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Abstract

This thesis investigates the various components required for the development

of a patient position verification system to replace the existing system used

by the proton facilities of iThemba LABS1. The existing system is based

on the visual comparison of a portal radiograph (PR) of the patient in the

current treatment position and a digitally reconstructed radiograph (DRR)

of the patient in the correct treatment position. This system is not only of

limited accuracy, but labour intensive and time-consuming. Inaccuracies in

patient position are detrimental to the effectiveness of proton therapy, and

elongated treatment times add to patient trauma. A new system is needed

that is accurate, fast, robust and automatic.

Automatic verification is achieved by using image registration techniques

to compare the PR and DRRs. The registration process finds a rigid body

transformation which estimates the difference between the current position

and the correct position by minimizing the measure which compares the

two images. The image registration process therefore consists of four main

components: the DRR, the PR, the measure for comparing the two images

and the minimization method.

The ray-tracing algorithm by Jacobs was implemented to generate the DRRs,

with the option to use X-ray attenuation calibration curves and beam hard-

ening correction curves to generate DRRs that approximate the PRs ac-

quired with iThemba LABS’s digital portal radiographic system (DPRS)

better.

Investigations were performed mostly on simulated PRs generated from
1Laboratory for accelerator based sciences
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DRRs, but also on real PRs acquired with iThemba LABS’s DPRS.

The use of the Correlation Coefficient (CC) and Mutual Information (MI)

similarity measures to compare the two images was investigated.

Similarity curves were constructed using simulated PRs to investigate how

the various components of the registration process influence the perfor-

mance. These included the use of the appropriate XACC and BHCC, the

sizes of the DRRs and the PRs, the slice thickness of the CT data, the

amount of noise contained by the PR and the focal spot size of the DPRS’s

X-ray tube.

It was found that the Mutual Information similarity measure used to com-

pare 10242 pixel PRs with 2562 pixel DRRs interpolated to 10242 pixels

performed the best. It was also found that the CT data with the smallest

slice thickness available should be used. If only CT data with thick slices is

available, the CT data should be interpolated to have thinner slices.

Five minimization algorithms were implemented and investigated. It was

found that the unit vector direction set minimization method can be used

to register the simulated PRs robustly and very accurately in a respectable

amount of time.

Investigations with limited real PRs showed that the behaviour of the reg-

istration process is not significantly different than for simulated PRs.



Opsomming

Hierdie tesis ondersoek die verskeie komponente benodig vir die ontwikkel-

ing van ‘n pasiëntposisie-verifikasiestelsel wat die stelsel wat huidiglik deur

iThemba LABS2 se proton-fasiliteite gebruik word, kan vervang. Die stelsel

wat huidiglik gebruik word is gebaseer op die visiële vergelyking van ‘n por-

taal X-straalbeeld (PX) van die pasiënt in die huidige posisie en ‘n digitaal-

gerekonstrueerde X-straalbeeld (DGX) van die pasiënt in die korrekte po-

sisie. Die huidige stelsel het nie net beperkte akkuraatheid nie, maar is

arbeidsintensief en langdurig. Onakkuraatheid in die pasiënt se posisie is

baie nadelig vir die effektiwiteit van protonterapie, terwyl verlengde behan-

delingstye die trauma wat die pasiënt ervaar verhoog. ‘n Nuwe stelsel wat

akkuraat, vinnig, robuus en outomaties is word benodig.

Outomatiese verifikasie kan gedoen word deur beeldregistrasie-tegnieke te

gebruik om die PX en DGX te vergelyk. Die registrasieproses soek na ‘n

rigiede-liggaam-transformasie wat die verskil in die huidige en korrekte po-

sisie benader deur die maatstaf van hoe goed die twee beelde vergelyk, te

minimiseer. Die registrasieproses bestaan dus uit vier hoof komponente: die

DGX, die PX, die maatstaf om die twee beelde te vergelyk en die minimisas-

iemetode.

Die “ray-tracing” algoritme van Jacobs is gëımplimenteer om DGX’e te pro-

duseer, met die opsie om X-straalattenuasie-kalibrasiekurwes (XAKK’s) en

bundelverharding-korreksiekurwes (BVKK’s) te gebruik. Die gebruik van

hierdie kurwes produseer DGX’e wat die PX’e (wat deur die digitale por-

taal X-straalbeeld-stelsel (DPXS) van iThemba LABS geneem word) beter
2Laboratory for accelerator based sciences
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benader.

Ondersoeke is hoofsaaklik gedoen op gesimuleerde PX’e wat vanaf DGX’e

gegenereer is, maar ook op ware PX’e wat deur die DPXS van iThemba

LABS geneem is.

Die gebruik van die korrelasie koëffisiënt en “Mutual Information” similariteits-

maatstawwe is ondersoek om die twee beelde te vergelyk.

Om te ondersoek hoe sy verskeie komponente die registrasieproses se werkver-

rigting bëınvloed, is similariteitskurwes met die gesimuleerde PX’e gekon-

strueer. Die komponente wat ondersoek is sluit die gebruik van die geskikte

XAKK en BVKK, die onderskeie groottes van die DGX’e en die PX’e, die

snit dikte van die CT data, die hoeveelheid geraas op die PX’e en die grootte

van die fokus-area van die DPXS se X-straalbuis.

Dit is gevind dat die “Mutual Information” similariteits-maatstaf, wanneer

dit gebruik is om 10242 piksel PX’e met 2562 piksel DGX’e gëınterpoleer tot

10242 piksels te vergelyk, die beste gewerk het. Dit is ook gevind dat die

CT data met die dunste beskikbare snitte gebruik moet word. Indien slegs

CT data met dik snitte beskikbaar is, moet die CT data gëınterpoleer word

om dunner snitte te verkry.

Vyf minimisasie algoritmes is gëımplementeer en ondersoek. Dit is gevind

dat die eenheidsvektor-rigtingstel-metode baie robuus en akkuraat is in die

registrasie van die gesimuleerde PX’e, en dat registrasie met hierdie metode

in ‘n bevredigende tyd gedoen kan word.

Ondersoeke gedoen op ‘n beperkte aantal ware PX’e het getoon dat die

gedrag van die registrasieproses nie wesenlik verskil van die gedrag met ge-

simuleerde PX’e nie.
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Chapter 1

Introduction

Cancer is a disease that about 30% of people in industrialized countries

suffer from and about half of these people eventually die from the disease.

Cancer can be broadly defined as the uncontrolled growth and reproduction

of a group of cells, called a tumor. Cancer cells from the primary tumor can

metastasize (spread to other parts of the body) and about 30% of patients

have metastases at diagnosis. What a cancer cell actually is and how it

became that way is still not fully understood [1][2, Chapter 34].

The three main forms of treating cancer are surgery, chemotherapy and

radiotherapy. These treatments may be used in isolation or together, de-

pending on the particular cancer in a given patient. The success of treatment

is measured in terms of the resulting survival rate. A patient who survives

for five years after treatment without further symptoms is said to be cured.

The overall 5-year survival rate of all treated cancer sufferers is about 45%.

Radiotherapy is a localized form of treatment that is used to treat the pri-

mary tumor and is (possibly combined with surgery) responsible for 40% of

all cancer cures [1][2, Chapter 34].

While radiotherapy is sometimes used to treat other diseases as well (e.g.

see [3]), it is mainly used for cancer treatment. The reason for the relative

success of radiotherapy in treating cancer is that cancerous cells are more

sensitive to ionising radiation than normal cells within the same organ.

There exist many types of radiation, that includes radiation with photons

(X-rays), electrons, neutrons and protons. These types of radiation differ in

1
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Figure 1.1: Depth dose curves for different radiation types.

many aspects, most importantly in the dose distributions they have. Figure

1.1 shows typical relative dose distribution curves for the different radia-

tion types. Each distribution curve shows what percentage of the dose is

delivered at a specific depth into the patient tissue. Note the relatively low

entrance dose and high dose peak at the end of the range for proton radia-

tion.

Proton beams are used for radiotherapy mainly because of their physical se-

lectivity resulting from their unique dose distribution as displayed in Figure

1.1, which gives them the ability to conform the dose to the target volume.

The use of protons for radiotherapy because of the mentioned dose charac-

teristics was first suggested by Wilson [4] in 1946. Because of their physical

selectivety, proton beams are best utilized for eradicating well-delineated

lesions close to critical structures. For proton therapy to be effective it is re-

quired to have an accurate beam delivery system, precise tumor and critical

structure localization, accurate and reproducible patient setup, and accu-

rate 3D treatment planning [1][5][2, Chapter 34].
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1.1 Proton beam radiotherapy at iThemba LABS

1.1.1 Current proton therapy facilities

Proton beam therapy commenced at iThemba LABS1 in September 1993

using a fixed horizontal beam line. A double scattering beam delivery system

is used to provide a uniform dose at the treatment position, while field-

specific collimators and variable thickness propellers are used to modulate

the lateral dimensions and depth extent of the dose peak [5]. The result is

a treatment dose that conforms well to the target volume.

The treatment planning system currently used at iThemba LABS is called

the VOXELPLAN system. The VOXELPLAN system uses the VIRTUOS

(VIRTUal RadiOtherapy Simulator) developed by the German Cancer Re-

search Centre in Heidelberg, Germany. This system uses the patient’s com-

puted tomography (CT) data for accurate tumor and critical structure de-

lineation and 3D treatment planning. The dose calculations are done by

a software system developed by iThemba LABS and is incorporated in the

VOXELPLAN system [6]. Most treatments at iThemba LABS are given in

several fractions, and the treatment plan for a patient therefore consists of

several treatment fields.

Current patient positioning system

Patients are currently placed on a motorized treatment chair for treatment.

The patient is fixed to the chair by immobilization devices, and can there-

fore be positioned by moving the chair.

Patients are positioned by an unique patient positioning system based on

real-time digital multi-camera stereophotogrammetry (SPG) techniques. Pa-

tients are fitted with custom made plastic masks, that carry radiopaque and

retro-reflective markers. The positions of the retro-reflective markers that

are detected with charge coupled device (CCD) cameras, are calculated and

used to move the treatment chair automatically. The patient can be posi-
1Laboratory for accelerator based sciences
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tioned in this way with the tumor aligned with the beam with an accuracy

of about 1mm.

The positioning system was originally designed to treat patients in the sit-

ting position. Although it was later altered to treat patients in the lying

position (with only a limited capability of roll and tilt) these limitations,

together with the fact that only a horizontal beam is available, restrict the

types of lesions that can be treated [5][6].

Current verification of patient position

The patient also wears the plastic mask during the pre-treatment acquisition

of its CT data (which is used for treatment planning), so that the position

of the markers in relation to the patients anatomy can be established. The

masks are always fitted as tight as possible to the patient in order to min-

imize movement while avoiding patient discomfort. Since there might be

small differences in the way the mask is fitted to the patient for the pre-

treatment CT scan and for actual treatment, it is necessary to verify that

the patient’s anatomy is correctly positioned according to the treatment

plan before the treatment is started.

Currently, this verification is done by visual comparison of a portal radio-

graph (PR) taken of the patient in the current treatment position and a digi-

tally reconstructed radiograph (DRR) obtained from the treatment planning

system of the patient in the correct treatment position. The PR is obtained

by placing an X-ray tube upstream of the collimator in the beam line and

taking a radiograph of the patient on an X-ray film placed behind the pa-

tient. The DRR is a simulated radiograph and has a view that is similar to

the PR. This is a very manual and time-consuming process and needs to be

repeated for each of the treatment fields [6].

1.1.2 New proton therapy facilities

iThemba LABS is currently expanding its proton therapy facilities by de-

veloping additional proton therapy rooms. The new rooms may either be
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fitted with a single fixed horizontal beam line, or with two fixed beam lines

at a specific angle.

New patient positioning system

The patient positioning system for each of the new proton therapy rooms

will use a commercial robot together with a detachable rigid chair or couch-

top for patient support. The system will also make use of SPG techniques

for automatic patient positioning. This system will be extremely versatile

and allow a wider range of lesions to be treated at a higher throughput rate

[5][6].

The new therapy rooms will also each be fitted with a newly designed digital

portal radiographic system (DPRS) [7]. This system makes it possible to

acquire PRs in digital form, and will thus be much faster than the current

system.

1.2 Aim of this thesis

The current verification of patient position which is based on visual inspec-

tion by a physician has many shortcomings. Visual inspection is not only

of limited accuracy, but labour intensive and time-consuming [8][9]. Inac-

curacies in patient position are detrimental to the effectiveness of proton

therapy, and elongated treatment times add to patient trauma. A new sys-

tem is needed that is both accurate and automatic.

The aim of this thesis is to solve the problem of automatically verifying

the patient position. The solution to the problem should be such that the

verification system that utilizes it be accurate, fast, robust and requires as

little human intervention as possible.
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1.3 A proposed solution

The problem of verifying the patient position is essentially the problem of

calculating the current treatment position. The current treatment position

is unknown, because the small error with which the mask is fitted to the

patient is unknown.

The deviation of the current treatment position from the correct treatment

position can be described by a rigid body transformation, called the error

transformation Terror. The size of the error of the current treatment position

can be quantified from Terror.

The patient position can thus be verified as follows:

• If the error calculated from Terror is within acceptable limits, the

patient is regarded as being correctly positioned

• If the error is not within acceptable limits, Terror is communicated to

the SPG system to adjust the patient position.

Because the mask is reasonably tight fitting the scope for misalignments is

small. Therefore the components of Terror are assumed to be smaller than

5mm (for the translations) and 5◦ (for the rotations).

The transformation Terror can be estimated by a process called image regis-

tration. Image registration establishes spatial correspondence between one

coordinate space and another coordinate space [10]. The result of image reg-

istration is a transformation between the coordinate systems that describes

the two spaces. Image registration has been used in various cases (see e.g.

[9],[11] and [12]) to estimate the errors in patient setup.

Image registration is done by comparing the PR of the patient in the current

treatment position with DRRs generated from the patient’s CT data. Each

DRR is generated according to a specific rigid body transformation TDRR,

that results in the DRR having a particular view of the patient. When the

transformation TDRR is zero, the DRR view will be that of the patient in the

correct treatment setup according to the treatment plan. When the trans-
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formation TDRR is a good estimate of Terror, the DRR view will resemble

the view of the PR very closely.

To calculate an estimation of the transformation between the current and

correct treatment setup, an objective function P can be formed:

P (TDRR) = M (PR,DRR (TDRR)) , (1.1)

where PR is the PR of the patient in the current treatment position, DRR(TDRR)

is the DRR according to the transformation TDRR and M is a measure for

how well the two images compare. The estimation of the error transfor-

mation Terror can now be calculated by optimizing the objective function

P .

The problem of verifying the patient position is therefore solved by optimiz-

ing the objective function P , and should be done in such a way that the

verification process is accurate, fast, robust and automatic.

In this thesis, the effects that the components of the objective function have

on its optimization are investigated and optimized in order to achieve a

verification process with the required properties.

1.4 Thesis outline

Background information on the concepts important to the image registration

process is discussed in Chapter 2. The generation of DRRs, that is central

to the image registration process, is discussed in Chapter 3. The details

of the image registration process are discussed in Chapter 4. In Chapter

5 the experiments on various minimization methods and their results are

discussed. Chapter 6 gives a conclusion of all the findings of the thesis.



Chapter 2

Background

2.1 Acquiring the PR

As stated in the introduction, the new patient positioning system to be

used by iThemba LABS acquires the PRs of the patient in the treatment

position with the DPRS developed in [7]. Before the details of this system

are discussed, a short introduction to radiography is appropriate.

2.1.1 The radiographic process

Radiography is a diagnostic investigation, where an image is produced of the

structures within a patient [2, Chapter 2]. Radiography utilizes electromag-

netic waves called X-rays, that have sufficient energy to penetrate through a

patient’s body. X-rays travel in straight lines and cannot be easily focused

by mirrors and lenses like visible light, and therefore only shadow-like im-

ages can be produced. X-rays cannot be seen by the human eye, and are

detected with photographic film or detector devices like scintillation screens.

The process of acquiring a radiograph is shown in Figure 2.1. X-rays are

emitted in all directions from the X-ray tube’s anode. All the X-rays are

absorbed, except for the radiation in the direction of the patient. The X-rays

emitted in the direction of the patient travel through the patient where some

are absorbed, some are deflected and some are left to reach the detector. The

8
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Figure 2.1: The radiographic process.
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Figure 2.2: X-rays going through the bone structure are attenuated more
than those going only through the tissue.

X-ray beam is said to be attenuated. Different materials attenuate X-rays

differently, e.g. soft tissues attenuate X-rays more than air but less than

bone and metal (Figure 2.2).

The intensity level of the radiograph (the transmitted intensity) at a specific

position is directly related to the sum of all the attenuation caused by the

material in a straight line between that position and the X-ray source. This

is called the radiological path-length. As some X-rays travel through differ-

ent anatomical structures inside the patient than others, they have different

radiological path-lengths. This results in different intensity levels on the
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Figure 2.3: Physical arrangement of the digital portal radiographic system.

radiograph.

2.1.2 The DPRS

The DPRS to be used by iThemba LABS consists of an X-ray tube for

producing the X-rays, a scintillation screen for converting the X-rays to

visible light, a protected aluminium front silvered mirror to direct the light

and a CCD camera to capture the light image in digital form [7]. A diagram

of this system is shown in Figure 2.3.

The mountings of both the X-ray tube and the imaging device will allow

both units to be easily moved into and out of the beam line. This makes

it possible to take a PR of the patient in the treatment position just before

the treatment is started [6].

The main advantage of the new digital system over the old system (that uses

X-ray films) is the short time in which an image can be obtained. Other

advantages include the optimization of image contrast, reduced patient radi-

ation dose, lower operating costs and more efficient archiving and accessing

of the images. The spatial resolution of the new system is, however, not as

good as that of the X-ray film system. This is because of the light scat-

ter between the scintillation screen and the CCD camera, and the limited

resolution of the CCD camera [7].

It should be noted that the X-ray tube has certain parameters that can be

set to achieve a certain X-ray spectrum. This has an effect on the quality of

the acquired PR. These parameters and their importance to DRR generation
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are discussed in Section 3.2.

2.1.3 The PR

The PR captured by the CCD camera is an intensity image. This intensity

image is corrected for the various unwanted effects produced by the CCD

camera by doing the appropriate bias field, dark field and flat field subtrac-

tions. After these subtractions, the image is also corrected for radial lens

distortions.

The internal CCD array of the camera consists of 1024×1024 square pixels,

and hence the PR also consists of 1024×1024 square pixels. Physically, each

pixel of the PR represents a square area of the scintillation screen. Since

the size of the scintillation screen is 300mm×300mm, which is then also the

dimensions of the PR, the size of each pixel is 0.29mm2.

PRs that consists of 5122- and 2562 pixels can be produced by the CCD

camera by the binning of pixels.

2.2 Acquiring the DRR

A DRR is a computer generated projection image created from the CT data

of a patient. A brief discussion of CT data and the coordinate systems

involved during DRR generation is now given.

2.2.1 CT data

The CT data of a patient is acquired with a CT study during which a CT

scanner is used to obtain a 3D image of the patient. The resulting CT

data consists of a set of image slices (Figure 2.4). Each slice has a specific

thickness, and slices are a specific distance apart. Each slice consists of a

large number of pixels and each pixel has an image value assigned to it. A

typical CT data set might consist of 50 slices, with each slice consisting of

256 × 256 pixels. Modern CT scanners are able to create sets of several
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Figure 2.4: Set of CT image slices.

CT cube Patient

Corresponding volume elements

Figure 2.5: CT cube representing patient anatomy.

hundred slices of 1024 × 1024 pixels. Together, the slices of the CT data

form a 3D volume called the CT cube that is divided into a large number

of small volume elements (voxels).

Each voxel represents a tiny volume of the patients anatomy (Figure 2.5),

and the value assigned to the specific voxel (the CT number) represents some

physical property of that tiny volume. The CT number is often called the

Hounsfield number. With X-ray computed tomography, the CT numbers are

a measure of the X-ray attenuation properties of the material represented

and given by the Hounsfield number

H = 1000
(

µ̄m − µ̄w

µ̄w

)
,
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where the quantity µ̄m is a measure of the X-ray attenuation of the material

represented by the voxel. As will be discussed in Section 3.2, the X-ray

attenuation coefficient µ̄m depends on the specific CT scanner used.

The values of µ̄m are calculated by tomographic reconstruction of the pro-

jection images produced by the CT scanner. The value of µ̄w, a measure

of the X-ray attenuation of water, is obtained during a calibration process

of the CT scanner in which a water phantom is scanned. The values of the

CT-numbers typically range from -1000 (for air) to 1500 (for bony struc-

tures).

2.2.2 Coordinate systems

The positions of each voxel of the CT data, each pixel of the PR and the

X-ray source are required during DRR generation. Each position is known

in the coordinate system associated with the corresponding system:

1. The position of each voxel of the CT data is known in the CT scanner

coordinate system

2. The position of the X-ray source and the positions of the pixels of the

PR is known in the DPRS coordinate system.

The coordinates of these positions need to be transformed to a common

coordinate system (called the DRR coordinate system) for use by the DRR

generation process. This transformations is shown in Figure 2.6.

In the DRR coordinate system the sides of the CT cube are aligned with the

x-, y- and z-axes and the top left corner of the first image slice is located at

the origin of the DRR coordinate system.

The coordinates of the X-ray source and the coordinates of the pixels of the

PR are also transformed to the DRR coordinate system. This is done in

such a way that the direction of the beam central axis (defined as the y-axes

of the DPRS) and the position of the treatment room isocenter (defined as

the origin of the DPRS) relative to the CT cube agree with the treatment

plan for the patient for the desired treatment field. All the transformations

are rigid body transformations, which are discussed in Section 2.3.
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Figure 2.6: Rigid body transformations between coordinate systems.

A projection of the CT data from the X-ray source to the pixel positions in

the DRR coordinate system will result in an image that has a view of the

patient that is very similar to that of the PR.

