists of leaching, solvent extraction (for the 

majority of operations), and electrowinning (Komulainen, 2007). Figure 2.8 illustrates the flow of the 

general method that includes a solvent extraction step, whilst Figure 2.9 shows the method excluding 

solvent extraction (i.e., direct electrowinning). 

 

Figure 2.8: Block flow diagram for hydrometallurgical extraction of copper via leaching, solvent extraction, and 
electrowinning (redrawn from Tucker, 2019). 

 

 

Figure 2.9: Block flow diagram for hydrometallurgical extraction of copper via leaching and direct electrowinning 
(adapted from Burchell et al., 2017). 
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The choice of leaching method is based on the mineralogy of the ore, the copper grade, and the particle 

size (Schlesinger et al., 2011c). Heap leaching is used for the majority of copper extracted 

hydrometallurgically and is employed by most North and South American operations (Schlesinger et 

al., 2011c; Sole and Tinkler, 2016). In the African Copperbelt, agitated tank leaching is, however, 

widely used due to the high copper grade and presence of readily acid-leachable minerals (Schlesinger 

et al., 2011c; Sole and Tinkler, 2016).  

Agitated leaching is comparatively more expensive but can attain very high copper recoveries (close to 

100%) over a shorter residence time (hours, rather than months or years) (Schlesinger et al., 2011a; 

Sole and Tinkler, 2016). The high recovery combined with the higher ore grade processed by African 

operations (3% to 5% acid-soluble copper) result in a pregnant leach solution (PLS) with a high copper 

concentration (Sole and Tinkler, 2016). Where heap leaching typically results in a copper concentration 

of between 1 g/L and 6 g/L in the PLS, the concentration can be as high as 40 g/L for operations 

employing agitated leaching (Schlesinger et al., 2011a, 2011b). The PLS produced via heap leaching is 

too dilute in copper, and too impure, for electrowinning and the copper must be transferred to a 

concentrated copper electrolyte via solvent extraction (Schlesinger et al., 2011a). 

The solvent extraction process consists of extraction and stripping processes (Figure 2.8). During the 

extraction process, the PLS is contacted with an organic extractant that reacts selectively with copper 

over the other metal cations present. The raffinate, which is barren in copper and high in acid, is recycled 

to be used as a lixiviant in the leaching process. Subsequently, during the stripping process, the loaded 

organic phase is contacted with the spent electrolyte, stripping the copper from the organic phase, and 

forming the advance electrolyte having a high cupric ion concentration.  

Although the PLS obtained from agitated leaching operations is often sufficiently high in copper to be 

used directly in electrowinning, solvent extraction is typically employed by these operations to reduce 

the concentrations of impurities present in the electrolyte. A few operations do, however, treat PLS 

directly by electrowinning for copper recovery. These operations are mainly situated in African and 

Asian countries. Direct copper electrowinning from ore leach solutions produces copper of a lower 

quality and with reduced efficiency due to the impure electrolyte (Schlesinger et al., 2011b). It is also 

necessary to electrowin copper from the electrolyte to much lower concentrations because the spent 

electrolyte cannot be recycled to the solvent extraction step (Schlesinger et al., 2011b). This is usually 

done via a two-step electrowinning process where the first circuit reduces the copper from 

approximately 40 g/L to 20 g/L (slightly lower than for post-solvent extraction electrowinning) 

(Schlesinger et al., 2011b).  The second circuit, termed liberator cells, reduce the copper to as low as 

5 g/L producing very poor copper cathodes in the process. The copper produced in the liberator cells is 

usually sent to anode furnaces for melting and electrorefining (Schlesinger et al., 2011b). The produced 

spent electrolyte is very high in acid and is returned to the leaching step (Schlesinger et al., 2011b). 
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Direct electrowinning is also implemented in several base-metal refineries, which use concentrate or 

matte leach solutions that contain much higher levels of copper than when leaching from ore (up to 

70 g/L) (Schlesinger et al., 2022). This includes operations, specifically in South Africa, where copper 

is produced as a by-product of other metals refining (Sole et al., 2019). These operations are able to 

produce London Metal Exchange (LME) grade copper (Schlesinger et al., 2022).  

Approximately 120 000 t of copper were produced via direct electrowinning in 2010 (ICSG, 2010). 

This value is, however, expected to decrease as the implementation of solvent extraction increases in 

African operations, despite numerous challenges (Sole and Tinkler, 2016). Accordingly, it is essential 

that the model developed in this project, specifically for direct electrowinning operations, must also be 

applicable to post-solvent extraction electrowinning to ensure it is future proof.  

2.3.2 Tankhouse Design 

Electrowinning tankhouses consist of circuits of interconnected electrowinning cells. A typical 

electrowinning cell consists of alternating cathodes and anodes with a typical anode–cathode spacing 

of 50 mm (Figure 2.10). Generally, the electrolyte flows continuously through a manifold at the bottom, 

and overflows at one of the sides, ensuring a constant volume of electrolyte. The cells contain between 

60 and 80 cathodes, with one more anode than cathode per cell (Beukes and Badenhorst, 2009; 

Schlesinger et al., 2011c).  

 

Figure 2.10: Schematic representation of a typical electrowinning cell (adapted from Tucker, 2019). 

Electrowinning cells are connected using intercell busbars to form a complete electrical circuit, with a 

tankhouse consisting of an average of four circuits, and each circuit containing approximately 120 cells 

(Aqueveque et al., 2015). Three types of intercellular connections are currently available for use in 

industrial electrowinning tankhouses: the Walker configuration, the Optibar configuration, and the 

triple segmented (backup bypass system) configuration (Wiechmann et al., 2012).  

The Walker configuration uses busbars to connect anodes of one cell and the cathodes of the adjacent 

cell to create a series circuit (Aqueveque et al., 2015; Walker, 1901). The Optibar configuration uses 
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busbars to connect a single cathode of one cell to a single anode from the adjacent cell. The Optibar 

configuration has been successfully implemented on industrial scale for at least one electrowinning 

tankhouse (Wiechmann et al., 2012). No industrial application of the triple segmented configuration 

has been reported in literature, but one electrowinning tankhouse is evaluating industrial prototypes 

(Wiechmann et al., 2019).  

By far the most common configuration of intercellular connections is the Walker configuration 

(Wiechmann et al., 2012). A simplified representation showing how the Walker configuration is used 

to connect six cells to form a circuit is given in Figure 2.11. For a specific cell, the busbar that holds 

the anodes connects them electrically, whilst the corresponding cathodes receive the current through 

the electrolyte and deliver it to the busbar that holds both the corresponding cathodes and the anodes of 

the adjacent cell. The circuit is powered by a rectifier that converts the current from alternating to direct 

current (Wiechmann et al., 2002). The current density carried by the busbars is designed to be 

approximately 1.2 A/m2 (Beukes and Badenhorst, 2009).  

 

Figure 2.11: Schematic representation showing six cells connected to form a circuit, using the Walker configuration 
(redrawn from Tucker, 2019). 

2.3.3 Key Performance Indicators 

KPIs for the electrowinning process include the quality of the produced cathodes, the yield of copper, 

and the energy consumed during the process. A model that simulates the copper electrowinning process 

would require the KPIs as the main output variables. 

2.3.3.1 Quality 

The first indication of quality is the purity or grade of the produced copper. The purity of the copper 

cathode is specified by various international metal exchanges. The LME and New York Mercantile 

Exchange (Comex) specify a copper purity of 99.9%, with only 0.0065% impurities allowed for 
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Grade A copper (LME, 2020). The purity of the copper is determined by analysing the chemical 

compounds in the cathodes. Samples of the cathode are analysed to determine the chemical 

composition, typically using techniques such as Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES). 

The second indication of quality is the morphology of the deposited copper. The orientation of the 

copper grain growth and surface morphology of the produced copper is important for downstream 

physical handling, as well as market acceptance (Moskalyk et al., 1999). The physical quality of the 

deposited copper is determined at the end of the process using a machine that works with two high-

resolution cameras and a high-power light (Aqueveque et al., 2015). This automated method is widely 

used, but some plants still rely on trained workers to identify irregularities (Rantala and Virtanen, 2006). 

2.3.3.2 Yield 

The yield of copper refers to the mass of copper produced through the electrowinning process. A typical 

industrial electrowinning process produces cathodes that are plated with 50 kg to 55 kg of copper on 

each side of the stainless-steel blank (Schlesinger et al., 2011c). 

2.3.3.3 Energy Consumption 

Electrowinning is an energy-intensive process, requiring a cell voltage of approximately 2.0 V 

(Schlesinger et al., 2011c). In recent years the focus has shifted to the environmental impact of large 

industries, including the carbon footprint generated by electrowinning tankhouses. It is, therefore, 

imperative for the process to be operated with a conscious effort to increase energy efficiency and 

decrease energy consumption. Two methods of quantifying the energy consumption of the process, 

current efficiency and specific energy consumption (SEC), are discussed below. 

Current efficiency is defined as the proportion of the total current that produces solid copper. A practical 

approach for determining the current efficiency is suggested by Beukes and Badenhorst (2009), where 

the amount of copper produced is divided by the theoretical amount calculated from a form of Faraday’s 

law (Equation 2.24), as shown in Equation 2.23.  

 𝛽 = ,

,
   [ 2.23 ] 

where 𝛽 is the current efficiency (fraction) and 𝑚 is the mass (kg). 

 𝑚 , = −
   

 
   [ 2.24 ] 

where 𝑚 ,  is the mass of the species produced (g), 𝑠  is the stoichiometric coefficient (negative 

if formed), 𝑀  is the molecular mass (g/mol), 𝐼 is the current (A), and 𝑡 is the time (s). 
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The remainder of the current not used to produce solid copper is wasted by side-reactions occurring at 

the cathode, short circuits, stray currents, corrosion of deposited copper, and deposited copper falling 

off the cathodes (Moats, 2012; Schlesinger et al., 2011c). Moats (2012) elaborated, stating that the 

sources of inefficiency are often related. The reduction of ferric iron and/or dissolved oxygen can lead 

to either side-reactions occurring or corrosion of the deposited copper. From an operational standpoint 

the result is, however, similar: a decrease in current efficiency. Consequently, Moats (2012) motivated 

discussing the effect of these components in terms of reduction reactions, whilst recognising that 

corrosion could also be occurring. 

It is commonly accepted that the main factors that decrease the current efficiency is the presence of iron 

in the electrolyte, and inadequate housekeeping. Inadequate housekeeping can lead to an increase in 

short circuits and stray currents. For the specific tankhouse studied, Moongo and Michael (2021) 

reported that short circuits had the most significant effect on the current efficiency. Bringing short 

circuits under control resulted in a 5.4% increase in current efficiency. A root cause analysis showed 

that, among other factors, low copper concentration in the spent electrolyte (caused by poor process 

control), and poor cathode smoothing agent control were responsible for the short circuits at the specific 

tankhouse investigated (Moongo and Michael, 2021). 

The SEC is a measure of the electricity, supplied as a source of power, used during electrowinning, and 

can be calculated using Equation 2.25. The SEC in an electrowinning cell is approximately 2000 kWh/t, 

with only about 30% constituting the theoretical power requirement for copper reduction (Schlesinger 

et al., 2011b). The contributions to the total power consumption in a typical electrowinning cell are 

shown in Figure 2.12. Isolating the x-axis shows the contributions of components to the total cell 

voltage. The total voltage consists of the thermodynamic potential requirement of 0.89 V (E0), the 

cathodic overpotential of between 0.05 V and 1 V (ηc) the anodic overpotential of approximately 0.5 V 

(ηa), the potential drop over the electrolyte of between 0.25 V and 0.3 V (I Rs), and a potential drop due 

to hardware resistance of approximately 0.3 V (I Rh) (Schlesinger et al., 2011b). Isolating the y-axis 

shows the contributions to the total current. When combining the two axes, the contribution of a 

component to the total power consumption can be viewed as an area on Figure 2.12. 

 SEC =
  

,
   [ 2.25 ] 

where SEC is the specific energy consumption (kWh/t),  𝐼 is the current (A), 𝑈  is the total voltage (V), 

𝑡 is the time (h), and 𝑚 ,  is the mass of copper produced (kg). 
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Figure 2.12: Current and voltage contributions to power consumption in a typical copper electrowinning cell (redrawn 
from Schlesinger et al., 2011b). 

2.3.4 Variables Affecting Performance 

It is important to identify the process variables that influence the KPIs. The effect of changes in these 

variables must be accounted for by the electrowinning model to ensure accurate predictions of the KPIs. 

2.3.4.1 Electrical Input 

The electrical input, or power supplied, is determined by the required current density. The current 

density is an important process variable as it influences the yield and quality of the deposited copper. 

The rate of copper production increases with increasing current density (Schlesinger et al., 2011c). 

Operating at current densities above the limiting-current density could, however, result in uneven 

plating and nodular growths, leading to short circuits and decreased copper quality. 

Current densities for post-solvent extraction tankhouses typically vary between 200 A/m2 and 375 A/m2 

but can be as high as 460 A/m2, depending on the impurities present in the electrolyte (Bard and 

Faulkner, 2001; Beukes and Badenhorst, 2009; Schlesinger et al., 2011b). The impure electrolyte used 

in direct copper electrowinning means that these operations are forced to operate at much lower current 

densities (140 A/m2 to 220 A/m2), than their post-solvent extraction counterparts (Robinson et al., 2013; 

Sole et al., 2019).  

2.3.4.2 Electrolyte Composition 

The advance electrolytes used by direct copper electrowinning operations typically contain 40 g/L to 

70 g/L Cu (Robinson et al., 2013; Sole et al., 2019). An increase in the copper concentration will 

improve the quality of the deposited copper and marginally increase the current efficiency but could 

lead to copper sulfate crystallisation and a slight increase in electrolyte resistance (Aminian et al., 2000; 
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Dini and Snyder, 2011; Schlesinger et al., 2011b). A significant decrease in the copper concentration 

could lead to a decrease in plating rate due to insufficient diffusion for delivering cupric ions to the 

electrode boundary layer (Tucker, 2019).  

The acid concentration used by direct copper electrowinning operations (41 g/L to 90 g/L H2SO4) is 

much lower than the electrolyte acidities used by post-solvent extraction operations (up to 180 g/L 

H2SO4) (Robinson et al., 2013; Sole et al., 2019). This lower acid concentration is necessary because 

the spent electrolyte is typically returned to the leaching circuit (Sole et al., 2019). Although the lower 

acid concentration will have a negative effect on the electrolyte conductivity, as elucidated in Chapter 

3, the corrosion of lead-alloy anodes has been shown to decrease with decreasing acid concentrations 

(Andersen et al., 1974). 

Various impurities, originating from the copper-containing ore, are also present in the electrolyte used 

for copper electrowinning. The major impurities present in direct copper electrowinning electrolytes 

are discussed below. Impurities typically associated with industrial copper electrorefining electrolytes, 

but not prevalent in electrowinning electrolytes (such as arsenic, antimony, and bismuth) (Moats et al., 

2012), are excluded from the discussion. 

Iron 

As previously discussed, iron has a significant effect on the KPIs for copper electrowinning 

(Section 2.2.2). This substantial impact results from iron reduction being more thermodynamically 

favourable than copper deposition and not kinetically hindered (Moats, 2018). The presence of ferrous 

iron in concentrations greater than 1 g/L has, however, been shown to inhibit the formation of the MnO2
- 

based slime discussed later in this section (Ipinza et al., 2003; Zhang and Cheng, 2007). Ipinza et al. 

(2003) explained that this is because ferrous iron is oxidised preferentially to the manganese ions, 

preventing the formation of MnO2. Andersen et al. (1974) also stated that iron, similar to nickel and 

cobalt, has a moderate effect on inhibiting the corrosion of lead-alloy anodes. They, however, 

emphasised that this is only the case if iron is present in relatively high concentrations (8 to 10 g/L), 

and that any benefit of adding iron for this purpose is negated by the detrimental effect thereof on the 

KPIs. 

Nickel 

Direct copper electrowinning electrolytes typically contain a high background of nickel (20 g/L to 

65 g/L), establishing nickel as an important impurity to consider when modelling the process (Robinson 

et al., 2013; Sole et al., 2019). Despite this, most of the published literature regarding the effect of nickel 

is focused on the copper electrorefining process, likely because the presence of nickel is known to 

influence the mass-transfer conditions. Copper electrorefining utilises similar process conditions to 
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electrowinning in terms of temperature, electrolyte composition, additives, and applied current density. 

A key difference is, however, the mass-transfer-limited nature of copper reduction for industrial copper 

electrorefining, compared with the reaction-rate-limited nature of copper reduction for electrowinning 

(Jarjoura and Kipouros, 2006; Kalliomäki et al., 2019). In this section the limited literature pertaining 

to the effect of nickel on the KPIs of electrowinning is supplemented by literature specific to 

electrorefining. The effect of nickel is discussed cognisant of the reaction-rate-limited nature of copper 

reduction during electrowinning. Consequently, the effect of nickel on the mass-transfer conditions will 

not be discussed in depth.  

The first consideration is the co-electrodeposition of nickel during copper electrowinning. Vegliò et al. 

(2003) and Kalliomäki et al. (2019) confirmed that the selective deposition of copper and nickel is 

possible for electrowinning and electrorefining, respectively. Since the standard reduction potential of 

Ni2+ is 587 mV lower than that of Cu2+, nickel is not reduced during copper extraction (Aromaa, 2007). 

Sahlman et al. (2021) investigated nickel contamination of the cathode during copper electrorefining 

and also explained that nickel co-electrodeposition is, thermodynamically, extremely unlikely as it 

would require the copper concentration in the electrolyte to be almost zero. Although Sahlman et al. 

(2021) observed traces of nickel for two copper cathodes plated during laboratory-scale experiments, it 

was suggested that this was probably due to precipitated nickel sulfate. Sahlman et al. (2021) further 

investigated particle entrapment and the possibility of electrolyte inclusion. It was determined that 

particle entrapment was the most significant source of cathode contamination by nickel during 

electrorefining. The impact of particle entrapment on the KPIs will likely be limited to the quality of 

deposited copper. 

Another factor that could impact the quality of the deposited copper is the change in physicochemical 

properties effected by the presence of nickel, as described by Subbaiah and Das (1994). Changes in the 

physicochemical properties were shown to affect the surface methodology and crystal orientation of the 

copper significantly. Aside from the effect of changes in the physicochemical properties on the quality, 

the effect on the remaining KPIs is also of importance for developing a high-fidelity model. The adverse 

effect of nickel on the physicochemical properties of electrolytes, and the accompanying decrease in 

the mass-transfer conditions and limiting-current density of the copper electrodeposition process, has 

been the subject of several studies (Jarjoura et al., 2003; Kalliomäki et al., 2021, 2017, 2016; Price and 

Davenport, 1981, 1980; Subbaiah and Das, 1989). Consequently, it is well established that conductivity 

decreases with increasing nickel concentration, whilst density and viscosity increase. 

The presence of nickel (together with iron and cobalt) has, further, been shown to inhibit the corrosion 

of lead anodes (Andersen et al., 1974). Ipinza et al. (2003) studied electrowinning slimes from industrial 

electrowinning tankhouses and found the main constituent to be lead sulfate originating from anode 

corrosion. Consequently, nickel could reduce the formation of slime by reducing the corrosion of lead 
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anodes. Although the formation of slime influences the mass-transfer conditions during electrorefining, 

the main effect during copper electrowinning is expected to be the contamination of copper cathodes 

when the slime becomes suspended (Ipinza et al., 2003), and the increase in power consumption due to 

the anode slime resistance voltage drop. 

Cobalt 

It has been well established that the presence of cobalt in copper electrowinning electrolytes reduces 

lead anode corrosion and lowers the overpotential for water oxidation. The mechanism of action for the 

cobalt ions, however, remains open to debate (as explained in the comprehensive review done by 

Nikoloski and Nicol (2008)). Although studies by Nguyen et al. (2008) and Nguyen and Atrens (2008) 

seem to have contributed additional clarification, studies supporting their findings are required. 

As inexpensive lead-alloy anodes remain the most widely used electrode for many industrial 

applications, the corrosion of lead anodes continues to be a pertinent issue (Abbey and Moats, 2017; 

Robinson et al., 2013; Sole et al., 2019). Clancy et al. (2013) explained that the lead in the anode reacts 

with the sulfate in the electrolyte to form PbSO4. Oxygen evolution occurs after the PbSO4 reacts with 

water to form a protective passive layer of PbO2 (Abbey and Moats, 2017). Authors have previously 

attributed the decrease in lead corrosion in the presence of cobalt to the formation of cobalt oxides in 

the pores of the protective PbO2 film (Andersen et al., 1974; Rey et al., 1938), or the absorption of 

cobalt from the electrolyte onto the anode surface (Bagshaw, 1997).  

Koch (1959a, 1959b) and Rey et al. (1938) have also previously inferred that the reduced potential of 

the lead anode, in the presence of cobalt ions, results in less lead oxidation. Work conducted by Nguyen 

et al. (2008), however, contradicts this suggestion as the amount of lead oxidised was found to be 

independent of anodic current density. Instead, Nguyen et al. (2008) and Nguyen and Atrens (2008) 

stated that the cobalt ions changed the structure, morphology, and chemical composition of the 

protective film from a loose porous film to a thin dense film. They suggest that this less porous layer is 

responsible for hindering the oxidation of PbSO4 to PbO2, decreasing the rate of oxidation for the lead 

anode. 

The overpotential needed for the oxidation of water is high on lead anodes partly due to the potential 

needed to form and sustain the passive PbO2 layer mentioned above (Abbey and Moats, 2017). Nguyen 

et al. (2008) suggested that the decrease in potential observed in the presence of cobalt ions may indicate 

that the oxygen evolution is more rapid on the thin dense PbO2 film, as opposed to the loose porous 

film formed in the absence of cobalt. On the other hand, an additional pathway for oxygen evolution 

could also explain the decrease in anodic potential in the presence of cobalt (Koch, 1959b). This 

pathway involves the oxidation of Co2+ ions, followed by the oxidation of water by the Co3+ ions, 
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decreasing the anodic potential (Gendron et al., 1975). Moreover, Abbey and Moats (2017) have shown 

that cobalt and iron individually, but also jointly reduces anode potential. It is, therefore, possible that 

cobalt, iron, and manganese interact at or near the anode surface, resulting in decreased anodic potential 

(Abbey and Moats, 2017). 

Manganese 

Manganese is present in most African electrolytes due to the prevalence of agitation leaching. Typical 

concentrations of manganese in these electrolytes range from 330 mg/L to 670 mg/L (Robinson et al., 

2013; Sole et al., 2019). Manganese has been shown to increase the density and viscosity of copper 

electrolytes, whilst decreasing the conductivity (Subbaiah and Das, 1994). Nonetheless, only a handful 

of studies discuss the effect of manganese on copper electrowinning outside of the impact on the 

physicochemical properties of the electrolyte.  

It is known that the oxidation of manganese occurs during copper electrowinning, specifically during 

plant start-up due to the high overpotential required for oxygen evolution on new anodes (Yu and 

O’Keefe, 2002). The oxidation of manganese can also occur during normal operation if the double layer 

formed on the anode (discussed below) dissolves or if the iron concentration decreases to below 0.8 g/L 

(or preferably 1 g/L to 1.5 g/L) (Bwando et al., 2023). Bwando et al. (2023) explained that this minimum 

threshold of iron (specifically ferrous iron) is required to stabilise the electrolyte oxidation-reduction 

potential and prevent the oxidation of manganese, or to consume oxidised species if already formed. 

Wang et al. (2021) summarised a two-fold effect of manganese on copper electrowinning: the formation 

of a double layer on the anode (referred to above), and changes to the oxygen evolution reaction. The 

double layer is formed when Mn2+ is oxidised on the surface of the anode to form solid manganese 

dioxide and other high-oxidation state manganese substances (Ipinza et al., 2003). Ipinza et al. (2003) 

reported that this double layer is composed of a thick outer layer of non-adhering and flaking scales, 

and a thin protective inner layer that adheres to the electrode. The protective inner layer could 

potentially affect the corrosion of the lead anode. However, due to the loose and porous nature of the 

outer layer and the weak adhesion of the substrate the layer gradually falls off, along with the protective 

inner layer, and forms part of the anode slime (Elrefaey et al., 2020; Wang et al., 2021). The slime 

affects not only the quality of the deposited copper, but also the current efficiency and power 

consumption (Cheng et al., 2000; Elrefaey et al., 2020; Subbaiah and Das, 1994; Zhang and Cheng, 

2007). Aside from minimising the concentration of manganese to below 40 mg/L, Mirza et al. (2016) 

suggested diligent housekeeping (removing and cleaning the anodes at regular intervals) as the most 

suitable solution for mitigating the effect of anode slimes aggravated by the presence of manganese. 
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The second effect of manganese on copper electrowinning, as discussed by Wang et al. (2021), is the 

effect on the oxygen evolution reaction. The presence of manganese in the electrolyte reduces the charge 

fraction for oxygen evolution (Tjandrawan, 2010). The extent of the effect of manganese on the oxygen 

evolution reaction is dependent on the composition of the lead-alloy anode used during electrowinning 

(Tjandrawan, 2010). For example, when oxidising Pb-Ca-Sn anodes at 2.0 V for 24 hours in the 

presence of 1 g/L manganese ions, 70% of the charge was used for oxidation of manganese ions. This 

value was reduced to approximately 10% when using Pb-Ag anodes, as silver exhibits a catalytic effect 

on the oxygen evolution reaction. 

For African electrolytes, which contain high concentrations of cobalt, the extent of the discussed effects 

will likely be limited. This is because cobalt is thought to limit oxidation of manganese by promoting 

the evolution of oxygen (Elrefaey et al., 2020; Tjandrawan, 2010). Furthermore, iron is expected to be 

present in adequate concentrations in the majority of direct electrowinning operations to mitigate the 

oxidation of manganese, if present, during operation. 

2.3.4.3 Electrolyte Additives 

Various electrolyte additives are used to increase the performance of the electrowinning process, 

including chloride and smoothing agents. Chloride ions aid in the growth of dense, fine-grained, low-

impurity copper deposits (Schlesinger et al., 2011c). The chloride levels should, however, be kept below 

30 mg/L to avoid pitting corrosion of the stainless-steel cathodes (Beukes and Badenhorst, 2009).  

Smoothing agents are added to aid in the plating of dense and smooth copper and minimise the 

entrapment of electrolyte impurities (Schlesinger et al., 2011c). Smoothing agents can be classified as 

brighteners, levelers, or suppressors (Vereecken et al., 2005). Brighteners tend to refine the grain 

structure by catalysing the copper reaction, thereby producing bright cathode surfaces (Moats et al., 

2016). Levelers help produce a smooth surface by inhibiting the growth of protrusions, and inhibitors 

act as current suppressors, affecting both the copper dissolution and deposition (Moats et al., 2016). 

Similar to electrorefining operations, direct copper electrowinning operations typically use thiourea and 

Avitone as additives (Robinson et al., 2013; Sole et al., 2019). Typical thiourea concentrations for 

electrowinning applications range from 0.5 mg/L to 3 mg/L (Hiskey and Cheng, 1998).  

At 100% to 320% excess thiourea, Ngandu (2016) observed a decrease in current efficiency for 

increases in thiourea concentration, when investigating the suitability of thiourea as a 

selenium/tellurium precipitating agent. At thiourea concentrations of 10 mg/L, more closely resembling 

actual industrial conditions, Ngandu (2016), however, reported a very small decrease in current 

efficiency (from 96.06% to 96.01%). Ngandu (2016) further stated that the addition of organic additives 

(such as thiourea) is known to increase the cathodic overpotential as a result of the additive being 

adsorbed onto the electrode surface. 
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2.3.4.4 Electrolyte Temperature 

The temperature of the electrolyte influences the current efficiency, power consumption, and quality of 

the deposited copper. The effect of temperature on the current efficiency seems to be dependent on the 

concentration of copper in the electrolyte. Alfantazi and Valic (2003) reported a decrease in current 

efficiency for an increase in temperature (from 40 °C to 60 °C) at high copper concentrations (65 g/L), 

when no iron is present. At low copper concentrations (25 g/L) they reported an increase in current 

efficiency for an increase in temperature. Similarly, Ehsani et al. (2016) reported an approximately 2% 

increase in current efficiency for an increase in temperature from 20 °C to 50 °C, for an electrolyte 

containing 30 g/L Cu and no iron. Although no explanation is provided for the decrease in current 

efficiency at higher copper concentrations, Ehsani et al. (2016) suggested that the increase in current 

efficiency at lower copper concentrations results from the acceleration of the electrochemical reaction 

and reduction in viscosity. The reduced viscosity enhances the diffusion of ions and increases the 

current efficiency. Increasing the temperature of an electrolyte with a high ferric concentration, 

however, increases the diffusion rate of this ion as well, thereby decreasing the current efficiency. In 

experimental work conducted by Das and Gopala (1996) on an electrolyte solution containing 37 g/L 

Cu and 2 g/L Fe3+, the current efficiency decreased from 88.6% to 84.4% with a temperature increase 

from 30 °C to 60 °C. 

An increase in temperature has been shown to result in a decrease in power consumption. Panda and 

Das (2001) observed a decrease in power consumption (1400 kW/t to 1220 kW/t) when the temperature 

was increased from 30 °C to 60 °C. Moreover, Ehsani et al. (2016) reported an approximately 10% 

reduction in energy consumption when increasing the temperature from 20 °C to 50 °C. The decrease 

in power consumption when the temperature is increased is suggested to be the result of an increase in 

conductivity (Panda and Das, 2001). Beukes and Badenhorst (2009) reported the optimal temperature 

for conductivity, and therefore power consumption, as between 45 °C and 50 °C. Direct copper 

electrowinning operations operate at the higher end of this range (up to 60 °C) as the risk of organic 

degradation, applicable to post-solvent extraction operations, is not present (Robinson et al., 2013; Sole 

et al., 2019). 

Literature reports contradicting findings for the effect of temperature on the quality of the deposited 

copper. Cooper and Mishra (1987) reported an improvement in quality for a temperature increase from 

20 °C to 50 °C. Panda and Das (2001) also observed an increase in quality for a temperature increase of 

30 °C to 60 °C. Ehsani et al. (2016), however, reported an increase in surface roughness for an increase 

in temperature from 20 °C to 50 °C. Ehsani et al. (2016) suggested that this is the result of insufficient 

time for crystal structures to form, due to the increase in the rate of the electrochemical reaction. 
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2.3.4.5 Electrolyte Flow Rate 

The electrolyte flow rate is specified to provide an interfacial cathode velocity of between 0.05 and 

0.1 m3/h/(m2 of available cathode surface area), with 0.08 being the standard value (Beukes and 

Badenhorst, 2009). The interfacial cathode velocity affects the boundary layer at the cathode surface 

and, therefore, the mass-transfer rates of ions (Beukes and Badenhorst, 2009). 

2.3.4.6 Electrolyte Resistance 

The electrolyte resistance is the electrical resistance of the ions present in the electrolyte and contributes 

to a loss in voltage over the electrowinning cell. It is a function of the electrolyte specific resistivity, 

which is in turn dependent on the electrolyte conductivity (influenced by the composition and 

temperature), and the interelectrode distance (Wiechmann et al., 2011) (Equation 2.26). The electrolyte 

resistance can account for up to 24% of the SEC, making it an important consideration for energy 

consumption reduction (Kalliomäki et al., 2016; Price and Davenport, 1981, 1980; Wiechmann et al., 

2010).  

 𝑅 =
 

    [ 2.26 ] 

where 𝑅  is the electrolyte resistance (Ω), 𝑑 is the interelectrode distance (m), 𝜅 is the conductivity 

(S/m), and 𝐴 is the cross-sectional area of the electrode used in plating (m2). 

2.3.4.7 Hardware Resistance 

Hardware resistance results from the resistance to current in the metal equipment pieces in the 

electrowinning circuit including electrodes, hanger bars, busbars, the rectifier, and contacts between 

pieces. It is dependent on the type of material, as well as the size and age of the equipment and will, 

therefore, be different for each plant (Tucker, 2019). It remains constant during the electrowinning 

process as it is a function of the cell design. 

2.3.4.8 Electrodes 

The majority of copper electrowinning tankhouses use permanent cathode technology (Hiskey, 1999; 

Schlesinger et al., 2011c). This technology entails employing reusable stainless-steel blank cathodes, 

identical to the cathodes used in electrorefining. Some older or smaller plants may still be using copper 

starter sheets, but many are switching over to stainless-steel cathodes where the benefits can justify the 

capital investment (Robinson et al., 2013; Sole et al., 2019). 
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Rolled Pb-Ca-Sn alloy anodes are the most popular choice for copper electrowinning tankhouses 

(Robinson et al., 2013; Sole et al., 2019). Direct electrowinning tankhouses, however, prefer the use of 

cast Pb-Sb anodes (Abbey and Moats, 2017; Robinson et al., 2013; Sole et al., 2019). At the higher 

temperatures direct electrowinning tankhouses operate at, the Pb-Ca-Sn alloy can recrystallise. This 

recrystallisation leads to reduced strength and higher corrosion, compared with the Pb-Sb alloy (Felder 

and Prengaman, 2006). 

2.3.4.9 Housekeeping 

Schlesinger et al. (2011b) underlined the importance of good housekeeping practices in maximising 

both the purity of the produced copper cathode and the energy efficiency of the tankhouse, as supported 

by other literature sources (Joy et al., 2010; Kumar et al., 2010; Pfalzgraff, 1999). Good housekeeping 

practices include the timely detection and mitigation of electrical shorts, straightening of cathode 

blanks, and electrode alignment and spacing (Sole et al., 2019). 

Although the presence of iron in the electrolyte is known to contribute to a decrease in current 

efficiency, the relationship between iron concentration and current efficiency was not as significant as 

expected for the tankhouses surveyed by Sole et al. (2019) and Robinson et al. (2013). Consequently, 

Sole et al. (2019) advised that factors such as electrical housekeeping, anode age and maintenance, 

cleaning anode slime, and the age of the tankhouse are key when optimising the energy usage of 

electrowinning tankhouses. 

Automation of tankhouses can significantly improve tankhouse housekeeping practices, assisting with 

maintaining good electrode arrangements, uniformity of current distribution, and rapid short detection 

(Schlesinger et al., 2011b). A high-fidelity dynamic model can, for example, predict optimal tankhouse 

performance, given the specific operational and design variables. Following, the predicted performance 

can be compared with the actual tankhouse performance to enable preventative housekeeping. 

2.3.5 Measurements of Variables 

To ensure that the model can be used in industrial electrowinning tankhouses, it is imperative that the 

required input and output variables be readily measured or have the potential to be readily measured. 

The availability and accuracy of measurements for each process variable is, therefore, assessed in this 

section. Sole et al. (2019) emphasised that an increasing use of automation and intelligent monitoring 

systems are likely to dominate advances in electrowinning. As is the case for the oil and gas industry, 

factors such as wireless transmitters, a reduction in the cost of measurement technology, and increased 

regulations that require monitoring, are expected to increase the number of available measurements 

(Hedengren and Eaton, 2017). Consequently, although some of the advanced measurement strategies 
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discussed below are not currently commonplace, it is likely that industry will move towards 

standardising implementation thereof in the future. 

2.3.5.1 Rectifier Current 

Two types of sensors are typically used to measure the direct rectifier current that flows to the cells 

across the busbars in industrial electrowinning plants: Hall-effect sensors and fibre-optic current sensors 

(Aqueveque et al., 2015; Ziegler et al., 2009). Hall-effect sensors are magnetic field sensors. When 

current passes through a magnetic core’s aperture, a magnetic flux is induced in the core, with a voltage 

generated proportional to the magnetic flux. This voltage induction is known as the Hall effect. The 

induced voltage is amplified and measured. Since the voltage is proportional to the current, the current 

can be quantified.  

Fibre-optic current sensors make use of Faraday’s effect in an optical-fibre loop around the current-

carrying busbar (Bohnert et al., 2007a). A commercially available 500 kA fibre-optic current sensor has 

been shown to have accuracy and repeatability well within 0.1%, for applied currents ranging between 

3 kA and 300 kA (Bohnert et al., 2007a). The sensor uses a negligible amount of power and space when 

compared with Hall sensors, which can have a large power loss and can weigh up to 2000 kg (Bohnert 

et al., 2007a). Fibre-optic current sensors are typically employed for current magnitudes above 1 kA. 

For smaller current magnitudes, Hall sensors would be less expensive (Bohnert et al., 2007b). 

2.3.5.2 Cathodic Current 

The typical methods of current distribution monitoring used in industrial electrowinning tankhouses 

include infrared imaging, cell voltage monitoring, and handheld Gauss or individual cathode-current 

measurement devices (Fraser et al., 2013). Infrared imaging uses the temperature difference that occurs 

because of the difference in heat generated between poor electrode contacts or short circuits, and normal 

cathodes. The infrared cameras can be handheld or crane mounted. Cell voltage monitoring devices can 

detect current distribution problems as they are typically accompanied by changes in cell voltage. 

Handheld Gauss or individual electrode current measurement devices are composed of a stick-mounted 

Hall-effect sensor and entail tankhouse workers continuously roaming the tankhouse to take 

measurements (Aqueveque et al., 2015; Fraser et al., 2013).  

Individual cathodic current measurement, based on lineal radiometric Hall-effect sensors and 

ferromagnetic flux concentrators, is possible, but currently only non-commercial experimental 

prototypes are available (Aqueveque et al., 2015, 2010; Wiechmann et al., 2007). The Hatch HELM 

Tracker is a notable exception and has been retrofitted and tested at industrial electrowinning plants. 

The tracker enables continuous measurement of the current flowing through every electrode in a 

tankhouse. It works by measuring the magnetic field generated by the current passing through the 
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cathode header bar (Grant et al., 2017). The tracker currently also measures the cell voltage, with future 

developments including built-in sensors for electrolyte temperature, concentration, and flow (Fraser et 

al., 2013).  

2.3.5.3 Cell Voltage  

Commercially implemented cell voltage monitoring devices, such as the MIPAC Cell View (You et al., 

2009) and Outotec Cell Sense (Kim and You, 2007), provide wireless monitoring of individual cell 

voltages for electrowinning cells that have equipotential intercell bar connections. The voltage is 

measured in parallel connections over all the anode–cathode pairs in the cell (Aqueveque et al., 2015). 

For electrowinning cells with current-source intercell bar connections it is theoretically possible to 

measure the voltage over each anode–cathode pair, but no commercially implemented monitoring 

devices are available (Aqueveque et al., 2015). The Outotec Cell Sense system has been used to 

successfully identify short circuits in the early phase of development in an industrial electrowinning 

tankhouse (Rantala, 2013). Rantala (2013), however, further reported that although cell voltage 

measurements provide one of the fastest indicators of arising problems, it is challenging to use these 

measurements for early-fault detection. This challenge stems from the cell voltage being dependent on 

the operating conditions of the cell, as well as being a function of various other process measurements 

(such as the electrolyte composition and temperature). It is, therefore, crucial that the operating 

conditions are evaluated together with the online cell voltage measurements for use in fault detection 

(Rantala, 2013).  

2.3.5.4 Electrolyte Concentration 

Online instruments for measuring the copper, iron, and sulfuric acid concentrations in electrolytes are 

commercially available. This includes the Courier HX system from Outotec (2021), which uses high-

performance x-ray fluorescence technology, supplemented by titrators, to perform elemental analyses 

and analyse ionic contents, such as sulfuric acid. Sparse sampling of electrolyte for laboratory analysis 

seems, however, to be the current industry-standard due to the slow process dynamics (Rantala, 2013). 

Typically, atomic absorption spectrophotometry (AAS), or in smaller tankhouses titrations, are used to 

analyse for the electrolyte composition. 

2.3.6 Control of the Copper Electrowinning Process 

The exact configuration of every industrial electrowinning tankhouse is dependent on the specific plant. 

Nevertheless, a process flow diagram for a typical copper electrowinning process is shown in Figure 

2.13. The advance electrolyte, Stream 1, is combined with the resistively heated spent electrolyte, 

Stream 2, originating from the electrowinning cells (EW-101). The recirculating electrolyte, Stream 3, 

is pumped through a heat exchanger (E-101) where it is heated to the desired temperature via contact 
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with hot water or steam, or alternatively, resistively heated using the spent electrolyte stream, Stream 4. 

The heated recirculating electrolyte is split equally between the electrowinning cells (EW-101) before 

combining and exiting as the spent electrolyte, Stream 4. The diagram shows two electrowinning cells 

(EW-101), but industrial tankhouses can consist of upwards of 500 cells (Robinson et al., 2013). The 

solid copper cathodes, Stream 5, are harvested from the electrowinning cells (EW-101). The spent 

electrolyte, Stream 4, is split into three streams: the recycle to be combined with the advance electrolyte 

(Stream 2), the recycle to the leaching step (Stream 6), and a bleed stream (Stream 7) that regulates the 

level of impurities in the cells. 

 

Figure 2.13: Process flow diagram of electrowinning for the hydrometallurgical extraction of copper (redrawn from 
Tucker, 2019). 

The overall control objective of an industrial plant for the hydrometallurgical extraction of copper is 

the production of high-quality copper, whilst maximising the net revenue of the plant. It should be noted 

that the control objective for South African base-metal refineries, where copper is produced as a minor 

by-product may, however, differ. Regardless, the control of the plant relies on operators continuously 

manipulating the setpoints for the basic controllers, meaning that the control loops are decentralised 

with manual setpoints for flow rates, levels, pumps, and valves (Komulainen, 2007).  

The process includes long delays and complex interactions between the variables; therefore, optimal 

performance of the plant is seldom achieved (Komulainen, 2007). These plants, however, continuously 

capture large amounts of process data that can be used in advanced control systems, such as model 

predictive control (MPC). Applications of MPC are ubiquitous in industries such as refining and 

petrochemicals (Darby and Nikolaou, 2012), and are becoming more common in other industries such 

as mining, mineral processing, and extractive metallurgy (Crooks et al., 2023; Hodouin, 2011; Qin and 

Badgwell, 2003). 
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Control systems can be classified as either reactive or predictive, based on how sensor measurements 

are used, and control actions are generated. Reactive-based control strategies, currently implemented in 

electrowinning process control, use historical and current system states, as recorded by sensors, to 

generate control actions (Gaffoor, 2020). The controller, therefore, has no foresight of future process 

dynamics and is vulnerable to continuously changing process behaviour and anomalies. Currently, the 

electrowinning process is usually operated as a current-controlled process, where it is carried out at a 

fraction of the limiting-current density (Los et al., 2014).  

The control loop for the rectifier (IIC-101, Figure 2.13) is designed to maintain the direct current 

consistent with a setpoint, which is manually adjusted by the operator (Bergh and Yianatos, 2001). The 

objective of the control loop is to protect the rectifier from overheating and prevent the decrease of 

cathode purity that occurs when the limiting-current density is breached (Bergh and Yianatos, 2001). 

For base-metal refineries, where the spent electrolyte is typically recycled to the leach circuit, or sent 

for further downstream processing, the composition and flow rate of the spent electrolyte will also 

influence the control philosophy. 

A second control loop (TIC-101, Figure 2.13) is included for maintaining the electrolyte temperature at 

a constant setpoint by controlling the flow of hot water or steam to the heat exchanger (E-101, Figure 

2.13) (Bergh et al., 2001). Sensors for temperature, level, flow, pressure, and conductivity are used, 

with all motors, stirrers, pumps, and valves being controlled. Typically, the monitoring of cell voltage 

and temperature, which is measured using an infrared camera installed on the handling crane, allows 

for short circuits to be traced. 

In contrast, predictive-based control systems, such as MPC, perform dynamic, real-time optimisation 

of a process to generate actions that are adaptive to disturbances and consider the dynamic behaviour 

of the process (Gaffoor, 2020). The copper electrowinning process, specifically direct electrowinning, 

is characterised by time delays, multivariable behaviour, and nonlinearities (Lie and Hauge, 2008). This, 

combined with the continuous generation of large amounts of process data, makes direct copper 

electrowinning an ideal candidate for MPC and other predictive-based control systems. Advanced 

process control is already increasingly being considered for use in tankhouses, having the potential to 

improve current efficiency, productivity, and safety (Romero et al., 2007; Schlesinger et al., 2022). 

An MPC controller requires additional components that are not required in conventional reactive 

controllers (Figure 2.14). A model that accurately describes the steady-state and dynamic behaviour of 

a process, over the whole operating range, including non-linear behaviour, is an essential feature of 

MPC (Bergh and Yianatos, 2001; Moser et al., 2020). The difficulty of predicting major disturbances 

and the corresponding effects on the final product, as well as the lack of process models applicable to 

industrial plants, have previously prevented the implementation of MPC for electrowinning tankhouses 

Stellenbosch University https://scholar.sun.ac.za



36 
 

(Bergh and Yianatos, 2001; Komulainen et al., 2009; Komulainen, 2007). A promising solution is the 

application of a dynamic model that is integrated with a means of updating according to an evolving 

dataset (Appl et al., 2020; Moser et al., 2020; Rosen et al., 2015; Sinner et al., 2020; Tao et al., 2019). 

This additional feature, which allows for continuous calibration of the model using tankhouse data, is 

ideal for use in MPC where accurate representation of process behaviour is essential. 

 

Figure 2.14: Block flow diagram of a typical MPC controller (redrawn from Gaffoor, 2020). 

Dynamic process models have already been developed and validated for leaching (Dorfling, 2012; 

Knoblauch, 2015; Miskin, 2016) and solvent extraction (Komulainen, 2007). The dynamic leaching 

process model provided a framework within which improved control strategies (Knoblauch, 2015) and 

fault diagnosis strategies (Miskin, 2016; Strydom, 2017) were investigated. Similarly, the dynamic 

solvent extraction model was used to investigate the performance of MPC as an advanced control 

system for the industrial copper solvent extraction process (Komulainen, 2007).  

Komulainen (2007) suggested that the dynamic solvent extraction model should be combined with a 

dynamic electrowinning model to enable real-time optimisation. Moreover, real-time plant-wide 

optimisation, which requires the implementation of advanced control systems (such as MPC), is 

proposed by Bergh and Yianatos (2001) to be the optimal control approach for a leaching/solvent 

extraction/electrowinning plant. It entails adjusting the operating conditions as a function of the raw ore 

properties and feed rate, metal market prices, and reagent costs. MPC is expected to be a convenient 

control algorithm for the combined system due to the good interaction and time-delay handling 

properties. Additionally, accurate model predictions can provide early-fault detection, and a means of 

quantifying the advantage of using more complex control strategies (Appl et al., 2020). 
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2.4 MODELS 

2.4.1 Empirical Property Correlations 

As mentioned in the introduction of this dissertation (Section 1.4), the physicochemical properties of 

copper electrowinning electrolytes hold considerable economic importance. Developing accurate 

models of the physicochemical electrolyte properties has a twofold economic benefit for electrowinning 

tankhouses. Firstly, the correlations can form an integral part of the development of a high-fidelity 

dynamic process model (as done in this project). The potential benefit of such a model has been 

previously discussed and is well-documented for similar processes (Eksteen and Reuter, 2003; 

Knoblauch, 2015; Komulainen, 2007; Miskin, 2016; Strydom, 2017). Secondly, as these properties can 

be strongly influenced through the adjustment of the composition and temperature of the copper 

electrolyte (Kalliomäki et al., 2019), the models can aid cost optimisation and enable productivity 

improvements. 

The four main physicochemical properties of concern for copper electrolytes are conductivity, density, 

viscosity, and the diffusion coefficient for the cupric ion. Electrolyte conductivity directly impacts the 

energy consumption of the copper electrowinning process (Price and Davenport, 1980). According to 

Kalliomäki et al. (2021) the electrolyte conductivity (via the electrolyte resistance) can account for 12% 

to 24% of the total energy consumption in electrowinning. Density and viscosity also affect the energy 

consumption by influencing the mass and heat-transfer conditions (Price and Davenport, 1981; 

Subbaiah and Das, 1989). In a similar vein, Bauer and Moats (2020) highlighted the significance of 

changes in the mass-transfer conditions on the quality of the deposited copper. 

Changes in the physicochemical properties (specifically viscosity and the diffusion coefficient) will 

also impact the limiting-current density (Kalliomäki et al., 2016; Subbaiah and Das, 1994). The 

limiting-current density is an important consideration for electrowinning operations due to the 

detrimental effect on the quality of copper produced if the limiting-current density is breached. 

Moreover, the form of the Butler–Volmer equation used in this project to develop the electrowinning 

model is only a good approximation of the current density required for a specific reaction when the 

current density is less than approximately 10% of the smaller limiting-current density at the anode and 

cathode (Bard and Faulkner, 2001). Consequently, although the limiting-current density is not strictly 

a physicochemical property, it is included in discussions pertaining to these properties. 

A considerable amount of literature has been published on modelling the effect of composition and 

temperature on the physicochemical properties of copper electrolytes. The discussion in this section is 

not meant to be an exhaustive analysis of all developed models. Instead, the focus will be on the recent 

work of Kalliomäki et al. (2021, 2017, 2016) and Lehtiniemi et al. (2018) as their models have been 

Stellenbosch University https://scholar.sun.ac.za



38 
 

proven to be superior to the classical models, within the investigated ranges. Furthermore, only 

Kalliomäki et al. (2017), Lehtiniemi et al. (2018), and Kalliomäki et al. (2021) have published data that 

include industrial validation of their models.  

Kalliomäki et al. (2017) developed models for the viscosity and density of copper electrorefining 

electrolytes. Both the viscosity and density models proved more accurate than the classical models of 

Price and Davenport (1981) for predicting the properties of industrial electrolytes. Lehtiniemi et al. 

(2018) proposed improved models for copper electrorefining conductivity, based on models previously 

published by Kalliomäki et al. (2016). The models were validated using values measured from an 

industrial electrolyte. The best performing conductivity model was determined to be better at predicting 

the conductivity of the industrial electrolyte than the model developed by Price and Davenport (1981). 

A systematic error of approximately 8.5% was, however, still observed for predicting the conductivity 

(Lehtiniemi et al., 2018). 

Kalliomäki et al. (2021) investigated the causes of the inaccuracies in the models proposed by 

Kalliomäki et al. (2017) and Lehtiniemi et al. (2018) in order to build more rigorous models for industry 

applications. Subsequently, refined regression models for predicting conductivities, viscosities, and 

densities of industrial copper electrolytes were proposed, based on measurements from both synthetic 

and industrial electrolytes. Separate models were developed for the properties of copper electrowinning 

and copper electrorefining electrolytes, with the discussion limited to the electrowinning models for the 

purpose of the current project. Generally, the developed models predicted the conductivities and 

viscosities of the industrial electrowinning electrolytes, obtained from Glencore Nikkelverk, with 

higher accuracy than previously proposed models (Kalliomäki et al., 2021).  

The temperature and component concentration ranges investigated by Kalliomäki et al. (2021) (and 

previous studies) are given in Table 2.1, along with the typical industrial conditions for direct copper 

electrowinning operations. Only the conductivity model developed by Kalliomäki et al. (2021) for low 

sulfuric acid concentrations (< 142 g/L) was considered in Table 2.1. It is clear that the component 

concentrations investigated by Kalliomäki et al. (2021) do not encompass the full range of operating 

conditions applicable to typical direct copper electrowinning operations (Robinson et al., 2013; Sole et 

al., 2019). This finding is notable because the empirical model form tends to lack robustness of 

prediction and is limited to interpolation based on the data used for model development (Eksteen and 

Reuter, 2003; Tsamandouras et al., 2013). Consequently, the existing physicochemical property 

correlations developed by Kalliomäki et al. (2021) require evaluation for the wide range of component 

concentrations associated with direct copper electrowinning. 

Also shown in Table 2.1 are the conditions investigated by Kalliomäki et al. (2019) for the development 

of a correlation to predict the limiting-current density for electrorefining operations. The inclusion of 
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components such as arsenic and omission of iron and cobalt are expected to limit the applicability of 

the existing model for electrowinning operations. As far as it is known, no comparable correlation has 

been developed specifically for electrowinning operations. This statement excludes correlations for the 

diffusivity coefficient that can be used to calculate the limiting-current density using an approximation 

of the boundary layer thickness, as done by Bauer and Moats (2020).  
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Table 2.1: Summary of existing physicochemical property models with conditions used during model development, 
along with typical industrial conditions for direct copper electrowinning. 

Model 
T 

(°C) 
xCu  
(g/L) 

xH2SO4 
(g/L) 

xFe  
(g/L) 

xNi  
(g/L) 

xCo  
(g/L) 

xOther 
(g/L) 

Direct EW 
conditions 

(Robinson et al., 
2013; Sole et al., 

2019) 

50 – 70 30 – 90 20 – 120 0.5 – 6 20 – 65 0 – 3  

Price and 
Davenport (1980) 

Density, 
conductivity, 

viscosity (ER and 
EW) 

20 – 70 10 – 60 10 – 220     

Price and 
Davenport (1981) 

Density, 
conductivity 

20 – 60 5 – 55 10 – 225 0 – 20 0 – 20  As 0 – 10 

Subbaiah and Das 
(1989) 

Density, 
conductivity, 

viscosity 

30 
38.5 – 
41.6 

143.2 – 
163.5 

0.78 – 
15.8 

0.84 – 
19.6 

0.9 – 17.3 
Mn 0.9 – 

19.9 

Jarjoura et al. 
(2003) Density and 

viscosity (ER) 
20 – 60 40 160  0 – 40   

Kalliomäki et al. 
(2016) Conductivity 

(ER) 
50 – 70 40 – 60 160 – 220  0 – 20  As 0 – 30 

Kalliomäki et al. 
(2017) Density and 

viscosity (ER) 
50 – 70 40 – 60 160 – 220  0 – 20  As 0 – 64 

Lehtiniemi et al. 
(2018) Conductivity 

(ER) 
50 – 70 40 – 60 160 – 220  0 – 20  As 0 – 64 

Kalliomäki et al. 
(2019) Limiting-

current density (ER) 
50 – 70 40 – 60 160 – 220  0 – 20  As 0 – 45 

Kalliomäki et al. 
(2021) Density and 

viscosity (EW) 
50 – 70 40 – 60 80 – 223 0 – 10 0 – 20 0 – 5 As 0 – 30 

Kalliomäki et al. 
(2021) Conductivity 

(EW) 
50 – 70 40 – 90 50 – 142 0 – 10 0 – 30 0 – 5 

As 0 – 30 
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2.4.2 Steady-State Models of the Electrowinning Process 

Aminian et al. (2000) developed a steady-state phenomenological model for copper electrowinning, 

which was combined with a model for solvent extraction. The electrowinning model was developed 

using mass conservation equations and fundamental electrochemical equations. The equations were 

constrained using the resistance network modelling approach. The model allowed for the prediction of 

the spent electrolyte composition and current in the circuit, for a given cell voltage, advance electrolyte 

composition, and flow rate. Parameters for the solvent extraction model were fitted using experimental 

data, with parameters for the electrowinning model fitted from literature data and using the results of 

two sampling campaigns carried out at a solvent extraction/electrowinning pilot-plant.  

The combined solvent extraction/electrowinning simulator was validated against steady-state data from 

the pilot-plant. The observed results were in good agreement with the simulated data, except for the 

iron concentration in the advance and spent electrolytes (Aminian et al., 2000). The validated simulator 

was used to identify the effect of the copper concentration in the leached solution and cell voltage on 

the current efficiency and spent electrolyte copper concentration. Applications of the solvent 

extraction/electrowinning simulator include improving the understanding of the process and studying 

the effect of process variables on the current efficiency and recovery of copper. Aminian et al. (2000) 

stated the intention of expanding the solvent extraction/electrowinning simulator to include a model for 

ore leaching. Applications of the completed model are reported to include process simulation, 

optimisation, design, and ultimately investigating different control strategies (Aminian et al., 2000).  

Free et al. (2006) simultaneously solved thermodynamic, mass transfer, and electrochemical kinetic 

equations to form a steady-state model for predicting experimental-scale electrowinning performance. 

The goal of the model was to predict the effect of electrolyte composition, voltage, current density, 

contact resistance, temperature, electrode spacing, and fluid flow on the current efficiency, power 

consumption, electrodeposit morphology, and electrodeposit distribution. The effect of gas evolution 

on the effective resistance to ion mass transfer was included by approximating the solution conductivity, 

which is inversely related to resistivity, using the Maxwell equation. The model, however, used 

idealised model parameters from literature for the Butler–Volmer equation and did not incorporate 

parameter fitting, limiting the application thereof. Furthermore, literature values were used for the 

activity coefficients. The model was validated by comparing the predicted results with experimental 

data obtained from a laboratory-scale electrowinning experiment, consisting of a lead anode and copper 

cathode (Free et al., 2006). The predicted steady-state values for current efficiency and power 

consumption were compared with obtained experimental data. A scale-up approach to model more than 

one electrode pair was not reported as part of the model. 
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A unique characteristic of the model is the ability to provide information pertaining to the prediction of 

localised growths, which could potentially lead to short circuits. According to Free et al. (2006), the 

main reason for localised growth is greater access to the flow of electrolyte. Areas with high electrolyte 

flow rates are stated to receive a greater flux of depositing ions and, therefore, tend to grow more rapidly 

(Free et al., 2006). This effect was included in the model by combining the Navier–Stokes equation and 

the equation for the ion mass-transfer current density.  

Khouraibchia and Moats (2010) performed a statistical analysis to understand the effect of several 

variables on copper electrowinning performance. The effects of copper concentration, ferric iron 

concentration, and current density were investigated on current efficiency and SEC. Steady-state 

empirical models were developed to describe the current efficiency and SEC, shown in Equations 2.27 

and 2.28, respectively. The model-predicted values were compared with experimental results generated 

in a two-electrode laboratory-scale electrowinning setup, as well as values from seven industrial plants 

reported in literature. The current efficiency model was able to predict the experimental results with a 

maximum error of 0.55% and the industrial values with a maximum error of 2.9%. The SEC model, 

however, predicted the experimental results with errors of between 0.33 kWh/t and 8.55 kWh/t. 

Additional to the large range of errors for predicting the experimental results, the model also predicted 

lower values than those observed industrially. Khouraibchia and Moats (2010) stated that the lower 

predicted industrial values were the result of the non-standard anode material and experimental-scale 

of the setup used to develop the model. The general trends were, however, argued to correlate with 

industrial trends (Khouraibchia and Moats, 2010). 

𝛽 = 88.19 − 4.91 𝑥 + 0.52 𝑥 + 1.81 × 10  𝑖 − 6.83 × 10  (𝑥 ) +

                                               0.028 (𝑥 ) (𝑥 ) + 4.015 × 10 ( 𝑥 ) 𝑖   [ 2.27 ] 

 SEC = 1453.6 + 64.21 𝑥 − 11.46 𝑥 + 0.144 (𝑥 ) − 0.692 (𝑥 ) (𝑥 )         [ 2.28 ] 

where 𝛽 is current efficiency (%), 𝑥 is the concentration (g/L), and 𝑖 is current density (A/m2). 

Tucker (2019) developed a semi-empirical steady-state model for the prediction of current efficiency, 

SEC, and copper yield for a copper electrowinning process, using the model developed by 

Aminian et al. (2000) as a basis. Tucker (2019) improved upon the model by calculating the species 

activity coefficients, instead of assuming ideal behaviour. Furthermore, iron was included as a major 

impurity in the electrolyte and its cyclic reduction and oxidation were modelled together with the 

reduction of copper and oxidation of water. A parameter-fitting approach, based on experimental data 

generated in a bench-scale electrowinning setup, was used to obtain the parameters used in the mass-

transfer and Butler–Volmer equations. The model included a current loss parameter, which accounted 

for additional side reactions (other than the cyclic reduction and oxidation of iron, which was already 

included), short circuits, insufficient equipment contact, and stray currents. The model was validated 

Stellenbosch University https://scholar.sun.ac.za



43 
 

using steady-state experimental and industrial data. The model showed good agreement between the 

model-predicted and experimental values. The model-predicted industrial values were scattered but the 

model was able to predict the performance of various industrial tankhouses to some extent, using the 

parameters determined from the experimental data. Tucker (2019) considered the model as a first step 

towards a predictive dynamic model of the electrowinning process. 

Table 2.2 outlines a summary of the steady-state models discussed above, as well as the limitations 

associated with each of the models. The steady-state model developed by Tucker (2019) is determined 

to be best suited for use as the basis of a dynamic model. This is due both to the semi-empirical nature, 

which makes it applicable to a wide range of tankhouses, and the incorporation of non-idealised 

variables. Furthermore, apart from the empirical model developed by Khouraibchia and Moats (2010), 

the model developed by Tucker (2019) is the only model to include the effect of iron as an impurity in 

the electrolyte. Iron is a major impurity in copper electrowinning and incorporating it is essential to 

model the behaviour of a real-life tankhouse. Components of the model developed by Free et al. (2006) 

could potentially be incorporated in the dynamic model at a later stage, if required. This includes the 

ability to predict localised growths by incorporating the Navier–Stokes equation.  

Table 2.2: Summary of existing steady-state electrowinning models and associated limitations. 

Model Classification Validation Limitations 

Aminian et al. 
(2000) 

Steady-state semi-
empirical model 

based on 
literature data 

Steady-state 
validation based 

on pilot-scale 
data 

Activity of species at electrode estimated 
assuming Raoult’s law is valid. 

Does not account for effects of additives or 
impurities such as iron. 

Water losses due to evaporation and effects of 
oxygen evolution are neglected. 

Free et al. 
(2006) 

Steady-state semi-
empirical model 

based on idealised 
literature data 

Steady-state 
validation based 
on experimental 

data 

Used idealised parameters from literature. 
Used literature values for activity coefficients. 

Does not account for effects of additives or 
impurities such as iron. 

Khouraibchia 
and Moats 

(2010) 

Steady-state 
empirical model 

based on 
experimental data 

Steady-state 
validation based 
on experimental 

data and 
industrial data 

Underpredicts industrial energy consumption. 
Only accounts for effects of copper, ferric iron, 

and current density. 

Tucker (2019) 

Steady-state semi-
empirical model 

based on 
experimental data 

Steady-state 
validation based 
on experimental 

data and 
industrial data 

Does not account for effect of additives but 
includes iron as an impurity. 

Water losses due to evaporation and effects of 
oxygen evolution are neglected. 
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2.4.3 Dynamic Models of the Electrowinning Process 

Lie and Hauge (2008) developed a dynamic model of a specific industrial copper production process, 

including slurification, leaching, purification, and electrowinning sections, with the goal of using the 

model for improved process control. The model consisted of steady-state overall mass conservation 

equations, dynamic species mass conservation equations for each section, reaction kinetics for the 

leaching section, and electrochemical reactions for the electrowinning section. The model provides an 

alternative approach to solving for the current efficiency. Using available measurements, and the 

steady-state model, the current efficiency was determined using regression, instead of using mass-

transfer and reaction kinetics, as done by Aminian et al. (2000). Steady-state species mass conservation 

equations and overall mass conservation equations were combined with the operating parameters to 

find the steady-state concentrations for the electrowinning process, and the mass flow rate of copper 

produced. The mass flow rate of copper produced was combined with the known applied current to find 

the current efficiency. The calculated current efficiency term includes current leakages and accounts 

for electrowinning tanks not in production.  

Dynamic species mass conservation equations were used to develop a dynamic model of the 

electrowinning section of this specific plant. Additional measurements from the process were used to 

validate the steady-state model. The dynamic responses of the model to step increases and decreases in 

input variables were in good agreement with the authors’ expectations, but the model was not validated 

using dynamic data. Anushka et al. (2016) developed an optimal control strategy for the improved 

control of chemical compositions within the electrowinning process at the abovementioned industrial 

copper production plant, using the model developed by Lie and Hauge (2008). The work done showed 

the potential for improvement of control, if a dynamic model became available that accurately describes 

the specific process. 

Wiebe (2015) developed a dynamic semi-empirical model for a specific industrial copper 

electrowinning tankhouse using mass- and energy-conservation equations, as well as Faraday’s law. 

The semi-empirical model was divided into a model for the copper concentration and a model for the 

temperature. The focus of the overall model was to predict the dynamic variation in copper 

concentration of the electrolyte and the cell temperature, with changes in inlet conditions, for process 

monitoring and control purposes. The model for the copper concentration was limited to predicting the 

advance electrolyte copper concentration, using the applied current and the spent electrolyte copper 

concentration. Although this shows the potential of the model to aid in monitoring a process variable 

that is not continuously measured online (such as the advance electrolyte copper concentration), it does 

not include the ability to predict KPIs. A year’s worth of measurable data were collected from available 

instruments in the electrowinning tankhouse, for use in parameter fitting and validation of the model. 

A sampling rate of 18 minutes was selected as a trade-off between noise and loss of information.  
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The current efficiency, volume, and residence time were assumed to remain constant over time and 

combined with the molecular mass of copper, Faraday’s constant, and the number of electrons involved 

in the copper deposition reaction to form a single parameter. This single parameter and the residence 

time were solved by using a parameter-fitting approach utilising half of the collected industrial data. 

Using a parameter-fitting approach to estimate the current efficiency, assuming a constant current 

efficiency, has some similarities to the approach used by Lie and Hauge (2008). The other half of the 

collected industrial data was used to validate the model. Comparing the model-predicted data with 

measured data showed that the model was a reasonable fit. The work done by Wiebe (2015) showed 

that industrial electrowinning data can be used to successfully train and validate a dynamic model.  

Filianin et al. (2017) developed an empirical model (using partial least-squares regression) to predict 

the current efficiency for copper electrowinning operations. The copper, iron, and sulfuric acid 

concentrations in the advance electrolyte, flow rate, current applied, electrolyte temperature, and mass 

of copper extracted in the previous process step (solvent extraction) were selected as model inputs. The 

input variables were selected based on previous literature and a process correlation matrix. The 

developed model was calibrated using daily average historical industrial data covering 214 consecutive 

days. The dataset included measured sensor data, as well as current efficiency values calculated based 

on the mass copper produced in the electrowinning circuit. Cross-validation, (a resampling method 

discussed further in Chapter 7), was employed during calibration of the model. An arbitrary selection 

of 10 out of the 214 samples were left out during model calibration and used to evaluate the performance 

of the model on independent predictions. 

Filianin et al. (2017) concluded that the daily averaged values used for model calibration were not 

useable for predicting the effect of multiple parameters on current efficiency. This finding was based 

on the significant variance of predicted current efficiency values and bad overall model performance 

(Filianin et al., 2017). In other words, Filianin et al. (2017) argued that daily averaging brings random 

variation to the multivariate model. The model validation done by Filianin et al. (2017), therefore, 

highlights the challenges faced when developing an empirical model for a process where only low-

frequency, low-quality data are available. Nevertheless, Filianin et al. (2017) identified two potential 

applications of the model: analysis of adjustable variables in combination with metal concentrations to 

maximise the current efficiency, and the development of an inefficiency-free calibration that can be 

used to detect abnormal process behaviour. 

Wu et al. (2021, 2020) developed empirical neural network-based models for predicting the SEC and 

current efficiency of a copper electrowinning operation. A genetic algorithm based back propagation 

neural network model was proposed for predicting the current efficiency and potential as intermediate 

variables, before finally calculating the predicted SEC (Wu et al., 2020). In a separate article Wu et al. 

(2021) discusses using a particle swarm optimisation back propagation neural network model 
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specifically for predicting the current efficiency. Both models have the advance electrolyte copper and 

sulfuric acid concentrations, as well as the current density, as inputs. The models were trained using 

industrial data obtained from a copper electrowinning tankhouse. The data consisted of 6060 samples. 

Validation of the models was done by extracting 500 arbitrary samples from the training set in order to 

assess the prediction accuracy when using previously unseen testing data. Based on the validation 

results, Wu et al. (2021, 2020) asserted that the models can be used to accurately predict the SEC and 

current efficiency of the industrial copper electrowinning tankhouse used as a case-study. No mention 

was made regarding the effect of potential impurities in the electrolyte on the model accuracy. It is not 

clear what impurity concentrations, if any, were present in the advance electrolyte stream of the 

tankhouse used as a case-study. 

Table 2.3 outlines a summary of the dynamic models discussed above, as well as the limitations 

associated with each model. Although the model developed by Wu et al. (2021, 2020) was able to 

predict the KPIs of the plant on which it was trained, it does not seem to account for the effect of key 

electrolyte impurities (such as iron). Consequently, as the composition of the electrolyte used for model 

validation is not clear, it is not possible to comment on the use and accuracy of the model for tankhouses 

where impurities affect the KPIs. 

