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Abstract

South Africa has an immensely rich reserve of minerals which still has
to be exploited. The problem with these reserves is that they exist in
reefs where the mining environment is extremely hazardous, and where
mining is very expensive. These are only two of the reasons why borehole
radar has recently become a very important field of research in the South
African mining industry. These radars have to operate in rock, which
has a number of electromagnetically problematic characteristics, which
greatly complicate modelling and design of suitable radars. The goal of
this project is to demonstrate how the Finite Difference Time Domain
(FDTD) method may be used to electromagnetically model and simulate
borehole radars and subterranean environments.



Opsomming

Suid-Afrika het 'n groot rykdom aan mineraalreserwes wat nog wag om
ontgin te word. Dié reserwes kom egter voor in mineraalriwwe waar dit
uiters gevaarlik en duur is om te myn. Hierdie is slegs twee van die
redes hoekom boorgatradar in die afgelope tyd 'n baie belangrike na-
vorsingsveld geword het vir die Suid-Afrikaanse mynindustrie. Hierdie
radars moet werk in klip, wat 'n aantal elektromagnetiese karakteristieke
bevat wat modellering en ontwerp van gepaste radars bemoeilik. Die doel
van hierdie projek is om te demonstreer hoe die Eindige Verskil Tydge-
bied (EVTG) aangewend kan word om boorgatradars en ondergrondse
omgewings elektromagneties te modelleer en te simuleer.
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Nomenclature

FDTD - Finite Difference Time Domain
ABC - Absorbing Boundary Condition

PML - Perfectly Matched Layer

3D - Three Dimentional

2D - Two Dimentional

1D - One Dimensional

DIF'T - Discrete Fourier Transform

FFT - Fast Fourier Transform
GUI - Graphical User Interface
GLUT - OpenGL Utility Toolkit
PEC - Perfect Electrical Conducter
FEM - Finite Element Method

MoM - Method of Moments
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Chapter 1

Introduction

1.1 An Overview of the Deepmine Project

South Africa is undoubtedly one of the richest geologic regions in the world, and mining
practices have grown and modernized in South Africa for a number of years. The mining
industry is currently mining down to depths of approximately 3.5km, but the reserves
that are still available to be mined, at these depths, will be exhausted in the not too
distant future. According to Trickett et al., [1], it is therefore imperative that technology
enabling mining at ultra-deep levels have to be pursued. This statement is based in part
on the fact that gold reserves, that are estimated to be deposited between depths of 3km
to 5km, could well be equal to the amount of gold that was mined from the reefs of the
Witwatersrand basin during the past hundred years, [2|. This manner of thinking led to
the creation of the Deeprnine project in March of 1998.

The goals of the Deepmine project are to investigate all aspects of ultra-deep mining. A
few of the more prominent fields of interest are:

e Occupational health and safety.
e Delineation and characterization of geological structures.
e Mine layout and mining methods, shaft sinking and design.

e Transport systems, energy systems and process control.

Knowledge of geological features and structures would enable the careful planning of a
mine’s layout, which would in turn minimize the probability of seismic events such as
rockbursts, Methane gas explosions or the breach of high pressure water fissures, all of
which could cause very serious accidents or possibly loss of life.

It was, therefore, decided that a borehole radar should be developed for the estimation
of physical subterranean features in ore-bearing rock bodies. Such a radar would be an
invaluable tool in mine planning, and should be able to show a number of features in an
ore-bearing reef, such as:
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e Faults,

o Water fissures and

e “Rolls” 1

1.2 Thesis Goals

At this stage of development of the Deepmine borehole radars, research has focused on
the design of the radar and associated electronics for the system, and the importance of
finding or developing a numerical tool for the simulation of such an environment has come
to the fore lately.

The goal of this thesis is to show how the FDTD method, coded in Fortran, may be used
to create a simulation tool, which could model the following characteristics of a borehole
radar system and environment:

¢ Resistively loaded dipole antennas.
¢ Dispersive media.

e Stratified media.

A simplified depiction of a borehole radar environment is presented in figure 1.1.

- Diameter: 30mm - H12Zmm

Optical fibre

Metal tube

Diameter: 20mm - 32mm
Length: 1.2m

Resistively loaded Antenna, 10 resistors
Length: 0.6m

Strattified Media

+——— Dielectric: Air or Water

Figure 1.1: Graphical description of the Deepmine radar environment

The FDTD modelling technique has been in use for a number of years now and offers
a number of features and possibilities for modelling and simulation, that other numer-
ical modelling tools do not. The formulations that are needed to model the physical

1“Roll” is the industry slang for an undulation in the gold-bearing Ventersdorp Contact Reef.
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phenomenon of interest to this thesis, all exist at least in basic form in the available
literature, which was carefully surveyed and documented by Shiager in [3]. The main
contribution of this thesis will be through the implementation and evaluation of these
numerical models for this specific problem. The resulting code could assist in evaluating
and improving the current system in the following ways:

e The pulse behaviour of current and possible future antennas could be investigated.

e The pulse behaviour of the system in a dispersive medium, such as water, could be
investigated.

e The directionality of the current antenna could be characterized in a stratified media,
by looking at the propagation of pulses into a stratified medium.

e The radiation impedance of an environment with various dielectrics in irregular
formations around the antenna could be investigated, with the information being
used towards designing an antenna better matched to such environments.

A secondary objective is to illustrate the usefulness of OpenGL as a visualization tool for
data generated in Fortran. It is, however, a secondary objective and the work will thus
be presented as an Appendix.



Chapter 2

Introduction to the Finite Difference
Time Domain

2.1

The Yee Algorithm

2.1.1 Basic Ideas

To model a system where electromagnetic propagation takes place it is imperative that
a technique be found that solves Maxwell’s equations, which are given in the Appendix
section A.1. Kane Yee subsequently introduced the FDTD for the first time in 1966,
[4]. Yee’s algorithms were based on Maxwell’s curl equations and are based in the time
domain. The Yee algorithms provided a basic and very robust modelling method which
is still used because of the following attractive features, [5]:

The Yee algorithm solves for both the electric and magnetic fields in time and space,
using the coupled Maxwell’s curl equations rather than solving for the electric field
alone with a wave equation. This solution provides modelling capabilities for a much
wider range of physical problems, which contain specific features in both the electric
and magnetic fields.

The Yee cell, shown in figure 2.1, centers £ and H components in 3D space so
that every E component is surrounded by four circulating H components, and each
H component is surrounded by four circulating ' components. This formulation
presents a simple structure representing the laws of Ampére and Faraday, which is
interlinked in time and space.

The resulting finite-difference expressions are central in nature and are second-order
accurate.

Continuity across an interface of dissimilar materials provides an easy method for
simulation of inhomogeneous media.

The location of the E and H field components in the grid implicitly enforces the
two laws of Gauss, thus rendering the Yee cell divergence free in a source-free space.
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Figure 2.1: Graphical description of the Yee cell

2.1.2 Finite Differences and Notation

The notation that is used in this thesis was also introduced by Yee and is presented in
Taflove [5], but is repeated here for convenience.

Any specific point in space is represented as:
(i,7,k) = (iDx,jly, kAz) (2.1)

where Az, Ay and Az represent the lattice spatial dimensions in the x, y and z directions
respectively. The integer values i, 5 and k then allow us to denote a function of space and
time as:

u(idz, jAy, kAz,nAt) = ul;, (2.2)

where At is the time increment and n is again an integer.

Yee used the theory of central-differencing to create expressions for the time and spatial
derivatives that are required in Maxwell’s curl equations. The differences were approxi-
mated with the point of interest, either time or spatial, being approximated by the central
difference of the two points one halfspace on either side of it. This approach results in
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spatial and time difference equations of the following format:

Ju W,

%(i&x,j&y,k&z,n&ﬂ = +2J:k&x pk (2.3)
1 1

d i

a%(mx,jay,mz,nm) - % (2.4)

The halfspace and halftime points, that are required in these equations, conveniently fit in
with Yee’s idea of a leapfrog algorithm. The leapfrog idea implies that all the electric field
values and all the magnetic field values may be updated in turn, which in effect means
that the corresponding electric and magnetic field points are removed from each other by
one spatial halfspace and by one half timestep. The update equations for the E; and H,
field components in freespace are presented in equations 2.5 and 2.6 as an example of the
resulting field equations.

n+3 n+i n+i n+d
FAN HZ'i,j-f%,k - Hz‘ '2 H’ul : Hyl :

.. P T i 1
113_?'5“: " I:_;':k'i'— 1:.?:’6__
B — B R, 4 — L. z 2 2.5
Zlg,4.k $|z,g,k €0 A'y Aﬁ ( )
) _ 7 n _ n
H Tl+% _ H ﬂ—% At Eylzujxk'}'% EyL’s.Tak_% EZI?’:J‘*’%:’C Ezli:j_%:k 2
’ o Ho Az Ay

These equations may be extended to include all the other equations required for 3D
propagation by simple perturbation of the subscripts.

2.2 Numerical Stability

The timestepping equations of the FDTD require a specific relation between the size of
the spatial cells and the length of the time increment. This relation would help avoid the
undesirable situation where the computed results spuriously increase without limit as the
algorithm steps through time. The resulting criteria, known as the Courant limit, that is
necessary but not sufficient for numerical stability may be expressed as follows:
At < = 2.7)
B c\/ 7o+ R+ 2

where ¢ denotes the speed of light in freespace.

The Courant condition essentially defines the timestep of the simulation to be equal to or
smaller than the maximum length dimension (L) of the spatial cell divided by the speed
of wave propagation in the medium. The mathematical description given above is for a
3D cell. When a 2D or 1D problem is solved the appropriate dimensions may simply be
omitted from the equation. A graphical description of the distances involved for the 1D,
2D and 3D Courant condition is given in figure 2.2
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Figure 2.2: Graphical description of the Courant condition

It is important to note the distinction that the equality of equation 2.7 relies on the speed
of light n the medium. In a dielectric it is therefore important to find the limit for At
with ¢ replaced by the speed of light in the medium v, which is defined as:

¢

v o= NG (2.8)

where €, and u, is the relative permittivity and relative permeability of the dielectric.