2.2.3 The DRR

There exist many methods for generating DRRs (see Section 3.7). The

most popular method is the ray-tracing algorithm developed by Siddon [13].

This method, discussed in detail in Section 3.1, is also the standard against

which all other DRR generation methods are measured. The result of DRR

generation is an intensity image that resembles a radiograph.

Since the DRRs will be compared with PRs during the evaluation of the

objective function P in (1.1), the aim of DRR generation is to produce an

image that is as similar as possible to the PRs obtained with the DPRS.
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To generate DRRs that are very similar to PRs, the most prominent phy-

sical processes involved in taking a radiograph are modelled and included

in the ray-tracing algorithm. Section 3.2 introduces the X-ray attenuation

calibration curve (XACC) and Section 3.3 introduces the beam hardening

correction curve (BHCC).

While the modelling of these physical processes results in more realistic

DRRs, it adds to the complexity of the ray-tracing algorithm. This can

have a negative impact on the speed of DRR generation.

With DRR generation there is always a trade-off between speed and quality,

and these two properties have an effect on the optimization of the objective

function. For each evaluation of the objective function P , a new DRR must

be generated according to the transformation TDRR. During the optimiza-

tion process P could be evaluated many times, depending on the success of

the optimization algorithm. It is therefore critical that DRR generation be

as fast as possible.

On the other hand, for the transformation Terror calculated by the opti-

mization of P to be a good estimate of the real error in patient position, the

DRRs need to be of an acceptable quality.

The physical size of the DRR and the number of pixels for which the DRR

should be calculated can be specified in the ray-tracing algorithm. These

parameters determine the quality of the DRR (influenced by the size of each

pixel of the DRR) and speed of DRR generation (influenced by the number

of pixels that the DRR consists of). The speed and quality of the DRR is

also tied to the size of the voxels of the CT cube used by the ray-tracing

algorithm.

The size and dimensions of both the DRRs and the CT data can be artifi-

cially altered by using interpolation techniques. As explained in the previous

paragraph, this will influence the speed of DRR generation and the quality

of the DRRs and therefore the optimization of the objective function P . In

Section 3.4 these interpolation techniques are discussed in more detail.
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Figure 2.7: Parameters of TDRR in the DPRS coordinate system.

2.3 The transformation TDRR

The transformation TDRR is taken to be a rigid body transformation (RBTF).

The RBTF model is the most constrained transformation model for med-

ical imaging [14] and asserts that distances and angles within the spaces

remain unchanged. The model therefore assumes that objects are internally

immutable and is most appropriate for images that contain bony structures

that cannot be deformed (such as the bony skeleton of the head).

A 3D RBTF is defined by three translation parameters and three rotation

parameters. Therefore, TDRR is defined by

TDRR = {δx, δy , δz, δφ, δρ, δθ} ,

where δx, δy and δz are translations along the x-, y-, and z-axes of the DPRS

coordinate system and δφ, δρ and δθ are rotations around these three axes

respectively (see Figure 2.7). It should be noted that this transformation

is incorporated when transforming the coordinates of the X-ray source and

the PR pixels from the DPRS coordinate system to the DRR coordinate

system (see Section 2.2.2). The coordinates of the voxels of the CT cube are

not affected by this transformation, hence the X-ray source and DRR pixels

have a different position relative to the CT cube for a different TDRR. This
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Figure 2.8: Effects of parameters of TDRR on DRR view.

results in a DRR with a different view. Figure 2.8 illustrates the effect that

changes in the parameters of TDRR have on the DRR view. Note that the

effect that the deviations of 5mm and 5◦ (which are considered the extreme

case) are reasonably small on the DRR view.

The translation parameters δx and δz result in the X-ray source and PR

pixels being shifted horizontally and vertically (respectively) relative to the

plane in which the PR pixels reside. These translations are therefore called

in-plane, and result in a horizontal and vertical shift in the DRR view.

The translation parameter δy results in the X-ray source and PR pixels

being shifted closer and further away from the treatment room isocenter.

This shift is perpendicular to the PR plane and is therefore called out-of-

plane. The out-of-plane translation δy results in a magnification of the DRR

view.

The rotation parameter δρ rotates the coordinates around the y-axes of the
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DPRS. The PR pixels remain in the same plane during this kind of rotation,

and therefore it is called an in-plane rotation. The parameters δφ and δθ

result in rotation around the x- and z-axes respectively. Since the PR pixels

will move out of their original plane, these rotations are called out-of-plane.

While small changes in the in-plane translations and rotation are easily no-

ticeable in the DRR view, this is not the case for the out-of-plane translation

and rotations. Detecting small changes in the out-of-plane translation δy is

particularly difficult, since it only results in a small magnification of the

DRR view.

As stated in the Section 1.3, experience with the existing portal verification

system used by iThemba LABS has shown that the errors in the placement of

the treatment mask are usually much less than the extreme bounds of 5mm

for each translation and 5◦ for each rotation. The parameters of TDRR will

therefore be bounded to -5mm to 5mm for the translation parameters, and

-5◦ to 5◦ for the rotation parameters.

2.4 The measure M

Selecting the measure M with which the two images are to be compared

should be done very carefully, since it has a direct influence on the nature

of the objective function P .

As stated in the introduction, the objective is to make the verification pro-

cess as fast and accurate as possible, with as little human interaction as

possible. To achieve these objectives, the objective function P needs to be

as smooth as possible with a well defined global optimum so that the opti-

mization process will converge fast to the correct optimum value of P . A

measure must be found that yields such an objective function.

Image registration measures can be divided into landmark based, surface

based or intensity based measures [10][15]. While landmark based measures

operate on corresponding points in the two images and surface based mea-

sures operate on corresponding surfaces in the two images, intensity based
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measures operate on the intensity values of all the pixels in the two images.

Landmark based and surface based measures both involve a pre-processing

stage during which the corresponding features are extracted from the images.

This stage often requires user input in the form of segmenting landmarks or

other features. Intensity based similarity measures do not require this pre-

processing stage, since they operate on all the intensity values of the pixels

of the two images, and are therefore fully automatic. Since a fully automatic

method is desirable, only intensity based measures are considered.

2.4.1 Intensity based similarity measures

Intensity based similarity measures can be divided into three main groups

[16], based on how the intensity values are used to calculate it.

Measures based on image intensities

These measures are based on comparing the intensity values of pixels on the

two images pair wise. Examples of measures that fall into this group are:

• Sum of Intensity Differences

• Correlation Coefficient.

Measures based on image intensities and spatial information

These measures incorporate spatial information by taking the information

of the pixels in the neighbourhood into account. This group includes the

following measures:

• Pattern Intensity

• Gradient Correlation

• Gradient Difference

• Sum of Local Normalized Correlation.
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Statistically based measures

These measures assume a statistical dependence between the two images and

attempt to measure it. They aim to measure how well one image explains

another, or to maximize the shared information of the two images. These

measures are also called Information Theoretic Measures and Shannon’s

entropy principle form an important part of these measures [16].

Many of these methods are based on the calculation of the two dimensional

histogram of the two images, which is created by counting the number of

occurrences of every pair of intensities in the two images [16]. Examples of

measures in this group include:

• Entropy of the difference image

• Mutual Information

• Correlation Ratio

• Probability Distribution Estimation.

Studies were performed by iThemba LABS on a number of similarity mea-

sures [17]. The way that the similarity measures behaved in the vicinity of

the correct position was investigated. The results showed that of the mea-

sure considered, the Correlation Coefficient and Mutual Information simi-

larity measures are the most appropriate for this application. These two

measures provide a match output that degrades smoothly in the vicinity of

the correct position, and do not suffer from local minima. Hence they are

suitable for conventional numerical optimization.

2.5 The optimization algorithm

Since the transformation TDRR has six degrees of freedom, three transla-

tional and three rotational, the optimization of the objective function P is

not an simple task.

The objective function should either be minimized or maximized to find the
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optimum value, depending on how the measure M indicates how well the

two images match. Some measures will return a lower value for two images

that match better, while others will return a higher value for two images

that fit better. In this thesis, the objective function will be optimized by

using minimization algorithms. This means that for measures that return

higher values for a better match −M will be used, and for measures that

return a lower value for a better match M will be used.

There are many types of minimization problems, depending on the nature

of the objective function and its variables. Typically, the following cases are

considered [18, Chapter 1]:

• In Continuous minimization the values of the variables of the ob-

jective function are real numbers, while some or all of the variables of

the objective function can take on integer values in Discrete mini-

mization.

• In Constrained minimization, the variables can take on only certain

values or ranges of values, while in Unconstrained minimization

the variables are free to take on any value.

• Local minimization only finds the lowest objective function value in

the vicinity of where it started looking, while Global minimization

finds the lowest function value for all possible values of the variables.

• Stochastic minimization differs from Deterministic minimiza-

tion in that the underlying model contains uncertainties, i.e. the

objective function might not always return the exact same value for a

certain value of its variables.

Since the translational and rotational components of the objective function’s

variable TDRR can take on any real value, and the objective function will

always return the same value for a set of variables, the minimization problem

to be dealt with is continuous, unconstrained and deterministic. Global

minimization (like population based minimization) is very expensive. The

studies performed in [17] showed that the Correlation Coefficient and Mutual
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information similarity measures can yield objective functions that is convex

or that can be well approximated by convex functions in the vicinity of

the correct position. Since the local minimum of a convex function is also

the global minimum [18, Chapter 1] and the range of possible deviations is

limited, this thesis will concentrate on Local minimization.

There are two fundamental strategies for solving the unconstrained mini-

mization problem. One is the line search strategy, and the other is the trust

region strategy [18, Section 2.2]. The trust region strategy is based on fitting

a model to the data (which is accurate within a certain region) and then

minimizing the model.

While many methods based on both these strategies exist, all the meth-

ods implemented in this thesis are based on the line search strategy. The

line search strategy was chosen over the trust region strategy because of its

simplicity and the fact that not all of the line search methods require the

calculation of the objective function’s gradient [18, Section 2.2]. The line

search strategy can be briefly described as follows:

• Start at some initial point p0 in the multi-dimensional space

• Calculate a new point pnew that has a lower objective function value

by proceeding a distance of λ along some direction n in the multi-

dimensional space

• Keep calculating new points until one of the stopping criteria is met.

Multi-dimensional minimization algorithms based on the line search strat-

egy differ in the way that the step size λ and the direction n are calculated.

They are broadly divided into algorithms that use only the objective func-

tion values and algorithms that use both the objective function values and

the first derivative of the objective function for calculating the direction n.

Algorithms that use the derivative of the objective function for calculating

n are called gradient based methods.

For this thesis, five line search strategy methods were implemented:



Chapter 2. Background 23

1. The unit vector direction set (UVDS) method

2. Powell’s direction set (PDS) method

3. The steepest descent (SD) method (gradient based)

4. The Fletcher-Reeves-Polak-Ribiere (FRPR) conjugate gradient method

(gradient based)

5. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method

(gradient based)

The UVDS method and SD method were implemented because they are the

simplest non-gradient and gradient based minimization algorithms respec-

tively. The other three methods were implemented because they are popular

and refined non-gradient and gradient based minimization algorithms.

2.6 Quantifying the error

To decide whether the error in patient position (given by Terror which is

approximated by the value of TDRR when the objective function is at its

minimum) is within acceptable limits the error can be quantified in a number

of ways, including the following three:

1. Checking whether each of the translation and rotation components are

within a specified limit, e.g. if Terror = (xerr, yerr, zerr, θerr, φerr, ρerr),

then

• xerr < x-limit, and

• yerr < y-limit, and

• zerr < z-limit, and

• θerr < θ-limit, and

• φerr < φ-limit, and

• ρerr < ρ-limit.
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2. Combining the three translation components and checking whether

this combination is within a specified translation limit and combining

the three rotation components and checking whether this combination

is within a specified rotation limit. The combination of the various

components can be done in a number of ways. One way is a simple

summation of the absolute values:

• |xerr|+ |yerr|+ |zerr| < translation-limit and

• |θerr|+ |φerr|+ |ρerr| < rotation-limit

and another the Euclidian distance measure:

• √
x2

err + y2
err + z2

err < translation-limit and

• √
θ2
err + φ2

err + ρ2
err < rotation-limit.

3. Combining all six components and checking whether this value is

within a specified total error limit. Again, one possible way to com-

bine the six components is to do a simple summation of the absolute

values:

• |xerr|+ |yerr|+ |zerr|+ |θerr|+ |φerr|+ |ρerr| < total-limit

or the Euclidian distance measure can be used:

•
√

x2
err + y2

err + z2
err + θ2

err + φ2
err + ρ2

err < total-limit.

Since the translation and rotation parameters have different units (mm

and degrees), combining them into one measure can introduce bias.

2.7 Performance Measurement

As stated in Section 1.2, the image registration process must be such that

the verification system that uses it, is fast, accurate, robust and require as

little human intervention as possible. To know at the end of the day if these

objectives have been achieved, some way of measuring them is required.
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2.7.1 Measuring the speed of registration

The speed of the image registration process is measured by recording the

total time in seconds it takes for the minimization algorithm to find the

minimum value of the objective function. This time depends on

• The time it takes for one objective function evaluation, which

depends on the time it takes to generate a DRR and the time it takes

M to measure how well the two images match. This time is highly

dependent on the software algorithms used for both these tasks, as well

as the hardware (e.g. the processor speed, amount of main memory

and operating system, see Appendix A) that the software runs on.

• The number of objective function evaluations required by the

minimization algorithm, which depends only on the minimization

algorithm and is therefore hardware independent.

2.7.2 Measuring the accuracy of registration

The accuracy of the image registration process is expressed by the difference

between the transformation TDRR (at the objective function minimum) and

the error transformation Terror. This difference can be quantified in a num-

ber of ways. The one that will be used in this thesis is the Euclidian distance

measure:

Total error =
√

(Terror −TDRR)2

The bias factor that results from the combination of parameters of different

units (as mentioned in Section 2.6) is ignored in favour of having a simplistic

accuracy measure.

Since Terror is not usually known (it is exactly what needs to be estimated),

experiments where Terror is known must be used to calculate the accuracy

of the image registration process.
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2.7.3 Measuring the robustness of registration

The robustness of the image registration process is measured by the fre-

quency of misregistrations. A misregistration is defined as a case where the

image registration process is not able to find an estimate of Terror that falls

within an acceptable limit, i.e. total error > accuracy-limit.

If misregistrations occur often, the image registration process is not very

robust. To be able to identify a misregistration, it must be possible to cal-

culate total error. Hence the robustness of the image registration process

can only be calculated in experiments where Terror is known.

2.7.4 Measuring the amount of human intervention

Human intervention may be needed in some parts of the image registration

process. When using feature based image registration, user input in the

form of feature selection may be required. Some minimization algorithms

may also require guidance by a user. Such forms of human intervention are

not desirable in the verification system that is developed.

Any form of user input that is needed by the image registration process

should be identified. Any user input should be classified according to:

• The time required for the user to complete the task

• The skill required from the user to complete the task

• The effect that inadequate user input would have on the image regis-

tration process

The overall amount of human intervention and the effect that it has on the

image registration process can be measured in this way. It should also be

noted whether the human intervention needed can be done beforehand, in

which case it would not lead to an increase in the time required by the

verification process.
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DRR generation

This chapter discusses the details of the method used for generating the

DRRs used in this thesis. The aim of this thesis is not to develop a new

sophisticated DRR algorithm, but rather to implement an existing algo-

rithm. The existing algorithm is then specialized to generate DRRs that

would resemble the PRs acquired with the DPRS. This will allow the image

registration process to perform optimally.

Since the ray-tracing method is the traditional method for generating DRRs,

it was the method chosen to be implemented. Section 3.1 describes the ray-

tracing algorithm. As stated in the Section 2.2.3, the most prominent phy-

sical radiographic processes are modelled to create realistic DRRs. Section

3.2 introduces the X-ray attenuation calibration curve (XACC) and Section

3.3 introduces the beam hardening correction curve (BHCC).

The interpolation of CT data and DRRs are explained in Section 3.4. In Sec-

tion 3.5 the modulated transfer function (MTF) is introduced as a method

for measuring the image quality of DRRs. This method is used to measure

the influence that the interpolation techniques discussed in Section 3.4 have

on the DRR quality.

Section 3.6 introduces various miscellaneous concepts related to DRR gen-

eration. A broad overview of some of the other available DRR generation

methods is given in Section 3.7.

27
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Figure 3.1: 2D representation of radiological path of a ray through the CT
cube. The CT number of and the distance travelled through the k’th voxel
are also shown.

3.1 The ray-tracing algorithm

The ray-tracing algorithm is used to calculate the radiological path-length

of a ray through the CT cube [13]. For each pixel on the DRR the radi-

ological path-length is calculated from the coordinate that represents the

X-ray source to the coordinate that represents that specific pixel. To cal-

culate the radiological path-length of a ray, the ray-tracing algorithm needs

to determine which voxels of the CT cube the ray intersects, from the point

where it enters the CT cube to the point where it exits. The algorithm also

needs to calculate the distance that the ray travelled through each voxel.

A 2D representation of a ray travelling through the voxel space is shown in

Figure 3.1. The parts of the ray that are outside of the CT cube and their

contribution to the radiological path-length are addressed in Section 3.6.1.

The radiological path-length D may be written as the sum:

D =
K∑

k=1

δkC (Hk) , (3.1)

where δk is the distance travelled through voxel k and Hk is the Hounsfield

number of voxel k. C is a function that maps Hounsfield numbers to X-ray

attenuation coefficients and is introduced in the following section. K is the
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total number of voxels intersected by the ray.

The CT data is stored as a 3D array, and the CT number of each voxel is

obtained by indexing the CT data:

Hk = H (p, q, r) .

For a DRR consisting of 1024 × 1024 pixels, the radiological path-length

needs to be calculated for each of the 1 048 576 pixels. A typical CT data set

might consist of 50 slices, with each slice consisting of 256×256 pixels. This

means a ray could intersect hundreds of voxels. For each intersected voxel of

each ray, the indices p, q and r need to be calculated. The coordinates of the

points where the ray enters and exits each voxel also need to be calculated so

that the distance inside the voxel can be calculated. Thus a naive approach

will have high computational cost.

Siddon [13] suggested an algorithm that considers voxels as the intersection

volumes of orthogonal sets of equally spaced parallel planes, instead of in-

dependent elements. Instead of calculating the entrance and exit points of

each voxel, the algorithm calculates the location where the ray crosses these

sets of parallel planes. Since the planes are equally spaced apart, only the

location of the first crossing needs to be calculated, the others follow by

recursively adding a constant.

While Siddon provides a fast method for calculating the distance of a ray

in a particular voxel, the calculation of the indices of that voxel is still very

slow. According to [13] 42% of the total time of the algorithm is spent

calculating voxel indices.

Jacobs [19] presented an improvement on Siddon’s algorithm called the in-

cremental ray-tracing algorithm. Instead of calculating the indices for each

voxel from scratch, the incremental algorithm follows the ray as it crosses

the orthogonal sets of parallel planes. Since the ray travels from voxel to

voxel, the indices can only be incremented or decremented by one – depend-

ing on which plane is crossed. Jacobs claims an improvement factor of 7.5

over the original ray-tracing method.
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Jacob’s improvement on Siddon’s algorithm was implemented for generating

the DRRs used in this thesis.

3.2 The X-ray attenuation calibration curve (XACC)

The XACC maps the CT numbers contained in the CT cube’s voxels to their

corresponding X-ray attenuation coefficients. As will be seen shortly, the X-

ray attenuation coefficients depend on the particular X-ray source used.

If the CT numbers are mapped to the X-ray attenuation coefficients that

correspond to the DPRS’s X-ray tube that is used to acquire the PR’s, the

radiological path-lengths of the rays that is calculated with (3.1) would be

better approximations of the actual radiological path-lengths detected with

the DPRS [20]. Therefore, the DRRs would approximate the PRs better.

The calibration curve for a specific CT scanner and X-ray tube pair is con-

structed by calculating the CT numbers (corresponding to the specific scan-

ner) and X-ray attenuation coefficients (corresponding to the specific X-ray

tube) for a large number of tissues.

The CT-numbers of the tissues are calculated using the model presented

in [21]. The parameters of the model are fixed by using the measured CT

numbers for a small set of tissue substitute materials. The model can then

be used to calculate the CT number of any tissue for the specific CT scanner.

The X-ray attenuation coefficients of the tissues are calculated by integrating

over the X-ray spectrum:

µ̄i =
∫

µi (E)Ω (E) dE∫
Ω (E) dE

, (3.2)

where µi (E) is the attenuation coefficient of tissue i at energy E, which

is calculated as in [22], and Ω (E) is the value of the emitted spectrum

at energy E as calculated in [23]. The X-ray spectrum depends on the

parameters of the X-ray tube. These parameters include the anode angle,

target composition, tube voltage and various filtration parameters. In Figure

3.2 the X-ray spectrum of the DPRS’s X-ray tube (for the parameters shown
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Figure 3.2: An X-ray spectrum of the DPRS (Tube voltage: 100 kV).

in Table 3.1) is shown.

Table 3.1: X-ray tube parameters.

Rhenium-Tungsten target composition 5% − 95%
Anode Angle 12◦

Tube Voltage 100 kV
Nominal Aluminium Filtration 2.5mm

Oil Filtration 1.5mm

Tissues with low, middle and high CT numbers are used to construct the

XACC, with a higher number of tissues from the important soft-tissue re-

gion. The XACC is constructed by interpolating these values. An example

of such a curve is shown in Figure 3.3. The XACC consists of three differ-

ent regions [21]. The first region is from Hounsfield numbers -1000 to -200

and represents the air-lung-adipose element mixtures. The second region is

from -200 to 200 and represents the soft-tissues. The third region contains

the Hounsfield numbers above 200 and represents the harder bone-like ma-

terials. The gradient of the XACC is very different in these three regions.

Figure 3.4 shows an enlargement of the three different regions.