The unsatisfactory performance of the model developed by Filianin et al. (2017) also highlighted a key 

limitation associated with empirical models – a large quantity of good quality process data are required 

to develop a high-fidelity model (Di Caprio et al., 2023; Karniadakis et al., 2021). Roffel and Betlem 

(2006) suggested that the number of data points must be at least 50 to 100 times the number of model 

parameters, and for machine learning models (such as deep neural networks) the minimum number of 

data points can be as high as 1000 (Roffel and Betlem, 2006). The quality and range of the available 

data are also important as empirical models lack robustness of prediction and are limited to interpolation 

based on historical data (Eksteen and Reuter, 2003; Tsamandouras et al., 2013). This means that the 

data must be a good representation of the process considered as these models cannot predict dynamics 

that are not reflected in the training data (Roffel and Betlem, 2006; Xu et al., 2017). This presents a 

potential challenge in an industrial setting where the process is subject to control, and measurements 

may be difficult to obtain (Di Caprio et al., 2023). 

Eksteen and Reuter (2003) further argued that empirical models may provide short-term accuracy, but 

they could have problems with long-term stability. This vulnerability, combined with the fact that this 

model structure may not reflect the fundamental properties of the system (Eksteen and Reuter, 2003), 

mean that empirical models may be useful for identifying tankhouse-specific conditions for optimal 

performance, but they are generally not suitable for control applications. 
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The model developed by Lie and Hauge (2008), on the other hand, is a purely fundamental model. The 

main advantage of a fundamental model over an empirical model is that it provides a rationale to 

extrapolate (Tsamandouras et al., 2013). However, whilst fundamental models are more robust, their 

complex nature means that they are time-consuming to develop and lack accuracy when applied for 

process control. Eksteen and Reuter (2003) elaborated on the issue of model fidelity by explaining that 

these models normally do not have solution times within the timeframe of process control. Moreover, 

they argued that many of the underlying phenomena are not understood well enough to allow for the 

development of credible fundamental models. Although this statement was originally made in the 

context of modelling bath-type furnaces, it is argued that it also rings true for some phenomena that 

occur during electrowinning. For example, the presence of cobalt has been documented to have various 

effects on the electrowinning process, including lowering the oxygen overpotential, but no clear 

mechanism has been established (Nikoloski and Nicol, 2008). Notwithstanding, fundamental models 

may contribute significantly to process understanding once more certainty regarding the underlying 

phenomena is obtained (Eksteen and Reuter, 2003; Roffel and Betlem, 2006).  

Semi-empirical modelling, referred to as hybrid modelling in some publications, combine fundamental 

models with empirical models to support enhanced model qualities (Kurz et al., 2022; Schopfer et al., 

2005). Semi-empirical modelling, therefore, focusses on developing an optimal model design with 

respect to robustness, rigorousness, accuracy, interpretability, versatility, and extrapolability (Galeazzi 

et al., 2023; Schuppert, 1999; Thompson and Kramer, 1994). Kurz et al. (2022) argued that semi-

empirical modelling has the potential to improve the Pareto trade-off between model accuracy and 

simulation cost significantly, adding that this brings scientific computing in engineering to the next 

level. Roffel and Betlem (2006) further stated that semi-empirical models have a dynamic behaviour 

that corresponds well to the original process, a crucial characteristic for developing a model for 

optimisation and control.  

Semi-empirical modelling is also useful for cases where there is not sufficient information available 

regarding the underlying phenomena of a process, such as the bath-type furnace case discussed by 

Eksteen and Reuter (2003). Eksteen and Reuter (2003) demonstrated that a semi-empirical modelling 

approach is both feasible and has an accuracy acceptable for process control for the furnace process, 

the modelling of which has similar challenges to other metallurgical processes (such as electrowinning). 

Moreover, Eksteen and Reuter (2003) added that the semi-empirical approach means that fundamental 

process relationships, such as mass balances, can be satisfied through data reconciliation. The approach 

also allows for adaptive prediction, the first step towards predictive control, through continued 

parameter estimation as new data become available (Eksteen and Reuter, 2003). 

Despite the advantages associated with semi-empirical modelling, there are also limitations that require 

mitigation. These limitations include structural and practical identifiability issues, and correlation 
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between model parameters. The structural identifiability of a model ensures that for a given set of input 

and output training variables (i.e., experiment), the model parameter set has one unique solution, 

independent of the experimental design (Eudy et al., 2015). Even if the model itself is structurally 

identifiable, it may suffer from practical non-identifiabilities (Hengl et al., 2007). This may be due to 

using training data of an inadequate size and quality, or due to lack of sensitivity of the model-predicted 

output to differences in the parameters (Tsamandouras et al., 2013). 

Tsamandouras et al. (2013) suggested adapting the experimental design as one possible solution for 

both structural and practical identifiability issues. For structural identifiability issues the experimental 

design can be perturbed in order to provide additional information. Similarly, for practical identifiability 

issues an optimal experimental design can be used to improve the collection of data. This confirms the 

importance of using properly controlled experimental data for model training and validation, even if 

industrial data are available. Tsamandouras et al. (2013) further recommended performing a sensitivity 

analysis to ensure that the model output is sensitive to the model parameters (this is done in Chapter 7). 

The final limitation discussed by Tsamandouras et al. (2013) is where high correlation between 

parameters may result in biased, imprecise, and sometimes unrealistic parameter estimates. 

Tsamandouras et al. (2013) recommended using a literature value for one parameter if two parameters 

are highly correlated. 

The abovementioned limitations emphasise that semi-empirical models are not exempt from the data-

related problems that are common for empirical models, as the approach is also partially dependent on 

industrial data. Consequently, Eksteen and Reuter (2003) underlined the importance of high integrity 

data. Industrial data are, however, seldom of high quality, motivating the use of data validation 

strategies (Eksteen and Reuter, 2003).  Nevertheless, the existing model developed by Wiebe (2015) 

provides encouraging results for the use of dynamic industrial electrowinning data to train and validate 

semi-empirical models. The model, however, relies on the assumption that the current efficiency 

remains constant throughout the electrowinning process. The inclusion of this assumption severely 

restricts the use of the existing model as a predictive tool. Furthermore, the effect of important input 

conditions, such as the advance electrolyte iron concentration, on output variables is excluded.   
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Table 2.3: Summary of existing dynamic electrowinning models and associated limitations. 

Model Classification Validation Limitations 

Lie and 
Hauge 
(2008) 

Dynamic 
theoretical 

model 

Steady-state 
validation based 

on industrial 
data 

Regression used to estimate current efficiency from 
known applied current using steady-state model, take 

constant steady-state current efficiency of 77.8%. 
Unclear whether impurities are included in current 

efficiency term. 
Does not account for effects of mass-transfer or reaction 

kinetics. 
Assumed constant electrolyte density. 

Wiebe 
(2015) 

Dynamic semi-
empirical 

model based 
on industrial 

data 

Limited dynamic 
validation based 

on industrial 
data 

Assumed constant current efficiency. 
Does not account for effects of additives or impurities 

such as iron. 

Filianin et 
al. (2017) 

Dynamic 
empirical 

model based 
on industrial 

data. 

Cross-validation 
done during 
calibration, 
based on 

industrial data. 

Purely empirical model does not account for fundamental 
behaviour. 

Model was not able to accurately predict current 
efficiency based on available low-frequency industrial 

data. 
Does not predict energy consumption. 

Wu et al. 
(2021, 
2020) 

Dynamic 
empirical 

model based 
on industrial 

data. 

Cross-validation 
done during 

training, based 
on industrial 

data. 

Purely empirical model does not account for fundamental 
behaviour. 

Does not account for effects of additives or impurities 
such as iron. 

Requires large set of training data. 
Computationally expensive to train. 

2.5 LITERATURE OUTCOMES 

The literature review conducted in this chapter highlighted the crucial fundamental electrowinning 

principles that formed the basis of the semi-empirical electrowinning model, developed in this project. 

An emphasis was placed on the industrial context; ensuring that the model was developed cognisant of 

the available data, challenges, and opportunities. In this vein, the review motivated the investigation of 

advanced control strategies, which require the availability of a high-fidelity dynamic process model, for 

direct copper electrowinning. In conclusion of the literature review, the main shortcomings in the 

published literature, relevant to the development of a suitable dynamic model for direct copper 

electrowinning, are, therefore, highlighted. 

Reviewing available literature underlined that various steady-state models have previously been 

developed for the copper electrowinning process (Aminian et al., 2000; Free et al., 2006; Tucker, 2019). 

Limited research has, however, been conducted on the development of dynamic models for the 

prediction of copper electrowinning performance (Filianin et al., 2017; Lie and Hauge, 2008; Wiebe, 

2015; Wu et al., 2021, 2020). Furthermore, the validity of the dynamic models that do exist is restricted 
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to specific industrial copper production plants or their predictive performance is not sufficient for 

application in process control. Additionally, the existing models do not account for the variable 

electrolyte composition and wide range of impurities required to accurately simulate the direct 

electrowinning process.  

The semi-empirical modelling approach, selected for use in this project, presents an opportunity to 

calibrate the developed model for a specific tankhouse, and dynamically refit the model parameters to 

ensure updated predictions. Tucker et al. (2021) has previously successfully implemented an offline 

parameter-fitting approach to calibrate a steady-state semi-empirical model for use in predicting the 

performance of a specific copper electrowinning process. Such an offline parameter-fitting approach 

has value for fitting initial parameter estimates and for use if limited data are available. An online 

parameter-fitting approach is, however, required to improve model-fidelity. This implementation, 

where industrial data are acquired and used to update a model, is similar to digital twinning (Galeazzi 

et al., 2023; Kurz et al., 2022; Wright and Davidson, 2020). Digital twins represent a future-orientated 

approach to process modelling.  

Data are required for developing, training, validating, and implementing the model. Measurements of 

all main process variables (current applied, potential, electrolyte composition, mass copper plated, and 

electrolyte flow rate) are commonplace in industrial electrowinning operations (Aqueveque et al., 

2015). Rhinehart (2021), however, adds that tankhouses have historically been built with the minimum 

investment in instrumentation required to effect adequate safety and control. Consequently, the 

availability of industrial data might be limited in older and smaller tankhouses. A successful dynamic 

model of the direct copper electrowinning process should be sufficiently robust to use data of a quality 

and frequency commonly found in industry.  

Although strategies for model validation are discussed extensively in literature (Forrester and Senge, 

1980; Knoblauch, 2015; Sargent, 2013), existing models for electrowinning have only been subjected 

to limited validation. This includes comparing steady-state model-predicted values with pilot-plant 

values (Aminian et al., 2000), experimental values (Free et al., 2006; Tucker, 2019), and industrial 

values (Tucker, 2019). Both Lie and Hauge (2008) and Wiebe (2015) also compared model-predicted 

dynamic values with the corresponding real-life industrial values. Rigorous validation, including 

evaluation of the internal model-structure and assumptions, verification of the computerised model, and 

operational validation is, however, required to ensure the developed model is sufficiently accurate for 

the intended purpose thereof (Moser et al., 2020; Sinner et al., 2020; Tao et al., 2019; Wright and 

Davidson, 2020). 

The literature review further outlined several correlations for predicting the physicochemical properties 

of copper electrolytes. Empirical property correlations are necessary to develop a model that accurately 
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accommodates the complex fundamental chemistry associated with the variable electrolyte composition 

of direct copper electrowinning operations. The correlations developed by Kalliomäki et al. (2021) were 

identified as the current state-of-the-art, due to both the improved accuracy compared with previous 

correlations, and the validation conducted using industrial electrowinning data. Nonetheless, 

Kalliomäki et al. (2021) did not validate the correlations for the full concentration ranges of copper, 

nickel, and sulfuric acid applicable to the direct copper electrowinning tankhouses surveyed by 

Sole et al. (2019). Moreover, although a correlation exists for predicting limiting-current density for 

electrorefining applications, no comparable correlation could be found specifically for electrowinning 

operations. 

In summary, a high-fidelity, flexible, dynamic model for copper electrowinning operations is not 

currently available, motivating the model development undertaken in this project. The model must be 

representative of a current-controlled electrowinning process, as this is the current mode of operation 

for the majority of industrial tankhouses. Furthermore, the model must be sufficiently flexible to be 

used on different full-scale electrowinning tankhouses for predicting the KPIs, using only available 

input variables. Incorporating an online parameter-fitting approach would enable updating the model 

based on an evolving dataset, resulting in high fidelity predictions. Lastly, the dynamic behaviour of 

the model must be validated to ensure that it is sufficiently accurate and comprehensive for its intended 

purpose.  
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CHAPTER 3 

PROPERTY CORRELATIONS 

3.1 INTRODUCTION 

In this chapter, the empirical physiochemical property correlations that form part of the developed 

electrowinning model are considered. Firstly, background is provided regarding the regression model 

building process used to develop and validate these correlations (Section 3.2). Following, the 

experimental methodology used to generate density, conductivity, and limiting-current density data for 

copper electrowinning electrolytes is discussed (Section 3.3). The generated experimental data are used 

to evaluate the existing physicochemical correlations developed by Kalliomäki et al. (2021) over the 

full range of operating conditions applicable to direct copper electrowinning, for density (Section 3.4) 

and conductivity (Section 3.5). Finally, the experimental limiting-current density data are used to 

develop a new correlation for predicting the limiting-current density of copper electrowinning 

operations (Section 3.6). 

3.2 BACKGROUND 

The iterative regression model building process discussed by Montgomery et al. (2012) comprises of 

three main steps: model selection and fitting, model adequacy checking, and model validation (Figure 

3.1). The first step, model selection and fitting, in turn, consists of model specification, model selection, 

and model fitting. Model specification refers to the process of determining what independent variables 

should be included in the regression equation (Montgomery et al., 2012). Montgomery et al. (2012) 

emphasised that the specification of a regression model should be based mainly on fundamental 

theoretical considerations, rather than empirical or methodological ones. Model selection and fitting 

refers to the process of selecting an appropriate form for the regression equation, and fitting for the 

included coefficients. This first step also included analysing the fitted model coefficients to ensure that 

they are stable and that their signs and magnitudes are reasonable, based on available literature 

(Montgomery et al., 2012). 

The second step, model adequacy checking, focusses on investigating the fit of the regression model to 

available training data and testing for lack of fit, mainly through residual analysis. Model adequacy 

checking also serves to diagnose violations of the basic regression assumptions (Montgomery et al., 

2012). The final step, model validation, on the other hand, is concerned with assessing the model 

performance on previously unseen validation data. 

For the existing density and conductivity correlations developed by Kalliomäki et al. (2021) the focus 

in this chapter will be on the final step of the process shown in Figure 3.1; validation of the models 
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using previously unseen data. The first and second step of the process have been adequately addressed 

by Kalliomäki et al. (2021), and the objective in this project is limited to evaluating the performance of 

the correlations for the wide range of component concentrations associated with direct copper 

electrowinning. For the newly developed limiting-current density correlation, the entire process is 

discussed in order to ensure the correlation is sufficiently robust for its intended application. 

 

Figure 3.1: Process for regression model fitting of physicochemical properties of electrolytes (adapted from 
Montgomery et al., 2012). 

3.3 EXPERIMENTAL METHODOLOGY 

3.3.1 Experimental Design 

The selected experimental design allowed for the validation of the property correlations developed by 

Kalliomäki et al. (2021) and the development of a limiting-current density model for the electrolyte 

compositions typically employed in direct copper electrowinning. The manipulated variables and ranges 

were informed by typical industrial electrolyte compositions for direct copper electrowinning 

(Robinson et al., 2013; Sole et al., 2019). Arsenic and manganese were not included in the experimental 

design. Although Kalliomäki et al. (2021) included arsenic in their property correlations, it is not 

expected to be a common impurity in direct electrowinning electrolytes and was, consequently, 

excluded. Similarly, manganese was excluded because the major species in copper electrowinning 

electrolytes have previously been found to be the most relevant for the prediction of physicochemical 

properties (Chibwe and Tadie, 2021). 

Direct copper electrowinning operations typically use Avitone and thiourea as electrolyte additives 

(Robinson et al., 2013). The validation work conducted by Kalliomäki et al. (2021) for the density and 

conductivity correlations included electrolytes from the Glencore Nikkelverk tankhouse which, 

according to Robinson et al. (2013), uses Avitone and glue as smoothing agents. On the other hand, the 

correlation developed by Kalliomäki et al. (2019) for predicting the limiting-current density of copper 

electrorefining applications, excluded the effect of electrolyte additives.  

Test work conducted by Bauer and Moats (2020) found that although the addition of chloride (up to 

20 mg/L) increased the diffusivity slightly (thereby potentially impacting the limiting-current density), 

most other additives tested did not have a pronounced effect. Consequently, thiourea was included in 
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the synthetic electrolyte at a fixed concentration of 35.2 mg/L for the density and conductivity tests, but 

not for the limiting-current density tests. This concentration was based on a typical thiourea dosing rate 

of 150 g/ t cathode, together with typical tankhouse specifications (Sole et al., 2019). 

A 2k – 2 fractional factorial design was selected with k = 6, meaning six manipulated variables at two 

levels each, as shown in Table 3.1. This design allowed for model adequacy testing (as described by 

Montgomery et al. (2012)), whilst producing an acceptable number of experiments. Moreover, the 

factorial design ensured that interactions between variables, if present, could be interpreted correctly. 

The design also yields results that are valid over the whole range of experimental conditions, as each 

variable can be estimated at several levels of the other variables (Montgomery, 2012). The latter is an 

important consideration because empirical correlations cannot be extrapolated. Three independent 

replicate experiments were conducted at the centre points of the design to comment on the reliability of 

the experimental data. This experimental design led to a total of 19 experiments for the density and 

conductivity tests, as per Appendix A (Table A.1). For the limiting-current density tests the design was 

repeated at three different fixed rotating rates, resulting in 57 experiments. 

Table 3.1: Manipulated variables for physiochemical properties experiments as coded variables. 

Manipulated Variable −1 1 

Copper concentration (g/L) 30 90 

Iron concentration (g/L) 0.5 6 

Nickel concentration (g/L) 20 65 

Cobalt concentration (g/L) 0 3 

Sulfuric acid concentration (g/L) 20 120 

Temperature (°C) 50 70 

3.3.2 Materials 

A synthetic electrolyte containing sulfuric acid, copper, iron, nickel, and cobalt was prepared using 

analytical grade copper sulfate pentahydrate, ferric sulfate monohydrate, nickel sulfate hexahydrate, 

and cobalt sulfate heptahydrate. Thiourea was also included in the electrolyte used to determine the 

density and conductivity. The electrolyte was prepared according to the concentrations specified in the 

experimental design (Appendix A, Table A.2).  

3.3.3 Equipment 

3.3.3.1 Density and Conductivity 

A heating bath (Julabo, CORIO C heating immersion circulator), capable of accommodating several 

250 mL glass bottles was used to heat the synthetic electrolyte to the desired temperature (Figure 3.2). 
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The conductivity measurements were carried out using an Orion Star A325 conductivity meter, 

calibrated with a standard electrolyte having a high conductivity and heated to temperatures in the range 

of the experiments. The density measurements were carried out using a 50 mL standard pycnometer. 

The simplicity, acid-resistance, and sufficient accuracy of the pycnometer established it as the method 

of choice above alternatives such as electronic meters or hydrometers, as supported by Chibwe (2020).  

 

Figure 3.2: Schematic representation of the heating bath setup for measuring the electrolyte density and conductivity. 

3.3.3.2 Limiting-Current Density 

A rotating disk electrode (RDE) system (Gamry, RDE710) was used to conduct the linear sweep 

voltammetry tests required to determine the limiting-current density of an electrolyte with known 

composition. The system consisted of a 175 mL jacketed reactor vessel, a rotating disk motor unit, a 

potentiostat (Gamry, Interface 1000 Model 04085), a Ag/AgCl reference electrode (in 3 M KCl, 0.21 V 

vs normal hydrogen electrode), a graphite counter electrode, and a stainless-steel working electrode 

(Figure 3.3). The reference electrode had a main body length of 110 mm and diameter of 9 mm, with a 

diameter of 4 mm at the glass junction. The working electrode had a surface area of 19.64 mm2. The 

system was connected to a computer in order to input parameters and generate voltammograms via the 

appropriate software (Gamry, PHE200TM physical electrochemistry software).  

 

Figure 3.3: Schematic representation of the RDE setup. 
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3.3.4 Methods 

3.3.4.1 Density and Conductivity 

The experiments for measuring the density and conductivity of an electrolyte with known composition 

were conducted by first preparing the synthetic electrolyte solution. Following, the prepared synthetic 

electrolyte was poured into a 250 mL bottle and positioned in the heating bath. The heating bath was 

switched on and the electrolyte in the bottle was allowed to reach the required temperature, stirring 

every 15 minutes. The bottle was kept sealed with a bottle stopper to minimise evaporation. Upon the 

heating bath indicating that the desired temperature was reached, the temperature of the electrolyte was 

confirmed using the conductivity meter, and the conductivity measurement taken. The density 

measurement was, thereafter, taken by extracting a 50 mL volume of the electrolyte with a syringe and 

depositing it in the weighed and calibrated pycnometer.  The final mass of the pycnometer was noted, 

and the density measurement was repeated a total of three times, cleaning and drying the pycnometer 

in between each measurement. The pycnometer measurements gave specific gravities that were 

converted to densities from published water density measurements (NIST, 2023). A detailed procedure 

for conducting the density and conductivity measurements is supplied in Appendix A (Section A.2.1).  

3.3.4.2 Limiting-Current Density 

The linear sweep voltammetry tests were conducted by first preparing the synthetic electrolyte solution 

and heating it to the desired temperature using a magnetic hot plate. Simultaneously, the heating bath 

connected to the jacketed reactor vessel was allowed to reach the desired temperature. Subsequently, 

150 mL of the heated synthetic electrolyte was poured into the jacketed reactor vessel, and circulation 

of the jacket water started. The counter electrode and reference electrode were, thereafter, inserted via 

the ports on the jacketed reactor vessel. The working electrode was positioned so that the working 

electrode tip was immersed approximately 1.0 cm into the synthetic electrolyte solution. Excessive 

immersion may corrode the shaft or tip if the solution seeps into the joint between the shaft and tip 

(Cohen, 2018). 

At this point it was ensured that the counter electrode and reference electrode were equidistant from the 

working electrode. This is necessary to reduce the effect of the electrolyte resistance (Chibwe, 2020). 

The motor unit was switched on and rotation was carried out for at least 5 minutes before commencing 

the linear sweep voltammetry test to ensure steady-state hydrodynamic conditions at the electrode 

(Chibwe, 2020). Rotation rates of 1.6 rad/s, 3.1 rad/s, and 10.5 rad/s were used. The lower limit of the 

range was selected based on an estimate by Sarswat (2010) for the average angular velocity equivalent 

for the parallel plate electrode case (similar to the industrial process setup), whilst the upper limit was 

taken to be the same as that used by Kalliomäki et al. (2019). 
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Finally, the linear sweep voltammetry tests were conducted by sweeping the potential cathodically from 

0.03 V to −0.75 V vs the reference electrode, at a scan rate of 10 mV/s and scan step of 5 mV. The 

sweeping range was selected based on the standard copper reduction potential (Chibwe, 2020). 

Furthermore, the range would ensure that the reduction of copper ions was diffusion limited and that 

hydrogen was not discharged (Chibwe 2020). The generated voltammograms were used to determine 

the limiting-current density, as detailed by Chibwe (2020). 

3.3.4.3 Analytical Methods 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), performed at the Department 

of Chemical Engineering at Stellenbosch University, was used to determine the concentrations of 

copper, iron, nickel, and cobalt in the prepared synthetic electrolyte samples. The quantification range 

of ICP-OES for copper, iron, nickel, and cobalt is 0.05 mg/L to 100 mg/L, and the total dissolved solids 

(TDS) are required to be below 2 mass per cent. Samples were, therefore, diluted by a factor of 1010 

using two-fold series dilution.  

3.4 DENSITY MODEL 

3.4.1 Model Selection and Fitting 

The general form of the density models discussed in this section is presented in Equation 3.1. Table 3.2 

presents the model coefficients for the model developed by Kalliomäki et al. (2021) (“Model KM”) as 

well as those for the classical model developed by Price and Davenport (1981) (“Model PD,”) and a 

reference model. The reference model was regressed based on the experimental data generated in 

Section 3.3. Use of the reference model is restricted to comparing the regressed coefficients with those 

obtained by Kalliomäki et al. (2021) to assess the stability, signs, and magnitude.  

 𝜌 =  𝑎  +  𝑎  𝑥Cu + 𝑎  𝑥H SO  +  𝑎  𝑥Ni +  𝑎  𝑥Fe +  𝑎  𝑥Co +  𝑎  𝑥As +  𝑎  𝑇 

  [ 3.1 ]  

where 𝜌 is the density (g/L), 𝑎 is the model coefficient, 𝑥 is the concentration (g/L), and 𝑇 is the 

temperature (°C). 
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Table 3.2. Terms and their coefficients for the density reference model, Model PD, and Model KM. 

Term Reference Model Model PD Model KM 

Constant 1.005 × 103 1.022 × 103 1.018 × 103 

xCu 2.008 2.24 2.247 

xH2SO4 4.546 × 10−1 5.5 × 10−1 5.111 × 10−1 

xNi 2.451 2.24 2.338 

xFe 5.822 2.37 1.717 

xCo −4.321 × 10−1 — 1.758 

xAs — 1.04 9.446 × 10−1 

T −1.233 × 10−1 −5.8 × 10−1 −5.754 × 10−1 

The signs and magnitudes of the majority of coefficients for the three models presented in Table 3.2 

correspond well with each other, and what is expected from literature. Previous studies have established 

that increasing temperatures decrease the electrolyte density, whilst increasing concentrations of 

copper, nickel, and sulfuric acid result in an increase (Chibwe and Tadie, 2021; Jarjoura et al., 2003; 

Kalliomäki et al., 2021, 2017, 2016; Price and Davenport, 1981, 1980; Subbaiah and Das, 1989). Other 

common metallic electrolyte components such as iron, manganese (Price and Davenport, 1981; 

Subbaiah and Das, 1989), and cobalt (Subbaiah and Das, 1989), have also been reported to increase the 

electrolyte density. Price and Davenport (1981) suggested that similar to copper and nickel, this is due 

to the addition of large, high molecular mass metal cations and SO4
2− anions to the solution.  

The negative coefficient obtained for cobalt concentration in the reference model is, therefore, 

unexpected. Based on the typical reasons for unexpected model coefficient signs, as discussed by Mullet 

(1976), it is suggested that the unexpected sign results from the small range of cobalt concentrations 

investigated (0 g/L to 3 g/L). As mentioned during discussion of the experimental design (Section 3.3.1), 

the investigated range is based on typical industrial conditions for direct copper electrowinning 

operations (Robinson et al., 2013; Sole et al., 2019).This range is, however, slightly smaller than the 

0 g/L to 5 g/L Co investigated by Kalliomäki et al. (2021). 

Regarding the magnitudes of the coefficients in Table 3.2, both Price and Davenport (1981) and 

Subbaiah and Das (1989) confirmed that temperature only has a small effect on the density, supporting 

the corresponding coefficients. The coefficient for nickel concentration obtained by Kalliomäki et al. 

(2021) is the largest, followed closely by the coefficient for copper concentration. This strong 

dependency on nickel concentration aligns well with the results obtained by Jarjoura et al. (2003). The 

electrolyte density increased by approximately 0.002 g/L for every 1 g/L Ni (within a range of 0 g/L to 

40 g/L Ni) (Jarjoura et al., 2003). Accordingly, the model coefficients for the model developed by 

Kalliomäki et al. (2021) overall show reasonable stability, signs, and magnitudes. 
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3.4.2 Model Validation 

3.4.2.1 Model Predictive Performance 

The predictive performance of the density Model KM is assessed using the experimental data generated 

in this project, spanning the whole range of conditions typically found in direct copper electrowinning. 

This experimental data are termed the “confirmation tests”. The validation results for Model KM are 

presented in Figure 3.4, for the conditions detailed in Table 3.1. Additionally, the performance of the 

classical Model PD and the reference model, regressed based on the confirmation tests, is also included. 

In Figure 3.4 (a) a parity plot of the modelled versus measured density is given. Figure 3.4 (b) gives the 

residual values showing the prediction error (predicted – measured) compared with the measured values 

and the zero-residual line.  

 

Figure 3.4: (a) Measured vs model-predicted densities and (b) measured vs residuals of model-predicted densities, of 
copper electrowinning electrolytes for Model PD, Model KM, and a reference model regressed using the values 
measured in this project. Error bars denote the standard error of the mean (SEM), calculated using three independent 
experiments. 

Table 3.3 reports the correlation coefficients for the least-squares fit of the respective models, where 

available, alongside the coefficients for the model fit to the confirmation test data. The least-squares fit 

data are the data used to originally regress the respective models, whilst the confirmation test data refer 

to the experimental data generated in this project. The R2 value for Model KM determined for the 

confirmation test data (0.973) shows only a slight decrease from the original least-squares fit R2 (0.989). 

For the reported normalised residual mean square error (nRMSE) values, a perfect match between the 

model-predicted value and actual value would lead to a nRMSE of zero. Accordingly, less accurate 

model predictions would lead to higher nRMSEs. The equations used to calculate the residual mean 

square error (RMSE) and the normalised version thereof (nRMSE) are discussed in detail in Chapter 7 

(Equation 7.1 and Equation 7.3, respectively). As confirmed by the R2 and nRMSE values supplied in 
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Table 3.3, Model KM can be successfully extrapolated to predict the densities of typical direct 

electrowinning electrolytes. 

Table 3.3: Correlation coefficients for density Model PD, Model KM, and the reference model, based on their respective 
least-squares fit and the confirmation tests. 

Description 
Model PD* Model KM† Reference model 

R2 nRMSE (%) N R2 nRMSE (%) N R2 nRMSE (%) N 

Least-squares fit — — — 0.989 — 117 0.995 — 17 

Confirmation tests 0.980 0.899 17 0.973 1.05 17 — 0.464 — 

*Price and Davenport (1981) †Kalliomäki et al. (2021) 

Although the number of data points for the confirmation tests (17, excluding replicates) is just below 

the minimum of 20 suggested by Montgomery et al. (2012) to give a reliable assessment of the model’s 

performance, the validation done in this project is meant to complement the original validation done by 

Kalliomäki et al. (2021) (using 117 data points). Overall, both qualitative analysis of the graphs and 

quantitative analysis of the correlation coefficients show the model has an acceptable goodness of fit 

for use in predicting the density of direct copper electrowinning electrolytes. 

3.5 CONDUCTIVITY MODEL 

3.5.1 Model Selection and Fitting 

The general form of the conductivity models discussed in this section is presented in Equation 3.2. 

Table 3.4 presents the model coefficients for the model developed by Kalliomäki et al. (2021) (“Model 

KM,”) alongside those for the classical model developed by Price and Davenport (1981) (“Model PD,”) 

and a reference model. Only the conductivity model developed by Kalliomäki et al. (2021) for low 

sulfuric acid concentrations (< 142 g/L) was considered in this project. The reference model was again 

regressed based on the experimental data generated in Section 3.3 (“confirmation tests.”)  

 𝜅∗ =  𝑎1  +  𝑎2 𝑥Cu +  𝑎3 𝑥H2SO4  +  𝑎4 𝑥Ni +  𝑎5 𝑥Fe +  𝑎6 𝑥Co +  𝑎7 𝑥As +  𝑎8 𝑇 +

 𝑎𝑛 (combined effect term)   [ 3.2 ]  

where 𝜅 is conductivity (S/m) (*1/κ for Model PD), 𝑎 is the model coefficient, 𝑥 is the concentration 

(g/L), and 𝑇 is the temperature (°C). 
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Table 3.4. Terms and their coefficients for the conductivity reference model, Model PD, and Model KM. 

Term Reference Model Model PD Model KM 

Constant −3.903 3.20 × 10−2 1.9442 

xCu 4.601 × 10−2 7.30 × 10−5 1.328 × 10−1 

xH2SO4 3.953 × 10−1 −5.60 × 10−5 3.386 × 10−1 

xNi 4.991 × 10−2 9.60 × 10−5 −6.85 × 10−2 

xFe 1.590 4.50 × 10−5 4.15 × 10−2 

xCo −4.275 × 10−2 — −1.533 × 10−1 

xAs — 1.30 × 10−5 — 

T 1.155 × 10−1 −1.46 × 10−4 −2.88 × 10−2 

xCu · xH2SO4 −1.561 × 10−3 — −2.8 × 10−3 

xH2SO4 · xNi −1.785 × 10−3 — −1.3 × 10−3 

xH2SO4 · xFe −1.134 × 10−2 — −2.6 × 10−3 

xH2SO4 · T 1.522 × 10−4 — 2.0 × 10−3 

xNi · xFe −7.638 × 10−3 — 4.5 × 10−3 

Table 3.4 shows that although interaction terms did affect the conductivity in Model KM, the single 

terms had the greatest magnitudes. Kalliomäki et al. (2016) explained that when interaction terms are 

present, the sign of an individual term coefficient, or interaction term coefficient should, however, not 

be interpreted individually, but as a combined effect of all variables that have an effect in the model 

equation. To this extent, the surface plots shown in Figure 3.5 were used to discuss the effect of the 

interaction variables on the conductivity. The surface plots are only shown for the model of interest, 

Model KM. Although the signs and magnitudes of the model coefficients could not be assessed directly, 

the behaviour of the model is shown to be reasonable. 
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Figure 3.5: Surface plots showing the effect of (a) Cu and H2SO4 concentration, (b) Fe and H2SO4 concentration, (c) Fe 
and Ni concentration, and (d) temperature and H2SO4 concentration on the conductivity, using Model KM. If not varied 
variables were kept constant at the centre point of the range specified in Table 3.1 (60 g/L Cu, 3.3 g/L Fe, 42.5 g/L Ni, 
1.5 g/L Co, 70 g/L xH2SO4, 60 °C). 

The dependency of conductivity on the main electrolyte components and temperature has been well 

established. Metal components decrease the conductivity whilst increased concentrations of sulfuric 

acid increase the conductivity (Price and Davenport, 1981; Subbaiah and Das, 1989). The conductivity 

is decreased by the presence of the large metal cations whilst highly mobile, small H+ cations, supplied 

by the sulfuric acid, increase the conductivity (Price and Davenport, 1981). Increases in temperature 

increases the mobility of the ions, thereby increasing the conductivity (Price and Davenport, 1981). 

Figure 3.5 (a) shows the effect of sulfuric acid and copper concentrations on the conductivity, per 

Model KM. The figure indicates that conductivity increased with increased sulfuric acid concentration, 

as expected. Furthermore, the figure shows that conductivity increased slightly with increased copper 

concentrations at lower sulfuric acid concentrations, but that the conductivity increased with decreased 

copper concentration at high sulfuric acid concentrations. Price and Davenport (1981) reported similar 

behaviour, stating that below 20 g/L H2SO4 an increasing copper concentration (at constant H2SO4) 
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increased conductivity, but that above 40 g/L H2SO4 the opposite occurred. According to Price and 

Davenport (1981), the exact sulfuric acid concentration at which the effect of copper reverses is 

temperature dependent, but it is always noticeable.  

Figure 3.5 (b) shows the effect of sulfuric acid and iron concentrations on the conductivity, according 

to Model KM. As expected, the figure again indicates that the conductivity increased with increased 

sulfuric acid concentration. The figure also shows that the conductivity increased slightly with increased 

iron concentrations. Although not expected per the available literature, the increase in conductivity 

resulting from the increased iron concentration is very slight. 

Figure 3.5 (c) shows the effect of nickel and iron concentrations on the conductivity, according to 

Model KM. The figure indicates that the conductivity increased with decreased nickel concentrations, 

as expected. Furthermore, the figure shows that at high nickel concentrations the conductivity increased 

with decreasing iron concentrations, as expected. At low nickel concentrations, the conductivity, 

however, slightly decreased with decreasing iron concentrations. As previously, the effect of the iron 

concentration on the conductivity was, however, very slight. 

Figure 3.5 (d) shows the effect of sulfuric acid concentration and temperature on the conductivity, per 

Model KM. Again, the figure indicates that the conductivity increased with increased sulfuric acid 

concentration. The figure also shows that at the lower sulfuric acid concentrations the temperature had 

little to no effect on the conductivity. At the higher sulfuric acid concentrations, the conductivity 

increased with increasing copper concentrations, as expected. 

3.5.2 Model Validation 

3.5.2.1 Model Predictive Performance 

Both Model PD and Model KM were shown to be less accurate than the reference model at the lower 

conductivities forming part of the confirmation tests, with Model PD showing substantial inaccuracy 

(Figure 3.6). The lower conductivity measurements were taken from the electrolytes having low sulfuric 

acid concentrations (20 g/L) and high nickel concentrations (65 g/L). Upon investigation it was 

determined that Model PD exhibited the same prediction inaccuracies at lower conductivities when the 

original data used by Price and Davenport (1981) were used. Lehtiniemi et al. (2018) seem to support 

the observed challenge with Model PD, reporting that the model did not fit the conductivity values for 

the electrowinning range used during model development by Price and Davenport (1981).  

The data used to develop Model KM only included sulfuric acid concentrations as low as 50 g/L and 

nickel concentrations as high as 30 g/L. Nevertheless, it was determined that Model KM can be 

successfully extrapolated to predict the conductivities of typical direct electrowinning electrolytes. This 

was confirmed by the R2 and nRMSE values supplied in Table 3.5. In this table, the R2 and nRMSE 
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values are again reported for the original least-squares fit of the respective models, alongside the fit of 

the models to the confirmation test data generated in this project. Additionally, correlation coefficients 

are also reported for the model fit to industrial validation data. Kalliomäki et al. (2021) used the 

industrial electrowinning data, obtained from Glencore Nikkelverk, to comment on the predictive 

performance of the model developed in their work (Model KM), as well as that of the previously 

developed Model PD. 

Similar to the density Model KM, the validation done in this project is intended to complement the 

rigorous validation completed by Kalliomäki et al. (2021). Both qualitative analysis of the graphs and 

quantitative analysis of the correlation coefficients show the model has an acceptable goodness of fit 

for use in predicting the conductivity of direct copper electrowinning electrolytes. 

 

Figure 3.6: (a) Measured vs model-predicted conductivities and (b) measured vs residuals of model-predicted 
conductivities, of copper electrowinning electrolytes for Model PD, Model KM, and a reference model regressed using 
the values measured in this project. Error bars denote the SEM, calculated using three independent experiments. 

 

Table 3.5: Correlation coefficients for conductivity Model PD, Model KM, and the reference model, based on their 
respective least-squares fit, industrial electrolyte data, and the confirmation tests. 

Description 
Model PD* Model KM† Reference model 

R2 nRMSE (%) N R2 nRMSE (%) N R2 nRMSE (%) N 

Least-squares fit — — — 0.998 — 119 0.997 2.44 17 

Industrial† 0.908 — 45 0.981 — 45 — — — 

Confirmation tests −0.521 56.1 17 0.866 16.7 17 — — — 

*Price and Davenport (1981) †Kalliomäki et al. (2021) 
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3.6 LIMITING-CURRENT DENSITY MODEL 

3.6.1 Model Selection and Fitting 

The general form of the regression models developed for predicting the limiting-current density of 

electrowinning operations is presented in Equation 3.3. Table 3.6 presents the model coefficients for 

the limiting-current density model without (“Model A”) and with (“Model B”) the combined effect of 

selected variables. Only combined effects with p-values less than 0.05 were considered statistically 

significant and included in Model B. The p-values for the included terms, calculated at a confidence 

level of 95%, are summarised in Appendix D (Table D.8). The coefficients for the limiting-current 

density model developed by Kalliomäki et al. (2019) (“Model K”) are also included. Model K was 

originally regressed specifically for electrorefining operations. The synthetic electrolyte investigated 

did not include any deposition controlling additives like glue, thiourea, Avitone or chloride (Kalliomäki 

et al., 2019). Similarly, for the synthetic electrolytes used in this project these additives were also 

omitted.  

 log(𝑖lim) =  𝑎1  +  𝑎2 𝑥Cu +  𝑎3 𝑥H2SO4  +  𝑎4 𝑥Ni +  𝑎5 𝑥Fe +  𝑎6 𝑥Co +  𝑎7 𝑥As +  𝑎8 1/𝑇 + 𝑎9 𝜔
1

2  +

 𝑎𝑛 (combined effect term)   [ 3.3 ]  

where 𝑖  is the limiting-current density (A/m2, or A/cm2 for Model K), 𝑎 is the model coefficient, 𝑥 

is the concentration (g/L), 𝑇 is the temperature (°C, or K for Model K), and 𝜔 is the angular velocity 

(rad/s). 

It is important to note that the developed models do not account for the effect of oxygen evolution at 

the anode on the mass-transfer conditions at the cathode. This omission results because of limitations 

associated with the RDE system used to generate the experimental data. Consequently, the models may 

significantly underestimate the limiting-current density of industrial electrowinning operations (Beukes 

and Badenhorst, 2009), despite performing satisfactory in the model validation tests conducted in 

Section 3.6.2. Moreover, the limiting-current density of industrial operations will likely also be site-

specific, as factors such as anode age and interelectrode distance will influence oxygen evolution. It is, 

therefore, acknowledged that the models provide at best conservative estimates of the limiting-current 

density for actual industrial electrowinning tankhouses.  

Industrial copper electrowinning tankhouses commonly operate at current densities of up to 50% of the 

limiting-current density for copper reduction (Ettel, 1981; Moats and Khouraibchia, 2009). Considering 

the range of current densities reported for tankhouses surveyed by Sole et al. (2019), a range of typical 

industrial limiting-current densities can be approximated as between 280 A/m2 and 996 A/m2. 
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Table 3.6: Terms and their coefficients for the limiting-current density models regressed in this project (Model A and 
Model B), and Model K. 

Term Model A Model B Model K 

Constant 6.621 5.936 −2.814 × 10−1 

xCu 1.581 × 10−2 1.424 × 10−2 3.146 × 10−2 

xH2SO4 −1.230 × 10−4 −1.240 × 10−5 −7.999 × 10−4 

xNi −6.482 × 10−3 −6.586 × 10−3 1.065 × 10−4 

xFe 2.784 × 10−2 3.390 × 10−1 — 

xCo −3.152 × 10−3 5.670 × 10−2 — 

xAs — — −1.630 × 10−2 

1/T −54.18 −5.524 −322.8 

ω1/2 4.357 × 10−1 4.333 × 10−1 1.665 × 10−1 

xCu · xFe — 8.746 × 10−4 — 

xNi · xFe — 1.359 × 10−3 — 

xNi · xCo — −1.961 × 10−3 — 

xFe · xCo — 1.467 × 10−2 — 

xFe · 1/T — −26.63 — 

xCu · xNi — — −5.428 × 10−5 

xCu · 1/T — — −7.773 

xNi · xAs — — 3.668 × 10−5 

xAs · 1/T — — 4.997 

As before for the conductivity model with interaction terms, the model coefficients could not be 

assessed individually for the limiting-current density models (except for Model A). Consequently, 

sensitivity analyses were used to comment on the stability, signs, and magnitudes of the model 

coefficients. 

The sensitivity of the models was tested as outlined previously in literature (Kalliomäki et al., 2021, 

2019, 2017; Lehtiniemi et al., 2018). The sensitivity analysis presented in Figure 3.7 shows that the 

limiting-current densities predicted by Models A, B, and K were affected mainly by changes in the 

temperature, and changes in the copper and nickel concentrations. The remaining composition 

parameters were found to have a less substantial effect. 

A 15% increase in temperature increased the limiting-current density predicted by the models with 

between 12.5% and 22.5%. This significant increase in limiting-current density for an increase in 

temperature corresponds well with what is expected, based on literature (Andersen et al., 1974; Bauer 
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and Moats, 2020; Jarjoura et al., 2003). Jarjoura et al. (2003) explained that the increase results from 

the increased velocity of the copper ions, resulting from the increase in temperature. For the case of 

electrorefining, as investigated by Jarjoura et al. (2003), this means that the copper ions will move faster 

from the surface of the anode to replenish the depleted area next to the cathode more rapidly. For 

electrowinning, the same phenomena are expected, with the copper ions originating from the bulk 

solution and not the anode surface.  

A 15% increase in the copper concentration resulted in a predicted increase of 12.8% to 16.7%, whilst 

a 15% increase in the nickel concentration resulted in a predicted decrease of 3.2% to 4.5%. Bauer and 

Moats (2020) supported the increase in limiting-current density for an increase in copper concentration. 

Similarly, both Jarjoura et al. (2003) and Jarjoura and Kipouros (2006) have previously reported that 

increasing nickel concentrations decrease the limiting-current density. The decrease in limiting-current 

density has previously been attributed to the increase in electrolyte viscosity resulting from the increase 

in nickel concentration (Konishi et al., 2003a, 2003b).  

 

Figure 3.7: Effect of changing the variables on the limiting-current density with (a) Model A, (b) Model B, and (c) 
Model K. 

Apart from the sensitivity of Model B to changes in temperature, no excess sensitivity to shifts in the 

variables were observed. Model A contains exclusively single factors; xCu, xH2SO4, xNi, xFe, xCo, 1/T, 

and ω1/2 (Table 3.6). In contrast, Model B contains the additional combined effect terms xCu·xFe, xNi· 

xFe, xNi·xCo, xFe·xCo, and xFe·1/T. These combined effect terms were statistically significant (p-

values < 0.05), but inclusion of these terms exacerbated the sensitivity of Model B to shifts in 

temperature. Nonetheless, the overall sensitivities obtained for Model A and Model B were similar to 

the sensitivities obtained for Model K (Kalliomäki et al., 2019). 
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3.6.2 Model Validation 

3.6.2.1 Model Adequacy Checking 

As previously mentioned in Section 3.2, one of the main functions of model adequacy checking is to 

diagnose potential violations of the basic regression assumptions. The basic regression assumptions are 

that the relationship between the dependent variable and independent variables is at least approximately 

linear, the error term has zero mean and constant variance, the errors are uncorrelated, and that the 

errors are normally distributed (normality assumption) (Montgomery et al., 2012). Residual analysis, a 

diagnostic method for assumption violations suggested by Montgomery et al. (2012), is used in this 

section to assess the models. 

Figure 3.8 presents the normality probability plot of the externally studentised residuals for (a) Model 

A and (b) Model B, developed in this project. The normality assumption is considered to be valid if the 

points on the graph lie on a straight line (Chibwe, 2020). Both Model A and Model B show flattening 

at the extremes, typically associated with a distribution with heavier tails than normal. Nonetheless, the 

deviations are slight, especially for Model A, and there are no indications of a severe problem with the 

normality assumption for either of the models. 

 

Figure 3.8: Normality plot of the externally studentised residuals for (a) Model A and (b) Model B. 

The limiting-current density models were further validated by comparing the predicted values with the 

measured values for the experiments described in Section 3.3 (the data originally used to regress 

Model A and Model B) (Figure 3.9 (a)). Figure 3.9 (b) includes a plot of the externally studentised 

residuals against the modelled limiting-current density values for this set of experiments. Model K is 

not included in this plot as the original data used to regress the model were not accessible to calculate 

the associated externally studentised residuals.  

Montgomery et al. (2012) explained that if Figure 3.9 (b) indicates that the residuals can be contained 

in a horizontal band, there are no obvious model defects. The double-bow pattern observed in this plot, 
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however, indicates that the variance of the errors is not constant. Transformations on the dependent 

variable are generally used to stabilise the variance. The dependent variable for Models A and B (and 

Model K), is the log of the limiting-current density. Although alternative transformations were 

investigated for the dependent variable of Models A and B, the stability of the variance did not markedly 

improve. Consequently, it was elected to retain the log model form. 

Although the non-constant variance indicates that the models could possibly be improved by adding or 

removing variables, model specification was done based mainly on fundamental theoretical 

considerations as well as what variables would be typically available to ensure the model is usable for 

industrial operations. It is important to note that the omission of the effect of oxygen evolution (or 

current density and other tankhouse-specific factors) are only expected to become relevant when 

predicting for the limiting-current density of actual electrowinning tankhouses, not experimental-scale 

data as done here. 

 

Figure 3.9: (a) Measured vs model-predicted limiting-current densities and (b) measured vs externally studentised 
residuals of model-predicted limiting-current densities, for copper electrowinning electrolytes measured in this project, 
based on Model A, Model B, and Model K. Error bars denote the SEM, calculated using three independent experiments. 

3.6.2.2 Model Predictive Performance 

The models were further validated by comparing the predicted values with the measured values for 

experimental data generated by Chibwe and Tadie (2021) (Figure 3.10). This data are termed the 

“validation data,” as it was previously unseen by all models. Chibwe and Tadie (2021) measured the 

limiting-current density of synthetic electrolytes containing copper, iron, sulfuric acid, and a 

polyacrylamide additive (PAM). Model B predicted the limiting-current density of the validation data 

with more accuracy than Model A and Model K (Table 3.7), confirming the selection of Model B for 

further use in this project.  
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Despite the satisfactory performance during validation on experimental data, the models provide at best 

conservative estimates of the limiting-current density for actual electrowinning tankhouses. As 

previously discussed in Section 3.6.1, this is because the effect of oxygen evolution and other 

tankhouse-specific factors are not accounted for. In this project, the main use of the limiting-current 

density predictions is as a warning mechanism, built into the electrowinning model, to indicate when 

standard operating conditions might not be applicable. Conservative estimates of the limiting-current 

densities are, therefore, adequate if not advantageous. 

 

Figure 3.10: (a) Measured vs model-predicted limiting-current densities and (b) measured vs residuals of model-
predicted limiting-current densities, of copper electrowinning electrolytes reported by Chibwe and Tadie (2021), based 
on Model A, Model B, and Model K. Error bars denote the SEM, calculated using three independent experiments. 

 

Table 3.7. Correlation coefficients for Model A, Model B, and Model K based on their respective least-squares fit, the 
values measured in this work, and the values reported by Chibwe and Tadie (2021) (validation data). 

Description 
This Work: Model A This Work: Model B Model K* 

R2 nRSME (%) N R2 nRSME (%) N R2 nRSME (%) N 

Least-squares fit 0.964 12.7 51 0.983 8.85 51 0.969 — 230 

This work — — — — — — −0.469 81.3 51 

Valida on data† 0.313 21.3 275 0.870 9.28 275 0.676 14.7 275 

*Kalliomäki et al. (2019) †Chibwe and Tadie (2021) 
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CHAPTER 4 

MODEL DEVELOPMENT 

4.1 INTRODUCTION 

In this chapter, the generic conceptual copper electrowinning model is developed from first principles 

(Section 4.2), incorporating the physicochemical property correlations discussed in the previous chapter 

(Chapter 3). The conceptual model is developed using the systematic procedure suggested by 

Seborg et al. (2011), adapted for the development of a semi-empirical model. This procedure involves 

first defining the model purpose, required accuracy, and scope. Secondly, the applicable process output 

and input variables are identified. Finally, the model assumptions are discussed and the appropriate 

conservation and algebraic equations that form the model basis are introduced. The final part of this 

chapter details the process of computerising the conceptual model using MATLAB (2023) 

(Section 4.3). 

4.2 CONCEPTUAL MODEL DEVELOPMENT 

4.2.1 Model Purpose and Required Accuracy 

The purpose of the high-fidelity dynamic model is to simulate copper electrowinning in an industrial 

direct electrowinning tankhouse. The model should be sufficiently comprehensive and accurate to 

enable the development and investigation of improved process control strategies (such as model 

predictive control, MPC) to ensure pre-emptive control actions are taken for optimal process efficiency. 

Not only can the model be employed to develop MPC strategies, but it can also be used to compare 

MPC to conventional controllers, quantifying the advantage of using the more complex strategy (Appl 

et al., 2020). Moreover, the model can be used for the redevelopment of conventional controllers (Appl 

et al., 2020).  

Various other applications of dynamic models are also possible, including process monitoring and 

operator training. In this project, the purpose of the dynamic model to be developed is, however, 

confined to enabling the development and investigation of control strategies. This does not eliminate 

the model from use for the other potential applications, as application in control will require the most 

accurate model (Appl et al., 2020). Similarly, developing the model specifically for the worst-case direct 

electrowinning scenario does not exclude it from use for the ideal-case post-solvent extraction 

electrowinning case.  

A high-fidelity dynamic model must be an accurate representation of the real-life process, representing 

all phenomena that affect the predicted properties and simulating the current state of the process 
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(Rosen et al., 2015; Wright and Davidson, 2020). Wright and Davidson (2020) suggested, and Gargalo 

et al. (2020) affirmed, three criteria a high-fidelity model must fulfil:  

1. The model should be sufficiently fundamental to ensure updating the model parameters based on 

measured data is meaningful, 

2. The model should be sufficiently accurate that the updated model parameters will be useful for the 

intended application of the model, and 

3. The model should be sufficiently quick to execute so that decisions relevant to the application are 

possible within the required timescale. 

The model developed in this project was qualitatively assessed against the abovementioned criteria 

during the model validation process (Chapter 9). 

4.2.2 Model Scope 

The scope of the dynamic model is confined to predicting the process performance of direct copper 

electrowinning operations with sufficient fidelity to enable the development and investigation of 

advanced control strategies, as elucidated above (Section 4.2.1). In the model, the process performance 

is quantified by key performance indicators (KPIs). The KPIs included are the current efficiency, copper 

yield, and specific energy consumption (SEC). The KPI relating to the quality of copper is excluded 

from the model predictions. Specialised instruments are used to analyse the physical and chemical 

quality of the copper cathodes after the electrowinning process is completed. This, combined with the 

fact that the quality is influenced by several variables, reduces the accuracy and usefulness of predicting 

this performance indicator. This exclusion is supported by Alfantazi and Valic (2003), who stated that 

the quality of the deposited copper is difficult to incorporate in a model. Multi-physical phenomena, 

such as fluid dynamics and current distribution, are also excluded from the model as the assumptions 

required for the inclusion thereof are not in line with developing a tool for process control. 

Limiting the scope of the model to direct electrowinning operations does not exclude it from use for 

post-solvent extraction tankhouses. The electrolytes for post-solvent extraction electrowinning contain 

similar impurities as those for direct electrowinning, albeit in significantly lower concentrations. 

Validating the model for the worst-case scenario electrolyte composition (direct electrowinning) should, 

arguably, support the validity thereof to the ideal-case scenario (post-solvent extraction 

electrowinning). Moreover, the differences in other operating conditions (such as temperature and 

current density) are captured by the fundamental part of the semi-empirical model. 

The electrolyte components considered in the model are limited to the main constituents typically 

present in direct copper electrowinning electrolytes; sulfuric acid, copper, nickel, iron, and cobalt 
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(Robinson et al., 2013; Sole et al., 2019). Although additional impurities, such as manganese, may be 

present in the electrolyte, the focus is retained on accounting for the impurities that are present in such 

concentrations that they have a large potential impact on the KPIs of concern (copper yield, current 

efficiency, and SEC). As the quality of deposited copper is outside the scope of the model, additives, 

such as chloride and smoothing agents, were also not accounted for. Thiourea, a smoothing agent 

typically employed by direct electrowinning tankhouses was, however, included at a fixed concentration 

for validating the empirical density and conductivity correlations used in the model. 

The model accounts for changes in the electrolyte density (required for mass balances) and conductivity 

(required for electrolyte resistance calculation) through the incorporated empirical physicochemical 

property correlations. Changes in the electrolyte viscosity resulting from changes in the electrolyte 

composition and temperature are, however, not included in the model scope. The electrolyte viscosity 

impacts the mass-transfer conditions, and therefore, the mass-transfer limited iron reduction and 

oxidation. Consequently, changes in the viscosity could impact the KPIs. The impact of the viscosity is 

included together with other phenomena not directly included in the model scope (such as slime 

formation and housekeeping) and captured by the online parameter-fitting approach accompanying the 

model. Similarly, any effect on the energy consumption through changes in the density and viscosity 

will also be captured by the online parameter-fitting approach and not modelled fundamentally.  

Changes in the viscosity could also affect the movement of oxygen bubbles that form at the anode 

during electrowinning, and as a result, could influence acid mist formation (Shakarji et al., 2011). As 

will be elaborated during discussion of the model assumptions and simplifications (Section 4.2.4), acid 

mist formation is not included in the model scope. 

The model validation conducted as part of the project is limited to model performance inside the range 

of standard operating conditions for direct electrowinning operations, as reported by Robinson et al. 

(2013) and Sole et al. (2019). Bench-scale electrowinning data and industrial data from two tankhouses 

are used in the validation process to ensure the model is sufficiently robust for use in developing and 

investigating advanced control strategies.  

4.2.3 Model Output and Input Variables 

4.2.3.1 Output Variables 

The KPIs namely, current efficiency, SEC, and copper yield, were identified as the model output 

variables (Section 4.2.2). Additional intermediary model output variables required to calculate the 

respective KPIs are given in Table 4.1. 
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Table 4.1: Electrowinning KPIs and the intermediary model output variables required in their calculation. 

KPI Intermediary output variables required 

Current efficiency Current required by copper reduction reaction 

SEC Total potential (including losses) 
Mass of copper plated (copper concentration in spent electrolyte) 

Copper yield Mass of copper plated (copper concentration in spent electrolyte) 

4.2.3.2 Input Variables 

The model was developed based on a current-controlled electrowinning process, therefore, the current 

applied was selected as an input variable. This approach differs from the potential-controlled approach 

taken by Tucker (2019). A current-controlled approach was found to be a more accurate representation 

of the current state-of-the-art in industrial electrowinning process control (Section 2.3.6). 

The additional input variables selected need to be readily measured or have the potential to be readily 

measured (Section 2.3.4) and must be independent of the output variables to ensure a predictive model. 

The selected input variables were divided into two categories: variables manipulated during operation 

and variables fixed due to design constraints. The selected input variables are listed in Table 4.2, 

together with the disturbances that may affect them. The model includes the ability to induce step or 

pulse disturbances in any one of the manipulated variables. Furthermore, the model allows for the 

manipulated input variables to be fed into the model as a vector, which enables the inclusion of dynamic 

input variables. 

Table 4.2: Selected model input variables and controlled or uncontrolled disturbances that may affect them. 

Category Input variable Disturbances in input variable 

Manipulated 
operational 

variables 

Advance electrolyte copper, iron, nickel, 
cobalt, and sulfuric acid concentrations 

Changes in composition of ore (or matte), or 
controlled in upstream operation 

Advance electrolyte flow rate Flow rate controlled by operator 

Temperature 
Heat exchanger controlled by operator, 
Resistive heating of electrolyte 

Current Rectifier current controlled by operator 

Fixed design 
variables 

Interelectrode distance Constant 

Volume of cell Constant 

Electrode area Constant 

Number of cathodes Number of cells in operation 

Voltage loss over hardware Degradation, short circuits, housekeeping 
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4.2.4 Model Assumptions and Simplifications 

To simplify the dynamic modelling of the electrowinning process certain assumptions were made:  

1. The components of the electrolyte were assumed to be limited to copper, sulfuric acid, iron, 

nickel, and cobalt. The effect of nickel and cobalt was, in turn, assumed to be limited to 

affecting the physicochemical properties of the electrolyte. Since the standard reduction 

potential of Ni2+ is 587 mV lower than that of Cu2+, nickel is not reduced during copper 

extraction (Aromaa, 2007). The presence of cobalt has, however, been documented to have 

various effects on the electrowinning process, including lowering the oxygen overpotential 

(Bagshaw, 1997; Cachet et al., 1999; Gendron et al., 1975; Kittelty and Mcginnity, 2006; Koch, 

1959a, 1959b; Rey et al., 1938; Yu and O’Keefe, 2002).  

It has previously been stated that the mechanism for water oxidation is dependent on the 

presence of cobalt ions. Although various attempts have been made to interpret the mechanism 

of the observed effect of cobalt (Bagshaw, 1997; Cachet et al., 1999; Gendron et al., 1975; 

Kittelty and Mcginnity, 2006; Koch, 1959a, 1959b; Rey et al., 1938; Yu and O’Keefe, 2002), 

no clear mechanism has been established (Nikoloski and Nicol, 2008). Moreover, consensus 

has not been reached that an alternative pathway for oxygen evolution is indeed the only reason 

for the decrease in anodic potential in the presence of cobalt. Consequently, fundamental 

modelling of the effect of cobalt on the oxygen evolution reaction was not plausible. Instead, 

the effect is captured during calibration of the model parameters, using the accompanying 

parameter-fitting approach. 

Other typical electrolyte components include manganese, selenium, tellurium, bismuth, 

chloride, and additives such as smoothing agents. All these components were classified as 

minor components and excluded from the model. Manganese may be present in concentrations 

below 670 mg/L for copper electrowinning tankhouses situated in Europe and Africa (Robinson 

et al., 2013; Sole et al., 2019), but the focus is retained on the major electrolyte components. 

Fundamental modelling of the effect of manganese slime (one of the pertinent consequences of 

manganese, Section 2.3.4.2) would, furthermore, be dependent on tankhouse-specific factors 

such as housekeeping, and the composition of the anodes used. Consequently, the effect of the 

produced slime on the KPIs is accounted for through the current loss parameter (see 

Assumption 5). As with cobalt, the effect of manganese on the oxygen evolution reaction 

(Tjandrawan 2010) is also captured by the parameter-fitting approach.  

Most tankhouses operate with very low concentrations of chloride (20 mg/L to 30 mg/L) in the 

electrolyte (Sole et al., 2019). The main impact of chloride on electrowinning operations, if 
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kept in this range, is on the quality of the deposited copper, which is outside the model scope. 

Similarly, the low concentrations of additives (such as smoothing agents) and the fact that their 

main purpose is to influence the quality of the deposited copper, meant that they were not 

explicitly considered in the model. Any potential effect the additives may have on the 

electrochemistry of the process was, therefore, not directly accounted for in the model. The 

additives are likely to be added at a set rate and concentration, without significant disturbances. 

This means calibration of model parameters for a specific tankhouse is the ideal method to 

account for any potential effects these additives may have on the considered KPIs. 

The combined concentration of tellurium, selenium, and bismuth (if present) must be kept 

below 1 mg/L in the electrolyte to avoid excessive contamination of the produced cathodes 

(Mokmeli et al., 2015). Although the presence of tellurium and selenium could potentially 

affect the current efficiency and energy consumption (Bello, 2014; Ngandu, 2016), fundamental 

modelling of the effect is not warranted due to the low concentrations and complex mechanisms 

involved. 

2. It was assumed that the copper reduction and water oxidation reactions were reaction-rate-

limited. This assumption is supported by the bench-scale electrowinning experiments 

conducted by Tucker (2019). Therefore, the Butler–Volmer equation, which excludes the 

effects of mass-transfer kinetics, was used to calculate the current density associated with the 

copper reduction and water oxidation reactions. The literature review did, however, establish 

that the Butler–Volmer equation only gives a good approximation of the current density if the 

operating current density is less than 10% of the diffusion limiting-current density (Bard and 

Faulkner, 2001).  

It is common for industrial copper electrowinning plants to operate at a current density of up to 

50% of the limiting-current density for copper reduction (Ettel, 1981; Moats and Khouraibchia, 

2009). The Butler–Volmer equation that is modified for the inclusion of mass-transfer effects 

requires the surface concentration of the respective species, which is not trivial to calculate for 

the dynamic state. This limits the use of the modified equation in the development of the 

dynamic model. An assumption was, therefore, made that the current densities associated with 

the copper reduction and water oxidation could be determined accurately enough, for the 

purpose of the model, by excluding mass-transfer effects. A warning message was incorporated 

into the computerised model to notify the model user if the predicted operating current density 

is more than 10% of the limiting-current density for copper reduction. 

Another caveat of the above assumption should be noted; base-metal refineries that utilise direct 

electrowinning often have this step included as a means of removing copper before the spent 
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electrolyte is sent for downstream processing, or recycled to the leach circuit (Lamya, 2007; 

Rademan et al., 1999). Copper is, therefore, produced as a minor by-product in these plants, 

with the main objective of the electrowinning tankhouse being to produce a spent electrolyte 

having a composition and flow rate conducive to completing the other processes. Accordingly, 

if required, the tankhouse may operate closer to the limiting-current or, per occasion, breach 

the limit and sacrifice the quality of produced copper. Once the limiting-current is exceeded the 

model might not necessarily reflect the behaviour of the system accurately, as mass-transfer 

limiting conditions will prevail for copper reduction. Again, the incorporated warning message 

will provide an indication of when mass-transfer limiting conditions are applicable to the 

copper deposition.  

3. The cyclic oxidation and reduction of iron were taken to be mass-transfer limited because the 

copper electrowinning process is operated above the diffusion-limiting current for iron (Ettel, 

1981; Moats and Khouraibchia, 2009). 

4. The model was developed to be modular i.e., the model was developed to predict the 

performance of each electrowinning cell in a bank separately, using the resistance network 

approach (see Section 4.2.5.1). The predictions for each cell in a bank can, therefore, be 

combined based on the tankhouse configuration, to predict the performance of the bank as a 

whole. For the purpose of this project, it was assumed that the cells that comprise a bank are 

identical, due to the limited available measurements.  

Moreover, it was assumed that every electrode pair modelled, and the associated hardware and 

electrolyte resistance was identical (Tucker, 2019). In a real-life plant, the hardware resistance 

would increase the further away the electrodes are from the voltage source (Loutfy and Leroy, 

1978). The hardware resistance, or associated voltage loss, is, however, often not measured in 

electrowinning tankhouses. The modular nature of the model leaves opportunity for 

incorporating the current distribution over every bank, if more detailed measurements become 

available at a later stage. This inclusion would mean the actual current that “reaches” every 

cell, accounting for hardware losses, could be used in the model.  

5. A current loss parameter was included in the model to account for losses caused by any reason 

other than the reduction of iron, such as ineffective electrode contact, stray currents, short 

circuits, the effect of sludge, and other side reactions (Tucker et al., 2021). The current loss 

parameter, therefore, includes the effect of the impurities that were not fundamentally 

modelled, such as tellurium and selenium. It also follows that this term is of specific importance 

for capturing the effect of housekeeping practices, such as desludging frequency, that cannot 

be modelled fundamentally and are known to impact the KPIs significantly.  
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6. Perfect mixing inside the electrowinning cell was assumed, meaning that the composition of 

the electrolyte within the cell could be taken as identical to the composition of the spent 

electrolyte leaving the cell. This assumption is supported by an electrowinning tracer test 

conducted by Aminian et al. (1998). The tests found that, except for a small bypass of 1%, the 

pilot-plant cell investigated showed perfect mixing. 

7. A constant volume of electrolyte in the cell was assumed. In a typical industrial electrowinning 

cell, the electrolyte flows in continuously through a manifold at the bottom and overflows from 

one of the ends, ensuring a constant volume of electrolyte. This assumption simplifies the mass 

balances used to develop the dynamic model.  

8. The effects of acid mist were assumed to be negligible. When conducting the mass balances 

used to develop the dynamic model it was, therefore, assumed that no electrolyte losses 

occurred as a result of acid mist generation. Furthermore, similar to the approach taken by 

Aminian et al. (2000) and Tucker (2019), losses due to evaporation and oxygen formation at 

the anode were excluded from the mass balances. 

9. The standard range of operation over which the model should be valid was based on a survey 

of global electrowinning plants (Robinson et al., 2013; Sole et al., 2019). 

4.2.5 Model Basis 

The generic conceptual model consists of an electrowinning model (Section 4.2.5.1) and a mass 

conservation model (Section 4.2.5.2). The electrowinning model is used to predict the current associated 

with each electrochemical reaction. The individual current densities are in turn used to calculate the rate 

of generation or consumption for each species present in the electrolyte. The mass conservation model 

uses the rates of generation or consumption in the respective dynamic mass balances to calculate the 

spent electrolyte composition. 

4.2.5.1 Electrowinning Model 

The performance of the electrowinning cell was simulated by assuming that each anode–cathode pair 

in the cell operates as a resistance network. This assumption infers that the relationships between the 

electrical components in the resistance network show the relationships between electrochemical 

equations. This approach was first used by Aminian and Bazin (2000) to model the behaviour of an 

electrowinning cell consisting of a single anode–cathode pair. A voltage source and resistor were used 

to represent the reversible potential and overpotential, respectively, for each electrochemical equation 

in the resistance network (Aminian and Bazin, 2000). Tucker (2019) adapted this approach by replacing 

the voltage source with a capacitor.  
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The resistance network approach was also used by Blackett and Nicol (2010) to simulate the current 

distribution in an electrowinning cell consisting of multiple electrode pairs. A voltage source was used 

to represent the reversible potential, as done by Aminian and Bazin (2000), but a parallel diode 

combination was used to represent the overpotential, instead of a resistor. Blackett and Nicol (2010) 

showed that the two diodes in parallel had a voltage–current characteristic similar to the Butler–Volmer 

equation (Equation 2.20). Furthermore, Blackett and Nicol (2010) reported that the inclusion of mass 

transfer is also possible by suitable modification of the diode characteristics. Accordingly, in this 

project, each electrochemical equation is represented in the resistance network by a parallel diode 

combination, in series with a voltage source (Figure 4.1). As previously mentioned, the model predicts 

the performance of one electrowinning cell, which can be scaled up to predict the behaviour of an entire 

tankhouse. 