2.3 Finite Difference Time Domain Field Formulations

On formulating a FDTD problem, one is immediately confronted with the choice of using
a total field or a scattered field formulation.

In the scattered field formulation only the scattered field propagates through the medium,
as the name and the formulation of equations 2.9 and 2.10 suggests.

E = Eivzcident+E3cattered (29)
H = Hincident+Hscuttered (210)

As Maxwell’s equations are linear in nature, the basic curl equations may be written as
sum and product terms of the separate fields:

- (Einc 4 Escat) _ _#d (Hincd_: H#eat) (2.11)
- (Hmc . stt) _ Ed(Einca:: Escat) ‘o (Eim + Escat) (2_12)

The incident waves or source pulses are specified analytically for the entire region of
interest, and are then used to calculate the scattered fields in the simulation region. The
main advantages of using the scattered field formulation are (ref. [6]):
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¢ The incident wave or pulse is not prone to numerical dispersion, whilst propagating
in the problem space, because it is specified analytically.

e Only the scattered fields have to be absorbed by the problem space boundary. The
scattered fields are normally of much lower amplitude than the incident wave, which
helps to absorb them much more readily with a boundary condition.

The total field formulation, on the other hand, possesses some attractive characteristics
for use in this project. The main advantages to using the total field formulation are:

e The total field propates through the medium, and provides better insight into the
propagation aspects of the medium and interaction with structures of interest in the
problem space.

e Discrete sources, like antennas, with specific radiation characteristics are much sim-
pler to implement and visualize than with the scattered field formulation.

As both formulations are completely valid in formulating specific phenomenon of interest
to this project, it does not make a difference from a mathematical point of view which
formulation is chosen to achieve the goals of this project. What does, however, make a
difference is the ease of implementation and insight that could be gathered from viewing
the fields propagating in one or the other implementation. Although the scattered field
formulation would be ideal for computing the reflections from different layers in a stratified
media environment, such as layers of rock, the emphasis in this thesis falls on the study
of the behaviour of an antenna placed in a borehole. It was subsequently decided that
the total field formulation provides more attractive features and advantages applicable to
the project and was chosen as the formulation to use.

2.3.1 Scattered Field Formulation Conversion to Total Field For-
mulation

The development of a total field formulation FDTD code, from scratch, is a timeconsum-
ing process and did not fall within the scope of this thesis. Alternatively, a scattered
field formulation code (originally published in {6] and modified by D.B. Davidson) was
converted into a total field formulation code. The original code contained functions for
basic freespace propagation, with the area of simulation being bounded by a second order
Mur boundary condition.

According to [6, p. 13] a scattered field formulation FDTD code can easily be converted
to a total field formulation code by simply setting the incident field to zero and adding
the incident field and initial conditions to the scattered field components. This statement
was confirmed by derivation, and can also be confirmed by inspection of equations 2.11
and 2.12. If the incident field components in each of these equations are set to zero and
the incident fields are added to the scattered field components, the formulation defaults
to the total field formulation of Maxwell’s equations.
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2.4 Absorbing Boundary Conditions

One of the basic problems that is encountered in the implementation of a FDTD code
is that freespace radiation problems need to be analyzed, while computers never satisfy
the computational requirements for an infinitely large computational space. The solution
to this problem is to implement a boundary condition that only allows propagation in
one direction, i.e. outwards. Such boundary conditions enable the simulation of freespace
problems if they absorb enough of the energy that is radiated outward. The two prominent
ABC’s that are used in FDTD codes are the Mur ABC of [7] and the Berenger PML of

18],

2.4.1 The Mur Absorbing Boundary Condition

The Mur boundary econdition is an implementation of the one-way wave equations that

were first developed by Engquist and Majda, |9}, for Cartesian coordinate systems. Their

theory rests on the factoring of the partial derivative operators of the 3D wave equation:
d*U dU dPU 14U

iz T tazr e =0 (2.13)

The Mur boundary condition was first published in 1981, but is still used today. The
main features of the Mur ABC are that it is relatively easy to implement and has second
order accuracy.

2.4.2 The Berenger Perfectly Matched Layer

With the advent of anechoic chambers with dynamic ranges of the order of 70dB it has
become important to use a boundary condition with similar reflection features. According
to Taflove, [5, p. 181], the existing ABC’s, like the Bayliss-Turkel, Engquist-Majda,
Higdon and Liao, only provide effective reflection coefficients in the range of 0.5% to 5%,
which is clearly not sufficient.

Berenger recently (1994) proposed a new method of absorbing radiation at a boundary,
[8]. His method suggests the splitting of electric and magnetic field components into
separate fields in the region of the absorbing boundary, and then assigning losses to each
individual field component. Initially the paper only implemented the perfectly matched
layer for a 2D environment and reported “orders of magnitude” improvement over the
then available ABC’s. Berenger’s work was subsequently validated and extended to three
dimensions by Katz et al. in [10], and independently by Berenger himself in [11]. The
3D implementation of the Berenger PML is reported to increase the maximum dynamic
range of FDTD problem space to greater than 100dB.

Other improvements on the original Berenger PML have been made by Akleman and
Sevgi, [12], who introduced a technique which doubles the effective cell size in the ab-
sorption region and in doing so achieves significant improvements in the simulation of

Utirg,,
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3D structures that exhibit complex wave phenomenon, and Uno et al., [13], who applied
Berenger’'s PML to the termination of a dispersive medium.

Unfortunately the Berenger PML has some drawbacks. As the splitting of field compo-
nents by the Berenger PML is essentially a non-Maxwellian mathematical model, it leaves
questions about whether such materials are physically realizable and the FEM applica-
bility of such absorbing materials. The Berenger PML subsequently served as the basis
for two other mathematical techniques that attempt to address these questions, namely
the uniaxial anisotropic absorber and the stretched coordinate formulation, which are
discussed in |14, paragraphs 5.3, 5.4].

The stretched coordinate system was originally introduced by Chew and Weedon in [15]
and by Rappaport in [16], and although the stretched coordinate system is easier to
manipulate and understand than the original split field formulation, it must be said that
it is still not a physically realizable medium. The anisotropic PML was subsequently
introduced by Sacks et al. in [17]. It is uniaxial and is composed of both electric and
magnetic permittivity tensors, and performs as well as Berenger’'s PML while avoiding
the splitting of fields.



Chapter 3

FDTD Modelling of Impedance Loaded
Dipoles

3.1 Introduction

In the mining environments, where the Deepmine radars have to operate, the physical
dimensions of antennas are limited by the geometry of the holes that are used to deploy the
radar. The various physical constraints were met by the implementation of an impedance
loaded dipole, which was implemented using chip resistors and metallic strips printed on
a dielectric substrate.

Studies that were done to improve the radiation characteristics of this antenna! focused
on the antenna that is depicted in figure 3.1. This antenna consists of two identical
arms, each consisting of ten metallic strips, with nine equally spaced gaps for impedance
elements. The feed and end elements are half the length of the other elements.

| Length (L) l

\ Foed point \ Gap Metallic segment Width {w)

Figure 3.1: One arm of an impedance loaded dipole

This chapter investigates the FDTD modelling of such antennas.

3.2 FDTD Modelling of Irregular Structures using Fine
Geometric Models

One of the questions that often arise in any grid-based modelling technique is what to do
when the structures of interest do not conform to the grid. Physical structures do not

IMaster’s thesis project of Sebastian Keller, [18]

11
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conform to a regular grid for a number of reasons, e.g. scale differences or curved surfaces
in a regular mesh. Two possible solutions exist for this problem:

» Refine the modelling technique and grid to be able to handle the irregular structures.

e Maintain a regular grid, while modelling irregular features of a problem on a sub-
cellular scale, known as a fine geometric model.

Both options have some attractive features. Option 1 would maintain geometrical fidelity
while providing second order accuracy everywhere in the space grid. The problems with
this approach are unfortunately prohibitive. Computer resource requirements tend to
become very large and as a result simulation times also become very lengthy, and the
process of mesh generation becomes a highly specialized and timeconsuming task itself.

While option 1 provides more accurate results than option 2, according to |5, p. 282],
option 2 relaxes the computer resource and time requirements considerably, while main-
taining a high degree of accuracy. It relies on a regular grid, which makes it easy to
implement from a grid generation perspective, and requires little extra mathematical for-
mulation to implement several types of irregularly structured objects.

The basic principle behind the fine geometric model is the principle of contour-path mod-
elling. The new update equations for the fields around an irregular structure are derived
from the integral expressions for the laws of Ampére and Faraday, presented in the Ap-
pendix equations A.2 and A.4. These fundamental field equations are implemented on
an array of electrically small and spatially orthogonal contours, which link together in
the manner of links in a chain and provides a geometrically satisfying description of the
interaction between the two laws. ?

3.3 Modelling Strip Antennas

Although it is possible to implement thin metal strips in an FDTD code, it is not necessary,
as wire elements with the same radiation characteristics as that of the strips may be used
for simulation purposes. The equivalent radius principle involved in transforming a strip
to an equivalent wire may be found in [19], and is stated quite simply as:

w
deg = Z (31)

with a., the equivalent radius of the wire antenna and w the width of the metallic strip.

