
Basic properties of models for the

spread of HIV/AIDS

by

Angelina Mageni Lutambi

Thesis presented in partial fulfilment of the

requirements for the degree of Master of Science

in Physical and Mathematical Analysis

Supervisor

Prof. Fritz Hahne

Faculty of Science, University of Stellenbosch,

South Africa, March, 2007



Declaration

I, the undersigned, hereby declare that the work contained in this thesis is

my own original work and has not previously, in its entirety or in part, been

submitted at any university for a degree.

Signature: ...............................

Date: ................................



Summary

While research and population surveys in HIV/AIDS are well established in

developed countries, Sub-Saharan Africa is still experiencing scarce HIV/AIDS

information. Hence it depends on results obtained from models. Due to this

dependence, it is important to understand the strengths and limitations of

these models very well.

In this study, a simple mathematical model is formulated and then extended

to incorporate various features such as stages of HIV development, time delay

in AIDS death occurrence, and risk groups. The analysis is neither purely

mathematical nor does it concentrate on data but it is rather an exploratory

approach, in which both mathematical methods and numerical simulations

are used.

It was found that the presence of stages leads to higher prevalence levels in

a short term with an implication that the primary stage is the driver of the

disease. Furthermore, it was found that time delay changed the mortality

curves considerably, but it had less effect on the proportion of infectives. It

was also shown that the characteristic behaviour of curves valid for most

epidemics, namely that there is an initial increase, then a peak, and then
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a decrease occurs as a function of time, is possible in HIV only if low risk

groups are present.

It is concluded that reasonable or quality predictions from mathematical

models are expected to require the inclusion of stages, risk groups, time

delay, and other related properties with reasonable parameter values.



Opsomming

Terwyl navorsing en bevolkingsopnames oor MIV/VIGS in ontwikkelde lande

goed gevestig is, is daar in Afrika suid van die Sahara slegs beperkte inligt-

ing oor MIV/VIGS beskikbaar. Derhalwe moet daar van modelle gebruik

gemaak word. Dit is weens hierdie feit noodsaaklik om die moontlikhede en

beperkings van modelle goed te verstaan.

In hierdie werk word ´n eenvoudige model voorgelê en dit word dan uitgebrei

deur insluiting van aspekte soos stadiums van MIV outwikkeling, tydvertrag-

ing by VIGS-sterftes en risikogroepe in bevolkings. Die analise is beklem-

toon nie die wiskundage vorme nie en ook nie die data nie. Dit is eerder ´n

verkennende studie waarin beide wiskundige metodes en numeriese simulaṡie

behandel word.

Daar is bevind dat insluiting van stadiums op korttermyn tot hoër voorkoms

vlakke aanleiding gee. Die gevolgtrekking is dat die primêre stadium die

siekte dryf. Verder is gevind dat die insluiting van tydvestraging wel die

kurwe van sterfbegevalle sterk bëınvloed, maar dit het min invloed op die

verhouding van aangestekte persone. Daar word getoon dat die kenmerkende

gedrag van die meeste epidemië, naamlik `n aanvanklike styging, `n piek en
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dan `n afname, in die geval van VIGS slegs voorkom as die bevolking dele

bevat met lae risiko.

Die algehele gevolgtrekking word gemaak dat vir goeie vooruitskattings met

sinvolle parameters, op grond van wiskundige modelle, die insluiting van

stadiums, risikogroepe en vertragings benodig word.
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Chapter 1

Introduction

1.1 Motivation

HIV is the human immunodeficiency virus that causes the acquired immun-

odeficiency syndrome (AIDS). When a person is infected with HIV, the virus

enters the body and lives and multiplies primarily in the white blood cells.

These are the immune cells which normally protect us from diseases. The

hallmark of HIV infection is the progressive loss of a specific type of immune

cell called T-helper or CD4 cells. As the virus grows, it damages or kills

these and other cells. Eventually, this leads to AIDS, a disease caused by the

break - down of the body’s immune system making it unable to fight off op-

portunistic infections and other illnesses that take advantage of a weakened

immune system.

HIV emerged in 1980s. It is a sexually-transmitted disease which occurs
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throughout the world. Its greatest impact is found in Sub-Saharan Africa.