 

Figure 4.1: Schematic representation of the simplified resistance network diagram for a single anode–cathode pair 
(adapted from Aminian and Bazin, 2000 and Blackett and Nicol, 2010). 

Figure 4.1 shows that the electrochemical reactions that occur at each electrode-side are connected in 

parallel. The current that flows through each electrode-side was, therefore, calculated by summing the 

current that was used in each reaction. The current required by each reaction was calculated by 

multiplying the respective current density by the surface area of the one-sided electrode. The current 

densities associated with the copper reduction and water oxidation were calculated using the Butler–

Volmer equation (Equation 2.20). In contrast, the current densities associated with the iron reduction 

and oxidation were calculated using the mass-transfer equation (Equation 2.18). The Butler–Volmer 

equation (Equation 2.20) required the use of the copper reduction and water oxidation overpotentials. 
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The overpotentials were calculated iteratively, using the constraints that (1) the current flowing through 

each cathode-side must equal that flowing through the corresponding anode-side, and (2) that the 

current flowing through each cathode-side must be equal to the current flowing through the individual 

main branch (Equation 4.1). The first equality constraint is represented by the series connection between 

each cathode-side and anode-side. The current through each main branch was taken to equal to the total 

current (excluding the current loss), divided by a scale-up factor (Equation 4.2). The scale-up factor 

was defined as twice the number of cathodes in the cell, to reflect the two plated sides of each cathode, 

as represented by the parallel connection between the two main branches (with each branch representing 

one electrode-side) (Equation 4.3). The scale-up approach will be elucidated later in this section. 

 𝐼 = 𝐼 = 𝐼   [ 4.1 ] 

 𝐼 = (𝐼 − 𝐼 )  [ 4.2 ] 

 𝑆 = 2 𝑁  [ 4.3 ] 

where 𝐼  is the cathodic current (A), 𝐼  is the anodic current (A), 𝐼  is the current through each individual 

main branch (A) 𝐼  is the total current (A),  𝐼  is the current loss (A), 𝑆 is the scale-up factor, and 𝑁 is 

the number of cathodes. 

For the copper reduction, an initial copper overpotential was estimated and the Butler–Volmer equation 

(Equation 2.20) was used to calculate the corresponding current density. The copper reduction current 

density was combined with the current density calculated for iron reduction (Equation 4.4). If the 

combined cathodic current was not equal to the total current left after accounting for the current loss 

divided by the scale-up factor (Equation 4.2), the initial estimate was updated. This process was 

repeated until the currents converged to within an acceptable limit (see Section 4.3.2.4). The same 

approach was used to determine the overpotential for water oxidation, using the anodic current. 

 𝐼 = (𝑖 + 𝑖 ) 𝐴   [ 4.4 ] 

where 𝑖  is the copper reduction current density (A/m2), 𝑖  is the iron reduction current density 

(A/m2), and 𝐴 is the two-sided cathode area (m2). 

The current loss is calculated per Equation 4.5. The current loss parameter, used to calculate the current 

loss, was taken to be the difference between unity and the fractional actual average current efficiency, 

as shown in Equation 4.6. It is acknowledged that the correlation employed in Equation 4.6 could 

potentially result in the current loss term partially accounting for the effect of iron reduction on the 

current efficiency of the process.  
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 𝐼 = 𝐼 𝐿   [ 4.5 ] 

 𝐿 = 1 − �̅�  [ 4.6 ] 

where 𝐿  is the current loss parameter (fraction), and �̅� is average current efficiency (fraction). 

Before implementation of any model, it is good practice to have a good understanding of the parameters 

that influence the specific system. For example, for a tankhouse having low advance electrolyte iron 

concentrations (below 1 g/L) the decrease in current efficiency associated with the presence of iron is 

expected to be below 3% (Das and Gopala, 1996). Losses due to reasons other than the reduction of 

iron are, therefore, expected to dominate, arguably justifying use of Equation 4.6 in the current form.  

Allocating an accurate portion of the overall current losses to iron reduction is expected to result in 

fitted model parameters that better represent the actual tankhouse being modelled. Consequently, the 

use of Equation 4.6, and the actual average current efficiency used (for example, for a specific tankhouse 

it could be the average current efficiency over the previous three months), should be informed based on 

tankhouse-specific data. If a tankhouse reports high iron concentrations, Equation 4.6 could be replaced 

with a better suited correlation, based on the tankhouse-specific data, with minimal repercussions for 

the remainder of the model. In this project, the current loss term was only included for the datasets 

where it was deemed appropriate (i.e., not experimental-scale systems) and where adequate information 

was available.  

Also shown on Figure 4.1 is that the total potential is equal to the potential over each main branch 

(Equation 4.7), as the branches are connected in parallel. The potential over each main branch is the 

sum of the anodic potential, the cathodic potential, and a voltage loss term (Equation 4.8). The anodic 

potential and cathodic potential were taken to consist of the overpotentials and reduction potentials 

associated with the water oxidation and copper reduction reactions, respectively. The voltage loss term 

was calculated as the sum of the loss due to electrolyte resistance and a hardware loss, as shown in 

Equation 4.9. The electrolyte resistance was calculated using Equation 2.26. 

 𝑈 = 𝑈   [ 4.7 ] 

 𝑈 =  𝐸 + 𝐸 + 𝜂 + 𝜂 + 𝑈   [ 4.8 ] 

 𝑈 = 𝑅  𝐼 + 𝑈   [ 4.9 ] 

where 𝑈  is the total potential (V), 𝑈  is the potential over an individual branch (V), 𝐸 is the reduction 

potential (V), 𝜂 is the overpotential (V), 𝑈  is the voltage loss term (V),  𝑅  is the electrolyte resistance 

(Ω), 𝐼 is the current (A), and 𝑈  is the hardware loss (V). 

The resistance network representing a single anode–cathode pair was scaled up to represent a cell 

consisting of multiple anode–cathode pairs. This was done by adding one main branch in parallel for 
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every one-sided anode–cathode pair (Tucker, 2019). A scale-up factor equal to twice the number of 

cathodes in the cell was previously defined to reflect the two plated sides of each cathode (Equation 

4.3). The total scaled current was previously defined as the current for an individual branch multiplied 

by the scale-up factor, summed with the current loss (Equation 4.2). Similarly, the total current required 

for each electrochemical reaction was equal to the current required for the reaction in one main branch 

multiplied by the scale-up factor. The scaled total potential was taken to be equal to the potential over 

each branch, per Equation 4.7.  

The scale-up approach was based on an analysis of the current flow in an industrial electrowinning cell 

employing the Walker configuration (Tucker, 2019). Superimposition of a scaled-up resistance network 

on the top view of an electrowinning cell is shown in Figure 4.2. The cell is simplified to contain only 

a few electrodes, but an actual electrowinning cell will have up to 80 electrodes in the same pattern. 

The circuit for a single one-sided anode–cathode pair is highlighted in Figure 4.2: electrons flow from 

the power supply to the first cathode (A), where the reduction reaction occurs and the surface is plated 

with copper. The charge is carried by the ions in the electrolyte between the cathode and anode. At the 

surface of the anode (B), which faces the cathode, the oxidation reaction occurs. Next, electrons flow 

through the busbar on the opposite side and back to the power source, completing the circuit. The current 

flows in the opposite direction to the electrons in the network. 

 

Figure 4.2: Schematic representation of the top-view of an electrowinning cell, superimposed with a scaled-up resistance 
network diagram (redrawn from Tucker, 2019).  
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4.2.5.2 Mass Conservation Model 

The conceptual mass conservation model is discussed in this section. It consists of the mass 

conservation equations required to model the electrowinning process. A simplified representation of the 

streams around an electrowinning cell, used to formulate the mass conservation equations, is shown in 

Figure 4.3. An overall conservation of mass equation was formulated over the cell as shown in Equation 

4.10. Assuming a constant volume of electrolyte resulted in Equation 4.11. Losses due to evaporation 

and oxygen formation at the anode were excluded from the overall conservation of mass equation (see 

Section 4.2.4).  

 

Figure 4.3: Schematic representation of a simplified conservation of mass equation for a copper electrowinning cell 
containing copper, iron, nickel, cobalt, sulfuric acid, and water.  

Conservation equations for copper, sulfuric acid, water, ferric iron, ferrous iron, nickel, and cobalt were 

formulated in Equations 4.12 through 4.18. For nickel and cobalt, the rate of generation or consumption, 

used in the conservation equations, was assumed to be zero. The rate of generation or consumption for 

the remaining species was calculated using the total current required for each electrochemical equation, 

as per Faraday’s law (Equation 2.24).  

To render the mass conservation equations solvable, the equations were split into two sets. Firstly, a 

system of differential-algebraic equations (DAEs) consisting of the conservation equations for copper 

and sulfuric acid, the overall conservation of mass equation, and the empirical property correlation for 

the electrolyte density (Model KM, Equation 3.1) was solved to obtain the concentration of sulfuric 

acid and copper in the spent electrolyte, the spent electrolyte flow rate, and the spent electrolyte density. 

The equations in this system were simultaneously solved at every time-step (of 1 s). Secondly, the 

conservation equations for ferric iron, ferrous iron, nickel, cobalt, and water were solved as separate 

ordinary differential equations (ODEs) to obtain the concentration of the respective species in the spent 

electrolyte. The ODEs were again solved at every time-step (of 1 s). 
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Overall conservation of mass equation: 

 = 𝑚 , − 𝑚 , − 𝑃 = 𝑄 𝜌 , − 𝑄 𝜌 , − 𝑃   [ 4.10 ] 

 =
,

= 𝑄 𝜌 , − 𝑄 𝜌 , − 𝑃   [ 4.11 ] 

Copper conservation equation: 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , − 𝑃   [ 4.12 ] 

Sulfuric acid conservation equation: 

 =
,

= 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ 4.13 ] 

Water conservation equation: 

 =
,

= 𝑄 𝜌 , − 𝑄 𝜌 , + 𝑤   [ 4.14 ] 

Ferric iron conservation equation: 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ 4.15 ] 

Ferrous iron conservation equation: 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ 4.16 ] 

Nickel conservation equation: 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ 4.17 ] 

Cobalt conservation equation: 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ 4.18 ] 

 

where 𝑚 is mass (g), 𝑉 is the volume (L), 𝑄 is the volumetric flow rate (L/s), 𝜌 is the density (g/L), 𝑥 

is the species concentration (g/L), 𝑃 is the copper plating rate (g/s), and 𝑤 is the rate of generation (g/s). 

4.3 COMPUTERISED MODEL DEVELOPMENT 

4.3.1 Files 

The conceptual model developed in Section 4.2 was computerised using MATLAB (2023) and consists 

of the following files and main functions, listed in Table 4.3: 
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Table 4.3: List of files that make up the dynamic electrowinning model, with the purpose of each file. 

File Name Purpose of File 

data Accepts input data (can automatically import from Microsoft Excel) 

dataValidated Calls the data file and validates the input data 

parameterFittingOffline Calls the dataValidated file and fits offline parameters to validated data 

refitParameters Calls the dataValidated file and fits online parameters to validated data 

mainModel Calls other files and generates required output variables 

The data.mlx file accepts the electrowinning data and can be run independently or called automatically 

by the dataValidated.mlx file. The dataValidated.mlx file validates the data, per the discussion to follow 

in Chapter 6, and can be run independently or called automatically by the parameterFittingOffline.mlx 

file or refitParameters.mlx function file. The parameterFittingOffline.mlx file regresses for the initial 

parameters that are to be manually entered into the mainModel.mlx file by the user, per the discussion 

to follow in Chapter 7. The refitParameters.mlx function file automatically regresses for the updated 

parameters based on an evolving set of input data, as discussed in Chapter 8. The mainModel.mlx file 

generates the required predictive output variables, using the specified input variables. The 

mainModel.mlx file is discussed in more detail in Section 4.3.2.  

4.3.2 Computerised Model 

4.3.2.1 Overview and Structure 

The conceptual model is computerised using three levels of nested while loops to form the 

mainModel.mlx file. The three levels consist of the outermost time loop, the concentration loop, and 

the two innermost current loops. A modelling algorithm for the outermost time loop is shown in Figure 

4.4, showing the concentration and current loops as the condensed loop body. Figure 4.5 gives the 

detailed modelling algorithm for the loop body (concentration and current loops). The conceptual basis 

of the two innermost current loops is the electrowinning model discussed in Section 4.2.5.1, whilst that 

of the concentration loop is the mass conservation model discussed in Section 4.2.5.2. 

After the loop body converges, the potential is calculated, followed by the KPI calculations. 

Subsequently, an if statement is used to ascertain whether the online parameter-fitting approach is 

active, whereafter the time loop moves forward to the next time-step. A detailed discussion of the online 

parameter-fitting approach is deferred to Chapter 8. The outermost time loop repeats all the calculations 

done in the current and concentration loops at every time-step (of 1 s), for the duration of the 

electrowinning process.  
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Figure 4.4: Schematic representation of the modelling algorithm of the mainModel.mlx file, showing an overview of 

the outermost level of the nested while loops. 
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Figure 4.5: Schematic representation of the modelling algorithm of the mainModel.mlx file, showing an overview of 

the two inner levels of nested while loops. 

4.3.2.2 Electrowinning Model Computerisation 

The conceptual electrowinning model was computerised using the cathodic and anodic current loops, 

the innermost while loops of the three levels forming the mainModel.mlx file (Figure 4.5). The detailed 

modelling algorithms for the cathodic and anodic current loops are given in Figure 4.6 and Figure 4.7, 
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respectively. After values have been estimated for the copper and water overpotentials, the cathodic 

current loop is initiated. Upon its completion the anodic current loop is initiated.  

In the cathodic current loop, the cathodic current corresponding to the estimated copper overpotential 

is determined by calculating the current density for each reaction that occurs at the cathode. The value 

of the copper overpotential estimate is updated, and the loop is repeated whilst the difference between 

the calculated cathodic current and the known cathodic current (which is also equal to the current 

through each individual main branch, Equation 4.1 and 4.2) is more than the user-defined tolerance, 

defined in Section 4.3.2.5. The anodic current loop functions in an identical manner, with the water 

overpotential updated after each iteration.  
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Figure 4.6: Schematic representation of the modelling algorithm of the mainModel.mlx file, showing the innermost 

cathodic current loop. 

 

Figure 4.7: Schematic representation of the modelling algorithm of the mainModel.mlx file, showing the innermost 
anodic current loop. 
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4.3.2.3 Mass Conservation Model Computerisation 

The conceptual mass conservation model was computerised in the concentration loop, the middle while 

loop of the three levels forming the mainModel.mlx file (Figure 4.5). The equations that form the mass 

conservation model were solved using an implicit numerical method that assumes the behaviour of the 

system remains constant over each 1 s time-step. Preceding the start of the concentration loop, values 

are estimated for the concentrations of the species in the spent electrolyte. At the first time-step (of 1 s) 

the estimated concentrations of the species in the spent electrolyte are taken to be equal to the 

concentrations in the advance electrolyte. Thereafter, for the following time-steps, the estimated 

concentrations are updated to be equal to the calculated spent electrolyte concentrations at the previous 

time-step. Upon completion of the current loops and associated scale-up calculations, the concentration 

loop is initiated. Dynamic mass conservation equations are used to determine the actual concentrations 

of all species in the spent electrolyte. The loop is repeated while the difference between the estimated 

and calculated concentrations is more than the user-defined tolerances (see Section 4.3.2.5). After the 

convergence criteria are satisfied, the estimated concentration values are updated to reflect the 

calculated concentration values. The innermost current loops are repeated until convergence for each 

iteration of the concentration loop. 

4.3.2.4 Disturbance Computerisation 

The ability to introduce disturbances in operational manipulated variables is essential for ensuring that 

the model can be used to simulate the impact of changes in operating conditions on performance 

indicators. The model allows for the introduction of a step or pulse disturbance in the advance 

electrolyte concentrations, flow rate, and current. The introduction of disturbances in input variables 

was computerised using multiple if statements. 

4.3.2.5 Model Convergence and Tolerance 

The computerised model requires a series of initial estimates and loop iterations based on convergence 

criteria set for the current loops (convergence of anodic and cathodic currents) and concentration loop 

(convergence of estimated and calculated spent electrolyte concentrations). The current loops were set 

to converge when the difference between the respective calculated and known cathodic or anodic 

current was less than 1 × 10−6. Furthermore, a maximum limit on the number of loop iterations was set 

at 3000 for each current loop, to ensure termination. This maximum limit was selected based on a 

reasonable number of iterations for meeting the convergence criteria (determined through various model 

runs), with added contingency.  

The concentration loop was set to converge when the difference between the estimated and calculated 

concentration of each species in the spent electrolyte was less than 1 × 10−6. At the first time-step (of 
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1 s) the initial estimate for the composition of the spent electrolyte was set equal to the composition of 

the advance electrolyte. Thereafter, for each time-step to follow, the spent electrolyte composition at 

the previous time-step was used as an initial value. This approach was taken to ensure faster 

convergence of the concentration loop. Furthermore, a maximum limit on the number of loop iterations 

was set at 6000, to ensure termination of the iterative loop. Again, this maximum limit was selected 

based on a reasonable number of iterations for meeting the convergence criteria, with added 

contingency. 

4.3.2.6 Built-In MATLAB Functions Used 

A built-in MATLAB (2023) solver was used to solve the mass conservation equations that formed the 

concentration loop. As previously mentioned in Section 4.2.5.2, the mass conservation equations were 

split into two parts: a system of DAEs and separate ODEs. Both parts were solved using the MATLAB 

(2023) solver ode15s. The solver was selected based on the system stiffness, or how difficult the system 

is to evaluate. System stiffness remains a difficult concept to define, but a very slow execution speed 

(when using a non-stiff solver) often indicates stiffness (Moler, 2004). According to Mathworks (2020), 

the non-stiff solver ode45 should generally be the first solver attempted, and if a slow execution speed 

is observed, as was the case for the mass conservation ODEs, the stiff solver ode15s should be 

implemented. Moreover, it is recommended that ode15s be used when solving DAEs (Mathworks, 

2020).   
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CHAPTER 5 

DATA GENERATION 

5.1  INTRODUCTION 

In the previous chapter (Chapter 4), a conceptual semi-empirical dynamic electrowinning model was 

developed and computerised. Dynamic electrowinning data are required to train the model (Chapter 7 

and Chapter 8), and for the model validation process (Chapter 9).  

In this chapter, the dynamic response of electrowinning to industry-specific disturbances was 

investigated using a bench-scale setup. Firstly, the experimental designs followed to conduct initial 

probing screening experiments and final bench-scale electrowinning experiments are discussed 

(Section 5.2). The experimental design used for the probing screening experiments allowed for 

characterisation of the effect of initial conditions, as well as possible variable interactions, on the 

dynamic behaviour of the process. The electrolyte composition used for the screening experiments was 

limited to copper, iron, and sulfuric acid. For the final bench-scale electrowinning experiments, the 

electrolyte composition and other operating conditions were updated to better represent the direct 

electrowinning process. Details pertaining to the employed materials (Section 5.3), equipment (Section 

5.4), and methods (Section 5.5), are also provided.  

5.2 EXPERIMENTAL DESIGN 

5.2.1 Screening Experiments 

The selected experimental design combined the classic design of experiments objective of factor 

characterisation – determining the influence of factors on the response variables, or key performance 

indicators (KPIs) – and the additional objective of generating data for use in model validation. A classic 

design of experiments approach, suggested by Montgomery (2012), was adapted to include guidelines 

given by Rhinehart (2016) for the generation of model validation data. The first guideline stipulated by 

Rhinehart (2016) is that sufficient data should be collected to critically test the model throughout the 

range of the manipulated variables. Secondly, the conditions for the manipulated variables should be 

sufficiently spaced out so that the effect produced in the response variable is greater than the 

experimental uncertainty. The third guideline stipulated that the manipulated variables should be 

controlled so that they remain constant over time. The third guideline contradicts the objective of the 

experiments conducted during this project (to investigate the effect of industry-specific disturbances on 

electrowinning) and was, therefore, not considered in the design.  
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The manipulated variables were selected to be the copper and iron concentrations of the advance 

electrolyte and the current density. The range of each manipulated variable was based on typical 

industrial values (Table 5.1). It should be noted that the maximum copper concentration used for the 

screening experiments was 55 g/L, based on the upper limit of the range typically applicable to post-

solvent extraction electrowinning. The remaining variables, such as the temperature and sulfuric acid 

concentration, were kept constant along with the applicable design specifications (Table 5.2). No 

additional electrolyte components (such as nickel and cobalt) were considered during the screening 

experiments. 

Table 5.1: Manipulated variables for the screening experiments, with ranges. 

Manipulated Variable Range Motivation 

Copper concentration in 
advance electrolyte 

25 to 70 g/L 
Typical industry range (Beukes and Badenhorst, 2009; 

Robinson et al., 2013), range for post-solvent extraction 
electrowinning would typically be narrower (33 to 55 g/L) 

Iron concentration in 
advance electrolyte 

0 to 6 g/L Typical industry range (Robinson et al., 2013) 

Current density 200 to 375 A/m2 
Typical industry range (Beukes and Badenhorst, 2009), 

but can be as high as 460 A/m2 (Schlesinger et al., 2011b) 

 

Table 5.2: Fixed variables for the screening experiments, with setpoints. 

Fixed Variable Setpoint Motivation 

Initial sulfuric acid 
concentration 

170 g/L Typical industry average (Davenport et al., 2002) 

Cell temperature 45 °C Typical industry average (Beukes and Badenhorst, 2009) 

Interelectrode distance 0.025 m Bench-scale setup (Coetzee, 2018; Tucker, 2019) 

Electrode surface area 0.015 m2 Bench-scale setup (Coetzee, 2018; Tucker, 2019) 

Number of cathodes 1 Bench-scale setup (Coetzee, 2018; Tucker, 2019) 

Number of anodes 2 Bench-scale setup (Coetzee, 2018; Tucker, 2019) 

Flow rate 3.5 L/h 
Results in interfacial velocity of between 0.05 m/h and 0.1 m/h, 

typical industry range (Beukes and Badenhorst, 2009). 

Based on the modified approach for developing an experimental design, a small face-centred central 

composite design was selected using Design Expert (2021). The small face-centred central composite 

design comprised of the three manipulated variables at three levels, as shown in Table 5.3. The design 

was repeated three times, with each replicate incorporating a step disturbance (of one level) in a different 

manipulated variable, as shown in Appendix A (Table A.3 to Table A.5). All experiments in which the 

step disturbance led to a final coded level of more than one in the respective variable were excluded 
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from the final design. This experimental design led to a total of eight experiments per face-centred 

central composite design, for a total of 24 experiments, as per Appendix A (Table A.6). 

Table 5.3: Manipulated variables for the screening experiments as coded variables. 

Manipulated Variable −1 0 1 

Copper concentration (g/L) 25 40 55 

Iron concentration (g/L) 1 3 6 

Current density (A/m2) 200 285 375 

 

5.2.2 Bench-Scale Electrowinning Experiments 

Bench-scale electrowinning experiments, using a synthetic electrolyte that better mimics the 

composition of that used for direct electrowinning, were conducted to enable more realistic training and 

validation of the dynamic model. Completion of the screening experiments (Section 5.2.1) confirmed 

that the initial conditions of the three factors investigated, as well as possible interactions between the 

factors, did not severely impact the dynamic response of electrowinning to the induced disturbances. 

Rhinehart (2016), furthermore, acknowledged that an exhaustive experimental design is not necessarily 

required for the purpose of generating data for model training and validation. Consequently, a one-

factor-at-a-time (OFAT) design was selected for conducting the experiments. 

Five factors, each at three different levels, were considered for the experiments (Table 5.4). The three 

manipulated variables investigated in the screening experiments (copper and iron concentrations, and 

current density) were again varied, alongside two additional major components typically present in 

direct copper electrowinning electrolytes (nickel and cobalt). The ranges selected for the manipulated 

variables were informed by typical industrial conditions in direct copper electrowinning tankhouses 

(Sole et al., 2019). The remaining variables, such as the temperature (60 °C) and sulfuric acid 

concentration (90 g/L), were kept constant at the typical industry average for direct copper 

electrowinning. The design specifications associated with the bench-scale setup were identical to those 

given for the screening experiments (Table 5.2). 
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Table 5.4: Manipulated variables for the bench-scale electrowinning experiments, with ranges. 

Manipulated Variable Range Motivation 

Copper concentration in 
advance electrolyte 

40 to 70 g/L Typical industry range (Sole et al., 2019) 

Iron concentration in 
advance electrolyte 

1 to 6 g/L Typical industry range (Sole et al., 2019) 

Nickel concentration in 
advance electrolyte 

20 to 65 g/L Typical industry range (Sole et al., 2019) 

Cobalt concentration in 
advance electrolyte 0.3 to 3 g/L Typical industry range (Sole et al., 2019) 

Current density 140 to 220 A/m2 Typical industry range (Sole et al., 2019) 

 

The OFAT design entailed three base synthetic electrolyte compositions, with each base composition 

being at a coded level (−1, 0, or 1) of the five factors, as shown in Table 5.5. Step disturbances (of one 

level) in each factor were introduced for each of the three synthetic electrolyte variations. Step increases 

were induced for the base experiments at level −1 and 0, whilst step decreases were introduced for the 

experiments at level 1. This experimental design led to a total of 15 experiments, per Appendix A (Table 

A.7). This is the minimum number of independent experiments suggested by Rhinehart (2016) to ensure 

adequate evaluation of the model accuracy. The OFAT design, furthermore, allowed for the change 

over time in ferric and ferrous iron concentration to be determined at three different electrolyte 

compositions, with five repeats (if only considering the first four hours of each experiment). 

Table 5.5: Manipulated variables for the bench-scale electrowinning experiments as coded variables. 

Manipulated Variable −1 0 1 

Copper concentration (g/L) 40 55 70 

Iron concentration (g/L) 1 3 6 

Nickel concentration (g/L) 20 45 65 

Cobalt concentration (g/L) 0.3 1 3 

Current density (A/m2) 140 160 220 

5.3 MATERIALS 

5.3.1 Synthetic Electrolyte 

A synthetic electrolyte containing sulfuric acid, copper, and iron was prepared for the screening 

experiments. Nickel and cobalt were added as electrolyte components for the bench-scale 

electrowinning experiments. The electrolytes were prepared using analytical grade copper sulfate 
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pentahydrate, ferric sulfate monohydrate, nickel sulfate heptahydrate (if applicable), cobalt sulfate 

heptahydrate (if applicable), and sulfuric acid. The electrolyte was prepared according to the component 

concentrations specified in the experimental designs (Appendix A, Section A.1). 

5.3.2 Electrodes 

Recycled stainless-steel blank cathodes and cold-rolled lead-calcium-aluminium alloy anodes were 

used for the experiments. The anodes were sourced from Polymer Concrete Industries. Both electrodes 

had dimensions of 12 cm by 15 cm, with a working surface area of 300 cm2 and thickness of 0.3 cm 

(Figure 5.1). The electrodes were riveted to copper hanger bars with dimensions of 2.5 cm by 19 cm, 

and a thickness of 0.3 cm.  

 

Figure 5.1: Schematic representation of the electrodes used during the experiments, showing the cathode (left) and 
anode (right). The shaded area shown on the cathode represents the working surface area. Dimensions given in 
millimetres.  

5.4 EQUIPMENT 

The bench-scale electrowinning setup, originally designed to characterise the role of additives in copper 

electrowinning (Coetzee, 2018), was previously used to generate steady-state electrowinning data for 

model training and validation (Tucker, 2019). The setup consists of a 5 L electrowinning cell, a power 

supply (Manson, SIM-9106 1-15V 60A switching mode power supply), a pump (Blue-White Industries, 

Flexflo A1N31F-2T peristaltic metering pump), and a heating bath (Julabo, CORIO C heating 

immersion circulator) (Figure 5.2). The electrowinning cell and all pipes and connections were 

manufactured using polyvinyl chloride (PVC) due to the material’s resistance to acid corrosion at the 

required operating temperature. The electrolyte entered the cell from the bottom through a perforated 

horizontal plate and exited by overflowing over the weirs situated on two opposite sidewalls near the 

top of the cell. The electrolyte leaving the cell was recycled back to the stock solution bottle. The 

electrodes were inserted into slots cut into the top of the cell (Figure 5.3).  
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Figure 5.2: Schematic representation of the bench-scale electrowinning setup.  

 

 

Figure 5.3: Schematic representation of the cell used during the bench-scale electrowinning experiments. 
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5.5 METHODS 

5.5.1 Experimental Methods 

5.5.1.1 Synthetic Electrolyte Preparation 

A synthetic electrolyte solution containing the desired concentrations of sulfuric acid, copper, iron, 

nickel, and cobalt was prepared for use in each experiment. The electrolyte was prepared by adding the 

required volume of sulfuric acid to 5 L of demineralised water. Thereafter, the required masses of 

copper sulfate, ferric sulfate, nickel sulfate, and cobalt sulfate were added, and demineralised water was 

used to top up the electrolyte to 10 L. A detailed procedure for the preparation of the synthetic 

electrolyte solution is supplied in Appendix A (Section A.2.2). 

5.5.1.2 Cathode Preparation 

Recycled stainless-steel blank cathodes were prepared by polishing the electrode surface with 22 μm 

(P800) sandpaper, followed by 15 μm (P1200) sandpaper, and rinsing sequentially with acetone and 

water. A new prepared cathode was used for each experiment. The same cold-rolled lead-alloy anodes 

were re-used for every experiment.  

5.5.1.3 Bench-Scale Electrowinning 

The bench-scale electrowinning experiments were conducted by preparing the synthetic electrolyte 

solution (Section 5.5.1.1) and cathodes (Section 5.5.1.2) 24 hours in advance. Subsequently, the 

solution was poured into the stock solution container positioned in the heating bath. The heating bath 

was switched on and the electrolyte in the stock solution container was allowed to reach the required 

operating temperature. The cathode and two anodes were placed into the slots of the electrowinning 

cell. Before the terminals of the power supply were connected to the respective hanger bars, the power 

supply was switched to current-controlled mode. The positive terminals of the power supply were 

connected to the anodes and the negative terminal was connected to the cathode, replicating standard 

industrial cellular connections. Thereafter, the pump was switched on and the electrowinning cell was 

allowed to fill with the synthetic electrolyte solution. The power supply was switched on when the cell 

reached capacity and the current setpoint was adjusted to the required value, signifying the start of the 

experiment.  

For the screening experiments, a step disturbance was introduced by adding additional solid copper or 

ferric sulfate to the stock solution container, or adjusting the value of the current setpoint, four hours 

into electrowinning. It was elected to induce the disturbance by adding solid salts, instead of a volume 

of concentrated solution, to ensure that the disturbance was only in the intended variable. The 
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transparent feed line was monitored to ensure that solids did not deport to the electrowinning cell and 

become incorporated into the cathode.  

For the bench-scale electrowinning experiments increase disturbances were again introduced by adding 

solid salts to the stock solution container. Decrease disturbances were, however, also introduced by 

adding a volume of prepared solution to the stock solution container. Any unintended disturbances 

caused by adding the additional volume could be better captured during the bench-scale electrowinning 

experiments as more measurements (i.e., conductivity, temperature) were taken during the experiments 

(compared with the screening experiments). 

In each experiment, electrowinning was allowed to take place for an additional four hours after the 

disturbance was introduced, whereafter the bench-scale electrowinning setup was shut down. A detailed 

procedure for conducting the bench-scale electrowinning experiments is supplied in Appendix A 

(Section A.2.2).  

5.5.1.4 Sampling  

Sampling took place at set intervals during the eight-hour experiments, as specified in the sampling 

schedule supplied in Appendix A (Section A.2.2). At each sampling interval the current and potential 

displayed on the power supply were noted, and the potential was measured over each anode–cathode 

pair using a multimeter (Peakmeter, PM8233B digital multimeter). The advance and spent electrolyte 

streams were sampled by collecting 50 mL of each, using the valves shown in Figure 5.2. For the bench-

scale electrowinning experiments, the conductivity and temperature of the electrolyte sample was 

measured using a conductivity meter. A 10 mL volume of each sample was extracted and deposited into 

15 mL sample vials through syringe filters (nylon, 0.22 μm). For the bench-scale electrowinning 

experiments, a further 10 mL volume of each sample was extracted for determination of the ferrous iron 

concentration via titration. The remainder of the sample was returned to the stock solution container. 

5.5.2 Analytical Methods 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) performed at the Department 

of Chemical Engineering at Stellenbosch University, was used to determine the concentrations of 

copper, iron, nickel, and cobalt in the collected electrolyte samples (see Section 3.3.4.3). For the bench-

scale electrowinning experiments, titration was used to determine the concentration of ferrous iron in 

the electrolyte samples. Titration was selected as it has previously been used for determining the iron 

speciation specifically in electrowinning electrolytes (Moats and Khouraibchia, 2009). The titration was 

performed directly after taking each sample to ensure an accurate representation of the iron speciation 

in the cell, at that point in time. The titration was performed by adding 10 mL of the electrolyte sample 

into a 250 mL Erlenmeyer flask. Afterwards, 5 mL of 98% sulfuric acid and 5 mL of 98% phosphoric 
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acid were added to the Erlenmeyer flask to mask the yellow colour of any ferric iron complexes present 

in the sample, ensuring a clear endpoint (Knop, 1924). Three to five drops of 0.005 M sodium 

diphenylamine indicator were added, and the content was titrated against a 0.00084 M potassium 

dichromate standard to a purple (or dark blue–green) endpoint. A detailed procedure for conducting the 

titration is supplied in Appendix A (Section A.2.3).  
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CHAPTER 6 

DATA VALIDATION 

6.1 INTRODUCTION 

In the previous chapter (Chapter 5), dynamic experimental electrowinning data were generated for use 

in model training and validation. As underlined by Eksteen and Reuter (2003), high-quality process 

data are essential for semi-empirical modelling. Kuhn and Johnson (2013) further commented on the 

crucial role adequate data preparation plays in ensuring that a model's predictive ability is not 

compromised. It follows that the implementation of data validation is imperative before a dataset is 

used as a representation of the electrowinning process suitable for modelling purposes.  

In this chapter, the preprocessing and limitations of the four datasets used during this project are 

discussed, and examples of the raw and validated data are given (Section 6.2). The four datasets consist 

of the dynamic experimental data generated in this project (screening and bench-scale electrowinning 

experiments), dynamic industrial tankhouse data, steady-state experimental data generated by Tucker 

(2019), and steady-state industrial data acquired from a second tankhouse. The chapter further discusses 

the conceptual methods that formed the building blocks of the data validation approach (Section 6.3) 

and the process of computerising them for implementation on each dataset (Section 6.4). 

It is important to note that the aim of this chapter is limited to developing a data validation approach 

that ensures the data quality is suitable for use in training and validating the model developed in this 

dissertation. As will be highlighted throughout the chapter, the developed approach is not conducive to 

predictive data validation and will, therefore, not be suitable for implementation in an industrial setting. 

Advanced data validation techniques (such as dynamic data reconciliation), which fall outside the scope 

of this project, should be investigated for this application. Moreover, the data validation strategy was 

adapted and tailored to best suit each dataset (based on the available measurements), indicating that the 

optimal data validation strategy will likely be tankhouse-specific. 

6.2 DATASETS 

6.2.1 Dynamic Experimental Data 

The dynamic experimental data consists of the probing screening experiments and the bench-scale 

electrowinning experiments. The experimental procedure used to generate the dynamic data was 

discussed in detail in Chapter 5. The generated data required processing and validation before they 

could be used for model training and validation.  
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6.2.1.1 Screening Experiments 

Alongside detecting and replacing the outliers (see Section 6.3.2), the main step in processing the 

screening experiment data was calculating the mass copper plated over each sampling interval. This 

was done by conducting a copper mass conservation balance over the electrowinning cell, at every 

sampling interval. The difference between the mass of copper that exited in the spent electrolyte and 

entered in the advance electrolyte was taken to be the sum of the accumulation in the cell and the mass 

plated, over the corresponding sampling interval (Equation 6.1).  

 
 , + 𝑃 = 𝑄 𝑥 , − 𝑄 𝑥 ,   [ 6.1 ] 

where 𝑉 is the volume (L), 𝑥 is the concentration (g/L), 𝑃 is the copper plating rate (g/s), and 𝑄 is the 

flow (L/s). 

The fraction of this combined term that could be attributed to copper plating was iteratively determined 

to ensure that the calculated cumulative mass copper plated at the end of the experiment was equal to 

the corresponding measured mass copper plated. An additional step was required in processing the data 

for the experiments in which a disturbance in advance electrolyte copper concentration occurred. For 

these experiments, the assumption was made that the copper reduction was reaction-rate limited. This 

assumption is supported by literature for standard operating electrowinning conditions (Section 4.2.4). 

A linear line, with an intercept of y = 0, was fitted to the experimental cumulative mass copper plated 

over time and used to determine the processed cumulative mass copper plated over time. 

Three possible limitations, associated with using the generated screening experiment data to train and 

validate the model, were identified. The first limitation is the scale of the experimental setup used to 

generate the data. The bench-scale setup consisted of one cathode and two anodes and would, therefore, 

not be representative of a full-scale industrial electrowinning cell. This limitation must be considered 

during the model validation process. The data could, however, be used to comment on the ability of the 

model to accurately predict dynamic electrowinning behaviour.  

The second limitation results from the selected experimental input conditions. The input variables were 

selected to fall within the standard operating range for electrowinning and would, therefore, not provide 

information regarding the behaviour of the process under extreme conditions. As the model is assumed 

to be valid only under standard operating conditions, the impact of this limitation is not significant. 

The third limitation associated with the screening dataset is the limited number of variables that were 

measured during the experiments, as well as the limited number of electrolyte components included. 

The sulfuric acid concentration in the advance and spent electrolytes, as well as the mass copper plated, 

were not measured at every sampling interval. Although sulfuric acid is generated during 
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electrowinning, a simplifying assumption was made that the sulfuric acid concentration remained 

constant over time, for use in the activity, density, and conductivity calculations required in the 

parameter-fitting approach (see Chapter 7). Furthermore, it was assumed that all iron was in the ferric 

form at the start of the electrowinning experiments. This assumption is reinforced, to an extent, by the 

findings of Moats and Khouraibchia (2009). Moats and Khouraibchia (2009) prepared a synthetic 

electrolyte similar to the solution used in the dynamic experiments, also using ferric sulfate 

monohydrate. Using titration, it was confirmed that between 90% and 95% of the iron was in the ferric 

form at the start of electrowinning (Moats and Khouraibchia, 2009).  

The underspecified nature of the system meant that the data reconciliation techniques, which are 

discussed in Section 6.3.3, could not be used on this dataset. In addition to the preprocessing steps, only 

incorrect data (outliers) were detected and replaced (see Section 6.3.2), as previously mentioned. An 

example of the data validation results is given for the copper plating rate and cumulative mass copper 

plated, for two arbitrary experiments that form part of the screening dataset (Figure 6.1 and Figure 6.2). 

Figure 6.1 gives the results for an experiment in which a step increase in copper concentration occurred, 

and Figure 6.2 for an experiment in which a step increase in current density occurred. The complete 

data validation results for the experimental screening dataset are given in Appendix C (Section C.1.1). 

 

Figure 6.1: Data validation results for the (a) copper plating rate and (b) cumulative mass copper plated of an arbitrary 
experiment that forms part of the screening experiment dataset. An increase disturbance in copper concentration 
occurred at t = 4 h. 
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Figure 6.2: Data validation results for the (a) copper plating rate and (b) cumulative mass copper plated of an arbitrary 
experiment that forms part of the screening experiment dataset. An increase disturbance in current density occurred at 
t = 4 h. 

6.2.1.2 Bench-Scale Electrowinning Experiments 

The first step in processing the bench-scale electrowinning experiment data was correcting the 

concentration measurements for the volume evaporated during the experiments. This step was required 

because the bench-scale electrowinning experiments were conducted at a significantly higher 

temperature (60 °C) compared with the screening experiments (45 °C), and the model does not account 

for evaporation (see Section 4.2.4). In industrial tankhouses mitigation strategies are often employed to 

limit evaporation and acid mist formation (such as hollow propylene balls), which were not used during 

the bench-scale experiments. The total volume evaporated during each experiment was determined by 

assuming that the mass of the three non-plating metals (nickel, iron, and cobalt) stayed constant for the 

duration of each experiment. The measured start and end concentrations of the metals, in conjunction 

with their respective mass conservation equations (Equations 4.15 to 4.18), were used to determine the 

average volume lost due to evaporation. For the experiments in which a disturbance in one of these 

metals was induced, the metal was not included when determining the volume evaporated. 

The first two limitations associated with the bench-scale electrowinning experiment data are identical 

to those previously given for the screening experiment data (Section 6.2.1.1). The data were generated 

using a laboratory-scale setup and the input conditions were restricted to within the range of standard 

operating conditions. The third limitation associated with the screening experiments, the limited 

availability of measurements and limited electrolyte components, was, however, addressed when 

conducting the bench-scale electrowinning experiments.  

Nickel and cobalt were included as electrolyte components, and the conductivity of the advance and 

spent electrolytes were measured throughout each bench-scale electrowinning experiment, making it 

possible to determine the sulfuric acid concentration via the conductivity model (Model KM, Equation 
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3.2). Furthermore, the iron speciation was measured using titrations, confirming that almost all iron was 

in the ferric form at the start of the experiments.  

The additional measurements introduced redundancy and allowed for data reconciliation to be 

completed, as elucidated in Section 6.3.3. The data reconciliation was performed after the incorrect data 

(outliers) were identified and replaced (see Section 6.3.2), and the preliminary values were calculated 

for the mass copper plated using Equation 4.12 (assuming no accumulation). 

A new limitation was, however, introduced by the low current densities at which the bench-scale 

electrowinning experiments were conducted (140 A/m2 to 220 A/m2), compared with the screening 

experiments (200 A/m2 to 375 A/m2). The lower current densities translated to a lower mass of copper 

plated, and thus, a less pronounced difference between the copper concentrations of the advance and 

spent electrolytes. The less pronounced difference in copper concentrations was masked by variations 

in the measurements. Consequently, it was challenging to obtain sensible dynamic copper plating rates 

by only conducting copper mass conservation balances over the cell. Two separate iterative rounds of 

data reconciliation were, therefore, incorporated to obtain sensible data.  

In the first round of data reconciliation the mass streams entering and leaving the cell were transformed 

by dividing with the maximum mass flowrate (over the duration of each experiment), for each stream. 

Owing to the unreasonable preliminary values obtained for the cumulative mass copper plated at the 

final sampling intervals (compared with the actual weighed differences in cathode mass), the data were 

transformed to eliminate any potentially unreasonable differences in scale that arouse between the mass 

streams. The data were transformed back using the same maximum mass flowrate, after reconciliation 

was completed.  

After completion of the first data reconciliation step, the reconciled mass copper plated stream was 

transformed again, using the cumulative mass copper plated at the end of the experimental duration, 

and transformed back by multiplying with the actual mass of copper plated at the end of the experiment 

(as determined by weighing the cathode before and after each experiment). An updated copper plating 

rate over time was, thereafter, calculated using the updated mass copper plated stream. A second round 

of data reconciliation was conducted, with the variance of the mass copper plated stream set to an 

arbitrary, negligibly small value. 

This iterative data reconciliation strategy is not practical for industrial implementation and does not 

allow for predictive online data validation. It is expected that this strategy is only required for the 

specific case of the bench-scale electrowinning experiments, conducted at lower current densities.  

Dynamic data reconciliation strategies for online data validation do exist but are outside the scope of 

this project. As previously mentioned, the goal of the data validation done in this project was limited to 
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ensuring that the quality of the data was not detrimental to the training and validation of the 

electrowinning model.  

An example of the data validation results is given for the copper plating rate and cumulative mass 

copper plated, for an arbitrary experiment that forms part of the bench-scale electrowinning experiment 

dataset (Figure 6.3). Despite efforts to conduct rigorous data validation, the quality of the dynamic 

experimental data means that the data are likely to have limited value for validating the predictive 

performance of the dynamic model, developed in this project. The dynamic experimental data are, 

however, useful for commenting on the dynamic trends observed as a result of the induced disturbances. 

The complete data validation results for the dynamic experimental bench-scale electrowinning dataset 

are given in Appendix C (Section C.1.2). 

 

Figure 6.3: Data validation results for the (a) copper plating rate and (b) cumulative mass copper plated of an arbitrary 
experiment that forms part of the bench-scale electrowinning experiment dataset. 

6.2.2 Dynamic Industrial Data 

The dynamic industrial data were obtained from a base-metal refinery employing direct electrowinning 

as a final step in the production of copper. The refinery treats Ni-Cu converter matte via 

hydrometallurgical processing to recover nickel, copper, cobalt, and other metals (Lamya, 2007; 

Rademan et al., 1999). The first processing step consists of successive stages of acid-oxidation leaching 

of the converter matte. Nickel and cobalt are first leached, and then recovered via hydrogen pressure 

reduction in autoclaves (Lamya, 2007). In the second leaching stage, copper is leached, whereafter 

selenium and tellurium are removed via addition of sulfurous acid. Following, the second-stage leach 

solution, which is rich in copper, is sent to the electrowinning tankhouse for the recovery of copper. 

Subsequently, the spent electrolyte is recycled to the leach circuit. The refinery tankhouse consists of 

multiple electrowinning banks, with one bank selected for use in this project.  
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Figure 6.4 gives a process flow diagram for the relevant section of the electrowinning tankhouse, 

containing two electrowinning banks (EW-101/2) that share a feed tank (T-102). As mentioned above, 

only one bank (EW-101) was selected for use in this project. The fresh advance electrolyte (Stream 1), 

originating from the leaching circuit, enters the advance electrolyte surge tank, T-101. Thereafter, the 

fresh advance electrolyte is transported to the advance electrolyte feed tank (T-102). The spent 

electrolyte recycle streams, Streams 6 and 7, originating from the two electrowinning banks (EW-101 

and EW-102) also enter T-102. For mass balance purposes, it was assumed that these two streams are 

first combined, whereafter the spent electrolyte, Stream 5, is extracted for further processing. The 

remainder of the mixed recycle (combined Streams 6 and 7) is then mixed with the fresh advance 

electrolyte stream to form the recirculating advance electrolyte (Streams 3 and 4) that is transported to 

EW-101 and EW-102, respectively. The solid copper cathodes, Stream 8, are harvested from the 

electrowinning cells (EW-101/2). 

 

Figure 6.4: Process flow diagram of the electrowinning tankhouse from which the dynamic industrial electrowinning 
data were obtained. 

The data obtained from the tankhouse included hourly measurements of the fresh advance and spent 

electrolyte copper, nickel, and sulfuric acid concentrations, flow rate, temperature, current, and potential 

(V) for the selected electrowinning bank, which consists of 16 cells. Dynamic measurements of iron 

and cobalt concentrations were not available. These concentrations were, therefore, assumed to remain 

constant at their respective approximate values. The design specifications of the electrowinning 

tankhouse (range of potential (V), flow rate of advance electrolyte, volume of cell, and interelectrode 

distance) were also provided. The data consisted of measurements taken from May 2022 to September 
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2022. The data were divided into a training set consisting of three 14-day cycles, and five separate 

validation sets consisting of a 14-day cycle each.  

The copper concentration in the recirculating advance electrolyte (Figure 6.4, Streams 3 and 4) was 

measured, but not the sulfuric acid and nickel concentrations. Consequently, a simplifying assumption 

was made that the nickel concentration in the recirculating streams (Streams 3 and 4) could be taken as 

equal to the nickel concentration in the fresh advance electrolyte stream (Stream 2). The combined mass 

flow from Stream 6 and Stream 7 was much larger than that of Stream 2, inferring that the assumption 

is likely not a good representation of the real process. Nonetheless, the assumption was required to 

obtain estimates of the dynamic nickel concentrations in the relevant streams. The sulfuric acid 

concentration in the recirculating streams was determined via a mass conservation balance.  

The sulfuric acid mass conservation balance was conducted over T-102, with boundaries as shown by 

the dotted line in Figure 6.4. Firstly, the concentration of sulfuric acid in the spent electrolyte stream, 

Stream 5, was calculated by mixing Streams 6 and 7. Following, the flowrates of the respective streams 

entering and exiting T-102 were calculated using an overall mass conservation balance over T-102, with 

a constant liquid hold up assumed (Equations 6.2 to 6.4). The densities required in the overall mass 

conservation balance were estimated using the density model developed by Kalliomäki et al. (2021) 

(Model KM, Equation 3.1). The density of the recirculating electrolyte was assumed to be equal to the 

combined spent electrolyte density as the concentration of sulfuric acid was not known. Furthermore, a 

simplifying assumption was made that the flow rate of the streams leaving the electrolyte banks are 

equal to the flow rate of the streams entering (Equation 6.5). 

Overall conservation of mass equation: 

 = 𝑚 − 𝑚 = 𝑄 𝜌 − 𝑄 𝜌   [ 6.2 ] 

Assuming constant liquid hold up and no accumulation, 

 0 = 𝑄 𝜌 − 𝑄 𝜌   [ 6.3 ] 

 0 = (𝑄 𝜌 +  𝑄 𝜌 +  𝑄 𝜌 ) − (𝑄 𝜌 +  𝑄 𝜌 +  𝑄 𝜌 )  [ 6.4 ] 

But assuming in = out over banks, 

 0 = (𝑄 𝜌 ) − (𝑄 𝜌 )  [ 6.5 ] 

Finally, the concentration of sulfuric acid in the recirculating advance electrolyte streams could be 

determined by completing the sulfuric acid component conservation balance (Equation 6.6), again 

assuming that Streams 3 and 4 are identical and that no acid was generated or consumed in T-102, as 

no reactions occur (Equation 6.7). 
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Sulfuric acid conservation equation: 

 0 = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ 6.6 ] 

Assuming no generation or consumption, 

 0 = 𝑄 𝑥 , − 𝑄 𝑥 ,   [ 6.7 ] 

 0 = (𝑄 𝑥 , + 𝑄 𝑥 , +  𝑄 𝑥 , ) − (𝑄 𝑥 + 𝑄 𝑥 , + 𝑄 𝑥 , )   

Two possible limitations associated with using the industrial dataset were identified: range of operating 

conditions and missing measurements. The limitations overlap with those identified for the previous 

two datasets. Firstly, data outside of standard operating conditions were not provided as the plant’s 

control system was in operation. Secondly, measurements of all required variables were not available. 

Although measurements of all main process variables are becoming commonplace in industrial 

electrowinning operations (Aqueveque et al., 2015), older and smaller tankhouses are likely to have the 

minimum data available to effect adequate safety and control (Rhinehart, 2021). The missing 

measurements are, therefore, not a limitation of this project, but rather the reality of using industrial 

tankhouse data. 

It is important to note that the dynamic model developed in this project should be sufficiently robust to 

use data of a quality and frequency commonly found in industry. Validation of the model using the 

dynamic industrial data (see Section 9.4.4) was, therefore, done to (in part) demonstrate the flexibility 

of the developed model when applied to real-life industrial tankhouse data. 

The missing measurements in the dynamic industrial dataset required the use of simplifying 

assumptions to calculate the values of select variables. Consequently, data reconciliation could not be 

performed for the dynamic industrial dataset. Incorrect data (outliers) were, however, detected and 

replaced after completion of the first preprocessing section (determining the required sulfuric acid 

concentration) (see Section 6.3.2). In the second part of data preprocessing, the copper plating rate was 

determined by solving Equation 4.12. An example of the data validation results is given for the advance 

and spent electrolyte copper concentrations, for an arbitrary cycle that forms part of the dynamic 

industrial dataset (Figure 6.5). 
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Figure 6.5: Data validation results for the (a) advance and (b) spent electrolyte copper concentrations of an arbitrary 
cycle that forms part of the dynamic industrial dataset. 

6.2.3 Steady-State Experimental Data 

Tucker (2019) generated bench-scale electrowinning data to train a steady-state semi-empirical 

electrowinning model. This experimental steady-state dataset was also used in this project for model 

training and validation. The data were generated using a full factorial design consisting of four factors: 

the copper, iron, and sulfuric acid concentration of the advance electrolyte, and the potential (Tucker, 

2019). Measurements of the relevant variables were taken at the start and end of four-hour experiments. 

Tucker (2019) approximated the initial ferric-to-ferrous iron ratio using an average of the ratio in the 

spent electrolyte of industrial tankhouses, surveyed by Robinson et al. (2013). For use in this project, it 

was, however, assumed that all iron was in the ferric form at the start of electrowinning. 

Three possible limitations for using the steady-state experimental dataset in this project were identified: 

the scale of the experimental setup, the range of operating conditions, and the steady-state nature of the 

data. The first two limitations overlapped with those identified for previous datasets. The steady-state 

nature of the data means that they were used only for limited conceptual and operational validation of 

the model (see Section 9.4.2).  

6.2.4 Steady-State Industrial Data 

Industrial electrowinning data from a second full-scale copper electrowinning tankhouse were also 

made available for use in this project. The tankhouse was commissioned in 1992 and has a nameplate 

cathode capacity of 4400 t/a. The available data consisted of measurements taken once every 24 hours 

from January to June 2019. The measurements consisted of the compositions of the advance and spent 

electrolytes, as well as the applied current. The average number of cells online per month were provided, 

as well as design specifications of the electrowinning tankhouse (range of potential, flow rate of advance 

electrolyte, volume of cell, and interelectrode distance).  
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Figure 6.6 gives a process flow diagram for the relevant section of the electrowinning tankhouse. The 

fresh advance electrolyte, Stream 1, enters the advance electrolyte feed tank, T-101, where it is mixed 

with a recycle stream of spent electrolyte, Stream 4, to result in the recirculating advance electrolyte, 

Stream 2, which is fed to the electrowinning cells, EW-101. The provided concentration measurements 

were for the fresh electrolyte stream, Stream 1, and the combined spent electrolyte, Stream 3.  

Data filling techniques (see Section 6.3.1) were used to fill any missing measurements. Thereafter, mass 

conservation balances were conducted over T-101 to determine the concentrations of Stream 2 

(Equations 4.10 to 4.18). The densities used in the mass conservation balances were estimated using 

the density model developed by Kalliomäki et al. (2021) (Equation 3.1). The flowrates of the respective 

streams were not measured and were, therefore, estimated based on information provided by Sole et al. 

(2019). The combined spent electrolyte, Stream 3, splits up into the spent electrolyte recycle, Stream 4, 

and the bleed, Stream 5. Plated copper cathodes are removed via Stream 6. 

 

Figure 6.6: Process flow diagram of the electrowinning tankhouse from which the steady-state industrial electrowinning 
data were obtained. 

Four possible limitations associated with using the industrial dataset were identified: range of operating 

conditions, missing measurements, lack of dynamic characteristics, and the use of an empirical model 

to estimate key performance indicators (KPIs). The first three limitations overlap with those identified 

for the previous datasets. Firstly, data outside of standard operating conditions were not provided as the 

plant’s control system was in operation. Secondly, measurements of all required variables were not 

available. The potential (V), for example, was not measured, but rather provided as a once-off design 

value. Thirdly, dynamic process characteristics were not included in the acquired data, due to the low-

frequency sampling rate (once every 24 hours).  

The final limitation results from the empirical steady-state model used to estimate the current efficiency 

and specific energy consumption (SEC). The model developed by Khouraibchia and Moats (2010) was 

used to estimate these performance indicators because the mass of copper plated and the potential were 
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not measured online during the electrowinning process. The ranges of these variables were provided in 

the design specifications of the tankhouse.  

To use the empirical model, an assumption was made that all iron present in the advance electrolyte 

was in the ferric form at the start of electrowinning. A higher ferric iron concentration corresponded to 

a lower current efficiency and higher SEC, according to the empirical model. Nonetheless, the average 

estimated current efficiency of 94.3%, calculated using the empirical model, was well above the 80% 

given in the design specifications. The copper plating rate was calculated using the predicted current 

efficiency. Consequently, the system was overspecified and data reconciliation could be done. The 

estimated SEC, using the empirical model, resulted in an average potential of 1.4 V, which was outside 

the range of 1.8 V to 2.2 V given in the design specifications. The empirical model also assumed that 

the SEC was independent of the applied current density. 

Taking into consideration the identified limitations, the steady-state industrial data were used for limited 

operational validation of the model (see Section 9.4.2). An example of the data validation results is 

given for the advance and spent electrolyte copper concentrations of the steady-state industrial dataset 

(Figure 6.7). 

 

Figure 6.7: Data validation results for the (a) advance and (b) spent electrolyte copper concentrations of the steady-state 
industrial dataset. 
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6.3 CONCEPTUAL DATA VALIDATION 

Data validation involves performing mass balances to identify any possible internal inconsistencies 

resulting from, for example, faulty instrument readings (Knoblauch, 2015). This objective was already 

partially met by the work described during preprocessing of the datasets (Section 6.2). As an extension 

of the data validation process, missing data were filled, and incorrect and incomplete data were detected 

and replaced (where applicable) before data reconciliation was performed (for the datasets where 

possible). 

6.3.1 Filling Missing Data 

Filling missing data is important to ensure optimal utilisation of datasets, increased sample size, and 

overall improved model performance by training on complete data. In an industrial setting data may be 

missing for various reasons, including faulty sensors. In this project, missing data in incomplete 

measurement sets were filled using a moving window mean. The window was selected to contain the 

current measurement, six measurements backward, and six measurements forward. Again, this method 

does not allow for predictive data filling. Although Roffel and Betlem (2006) suggested removing both 

missing and zero values, only missing values were filled to avoid introducing gross errors into the model 

training data. Unreasonable zero values were addressed when detecting and replacing outliers. 

6.3.2 Detecting and Replacing Incorrect Data 

Incorrect data include high- and low-frequency disturbances, unexplained outliers, and drift or offset. 

Incorrect data were detected and replaced for the dynamic experimental data (generated as part of this 

project), and the acquired dynamic industrial data. It was not done for the two steady-state datasets 

because each set of measurements was taken as a separate run, limiting the use of detection and 

replacement of incorrect data.  

The measurements that formed the dynamic datasets were divided into three groups to process for 

incorrect data. The first group was made up of data obtained from direct measurements, including the 

applied current, potential, and temperature. For the dynamic experimental dataset, this group was not 

processed for incorrect data as the values were continuously monitored during the experiments. For the 

dynamic industrial dataset, unexplained outliers, defined as values below the 10th percentile and above 

the 90th percentile for each sampling interval, were detected. The outliers were filled using linear 

interpolation of neighbouring, non-outlier values. 

The second group was made up of data obtained from indirect measurements, including the 

concentration data obtained from Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-

OES), or titrations. This group also included the flow rate, which was obtained by measuring the time 
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taken to fill a container of known volume (for the experimental data), or using flowmeters (for the 

industrial data). For this group, unexplained outliers, defined as values more than three local scaled 

median absolute deviations from the local median over a window of the five preceding and succeeding 

values, were detected. These outliers were also replaced using linear interpolation of neighbouring non-

outlier values.  

The third group was made up of the mass of copper plated, which was calculated using other measured 

variables (see Section 6.2). As outliers were already detected and replaced for the variables used to 

calculate the mass copper plated, this group was not processed for incorrect data.  

6.3.3 Data Reconciliation 

Using reconciled data for model training and validation adds robustness and credibility to the data 

(Eksteen et al., 2002). Consequently, data reconciliation was done to address the internal inconsistencies 

identified by the mass balances performed for the two steady-state datasets, and the dynamic 

experimental data (bench-scale electrowinning experiments only). It was possible for these three 

datasets because they were overspecified (there were redundant measurements available). The data 

reconciliation process used in this project does not allow for predictive online data validation. 

The data reconciliation process entailed solving for a least-squares error objective function, to minimise 

the weighted sum of the measurement adjustments for each run (steady-state case) or point in time 

(dynamic case), as shown in Equation 6.8 (Luttrell, 2004). The process consisted of adjusting the mass 

fractions of each stream to create a unique and self-consistent dataset for every run (steady-state case) 

or point in time (dynamic case). The adjustments were made so that the overall conservation of mass 

equation (Equation 4.11) and the conservation of mass equation for each species (Equations 4.12 to 

4.18) were satisfied. The constraints applicable to the overall conservation of mass equation and 

conservation of mass equation for each species are given in Equations 6.9 and 6.10, respectively. 

Eksteen and Reuter (2003) highlighted the use of a proper once-off sampling campaign to determine 

the variability associated with the measured streams. For the purposes of the project, the variances were, 

however, taken as estimates based on the expected sensor or measurement errors. 

 min𝜙 = ∑ ∑
∗

+ ∑
∗

    [ 6.8 ] 

  s. t.     ∑ 𝐶 𝑀 = 0    [ 6.9 ] 

                    ∑ 𝐶 𝐴 𝑀 = 0    [ 6.10 ] 

where 𝜙 is the objective function, 𝜎  and 𝜎  are the variances of the measured concentrations and 

flow rates, respectively, ∗ refers to estimated values, 𝐶  refers to the direction of each stream 𝑖, 𝑀  is 

the mass flow rate of each stream 𝑖, and 𝐴  is the fraction for each species 𝑘 in stream 𝑖.  
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6.4 COMPUTERISED DATA VALIDATION 

6.4.1 Overview and Structure 

The modelling algorithm for the general computerised data validation process is given in Figure 6.8.  

The first step in the modelling algorithm entails loading the applicable raw dataset. The next step, filling 

any missing data, was only required for the steady-state industrial data. The experimental data consisted 

of measurements taken on a set schedule for the purpose of model training and are, therefore, complete. 

The time period for the industrial dynamic data was selected so as to not contain any missing data, and 

zero data were dealt with when detecting and replacing outliers, if required.  

 

Figure 6.8: Schematic representation of the modelling algorithm of the dataValidation.mlx file, showing an overview 
of the general computerised data validation process. 

The first part of data preprocessing varied for each dataset, as shown on Figure 6.8. Outliers were 

detected and replaced for the dynamic datasets, but not for the two steady-state datasets. The copper 

plating rate, determined in the second part of the data preprocessing, was calculated differently for each 

dataset, as discussed in Section 6.2. Finally, the data reconciliation process, the computerised structure 

of which is discussed in Section 6.4.2, was implemented for the two steady-state datasets and the 

dynamic bench-scale electrowinning data. 
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6.4.2 Data Reconciliation 

The conceptual data reconciliation process is computerised in the function dataReconciliation.mlx, as 

shown in the modelling algorithm given in Figure 6.9. A while loop is used to reconcile each run 

(steady-state case) or point in time (dynamic case) by minimising the objective function given in 

Equation 6.8. The output of the dataReconciliation.mlx function, namely the reconciled compositions 

of the advance and spent electrolytes, the electrolyte flow rate, and the mass of copper plated, are 

automatically imported into the mainModel.mlx file or the parameterFittingOffline.mlx file, as 

discussed in Chapter 4 and Chapter 7, respectively. 
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Figure 6.9: Schematic representation of the modelling algorithm of the dataReconciliation.mlx function. 

6.4.3 Built-In MATLAB Functions Used 

A built-in MATLAB (2023) solver was used to minimise the least-squares objective function for the 

data reconciliation process, whilst ensuring that the overall mass conservation and mass conservation 

equations for all species were satisfied. The nonlinear solver fmincon was used to minimise the 

equation, subject to the specified equality constraints. The built-in MATLAB function fillmissingdata 

was used to fill missing data, per the methods discussed in Section 6.3.1. Furthermore, the built-in 

MATLAB (2023) function filloutliers was used to detect and replace outliers, per the selected find and 

fill methods discussed in Section 6.3.2.  
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CHAPTER 7 

OFFLINE PARAMETER FITTING 

7.1 INTRODUCTION 

As stated by Hedengren and Edgar (2006), fitting of model parameters from acquired data bridges the 

gap between the theoretical realm of mathematical models and the realistic processes they represent. 

Parameter-fitting can be done using both offline and online methods (Robertson et al., 1996). For copper 

electrowinning, the semi-empirical model developed in this project will benefit from the 

implementation of online parameter-fitting. Nonetheless, offline parameter-fitting is required for fitting 

the parameters that are not included in the online method, as well as the initial states of those parameters 

that are (Robertson et al., 1996). Moreover, offline parameter-fitting enables additional model 

applications (such as operator training), for tankhouses where limited data are available. Offline 

parameter-fitting will be discussed in this chapter, and online parameter-fitting in the following chapter 

(Chapter 8). 

In the previous chapter (Chapter 6), the available datasets were validated for use in training and 

validating the developed model. In this chapter, the offline parameter-fitting approach, used to 

determine the model parameters included in the semi-empirical model, is considered. The conceptual 

offline parameter-fitting approach was first developed (Section 7.2), whereafter it was computerised 

using MATLAB (2023) (Section 7.3). Lastly, parameter sensitivity and variability analyses were 

conducted to investigate the effect of altering the fitted parameters on the model-predicted output 

variables, and to motivate the necessity of online parameter-fitting (Section 7.4). 

7.2 CONCEPTUAL PARAMETER FITTING 

7.2.1 Parameters 

The parameters required in the model included the Butler–Volmer equation parameters (Equation 2.20), 

the mass-transfer equation coefficients (Equation 2.18), and the current loss parameter (Equation 4.5). 

The Butler–Volmer equation parameters were fitted for the reduction of copper and oxidation of water. 

The mass-transfer equation coefficients were fitted for the reduction and oxidation of iron. The current 

loss parameter was fitted to account for losses caused by any reason other than the reduction of iron, 

such as ineffective electrode contact, stray currents, short circuits, the effect of sludge, and other side 

reactions (Moats, 2018; Schlesinger et al., 2022; Tucker et al., 2021). An overview of the offline 

approach used to fit each parameter, together with the applicable constraints, is given in Table 7.1. 
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Table 7.1: Parameters required in the model, the applicable constraints, and the approach used to fit them. 

Parameter Type Constraint Approach 

𝑖 ,  
𝛼  

Exchange current density 
Charge-transfer coefficient 

𝑖 , > 0 
0 < 𝛼 < 2 

Nonlinear regression based on calculated 
overpotential and current density 

𝑖 ,  
𝛼  

Exchange current density 
Charge-transfer coefficient 

𝑖 , > 0 
0 <  𝛼 < 2 

Nonlinear regression based on calculated 
overpotential and current density 

𝑚  Mass-transfer coefficient 𝑚 > 0 
Nonlinear regression based on calculated 

ferric iron concentration and current 
density 

𝑚  Mass-transfer coefficient 𝑚 > 0 
Nonlinear regression based on calculated 

ferrous iron concentration and current 
density 

𝐿  Current loss parameter 0 <  𝐿 < 1 𝐿 = 1 −  �̅�  

7.2.2 Resampling Method 

Cross validation, a type of resampling method, was used to estimate the model errors associated with 

the offline parameter-fitting approach (James et al., 2017). This enabled evaluation of the developed 

approach’s performance and assessment of the fitted parameters when confronted with previously 

unseen data, as discussed in Section 7.4. The specific resampling method selected was k-fold cross 

validation, an algorithm of which is shown in Figure 7.1. This method entails randomly dividing the set 

of data points, or observations, into k groups, or folds, of equal size (James et al., 2017). The first fold 

is treated as the validation set, with the remaining k – 1 folds used to train the model. A model error 

term is then calculated for each fold.  

This resampling method was selected due to its computational advantage over methods such as leave-

one-out-cross validation (LOOCV), which would require significantly more iterations. Furthermore, 

although LOOCV gives approximately unbiased estimates of the model error term, it has a higher 

variance than k-fold cross validation, with k smaller than the number of observations (James et al., 

2017). James et al. (2017) suggested using k = 5 or k = 10, as these values have been empirically shown 

to yield model error term estimates that have neither excessively high bias, nor high variance. 
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Figure 7.1: Simplified algorithm showing the training and validation folds used in k-fold cross validation, for a case 
where k = 5. 

The model error term for each ith fold was quantified using the residual mean square error (RMSE), 

calculated using Equation 7.1. This was repeated k − 1 times with a different group of observations 

treated as the validation set each time. The k-fold cross validation estimate of the RMSE was calculated 

by taking the average of the RMSEs calculated for every ith fold, as shown in Equation 7.2 (James et 

al., 2017; Knoblauch, 2015).  

 RMSE = 𝑦 − 𝑓(𝑥 )     [ 7.1 ] 

where RMSE  is the RMSE of the ith fold,  𝑦  is the ith observation of the variable to be predicted, and 

𝑓(𝑥 ) is the prediction that the model gives for the ith observation. 

 RMSE =  ∑ RMSE   [ 7.2 ] 

where RMSE  is the k-fold cross validation estimate of the RMSE and 𝑘 is the number of folds. 

Following this, the RMSE was normalised using Equation 7.3, resulting in the normalised residual mean 

square error (nRSME).  

 nRMSE =     [ 7.3 ] 

where nRMSE is the normalised RMSE and 𝑦 is the mean of the variable to be predicted (also referred 

to as the actual real-life value). 