Figure 3.5 shows two DRRs, the one on the left created without using the
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Figure 3.3: Example of a XACC.
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Figure 3.4: Low, mid and high range CT number mappings

calibration curve and the one on the right created with the calibration curve.

Visually, the DRR generated by using the calibration curve appear to have

better image contrast. Unfortunately no real PRs were available to visu-

ally compare these images with. In Section 4.2.2 the influence that using

the XACC when generating DRRs has on the image registration process is

measured.

The use of an XACC to generate DRRs that better resemble specific PRs,

is also found in [24], where they created DRRs to resemble mega-voltage

radiographs.



Chapter 3. Digitally reconstructed radiographs 33

Figure 3.5: DRR without XACC (left) and DRR with XACC (right).

3.3 The beam hardening correction curve (BHCC)

In the calculation of the XACC with (3.2) it is assumed that the energy

spectrum of the X-ray beam remains constant as it travels through the CT

volume. This assumption is in conflict with the physical phenomenon called

beam hardening [25]. Because the attenuation by a volume of tissue at a

fixed point is greater for X-rays of lower energy, the spectrum of the beam

changes as it travels through the CT volume. The spectrum becomes more

rapidly depleted of lower energy (or “soft”) X-rays compared to the higher

energy (or “hard”) X-rays and therefore hardens.

It is difficult to take this beam hardening into account during the ray-tracing

process, as a new spectrum would need to be calculated continuously, which

means that (3.2) needs to be recalculated as well. All these calculations

would be impossible to incorporate into the ray-tracing process without

having a profound impact on the computational cost.

It is, however, possible to approximate the effect of beam hardening by

calculating the effect that beam hardening has on a beam travelling through

a volume of water [20]. This is because the attenuation of X-rays by a patient

can be roughly approximated by the attenuation of X-rays by a volume of

water.
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The volume of water is divided into a specified number of layers of the

same thickness (δx). As the beam travels through the volume of water the

spectrum is changed by beam hardening. The spectrum after each layer of

water is given by

Ωn (E) = Ωn−1 (E) e−µw(E)nδx (3.3)

where Ω0 is the original emitted spectrum before entering the volume of

water and Ωn is the emitted spectrum after n sections of water. This gives

a total distance of water travelled through of nδx, where n ranges from 1 to

the total number of sections N .

The attenuation coefficient of water at depth nδx with beam hardening ac-

counted for is

µ̃w
n =

∫
µw (E)Ωn (E) dE∫

Ωn (E) dE
. (3.4)

The radiological path length is defined as

ln =
N∑

n=0

µ̃w
n δx. (3.5)

A beam hardening correction curve (BHCC) can now be constructed:

K(ln) =
µ̃w

n

µ̃w
0

(3.6)

An example of such a BHCC is shown in Figure 3.6. The summation in

(3.1) can now be altered to compensate for beam hardening:

D =
K∑

k=1

δkC (Hk)K (dk−1) (3.7)

where dk is the accumulated radiological path length up to the kth voxel.

The index into the BHCC can be computed recursively:

d0 = 0 (3.8)

d1 = δ1C (H1) K (δ1) (3.9)

dk = d1 +
k∑

m=2

δmC (Hm) K (dm−1) k ≥ 2 (3.10)

Note that D = dK .
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Figure 3.6: Example of a BHCC.

Figure 3.7 shows two images. The image on the left is the DRR created

without using the BHCC and the image on the right shows the DRR created

by incorporating the BHCC.

It should be noted that it is possible to use the XACC without using the

BHCC (by setting K(d) = 1 for all d in (3.7)), but it is not possible to use

the BHCC without using the XACC as well. This is because the XACC is

used in calculating the index dk into the BHCC in (3.10).

By incorporating modelling for beam hardening effects by use of the BHCC

in the ray-tracing process, the generated DRRs are a better approximation

of the PRs created by the DPRS system.

3.4 Interpolation of the CT data and DRRs

3.4.1 Interpolation of CT data

As stated in Section 2.2.3, the speed of the ray-tracing algorithm depends

directly on the number of voxels that each ray intersects as it travels through

the CT cube. The number of voxels that a CT cube consists of is inversely
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Figure 3.7: Effect of beam hardening. The figure on the left is the DRR
without beam hardening and the one on the right is the DRR with beam
hardening.

proportional to the voxel size. Any patient volume can be represented by

a CT cube with larger voxels. To generate a DRR using a CT cube with

larger voxels will be faster than generating it from a CT cube representing

the same volume with smaller voxels. Generating DRRs from CT data with

larger voxels however has the disadvantage that it results in a coarser image

that will not resemble the PR as well.

The voxel sizes of a CT cube are tied to the parameters of the CT scanner.

Each CT image slice consists of a specified number of pixels (e.g. 256×256).

Each CT image slice is also of a specified thickness, and CT image slices are

a specified distance apart from each other. These parameters are set bearing

in mind the size of the patient volume that must be imaged, as well as the

radiation dose that is afflicted on the patient.

After the patient has been scanned, the CT data can be altered by artificially

changing the voxel sizes.

Up-sampling

If a patient has been scanned with a large slice thickness and separation,

the DRRs created will suffer from slicing artifacts as shown in Figure 3.8(a)

where it looks like the image consists of parallel slices. However, the voxel
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(a) (b)

Figure 3.8: Effect of CT slice thickness on DRR. The DRRs in (a) and (b)
have slice thicknesses of 5mm and 1mm respectively

sizes might be decreased to gain smoother DRR images (Figure 3.8(b)). This

process is called up-sampling and is achieved by interpolating the original

CT data. The CT data can be interpolated in many different ways (Figure

3.9):

• Interpolating in one dimension across the slices. This kind of interpo-

lation will result in a smaller slice thickness and separation.

• Interpolating each CT slice image. This is a two dimensional inter-

polation and will result in CT slice images that consists of smaller

pixels.

• Three dimensional interpolation of the CT data as a whole. This will

yield a CT cube with voxels that are smaller in all three dimensions.

To interpolate a one dimensional function, function values need to be as-

signed to intermediate positions. The fastest method to assign these values,

called nearest neighbour interpolation, is to give the new positions the same

function value as their nearest neighbours. A better method is to fit a func-

tion through the original values, and to then sample this function at the
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Figure 3.9: Up-sampling of CT data

required positions. Linear interpolation and cubic interpolation are such

methods, and differ in the type of function that is fitted to the values and

the number of points used to fit the function. Linear interpolation fits a

polynomial function of the first degree to every two adjacent points, while

cubic interpolation fits a polynomial function of the third degree to the func-

tion values.

Since cubic interpolation uses more points to fit the function, it is more ex-

pensive than linear interpolation but produces a smoother fit [26, Chapter

6]. It should be noted that higher order interpolation can produce over-

smoothing effects, while very high order interpolation increases the risk of

Runge’s phenomenon. Figure 3.10 illustrates the three different interpola-

tion methods in one dimension.

Two dimensional and three dimensional interpolations are done in the same

way as one dimensional interpolation. In two dimensions a surface is fitted

to the function values. In three dimensions a piece-wise linear or cubic

function is fitted to the function values.
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Figure 3.10: Different interpolation techniques.

Down-sampling

If the CT cube of a patient consists of very small voxels, the CT data might

be down-sampled to increase the voxel sizes and reduce the number of voxels

and accordingly the time to generate a DRR.

Down-sampling can also be done by interpolation like up-sampling. For

down-sampling the number of positions at which the fitted function will be

evaluated are less than the original positions.

Down-sampling can also be achieved by decimation or averaging. During

decimation, larger voxels are formed by grouping clusters of smaller voxels

(Figure 3.11). Each larger voxel takes on one of the values of the cluster

of voxels from which it has been formed. This is equivalent to the nearest

neighbour interpolation method.

With down-sampling by averaging, larger voxels are formed from clusters

of small voxels in the same way as during the decimation method. With

averaging, the new voxel is assigned the average value of the cluster of

voxels. This is equivalent to linear interpolation on a suitably chosen grid.
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Figure 3.11: Down-sampling of CT data by grouping clusters of voxels

3.4.2 Interpolation of DRRs

As stated in Section 2.1.3, the CCD camera of the DPRS can produce PRs

consisting of 10242-, 5122- or 2562 pixels.

The number of pixels that a DRR consists of is equal to the number of rays

that must be cast through the CT cube. The fewer pixels a DRR consist of,

the less time it would take to generate it.

As will be seen in Section 4.2, when comparing two images, they need to be

of the same size. Therefore, when a high quality 10242 pixel PR are used

during registration, DRRs can either be generated expensively with 10242

pixels or be generated much less expensively with 2562 pixels. The 2562

pixel DRRs can then be interpolated to 10242 pixels to be compared with

the same sized PR.

When using a 2562 pixel PR, DRRs will be generated with 2562 pixels. Using

DRRs consisting of more pixels and then down-sampling them would not

make sense, since the more pixels the DRR consists of, the more expensive it

is to generate, and the down-sampling process would not increase the image

quality of the DRR.

The interpolation of a DRR is exactly the same as the 2D interpolation of

a CT image slice as described in the previous section on the up-sampling of

CT data. A linear surface is fitted using the nearest four points for linear

interpolation, or a cubic surface is fitted using the nearest 16 points for cubic

interpolation. These surfaces are then evaluated at the new pixel positions

to create a DRR consisting of more pixels.

The effect of DRR interpolation is shown in Figure 3.12. In this case linear
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1024x1024 256x256 256x256 interpolated
to 1024x1024

Figure 3.12: Enlarged pieces of DRRs showing the effect of interpolation

Table 3.2: DRR calculation times.
DRR size Calculation time (seconds)
1024×1024 14.516
256×256 1.297

256×256 interpolated to 1024×1024 3.735

2D interpolation was used. DRR generation times1 are given in Table 3.2.

3.5 Image quality

The three basic concepts used to describe the visual quality of an image

produced by an imaging system are spatial resolution, contrast and noise

[27, Chapter 1].

For this discussion, the ray-tracing algorithm represents the imaging system

and the resulting DRR the image. The CT data that is used to create the

DRR is part of the imaging system and has a direct influence on the three

measures of image quality.
1The hardware and software with which these times are calculated are described in

Appendix A.
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Image resolution

The spatial resolution of an image can be defined as the smallest distance

between two objects that can be clearly imaged. This can be calculated

by investigating line pairs of ascending frequency and finding the frequency

at which the line pairs cannot be discerned anymore. The DRR spatial

resolution is determined by the number of pixels that the DRR consists of,

as well as the number of pixels that each CT slice consists of and the slice

thickness and separation [28]. The size of the CT image slices, the slice

thickness and slice separation are set during acquisition, and can afterwards

only be altered by up-sampling and down-sampling. The effect (negative or

positive) that such alteration of the CT data will have an the DRR spatial

resolution needs to be investigated.

Image Contrast

Image contrast is defined as a measure of difference (usually in the image

intensity values) between regions in an image, in particular adjacent regions.

This measure can be formulated in various ways. One popular form is

Contrast = (Imax − Imin)/(Imax + Imin),

where Imax is the maximum pixel intensity value in the region and Imin the

minimum [27, Chapter 1]. The pixel intensity values of a DRR are directly

related to the radiological path-length of the rays as calculated in (3.7) and

therefore depend on the CT data, the XACC and the BHCC.

Image noise

The noise in a DRR image can be ascribed mainly to the noise that is inher-

ent to the CT data used during DRR generation. The errors induced by the

ray-tracing process are limited to numerical round-off errors. These errors

occur when calculating the distance that a ray travels through a particular

voxel (δk in (3.7)) and are very small in comparison to the other terms. To
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quantify noise the standard deviation of the image intensity values around

their mean value can be calculated for a region in the image that has uniform

intensity [27, Chapter 1].

Measuring the image quality

To quantify image quality in terms of these three concepts is very difficult,

since they influence each other. Image contrast and spatial resolution are

related because image contrast tends to deteriorate as spatial frequency is

increased. A measure that relates image contrast to spatial resolution is

the modulation transfer function (MTF). The MTF is a popular and widely

used measure when it comes to medical imaging. It is not only used for

conventional radiography with X-ray films, but also for digital radiography

[29],[30],[31]. The quality of DRR imaging systems is difficult to compare

against each other, since the quality depends on the CT data used. However,

the MTF has been used to measure the effect that the CT data has on the

quality of DRRs. In [28] the MTF measured from DRRs is used to evaluate

the effect that the number of pixels a CT image slice consists of and slice

thickness has on the quality of DRRs. In [32] the MTF of a DRR imaging

system is used to determine whether CT data produced with helical CT or

axial CT produced DRRs of better quality.

3.5.1 The modulation transfer function

The various components and stages of an imaging system introduce various

forms of unsharpness on the image. This causes the contrast of an image

to deteriorate as the frequency increases. To illustrate this, Figure 3.13

shows the input and output of a typical imaging system that introduces

unsharpness. The line pair image at the top is the input signal while the

line pair image at the bottom is the output of the imaging system. It can

be clearly seen that, as the frequency increases, it becomes more difficult to

discern the line pairs in the output image as the contrast becomes very low.

An MTF curve gives the relationship between signal or image modulation
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Figure 3.13: Contrast deteriorates as frequency increases.
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Figure 3.14: Example of an MTF curve.

(which constitutes contrast in this case) and frequency. A typical MTF

curve of an imaging system that introduces unsharpness is shown in Figure

3.14. The MTF curve of an imaging system can be calculated either by

using line pairs, or by using the Fourier Transform.

Calculating the MTF using line pairs

The MTF can be calculated by generating a DRR of a CT data phantom

containing sets of line pairs at designated frequencies and then interpolating

these points to form the MTF curve. A DRR of such a phantom (from [33])

is shown in Figure 3.15.

The MTF can be calculated from the DRR generated of the CT data phan-

tom with

MTF (f) =
π√
2

√
M2 −N2

|P −Q| (3.11)

where M represents the standard deviation of DRR pixel values within a
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Figure 3.15: DRR of a CT phantom for MTF calculation.

set of line pairs and N the standard deviation of an uniform region of the

DRR. P represents the mean value of an uniform region that has the highest

intensity and Q represents the mean of an uniform region that has the lowest

intensity. This formula for calculating the MTF was used in [28] and [32].

Calculating the MTF using the Fourier transform

The Fourier transform can be used to calculate the MTF from the point

spread function (PSF), the line spread function (LSF) or the derivative of

the edge spread function (ESF) of the imaging system.

The spread functions are characteristic of a particular imaging system and

can be obtained by the imaging of a lead plate with a small hole (PSF),
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a lead plate with a thin slit (LSF), and the edge of a lead plate (ESF) as

illustrated in Figure 3.16. The spread functions are related to each other.

The horizontal profile through the PSF and the LSF (obtained with a vertical

slit) are equivalent. The ESF are related to the PSF and LSF by the fact

that the derivative of the horizontal profile through the ESF is equal to the

horizontal profiles of the PSF and the LSF (obtained with a vertical slit)

[27, Chapter 6]. Therefore:

PF (PSF) = PF (LSF) =
d

dx
PF (ESF)

where PF(x) returns the horizontal profile through the given function.

The MTF can be calculated by taking the magnitude of the Fourier trans-

form of any of these three profile functions:

MTF (f) = |F(PF (PSF))|
= |F(PF (LSF))|
=

∣∣∣∣F(
d

dx
PF (ESF))

∣∣∣∣

This is illustrated in Figure 3.16.

3.5.2 Forms of unsharpness

The PSF of an ideal imaging system should be the delta function. This is

the case when the X-ray source is infinitely small and the hole in the plate

is infinitely small and there are no other factors of unsharpness during the

imaging process. The Fourier transform of the delta function is a constant

function [34, Appendix G.5]. This means that all frequencies are modulated

the same and that there will be no contrast deterioration at high frequencies.

In practice, the various components of an imaging system (like the DPRS)

all contribute to the unsharpness of the final image.



Chapter 3. Digitally reconstructed radiographs 47

PSF

LSF

ESF

Profile

Profile

Profile

FFT

FFT

FFT

MTF

d/dx

X-ray source

Lead plate

Detector plane

X-ray source

Lead plate

Detector plane

X-ray source

Lead plate

Detector plane

Figure 3.16: MTF calculation from spread functions using the FFT.

Geometric unsharpness

Geometric unsharpness is caused by the finite size of the X-ray source’s focal

spot. In contrast to a point source, a finite source causes a blur around the

image of an object called the penumbra. This is illustrated in Figure 3.17.

The size of the penumbra is affected by the size of the X-ray source and

the object magnification. The object magnification depends on the location

of the object in relation to the X-ray source and the imaging plane (Figure

3.18).

Unsharpness due to scattering

As stated in Section 2.1.1, some of the X-rays that travel through the patient

are deflected. The effect of this scattering process (shown in Figure 3.19)
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Figure 3.18: Effect of object magnification on geometrical unsharpness.

is that the image contains noise and becomes blurry. Grids that absorb

scattered rays that do not travel along the direction of the primary beam

can be used to reduce the effect of scattering [2, Section 31.1.2].

Unsharpness due to motion

Motion unsharpness is caused by the movement of the X-ray source, the

patient or the detector system during image acquisition. While the X-ray

source and detector system are usually held by rigid supporting structures

and assumed stationary, patient movement can be a major cause of un-

sharpness. Patient immobilization techniques are used to minimize patient

movement during image acquisition. By using short exposure times during

X-ray acquisition, the effect of patient movement can also be limited. How-

ever, short exposure times can have a negative impact on image contrast.
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Detector unsharpness

Detector unsharpness is caused by the various components that the particu-

lar detector consists of. In the DPRS the diffusion of light in the scintillation

screen and the distortion of the reflecting mirrors and CCD camera lens add

to the unsharpness of the image [7].

Digitization unsharpness

Small errors are induced by the CCD camera when the light image is con-

verted to electronic signals which are digitized and stored as binary numbers.

This is because a finite number of bits are used to store the intensity value

of each pixel.

3.5.3 Using the MTF to measure the effect of interpolation
on the CT data and DRRs

As stated earlier, it is difficult to measure the absolute quality of the DRR

generation process because of its dependency on the CT data. However, the

MTF can be used to measure the effect on the quality of the DRRs when

the voxel sizes of the CT cube and the pixel sizes of the DRR are artificially

altered as described in Section 3.4.
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The following is true for the DRR imaging process in terms of the various

forms of unsharpness of a digital radiographic imaging system:

• The X-ray source from which each ray starts is a perfect point source.

Therefore there is no geometrical unsharpness.

• The ray-tracing algorithm only models the primary fluence and no

diverging rays, which eliminates the unsharpness factor due to scat-

tering.

• The object is represented by the CT cube, which is stationary to-

gether with the X-ray source and image plane. There is therefore no

unsharpness due to movement.

• There is no detector phase during DRR generation. Each pixel is

directly calculated with the ray-tracing algorithm.

• Since the ray-tracing is already done in digital form, there is no ad-

ditional digitization necessary and therefore the errors induced by the

ray-tracing process are limited to numerical round-off errors as ex-

plained in Section 3.5. There might, however, be errors due to aliasing

which is caused by under-sampling. This will be discussed shortly.

Since none of the usual forms of unsharpness occurs during DRR generation

(if it is assumed that no under-sampling occurs) and the numerical round-

off errors introduced by the ray-tracing process are very small, the imaging

process will be very close to ideal – the PSF will be a delta function re-

sulting in a constant MTF. This makes measuring the effect that alteration

of the voxel or pixel sizes has on the MTF a futile exercise. To aid the

measurement, geometrical unsharpness is introduced by modelling a finite

X-ray source.

Modelling of a finite X-ray source

To simulate geometrical unsharpness due to the finite focal spot size (FSS)

of the DPRS’s X-ray tube when generating a DRR, it is possible to add
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blurring to each ray that is cast from the X-ray source to the imaging plane.

This results in each pixel of the DRR being blurred in relation to the FSS.

This method is computationally very expensive. An alternative method

is to convolve the DRR (generated without geometrical unsharpness) with

a Gaussian kernel function with a full width at half maximum (FWHM)

that depends on the FSS of the DPRS’s X-ray tube [33]. The FWHM of

the kernel also depends on the DPRS setup (the source-object and object-

detector distances), which affects the magnification of the FSS as shown in

Figure 3.20. The effective size of the focal spot w depends on the position of

the point x in the object. It is assumed that the effective size corresponding

to any point x inside the object can be approximated by the effective size

corresponding to the treatment iso-center which is on the central beam axis.

The effective size can therefore be calculated by

w =
OD

SO
× FSS, (3.12)

where SO and OD are the source-object and object-detector distances re-

spectively and FSS the focal spot size.

A typical setup for the DPRS used by iThemba LABS has values of 2000mm

for SO and 500mm for OD. The X-ray tube of this DPRS has two settings

for the FSS, either 1.5mm or 0.8mm. This results in effective focal spot sizes

of 0.375mm or 0.2mm, which are also the FWHMs of the Gaussian kernels

with which the DRRs are to be convolved. The standard deviation of the

Gaussian kernel with a FWHM of w is calculated by

σ =
w

2.3548

and the DRR with modelling for the finite source incorporated is given by

the convolution

DRRFS = DRR⊗G(σ)

where G(σ) is a Gaussian function with standard deviation σ.

By adding geometrical unsharpness to the DRR imaging process, the PSF

will no longer be a delta function and the MTF will also no longer be a

constant function. This makes it possible to measure the effect that the



Chapter 3. Digitally reconstructed radiographs 52

Finite source

Object

Detector
plane

SO

OD

x

w

FSS

Figure 3.20: Magnification of finite source.

alteration of the voxel and pixel sizes has on the MTF.

Calculating the MTF using DRRs

To calculate the MTF of the DRR generation process it was decided to mea-

sure the ESF of the DRR generation process. This is done by constructing

artificial CT cubes that each contains a thin plate and generating DRRs

from them.