Refer to [5, p. 73, figure 3.3]
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3.4 Modelling a Thin Wire Resistively Loaded Dipole
Antenna

3.4.1 The Thin Wire Model

The theory of fine geometric models is now applied to a thin PEC wire. The following
assumptions are made in the process of deriving update equations for the fields around
the wire:

e The wire is z-directed.
e The wire has radius less than half of any FDTD spatial cell dimension.

o The scattered looping field components H, and H, and the radial electric field
component E, vary as % near the wire, where r is the radius of the wire.

e The % scattered field singularity behaviour dominates the respective fields.

The field components in the center of the contours and areas of integration represent
the average value of the field values over the entire interval of integration.

Using these assumptions and the laws of Ampére and Faraday the thin wire update
equations are easily derived. The derivations for the Hy field component update equations
are given in the Appendix, A.3, and the update equations themselves in A.3.1.

3.4.2 Lumped Element Models
Deltagap Voltage Source

The two most prominent methods for feeding a wire antenna in a FDTD application is the
“deltagap” model, as described by Watanabe and Taki in [20], or the “one-cell gap” model,
as described by Kunz and Luebbers in [6]. Watanabe and Taki analyze both techniques
in their paper and come to the conclusion that the deltagap model gives more accurate
results than the one-cell gap model. The feeding structure for the antennas in this project
was therefore implemented as a deltagap model.

The basic idea behind the deltagap model is to expand the update equations for the thin
wire antenna, as given in section A.3.1, to include a source term. This means that the
thin wire approximation in the FDTD grid is still used but that an infinitesimal gap is
included in the wire. This gap is then fed with a resistive voltage source or a pure field
source.

The update equations for a deltagap voltage source are presented in the Appendix, section
A3.2
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Deltagap Resistor

The deltagap feed model is also the basis for the implementation of the lumped element
resistor in the resistively loaded antenna. A concise explanation of the implementation of
a numerical resistor in contrast to a physical resistor is given by Piket-May in [21].

The implementation of a physical resistor dictates that an entire cell be specified as a
resistor with the following relation in mind:

pL
A
This equation realizes the resistor by specifying a resistivity, p, for the entire cell of length
L and cross-section A.

R = (3.2)

The method that Piket-May advocates is to insert a numerical lumped element in an
extension to the FDTD. The basic concept is that Maxwell’s equation for Ampére’s law is
augmented by a term related to the current in the lumped element, and may be rewritten
as: _

— dD =

In applying the new formulation for Ampére’s law it is assumed that:

e The lumped element is located in freespace.
e The lumped element is z-orientated in the grid.

o The local current density in the lumped element is related to the total element
current, Iy, as:

Iy
_ 4
I Azy (3.4)

where I, describes the conduction current in the element.

e [ is assumed to be positive in +z direction.

In the case of the resistor I, and J; are assumed to be of the form:

Az n n
L = 2R (Ez %jilc + EZ'i,j,k) (3.5)
LIt
J, = ZhE 3.6
£ AxAy (36)

where R is the resistance of the resistor to implement, given in Ohm.

This formulation was used to derive the new update equation for the z-directed electric
field component in the center of the resistor. The updates for the magnetic field compo-
nents in the cell, where the resistor is placed as part of the wire, stay the same as for
the deltagap source. The source term is, however, replaced with the electric field term in
the center of the resistor. This, in effect, means that an infinitely small resistor has been
placed between two sections of the wire.

The update equations for the deltagap lumped element resistor are presented in the Ap-
pendix, section A.3.3.
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Deltagap Capacitor

The deltagap capacitor formulation is similar to the formulation for the deltagap resistor.
The difference in the derivation lies in the specification of the current in the lumped
element.

The assumptions for the current direction and density are held as they were for the resistor
with the description of the current through the capacitor being changed to:

Chz ,
I, = At (Ezh;—; - Ez'i,j,k) (3-7)
1
L|iTe
J — leik .
L Aaiy (3.8)

where C is the capacitance of the capacitor to implement in Farad.

The update equations for the deltagap lumped element capacitor were derived and are
presented in the Appendix, section A.3.4.

3.5 Impedance Loaded Antenna Code Verification

The code implementing the theory and update equations involved in modelling impedance
loaded flat dipoles were tested by comparing the input impedance of the antenna, calcu-
lated with the FDTD code and MATLAB, to the input impedance computed by FEKO®.

3.5.1 Obtaining Antenna Input Impedances from the FDTD

The formulation used in obtaining the input impedance of an antenna from the FD'TD
was taken from |5, p. 433].

Taflove describes how the input impedance of an antenna may be found from Fourier
transforms of the voltages and currents through the feedpoint of the structure of interest.
The derivation requires a couple of mathematical interpolations:

e The feedpoint is assumed to fall on an E-fleld point, or in impedance terms, on a
voltage point. It is therefore necessary to take the geometric average of the currents
directly adjacent to this point.

e The E-fields and H-fields, or voltages and currents in terms relating to impedances,
are not sampled at the same time and the time ambiguity must be removed by
T
multiplying the expression for voltage by the factor e™*72".

The resulting equation, and its derivation, which is used to calculate the input impedance
of a dipole is presented in the Appendix, section A.4.

SFEKO is a hybrid Method of Moments (MoM) code, supported by EM Software and Systerns,
Technopark, Stellenbosch
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As the input impedance of an antenna is plotted against frequency, a Fourier transform
is needed in the process. Initially the FDTD was only used to sample the time-domain
waveforms with a MATLAB FFT being used to calculate the input impedance. One of
the problems with this approach was that is was hard to guarantee that certain frequency
components would be available in the output. A DFT was therefore implemented in
the FDTD code to solve this problem. Refer to Appendix chapter B for an explanation
of the theory behind the implementation of a DFT and the merits of a DFT vs. FFT
implementation.

3.5.2 Wu-King Resistively Loaded Dipole Simulation Results

Figures 3.2 and 3.3 show comparative simulation results for two Wu-King profile resistively
loaded dipoles, originally designed and simulated by Keller, [22]. Each arm of the dipole
has the following specifications: '

e Length 150mm.
¢ Width 6mm (equivalent radius 1.5mm).

o 9 gaps for equally space resistors (The first and last segments are half the length of
the other segments).

The two load profiles simulated here are for resistor values (feed to end):

e 15-20-27- 36 - 56 - 100 - 200 - 680 - 11k ohm

o 46-52-61-72-88-113- 158 - 265 - 795 ohm

Each figure shows a graph comparing results from FEKO, generated by [22], and the
FDTD code of this project.

3.5.3 Wu-King Capacitively Loaded Dipole Simulation Results

Figures 3.4, 3.5, 3.6 and 3.7 show comparative simulation results for two exponential
profile capacitively loaded dipoles, originally designed and simulated by Keller, [22].

The geometric dimensions of the dipoles are the same as for the resistively loaded dipoles
that were simulated in the previous section.

The two load profiles simulated here are for capacitor values (feed to end):

e 10.0p-4.7p-2.7p-2.2p - 1.5p - 1.5p - 1.2p - 1.0p - 1.0p Farad
e 4.7p-22p-18p-15p-1.2p-1.2p-1.0p-1.0p- 1.0p Farad

As with the resistively loaded dipoles, each figure shows a graph comparing results from
FEKO, generated by [22], and the FDTD code of this project.
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3.5.4 Comments on Simulation Results

Figures 3.2 and 3.3, that compare the resistively loaded antenna input impedances, com-
pare extremely well, which validates the FDTD formulation for resistors. Resistors are
electrically simple elements to model, because of the fact that they are linear devices and
do not store energy in any form.

The results for the capacitively loaded antennas, figures 3.4 through 3.7, do not agree as
well as for the resistively loaded case, and could be explained by the difference of opinion
on how the capacitor should be modelled in the FDTD. Piket-May et al., [21], models
the capacitor with a relation that spans one timestep, while Sui et al., [23], describes the
capacitor with a model spanning two timesteps. This thesis implemented the approach
of Piket-May et al. and did not further investigate the effect of adding another timestep
to the capacitor model.

The FDTD does, however, model the capacitor sufficiently well to predict the trends
and magnitudes of the input impedances for the two antennas to an acceptable degree of
accuracy.

It must also be noted that although MoM solutions to these simulations are available
and work well, the goal of this thesis was to create and validate a code that would be
able to simulate the antenna of interest in a non-homogeneous environment, and this is
something that the FDTD handles much more readily than the MoM.
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Chapter 4

FDTD Radiation Patterns

4.1 Introduction to FDTD Near-Field Measurements

Part of the Deepmine project focuses on the improvement of the radiation patterns of the
antennas that are used in the radar, and it is therefore imperative that a numerical tool
for these studies have to be able to produce far-field patterns for the antennas that are
being simulated.

Conceptually it is possible to use a sampled near-field, with the samples in phasor format,
as a source term to calculate far-field patterns via radiation integral theory, as presented
in [24, paragraph 12.12|. A number of questions arise when this process has to be imple-
mented using the FDTD method, with the fields evolving as explicit functions of time,
such as:

o How and where is the near-field defined?
e How may the near-field be sampled in phasor format?

e How may the sampled near-field be transformed into a far-field pattern?

This chapter will address these issues and some of the implementation issues that arise
with them.

The answer to the first question is defined in a number of texts, and a few of them define
the limits of the near-field by the same reasoning. One of the more popular definitions
state that the near-field region is defined as extending from start of the evanescent region
to an arbitrary distance from the antenna, normally %’—2-, where D is the largest dimension
of the structure of interest. The boundaries between the different electromagnetic field
regions are shown in figure 4.1.

21
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Figure 4.1: Exterior field boundaries of a radiating antenna

4.2 Transformation Methods for Near-field to Far-field
Data

4.2.1 Two Dimensional Fourier Transform into an Angular Spec-
trum.

The transformation of a phase front into an angular spectrum, with a 2D Fourier trans-
form, is often called a near- to far-field transformation. This is actually incorrect, ac-
cording to [25, p. 44], as the transform input and output are at the same location, where
the measurements were made. The transform converts only between a phase front and
an angular spectrum (i.e., the spectrum of directions in which the wave is traveling) at
the same position in space. The transformation thus results in the equivalent of a far-
field pattern because the radiated near-field energy components are always traveling in a
straight line at any distance from the antenna under test.