7.2.3 Approach 

This section details the conceptual approach followed to fit offline model parameters to each of the four 

sets of electrowinning data used in this project. To fit for the Butler–Volmer equation parameters 

(Equation 2.20), the overpotentials and current densities associated with the respective electrochemical 

reactions are required. Likewise, fitting for the mass-transfer coefficients required the current densities 

and concentrations of the respective species involved in the reactions (Equation 2.18). The approach to 
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fitting for the parameters is, therefore, divided into calculating the required intermediary variables using 

the input variables provided, and then determining the respective parameters. 

The input variables used to train the model consisted of the validated current, potential (V), advance 

and spent electrolyte compositions, and mass of copper plated. The current efficiency and total 

overpotential were calculated at the end of the process for the steady-state datasets and at every available 

time-step for the dynamic dataset. The current efficiency was calculated by dividing the actual mass 

copper plated by the theoretical mass copper plated (Equation 2.23), calculated from Faraday’s law 

(Equation 2.24). The current loss parameter was taken as the difference between unity and the mean of 

the fractional current efficiency over the dataset (Equation 4.6). The total overpotential was calculated 

by taking the difference between the actual potential and the potential associated with the reactions and 

losses (Equation 7.4). The calculated current efficiency and total overpotential were used to calculate 

the required intermediary variables for the copper reduction, water oxidation, and iron reduction and 

oxidation.  

 𝜂 = 𝑈 − ( 𝐸 + 𝐸 + 𝑈 )  [ 7.4 ] 

where 𝜂  is the total overpotential (V), 𝑈 is the actual measured potential (V),  𝐸 is the reduction 

potential (V), and 𝑈  is the voltage loss term (V). 

For the copper reduction, the current density, overpotential, and copper mass plating rate were 

calculated as intermediary variables. The current density associated with the copper reduction reaction 

was calculated using the actual total current, calculated current efficiency, and two-sided cathode area 

(Equation 7.5).  

 𝑖 =
 

 
  [ 7.5 ] 

where 𝑖 is the current density (A/m2), 𝐼 is the current (A),  𝛽 is the current efficiency (%), 𝑆 is the scale-

up factor (Equation 4.3), and 𝐴 is the cathode area (m2). 

The overpotential associated with copper reduction was determined by specifying a ratio according to 

which the calculated total overpotential was divided between the copper reduction and water oxidation 

(Equation 7.6). A ratio of 0.3 was specified, meaning that 30% of the total overpotential calculated is 

associated with copper reduction. The ratio is based on the theoretical cell reactor developed by Beukes 

and Badenhorst (2009) and is within the range given by Schlesinger et al. (2011b) for a typical industrial 

electrowinning tankhouse. Finally, the copper mass plating rate was determined from the copper 

reduction current density using Faraday’s law (Equation 2.21). 
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 𝑏 = =
 

= 0.3  [ 7.6 ] 

where 𝑏 is the ratio,  𝜂  is the overpotential associated with copper reduction (V), and 𝜂  is the 

overpotential associated with water oxidation (V). 

The concentrations of ferric and ferrous iron in the advance electrolyte, and current densities associated 

with iron reduction and oxidation were also calculated as intermediary variables. The calculated current 

efficiency was used to determine the current required for iron reduction (Equation 7.7). From this, the 

rate at which ferric iron was reduced to ferrous iron was calculated using Faraday’s law (Equation 2.21). 

The intermediary variables associated with the iron oxidation were, thereafter, calculated using a system 

of ordinary differential equations (ODEs). The system consisted of the mass conservation equations for 

ferric and ferrous iron (Equation 4.15 and Equation 4.16, respectively). 

  𝑖 =
  

 
  [ 7.7 ] 

where 𝐼  is the current loss (A). 

Lastly, for water oxidation the overpotential and current density were also determined as intermediary 

variables. The current density was calculated by assuming that all the current not required for the 

oxidation of iron (or lost via the current loss term), was required for the oxidation of water (Equation 

7.8). The overpotential was calculated by applying the ratio previously specified (Equation 7.6). 

 𝑖 =
 

  [ 7.8 ] 

Upon calculating all the required intermediary variables, the respective parameters were determined. A 

different set of fitted parameters was obtained for each of the available datasets validated in Chapter 6. 

The resampling method, discussed in Section 7.2.2, was implemented to train the model using the 

available datasets, with different k-values, or number of folds, specified for each of the datasets. The 

dynamic experimental screening dataset consisted of 24 experiments, or observations, with 25 time-

steps, or points, associated with each experiment. Therefore, eight folds were selected containing three 

observations each. Similarly, eight folds were selected for the 16 steady-state experiments conducted 

by Tucker (2019). Tests done using k = 5, as suggested by James et al. (2017), yielded nearly identical 

parameters to those completed using k = 8. In both cases, k = 8 was selected to ensure an equal number 

of observations in each fold. The dynamic experimental bench-scale electrowinning dataset consisted 

of 15 observations, with 25 points associated with each observation. Three folds were selected as k = 5 

yielded similar parameters but resulted in too few observations in each fold. The dynamic industrial 

data consisted of 1000 points, with k = 10 selected. The steady-state industrial data consisted of 100 

observations and, therefore, ten folds were, again, selected. The two industrial datasets were not divided 
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into observations containing separate points, as the tankhouses ran continuously over the respective 

time periods, unlike the distinctly separate experiments. 

7.3 COMPUTERISED PARAMETER FITTING 

7.3.1 Overview and Structure 

The offline parameter-fitting approach was computerised in the MATLAB (2023) file 

parameterFittingOffline.mlx, as indicated in Chapter 4 (Table 4.3). The modelling algorithm for the 

parameter-fitting approach is given in Figure 7.2. The parameter-fitting approach required the 

dataValidated.mlx file to be imported as an initial step. The loaded data were next used to fit for the 

current loss parameter. Thereafter, the copper and iron reduction data-processing calculations for 

determining the relevant intermediary variables were completed. A for loop was used to solve the 

system of ODEs, discussed in Section 7.2.3, for each run (steady-state case) or point in time (dynamic 

case). Upon completion of the water oxidation data-processing calculations, a for loop was used to 

implement the resampling method. The output of the parameterFittingOffline.mlx file was the model 

parameters corresponding to the smallest nRMSE for the respective dataset. 
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Figure 7.2: Schematic representation of the modelling algorithm of the parameterFittingOffline.mlx file. 
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7.3.2 Built-In MATLAB Functions Used 

A built-in MATLAB (2023) function was used to fit the model parameters using nonlinear regression. 

The Statistical Toolbox function fitnlm and the Optimisation Toolbox function lsqcurvefit were both 

investigated as options. The functions gave comparable results and execution times, however, 

lsqcurvefit was selected as it accepts constraints on the parameters. This was useful as the parameters 

were able to be constrained to the ranges given in Table 7.1. 

7.4 PARAMETER VALIDATION 

7.4.1 Sensitivity Analysis 

Sensitivity analyses were conducted to study the effect of varying the fitted parameters on the model-

predicted output variables. Parameters fitted to the dynamic bench-scale electrowinning experiment 

dataset were independently increased or decreased to investigate their effect on the respective calculated 

current densities. Thereafter, the varied parameters were used as inputs to the electrowinning model and 

the sensitivity of the model-predicted key performance indicators (KPIs) to changes in the parameters 

was observed.  

Figure 7.3 shows the Butler–Volmer equation for copper reduction, incorporating parameters that were 

fit for the dynamic bench-scale electrowinning experiment dataset. The graph shows the current density 

for the copper reduction reaction plotted as a function of the overpotential, as per the Butler–Volmer 

equation. The results of increasing and decreasing the charge-transfer coefficient (𝛼 ) and exchange 

current density (𝑖 , ) by 10%, are shown. The charge-transfer coefficient had the largest effect on the 

calculated current density. Both an increase in the charge-transfer coefficient and an increase in the 

exchange current density resulted in a steeper gradient, meaning that a less negative overpotential would 

result in a higher current density. At lower values of the charge-transfer coefficient the resulting current 

density would, therefore, be less sensitive to changes in overpotential, enabling more accurate model 

predictions. 
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Figure 7.3: Sensitivity of the current density, calculated using the Butler–Volmer equation for copper reduction, to 
changes in its parameters. 

Similarly, Figure 7.4 shows the Butler–Volmer equation for water oxidation, incorporating parameters 

that were fit for the dynamic experimental bench-scale electrowinning dataset. As above, the results of 

a 10% increase and decrease in the charge-transfer coefficient (𝛼 ) and exchange current density 

(𝑖 , ), are shown. The current density demonstrated the highest sensitivity to a decrease in the charge-

transfer coefficient. A decrease in the charge-transfer coefficient resulted in higher current densities 

obtained at lower overpotentials. Consequently, the resulting current density would be less sensitive to 

changes in the overpotential at higher values of the charge-transfer coefficient. As above for the copper 

reduction reaction, a current density that is less sensitive to changes in overpotential would enable more 

accurate dynamic model predictions. 

 

Figure 7.4: Sensitivity of the current density, calculated using the Butler–Volmer equation for water oxidation, to 
changes in its parameters. 
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Sensitivity analyses were also conducted using the mass-transfer equations (Equation 2.18) for iron 

reduction and oxidation (Figure 7.5). The current density for iron reduction is plotted as a function of 

the ferric iron concentration, whilst that for iron oxidation is plotted as a function of the ferrous iron 

concentration. From the graph, the mass-transfer equation for iron reduction (𝑚 ) has a much steeper 

gradient than that for iron oxidation (𝑚 ). The mass-transfer equation for iron reduction is also more 

sensitive to a change in the corresponding parameter than is the equation for iron oxidation. These 

findings are relevant specifically to the case of the dynamic experimental bench-scale electrowinning 

dataset. Refitting the parameters for a different dataset could result in, for example, similar gradients 

for the two mass-transfer equations, depending on the effect of iron in the system. 

 

Figure 7.5: Sensitivity of the mass-transfer equations for iron reduction and oxidation kinetics to changes in their 
parameters. 

After determining to what parameters the copper reduction, water oxidation, iron reduction, and iron 

oxidation current densities were most sensitive to, the parameters were used as inputs to the 

electrowinning model. The parameters were used together with the input variables associated with an 

arbitrary experiment (forming part of the dynamic bench-scale electrowinning dataset), to generate 

model-predicted KPIs. The parameters were again independently increased and decreased to ascertain 

the effect on the predicted performance indicators. Only parameters that were identified to have a 

significant effect on the corresponding current densities (see Figure 7.3, Figure 7.4, Figure 7.5), were 

varied when the model-predicted performance indicators were generated. This included the charge-

transfer coefficients for copper reduction and water oxidation, as well as the mass-transfer coefficient 

for iron reduction. The current loss parameter was also included. 

The copper plating rate and current efficiency predicted for the arbitrary run, with 10% increases and 

decreases in parameters, are shown in Figure 7.6 and Figure 7.7, respectively. The graphs show that 

both the copper plating rate and the current efficiency are sensitive only to changes in the mass-transfer 
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coefficient for iron reduction, and the current loss parameter. A decrease in the mass-transfer coefficient 

for iron reduction increases the copper plating rate and current efficiency, and vice versa for an increase 

in the parameter. In the electrowinning model, the predicted copper reduction current is constrained by 

the predicted current required for iron reduction. It is, therefore, expected that the copper plating rate 

should be sensitive to changes in the mass-transfer coefficient for iron reduction. For real-life 

operations, it is similarly expected that changes in the mass-transfer conditions for iron reduction would 

affect the current available for copper reduction and, therefore, current efficiency. 

 

Figure 7.6: Sensitivity of the model-predicted copper plating rate, for an arbitrary dynamic bench-scale electrowinning 
experiment, to changes in the model parameters. 

 

Figure 7.7: Sensitivity of the model-predicted current efficiency, for an arbitrary dynamic bench-scale electrowinning 
experiment, to changes in the model parameters. 

The specific energy consumption (SEC) and potential predicted for the arbitrary run, with 10% 

increases and decreases in parameters, are shown in Figure 7.8 and Figure 7.9, respectively. The graph 

shows that both the potential and SEC are very sensitive to an increase in the charge-transfer coefficient 

for water oxidation. The significant impact of this parameter results from the contribution of the water 

oxidation overpotential to the predicted potential, which is in turn used to predict the SEC. An increase 
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in the charge-transfer coefficient for the anodic water oxidation reaction results in the relationship 

between the overpotential and current density remaining a horizontal line, even at higher overpotentials, 

as observed from Figure 7.4. The relationship will eventually start showing a gradual increase at 

overpotentials significantly higher than those shown on Figure 7.4. This means that a significantly 

higher overpotential is required to give a high current density when the charge-transfer coefficient is 

increased. Conversely, it is shown that the SEC is not sensitive to changes in the charge-transfer 

coefficient for copper reduction. Unlike for water oxidation, the copper reduction current density plotted 

as a function of the overpotential has a steep gradient, regardless of the change in charge coefficient, as 

shown in Figure 7.3. 

 

Figure 7.8: Sensitivity of the model-predicted SEC, for an arbitrary dynamic bench-scale electrowinning experiment, to 
changes in the model parameters. 

 

Figure 7.9: Sensitivity of the model-predicted potential, for an arbitrary dynamic bench-scale electrowinning 
experiment, to changes in the model parameters. 
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7.4.2 Variability Analysis 

Variability analyses were conducted to assess the time-varying nature of the model parameters. As will 

be elucidated in the next section (Section 7.4.3), the model parameters are known to be dependent on 

time-varying process conditions (such as the electrolyte composition and temperature). In the next 

chapter (Chapter 8), an online parameter-fitting approach is proposed to complement the developed 

model, by ensuring the fitted model parameters are up to date. In order to ensure a robust and efficient 

design, it is, however, important to include the parameters to which the model predictions are sensitive, 

and those that exhibit significant variation during the electrowinning process. Consequently, the 

variability analysis, in conjunction with the sensitivity analysis (Section 7.4.1), was used to inform the 

selection of parameters for the online parameter-fitting approach developed in Chapter 8.  

Resampling with replacement, or bootstrap as it is sometimes referred to (Effron and Tibshirani, 1993), 

was used to estimate the variability of the parameters fitted for the dynamic experimental bench-scale 

electrowinning dataset. The dataset was divided into six separate subsets over time in order to assess 

the time-varying nature of the parameters. Each subset contained 60 samples, four from each of the 15 

experiments. The subsets were not evenly spaced over time as an increased number of measurements 

were taken during experimental start-up and just after inducing the disturbance (after four hours). Each 

subset was resampled 10 000 times, with replacement, to generate bootstrap parameter estimates. 

Consequently, some samples were represented multiple times in the bootstrap sample (Kuhn and 

Johnson, 2013). The bootstrap sample taken was the same size as the corresponding original subset. 

The number of resamples (repetitions) was selected to be large enough to ensure meaningful statistics, 

whilst not resulting in computationally prohibitive calculations. The bootstrap approach is illustrated in 

Figure 7.10. 

 

Figure 7.10: Graphical representation of the bootstrap approach. 
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The results of the variability analysis are visualised using boxplots (Figure 7.11 to Figure 7.15). The 

boxplots are discussed in the context of assessing the time-varying nature of the parameters (variation 

between boxes), as well as the variability of the fitted parameters within each subset (variation within 

each box). The charge-transfer coefficients for copper reduction and water oxidation remained constant 

at 0.2 and 0.9, respectively, and were, therefore, not included. 

Figure 7.11 and Figure 7.12 show the variability associated with the exchange current densities for 

copper reduction and water oxidation, respectively. With the exception of the boxplot for the exchange 

current density for copper reduction fitted at t = 0.6 h, the median lines of the boxplots for this parameter 

all fall within the box of the comparison plots, signifying that the median parameters are similar over 

the timespan of the experiments (Figure 7.11). The same is true for the exchange current density for 

water oxidation (Figure 7.12). The interquartile ranges (box lengths) show that the data are similarly 

dispersed for each parameter, over the experimental time. Additionally, the outliers (values more than 

1.5 interquartile range away from the top or bottom of the box), are almost exclusively located above 

the upper quartile, indicating that the parameter-fitting approach was inclined to overestimate, rather 

than underestimate, the exchange current densities for the dynamic experimental bench-scale 

electrowinning dataset.  

 

Figure 7.11: Boxplot visualisation showing the variability of the fitted exchange current density for copper reduction 
over time. The line inside each box represents the median, the lower and upper box represents the 25th and 75th 
percentiles of the sample, and outliers are defined as values more than 1.5 times the interquartile range away from the 
lower or upper box. 
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Figure 7.12: Boxplot visualisation showing the variability of the fitted exchange current density for water oxidation 
over time. The line inside each box represents the median, the lower and upper box represents the 25th and 75th 
percentiles of the sample, and outliers are defined as values more than 1.5 times the interquartile range away from the 
lower or upper box. 

Figure 7.13 and Figure 7.14 show the variability associated with the mass-transfer coefficients for iron 

reduction and iron oxidation, respectively. The medians for both mass-transfer coefficients differ 

significantly over time. The interquartile ranges for the mass-transfer coefficient for iron reduction show 

that the data become less dispersed over time (Figure 7.13). It is possible that this results from the 

method used to calculate the actual copper plating rates (mass conservation balance over cell, Equation 

4.12), as the copper plating rate has an influence on the fitted mass-transfer coefficient for iron reduction 

in the model.  

As previously explained during discussion of the parameter-fitting approach (Section 7.2.3), the current 

required for iron reduction, alongside the ferric iron concentration, was used to fit for the mass-transfer 

coefficient for iron reduction (Equation 2.18). The current required for iron reduction was determined 

using the calculated current efficiency. The current efficiency was calculated using the actual and 

theoretical mass copper plated (Equation 2.23). The actual mass copper plated was, in turn, calculated 

using the actual copper plating rate.  

As time passed during the experiment, the difference between the measured advance and spent 

electrolyte copper concentrations, used to calculate the copper plating rate, became more pronounced. 

This lessened the impact of uncertainty on the copper plating rate calculation. Consequently, the 

dispersion of the fitted mass-transfer coefficients within each subset (each subset contained four 

samples from each of the 15 experiments) is theorised to decrease over time, because the calculated 

copper plating rates became less dispersed. 
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Figure 7.13: Boxplot visualisation showing the variability of the fitted mass-transfer coefficient for iron reduction over 
time. The line inside each box represents the median, the lower and upper box represents the 25th and 75th percentiles of 
the sample, and outliers are defined as values more than 1.5 times the interquartile range away from the lower or upper 
box. 

 

Figure 7.14: Boxplot visualisation showing the variability of the fitted mass-transfer coefficient for iron oxidation over 
time. The line inside each box represents the median, the lower and upper box represents the 25th and 75th percentiles of 
the sample, and outliers are defined as values more than 1.5 times the interquartile range away from the lower or upper 
box. 

Figure 7.15 shows the variability associated with the current loss parameter. As with the mass-transfer 

coefficients, the median for the current loss parameter also differs significantly over time. The 

dispersion of data (box lengths) also decreased with time, as shown before for the mass-transfer 

coefficient for iron reduction (Figure 7.13). Again, this is theorised to be because the calculated actual 

copper plating rates became less dispersed. The copper plating rate, calculated using a mass 

conservation balance over the cell (Equation 6.3), was used to determine the current efficiency, which 

was in turn used to fit for the current loss parameter (Equation 4.6). The current loss parameter was 

only included as a fitted parameter for the dynamic experimental bench-scale data for the purpose of 

the variability analysis, it was not included as a final fitted parameter (see Section 7.4.3). 
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Figure 7.15: Boxplot visualisation showing the variability of the fitted current loss parameter over time. The line inside 
each box represents the median, the lower and upper box represents the 25th and 75th percentiles of the sample, and 
outliers are defined as values more than 1.5 times the interquartile range away from the lower or upper box. 

7.4.3 Summary of Fitted Parameters 

A summary of the final offline parameters fitted for all the datasets considered in this project is given 

in Table 7.2, alongside the parameters reported by Aminian et al. (2000) and Tucker et al. (2021), for 

their respective steady-state models. 

Table 7.2: Summary of the fitted parameters for each dataset. 

Dataset 
𝜶𝐂𝐮 𝒊𝟎,𝐂𝐮 𝜶𝐇𝟐𝐎 𝒊𝟎,𝐇𝟐𝐎 𝒎𝐅𝐞𝟑  𝒎𝐅𝐞𝟐  𝑳𝑰 

− A/m   − A/m   m/s m/s − 

Dynamic exp (Screening) 0.20 0.116 0.89 9.40 8.69 × 10−6 3.67 × 10−7 0 

Dynamic exp (bench-scale 
electrowinning) 

0.20 16.7 0.89 51.1 6.20 × 10−6 2.27 × 10−7 0 

Dynamic industrial 0.20 0.0226 0.89 0.591 2.61 × 10−7 3.40 × 10−8 0.44 

Steady-state exp 0.20 16.7 0.89 55.9 4.10 × 10−6 3.52 × 10−7 0 

Steady-state industrial 0.20 21.6 0.80 16.1 6.76 × 10−6 2.25 × 10−6 0 

Tucker et al. (2021)* 0.26 0.839 0.57 0.105 2.89 × 10−6 4.47 × 10−6 − 

Aminian et al. (2000)* 0.62 23 0.2 2.06 × 10−4 3.21 × 10−9 4.17 × 10−9 − 
*Tucker et al. (2021) and Aminian et al. (2000) used a different form of the mass-transfer equation (Equation 
2.18), where the stoichiometric coefficient (n) and Faraday’s constant (F) were included in the definition of the 
mass-transfer coefficient (m). Consequently, in order to directly compare the mass-transfer coefficients, the 
reported mass-transfer coefficients for these two sources were divided by (n × F). 

The parameters are dependent on the individual electrowinning system being modelled, as shown by 

the variability in the fitted values for each dataset. As discussed in Chapter 2, the charge-transfer 

coefficient is the fraction of the electrostatic potential energy affecting the reduction rate in an electrode 

reaction, with the remaining fraction affecting the corresponding oxidation rate (Guidelli et al., 2014). 
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All the charge-transfer coefficient values reported in Table 7.2 are within the range specified by 

Newman and Thomas-Alyea (2004) (between 0.2 and 2).  

The exchange current density is dependent on the concentrations of reactants and products, temperature, 

the electrolyte–electrode interface, and impurities on the electrode surface (Barbir, 2013). Additionally, 

Cifuentes and Simpson (2005) reported that the kinetic parameters obtained in previous studies on 

copper electrodeposition also varied with cell geometry and cathode material. Each of these factors can 

change the value of the exchange current density by several orders of magnitude (1×10−8 A/m2 to more 

than 100 000 A/m2) (Newman and Thomas-Alyea, 2004). 

The fitted mass-transfer coefficients for iron reduction and oxidation exhibit notable disparities between 

the different datasets used in the project. Nonetheless, it is important to acknowledge that mass-transfer 

coefficients are also influenced by system-specific factors. Factors that could possibly have contributed 

to the observed variations in coefficient values include the fluid flow, cell geometry, temperature, 

electrolyte composition, and formation of oxygen gas (Cifuentes et al., 2004; Ettel et al., 1974; Free et 

al., 2013; Moats and Khouraibchia, 2009). System-specific mass-transfer coefficients could be 

substantiated using empirical correlations, or using suitably designed experiments. Beukes and 

Badenhorst (2009), however, indicated that these methods may not necessarily be representative of the 

conditions in industrial tankhouses.  

Inclusion of the resampling method enabled evaluation of the parameter-fitting approach’s 

performance, and assessment of the fitted parameters when confronted with previously unseen 

validation data. Table 7.3 gives the average nRMSE for the fold from which the fitted parameters were 

selected for each dataset (nRMSEi,avg). The average k-fold cross validation estimate of the nRMSE over 

all the folds is also given for each dataset (nRMSECV,avg).   The nRMSEi,avg was determined by averaging 

the nRMSEi for the copper reduction, water oxidation, iron reduction, and iron oxidation reactions, 

within each fold. The parameters corresponding to the fold having the lowest nRMSEi,avg, for each 

dataset, were then selected for use in the dynamic model. The nRMSECV,avg was determined by 

averaging the nRMSEi,avg for all the folds, for each dataset. 
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Table 7.3: Summary of the RMSEs for each dataset, corresponding to fitted parameters as per Table 7.2. 

Dataset 
𝐧𝐑𝐌𝐒𝐄𝒊,𝐚𝐯𝐠 𝐧𝐑𝐌𝐒𝐄𝐂𝐕,𝐚𝐯𝐠 

% % 

Dynamic exp (screening) 58.4 186 

Dynamic exp (bench-scale electrowinning) 55.7 61.0 

Dynamic industrial 71.3 73.6 

Steady-state exp 47.6 62.0 

Steady-state industrial 58.3 73.3 

The nRMSEi,avg and nRMSECV,avg for all datasets are high. For the steady-state industrial dataset the low 

data quality, the empirical models used to determine the actual real-life KPIs, and the steady-state 

assumption likely resulted in the high error when fitting for parameters. For the dynamic datasets the 

high error values are likely the result of the time-varying nature of the fitted parameters. Alongside the 

high error values, the results of the variability analysis (see Section 7.4.2) and sensitivity analysis (see 

Section 7.4.1) motivate the inclusion of an online parameter-fitting approach to enable more accurate 

model predictions, where data availability allows.  
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CHAPTER 8 

ONLINE PARAMETER FITTING 

8.1 INTRODUCTION 

Online parameter-fitting, also known as dynamic parameter estimation, is often required to obtain a 

model that is sufficiently accurate for use in advanced predictive control applications (Hedengren and 

Eaton, 2017). As process conditions are continuously changing, the model, specifically the model 

parameters, may become outdated and will no longer enable satisfactory control performance 

(Hedengren and Eaton, 2017). The impact of time-varying process conditions is specifically relevant to 

the parameters fitted for the electrowinning model, as they are influenced by factors such as the 

electrolyte composition and temperature.  

The offline parameter-fitting approach developed in the previous chapter (Chapter 7), requires manual 

intervention when refitting for updated model parameters. An online parameter-fitting approach that 

can automatically fit and implement updated parameters, based on an evolving dataset is, therefore, 

developed in this chapter. The conceptual online parameter-fitting approach was first developed 

(Section 8.2), whereafter it was computerised using MATLAB (2023) (Section 8.3). Lastly, the online 

parameter-fitting approach was validated to ensure it contributes to a high overall model fidelity 

(Section 8.4). 

Refitting for parameters online requires a large dataset, containing frequent measurements. As seen with 

the oil and gas industry previously (Hedengren and Eaton, 2017), data availability for electrowinning 

operations is expected to continuously increase due to advances in technology, improved networking, 

and regulatory requirements that mandate additional monitoring. Recent advances in Internet of Things 

(IoT) technology are also enabling a connected network of low-cost, highly capable sensors to capture 

evolving datasets in real-time (Klein and Walsh, 2017). Nonetheless, due to the data limitations 

discussed in Chapter 6, the online parameter-fitting approach was only considered for the dynamic 

industrial dataset in this dissertation. 

8.2 CONCEPTUAL PARAMETER FITTING 

8.2.1 Dynamic Estimation Approach 

8.2.1.1 Method 

Methods for dynamic parameter estimation include filtered bias update, implicit dynamic feedback, 

Kalman filtering, and moving horizon estimation (MHE). In this project, MHE was selected for use in 
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the online parameter-fitting approach. MHE is an optimisation approach that typically entails the 

minimisation of a least-squares objective function to align the process model with available 

measurements by adjusting certain model parameters (Hedengren and Eaton, 2017; Hedengren and 

Edgar, 2006; Sun et al., 2015; Yin and Gao, 2019). The selected objective function is further discussed 

in Section 8.2.2, and the system models in Sections 8.2.3 and 8.2.4. 

The advantage of MHE over methods such as the Kalman filter is the ability to include various types of 

physical constraints in the optimisation problem (Gatzke and Doyle, 2002; Sun et al., 2015). This ability 

proved useful for modelling the electrowinning system due to the reliance on constraints such as mass 

conservation balances. Previously, the greater computational expense required to solve the iterative 

MHE optimisation problem proved to be a barrier to use (Hedengren and Eaton, 2017; Hedengren and 

Edgar, 2006; Sun et al., 2015). Recent advances in computational capability and methods have, 

however, all but eliminated this barrier and have improved the application of MHE to fast (Lambert et 

al., 2013) and industrial-scale systems (Ramlal et al., 2007). MHE is, for example, widely used in many 

industrial applications, such as process monitoring in the oil and gas industry (Hedengren and Eaton, 

2017).  

MHE uses a receding window of prior measurements to adjust time-varying parameters and model 

predictions, over a past horizon (with the parameters assumed to be constant over the horizon) 

(Robertson et al., 1996; Sun et al., 2015). In this project, a sliding window was used, meaning that for 

each new measurement included in the horizon, the oldest measurement is excluded, ensuring the 

horizon window remains a constant size. It is, however, necessary to find a compromise between 

choosing a sufficiently small horizon so that all parameters can be assumed constant and errors in the 

state equations are not significant, and a large enough size so that the measurements contain enough 

information to fit the parameters (Robertson et al., 1996). The dynamic industrial dataset, used for 

online fitting in this project, consisted of hourly measurements (Section 6.2.2). Consequently, a horizon 

of 12 hours was selected for use with this dataset as a compromise between having a sufficiently small 

horizon so that the model parameters could be assumed constant, whilst having enough measurements 

to fit the parameters. 

If higher frequency data are used, the 12-hour horizon might, however, become computationally 

prohibitive for online parameter-fitting, and would require reassessment. For this case, Robertson et al. 

(1996) suggested using as large a horizon size as is computationally feasible. This statement is 

supported by the fact that as the horizon size increases, the influence of the initial state and weighting 

matrix is reduced (Hedengren and Eaton, 2017; Robertson et al., 1996). For sufficiently long horizons, 

it is only the model parameters that have a significant effect on the current model state (Hedengren and 

Eaton, 2017). The lag in model prediction induced by the online parameter-fitting approach could, 
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however, become significant for larger horizon sizes. This is an important consideration as it could 

affect the use of the model for control applications. 

8.2.1.2 Selected Parameters 

The copper plating rate is not only a key performance indicator (KPI) in itself, but is also used as an 

intermediate variable, alongside the potential (V), for calculating the remaining KPIs of current 

efficiency (Equation 2.23) and specific energy consumption (SEC) (Equation 2.25). In order to 

minimise the difference between the model-predicted and actual KPIs it is, therefore, necessary to 

minimise the difference between the model-predicted and actual versions of these two intermediate 

variables (Figure 8.1). The copper plating rate and potential are affected by different parameters, 

meaning that the two variables are described by two distinct system models, and defined by separate 

objective functions.  

The model parameters that significantly impacted the model-predicted potential and mass copper 

plating rate had to be identified for inclusion in the respective system models. The included parameters 

were selected based on previously conducted parameter sensitivity and variability analyses, as 

suggested by Xu et al. (2017). Per the sensitivity analysis conducted in Chapter 7 (Section 7.4.1), the 

copper plating rate was most sensitive to changes in the mass-transfer coefficient for iron reduction. 

The model-predicted potential was most sensitive to changes in the Butler–Volmer equation parameters 

for water oxidation.  

 

Figure 8.1: Graphical representation of the online parameter-fitting approach, used to minimise the difference between 
the modelled and actual outputs.  

The current loss parameter was also updated online as it accounts for time-varying process conditions 

such as additional electrolyte impurities, short circuits, and the effect of sludge and housekeeping. These 

factors were previously identified as having a significant effect on the performance of real-life 

electrowinning tankhouses (Section 2.3.4), alongside the presence of iron, but cannot yet be 

fundamentally modelled. A separate objective function was not minimised for updating the current loss 

parameter; instead, it was recalculated using Equation 4.6, over the previous horizon. 
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8.2.2 Objective Function 

The objective function, along with the system model, is an important consideration for ensuring 

desirable results when implementing an online parameter-fitting approach (Hedengren et al., 2014). The 

intuitive least-squares error objective function was selected for use in this project (Equation 8.1). 

Although the sensitivity to outliers may be exacerbated by the squared error objective, it is simple to 

implement and computationally inexpensive (Hedengren et al., 2014; Hedengren and Eaton, 2017). If 

the sensitivity to outliers presents a problem, an alternative objective function, such as the l1-norm 

objective function can be investigated for use in future work. The l1-norm optimisation problem includes 

increased complexity and size, and requires the use of specialised software to solve (Hedengren et al., 

2014; Hedengren and Eaton, 2017). 

 min𝜙 = 𝑊 (𝑦 − 𝑦)   [ 8.1 ] 

s. t.   0 = 𝑓
d𝑥

d𝑡
, 𝑥, 𝑦, 𝑝, 𝑑, 𝑢  

 0 = 𝑔(𝑥, 𝑦, 𝑝, 𝑑, 𝑢) 

 0 ≤ ℎ(𝑥, 𝑦, 𝑝, 𝑑, 𝑢) 

where 𝜙 is the objective function, 𝑊  is the measurement deviation penalty, 𝑦  is the measurements, 𝑦 

is the model values, 𝑓, 𝑔, ℎ are the equation residuals, output function, and inequality constraints that 

form a general system model, 𝑥 is the states, 𝑢 the inputs, 𝑝 the parameters, and 𝑑 the unmeasured 

disturbances. 

Multiple methods have been developed for selecting the measurement deviation penalties (Wm) (Garriga 

and Soroush, 2010). It is, however, commonly assumed that the penalty is time-invariant and available 

from the manufacturer of the measurement device used (Schneider and Georgakis, 2013). Alternatively, 

a dedicated once-off sampling campaign could be conducted to determine the measurement device 

accuracies (Eksteen and Reuter, 2003). In the absence of data relating to the penalties, the inverse of 

the variance of the measurements were used as the measurement deviation penalties in this project, as 

motivated by Schneider and Georgakis (2013).  

A penalty for movement from prior parameter values was investigated for inclusion in the objective 

function to penalise unnecessary parameter adjustments and aid noise-rejection (Hedengren et al., 

2014). Inclusion of this term, however, negatively affected the performance of the approach. Instead, it 

was elected to include hard-coded dead-bands to ensure that the respective parameters were left 

unchanged if the mean difference (over the previous horizon) between the measurement and model 

value was less than 5%. 
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8.2.3 Fundamental System Models 

8.2.3.1 Copper Plating Rate System Model 

The copper plating rate is correlated to the current available for copper reduction via Faraday’s law 

(Equation 2.24). In the electrowinning model, the current available for copper reduction is constrained 

by the current used in iron reduction. In other words, the current density associated with iron reduction 

can be adjusted to minimise the difference between the model-predicted and actual copper plating rate, 

by refitting for the applicable mass-transfer coefficient. The fundamental system model for the copper 

plating rate, therefore, consisted of the mass-transfer equation for ferric iron (Equation 8.2), as well as 

the constraint specified in Equation 8.3. The imposed constraint ensured that the mass-transfer 

coefficient remained positive, but did not exceed the limit where the current available for copper 

reduction was below the arbitrarily low selected value of 0.25 A. 

 𝑖 = 𝑛 𝐹 𝑚Fe  𝐶 ,   [ 8.2 ]  

 0 <  𝑚Fe < min
 .

 ,   
   [ 8.3 ]  

where 𝑚Fe  is the mass-transfer coefficient (cm/s), 𝐼 is the current (A), 𝐿  is the current loss parameter 

(fraction), 𝑛 is stoichiometric coefficient (dimensionless), 𝐹 is Faraday’s constant (96 485 C per 

equivalent mol), 𝐶 ,  is the bulk molar concentration (mol/cm3), and 𝐴 is the electrode area (m2). 

8.2.3.2 Potential System Model 

The potential (V) calculation includes a term for the overpotential of the water oxidation reaction 

(Equation 4.8). Consequently, the overpotential for water oxidation can be manipulated, by refitting the 

parameters of the Butler–Volmer equation (Equation 2.20), to minimise the difference between the 

model-predicted and actual potential. The fundamental system model for potential, therefore, consisted 

of the Butler–Volmer equation for water oxidation (Equation 2.20) and the constraints specified in 

Equation 8.4. The specified constraints are based on the ranges of the fitted offline parameters, for the 

datasets considered in this project (Table 7.2). As previously established (Section 7.4), the parameters 

are expected to be system-specific. Consequently, the constraints can be adapted based on the 

acceptable variability for the refitted parameters of the specific system being modelled. 

 0 < 𝛼 < 0.9 [ 8.4 ] 

 0 < 𝑖 , < 200   

where 𝛼  is the charge-transfer coefficient for water oxidation (dimensionless) and 𝑖 ,  is the 

exchange current density for water oxidation (A/m2). 
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The actual real-life overpotential for water oxidation was not directly measured, but also calculated 

using Equation 4.8. This method required specification of the copper reduction overpotential, which 

can be calculated using the Butler–Volmer equation (Equation 2.20). The current density for copper 

reduction, required in this calculation, was taken as the difference between the total current density 

(after accounting for the current loss) and the updated current density for iron reduction (Equations 4.1 

to 4.4).  

8.2.4 Surrogate System Models 

8.2.4.1 Background 

Surrogate models are used to reduce the computational cost by substituting high-fidelity fundamental 

or semi-empirical models with fast executing black-box models (Frangos et al., 2010). Surrogate models 

are, therefore, mathematically simple models that regress the input–output relationships of a more 

complex model (Bárkányi et al., 2021). The review done by Bárkányi et al. (2021) detailed the use of 

surrogate models in a wide range of engineering applications, including digital twinning. In this section, 

the technique is, however, investigated for use in parameter estimation by replacing the fundamental 

system models (discussed in Section 8.2.3) with appropriate surrogate models.  

Although the fundamental system models are computationally inexpensive for the dataset used in this 

project, surrogate modelling is investigated as a future-orientated strategy for online parameter-fitting 

using computationally intensive datasets (i.e., datasets with high-frequency measurements). 

Furthermore, it serves as an introduction for the development of a surrogate model of the dynamic 

electrowinning model, should this be required for industrial applications, such as the development of 

digital twins, at a later stage. 

The process for developing a surrogate model discussed by Bárkányi et al. (2021), was used in this 

dissertation (Figure 8.2). The process aims to develop a surrogate model that is as accurate as possible, 

whilst using as few simulations as possible. Two separate surrogate system models were developed; 

one for the copper plating rate and one for the potential. The surrogate models were constructed using 

repeated simulations that were performed in an offline phase, as described by (Frangos et al., 2010). 

Details pertaining to the simulation design are provided in Section 8.2.4.2. Furthermore, the model 

adequacy checks incorporated in the regression model building process (Figure 3.1) were interweaved 

with the validation step shown in Figure 8.2. 
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Figure 8.2: Process for development of surrogate model (adapted from Bárkányi et al., 2021). 

8.2.4.2 Design of Experiments and Sampling 

The sampling step entails the generation of data to be used in surrogate model development (Bárkányi 

et al., 2021). The quality of the surrogate model is significantly affected by the quality and number of 

samples (McBride and Sundmacher, 2019). It is important to obtain sufficient samples to give the 

surrogate model the ability to interpret the behaviour of the original model accurately (Galeazzi et al., 

2023), whilst keeping the number of required simulations realistic. Consequently, the design of 

sampling experiments, also described as the sampling method used to obtain samples from the detailed 

model, is an important consideration.  

Bárkányi et al. (2021) differentiated between two types of sampling methods for use in surrogate 

modelling: stationary sampling and adaptive sampling. Stationary sampling methods, including space-

filling designs such as Latin Hypercube Sampling (LHS), rely on geometry or patterns (Bárkányi et al., 

2021). Shang and Apley (2021) explained that LHS designs are the most popular approach for designing 

simulations for surrogate modelling. Adaptive methods, on the other hand, start out by generating a 

lower number of samples (using stationary methods). Thereafter, new sample locations are determined 

serially (Bárkányi et al., 2021). Bárkányi et al. (2021) explained that the aim of the adaptive method is 

to decrease the sampling requirements by obtaining more samples that actively improve the quality of 

the surrogate model.  

In this dissertation, the adaptive method was selected, and implemented using a Nearly Orthogonal 

Latin Hypercube (NOLH) design as starting point. The design was generated for nine factors (six 

manipulated variables, three parameters) at two levels (low, high) using a spreadsheet developed by 

Sanchez (2011). The six manipulated variables included the component concentrations in the advance 

electrolyte, and the applied current. The temperature and flow rate of the advance electrolyte were not 

included in the design, as the impact of these two variables were found to be limited during initial 

screening simulations. The three parameters consisted of the same parameters included in the 

fundamental system models (mass-transfer coefficient for iron reduction, exchange current density for 

water oxidation, and charge-transfer coefficient for water oxidation).  
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The low and high levels selected for each factor are given in Table 8.1, where the factors are represented 

as coded variables. The ranges for the manipulated variables were based on typical industry conditions, 

as discussed in Chapter 5 (Table 5.4). The ranges for the parameters were informed from initial 

screening simulations and the constraints given in Chapter 7 (Table 7.1). 

Table 8.1: Manipulated variables for computerised experiments as coded variables. 

Manipulated Variable −1 1 

Copper concentration (g/L) 40 70 

Iron concentration (g/L) 1 6 

Nickel concentration (g/L) 20 65 

Cobalt concentration (g/L) 0.3 3 

Sulfuric acid concentration (g/L) 70 200 

Current density (A/m2) 140 220 

𝑖 ,  (A/m2) 5 100 

𝛼  (dimensionless) 0.2 0.9 

𝑚  (m/s) 2.20 × 10-6 5.00 × 10-5 

For some of the initial 33 samples generated in the NOLH design, the simulation results indicated a 

copper plating rate of zero. This occurred when certain combinations of factors were used. For example, 

when the current was at the low level, but the mass-transfer coefficient for iron reduction was at the 

high level, no current was available for copper reduction. Consequently, an additional 17 samples were 

generated randomly, per the adaptive method. Another 35 random confirmation samples were also 

generated for use in validating the surrogate system models. 

8.2.4.3 Model Selection and Fitting 

Surrogate models can be categorised into three main classes: data-fit models, reduced-order models, 

and hierarchical models (Eldred et al., 2004). The most popular surrogate model types, as reviewed by 

Bárkányi et al. (2021), fall into the data-fit model class. Frangos et al. (2010) defined data-fit models 

as models that are generated using interpolation or regression of simulation data from the input–output 

relationships in the detailed model. Data-fit model types include polynomial regression models, Kriging 

models, and nonlinear regression models of machine learning (such as artificial neural networks). In 

this dissertation, the polynomial regression data-fit model type was selected for use in developing the 

surrogate system models. As this is the simplest surrogate model type, the associated computational 

requirements are small, making them ideal for real-time online applications.  

The general form of the system surrogate models for predicting the copper plating rate and potential 

(V) is presented in Equation 8.5. The corresponding model coefficients are given in Table 8.2.  
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 𝑓(𝑥) =  𝑎  +  𝑎  𝑥Cu +  𝑎  𝑥H SO  +  𝑎  𝑥Ni +  𝑎  𝑥Fe +  𝑎  𝑥Co + 𝑎  𝐼 +  𝑎  𝑚 + 𝑎  𝛼 +

 𝑎  𝑖 , +  𝑎  (combined effect term) + 𝑎𝑝 (polynomial term) 

  [ 8.5 ]  

where 𝑎 is the model coefficient, 𝑥 is the concentration (g/L), 𝐼 is the current (A), 𝑚  is the mass-

transfer coefficient for iron reduction (m/s), 𝛼  is the charge-transfer coefficient for water oxidation 

(dimensionless), and 𝑖 ,
 is the exchange current density for water oxidation (A/m2). 

Table 8.2: Terms and corresponding coefficients for the copper plating rate and potential system surrogate models. 

Term Model PCu Model Potential 

Constant 2.993 × 10−5 3.589 × 10−1 

xCu — 3.871 × 10−3 

xH2SO4 — −6.010 × 10−4 

xNi — 6.878 × 10−3 

xFe 7.256 × 10−6 −2.420 × 10−2 

xCo — 1.275 × 10−1 

I 3.256 × 10−4 9.618 × 10−2 

𝑚  −8.095 −3.304 × 103 

𝛼  — 2.483 

𝑖 ,  — 2.307 × 10−3 

xNi xCo — −2.658 × 10−3 

𝛼  ∙ 𝑖 ,  — −8.601 × 10−3 

𝑚  ∙ xFe −11.83 — 

(𝑚 )   2.034 × 105 — 

xFe2 −5.452 × 10−6 — 

𝛼   — −4.260 

𝛼  — 2.996 

The copper plating rate model included the squared, linear, and interaction terms that were determined 

to be statistically significant (p-values < 0.05). The potential model form is cubic with interactions, but 

again only the interaction terms determined to be statistically significant (p-values < 0.05) were 

included. The p-values for the included terms, calculated at a confidence level of 95%, are summarised 

in Appendix D (Table D.9). Amongst the terms determined to be statistically significant for the potential 

model was the mass-transfer coefficient for iron reduction. Consequently, as with the fundamental 
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system models, the mass-transfer coefficient for iron reduction must first be refitted using the copper 

plating rate model, before the remaining parameters in the potential model can be refitted. 

8.2.4.4 Model Validation 

The model validation process, as it pertains to regression modelling, was discussed extensively in 

Chapter 3. As before, the distinction is made between model adequacy testing and model validation for 

the surrogate system models. Model adequacy testing is concerned with investigating the fit of the 

regression model to available training data, testing for lack of fit, and diagnosing violations of the basic 

regression assumptions. Model validation, on the other hand, is concerned with assessing the model 

performance on previously unseen validation data. 

Model Adequacy Checking 

Figure 8.3 presents the normality probability plots of the externally studentised residuals for the (a) 

copper plating rate surrogate system model and (b) potential (V) surrogate system model. The normality 

assumption is considered to be valid if the points on the plots lie on the respective straight lines (Chibwe, 

2020). Montgomery et al. (2012), however, explained that the straight line is determined with emphasis 

on the central values (i.e., the 0.33 and 0.67 cumulative probability points) rather than the extremes. 

Even though the probability plot for the copper plating rate model seems to be linear for the central 

values, per visual inspection, the distribution is heavy-tailed. The deviation seems to be mainly the 

result of possible outliers. The plot for the potential system surrogate model also shows negative 

skewness, again seemingly resulting from possible outliers. 

 

Figure 8.3: Normality plot of the externally studentised residuals for the (a) copper plating rate and (b) potential 
systems surrogate models. 

Figure 8.4 shows the parity plots of the (a) modelled versus measured values and (b) externally 

studentised residuals versus the modelled values, for the copper plating rate surrogate system model. 

Figure 8.4 (b) shows that the residuals can be contained in a horizontal band for the copper plating rate 
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model, indicating that there are no obvious model defects (Montgomery et al., 2012). Two points do, 

however, again present as possible outliers. 

 

Figure 8.4: Parity plots of the (a) modelled versus measured values and (b) externally studentised residuals versus the 
modelled values, for the copper plating rate surrogate system model. 

Figure 8.5 shows the parity plots of the (a) modelled versus measured values and (b) externally 

studentised residuals versus the modelled values, for the potential (V) surrogate system model. Figure 

8.5 (b) shows that the residuals for the potential model decreased slightly for an increase in modelled 

potential, implying that the variance is a decreasing function of the measured data. The largest residual 

also occurred at the extreme of the modelled values and may, therefore, support that the variance is not 

constant (Montgomery et al., 2012).  

Transformations on the dependent variable are generally used to stabilise the variance in practice 

(Montgomery et al., 2012). The common variance-stabilising transformations suggested by 

Montgomery et al. (2012) did, however, not markedly improve the residual pattern. Additional 

strategies, such as applying a suitable transformation to the independent variables or using the weighted 

least-squares method, are also described. It was, however, elected to use the model as is because the 

observed decrease in residuals for increasing modelled potential was not severe.  
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Figure 8.5: Parity plots of the (a) modelled versus measured values and (b) externally studentised residuals versus the 
modelled values, for the potential surrogate system model. 

The correlation coefficients for both models show a good fit on the training data (Table 8.3). As 

expected, based on the residual analysis, the copper plating rate model is shown to have a better overall 

fit than the potential model. 

Table 8.3: Correlation coefficients for the copper plating rate and potential system surrogate models, based on their 
respective least-squares fit. 

Correlation coefficient PCu Model Potential Model 

Least-squares fit R2 0.999 0.909 

Adjusted R2 0.999 0.875 

Prediction R2 (calculated via PRESS*) 0.998 0.778 

nRMSE (%) 1.25 3.32 

*Prediction sum of squares. 

Model Predictive Performance 

The main goal of surrogate modelling is predictive modelling; therefore, the focus is shifted to model 

validation using previously unseen data. In the context of surrogate modelling, model validation is used 

to confirm that the outputs of the surrogate model have such a fidelity to the outputs of the detailed 

model that the objectives of the investigation can be achieved (Bárkányi et al., 2021).  In this 

dissertation, the objective being investigated is the online refitting of model parameters to enhance the 

predictive capabilities of the dynamic electrowinning model. The 35 confirmation samples, referred to 

in Section 8.2.4.2, were used to assess the predictive performance of the two surrogate system models. 

The number of samples used in the validation step is more than the minimum of 20 suggested by 

Montgomery et al. (2012), to give a reliable assessment of the model’s performance. 
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Figure 8.6 shows the parity plot of the modelled versus measured values for the (a) copper plating rate 

and (b) potential (V) surrogate system models. The corresponding correlation coefficients are given in 

Table 8.4. The performance of the models required further assessment for use in online parameter-

fitting, as provided during the conceptual validation completed in Section 8.4.  

 

Figure 8.6: Parity plot of the modelled versus measured values for the (a) copper plating rate and (b) potential 
surrogate system models. 

Table 8.4: Correlation coefficients for the copper plating rate and potential surrogate system models, based on the 
validation data. 

Correlation coefficient PCu Model Potential Model 

Confirmation R2 0.998 0.652 

nRMSE (%) 1.49 4.68 

It should be noted that neither surrogate model is expected to be sufficiently accurate for replacing the 

detailed model in applications such as digital twinning, regardless of the performance during model 

validation. Surrogate models for use in this application would likely require a more complex model 

structure, such as the artificial network type that has previously been applied in the petroleum industry 

specifically for digital twinning (Örs et al., 2020). 

8.3 COMPUTERISED PARAMETER FITTING 

8.3.1 Overview and Structure 

The online parameter-fitting approach was partially computerised in the MATLAB (2023) file 

mainModel.mlx. The section of the computerised approach contained in the mainModel.mlx file is 

shown in the modelling algorithm given in Figure 8.7. In this file, an if statement was used to ensure 

that the refitting of parameters did not commence until the time-step was equal to or greater than the 

sum of the selected horizon and sampling frequency. Adding the sampling frequency here ensured that 
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the first sampling instance was not included when refitting for the parameters; mitigating for any 

possible process start-up irregularities. A second if statement activated the necessary preprocessing 

calculations and called the refitParameters.mlx function file if the sampling frequency was a factor of 

the current time-step. The bulk of the computerised approach was contained in the refitParameters.mlx 

function file (Table 4.3). 

 

Figure 8.7: Schematic representation of the modelling algorithm of the mainModel.mlx file, showing an overview of 

the parameter refitting section. 

The modelling algorithm for the refitParameters.mlx function file is given in Figure 8.8. The function 

used nested if statements to determine whether the fundamental or surrogate system models had to be 

used in refitting for the parameters, based on user selection. The output of the refitParameters.mlx 

function file is the refitted parameters to be used until the next sample instance was available. 
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Figure 8.8: Schematic representation of the modelling algorithm of the refitParameters.mlx function file. 

8.3.2 Built-In MATLAB Functions Used 

A built-in MATLAB (2023) function, lsqnonlin, was used to refit the model parameters by minimising 

the selected least-squares objective function (Equation 8.1). Another Optimisation Toolbox function, 

lsqcurvefit, was also investigated as a possible solver. Although both solvers could be implemented 

successfully (lsqcurvefit was used to fit for the offline parameters), it was elected to use lsqnonlin as it 

was more intuitive for use in minimising the selected objective function. 

8.4 CONCEPTUAL VALIDATION 

The goal of the conceptual validation performed in this section was to not only evaluate the performance 

of the online parameter-fitting approach, but also further assess the accuracy of the surrogate system 

models when implemented for this purpose. Conceptual validation of the online parameter-fitting 

approach was conducted at the operating conditions of an arbitrary experiment that formed part of the 

dynamic experimental bench-scale electrowinning dataset. The validation entailed generating three 
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separate eight-hour baselines (one for each parameter that is included in the approach) that could be 

sampled and used as the “desired values” when the online parameter-fitting approach was activated.  

Each baseline was generated by inducing disturbances in one of the respective parameters to be refitted 

(mass-transfer coefficient for iron reduction, exchange current density for water oxidation, and charge-

transfer coefficient for water oxidation). The disturbances consisted of a 75% decrease after two hours, 

45% increase after four hours, and a 50% increase after 6 hours. Following, the online parameter-fitting 

approach was activated, and the performance thereof assessed. The approach was implemented with a 

time horizon of 1 hour and the baseline was sampled every 15 minutes. Online refitting of the current 

loss parameter was deactivated. The validation process was repeated for both the fundamental and 

surrogate system models, for each baseline. 

Figure 8.9 and Figure 8.10 show the mass-transfer coefficient for iron reduction and the copper plating 

rate, respectively, for the baseline in which disturbances were introduced in the mass-transfer 

coefficient for iron reduction. The graphs also include the online parameter-fitting results using the 

fundamental and surrogate system models. The approach was able to successfully correct for the effect 

of the disturbance in the mass-transfer coefficient, regardless of what system model was used. The 

approach using the fundamental system model is, however, shown to have superior fidelity, despite the 

good fit of the surrogate model, shown previously in Section 8.2.4. 

 

Figure 8.9: Baseline response showing disturbances in the mass-transfer coefficient, with the online parameter-fitting 
results using the fundamental and surrogate system models. 
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Figure 8.10: Baseline response showing the effect of disturbances in the mass-transfer coefficient on the copper plating 
rate, with the online parameter-fitting results using the fundamental and surrogate system models. 

Figure 8.11 shows the charge-transfer coefficient and exchange current density for water oxidation, for 

the case where the disturbances were induced in the charge-transfer coefficient. Again, the baseline, as 

well as results for the online parameter-fitting approach incorporating the respective fundamental and 

surrogate system models, are shown. The figure shows that the online approach does not refit for the 

charge-transfer coefficient in order to adjust the predicted potential, but rather refits the exchange 

current density. The objective of the approach is to enable more accurate predictions of the potential, 

regardless of the exact parameter refitted to achieve this. This finding is also consistent with the results 

presented in the parameter-sensitivity analysis, conducted in Chapter 7. Overall, as shown in Figure 

8.12, the online parameter-fitting approach improved the model predictions for the potential. Again, the 

performance of the approach using the fundamental system model was shown to be superior. 

 

Figure 8.11: Baseline response of the (a) charge-transfer coefficient and (b) exchange current density, showing 
disturbances in the charge-transfer coefficient, with the online parameter-fitting results using the fundamental and 
surrogate system models. 
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Figure 8.12: Baseline response showing the effect of disturbances in the charge-transfer coefficient on the potential, 
with the online parameter-fitting results using the fundamental and surrogate system models. 

Figure 8.13 shows the charge-transfer coefficient and exchange current density for water oxidation, for 

the case where disturbances were induced in the exchange current density. As before, the baseline and 

results for the online parameter-fitting approach incorporating both the fundamental and surrogate 

system models are included. For the approach using the surrogate system models, the exchange current 

density was reduced to 0 after being refitted for the first disturbance (Figure 8.13 (b)). The model-

predicted potential (Figure 8.14) reflects this behaviour; the predicted potential drastically overshoots 

after t = 2 h and does not recover. This behaviour confirmed that the polynomial model regressed for 

the potential is not necessarily adequate for use as a surrogate system model in online parameter-fitting 

applications. The online parameter-fitting approach that implemented the fundamental system models 

is, however, shown to adequately correct for the predicted potential by adjusting the corresponding 

parameter. 
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Figure 8.13: Baseline response of the (a) charge-transfer coefficient and (b) exchange current density, showing 
disturbances in the exchange current density, with the online parameter-fitting results using the fundamental and 
surrogate system models. 

 

Figure 8.14: Baseline response showing the effect of disturbances in the exchange current density on the potential, with 
the online parameter-fitting results using the fundamental and surrogate system models. 

Up until this point an important consideration for implementing the surrogate system models has been 

left unaddressed. The surrogate models were regressed using sample data specific to the dynamic 

experimental dataset. The development process (shown in Figure 8.2), with the exception of the design 

of experiments step, will need to be repeated for each unique dataset in order to obtain a case-specific 

surrogate model. This is necessary because the fixed design variables, unique to each tankhouse or 

experimental setup, were not taken as input variables to the surrogate models, to retain a simple model 

structure. Owing to the empirical nature of the selected data-fit class type, the models cannot be 

extrapolated beyond the conditions used to develop them, and they will require refitting or additional 

validation before being applied to a different system. 
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The conceptual validation performed in this section showed that the proposed surrogate system models 

are not necessarily adequate for use in online parameter-fitting. It is, therefore, recommended that more 

advanced model structures (such as artificial neural networks), are investigated for this purpose in future 

work. Consequently, it was elected to not regress separate surrogate system models for each dataset 

used in this project. Instead, the robust fundamental system models, which were validated for use in the 

online parameter-fitting approach, were selected for use in this project.  
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CHAPTER 9 

MODEL VALIDATION 

9.1 INTRODUCTION 

In the previous two chapters (Chapter 7 and Chapter 8), parameter-fitting approaches were developed 

to accompany the semi-empirical dynamic electrowinning model, developed in Chapter 4. In this 

chapter, the model, combined with the parameter-fitting approaches, is validated using a combination 

of qualitative consistency checks and quantitative model accuracy indicators, using the datasets 

previously validated in Chapter 6. Model validation is required to determine the extent to which the 

model matches the real-life electrowinning process. The iterative validation process described by 

Sargent (1984) is considered. It consists of conceptual model validation (Section 9.2), computerised 

model verification (Section 9.3), and operational validation (Section 9.4). The industrial application of 

the model, given the validation results, is also considered in this chapter (Section 9.5). 

9.2 CONCEPTUAL MODEL VALIDATION 

9.2.1 Background 

The conceptual model validation considered in this project consists of two components. The first 

component involves testing that the fundamental theory and assumptions underlying the conceptual 

model are correct. This component was limited to an evaluation of the assumptions made during the 

conceptual model development (Section 4.2.4). The second component pertains to the causal descriptive 

nature and internal structure of the model. For this component, Barlas (1996) stipulated that the model 

should not only reproduce the behaviour of the real-life process, but also explain how the behaviour is 

generated.  

Barlas (1996) suggested two types of tests for validating the model structure: direct structure tests and 

structure-orientated behaviour tests. Direct structure tests evaluate the validity of the structure by direct 

comparison with knowledge about the real-life system. This involves taking each mathematical 

equation that forms the conceptual model and individually comparing it with available knowledge about 

the real-life system (Barlas, 1996). Structure-orientated behaviour tests indirectly evaluate the structure 

of the model by applying tests on model-generated behaviour (Forrester and Senge, 1980). Structure-

orientated behaviour tests are selected for use in this project due to their structure-orientated and 

quantifiable nature. This is in contrast with the qualitative and informal nature of the direct structure 

tests (Barlas, 1996). The three structure-orientated behaviour tests listed by Barlas (1996) are used in 

this project: the indirect extreme-condition test, the behaviour sensitivity test, and the phase behaviour 

test.  
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9.2.2 Structure-Orientated Behaviour Tests 

9.2.2.1 Extreme-Condition Tests 

Extreme-condition tests involve assigning extreme conditions to the model input variables and 

comparing the model-predicted output behaviour to the observed or anticipated behaviour of the real-

life system. The electrowinning model developed in this project is only valid under standard operating 

conditions (Section 4.2.4). The value of conducting the extreme-condition tests is, therefore, limited to 

identifying possible limitations of the model if it is used outside of this standard operating range. The 

baseline for the extreme-condition tests used the design variables and initial parameters as specified for 

the bench-scale electrowinning experiments, and a current density of 180 A/m2. The baseline advance 

electrolyte contained 55 g/L Cu, 3.5 g/L Fe, 42.5 g/L Ni, 1.65 g/L Co, and 90 g/L H2SO4. The selected 

conditions represent the mean values for the typical industrial ranges given in Chapter 5 (Table 5.4). 

The tests consisted of introducing an extreme step disturbance in one model input variable at a time, 

two hours into the eight-hour run. The disturbance involved either increasing the variable by 200% or 

decreasing it to 1% of the original value. 

Current efficiency 

Figure 9.1 shows the current efficiency predicted by the model for the extreme disturbances induced in 

the various input variables. Disturbances in the current density are shown to have the most pronounced 

effects on the predicted current efficiency. An increase in current density corresponds to an increase in 

current efficiency, and vice versa. This corresponds to the behaviour anticipated for the real-life system, 

under standard operating conditions (Alfantazi and Valic, 2003; Moats and Khouraibchia, 2009). The 

assumed reaction-rate-limited nature of the copper reduction, verified in the experiments conducted by 

Tucker (2019), dictates that any additional current applied would increase the rate of copper reduction.  
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Figure 9.1: Model-predicted current efficiency showing the effect of the disturbances in input variables induced as 
part of the extreme-condition tests. 

The current efficiency considers the actual mass copper plated relative to the theoretical mass copper 

plated (Equation 2.23). Although an increase in current density results in an increase in the theoretical 

mass copper plated (as per Faraday’s law, Equation 2.24), a larger fraction of the overall applied current 

is allocated for copper reduction, increasing the actual mass copper plated. Under extreme conditions, 

where the limiting-current density for the copper reduction reaction is approached, it is, however, 

expected that a further increase in current density would result in a decrease in current efficiency for 

the real-life system (Alfantazi and Valic, 2003). This is because the quality of the deposited copper 

decreases when the electrowinning process is operated in excess of the limiting-current density, 

generating a powder product instead of plated copper cathodes (Gopala and Das, 1992). 

The model-predicted current efficiency shows a significant, but gradual, decrease for the decrease in 

current density. This is because the current efficiency is calculated using the cumulative mass copper 

plated, not the instantaneous copper plating rate. Therefore, even though the copper plating rate will 

decrease to zero upon the decrease in current density (because all available current will be allocated to 

iron reduction), the current efficiency will not immediately decrease to zero.  

The model will likely not accurately predict the behaviour of the real-life system for a substantial 

decrease in current density. During model development, it was assumed that the iron reactions are mass-

transfer limited. However, if the current density decreases well below the standard operating minimum 

(the lowest operating current density reported by Sole et al. (2019) was 45 A/m2), these reactions may 
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become reaction-rate limited. A further implication of the mass-transfer-limited iron reduction is also 

shown on Figure 9.1; disturbances in the iron concentration have a substantial effect on the current 

efficiency. The rule of thumb for copper electrowinning is that the current efficiency decreases by 

between 2% and 3% for every 1 g/L increase in iron (Das and Gopala, 1996). This is reflected by the 

model-predicted behaviour.  

The substantial effect of iron on the system also has an impact through changes in other variables, such 

as the electrolyte flow rate. The model-predicted current efficiency shows a small increase of 5.3% (at 

the end of the eight-hour test) for the decrease disturbance in advance electrolyte flow rate. The current 

efficiency shows a 2.0% decrease after eight hours for the increase disturbance in flow rate. The 

observed behaviour for the current efficiency originated from changes in the ferric iron concentration, 

which, in turn, resulted from the changing flow rate. For the extreme-condition tests a ferric-to-ferrous 

iron ratio of 0.8 was assumed for the advance electrolyte. An increase in flow rate would, therefore, 

increase the ferric-to-ferrous iron ratio in the bulk electrowinning cell, resulting in a decrease in the 

current efficiency, and vice versa. 

As previously discussed in Chapter 2 (Section 2.3.4.5), the electrolyte flow rate determines the 

interfacial cathode velocity which, in turn, affects the boundary layer at the cathode surface and, 

therefore, the mass-transfer rates of ions (Beukes and Badenhorst, 2009). This dependency highlights a 

potential shortcoming of the model; the effect of flow rate on the boundary layer is not fundamentally 

modelled. It is, however, expected that disturbances in the flow rate, within the range of standard 

operating conditions (unlike for the extreme-condition tests conducted in this section), should 

minimally affect the interfacial cathode velocity.  

Disturbances in the copper, nickel, and cobalt concentrations are shown to have no effect on the model-

predicted current efficiency. The lack of effect for a change in the copper concentration is due to the 

assumed reaction-rate-limited nature of the copper reduction, as previously mentioned. It is, however, 

anticipated that a substantial decrease in copper concentration, below the standard operating minimum, 

would result in a decrease in the current efficiency for a real-life system. This is because the system 

will likely reach a point where the copper reduction becomes mass-transfer limited if the concentration 

is significantly decreased (Tucker, 2019). Similarly, circulation of the electrolyte, and correspondingly 

the flow rate, influences the mass-transfer conditions in the cell. At a flow rate below the standard 

operating minimum, it is expected that the copper reduction would also become mass-transfer limited 

for the real-life system.  

Overall, the model-predicted response of the current efficiency to changes in input conditions is 

anticipated to be more reasonable for disturbances within standard operating conditions, as extreme-

condition tests are indicative of extreme faults. 
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Copper plating rate and SEC 

Figure 9.2 and Figure 9.3 show, respectively, the model-predicted copper plating rate and specific 

energy consumption (SEC) corresponding to the induced extreme disturbances. Despite the increase in 

the copper plating rate shown for an increased current density disturbance, it was not enough to offset 

the additional power consumption, as shown by the increase in SEC. This increase in SEC for an 

increase in current density is supported by literature (Das and Gopala, 1996; Khouraibchia and Moats, 

2010; Panda and Das, 2001). The model-predicted SEC for the decrease in current density could not be 

calculated, as it entailed division by zero (Equation 2.25). This is because the SEC is calculated using 

the instantaneous copper plating rate, which drops to zero for the extreme decrease in current density.  

 

Figure 9.2: Model-predicted copper plating rate showing the effect of the disturbances in input variables induced as 
part of the extreme-condition tests. 

 

Stellenbosch University https://scholar.sun.ac.za



162 
 

 

Figure 9.3: Model-predicted SEC showing the effect of the disturbances in input variables induced as part of the 
extreme-condition tests. 

Also shown on the graphs is that an extreme increase in iron results in a moderate decrease in the 

predicted copper plating rate (Figure 9.2), but a severe increase in the SEC (Figure 9.3). Not only does 

an increase in iron concentration result in less copper plated (because less current is available for copper 

reduction), but it also increases the electrolyte resistance (see Section 3.5). The increase in SEC for an 

increase in iron concentration is supported by Moats and Khouraibchia (2009). Although a slight 

increase in electrolyte viscosity was reported, Moats and Khouraibchia (2009) suggested that the 

increase in SEC resulted from the observed decrease in current efficiency as the potential was found to 

be independent of the iron concentration (Moats and Khouraibchia, 2009). Despite the effect of iron on 

the electrolyte resistance (through the conductivity, see Section 3.5), the model-predicted potential 

increased by only 2.3% after eight hours, for the extreme increased disturbance in iron, confirming that 

the increase in SEC is mainly the result of a decrease in current efficiency. 

The change in electrolyte resistance is, however, responsible for the changes in the model-predicted 

SEC corresponding to the disturbances in the nickel, copper, and sulfuric acid concentrations. The effect 

of nickel on the electrolyte conductivity and, therefore, electrolyte resistance and potential, has been 

previously elucidated in Chapter 3. From this discussion it follows that the increase in SEC for the 

increase disturbance in nickel corresponds well with what is expected from the real-life system.  

Similarly, an increase in copper concentration is known to increase the electrolyte resistance, lending 

credence to the increase in SEC observed for the increase in copper concentration. Nonetheless, both 

Das and Gopala (1996) and Moats and Khouraibchia (2009) reported a decrease in SEC resulting from 
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an increase in copper concentration (when working with concentrations below 40 g/L).  Moats and 

Khouraibchia (2009) did, however, suggest that the energy consumption might increase with an increase 

in copper at concentrations greater than 40 g/L. The extreme-condition tests were conducted at a base 

copper concentration of 55 g/L. Panda and Das (2001), on the other hand, found energy consumption 

to be independent of copper concentration during bench-scale electrowinning experiments. This is in 

line with the relatively moderate increase in SEC for the extreme increase in copper concentration. 

An increase in sulfuric acid concentration increases the electrolyte conductivity and decreases the 

electrolyte resistance. This leads to a decrease in the model-predicted potential and, therefore, the SEC. 