In 2005, the Joint United Nations Programme on HIV/AIDS (UNAIDS) and

the World Health Organization (WHO) estimated 40.3 million people to be

living with HIV in the world, 4.9 million newly infected and 3.1 million AIDS

deaths occurred in the year. Of these, 25.8 million lived in Sub-Saharan

Africa with 3.2 million new infections and 2.4 million AIDS deaths occurring

in the same year [1]. These estimates have increased from the numbers

recorded in 2003 under which 37.5 million were living with HIV, with 4.6

million newly infected and 2.8 million AIDS deaths. With these estimates,

the disease is seen to continue destroying the world’s population especially

the Sub-Saharan region.

The forementioned data on the spread of the HIV/AIDS epidemic are esti-

mate values from models derived from scarce surveys. In African countries

little research and few population or household surveys are done to get the

real picture of the spread and effect of the HIV/AIDS epidemic in the pop-

ulation. These countries thus rely much on estimates produced by mathe-

matical models. In South Africa, for example, data from models such as the

ASSA model have been showing that by the start of the year 2004, about

4.9 million HIV infected individuals were estimated. On the other hand the

UNAIDS came up with 5.6 millions HIV infected individuals [2]. The need

for more population surveys and research is thus evident. More surveys also

help in improving models and finding model parameters which lead to better

estimates.

Since HIV research is still not well developed in Sub-Saharan Africa, mathe-

matical models provide the best guide for various aspects of the spread of the

disease. Apart from providing this alternative route, mathematical models
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also provide researchers with almost instant results on studies that would

have required several months or years to conduct in the populations. They

thus help researchers and Governments to make complex choices on mea-

sures to control the transmission of the virus to the susceptible individuals.

Mathematical models are constantly improving using the available data.

It is said that 95% of the world’s HIV infected population [3] resides in

developing countries. The accuracy of such statements depends clearly on

how well the disease is modelled in less developed countries.

1.2 Thesis Objective

HIV prevalence estimates and projections based on fitting prevalence data

are relatively insensitive to the specification of demographic rates such as

birth and death rates, but absolute population size is more dependent on

these rates. For risk groups where the demography is poorly specified, es-

timates of HIV cases or AIDS deaths must therefore be interpreted with

caution. To generate a widely applicable model of the HIV epidemic much

complexity has been ignored. The priority for improving estimates is to im-

prove the coverage of sentinel sites, to understand the biases in sentinel data,

clinical and biological information, socio-economic diversity, and to include

behavioural data in surveillance. The question arises;

As the quality of data improves, can models that inform policy produce

quality information on HIV/AIDS?
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This study investigates aspects of the above question. To do that, we develop

and study some simple HIV/AIDS spread models that may help us in under-

standing uncertainties that might occur in models and give a general idea on

how one might get different results, or draw wrong conclusions, depending

on the factors taken into account by the model.

The broader goal of this thesis is to make use of mathematical models to

explore how different properties when incorporated in models may change

estimates. If these properties exist among populations;

What contribution do they make in the spread of the disease?

This study also addresses this question.

1.3 Thesis outline

Having given the motivation of this work and its general objective, the rest

of this thesis is structured as follows.

In chapter 2, a simple model is developed using ordinary differential equa-

tions to study the dynamic behaviour of HIV in the community. Since clinical

studies have been showing the progression of HIV infected individuals from

one stage to another, this model is extended to include stages of HIV pro-

gression. The results are compared to reveal the effect of introducing stages

in HIV models.

In chapter 3, the staged model developed in chapter 2 is extended to include

a time delay in AIDS death occurrence. The model is then used to investigate
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the effects of the delay on estimates.

Chapter 4 extends the simple single stage model developed in chapter 2 to

include risk groups, with different risks of contracting HIV. The very large

effect this has on predictions is explained and disscussed.

In chapter 5, we summarize our findings and give some future directions

which follow naturally from our work.



Chapter 2

The effect of Stages of
progression in HIV Models

In this chapter, two models for the spread of the HIV epidemic occur-

ring via any transmission mechanism, except of mother-to-child transmis-

sion (MTCT), are formulated and studied. The two models have different

characteristics. The first model is a simple model that describes the basic

dynamic behaviour of the spread of HIV epidemic in the population and the

second model is an extension of the first model to cater for the concept of

HIV progression of an infected individual. The main idea of this chapter is

based on the study done in Rakai - Uganda between 1994− 1999 [4, 5]. This

study revealed the correlation between the stages of HIV infection and the

transmission of the viruses to uninfected individuals. The study found indi-

viduals in the primary stage to be the leading group in the spread of HIV.