4.2.2 Equivalent Dipoles Method

Taflove explains the necessary theory to implement Green’s functions and sampled phasors
in a FDTD code for the calculation of far-field patterns in [5, chapter 8|, but this is
specialized work that is not central to the FDTD method, and FEKO may be used
to generate far-field patterns instead. The FEKO user manual, [26], explains how each
sampled near-field point, electrical or magnetic, is replaced by an equivalent dipole. These
dipoles could then be used as legitimate sources of electromagnetic radiation that interact
to result in a far-field pattern, which approximates the true far-field pattern to a high
degree of accuracy. If both a magnetic and electric near-field is specified, at the same point,
in space, a direction of propagation is in effect also specified with a resulting Poynting
vector.
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4.3 Empirical Experimentation

FEKO was used to generate near-field data for a resistively loaded dipole antenna® which
was then used as a source to calculate far-field data. Investigations into the accuracy of a
far-field pattern, calculated with a near-field scan as source, were done by [27] and empir-
ically investigated in this project. The investigations, applicable to both transformation
techniques, indicate that if only one sampled plane is used as the source the calculated
far-field pattern would be accurate up to an angle of 8, described by figure 4.2.

Antenna Under Tast
Aparture

|
¥ I

Figure 4.2: Accuracy estimation for near-field to far-field transformations.

# may be expressed as follows:
z—d
4.1
=) (41)

0 = arctan(

This restricts the applicability of just one plane of near-field data when an accurate
description of the far-field behaviour of a structure is needed in all directions. Near-field
planes should therefore be sampled in a box-like fashion around the scatterer or radiator
of interest. Radiation would be sampled in all directions in the near-field and an accurate
transformation of near-field to far-field data would be possible.

An intuitive analysis of this concept would suggest that the discretization of such sampled
grids would also play an important part in the transformation process. Empirical stud-
ies were done to evaluate different sampling and transformation criteria. The evidence
gathered from these investigations suggest the following:

e A cube should be sampled around the structure of interest if all directions of the
far-field pattern are to be approximated accurately.

e Finer discretization of sampled grids improves the far-field data.

e Sampling very close to the structure of interest, as opposed to sampling further off,
also improves the far-field radiation pattern

The evidence that supports these statements is presented in the Appendix, chapter C.

1Model obtained from {22
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4.4 Using FEKO and the FDTD Method to Calculate
Far-fields

The way to use FEKO in this regard is to specify source planes consisting of electric and
magnetic field phasors. These phasors are then converted to the equivalent electric and
magnetic dipoles of section 4.2.2 by the FEKO AP-card, [26, AP-card|, which are then
used to calculate the required far-field patterns in conjunction with the FEKO Green’s
functions for free-space.

The implementation of phasor sampling in the near-field requires a Fourier transform,
which is explained in the Appendix, chapter B. The resulting DFT formulation and
code fragments from Taflove, [5, paragraph 8.3], were used to implement phasor sampling
routines, capable of sampling at a number of frequencies for every spatial sampling point
specified.

4.5 Near-field Measurement Code Verification

Near-field measurements, from the FDTD, were used in conjunction with the FEKO AP-
card to generate far-field patterns. These patterns were then compared to far-field data,
generated with FEKO. The results in this section were generated with a resistively loaded
dipole, obtained from [22], as structure of interest.

4.5.1 Comments on Simulation Results

The simulations that were done to produce figures 4.3 through 4.6, were done across the
frequency band for which the antenna was designed, [22], to test the near-field sampling
formulation for different radiation patterns.

The results of these figures, which were produced with the FDTD sampled near-fields
and the FEKO AP-card, show a very good comparison to the FEKO MoM predictions
for the far-fields. The phi directivity graphs show less than 0.8dB difference between the
MoM and FDTD based simulation results in all cases, while the theta directivity graphs
also match to a high degree of accuracy, with some deviation visible in the 1.6GHz and
1.8GHz graphs. The deviation is, however, within reasonable limits of agreement, with
both trends and magnitudes comparing favorably.
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Chapter 5

FDTD Modelling of Dispersive Media

5.1 Introduction to the FDTD and Dispersive Media

5.1.1 Methods of Modelling Dispersive Media in the FDTD

In the modelling of dispersive media in the FDTD, two main methods exist for setting up
the numerical model:

e The Recursive Convolution method, and

e The Auxiliary Differential Equation method.

The Recursive Convolution method’s main feature is that it can model an arbitrary
number of Debye and Lorentzian relaxations, whereas the Auxiliary Differential Equa-
tion method permits modelling of nonlinearities and dispersive nonlinearities in addition
to linear dispersions. The Auxiliary Differential Equation method can also model an ar-
bitrary number of Debye and Lorentzian relaxations but does, however, pose increased
complexity in modelling as opposed to the Recursive Convolution method.

5.1.2 Relevant Dispersive Media Permittivity Models

The implementation of dispersive media focused on the simulation of water as a dispersive
medium. Water is a linear, isotropic, dispersive medium which is adequately modelled
by the Debye first order formulation for the relative permittivity of a dispersive medium.
The first order Debye expression for relative permittivity, as a function of frequency, may
be written as follows:

€: — €oo
e
1+ jwty

(5.1)

ér (W) = €
where:

e ¢, is the relative permittivity of the medium where w = co.

27
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e ¢, is the relative permittivity of the medium where w = 0.

e 1 is the Debye relaxation time constant for the medium.
In distilled water these constants are, [28]:

® e =18
e ¢, = 81
o t;=94x 10712

5.1.3 FDTD Dispersive Media Discretization Considerations

In setting up a FDTD spatial grid and time discretization it is important to remember
the following rules.

The Courant condition for stability, {5, paragraph 4.6}:

At < ! (5.2)

- 1 1 1
vz + o T G

Spatial cell size should be less than the wavelength of the highest frequency of interest. A
rule of thumb for the specification of spatial cell size (|6, paragraph 3.2]) may be stated
as:

(5.3)

It is important to remember that these formulae require the speed of light in the medium
for accurate calculations. This implies that the timesteps that satisfy the Courant condi-
tion in freespace should be made smaller by a factor of 1/€; of when working in a dispersive.
medium. The appropriate choice of ¢, should be the highest value of ¢, that will be en-
countered in the simulation. The rule of thumb for the specification of the spatial cell size
should then also be divided by /¢, when in a dispersive medium.

5.2 One Dimensional MATLAB Dispersive Media In-
vestigation

A one dimensional investigation was undertaken to come to terms with the different
formulations that describe dispersive media in the FDTD. The goal of these experiments
was to write code that would utilize both the Recursive Convolution and the Auxiliary
Differential Equation methods to calculate the reflection coefficient of water.

The Recursive Convolation formulation was taken from [6, pp. 125-131], with the deriva-
tions being repeated to correct a typographical error! in the text. The update equations

1Ay in eq. (8.12) [6, p. 127] should be Az.
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for the Recursive Convolution method are presented in full 3D form in the Appendix,
section A.7.

The Auxiliary Differential Equation formulation was taken from [5, pp. 246-248], but is
also discussed in [29]2. As with the Recursive Convolution formulation the derivations
were repeated to correct an error® in the text. The 1D update equations for the Auxiliary
Differential Equation method are presented in the Appendix, section A.6

5.2.1 Simulation Challenges
Simulation Construction: Air-water Boundary

One of the main considerations to take into account is how to connect the two regions.
The H-field updates remain the same for media, such as water, where p,(w) is a constant,
and since the E-field updates rely only on the H-field components one half-space in front
and behind of them, it is clear that the mathematical boundary between the two regions
should fall on an H-field point, or in other words, on a half-space point. Update equations
take care of the connection between the two regions quite easily with this formulation.
The location of the true boundary between the two regions is unfortunately not so easy
to define, and is still a topic of debate in the FDTD community.

Analytical Solution and Reliable Pulse-widths

The reflection coefficient for an air/water interface is easy to calculate analytically and
such an analytical solution was implemented to evaluate the MATLAB code. The analyti-
cal solution of the reflection coefficient shows that the reflection coefficient changes rapidly
from approximately 1GHz to 13THz. Although it is theoretically possible to analyze such
a wide bandwidth with a single FDTD pulse, it is not numerically practical. Pulses with
such a wide bandwidth may be used in a FDTD simulation, but the numbers in the
simulation (especially in the “late-time” region of the simulation) become very small and
numerical inaccuracies, such as round-off errors, start to corrupt calculated data. These
errors require the use of a number of pulses with different frequency content to analyze
the system with a high degree of accuracy.

The system was simulated using five different pulses, with the following frequency data
being extracted from each run:

e 1GHz to 60GHz, Gaussian pulse.
e 60GHz to 250GHz, Differentiated Gaussian pulse.
e 250GHz to 1THz, Differentiated Gaussian pulse.

¢ 1THz to 3.5Hz, Differentiated Gaussian pulse.

2Ghandi et al. also presents interesting theory on the modelling of human tissue as a dispersive
medium, which makes the FDTD a good technique to use in Radiation Hazard (RadHaz) investigations.
3Both terms on the right-hand side of eq. (9.61) [5, p. 248] should be multiplied by ¢o-
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¢ 3.5THz to 12THz, Differentiated Gaussian pulse.

These pulse widths represent the 3dB bandwidth of the pulse. Although the pulses obvi-
ously have a much broader frequency spectrum, it was found empirically that data outside
the 3dB point started to degrade too much to be trusted with confidence.