Each of these CT cubes is constructed with specific voxel sizes. All the

voxels of each CT cube are given the CT number of air, except for the slice

in the middle of each CT cube. This middle slice is constructed to contain

the edge of the plate. This is achieved by dividing the slice along a vertical

line and setting the left side of the slice to the CT number of air and the

right side to the highest available CT number. The right side of the middle

slice represents the plate. The position of the vertical line where the slice is

divided represents the edge of the plate, and can be set to different positions.

The setup for DRR generation is done so that the central beam axis is

perpendicular to the slices and enters the CT cube in the center of the first

slice. Since the MTF was found to be spatially dependent, the edge of the

thin plate is placed at two different positions. The edge is placed either in

the center of the middle slice (co-incident with the central beam axis) or on

the outskirt (near the edge) of the middle slice (at an angle with the central

beam axis). A top view of the setup for DRR generation for both the edge
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Figure 3.21: Top view of DRR generation setup for MTF calculation.

in the center and the edge on the outskirt of the middle slice is shown in

Figure 3.21. The figure also shows the resulting DRR for each setup, and

that the ESF can be obtained from the horizontal profile through the center

of the DRR. As stated in Section 3.5.1 the MTF can be calculated by taking

the magnitude of the Fourier transform of the derivative of this ESF.

It should be noted that with the edge on the outskirt of the slice, the angle

of the rays causes the edge to be spread over a larger part of the DRR,

which results in a different ESF and MTF. This is the reason for the spatial

dependency of the MTF. The extent of this spread not only depends on

the position of the edge in relation to the central beam axis, but also on

the thickness of the plate and therefore the size of the voxels. It should be

remembered that when the voxel size of the CT data is changed, the number

of voxels is increased or decreased, but that the physical size of the CT cube

remains constant.
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Sampling frequency

When generating a DRR, the pixels for which the ray-sums are calculated

are only a sample of all the possible rays that can be cast from the X-ray

source to the image plane. According to the sampling theorem, a signal

can be described completely by uniformly spaced samples at a frequency

of twice the highest frequency of the original signal [34, Section 2.8]. This

frequency is called the Nyquist frequency. When a signal is sampled below

the Nyquist frequency a phenomenon called aliasing corrupts the sampled

signal [35, Section 2.2.4].

The sampling frequency of the DRR generation process for each spatial

dimension is calculated by dividing the number of pixels in that dimension

by the physical length of that dimension [35, Section 2.2.4], e.g. if a DRR

has a size of 300mm×300mm and consists of 512× 512 pixels, the sampling

frequency would be

fs = 512/300 = 1.7 samples/mm

Since all the DRRs generated in this thesis are two dimensional square im-

ages, the sampling frequency is the same for both dimensions.

When a DRR is generated from a CT cube that contains line pairs in only

one of its slices, and the slices are perpendicular to the central beam axis,

then the highest frequency of line pairs are achieved when each alternat-

ing voxel has a different value. For CT slices of 512 × 512 pixels of size

1mm×1mm the highest frequency is 0.5 lp/mm (line-pairs per millimetre),

and the Nyquist frequency 1 samples/mm.

When generating DRRs to measure the ESF (which is used to calculate

the MTF) as described in the previous section, care should be taken that

the sampling frequency of the DRR generation process do not go below the

Nyquist frequency of 1 samples/mm to avoid aliasing.
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Figure 3.22: One dimensional view of down-sampling by averaging

Down-sampling of CT data

To measure the effect that down-sampling of the CT data has on the MTF,

a CT cube is constructed in the way described above with 5123 voxels of

size 1mm3. CT cubes with 2563 voxels of size 2mm3, 1283 voxels of size

4mm3 and 643 voxels of size 8mm3 are then created by down-sampling the

original CT data. The down-sampling is done using averaging as described

in Section 3.4.1, and Figure 3.22 shows a one dimensional illustration of the

effect on the edge of the plate. The figure shows how 2mm3-, 4mm3- and

8mm3 cubical voxels are obtained. When the plate ends on an uneven voxel,

the edge is spread out over three voxels (Figure 3.22(a)). If the edge falls

on a even voxel, the edge remains sharp (Figure 3.22(b)).

Experiments were conducted for the case where the edge of the plate is in

the center of the middle slice (like Figure 3.21(a)) and where the edge of the

plate is on the outskirt of the middle slice (Figure 3.21(b)). Experiments

were also conducted for the case when down-sampling causes the edge to

be spread out over multiple voxels and for the case where the edge stays

sharp. Thus, four experiments were conducted to investigate the effect of

down-sampling of the CT cube has on the image quality of DRRs:

• Experiment 1: Plate edge in the center of middle slice – the edge

remaining sharp

• Experiment 2: Plate edge in the center of middle slice – the edge

spread out

• Experiment 3: Plate edge on the outskirt of middle slice – the edge

remaining sharp
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Figure 3.23: Calculation of the MTF for the CT cube down-sampled to 4mm3

with the edge positioned to remain sharp.

• Experiment 4: Plate edge on the outskirt of middle slice – the edge

spread out

In all the experiments above, modelling for the finite source is added. Since

the edge of the plate only comprises a small area of the DRR, DRRs of

size 50mm2 are created and positioned so that the edge falls in the center

of the DRR image. The DRRs are created with 5122 pixels which result

in a sampling frequency of 10.24 samples/mm. This sampling frequency is

sufficient to avoid any aliasing.

Figure 3.23 shows a typical DRR, the ESF taken from the horizontal profile

of the DRR, the derivative of the ESF and the MTF calculated using the

Fourier transform. The DRR of this figure is created from the CT cube

down-sampled to 4mm3 voxels with the plate in the center of the middle

slice and the plate positioned so as to cause a sharp edge.

Figure 3.24 shows the calculation of the MTF for the same CT cube, but

with the edge positioned to cause an edge that is spread out. As can be seen
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Figure 3.24: Calculation of the MTF for the CT cube down-sampled to 4mm3

with the edge spread out.

the ESF contains a step. These kinds of steps are characteristic of all the

experiments with the edge positioned so that it is spread out. Calculating

the Fourier transform from functions that contain steps like these does not

yield usable results, since they contain ringing due to the steps. This prob-

lem is overcome by approximating the ESF with a smooth Gaussian kernel

function as shown in the figure. The MTF is then calculated from the fitted

ESF.

When the MTF curve of Figure 3.24 is compared with the one in Figure

3.23, it is clear that the MTF values for the spread out edge is much lower

than the MTF values for the sharp edge. This is a manifestation of the

decline in image quality that the down-sampling incurs.
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Figure 3.25: Results of down-sampling experiments

To be able to compare the results of the experiments conducted, the MTF50

values are taken from the MTF curves of the four experiments. These are

simply the frequencies where the MTF curves are at 50% of their maximum

value. These MTF values are commonly used to measure the quality of

imaging systems, and were also used in [28] to analyse the effect that the

CT parameters have on DRR image quality.

Figure 3.25 shows the MTF50 values of the four down-sampling experiments

conducted. The MTF50 for Experiment 1 has a constant value of 0.5954

lp/mm for the original 1mm3 voxel CT data and the down-sampled 2mm3-,

4mm3- and 8mm3 voxel CT data. This is partly because the edge remains

sharp as shown in Figure 3.22(b). It is also partly due to the fact that the

increase in voxel size has no effect on the ESF because the edge of the plate

is co-incident with the central beam axis (Figure 3.26(a)).

The MTF50 for Experiment 2 shows a sharp decline from the original 1mm3

voxel CT data to the down-sampled 2mm3 voxel CT data. This is because

the edge is spread out for the down-sampled CT data (Figure 3.22(a)). The

further decline in the MTF50 value from the 2mm3 voxels to the 8mm3

voxels is because of the increased voxel size and the fact that the position

of the edge moved away from the central beam axis because of the down-

sampling (Figure 3.22(a)). The effect that an increase in voxel size has on

the spreading of the edge is shown in Figure 3.26(b).

The MTF50 for Experiment 3 shows a gradual but steady decline. Because

the edge stays sharp in this experiment, no radical decrease in the MTF50
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Figure 3.26: Effect of the position of the plate’s edge and the voxel size on
the spreading of the edge.

value can be seen between the 1mm3- and 2mm3 voxels. It can be seen that

the MTF50 value for the original 1mm3 voxels is slightly lower for this ex-

periment (where the edge is on the outskirt) than for the edge in the center

(Experiment 1). This is because of the spread caused by the angle of the

rays with the central beam axis. The further decline in the MTF50 can be

solely ascribed to the spreading caused by the increase in voxel size.

The MTF50 for Experiment 4 is very much the same as the MTF50 for

Experiment 2. This is because the edge is spread out for both these experi-

ments, which overpowers the effect that moving the plate to the outskirt of

the middle slice would have on the spreading.

It is concluded from these experiments that down-sampling of the CT data

leads to a loss in image quality. This is with the exception of the case of

Experiment 1, which is limited to the position of the DRR that co-incides

with the central beam axis. The further away from the central beam axis,

the worse is the effect of down-sampling on the image quality. If any edge

is spread out it has a severe negative impact on the image quality, and even

if the edge stays sharp, the increase in voxel size has a negative impact on

the image quality.
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Up-sampling of CT data

To measure the effect that up-sampling of the CT data has on the MTF, a

CT cube is constructed in the same way as for the down-sampling experi-

ments but with 643 voxels of size 8mm3. CT cubes of 1283 4mm3 voxels,

2563 2mm3 voxels and 5123 8mm3 voxels are then created by up-sampling

the original CT cube. The up-sampling is done by linear interpolation as de-

scribed in Section 3.4.1 and Figure 3.27 gives a one dimensional illustration

of the effect on the edge of the plate. The figure shows how 4mm3-, 2mm3-

and 1mm3 cubical voxels are obtained. As can be seen from this figure, any

up-sampling causes the edge to be spread out over a distance that is equal

to the width of one of the original 8mm3 voxels. The smaller the voxels the

CT cube is up-sampled to, the smoother the edge becomes.

Two experiments were conducted to measure the effect of up-sampling on

the MTF:

• Experiment 1: Plate edge in the center of middle slice

• Experiment 2: Plate edge on the outskirt of middle slice

These experiments were conducted in the same way as those for the down-

sampling of the CT cube. The setup for Experiment 1 is as shown in Figure

3.21(a) and the setup for Experiment 2 is as shown in Figure 3.21(b).

Modelling for the finite X-ray source is added and the DRRs are once again

of size 50mm2 with 5122 pixels and positioned so that the edges fall in the

center of the DRRs.
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Figure 3.28: Calculation of the MTF for the CT cube up-sampled to 4mm3.

Figure 3.28 shows a DRR created from the CT cube up-sampled to 4mm3

voxels and the ESF taken from the horizontal profile of the DRR. Two steps

are seen on the ESF. They are caused by the two voxels of intermediate

value which is the result of the up-sampling process (Figure 3.27). The ESF

is once again approximated with a Gaussian kernel function as was done for

the down-sampling experiments, and the MTF shown was calculated using

the Fourier transform. The DRR was created with the plate in the center

of the middle slice.
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Figure 3.29: Results of up-sampling experiments
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Figure 3.29 shows the MTF50 values for the two up-sampling experiments

conducted. It can be clearly seen that MTF50 value for the original 8mm3

voxels with the edge on the outskirt (Experiment 2) is again lower than that

for the edge in the center (Experiment 1). This was also noticed for Experi-

ment 2 and 4 of the down-sampling experiments and is caused by the angle

between the rays and the plate’s edge (Figure 3.26(b)). For the up-sampling

experiments the effect is more profound because the original voxels are of

a much larger size (8mm3 compared to the down-sampling’s original voxel

size of 1mm3).

The sharp decline in the MTF50 of both experiments for the 4mm3 voxel

up-sampled CT cube is because of the spreading of the edge as shown in

Figure 3.27.

After the initial sharp decline in the MTF50 for 4mm3 voxels, both exper-

iments show a slight increase in the MTF50 for 2mm3- and 1mm3 voxels

over 4mm3 voxels. This can be ascribed to the thinning of the plate which

has the effect explained in Figure 3.26(b).

It is concluded that up-sampling of the CT cube also has a negative im-

pact on the image quality. It should however be noted that the negative

impact of up-sampling does not escalate as in the case of down-sampling,

e.g. up-sampling to a quarter of the original voxel size is not worse than

up-sampling to a half of the original voxel size.

Although up-sampling has a negative impact on image quality in terms of

spatial resolution, the improvement that it makes in terms of image smooth-

ness when working with CT data that has thick slices, is very useful (Figure

3.8).

Interpolation of DRRs

When measuring the effect that interpolation of a DRR has on the image

quality of that DRR, it is very important that no under-sampling occurs.

Incorrect values for the MTF might be recorded if aliasing occurs because of

under-sampling. The sampling rate is tied to the DRR generation parame-

ters that specify the physical size of the DRR, and the number of pixels that
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Figure 3.30: MTF values for DRRs with different amounts of pixels (Exper-
iment with the edge in the center of the middle slice)

needs to be calculated. Since the DRRs need to be of the same size as the

scintillation screen of the DPRS, the physical size is restricted to 300mm2.

To find out how many pixels need to be calculated for a high enough sam-

pling rate, an experiment was conducted that investigates the behaviour of

the MTF values for DRRs calculated with different amounts of pixels. The

experiment was set-up as in Figure 3.21(a) with the plate edge in the center

of the middle slice. The MTF curves for DRRs of 2562- to 153602 pixels

were calculated and the MTF50, MTF10 and MTF5 values were recorded.

Figure 3.30 shows the result of the experiment. The MTF values of the DRRs

calculated with 10242 pixels and above have the correct value, while those

with less pixels suffer from incorrect values because of under-sampling. To

calculate DRRs with more than 10242 pixels are very expensive, therefore

the experiment were adjusted to allow more spreading of the edge. This

was done by placing the plate’s edge on the outskirt of the middle slice as

in Figure 3.21(b) and by using a thicker, 20mm plate. This was done to

further aid the spreading of the edge as described in Figure 3.26. The MTF

values were once again measured for the new experiment setup.

Figure 3.31 shows the result of the new experiment. It can be seen that the

MTF values are stable for DRRs calculated with 5122 pixels and above.

To measure the effect that DRR interpolation has on the image quality of

the DRRs as measured by the MTF, three DRRs were calculated with the
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Figure 3.31: MTF values for DRRs with different amounts of pixels (Exper-
iment with 20mm plate and edge on the outskirt of the middle slice)

thick plate setup as described above. The DRRs were created with 5122-,

10242- and 20482 pixels, and the MTF curves were calculated for each DRR.

As gathered from the previous experiment, the MTF50 values of these DRRs

were very close to 0.177 lp/mm.

Using the interpolation techniques described in Section 3.4.2, the following

DRRs were created:

• the 5122 pixel DRR were up-sampled to a 10242 pixel DRR and a

20482 pixel DRR,

• the 10242 pixel DRR were down-sampled to a 5122 pixel DRR and

up-sampled to a 20482 pixel DRR,

• the 20482 pixel DRR were down-sampled to a 10242 pixel DRR and a

5122 pixel DRR.

The MTF curves were calculated for these DRRs and the MTF50 values

were recorded. Figure 3.32 and Table 3.3 show the MTF50 values. The

figure shows that the MTF50 values remain virtually unchanged. The up-

sampling of the 5122 pixel DRR to 10242- and 20482 pixels is the only DRR

interpolation that had a noticeable but small negative effect on the image

quality. The down-sampling of DRRs showed no noticeable negative effect

on the MTF values.

Table 3.4 shows a summary of all the interpolation results.
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DRR size MTF50(lp/mm)
512 0.17749
1024 0.1772
2048 0.17745

512 up-sampled to 1024 0.17263
512 up-sampled to 2048 0.17286
1024 up-sampled to 2048 0.17608

1024 down-sampled to 512 0.17601
2048 down-sampled to 512 0.17739
2048 down-sampled to 1024 0.17722

Table 3.3: Effect of DRR interpolation on MTF50 values.

Type of Effect on Practical Use Resulting
Interpolation MTF DRR image

CT data down-sampling Large negative Decrease DRR generation time Coarser
CT data up-sampling Negative Reduces slicing effect on DRRs Smoother
DRR down-sampling Little effect Increasing DRR pixel size Coarser
DRR up-sampling Small negative Decreasing DRR pixel size Smoother

Table 3.4: Results of Interpolation of CT data and DRRs
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Figure 3.32: Effect of DRR interpolation on MTF50 values.
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Figure 3.33: Calculation of the distances of air attenuation to include

3.6 More on DRR generation

This section introduces various miscellaneous concepts that is important

during DRR generation.

3.6.1 Adding attenuation of air

When a radiograph is taken, the X-rays travel through a piece of air before

they enter the patient, and through another piece of air between the patient

and the detector system. These two pieces of air attenuates the X-rays and

although it has a small effect, it is incorrect to ignore it.

To include the attenuation of the X-rays by the pieces of air before and

after the patient, the distances between the X-ray source and the CT cube,

and the CT cube and the image plane are calculated (Figure 3.33). The

radiological path-length D of (3.7) can now be initialized to include the

attenuation of the air between the X-ray source and CT cube by setting

d0 = δpreC(HA),

where δpre is the distance between the X-ray source and the CT cube and

HA is the CT number of air.

The attenuation of the piece of air between the CT cube and the image
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plane can be included by calculating the total radiological path-length as

D = dK + δpostC(HA)K(dK),

where dK is the attenuation after travelling through all K voxels and δpost

is the distance between the CT cube and the image plane.

3.6.2 Using volumes of interest

The CT data of a patient can be accompanied by volume of interest (VOI)

data. The VOI data contains the segmentation of a particular volume in

the CT cube of the patient and can contain a number of sub-VOIs. Each

sub-VOI is represented by a number of contour polygons, each contour cor-

responding to a specific CT image slice of the CT data.

Usually the patient volume (along with other important volumes such as the

optic nerves, spinal cord and target volume) is segmented from the CT cube

and available as a VOI. This VOI can be used during DRR generation to

exclude any unwanted structures (such as the CT scanner couch) that might

be contained in the CT data. This is easily accomplished by generating a

mask from the VOI for each CT image slice and using the mask to give the

pixels outside the VOI a specific identification CT number. Because the

material outside the patient volume should be air, the XACC is adjusted

to map the identification CT number to the X-ray attenuation coefficient of

air. The pixels outside the VOI is not set directly to the CT number of air

because they are used during the check for incomplete CT data as will be

discussed in Section 3.6.4.

Care must be taken not to choose the identification CT number equal to a

number that can occur in the CT cube. As the CT numbers for patients

range from -1000 to 1500 the identification CT number was chosen to be

9999. Figure 3.34 shows how a mask is generated from the contour of the

patient VOI and applied to the corresponding CT image slice. This is done

for each slice of the CT data. If a particular slice has no corresponding VOI

contour polygon, the whole slice is set to 9999.
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Figure 3.34: Applying mask from VOI on CT slice

3.6.3 Using regions of interest

The PR of the patient that is acquired with the DPRS might also contain

unwanted structures like patient immobilization devices and parts of the

chair or couch used during treatment. These unwanted structures can be

removed by using a user supplied region of interest (ROI).

The user can select the patient ROI from the PR using polygon based draw-

ing tools. The DRRs that are to be compared with the PR are then only

calculated for the pixels that lie within the given ROI.

In addition to removing unwanted structures, using a ROI also reduces DRR

generation time. This is because large areas of a PR might not contain inter-

esting information that will aid the comparison with the DRR, and therefore

it is not necessary to calculate the pixels of the DRR for these regions.

Figure 3.35(a) shows a PR taken from a skull phantom. The wooden plate

and stub used to support the skull can be clearly seen in the PR. In (b) a

polygon is drawn around the skull on the PR to create a ROI that excludes

any unwanted structures. A DRR generated without using the ROI is shown

in (c). The wooden plate that supports the skull can be seen in the DRR.

Note that the CT data used to generate the DRR was not accompanied by

VOI data. The wooden plate and stub (although artificial) are the kinds of

unwanted structures that can be removed from the CT data by using VOIs

as described in the previous section. In (d) the DRR generated by using the

ROI is shown.

By only calculating the pixels for the DRR that resides inside the ROI, the

number of rays that the radiological path-length needs to be calculated for

is reduced from 1048576 to 486759. The time needed to calculate the DRR



Chapter 3. Digitally reconstructed radiographs 70

PR PR with ROI

DRR(1048576 pixels) DRR with ROI(486759 pixels)

(a) (b)

(c) (d)

Figure 3.35: DRR generation using a user supplied ROI

is hence reduced by 53.58% by using the ROI.

3.6.4 Check for incomplete CT data

Care must be taken when generating DRRs from certain views of the CT

data. It must be remembered that the CT data represents only the imaged

part of the patient. It can therefore happen that rays exit the CT cube

at a point in space where there is supposed to be patient anatomy, but

the patient anatomy was not included in the CT scan. This occurrence is

illustrated in Figure 3.36. The CT data is therefore incomplete for such

particular rays. The radiological path-length for these rays are incorrect,
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Figure 3.36: Incomplete CT data

and the corresponding DRR pixels will not correlate with the pixels on the

PR at the same position. They should therefore not be included in any

comparisons.

During DRR generation, the patient VOI is used to check for incomplete

CT data. An output mask is generated which indicates which DRR pixels

are valid. If a pixel is included in the output mask, the corresponding DRR

pixel is valid. For a pixel to be valid, the corresponding ray must adhere to

the following two rules:

1. The first voxel that the ray travels through in the CT cube must be

outside the patient volume (it should have the CT number 9999)

2. The last voxel that the ray travels through in the CT cube must also

be outside the patient volume (it should also have the CT number

9999).

From Figure 3.36 it can be seen that ray (a) is valid and adheres to the two

rules. Ray (c) is invalid and is identified as being invalid because it does

not satisfy the second rule. Ray (b) is also invalid but there is not enough

information available to identify it as being invalid.
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Figure 3.37: Shearing and scaling of CT slices

3.7 Other DRR generation methods

As stated in the beginning of this chapter, the ray-tracing method is the

traditional method for generating DRRs. Because of the long computation

times required by ray-tracing, many other methods for generating DRRs

less expensively have been developed.