This finding can not only be used to study how important stages of HIV

infection are in the spread of the epidemic, but it is helpful in evaluating the
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efficiency of HIV spread models that are used in projecting countries’ HIV

burden as well. Therefore, this chapter investigates the effects that occur if

stages are included in HIV models.

2.1 Introduction

The study of an epidemic, such as HIV, and its spread process in any commu-

nity, is different to an investigation in many other sciences. Data can not be

obtained through experiments in the population, but can only be obtained

from surveys and results of which are found in published or unpublished doc-

uments. These data are often not complete and not accurate and may vary

with respect to methods used to collect them. Mathematical modelling and

numerical simulation play an important role in analyzing the behaviour of

the epidemic, measuring its past, present and future effect in a society.

It has been well established that HIV transmission is not uniform. It differs

from one stage to another [4, 5, 6]. Hence epidemiologic modelling must use

stages of HIV progression in order to capture the dynamics of transmission

of the disease in the population.

As an infected person progress from one stage of HIV infection to another,

the level of transmitting the viruses to others changes. Therefore, the trans-

mission dynamics of the viruses can be categorized according to the stages of

HIV progression of an infected individual. These stages of disease progression

are divided into three phases [7, 8] as it is explained below:

Primary infection stage

This stage follows soon after the initial infection when infectiousness
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Movement

Primary Asymptomatic AIDS
DeathNew Infection

Figure 2.1: A schematic diagram for HIV progression of an infected individual

first rises and then drops. Seroconversion1 typically occurs well before

the end of the primary stage. During this phase the virus is distributed

to many different organs of an infected individual.

Asymptomatic stage

During this period infectiousness is low, it produces few, if any, symp-

toms and the patient’s blood contains a relatively small viral load, and

antibodies to the virus. These antibodies are the basis of the most

common test for HIV infection.

Symptomatic or AIDS stage

It is a period (1 − 2 years until death in cases without treatment) for

which infectiousness rises again. The symptomatic stage begins while

individuals are relatively healthy and active, although it also includes

the more severe AIDS phase for which they develop AIDS and die.

Viral levels also vary greatly between these three stages. During the period

1Seroconversion period is defined as a time during which a person who has an infection

does not test positive for it. This period occurs before a person has produced a high enough

number of antibodies for a test to detect the condition. The length of the seroconversion

period depends on the type of infection. During the seroconversion period, an infected

person can transmit the disease or condition even if he or she does not have signs of the

infection.
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of primary infection, viral levels are typically high. The viral levels drop

as one enters the asymptomatic period, followed by a symptomatic/AIDS

stage during which the viral loads are extremely high. This has been evident

from a number of studies. For example, a community-based study for which

consenting couples, whether discordant for HIV or not, were prospectively

followed for 30 months to evaluate the risk of transmission in relation to viral

load and other characteristics in Rakai - Uganda. This study discovered that

the risk of infection increases as the HIV infected person’s viral load increases

[4]. In some other studies [9] it was postulated that the level of infecting for

individuals carrying HIV is dependent on clinical status of the individual.

Most of the infections an infected person causes occur shortly after infection,

after which infections become low until the immune system begins to be

seriously affected.

This variation in the levels of transmitting the disease over time can be ex-

plained using mathematical models in which infected individuals sequentially

pass through a series of stages as described above [5, 4]. Thus, in this regard

the present chapter tries to address the following questions: What effect does

the transmission rate have on the spread of the epidemic and its predictive es-

timates? Does the survival period of infected individuals have any effect? In

a situation where infected people progress from one stage to another, some of

which have indicated to have more effect in terms of transmission, we desire

to address the following question: What is the role of incorporating stages

in models that give predictions of the HIV/AIDS burden given that all HIV

infected persons pass through different stages in developing AIDS?