This behaviour is supported by Das and Gopala (1996) and Owais (2009) who reported a decrease in 

SEC resulting from an increase in sulfuric acid in the range of 50 g/L to 150 g/L, and 50 g/L to 300 g/L, 

respectively. Owais (2009) also observed a corresponding decrease in potential. Similarly, Panda and 

Das (2001) reported a marginal decrease in potential corresponding to an increase in sulfuric acid in the 

range of 30 g/L to 150 g/L. However, no change in the SEC was reported. Likewise, Moats and 

Khouraibchia (2009) reported no change in SEC with an increase in sulfuric acid concentration from a 

higher initial concentration of 160 g/L to 220 g/L. The extreme-condition tests were conducted at a base 

concentration of 90 g/L sulfuric acid, and the model-predicted behaviour is, therefore, supported by the 

available literature. 

9.2.2.2 Behaviour Sensitivity Tests 

Behaviour sensitivity tests involve determining to what variables the model is sensitive, and establishing 

whether the real-life system will exhibit similar sensitivity to the corresponding variables. The tests 

were conducted within the range of standard operating conditions. The baseline used for the behaviour 

sensitivity tests is identical to that used for the extreme-condition tests in Section 9.2.2.1. The tests 

involved introducing disturbances consisting of a 30% increase or decrease, two hours into the eight-

hour run. 

Current efficiency and copper plating rate 

Figure 9.4 and Figure 9.5 show, respectively, the current efficiency and copper plating rate predicted 

by the model in response to the induced disturbances. The graphs show that the two model-predicted 

key performance indicators (KPIs) are very sensitive to disturbances in the current density. This 

corresponds well with the anticipated sensitivity of a real-life electrowinning system. Moats and 

Khouraibchia (2009) explained that since iron is at its limiting-current density, an increase in current 

density should result in a noteworthy increase in the current efficiency. It is, however, expected that 

both the real-life current efficiency and model-predicted current efficiency will be less sensitive to 

increases in current density if the initial current efficiency is already very high. For example, Alfantazi 

and Valic (2003) reported a very subtle increase in current efficiency from 98.1% to 98.5% for an 
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increase in current density from 180 A/m2 to 300 A/m2, with an advance electrolyte copper 

concentration of 25 g/L and temperature of 60 °C. 

 

Figure 9.4: Model-predicted current efficiency showing the effect of the disturbances in input variables induced as 
part of the behaviour sensitivity tests. 

 

Figure 9.5: Model-predicted copper plating rate showing the effect of the disturbances in input variables induced as part 
of the behaviour sensitivity tests. 
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The graphs also show that the two model-predicted KPIs are sensitive to disturbances in the advance 

electrolyte iron concentration. As previously mentioned, the presence of iron in the electrolyte is one of 

the main factors that affect the current efficiency of a real-life system (Moats, 2012; Schlesinger et al., 

2011b). The significant decrease in current efficiency for an increase in iron concentration has been 

well-documented (Das and Gopala, 1996; Moats and Khouraibchia, 2009; Moats, 2012), and the 

sensitivity of the model-predicted KPIs are, therefore, expected to align well with what is expected for 

real-life systems. 

As previously mentioned for the extreme-condition tests (Section 9.2.2.1), the sensitivity of the system 

to iron also results in the sensitivity of the two model-predicted KPIs to disturbances in the electrolyte 

flow rate. This is because an increase in flow rate results in an increase in the ferric-to-ferrous iron ratio 

in the bulk electrowinning cell (for the conditions investigated). The work conducted by Das and Gopala 

(1996) seems to support this statement. They investigated the effect of increasing the electrolyte flow 

rate for a system containing different concentrations of ferric iron. Although the interfacial cathode 

velocities investigated were much higher (between 0.6 and 9.6 m3/h/(m2 of available cathode surface 

area), the trends they observed for the experimental-scale system were similar to those observed for the 

model-predicted KPIs. At a ferric iron concentration of 0.5 g/L an approximately 4% decrease in current 

efficiency was observed for an increase in interfacial cathode velocity from 0.6 to 9.6 m3/h/(m2 of 

available cathode surface area). However, for a ferric iron concentration of 6 g/L the same change in 

interfacial cathode velocity resulted in an approximately 15% decrease in current efficiency. 

It is important to note that the baseline interfacial cathode velocity for the behaviour sensitivity tests 

was 0.12 m3/h/(m2 of available cathode surface area). The disturbances resulted in interfacial cathode 

velocities of 0.08 m3/h/(m2 of available cathode surface area) for the decrease disturbance and 

0.15 m3/h/(m2 of available cathode surface area) for the increase disturbance, respectively. The values 

are close to the range for industrial operations specified by Beukes and Badenhorst (2009) (between 

0.05 and 0.1 m3/h/(m2 of available cathode surface area)). The disturbances are, therefore, not expected 

to influence the mass-transfer of ions.  

The graphs further show that the model-predicted current efficiency and copper plating rate are 

independent of the sulfuric acid, copper, nickel, and cobalt concentrations. The sensitivity of the current 

efficiency to changes in the sulfuric acid concentration reported in literature is temperature-dependent. 

Das and Gopala (1996) and Panda and Das (2001) reported the current efficiency to be independent of 

the sulfuric acid concentration for experiments conducted at 30 °C. Das and Gopala (1996), however, 

reported a slight increase in current efficiency for an increase in the sulfuric acid concentration, for 

experiments conducted at 40 °C and 50 °C. Likewise, Moats and Khouraibchia (2009) reported an 

approximate 1% increase in current efficiency for an increase in sulfuric acid from 160 g/L to 220 g/L, 

for a system at 40 °C. The baseline experiment used for the behaviour sensitivity tests was conducted 
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at 60 °C. Although a slight increase in current efficiency would, therefore, be expected for an increase 

in acid concentration for the real-life system, according to available literature, this increase is expected 

to be very small. Consequently, the model-predicted independence is not expected to severely impact 

the accuracy of the model.  

A slight sensitivity of the current efficiency to a change in copper concentration is supported by 

literature, with only one study supporting the complete independence of current efficiency from copper 

concentration. Panda and Das (2001) found no significant effect on the current efficiency upon 

increasing the copper concentration from 10 g/L to 50 g/L, supporting the model-predicted 

independence of the current efficiency from the copper concentration. Alfantazi and Valic (2003), 

however, reported increases of between 0.2% and 2.3% in current efficiency for increases in copper 

concentration from 25 g/L to 65 g/L. The effect of copper concentration on current efficiency was 

determined to be statistically significant, despite the very subtle increases (Alfantazi and Valic, 2003). 

Furthermore, Das and Gopala (1996) and Moats and Khouraibchia (2009) reported a marginal increase 

in current efficiency for an increase in the advance electrolyte copper concentration from 17 g/L to 

37 g/L, and from 30 g/L to 45 g/L, respectively. Das and Gopala (1996) attributed the slight increase in 

current efficiency to the increase in viscosity caused by the increase in copper concentration. The 

increase in viscosity leads to a thicker boundary layer and lower iron mass transfer, slightly increasing 

the current efficiency. 

Both Moats (2012) and Moats and Khouraibchia (2009) reported that a change in cobalt concentration 

had no effect on the current efficiency. It should be noted that Moats and Khouraibchia (2009) 

investigated cobalt concentrations between 0.1 and 0.2 g/L, which is significantly lower than the 

baseline concentration of 1.65 g/L used for the behaviour sensitivity tests. Panda et al. (2009), however, 

confirmed that cobalt additions ranging from 0.01 g/L to 2 g/L also had little effect on the current 

efficiency. Consequently, it is expected that the model-predicted behaviour will reflect the behaviour 

of the real-life electrowinning system.  

No literature could be found detailing the effect of nickel concentration on the current efficiency of 

copper electrowinning systems. As discussed in Chapter 2 (Section 2.3.4.2)  nickel is not reduced during 

copper electrowinning. It is, therefore, unlikely that the presence of nickel will have a significant 

influence on the current efficiency. Nickel may, however, influence the mass-transfer conditions (due 

to the increase in viscosity). Similar to the effect of copper, this may lead to a thicker boundary layer 

and lower iron mass transfer, possibly increasing the current efficiency. 
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SEC and potential 

Figure 9.6 and Figure 9.7 show, respectively, the SEC and potential predicted by the model in response 

to the induced disturbances.  The graphs show that although the disturbances in iron concentration did 

not markedly influence the potential, a significant change in SEC is observed. As explained for the 

extreme-condition tests (Section 9.2.2.1) this is because of the severe effect iron has on the current 

efficiency. An increase in iron decreases the current efficiency and, consequently, increases the SEC. 

This model-predicted behaviour is supported by literature sources for the real-life electrowinning 

system (Das and Gopala, 1996; Moats and Khouraibchia, 2009). 

 

Figure 9.6: Model-predicted SEC showing the effect of the disturbances in input variables induced as part of the 
behaviour sensitivity tests. 
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Figure 9.7: Model-predicted potential showing the effect of the disturbances in input variables induced as part of the 
behaviour sensitivity tests. 

As with the current efficiency and copper plating rate previously, the SEC is also sensitive to 

disturbances in the current density. Both an increase and decrease in current density resulted in an 

increase in the model-predicted SEC. This behaviour corresponds well with the expected behaviour of 

the real-life electrowinning system. Various literature sources support the increase in SEC as a result of 

an increase in current density (Das and Gopala, 1996; Moats and Khouraibchia, 2009; Panda and Das, 

2001). Moats and Khouraibchia (2009) further explained that the increase in potential results in the 

increase in SEC for a higher current density, despite more copper being plated. They add that the 

increase in potential is likely the result of higher electrode potentials and an increase in the electrolyte 

resistance. Panda and Das (2001) supported this statement, adding that the increase in SEC may be 

attributed to the increase in both cathodic and anodic polarisations. 

Unlike the current efficiency and copper plating rate, the potential and, therefore, SEC exhibits 

moderate sensitivity to the sulfuric acid, copper, and nickel concentrations. Although the moderate 

sensitivity of the SEC to changes in the sulfuric acid concentration is supported by most literature 

sources, some did report it to be independent of the acid concentration (Das and Gopala, 1996; Moats 

and Khouraibchia, 2009; Owais, 2009; Panda and Das, 2001). The sulfuric acid concentration was, 

however, shown to have a significant effect on the conductivity of the electrolyte, and consequently the 

electrolyte resistance (see Section 3.5). Following, the decrease in model-predicted SEC observed for 

an increase in sulfuric acid concentration, and consequently conductivity is, therefore, expected to align 

with the behaviour of the real-life system.   
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The model-predicted SEC shows a subtle increase for an increase in the copper concentration. The 

increase in model-predicted SEC results from the increase in potential, which is in turn a result of the 

decrease in conductivity caused by the increase in copper concentration (see Section 3.5). As discussed 

during the extreme-condition tests (Section 9.2.2.1), both Das and Gopala (1996) and Moats and 

Khouraibchia (2009) reported a decrease in SEC resulting from an increase in copper concentration 

when working with concentrations below 40 g/L. Moats and Khouraibchia (2009), however, suggested 

that the energy consumption might increase with an increase in copper at concentrations greater than 

40 g/L. The baseline for the behaviour sensitivity test had a copper concentration of 55 g/L. It is, 

therefore, plausible that the model-predicted behaviour could correspond to the real-life system 

behaviour.  

Again, no information could be found regarding the effect of nickel on the SEC of a copper 

electrowinning system. It has, however, been established that an increase in nickel concentration 

negatively affects the conductivity of the electrolyte (see Section 3.5) and, consequently, increases the 

potential. The model-predicted behaviour aligns with this statement. It is, therefore, expected that the 

model-predicted increase in SEC corresponding to an increase in nickel concentration will correspond 

with the behaviour of the real-life system. 

The increase disturbance in cobalt concentration shows a very subtle increase in the model-predicted 

SEC. This increase is a result of the decrease in conductivity caused by the increase in cobalt 

concentration (see Section 3.5). Various experimental-scale studies have, however, confirmed a 

decrease in anode potential, and corresponding decrease in SEC, for increases in cobalt concentration 

of up to 0.6 g/L (Nikoloski and Nicol, 2008; Panda et al., 2009; Sole et al., 2019). Nonetheless, an 

increase of approximately 1% in potential for an increase in cobalt from 0.6 g/L to 2 g/L was observed 

by Panda et al. (2009). The baseline cobalt concentration for the behaviour sensitivity tests was 

1.65 g/L. The developed model will, regardless, only capture the effect of cobalt on the anodic 

overpotential when the parameters are refitted by the online parameter-fitting approach, based on 

changes observed in the measured potential. 

9.2.2.3 Phase Relationship Tests 

Phase relationship tests compare the relationships between model-predicted variables and the expected 

or observed relationships of the corresponding variable pairs in real life (Forrester and Senge, 1980). 

The steady-state experimental dataset generated by Tucker (2019) was used to complete the phase 

behaviour tests. Tucker (2019) selected the step sizes to have a high and low level of each variable, 

based on typical industry ranges (Robinson et al., 2013). The relationships between variables are noted 

only as an increase or decrease, to verify that the model responds as expected. Table 9.1 and Table 9.2 

show the results of the phase relationship tests done using the experiments conducted at 200 A/m2 and 

Stellenbosch University https://scholar.sun.ac.za



170 
 

300 A/m2, respectively. The tables show that all the model-predicted variables change in the same 

direction as the experimental response variables, with two exceptions discussed below.  

Table 9.1: Stepped input variables, with step sizes given, and the response of output variables per the experimental data 
(Tucker, 2019) and model developed in this project, for a current density of 200 A/m2. The grey shading indicates a 
difference between the experimental and model responses. 

Step 
Step 
Size 
(%) 

Experimental Response (Tucker, 2019) Model Response 

Current 
efficiency 

Plating 
rate SEC 

Current 
efficiency 

Plating 
rate SEC 

xCu +57.1 ˅ ˄ ˄ ˄ ˄ ˄ 

xH2SO4 +12.1 ˄ ˄ ˅ ˄ ˄ ˅ 

xFe +3 ˅ ˅ ˄ ˅ ˅ ˄ 

i +47.3 ˄ ˄ ˄ ˄ ˄ ˄ 

x = Concentration (g/L), i = Current density (A/m2) 

 

Table 9.2: Stepped input variables, with step sizes given, and the response of output variables per the experimental data 
(Tucker, 2019) and model developed in this project, for a current density of 300 A/m2. The grey shading indicates a 
difference between the experimental and model responses. 

Step 
Step 
Size 
(%) 

Experimental Response (Tucker, 2019) Model Response 

Current 
efficiency  

Plating 
rate 

SEC  
Current 

efficiency 
Plating 

rate  
SEC 

xCu +57.1 ˄ ˄ ˅ ˄ ˄ ˄ 

xH2SO4 +12.1 ˄ ˄ ˅ ˄ ˄ ˅ 

xFe +3 ˅ ˅ ˄ ˅ ˅ ˄ 

i -47.3 ˅ ˅ ˅ ˅ ˅ ˅ 

x = Concentration (g/L), i = Current density (A/m2) 

The first exception is observed in Table 9.1, for the experiments conducted at 200 A/m2. The model 

predicted an increase in current efficiency for an increase in advance electrolyte copper concentration. 

Conversely, the experimental data show a decrease in current efficiency. The experimental response 

contradicts available literature sources (Das and Gopala, 1996; Moats and Khouraibchia, 2009). The 

literature sources reported a marginal increase in current efficiency resulting from an increase in copper 

concentration.  

The second exception is observed in Table 9.2, for the experiments conducted at 300 A/m2. The model 

predicted an increase in SEC for an increase in copper concentration. This contradicts the decrease 

observed for the experimental response. Both Das and Gopala (1996) and Moats and Khouraibchia 
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(2009) reported a decrease in SEC for increases in copper concentration below 40 g/L. Moats and 

Khouraibchia (2009), however, suggested that the energy consumption might increase with an increase 

in copper concentration greater than 40 g/L, as previously mentioned for the extreme-condition (Section 

9.2.2.1) and behaviour sensitivity tests (Section 9.2.2.2). No explanation is reported for the suggested 

increase. The empirical model developed by the same authors also shows an increase in SEC for an 

increase in copper concentration above approximately 40 g/L (Khouraibchia and Moats, 2010). The 

baseline experiment had an advance electrolyte copper concentration of 35 g/L, and was compared with 

an experiment having a copper concentration of 55 g/L. Regardless, the model-predicted increase in 

SEC for an increase in copper concentration is further elucidated as a model limitation in Section 9.5.1. 

9.3 COMPUTERISED MODEL VERIFICATION 

9.3.1 Background 

Computerised model verification is the process of ensuring that the computerised version of the 

conceptual model is implemented correctly (Sargent, 2013). Fairley (1976) suggested combining static 

and dynamic testing for computerised model verification. Static testing, consisting of structured 

walkthroughs, was used to debug the computerised model developed in this project. Dynamic testing 

involves executing the computerised model and using the predicted output variables to determine 

whether the model works correctly. This method was used to ensure that no internal consistency 

limitations were violated during the execution of the computerised model, as discussed in Section 9.3.2. 

9.3.2 Hardcoded Limits and Warnings 

Several hardcoded limits were incorporated when the conceptual model was computerised. This was 

done to ensure that no internal consistency limitations are violated when the model is used. If the 

concentration or flow rate of any species decreases to below zero, a corresponding error message is 

generated, and execution of the code is halted. Additionally, error messages are included to ensure that 

user inputs are entered in the correct format. Warning messages are also generated when assumptions 

made during model development are violated, where possible. This ensures that the violations are 

considered when interpreting the model results. A warning message would, for example, be generated 

if the operating current density increases to more than 10% of the limiting-current density for copper 

reduction. A list of all incorporated hardcoded limits and warnings is supplied in Appendix E (Section 

E.3). 
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9.4 OPERATIONAL VALIDATION 

9.4.1 Background 

Operational validation is the process of ensuring that the model-predicted behaviour has a satisfactory 

range of accuracy for the intended model purpose (Sargent, 2013). Knoblauch (2015) maintained that 

this is the most important part of model validation because the majority of model errors are detectable 

in this step. During operational validation, the model-predicted output variables are compared with 

those of the real-life system being modelled. Numerous methods are available for conducting the 

comparison required in operational validation, but Sargent (2013) suggested using a combination of 

qualitative and quantitative methods. Knoblauch (2015) agreed but stated that the qualitative method is 

arguably the more important of the two, as the model’s validity (with regards to the purpose) is 

evaluated. Still, Knoblauch (2015) added that the quantitative method should be used to support the 

subjective qualitative method, even though it only evaluates an absolute measure of accuracy. 

In this project, the qualitative method suggested by Sargent (2013) is used in combination with a 

quantitative method to compare the model-predicted and validated real-life KPIs. The qualitative 

method consists of graphically comparing the model-predicted and real-life KPIs. The quantitative 

method consists of quantifying the difference between the predicted and actual variables. This was done 

using the normalised residual mean square errors (nRMSEs), alongside the mean absolute percentage 

errors (MAPEs), where applicable. 

The residual mean square error (RMSE) was calculated using Equation 7.1. Following this, the RMSE 

was normalised using Equation 7.3. Schmee and Opperlander (2010) stated that the RMSE can be 

interpreted as the standard deviation of the residuals between two datasets. This implies that a reference 

value for the RMSE could be set at the standard deviations of the model and real-life values. Knoblauch 

(2015), however, added that RMSEs larger than this setpoint would not necessarily indicate a bad 

correlation, and suggested a crude baseline of 30% for the nRMSEs. This baseline was selected for use 

in this project, meaning nRMSEs larger than 30% would indicate a bad correlation. 

The MAPE was calculated using Equation 9.1. Owing to its scale-independency and interpretability the 

MAPE is one of the most widely used measures of prediction accuracy (Kim and Kim, 2016). It does, 

however, have a notable disadvantage: because of how it is calculated, it is not suitable for use when 

the variables to be predicted are close to 0. This is because the calculation will result in division by 0, 

giving infinite or undefined MAPE values. This inadequacy is addressed by using the MAPE values to 

supplement the nRMSE values, only where appropriate. Allwright (2022) suggested that in general 

MAPE values below 20% are indicative of a good model fit. 
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 MAPE =  ∑
( )

   [ 9.1 ] 

where 𝑛 is number of data points, 𝑦  is the ith observation of the variable to be predicted, and 𝑓(𝑥 ) is 

the prediction that the model gives for the ith observation. 

9.4.2 Steady-State Experimental and Industrial Data 

Figure 9.8 compares the model-predicted current efficiency and the real-life current efficiency for the 

two steady-state datasets. All the experiments conducted by Tucker (2019) are shown, but only the ten 

validation runs that were not used during parameter fitting are shown for the industrial dataset. The 

model predicted the current efficiencies for the steady-state experiments to a high degree of accuracy, 

with a MAPE of 2.2%. The model overpredicted the current efficiency by a maximum error of 7.8% 

and did not underpredict any of the current efficiencies. Also shown on the graph is that the 

experimental data are divided into three distinct groups. The group with the lowest current efficiencies 

(Group a) consisted of the experiments conducted at a low current density and high advance electrolyte 

iron concentration. The group in the middle (Group b) had a high iron concentration and high current 

density. The group having the highest current efficiencies (Group c) were the experiments conducted at 

both low and high current densities, but with low iron concentrations. This corresponds well with the 

results of the behaviour sensitivity tests conducted in Section 9.2.2.2. 

 

Figure 9.8: Actual versus model-predicted current efficiency for steady-state experimental and industrial data. 

As previously mentioned, the empirical model developed by Khouraibchia and Moats (2010) was used 

to estimate the real-life industrial current efficiencies (Section 6.2.4). Although Khouraibchia and 

Moats (2010) reported that the empirical model predicted the current efficiencies of seven real-life 

industrial plants with a maximum difference of 2.9%, the average empirical model estimate of 92.4% 

(for the tankhouse from which the industrial dataset was acquired), is significantly higher than the 80% 

given in the design specifications. This discrepancy is further emphasised by the fact that the bulk of 

Stellenbosch University https://scholar.sun.ac.za



174 
 

the estimated real-life industrial current efficiencies, obtained from the empirical model, are shown to 

be on the higher end of the current efficiencies obtained by Tucker (2019) on a bench-scale setup. This 

is counterintuitive as the bench-scale setup is an idealised version of the electrowinning process.  

The accuracy of the electrowinning model predictions is, therefore, expected to be lower because the 

model was trained using, and is being compared with, the predictions of the empirical model. The 

electrowinning model overpredicted the current efficiency by a maximum error of 4.4%, and 

underpredicted it by a maximum error of 5.7%. The MAPE of 3.1% shows that the model was, however, 

still able to predict the current efficiencies with a reasonable degree of accuracy. 

Figure 9.9 compares the model-predicted copper plating rates and the corresponding real-life values for 

the two steady-state datasets. Again, only the ten validation runs that were not used during parameter 

fitting are shown for the industrial data. The MAPE for the steady-state experimental copper plating 

rate was 2.4%, indicating a good model fit for the experimental data. The model overpredicted the 

copper plating rate by a maximum error of 7.8%. The graph shows that the experimental copper plating 

rates are divided into two distinct groups based on their values. The lower group (Group a) consisted of 

the experiments conducted at a low current density, and the higher group (Group b) the experiments 

which were conducted at a high current density. Again, this corresponds with the behaviour sensitivity 

tests (Section 9.2.2.2), which showed that the model KPIs are most sensitive to fluctuations in the 

applied current density. The steady-state industrial data fall close to the x = y line, with a MAPE of 

3.1%. The model overpredicted the copper plating rate for the industrial data by a maximum error of 

4.4% and underpredicted it by a maximum error of 5.6%.  

 

Figure 9.9: Actual versus model-predicted copper plating rate for steady-state experimental and industrial data 
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Figure 9.10 compares the model-predicted SEC and the corresponding real-life value for the two steady-

state datasets. Once more, only the ten validation runs are shown for the industrial data. The MAPE of 

3.5% for the experimental dataset indicates a good degree of accuracy. Overall, the model overpredicted 

the experimental SEC with a maximum error of 5.4% and underpredicted it with a maximum error of 

8.2%.  

 

Figure 9.10: Actual versus model-predicted SEC for steady-state experimental and industrial data. 

The model predicted the industrial SEC with a MAPE of 24.2%, which is just above the 20% baseline 

set for a good fit. The model overpredicted the industrial energy consumption with a maximum error of 

41.5% and did not underpredict any of the values. Similar to the current efficiency, the real-life 

industrial SEC was also estimated using the empirical model developed by Khouraibchia and Moats 

(2010).  

Figure 9.10 shows that the actual industrial SEC values were consistently lower than those for the ideal 

bench-scale experiments conducted by Tucker (2019). Furthermore, the average SEC for the tankhouse 

from which the industrial dataset was acquired is reported to be approximately 2300 kWh/t (according 

to the design specifications). This value is significantly higher than the empirical model estimate 

average of approximately 1280 kWh/t. In the same vein, the average SEC for 17 industrial 

electrowinning tankhouses (employing direct and post-solvent extraction electrowinning), as reported 

by Tucker (2019), is approximately 1990 kWh/t.  

Khouraibchia and Moats (2010) confirmed that the empirical model will predict energy consumption 

values lower than those observed industrially. They explained that this is because of the non-standard 

anode material (IrO2-Ta2O5 coated titanium mesh) and small cell (1 L) used to generate the experimental 

data from which the empirical model was regressed. The overprediction of the SEC values by the 

electrowinning model is likely also exacerbated by the fact that it accounts for the effect of additional 

electrolyte impurities such as nickel, not included in the empirical model, on the electrolyte resistance.  
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Overall, the semi-empirical electrowinning model predicted the current efficiency, copper plating rate, 

and SEC for the steady-state experimental dataset to a high degree of accuracy. The model predicted 

the same KPIs for the steady-state industrial dataset with reasonable accuracy. This supports use of the 

developed model for predicting the behaviour of a full-scale industrial copper electrowinning 

tankhouse. All experimental and industrial model predictions, MAPEs, and accuracy evaluations of 

other process outputs (potential and spent electrolyte composition) are provided in Appendix D (Section 

D.1 and Section D.2). 

9.4.3 Dynamic Experimental Data 

The dynamic response of electrowinning to the introduction of industry-specific disturbances was 

investigated using a bench-scale setup, as discussed in Chapter 5. In this section, the actual and model-

predicted responses to disturbances in the copper, iron, nickel, and cobalt concentrations, and current 

density are discussed, for the respective screening and bench-scale electrowinning validation 

experiments. The transient start-up period (defined as the first two hours of each experiment) was 

excluded when calculating the respective quantitative error indicators. The start-up conditions are likely 

to be outside the range of standard operating conditions (for which the model is to be validated). 

For the bench-scale electrowinning experiments, the selected experimental design allowed for the 

uncertainty relating to the calculated actual copper plating rate to be quantified. The first four hours of 

five experiments were conducted at similar base conditions (see Section 5.2.2). Upper and lower 

uncertainty limits were determined as the final reconciled copper plating rate at the respective sampling 

times, ± one standard deviation. The average standard deviation for the sampling times for which repeats 

were available (up to four hours into the eight hour runs) was used for the remainder of the sampling 

times in the respective runs.  

It was elected to quantify the uncertainty associated with the final reconciled copper plating rate instead 

of the measured advance and spent electrolyte copper concentrations, and subsequently propagating the 

error to the copper plating rate. This method was used in an attempt to account for deviations inserted 

via the preprocessing and reconciliation of data. The quantified error in the copper plating rate was 

propagated through to the calculation of the SEC, but not the current efficiency. It was not possible to 

propagate the error to the current efficiency as it was calculated using the cumulative mass copper 

plated, and not the instantaneous copper plating rate, as was the SEC. Sample calculations for the 

uncertainty calculations are provided in Appendix C (Section C.2.1). 

As previously elucidated during the data validation process (Section 6.2.1.2), the low current densities 

used for the bench-scale electrowinning experiments introduced a significant limitation to the dataset. 

The low current densities (140 A/m2 to 220 A/m2) were selected to replicate the conditions for direct 
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electrowinning in industrial tankhouses. The lower values, however, translated to a lower mass of 

copper plated, and thus, a less pronounced difference between the copper concentration of the advance 

and spent electrolytes. The less pronounced difference in copper concentrations was masked by 

variations in the measurements and other variables. Consequently, it was more challenging to obtain a 

sensible copper plating rate by conducting a copper mass conservation balance over the cell.  

In this section, the experimental data are compared with available literature data to assess whether it is 

an acceptable representation of the expected behaviour of the copper electrowinning process.  The 

dynamic experimental data are, therefore, discussed as a limited fundamental analysis of the behaviour 

of the bench-scale electrowinning setup, and the performance of the model for predicting the behaviour 

of the bench-scale system. Comparing the model predictions to both the experimental data and literature 

data will be useful for commenting on the robustness of the model (without implementation of the 

online parameter-fitting approach) to bad training data. Regardless, there is expected to be limited value 

in using the experimental bench-scale electrowinning data for the purpose of predictive model 

validation.   

As mentioned, the operational validation of the model entails comparing the model-predicted output 

variables with those of the real-life system it is intended to represent. For the dynamic electrowinning 

model, the system to be modelled is an industrial electrowinning tankhouse. The validation completed 

using the industrial electrowinning data (Section 9.4.4) is, therefore, seen as the crucial part of the model 

validation process.  

9.4.3.1 Effect of Copper Concentration 

Copper plating rate and current efficiency 

Figure 9.11 shows the effect of the increase disturbance in advance electrolyte copper concentration on 

the (a) copper plating rate and (b) current efficiency, of the respective screening validation experiment. 

Figure 9.11 shows that both the experimental copper plating rate and current efficiency remained 

constant over time, even initially during start-up. This behaviour stems from the method followed to 

process the experimental data. It was assumed that the copper reduction reaction was reaction-rate 

limited and a linear line was, therefore, used to represent the cumulative mass copper plated over time 

(See Section 6.2.1.1). This assumption resulted in an experimental current efficiency that is independent 

of both time and copper concentration. The nRMSE values for the copper plating rate and current 

efficiency of the validation screening experiment were calculated to be 0.1% and 0.3%, respectively. 

Per the selected baseline, this indicates good correlation. 
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Figure 9.11: Actual versus predicted (a) copper plating rate and (b) current efficiency for the screening validation 
experiment in which an increase disturbance in advance electrolyte copper concentration occurred four hours into the 
eight-hour run (Initial conditions: 25 g/L Cu, 1 g/L Fe, 200 A/m2. Disturbance final: 40 g/L Cu). 

Figure 9.12 shows the effect of the decrease disturbance in advance electrolyte copper concentration on 

the (a) copper plating rate and (b) current efficiency of the respective bench-scale electrowinning 

validation experiment. Figure 9.12 shows that the experimental copper plating rate and current 

efficiency decreased for the decrease disturbance in advance electrolyte copper concentration, whilst 

the model-predicted values remained constant. The nRMSE values for the copper plating rate and 

current efficiency of the validation bench-scale electrowinning experiment were calculated to be 36.1% 

and 28.9%, respectively. It is noteworthy that the experimental current efficiency is consistently above 

100%, likely exacerbating the model error. 

 

Figure 9.12: Actual versus predicted (a) copper plating rate and (b) current efficiency for the bench-scale electrowinning 
validation experiment in which a decrease disturbance in advance electrolyte copper concentration occurred four hours 
into the eight-hour run (Initial conditions: 70 g/L Cu, 6 g/L Fe, 65 g/L Ni, 3 g/L Co, 220 A/m2. Disturbance final: 55 g/L 
Cu). 
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Literature supports the reaction-rate-limited nature of the copper reduction reaction. It does, however, 

not necessarily mean complete independence of the copper plating rate and current efficiency from the 

advance electrolyte copper concentration, as indicated by the model, is supported. This limitation 

should, therefore, also be noted when considering the method used to process the screening experiment 

data (Section 6.2.1.1).  

Das and Gopala (1996) observed increases in current efficiency of 1.95% to 5.8% for increases in 

copper concentration from 17 g/L to 37 g/L, at different iron concentrations and temperatures. The 

increase in current efficiency was more pronounced at 50 °C compared with 30 °C. Das and Gopala 

(1996) speculated that the increase in current efficiency was due to the increase in electrolyte viscosity 

caused by the increase in copper concentration. The increase in viscosity impeded the mass transfer of 

the ferric ions present in the electrolyte. Both Khouraibchia and Moats (2010) and Moats (2012) also 

supported the slight increase of current efficiency for an increase in copper concentration.  

The bench-scale electrowinning experiment was conducted at a higher baseline copper concentration 

and temperature (60 °C), than the available literature sources. It is, therefore, possible that the decrease 

disturbance in copper concentration resulted in the very pronounced decrease in current efficiency 

(Figure 9.12 (b)). The specific validation experiment, however, likely overstated the trend. The current 

efficiency was significantly higher than 100% for almost the full duration of the experiment. Per 

Chapter 6, the copper plating rate was transformed to ensure the final mass copper plated corresponded 

to the change in mass of the copper cathode. This means that the decrease in current efficiency could 

also possibly be attributed to the selected method for data preprocessing. Nevertheless, the model will 

not directly capture the effect of disturbances in the advance electrolyte copper concentration on the 

electrolyte viscosity. The online parameter-fitting approach will, however, capture the change in mass-

transfer conditions, if it is implemented.  

SEC and potential 

Figure 9.13 shows the effect of the increase disturbance in advance electrolyte copper concentration on 

the (a) SEC and (b) potential of the screening experiment. The model-predicted SEC shows a slight 

increase for the increase in copper concentration. The model predicted an increase in the SEC because 

the predicted electrolyte resistance increased, due to the decrease in conductivity associated with an 

increase in copper concentration. Conversely, the experimental potential, and SEC, showed a decrease 

when the copper concentration was increased. The increase in model-predicted potential and SEC, for 

an increase in copper concentration, is discussed as a model limitation In Section 9.5.1. The calculated 

nRMSE value for both the SEC and potential was 28.7%. Per the selected baseline this indicates a good 

overall model fit. The corresponding MAPE value for the SEC was 28.7%. 
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Figure 9.13: Actual versus predicted (a) SEC and (b) potential for the screening validation experiment in which an 
increase disturbance in advance electrolyte copper concentration occurred four hours into the eight-hour run. (Initial 
conditions: 25 g/L Cu, 1 g/L Fe, 200 A/m2. Disturbance final: 40 g/L Cu). 

Figure 9.14 shows the effect of the decrease disturbance in advance electrolyte copper concentration on 

the (a) SEC and (b) potential of the bench-scale electrowinning validation experiment. The model-

predicted potential shows a very slight decrease whilst the SEC remained unaffected. Both the 

experimental potential and SEC show an increase as a result of the decrease in copper concentration. 

The calculated nRMSE values for the SEC and potential were 42.2% and 4.2%, respectively. The 

MAPE for the SEC was 32.2%. The model-predicted potential shows a good fit, per the selected 

baselines. The nRMSE and MAPE values for the SEC are similar in size, with both values being higher 

than desired. The high SEC error is suggested to result from the error in the model-predicted plating 

rate, which is exacerbated when calculating the SEC (Equation 2.25). 

 

Figure 9.14: Actual versus predicted (a) SEC and (b) potential for the bench-scale electrowinning validation experiment 
in which a decrease disturbance in advance electrolyte copper concentration occurred four hours into the eight-hour run 
(Initial conditions: 70 g/L Cu, 6 g/L Fe, 65 g/L Ni, 3 g/L Co, 220 A/m2. Disturbance final: 55 g/L Cu). 
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Literature regarding the effect of the copper concentration on the SEC provides some insights but is 

largely inconclusive. It is important to note that the literature sources also refer to results generated on 

experimental-scale setups. Moats and Khouraibchia (2009) reported an approximately 3% decrease in 

SEC for a copper increase from 30 g/L to 40 g/L. However, an increase in SEC of 0.4% was reported 

when the copper was increased from 40 g/L to 45 g/L. As previously mentioned during conceptual 

model validation, Moats and Khouraibchia (2009) argued that the energy consumption would increase 

for an increase in copper concentration above 40 g/L. This argument is supported, in theory, by Panda 

and Das (2001) who reported a decrease in potential for an increase in copper concentration from 10 g/L 

to 35 g/L, but reported a slight increase in potential for a copper concentration increase from 35 g/L to 

50 g/L. No significant change in SEC is reported by Panda and Das (2001) for the increases in copper 

concentration.  

Overall, the inclusion of the electrolyte resistance in the prediction of the potential and SEC for the 

bench-scale experiments resulted in behaviour that contradicted the experimental observations. 

Literature supports the model-predicted behaviour, but only for copper concentrations above 

approximately 40 g/L, and the findings are not definitive. The screening validation experiment had an 

initial copper concentration of 25 g/L, which was increased to a final value of 40 g/L. The copper 

concentration did, however, increase to approximately 60 g/L directly after the disturbance was induced, 

and gradually decreased to the expected 40 g/L after mixing occurred in the system. The bench-scale 

electrowinning validation experiment had an initial copper concentration of 70 g/L that was decreased 

to 55 g/L.  No literature was found regarding the effect of increasing the copper concentration on the 

SEC in an industrial electrowinning tankhouse. If the electrolyte resistance, however, accounts for a 

significant portion of the energy consumption, as discussed in Chapter 2, it is expected that an increase 

in copper concentration would increase the energy consumption. This statement would need to be 

verified using appropriate industrial data. 

9.4.3.2 Effect of Iron Concentration 

Copper plating rate and current efficiency 

Figure 9.15 shows the effect of the increase disturbance in advance electrolyte iron concentration on 

the (a) copper plating rate and (b) current efficiency of the respective validation screening experiment. 

The experimental copper plating rate and current efficiency both showed a decrease followed by an 

increase in response to the disturbance. This behaviour is possibly the result of the method used to 

induce the disturbance during the experiment. The additional ferric sulfate hydrate required to reach the 

final iron concentration was added to the stock solution bottle that fed the cell. The ferric iron 

concentration was, therefore, very high in the advance electrolyte just after the disturbance was induced. 

Gradually, through mixing with the recycled spent electrolyte stream, and to a lesser extent reduction 
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of iron, the ferric iron concentration in the advance electrolyte decreased. The model-predicted current 

efficiency and copper plating rate decreased slightly as a result of the disturbance, before showing a 

subtle increase. The calculated nRMSE was 7.2% for the copper plating rate and 4.5% for the current 

efficiency.  

 

Figure 9.15: Actual versus predicted (a) copper plating rate and (b) current efficiency for the screening validation 
experiment in which an increase disturbance in advance electrolyte iron concentration occurred four hours into the eight-
hour run. (Initial conditions: 40 g/L Cu, 3 g/L Fe, 375 A/m2. Disturbance final: 6 g/L Fe). 

Figure 9.16 shows the effect of the increase disturbance in advance electrolyte iron concentration on 

the (a) copper plating rate and (b) current efficiency, for the bench-scale electrowinning validation 

experiment. The experimental copper plating rate showed a decrease as a result of the disturbance. The 

experimental current efficiency showed a delayed decrease, likely as it was calculated using the 

cumulative mass copper plated. The experimental KPIs did not show the secondary increase, observed 

for the screening experiments, as the ferric iron concentration for the specific bench-scale 

electrowinning validation experiment was significantly lower. The model-predicted values also showed 

a decrease, as expected. The calculated nRMSE was 42.4% for the copper plating rate and 5.6% for the 

current efficiency. 
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Figure 9.16: Actual versus predicted (a) copper plating rate and (b) current efficiency for the bench-scale electrowinning 
validation experiment in which an increase disturbance in advance electrolyte iron concentration occurred four hours 
into the eight-hour run. (Initial conditions: 40 g/L Cu, 1 g/L Fe, 20 g/L Ni, 0.3 g/L Co, 140 A/m2. Disturbance final: 
3 g/L Fe). 

SEC and potential 

Figure 9.17 shows the experimental and model-predicted response of the (a) SEC and (b) potential to 

the increase disturbance in advance electrolyte iron concentration, for the screening validation 

experiment. Both the experimental SEC and potential remained constant after the disturbance occurred. 

The model-predicted potential also remained constant, but the SEC showed an increase after the 

disturbance occurred.  The nRMSE calculated for the potential was 34.1%. The nRMSE for the SEC 

was 41.2%, whilst the corresponding MAPE value was 40.8%. 

 

Figure 9.17: Actual versus predicted (a) SEC and (b) potential for the screening validation experiment in which an 
increase disturbance in advance electrolyte iron concentration occurred four hours into the eight-hour run (Initial 
conditions: 40 g/L Cu, 3 g/L Fe, 375 A/m2. Disturbance final: 6 g/L Fe). 
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Figure 9.18 shows the experimental and model-predicted response of the (a) SEC and (b) potential to 

the increase disturbance in advance electrolyte iron concentration, for the bench-scale electrowinning 

validation experiment. Both the experimental SEC and potential showed an increase after the 

disturbance occurred. The model-predicted SEC showed a slight increase whilst the model-predicted 

potential showed a very subtle decrease.  

For the bench-scale electrowinning validation experiment the nRMSE value for the potential was 0.7%. 

The nRMSE value for the SEC was 302.7%, whilst the MAPE value was 37.9%. A large discrepancy 

is observed between the two quantitative error indicators for the SEC, with the nRMSE value being 

very high. As a result of the square term used when calculating the RMSE (Equation 7.1), this metric 

penalises larger errors (or outliers) more, compared to smaller errors. In contrast, the MAPE understates 

the effect of large, infrequent errors. It follows that the high SEC nRMSE value (and noteworthy 

difference between the calculated nRMSE and MAPE values), indicates the presence of large but 

infrequent discrepancies between the model-predicted and actual SEC. The SEC is calculated using two 

model-predicted variables (copper plating rate and potential), meaning that any abnormal behaviour 

from the real-life system is exacerbated. The zero values for the actual copper plating rate (Figure 

9.16 (a), t = 4 h to t = 6 h) likely resulted in the high nRMSE value for the SEC. 

 

Figure 9.18: Actual versus predicted (a) SEC and (b) potential for the bench-scale electrowinning validation experiment 
in which an increase disturbance in advance electrolyte iron concentration occurred four hours into the eight-hour run 
(Initial conditions: 40 g/L Cu, 1 g/L Fe, 20 g/L Ni, 0.3 g/L Co, 140 A/m2. Disturbance final: 3 g/L Fe). 

Das and Gopala (1996) found that increasing the iron concentration up to 1 g/L from 0.5 g/L rapidly 

increased the SEC. The increase in SEC was, however, slower when increasing the iron concentration 

beyond 1 g/L, up to 6 g/L. Khouraibchia and Moats (2010) found a 19.7% increase in SEC when 

increasing the iron concentration from 0 g/L to 6 g/L. As previously mentioned, they determined the 

potential to be independent of the iron concentration and attributed the change in SEC to the decrease 

in current efficiency. 

Stellenbosch University https://scholar.sun.ac.za



185 
 

9.4.3.3 Effect of Nickel Concentration 

Copper plating rate and current efficiency 

Figure 9.19 shows the experimental and model-predicted response of the (a) copper plating rate and (b) 

current efficiency to the increase disturbance in advance electrolyte nickel concentration, for the bench-

scale electrowinning validation experiment. Both the experimental copper plating rate and current 

efficiency showed a significant decrease after the disturbance occurred. The model-predicted values, 

however, remained constant. The nRMSE value was 32.7% for the copper plating rate and 17.0% for 

the current efficiency.  

 

Figure 9.19: Actual versus predicted (a) copper plating rate and (b) current efficiency for the bench-scale electrowinning 
validation experiment in which an increase disturbance in advance electrolyte nickel concentration occurred four hours 
into the eight-hour run. (Initial conditions: 40 g/L Cu, 1 g/L Fe, 20 g/L Ni, 0.3 g/L Co, 140 A/m2. Disturbance final: 
45 g/L Ni). 

Nickel is known to have an adverse effect on the mass-transfer conditions and limiting-current density 

of the copper electrodeposition process (see Section 2.3.4.2). For the bench-scale electrowinning 

validation experiment the operating current density was, however, under 14% of the predicted limiting-

current density, for the duration of the run. Although this is higher than the preferred 10% specified for 

the approximation of the Butler–Volmer equation that excludes the mass-transfer kinetics, it is 

sufficiently low that the effect of nickel on the mass-transfer conditions should, arguably, not affect the 

copper reduction reaction. It would, however, be expected for changes in the mass-transfer conditions 

to be reflected in the reduction and oxidation of iron (see Section 9.4.3.1). It is argued that the adverse 

effect of nickel on the mass-transfer conditions should, therefore, result in an increase in current 

efficiency, for an increase in nickel. This, however, contradicts the behaviour of the dynamic bench-

scale electrowinning experiment. It is also noteworthy that the experimental current efficiency is above 

100% for almost the entire duration. Consequently, it is suggested that the dynamic bench-scale 

electrowinning experiment has limited value for use in model validation. Regardless, any possible 
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changes in the mass-transfer conditions will only be accounted for by the model if the online parameter-

fitting approach is implemented.  

SEC and potential 

Figure 9.20 shows the experimental and model-predicted response of the (a) SEC and (b) potential to 

the increase disturbance in advance electrolyte nickel concentration, for the bench-scale electrowinning 

validation experiment. Both the experimental SEC and potential showed an increase after the 

disturbance occurred. The model-predicted potential also showed an increase, but the model-predicted 

SEC, on the other hand, remained constant. Owing to the small observed increase in experimental 

potential, the bulk of the change in the experimental SEC is attributed to the previously observed change 

in the copper plating rate (Figure 9.19 (a)). Regardless, literature supports the increase in potential 

resulting from the increase in nickel concentration. As discussed in Chapter 3, nickel reduces the 

conductivity, which increases the electrolyte resistance and in turn, the potential. The nRMSE value 

calculated for the SEC was 34.2%, whilst the value for the potential was 1.4%. The MAPE value for 

the SEC was 27.2%.  

 

Figure 9.20: Actual versus predicted (a) SEC and (b) potential for the bench-scale electrowinning validation experiment 
in which an increase disturbance in advance electrolyte nickel concentration occurred four hours into the eight-hour run. 
(Initial conditions: 40 g/L Cu, 1 g/L Fe, 20 g/L Ni, 0.3 g/L Co, 140 A/m2. Disturbance final: 45 g/L Ni). 

9.4.3.4 Effect of Cobalt Concentration 

Copper plating rate and current efficiency 

Figure 9.21 shows the experimental and model-predicted response of the (a) copper plating rate and (b) 

current efficiency to the increase disturbance in advance electrolyte cobalt concentration, for the bench-

scale electrowinning validation experiment. Both the experimental copper plating rate and current 

efficiency showed a decrease after the disturbance occurred. The model-predicted values, however, 
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remained unchanged. Khouraibchia and Moats (2010) found that cobalt had no notable effect on the 

current efficiency in concentrations of between 0.1 g/L and 0.2 g/L. The concentrations used in the 

bench-scale electrowinning experiments were, however, significantly higher (up to 3 g/L). 

Nevertheless, the two training experiments in which a disturbance in cobalt concentration occurred also 

showed no significant change in the copper plating rate and current efficiency, supporting the model-

predicted behaviour. The nRMSE value was 22.8% for the copper plating rate and 10.2% for the current 

efficiency. 

 

Figure 9.21: Actual versus predicted (a) copper plating rate and (b) current efficiency for the bench-scale electrowinning 
validation experiment in which a disturbance in advance electrolyte cobalt concentration occurred four hours into the 
eight-hour run. (Initial conditions: 40 g/L Cu, 1 g/L Fe, 20 g/L Ni, 0.3 g/L Co, 140 A/m2. Disturbance final: 1 g/L Co). 

SEC and potential 

Figure 9.22 shows the experimental and model-predicted response of the (a) SEC and (b) potential to 

the increase disturbance in advance electrolyte cobalt concentration, for the bench-scale electrowinning 

experiment. The experimental SEC showed an increase after the disturbance occurred. The 

experimental potential showed no change. The model-predicted SEC and potential remained constant. 

The nRMSE value calculated for the potential was 2.4%, showing a good model fit. The nRMSE value 

for the SEC was 30.1%. The corresponding MAPE value was 17.7%. 

As discussed in Chapter 2 (Section 2.3.4.2), the presence of cobalt is expected to decrease the water 

oxidation overpotential, resulting in a decreased potential. Khouraibchia and Moats (2010), however, 

found no notable effect on the SEC for changes in cobalt concentrations ranging from 0.1 g/L to 0.2 g/L. 

In the validation bench-scale electrowinning experiment the cobalt was increased from 0.3 g/L to 1 g/L. 

Nonetheless, the model will only capture the effect of cobalt concentration on potential, and any 

possible accompanying effect on the SEC, when the online parameter-fitting approach is implemented.  
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Figure 9.22: Actual versus predicted (a) SEC and (b) potential for the bench-scale electrowinning validation experiment 
in which a disturbance in advance electrolyte cobalt concentration occurred four hours into the eight-hour run. (Initial 
conditions: 40 g/L Cu, 1 g/L Fe, 20 g/L Ni, 0.3 g/L Co, 140 A/m2. Disturbance final: 1 g/L Co). 

9.4.3.5 Effect of Current Density 

Copper plating rate and current efficiency 

Figure 9.23 shows the effect of the increase disturbance in current density on the (a) copper plating rate 

and (b) current efficiency, for the screening validation experiment. The experimental copper plating 

rate and current efficiency showed, as expected, an increase in response to the increase in current 

density. Similarly, the model-predicted copper plating rate and current efficiency also showed an 

increase. The model-predicted increase in current efficiency was, however, very subtle, as the current 

efficiency was already close to 100%. The observed behaviour supports the assumption that the copper 

reduction reaction was reaction-rate-limited. The nRMSE value was 30.6% for the copper plating rate, 

and 18.5% for the current efficiency. 
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Figure 9.23: Actual versus predicted (a) copper plating rate and (b) current efficiency for the screening experiment in 
which an increase disturbance in current density occurred four hours into the eight-hour run. (Initial conditions: 40 g/L 
Cu, 1 g/L Fe, 285 A/m2. Disturbance final: 375 A/m2). 

Figure 9.24 shows the effect of the decrease disturbance in current density on the (a) copper plating rate 

and (b) current efficiency, for the bench-scale electrowinning validation experiment. The experimental 

copper plating rate and current efficiency showed a decrease followed by an increase in response to the 

disturbance. The increase following the initial decrease is suggested to be an artifact from the data 

preprocessing method (see Section 6.2.1.2). The model-predicted copper plating rate and current 

efficiency showed a decrease, as expected from literature (Moats et al., 2012). The nRMSE value was 

47.5% for the copper plating rate, and 8.8% for the current efficiency. 

 

Figure 9.24: Actual versus predicted (a) copper plating rate and (b) current efficiency for the bench-scale electrowinning 
validation experiment in which a decrease disturbance in current density occurred four hours into the eight-hour run. 
(Initial conditions: 70 g/L Cu, 6 g/L Fe, 65 g/L Ni, 3 g/L Co, 220 A/m2. Disturbance final: 160 A/m2). 
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SEC and potential 

Figure 9.25 shows the response of the experimental and model-predicted (a) SEC and (b) potential to 

the increase in current density, for the screening validation experiment. The experimental potential (and 

SEC) showed a sharp increase as a result of the induced disturbance. The model-predicted potential 

showed an increase of roughly the same magnitude as the corresponding experimental increase. The 

predicted SEC, however, showed a much smaller increase compared with the observed experimental 

increase. It is possible that the increase in experimental SEC was amplified by the approximately 30-

minute deadtime before the mass copper plated showed an increase, observed in Figure 9.23 (a). The 

nRMSE value for the SEC was 14.8%, whilst the corresponding MAPE value was 18.8%. This indicates 

a good fit. The nRMSE value for the potential was 31.2%.  

 

Figure 9.25: Actual versus predicted (a) SEC and (b) potential for the screening validation experiment in which an 
increase disturbance in current density occurred four hours into the eight-hour run. (Initial conditions: 40 g/L Cu, 1 g/L 
Fe, 285 A/m2. Disturbance final: 375 A/m2). 

Figure 9.26 shows the experimental and model-predicted response of the (a) SEC and (b) potential to 

the decrease disturbance in current density, for the bench-scale electrowinning validation experiment. 

The experimental SEC showed a slight increase after the disturbance occurred, whilst the potential 

showed a decrease. Similarly, the model-predicted SEC showed a subtle increase, whilst the potential 

showed a decrease. The increase in SEC despite the decrease in potential is, as expected, a result of the 

decrease in the copper plating rate for the decrease in current density (Figure 9.24 (a)). The calculated 

nRMSE value was 3.9% for the potential. The nRMSE for the SEC was 41.6%, and the corresponding 

MAPE value was 45.6%. 
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Figure 9.26: Actual versus predicted (a) SEC and (b) potential for the validation experiment in which a decrease 
disturbance in current density occurred four hours into the eight-hour run. (Initial conditions: 70 g/L Cu, 6 g/L Fe, 
65 g/L Ni, 3 g/L Co, 220 A/m2. Disturbance final: 160 A/m2). 

9.4.4 Dynamic Industrial Data 

In this section, the dynamic industrial data obtained from a base-metal refinery tankhouse (see Section 

6.2.2) are used to validate the electrowinning model developed in this project. The refinery tankhouse 

consists of multiple electrowinning banks, with one bank selected for use in evaluation of the model. It 

was assumed that each cell in the bank is identical, with every cell being modelled individually. The 

actual and model-predicted KPIs for one cell over five 14-day cycles (Cycle a to Cycle e), previously 

unseen by the model, are used to discuss the electrowinning model performance. The model 

performance with and without the implementation of the online parameter-fitting approach (developed 

in Chapter 8), is included. Only the online parameter-fitting approach using the fundamental system 

models is considered, as the surrogate system models were shown to be inadequate during conceptual 

validation (see Section 8.4). 

Current efficiency 

Figure 9.27 shows the actual and model-predicted current efficiency for the five validation cycles 

(Cycle a to Cycle e). The current efficiency was calculated using the cumulative mass copper plated. 

As such, even with the online parameter-fitting approach implemented, the model-predicted current 

efficiency shows a response lag, before eventually converging to a point close to the corresponding 

actual current efficiency. Nevertheless, Figure 9.27 shows that including the online parameter-fitting 

approach resulted in a notable improvement in the model’s ability to predict the current efficiency of 

the industrial tankhouse. Quantitative indicators for the model performance are discussed later in this 

section (Table 9.3). 
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Figure 9.27: Actual and model-predicted current efficiency for one cell of the industrial electrowinning tankhouse over 
five 14-day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting. 

Copper plating rate 

Figure 9.28 shows the actual and model-predicted copper plating rate for the five validation cycles 

(Cycle a to Cycle e). The copper plating rate varied significantly over time for all five of the validation 

cycles. The considered tankhouse produces copper as a minor by-product, meaning that the main 

objective is to produce a spent electrolyte having a composition and flow rate conducive to downstream 

processing. Variability in the copper plating rate is, therefore, expected. Overall, the figure shows that 
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the model fits the data well, with minimal sensitivity to possible outliers, even with inclusion of the 

online parameter-fitting approach. The insensitivity to possible outliers is particularly clear for Cycle c 

(Figure 9.28 (c), t = 300 h) and Cycle d (Figure 9.28 (d), t = 140 h). The use of the least-squares objective 

function, as discussed in Chapter 8 (Section 8.2.2), is, therefore, supported. Quantitative indicators for 

the model performance are discussed later in this section (Table 9.3). 

 

 

 

Figure 9.28: Actual and model-predicted copper plating rate for one cell of the industrial electrowinning tankhouse over 
five 14-day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting. 
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Figure 9.28 Actual and model-predicted copper plating rate for one cell of the industrial electrowinning tankhouse over 
five 14-day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting (continued). 

SEC and potential 

Figure 9.29 and Figure 9.30 show the actual and model-predicted SEC and potential, respectively, for 

the five validation cycles (Cycle a to Cycle e). Although the average model-predicted SEC for each 

cycle is in the correct range, the dynamic SEC fluctuated noticeably less than the corresponding actual 

data. As the model-predicted potential, shown on Figure 9.30, is a very good fit to the actual data, it is 

suggested that the lack of fluctuations in the model-predicted SEC resulted from the model-predicted 

copper plating rate. Although the model-predicted copper plating rates showed a good fit, the model-

predicted fluctuations were less severe than those for the actual data (Figure 9.28). The damped model-

predictions still result in acceptable predicted copper plating rates, but because of how the SEC is 

calculated (Equation 2.25), the damped responses are accentuated.  

The behaviour observed for Cycle a (with fitting, t = 20 h,  

Figure 9.29 (a)), further confirms the limitations associated with the model-predicted SEC values. A 

sharp increase in the model-predicted SEC is observed, corresponding to the decrease in model-

predicted copper plating rate (Figure 9.28 (a)). Although the model-predicted copper plating rate 
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corrected soon after, it emphasises the sensitivity of the SEC to changes in the copper plating rate. The 

model performance for predicting the SEC is quantified later in this section (Table 9.3). 

Notwithstanding, the goal of the developed model is to enable the investigation of advanced control 

strategies that are likely to be based on predictions of the copper plating rate, spent electrolyte 

concentration, and/or potential. Consequently, high-fidelity predictions of the SEC would likely not be 

required for this application.  

 

 

 

Figure 9.29: Actual and model-predicted SEC for one cell of the industrial electrowinning tankhouse over five 14-day 
validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting. 
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Figure 9.29 Actual and model-predicted SEC for one cell of the industrial electrowinning tankhouse over five 14-day 
validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting (continued). 

Figure 9.30 confirms that the model-predicted potential is not sensitive to suspected outliers, even with 

the online parameter-fitting approach implemented. Cyle d (t = 200 h to 350 h) and Cycle e (t = 55 h 

and 210 h) are emphasised to support this statement. 
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Figure 9.30: Actual and model-predicted potential for one cell of the industrial electrowinning tankhouse over five 14-
day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting. 
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Figure 9.30 Actual and model-predicted potential for one cell of the industrial electrowinning tankhouse over five 14-
day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online parameter-fitting (continued). 

Spent electrolyte copper concentration 

Figure 9.31 shows the actual and model-predicted spent electrolyte copper concentration for the five 

validation cycles (Cycle a to Cycle e). The spent electrolyte copper concentration, although not a KPI, 

is an important variable for use in the investigation and development of advanced control strategies. 

Moreover, the spent electrolyte composition is also of concern for refineries that send this stream for 

further processing. Overall, the figure shows that the model fits the data well, with quantitative 

indicators for the model fit discussed later in this section (Table 9.3). 
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Figure 9.31: Actual and model-predicted spent electrolyte copper concentration for one cell of the industrial 
electrowinning tankhouse over five 14-day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online 
parameter-fitting. 
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Figure 9.31 Actual and model-predicted spent electrolyte copper concentration for one cell of the industrial 
electrowinning tankhouse over five 14-day validation cycles (Cycle a to Cycle e), with (w) and without (w/o) online 
parameter-fitting (continued). 

Limiting-current density 

Finally, the operating current density of the industrial tankhouse was compared with the limiting-current 

density predicted by the regression model that included the combined effect terms (Model B), developed 

in Chapter 3 (Section 3.6). The operating current density fluctuated between 4% and 14% of the 

predicted limiting-current density, well below the acceptable limit for operation (Figure 9.32). 

Moreover, the predicted limiting-current densities fall within the range of typical industrial limiting-

current densities (between approximately 280 A/m2 and 996 A/m2, see Section 3.6), supporting that the 

predicted values are realistic.  

It is important to note that the operating current densities were, however, above the limit suggested by 

Bard and Faulkner (2001) for use of the Butler–Volmer equation that excludes the effects of mass-

transfer kinetics (10% of the limiting-current density). As discussed in Chapter 3 (Section 3.6), the 

regression model used to predict the limiting-current densities does not account for the effect of oxygen 

evolution at the anode on mass-transfer kinetics at the cathode. Consequently, the model may 

significantly underestimate the limiting-current density of industrial copper electrowinning operations 
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(Beukes and Badenhorst, 2009). Regardless, the validation performed for the dynamic electrowinning 

model showed that the form of the Butler–Volmer equation used remained an adequate approximation 

of the current densities associated with copper reduction and water oxidation. A warning was, 

nonetheless, included in the model to alert the user when the 10% limit is breached (see Section 9.3.2). 

 

 

 

Figure 9.32: Operating current density and limiting-current density (predicted by Model B (Section 3.6)) for one cell of 
the industrial electrowinning tankhouse over five 14-day validation cycles (Cycle a to Cycle e). 
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Figure 9.32 Operating current density and limiting-current density (predicted by Model B (Section 3.6)) for one cell of 
the industrial electrowinning tankhouse over five 14-day validation cycles (Cycle a to Cycle e) (continued). 

Quantitative indicators 

The MAPE and nRMSE values for the predicted variables are given in Table 9.3, for the five validation 

cycles with (w) and without (w/o) the online parameter-fitting approach implemented. As previously 

discussed, the dynamic model was developed to predict the performance of industrial electrowinning 

tankhouses for use in the development and investigation of advanced control strategies (Section 4.2.1). 

Consequently, the validation completed using the dynamic industrial data is of utmost importance to 

ensure the model is sufficiently accurate for its intended purpose.  
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Table 9.3: MAPE and nRMSE values for the prediction of KPIs and intermediary variables for one cell of the industrial 
case-study tankhouse over the five 14-day validation cycles, for the model with (w) and without (w/o) the online 
parameter-fitting approach implemented. The grey shading indicates where indicators are above the selected baselines 
(20% for MAPE values and 30% for nRMSE values). 

Indicator 
Cycle a Cycle b Cycle c Cycle d Cycle e 

w w/o w w/o w w/o w w/o w w/o 

MAPE (%)           

Current efficiency 14.9 21.8 6.36 21.1 6.11 26.2 5.79 22.7 6.48 24.7 

Cu plating rate – – – – – – – – – – 

SEC 47.2 56.2 23.3 42.2 18.1 43.6 21.4 40.4 21.9 40.2 

Potential 4.76 9.68 2.40 6.32 1.74 6.65 2.10 5.84 2.76 5.87 

Spent xCu 6.29 6.56 4.50 5.91 4.78 7.36 5.06 6.91 5.19 7.45 

nRMSE (%)           

Current efficiency 16.6 20.2 10.0 23.0 7.73 26.7 6.95 23.3 8.59 25.3 

Cu plating rate 45.5 44.5 25.8 28.6 23.8 31.0 24.9 31.1 26.3 31.1 

SEC 225 224 30.7 38.9 48.2 55.0 49.5 53.3 42.5 45.4 

Potential 6.91 11.4 3.18 6.90 2.28 7.34 3.10 6.45 4.19 6.82 

Spent xCu 7.64 8.02 5.72 7.15 6.31 8.47 6.23 8.26 7.05 8.44 

 

Overall, the MAPE values for the majority of the predictions are below the 20% baseline set in this 

project, and the nRMSE values below the 30% baseline. The SEC predictions are a notable exception. 

As already mentioned during qualitative analysis of the results, it is expected that the model-predicted 

SEC values will, therefore, hold limited value.  

The nRMSE values for the copper plating rate predicted for Cycle a (with and without fitting) are also 

above the selected threshold of 30%. For Cycle a, the model-predicted values, both with and without 

the online parameter-fitting approach, were not well-aligned with the actual real-life values for the first 

50 hours of the cycle (see Figure 9.28 (a)). Although it is difficult to ascertain the exact reason for the 

misalignment, it is hypothesised that it could be the result of unusual operating conditions, or other 

unexpected disturbances not fully captured by the electrowinning model. Additionally, the quality of 

data captured for the initial stages of Cycle a could also necessitate more rigorous data validation.  

Nonetheless, the favourable performance, as supported by the remainder of the quantitative indicators 

in Table 9.3, lends credence to the application of the model for predicting the performance of the direct 

copper electrowinning tankhouse from which the data were obtained. 
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9.5 INDUSTRIAL APPLICATION 

9.5.1 Model Limitations 

Certain limitations of the developed model were highlighted in this chapter, but ultimately it was shown 

to be sufficiently comprehensive and accurate for the model purpose. As discussed throughout this 

dissertation, the main purpose of the model is to enable the development and investigation of improved 

control strategies (such as model predictive control, MPC) for industrial direct copper electrowinning 

tankhouses. Other possible applications of the model also include process monitoring for early-fault 

detection and operator training. 

The first noteworthy model limitation, already identified during the development process, is that the 

model is only valid under standard operating conditions. This is mainly due to the assumptions of mass-

transfer-limited iron reduction and oxidation, and reaction-rate-limited copper reduction. The limitation 

also extends to the fact that phenomena such as the effect of the flow rate on mass-transfer conditions 

were not fundamentally modelled. Within the range of standard operating conditions, changes in the 

flow rate should, however, not have a significant effect on the interfacial cathode velocity. 

As the electrolyte viscosity is also known to impact the mass-transfer conditions, the second limitation 

results from the exclusion of viscosity from the model scope. The effect of this limitation was observed 

during model validation for the behaviour resulting from disturbances in the experimental copper and 

nickel concentrations (Section 9.4.3.1 and Section 9.4.3.3, respectively). According to the available 

literature, an increase in copper concentration (and the corresponding increase in viscosity) results in a 

slight increase in the current efficiency. This is because the resulting change in mass-transfer conditions 

impacts the mass-transfer limited iron reduction. Similar behaviour is expected for an increase in nickel 

concentrations. The model may not directly include for the effect of disturbances in the mass-transfer 

conditions on the iron reduction reaction, but if the accompanying online parameter-fitting approach is 

implemented, the behaviour will be accounted for. This is because the online parameter-fitting approach 

refits for the applicable mass-transfer coefficient in order to accurately represent the current mass-

transfer conditions. 

Inclusion of the online parameter-fitting approach also mitigates the impact of the third limitation; 

fundamental modelling of the effect cobalt has on the overpotential for water oxidation is not included 

in the model. Consequently, the model will only capture the effect of cobalt on the anodic overpotential 

when the Butler–Volmer equation parameters for water oxidation are refitted, based on changes in the 

measured potential. The importance of implementing the online parameter-fitting approach is, therefore, 

further motivated in order to ensure the model predictions remain representative of the current state of 

the actual process. 
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The final limitation is the model-predicted increase in potential, and SEC, observed for an increase in 

advance electrolyte copper concentration. Although the model-predicted increases in the two variables 

are seemingly supported by literature for copper concentrations greater than 40 g/L, the generated 

experimental data contradict the model behaviour, even at high copper concentrations (Moats and 

Khouraibchia, 2009; Panda and Das, 2001). Furthermore, the model predicted an increase in the two 

variables regardless of the initial or final copper concentration. The effect of the electrolyte resistance 

may, however, be more significant on an industrial-scale than it is for the bench-scale electrowinning 

experiments. If this is the case, it would render the model-predicted increases accurate, regardless of 

the initial or final copper concentration. Historical plant data should be reviewed to determine the 

applicability of the model to predict the dynamic response of the SEC, for a specific tankhouse, to 

changes in the advance electrolyte copper concentration.  

Notwithstanding the above limitations, model validation showed that the developed model (with the 

accompanying online parameter-fitting approach) is a sufficiently accurate representation of the real-

life industrial electrowinning process. The model further fulfils the three criteria for a high-fidelity 

model listed in Chapter 4 (Section 4.2.1). The model is sufficiently fundamental to ensure that updating 

the model parameters based on measured data is meaningful, as shown by the validation conducted in 

Section 9.4.4 for the model and online parameter-fitting approach. Next, the model was shown to be 

sufficiently accurate so that the updated parameters were useful for the intended application of the 

model, as motivated throughout this chapter. Finally, the model was computerised in such a manner to 

ensure that it is sufficiently quick to execute for the intended application. 

9.5.2 Requirements for Industrial Application 

Electrowinning data are required to train the model for application in a specific tankhouse. Real-time 

online data are further required for implementation of the accompanying online parameter-fitting 

approach, for the model to be sufficiently accurate for use in control applications. Table 9.4 outlines the 

measured variables required for the implementation of the developed model in industry. The only non-

critical measurement listed in Table 9.4 is the mass copper plated during electrowinning. It is expected 

that measuring the mass copper plated during electrowinning will be difficult, if not impossible. The 

model and the data-processing methods followed require only the steady-state mass copper plated, 

which can easily be determined by weighing the cathode after electrowinning is completed. Again, the 

impact of data quality is emphasised. Bad quality training data will have a significant impact on the 

performance of the semi-empirical model developed in this project. 
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Table 9.4: Requirements for industrial application of the model (adapted from Tucker, 2019).  