In [36] Larose presents a method that uses an intermediate data represen-

tation called the Transgraph. The basic idea is to pre-calculate a set of

DRRs from certain viewpoints, and then arbitrary DRRs can be created by

interpolating these existing DRRs. The accuracy of this method is however

limited to the density of the viewpoints for which DRRs are pre-calculated.

Lacroute et.al. [37] introduced a method called shear warp factorization.

This method transforms the CT data into a sheared object space so that

all the rays runs parallel to each other as illustrated in Figure 3.37. An

intermediate image is generated by summing the voxels along the projection

axis. The DRR is then generated by warping the intermediate image onto

the image plane.

Voxel-projection or splatting based DRR generation methods calculates

the DRR by accumulating the image plane projections for each voxel of

the CT cube. The projection of a voxel on the image plane is called its

footprint (Figure 3.38). Many different footprint approximating functions

have been suggested, such as cone, Gaussian, sync and bilinear functions.
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Figure 3.38: Voxel footprint

In [38] smooth basis functions are used to approximate the footprint.

In [39] and [11] light fields are used to generate DRRs. In this method, rays

are parameterized by their intersection with two arbitrary planes. The shape

between these two planes is called a light slab which contains infinitely many

rays. Any image can be created by determining which rays are involved

and associating them with their corresponding pixels. The light slab is

constructed by pre-calculating a large number of rays. Missing rays are

then calculated by interpolation.

In [40] the CT cube is transformed to a cylindrical harmonic representa-

tion. A DRR is then created by projecting each of these harmonics from the

chosen projection point to the imaging plane and taking the superposition

of all the projections.

A technique for hardware based DRR generation using consumer-grade

computer graphics hardware is introduced in [36]. This allows for rapid

real-time DRR generation.
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Image Registration

This chapter discusses the details of the image registration process. For

development and testing of the registration process it was necessary to use

simulated PRs because real PRs were not yet readily available from the

DPRS to be used by iThemba LABS. The generation of these simulated

PRs is discussed in Section 4.1. As stated in the Introduction Chapter, the

image registration process entails the minimization of the objective func-

tion P . The various components that the objective function consists of play

a very important part in the way it behaves. Section 4.2 investigates the

effect of these components in order to select them to be beneficial to the

objective function’s behaviour. In Section 4.3 the minimization of the ob-

jective function is discussed and the minimization algorithms considered are

introduced.

4.1 Generating simulated PRs

Real PRs of the patient in the treatment position can be simulated by gen-

erating DRRs from the patient’s CT data. Inaccuracies in patient setup

are simulated by an error transformation as was done when forming the

objective function in (1.1):

PRsimulated = DRR(Tsimulated), (4.1)

74
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where

Tsimulated = {δx, δy, δz , δφ, δρ, δθ} .

This has the added advantage that the error in patient setup Tsimulated is

known exactly and can be used to quantify the accuracy of the registration

process.

The DRRs used to simulate PRs need to be as similar as possible to the

real PRs. To achieve this, the primary physical aspects of the DPRS are

modelled and incorporated into the DRR generation process. These aspects

are:

• Using the appropriate XACC that depends on the spectrum of the

DPRS’s X-ray tube

• Using the appropriate BHCC to compensate for beam hardening

• Modelling of the finite focal spot size (FSS) of the DPRS’s X-ray tube

• Modelling of the detector system’s modulation transfer function

• Modelling of noise introduced by the DPRS

The first two aspects are incorporated in the DRR generation process as

described in Sections 3.2 and 3.3 on DRR generation.

While the incorporation the first two aspects yields an image of better qual-

ity by increasing image contrast, the latter three aspects worsen the image

quality of the DRR by blurring the image and adding noise to the image.

The modelling of a finite X-ray source is done as described in Section 3.5.3.

4.1.1 Modelling the detector system’s MTF

Modelling of the detector system’s modulation transfer function is incorpo-

rated by use of the DPRS’s MTF. This was measured with the experimental

setup illustrated in Figure 4.1. In this experiment the ESF was obtained

taking a radiograph with a plate placed against the scintillation screen of
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Figure 4.1: Measuring the ESF of the DPRS.
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Figure 4.2: Measured MTF of the DPRS.

the DPRS. The MTF is calculated from the ESF by use of the Fourier trans-

form as illustrated in Figure 3.16 and discussed in the corresponding section.

The plate was positioned so that its vertical edge was in the center of the

scintillation screen and co-incident with the central beam axis. Because the

object-detector distance is very small for the setup with the plate against

the scintillation screen, the effective size of the focal spot of the X-ray tube

becomes very small according to (3.12). For this experiment geometrical

unsharpness is therefore negligible, and the MTF that was calculated from

the ESF is mainly due to the blurring by the detector system. The measured

MTF of the DPRS is shown in Figure 4.2.

To incorporate the detector system’s MTF, the DRR needs to be convolved

with a kernel that approximates this MTF [33]. It was decided to approxi-
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mate the MTF of the detector system with a double Gaussian kernel so that

both the steep fall-off characteristic of the first part of the MTF curve as

well as the slow decay of the latter part of the MTF curve would be well

approximated. The double Gaussian kernel is given by

K(σ1, σ2, α) = αG(σ1) + (1− α)G(σ2). (4.2)

where G(σ1) and G(σ2) are two Gaussian functions with different standard

deviations and α an appropriate weight.

A DRR are created with the setup as in Figure 3.21(a), but with the plate

against the imaging plane to simulate the setup for the calculation of the

MTF of the DPRS in Figure 4.1. The MTF of the DRR can be calculated

by taking the magnitude of the Fourier transform of the derivative of the

horizontal profile through the center of the DRR after it is convolved with

the double Gaussian kernel

MTFDRR =
∣∣∣∣F

(
d

dx
PF (DRR⊗K (σ1, σ2, α))

)∣∣∣∣ . (4.3)

The parameters σ1, σ2 and α of the double Gaussian kernel is calculated by

minimizing the least-square error between the measured MTF of the DPRS

and MTFDRR. Thus the values were calculated as:

σ1 = 2.7545

σ2 = 4.1465

α = 0.4820

The detector system’s MTF can now be incorporated by the following con-

volution:

DRRDS = DRR⊗K(σ1, σ2, α).

The MTF of DRRDS calculated with the parameters of K as above is shown

(together with the MTF measured from the DPRS) in Figure 4.3, from which

it can be verified that the MTF of DRRDS corresponds to the MTF of the

DPRS.
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Figure 4.3: MTF of DRRDS and Measured MTF of the DPRS.

4.1.2 Modelling of DPRS noise

The primary sources of noise in the DPRS are X-ray quantum noise, CCD

chip read-out noise and digitization noise [7]. The noise produced by these

sources are assumed to be spatially invariant and uncorrelated to the PR

pixel values, and therefore the noise can be modelled by Gaussian noise

[35, Section 5.2]. Gaussian (also called normal) noise can be added to the

DRR by adding a random number to each pixel. This number is generated

by a random number generator that produces normally distributed random

numbers. The extent of the noise is determined by the mean and standard

deviation of this normal distribution. It is important to carefully set the

standard deviation (σnoise) of the normal distribution to simulate the noise

introduced by the DPRS. The mean of the normal distribution is set to zero

so that the mean pixel value of the DRR will not be influenced. The value

for σnoise was calculated by matching the signal-to-noise ratio (SNR) of the

noise to be added with that of a flat field image obtained from the DPRS.

To calculate σnoise in this way, a number of flat field images were taken with

the DPRS. The intensity values of the flat field images ranged from 47664 to

65535. The average values for the mean and standard deviation of the pixel
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intensity values were measured as 52048.4 and 1496.6. The SNR is given by

SNRflat = 20log10

(
M

STD

)
dB, (4.4)

where M and STD is the mean and standard deviation. With the measured

values of M and STD given above the average SNR of the flat-field images

of the DPRS was calculated to be 30.827 dB.

A flat field image was also obtained by generating a DRR from a CT cube

with all the voxels having the CT number of air. The M and STD of the

pixel values of this DRR were calculated to be 0.9878 and 1.907×10−5, which

results in a SNRflat of 94.286 dB. This illustrates the negligible noise the

ray-tracing process introduces.

The value of σnoise is calculated as 0.0284 by solving for STD in (4.4) with

M = 0.9878 and SNRflat = 30.827 dB. After the noise is added to the

DRR the values for M and STD are 0.9881 (which shows that the mean

pixel value is not significantly influenced) and 0.0283 respectively. This

results in a SNRflat of 30.860 dB, which matches the SNR of the DPRS.

Another value for σnoise can be calculated by taking a certain percentage

of the average PR pixel value. From experience with the portal verification

system currently in use by iThemba LABS that uses X-ray films, the noise

levels of the radiographs should not exceed 5% of the average pixel value.

The calculation of the average pixel value involves the construction of a water

phantom the size of a human head. The human head consists largely of the

brain and other soft tissues whose interaction with X-rays are approximated

well by water. The human head can therefore be roughly approximated

by a CT cube whose voxels are set to the CT number of water. The idea

is that the pixel values of the DRR generated from this CT cube will be

representative of the average pixel values of a PR taken of a human head.

A value for σnoise can therefore be calculated by taking the 5% value of the

mean pixel values of the DRR calculated with the water phantom.

The mean value of the DRR pixels generated with a 200mm3 water phantom

CT cube was measured to be 41.0780. The corresponding value of σnoise is

2.0539 which is 5% of 41.0780.
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This value of σnoise calculated with the water phantom is significantly higher

than the one calculated by matching the SNR of DPRS flat field images. The

latter is considered to be the more realistic value for σnoise, while the value

calculated with the water phantom experiment should be considered an up-

per bound on the noise.

By incorporating the modelling of the aspects of the DPRS as discussed

above, a simulated PR can be generated by

PRsimulated =
(
DRRXACC/BHCC(Tsimulated)⊗KFS ⊗KDS

)
+ N(σnoise),

(4.5)

where DRRXACC/BHCC(Tsimulated) is a DRR generated with the appropri-

ate XACC and BHCC and simulated setup error transformation Tsimulated,

KFS is the convolution kernel for modelling the finite source, KDS is the

convolution kernel for modelling the detector system’s MTF and N(σnoise)

is Gaussian noise with a standard deviation of σnoise.

4.1.3 Generating simulated PRs of different sizes

As mentioned in Section 2.1.3, the CCD camera of the DPRS produces PRs

consisting of 10242 pixels. PRs of 5122- and 2562 pixels can be produced by

the CCD camera by the binning of pixels.

To simulate the way the CCD camera produces PRs of different sizes, the

DRRs generated for simulating PRs are always generated at 10242 pixels.

Reference images of 5122- and 2562 pixels are then created by down-sampling

the 10242 pixel DRR by an averaging process. This process, illustrated in

Figure 4.4, is analogous to the CT data down-sampling process described in

Section 3.4.1 and simulates the internal binning process of the CCD camera.

Each pixel of the down-sampled DRR is given the average value of the cluster

of pixels from which it is created.
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Figure 4.4: DRR down-sampling by averaging

4.2 Investigating the objective function P

The investigation of the objective function P that was defined in (1.1) as

P (TDRR) = M (PR,DRR (TDRR)) ,

plays a very important part in the solving of the image registration problem.

In the first place, it allows the investigation of the effect that the various

components have. In the second place it allows the evaluation of the qualities

of the objective function, which is invaluable in choosing a minimization

algorithm for the objective function. E.g. if the objective function suffers

from many local minima, local optimization techniques will not suffice and

more sophisticated global optimization techniques like simulated annealing

or evolutionary based optimization should be considered.

Since the objective function has six degrees of freedom, corresponding to

the three translation and three rotation parameters of the transformation

TDRR, it is not possible to visualize it practically. For this reason, the

investigations are done by evaluating the objective function along various

one dimensional paths through the six dimensional space. Similarity curves

are constructed by recording the values of the measure M for the values of

TDRR along these one dimensional paths. The similarity curves can be used

to visualize and investigate the objective function. As stated in the Section

2.5, some measures return a higher value for two images that compare better

and some a lower value. A desirable similarity curve is one which is smooth

and increases (or decreases) to an optimum value (which is the value at
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which the images compare best), and then decreases (or increases) back

again.

The objective function has three main components:

• The measure M

• The portal radiograph PR

• The digitally reconstructed radiograph DRR.

As stated in the introduction, the only similarity measures that will be

considered are the Mutual Information (MI) and Correlation Coefficient

(CC) intensity based similarity measures.

During the investigations, simulated PRs (whose creation is described in

Section 4.1) will be used for PR. Four different simulated PRs will be used

with different parameters for the X-ray tube focal spot size (FSS) and for

the standard deviation (σnoise) of the added Gaussian noise in (4.5):

1. PR1 : FSS = 1.5mm, σnoise = 0.0282

2. PR2 : FSS = 0.8mm, σnoise = 0.0282

3. PR3 : FSS = 1.5mm, σnoise = 2.0539

4. PR4 : FSS = 0.8mm, σnoise = 2.0539

Simulated PRs of different sizes are also created as described in Section 4.1.3

resulting in PR11024, PR1512 and PR1256, and the same for PR2 to PR4.

This resulted in a total of 12 different images for PR. Figure 4.5 shows the

original DRR from which the simulated PRs were created, together with

PR11024, PR21024, PR31024 and PR41024.

The simulated PRs were created from the CT data of a real patient, and with

a view specified by one of the treatment fields for the patient. A summary

of the CT data used during DRR generation is given in Table 4.1. For the

investigations, no inaccuracies in patient setup are simulated, i.e. Tsimulated
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Original DRR

PR1 PR2

PR3 PR4

Figure 4.5: Original DRR together with PR11024, PR21024, PR31024 and
PR41024.

in (4.5) is set to zero. Hence the objective function is expected to have a

minimum value when the transformation TDRR is zero:

δx = δy = δz = 0mm

δθ = δφ = δρ = 0◦.

The DRRs used for DRR in the investigations are all created from the same

CT data that the simulated PRs are created from. The components of DRR

generation that have an effect on the objective function are investigated.

These components are:
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Table 4.1: Summary of CT data.

Field-of-view size 260mm×260mm×136mm
CT slice dimensions 256×256
CT slice pixel size 1.015625mm2

Number of slices 68
Slice separation 2mm
Slice thickness 2mm

• The parameters of the transformation TDRR for which DRR is calcu-

lated, i.e. the translation parameters δx, δy and δz, and the rotation

parameters δθ, δφ and δρ.

• Whether the appropriate XACC and BHCC are used.

• The number of pixels that the DRR is generated for.

• The interpolation of the DRR.

• The slice separation and thickness of the CT data.

For each investigation a number of similarity curves are constructed and

compared with one another. For each similarity curve of a particular inves-

tigation, one of the 12 simulated PR images needs to be selected for PR,

and the parameters for the generation of DRR need to be selected. In order

to isolate the influence that the component under investigation has on the

objective function, the other components need to be selected in a way that

will allow the objective function to perform in the best possible way and be

kept constant during the investigation.

The following is the setting for components which will allow the objective

function to perform at its optimum:

• PR selected as PR21024. This is because PR21024 has:

– an FSS of 8mm and is therefore blurred less than PR11024

– added Gaussian noise with a standard deviation of 0.0282 and is

therefore less noisy than PR31024 or PR41024.
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– 10242 pixels, which results in better resolution than PR2512 and

PR2256.

• DRR is calculated with

– the parameters of TDRR set to form the one dimensional path

through the objective function

– the appropriate XACC and BHCC, since the simulated PR are

generated with them

– 10242 pixels, which is equal to the size of PR21024

– the same CT data that PR21024 is created from

As stated earlier, a desirable similarity curve is one which increases (or

decreases) to an optimum value and the decreases (or increases) back again.

During the investigations, the three main properties of a similarity curve

that needs to be looked at are:

1. The smoothness of the curve. If the curve is very noisy, the objective

function suffers from local minima which make the task of minimizing

the objective function very difficult.

2. The position of the optimum value. If the position of the optimum is

very close to the correct value, the accuracy of the objective function

is very high.

3. The slope of the similarity curve near the optimum value. The steeper

the slope of the curve, the faster the minimization process. This is

especially the case for gradient based minimization algorithms.

4.2.1 The parameters of TDRR

The aim of this investigation is to find out how each of the six parameters

of the transformation TDRR influences the objective function. This is done

by varying only one parameter of TDRR at a time. In this way the values

of M can be recorded along a one dimensional path and be easily visualized
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Table 4.2: Values of the components not under investigation.

PR used XACC used BHCC used DRR size
PR21024 yes yes 10242
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Figure 4.6: Mutual Information similarity curves.

as a similarity curve.

For the investigation of a particular parameter, say the translation δx, the

parameter is varied from -5mm (or -5◦ for a rotation parameter) to 5mm

(or 5◦) in 150 steps. This is according to the limitations set in Section 2.3

and results in a step size of 0.066mm (or 0.066◦), which limits the accuracy

of the similarity curve to the same size. The other translation and rotation

parameters are kept at 0mm (or 0◦).

The components not under investigation are set to their optimum values as

shown in Table 4.2.

The results of this investigation are shown in Figures 4.6 and 4.7 for the MI

and CC similarity measures respectively.

The left hand side of Figure 4.6 shows the MI similarity curves for all the

translation and rotation parameters of TDRR. The legend lists the maxi-

mum value for each curve together with the value of the parameter at which

this maximum value occurred, e.g. the maximum value for the curve inves-

tigating the influence of δx are 1.4102 and occurred at δx = 0.26316mm.

The maximum values for the curves are not all the same, nor are the posi-
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Figure 4.7: Correlation Coefficient similarity curves.

tions of the maximum values. Since the correct values for all the parameters

are 0mm and 0◦, the curves for δphi and δrho have their maximum values at

the correct position.

The curve for the translation parameter δy is the least accurate with a max-

imum value at 1.25mm. As explained in Section 2.3 this is not surprising,

since detecting small changes in the out-of-plane translation δy is very diffi-

cult.

The right hand side shows the same curves, but normalized to have maxi-

mum values of 1 so that the slope of the different curves are easier to compare

to one another. The slopes of of the in-plane translations and rotation δx,

δz and δrho are steeper than those of the out-of-plane rotations δθ and δphi,

while the out-of-plane translation δy hardly a very small slope.

Figure 4.7 shows the CC similarity curves for the parameters of TDRR (the

right hand side is a zoomed-in part of the normalized curves). As can be seen

from the legend, all the parameters reach the same maximum value at the

correct position of 0mm and 0◦. The CC measure is therefore more accurate

than the MI measure in detecting small changes in each of the parameters

of TDRR.

The slope of the CC curves are all very different, ranging from δy which (as

was the case for MI) has a very small slope, to δz which has a very steep

slope.
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Table 4.3: Values of the components not under investigation.

PR used DRR size Parameter varied
PR21024 10242 δx

From this investigation it is gathered that the objective function is more

accurate for the CC similarity measure than for the MI similarity measure.

For MI, the out-of-plane translation parameter δy is much less accurate than

the other parameters of TDRR.

While this investigation only changed a single parameter of TDRR at a time,

similarity curves where more than one parameter of TDRR are changed at

a time did not show any situations where the behaviour differs significantly.

4.2.2 The use of the XACC and the BHCC

The aim of this investigation is to find out how the use of the XACC and

BHCC for DRR influences the objective function. The path for which the

similarity curves are calculated, is constructed by varying only δx while

keeping the other parameters of TDRR at 0mm and 0◦.

Three curves are constructed by comparing PR21024 with DRR represented

by three different DRRs. One with the DRR generated by not using the

XACC or the BHCC, one with the DRR generated by using the XACC but

not the BHCC, and one with the DRR generated by using both the XACC

and the BHCC.

The components not under investigation are set to their optimum values as

shown in Table 4.3.

Figure 4.8 shows the MI curves for this investigation, with the curves on

the right hand side normalized to have a maximum value of one. The curve

created by not using the XACC is less smooth and has a slope that is much

less steep than the curves created when using the XACC. The curves created

by using the BHCC and those not using the BHCC are virtually identical.

Figure 4.9 shows the CC curves. For CC, there is not such a big difference

between the curves using the XACC and the curves that don’t. The curves
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Figure 4.8: Mutual Information similarity curves.

for using the BHCC and those not using the BHCC are once again virtually

identical.

From the curves above, it might be concluded that using the BHCC does

not make any difference. It should be remembered that the BHCC depends

on the X-ray tube parameters, and that the tube voltage of the X-ray tube

can be adjusted. For all the DRRs generated for these investigations, a mid-

range X-ray tube voltage of 75kV is used. Figure 4.10 shows the MI curves

created by using DRRs generated according to a tube voltage of 130kV (the

X-ray tube’s upper limit). It can be seen (on the curves on the left hand

side, which is a zoomed-in view) that the difference between the two curves

created by using and not using the BHCC are bigger for the 130kV pair than

for the 75kV pair. From this investigation it is seen that when using the MI

similarity measure, the XACC increases the accuracy and the steepness of

slope of the objective function. Using the BHCC has a much less profound

impact on the objective function.

When using the CC similarity measure, the use of the XACC and BHCC

has very little impact on the objective function.
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Figure 4.9: Correlation Coefficient similarity curves.
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Table 4.4: DRR and PR sizes, and the DRR generation time (seconds).

DRR size PR used DRR time
2562 PR2256 1.44
5122 PR2512 4.62
10242 PR21024 17.24

2562 interpolated
to 5122 PR2512 2.06

2562 interpolated
to 10242 PR21024 3.48

5122 interpolated
to 10242 PR21024 6.68

Table 4.5: Values of the components not under investigation.

PR used XACC used XACC used Parameter varied
PR2 yes yes δx

Since the use of the XACC and the BHCC during DRR generation comes

at virtually no extra computational cost and may have a positive impact,

albeit small, they should always be used.