Currently we are faced with the need to predict the dynamics and transmis-

sion of transmitted diseases with a greater accuracy and over longer periods
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of time, and more often with limited empirical data. In most epidemiological

models, the assumption of constant total populations is often made. This

assumption is only reasonable if the disease studied spreads for a short time

only with limited effects on mortality and births. The relevance or validity of

this assumption becomes not applicable when dealing with long time diseases

such as HIV/AIDS. In such diseases, the effects of changes in population size

and disease induced mortality are far from negligible and in fact can have a

crucial influence on the dynamics of the disease.

Various mathematical models of diseases have dealt with a variable popula-

tion size [10, 11, 12, 13, 14, 15]. The interactions between the epidemiological

and demographic processes yield new features which are not found in epi-

demiological models with constant population size. For example, when the

disease persists in the population, the disease related mortality and the re-

duced reproduction of infected individuals can reduce the growth rate or

change a growing population into a population with a stable or even a de-

creasing size [16].

The HIV/AIDS epidemic has known to have a large impact in the population

as a whole [1, 3] in some regions of the world. Considering a constant pop-

ulation might be not realistic as it is in some long time diseases. However,

this assumption in the context of HIV/AIDS can be made in countries where

the prevalence of HIV is low. Our study is therefore considering a variable

size population.
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2.2 The Simple HIV epidemic model

This section presents a simple model for the spread of HIV. It might not be

realistic, but we present and analyze it so that other more complex models

of HIV spread can be easily understood.

2.2.1 Model formulation

The HIV/AIDS model formulated in the present section considers the whole

population in a single group. The assumption is made that the susceptible

population, Z(t) is homogeneous and the variations in risk behaviour, and

many other factors associated with the dynamics of the HIV spread are not

considered. The model does not contain assumptions about the mechanism of

infection. It could be homosexual or heterosexual or any other means. How-

ever, the assumption that no fertility reduction for HIV infected individuals

(Y (t)) is made and vertical transmission, (i.e. mother to child transmission)

is ignored.

The demography of the model is described by the rates of entry and exit

of individuals from the population. The larger population of susceptible

individuals is assumed free of HIV initially and together with Y (t) at time t

provide a large source of uninfected individuals entering the population. The

parameter b is the rate at which new individuals are recruited through births

into the susceptible population. People exit from the population at a rate

µ for which 1/µ is the life expectancy of individuals when the population

is free from the invasion of the disease. The parameter γ is the rate at

which the infected individuals die of the HIV/AIDS disease. In this model,
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an exponential decrease of the infected group due to disease mortality is

assumed.

The dynamics of the model are governed by the following system of differen-

tial equations:

dZ(t)

dt
= bN(t) − r

Z(t)Y (t)

N(t)
− µZ(t)

dY (t)

dt
= r

Z(t)Y (t)

N(t)
− µY (t) − γY (t) (2.1)

where r is the disease transmission rate and N(t) is the total population

given by N(t) = Z(t) + Y (t). Therefore the total population is given by

dN(t)

dt
= (b − µ)N(t) − γY (t) (2.2)

In a real situation, in most countries, the total populations varies. This is

because the births are not equal to the deaths (b 6= µ). However, even if b = µ

the population does not remain constat because of increased mortality due

to AIDS which is responsible for the term −γY (t). Therefore we formulate

this model for this requirement.

All parameters in the above model are positive and it is simple to show that

the system is well posed in the sense that if the initial data (Z(0), Y (0)) are

in the two dimension positive region, then the solutions will be defined for

all t ≥ 0 and remain in this region.

Due to the fact that the total population varies, it is convenient to work

with the proportions of the subgroups in the population. With varying pop-



2.2. The Simple HIV epidemic model 13

ulation, steady states are not expected in any parts of the population but

they may occur for the proportions, therefore we formulate the model above

(2.1) into equations for the proportions. We define z(t) = Z(t)/N(t) and

y(t) = Y (t)/N(t) and obtain the following system that describes the dynam-

ics of the proportion of individuals in each class

dz(t)

dt
= b − rz(t)y(t) − bz(t) + γz(t)y(t)

dy(t)

dt
= rz(t)y(t) − by(t) − γy(t) + γy2(t) (2.3)

For which the system (2.3) is positively invariant in the region

D = {(z, y) : z(t) ≥ 0, y(t) ≥ 0, z(t) + y(t) = 1}

It is observed from system (2.3) that the system does not involve the total

population N(t) at all, and therefore the behaviour of the proportions can

be analyzed without involving N(t).