Termination and Source Terms

The source for each simulation was a soft source, which was implemented close to the
far boundary of the air region. Reflections from the boundary of the air region were
attenuated with a first order Mur boundary condition, while the reflections from the
boundary of the water region were removed by timegating. The Mur formulation for air
is obtainable from [7].

5.2.2 One Dimensional Code Verification

Figure 5.1 shows the comparison between the FDTD solution and the analytical solution
for the permittivity of water. The regions where the different pulses were used are also
indicated.

RC - FDTD Reflection Coetficient for Water

[|— Analytical
« FDTD
_gH- - Borders

Magnitude (d8)

\
10 10 10

Frequency (GHzZ)

Figure 5.1: Reflection coefficient comparison with frequency regions indicated

5.3 Three Dimensional Dispersive Media FDTD Model

The Recursive Convolution method was chosen to model the dispersive medium in For-
tran. The main reason for this choice is that the method would be the easiest to implement
in the Fortran environment and an added benefit of this medel is that the magnetic field
updates do not change at all from their freespace form.
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The expressions for the electric field updates for a Debye first order dispersive, linear
media were derived and the 3D update equations are presented in the Appendix, section
AT,

5.3.1 Absorbing Boundary Conditions

In most FDTD simulations the region of simulation would ideally be unbounded. In
numerical reality the region has to be terminated with some sort of numerical function to
absorb radiation propagating outward. The scheme that is implemented in this project is
the 2nd order Mur ABC, described in [7], (5, pp. 158-160] and [6].

The problem with the standard Mur boundary condition, which makes it inaccurate for
use in dispersive media terminations, is that it depends on the speed of propagation of
electromagnetic waves in the medium. The literature, cited previously, derives the Mur
ABC’s for freespace, which could quite easily be adjusted to work in a non-dispersive
dielectric medium, but as different frequency components propagate at different speeds in
dispersive media, such an adjustment is not a trivial matter when dispersive media has
to be terminated.

The main interest of this work, is how electromagnetic radiation would propagate in water
at frequencies from 10MHz to 100MHz. Figure 5.2 shows the relative permittivity of water
from DC to 5THz. This figure shows quite clearly that water could be approximated as
a non-dispersive media with e, = 81 in the frequency range of interest .

Magnitude

10°

Frequency [GHz)

Figure 5.2: Relative permittivity for water

Practical measurements were, however, made and simulated, by Keller, using a scaled
model of the antenna of interest (|18, paragraph 3.4 ]) which operated in the frequency
range 200MHz to 2GHz, for reflection coefficient measurements, and from 300MHz to
1.3GHz, for coupling measurements. In these frequency ranges water changes from ¢, = 81
to €, = 80.44 at 2GHz, and ¢, = 80.76 at 1.3GHz.
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The second order Mur boundary condition equations, for the experiments of this thesis,
are therefore adjusted to be correct for a medium with ¢, = 80.73, which is the mean
value for the three values of interest, and the medium is then assumed to be linear and
non-dispersive where the boundary conditions are applied. In all other parts of the code
the full RC-formulation update equations are still applied. If more accurate boundary
terminations with very small reflections are required, it would be advisable to implement
Berenger’s PML, [8], which was generalized for application in dispersive media by Uno et
al. in {13].

5.3.2 Thin Wire Update Equations in Dispersive Media

The impedance loaded dipole of interest to this project also needed to be simulated in
a dispersive medium. In order to simulate this antenna in a dispersive medium in the
FDTD it is necessary to change the thin wire update equations into a form that would
be able to model the dispersive nature of the medium.

The update equations for freespace magnetic fields were derived using Faraday’s law and
are therefore not influenced in any way by the dispersive medium. Since the electric field
components that are normal to the wire propagate without influence from the wire they
are simply changed to the normal Ex and Ey update equations (A.44 and A.45) for a
dispersive medium.

5.3.3 Lumped Element Update Equations in Dispersive Media

The update equations for lumped elements were derived using Ampére’s curl equation,
A.3. This equation contains a permittivity dependency in D = egé,(w)E, which ordinarily
needs to be modelled by a dispersive model. It is, however, important to note that the D
term refers to the E-field inside the resistor, which is not dispersive. The equations that
describe the update equations for the E-field inside a lumped elements must therefore
remain as they were in freespace.

5.4 Dispersive Media Code Verification

5.4.1 Generating Comparative Data for Test Purposes

Generation of data to compare to the FDTD dispersive media proved to be a problem. No
code was available that could handle dispersive media outright, and a method had to be
found that could utilize existing numerical tools to perform dispersive media simulations.
FEKO presents two options, which are discussed in the Appendix, chapter D.
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5.4.2 Simulation Setup

In freespace the diameter of the wire was set to 1.5mm (6mm wide strip), but in a dis-
persive medium the cell size needs to be made smaller for the high frequency components
to propagate propetly. The thin wire approximations, by contrast, requires that the cell
dimensions be at least twice the radius of the wire that is being simulated. Therefore, the
wire needs to be made thinner to compensate for the thin wire approximation limit of half
the wire thickness. Figure 5.3 shows that a smaller wire radius of 1.2mm (4.8mm wide
strip) has very little effect on the input impedance of an impedance loaded wire antenna
in freespace, and is a valid approximation to the true antenna of interest.
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Figure 5.3: Input impedance comparison for a 4.8mm strip to a 6mm strip

5.4.3 Comparative Analysis

The FDTD code was evaluated by comparing the numerically calculated Sy, of the FEKO
and FDTD methods of modelling. Appendix section A.5 explains how the 5-parameters
may be extracted from a FDTD simulation.

Figure 5.4 compares the input impedance of a 300mm dipole calculated with the FEKO
DI-card and the FDTD.

The FDTD curve in figure 5.4 was compiled from the results of two FDTD simulations
and shows that the formulation is capable of detecting the resonances in the reflection
coefficient for the antenna with accuracy with respect to frequency. It unfortunately does
not predict the resonance at 80MHz at the right frequency and shows large deviations in
magnitude.

These discrepancies are caused by the fact that the cell size for these simulations were
set to 4.16mm, while working in a grid with size limited by the physical resources of the
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Figure 5.4: S of a 300mm dipole in water - FDTD 2mm cells (Composite)

available computer, which places the boundary condition for the simulation very close to
the antenna at low frequencies. The reflections from the boundary interferes with the
antenna and causes the detuning of the resulting input impedance and the deviation in
the accuracy of the magnitude of the FDTD simulations.

The classic engineering tradeoff between accuracy in modelling and available computa-
tional resources is thus encountered here. The way to solve this problem would be to
either:

o Enlarge the problem space at a small discretization until the boundary is far enough
from the antenna, or

e Implement a better boundary condition, possibly a Berenger PML for dispersive
media as formulated by [13], to suppress the reflections from the boundary in a
smaller problem space to a greater degree.

The first option was taken and the simulations were moved from the original Pentium III
533MHz PC, with 128Mb of RAM, to a Silicon Graphics Octane workstation, with two
270MHz MIPS R12000 processors and 1280Mb of RAM.

The simulations that were done on the Pentium IIT PC only placed the boundary at
approximately 12% of a wavelength at 50MHz, and required 18.94Mb of RAM to run.
The move to the SGi workstation enabled the use of much larger matrices, placing the
boundary at approximately 50% of a wavelength at 50MHz, and required approximately
285Mb of RAM to run.
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Figure 5.5 presents the results that were obtained using the SGi workstation, and shows
a clear improvement over the results from the Pentiumn III PC. The magnitudes of the
FDTD and FEKO simulations match extremely well, with slight frequency deviations at
higher frequencies.
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Figure 5.5: Sy, of a 300mm dipole in water - FDTD 4mm cells (Large problem)

As the Mur boundary condition formulation rests on the assumption that the incident
wave is a plane wave, the boundary should ideally be placed in the far-field of the simu-
lation. This insight explains why the simulations improved when the boundary could be
moved to 50% of a wavelength.



Chapter 6

Conclusions

6.1 Achievements

The aim of this project was to master the fundamentals of the FDTD and to create the
basis of a simulation tool for the complex radiation and propagation environments of
the Deepmine project. In pursuing these goals the following features of the FDTD were
studied and implemented in the code:

e Thin wire antennas, with subcellular radii, were implemented using a fine geometric
model, which is also the basis for the modelling of a number of irregular structures
in regular FDTD grids.

e Lumped element models for resistors and capacitors. These models were used in
conjunction with thin wires to create a FDTD model for impedance loaded dipoles.
The theory behind the FDTD formulation of resistors and capacitors is also applica~
ble to the formulation of a number of other discrete cornponents, such as inductors,
diodes and even transistors, although the abilities of the FDTD to handle these
non-linear elements were not used in this project.

o Near-field sampling of specific frequency components in phasor format, for the es-
timation of far-field radiation patterns. The sampling of phasors also required the
implementation of a DFT that could be performed “on-the-fly”.

e Dispersive media formulations were studied and evaluated to select the most appro-
priate model for implementation in this code. The Recursive Convolution and Aux-
iliary Differential Equation formulations were mastered, with the Recursive Convo-
lution formulation being implemented in 3D. The thin wire models, that previously
only existed for freespace, were also implemented in dispersive media with success.

e OpenGL was investigated with Fortran GUI visualization as a goal, and the study
presented in the Appendix, chapter E. It was shown that the coding tools, that are
required to develop a GUI within Fortran, exists and can be used with ease and
efficiency.