4.2.3 The number of pixels and the interpolation of DRRs

The aim of this investigation is to find out how the number of pixels which

DRR consists of, influences the objective function. The DRR representing

DRR can either be created with the same number of pixels as the PR it

is to be compared with, or be interpolated to be compared with a PR that

consist of more pixels. Hence, six similarity curves are constructed for this

investigation by comparing DRR of different sizes with PR. The sizes of

DRR which are investigated, together with the PR with which they are to

be compared with, and the time it takes1 to generate DRR are shown in

Table 4.4.

The components not under investigation are set to their optimum values as

shown in Table 4.5.
1The hardware and software with which these times are calculated are stated in Ap-

pendix A.
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Figure 4.11: Mutual Information similarity curves.

Figure 4.11 shows the MI curves for this investigation. The maximum val-

ues for all the curves have a position of either 0.20mm or 0.26mm, which

means they are all of the same accuracy. From the right hand side of Figure

4.11, it is seen that the curves created by comparing PR21024 with a DRR

either generating directly with 10242 pixels or interpolated to 10242 pixels,

showed the steepest slope. It is surprising to see that the curves created by

interpolating the 10242 pixel DRR shows steeper slopes than the curves for

the original 10242 pixel DRR. This can be ascribed to the smoothing effect

that interpolation has on the images. The curve created by comparing the

2562 pixel DRR with PR2256 shows the smallest slope, and also becomes

noisy further away from 0mm.

Figure 4.12 shows the CC curves for this investigation. The zoomed-in view

of the normalized curves on the right hand side shows that the CC curves

created by using the DRR with the most pixels were the most accurate, with

the curve created by comparing PR21024 with the 10242 pixel DRR having

its maximum value at the correct position of 0mm. This is more accurate

than any of the MI curves. All the other CC curves, however, suffer from

local minima.

The results of this investigation are very important. It shows that when

using the MI similarity measure, the same accuracy can be achieved with
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Figure 4.12: Correlation Coefficient similarity curves.

a 2562 pixel DRR interpolated to 10242 pixels than when using an original

10242 pixel DRR. It also shows that the curves produced with the inter-

polated DRR have a steeper slope. When considered that the interpolated

DRR can be generated in 3.48 seconds compared to the 17.24 seconds of the

original 10242 pixel DRR, it is clear that interpolated DRRs can be used

to reduce the evaluation time of the objective function, and therefore the

verification process. The fact that the interpolation of the DRRs does not

effect the accuracy of similarity curves very much is in line with the results

of the experiments conducted in Section 3.5.3, which showed that the in-

terpolation of DRRs does not have a profound impact on the DRR image

quality.

The results of the investigation regarding CC is also very important. On

the one hand, the curve created with the 10242 pixel DRR is the most ac-

curate of all the curves, and more accurate than any of the MI curves. On

the other hand, the curves not created with the 10242 pixel DRR all suffer

from local minima. Therefore, the CC measure can only be used for the

objective function together with the very computationally expensive 10242

pixel DRRs.
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Figure 4.13: Direction of CT slices relative to central beam axis or DRR
view

4.2.4 The slice separation and thickness of the CT data

The aim of this investigation is to find out how the slice separation and

thickness of the CT data from which DRR is generated, influence the objec-

tive function. The slice thickness and separation of the CT slices are usually

not of the same size as the size of the pixels of the CT slices, and therefore

the voxels of the CT cube are not cubical. Hence, the effect that the slice

separation and thickness have on DRR depends on the particular view of

DRR with relation to the CT slices. The two extreme cases are when the

DRR view (which is defined by the direction of the central beam axis) is

parallel with the CT slices, and when the DRR view is perpendicular with

the CT slices. These two cases are illustrated in Figure 4.13.

When the DRR view is parallel to the CT slices, the effect of differences in

the CT slice separation and thickness on the image quality of the DRR is

much more pronounced than when the DRR view is perpendicular to the

slices.

The CT slice separation can be altered by interpolation of the CT data as

explained in Section 3.4.1. To investigate the effect that altering the CT
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Table 4.6: Values of the components not under investigation.

PR used DRR size XACC used XACC used Parameter varied
PR21024 10242 yes yes δx

Table 4.7: DRR generation times.

Slice separation Nr. of DRR time (sec) DRR time (sec)
and thickness slices parallel view perpendicular view

1mm 132 2.86 2.83
2mm 68 1.91 1.50
5mm 28 1.30 0.69
10mm 14 1.17 0.43

slice separation has on the objective function, a CT cube is created with

1mm3 cubical voxels and then down-sampled to obtain CT cubes with slice

separations of 1mm, 2mm, 5mm and 10mm. DRRs created from these CT

cubes from a view that is parallel to the CT cube’s slices, and from a view

that is perpendicular to the CT cube’s slices, are compared with PR. Such

DRRs are shown Figure 4.14 (view parallel to slices) and Figure 4.15 (view

perpendicular to slices). The components not under investigation are set to

their optimum values as shown in Table 4.6. The view of the DRR relative

to the CT slices not only has an effect on the image quality of the DRR,

but also on the speed of DRR generation. Table 4.7 shows the time needed

for DRR generation from CT data sets consisting of different numbers of

slices2.

2The hardware and software with which these times are calculated are stated in Ap-
pendix A.
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Figure 4.14: DRR generated from CT data with 1mm, 2mm, 5mm and 10mm
slices. DRRs generated with a view parallel to the CT image slices
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Figure 4.15: DRR generated from CT data with 1mm, 2mm, 5mm and 10mm
slices. DRRs generated with a view perpendicular to the CT image slices
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Figure 4.16: Mutual Information similarity curves.

Figure 4.16 shows the result of the investigation with the DRR view parallel

to the CT slices. It can be clearly seen that the accuracy of the curves

deteriorate significantly as the slice separation is increased from 1mm to

10mm. From the normalized curves on the right hand side, it is seen that

the steepness of the slopes of the curves also becomes smaller as the slice

separation is increased.

Figure 4.17 shows the result of the investigation with the DRR view per-

pendicular to the CT slices. These curves do not suffer from inaccuracies

as the curves for the parallel view do. From the normalized curves on the

right hand side, it is seen that the steepness of the slope is only significantly

smaller for the extreme 10mm slice separation case.

It is gathered from this investigation that it is very important that the

DRRs are always generated from CT data with the smallest available slice

thickness and separation. Although the effect is less serious when the DRRs

are generated with a view that is close to perpendicular to the slices, it

should be remembered that a patient treatment plan usually consists of

multiple treatment fields, some of which might require a DRR view that

would suffer from using CT data with thick slices.

This investigation also shows that down-sampling the CT data to increase

the speed of the DRR generation process is not a good idea because of the
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Figure 4.17: Mutual Information similarity curves.

severe decrease in accuracy. This is not surprising, since the experiments

conducted in Section 3.5.3 showed that the down-sampling of CT data causes

a decrease in DRR image quality.

When only CT data with thick slices are available, the CT data can be up-

sampled as discussed in Section 3.4.1. To investigate what the effect on the

objective function would be, the CT cube of the down-sample investigation

which consists of 5mm slices was up-sampled to obtain CT cubes consisting

of 3mm and 1mm slices. The similarity curves obtained by using these cubes

are shown in Figure 4.18.

By up-sampling the CT data the accuracy of the similarity curves are im-

proved. It can be seen that the accuracy of the up-sampled cube with 1mm

slices are comparable with the accuracy of the original cube with 1mm slices

in Figure 4.16.

The right hand side of Figure 4.18 shows that the slopes of the curves cre-

ated with the up-sampled CT cubes are also steeper than the one for the

cube with the 5mm slices.

It is gathered from this investigation that when the available CT data con-

sists of thick slices, the CT cube should be up-sampled to a smaller slice

thickness.
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Figure 4.18: Mutual Information similarity curves.

Table 4.8: Values of the components not under investigation.

DRR size XACC used XACC used Parameter varied
10242 yes yes δx

4.2.5 The effects of the PR

The aim of this investigation is to find out how the use of different simulated

PRs for PR influence the objective function. As stated at the beginning of

this section, there are four different simulated PRs. The 10242 pixel versions

of these simulated PRs (PR11024, PR21024, PR31024 and PR41024) will be

used to create the similarity curves. The components not under investigation

are set to their optimum values as shown in Table 4.8.

Figure 4.19 shows the MI curves for the investigation. The difference be-

tween the curves created using PR11024 and PR21024, and the difference

between the curves created using PR31024 and PR41024 is very small. The

difference between the PRs with different noise levels is more pronounced,

though the influence on the accuracy of the curves is still small. However,

from the figure on the right hand side can be seen that the impact of the

noise on the steepness of the slopes of the curves is very large.

Figure 4.20 shows the CC curves for the investigation. The same behaviour
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Figure 4.19: Mutual Information similarity curves.

as with the MI curves is noticed. The different FSS values do not have any

noticeable influence, and the different noise levels do not have any impact

on the accuracy of the curves. Unlike for the MI curves, the slopes of the

CC curves are not significantly affected by different noise levels.

These investigations shows that the noise levels of PR have an influence

on the objective function when using the MI measure, but not so much

when using the CC measure. The use of different FSS values has, however,

virtually no impact on the objective function. It should be remembered that

the noise levels of PR11024 and PR21024 are considered normal, while the

noise levels of PR31024 and PR41024 are an extreme case as stated in Section

4.1.2.

4.2.6 Conclusions from the investigations

From the investigations conducted it is clear that the components of the ob-

jective function can be selected in two ways to achieve a smooth, accurate

objective function. The one is to generate the DRR with 2562 pixels (using

the XACC and the BHCC) and interpolate it to 10242 pixels and compare

it with a 10242 pixel PR by using the MI similarity measure. As can be seen

in Figure 4.21 all the parameters of TDRR are within an accuracy of 0.3mm,

except for the out-of-plane translation δy. With this objective function, the
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Figure 4.20: Correlation Coefficient similarity curves.

minimization algorithm might therefore not be able to find the correct value

for δy. However, the evaluation of this objective function is very fast because

of the use of interpolated DRRs.

The second way is to generate the DRR (using the XACC and the BHCC)

with 10242 pixels and comparing it with a 10242 pixel PR by using the CC

similarity measure. As can be seen from Figure 4.22, this method yields

an objective function which is accurate for all six parameters of TDRR.

The downside of this method is the time it takes to evaluate the objective

function. The evaluation of the objective function for this method takes

almost five times longer than for the first method.

A summary of the components of the two objective functions and their

respective function evaluation times are given in the Table 4.9. The DRRs

of both methods are created using the XACC and BHCC. The function

evaluation times include the DRR generation time, the time it takes to

interpolate the DRR (if necessary) and the time it takes for the measure to

compare the two images. The simulated PRs are created beforehand, and

their computation time can therefore be omitted.
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Figure 4.21: Mutual Information similarity curves.

Table 4.9: Objective functions P1 and P2.

Objective function Measure DRR size PR size Evaluation time

P1 MI 2562 interpolated to 10242 10242 4.0561 seconds

P2 CC 10242 10242 14.5563 seconds
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Figure 4.22: Correlation Coefficient similarity curves.
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Since objective functions P1 and P2 are without local minima, local mini-

mization algorithms can be used to find their global minima. Since both the

MI and CC similarity measures returns a higher value for two images that

compare better, −M will be used when minimizing these objective functions

as discussed in Section 2.5. Therefore the objective functions becomes:

P1 (TDRR) = P2 (TDRR) = −M (PR,DRR (TDRR))

4.3 Minimization of the objective function

As stated in Section 2.5, five multi-dimensional minimization algorithms

based on the line search strategy were chosen to be implemented and inves-

tigated. This is therefore not an exhaustive investigation of all the available

minimization approaches, but an investigation of a few reasonable ones to

establish how well minimization solves the problem.

Of the five methods, two are non-gradient based methods. They are the

unit vector direction set method (UVDS) and Powell’s direction set (PDS)

method. The other three methods are gradient based. They are the steepest

descent (SD) method, the Fletcher-Reeves-Polak-Ribiere (FRPR) conjugate

gradient method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-

Newton method.

As discussed in Section 2.5, the line search strategy works by iteratively

calculating new points that yield a lower function value. Line search mini-

mization algorithms differ in the way that the direction n and the step size

λ are calculated that will take the algorithm to the next point.

The step size λ can be set to a fixed value calculated in some heuristic

way. Choosing a too small step size will leave the algorithm proceeding very

slowly to the minimum, while choosing a too large step size might let the

algorithm jump over the minimum.

While the BFGS algorithm calculates the step size explicitly, the accuracy

of this Newton step depends on the accuracy of the assumptions that the

algorithm makes, as will be explained later. The Newton step is therefore

not always the best option for λ, and a different value for λ can be used.
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Another way to calculate λ is to do a one-dimensional line minimization

along the direction n. Since λ is calculated automatically and accurately

in this way, it is the method that will be used for all the minimization

algorithms investigated.

As stated in Section 2.5 an initial point p0 is needed at which the minimiza-

tion is started. Since the current treatment position, given by Terr, is close

to the correct treatment position, given by TDRR = 0, the correct treatment

position is a good starting point. Therefore the initial point is always taken

to be p0 = 0.

4.3.1 Line minimization method

The one-dimensional paths through the parameter spaces of both objec-

tive functions P1 and P2 (as visualized by the similarity curves in Section

4.2) can be roughly approximated by parabolic functions. Therefore, one-

dimensional minimization based on fitting a parabolic function to the objec-

tive function values along the line that needs to be minimized, can be used.

Since the function values are close to parabolic the minimum of the line will

be close to the minimum of the parabolic function [41, Section 10.2].

To construct a parabolic function three points are needed along the line.

These points (pa, pb and pc) should be so that

pa < pb < pc and fpa > fpb and fpb < fpc, (4.6)

where fpa, fpb and fpc are the objective function values on the line at the

respective points.

Because of these restrictions on the three points, the position pmin of the

minimum of the parabola through these points is bound by pa and pc. After

calculating the minimum of the parabola, the three points are changed as

follows:

• If fpmin < fpb

– If pmin < pb
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∗ Set pa = pa

∗ Set pb = pmin

∗ Set pc = pb

– If pmin > pb

∗ Set pa = pb

∗ Set pb = pmin

∗ Set pc = pc

• If fpmin > fpb

– If pmin < pb

∗ Set pa = pmin

∗ Set pb = pb

∗ Set pc = pc

– If pmin > pb

∗ Set pa = pa

∗ Set pb = pb

∗ Set pc = pmin

For the new set of points, the distance Dac = pc − pa will be smaller than

for the previous set of points. This process of parabolic fitting is repeated

until Dac is smaller than a designated size.

The minimum of the parabola through the three points are given by

pmin = pb −
1
2

(pb − pa)
2 (fpb − fpc)− (pb − pc)

2 (fpb − fpa)
(pb − pa) (fpb − fpc)− (pb − pc) (fpb − fpa)

.

This formula only fails if the three points are collinear, in which case the

denominator becomes zero [41, Section 10.2]. This is prevented by the re-

strictions of (4.6). When Dac becomes very small, the fraction in the for-

mula becomes very large because the denominator becomes very close to

zero. Since the limit on the Dac is set to 0.1mm (which is large relative to

the machine’s floating point precision), any numerical misbehaviour of this
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kind is avoided. The value of 0.1mm for Dac is chosen based on the accuracy

results of the similarity curves of Section 4.2.6.

The calculation of the initial set of three points is done by the following

bounding algorithm:

1. Calculate the function value fp1 of the first point p1 (which is taken

as an input parameter)

2. Calculate the second point as p2 = p2 + α, where α is some positive

value. Also calculate its function value fp2

3. If fp1 < fp2

• Set pb = p1 and pc = p2

• Find a point p3 so that if p3 = p1−α−Cβ, then fp3 > fp1 where

β is some positive value and C is the smallest value form the set

{0, 1, 2 . . .}
• Set pa = p3

4. If fp1 > fp2

• Set pa = p1 and pb = p2

• Find a point p3 so that if p3 = p2 +α+Cβ, then fp3 > fp2 where

β is some positive value and C is the smallest value form the set

{0, 1, 2 . . .}
• Set pa = p3

5. If fp1 = fp2

• Increase α and restart the bounding algorithm

The smaller the initial value of Dac (resulting from the bounding algorithm)

is, the fewer iterations of parabolic fitting are required to get Dac within the

designated limit. Therefore the value of α should not be to large, so that

the initial Dac would be limited if the starting point is already close to the

minimum.
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The value of β should be chosen large enough so that it won’t take many

function evaluations to find a value of C that results in a valid p3 when the

starting point is far from the minimum.

From experimenting with the line minimization algorithm, it was found that

values of 1 and 5 for α and β resulted in the bounding algorithm using the

lowest number of function evaluations.

Since the bounding algorithm uses a variable amount of function evaluations

(depending on the position of the starting point relative to the minimum)

and the number of iterations of parabolic fitting also varies, the total number

of function evaluations required for one line minimization are not constant.

From experience with the line minimization algorithm it was found that the

number of function evaluations required for a line minimization ranges from

3 (for a starting point very close to the minimum) to about 15 (for a starting

point very far away from the minimum).

4.3.2 Calculating the gradient

The gradient based minimization algorithms must be able to calculate the

gradient of the objective function at any arbitrary point. Since the evalua-

tion of objective functions P1 and P2 are expensive, the very simple forward

difference method (see [41, Section 5.7]) that uses only one additional func-

tion evaluation is used to calculate the gradient at a certain point. The

forward difference method is based on the definition of the derivative which,

for a function of one variable y = f(x), is:

dy

dx
= lim

h→0

f(x + h)− f(x)
h

. (4.7)

The gradient of the objective function can then be calculated by calculating

the partial derivatives for each of the six parameters of TDRR [42, Section
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9.4]. Therefore the gradient of the objective function P is given by

∇P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P
∂x
∂P
∂y
∂P
∂z
∂P
∂θ
∂P
∂φ
∂P
∂ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The size of h has a big influence on the accuracy of the gradient. According

to (4.7) the smaller the size chosen for h, the more accurate the gradient

will be.

An investigation into the smoothness of objective functions P1 and P2 was

done by recording the values along a path through each of the objective

functions. This path went through the point p = 0 and in the δx direction,

which is the direction for which the partial derivative ∂x
∂P is calculated. The

distance between two points in the path was chosen to be a very small

0.001mm.

Although the values for P1 and P2 along these paths result in seemingly

smooth curves (as was the case for Figures 4.21 and 4.22), a zoomed-in view

of the finely sampled paths show that, due to the discrete nature of the

problem (discrete voxel sizes and pixel sizes), the objective functions are

not completely smooth. Figure 4.23 shows the values of P1 along the path,

as well as two zoomed-in parts of P – one away from the minimum point

and one at the minimum point.

Figure 4.24 shows the numerical derivatives of P1 along the path for values

for h of 0.001mm, 0.01mm, 0.1mm and 0.5mm. By choosing a bigger value

for h the noise on the derivative can be averaged out but, according to (4.7),

the less accurate the approximation of the gradient will be. Figure 4.24 also

shows (in red) the derivative of a smooth function that was fitted to the

noisy objective function values. It can be seen that the smooth derivative

is best approximated when the value of h is 0.1mm. This was also the case

for the objective function P2.

The value for h is highly dependent on the smoothness of the objective

function, which is influenced by the CT data from which the DRRs are
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Figure 4.23: Function values of P along the δx direction.

generated, as well as the PR image quality. Therefore the value of h will

not necessarily be the same for different CT data sets of different patients

and different PR acquisition parameters.

The calculation of the derivative requires an additional function evaluation

for each of the six parameters of TDRR.

4.3.3 Unit vector direction set (UVDS) method

This method sets the N dimensional direction vector n in which the line

minimization is to be done to each of the unit vectors e1, e2,...,eN in turn.

Hence, the objective function will be minimized along the δx translation

direction, then along the δy translation direction and so forth for all the

translation directions and rotation directions up to the δρ rotation direction.

The process of minimizing over the whole set of unit vectors is repeated until

some stopping criteria are met.

This method for setting n is very simple, but performs very well if the func-

tion behaves properly. According to [41, Section 10.2] this method does not

perform well when a function of N dimensions has directions whose second

derivatives are much larger in magnitude than some of the other directions.

If this is the case, many cycles through all N unit vectors will be required

in order to get anywhere.

As can be seen from Figure 4.21, when disregarding the out-of-plane trans-

lation δy, all the other directions for P1 are of a very similar form. The
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Figure 4.24: Derivatives of the function values for different values of h.

objective function P1 is therefore well behaved in terms of the requirements

for this method when the out-of-plane translation δy is omitted and the unit

vectors e1, e2,...,e5 are used.

Figure 4.22 shows that all the parameters of P2 are of a similar form, and

therefore the UVDS method can also be used for this objective function by

using the unit vectors e1, e2,...,e6.

To demonstrate the UVDS method’s performance, a simulated PR of 10242

pixels was created by using (4.5) with a simulated error in patient position
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of

Tsimulated =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δx

δy

δz

δθ

δφ

δρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.32mm

4.50mm

4.67mm

4.12◦

4.89◦

4.23◦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The value of σnoise was set to 0.0282, and the value of FSS used to construct

KFS to 1.5mm.

The method was first used to find the minimum of objective function P1

while including the out-of-plane translation δy. The algorithm was started

at p0 = 0 and n was set to take on each of the unit vectors e1, e2,...,e6 in

turn.

The Euclidian distance between two points (E =
√

(pk − pk−1)2) is recorded

for each new point calculated by the algorithm. These distances are accumu-

lated for every cycle of the whole set of directions, so that the total distance

moved by the algorithm at the end of each whole set is known. If the total

distance is below a certain limit the algorithm is assumed to have stabilized,

and hence this is used as the stopping criteria for the algorithm. The limit

of the total distance was set to 0.1.