Note that the population sizes of each class can be obtained from the equation

dN(t)

dt
= {b − µ − γy(t)}N(t) (2.4)

which integrates to

N(t) = N0 exp

{

(b − µ)t − γ

∫ t

0

y(t)dt

}

. (2.5)

Using the assumption we made above of constant demographical parameters

of births and deaths, the variations and dynamics of the total population
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are strongly governed by the proportions of those who are infected in the

population (see equation (2.5)).

2.2.2 Model Analysis

The analysis of this model seeks to deriving stability conditions of the equi-

librium points. Thus, we first define an equilibrium point as follows:

Definition 2.2.1 Given a system of differential equations (Ẋ(t)), an equi-

librium point of this system is a point in the state space for which X(t) = X
∗

is a solution for all t.

In the standard approach of calculating the equilibrium points, the deriva-

tives simultaneously need to go to zero. In a variable population where all

subpopulations are changing, this is not the case. This approach is not ap-

plicable in the system under consideration. However, for the proportions,

the derivatives can be zero simultaneously. Thus, we calculate equilibrium

points and perform the analysis using the system with proportions.

A threshold factor,

χ =
r

(b + γ)
(2.6)

is obtained using the system in equation (2.1) above. It is simply a product

of the transmission rate r and 1/(b + γ). It is a dimensionless quantity that

represents the average number of secondary infections caused by an infective

individual introduced into a completely susceptible population. Note that

χ is a measure of the potential of a disease to spread in a population but
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it is not a measure of the rate at which the disease will spread. If χ < 1,

the disease cannot successfully invade the host population, and eventually

dies out; if χ > 1, however, the disease can invade, therefore producing an

epidemic outbreak that in many cases ends up in the establishment of an

endemic disease as a steady state in the population.

In the following theorem, we state and prove our result about the equilibrium

points.

Theorem 2.2.2 For r > γ, the system in (2.3) always has a disease free

equilibrium DFE = (1, 0) if χ < 1 and a unique endemic equilibrium point

EEP = (z∗, y∗) with z∗ = b/(r − γ) and y∗ = r(χ− 1)/χ(r − γ) exist only if

χ > 1.

Proof. From the second equation of (2.3) with the right hand side equal to

zero at the large t, it can be seen that the equilibrium points must satisfy

y∗ = 0 (2.7)

or

y∗ =
r − (γ + b)

(r − γ)
(2.8)

if

z∗ = 1 − y∗. (2.9)

Substituting (2.7) and (2.8) in (2.9) or in the first equation in (2.3) with the

right hand side equal to zero gives z∗ = 1 or z∗ = b/(r − γ) respectively.

But (2.6) can be rewritten as b + γ = r/χ and substituting it in (2.8) gives

y∗ = r(χ − 1)/χ(r − γ). If χ < 1, then the only equilibrium in the region
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D is DFE = (1, 0); if χ > 1 then the only equilibrium in D is EEP =

(b/(r−γ), r(χ−1)/χ(r−γ)). Therefore, the model has only two equilibrium

points. �

The local stability of the equilibria of the system in (2.3) is analyzed by

linearizing the system through the introduction of small perturbations (ζi,

i = 1, 2) at the equilibrium points as

z = z∗ + ζ1

y = y∗ + ζ2

and Substituting them in (2.3) while discarding terms of higher order than

one (first) since ζ1 and ζ2 are very small quantities gives

dζ1

dt
= (γy∗ − b − ry∗)ζ1 + (γz∗ − rz∗)ζ2

dζ2

dt
= ry∗ζ1 + (rz∗ − (b + γ) + 2γy∗)ζ2 (2.10)

under which the coeffients of the perturbations gives the following Jacobian

matrix which is then used to study the stability of the equilibria:

J =





γy∗ − b − ry∗ γz∗ − rz∗

ry∗ rz∗ − (b + γ) + 2γy∗



 (2.11)

At the disease free equilibrium, equation (2.11) will have the following char-

acteristic equation:
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λ2 − (r − 2b − γ)λ + (b2 + bγ − br) = 0 (2.12)

with eigenvalues λ1 = −b and λ2 = r−(b+γ). By looking at the eigenvalues,

one can easily see that the disease free equilibrium is stable if r < b + γ for

which the two eigenvalues are real and negative under which χ < 1 and

unstable if r > b+γ (χ = r/(b+γ) > 1) making the two eigenvalues to be of

opposite signs with one solution (λ1) approaching the equilibrium while the

other (λ2) moving away from the equilibrium point enabling the disease to

spread in the population.