36
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6.2 Future Development Opportunities

Although the work that has been done represents a solid foundation for the development
of a FDTD code to simulate borehole radar, there will always be room for improvement
and further development. Some of the future development opportunities include:

e The implementation of stratified media. The FDTD is extremely well suited to
the simulation of inhomogeneous environments with permittivity changing rapidly
or dispersively. Each cell in a simulation could quite easily be assigned a specific
permittivity or permeability, without adding to the complexity of the simulation.
The implementation of stratified media is therefore almost entirely a coding and
meshing problem, and not so much a modelling problem. Future development could
update the code to be able to handle inhomogeneous media by modifying the up-
date equations and boundary conditions accordingly. Experience gathered from this
exercise would mainly be in coding and not so much in modelling.

e The implementation of a better boundary condition. The Mur ABC, although suffi-
cient for the work presented in this thesis, should be replaced with a better boundary
condition. Implementation of a Berenger PML would be the obvious suggestion for
a new boundary condition, and would afford the opportunity to study the intrica-
cies of the PML, while increasing the dynamic range of the code appreciably. Both
modelling and coding experience would be gained from such an implementation.

o The implementation of local near-field to far-field transformations. Green’s func-
tions for freespace and dielectric media could be investigated and implemented,
utilizing the phasor fields that the code already provides, to implement near-field
to far-field transformations. Experience in modelling and coding would be gathered
from this exercise.

e The implementation of a GUI for the code. At present the code uses a number
of text files and hardcoded sources of data to describe the problem that is being
simulated, and a GUI would greatly enhance the functionality of the code. An
appropriate GUIT should include features for the visualization of the problem space
and the input of features into this problem space. This exercise would only provide
coding experience.

e Parallelization of the code. The FDTD Jends itself extremely well to parallelization,
as each field point that is being updated is determined only by values that are
constant at that timestep. When the E-field matrix or the H-field matrix is npdated,
it could be split up into a number of blocks, which could each be updated separately.
Davidson and Ziolkowski implemented such a FDTD code, in [30}, and derived
expressions that describe the efficiency to be gained from parallelization of a FDTD
code. Experience would be gathered in coding for a multiprocessor environment.
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6.3 Concluding Remarks

This thesis shows that the FDTD method is applicable to the simulation of borehole
radars and that it is capable of handling the complex geophysical phenomenon associated
with the mining environment. It successfully developed a code to form the basis of a
simulation environment for the Deepmine project, and in so doing achieves the goals that
were set for the project.



Appendix A

Mathematical Derivations, Proofs and

Laws

A.1 Maxwell’s Equations in Three Dimensions

Maxwell’s equations are used in either their integral of differential forms to derive every

FDTD update equation. The Laws of interest are given below.

Faraday’s Law:
dB
dt
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n

Ampére’s Law:
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Gauss’s Law for the Electric Fields:
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Gauss’s Law for Magnetic Fields:
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e E is the electric field vector in Volts per meter,

D is the electric flux density vector in Coulombs per square meter,

H is the magnetic field vector in Ampéres per meter,
e B is the magnetic flux density vector in Webers per square meter,
e J, is the electric conduction current density in Ampéres per square meter,

T, is the equivalent magnetic conduction current in Volts per square meter,

S is an arbitrary surface with the unit normal vector dS, and

e C is the contour that bounds S with the unit path length vector dl

In linear, isotropic nondispersiv.e materials (i.e. materials having field-independent, direction-
independent and frequency-independent electric and magnetic properties), B is related to
H and D is related to E in the following relations:

= uH (A.9)
3 (A.10)

Ol

where:

e 1 is the magnetic permeability in Henrys per meter, and

o ¢ is the electric permittivity in Farads per meter.

Magnetic loss currents may be defined as:

Jn = pH (A.11)
Electric loss currents may be defined as:
J. = oF (A.12)

A.2 Analytical Solution for the Reflection Coefficient
of Water

The derivations that were used in obtaining the analytical solution for the reflection
coefficient of water, were all made under the assumption of normal incidence, [24]. The
formulae required in this work are:
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ko= wa/pe (A.13)

n = % (A.14)
ne — 7l

Alb

e + 1l ( )

where:
e pis the reflection coefficient when a plane wave from medium one reflects from the
interface with medium two.
e ¢ should be written as €¢, for medium two.
e n; is the wave impedance for the first medium (air).
e 7, is the wave impedance for the second medium (water).

e The incident plane wave originates in medium one (air) and reflects from the bound-
ary with medium two (water).

The relative permittivity for water, required in equation A.14, was plotted in figure 5.2.

A.3 Fine Geometric Model - Derivation of H, for a Thin
Wire Update Equation

In deriving the update equations for a thin wire under the laws of the Fine Geometric
Model, Faraday's integral law A.2 is discretized and solved for H, by analyzing the two
sides of the equation in separate steps. Figure A.1! is helpful in the interpretation of the
integrals.

Faraday’s law must be put into a different form before the derivation is done. Using the
identity B = jioH, and figure A.1, Faraday’s law now becomes:

% [[S oHydeds = fozf.dzg (A.16)

The lefthand side, of equation A.16, may now be written as:

z0+ 5 5 A
dt / f (“OH |A,zo% [1+ale- zﬂ)]) dzdr (A.17)

D__'

Once the constants have been removed from the integrand, a simple geometric integral is
left. This integral does, however, reduce to an analytic form a great deal simpler if the

1Originally sourced from [31]
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integration with respect to z is done first. The left side of equation A 16 then simplifies

to:

d A
T fSQpOHydzd:c = ,uo.g.ln (— ~

To

The righthand side, of equation A.16, may now be written as:

El, = /:H? [E.(A, z) — E.(0, 2)] dz

C 0—3

-l—f [ (x Zg——)—Em(l',Zg-f'%)]d&?

AN ¥ (Bl — Bolo) L+ calz — )l dz

0— %

+/ E|A,zﬂ+ )[%]d:c
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Equating equations A.18 and A.21 results in the required update equation.

n+% n—%
A) (Hy|i+§,j,k Hy|z‘+§,j,k A

(A.18)

(A.19)

(A.20)

(A.21)
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A.3.1 Thin Wire Update Equations in Three Dimensions
These update equations use Taflove’s notation, |5, paragraph 3.6.2|, and further define:

e 7 as the radius of the wire.

e A as the spatial discretization of the FD'TD grid.

In the cells containing the wire, the update equations are:

1 ( xmj,k J:I ,],k-l-l)%ln(%) E |z+1,J,

H = H At A.22

l”’ shas + poln ()3 poln(£)5 (A.2)
nti n—3i (Eylr'l'k+1 E | k) (A) E |1'1'

Htid = Hp)p + A2 vt ro/ _ _Elgtlh A.23
ok = Hehat paln(3)3 (g

E.lijx = 0 (A.24)

These equations are valid for z-directed wires, but z and y directed wires may also be
implemented by inspection, with appropriate changes being made to the relevant field
component update equation.

A.3.2 Deltagap Voltage Source Update Equations

The update equations for the deltagap fed section of wire are:

n—1 (Exliin — Eal? k+l) l“( ) (Bl e — EalRx)

H n‘+2 — H e + At i Z11,7, + i+1,9,k ], fA 25
| yligk y|"'s.7ak Lo ln (E) 5 H;O ].Il( ) )
n+i n—~ (Ey|n'k+1_Ey|n‘k)lln(é) (Ez|n +Eziﬂ'k)

Hol57 = Haligi + At——" bik1D ol SEnitbk T Rk (A 96
ik = Helas i (2)5 P ER.

where Ez|3j’k represents the arbitrarily specified source term that is fed into the gap.

A.3.3 Deltagap Resistor Update Equations

The update equations for a section of wire with a resistor in the center are:

1 — JANTAY At .

ntl ep2ROzAy n €0 n+i

Elije = 1+ _Atoe E ik + 1T o V x Hl|; ;2 (A.27)
€02RAx Ay 02ROz LY

where

nti n+i n+g n+g
v H|T‘1J'rk% _ (Hyls jx _Hy|i—12,j,k) _ (Hm|i,j,1§ - H$|i,j-21,k)
i.J,

Az Ay

(A.28)

and R is the resistance value of the resistor in Ohm.
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A.3.4 Deltagap Capacitor Update Equations

The update equations for a section of wire with a capacitor in the center are:
at 1
+1 n-t%
Elge = Elipwt | 1 —ea ) Vx Hljji (A.29)
enATAY

1
nig

where C is the capacitance value of the capacitor in Farad and V x HY; ;  has the same

meaning as in equation A.28.

A.4 Input Impedance Equations and Derivations

The expression used in calculating the input impedance of a structure is:

FIV (¢, z;)}e %

Zo(w,z:) = (A.30)
F [\/I(t,:ci+%).f(t, T )
where F signifies a Fourier transform.
In using this equation the following laws are used:
Vit,z;) = /S E.d8 (A.31)
I(tz) = fc Edl (A.32)

Using figure A.2 it is easily found that:

It2) = (Hylicige — Hylije)- Oy + (Helige — Helig-16). O (A.33)

and V (¢, ;) is the magnitude of the feed pulse in time.

A.5 S-parameter Measurements in the FDTD

This is an exercise that needs to be handled with some care. The equation for the S-
parameters of any port in a circuit may be written as follows [5, p. 434]:

Vm(W, :L‘m) ZO,n(w)

Vo) N Zom(@) (A.34)

Sran (w: T, wn) =

where:
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b

Figure A.2: Input impedance derivation field, voltage and current definitions

o Vio(w,x,,) is the voltage at port m, at observation plane Tm, and V,{(w,z,) is the
voltage at port n at observation plane z,, and

e Zyn(w) and Zy »(w) are the characteristic impedances of the lines connected to these
ports.

This would mean that to measure S;; the incident and reflected pulses at port 1 have to
be known, as described in the derivation of S-parameters in [32]. Tt also means that the
characteristic impedance of the line attached to the port may remain unknown, because
it cancels itself in the S-parameter equation.

Another way of finding the S-parameters of a circuit is to measure Z-parameters and to
convert these Z-parameters to S-parameters, using the relations given in [33]. For the
calculation of Sy; this may be written as:

Zin
5. = Zo 1 (A.35)
Lot
0

where Z, signifies the characteristic impedance of the transmission line attached to the
antenna.