Figure 4.25 shows the results of the minimization process. The left hand col-

umn of the figure shows how the value of each of the six parameters of TDRR

started from the initial value of 0 and progressed to the final value (which

is indicated in the title of each subplot). The right hand column shows how

the function value, the difference between the current and previous func-

tion values, the total error (which will be explained shortly), the Euclidian

distance moved during the last iteration and the Euclidian distance moved

during the last 5 iterations changed as the algorithm progressed. The title

of the subplot at the top of the right hand column indicates the final func-

tion value, as well as the total number of function evaluations and the total

number of line minimizations used.

The total error is calculated as the Euclidian distance between the current
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Figure 4.25: Unit vector direction set minimization of P1 with out-of-plane
translation included against number of line minimizations

position and the true simulated error:

Total error =
√

(pcurrent −Tsimulated)2. (4.8)

The total error is not known during the verification process, since the true

error in patient position is not known. By using a known simulated error, the

accuracy of the minimization process can be measured. If all the parameters

of TDRR contribute equally to the total error, then the total error is given

by Table 4.10. Since the out-of-plane translation are omitted in some cases,

the corresponding total error is also given.

The total error that an algorithm ends with can be compared with Table

4.10 to measure how accurate the algorithm is, e.g. if the algorithm ends

with a total error of 1.5 and δy were included, the average error in each

direction is between 0.5mm (and 0.5◦) and 1mm (and 1◦). Although the

chances are slim, it could happen that the error is purely in one direction,

in which case it is 1.5mm (and 1.5◦). The total error can therefore also be

seen as the upper-bound of the error in any single direction.
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Error in each Total error with Total error with
direction δy included δy excluded

1mm (and 1◦) 2.449 2.236

0.5mm (and 0.5◦) 1.225 1.118

0.25mm (and 0.25◦) 0.612 0.559

Table 4.10: Total error for equal error in each direction

The UVDS algorithm stopped when the total distance had a value of 0.05258

which is below 0.1. It can be seen how each of the parameters of TDRR

changed and stabilized as the number of line minimizations increased. The

algorithm took 201 evaluations of P1 to stabilize at a point where the total

error is a very high 7.6153. This can be mainly attributed to the out-of-

plane translation δy which, at a value of 12.0853mm, is 7.5853mm from the

correct value of 4.50mm. This is not surprising since in Section 4.2.6 it was

observed that it might not be possible to find δy when using P1.

The 201 function evaluations in 42 line minimizations give an average of

4.7 function evaluations per line minimization. The time it takes to do 201

function evaluations of P1 is 815.28 seconds or 13.6 minutes.

Figure 4.26 shows the results of minimizing P1 when disregarding the out-

of-plane translation δy. The unit vector set e1, e2,...,e5 was used. The

algorithm stopped when the total distance moved during a whole set was

0.056145, which is below the limit of 0.1.

It took the algorithm 151 iterations through 30 line minimizations to reach

the minimum value of -143.8747. This results in an average of 5 function

evaluations per line minimization and a total time of 612.47 seconds or 10.2

minutes. It can be seen that the translation and rotation parameters have

all stabilized at values which is very close to the simulated error values when

the algorithm finished.

The minimum point calculated by the algorithm results in a total error of

only 0.35807. According to Table 4.10 this translates to an average error of

below 0.25mm (and 0.25◦) in each direction.

The performance of the UVDS method was also measured when using the

objective function P2. Figure 4.27 shows the results. From the discussion
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Figure 4.26: Unit vector direction set minimization of P1 with out-of-plane
translation excluded against number of line minimizations

in Section 4.2.6 it was believed that when using P2 it might be possible to

achieve much better accuracy than with P1, especially with regard to δy.

The limit on the total distance moved during a whole set was therefore set to

0.01 in comparison with the 0.1 used for P1. The algorithm stopped when

the total distance was 0.004575, at which point the total error was 1.2512.

This is much better than the 7.6153 for P1 and results in an average error in

each direction of just over 0.5mm (and 0.5◦) according to Table 4.10. How-

ever, it took the algorithm 797 function evaluations in 90 line minimizations

(an average of 8.9 function evaluations per line minimization) and over 3.2

hours. It can be reasoned that the stopping criteria were too strict, but

even if the algorithm were stopped at a total distance of 0.1 (at about 40

line-minimizations) it would have taken about 360 function evaluations and

over an hour.

The performance when using P2 when disregarding δy was also investi-

gated. The algorithm was stopped when the total distance was 0.08547

which is below 0.1. At this stage the total error was 0.38295, which is very
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Figure 4.27: Unit vector direction set minimization of P2 with out-of-plane
translation included against number of line minimizations

comparable with the value of 0.35807 when using P1 and disregarding δy.

The algorithm took 203 function evaluations in 49 line minimizations (an

average of 4.14 per line minimization) and 49.2 minutes.

Since there are no improvement in accuracy when using P2 over P1 when

disregarding δy, and the improvement in accuracy of using P2 when includ-

ing δy comes at a very high cost in computation time, the use of P2 is not

practical.

4.3.4 Powell’s direction set (PDS) method

For functions that are not well-behaved (e.g. functions that have long nar-

row valleys), a better set of directions is needed than the unit vectors. A

set of directions is needed where minimization along the one direction is

not “spoiled” by a minimization along a subsequent direction. Such “non-

interfering” directions are conventionally called conjugate directions. Powell
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first discovered a direction set method that produces N mutually conjugate

directions [41, Section 10.5]. The algorithm is as follows:

1. Initialize the set of directions ni to the unit vectors:

ni = ei i = 1, . . . , N

2. Now repeat the following basic procedure until the stopping criteria

are met:

• Save starting position p0

• For i = 1, . . . , N , minimize pi−1 along ni to get pi

• For i = 1, . . . , N − 1, set ni ← ni+1

• Set nN ← pN−p0

• Minimize from pN along nN to get new p0

The problem with this algorithm is that, because at each iteration of the

basic procedure n1 is replaced with pN−p0, it tends to produce directions

that are linearly dependent. This results in the algorithm finding a minimum

in only a subspace of the N-dimensional space. This problem is fixed by

resetting the set of directions to the unit vectors after every N iterations of

the basic procedure.

To demonstrate the PDS method’s performance, the same simulated PR was

used as in the previous section with the UVDS method. Since the previous

section showed that using the objective function P2 is not practical, the

performance of Powell’s method was only investigated for P1 and while

excluding the out-of-plane translation δy.

From experience with Powell’s method it was found that the limit on the

total distance moved during a whole basic procedure should be set to 0.005.

Figure 4.28 shows the results for the minimization. The algorithm was

stopped when the total distance became 0.00346. The algorithm took 266

function evaluations in 60 line minimizations (an average of 4.4 evaluations

per line minimization) and 17.98 minutes. At this point the algorithm had
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Figure 4.28: PDS minimization of P1 with out-of-plane translation excluded
against number of line minimizations

a total error of 1.9975, which is much bigger than the 0.35807 of the UVDS

method. According to Table 4.10 this total error results in an average error

in each direction of between 0.5mm (and 0.5◦) and 1mm (and 1◦). It can

be seen from Figure 4.28 that for the PDS method multiple parameters of

TDRR are changed during each line minimization, while for the unit vector

method (see Figure 4.26) a single parameter is changed at a time. It is

interesting to note how the algorithm started improving after about 30 line

minimizations. This is when the set of directions were reset to the unit

vector set.

The reason why the PDS method does not performs as well as the UVDS

method is because of the linear dependency problem. As seen from the

improvement after the resetting of the directions, the unit vector set is a

very good set of directions for this problem. That is the reason why the

UVDS performs so well. For objective functions that do not behave as well,

the PDS method might outperform the UVDS method.
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4.3.5 Steepest descent (SD) method

This method, together with the following two methods, are gradient based

minimization methods. The idea behind these methods is that the gradient

information can be used to reach the minima of the objective function with

fewer line minimizations. The SD method uses the gradient ∇P of the

objective function P directly to find the minimum of P [41, Section 10.6].

The algorithm is as follows:

1. Start at some initial point p0

2. Move from the current point pi to a new point pi+1 by minimizing

along the local downhill gradient −∇P (pi)

3. Repeat the step above until the stopping criteria are met.

The problem with the SD method is the same as for the UVDS method, i.e.

it performs very poorly when the objective function has long narrow valleys

or is ill-behaved in a similar way.

Figure 4.29 shows the minimization of the objective function P1 while ex-

cluding δy. The stopping criteria for the SD method is that the total distance

moved during the last three iterations of step 2 be less than 0.005.

The algorithm was stopped when the total distance became 0.00475. It took

the algorithm 141 function evaluations in 14 line minimizations (an average

of 10.1 evaluations per line minimization) and 9.53 minutes to reach this

point. The total error at this point is 0.21223, which is the lowest total

error of the methods so far and results in an average error in each direction

of less than 0.25mm (and 0.25◦).

The 14 line minimizations used by the SD method is less than half the

30 used by the UVDS method. From this it is gathered that the gradient

information indeed helps the algorithm to find the minimum in fewer line

minimizations. The fact that the total number of 141 function evaluations

used is only slightly less than the 151 function evaluations of the UVDS

method is due to the extra five function evaluations needed to calculate the

gradient for each line minimization.
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Figure 4.29: SD minimization.

4.3.6 FRPR conjugate gradient method

To overcome the problems of the SD gradient based method, the direction

proceeded in from a new point should not be down the new gradient, but

in a direction that is conjugate to the old gradient, and insofar possible,

conjugate to all the previous directions followed [41, Section 10.6]. Such

methods are called conjugate gradient methods.

The conjugate gradient method by Fletcher and Reeves is based on the

notion that the objective function P at the point p is roughly approximated

as the quadratic form

f(x) ≈ c − bT · x +
1
2

xT ·A · x (4.9)

where

c ≡ f(p) b ≡ −∇f
∣∣
p

[A]ij ≡
∂2f

∂xi∂xj

∣∣∣∣
p

. (4.10)
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The gradient of this function is

∇f = A · x− b (4.11)

and the change in the gradient ∇f when moving in some direction is

δ(∇f) = A · (δx). (4.12)

The condition that a new direction ni must hold in order not to “spoil” the

minimization along the previous direction ni−1, is that the change in gradi-

ent be perpendicular to the previous direction [41, Section 10.6]. Therefore

0 = ni−1 · δ(∇f) = nT
i−1 ·A · ni. (4.13)

The conjugate gradient method constructs two sequences of vectors by start-

ing with an arbitrary initial vector g0 (and letting h0 = g0) and then using

the recurrence

gi+1 = gi− λiA ·hi hi+1 = gi+1− γihi for i = 0, 1, 2, . . . (4.14)

These vectors satisfy the orthogonality and conjugacy conditions

gT
i · gj = 0 hT

i ·A · hj = 0 gT
i · hj = 0 j < i (4.15)

The scalars λi and γi are given by

λi =
gT

i · gi

hT
i ·A · hi

=
gT

i · hi

hT
i ·A · hi

(4.16)

γi =
gT

i+1 · gi+1

gT
i · gi

(4.17)

As stated in [41, Section 10.6], a self-contained derivation of these equations

is given in [43].

If the Hessian matrix A was known, then (4.14) could have been used to

find successively conjugate directions hi along which to line minimize. Since

the Hessian matrix A is not known, another way must be found to generate

the vectors gi and hi. A theorem to achieve this from [41, Section 10.6] is

now presented:
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Figure 4.30: FRPR minimization.

If the gradient of the function f can be calculated so that gi = ∇f(pi) for

some point pi, and f (which is a quadratic form) is minimized along the

direction hi to obtain a new point pi+1, then the vector gi+1 = ∇f(pi+1) is

the same vector as would have been constructed by (4.14).

In this way a sequence of vectors gi and hi can be generated without the

knowledge of A. The initial vectors g0 and h0 are set to be the downhill

gradient at p0.

The Polak-Ribiere variant of this algorithm introduces one tiny change in

the Fletcher-Reeves algorithm by using

γi =
(gi+1 − gi)T · gi+1

gT
i · gi

(4.18)

instead of (4.17). This change is believed to help the algorithm when the

function is not exactly a quadratic form by resetting h to the local gradient

when the algorithm runs out of steam [41, Section 10.6].



Chapter 4. Image Registration 123

Figure 4.30 shows the minimization of P1 (while excluding δy) using the

FRPR algorithm. The stopping criteria for the FRPR method is that the

total distance moved during the last three iterations be less than 0.005.

The algorithm stopped after 194 function evaluations (using an average of

9.7 evaluations in 20 line minimizations in 13.11 minutes) at which point

the total distance was 0.00359. The total error was 0.35639, which is higher

than the 0.21223 of the SD method but comparable to the 0.35807 of the

UVDS method. While using less line minimizations than the UVDS method,

the total number of function evaluation are higher because of the extra

evaluations required to calculate the gradient.

4.3.7 BFGS quasi-Newton method

The basic idea behind the quasi-Newton method, also called the variable

metric method, is to build up a good approximation to the inverse Hes-

sian matrix [41, Section 10.7]. Hence, a sequence of matrices Hi will be

constructed with the property

lim
i→∞

Hi = A−1 (4.19)

Near the current point xi, the function is given to the second order by

f(x) = f(xi) + (x− xi)T ·∇f(xi) +
1
2
(x− xi)T ·A · (x− xi) (4.20)

of which the gradient is

∇f(x) = ∇f(xi) + A · (x− xi). (4.21)

According to Newton’s method, the function will have a minimum at ∇f(x) =

0, and thus the next iteration point can be calculated as

x− xi = −A−1 ·∇f(xi) (4.22)

The left hand side is the finite Newton step that will take the algorithm to

the exact minimum of the function when it is in quadratic form. This step

is known once an accurate estimate of the Hessian is accumulated, i.e. H ≈
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A−1.

The BGFS method as taken from [41] for updating H is

Hi+1 = Hi +
(xi+1 − xi) · (xi+1 − xi)T

(xi+1 − xi)T · (∇fi+1 −∇fi)
−

[Hi · (∇fi+1 −∇fi)] · [Hi · (∇fi+1 −∇fi)]
T

(∇fi+1 −∇fi)T ·Hi · (∇fi+1 −∇fi)
+

[
(∇fi+1 −∇fi)T ·Hi · (∇fi+1 −∇fi)

]
u · uT . (4.23)

The vector u is defined as

u ≡ (xi+1 − xi)
(xi+1 − xi)T · (∇fi+1 −∇fi)

−
Hi · (∇fi+1 −∇fi)

(∇fi+1 −∇fi)T ·Hi · (∇fi+1 −∇fi)
. (4.24)

The algorithm is started with H as the N ×N identity matrix.

As stated when the calculation of λ was discussed in the beginning of this

section, taking the full Newton step will not always result in a lower function

value, e.g. when a too large step makes the quadratic approximation invalid.

For this reason the new point is calculated by doing a line-minimization along

the Newton direction.

Figure 4.31 shows the minimization of P1 (while excluding δy) using the

BFGS method. The stopping criteria for the BFGS method is that the total

distance moved during the last three iterations be less than 0.05.

The algorithm stopped after 204 function evaluations (an average of 9.7

evaluations in 21 line minimizations) and 13.79 minutes. The total error of

0.30136 is comparable with the total error of the SD and UVDS methods,

while its total number of 204 function evaluations is higher than the 151 and

194 of the other two methods.

Table 4.11 gives a summary of the performance of each of the five meth-

ods using the simulated PR of Section 4.3.3. The table shows that the SD

method using P1 performed the best of the five minimization methods. Not

only has it the lowest total error of only 0.21223, but it also used the lowest
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Figure 4.31: BFGS minimization.

number of function evaluations and therefore the least time.

The results showed in Table 4.11 depends on the particular simulated PR

used, and does not say anything about the performance of the five mini-

mization methods in general. It could be that for different simulated errors

and different reference positions the methods perform differently. The in-

vestigation into the general performance of the methods is done in the next

chapter.

Method P δy Total P Line Ave evals Time
used error evals mins per line min used

UVDS P1 yes 7.6153 201 42 4.8 13.58 mins

UVDS P1 no 0.35807 151 30 5.0 10.21 mins

UVDS P2 yes 1.2512 797 90 8.86 193.36 mins

UVDS P2 no 0.38295 203 49 4.14 49.2 mins

PDS P1 no 1.9975 266 60 4.4 17.98 mins

SD P1 no 0.21223 141 14 10.1 9.53 mins

FRPR P1 no 0.35639 194 20 9.7 13.11 mins

BFGS P1 no 0.30136 204 21 9.7 13.79 mins

Table 4.11: Performance of the five minimization methods



Chapter 5

Experiments and Results

In this chapter a number of experiments are conducted to measure the per-

formance of the minimization methods. Table 4.11 in the previous chapter

showed that the UVDS, the SD, the FRPR and the BFGS methods were all

able to find the minimum of the objective function P1 (when disregarding

δy), and that the total error of each of these methods results in an average

error in each direction of below 0.25mm (and 0.25◦) for the particular sim-

ulated PR used.

In Section 5.1 the general performance of the five minimization methods

are measured by repeating the minimization process for many different sim-

ulated PRs. As will be seen from the results of these measurements, the

UVDS is the only method that provides reliable results. In Section 5.2 the

performance of the UVDS method for different reference positions is inves-

tigated.

Recently, the new DPRS developed for use by iThemba LABS’s new patient

positioning system was used to take PRs of a skull phantom. In Section

5.3 the performance of the UVDS method when using these real PRs is

measured.

126
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5.1 General performance of the five minimization
methods

To investigate the general performance of the five minimization methods,

all the methods were used to minimize P1 (while excluding the out-of-plane

translation δy) constructed with 50 different simulated PRs. These PRs were

all generated from the same CT data and with the same reference position,

but with different simulated errors. The parameters of Tsimulated were set

to random numbers from the range -5mm to 5mm (for the translation pa-

rameters) and -5◦ to 5◦ (for the rotation parameters).

The starting point p0 for every method and all the simulated PRs was 0. A

limit of 200 was set on the number of function evaluations that each method

could use. This was done to limit the total time needed to conduct the

experiment.

Figure 5.1 shows the result of the experiment. Each row of the figure shows

the results for a specific method. For each method, the total error, function

evaluations, line minimizations and time used (in seconds) are plotted for

each of the 50 different simulated PRs. The average over all of the 50 values

for each plot is stated in the title of each plot. A summary of the results is

also given in Table 5.1. While the SD method performed the best for the

particular simulated PR used in Section 4.3, its performance in general is

not that good. It shows an average total error of 1.0119 with a maximum

total error of almost 4. From the 50 simulated PRs, 16 has a total error of

over the accuracy-limit of 1. The accuracy-limit is chosen as 1 to identify

the misregistration of a PR as described in Section 2.7.3.

The FRPR and BFGS performed similarly. While the average total error of

0.54795 of the BFGS method is a bit better than the 0.71768 of the FRPR

method, it also takes about 50 more function evaluations on average. The

FRPR method could not register 5 of the 50 PRs and the BFGS 2 of the 50

PRs. The standard deviation in the total error of the two methods (0.339

for the FRPR and 0.231 for the BFGS) are also relatively close. This can

also be seen from the plots of their total error values in Figure 5.1, which

shows that the values of each plot reside, except for the couple of outliers,
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in a band of roughly the same size.

The PDS method, as was the case with the minimization of the Section 4.3,

performed the worst with an average total error of 1.3817 and 28 misreg-

istrations. It shows a large standard deviation in its total error, which is

clearly seen from the plot in Figure 5.1, which shows that most of its total

error values reside between 0 and 3.

The UVDS method performed very well with all the 50 simulated PRs, and

showed no misregistrations. It showed a very good average total error of

0.38652 with a standard deviation of only 0.070, and it can be seen in the

plot of Figure 5.1 that the values reside in the very narrow band of 0.2 to

0.6. The maximum total error for a PR is only 0.5672 and the minimum

0.23941. While the accuracy of the UVDS is better than any of the other

methods, the average time of 5.73 minutes needed to do a minimization is

also the lowest of all the methods.

It is therefore concluded that the UVDS method is not only the

most accurate minimization method for registering the simulated

PRs, but also the fastest.

It is interesting to note that the average function evaluations per line min-

imization for the three gradient based methods (9.89, 9.97 and 9.55) are

all higher than that for the non-gradient based methods (4.80 and 4.33) by

about 5 evaluations. This is the 5 extra function evaluations required to

calculate the gradient for each line minimization. This is also the reason

why the gradient based methods use more function evaluations than the

non-gradient based UVDS method despite the fact that they use fewer line

minimizations.

5.2 Performance of the UVDS method with dif-
ferent reference positions

The previous section concluded that the UVDS method performs the best

of the five minimizations methods when using simulated PRs that had 50

randomly different simulated errors around a specific reference position. To
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Figure 5.1: Total error, function evaluations, line minimizations and time
required for the 50 different simulated PRs when using the five minimization
methods.

find out if this good performance does not depend on the particular reference

position, the UVDS was used to register 10 simulated PRs with randomly

different simulated errors (in the ranges of -5mm to 5mm and -5◦ to 5◦)

around 11 different reference positions. Figure 5.2 shows the 11 different

reference positions used. The PRs were once again used to construct the

objective function P1 (while excluding the out-of-plane translation δy).

A summary of the results is given in Table 5.2. The average total error for all

the reference positions are very close to each other, and while the maximum
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Table 5.1: General performance of the minimization methods.

Method Statistic Total P Line Ave evals Time Total
error evals mins per line min (minutes) error > 1

UVDS Mean 0.38652 96.38 20.1 4.806 5.7328 0

Std dev 0.070001 17.2353 3.57 0.28281 1.0408

Max 0.5672 135 25 5.4667 8.069

Min 0.23941 49 10 4.25 2.8871

PDS Mean 1.3817 120.52 28.04 4.3341 7.2282 28

Std dev 0.92553 40.2367 10.0223 0.31519 2.462

Max 4.4754 203 54 5.3889 12.5344

Min 0.31694 72 18 3.7037 4.2593

SD Mean 1.0119 96.38 10.36 9.8996 5.9814 16

Std dev 0.62266 26.5986 2.8554 0.40078 1.5784

Max 3.9759 159 16 10.875 9.2893

Min 0.39676 58 6 9.1667 3.4171

FRPR Mean 0.71768 127.06 12.76 9.9714 7.4545 5

Std dev 0.33922 24.6861 2.5759 0.38215 1.4948

Max 2.2396 192 21 10.8667 11.3711

Min 0.20019 80 8 9.0769 4.6843

BFGS Mean 0.54794 177.5 18.66 9.5582 10.399 2

Std dev 0.23185 28.6037 3.3843 0.43644 1.6991

Max 1.7527 209 23 10.5 12.9616

Min 0.2525 105 10 8.5625 6.0719

average total error of 0.41989 is for reference position 9 the average total

error over all 110 values is 0.37252. This value is very similar to the 0.38652

for the experiment in the previous section, and the standard deviation of

0.08703 is also very similar to the 0.070001. The maximum total error over

all the PRs is 0.61542 and occurred for reference position 4.