Turning to the endemic equilibrium and studying its stability; the Jacobian

matrix (J |EEP ) evaluated at an endemic equilibrium point gives the following

characteristic equation:

a2λ
2 − a1λ + a0 = 0 (2.13)

with

a2 = 1 (2.14)

a1 =

{

r(χ − 1)

χ(r − γ)
(3γ − r) +

rb

r − γ
− 2b − γ

}

(2.15)

a0 =
r2(χ − 1)

χ(r − γ)

{

2γ2

χ(r − γ)
+ γ + b + br

}

+ bγ + b2 − B (2.16)

where

B =

[

r3(χ − 1)

χ(r − γ)2

{

b +
2γ(χ − 1)

χ

}

+
γr(χ − 1)

χ(r − γ)
(γ + 3b) +

rb2

r − γ

]
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If χ > 1 this implies that r > γ + b and therefore we can easily see that the

trace, tr(J |EEP ) = a1 < 0 since

{

3γr(χ − 1)

χ(r − γ)
+

rb

(r − γ)

}

<

{

r2(χ − 1)

χ(r − γ)
+ 2b + γ

}

and the determinant, det(J |EEP ) = a0 > 0 since

{

r2(χ − 1)

χ(r − γ)

} {

2γ2

χ(r − γ)
+ γ + b + br

}

+ bγ + b2 > B,

thus by the Routh-Hurwitz criterion, all the eigenvalues have negative real

parts and therefore the endemic equilibrium point is stable. On the other

hand if χ < 1, then a1 < 0 and a0 < 0 while a2 > 0 thus, this makes

one of the eigenvalue to have a positive real part. Therefore the endemic

equilibrium point is unstable

2.3 The simple HIV staged model

The model studied in section (2.2) is extended to include stages of HIV

progression of which an infected individual passes through. The infected

persons are assumed to undergo a three stage progression of medical states

that may be classied on the basis of CD4 cells counts per cubic milliliter as

explained in section (2.1).

Lin et al [17] have studied a similar model that involved stages of HIV pro-

gression in a general way. This model was analyzed mathematically and

some stability conditions under which the equilibrium points are stable were

derived. In a similar manner, McCluskey [18] also studied a similar model
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but with an extension to include the effect of antiretroviral therapies (ART).

Under the use of treatment therapies, an infected individual returns to the

previous stages of HIV progression.

Approaching such a problem or a model solely by mathematical analysis, one

can face difficulties in understanding the practical part of the disease. It is

not possible to know whether the conditions derived in a pure mathematical

analysis have meaning or bring sense in respect to the disease in question

when it comes to a practical application. For instance, under stability anal-

ysis; one can claim the disease to have approached its equilibrium (clearance

or persistence). This might happen in some cases after a very long time has

elapsed which might however not be relevant to the epidemic and meaningful

to the society. With the numerical approach, one is able to observe whether

the disease clearance or persistence occurs within a range of time that have

meaning in relation to the kind of epidemic studied and be able to evaluate

whether the model developed is good or not. We approach the problem from

both the mathematical analysis and the numerical simulation of the model

side. This makes it different from what has been done before.

2.3.1 The description of the model

In the present model, homogeneity of susceptible individuals Z(t) is assumed

again, and also the inflow of individuals from recruitment rate b and outflow

due to natural death rate µ is maintained. The infected population is as-

sumed to be subdivided into two subgroups Y1(t) and Y2(t) according to

different infection stages of the HIV disease such that infected susceptible in-

dividuals enter the first subgroup Y1(t) and then fairly quickly progress from
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subgroup Y1(t) to Y2(t). The rate of progression from Y1(t) to Y2(t) is ρ. This

rate is assumed to be a constant that is derived from the time (1/ρ) that an

infected individual spends (waiting times) in the primary stage. Perelson et

al [7, 8] described the waiting times in the first stage of HIV progression to

be of about 2 to 10 weeks. The rate at which infected individuals in Y2(t)

become removed or sexually inactive or uninfectious due to end-stage disease

(becoming sick) is γ. Individuals in Subgroup Y2(t) are said to stay there for

a period of 10 to 15 years [7, 8] which sets the value of 1/γ.