A.6 Auxiliary Differential Equation One Dimensional
Update Equations for the First Order Debye Model

The 1D update equations for the Auxiliary Differential Equation method may be written
as follows:
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At
n+l nti
D:c 5.k T :n| 1,7,k AZ ( yl i, ’:+1 H L J,k—%) (A36)
2606 ty — €p€ At At + 2750
Eoire = = = g+ DM} A.37
wligk 2ep€sato + 60600At l bk 2ep€acty + €0£ooAt Lk ( )

At — 2t D,
2ep€aoto + EgémAt 13k

A.7 Derivation of the Recursive Convolution Update

Equations in Three Dimensions for the First Order
Debye Model

The derivation of the update equations for a dispersive medium, using the Recursive
Convolution method is related in {6, pp.125-129} for a simplified 1D derivation. The
derivation of the 3D equations would, however, require that equation (8.12) in [6} be
available in a “vector” format, to enable the 3D update equations to be derived from it.
The required derivations were done and the resulting equations are:

_ — 1
E™ = oo " A.38
€oo + X0 + 22 €so + X° +”‘/‘“d) (A.38)
At n
€e + 0+0At (V x H +2)
oo T X p
where,
0 — (e — e
X' = (6—€x)|l—e ™ ; (A.39)
0 _ _ L
A = (,—€x)|l—€ ™ (A.40)
" = ETAX+ o A4l
= E O +e 0y (A.41)
-~ - E
Vx'ﬁ"% = ~‘Z‘— i 4
- dx dy dz
H, H, H,

_(dH, dH,)\ -(dH, dH,\ - (dH, dH,
- &7y - Pl i A43
(dy dz)”(dz da:)+ (d:c ) 9

The constants that define the medium (e, €o, tp and o) were given in section 5.1.2.
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Update Eguations for Propagation in a Homogeneous Dispersive Medium in
Three Dimensions

The 3D update equations for the Recursive Convolution method may be written as fol-
lows:

Eoltfx = €oo + :(m_;_ 2 Eoliin 4y
ot l—l—ffAz ZE 21321
+e§y (H I?j': H, ﬁj?““) '6oo+X1° + 20
_eoALiz' (Hﬂﬂé - Hylzzé‘l) oo + Xl0 + 2t
Eywﬁ = €oo + )6:0+ ”At By, L5,k -
€oo x0+ crAt Z Byl a
__ei\%x (H ]n.;:z H”Izjl%j’k) €0 + Xl0 + 20t
Elfy = €0 + :({:+ Y Eelign -
+eoo +X0 + 28t mz-—UE st
+5:X$ (H l?j_f; Hy‘?jl%ﬂ“) €0 + Xlo + %
2L ()



Appendix B

Implementing a Discrete Fourier
Transform

The basic DFT equation (DFT analysts from (34, p. 401] and Euler identity from {35, p.
132]) and code fragments from [5, pp. 210-213| were used to implement a DFT that is
compuied “on-the-fly”.

In the form stated in [34] the DFT is a summation that requires knowledge of all the
previous values of the sampled signal. In the FDTD environment this is very inconvenient
as memory requirements become prohibitive. According to [5] it is conveniently possible
to perform the DFT recursively and “on-the-fly”. The basic DF'T' may be written as:

N-1
X(wg) = Zo x(n)e IeEnat (B.1)

and from here it is easily proven that the recursive form of this equation may be written
as:

X(w)V = XVt +z(N - 1)e FwrV DAL (B.2)
X(we) |Vt + z(N — 1) coswip (N — 1) At
—jz(N — 1ysinwi(N — 1)At (B.3)

A flowchart of the DFT that is used to take frequency samples in the near-field is presented
in figure B.1.

Furse, [36], presents evidence that proves the superiority of the DFT over the FFT in the
FDTD environment. According to Furse some of the reasons to use the DF'T, instead of
the FFT, in a FDTD application are:

e The basic summations for the DFT and FFT are the same, and therefore their
theoretical accuracy is equivalent.

e In the FDTD environment the DFT is often more computationally efficient than
the FFT, and requires a great deal less computing resources.
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Figure B.1: Flowchart for the DFT sampling algorithm

e The DFT may be computed at specifiable frequencies, where as the F¥'T 1s limited
by its efficient radix-2 computation.



Appendix C

Empirical Studies into Near-field
Sampling

Empirical studies were done to:

e Determine the effect of using only some planes as source for a far-field calculation.

e Determine at what distance from the object of interest (antenna in this case) such
measurements should be made to maintain a high level of accuracy.

Results for these studies are shown in figures C.1 and C.2.

Figures C.1.(a) and C.1.(b), show comparative data for far-field patterns, calculated from:

True FEKO far-field calculations. (No near-fields involved.)

The near-field data of a cube sampled around the antenna.

e The near-field data of four planes, sampled in a “loop” around the antenna, with
center positions at ¢ = 0° and # at 0°, 90°, 180° and 270° in turn.

e The near-field data of three planes, sampled with center positions at ¢ = 0° and ¢
at 0°, 90° and 270° in turn.

e The near-field data of a single plane sampled at ¢ = 0° and 8 = 90°.

The planes were all sampled at a distance of 1.1 from the antenna.

Figure C.1 clearly shows that it is advisable to specify an entire cube around the structure
of interest as this provides a much better near-field to far-field transformation.

Figures C.2.(a) and C.2.(b) compare the far-field patterns of FEKO to the far-field pat-
terns calculated from the near-field data of a cube. The cube was sampled at different
distances from the antenna each time.

Figure C.2 further specifies that the transformation of near-field to far-field is also im-
proved if the near-field is sampled closer to the structure of interest. In the FDTD envi-
ronment the only limiting factor for near-field sampling would be the physical structure
of the spatial grid. It might not be possible to sample at an arbitrary density.
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Appendix D

FEKO Dispersive Media Modelling

D.1 Introduction to FEKO Dispersive Media Modelling

FEKOQ presents two possible options for the modelling of dispersive media:

o The dielectrically layered media GF-card or

e The surface current based Dl-card .

In both these formulations the specification of a dielectric medium requires the tand
number and the relative permittivity for the medium, which is derived from the Debye
first order formula for a dispersive dielectric, as follows:

"

€

tan5 = — (D].)
[+
r Gs - EOO
ST -3 2
€ €oo T+ 1 +w2t% (D )
" —wt(}(es - 600)
= D.3

In an updated version of FEKO a feature is provided that enables the modelling of disper-
sive media. A FOR-NEXT loop was made available which may be used to implement a
frequency loop, which adjusts the relative permittivity of the medium for each frequency
point. The FOR-NEXT loop steps through the frequencies of interest and should contain
the following statements for the calculation of input impedance or Sy;:

e A statement that sets the frequency of interest. (FR-card)

Statements that calculate the relative permittivity.

A statement that sets the dielectric media properties. (GF-card or Dl-card )

A statement that specifies the voltage excitation.

A statement that specifies the saving of currents. (OS-card)
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D.2 FEKO GF-card Setup

The FEKO GF-card may be used to model dispersive media, keeping the following in
mind. Since the GF-card is used with only one medium in mind, only one dielectric layer
needs to be specified, but the GF-card requires that two levels be specified, as layer zero
is included in all analyses but is not specifiable. Level one should therefore be assigned
as the dispersive media layer. The following points should be noted in the setup of the
GF-card analysis:

e A planar multilayer Green’s function is used.
e The number of levels to specify is one.

e There is no conducting groundplane under the bottom layer.

Layer one has infinite thickness, and

The z-axis coordinate for the boundary between layers one and zero need to be set
at some height higher than the structure of interest.

D.3 FEKO DI-card Setup

The method of using the DI-card to specify a dispersive medium is somewhat more cir-
cuitous than the GF-card method. The Dl-card actually specifies the dielectric properties
for a small dielectric cavity, with the normal vectors of the cavity surfaces pointing to-
wards the volume of which the dielectric properties are assignable. The trick in using the
DI-card to model a very large volume is that a small cavity is still specified, but with its
normal vectors pointing towards the outside. This causes FEKO to model the entire area
around the cavity as a dielectric. Once the small cavity has been defined, it is quite easy
to specify the dielectric properties of the medium, using equation D.1.

D.4 Comparison between the GF-card and the DI-card

The question now arises as to which of these modelling options should be used. The
decision to use the DI-card formulation was made on the following grounds:

e The GF-card method works very slowly compared to the DI-card method.

¢ Comparative results show that both methods approximate the reflection coefficient
of a short dipole equally well. Figure D.1 shows a comparison of 51y between the
GF-card method and the DI-card method.
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Appendix E

OpenGL Visualization

One of the major drawbacks to using Fortran for scientific work is the lack of a native
visualization ability in the Fortran language. Albert Einstein was quoted as saying: “If I
can’t picture it, I can’t understand it.” In other words, Fortran may be a good language to
use for scientific work, but can not display the data in a graphical and easy to understand
and interpret format.

This problem has been overcome of late with the National Institute of Standards and
Technology’s introduction of OpenGL bindings for Fortran-90, [37]. These bindings are
easily installed onto most Fortran-90 development suites and are distributed with sufficient
examples, carefully documented in [38], to enable quick visualization of data from inside
Fortran' code. In this project OpenGL was used to create an ability for the FDTD code
to instantly graph sampled field values. This ability speeds up development by reducing
the amount of post-processing that needs to be done to visualize field values.

E.1 What is OpenGL?

Put quite simply: OpenGL is a software interface to graphics hardware. The interface
consists of about 250 commands that are used to specify objects and operations that are
required in your specific graphical implementation.