Category Requirement Details 

Input variables 
to be measured 

regularly 

Advance electrolyte 
composition 

Includes sulfuric acid, copper, nickel, cobalt, and iron 
concentrations 

Will vary significantly and require regular monitoring 

Cell current and voltage Will vary significantly and require regular monitoring 

Cell temperature Should stay relatively constant, require less regular 
monitoring 

Electrolyte flow rate 
Should stay relatively constant, require less regular 

monitoring 

Once-off 
measurements 

Hardware loss Should stay constant, maintenance checks suggested 

Electrode surface area Constant (design specification) 

Interelectrode distance Constant (design specification) 

Number of cathodes Constant (design specification) 

Output 
variables to be 

measured 
regularly 

Spent electrolyte 
composition 

Includes sulfuric acid, copper, nickel, cobalt, and iron 
concentrations 

Will vary significantly and require regular monitoring 

Mass copper plated 
Dynamic measurements not critical, only for use in data 

reconciliation 

Electrowinning 
model 

Model Developed as part of this project 

Software Modelling software and user interface 

Operator/ automated 
procedure 

Operator required to monitor actual versus predicted plant 
performance and for entering relevant variables, automation 

is possible 

Parameter 
fitting 

Methodology Developed as part of this project 

Software 
Required to conduct nonlinear regression, with a user 

interface 

9.5.3 Recommended Applications 

The main industrial application recommended for the electrowinning model, based on the defined model 

purpose (Section 4.2.1), is to aid in the investigation and development of improved control strategies 

(such as MPC) for direct copper electrowinning tankhouses. The model can also be used to compare 

the improved control strategies to conventional strategies and controllers, quantifying the advantage of 

using the more complex strategy (Appl et al., 2020). As discussed in the introduction of this dissertation 

(Section 1.1), development of the model specifically for direct copper electrowinning applications does, 

also, not exclude it from use by post-solvent extraction operations.  
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Additional industrial applications for the model are also recommended. Firstly, it is recommended that 

the electrowinning model, with specific fitted parameters, be used as a tool for operator training. The 

model could be used as a “sandbox” environment that accurately mimics the dynamic behaviour of the 

real-life electrowinning process. This would enable operators to study the impact of changes in 

operating conditions on the KPIs. Use in this application would also not necessarily require the 

implementation of the online parameter-fitting approach, if only limited tankhouse data are available. 

Secondly, the electrowinning model, with specific fitted parameters, could be used for continuous 

process monitoring and early-fault detection. The model has the potential to, for example, complement 

continuous online voltage measurements to identify possible problems. If the actual plant performance 

is below the predicted plant performance, operators could locate faults, such as short circuits, quicker 

than in current industrial practice. The model-predicted spent electrolyte composition could also be 

used to identify if the current operating conditions would lead to, for example, low copper concentration 

in the spent electrolyte, which is one of the root causes for short circuits. Retaining the central role of 

an experienced plant operator is key, but as discussed above, accurate model predictions can provide 

valuable data for the operator to act upon (Crooks et al., 2023). 

In conclusion, although the commercialisation and implementation of the abovementioned technologies 

are not trivial, they are gradually gaining acceptance across the mineral processing and extractive 

metallurgical industries (Crooks et al., 2023; Schlesinger et al., 2022).   
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

 

10.1 CONCLUSIONS 

In this project the understanding developed in previous studies (Aminian et al., 2000; Tucker, 2019) 

was extended to develop a dynamic semi-empirical model for copper electrowinning operations, with a 

specific focus on the direct electrowinning process. The developed high-fidelity model represents a first 

step towards the investigation and development of improved control strategies for copper 

electrowinning tankhouses. The main conclusions from this project are discussed based on the 

objectives specified in Chapter 1 (Section 1.3), alongside the associated original scientific contributions 

(Section 1.4).  

i. Evaluation and development of physicochemical property correlations 

The physicochemical correlations for density and conductivity, originally developed by 

Kalliomäki et al. (2021), were validated for use over the full range of operating conditions applicable 

to typical direct copper electrowinning operations, using experimental data generated in this project. 

The experimental data were generated by measuring the densities and conductivities of heated synthetic 

electrolytes containing copper, sulfuric acid, nickel, cobalt, iron, and thiourea.  It was confirmed that 

the density model could be extrapolated to predict the densities of typical direct copper electrowinning 

electrolytes, as supported by the obtained R2 (0.97) and normalised residual mean square error (nRMSE) 

(1.1%), Similarly, the R2 (0.87) and nRMSE (16.7%) of the conductivity model confirmed the goodness 

of fit for use in predicting the conductivity of typical direct copper electrowinning electrolytes. In this 

vein, the project extended the literature by providing validation of the previously developed correlations 

for the full range of conditions applicable to typical industrial copper electrowinning operations. The 

correlations formed an integral component of the dynamic electrowinning model developed in this 

project. 

Changes in the physicochemical properties of the electrolyte due to the presence of impurities also affect 

the limiting-current density (Subbaiah and Das, 1994). Although a correlation for predicting the 

limiting-current density for electrorefining applications has previously been developed and validated 

by Kalliomäki et al. (2019), no such model is known to exist for predicting the limiting-current density 

of electrowinning operations. This project, therefore, introduced a validated regression model for 

predicting the limiting-current density associated with direct copper electrowinning electrolytes. The 

model was developed using experimental linear sweep voltammetry test data, generated in this project. 
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The model form including the effect of combined terms (Model B) was determined to be more accurate 

than the model form excluding these effects (Model A). This was confirmed by the respective 

correlation coefficients for the validation data. The R2 was 0.31 for Model A and 0.87 for Model B. 

Similarly, the nRMSE for Model A was 21.3% and 9.3% for Model B. 

It is important to note that the developed limiting-current density models did not account for the effect 

of oxygen evolution at the anode on the mass-transfer conditions at the cathode. Accordingly, the 

models may significantly underestimate the limiting-current density of industrial electrowinning 

operations (Beukes and Badenhorst, 2009), despite having acceptable performance during model 

validation using the experimental data. It is, therefore, acknowledged that the models provide at best 

conservative estimates of the limiting-current density for actual industrial electrowinning tankhouses. 

For the application of the limiting-current density model in this project (i.e., the inclusion of a warning 

message), the conservative nature of the predicted estimates was satisfactory. 

ii. Development of a semi-empirical dynamic model 

A semi-empirical dynamic model for predicting the performance of direct copper electrowinning 

operations was developed and computerised using MATLAB (2023). The developed model used a 

conceptual resistance network consisting of parallel electrode pairs to represent an electrowinning cell, 

as previously done by Aminian et al. (2000) and Tucker (2019), for steady-state models. The network 

was combined with reaction-rate kinetics (for copper reduction and water oxidation), mass-transfer 

kinetics (for iron reduction and oxidation), property correlations, and mass conservation equations to 

form the dynamic model.  

The electrowinning performance was quantified using the key performance indicators (KPIs), namely, 

the copper plating rate, current efficiency, and specific energy consumption (SEC). The model input 

variables are readily measured in tankhouses or have the potential to be readily measured with the 

technology currently available. The manipulated input variables required are the current, advance 

electrolyte composition (including nickel, cobalt, and iron as impurities), and electrolyte flow rate. The 

model includes the ability to specify a step or pulse disturbance in any one manipulated variable at a 

time. This feature allows for the response of the KPIs to changes in the input variables to be investigated; 

fostering an understanding of how process variables interact. Following, the original scientific 

contribution established in this objective is a dynamic copper electrowinning model that is sufficiently 

accurate so as to enable the investigation and development of improved control strategies. It is expected 

that the developed dynamic model for copper electrowinning operations has the potential to be a 

valuable tool, specifically for African operations employing resource-intensive direct copper 

electrowinning. 
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iii. Development of online parameter-fitting approach 

The semi-empirical nature of the model necessitated the inclusion of an appropriate parameter-fitting 

approach to calibrate the model parameters for specific applications. The model parameters included 

the Butler–Volmer equation parameters (for copper reduction and water oxidation), the mass-transfer 

coefficients (for iron reduction and oxidation), and a current loss parameter.  

Two parameter-fitting approaches were developed in this project: an offline and an online parameter-

fitting approach. The offline parameter-fitting approach was developed in order to fit for the parameters 

that were not included in the online method, as well as for the initial states of those parameters that were 

included in the online method. Moreover, inclusion of the offline approach enables alternative model 

applications (such as operator training) for tankhouses where only limited data are available. The offline 

approach entailed calibrating the model to each of the datasets used in this project, through a series of 

nonlinear regressions. A resampling method, k-fold cross validation, was incorporated to extract 

maximum usage out of the limited data available for each training set. 

Parameter sensitivity analyses showed the model-predicted KPIs were most sensitive to changes in the 

coefficients for the water oxidation reaction, and the mass-transfer coefficient for iron reduction. The 

sensitivity of the model-predicted outputs to changes in the parameters bode well for the application of 

the parameter-fitting approach in calibrating the model to diverse datasets. Further, variability analyses, 

conducted using resampling with replacement, confirmed the time-varying nature of the model 

parameters. 

The developed online parameter-fitting approach ensured that the time-varying model parameters did 

not become outdated as process conditions changed. The online approach is, therefore, crucial for 

ensuring that the model fidelity is sufficiently high for use in control applications. Based on the 

conducted sensitivity and variability analyses, four parameters were selected for inclusion in the online 

approach (charge-transfer coefficient for water oxidation, exchange current density for water oxidation, 

mass-transfer coefficient for iron reduction, and current loss parameter). 

The moving horizon estimation (MHE) method, using the least-squares error objective function, was 

selected for use in developing the online approach. Two types of system models were investigated for 

use: fundamental system models and surrogate system models. The fundamental models utilised similar 

equations and procedures as used in the offline parameter-fitting approach. The surrogate models were 

investigated mainly as a future-orientated strategy for online parameter-fitting using computationally 

intensive datasets. The simple model form selected (polynomial regression) was, however, determined 

to be inadequate during conceptual validation. Consequently, it was elected to use the fundamental 
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system models for the remainder of the project. It is recommended that more advanced surrogate model 

structures, such as artificial neural networks, are investigated for use in future work.  

The implementation of MHE for online parameter-fitting is not novel; it has been consistently used in 

the oil and gas industry for applications such as process monitoring (Hedengren and Eaton, 2017). As 

far as could be ascertained, MHE has, however, not previously been used to develop an online 

parameter-fitting approach to accompany a model for copper electrowinning operations. The original 

scientific contribution associated with the developed approach is, therefore, the implementation of an 

online parameter-fitting approach to continuously refit for electrowinning model parameters, based on 

evolving input data.  

As alluded above, refitting for parameters online requires a large dataset, containing frequent, good 

quality measurements. Although the developed online parameter-fitting approach was validated in 

principle, industrial application will require the availability of good quality real-time data. It should, 

therefore, be noted that the data validation conducted in this dissertation was limited to offline 

validation, in order to ensure the data quality was not detrimental to the performance of the 

electrowinning model. As the quality of the training data has a significant impact on model performance, 

it is recommended that online data validation strategies should be investigated in future work for 

specific application to electrowinning operations. 

iv. Validation of the developed model 

The developed electrowinning model was validated using an iterative process consisting of conceptual 

model validation, computerised model verification, and operational validation. The conceptual 

validation was completed using three types of structure-orientated behaviour tests: extreme-condition 

tests, behaviour sensitivity tests, and phase behaviour tests. The extreme-condition tests confirmed that 

the model should be used with caution outside the standard range of operation for electrowinning 

tankhouses. The behaviour sensitivity tests showed that the model-predicted output variables were most 

sensitive to the applied current density, followed by the iron concentration in the advance electrolyte. 

This was determined to align well with the expected sensitivity of a real-life electrowinning tankhouse 

to changes in the input conditions. Lastly, the phase behaviour tests confirmed that the model was able 

to predict most phase relationships between electrowinning variables. The only noteworthy exception 

was the increase predicted in SEC for an increase in advance electrolyte copper concentration. Overall, 

during the conceptual model validation process the assumptions underlying the model, as well as the 

internal structure thereof, were found to be adequate for the model purpose. 

After computerised verification, which entailed incorporating relevant warning and error messages in 

the code, operational validation of the model was considered. The model was able to predict the KPIs 
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for both the steady-state experimental and industrial data with reasonable accuracy. The current 

efficiency was predicted with a mean absolute percentage error (MAPE) of 2.1% for the experimental 

data and 3.1% for the industrial data. Likewise, the MAPEs for the copper plating rates were 2.1% and 

3.1%, for the experimental and industrial data, respectively. The SEC was predicted with a MAPE of 

3.4% for the experimental data and 24.4% for the industrial data. The high error value for the prediction 

of the industrial SEC is likely the result of the empirical models used to estimate the actual real-life 

values, as the required measurements were not available for the tankhouse. 

Operational validation of the model using the dynamic experimental data had limited value due to the 

quality of the data. Experimental data was also compared with available literature data, and it was 

determined that the data were not necessarily a good representation of the expected behaviour of the 

copper electrowinning process. Recommendations for future work to improve the quality of the 

generated experimental data are included Section 10.2. Nonetheless, experimental and literature data 

proved useful for commenting on the robustness of the model (excluding online fitting) for use with 

bad training data.  

Overall, the model performance for the dynamic experimental data was acceptable, given the constraints 

on data quality. The only exception was the model-predicted increase in SEC for an increase in advance 

electrolyte copper concentration, as also noted during conceptual model validation. Although literature 

alludes to increases in copper concentration above approximately 40 g/L resulting in increases in the 

SEC, more research is required to better understand this phenomenon. Caution is, therefore, advised 

when interpreting the dynamic response of this KPI to changes in copper concentration, until the 

dependency is better characterised with data relevant to a specific application. 

The most crucial section of the operational validation was the work conducted using the dynamic 

industrial tankhouse data. The favourable performance of the model extended credibility to the use 

thereof for predicting the performance of the direct copper electrowinning tankhouse from which the 

data was obtained. Overall, implementation of the online parameter-fitting approach resulted in a model 

having good fidelity. The average MAPE for the current efficiency over the five 14-day cycles 

investigated for the selected cell was 23.3% when the online parameter-fitting approach was 

deactivated, and 7.9% when it was activated. Similarly, the nRMSE values for the current efficiency 

was 23.7% and 10.0%, for the online parameter-fitting approach excluded and included, respectively. 

The nRMSE for the average copper plating rate over the five validation cycles was 33.3% without 

online parameter-fitting, and 29.3% with. The MAPE for the SEC and potential over the five validation 

cycles excluding online parameter-fitting was 44.5%, and 6.9%, respectively. The corresponding 

nRMSE values were 83.3% for the SEC and 7.8% for the potential. With the online parameter-fitting 

activated the MAPE for the SEC was 26.4%, and for the potential 2.8%. The corresponding nRMSE 

values were 79.2% for the SEC and 3.9% for the potential.  
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The goal of the developed model is to enable the investigation of advanced control strategies that are 

likely to be based on predictions of the copper plating rate, spent electrolyte concentration, and/or 

potential. The high-fidelity model predictions for the beforementioned variables, therefore, bode well 

for application of the model, despite the error values for the SEC being consistently above the thresholds 

selected in this project for acceptable model fit. 

Key limitations associated with the model were established and discussed during the validation process. 

Again, the model is only valid under standard operating conditions. Furthermore, activation of the 

online parameter-fitting approach is required to capture the effect of changing mass-transfer conditions 

resulting from changes in copper and nickel concentrations, on the mass-transfer-limited iron reduction 

reaction. Moreover, the online approach also accounts for the effect of cobalt on the anodic 

overpotential; a phenomenon that could not be fundamentally modelled.  

In conclusion, the validation process showed that the model, and accompanying parameter-fitting 

approach, had a satisfactory range of accuracy, for the intended purpose of the model. Although rigorous 

conceptual and operational validation confirmed the model is an adequate representation of the 

electrowinning system, it is acknowledged that successful application of the model to one tankhouse 

does not necessarily imply that it could be used on another. It is, therefore, recommended that the 

operational validation step be repeated to verify the model performance for other copper electrowinning 

tankhouses. 

Based on the recommended applications, the model developed and validated as part of this project has 

the potential to make a meaningful contribution to the field of copper electrowinning. This contribution 

includes assisting in operator training, process monitoring, and early-fault detection, as well as in the 

investigation and development of improved control strategies. 

10.2 RECOMMENDATIONS AND FUTURE WORK 

Although the model has been found sufficiently accurate and comprehensive for the intended purpose 

described in this project, it is acknowledged that improvements could be made to further advance model 

predictions. The first recommendation pertains to the model-predicted response for the SEC when a 

disturbance in copper concentration occurs, which contradicts the expected behaviour. It is 

recommended that experiments be conducted to better characterise the relationship between the copper 

concentration and the SEC. This is required to ensure that the fundamental model can be updated to 

fully describe the mechanisms underlying the relationship. If this is not possible, it is recommended that 

historical plant data are analysed before the model is applied to a specific industrial tankhouse. 

Secondly, it is recommended that the effect of deadtime be investigated for inclusion in the model.  
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Barring the recommendations made for improving model predictions, it is also possible to expand the 

scope of the model to include additional inputs or outputs. The scope of the model could be expanded 

to include the performance indicator for the quality of copper as an additional output variable. This 

could be done by employing computational fluid dynamics to, for example, determine the effect of 

electrolyte flow rate on the deposited copper quality. Nevertheless, the accuracy and usefulness of 

predicting the quality will likely be limited due to the large number of variables affecting it. It would, 

however, be trivial to include pre-emptive warning messages in the model, based on the input variables, 

if the copper quality is expected to be outside the acceptable range. The prediction of localised growths, 

resulting in short circuits, could, for example, be included. This would require the generation of 

experimental data to investigate the relationships between input variables and copper quality, if no such 

data already exist. Clear, quantifiable ranges, within which the cathode quality is acceptable, would 

need to be determined for each input variable. The effect of smoothing agents on the quality of copper 

could also be incorporated as a separate feature of the model, using empirical correlations.  

The scope of the model could also be expanded to include the prediction of performance outside the 

range of standard operating conditions. This would entail including mass-transfer effects for the copper 

reduction and water oxidation, as well as reaction-rate effects for the iron reduction and oxidation. The 

limiting-current density, already calculated in the model, could be used to reflect the system boundaries 

beyond standard conditions for copper reduction. Although the additional complexity associated with 

including non-standard operating conditions in the model will be useful for operator training, it might 

not necessarily be warranted. This is because operation outside standard operating conditions for 

industrial tankhouses is rare. If the process is operating outside the range of standard operating 

conditions, it is likely because a fault occurred. Therefore, it would possibly be more useful to 

incorporate warning messages or alarms in the model, based on various input and intermediate 

variables, to indicate when the process is operating outside of the expected operating conditions. The 

above discussion assumes that the reaction-rate-limited nature of copper reduction and water oxidation, 

as well as the mass-transfer-limited nature of iron, which is well reported in literature, applies to the 

majority of tankhouses. If this is not the case, the model could easily be adapted to use the correct 

mechanism as applicable to the specific tankhouse.  

The effect of water losses due to evaporation and the production of acid mist could also be incorporated. 

Although the prediction of acid mist generation might not necessarily greatly improve the model 

accuracy, it does hold potential for predicting an increase in acid mist generation based on input 

variables. This would aid in creating a safer environment in the tankhouse. The bottleneck for 

implementation of such a feature will likely be the generation or acquisition of data for use in training 

the model to accurately predict acid mist generation. 
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Next, the dynamic model could be combined with existing electronic circuit simulation software to 

predict the distribution of current in an electrowinning cell. The resistance network used as a basis for 

the dynamic model would allow for easy integration. It is likely that only the scale-up approach would 

need to be changed. This is because the individual current density associated with each electrode pair 

would be available, instead of assuming that every electrode pair is identical, as is currently done. The 

integrated model could be used to predict the effect of poor electrode alignment, short circuits, poor 

cathode contact, and the removal of electrodes on the current distribution in the cell, as well as the effect 

thereof on the KPIs.  

The remainder of the recommendations is not directly applicable to the model itself, but rather to the 

data used to train and validate it. The generation of acceptable dynamic experimental data for use in 

model training and validation, having sufficiently large responses in output variables to eliminate 

experimental uncertainty, whilst keeping the input variables within the narrow range of standard 

operating conditions, proved challenging. Although limited options are available for addressing this 

challenge, as the model will always need to be trained and validated for input variables within a standard 

range, extending the duration of the experiments could result in more discernible trends. This is 

specifically relevant to the direct copper electrowinning bench-scale electrowinning experiments, where 

the lower current densities translated to a lower mass of copper plated.  

Extended run-times were not possible for the experiments conducted during this project, as it would 

require an enlarged bench-scale setup. This is to ensure the advance electrolyte, which is continuously 

mixed with the spent electrolyte, is not depleted of copper. Alternatively, the bench-scale setup could 

be adapted to ensure either a continuous fresh stream of advance electrolyte or to replenish the advance 

electrolyte. This would be a very resource-intensive approach due to the large volume of electrolyte 

required.  It is acknowledged that there is limited value in conducting future electrowinning tests if 

appropriate dynamic industrial tankhouse data are available for training the model in a specific 

application. 

The final recommendation entails the investigation of online data validation strategies, as previously 

mentioned (Section 10.1). The performance of the electrowinning model is significantly affected by the 

quality of the data used for training and validation. Specifically for advanced control applications where 

online real-time data are required, the inclusion of an appropriate data validation strategy would 

complement the developed model.  
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APPENDIX A 

EXPERIMENTAL PROCEDURE 

Appendix A provides additional information pertaining to the generation of the experimental data 

required in this project, as discussed in Chapter 3 (Property Correlations) and Chapter 5 (Data 

Generation). Detailed information is provided on the experimental designs (Section A.1) and 

experimental procedures (Section A.2). Furthermore, sample calculations are provided for the mass of 

chemicals used and flow rate required (Section A.3). 

A.1 DETAILED EXPERIMENTAL DESIGN 

A.1.1 Electrolyte Properties 

The 2k – 2 fractional factorial design of experiments for the property correlation experiments is given 

below in Table A.1 with coded variables, and Table A.2 with the actual values for the variables. The 19 

experiments were repeated three times at different angular velocities (1.6 rad/s, 3.1 rad/s, and 10.5 rad/s) 

for the limiting-current density measurements, resulting in 57 experiments. 

Table A.1: The 2k – 2 fractional factorial design of experiments for the property correlation experiments. 

Run Factr 1: xCu Factr 2: xFe Factr 3: xNi Factr 4: xCo Factr 5: xH2SO4 Factr 6: T 

1 −1 −1 −1 −1 −1 −1 

2 1 −1 −1 −1 1 −1 

3 −1 1 −1 −1 1 1 

4 1 1 −1 −1 −1 1 

5 −1 −1 1 −1 1 1 

6 1 −1 1 −1 −1 1 

7 −1 1 1 −1 −1 −1 

8 1 1 1 −1 1 −1 

9 −1 −1 −1 1 −1 1 

10 1 −1 −1 1 1 1 

11 −1 1 −1 1 1 −1 

12 1 1 −1 1 −1 −1 

13 −1 −1 1 1 1 −1 

14 1 −1 1 1 −1 −1 

15 −1 1 1 1 −1 1 

16 1 1 1 1 1 1 
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Run Factr 1: xCu Factr 2: xFe Factr 3: xNi Factr 4: xCo Factr 5: xH2SO4 Factr 6: T 

17 (CP) 0 0 0 0 0 0 

18 (CP) 0 0 0 0 0 0 

19 (CP) 0 0 0 0 0 0 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), xNi is the nickel concentration (g/L), 
xCo is the cobalt concentration (g/L), xH2SO4 is the sulfuric acid concentration, and T is the temperature (°C). 
 

Table A.2: The 2k – 2 fractional factorial design of experiments for the property correlation experiments, with conditions 
for the manipulated variables. 

Run xCu (g/L) xFe (g/L) xNi (g/L) xCo (g/L) xH2SO4 (g/L) T (°C) 

1 30 0.5 20 0 20 50 

2 90 0.5 20 0 120 50 

3 30 6 20 0 120 70 

4 90 6 20 0 20 70 

5 30 0.5 65 0 120 70 

6 90 0.5 65 0 20 70 

7 30 6 65 0 20 50 

8 90 6 65 0 120 50 

9 30 0.5 20 3 20 70 

10 90 0.5 20 3 120 70 

11 30 6 20 3 120 50 

12 90 6 20 3 20 50 

13 30 0.5 65 3 120 50 

14 90 0.5 65 3 20 50 

15 30 6 65 3 20 70 

16 90 6 65 3 120 70 

17 (CP) 60 3.3 42.5 1.5 70 60 

18 (CP) 60 3.3 42.5 1.5 70 60 

19 (CP) 60 3.3 42.5 1.5 70 60 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), xNi is the nickel concentration (g/L), 
xCo is the cobalt concentration (g/L), xH2SO4 is the sulfuric acid concentration, and T is the temperature (°C). 
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A.1.2 Screening Experiments 

The three separate small face-centred central composite designs for the screening experiments, each 

incorporating a disturbance in a different manipulated variable, are given below. Table A.3 gives the 

design for a disturbance in factor 1, the advance electrolyte copper concentration. Table A.4 gives the 

design for a disturbance in factor 2, the advance electrolyte iron concentration. Table A.5 gives the 

design for a disturbance in factor 3, the current density. All runs in which the step disturbance led to a 

final level of more than one in the respective variable, were excluded from the design as shown by the 

grey shading. The experimental conditions for all 24 runs are given in Table A.6. 

Table A.3: Small face-centred central composite design for a disturbance in factor 1 (advance electrolyte copper 
concentration). 

Run Factr 1: xCu Factr 2: xFe Factr 3: i Final Value: Factr 1 

1 0 0 1 1 

2 0 1 0 1 

 1 −1 1 2 

 1 0 0 2 

3 −1 0 0 0 

4 0 0 0 1 

5 −1 −1 −1 0 

 1 1 −1 2 

6 0 −1 0 1 

7 0 0 −1 1 

8 −1 1 1 0 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), and i is the current density (A/m2). 

 

Table A.4: Small face-centred central composite design for a disturbance in factor 2 (advance electrolyte iron 
concentration). 

Run Factr 1: xCu Factr 2: xFe Factr 3: i Final Value: Factr 2 

9 0 0 1 1 

 0 1 0 2 

10 1 −1 1 0 

11 1 0 0 1 

12 −1 0 0 1 

13 0 0 0 1 
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Run Factr 1: xCu Factr 2: xFe Factr 3: i Final Value: Factr 2 

14 −1 −1 −1 0 

 1 1 −1 2 

15 0 −1 0 0 

16 0 0 −1 1 

 −1 1 1 2 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), and i is the current density (A/m2). 

 

Table A.5: Small face-centred central composite design for a disturbance in factor 3 (current density). 

Run Factr 1: xCu Factr 2: xFe Factr 3: i Final Value: Factr 3 

 0 0 1 2 

17 0 1 0 1 

 1 −1 1 2 

18 1 0 0 1 

19 −1 0 0 1 

20 0 0 0 1 

21 −1 −1 −1 0 

22 1 1 −1 0 

23 0 −1 0 1 

24 0 0 −1 0 

 −1 1 1 2 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), and i is the current density (A/m2). 

 

Table A.6: Combined design of experiments for the screening experiments, with conditions for manipulated variables. 

Run xCu (g/L) xFe (g/L) i (A/m2) Final Value 

1 40 3 375 55 

Step in xCu 

2 40 6 285 55 

3 25 3 285 40 

4 40 3 285 55 

5 25 1 200 40 

6 40 1 285 55 

7 40 3 200 55 

8 25 6 375 40 
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Run xCu (g/L) xFe (g/L) i (A/m2) Final Value 

9 40 3 375 6 

Step in xFe 

10 55 1 375 3 

11 55 3 285 6 

12 25 3 285 6 

13 40 3 285 6 

14 25 1 200 3 

15 40 1 285 3 

16 40 3 200 6 

17 40 6 285 375 

Step in i 

18 55 3 285 375 

19 25 3 285 375 

20 40 3 285 375 

21 25 1 200 285 

22 55 6 200 285 

23 40 1 285 375 

24 40 3 200 285 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), and i is the current density (A/m2). 

A.1.3 Bench-Scale Electrowinning Experiments 

The OFAT design of experiments for the bench-scale electrowinning experiments is given below in 

Table A.7 with coded variables, and Table A.8 with the actual values for the variables. 

Table A.7: The OFAT design of experiments for the bench-scale electrowinning experiments. 

Run Base Level Step Factor Final Value 

1 −1 xCu 0 

2 −1 xFe 0 

3 −1 xNi 0 

4 −1 xCo 0 

5 −1 i 0 

6 0 xCu 1 

7 0 xFe 1 

8 0 xNi 1 

9 0 xCo 1 
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Run Base Level Step Factor Final Value 

10 0 i 1 

11 1 xCu 0 

12 1 xFe 0 

13 1 xNi 0 

14 1 xCo 0 

15 1 i 0 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), xNi is the nickel concentration (g/L), 
xCo is the cobalt concentration (g/L), xH2SO4 is the sulfuric acid concentration, and i is the current density (A/m2). 
 

Table A.8: The OFAT design of experiments for the bench-scale electrowinning experiments, with conditions for the 
manipulated variables. 

Run Base Level Step Factor Final Value 

1 40 g/L xCu 55 g/L 

2 1 g/L xFe 3 g/L 

3 20 g/L xNi 45 g/L 

4 0.3 g/L xCo 1 g/L 

5 140 A/m2 i 160 A/m2 

6 55 g/L xCu 70 g/L 

7 3 g/L xFe 6 g/L 

8 45 g/L xNi 65 g/L 

9 1 g/L xCo 3 g/L 

10 160 A/m2 i 220 A/m2 

11 70 g/L xCu 55 g/L 

12 6 g/L xFe 3 g/L 

13 65 g/L xNi 45 g/L 

14 3 g/L xCo 1 g/L 

15 220 A/m2 i 160 A/m2 
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A.2 DETAILED PROCEDURE 

A.2.1 Electrolyte Properties 

A.2.1.1 Pycnometer Calibration 

A detailed procedure for calibrating the pycnometer is outlined below, adapted from Chibwe (2020): 

1. Select a pycnometer and the corresponding stopper (lid). Ensure that the lid fits properly on 

the pycnometer. 

2. Clean the pycnometer with distilled water and allow to dry completely. 

3. Weigh the empty pycnometer (with the lid) and record the mass as m1. 

4. Pour distilled water into a beaker and record the temperature thereof as T1. Carefully pour the 

distilled water into the pycnometer to just above the neck (only leave space for the lid to fit). 

5. Place the lid on the pycnometer. A small amount of water must flow out of the capillary hole 

on the lid. Ensure that there is no entrapped air in the pycnometer. 

6. Wipe any excess water from the pycnometer using a lint-free tissue until it is completely dry. 

7. Weigh the full pycnometer (with the lid) and record the mass as m2. 

8. Determine the mass of distilled water in the pycnometer by subtracting the mass of the empty 

pycnometer (m1) from the mass of the full pycnometer (m2). 

9. Using the temperature–density data given below in Table A.9, determine the density of the 

distilled water at the measured temperature (T1). 

Table A.9: Density of distilled water at different temperatures, taken at 1 atm (NIST, 2023). 

Temp.  
(°C) 

Density 
(g/mL) 

Temp.  
(°C) 

Density 
(g/mL) 

Temp.  
(°C) 

Density 
(g/mL) 

Temp.  
(°C) 

Density 
(g/mL) 

14 0.99925 18 0.99860 22 0.99777 26 0.99679 

15 0.99910 19 0.99841 23 0.99754 27 0.99652 

16 0.99895 20 0.99821 24 0.99730 28 0.99624 

17 0.99878 21 0.99800 25 0.99705 29 0.99595 

 

10. Determine the volume of the pycnometer (V1) using Equation A.1. 

 𝑉 =
   [ A.1 ] 

where 𝑚 is the mass (g), 𝑉 is volume (mL), and 𝜌 is density (g/mL). 
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11. Repeat steps 1 through 10 three times and take the average pycnometer volume to determine 

the calibrated volume for the pycnometer/lid set.  

A.2.1.2 Synthetic Electrolyte Preparation 

A detailed procedure for preparing the 250 mL synthetic electrolyte solution is outlined below: 

1. Clean a 600 mL beaker with demineralised water. 

2. Add 100 mL of demineralised water to the container. 

3. Slowly add the required volume of sulfuric acid to the container in approximately 5 mL 

intervals, allowing the mixture to cool down to the touch in between intervals. 

4. Weigh the required mass of copper sulfate, ferric sulfate, nickel sulfate, cobalt sulfate, and 

thiourea and slowly add to the sulfuric acid/water mixture. 

5. Stir the synthetic electrolyte solution with a glass rod until the solid crystals are completely 

dissolved. 

6. Decant the mixture into a volumetric flask and fill with demineralised water up to the 250 mL 

mark. 

A.2.1.3 Conductivity and Density Measurements 

A detailed procedure for measuring the conductivity and density of an electrolyte with known 

composition is outlined below: 

1. Clean a 250 mL bottle with demineralised water and allow to dry completely. 

2. Slowly pour the prepared 250 mL synthetic electrolyte solution (Section A.2.1.2) into the clean 

bottle. 

3. Place the filled bottle into the heating bath and insert the bottle stopper. 

4. If more than one experiment is conducted simultaneously repeat steps 1 to 3 for all 

experiments. 

5. Fill the heating bath with tap water up to the level indicated by the float meter on the heater. 

6. Set the heating bath to 5 °C above the desired temperature for the experiment. 

7. Allow the heating bath to reach the desired temperature, stirring the synthetic electrolyte in the 

bottle/s every 15 minutes.  

8. Once the heating bath reaches temperature, stir the solution/s and confirm the temperature 

inside the bottle/s using the conductivity meter. 
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9. Measure the conductivity and temperature of the solution/s using the conductivity meter. Rinse 

the conductivity probe with distilled water and dry using a lint-free tissue in between samples. 

10. Use a syringe to extract 10 mL of the solution/s and deposit the samples in 15 mL sample vials 

through syringe filters (nylon, 0.45 μm). 

11. Use a syringe to extract 50 mL of each solution and deposit the sample in the clean, calibrated, 

and weighed empty pycnometer. 

12. Place the lid on the pycnometer. A small amount of solution must flow out of the capillary hole 

on the lid. Ensure that there is no entrapped air in the pycnometer. 

13. Wipe any excess solution from the pycnometer using a lint-free tissue until it is completely 

dry. 

14. Weigh the full pycnometer (with the lid) and record the final mass. 

15. Clean the pycnometer with distilled water and allow to dry completely. 

16. Repeat steps 11 to 14 three times for each solution. 

A.2.1.4 Limiting-Current Density Measurements 

A detailed procedure for measuring the limiting-current density of an electrolyte with known 

composition using linear sweep voltammetry is outlined below: 

1. Prepare the synthetic electrolyte solution (Section A.2.1.2) and working electrode (Section 

A.2.1.5) in advance. 

2. Use a syringe to extract 10 mL of the solution and deposit the sample in a 15 mL sample vial 

through a syringe filter (nylon, 0.45 μm). 

3. Slowly pour the prepared synthetic electrolyte solution into a clean 250 mL Erlenmeyer flask. 

Place the flask on a magnetic stirrer and heat to the desired temperature for the experiment.  

4. Fill the heating bath with tap water up to the level indicated by the float meter on the heater. 

This step is only required for the first experiment. 

5. Set the heating bath to 10 °C above the desired temperature for the experiment. 

6. Slowly pour 150 mL of the heated synthetic electrolyte solution into the jacketed reactor vessel 

connected to the heating bath. Plug all ports on the jacketed reactor vessel using bottle stoppers. 

7. Once the heating bath reaches the desired temperature, confirm the temperature inside the 

jacketed reactor vessel using a glass temperature probe. 

8. Insert the counter electrode and reference electrode, both must be equidistant to the working 

electrode. 
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9. Screw in the working electrode. The motor unit should be positioned so that the working 

electrode tip is immersed approximately 1.0 cm into the test solution. Excessive immersion 

may corrode the shaft or tip if the solution seeps into the joint between the shaft and tip (Cohen, 

2018).  

10. Connect the cell cable to the electrodes per the Gamry manual (Cohen, 2018). 

11. Switch on the motor unit. Rotation should be carried out for at least 5 minutes before 

commencing the linear sweep voltammetry test to ensure steady-state hydrodynamic 

conditions at the electrode (Chibwe, 2020). 

12. Confirm the temperature of the synthetic electrolyte solution using a glass temperature probe. 

13. Switch on the interface unit and conduct the linear sweep voltammetry test as instructed by 

Cohen (2018). 

A.2.1.5 Working Electrode Preparation 

A detailed procedure for preparing the working electrode is outlined below, adapted from Chibwe 

(2020): 

1. Attach an appropriate micro-cloth on the bench-top using its adhesive back. 

2. Apply five drops of 3 μm diamond suspension polishing solution to the micro-cloth. 

3. Rinse the electrode surface with distilled water. 

4. Place the electrode face down on the micro-cloth and polish using a smooth figure-eight 

movement for 5 minutes, or until a mirror-finish is reached. The pressure applied during 

polishing should be uniform. 

5. Rinse the electrode surface with acetone, followed by distilled water. 

6. Leave the working electrode to air dry. 
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A.2.2 Bench-Scale Electrowinning Experiments 

A.2.2.1 Synthetic Electrolyte Preparation 

A detailed procedure for preparing the 10 L synthetic electrolyte solution is outlined below: 

1. Clean a 10 L glass container with demineralised water. 

2. Add 5 L of demineralised water to the container. 

3. Slowly add the required volume of sulfuric acid to the container in 100 mL intervals, allowing 

the mixture to cool down to the touch in between intervals. 

4. Weigh the required mass of copper sulfate, ferric sulfate, nickel sulfate, and cobalt sulfate and 

slowly add to the sulfuric acid/water mixture. 

5. Fill the container with demineralised water up to the 10 L mark. 

6. Stir the synthetic electrolyte solution with a PVC paddle until the solid crystals are completely 

dissolved. 

7. The prepared synthetic electrolyte can be stored overnight by sealing the top of the container 

loosely with plastic wrap. 

A.2.2.2 Blank Cathode Preparation 

A detailed procedure for preparing the blank cathodes is outlined below: 

1. Remove all previously deposited copper using an angle grinder and chisel. 

2. Polish the cathode surface with 22 μm (P800) sandpaper, followed by 15 μm (P1200) 

sandpaper. 

3. Rinse the cathode surface with acetone. 

4. Rinse the cathode surface with demineralised water. 

5. Ensure that the cathode surface is visually bright and clean. 

6. Leave the cathode to air dry overnight. 

7. Weigh the prepared blank cathode. 

A.2.2.3 Bench-Scale Electrowinning 

A detailed procedure for executing the bench-scale electrowinning experiments is outlined below: 

1. Prepare the synthetic electrolyte solution (Section A.2.2.1) and blank cathode (Section A.2.2.2) 

in advance. 
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2. Place an empty 10 L glass container (stock solution container) in the heating bath. 

3. Slowly pour the prepared 10 L synthetic electrolyte solution into the stock solution container. 

4. Fill the heating bath with tap water up to the level indicated by the float meter on the heater.  

5. Set the heating bath to 10 °C above the desired temperature of the synthetic electrolyte solution 

in the stock solution container. 

6. Insert the prepared blank cathode in the middle slot of the electrowinning cell (Figure A.1). 

7. Insert two anodes, one on each side of the cathode, 25 mm away from the cathode. 

8. Switch on the power supply (whilst the terminals are not connected to the electrodes) and set 

the voltage to the maximum setting and the current to the minimum setting. This is required to 

operate the power supply in current-controlled mode. Switch off the power supply. 

9. Bolt the negative terminal of the power supply to the cathode hanger bar and the positive 

terminals to the anode hanger bars.  

10. Set the pump to 75% of the maximum speed, prime it by using a 50 mL syringe to fill the feed 

pipe with electrolyte and switch on the pump. Allow at least 30 minutes for the 5 L cell to fill 

up and the electrolyte to reach the desired temperature. 

11. Take a 10 mL sample of the synthetic advance electrolyte solution. 

12. Set the pump to a speed that corresponds to the desired flow rate. Allow at least 5 minutes for 

the flow rate to reach steady state. Take three measurements of the time it takes to fill a 100 mL 

volume to ensure to pump speed translates to the correct flow rate. 

13. Switch on the power supply and set the current setpoint. Start the timer. 

14. After 4 hours of electrowinning induce a step disturbance. 

a. If the step disturbance is in the concentration of an electrolyte component: Add the 

desired amount of either the applicable solid sulfate salt (for an increase disturbance), 

or the volume of concentrated solution (for a decrease disturbance). Stir the solution 

with a PVC paddle until all solids are dissolved.  

b. If the step disturbance is in the current density: Change the current setpoint on the 

power supply. 

15. Allow electrowinning to take place for an additional 4 hours. 

16. Switch off the power supply and pump, and remove the electrodes (Figure A.2). 
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Figure A.1: Photographic representation of the cell used during the bench-scale electrowinning experiments. 

 

 

Figure A.2: Photographic representation of the electrodes used during the experiments, showing the plated cathode (left) 
and anode (right). 
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A.2.2.4 Sampling 

A detailed procedure for sampling the required variables, as per the intervals given in the sampling 

schedule (Table A.10), is outlined below: 

1. Note the potential and current values displayed on the power supply. 

2. Measure the potential over each anode–cathode pair using a multi-meter. 

3. Take 50 mL samples of both the advance and spent electrolytes (valves as per Figure 5.2). 

4. Measure the conductivity and temperature of the respective 50 mL advance and spent 

electrolyte samples using a calibrated conductivity meter (not for screening experiments). 

5. Use a syringe to extract 10 mL of the respective 50 mL advance and spent electrolyte samples 

and deposit the samples in 15 mL sample vials through syringe filters (nylon, 0.45 μm). 

6. Titrate against a potassium dichromate standard to determine the amount of ferrous iron in the 

respective advance and spent electrolyte samples (Section A.2.3) (not for screening 

experiments). 

7. Empty the remainder of both 50 mL samples into the stock solution container. 

8. Use the bucket-and-stopwatch method to determine the flow rate using a 100 mL beaker and 

measuring cylinder. 

Table A.10: Sampling schedule showing intervals at which variables were sampled or measured. The duration refers to 
the time passed from the start of the experiment (taken from when power supply was switched on). 

Duration  
(h) 

Potential  
(V) 

Current  
(A) 

Concentrations 
(g/L) 

Flow rate 
(mL/s) 

Conductivity 
(S/m) 

Titration 

0 x x x x x x 

0.125 x x x  x  

0.25 x x x  x  

0.5 x x x  x x 

0.625 x x x  x  

0.75 x x x  x  

1 x x x x x x 

1.5 x x x  x  

2 x x x x x x 

2.5 x x x  x  

3 x x x x x x 

3.5 x x x  x  
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Duration  
(h) 

Potential  
(V) 

Current  
(A) 

Concentrations 
(g/L) 

Flow rate 
(mL/s) 

Conductivity 
(S/m) 

Titration 

4 x x x x x x 

4.125 x x x  x  

4.25 x x x  x  

4.5 x x x  x x 

4.75 x x x  x  

5 x x x x x x 

5.5 x x x  x  

6 x x x x x x 

6.5 x x x  x  

7 x x x x x x 

7.5 x x x  x  

8 x x x x x x 

 

A.2.2.5 Sample Preparation 

A detailed procedure for preparing the samples for ICP-OES analysis is outlined below: 

1. Calculate the expected maximum total dissolved solids (TDS) and concentration of copper, 

iron, nickel, and cobalt for each experimental run. The quantification range for the 

concentrations is 0.05 mg/L to 100 mg/L and the TDS must be below 2 mass per cent. A 

suitable dilution factor is, therefore, required. 

2. The accuracy of the pipettes and pipetting technique is verified before each set of dilutions are 

conducted. This is done by setting the pipette to the desired volume and taking the mass of 

demineralised water pipetted at this setting. Every time the setting is changed this is repeated 

five times. 

3. The samples are first diluted 10 times by adding 9 mL demineralised water to 1 mL sample. 

Following, the 10 times diluted samples are diluted a further 101 times by adding 10 mL of 

demineralised water to 100 μL sample. This gives a total dilution factor of 1010. 
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A.2.3 Titration 

A.2.3.1 Potassium Dichromate Standard Preparation 

A detailed procedure for preparing the potassium dichromate standard is outlined below: 

1. Clean a 5 L container with demineralised water. 

2. Add 2.5 L of demineralised water to the container. 

3. Weigh the required mass of potassium dichromate and add to the container. 

4. Fill the container with demineralised water up to the 5 L mark. 

5. Stir the standard with a PVC paddle until the potassium dichromate crystals are completely 

dissolved. 

6. Confirm the potassium dichromate concentration of the standard by titrating against a solution 

with a known concentration of ferrous iron. Repeat the titration a total of three times. 

7. The potassium dichromate standard is sensitive to light and must be stored in an opaque bottle. 

A.2.3.2 Titration for Ferrous Iron 

A detailed procedure for determining the amount of ferrous iron in an electrolyte sample, via titration, 

is outlined below, adapted from Masambi (2015): 

1. Clean a 250 mL Erlenmeyer flask with demineralised water and allow to dry completely. 

2. Add 10 mL of the electrolyte sample into the dry Erlenmeyer flask using a pipette. 

3. Add 5 mL of 98% sulfuric acid and 5 mL of 98% phosphoric acid to the Erlenmeyer flask to 

mask any ferric iron present in the sample. 

4. Add three to five drops of 0.005 M sodium diphenylamine indicator to the Erlenmeyer flask, 

using a 1 mL syringe. 

5. Place the Erlenmeyer flask on a magnetic stirrer and stir at 20 rad/s. 

6. Set a 50 mL burette with 0.00084 M potassium dichromate standard (Section A.2.3.1). 

7. Titrate the content of the Erlenmeyer flask against the potassium dichromate standard to a 

purple (or dark blue–green) endpoint. The endpoint is taken when the colour change persists 

for 30 seconds. 

8. Calculate the concentration of ferrous iron in the electrolyte sample per the balanced chemical 

reaction (Equation A.2), using Equation A.3. 

 Cr O + 6Fe + 14H → 2Cr + 6Fe + 7H O  [ A.2 ] 
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 𝑥 =
   

   [ A.3 ] 

where 𝑥  is the concentration (g/L), 𝑀  is the molecular mass (g/mol), and 𝑉 is volume (mL). 

A.3 SAMPLE CALCULATIONS 

A.3.1 Electrolyte Composition 

Copper sulfate 

The mass of copper sulfate (CuSO4·5H2O) that is required to give a certain copper concentration in the 

electrolyte is calculated using Equation A.4. 

 𝑚 ∙ = 𝑥 𝑉
∙  ∙

   [ A.4 ] 

where 𝑀 is the mass (g), 𝑥 is the concentration (g/L), 𝑉 is volume (L), 𝑀 is the molar mass (g/mol), 

and 𝑣 is the stoichiometric coefficient (𝑣 = 1, 𝑣 = 1). 

Ferric sulfate 

The mass of ferric sulfate (Fe2(SO4)3·xH2O) that is required to give a certain iron concentration in the 

electrolyte is calculated using Equation A.5. 

 𝑚 ( ) ∙ = 𝑥 𝑉
( ) ∙ ( ) ∙

   [ A.5 ] 

where 𝑀 is the mass (g), 𝑥 is the concentration (g/L), 𝑉 is volume (L), 𝑀 is the molar mass (g/mol), 

and 𝑣 is the stoichiometric coefficient (𝑣 = 2, 𝑣 ( ) ∙ = 1). 

Nickel sulfate 

The mass of nickel sulfate (NiSO4·7H2O) that is required to give a certain nickel concentration in the 

electrolyte is calculated using Equation A.6. 

 𝑚 ∙ = 𝑥 𝑉
∙ ∙

   [ A.6 ] 

where 𝑀 is the mass (g), 𝑥 is the concentration (g/L), 𝑉 is volume (L), 𝑀 is the molar mass (g/mol), 

and 𝑣 is the stoichiometric coefficient (𝑣 = 1, 𝑣 ∙ = 1). 

Cobalt sulfate 

The mass of cobalt sulfate (CoSO4·7H2O) that is required to give a certain cobalt concentration in the 

electrolyte is calculated using Equation A.7. 
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 𝑚 ∙ = 𝑥 𝑉
∙ ∙

   [ A.7 ] 

where 𝑀 is the mass (g), 𝑥 is the concentration (g/L), 𝑉 is volume (L), 𝑀 is the molar mass (g/mol), 

and 𝑣 is the stoichiometric coefficient (𝑣 = 1, 𝑣 ∙ = 1). 

Sulfuric acid 

The volume of sulfuric acid (H2SO4) that is required to give a certain sulfuric acid concentration in the 

electrolyte is calculated using Equation A.8. 

 𝑉 =
 

   [ A.8 ] 

where 𝑉 is the volume (L), 𝑥 is the concentration (g/L), grade is the purity of sulfuric acid (fraction), 

and 𝜌 is the density (g/L). 

A.3.2 Flow Rate 

The electrolyte flow rate was calculated based on the desired interfacial velocity of 0.1 m3/(h·m2) over 

the electrode surface. The volumetric flow rate was calculated using Equation A.9. 

 𝑄 = 𝑢𝐴   [ A.9 ] 

where 𝑄 is the flow rate (m3/h), 𝑢 interfacial velocity m3/(h·m2), and 𝐴 is the electrode surface area 

(m2). 
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APPENDIX B 

EXPERIMENTAL RESULTS 

Appendix B provides the generated experimental physicochemical property data, as discussed in 

Chapter 3 (Property Correlations). Detailed experimental results are provided (Section B.1), alongside 

relevant sample calculations (Section B.2).  

B.1 ELECTROLYTE PROPERTIES 

Table B.1: Experimental results for the density and conductivity of synthetic electrolytes, per the experimental design 
in Table A.1. 

Run xCu xFe xNi xCo xH2SO4 T  Density (g/L) Conductivity (S/m) 

1 32.1 0.3 21.2 0 20 51.2 1125.0 11.6 

2 92.6 0.5 20.8 0 120 52.2 1300.2 33.4 

3 31.1 3.6 20.1 0 120 70.1 1180.6 46.4 

4 96.2 1.7 20.6 0 20 70.0 1260.0 16.3 

5 32.3 0.4 68.0 0.1 120 71.4 1282.4 36.0 

6 94.2 0.5 67.8 0.1 20 70.6 1361.4 15.5 

7 30.0 1.6 64.2 0.1 20 53.1 1248.8 13.1 

8 68.0 4.1 72.7 0.1 120 51.8 1385.6 27.9 

9 32.5 0.4 21.1 3.0 20 71.4 1124.7 13.1 

10 96.6 0.5 21.7 3.1 120 71.1 1301.1 36.5 

11 34.2 4.0 22.3 3.2 120 53.2 1196.3 41.5 

12 102.3 1.7 22.6 3.3 20 53.1 1278.4 14.1 

13 33.6 0.4 72.1 3.2 120 53.5 1297.3 35.0 

14 97.3 0.5 71.1 3.2 20 53.8 1374.7 12.8 

15 33.6 2.0 71 3.2 20 70.2 1254.4 15.5 

16 74.0 4.2 73.8 3.3 120 71.4 1415.6 28.8 

17 66.1 2.3 46.3 1.6 70 61.4 1278.4 24.3 

18 65.8 2.3 46.2 1.6 70 61.5 1274.7 23.9 

19 66.7 2.3 46.4 1.6 70 61.2 1280.1 24.3 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), xNi is the nickel concentration (g/L), 
xCo is the cobalt concentration (g/L), xH2SO4 is the sulfuric acid concentration, and T is the temperature (°C). 
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Table B.2: Experimental results for the limiting-current density measurements of synthetic electrolytes, per the 
experimental design in Table A.1. 

Run xCu xFe xNi xCo xH2SO4 T  ω ilim (A/m2) 

1 33.1 0.4 21.6 0 20 51 10.5 1863.4 

52 3.1 1034.8 

52 1.6 789.8 

2 97.7 0.6 21.3 0 120 52 10.5 4612.4 

50 3.1 2385.1 

52 1.6 1831.7 

3 33.7 3.8 22.2 0 120 68 10.5 2046.9 

68 3.1 1116.4 

68 1.6 832.7 

4 101.6 2.5 22.2 0 20 70 10.5 5725.8 

70 3.1 3570.1 

69 1.6 2598.8 

5 33.2 0.4 70.3 0 120 66 10.5 1475.3 

69 3.1 795.9 

70 1.6 578.6 

6 98.8 0.5 70.7 0 20 65 10.5 3680.4 

66 3.1 2204.1 

69 1.6 1701.1 

7 32.6 2.0 69.9 0 20 51 10.5 1202.6 

52 3.1 684.0 

52 1.6 491.4 

8 73.5 4.3 77.0 0 120 51 10.5 2206.7 

52 3.1 1259.1 

52 1.6 968.8 

9 33.8 0.4 22.3 3.2 20 68 10.5 2170.9 

68 3.1 1136.6 

67 1.6 825.1 

10 99.3 0.5 21.5 3.1 120 65 10.5 5746.0 

66 3.1 3065.5 

70 1.6 2290.3 
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Run xCu xFe xNi xCo xH2SO4 T  ω ilim (A/m2) 

11 33.3 3.8 21.3 3.1 120 53 10.5 1606.4 

52 3.1 874.5 

52 1.6 619.0 

12 99.9 2.7 21.1 3.0 20 52 10.5 4332.2 

50 3.1 2752.5 

52 1.6 2085.7 

13 33.1 0.4 71.6 3.2 120 48 10.5 1024.7 

48 3.1 554.4 

52 1.6 439.8 

14 97.1 0.5 69.5 3.1 20 50 10.5 2430.4 

50 3.1 1709.7 

49 1.6 1135.1 

15 34.1 2.9 73.6 3.3 20 68 10.5 1529.7 

69 3.1 848.8 

68 1.6 590.2 

16 78.7 4.2 76.4 3.3 120 67 10.5 3853.3 

68 3.1 2177.4 

70 1.6 1655.7 

17 66.7 2.3 47.1 1.5 70 58 10.5 2843.2 

62 3.1 1867.9 

62 1.6 1147.7 

18 68.1 2.4 47.7 1.6 70 59 10.5 3084.2 

59 3.1 1680.4 

58 1.6 1116.9 

19 65.9 2.2 45.9 1.5 70 60 10.5 3124.0 

60 3.1 1688.5 

62 1.6 1179.4 

where xCu is the copper concentration (g/L), xFe is the iron concentration (g/L), xNi is the nickel concentration (g/L), 
xCo is the cobalt concentration (g/L), xH2SO4 is the sulfuric acid concentration, T is the temperature (°C), ω is the 
angular velocity (rad/s), and  ilim is the limiting-current density. 
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B.2 SAMPLE CALCULATIONS 

B.2.1 Experimental Limiting-Current Density 

The linear sweep voltammetry voltammograms generated using the RDE setup were used to determine 

the limiting-current density as described by Chibwe (2020) (Figure B.1). 

 

Figure B.1: Linear sweep voltammetry voltammogram for the RDE showing limiting-current density. 
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APPENDIX C 

DATA VALIDATION RESULTS 

Appendix C provides additional information pertaining to the experimental datasets generated (Chapter 

5) and validated (Chapter 6), in this project. The validated datasets are provided for the screening 

experiments and the bench-scale electrowinning experiments (Section C.1).  

C.1  VALIDATED DYNAMIC EXPERIMENTAL DATA 

C.1.1 Screening Experiments 

Table C.1: Validated dynamic electrowinning data for the screening experiment corresponding to Run 1 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 11.36 3.05 46.02 2.43 46.02 2.43 0 3.43 

0.125 11.35 3.03 46.37 2.40 46.05 2.32 1.6 3.43 

0.25 11.35 2.95 47.25 2.43 46.08 2.50 3.21 3.43 

0.5 11.35 2.89 46.74 2.46 46.77 2.54 6.42 3.43 

0.625 11.35 2.83 47.67 2.52 47.46 2.59 8.02 3.43 

0.75 11.35 2.79 46.07 2.42 46.29 2.54 9.63 3.43 

7 11.35 2.74 47.80 2.59 45.83 2.74 12.84 3.57 

1 11.35 2.71 45.27 2.45 44.01 2.48 19.25 3.71 

1.5 11.35 2.66 45.11 2.48 43.45 2.53 25.67 3.65 

2 11.35 2.66 46.51 2.71 43.24 2.62 32.09 3.54 

2.5 11.35 2.66 45.01 2.52 41.34 2.59 38.51 3.66 

3 11.35 2.61 44.01 2.59 42.93 2.64 44.93 3.78 

3.5 11.35 2.62 43.56 2.62 40.45 2.59 51.34 3.78 

4 11.35 2.59 69.34 2.38 40.57 2.65 52.95 3.78 

4.125 11.35 2.60 72.86 2.49 40.16 2.57 54.55 3.78 

4.25 11.35 2.60 73.33 2.52 41.90 2.55 57.76 3.78 

4.625 11.35 2.55 73.66 2.53 44.18 2.50 59.37 3.78 

4.75 11.35 2.55 69.46 2.47 47.73 2.60 60.97 3.78 

5 11.35 2.55 66.08 2.52 56.34 2.59 64.18 3.78 

5.5 11.36 2.54 59.42 2.55 57.43 2.54 70.60 3.78 

6 11.35 2.44 56.78 2.56 56.02 2.59 77.02 3.43 
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Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

6.5 11.36 2.63 55.46 2.56 54.83 2.63 83.43 3.53 

7 11.35 2.64 55.53 2.56 53.87 2.58 89.85 3.39 

7.5 11.36 2.65 54.81 2.56 51.88 2.56 96.27 3.49 

8 11.35 2.64 53.49 2.59 50.59 2.59 102.69 3.60 

 

Table C.2: Validated dynamic electrowinning data for the screening experiment corresponding to Run 2 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.64 2.20 49.04 6.47 49.04 6.47 0 3.64 

0.125 8.64 2.12 48.42 5.87 47.99 6.49 1.04 3.64 

0.25 8.64 2.19 47.54 6.17 47.22 6.22 2.08 3.64 

0.5 8.64 2.17 49.10 6.43 47.25 6.42 4.17 3.64 

0.625 8.64 2.16 48.23 6.49 45.78 6.25 5.21 3.64 

0.75 8.64 2.15 47.16 6.31 46.52 6.31 6.25 3.64 

7 8.64 2.14 47.31 6.31 46.07 6.35 8.34 3.81 

1 8.64 2.12 48.02 6.49 46.22 6.46 12.51 3.64 

1.5 8.64 2.11 47.80 6.45 45.11 6.26 16.68 3.46 

2 8.64 2.10 45.25 6.22 45.69 6.53 20.85 3.62 

2.5 8.64 2.09 46.82 6.51 45.96 6.61 25.01 3.78 

3 8.64 2.08 43.57 6.12 43.75 6.39 29.18 3.86 

3.5 8.64 2.08 44.86 6.42 43.52 6.55 33.35 3.93 

4 8.64 2.08 74.56 6.28 44.31 6.73 34.40 4.26 

4.125 8.64 2.08 78.25 6.20 42.05 6.34 35.44 4.26 

4.25 8.64 2.07 78.95 6.19 43.67 6.36 37.52 4.26 

4.625 8.64 2.06 73.62 5.80 47.74 6.51 38.56 4.26 

4.75 8.64 2.06 81.86 6.47 50.65 6.34 39.61 4.26 

5 8.64 2.05 71.34 6.08 58.76 6.27 41.69 4.58 

5.5 8.64 2.05 63.44 6.18 62.77 6.20 45.86 4.58 

6 8.64 2.05 59.36 6.45 60.97 6.30 50.03 4.58 

6.5 8.64 2.05 59.94 6.45 56.52 6.17 54.20 4.73 

7 8.64 2.06 56.09 6.10 56.83 6.10 58.37 4.89 
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Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

7.5 8.64 2.06 58.21 6.24 57.04 6.29 62.54 4.78 

8 8.63 2.07 59.27 6.53 55.01 6.02 66.71 4.67 

 

Table C.3: Validated dynamic electrowinning data for the screening experiment corresponding to Run 3 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.63 2.29 29.03 2.49 29.03 2.49 0 3.53 

0.125 8.63 2.48 29.73 2.43 29.31 2.53 1.23 3.53 

0.25 8.63 2.42 30.43 2.66 28.82 2.43 2.46 3.53 

0.5 8.63 2.36 29.95 2.61 29.37 2.54 4.91 3.53 

0.625 8.63 2.37 30.18 2.60 29.13 2.59 6.14 3.53 

0.75 8.63 2.30 32.71 2.64 28.25 2.50 7.37 3.53 

7 8.63 2.33 30.04 2.66 28.83 2.62 9.83 3.51 

1 8.63 2.26 29.25 2.66 28.25 2.69 14.74 3.49 

1.5 8.63 2.30 29.46 2.66 27.41 2.59 19.65 3.00 

2 8.63 2.27 28.64 2.58 26.97 2.61 24.57 3.57 

2.5 8.63 2.26 28.70 2.49 25.96 2.59 29.48 4.14 

3 8.63 2.26 28.03 2.64 24.79 2.59 34.40 4.20 

3.5 8.63 2.25 27.13 2.57 24.03 2.60 39.31 4.26 

4 8.63 2.24 58.13 2.60 24.81 2.60 40.54 4.57 

4.125 8.63 2.25 61.63 2.57 25.48 2.60 41.77 4.57 

4.25 8.63 2.18 60.88 2.50 26.91 2.60 44.22 4.57 

4.625 8.63 2.15 61.28 2.55 30.03 2.61 45.45 4.57 

4.75 8.63 2.14 60.61 2.59 34.25 2.61 46.68 4.57 

5 8.63 2.13 54.53 2.64 41.51 2.58 49.14 4.88 

5.5 8.63 2.14 45.13 2.66 45.33 2.59 54.05 4.76 

6 8.63 2.15 40.31 2.55 43.38 2.63 58.96 4.76 

6.5 8.63 2.14 42.80 2.63 42.85 2.62 63.88 4.76 

7 8.63 2.15 42.41 2.71 40.88 2.61 68.79 4.64 

7.5 8.64 2.15 41.24 2.70 40.43 2.68 73.70 4.68 

8 8.63 2.15 41.00 2.56 39.73 2.69 78.62 4.72 

Stellenbosch University https://scholar.sun.ac.za



260 
 

Table C.4: Validated dynamic electrowinning data for the screening experiment corresponding to Run 4 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.65 2.18 49.75 2.52 49.75 2.52 0 3.23 

0.125 8.65 2.22 48.68 2.62 47.78 2.62 1.24 3.63 

0.25 8.65 2.22 48.65 2.57 45.8 2.48 2.49 3.63 

0.5 8.65 2.20 48.68 2.61 46.96 2.54 4.97 4.02 

0.625 8.65 2.19 50.48 2.67 46.51 2.51 6.22 3.94 

0.75 8.65 2.18 49.18 2.56 47.42 2.69 7.46 3.94 

7 8.65 2.17 49.36 2.63 46.74 2.55 9.95 3.85 

1 8.65 2.15 47.83 2.64 45.78 2.46 14.92 3.78 

1.5 8.65 2.14 48.63 2.69 47.69 2.66 19.89 3.71 

2 8.65 2.12 47.18 2.62 44.94 2.54 24.87 4.07 

2.5 8.65 2.12 46.50 2.69 44.88 2.61 29.84 4.43 

3 8.65 2.11 45.97 2.63 44.50 2.69 34.81 4.46 

3.5 8.65 2.11 45.06 2.69 43.45 2.59 39.78 4.48 

4 8.65 2.11 78.10 2.49 43.52 2.59 41.03 4.78 

4.125 8.65 2.11 80.11 2.56 42.55 2.59 42.27 4.78 

4.25 8.65 2.10 79.40 2.52 46.71 2.56 44.76 4.78 

4.625 8.65 2.09 78.97 2.60 48.56 2.71 46.00 4.78 

4.75 8.65 2.08 77.91 2.57 53.24 2.69 47.24 4.78 

5 8.65 2.07 68.75 2.55 64.52 2.59 49.73 5.09 

5.5 8.65 2.08 65.16 2.57 63.45 2.55 54.70 5.13 

6 8.65 2.08 59.92 2.68 61.88 2.67 59.68 5.18 

6.5 8.65 2.08 59.77 2.64 59.58 2.60 64.65 5.19 

7 8.65 2.09 59.03 2.63 58.72 2.70 69.62 5.20 

7.5 8.65 2.09 60.08 2.66 58.13 2.61 74.60 4.95 

8 8.65 2.09 57.96 2.61 55.64 2.58 79.57 4.69 
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Table C.5: Validated dynamic electrowinning data for the screening experiment corresponding to Run 5 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.06 2.14 30.25 0.86 30.25 0.86 0 3.24 

0.125 6.06 2.16 31.71 0.86 29.64 0.88 0.85 3.53 

0.25 6.06 2.16 30.84 0.87 29.28 0.86 1.71 3.81 

0.5 6.06 2.14 31.29 0.88 30.07 0.87 3.41 3.69 

0.625 6.06 2.13 30.49 0.86 29.85 0.86 4.27 3.69 

0.75 6.06 2.13 29.92 0.86 29.17 0.86 5.12 3.69 

7 6.06 2.12 30.34 0.92 29.00 0.88 6.83 3.57 

1 6.06 2.10 29.43 0.88 29.11 0.87 10.24 3.60 

1.5 6.06 2.10 29.36 0.88 27.54 0.86 13.65 3.63 

2 6.06 2.09 28.97 0.88 26.27 0.82 17.07 4.02 

2.5 6.06 2.08 28.35 0.86 27.92 0.89 20.48 4.41 

3 6.06 2.08 27.97 0.86 26.80 0.89 23.89 4.05 

3.5 6.06 2.09 28.29 0.88 27.03 0.86 27.31 3.69 

4 6.06 2.09 58.49 0.86 26.22 0.86 28.16 3.89 

4.125 6.06 2.08 62.69 0.85 27.52 0.88 29.01 3.89 

4.25 6.06 2.06 63.79 0.86 30.22 0.89 30.72 4.08 

4.625 6.06 2.06 62.11 0.87 32.49 0.84 31.57 4.20 

4.75 6.06 2.05 61.26 0.88 36.37 0.88 32.43 4.20 

5 6.06 2.03 55.04 0.86 42.59 0.87 34.13 4.31 

5.5 6.06 2.03 45.82 0.85 45.74 0.88 37.55 4.11 

6 6.06 2.03 43.07 0.90 44.28 0.89 40.96 3.90 

6.5 6.06 2.04 43.16 0.88 44.00 0.91 44.37 4.24 

7 6.06 2.03 43.15 0.88 43.32 0.88 47.79 4.58 

7.5 6.06 2.03 41.64 0.84 42.18 0.90 51.20 4.41 

8 6.06 2.03 41.80 0.93 42.64 0.91 54.62 4.25 
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Table C.6: Validated dynamic electrowinning data for the screening experiment corresponding to Run 6 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.64 2.20 47.03 0.84 47.03 0.84 0 4.90 

0.125 8.64 2.22 48.78 0.86 48.37 0.85 1.24 4.90 

0.25 8.64 2.22 49.64 0.85 47.29 0.85 2.48 4.90 

0.5 8.63 2.21 47.26 0.85 46.59 0.85 4.97 4.90 

0.625 8.64 2.21 48.91 0.86 46.59 0.85 6.21 4.90 

0.75 8.64 2.21 48.75 0.86 46.57 0.86 7.45 4.90 

7 8.63 2.2 47.73 0.83 47.06 0.84 9.93 5.27 

1 8.63 2.19 46.50 0.82 45.95 0.86 14.90 4.66 

1.5 8.63 2.18 46.83 0.83 45.13 0.85 19.86 4.04 

2 8.64 2.18 47.04 0.86 45.13 0.87 24.83 3.93 

2.5 8.64 2.18 46.24 0.88 45.25 0.89 29.80 3.82 

3 8.63 2.18 45.70 0.88 41.90 0.84 34.76 4.26 

3.5 8.63 2.18 45.17 0.87 42.57 0.85 39.73 4.20 

4 8.63 2.19 69.53 0.81 43.16 0.86 40.97 4.14 

4.125 8.63 2.19 76.05 0.89 43.09 0.88 42.21 4.14 

4.25 8.63 2.18 72.44 0.84 45.20 0.83 44.69 4.14 

4.625 8.63 2.17 72.67 0.84 49.99 0.88 45.93 4.14 

4.75 8.63 2.16 72.36 0.86 55.93 0.91 47.18 4.14 

5 8.63 2.16 70.17 0.87 58.92 0.87 49.66 4.16 

5.5 8.63 2.16 62.73 0.88 59.09 0.88 54.62 4.18 

6 8.63 2.16 59.12 0.87 59.26 0.87 59.59 4.71 

6.5 8.63 2.17 59.00 0.88 58.37 0.88 64.56 4.78 

7 8.63 2.17 59.29 0.90 59.22 0.90 69.52 4.85 

7.5 8.63 2.17 61.03 0.93 59.33 0.92 74.49 4.62 

8 8.64 2.21 59.55 0.91 57.43 0.91 79.45 4.39 
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Table C.7: Validated dynamic electrowinning data for the screening experiment corresponding to Run 7 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.06 2.18 47.28 2.45 47.28 2.45 0 3.61 