The average number of function evaluations needed for a reference position

varied from 96 for reference position 6 to 132.4 for reference position 3. It

is difficult to link this difference to the images of the two reference positions

in Figure 5.2. The average number of function evaluations needed over all

110 PRs is 111.84, which translates to about 7.5 minutes.

This experiment shows that the UVDS method performs as well for other

reference positions as for the reference position used in Section 5.1. The

accuracy of the method and the number of function evaluations needed

to complete the minimization process are not profoundly affected by using

different reference positions, and there were no misregistrations for the whole
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set of 110 PRs.

Ref pos 1 Ref pos 2 Ref pos 3

Ref pos 4 Ref pos 5 Ref pos 6

Ref pos 7 Ref pos 8 Ref pos 9

Ref pos 10 Ref pos 11

Figure 5.2: Different reference positions.
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Table 5.2: Performance of UVDS with different reference positions.

Reference Total error Total error Total error Total error Total Evals
position mean std. dev. max min error > 1 mean

Ref pos 1 0.38219 0.069404 0.519 0.27425 0 122.1

Ref pos 2 0.40223 0.08865 0.57528 0.29022 0 106

Ref pos 3 0.3781 0.12299 0.50491 0.14451 0 132.4

Ref pos 4 0.40346 0.10811 0.61542 0.27851 0 112.8

Ref pos 5 0.35226 0.064707 0.48691 0.27893 0 112.5

Ref pos 6 0.33868 0.081119 0.49917 0.21752 0 96

Ref pos 7 0.36085 0.059342 0.45122 0.23586 0 114.3

Ref pos 8 0.35783 0.07369 0.50222 0.25852 0 109.8

Ref pos 9 0.41989 0.056109 0.52822 0.33967 0 107.2

Ref pos 10 0.34547 0.073194 0.46479 0.26331 0 104.6

Ref pos 11 0.35671 0.127 0.57401 0.17014 0 112.6

Total 0.37252 0.08703 0.61542 0.14451 0 111.8455

5.3 Performance of the UVDS method with real
PRs

It was recently possible to acquire real PRs with the new DPRS to be used by

iThemba LABS. This gave the opportunity to investigate how the methods

developed in this thesis perform when using real data.

PRs were taken of a human skull phantom, which consists of a skull that is

set in foam inside a perspex cube. The DPRS was set up in one of Ithemba

LABS’s treatment rooms with the X-ray tube and detector system in the

beam line to get a setup as illustrated in Figure 5.3 (which shows a top view

of the setup).

The treatment room is equipped with positioning lasers that indicates the

treatment room isocenter. The cube containing the skull was placed on the

treatment chair, and positioned with the aid of the lasers so that the center of

the cube would be as close as possible to the treatment room isocenter. The

sides of the cube were marked to correspond with the sides of the skull, i.e.

right, left, posterior and anterior. The cube was positioned perpendicular

to the central beam axis and with its right side facing the beam as shown

in Figure 5.3. By positioning the cube in this way, the position of the skull

is known to a certain degree.
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Scintillation Screen
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2112mm 398mm
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x

z

Figure 5.3: Top view of the setup for the skull phantom cube. The x-, y-
and z axes along which the cube is moved are also shown. The z axis comes
vertically out of the page.

The deviation between the current position of the cube from the ideal posi-

tion is given by the transformation

Terror = pideal − pcurrent

where pcurrent is the current position and the ideal position is given by

pideal = 0.

As stated in Section 1.3, the transformation Terror can be estimated by

the process of image registration. This is done by minimizing the objective

function

P (TDRR) = −M (PRref ,DRR (TDRR)) (5.1)

where PRref is the reference PR taken of the cube in the current position.

The value of TDRR for which P is at a minimum is an approximation of the

error transformation:

TDRR ≈ Terror.

The accuracy of the image registration process can be measured by Terror−
TDRR, or quantified (as was done in with the minimizations using simulated
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PRs) by taking the Euclidian distance:

Total error =
√

(Terror −TDRR)2

Because the true value of pcurrent and therefore also Terror is unknown, the

accuracy of the image registration process can not be measured in this way.

To get some measurement of the accuracy of the image registration process,

it was decided to measure a relative change in position. This is possible

because the treatment chair can be used to alter the position of the cube

very accurately along the x-, y- and z translation axes and the θ rotation

axis. Unfortunately, as stated in Section 1.1.1, the movement of the current

treatment chair is limited and the cube can not be rotated around the φ-

and ρ rotation axes with the setup used.

Five additional PRs were taken by first translating the cube by 5mm along

each translation axis and 5◦ around the rotation axis, and then by simulta-

neously translating and rotating the cube along and around all the axes. A

sixth PR was taken without the out-of-plane translation y. This was done

because the results of Section 4.3 proved that it is very difficult to register

the out-of-plane translation y. As stated in Section 2.3, translations and

rotations of 5mm and 5◦ are extreme deviations, and in practice they are

expected to be smaller. The five PRs and their corresponding positions are:

• PRδx corresponding to pδx
= pideal + [δx 0 0 0 0 0]

• PRδy corresponding to pδy
= pideal + [0 δy 0 0 0 0]

• PRδz corresponding to pδz
= pideal + [0 0 δz 0 0 0]

• PRδθ
corresponding to pδθ

= pideal + [0 0 0 δθ 0 0]

• PRδall
corresponding to pδall

= pideal + [δx δy δz δθ 0 0]

• PRδall−no−y
corresponding to pδall−no−y

= pideal + [δx 0 δz δθ 0 0]

All the PRs were acquired with an X-ray tube voltage of 90kV and an

exposure of 25mAs. There was no binning of the CCD-camera’s pixels, and

the PRs therefore consisted of 10242 pixels. Because the facilities haven’t
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been developed yet, no flat field, bias field or dark field subtractions were

done and only the raw intensity values obtained from the camera were used

for the PR. Also, no correction for radial lens distortions was made.

The distances between the X-ray source and treatment room isocenter, and

the treatment room isocenter and the scintillation screen were measured

to be 2112mm and 398mm respectively as shown in Figure 5.3. It should

be noted that the distance between the X-ray source and treatment room

isocenter is not very accurate. This is because the distance to the exact

location of the X-ray focal spot was not measured.

The DRRs to be used during the image registration process are generated

from the CT data of the skull phantom. The CT data was acquired using a

newly installed Philips Brilliance Big Bore CT scanner at iThemba LABS.

A summary of the CT data is given in Table 5.3.

This CT data set is huge in comparison with the CT data set used for

creating the DRRs used in all the previous investigations (a summary of

which is given in Table 4.1). The filesize of this data set is also a very large

365MB (megabytes) in comparison with the 8.5MB of the smaller data set.

The large size of the data set makes loading it and generating DRRs from

it computationally very expensive.

A more manageable data set was created by downsampling each of the 309

CT image slices from 10242- to 5122 pixels by using linear interpolation as

described in Section 3.4.1.

No calibration data has yet been available for the new CT scanner, and

therefore no XACC or BHCC are available for use with the CT data of

the skull phantom. The DRRs are generated with 2562 pixels and then

interpolated to 10242 before they are compared with the 10242 pixel PRs

with the MI similarity measure.

The position pcurrent was estimated by minimizing the objective function P

given in (5.1) using the UVDS method. Because nothing was known about

the robustness of the UVDS method when using real PRs, the objective

function was minimized a number of times. For each of these minimizations

the six parameters of the starting point of the UVDS algorithm were chosen

to be a random numbers from the range -5mm to 5mm (for the translation
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Table 5.3: Summary of CT data.

Field-of-view size 369.00mm×369.00mm×309mm
CT slice dimensions 1024×1024
CT slice pixel size 0.360mm2

Number of slices 309
Slice separation 1mm
Slice thickness 1mm

parameters) and -5◦ to -5◦ (for the rotation parameters).

Figure 5.4 shows the results of the minimization process repeated ten times.

The six sub-plots show the ten final values of each of the six components of

pcurrent after the minimizations. It can be seen that all the minimizations

(each of them started from a different point) stabilized at final positions

which are very close to each other, which means that the UVDS method

performs very consistently with the real PRs. The standard deviation of

δx, δz, δθ, δφ and δρ are very low, and the standard deviation of 1.5196 is

acceptable for the out-of-plane translation δy.

The value of each of the components of pcurrent is set to the average of their

ten estimated values. The current position is used as the reference posi-

tion when measuring the relative change in position. Hence, the reference

position is given by

preference = pcurrent =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3.1776

17.5708

−0.0047

−0.0238

−0.1141

−1.0022

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)

The value of 17.5708mm for δy is much higher than the other components of

pcurrent. This is because of the inaccurate measurement of the the distance

between the X-ray focal spot and the treatment room isocenter. A more

accurate value for this distance would therefore seem to be about 2130mm.

Since only relative changes in the cube’s position are important during the
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Figure 5.4: Results of repeated minimization. The final values for each
component of pcurrent are very consistent with low standard deviations.

experiments, this high value for δy does not have any effect.

To measure the relative change in position, the positions of each of the ad-

ditional six PRs were estimated by exchanging PRref in turn with PRδx ,

PRδy , PRδz , PRδθ
, PRδall

and PRδall−no−y
in (5.1) and then minimizing P .

Table 5.4 shows the results of the minimizations. The estimations of pδx ,

pδy , pδz , pδrot, pδall
and pδall−no−y

which correspond to the positions of the

six additional PRs are given. The estimated relative change in position,

calculated as the difference between the estimated position and the posi-

tion of the reference PR is also given, with the particular component(s)

under investigation in bold. The total error is calculated as the Euclidian

distance between the estimated relative change in position and the real rel-

ative change in position specified during the acquisition of the PRs. The
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number of function evaluations and line minimizations used by the UVDS

method for each minimization are also shown.

The δx value of 5.0514mm for pδx is very close to the real value of 5mm,

and the values of all the other components are also close to their real values

of 0mm and 0◦ respectively, except for the out-of-plane translation δy which

has a value of -0.9752mm. This is reflected in the value of the total error,

which is higher than the total error with δy excluded. However, an accuracy

of within 1mm for out-of-plane translation is considered very good. The

image registration process is therefore very good in detecting any horizontal

translations in the setup of the skull phantom.

The out-of-plane translation δy value of 4.830mm for pδy is very close to the

real value of 5mm, and the values of all the other components are also close

to the real value of 0. This results in very low values for the total error and

the total error with δy excluded. The image registration process is therefore

very good in detecting translations in the setup of the skull phantom along

the beam line.

The δz value of 4.8932mm for pδz is very close to the real value of 5mm,

and the values of pδz ’s other components are also close to their real values

of of 0mm and 0◦, except again for the out-of-plane translation δy which

has a value of -1.0605mm. This is again reflected in the values of the total

error and the total error with δy excluded which have values of 1.0875 and

0.2407 respectively. The image registration process is therefore very good

in detecting any vertical translations of the skull phantom.

The value of 4.6467◦ for the rotation parameter δθ of pδrot is close to the real

value of 5◦, but the values of -1.3966mm and 1.6184mm for the translation

parameters δx and δy are not as close to their real values of 0mm each. The

resulting total error of 2.1765 and 1.4553 (when excluding δy) is accordingly

also much higher compared to those for pδx , pδy and pδz . The image reg-

istration process is therefore able to detect rotations of the skull phantom

around the z-axis, but with a resulting total error that is larger than for the

detection of pure translations.

The δx, δy, δz and δθ values of 3.8708mm, 2.2643mm, 4.4934mm and 4.5489◦

respectively for pδall
shows that the image registration process are able to de-
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tect when the skull phantom is simultaneously translated and rotated along

and around the particular axes. The accuracy of the out-of-plane translation

is the worst, with a difference of 2.7357mm from the correct value of 5mm.

The accuracy of δx is a bit lower than that of δz and δθ, with a difference of

1.1292mm compared to 0.0566mm and 0.4511◦.

The results for pδall−no−y
shows that the accuracy of the image registration

process was not improved when excluding the out-of-plane translation δy,

which was the case for the simulated PRs. The total error of pδall−no−y
is

in fact a bit higher than the total error of 1.2323 for the same components

when including δy. The 407 function evaluations used when including δy is,

however, much higher than the 163 used without δy.

The results of the experiments with the real PRs of the skull phantom show

that the image registration process is very accurate in detecting relative

translational changes in the position of the phantom. The detection of rela-

tive rotational changes and changes which combine relative translations and

rotations are not as accurate as for pure translational changes, but still of

acceptable accuracy.
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Table 5.4: Results of relative change in position.

δx δy δz δθ δφ δρ

pδx -8.2290 18.5460 0.0580 -0.0506 -0.1482 -0.9956
pδx - pref 5.0514 -0.9752 -0.0627 0.0268 0.0341 -0.0066

Total error 0.9795 Total error excluding δy 0.0922
Evaluations 171 Line minimizations 42

δx δy δz δθ δφ δρ

pδy -3.0493 22.4007 0.0513 -0.2060 -0.1444 -1.0527
pδy - pref 0.1283 4.8300 0.0560 -0.1823 -0.0303 -0.0504

Total error 0.2919 Total error excluding δy 0.2373
Evaluations 95 Line minimizations 24

δx δy δz δθ δφ δρ

pδz -3.0859 18.6312 -4.8979 0.1427 -0.0391 -1.0712
pδz - pref -0.0918 -1.0605 4.8932 -0.1665 -0.0750 0.0689

Total error 1.0875 Total error excluding δy 0.2407
Evaluations 426 Line minimizations 78

δx δy δz δθ δφ δρ

pδrot -1.7811 15.9524 0.1115 -4.6714 0.0562 -0.9901
pδrot - pref -1.3966 1.6184 -0.1163 4.6467 -0.1703 -0.0121

Total error 2.1765 Total error excluding δy 1.4553
Evaluations 204 Line minimizations 48

δx δy δz δθ δφ δρ

pδall
-7.0485 19.8351 -4.9481 -4.5727 0.0775 -1.0111

pδall
- pref 3.8708 2.2643 4.9434 4.5489 -0.1916 0.0088

Total error 3.0004 Total error excluding δy 1.2323
Evaluations 407 Line minimizations 78

δx δy δz δθ δφ δρ

pδall−no−y
-6.7320 17.5708 -4.7490 -4.7851 0.0985 -0.9900

pδall−no−y
- pref 3.5544 0 4.7443 4.7613 -0.2126 -0.0122

Total error 1.5025
Evaluations 163 Line minimizations 35
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Conclusions

This thesis investigated the various components required for the verification

of the patient position during proton therapy.

The verification can be done by registering a PR of the patient in the current

position with DRRs generated of the patient’s CT data. The registration

process finds a rigid body transformation which estimates the difference

between the current position and the correct position by minimizing the

measure which compares the two images. The registration process there-

fore consists of four main components: the DRR, the PR, the measure for

comparing the two images and the minimization method.

The ray-tracing algorithm by Jacobs was successfully implemented to gen-

erate DRRs that is accurate in a reasonable amount of time. Each DRR is

generated according to the rigid body transformation TDRR, which specifies

the DRR’s particular view.

The ray-tracing algorithm was implemented to include the option to use the

appropriate XACC and BHCC to generate DRRs that better approximate

the PRs acquired with the DPRS to be used by iThemba LABS.

The ray-sums calculated with the implementation includes attenuation of

the pieces of air before and after the CT cube.

The implementation is able to use the VOI data that may accompany the

CT data of a patient, in which case it is also able to check for rays that

suffer from incomplete CT data.

141
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The implementation enables the user to select a ROI from the PR for which

the DRRs should be calculated with the use of simple polygon based draw-

ing tools. This is the only user input required to generate a DRR and is

only required to eliminate unwanted structures from the PR. This process is

very simple, can be completed in a matter of seconds and does not require

specialized skills from the user.

The image quality of the DRRs was measured by calculation of the MTF.

The MTF was used to investigate the effect that the interpolation of the CT

data and the DRRs has on the image quality of the DRRs.

It was found that the up-sampling and down-sampling of the CT data have

a negative impact on the image quality of the DRRs. The effect that the

interpolation of the DRRs has on the image quality was found to be very

small.

Objective functions were formed by using the MI and CC similarity measures

to compare DRRs and simulated PRs. Simulated PRs were used because

real PRs were not readily available from the DPRS system to be used by

iThemba LABS. The objective functions have six degrees of freedom corre-

sponding to the three translation and three rotation parameters of TDRR

for which the DRR is created. The objective functions were investigated by

creating similarity curves from various one dimensional paths through the

six dimensional spaces of the objective functions.

It was found that:

• The objective functions formed by using CC are very accurate when

comparing 10242 pixel DRRs with 10242 pixel PRs, but are very ex-

pensive to evaluate.

• The objective functions formed by using MI are of the same accuracy

when using 2562 pixel DRRs interpolated to 10242 pixels as when using

10242 pixel DRRs when comparing both with 10242 pixel PRs.

• The accuracy of the objective functions is very negatively affected

when generating DRRs of CT data with thick slices, and that the

accuracy of the objective function can be improved by up-sampling
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the CT data to have thinner slices (due to the smoothing effect it has

on the DRRs).

• The use of the XACC increases the accuracy of the objective functions

using MI, but has little effect on the objective functions using CC. The

use of the BHCC has a very small impact on the objective functions

using either MI or CC.

• The objective functions using MI have lower accuracy for PRs that

contain more noise, while those using CC are not affected significantly.

The effect of different focal spot sizes is very small for both the objec-

tive functions using MI and CC.

Five minimization algorithms based on the line-search strategy were imple-

mented. They are the unit vector direction set method, Powell’s direction

set method, the steepest descent method, the Fletcher-Reeves-Polak-Ribiere

conjugate gradient method and the Broyden-Fletcher-Goldfarb-Shanno quasi-

Newton method. The latter three are gradient based minimization methods.

It was found that because the objective functions perform very similarly for

each of the six parameters of TDRR, the UVDS method performs very well.

The gradient based minimization methods are hampered by the calculation

of the gradient, which is difficult to calculate accurately because of noise

(caused by the discrete data used to generate the DRRs) on the objective

functions.

The use of the objective functions using CC and 10242 pixel DRRs was

found not to be practical, since they do not improve the accuracy of the

minimization significantly and are computationally very expensive.

It was found that the out-of-plane translation is very difficult to register

when using the simulated PRs, and it was therefore excluded from the min-

imization process.

The UVDS method was able to minimize the objective functions (using MI

and excluding the out-of-plane translation) in an average of 111 function

evaluations to achieve an average error in each parameter of TDRR that is

less than 0.25mm (for the translation parameters) and 0.25◦ (for the rota-

tion parameters).
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The UVDS method was also very robust, with zero of the 110 minimizations

having an error above the accuracy-limit.

With the current DRR implementation, verification using the UVDS method

takes about 7.5 minutes.

iThemba LABS is currently developing faster DRR implementations. If

DRRs can be generated in 0.5 seconds (which is realistic for sophisticated

DRR algorithms), the image registration process developed in this thesis can

be used to verify patient position in under a minute. No user input is re-

quired during the minimization process, hence the only human intervention

required by the image registration process is the selection of a ROI from the

PR.

The result is therefore a verification process that is accurate, fast, robust

and automatic.

It was recently possible to acquire PRs with the DPRS to be used by

iThemba LABS. PRs were taken of a human skull phantom. These PRs

were registered with DRRs generated of the CT data of the phantom. It

was investigated whether the performance of the registration process when

using the real PRs is comparable to the good performance achieved with the

simulated PRs.

Because the exact position of the phantom was not known, the registration

process was used to measure relative changes in position, since the phantom

could be accurately translated (in all three directions) and rotated (only in

one out-of-plane direction) using the treatment chair.

It was found that pure relative translations in all three directions could be

registered with the same accuracy as the simulated PRs. The pure relative

rotation and combined relative translations and rotation were less accurate,

but still of acceptable accuracy.

These first experiments on using real PRs indicates that the behaviour of

the registration process is not significantly different than when using the

simulated PRs.
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Future work

No flat field, dark field or bias field or radial lens distortion corrections were

made for the real PRs. The use of the XACC and BHCC when generating

the DRRs was also not possible, because no calibration data was available

for the CT scanner used to acquire the CT data of the phantom. It still

needs to be investigated whether the corrections on the PRs and the use of

the XACC and BHCC can improve the accuracy of the registration process

for the real PRs.

The effect that deviations in the other two rotation parameters have on the

accuracy of the registration process needs to be investigated. This, together

with a wider range of positions for the skull phantom can be investigated

when the new patient positioning system of iThemba LABS is operational.

Accurate values for pcurrent can be obtained with this system, which elimi-

nates the need for measuring relative changes in position.

The registration of PRs obtained from objects other than the skull phantom

need to be investigated.



Appendix A

System Specifications

The hardware and software specifications of the system used for all the

investigations conducted in this thesis are as follows:

Hardware specifications

The software were run on a personal computer with a 3.4GHz (Giga Hertz)

Intel Pentium 4 processor and 512MB main memory. The software were run

under the Windows XP operating system.

Software specifications

All the software for conducting the investigations in this thesis were written

in Matlab version 7 (release 14). The ray-tracing algorithm was implemented

in C and compiled to a MEX file (shared-library) for used by the Matlab

programs.
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