The key feature to working with OpenGL, is that the programmer only needs to know
the geometry of the structure to visualize, and the rotations or translations that have
to be performed on the image to display it in from the desired angle, [39]. With the
proper specifications OpenGL handles the remaining matrix manipulations, projections
and rendering necessary to place the image on the screen. As OpenGL was originally
implemented with the goal of creating an interface that would work on a number of
computing platforms, no generic shapes or modelling instructions are provided. Instead,
OpenGL requires that all models are built up using a standard set of geometric primitives
- points, lines and polygons.

1Refer to Appendix chapter F for a detailed description of how these bindings may be installed and
used with Compag Visual Fortran 6.1
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OpenGL performs four basic functions to render an image on the screen:

¢ Constructs shapes from geometric primitives, thereby creating mathematical de-
scriptions of objects.

e Arranges the objects in 3D space and selects the desired vantage point for viewing
the structure.

¢ Calculates the colors of the specified objects. These calculations take into account
the colors that were specified explicitly, but also the colour perturbations that are
needed when using specific lighting or texture maps.

e Converts the mathematical description of the specified objects and their associated
colors into pixels that are displayed on the screen. (Also referred to as rasterization. )

OpenGL is often referred to as a state machine, because of the many states that are set
during its operation. Features that are controlled by states remain in that state until
it is explicitly changed. Examples of states that are set are the current colour, current
viewing and projection transformations, line and polygon stipple patterns and position
and characteristics of light.

E.2 GLUT, the OpenGL Utility Toolkit

Since OpenGL was created to be independent of any specific windowing system or oper-
ating system, it does not contain functions for opening or managing windows or reading
input from the keyboard or mouse. The GLUT solves this problem and also provides a
number of useful functions to draw complicated 3D structures, such as spheres, toroids
and even a teapot. It must be mentioned that GLUT probably falls a little short when
fall-featured OpenGL functions are to be created, but it is a good starting point for the
creation of simple OpenGL functions to learn more about OpenGL.

Table E.1 presents a few of the GLUT windowing routines that were used in this thesis.

glutInit Initializes the GLUT and should be called before any
other GLUT routine

glutInitDisplayMode Specifies whether to use a RGBA or colour-index colour
model.

glutInitWindowPosition | Specifies the screen location for the upper left corner of
the new window.
glutInitWindowSize Specifies the size, in pixels, of the new window.

glutCreateWindow Creates a window with an OpenGL context. The
window is not displayed until glutMainLoop is called.

Table E.1: GLUT windowing functions
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Apart from the windowing functions, the most important GLUT function that was used
in this thesis is the display callback function, gtutDisplayFunc. Whenever GLUT de-
termines that a window needs to be redrawn, the callback function that was registered
by glutDisplayFunc is executed. This callback function thus needs to contain all the
instructions that are needed to redraw the specific window. Situations which require the
redraw of a window include:

¢ When a window is brought to front from behind another window.
e When a window is dragged across the screen.

¢ When a window 1is resized.

Once all the necessary callback and windowing functions have been specified the final
function that is required for the display of data is executed. glutMainLoop simply
initiates event processing and triggers the registered display functions. It is important to
know that glutMainLoop is actually an endless loop that is never exited. If a window
is closed the entire loop is shut down and all other displays that are controlled with fhe
GLUT are also shut down.

E.3 OpenGL Screenshots

Examples of what the OpenGL routines graph are given in figures E.1 and BE.2.

S — E————
EEEx-field at ( 6. 9.57) MEEl]| | WEyieid at ( 6. 8.57) =] E3

(a} Ex (b) Ey

Figure E.1: OpenGL ouiput windows - Examples 1,2
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@MEc-field at { 6, 9.57 MiIEd| [mSource pulse at { 6. 6, 43)
p
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(a) Bz {b) Source

Figure E.2: OpenGL output windows - Examples 3,4
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Appendix F

Compaq Visual Fortran 6.1 and
OpenGL

F.1 Introduction to Fortran and OpenGL

Compaq Visual Fortran 6.1 is one of the good Fortran compilers around today. It lends
itself to use in the field of Computational Physics and in this case Computational Electro-
magnetics. The main problem in using Fortran for projects in the aforementioned fields is
the lack of visualization ability in native Fortran programming. This document explains
how to obtain and install the OpenGL hindings for Compag Visual Fortran and how to
use them in visualization of Fortran data.

F.2 OpenGL standards and Software

The OpenGL standard and its interface to Fortran 90 is explained clearly in [37]. The
object of this section is to explain how to install the required software to exploit the
marriage between Compaq Visual Fortran and OpenGL.

The first step is to obtain the required files. The required files are contained in:

e FO0GLI.zip, downloadable from ‘
http://www.digital.com/fortran/dvi/£90gl html

e FOOGLUT .zip, downloadable from
http://math.nist.gov/mcsd/Staff/WMitchell/f90gl/software . html

s FGLEXAMP.zip, downloadable from
http://math.nist.gov/mcsd/Staff/WMitchell/£f90gl/software. . html

Once these files are obtained they need to be unzipped and configured in the following
manner.
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F.2.1 F90GLILzip

This file contains the required library (.LIB) and module (.MOD) files to implement the
OpenGL standard for Compaq Visual Fortran. The library files should by copied to
the Fortran directory DF98\LIB and the module files should be copied to the directory
DF98\INCLUDE.

F.2.2 F90GLUT.zip

This file contains a precompiled Dynamically Linked Library (.DLL) file to help Windows
implement the Graphics Library Utility Toolkit (GLUT) functions required by Fortran.
It also contains a library (.LIB) file which defines the association between GLUT and
Fortran. The DLL should be copied to the \WINDOWS\SYSTEM directory and the library
file should be copied to DF98\LIB again.

F.2.3 FGLEXAMP.zip

This file can now be unzipped into a directory of its own. It contains several sample files
which implements a variety of OpenGL features. It can be used to test the installation.
It is customary to test the system by first running the "trivial.f90" example and then the
others.

F.3 Use of OpenGL Extensions in Fortran

Although the installed files are all in directories that should be referenced directly by
Windows and Fortran they should be added to the linker specification in the appropriate
Fortran project as well. This is done as follows:

Go to Project, Settings, Link, General and add the following to the “Object/Library
modules” window: fOOGL.lib f9OGLUT.lib fOOGLU.lib glut32.lib.

These statements instruct Fortran to call the appropriate libraries when linking the
project.

F.4 Final Notes

The installation procedure described above should work, but could possibly be outdated
by changed internet addresses and filenames. In the event that the information seems to
be outdated, please reference the National Institute of Standards website! and work from
there. All information and files mentioned here originate from this site or links from this
site.

Thttp://math.nist.gov/ “mitchell



Appendix G

Code Fragments

G.1 Thin Wire Update Equations

SUBROUTINE HX_THINWIRE(i,j,k)

C Implement the Hx field updates for a thin wire with resistive or
C capacitive loading.

INTEGER i,].k

REAL Econst

C assume all spacial DELTAs are equal

Econst = 0.5*LOG(DELz/wire(i,j,k))
HXS(i,j,k) = HXS(i,j,k)
& - DTMdy/Econst*(EZS(i,j+1,k)-EZS(i,j,k))
& + DTMdz*(EYS(i, j,k+1)-EYS(i,j,k))

END SUBROUTINE HX_THINWIRE

G.2 Impedance Loaded Dipole Update Equations

SUBROUTINE EZ_THINWIRE(i,j,k)

C Implement the Ez field updates for a thin wire with resistive or
C capacitive loading.

INTEGER i,j.k

REAL Rconst, Cconst, Hconst

IF (RC_TYPE(i,j,k).NE.Q) THEN
C Dispersive media update equations

CALL EZ_THIRWIRE_DISPERSIVE(i,j,k)

ELSE
C Freespace update equations
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! Resistor position
IF ( resist(i,j,k).NE.0.0 ) THEN

Rconst = DT*DELz/EPS0/2.0/resist(i,j,k)/DELx/DELy
Hconst = 1.0/(1.0 + Rconst)
Reonst = (1.0 - Reconst)/{(1.0 + Rconst)

EZS(i,j,k) = Rconst*EZS(i,j,k)
& + Hconst*DTde*(HYS(i,j,k)—HYS(i—l,j,k))
% - Hconst*DTEdy*(HXS(i,j,k)-HXS(i,j-1,k))

! Capacitor position
ELSEIF ( capac(i,j,k).NE.0.0 ) THEN
Cconst = 1.0+(capac(i,j,k)*DELz/EPS0/DELx/DELy)
Cconst = 1.0 / Cconst
EZS(i,j,k) = EZ8(i,].k)

& + Cconst*DTEdx*(HYS(1,j,k)-HYS(i-1,j,k))
& - Cconst*DTEdy*(HXS(i,j,k)-HXS(i,j-1,k))
ELSE

! Wire only - enforce Etan=0
EZS(i,j,k) = 0.0
ENDIF

ENDIF

END SUBROUTINE EZ_THINWIRE

G.3 Dispersive Media Update Equations

SUBROUTINE EX_DISPERSE(i,j,k)
C Update for Ex in disperive media
INTEGER i, j,k, matnum

! Define material type specified in cell
matnum = RC_TYPE(i,j,k)

! Update Recursive Convolution sum
RC_SUM(1,i,j,k) = EXS(i,j,k)*RC_SPEC(matnum,2)
& + RC_SUM(1,i,j,k)*RC_SPEC(matnum,1)

! Update equation including all terms

EXS(i,j,k) = (RC_SPEC(matnum,4)+EXS(i,j,k) + RC_SUM(1,i,j.k)
& + (HZS(i,j,k)-HZS(i,j-1,k))*DTEdy
& - (HYS(i,j,k)-HYS(i,j,k-1))*DTEdz)
& /RC_SPEC (matnum, 3)

END SUBROUTINE EX_DISPERSE
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