0.125 6.06 2.34 49.47 2.50 48.43 2.60 0.80 3.61 

0.25 6.06 2.38 47.63 2.52 48.75 2.57 1.60 3.61 

0.5 6.06 2.59 48.12 2.44 48.03 2.65 3.21 3.61 

0.625 6.06 2.23 47.89 2.56 46.94 2.53 4.01 3.61 

0.75 6.06 2.24 49.21 2.63 46.85 2.56 4.81 3.61 

7 6.06 2.57 48.60 2.56 47.58 2.64 6.42 3.53 

1 6.06 2.67 48.72 2.66 47.78 2.59 9.62 3.96 

1.5 6.06 2.22 48.58 2.67 47.51 2.64 12.83 4.39 

2 6.06 2.20 48.57 2.61 46.61 2.63 16.04 3.90 

2.5 6.06 2.20 47.07 2.60 46.67 2.58 19.25 3.41 

3 6.06 2.21 47.03 2.61 46.00 2.68 22.46 3.42 

3.5 6.06 2.22 47.70 2.61 46.37 2.70 25.67 3.42 

4 6.06 2.24 77.55 2.64 44.71 2.57 26.47 3.56 

4.125 6.06 2.53 81.87 2.75 45.32 2.68 27.27 3.56 

4.25 6.06 2.82 77.79 2.48 47.07 2.70 28.87 3.56 

4.625 6.06 2.58 79.05 2.46 46.02 2.54 29.68 3.56 

4.75 6.06 2.70 77.97 2.43 46.51 2.55 30.48 3.56 

5 6.06 2.58 78.40 2.48 54.50 2.56 32.08 3.71 

5.5 6.06 2.65 70.20 2.59 64.79 2.54 35.29 3.76 

6 6.06 2.65 64.75 2.58 65.80 2.62 38.50 3.81 

6.5 6.06 2.76 61.01 2.62 62.24 2.60 41.71 3.85 

7 6.06 2.65 60.47 2.49 63.24 2.80 44.91 3.90 

7.5 6.06 2.61 62.46 2.52 60.92 2.71 48.12 3.91 

8 6.06 2.73 62.52 2.55 59.88 2.68 51.33 3.92 
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Table C.8: Validated dynamic electrowinning data for the screening experiment corresponding to Run 8 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 11.35 2.95 30.54 5.00 30.54 5.00 0 2.81 

0.125 11.35 2.72 30.73 5.40 26.25 4.76 1.53 2.81 

0.25 11.35 2.63 29.21 5.01 28.30 5.10 3.05 2.81 

0.5 11.35 2.35 29.87 5.27 27.77 4.91 6.10 2.81 

0.625 11.35 2.37 28.89 4.83 26.78 5.03 7.63 2.99 

0.75 11.35 2.32 29.50 5.10 27.55 5.16 9.15 2.81 

7 11.35 2.29 29.39 5.11 28.10 5.21 12.21 2.63 

1 11.35 2.22 29.06 5.49 27.62 5.08 18.31 2.73 

1.5 11.35 2.21 27.97 5.18 25.35 4.96 24.41 3.67 

2 11.35 2.21 27.12 5.13 24.87 5.14 30.51 3.82 

2.5 11.35 2.21 26.06 4.91 23.58 5.04 36.62 3.98 

3 11.35 2.19 25.21 5.26 23.64 5.24 42.72 3.88 

3.5 11.35 2.20 24.82 5.06 22.92 5.14 48.82 3.79 

4 11.35 2.19 53.08 4.98 24.97 5.24 50.35 4.02 

4.125 11.35 2.17 55.99 4.89 23.77 5.11 51.87 4.02 

4.25 11.35 2.12 58.89 4.80 26.57 5.17 54.92 4.02 

4.625 11.35 2.10 56.66 4.89 30.37 5.27 56.45 4.02 

4.75 11.35 2.09 59.14 5.20 33.37 5.01 57.97 4.02 

5 11.35 2.08 50.55 5.10 40.40 5.30 61.03 4.24 

5.5 11.35 2.08 45.79 5.22 42.33 5.07 67.13 4.49 

6 11.35 2.10 37.51 5.08 38.66 4.97 73.23 4.74 

6.5 11.35 2.11 36.84 4.90 36.01 4.70 79.33 3.90 

7 11.35 2.12 35.79 4.96 37.2 5.11 85.44 4.51 

7.5 11.35 2.12 36.93 5.16 34.56 5.00 91.54 4.34 

8 11.35 2.13 35.71 5.14 35.31 4.88 97.64 4.18 
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Table C.9: Validated dynamic electrowinning data for the screening experiment corresponding to Run 9 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 11.36 2.35 46.79 2.61 46.79 2.69 0 3.88 

0.125 11.36 2.41 46.38 2.67 46.68 2.69 −0.07 3.88 

0.25 11.36 2.38 47.08 2.66 46.82 2.70 −0.08 3.88 

0.5 11.36 2.35 49.10 2.84 46.18 2.68 2.15 3.88 

0.625 11.36 2.33 47.41 2.64 46.03 2.68 3.66 3.88 

0.75 11.36 2.32 47.19 2.69 45.72 2.68 4.66 3.88 

7 11.36 2.30 46.24 2.60 44.98 2.73 6.47 3.85 

1 11.36 2.28 48.72 2.82 42.83 2.55 15.86 3.82 

1.5 11.36 2.26 45.34 2.74 43.17 2.63 27.53 4.20 

2 11.36 2.25 43.57 2.65 43.14 2.74 31.56 4.37 

2.5 11.36 2.25 45.83 2.78 43.14 3.77 36.57 4.53 

3 11.36 2.24 44.28 4.02 43.14 4.80 42.95 4.72 

3.5 11.36 2.24 44.28 5.14 43.14 5.37 46.67 4.46 

4 11.36 2.23 42.73 7.24 40.34 2.73 48.03 4.20 

4.125 11.36 2.24 40.93 7.81 40.49 2.98 49.10 4.20 

4.25 11.36 2.22 41.95 8.05 39.53 3.80 51.27 4.20 

4.625 11.36 2.22 43.25 8.28 39.30 4.42 53.68 4.20 

4.75 11.36 2.22 41.26 7.75 39.27 4.85 55.94 4.20 

5 11.36 2.23 41.77 7.07 39.56 5.44 59.08 4.07 

5.5 11.36 2.23 41.28 5.68 39.04 5.72 65.57 4.02 

6 11.36 2.23 40.67 5.40 37.67 5.56 73.13 3.97 

6.5 11.36 2.25 39.97 5.62 37.35 5.65 80.82 3.59 

7 11.36 2.26 39.75 5.69 36.56 5.69 87.95 3.76 

7.5 11.36 2.27 37.40 5.56 35.77 5.65 93.70 3.93 

8 11.36 2.27 38.79 5.69 36.86 5.61 98.52 4.10 
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Table C.10: Validated dynamic electrowinning data for the screening experiment corresponding to Run 10 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 11.36 3.18 62.67 0.83 60.63 0.92 0 3.51 

0.125 11.36 3.00 63.03 0.92 63.12 0.91 −0.87 3.51 

0.25 11.36 3.15 63.39 0.88 62.55 0.91 −0.63 3.51 

0.5 11.36 3.20 62.61 0.87 60.27 0.89 1.46 3.51 

0.625 11.36 3.11 63.51 0.88 61.95 0.90 2.74 3.51 

0.75 11.36 3.15 64.06 0.92 61.80 0.90 4.00 3.51 

7 11.36 3.05 63.11 0.95 61.18 0.91 6.65 3.44 

1 11.36 2.97 63.89 0.95 59.98 0.89 13.92 3.37 

1.5 11.36 3.02 62.52 0.91 59.82 0.92 22.27 3.37 

2 11.36 3.08 60.57 0.89 57.91 0.90 29.03 3.37 

2.5 11.36 3.02 60.20 0.92 58.43 0.93 34.70 3.47 

3 11.36 2.94 60.02 0.92 56.04 0.90 42.08 3.37 

3.5 11.36 3.13 59.21 0.90 56.72 0.90 50.12 3.27 

4 11.36 2.81 57.20 3.77 54.54 0.90 51.66 3.13 

4.125 11.36 2.80 56.41 4.28 54.30 0.93 53.06 3.13 

4.25 11.36 2.82 57.24 4.04 53.97 1.25 56.21 3.13 

4.625 11.36 2.82 57.96 3.96 55.25 1.55 57.96 3.13 

4.75 11.36 2.82 58.26 3.85 55.41 1.74 59.59 3.13 

5 11.36 2.77 58.95 3.54 54.29 2.17 63.99 3.13 

5.5 11.36 2.75 56.32 2.77 53.02 2.44 73.30 3.13 

6 11.36 2.79 56.22 2.70 53.85 2.68 79.79 2.98 

6.5 11.36 3.60 55.78 2.91 53.14 2.71 85.69 3.31 

7 11.36 2.79 53.95 2.64 52.49 2.78 91.03 3.65 

7.5 11.36 2.78 54.93 2.72 51.93 2.73 96.87 3.34 

8 11.36 2.79 53.50 2.73 50.63 2.64 103.87 3.02 
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Table C.11: Validated dynamic electrowinning data for the screening experiment corresponding to Run 11 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.65 2.15 67.36 2.84 67.36 2.84 0 4.14 

0.125 8.65 2.21 64.38 2.83 65.49 2.81 0.25 3.86 

0.25 8.65 2.18 67.79 2.81 63.07 2.75 1.37 3.86 

0.5 8.65 2.15 65.65 2.74 63.83 2.78 5.30 3.58 

0.625 8.65 2.14 64.14 2.77 64.65 2.77 5.66 3.34 

0.75 8.65 2.12 65.40 2.69 64.84 2.79 5.68 3.34 

7 8.65 2.11 66.38 2.76 65.26 2.78 6.55 3.10 

1 8.65 2.08 66.41 2.78 64.04 2.81 10.06 3.15 

1.5 8.65 2.07 65.29 2.82 61.91 2.74 15.93 3.19 

2 8.65 2.06 63.95 2.77 61.67 2.78 22.21 3.69 

2.5 8.65 2.03 64.36 2.84 62.67 2.82 27.24 4.20 

3 8.65 2.03 63.69 2.84 60.28 2.73 34.07 4.11 

3.5 8.64 2.02 62.80 2.79 61.70 2.83 39.99 4.02 

4 8.64 2.02 62.21 7.93 60.87 2.83 40.77 3.97 

4.125 8.64 2.02 61.75 8.20 61.78 2.95 41.19 3.97 

4.25 8.65 2.01 62.10 8.41 60.82 4.00 41.99 3.97 

4.625 8.64 2.01 61.62 8.38 59.80 4.65 42.98 3.97 

4.75 8.64 2.01 59.45 7.63 58.55 5.10 43.85 3.97 

5 8.65 2.01 61.22 6.10 58.99 5.72 45.84 3.92 

5.5 8.64 2.01 60.40 5.42 58.86 5.80 50.62 3.95 

6 8.64 2.01 60.18 5.58 59.75 5.85 53.13 3.99 

6.5 8.65 2.00 59.36 5.53 58.80 5.81 54.47 4.42 

7 8.65 2.01 60.33 5.78 58.84 5.75 57.54 4.86 

7.5 8.65 2.01 60.37 5.74 58.31 5.72 66.09 4.88 

8 8.65 2.01 60.40 5.70 57.77 5.7 73.66 4.90 
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Table C.12: Validated dynamic electrowinning data for the screening experiment corresponding to Run 12 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.64 2.20 32.83 2.61 32.08 2.61 0 3.27 

0.125 8.64 2.53 31.63 2.52 29.43 2.44 4.01 3.27 

0.25 8.64 2.43 30.43 2.44 26.78 2.49 8.11 3.27 

0.5 8.64 2.36 29.44 2.37 30.12 2.54 9.8 3.27 

0.625 8.64 2.35 29.21 2.38 29.31 2.49 9.58 3.27 

0.75 8.64 2.33 29.67 2.45 28.71 2.46 9.82 3.27 

7 8.64 2.32 31.00 2.46 28.64 2.50 11.70 3.31 

1 8.64 2.25 28.95 2.45 28.14 2.53 15.75 4.12 

1.5 8.64 2.27 29.46 2.53 26.73 2.43 19.98 2.80 

2 8.64 2.24 28.36 2.52 26.73 2.50 26.00 5.21 

2.5 8.64 2.21 26.73 2.42 26.50 2.57 29.15 4.60 

3 8.64 2.23 27.94 2.54 25.60 2.50 33.00 4.08 

3.5 8.64 2.23 27.67 2.61 26.05 2.66 38.21 3.56 

4 8.64 2.20 26.71 7.49 25.19 2.60 39.23 3.96 

4.125 8.64 2.23 26.08 7.88 25.03 2.72 40.11 3.96 

4.25 8.64 2.19 25.87 7.85 24.76 4.08 41.65 4.36 

4.625 8.64 2.21 23.11 6.82 24.39 4.69 41.59 4.72 

4.75 8.64 2.21 26.76 7.04 25.10 5.35 41.74 4.72 

5 8.64 2.20 24.62 5.46 24.67 5.59 43.10 5.09 

5.5 8.64 2.21 25.23 5.36 23.93 5.49 45.18 4.59 

6 8.64 2.21 24.33 5.31 23.96 5.64 47.69 4.09 

6.5 8.63 2.22 24.39 5.52 22.82 5.46 50.47 4.15 

7 8.63 2.22 24.72 5.69 21.93 5.40 56.77 4.22 

7.5 8.63 2.21 23.30 5.58 20.51 5.18 64.90 4.24 

8 8.63 2.21 23.27 5.66 21.59 5.62 71.44 4.26 
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Table C.13: Validated dynamic electrowinning data for the screening experiment corresponding to Run 13 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.65 2.66 50.04 2.57 48.46 2.57 0 3.72 

0.125 8.65 2.62 47.91 2.56 48.27 2.62 0.38 3.72 

0.25 8.65 2.57 49.06 2.54 48.08 2.53 0.55 3.72 

0.5 8.65 2.45 48.63 2.51 47.71 2.59 1.62 3.72 

0.625 8.65 2.42 47.72 2.51 47.43 2.50 1.96 3.72 

0.75 8.65 2.40 49.05 2.56 45.88 2.46 2.94 3.72 

7 8.65 2.38 47.47 2.52 48.28 2.67 4.30 3.93 

1 8.65 2.34 48.49 2.56 46.21 2.51 6.09 4.14 

1.5 8.65 2.31 46.07 2.40 44.35 2.43 11.24 4.34 

2 8.65 2.31 46.31 2.52 43.97 2.42 16.49 4.20 

2.5 8.65 2.31 44.66 2.46 43.51 2.44 20.85 4.06 

3 8.65 2.31 47.11 2.66 43.99 2.55 26.32 4.39 

3.5 8.65 2.31 44.78 2.56 43.78 2.62 32.00 4.71 

4 8.65 2.31 44.38 7.21 43.12 2.63 32.78 4.53 

4.125 8.65 2.32 43.81 7.38 42.36 2.55 33.71 4.53 

4.25 8.65 2.31 43.77 7.49 42.96 3.68 35.26 4.53 

4.625 8.65 2.30 43.77 7.14 42.53 4.29 35.97 4.53 

4.75 8.65 2.28 44.61 7.55 42.31 4.59 37.97 4.53 

5 8.65 2.27 44.07 6.70 42.08 5.37 44.29 4.34 

5.5 8.65 2.29 43.53 5.09 42.14 5.36 52.32 4.26 

6 8.65 2.29 43.23 5.20 41.73 5.29 56.02 4.17 

6.5 8.65 2.28 42.51 5.29 40.39 5.09 60.58 4.14 

7 8.65 2.29 41.87 5.26 41.70 5.57 63.45 4.11 

7.5 8.65 2.29 41.80 5.23 40.44 5.08 67.39 4.33 

8 8.65 2.30 42.17 5.39 39.18 5.29 75.31 4.56 
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Table C.14: Validated dynamic electrowinning data for the screening experiment corresponding to Run 14 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.05 2.08 29.35 0.76 29.35 0.76 0 3.57 

0.125 6.05 2.13 29.51 0.77 28.82 0.76 0.69 3.57 

0.25 6.05 2.13 29.66 0.77 28.39 0.74 1.62 3.99 

0.5 6.05 2.13 29.58 0.78 28.92 0.77 2.74 3.99 

0.625 6.05 2.12 29.54 0.77 28.48 0.77 3.24 3.99 

0.75 6.05 2.12 30.06 0.80 28.47 0.76 4.06 4.41 

7 6.05 2.10 29.34 0.78 28.71 0.78 5.53 4.67 

1 6.05 2.09 29.07 0.78 27.91 0.77 7.97 4.67 

1.5 6.05 2.08 28.59 0.78 27.41 0.77 11.24 4.93 

2 6.05 2.08 27.71 0.76 27.26 0.78 13.60 4.97 

2.5 6.05 2.07 27.97 0.78 26.42 0.76 16.51 5.02 

3 6.05 2.06 26.87 0.77 26.55 0.77 19.27 5.12 

3.5 6.05 2.07 27.99 0.80 25.80 0.77 23.06 5.21 

4 6.05 2.07 27.40 3.74 26.63 0.80 24.20 5.27 

4.125 6.05 2.07 26.58 3.49 25.62 0.83 24.86 5.27 

4.25 6.05 2.06 27.03 2.94 25.78 1.46 26.56 5.27 

4.625 6.05 2.06 26.06 2.65 25.98 1.67 27.07 5.27 

4.75 6.05 2.06 26.33 2.53 24.59 1.82 27.78 5.27 

5 6.05 2.06 26.26 2.48 25.58 2.17 29.65 5.33 

5.5 6.05 2.04 25.57 2.32 24.86 2.28 31.80 5.17 

6 6.05 2.05 25.30 2.31 24.89 2.36 33.47 5.19 

6.5 6.05 2.06 27.26 2.37 23.51 2.25 39.68 5.21 

7 6.05 2.06 24.35 2.33 23.47 2.35 46.72 5.21 

7.5 6.05 2.06 23.62 2.29 22.59 2.25 49.68 5.40 

8 6.05 2.07 23.22 2.28 21.42 2.18 53.96 4.97 
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Table C.15: Validated dynamic electrowinning data for the screening experiment corresponding to Run 15 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.65 2.66 46.88 0.82 46.88 0.82 0 3.40 

0.125 8.65 2.63 47.36 0.90 47.13 0.88 0 3.40 

0.25 8.65 2.66 47.87 0.97 47.50 0.87 0.28 3.40 

0.5 8.65 2.66 47.94 0.92 46.29 0.91 2.14 3.40 

0.625 8.64 2.68 47.43 0.86 45.92 0.89 3.59 3.40 

0.75 8.65 2.67 46.60 0.84 45.41 0.83 4.84 3.40 

7 8.64 2.63 46.19 0.82 44.98 0.90 7.07 3.45 

1 8.64 2.67 47.17 0.87 44.44 0.86 14.13 3.14 

1.5 8.65 2.63 47.03 0.85 46.81 0.95 18.97 2.88 

2 8.65 2.61 47.56 0.90 43.97 0.86 25.27 3.20 

2.5 8.65 2.64 45.98 0.86 44.36 0.86 34.79 3.51 

3 8.65 2.63 45.10 0.85 44.74 0.89 38.62 3.58 

3.5 8.65 2.62 44.06 0.86 42.33 0.87 42.75 3.66 

4 8.65 2.62 42.64 3.89 42.06 0.91 43.90 3.70 

4.125 8.65 2.68 43.29 3.95 42.85 0.94 44.42 3.70 

4.25 8.65 2.68 44.44 3.51 41.46 1.48 47.86 3.70 

4.625 8.65 2.68 42.72 3.12 40.81 1.75 50.32 3.70 

4.75 8.65 2.69 43.11 3.01 41.79 2.01 51.94 3.70 

5 8.65 2.68 43.02 2.96 41.08 2.25 55.24 3.70 

5.5 8.65 2.67 42.93 2.68 40.93 2.41 62.98 3.70 

6 8.65 2.67 41.54 2.62 41.44 2.61 66.93 3.70 

6.5 8.65 2.68 41.13 2.63 41.10 2.61 67.15 3.70 

7 8.65 2.63 39.75 2.50 39.56 2.73 67.54 3.70 

7.5 8.65 2.69 40.09 2.60 38.86 2.65 70.38 3.69 

8 8.65 2.70 40.53 2.68 37.84 2.63 78.24 3.69 
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Table C.16: Validated dynamic electrowinning data for the screening experiment corresponding to Run 16 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.05 2.20 50.42 2.70 50.42 2.70 0 3.97 

0.125 6.05 2.23 42.43 2.74 46.98 2.76 −0.28 3.97 

0.25 6.05 2.20 46.87 2.78 47.52 2.76 −1.57 3.97 

0.5 6.05 2.18 45.46 2.65 49.15 2.74 −3.73 3.97 

0.625 6.05 2.16 47.42 2.78 47.38 2.80 −4.63 3.97 

0.75 6.05 2.15 50.71 2.84 46.15 2.71 −3.49 3.97 

7 6.05 2.13 40.98 2.37 47.01 2.83 −4.21 3.96 

1 6.05 2.12 47.56 2.83 44.39 2.69 −7.02 3.94 

1.5 6.05 2.11 42.93 2.53 45.16 2.75 −6.10 3.97 

2 6.05 2.10 45.32 2.74 45.39 2.80 −8.42 4.09 

2.5 6.05 2.09 44.53 2.70 45.61 2.61 −6.01 4.21 

3 6.05 2.08 43.30 2.64 45.84 2.86 −6.15 4.28 

3.5 6.05 2.08 45.23 2.83 44.68 2.76 −8.29 4.35 

4 6.05 2.08 46.23 7.84 44.93 2.92 −7.79 4.35 

4.125 6.05 2.08 45.66 8.32 44.84 3.12 −7.21 4.35 

4.25 6.05 2.08 45.69 8.43 44.53 3.98 −6.13 4.35 

4.625 6.05 2.07 42.66 7.50 44.60 4.88 −6.35 4.44 

4.75 6.05 2.07 46.44 7.56 43.79 5.30 −6.15 4.44 

5 6.05 2.07 44.02 6.01 46.73 6.00 −6.18 4.53 

5.5 6.05 2.07 44.89 5.58 43.75 5.87 −8.01 4.78 

6 6.05 2.07 45.59 5.81 42.18 5.41 −2.44 5.03 

6.5 6.05 2.08 41.49 5.35 43.84 5.79 −1.15 4.83 

7 6.05 2.08 44.31 5.88 43.43 5.81 −2.89 4.63 

7.5 6.05 2.08 41.70 5.34 42.01 5.70 −2.21 4.82 

8 6.05 2.08 43.97 5.91 41.74 5.67 0.15 5.00 
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Table C.17: Validated dynamic electrowinning data for the screening experiment corresponding to Run 17 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.65 2.13 48.29 4.95 47.67 4.95 0 3.85 

0.125 8.65 2.16 46.94 4.91 46.65 4.98 0.69 3.85 

0.25 8.65 2.16 48.23 4.99 45.63 4.83 1.74 3.85 

0.5 8.65 2.14 47.07 5.01 46.17 4.88 4.29 3.85 

0.625 8.65 2.14 47.27 4.88 45.83 4.92 5.15 3.85 

0.75 8.65 2.13 46.44 4.93 46.59 5.10 5.62 3.85 

7 8.65 2.12 47.80 4.88 45.37 4.98 7.30 3.92 

1 8.65 2.11 47.45 5.00 45.52 5.13 13.86 3.99 

1.5 8.65 2.10 47.17 5.00 45.45 4.97 19.37 4.00 

2 8.65 2.10 45.96 4.98 45.42 5.18 22.75 3.90 

2.5 8.65 2.10 45.16 4.96 45.20 5.18 23.49 3.92 

3 8.65 2.09 45.05 4.98 43.30 4.99 25.96 3.94 

3.5 8.65 2.09 44.67 5.03 43.25 5.05 30.60 3.96 

4 11.36 2.22 44.85 4.97 42.54 4.95 31.99 3.98 

4.125 11.36 2.22 44.36 5.02 43.03 5.24 33.36 3.98 

4.25 11.36 2.22 44.10 5.23 42.21 5.15 35.79 3.98 

4.625 11.36 2.22 44.66 5.11 42.43 5.04 37.33 3.98 

4.75 11.36 2.22 44.24 5.18 41.92 5.05 39.05 3.98 

5 11.36 2.21 43.30 5.10 41.71 5.06 42.02 4.05 

5.5 11.36 2.22 42.60 4.96 39.76 5.06 48.86 4.10 

6 11.36 2.21 41.55 5.17 39.75 5.06 56.12 4.15 

6.5 11.36 2.21 41.20 5.10 39.67 5.06 61.64 4.57 

7 11.36 2.21 40.58 5.11 39.80 5.03 65.85 4.99 

7.5 11.36 2.21 40.42 5.21 39.93 5.01 73.38 4.92 

8 11.36 2.21 40.32 5.19 40.06 4.93 85.96 4.84 
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Table C.18: Validated dynamic electrowinning data for the screening experiment corresponding to Run 18 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.64 2.40 65.63 2.54 65.63 2.46 0 3.64 

0.125 8.64 2.42 60.03 2.31 61.98 2.44 0.9 3.64 

0.25 8.64 2.37 62.40 2.41 62.01 2.42 0.02 3.64 

0.5 8.64 2.28 63.78 2.46 63.81 2.47 0.42 3.64 

0.625 8.64 2.24 60.99 2.35 62.38 2.44 −0.38 3.64 

0.75 8.64 2.22 64.47 2.43 63.82 2.46 −0.79 3.64 

7 8.64 2.19 65.80 2.58 63.2 2.49 3.09 4.07 

1 8.63 2.16 64.06 2.54 64.00 2.59 9.66 3.90 

1.5 8.64 2.16 62.76 2.42 62.00 2.50 11.60 3.73 

2 8.64 2.14 63.70 2.53 62.73 2.48 15.77 4.03 

2.5 8.63 2.13 63.61 2.58 62.37 2.56 21.30 4.03 

3 8.63 2.12 61.74 2.50 61.67 2.60 24.69 4.33 

3.5 8.63 2.12 63.26 2.62 62.15 2.57 27.83 4.27 

4 11.37 2.25 61.90 2.53 60.05 2.56 29.85 4.55 

4.125 11.37 2.25 62.01 2.49 60.87 2.61 31.95 4.55 

4.25 11.37 2.24 62.41 2.68 59.73 2.51 37.34 4.55 

4.625 11.38 2.25 60.12 2.60 59.00 2.54 40.02 4.55 

4.75 11.38 2.25 59.83 2.52 59.54 2.59 41.01 4.55 

5 11.37 2.25 60.13 2.48 59.50 2.62 42.36 4.53 

5.5 11.38 2.25 60.88 2.62 57.83 2.64 53.01 4.50 

6 11.38 2.24 58.14 2.56 57.64 2.62 62.53 4.54 

6.5 11.37 2.25 59.81 2.60 57.15 2.59 71.06 4.57 

7 11.38 2.24 58.24 2.59 56.24 2.63 84.84 4.98 

7.5 11.38 2.25 56.67 2.58 56.73 2.59 90.62 4.63 

8 11.38 2.25 56.57 2.67 56.79 2.64 89.86 4.29 
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Table C.19: Validated dynamic electrowinning data for the screening experiment corresponding to Run 19 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.64 2.29 28.92 2.48 28.14 2.48 0 2.92 

0.125 8.64 2.59 28.97 2.66 28.11 2.45 2.53 2.92 

0.25 8.64 2.50 29.02 2.53 28.07 2.55 4.88 2.92 

0.5 8.64 2.35 28.95 2.51 28.04 2.50 5.92 2.92 

0.625 8.64 2.34 29.51 2.56 28.07 2.62 6.57 2.92 

0.75 8.64 2.26 29.24 2.55 27.96 2.55 7.32 2.92 

7 8.64 2.24 29.22 2.70 27.53 2.56 8.93 2.75 

1 8.64 2.2 27.62 2.61 26.72 2.57 11.58 2.64 

1.5 8.64 2.21 27.95 2.53 26.22 2.59 14.17 2.53 

2 8.64 2.20 28.12 2.64 25.38 2.57 18.53 2.59 

2.5 8.64 2.18 27.21 2.57 24.40 2.58 24.08 2.65 

3 8.64 2.18 26.41 2.50 24.24 2.58 29.28 2.82 

3.5 11.37 2.21 26.18 2.62 22.96 2.52 35.07 2.82 

4 11.37 2.44 25.10 2.53 23.08 2.56 36.48 2.82 

4.125 11.37 2.39 25.44 2.61 22.91 2.55 37.71 2.82 

4.25 11.37 2.36 24.17 2.59 21.92 2.47 40.28 2.82 

4.625 11.37 2.35 24.85 2.56 21.99 2.54 41.65 2.82 

4.75 11.37 2.35 25.25 2.56 21.88 2.59 43.32 2.82 

5 11.37 2.34 24.13 2.61 21.32 2.56 46.75 3.00 

5.5 11.37 2.34 23.52 2.56 20.96 2.64 52.81 2.93 

6 11.37 2.34 23.41 2.64 18.58 2.47 60.97 2.86 

6.5 11.37 2.34 23.04 2.67 18.81 2.51 72.03 3.53 

7 11.37 2.32 21.71 2.67 18.78 2.60 82.61 4.21 

7.5 11.37 2.32 19.65 2.53 18.16 2.66 89.32 3.76 

8 11.37 2.34 19.92 2.65 17.49 2.61 94.61 3.32 

 

 

Stellenbosch University https://scholar.sun.ac.za



276 
 

Table C.20: Validated dynamic electrowinning data for the screening experiment corresponding to Run 20 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.64 2.46 48.15 2.57 48.15 2.57 0 3.71 

0.125 8.64 2.48 46.41 2.55 47.67 2.51 −0.29 3.71 

0.25 8.64 2.49 50.46 2.53 48.33 2.58 0.05 3.71 

0.5 8.64 2.46 49.08 2.57 48.26 2.61 2.35 3.71 

0.625 8.64 2.46 48.58 2.56 48.34 2.62 2.76 3.71 

0.75 8.64 2.45 48.21 2.45 47.09 2.57 3.29 3.71 

7 8.64 2.43 49.09 2.57 48.14 2.61 4.97 3.69 

1 8.64 2.41 47.93 2.62 46.04 2.56 9.55 3.67 

1.5 8.64 2.41 47.56 2.62 45.63 2.61 15.10 3.75 

2 8.64 2.46 46.64 2.63 45.34 2.58 19.88 3.82 

2.5 8.64 2.51 47.13 2.60 44.50 2.57 26.15 3.82 

3 8.64 2.51 46.50 2.65 44.23 2.57 33.98 3.82 

3.5 8.64 2.53 45.45 2.52 42.98 2.58 42.07 4.36 

4 11.36 2.60 44.59 2.55 42.50 2.55 44.05 4.00 

4.125 11.37 2.63 44.63 2.66 43.20 2.57 45.52 4.00 

4.25 11.36 2.56 44.49 2.54 43.16 2.73 47.81 4.00 

4.625 11.36 2.55 43.41 2.54 43.46 2.63 48.35 4.00 

4.75 11.37 2.56 45.89 2.55 44.43 2.73 48.94 4.00 

5 11.37 2.58 44.07 2.64 41.57 2.63 52.09 3.63 

5.5 11.37 2.58 43.02 2.64 41.67 2.65 58.32 4.11 

6 11.37 2.62 43.43 2.61 40.7 2.61 65.76 4.59 

6.5 11.37 2.51 41.09 2.61 40.01 2.65 72.99 4.47 

7 11.36 2.60 41.65 2.63 39.50 2.60 78.94 4.34 

7.5 11.36 2.59 39.99 2.60 38.91 2.69 84.78 4.31 

8 11.37 2.58 39.16 2.58 37.79 2.69 89.17 4.27 
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Table C.21: Validated dynamic electrowinning data for the screening experiment corresponding to Run 21 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.06 1.85 30.06 0.84 30.06 0.84 0 4.19 

0.125 6.06 2.04 28.90 0.84 29.51 0.86 −0.02 4.19 

0.25 6.06 2.04 29.85 0.85 29.71 0.86 −0.24 4.19 

0.5 6.06 2.04 29.99 0.86 29.64 0.87 0.22 4.19 

0.625 6.06 2.04 29.54 0.87 28.61 0.85 0.8 4.19 

0.75 6.06 2.03 29.38 0.84 29.35 0.87 1.24 4.19 

7 6.06 2.03 29.34 0.84 28.91 0.85 1.66 4.19 

1 6.06 2.02 29.18 0.85 28.56 0.88 3.61 4.20 

1.5 6.06 2.01 29.03 0.85 28.05 0.86 6.53 4.16 

2 6.06 2.01 28.82 0.87 27.94 0.87 9.94 4.30 

2.5 6.06 2.00 28.71 0.87 26.86 0.86 15.13 4.44 

3 6.06 2.01 28.00 0.87 27.18 0.87 20.16 4.23 

3.5 6.06 2.01 28.08 0.89 26.92 0.88 23.71 4.02 

4 8.65 2.16 27.18 0.86 26.22 0.87 24.64 4.07 

4.125 8.65 2.17 26.87 0.85 26.34 0.88 25.29 4.07 

4.25 8.65 2.18 27.52 0.88 25.88 0.87 27.20 4.07 

4.625 8.65 2.19 26.99 0.87 25.67 0.88 28.51 4.07 

4.75 8.65 2.19 27.25 0.85 25.73 0.88 29.77 4.07 

5 8.65 2.18 26.61 0.87 25.07 0.87 32.50 4.11 

5.5 8.65 2.18 25.72 0.86 24.53 0.89 37.37 4.09 

6 8.65 2.15 25.39 0.89 23.67 0.86 42.54 4.08 

6.5 8.65 2.14 25.07 0.89 22.99 0.86 49.31 4.09 

7 8.65 2.19 24.71 0.90 23.06 0.89 55.98 4.11 

7.5 8.65 2.18 23.82 0.89 22.38 0.91 61.60 4.12 

8 8.65 2.19 23.40 0.92 21.69 0.88 67.50 4.14 
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Table C.22: Validated dynamic electrowinning data for the screening experiment corresponding to Run 22 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.06 1.93 64.54 5.34 64.54 5.34 0 4.07 

0.125 6.06 2.06 64.33 5.44 62.14 5.33 1.23 4.07 

0.25 6.06 2.05 63.40 5.36 61.4 5.28 2.41 4.07 

0.5 6.06 2.04 64.07 5.48 60.37 5.11 5.62 4.07 

0.625 6.06 2.02 64.08 5.52 61.27 5.19 7.45 4.07 

0.75 6.06 2.02 63.60 5.38 63.85 5.51 8.17 4.07 

7 6.06 2.00 63.59 5.28 62.95 5.40 7.00 4.29 

1 6.06 1.99 63.59 5.38 62.71 5.58 5.93 4.51 

1.5 6.06 1.98 63.95 5.56 59.39 5.21 12.78 4.61 

2 6.06 1.97 61.85 5.33 61.12 5.39 19.29 4.32 

2.5 6.06 1.97 63.03 5.45 60.88 5.42 22.60 4.03 

3 6.06 1.97 63.12 5.16 61.05 5.46 21.72 3.71 

3.5 6.06 1.97 63.21 5.67 58.80 5.34 23.18 3.58 

4 8.64 2.10 62.91 5.71 58.88 5.36 25.36 3.91 

4.125 8.64 2.16 62.33 5.41 61.61 5.51 26.65 3.91 

4.25 8.64 2.11 62.13 5.53 60.41 5.57 27.96 3.91 

4.625 8.64 2.13 63.14 5.63 61.81 5.51 28.79 3.91 

4.75 8.64 2.14 63.14 5.62 62.41 5.67 29.34 3.91 

5 8.64 2.09 62.62 5.70 59.84 5.45 31.32 3.88 

5.5 8.64 2.08 62.49 5.67 58.92 5.54 38.43 3.86 

6 8.64 2.09 61.25 5.63 59.29 5.68 44.02 3.46 

6.5 8.64 2.09 60.87 5.66 60.08 5.77 46.74 3.69 

7 8.64 2.09 61.23 5.74 59.29 5.67 49.62 3.92 

7.5 8.64 2.13 60.48 5.82 56.98 5.53 55.74 4.21 

8 8.64 2.10 59.73 5.70 58.64 5.74 60.57 4.50 
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Table C.23: Validated dynamic electrowinning data for the screening experiment corresponding to Run 23 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 8.65 2.30 46.95 0.86 46.95 0.86 0 3.55 

0.125 8.65 2.30 43.27 0.87 46.75 0.88 −1.36 3.55 

0.25 8.65 2.28 49.90 0.91 46.78 0.86 −1.51 3.55 

0.5 8.65 2.25 47.70 0.88 46.53 0.88 2.08 3.55 

0.625 8.65 2.24 48.76 0.90 46.60 0.86 3.47 3.55 

0.75 8.65 2.23 46.39 0.85 47.78 0.89 3.79 3.55 

7 8.65 2.21 47.64 0.88 44.77 0.83 5.04 3.60 

1 8.65 2.17 47.50 0.88 47.22 0.91 10.60 3.92 

1.5 8.65 2.16 47.59 0.89 46.10 0.90 13.98 4.24 

2 8.65 2.15 47.43 0.92 46.49 0.91 18.90 4.41 

2.5 8.65 2.16 45.41 0.89 44.60 0.88 22.60 4.58 

3 8.65 2.15 45.82 0.93 45.79 0.93 24.47 4.85 

3.5 8.65 2.14 44.60 0.89 42.76 0.91 28.86 4.65 

4 11.36 2.29 44.05 0.90 41.23 0.88 31.55 4.44 

4.125 11.36 2.29 44.32 0.91 41.79 0.89 34.36 4.24 

4.25 11.36 2.29 43.78 0.90 42.36 0.90 38.31 4.27 

4.625 11.36 2.29 44.69 0.92 41.94 0.89 40.40 4.27 

4.75 11.36 2.28 45.03 0.89 41.33 0.90 43.64 4.27 

5 11.36 2.29 43.25 0.91 39.57 0.87 51.09 4.29 

5.5 11.36 2.28 43.51 0.94 40.90 0.91 63.42 4.04 

6 11.36 2.29 41.78 0.90 40.08 0.91 71.35 3.78 

6.5 11.36 2.29 40.06 0.90 39.73 0.92 74.99 3.83 

7 11.36 2.29 40.17 0.87 38.07 0.92 79.42 3.88 

7.5 11.36 2.30 39.94 0.91 37.60 0.91 87.16 3.51 

8 11.36 2.31 37.96 0.88 37.02 0.90 92.29 3.14 
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Table C.24: Validated dynamic electrowinning data for the screening experiment corresponding to Run 24 in Table A.6. 

Time (h) I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xCu xFe 

0 6.06 3.07 49.62 2.54 49.62 2.54 0 3.08 

0.125 6.06 2.60 49.34 2.46 47.27 2.51 0.52 3.08 

0.25 6.06 2.58 49.07 2.54 47.73 2.46 0.81 3.08 

0.5 6.06 2.62 49.29 2.51 48.68 2.50 1.87 3.08 

0.625 6.06 2.68 49.80 2.59 48.93 2.58 2.28 3.08 

0.75 6.06 2.67 50.39 2.58 47.18 2.51 3.39 3.08 

7 6.07 2.64 48.61 2.55 48.08 2.55 5.57 3.51 

1 6.06 2.61 48.83 2.59 48.04 2.55 7.17 3.35 

1.5 6.06 2.45 47.90 2.55 47.81 2.64 8.19 3.18 

2 6.06 2.76 48.33 2.56 45.03 2.60 12.02 3.19 

2.5 6.07 2.77 48.59 2.58 46.08 2.57 18.59 3.20 

3 6.06 2.79 48.15 2.61 45.22 2.52 24.74 3.19 

3.5 6.07 2.99 46.99 2.57 46.09 2.59 29.07 3.18 

4 8.64 2.95 47.93 2.64 45.39 2.59 30.14 3.86 

4.125 8.65 2.92 46.34 2.56 45.46 2.57 31.31 3.86 

4.25 8.65 2.82 46.81 2.59 44.35 2.51 33.60 3.86 

4.625 8.65 2.78 46.74 2.53 44.56 2.65 35.19 3.86 

4.75 8.65 2.67 46.05 2.65 45.24 2.64 36.22 3.86 

5 8.65 2.73 46.28 2.57 44.78 2.64 37.93 4.55 

5.5 8.65 2.62 45.69 2.59 43.36 2.61 43.99 4.40 

6 8.65 2.80 44.82 2.61 42.67 2.56 50.85 4.26 

6.5 8.65 2.77 44.35 2.58 42.94 2.56 56.09 4.05 

7 8.65 2.82 44.12 2.67 44.40 2.57 57.72 4.05 

7.5 8.65 2.58 43.14 2.67 41.19 2.58 60.13 4.05 

8 8.65 2.69 43.22 2.62 41.53 2.65 65.21 3.85 
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Figure C.1: Comparison between raw and validated cumulative mass copper plated for Run 1 (a) to Run 24 (x). The 
run numbers correspond the experimental design in Table A.6. 
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Figure C.1 (continued) 
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Figure C.1 (continued) 
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Figure C.1 (continued) 

 

Stellenbosch University https://scholar.sun.ac.za



285 
 

 

 

 

Figure C.2: Comparison between raw and validated copper plating rate for Run 1 (a) to Run 24 (x). The run numbers 
correspond the experimental design in Table A.6. 
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Figure C.2 (continued) 
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Figure C.2 (continued) 
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Figure C.2 (continued) 
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Figure C.3: Comparison between raw and validated advance and spent electrolyte copper concentrations for Run 1 (a) 
to Run 24 (x). The run numbers correspond the experimental design in Table A.6. 
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Figure C.3 (continued) 
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Figure C.3 (continued) 
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Figure C.3 (continued) 
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Figure C.4: Comparison between raw and validated advance and spent electrolyte iron concentrations for Run 1 (a) to 
Run 24 (x). The run numbers correspond the experimental design in Table A.6. 
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Figure C.4 (continued) 
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Figure C.4 (continued) 
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Figure C.4 (continued) 
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Figure C.5: Comparison between raw and validated flow rate for Run 1 (a) to Run 24 (x). The run numbers 
correspond the experimental design in Table A.6. 
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Figure C.5 (continued) 
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Figure C.5 (continued) 
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Figure C.5 (continued) 
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C.1.2 Bench-scale Electrowinning Experiments 

Table C.25: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 1 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.24 1.83 43.62 0.73 21.82 0.31 43.63 0.73 21.82 0.31 0 5.91 

0.125 4.24 1.83 43.49 0.73 21.53 0.32 43.44 0.73 21.62 0.32 0.03 5.91 

0.25 4.24 1.83 44.11 0.74 21.92 0.32 43.77 0.74 21.87 0.32 0.03 6.40 

0.5 4.24 1.83 44.32 0.74 22.00 0.32 42.80 0.73 21.53 0.32 0.35 6.40 

0.625 4.24 1.82 43.92 0.74 21.70 0.32 41.66 0.71 21.03 0.30 0.61 6.40 

0.75 4.24 1.83 44.14 0.74 21.99 0.33 42.07 0.71 21.28 0.32 0.83 7.05 

7 4.24 1.81 44.42 0.75 22.23 0.32 43.01 0.73 21.54 0.31 1.11 7.05 

1 4.24 1.80 44.61 0.77 22.54 0.33 41.61 0.71 21.16 0.30 2.47 6.60 

1.5 4.24 1.79 45.02 0.77 22.66 0.34 40.69 0.72 20.92 0.30 4.18 6.24 

2 4.24 1.80 44.26 0.76 22.63 0.33 39.61 0.69 20.47 0.30 6.41 6.49 

2.5 4.24 1.80 44.10 0.77 22.65 0.34 41.12 0.73 21.33 0.32 7.98 6.76 

3 4.24 1.80 43.07 0.74 21.92 0.31 41.18 0.72 21.40 0.31 9.26 6.37 

3.5 4.24 1.80 57.78 0.78 21.56 0.32 41.00 0.70 20.72 0.30 10.87 6.01 

4 4.24 1.82 59.40 0.82 21.92 0.32 38.55 0.69 20.35 0.29 11.59 6.01 

4.125 4.24 1.82 58.79 0.78 22.46 0.33 39.41 0.70 20.59 0.30 12.55 6.51 

4.25 4.24 1.81 61.40 0.86 23.54 0.35 37.10 0.62 17.89 0.28 15.25 6.51 

4.625 4.24 1.79 56.41 0.84 23.68 0.35 41.77 0.65 18.48 0.27 16.70 6.51 

4.75 4.24 1.79 52.90 0.85 23.61 0.35 45.14 0.68 19.16 0.28 18.04 7.02 

5 4.24 1.80 51.37 0.80 23.35 0.34 44.58 0.68 19.17 0.28 20.43 7.02 

5.5 4.24 1.81 50.78 0.81 22.74 0.34 44.57 0.69 19.80 0.30 24.25 7.16 

6 4.24 1.81 51.00 0.81 22.79 0.33 44.79 0.72 20.17 0.30 27.54 7.33 

6.5 4.24 1.81 50.28 0.78 22.39 0.32 44.81 0.70 20.20 0.29 30.56 7.25 

7 4.24 1.81 50.47 0.80 22.81 0.34 45.67 0.74 20.78 0.30 33.17 7.18 

7.5 4.24 1.81 49.53 0.79 22.31 0.33 45.6 0.75 20.64 0.31 35.52 6.83 

8 4.24 1.81 48.4 0.81 22.12 0.33 44.99 0.73 20.65 0.3 37.65 6.5 
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Table C.26: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 2 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.24 1.79 42.01 0.69 20.42 0.31 41.98 0.69 20.41 0.31 0 6.81 

0.125 4.24 1.77 42.08 0.69 20.14 0.30 42.47 0.73 21.09 0.31 0 6.81 

0.25 4.24 1.77 42.68 0.7 20.65 0.31 42.55 0.72 20.86 0.31 0 6.66 

0.5 4.24 1.76 45.10 0.74 22.04 0.32 39.82 0.67 19.8 0.28 0.66 6.66 

0.625 4.24 1.75 46.87 0.78 23.02 0.35 37.34 0.62 18.55 0.27 1.42 6.66 

0.75 4.24 1.74 45.40 0.76 22.10 0.33 41.01 0.69 20.24 0.3 1.82 6.51 

7 4.24 1.74 45.91 0.77 22.70 0.33 38.35 0.65 19.14 0.28 3.05 6.51 

1 4.24 1.73 44.38 0.74 21.98 0.33 40.52 0.68 20.03 0.30 4.37 6.59 

1.5 4.24 1.72 45.88 0.78 22.93 0.34 37.47 0.64 18.75 0.28 7.11 6.68 

2 4.24 1.72 46.05 0.81 23.18 0.35 36.11 0.61 18.15 0.27 10.75 7.08 

2.5 4.24 1.72 44.90 0.76 22.29 0.32 38.69 0.65 19.18 0.27 13.11 7.49 

3 4.24 1.72 45.77 0.79 22.88 0.33 35.74 0.63 18.33 0.27 16.52 7.02 

3.5 4.24 1.72 44.52 1.87 22.98 0.33 35.68 0.63 18.36 0.28 19.98 6.58 

4 4.24 1.73 44.6 2.11 22.70 0.33 35.36 0.64 18.43 0.28 20.81 6.58 

4.125 4.24 1.73 44.09 1.92 22.85 0.34 35.92 0.67 18.57 0.28 21.61 6.81 

4.25 4.24 1.73 44.03 1.64 22.72 0.34 35.59 0.97 18.48 0.28 23.15 6.81 

4.625 4.24 1.72 43.85 1.57 22.85 0.33 35.44 1.14 18.69 0.28 23.92 6.81 

4.75 4.24 1.72 43.54 1.52 22.55 0.33 36.46 1.20 18.78 0.27 23.92 7.08 

5 4.24 1.72 43.80 1.48 22.78 0.33 36.06 1.20 18.97 0.27 25.34 7.08 

5.5 4.24 1.73 43.31 1.46 22.68 0.32 34.97 1.20 18.63 0.27 25.34 6.49 

6 4.24 1.73 43.33 1.51 22.97 0.34 34.64 1.20 18.59 0.27 28.22 6.01 

6.5 4.24 1.73 41.97 1.42 22.62 0.32 35.65 1.25 19.01 0.29 30.76 6.47 

7 4.24 1.73 40.92 1.43 22.15 0.32 36.38 1.28 19.54 0.29 32.81 6.93 

7.5 4.24 1.73 40.71 1.43 22.01 0.32 36.12 1.29 19.70 0.29 34.64 6.98 

8 4.24 1.73 39.81 1.40 21.73 0.32 36.18 1.30 19.96 0.29 37.17 7.04 
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Table C.27: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 3 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.24 1.84 43.83 0.72 20.98 0.30 43.86 0.72 20.99 0.31 0 6.04 

0.125 4.24 1.82 47.49 0.81 23.38 0.35 38.92 0.65 19.14 0.28 0.77 6.04 

0.25 4.24 1.81 45.45 0.78 22.55 0.33 41.84 0.71 20.86 0.31 1.09 6.03 

0.5 4.24 1.8 46.57 0.79 23.04 0.33 40.93 0.70 20.31 0.29 1.98 6.03 

0.625 4.24 1.79 45.62 0.78 22.64 0.35 42.05 0.71 20.65 0.30 2.35 6.03 

0.75 4.24 1.79 46.85 0.80 23.16 0.34 40.70 0.69 20.49 0.30 2.79 6.02 

7 4.24 1.78 48.54 0.82 24.05 0.36 38.4 0.67 19.49 0.29 4.43 6.02 

1 4.24 1.77 48.67 0.85 24.45 0.37 36.50 0.63 18.52 0.27 9.01 6.24 

1.5 4.24 1.77 46.77 0.80 23.55 0.35 38.97 0.66 19.74 0.29 12.15 6.47 

2 4.24 1.77 46.84 0.80 23.38 0.35 38.61 0.68 19.72 0.29 15.03 6.15 

2.5 4.24 1.77 46.44 0.82 23.85 0.35 38.16 0.67 19.65 0.29 17.99 5.82 

3 4.24 1.77 46.28 0.83 23.94 0.35 37.73 0.66 19.57 0.29 20.92 5.79 

3.5 4.24 1.77 41.01 0.74 52.56 0.34 39.11 0.71 20.72 0.30 24.15 5.76 

4 4.24 1.78 40.78 0.71 50.51 0.33 39.19 0.70 20.66 0.31 24.85 5.76 

4.125 4.24 1.78 41.09 0.72 50.64 0.32 39.44 0.72 21.31 0.31 25.49 6.12 

4.25 4.24 1.77 40.93 0.76 46.2 0.32 39.66 0.73 24.29 0.32 26.52 6.12 

4.625 4.24 1.77 41.79 0.73 41.45 0.33 39.14 0.73 29.19 0.32 26.95 6.12 

4.75 4.24 1.77 43.23 0.79 38.22 0.34 37.44 0.68 35.62 0.30 27.27 6.58 

5 4.24 1.78 42.19 0.74 34.52 0.33 38.03 0.71 37.01 0.32 28.04 6.58 

5.5 4.24 1.78 41.55 0.77 35.74 0.33 38.13 0.70 34.76 0.32 29.61 6.96 

6 4.24 1.78 41.21 0.76 36.50 0.33 38.25 0.71 34.63 0.32 31.09 7.38 

6.5 4.24 1.78 40.94 0.76 36.52 0.33 36.54 0.70 33.39 0.31 33.04 7.19 

7 4.24 1.78 40.24 0.75 36.15 0.34 37.47 0.69 33.92 0.31 34.71 7.04 

7.5 4.24 1.78 41.01 0.75 37.08 0.33 37.08 0.70 34.47 0.31 36.31 7.17 

8 4.24 1.78 39.44 0.74 36.32 0.33 37.23 0.71 34.02 0.32 37.94 7.33 

 

Stellenbosch University https://scholar.sun.ac.za



304 
 

Table C.28: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 4 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.24 2.03 43.79 0.74 21.45 0.31 43.89 0.74 21.49 0.31 0 6.70 

0.125 4.24 1.90 44.4 0.73 21.44 0.31 43.79 0.73 21.48 0.31 0.02 6.70 

0.25 4.24 1.88 45.28 0.78 22.28 0.32 43.35 0.73 21.25 0.31 0.16 6.90 

0.5 4.24 1.85 49.20 0.83 24.18 0.35 37.34 0.63 18.90 0.27 2.05 6.90 

0.625 4.24 1.84 48.42 0.82 23.83 0.35 39.13 0.66 19.33 0.28 2.83 6.90 

0.75 4.24 1.83 46.29 0.78 23.62 0.34 40.20 0.68 19.77 0.29 3.47 7.12 

7 4.24 1.81 46.60 0.78 22.74 0.33 41.82 0.72 20.77 0.30 4.10 7.12 

1 4.24 1.79 48.10 0.82 23.85 0.35 38.22 0.65 19.00 0.28 7.33 6.73 

1.5 4.24 1.79 47.46 0.82 23.70 0.34 38.80 0.68 19.56 0.29 10.05 6.36 

2 4.24 1.79 47.03 0.80 23.31 0.34 38.62 0.67 19.38 0.28 12.79 6.86 

2.5 4.24 1.79 46.47 0.81 23.40 0.34 38.04 0.66 19.18 0.27 15.84 7.43 

3 4.24 1.78 46.00 0.81 23.39 0.34 37.60 0.67 19.36 0.28 18.87 7.09 

3.5 4.24 1.78 46.19 0.81 23.70 1.12 37.17 0.66 19.03 0.30 21.85 6.78 

4 4.24 1.78 45.88 0.81 23.41 1.05 37.65 0.69 19.63 0.43 22.57 6.78 

4.125 4.24 1.78 45.74 0.82 23.42 0.98 38.45 0.69 19.88 0.50 23.24 6.58 

4.25 4.24 1.78 45.16 0.79 22.99 0.85 38.18 0.69 19.83 0.56 24.48 6.58 

4.625 4.24 1.78 45.47 0.80 23.24 0.82 38.26 0.68 19.76 0.58 25.09 6.58 

4.75 4.24 1.78 45.54 0.83 23.63 0.81 39.40 0.68 19.78 0.60 25.65 6.39 

5 4.24 1.78 45.12 0.81 23.34 0.76 37.32 0.67 19.34 0.60 26.86 6.39 

5.5 4.24 1.78 44.26 0.79 22.94 0.75 37.44 0.68 19.66 0.62 29.23 6.52 

6 4.24 1.78 44.31 0.82 23.42 0.75 38.00 0.70 20.21 0.65 31.35 6.65 

6.5 4.24 1.78 43.10 0.78 22.73 0.72 38.92 0.71 20.63 0.66 33.11 6.37 

7 4.24 1.78 42.71 0.80 22.83 0.74 37.48 0.7 20.15 0.65 34.84 6.09 

7.5 4.24 1.78 42.46 0.79 22.90 0.73 38.00 0.73 20.78 0.67 36.36 6.13 

8 4.24 1.78 41.51 0.78 22.64 0.72 38.69 0.73 21.24 0.67 37.61 6.18 
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Table C.29: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 5 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.24 1.82 44.39 0.75 22.19 0.33 44.42 0.75 22.21 0.33 0 5.35 

0.125 4.24 1.82 44.7 0.75 22.17 0.33 44.82 0.77 22.47 0.33 0 5.35 

0.25 4.24 1.82 44.24 0.77 21.95 0.32 43.77 0.75 21.81 0.32 0.09 5.67 

0.5 4.24 1.81 45.14 0.77 22.37 0.32 41.54 0.73 21.16 0.30 0.78 5.67 

0.625 4.24 1.80 45.41 0.78 22.70 0.33 41.84 0.73 21.41 0.32 1.08 5.67 

0.75 4.24 1.80 45.15 0.78 22.54 0.33 43.45 0.75 21.81 0.32 1.24 6.08 

7 4.24 1.80 44.68 0.79 22.29 0.33 41.98 0.72 21.22 0.31 1.95 6.08 

1 4.24 1.79 42.52 0.72 21.39 0.31 43.25 0.76 22.07 0.32 1.95 5.45 

1.5 4.24 1.79 42.75 0.73 21.55 0.31 43.12 0.77 22.12 0.33 1.95 4.75 

2 4.24 1.78 43.47 0.76 22.13 0.33 43.17 0.76 22.23 0.32 1.95 5.96 

2.5 4.24 1.79 42.68 0.77 22.01 0.33 42.85 0.76 22.24 0.33 1.95 7.24 

3 4.24 1.79 44.17 0.81 23.00 0.34 40.42 0.73 21.19 0.31 3.16 7.06 

3.5 4.86 1.83 46.76 0.84 24.38 0.36 37.09 0.68 20.14 0.29 6.86 6.88 

4 4.86 1.84 46.61 0.86 25.13 0.37 38.82 0.71 20.47 0.30 7.80 6.88 

4.125 4.86 1.84 46.82 0.85 24.36 0.36 37.64 0.69 19.89 0.29 8.78 6.88 

4.25 4.86 1.84 46.87 0.84 24.37 0.36 38.64 0.70 20.43 0.30 10.68 6.88 

4.625 4.86 1.84 46.41 0.84 24.45 0.36 37.59 0.68 19.88 0.29 11.67 6.88 

4.75 4.86 1.84 46.71 0.88 24.75 0.36 38.85 0.71 20.74 0.31 12.61 6.88 

5 4.86 1.84 45.87 0.86 24.42 0.35 39.52 0.74 20.76 0.31 14.29 6.88 

5.5 4.86 1.84 45.47 0.84 24.34 0.36 37.99 0.69 20.42 0.30 17.83 6.79 

6 4.86 1.84 46.09 0.85 24.84 0.36 37.43 0.70 20.39 0.30 21.53 6.71 

6.5 4.86 1.84 46.09 0.87 25.00 0.37 36.47 0.68 19.93 0.29 25.83 6.75 

7 4.86 1.84 45.61 0.87 24.98 0.37 35.40 0.68 19.50 0.28 30.65 6.79 

7.5 4.86 1.84 45.28 0.87 25.11 0.37 34.96 0.69 19.63 0.29 35.73 7.13 

8 4.86 1.85 43.95 0.87 24.53 0.38 35.79 0.70 19.94 0.30 40.51 7.55 
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Table C.30: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 6 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.86 2.28 56.18 2.00 47.97 1.06 56.17 2 49.53 1.06 0 6.39 

0.125 4.86 2.26 57.35 1.99 48.64 1.05 57.26 2.05 49.61 1.09 0 6.39 

0.25 4.86 2.25 59.31 2.04 49.29 1.07 58.22 2.03 49.66 1.07 0 6.89 

0.5 4.86 2.24 64.39 2.19 53.45 1.15 51.79 1.87 44.10 0.98 1.80 6.89 

0.625 4.86 2.23 63.59 2.17 52.45 1.14 51.75 1.79 44.17 0.94 2.74 6.89 

0.75 4.86 2.23 63.82 2.20 52.17 1.16 53.29 1.91 45.27 1.00 3.58 7.48 

7 4.86 2.21 65.52 2.20 53.50 1.16 54.85 1.93 45.95 1.02 5.17 7.48 

1 4.86 2.19 65.66 2.22 53.51 1.15 53.30 1.90 45.78 0.99 5.17 7.46 

1.5 4.86 2.19 63.17 2.15 51.90 1.14 55.49 1.91 46.22 1.00 8.15 7.43 

2 4.86 2.20 63.90 2.18 52.71 1.15 54.57 1.92 45.69 1.00 10.93 7.06 

2.5 4.86 2.21 62.87 2.18 52.26 1.14 52.79 1.87 44.00 0.98 14.15 6.75 

3 4.86 2.21 63.41 2.19 53.29 1.15 55.00 1.93 46.57 1.01 16.76 6.97 

3.5 4.86 2.22 71.09 2.13 49.74 1.09 54.92 1.96 46.74 1.03 19.50 7.19 

4 4.86 2.23 78.63 2.17 50.43 1.11 54.82 1.92 46.57 1.01 20.38 7.19 

4.125 4.86 2.23 66.83 2.24 53.04 1.15 52.76 1.85 44.53 0.97 21.40 7.19 

4.25 4.86 2.22 77.18 2.19 51.67 1.12 55.37 1.91 44.35 0.99 23.49 7.19 

4.625 4.86 2.21 72.66 2.23 52.22 1.15 58.32 1.86 43.58 0.96 24.54 7.19 

4.75 4.86 2.22 70.38 2.21 53.18 1.15 59.19 1.78 43.18 0.92 24.54 7.19 

5 4.86 2.24 69.53 2.25 52.43 1.17 60.09 1.83 43.96 0.94 26.39 7.19 

5.5 4.86 2.25 69.77 2.17 52.11 1.13 59.27 1.84 44.15 0.96 29.76 7.14 

6 4.86 2.24 68.33 2.15 51.04 1.12 57.69 1.78 42.86 0.93 33.17 7.09 

6.5 4.86 2.22 68.74 2.18 51.62 1.13 60.91 1.92 45.87 1.00 35.95 7.35 

7 4.86 2.23 68.47 2.20 51.44 1.13 61.33 1.97 46.39 1.03 38.46 7.61 

7.5 4.86 2.27 67.29 2.13 50.85 1.11 61.48 1.98 46.74 1.02 40.76 7.64 

8 4.86 2.27 66.09 2.13 50.52 1.11 61.56 2.00 47.37 1.04 42.72 7.68 
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Table C.31: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 7 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.86 1.86 59.07 1.91 47.81 1.01 59.20 1.92 47.91 1.01 0 5.40 

0.125 4.86 1.87 59.46 1.94 48.35 1.03 60.08 1.98 49.11 1.05 0 5.40 

0.25 4.86 1.87 61.33 2.01 48.83 1.06 60.41 2.19 49.44 1.15 0 6.20 

0.5 4.86 1.85 66.99 2.17 54.05 1.14 52.44 1.75 42.99 0.98 2.27 6.20 

0.625 4.86 1.84 64.36 2.15 52.70 1.15 54.85 1.85 44.98 0.97 3.10 6.20 

0.75 4.86 1.84 61.58 2.03 49.62 1.05 60.03 2.04 49.02 1.07 3.26 7.30 

7 4.86 1.83 61.09 2.03 49.76 1.07 61.17 2.05 50.08 1.08 3.26 7.30 

1 4.86 1.82 61.95 2.10 50.47 1.11 58.86 2.00 48.48 1.06 4.35 7.28 

1.5 4.86 1.81 62.70 2.13 51.72 1.12 55.18 1.91 46.02 1.01 7.22 7.26 

2 4.86 1.81 64.54 2.18 53.04 1.15 53.04 1.82 44.32 0.95 10.81 6.65 

2.5 4.86 1.81 64.27 2.10 52.15 1.11 53.82 1.83 44.10 0.96 14.13 6.03 

3 4.86 1.81 62.61 2.11 52.48 1.12 53.86 1.85 45.43 0.99 17.23 6.52 

3.5 4.86 1.82 61.59 4.27 51.93 1.11 50.91 1.75 43.47 0.92 21.30 7.02 

4 4.86 1.83 62.55 3.89 51.86 1.12 49.84 1.74 43.71 0.91 22.36 7.02 

4.125 4.86 1.82 63.55 3.60 53.10 1.14 51.82 2.20 43.98 0.96 23.37 6.64 

4.25 4.86 1.82 62.25 3.44 52.52 1.15 51.64 2.53 44.18 0.95 25.33 6.64 

4.625 4.86 1.82 61.51 3.36 52.44 1.14 50.85 2.63 43.93 0.93 26.30 6.64 

4.75 4.86 1.82 61.50 3.27 52.27 1.11 52.83 2.70 45.00 0.97 26.30 6.31 

5 4.86 1.82 60.44 3.22 51.81 1.12 53.73 2.72 45.81 0.97 27.64 6.31 

5.5 4.86 1.82 59.75 3.21 51.72 1.13 52.18 2.78 45.25 0.98 30.25 6.31 

6 4.86 1.82 59.47 3.12 51.62 1.10 51.49 2.75 44.27 0.98 32.99 6.31 

6.5 4.86 1.81 60.54 3.15 51.92 1.11 50.52 2.69 44.58 0.95 35.71 5.37 

7 4.86 1.81 59.84 3.18 52.36 1.12 50.80 2.73 44.15 0.96 38.20 4.62 

7.5 4.86 1.81 59.06 3.19 52.16 1.12 51.46 2.79 45.50 0.99 40.37 5.09 

8 4.86 1.82 57.70 3.13 50.08 1.09 53.48 2.84 46.85 1.01 41.94 5.58 
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Table C.32: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 8 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.86 1.91 57.62 2.04 48.77 1.05 57.82 2.05 48.94 1.05 0 5.82 

0.125 4.86 1.92 60.66 2.24 51.24 1.13 53.53 1.98 46.1 1.01 0.43 5.82 

0.25 4.86 1.93 61.85 2.16 50.82 1.10 54.84 1.97 46.86 1.00 0.81 6.30 

0.5 4.86 1.9.0 65.19 2.15 52.37 1.09 53.73 1.95 45.25 1.00 2.05 6.30 

0.625 4.86 1.93 67.15 2.22 52.22 1.13 54.25 1.91 44.80 0.98 2.74 6.30 

0.75 4.86 1.93 67.06 2.27 53.23 1.15 53.20 1.84 44.32 0.94 3.61 6.87 

7 4.86 1.89 66.86 2.22 53.56 1.12 53.23 1.84 43.82 0.94 5.47 6.87 

1 4.86 1.87 67.61 2.29 54.15 1.16 51.61 1.80 42.40 0.91 9.64 6.73 

1.5 4.86 1.87 66.98 2.32 54.44 1.14 54.80 1.94 45.16 0.98 13.02 6.61 

2 4.86 1.88 67.29 2.34 55.17 1.19 54.12 1.92 44.96 0.99 16.43 6.49 

2.5 4.86 1.88 65.48 2.31 54.10 1.17 52.98 1.88 44.37 0.96 19.91 6.35 

3 4.86 1.88 65.04 2.23 53.78 1.13 53.64 1.95 45.25 1.00 23.11 6.73 

3.5 4.86 1.88 58.92 2.10 71.55 1.07 56.29 2.02 47.37 1.03 26.23 7.11 

4 4.86 1.89 59.74 2.11 72.23 1.08 57.25 2.07 48.13 1.06 26.95 7.11 

4.125 4.86 1.89 60.34 2.12 72.05 1.09 56.88 2.03 49.06 1.02 27.65 7.24 

4.25 4.86 1.89 59.68 2.27 72.49 1.07 56.45 2.08 53.00 1.06 28.96 7.24 

4.625 4.86 1.88 60.36 2.13 64.55 1.08 54.77 1.93 57.20 0.99 29.52 7.24 

4.75 4.86 1.88 61.26 2.15 61.05 1.10 54.97 1.98 59.90 1.01 30.01 7.38 

5 4.86 1.90 61.23 2.24 61.49 1.15 54.53 1.95 58.31 1.00 31.03 7.38 

5.5 4.86 1.91 60.50 2.20 62.74 1.13 52.85 1.92 55.77 0.99 33.49 7.54 

6 4.86 1.91 60.28 2.19 63.19 1.12 54.63 2.03 57.85 1.04 35.66 7.72 

6.5 4.86 1.92 59.65 2.18 63.21 1.12 54.06 1.97 57.18 1.00 37.70 6.96 

7 4.86 1.92 59.86 2.16 63.46 1.11 53.77 1.99 57.69 1.01 39.64 6.38 

7.5 4.86 1.92 60.45 2.23 63.59 1.14 54.71 2.03 58.81 1.03 41.40 6.58 

8 4.86 1.89 59.91 2.17 64.01 1.12 55.57 2.06 59.83 1.05 42.98 6.80 
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Table C.33: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 9 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.86 1.88 58.41 2.10 50.00 1.11 58.62 2.11 50.18 1.11 0 5.19 

0.125 4.86 1.88 60.82 2.16 51.90 1.13 55.79 2.05 48.41 1.07 0.31 5.19 

0.25 4.86 1.88 59.71 2.15 51.07 1.10 57.34 2.01 49.95 1.06 0.49 5.64 

0.5 4.86 1.86 61.12 2.09 51.39 1.09 59.77 2.14 51.33 1.11 0.49 5.64 

0.625 4.86 1.85 61.84 2.16 51.91 1.13 57.90 2.03 50.75 1.07 0.68 5.64 

0.75 4.86 1.85 64.09 2.16 52.34 1.13 57.33 2.01 49.30 1.05 1.01 6.14 

7 4.86 1.83 65.30 2.30 54.19 1.19 52.75 1.88 45.21 0.98 2.77 6.14 

1 4.86 1.81 65.95 2.35 55.65 1.21 51.68 1.80 44.83 0.94 7.24 6.81 

1.5 4.86 1.80 66.87 2.29 54.95 1.19 53.49 1.88 45.52 0.98 11.22 7.60 

2 4.86 1.79 64.79 2.27 55.06 1.19 53.29 1.84 44.99 0.96 15.21 6.84 

2.5 4.86 1.79 64.13 2.32 54.89 1.21 54.09 1.95 46.62 1.01 18.37 6.19 

3 4.86 1.79 63.37 2.25 54.48 1.18 53.44 1.95 46.41 1.02 21.38 6.09 

3.5 4.86 1.80 62.43 2.26 54.20 3.62 53.65 1.93 46.75 1.02 24.22 6.00 

4 4.86 1.80 62.64 2.18 53.11 3.29 53.33 1.94 46.64 1.03 24.91 6.00 

4.125 4.86 1.79 62.13 2.24 53.98 3.02 53.91 1.98 47.20 1.33 25.59 6.46 

4.25 4.86 1.78 61.60 2.20 53.36 2.57 53.53 1.94 47.26 1.88 26.94 6.46 

4.625 4.86 1.78 61.62 2.18 52.77 2.46 53.72 1.96 47.04 2.04 27.59 6.46 

4.75 4.86 1.78 60.83 2.18 52.78 2.44 54.70 1.97 47.45 2.12 28.19 6.98 

5 4.86 1.79 60.81 2.18 52.37 2.39 54.50 1.98 47.53 2.06 29.33 6.98 

5.5 4.86 1.77 61.26 2.24 53.61 2.39 55.48 2.03 49.03 2.15 31.33 7.20 

6 4.86 1.78 59.59 2.17 52.38 2.32 54.25 1.99 47.81 2.11 35.38 7.44 

6.5 4.86 1.77 59.28 2.14 51.68 2.27 53.76 2.00 48.35 2.04 37.36 7.32 

7 4.86 1.77 59.31 2.20 53.15 2.34 55.59 2.04 49.38 2.17 38.96 7.21 

7.5 4.86 1.77 59.02 2.19 52.61 2.32 55.11 2.00 48.55 2.14 40.51 7.07 

8 4.86 1.77 58.10 2.18 52.46 2.32 53.97 2.02 49.17 2.14 42.06 6.93 
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Table C.34: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 10 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 4.85 1.88 59.22 2.07 48.34 1.05 58.40 2.08 48.60 1.06 0 6.69 

0.125 4.86 1.86 65.67 2.19 53.01 1.11 51.82 1.82 43.39 0.92 1.42 6.69 

0.25 4.86 1.86 66.39 2.25 53.02 1.14 51.92 1.85 43.00 0.93 2.88 6.67 

0.5 4.86 1.86 66.73 2.32 53.27 1.17 52.65 1.87 43.42 0.95 5.72 6.67 

0.625 4.86 1.85 67.00 2.28 53.79 1.16 51.62 1.79 42.68 0.9 7.29 6.67 

0.75 4.86 1.84 68.00 2.32 54.28 1.17 50.26 1.76 42.12 0.89 9.02 6.65 

7 4.86 1.83 67.39 2.26 53.76 1.15 51.35 1.78 42.24 0.91 9.02 6.65 

1 4.86 1.82 66.92 2.26 54.10 1.15 52.81 1.87 43.20 0.95 15.04 6.94 

1.5 4.86 1.81 64.37 2.17 52.36 1.11 52.02 1.82 42.33 0.92 21.43 7.28 

2 4.86 1.80 62.81 2.23 51.22 1.13 54.79 1.92 45.13 0.96 25.65 7.92 

2.5 4.86 1.80 61.92 2.10 50.76 1.06 55.86 1.96 46.14 1.00 29.12 8.66 

3 4.86 1.80 60.92 2.13 50.21 1.07 54.81 1.90 45.54 0.96 32.68 8.49 

3.5 6.68 1.92 59.03 2.10 49.01 1.05 54.67 1.95 45.76 0.98 35.66 8.32 

4 6.68 1.93 59.25 2.14 49.29 1.08 54.45 1.96 45.78 0.99 36.37 8.32 

4.125 6.68 1.93 59.15 2.10 49.54 1.06 53.76 1.96 45.19 0.99 37.09 8.41 

4.25 6.68 1.93 59.30 2.10 49.63 1.06 55.59 2.00 46.79 1.01 38.24 8.41 

4.625 6.68 1.93 59.79 2.13 49.82 1.07 55.47 2.00 47.09 1.01 38.81 8.41 

4.75 6.68 1.93 59.75 2.13 50.00 1.07 54.91 1.98 46.47 1.01 39.41 8.51 

5 6.68 1.93 58.55 2.04 49.15 1.04 54.58 1.97 46.40 0.99 40.61 8.51 

5.5 6.68 1.93 58.05 2.08 49.31 1.05 56.38 2.06 47.92 1.03 42.04 8.51 

6 6.68 1.93 57.71 2.10 49.46 1.06 53.83 1.93 46.49 0.98 44.01 8.51 

6.5 6.68 1.93 57.37 2.10 49.41 1.06 53.91 2.02 46.86 1.02 45.92 8.05 

7 6.68 1.93 56.30 2.05 49.35 1.03 52.84 1.98 46.52 1.00 47.92 7.67 

7.5 6.68 1.93 56.47 2.03 49.47 1.03 54.78 2.09 48.60 1.04 49.11 7.46 

8 6.68 1.93 55.79 2.13 49.65 1.06 51.79 1.95 46.44 0.99 50.86 7.23 
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Table C.35: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 11 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 6.68 2.07 51.78 4.01 73.09 3.24 51.43 3.99 72.59 3.21 0 5.75 

0.125 6.68 2.09 54.39 4.14 75.60 3.35 45.61 3.62 65.54 2.90 1.58 5.75 

0.25 6.68 2.08 55.63 4.21 76.85 3.37 42.55 3.39 61.42 2.72 3.79 5.60 

0.5 6.68 2.07 54.19 4.04 74.93 3.26 46.11 3.60 65.91 2.89 6.77 5.60 

0.625 6.68 2.07 54.60 4.19 75.99 3.37 41.86 3.59 59.97 2.89 8.71 5.60 

0.75 6.68 2.06 55.87 4.33 77.82 3.47 45.61 3.61 65.44 2.90 10.53 5.44 

7 6.68 2.06 54.17 4.18 76.16 3.35 44.11 3.44 63.30 2.77 14.29 5.44 

1 6.68 2.05 51.16 3.96 71.94 3.18 46.41 3.72 67.03 2.98 18.57 6.12 

1.5 6.68 2.03 50.95 3.93 72.14 3.15 47.37 3.70 67.92 2.97 21.61 6.91 

2 6.68 2.02 51.57 4.07 73.64 3.27 46.26 3.70 66.90 2.97 25.27 6.81 

2.5 6.68 2.02 51.55 4.09 74.38 3.3 47.31 3.84 69.51 3.08 28.53 6.72 

3 6.68 2.01 49.89 3.99 72.39 3.19 44.05 3.57 64.78 2.85 32.90 6.72 

3.5 6.68 2.01 45.69 4.04 73.47 3.24 40.37 3.56 64.57 2.67 38.29 6.72 

4 6.68 2.02 42.56 4.10 74.39 3.31 37.07 3.59 65.17 2.79 39.66 6.72 

4.125 6.68 2.03 41.04 4.14 75.16 3.34 41.09 3.62 65.67 2.91 40.82 6.51 

4.25 6.68 2.03 40.02 4.00 73.72 3.22 39.41 3.65 66.66 2.93 42.77 6.51 

4.625 6.68 2.03 39.90 3.95 72.99 3.18 38.72 3.67 66.42 2.96 43.65 6.51 

4.75 6.68 2.03 40.12 4.00 73.38 3.24 38.36 3.64 66.35 2.93 44.51 6.30 

5 6.68 2.03 40.12 3.99 73.23 3.23 37.49 3.67 66.67 2.95 46.10 6.30 

5.5 6.68 2.02 40.13 3.99 73.11 3.22 37.50 3.71 68.03 3.00 48.84 6.35 

6 6.68 2.02 40.22 3.99 73.14 3.22 37.32 3.75 68.41 3.02 51.36 6.41 

6.5 6.68 2.03 38.75 3.92 71.06 3.16 37.09 3.70 68.59 2.98 53.49 6.64 

7 6.68 2.03 37.73 3.74 69.13 3.01 36.77 3.79 68.97 3.05 55.01 6.87 

7.5 6.68 2.03 38.58 3.98 72.41 3.21 37.01 3.74 67.89 3.01 56.85 6.87 

8 6.68 2.04 38.36 4.03 72.74 3.25 36.15 3.84 69.61 3.08 58.56 6.87 
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Table C.36: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 12 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 6.67 2.14 53.74 4.12 76.44 3.32 53.23 4.08 75.72 3.29 0 4.71 

0.125 6.67 2.01 49.66 3.82 69.88 3.07 58.75 4.70 84.81 3.78 0 4.71 

0.25 6.67 1.98 54.80 4.29 78.16 3.47 50.47 4.02 73.22 3.22 1.26 5.13 

0.5 6.67 1.87 51.81 4.04 74.23 3.24 54.00 4.34 79.32 3.50 1.26 5.13 

0.625 6.67 1.95 54.45 4.31 78.62 3.49 48.59 3.95 70.67 3.17 2.96 5.13 

0.75 6.67 1.95 55.19 4.38 79.85 3.51 48.86 4.05 71.33 3.25 4.40 5.57 

7 6.67 1.94 55.41 4.56 79.41 3.65 48.31 4.00 70.95 3.21 4.41 5.57 

1 6.67 1.92 54.96 4.42 79.81 3.55 46.56 3.85 68.79 3.09 11.54 6.22 

1.5 6.67 1.90 55.04 4.51 81.06 3.62 47.68 3.98 71.31 3.19 17.42 7.04 

2 6.67 1.89 54.01 4.31 79.66 3.45 49.00 4.03 71.55 3.23 22.02 7.01 

2.5 6.67 1.89 53.72 4.49 80.66 3.59 46.70 3.98 71.36 3.20 22.02 6.99 

3 6.67 1.89 52.50 4.34 80.26 3.48 46.88 4.01 71.23 3.22 27.22 7.53 

3.5 6.67 1.89 50.78 2.55 79.09 3.53 46.84 3.88 72.36 3.21 32.02 8.17 

4 6.67 1.91 50.75 2.28 78.79 3.45 46.42 3.57 72.71 3.25 33.08 8.17 

4.125 6.67 1.92 50.06 2.34 78.56 3.44 45.87 3.28 71.58 3.16 34.11 7.43 

4.25 6.67 1.91 50.27 2.57 78.77 3.44 45.42 3.03 71.82 3.24 35.99 7.43 

4.625 6.67 1.91 50.50 2.70 79.22 3.51 46.60 3.00 73.20 3.29 36.84 7.43 

4.75 6.67 1.90 50.53 2.71 79.30 3.48 45.87 2.80 71.37 3.15 37.72 6.82 

5 6.67 1.90 49.72 2.73 77.50 3.43 45.40 2.73 71.50 3.18 39.37 6.82 

5.5 6.67 1.89 49.48 2.74 77.08 3.37 45.99 2.68 72.38 3.21 42.15 7.50 

6 6.67 1.88 48.78 2.75 76.41 3.36 44.91 2.61 71.25 3.16 45.42 8.25 

6.5 6.67 1.89 48.87 2.96 77.27 3.39 44.11 2.59 71.41 3.14 48.68 6.90 

7 6.67 1.89 48.71 2.81 77.04 3.43 43.04 2.60 70.42 3.16 51.91 5.77 

7.5 6.67 1.90 48.05 2.81 77.79 3.48 42.04 2.53 69.40 3.08 55.34 5.57 

8 6.67 1.90 47.90 2.82 77.88 3.43 40.94 2.51 68.64 3.06 59.02 5.39 
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Table C.37: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 13 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 6.69 2.10 47.40 3.97 72.07 3.18 47.55 3.98 72.3 3.19 0 4.34 

0.125 6.69 2.16 48.64 4.10 74.1 3.28 45.71 3.90 70.52 3.13 0.72 4.34 

0.25 6.69 2.14 49.33 4.17 74.92 3.36 45.82 3.99 71.71 3.21 1.49 5.14 

0.5 6.69 2.11 49.18 4.12 74.66 3.30 46.88 4.01 72.42 3.21 2.73 5.14 

0.625 6.69 2.10 50.36 4.21 76.45 3.37 44.92 3.85 69.73 3.09 3.98 5.14 

0.75 6.69 2.09 51.07 4.37 78.10 3.47 40.98 3.53 63.86 2.83 7.04 6.20 

7 6.69 2.07 51.27 4.39 78.76 3.51 44.41 3.87 69.62 3.10 8.45 6.20 

1 6.69 2.05 49.83 4.26 76.86 3.42 45.41 3.93 71.25 3.15 8.45 6.14 

1.5 6.69 2.03 49.29 4.24 76.87 3.41 48.79 4.26 77.04 3.41 8.45 6.07 

2 6.69 2.03 48.22 4.21 75.98 3.38 47.18 4.24 75.82 3.40 8.45 6.59 

2.5 6.69 2.02 48.97 4.36 78.05 3.49 48.39 4.36 78.04 3.48 8.45 7.14 

3 6.69 2.02 49.57 4.33 79.51 3.46 48.98 4.31 79.33 3.44 8.45 6.91 

3.5 6.69 2.02 50.83 4.70 73.37 3.75 44.10 3.97 71.85 3.18 14.39 6.70 

4 6.69 2.02 51.68 4.32 64.84 3.46 45.5 4.05 69.11 3.24 15.57 6.70 

4.125 6.69 2.02 54.60 4.58 67.55 3.65 48.22 4.36 70.59 3.46 16.52 6.54 

4.25 6.69 2.02 54.88 4.65 65.15 3.71 47.82 4.25 66.25 3.38 19.04 6.54 

4.625 6.69 2.01 52.62 4.42 62.37 3.53 47.12 4.20 63.78 3.35 20.30 6.54 

4.75 6.69 2.01 55.31 4.72 66.14 3.75 48.89 4.23 64.86 3.38 21.49 6.36 

5 6.69 2.01 53.99 4.53 64.89 3.61 48.75 4.26 63.81 3.39 23.91 6.36 

5.5 6.69 2.00 53.07 4.52 65.70 3.62 48.95 4.25 63.07 3.39 28.12 6.22 

6 6.69 2.00 55.47 4.81 69.88 3.83 50.04 4.30 64.04 3.44 32.84 6.11 

6.5 6.69 2.00 53.18 4.73 68.22 3.77 49.25 4.35 63.75 3.46 38.27 6.14 

7 6.69 2.00 52.76 4.57 67.00 3.64 47.25 4.21 61.94 3.36 43.84 6.17 

7.5 6.69 2.00 55.64 4.77 71.42 3.82 46.11 4.23 61.25 3.38 51.98 6.14 

8 6.69 2.00 49.53 4.43 64.62 3.54 47.47 3.96 62.89 3.17 57.99 6.11 
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Table C.38: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 14 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 6.66 2.11 45.01 4.06 71.44 3.18 44.71 4.03 73.53 3.16 0 5.14 

0.125 6.66 2.21 45.29 4.12 74.34 3.22 42.88 4.09 70.86 3.20 0.51 5.14 

0.25 6.66 2.19 45.32 4.08 72.17 3.18 44.68 4.16 73.66 3.25 0.51 5.35 

0.5 6.66 2.14 48.29 4.41 77.48 3.45 40.56 3.78 66.41 2.95 2.91 5.35 

0.625 6.66 2.12 48.35 4.43 77.69 3.45 40.90 3.88 67.23 3.02 4.12 5.35 

0.75 6.66 2.11 46.60 4.25 78.00 3.32 41.12 3.88 67.59 3.03 5.25 5.57 

7 6.66 2.08 46.87 4.29 75.53 3.35 42.75 4.02 70.35 3.15 6.50 5.57 

1 6.66 2.06 47.25 4.54 77.37 3.49 40.77 3.89 67.62 3.03 6.50 5.55 

1.5 6.66 2.04 47.63 4.53 78.60 3.54 38.22 3.74 65.48 2.92 12.31 5.53 

2 6.66 2.03 47.20 4.52 78.71 3.53 38.97 3.74 65.90 2.92 17.70 5.49 

2.5 6.66 2.03 46.54 4.52 78.66 3.52 39.65 3.89 67.56 3.02 22.76 5.47 

3 6.66 2.03 45.75 4.54 78.10 3.54 38.04 3.78 65.78 2.94 28.13 5.55 

3.5 6.66 2.02 43.26 4.38 76.41 2.23 38.15 3.85 67.04 2.91 32.55 5.62 

4 6.66 2.03 42.91 4.34 76.30 1.93 38.04 3.79 66.72 2.66 33.58 5.62 

4.125 6.66 2.04 43.20 4.41 76.71 1.95 38.43 3.89 68.00 2.64 34.54 5.94 

4.25 6.66 2.03 41.98 4.23 74.86 1.95 37.06 3.84 66.76 2.40 36.41 5.94 

4.625 6.66 2.03 41.29 4.20 73.61 1.97 37.10 3.81 66.67 2.28 37.28 5.94 

4.75 6.66 2.03 42.12 4.30 75.06 2.03 37.20 3.92 67.43 2.27 38.12 6.27 

5 6.66 2.02 41.05 4.22 73.61 2.04 36.18 3.77 66.07 2.11 39.91 6.27 

5.5 6.66 2.02 41.11 4.24 74.28 2.14 35.54 3.76 65.90 1.97 43.59 5.96 

6 6.66 2.01 40.80 4.20 74.12 2.14 36.17 3.87 66.85 2.02 46.89 5.65 

6.5 6.66 2.01 40.45 3.93 73.87 2.02 35.54 3.70 66.25 1.91 50.26 6.07 

7 6.66 2.01 40.17 4.26 73.75 2.19 35.34 3.84 66.21 1.97 53.83 6.50 

7.5 6.66 2.01 39.14 4.10 72.25 2.10 34.16 3.72 65.11 1.90 57.70 6.54 

8 6.66 2.01 37.99 4.12 71.94 2.11 34.44 3.76 66.05 1.91 61.16 6.59 
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Table C.39: Validated dynamic electrowinning data for the bench-scale electrowinning experiment corresponding to 
Run 15 in Table A.8. 

Time 
(h) 

I (A) U (V) 
Advance electrolyte (g/L) Spent electrolyte (g/L) Cumulative 

mCu (g) 
Q 

(L/h) xCu xFe xNi xCo xCu xFe xNi xCo 

0 6.67 2.08 49.67 4.05 73.79 3.27 49.84 4.07 74.04 3.28 0 5.75 

0.125 6.67 2.11 51.23 4.17 75.58 3.35 47.35 3.71 69.63 3.01 0.56 5.75 

0.25 6.66 2.09 50.93 3.93 72.39 3.15 44.81 3.61 66.82 2.91 1.28 5.63 

0.5 6.66 2.12 50.85 3.98 69.49 3.06 49.38 3.97 72.74 3.20 1.28 5.63 

0.625 6.66 2.11 50.65 4.02 69.01 2.99 49.54 3.96 72.36 3.18 1.28 5.63 

0.75 6.66 2.12 53.63 3.92 71.64 3.15 49.70 4.00 73.14 3.22 1.28 5.50 

7 6.66 2.11 55.31 4.17 75.62 3.35 48.58 3.81 70.47 3.06 2.32 5.50 

1 6.66 2.12 55.61 4.15 76.77 3.35 47.75 3.72 68.33 2.99 6.23 6.08 

1.5 6.66 2.12 55.64 4.19 76.62 3.38 49.38 3.89 70.53 3.12 9.24 6.65 

2 6.66 2.11 55.82 4.24 77.37 3.39 47.19 3.75 67.23 2.97 14.04 6.94 

2.5 6.66 2.11 54.90 4.17 75.72 3.34 47.22 3.69 67.02 2.95 18.64 7.26 

3 6.66 2.09 53.39 4.15 75.32 3.31 49.84 3.84 70.48 3.08 21.36 6.97 

3.5 4.84 1.92 53.22 4.08 74.44 3.27 51.22 4.04 72.70 3.23 22.64 6.70 

4 4.84 1.93 53.58 4.06 74.33 3.25 49.83 3.84 70.44 3.08 23.04 6.70 

4.125 4.84 1.94 54.02 4.07 74.19 3.26 49.67 3.80 70.14 3.04 23.48 6.96 

4.25 4.84 1.93 54.38 4.13 75.14 3.30 49.57 3.78 69.84 3.02 24.63 6.96 

4.625 4.84 1.94 53.74 4.10 74.76 3.28 46.35 3.66 65.65 2.95 25.38 6.96 

4.75 4.84 1.97 55.14 4.12 75.15 3.31 43.83 3.46 67.30 2.99 26.30 7.24 

5 4.84 1.96 54.83 4.14 75.78 3.31 48.53 3.74 68.32 3.00 28.06 7.24 

5.5 4.84 1.96 55.03 4.15 75.67 3.32 50.22 3.95 71.05 3.18 30.78 7.19 

6 4.84 1.96 54.61 4.12 75.09 3.30 50.49 3.85 70.48 3.07 33.27 7.14 

6.5 4.84 1.96 54.49 4.14 75.11 3.31 50.16 3.85 70.13 3.09 35.71 7.03 

7 4.84 1.96 54.72 4.15 75.35 3.33 45.99 3.52 64.06 2.82 39.66 6.92 

7.5 4.84 1.96 55.80 4.24 76.77 3.40 47.53 3.67 66.55 2.93 43.84 6.66 

8 4.84 1.96 56.28 4.29 77.36 3.42 42.47 3.30 59.52 2.63 49.90 6.42 
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Figure C.6: Comparison between raw and validated cumulative mass copper plated for Run 1 (a) to Run 15 (o). The 
run numbers correspond the experimental design in Table A.8. 
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Figure C.6 (continued) 
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Figure C.6 (continued) 
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Figure C.7: Comparison between raw and validated copper plating rate for Run 1 (a) to Run 15 (o). The run numbers 
correspond the experimental design in Table A.8. 
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Figure C.7 (continued) 
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Figure C.7 (continued) 
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Figure C.8: Comparison between raw and validated advance and spent electrolyte cobalt concentrations for Run 1 (a) 
to Run 15 (o). The run numbers correspond the experimental design in Table A.8. 
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Figure C.8 (continued) 
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Figure C.8 (continued) 
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Figure C.9: Comparison between raw and validated advance and spent electrolyte copper concentrations for Run 1 (a) 
to Run 15 (o). The run numbers correspond the experimental design in Table A.8. 
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Figure C.9 (continued) 
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Figure C.9 (continued) 
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Figure C.10: Comparison between raw and validated advance and spent electrolyte iron concentrations for Run 1 (a) 
to Run 15 (o). The run numbers correspond the experimental design in Table A.8. 
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Figure C.10 (continued) 
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Figure C.10 (continued) 
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Figure C.11: Comparison between raw and validated advance and spent electrolyte nickel concentrations for Run 1 (a) 
to Run 15 (o). The run numbers correspond the experimental design in Table A.8. 
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Figure C.11 (continued) 
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Figure C.11 (continued) 
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Figure C.12: Comparison between raw and validated flow rate for Run 1 (a) to Run 15 (o). The run numbers 
correspond the experimental design in Table A.8. 
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Figure C.12 (continued) 
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Figure C.12 (continued) 

 

  

Stellenbosch University https://scholar.sun.ac.za



337 
 

C.2 SAMPLE CALCULATIONS 

C.2.1 Bench-Scale Electrowinning Experiments Uncertainty 

Copper plating rate uncertainty 

The selected experimental design for the bench-scale electrowinning experiments resulted in three sets 

of five experiments conducted at similar base conditions (Table A.8). The conditions at the first four 

hours, before the respective disturbances were induced, were, therefore, identical for each set 

(containing five experiments). Consequently, the uncertainty associated with the calculated copper 

plating rates could be quantified. Upper and lower uncertainty limits were determined as the final 

reconciled copper plating rate at the respective sampling times, ± one standard deviation. The average 

standard deviation for the sampling times for which repeats were available (up to four hours into the 

eight hour runs) were used for the remainder of the sampling times in the respective runs.  

It was elected to quantify the uncertainty associated with the final reconciled copper plating rate instead 

of the measured advance and spent electrolyte copper concentrations, and subsequently propagating the 

error to the copper plating rate. This method was used as an attempt to account for deviations inserted 

via the preprocessing and reconciliation of data.  

The standard deviation was first calculated, at each individual sampling time up to t = 3.5 h, for the 

copper plating rates that formed part of a set (Equation C.1). The standard deviation for the remaining 

sampling times was taken as the average of the calculated standard deviations for t = 0 h to t = 3.5 h. 

Following, lower and upper uncertainty limits were calculated (Equation C.2 and Equation C.3, 

respectively). Table C.40 gives an example of the calculated standard deviations for the copper plating 

rates, for the five experiments forming the first set. 

 𝑠 =
∑ (

,
)
   [ C.1 ] 

 𝐿 = 𝑃
,

+  𝑠    [ C.2 ] 

 𝐿 = 𝑃
,

−  𝑠    [ C.3 ] 

where 𝑠 is the sample standard deviation, 𝑃   is the copper plating rate (g/s), 𝑡 is the time (h), 𝑟 is the 

experiment number, and 𝐿 is the uncertainty limit. 
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Table C.40: Calculated standard deviations of the copper plating rate for the bench-scale electrowinning experiments 
corresponding to Run 1 to Run 5 in Table A.8. 

Time (h) 
PCu (g/s) 

sPCu (g/s) 
Run 1 Run 2 Run 3 Run 4 Run 5 

0 1.85 × 10−8 1.97 × 10−7 1.98 × 10−7 1.98 × 10−7 1.78 × 10−8 9.82 × 10−8 

0.125 5.78 × 10−5 4.44 × 10−7 1.72 × 10−3 3.60 × 10−5 1.96 × 10−7 7.58 × 10−4 

0.25 4.45 × 10−7 3.66 × 10−8 6.94 × 10−4 3.16 × 10−4 2.08 × 10−4 2.86 × 10−4 

0.5 3.65 × 10−4 7.30 × 10−4 9.97 × 10−4 2.10 × 10−3 7.68 × 10−4 6.58 × 10−4 

0.625 5.62 × 10−4 1.69 × 10−3 8.11 × 10−4 1.75 × 10−3 6.49 × 10−4 5.81 × 10−4 

0.75 4.90 × 10−4 8.82 × 10−4 9.75 × 10−4 1.43 × 10−3 3.67 × 10−4 4.21 × 10−4 

1 3.17 × 10−4 1.38 × 10−3 1.83 × 10−3 6.96 × 10−4 7.82 × 10−4 6.00 × 10−4 

1.5 7.55 × 10−4 7.33 × 10−4 2.54 × 10−3 1.79 × 10−3 8.56 × 10−8 1.00 × 10−3 

2 9.48 × 10−4 1.52 × 10−3 1.74 × 10−3 1.51 × 10−3 1.97 × 10−7 7.04 × 10−4 

2.5 1.24 × 10−3 2.02 × 10−2 1.60 × 10−3 1.52 × 10−3 8.61 × 10−8 7.67 × 10−4 

3 8.77 × 10−4 1.31 × 10−2 1.64 × 10−3 1.69 × 10−3 4.44 × 10−7 6.98 × 10−4 

3.5 7.09 × 10−4 1.90 × 10−3 1.63 × 10−3 1.68 × 10−3 6.72 × 10−4 5.81 × 10−4 

Average  5.88 × 10−4 

SEC uncertainty 

The quantified error in the copper plating rate was propagated through to the calculation of the SEC, 

but not the current efficiency. It was not possible to propagate the error to the current efficiency as it 

was calculated using the cumulative mass copper plated, and not the instantaneous copper plating rate, 

as was the SEC. Equation C.4, which is a manipulated form of Equation 2.25, was used to calculate the 

SEC. The previously calculated standard deviations for the copper plating rates were propagated to the 

SEC using Equation C.5. The upper and lower uncertainty limits were calculated as above (Equation 

C.2 and Equation C.3, respectively). Table C.41 gives an example of the calculated standard deviations 

for the SEC, for the five experiments forming the first set. 

 SEC =
 

,

   [ C.4 ] 

 𝑠
,

= SEC ,  + +    [ C.5 ] 

where 𝑠  and 𝑠  were taken as 0. 
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Table C.41: Calculated standard deviations of the SEC for the bench-scale electrowinning experiments corresponding 
to Run 1 to Run 5 in Table A.8. 

Time 
(h) 

SEC (kWh/t) sSEC (kWh/t) 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5 

0 1.17 × 
108 

1.07 × 
107 

1.10 × 
107 

1.21 × 
107 

1.20 × 
108 

6.21 × 
108 

5.34 × 
106 

5.45 × 
106 

6.00 × 
106 

6.64 × 
108 

0.125 3.73 × 
104 

4.70 × 
106 

1248 6.22 × 
104 

1.09 × 
107 

4.90 × 
105 

8.02 × 
109 

551 1.31 × 
106 

4.21 × 
1010 

0.25 4.84 × 
106 

5.70 × 
107 

3073 7008 1.03 × 
104 

3.11 × 
109 

4.46 × 
1011 

1268 6347 1.42 × 
104 

0.5 5910 2841 2127 1039 2775 1.66 × 
104 

2563 1404 326 2377 

0.625 3813 1219 2599 1238 3266 3940 418 1861 411 2921 

0.75 4398 2323 2163 1511 5781 3778 1108 934 446 6638 

1 6735 1490 1144 3061 2710 1.28 × 
104 

650 375 2638 2079 

1.5 2808 2781 820 1175 2.46 × 
107 

3723 3802 323 655 2.87 × 
1011 

2 2225 1333 1197 1395 1.07 × 
107 

1652 617 483 650 3.82 × 
1010 

2.5 1712 1001 1301 1386 2.43 × 
107 

1061 380 623 699 2.16 × 
1011 

3 2418 1546 1270 1244 4.75 × 
106 

1926 824 540 513 7.47 × 
109 

3.5 2992 1069 1278 1247 3136 2454 328 455 431 2711 
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APPENDIX D 

MODEL RESULTS 

Appendix D provides additional information pertaining to the model-predicted results for the four 

datasets used in this project. The actual values, model-predicted values, and applicable model error 

terms are given for the steady-state experimental dataset (Section D.1), steady-state industrial dataset 

(Section D.2), dynamic experimental datasets (Section D.3), and dynamic industrial dataset (Section 

D.4). A summary of the statistical analysis for the various regression models is also included (Section 

D.5).  

D.1 STEADY-STATE EXPERIMENTAL MODEL PREDICTIONS 

Table D.1: Comparison between actual and model-predicted potential and spent electrolyte copper concentration for the 
steady-state experimental data generated by Tucker (2019). 

Run 
Potential (V) Spent electrolyte Cu concentration (g/L) 

Actual Predicted Error (%) Actual Predicted Error (%) 

1 2.0 2.1 3.8 50.3 51.4 2.1 

2 2.1 2.1 1.0 53.7 52.4 2.4 

3 2.1 2.1 1.6 49.4 50.3 1.8 

4 2.1 2.1 2.2 29.6 28.6 3.4 

5 1.9 1.9 2.3 50.8 50.6 0.4 

6 2.0 2.1 6.6 50.7 53.7 5.9 

7 1.9 1.8 2.9 31.9 34.4 8.0 

8 2.0 2.1 2.0 31.0 33.6 8.5 

9 1.9 1.9 1.6 48.2 53.7 11.4 

10 2.1 2.1 1.3 29.8 28.9 3.0 

11 1.9 1.9 2.1 52.3 53.9 3.0 

12 2.1 2.1 1.2 31.2 30.0 3.8 

13 1.9 1.9 1.4 52.0 53.1 2.1 

14 1.9 1.8 2.8 27.1 31.0 14.4 

15 1.9 1.9 2.8 33.7 34.5 2.4 

16 1.9 1.8 2.8 33.9 35.2 3.8 

17 2.0 2.1 3.6 50.1 51.0 1.8 

18 2.1 2.1 1.2 41.2 50.7 23.0 

19 2.1 2.1 0.4 31.2 31.6 1.3 
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Run 
Potential (V) Spent electrolyte Cu concentration (g/L) 

Actual Predicted Error (%) Actual Predicted Error (%) 

20 1.9 1.9 2.1 40.7 50.2 23.3 

21 2.0 2.1 3.2 29.7 31.7 6.7 

22 1.9 1.9 2.3 51.4 49.1 4.5 

23 2.0 2.0 1.5 31.2 33.3 6.8 

24 1.9 1.9 2.1 32.4 30.7 5.1 

 

Table D.2: Comparison between actual and model-predicted KPIs for the steady-state experimental data generated by 
Tucker (2019). 

Run 

Current efficiency (%) SEC (kWh/t) Cu plating rate (g/s/m2) 

Actual Predicted MAPE 
(%) 

Actual Predicted MAPE 
(%) 

Actual Predicted MAPE 
(%) 

1 90.7 92.5 2.1 1860.9 1888.9 1.5 0.0965 0.0988 2.3 

2 91.0 98.0 7.8 1947.3 1787.2 8.2 0.0968 0.1043 7.8 

3 91.3 92.5 1.4 1903.7 1904.1 0 0.0970 0.0985 1.6 

4 90.3 92.6 2.5 1961.4 1868.1 4.8 0.0961 0.0987 2.7 

5 87.7 89.1 1.6 1827.9 1751.1 4.2 0.0634 0.0647 2.0 

6 97.2 98.2 1.1 1736.2 1829.2 5.4 0.1088 0.1100 1.1 

7 86.9 89.0 2.5 1845.3 1742.0 5.6 0.0627 0.0645 2.9 

8 96.1 98.1 2.1 1773.2 1769.9 0.2 0.1023 0.1046 2.2 

9 87.6 89.0 1.6 1829.0 1764.7 3.5 0.0632 0.0644 2.0 

10 89.9 92.6 3.0 1970.9 1884.5 4.4 0.0956 0.0987 3.2 

11 94.3 97.1 3.0 1699.0 1612.9 5.1 0.0678 0.0699 3.1 

12 95.1 98.1 3.1 1818.3 1783.2 1.9 0.1012 0.1044 3.2 

13 94.4 97.2 2.9 1697.8 1625.3 4.3 0.0683 0.0703 3.0 

14 95.0 97.1 2.2 1686.9 1603.2 5.0 0.0685 0.0701 2.3 

15 85.9 88.6 3.2 1875.8 1760.2 6.2 0.0620 0.0643 3.6 

16 94.9 96.9 2.1 1688.9 1606.1 4.9 0.0667 0.0681 2.2 

17 97.8 99.5 1.8 1725.8 1755.3 1.7 0.1030 0.1049 1.8 

18 97.8 99.9 2.1 1784.8 1769.7 0.8 0.1042 0.1064 2.1 

19 99.0 100.0 0.9 1771.7 1762.6 0.5 0.1109 0.1119 0.9 

20 97.9 100.0 2.1 1637.1 1568.5 4.2 0.0706 0.0721 2.1 

21 98.3 99.5 1.3 1725.7 1758.9 1.9 0.1044 0.1057 1.3 
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Run 

Current efficiency (%) SEC (kWh/t) Cu plating rate (g/s/m2) 

Actual Predicted MAPE 
(%) 

Actual Predicted MAPE 
(%) 

Actual Predicted MAPE 
(%) 

22 98.5 99.3 0.8 1626.8 1576.4 3.1 0.0692 0.0698 0.8 

23 99.1 99.7 0.7 1703.1 1666.2 2.2 0.0898 0.0904 0.7 

24 97.4 99.3 1.9 1645.0 1580.3 3.9 0.0704 0.0717 1.9 
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D.2 STEADY-STATE INDUSTRIAL MODEL PREDICTIONS 

Table D.3: Comparison between actual and model-predicted potential and spent electrolyte copper concentration for the 
ten steady-state industrial validation runs. 

Run 
Potential (V) Spent electrolyte Cu concentration (g/L) 

Actual Predicted Error (%) Actual Predicted Error (%) 

16 1.5 1.4 8.4 19.7 20.3 3.1 

18 1.6 1.5 6.2 18.5 19.0 2.7 

26 1.6 1.9 14.3 27.5 29.0 5.2 

32 1.6 1.7 3.0 23 24.2 5.4 

40 1.6 2.0 20.3 28.1 29.1 3.5 

50 1.6 1.9 18.8 31.8 33.0 3.6 

61 1.6 1.9 19.4 23.3 23.9 2.6 

74 1.6 2.0 27.6 30.4 31.2 2.5 

91 1.6 1.9 13.9 21.1 21.5 2.0 

93 1.6 1.5 7.4 18.2 19.0 4.6 

 

Table D.4: Comparison between actual and model-predicted KPIs for the ten steady-state industrial validation runs. 

Run 

Current efficiency (%) SEC (kWh/t) Cu plating rate (g/s/m2) 

Actual Predicted MAPE 
(%) 

Actual Predicted MAPE 
(%) 

Actual Predicted MAPE 
(%) 

16 86.2 89.5 3.9 1299.2 1317.2 1.4 0.0103 0.0107 3.9 

18 89.7 90.9 1.4 1308.6 1383.8 5.7 0.0137 0.0139 1.4 

26 95.1 90.3 5.0 1284.4 1757.1 36.8 0.0303 0.0288 4.9 

32 94.1 88.8 5.7 1299.1 1612.6 24.1 0.0225 0.0212 5.6 

40 94.5 94.0 0.5 1269.4 1750.0 37.9 0.0338 0.0337 0.5 

50 92.9 95.3 2.6 1250.6 1658.1 32.6 0.0296 0.0303 2.6 

61 94.6 96.1 1.7 1277.8 1710.1 33.8 0.0338 0.0344 1.7 

74 93.8 96.7 3.1 1251.4 1771.2 41.5 0.0373 0.0385 3.1 

91 94.2 96.5 2.5 1285.6 1628.2 26.6 0.0300 0.0307 2.5 

93 88.7 92.6 4.4 1302.5 1323.9 1.6 0.0123 0.0129 4.4 
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D.3 DYNAMIC EXPERIMENTAL MODEL PREDICTIONS 

D.3.1 Screening Experiments 

Table D.5: Comparison between actual and model-predicted KPIs, generated at input conditions specified in Table A.6, 
for the screening experiments. The grey shading highlights the validation runs. Start-up period included. 

Run 
Current efficiency SEC Cu plating rate 

nRMSE (%) MAPE (%) nRMSE (%) MAPE (%) nRMSE (%) MAPE (%) 

1 3.8 3.7 17.2 17.2 20.2 3.4 

2 11.8 11.3 50.9 50.4 20.2 9.8 

3 7.5 7.5 35.8 36.3 20.4 7.2 

4 8.6 8.5 46.1 46.3 20.6 8.3 

5 0.6 0.4 27.3 27.4 20.6 0.2 

6 0.8 0.8 31.3 31.4 20.6 0.7 

7 5.7 5.6 15.4 13.2 20 4.9 

8 8.3 8.1 45.1 46.2 20.2 7.5 

9 53.9 270.6 219.3 44.3 53.7 272.4 

10 81.7 59.4 81.8 24.3 72.2 60.1 

11 27.3 24.8 79.6 46.2 31.9 28.2 

12 66.4 16.9 59.5 68.8 63.7 16.7 

13 51.7 62.9 64.4 33.9 57.6 64.7 

14 18.6 17.4 16.3 13.6 30 15.7 

15 44.1 1562.1 337.2 26.7 44.7 1564.4 

16 342.7 1676.8 352.6 57.1 343.1 1468.9 

17 11.3 7.8 21.8 21.3 30.3 19.3 

18 64.4 587.3 320 27.5 75.1 598.9 

19 38.6 14.7 29.2 26.5 41.6 23.8 

20 56 212.5 269.2 18.5 51.4 216.7 

21 86.9 292.6 186.1 32.6 90.8 308.2 

22 44.7 28.3 64.5 70.6 44.4 28.5 

23 120.5 34.4 25.9 16.9 95.2 43.4 

24 22.7 23.7 25.9 17.3 30.7 25.9 
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Figure D.1: Comparison between actual and model-predicted copper plating rate for Run 1 (a) to Run 24 (x). The run 
numbers correspond the experimental design in Table A.6. 
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Figure D.1 (continued) 
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Figure D.1 (continued) 
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Figure D.1 (continued) 
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Figure D.2: Comparison between actual and model-predicted current efficiency for Run 1 (a) to Run 24 (x). The run 
numbers correspond the experimental design in Table A.6. 
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Figure D.2 (continued) 
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Figure D.2 (continued) 
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Figure D.2 (continued) 
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Figure D.3: Comparison between actual and model-predicted SEC for Run 1 (a) to Run 24 (x). The run numbers 
correspond the experimental design in Table A.6. 
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Figure D.3 (continued) 

 

Stellenbosch University https://scholar.sun.ac.za



355 
 

 

 

 
Figure D.3 (continued) 
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Figure D.3 (continued) 
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Figure D.4: Comparison between actual and model-predicted potential for Run 1 (a) to Run 24 (x). The run numbers 
correspond the experimental design in Table A.6. 
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Figure D.4 (continued) 
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Figure D.4 (continued) 
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Figure D.4 (continued) 
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Figure D.5: Comparison between actual and model-predicted spent electrolyte copper concentrations for Run 1 (a) to 
Run 24 (x). The run numbers correspond the experimental design in Table A.6. 
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Figure D.5 (continued) 
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Figure D.5 (continued) 
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Figure D.5 (continued) 
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D.3.2 Bench-Scale Electrowinning Experiments 

Table D.6: Comparison between actual and model-predicted KPIs, generated at input conditions specified in Table A.8, 
for the bench-scale electrowinning experiments. The grey shading highlights the validation runs. Start-up period 
included. 

Run 
Current efficiency SEC Cu plating rate 

nRMSE (%) MAPE (%) nRMSE (%) MAPE (%) nRMSE (%) MAPE (%) 

1 97.6 383.4 487.4 56.2 73.2 — 

2 54.3 35406.2 360 40.7 59 — 

3 26.3 16.1 37.4 31.7 44.2 — 

4 36.6 185 255.6 26.1 44.2 — 

5 149.1 28303.4 229.9 59.3 72.5 — 

6 42.6 109357.2 247.3 31.8 54.5 — 

7 44.2 310765.7 238.5 51.6 64 — 

8 28.5 20.7 30 25.1 35 — 

9 44.4 67.7 490 38.9 53.7 — 

10 51.1 38.1 499 73.9 71.8 — 

11 46.4 34.9 53.6 56.4 56.2 — 

12 36.5 32985.2 275 55.1 59.5 — 

13 47.6 42.8 344.5 76.4 76.2 — 

14 30.4 26.6 497.4 40 45.1 — 

15 45.8 45.8 304.9 47 69.1 — 
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Figure D.6: Comparison between actual and model-predicted copper plating rate for Run 1 (a) to Run 15 (o). The run 
numbers correspond the experimental design in Table A.8. 

Stellenbosch University https://scholar.sun.ac.za



367 
 

 
Figure D.6 (continued) 
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Figure D.6 (continued) 
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Figure D.7: Comparison between actual and model-predicted current efficiency for Run 1 (a) to Run 15 (o). The run 
numbers correspond the experimental design in Table A.8. 
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Figure D.7 (continued) 
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Figure D.7 (continued) 
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Figure D.8: Comparison between actual and model-predicted SEC for Run 1 (a) to Run 15 (o). The run numbers 
correspond the experimental design in Table A.8. 
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Figure D.8 (continued) 
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Figure D.8 (continued) 
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Figure D.9: Comparison between actual and model-predicted potential for Run 1 (a) to Run 15 (o). The run numbers 
correspond the experimental design in Table A.8. 
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Figure D.9 (continued) 
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Figure D.9 (continued) 
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Figure D.10: Comparison between actual and model-predicted spent electrolyte copper concentrations for Run 1 (a) to 
Run 15 (o). The run numbers correspond the experimental design in Table A.8. 
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Figure D.10 (continued) 
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Figure D.10 (continued) 
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D.4 DYNAMIC INDUSTRIAL MODEL PREDICTIONS 

D.4.1 Additional Model Results 

Table D.7: MAPE and nRMSE values for the prediction of KPIs and intermediary variables for one cell of the industrial 
case-study tankhouse, for the model with (w) and without (w/o) the online parameter-fitting approach implemented. 

Indicator 
training Cycle a Cycle b Cycle c Cycle d Cycle e 

w w/o w w/o w w/o w w/o w w/o w w/o 

MAPE (%)             

Current 
efficiency 

5.5 4.8 14.9 21.8 6.4 21.1 6.1 26.2 5.8 22.7 6.5 24.7 

Cu plating 
rate 

— — — — — — — — — — — — 

SEC 55.1 56.5 47.2 56.2 23.3 42.2 18.1 43.6 21.4 40.4 21.9 40.2 

Potential 3.5 5.4 4.8 9.7 2.4 6.3 1.7 6.6 2.1 5.8 2.8 5.9 

Spent xCu 8.1 8.0 6.3 6.6 4.5 5.9 4.8 7.4 5.1 6.9 5.2 7.4 

nRMSE (%)             

Current 
efficiency 

5.9 5.5 16.6 20.2 10.0 23.0 7.7 26.7 7.0 23.3 8.6 25.3 

Cu plating 
rate 

39.2 38.3 45.5 44.5 25.8 28.6 23.8 31.0 24.9 31.1 26.3 31.1 

SEC 252 251 225 224 30.7 38.9 48.2 55.0 49.5 53.3 42.5 45.4 

Potential 5.2 6.8 6.9 11.4 3.2 6.9 2.3 7.3 3.0 6.5 4.2 6.8 

Spent xCu 9.5 9.3 7.6 8.0 5.7 7.2 6.3 8.5 6.2 8.3 7.1 8.4 

 

 
Figure D.11: Comparison between actual and model-predicted copper plating rate for the three 14-day training cycles 
for the dynamic industrial data. 
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Figure D.12: Comparison between actual and model-predicted current efficiency for the three 14-day training cycles for 
the dynamic industrial data. 

Figure D.13: Comparison between actual and model-predicted SEC for the three 14-day training cycles for the dynamic 
industrial data. 
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Figure D.14: Comparison between actual and model-predicted potential for the three 14-day training cycles for the 
dynamic industrial data. 

 

 
Figure D.15: Comparison between actual and model-predicted spent electrolyte copper concentrations for the three 14-
day training cycles for the dynamic industrial data. 
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D.4.2 Parameters 

Figure D.16 shows the response of the model parameters refitted using the online parameter-fitting 

approach, for the five dynamic industrial validation cycles. 

 

Figure D.16: Response of the parameters refitted during online parameter-fitting for one cell of the industrial 
electrowinning tankhouse over five 14-day validation cycles (Cycle a to Cycle e). 

The refitted mass-transfer coefficient for iron reduction (Figure D.16 (a)) remained relatively constant 

for Cycle a, Cycle c, and Cycle d, as expected for the system. As previously discussed in Chapter 4, 

losses due to reasons other than the reduction of iron are expected to dominate for the case-study 

tankhouse. The fitted parameter for Cycle b and Cycle e, however, showed notable variation over the 

investigated time-period.  

The nickel concentrations for Cycle b varied significantly compared to that for the remainder of the 

cycles. The electrolyte nickel concentration is known to affect the electrolyte viscosity and, therefore, 

mass-transfer conditions. For Cycle b the nickel concentration reached a maximum of approximately 

65 g/L, with variations as large as 30 g/L, within the investigated time-period. The nickel concentrations 

for the other cycles reached a maximum of approximately 45 g/L, with variations limited to 

approximately 20 g/L, within the respective time-periods.  
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For Cycle e, a significant increase in the fitted parameter was observed (t = 130 h to t = 200 h). During 

this time-period the actual current was consistently at the upper limit of the current observed for the 

tankhouse (12 000 A). Simultaneously, the actual copper plating rate varied significantly (Figure 

9.28 (e)). Per the developed online parameter-fitting approach it is sensical for the iron reduction 

reaction to be varied to account for the dynamics observed in the copper plating rate. This, however, 

contradicts the assumption that iron reduction is not expected to contribute significantly to the current 

losses for the case-study tankhouse. It is possible that the increased oxygen evolution associated with 

the water oxidation reaction at the higher applied current densities improved the mass-transfer 

conditions for the mass-transfer-limited iron reduction reaction. The current density, however, also 

reached 12 000 A periodically during other cycles without a significant effect on the fitted mass-transfer 

coefficients. Regardless, the observed behaviour for Cycle e does correspond with the actual tankhouse 

data available (specifically the copper plating rate), for the relevant time-period, as shown by the 

acceptable model fidelity. The availability of more comprehensive, good-quality data (for example, 

dynamic iron concentrations), would be required to further elucidate the fitted parameter behaviour.  

The mean current loss over the entire time-period, for all five investigated validation cycles, is 28.8% 

(Figure D.16 (b)). Keeping in consideration that the contribution of iron reduction to current losses is 

expected to be minimal (due to the low concentrations), this corresponds well with the average current 

efficiency of 75% reported by the case-study tankhouse. Figure D.16 (b) does, however, show a spike 

in the fitted current loss parameter at approximately t = 12 h, for Cycle a. This corresponds with the 

observed decrease in copper plating rate (Figure 9.28 (a)). In the previous horizon (used to refit for the 

parameters), the actual copper plating rate is shown to be consistently close to 0 (Figure 9.28 (a)). The 

observed spike in the fitted current loss parameter highlights a limitation associated with the developed 

model; as with all data-driven models, the quality of data available significantly influences simulation 

success. 

The fitted Butler–Volmer equation parameters for water oxidation are reported in Figure D.16 (c) and 

Figure D.16 (d), for the charge-transfer coefficient and exchange current density, respectively. The 

charge-transfer coefficient for water oxidation was consistently at the maximum of the allowable range 

(Equation 8.4) for Cycle b to Cycle e. The parameter sensitivity analyses showed that the gradient for 

the water oxidation current density, plotted as a function of the overpotential, was steeper for a lower 

charge-transfer coefficient (Figure 7.4). At the maximum allowable value for the charge-transfer 

coefficient, the associated current density would, therefore, be less sensitive to a change in 

overpotential, enabling more accurate model predictions.  

A notable exception is observed for Cycle a, between t = 14 h and t = 42 h, where the charge-transfer 

coefficient decreases to a minimum of 0.6. During this time-period the online parameter-fitting 

approach is attempting to correct for the overprediction of the potential (Figure 9.30 (a)). By decreasing 
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the charge-transfer coefficient the approach is able to decrease the overpotential for water oxidation 

(thereby correcting for the potential), but still maintain the current density associated with the reaction 

at an acceptable value. Overall, the fitted value remained well within the allowable range specified in 

Equation 8.4. 

The exchange current density has previously been reported to be a function of the reactant and product 

concentrations, temperature, and the electrolyte–electrode interface, amongst other system-specific 

factors (Chapter 7). The fitted exchange current density varied between approximately 0.8 A/m2 and 

2 A/m2 over the entire time-period, for Cycle b to Cycle e (Figure D.16 (d)). The parameters fitted for 

Cycle a were, again, a notable exception, reaching a minimum of approximately 0.01 A/m2 and a 

maximum of approximately 11 A/m2. Nevertheless, the fitted values remained within the allowable 

range (Equation 8.4). If the variability in the fitted exchange current density is undesired for a specific 

system, the range specified in the applicable system model (Equation 8.4) can be adapted accordingly. 

Figure D.17 shows a graphical representation of the correlation matrix for the model parameters refitted 

using the online parameter-fitting approach, for the combined five dynamic industrial validation cycles. 

Spearman’s rank correlation coefficient was used to measure the correlation between the parameters, 

as the refitted parameters were not normally distributed. Figure D.17 supports that the parameters are 

weakly correlated. 

 

Figure D.17: Graphical representation of the correlation matrix consisting of the Spearman’s rank correlation 
coefficients for the online parameters refitted for one cell of the industrial electrowinning tankhouse, over the combined 
five 14-day validation cycles. 
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D.5 SUMMARY OF STATISTICAL ANALYSIS 

D.5.1 Limiting-Current Density Models 

Table D.8: Summary of the p-values calculated during regression of the limiting-current density models, with a 95% 
confidence level. 

Term 
p-value 

Model A Model B 

Constant < 0.001 < 0.001 

xCu < 0.001 < 0.001 

xH2SO4 0.712 0.955 

xNi < 0.001 < 0.001 

xFe 0.015 0.029 

xCo 0.758 0.139 

1/T < 0.001 0.732 

ω1/2 < 0.001 < 0.001 

xCu · xFe — 0.004 

xNi · xFe — < 0.001 

xNi · xCo — 0.019 

xFe · xCo — 0.002 

xFe · 1/T — 0.005 
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D.5.2 Online Parameter-Fitting Surrogate Models 

Table D.9: Summary of the p-values calculated during regression of the surrogate system models, with a 95% confidence 
level. 

Term 
p-value 

Model PCu Model Potential 

Constant 0.372 0.178 

xCu — 0.001 

xH2SO4 — 0.024 

xNi — < 0.001 

xFe 0.583 0.001 

xCo — 0.002 

I < 0.001 < 0.001 

𝑚  < 0.001 < 0.001 

𝛼  — 0.056 

𝑖 ,  — 0.01 

xNi · xCo — 0.005 

𝛼  ∙ 𝑖 ,  — < 0.001 

𝑚 ∙  xFe < 0.001 — 

(𝑚 )   < 0.001 — 

xFe2 0.001 — 

𝛼   — 0.091 

𝛼  — 0.051 
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APPENDIX E 

MODEL SUMMARY 

Appendix E provides a summary of the model variables, parameters, and constants (Section E.1). A 

summary of the model assumptions and equations are also provided (Section E.2), alongside a list of 

the hardcoded limits and warnings (Section E.3). In-depth discussion of the information summarised in 

this appendix was previously presented in the various thesis chapters. Specifically, in Chapter 2 

(Literature review), Chapter 3 (Property Correlations), and Chapter 4 (Model Development). Chapter 4 

further presented the approach for solving the set of equations summarised in this appendix. 

E.1 MODEL VARIABLES, PARAMETERS, AND CONSTANTS 

Table E.1: Summary of the model input variables. 

Symbol Description Unit 

𝑥 ,  concentration of species i in advance electrolyte g/L 

𝐴 electrode area m2 

𝑄  flow rate of advance electrolyte L/s 

𝑈  hardware loss V 

𝑑 interelectrode distance m 

𝑁 number of cathodes dimensionless 

𝑇 temperature °C or K 

𝐼  total current A 

𝑉 volume of cell L 
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Table E.2: Summary of the model intermediate and output variables. 

Symbol Description Unit 

𝐴  A parameter in the Debye-Hückel model dimensionless 

𝛾  activity coefficient of species i dimensionless 

𝑎  activity of species i dimensionless 

𝐼  anodic current A 

𝐵  B parameter in the Debye-Hückel model dimensionless 

𝐼  cathodic current A 

𝑥 ,  concentration of species i in spent electrolyte g/L 

𝜅 conductivity S/m 

𝑃  copper plating rate g/s 

𝑖 current density A/m2 

𝛽 current efficiency fraction 

𝐼  current loss A 

𝐼  current through each individual main branch A 

𝐼  current used in reaction of species i A 

𝜌  density of water g/L 

𝜖 ,  dielectric constant of species i dimensionless 

𝜌  electrolyte density g/L 

𝑅  electrolyte resistance Ω 

𝑄  flow rate of spent electrolyte L/s 

𝐼𝑆 ionic strength mol/m3 

𝑚  mass g or kg 

𝐶  molar concentration of species i mol/m3 

𝑤  rate of generation g/s 

𝐸  reduction potential of species i V 

𝑆 scale-up factor dimensionless 

SEC specific energy consumption kWh/t 

𝑡 time s or h 

𝑈  total potential V 

𝑈  voltage loss term V 
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Table E.3: Summary of the model parameters. 

Symbol Description Unit Initial Value 

𝛼  charge-transfer coefficient for copper reduction dimensionless 0.5 

𝛼  charge-transfer coefficient for water oxidation dimensionless 0.7 

𝐿  current loss parameter fraction 0.2 

𝜂  estimated overpotential for copper reduction V −0.5* 

𝜂  estimated overpotential for water oxidation V 0.5 

𝑖 ,  exchange current density for copper reduction A/m2 15 

𝑖 ,  exchange current density for water oxidation A/m2 10 

𝑚  mass-transfer coefficient for iron oxidation m/s or cm/s 1 × 10−7 m/s 

𝑚  mass-transfer coefficient for iron reduction m/s or cm/s 1 × 10−7 m/s 

*The negative overpotential arises from the positive current density associated with the reduction reaction. 

 

Table E.4: Summary of the model constants. 

Symbol Description Unit Value 

𝑧  charge of species i dimensionless — 

𝐹 Faraday’s constant C per equivalent mol 96 485 

𝑅 gas constant J/(mol K) 8.314 

𝑀  molecular mass of species i g/mol — 

𝑛  number of electrons dimensionless — 

𝑒  permittivity of the vacuum F/m 8.85 × 10−12 

𝐶  reference concentration mol/L or mol/m3 1 

𝑟  radius of species i m — 

𝐸  standard reduction potential V — 

𝑠  stoichiometric coefficient dimensionless — 
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E.2 MODEL EQUATIONS 

E.2.1 Cathodic Current Calculations 

Assuming the copper reduction reaction is reaction-rate-limited, the current density was calculated 

using Equation E.1 (Butler–Volmer equation). The corresponding current was calculated using 

Equation E.2. 

 𝑖 = 𝑖 ,  exp
  

 
 𝜂 − exp

( )  

 
 𝜂   [ E.1 ] 

 𝐼 = (𝑖 ) 𝐴   [ E.2 ] 

Assuming the iron reduction reaction is mass-transfer-limited, the current density was calculated using 

Equation E.3. The surface concentration of the species was taken as zero, due to the assumed mass-

transfer-limited nature of the reaction. The corresponding current was calculated using Equation E.4. 

 𝑖 = 𝑛  𝐹 𝑚  𝐶 , − 𝐶 ,   [ E.3 ] 

 𝐼 = (𝑖 ) 𝐴   [ E.4 ] 

The cathodic current was calculated using Equation E.5. 

 𝐼 = (𝑖 + 𝑖 ) 𝐴   [ E.5 ] 

E.2.2 Anodic Current Calculations 

Assuming the water oxidation reaction is reaction-rate-limited, the current density was calculated using 

Equation E.6 (Butler–Volmer equation). The corresponding current was calculated using Equation E.7. 

 𝑖 = 𝑖 ,  exp
  

 
 𝜂 − exp

  

 
 𝜂   [ E.6 ] 

 𝐼 = 𝑖 𝐴   [ E.7 ] 

Assuming the iron oxidation reaction is mass-transfer-limited, the current density was calculated using 

Equation E.8. The surface concentration of the species was taken as zero, due to the assumed mass-

transfer-limited nature of the reaction. The corresponding current was calculated using Equation E.9. 

 𝑖 = 𝑛  𝐹 𝑚  𝐶 , − 𝐶 ,   [ E.8 ] 

 𝐼 = (𝑖 ) 𝐴   [ E.9 ] 

The anodic current was calculated using Equation E.10. 

 𝐼 = 𝑖 + 𝑖 𝐴   [ E.10 ] 
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E.2.3 Scale-Up Calculations 

The scale-up factor was defined using Equation E.11. 

 𝑆 = 2 𝑁   [ E.11 ] 

The current loss parameter was calculated using Equation E.12, and the current loss using Equation 

E.13. 

 𝐿 = 1 − �̅� [ E.12 ] 

 𝐼 = 𝐼  𝐿  [ E.13 ] 

The scaled-up total current was calculated using Equation E.14 and E.15, and the scaled-up current for 

each species using Equation E.16 to E.19. 

 𝐼 = 𝐼 = 𝐼  [ E.14 ] 

 𝐼 = 𝐼  𝑆 + 𝐼  [ E.15 ] 

 𝐼 , = 𝐼  𝑆 [ E.16 ] 

 𝐼 , = 𝐼  𝑆 [ E.17 ] 

 𝐼 , = 𝐼  𝑆 [ E.18 ] 

 𝐼 , = 𝐼  𝑆 [ E.19 ] 

E.2.4 Concentration Calculations 

The rate of generation for each species was calculated using Equations E.20 to E.26 (variations of 

Faraday’s law). It was assumed that no nickel or cobalt was generated or consumed. 

 𝑃 =
  ,

 
 [ E.20 ] 

 𝑤 =
  ,

 
 [ E.21 ] 

 𝑤 =
  

,

 
−

  
,

 
 [ E.22 ] 

 𝑤 =
  

,

 
−

  
,

 
 [ E.23 ] 

 𝑤 = 𝑀  [ E.24 ] 

 𝑤 = 0 [ E.25 ] 

 𝑤 = 0 [ E.26 ] 

 

Stellenbosch University https://scholar.sun.ac.za



394 
 

The spent electrolyte copper concentration, sulfuric acid concentration, density, and flow rate was 

calculated by solving the system of differential-algebraic equations (DAEs). The system consists of the 

overall conservation of mass equation (Equation E.27), the copper conservation equation (Equation 

E.28), the sulfuric acid conservation equation (Equation E.29), and the density correlation (Equation 

E.30, refer to Chapter 3 for coefficients). 

 =
,

= 𝑄 𝜌 , − 𝑄 𝜌 , − 𝑃  [ E.27 ] 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , − 𝑃  [ E.28 ] 

 =
,

= 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤  [ E.29 ] 

 𝜌 , =  𝑎1  +  𝑎2 𝑥Cu +  𝑎3 𝑥H2SO4  +  𝑎4 𝑥Ni +  𝑎5 𝑥Fe +  𝑎6 𝑥Co +  𝑎7 𝑥As +  𝑎8 𝑇 

    [ E.30 ] 

The remainder of the spent electrolyte component concentrations were calculated by solving the 

ordinary differential equations (ODEs). The ODEs consist of the water conservation equation (Equation 

E.31), ferric iron conservation equation (Equation E.32), ferrous iron conservation equation (Equation 

E.33), nickel conservation equation (Equation E.34), and the cobalt conservation equation (Equation 

E.35). 

 =
,

= 𝑄 𝜌 , − 𝑄 𝜌 , + 𝑤  [ E.31 ] 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤  [ E.32 ] 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤  [ E.33 ] 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤  [ E.34 ] 

 = , = 𝑄 𝑥 , − 𝑄 𝑥 , + 𝑤   [ E.35 ] 

E.2.5 Potential Calculations 

The ionic strength of the solution was calculated using Equation E.36. 

 𝐼𝑆 = 0.5 (𝑧  𝐶 + 𝑧  𝐶 + 𝑧  𝐶 + 𝑧  𝐶 + 𝑧  𝐶 )   [ E.36 ] 

The dielectric constant was calculated using Equation E.37 (Werner et al. (2018) correlation). 

 𝜖 , = 127.9614 + 0.01378 𝐼𝑆 + 5.6111 × 10  𝑟 + 2.5422|𝑧 |     [ E.37 ] 

The activity coefficient was calculated using Equation E.38 and E.39 (Samson et al. (1999) model). 
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 𝐴 =
√   

   ,   

      and     𝐵 =
 

 ,   
   [ E.38 ] 

 ln(𝛾 ) =  −
 √

  √
+

. .  ×    

√
  [ E.39 ] 

The activity for the copper in solution was calculated using Equation E.40. The activity for the plated 

copper is 1, as it is a solid (Equation E.41). 

 𝑎 = 𝛾     [ E.40 ] 

 𝑎 = 1    [ E.41 ] 

The reduction potential under non-standard conditions was calculated using Equation E.42 (Nernst 

equation). 

 𝐸 = 𝐸 + ln   [ E.42 ] 

The dielectric constant was calculated using Equation E.43 (Werner et al. (2018) correlation). 

 𝜖 , = 127.9614 + 0.01378 𝐼𝑆 + 5.6111 × 10  𝑟 + 2.5422|𝑧 |     [ E.43 ] 

The activity coefficient was calculated using Equation E.44 and E.45 (Samson et al. (1999) model). 

 𝐴 =
√   

   ,   

      and     𝐵 =
 

 ,   
   [ E.44 ] 

 ln(𝛾 ) =  −
 √

  √
+

. .  ×    

√
  [ E.45 ] 

The activity was calculated using Equation E.46 and Equation E.47. 

 𝑎 = 𝛾     [ E.46 ] 

 𝑎 = 1    [ E.47 ] 

The reduction potential under non-standard conditions was calculated using Equation E.48 (Nernst 

equation). 

 𝐸 = 𝐸 + ln   [ E.48 ] 

The electrolyte conductivity was calculated using the conductivity correlation (Equation E.49, refer to 

Chapter 3 for coefficients). 

 𝜅 =  𝑎1  +  𝑎2 𝑥Cu, out +  𝑎3 𝑥H2SO4 , out +  𝑎4 𝑥Ni, out +  𝑎5 𝑥Fe, out +  𝑎6 𝑥Co, out +  𝑎7 𝑥As, out +

 𝑎8 𝑇 +  𝑎𝑛 (combined effect term)  [ E.49 ] 
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The electrolyte resistance was calculated using Equation E.50. 

 𝑅 =
 

 [ E.50 ] 

The voltage loss term was calculated using Equation E.51. 

 𝑈 = 𝑅  𝐼 + 𝑈  [ E.51 ] 

The total potential was calculated using Equation E.52. 

 𝑈 =  𝐸 + 𝐸 + 𝜂 + 𝜂 + 𝑈  [ E.52 ] 

E.2.6 Key Performance Indicator Calculations 

The cumulative mass copper plated was calculated using Equation E.53. 

 𝑚 , = ∑ 𝑃  [ E.53 ] 

The theoretical copper plating rate was calculated using Equation E.54 (Faraday’s law). 

 𝑃 , =
  

 
 [ E.54 ] 

The theoretical cumulative mass copper plated was calculated using Equation E.55. 

 𝑚 , , = ∑ 𝑃 ,  [ E.55 ] 

The current efficiency was calculated using Equation E.56. 

 𝛽 = ,

, ,
 [ E.56 ] 

The specific energy consumption was calculated using Equation E.57. 

 SEC =
  

   [ E.57 ] 
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E.3 HARDCODED MODEL LIMITS AND WARNINGS 

Table E.5: List of conditions for hardcoded model limits and warnings, corresponding message type, and message 
description. 

Message Condition Type Description 

xCu < 0 Error Copper concentration decreased to below 0. 

xFe2 < 0 Error Ferrous iron concentration decreased to below 0. 

xFe3 < 0 Error Ferric iron concentration decreased to below 0. 

xNi < 0 Error Nickel concentration decreased to below 0. 

xCo < 0 Error Cobalt concentration decreased to below 0. 

Qin < 0 Error Flow rate in decreased to below 0. 

Qout < 0 Error Flow rate out decreased to below 0. 

((sum(variableLengthNotScalars)/ 
length(variableLengthNotScalars)) ~ = 
variableLengthNotScalars(1,1)) 

Error Input manipulated variables are required to be 
equal length vectors, if not constant. 

limitingCurrentDensityPercentCu > 10 Warning Operating at more than 10% of limiting current 
density for copper reduction. 

iterationCounterConcentration = = 6000 Warning Maximum number of iterations is reached in 
concentration loop. 

iterationCounterCurrentCathode = = 3000 Warning Maximum number of iterations is reached in 
cathodic current loop. 

iterationCounterCurrentAnode = = 3000 Warning Maximum number of iterations is reached in 
cathodic current loop. 
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APPENDIX F 

PUBLICATIONS BASED ON DISSERTATION 

Appendix F provides additional information pertaining to the publications, based on sections of this 

dissertation, that have been submitted to refereed conference proceedings and journals. 

F.1 CONFERENCE PROCEEDINGS 

The following refereed full-length papers based on this work have been submitted for publication in 

conference proceedings. 

i. Grobbelaar, S., Dorfling, C., Tadie, M., 2023. Evaluating the value of including 

physicochemical property correlations on the prediction capability of a dynamic 

electrowinning model, in: Proceedings of Copper Cobalt Africa. The Southern African 

Institute of Mining and Metallurgy, Johannesburg. pp. 333–343. 

ii. Grobbelaar, S., Dorfling, C., Tadie, M., 2023. Evaluating the use of a dynamic model to 

predict direct copper electrowinning tankhouse performance, in: Proceedings of 9th 

Hydrometallurgy Conference. Society for Mining, Metallurgy, and Exploration, 

Englewood. [Manuscript accepted for publication]. 

F.2 JOURNAL ARTICLES 

The following full-length papers based on this work have been submitted for publication in refereed 

journals. 

i. Grobbelaar, S., Dorfling, C., Tadie, M., 2023. Development of a dynamic semi-empirical 

model for simulation of the copper electrowinning process. [Manuscript under 

consideration]. 

ii. Grobbelaar, S., Dorfling, C., Tadie, M., 2023. Parameter estimation for modelling copper 

electrowinning using moving horizon estimation. [Manuscript submitted to industry partner 

for approval]. 
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