The dynamics of the transmission of the HIV epidemic are governed by the

following nonlinear system of ordinary differential equations:

dZ(t)

dt
= bN(t) − r1

Z(t)Y1(t)

N(t)
− r2

Z(t)Y2(t)

N(t)
− µZ(t)

dY1(t)

dt
= r1

Z(t)Y1(t)

N(t)
+ r2

Z(t)Y2(t)

N(t)
− µY1(t) − ρY1(t) (2.17)

dY2(t)

dt
= ρY1(t) − µY2(t) − γY2(t)

In the model above (2.17), the total active population alive at time t is given

by:

N(t) = Z(t) + Y1(t) + Y2(t). (2.18)

The parameters r1 and r2 determine transmission rates for interactions be-

tween the susceptible individuals and infected individuals in Subgroups Y1(t)

and Y2(t) respectively. In a study done by Quinn et al [4] in Uganda showed

that the transmission of the viruses from individuals in the primary stage

to the individuals in the susceptible group is higher than those in the later

stages, and therefore r1 > r2.
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For convenience in the analysis and for reasons already given in section

(2.2), we change the system of differential equations (2.17) above to frac-

tions/proportions of the total population z(t) = Z(t)/N(t), y1(t) = Y1(t)/N(t)

and y2(t) = Y2(t)/N(t) in the susceptible and infectious classes respectively.

We have a variable population size, and the relations are:

dz(t)

dt
=

1

N(t)

[

dZ(t)

dt
− z(t)

dN(t)

dt

]

dy1(t)

dt
=

1

N(t)

[

dY1(t)

dt
− y1(t)

dN(t)

dt

]

(2.19)

dy2(t)

dt
=

1

N(t)

[

dY2(t)

dt
− y2(t)

dN(t)

dt

]

where

dN(t)

dt
= {b − µ − γy2}N(t) (2.20)

integrating to

N(t) = N0 exp

{

(b − µ)t − γ

∫ t

0

y2(t)dt

}

. (2.21)

The dynamic behaviour of the total population in this model is mainly gov-

erned by the group of people who are in the asymptomatic stage of HIV

infection (y2(t)). This is because it is only in this group that people die of

AIDS which is signified by the higher death rate γ.
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Having done some algebra the proportions of the Subpopulations are:

dz(t)

dt
= b − r1z(t)y1(t) − r2z(t)y2(t) − µz(t) − z(t)(b − µ − γy2(t))

dy1(t)

dt
= r1z(t)y1(t) + r2z(t)y2(t) − (ρ + µ)y1(t) − y1(t)(b − µ − γy2(t))

dy2(t)

dt
= ρy1(t) − (γ + µ)y2(t) − y2(t)(b − µ − γy2(t)) (2.22)

with

z(t) + y1(t) + y2(t) = 1 (2.23)

The above system of equations (2.22) have a feasible region which is positively

invariant given by:

U = {(z(t), y1(t), y2(t)) : z(t) ≥ 0, y1(t) ≥ 0, y2(t) ≥ 0, z(t) + y1(t) + y2(t) = 1}

(2.24)

with all parameters being positive.

Using the model we study here, one can simply measure both the incidence

and the prevalence of the disease. We define the incidence of the disease as

the proportion of new cases occurring in a population during a defined time

interval. We calculate it as follows:

I =
y1(t)

〈t〉
(2.25)

with I being the incidence and 〈t〉 is the average time spent in the primary

stage defined as
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〈t〉 =

∫

∞

0
t exp (−(ρ + µ)t)dt

∫

∞

0
exp (−(ρ + µ)t)dt

(2.26)

We also define the prevalence as the proportion of infectives in a population.

While the prevalence is given by y1 + y2, one can easily assume that the

prevalence is y2 because the time spent by newly infected individuals in the

primary stage is so short.

2.3.2 Analysis of the model

This model has two infective groups. We determine the threshold quan-

tity of this model using the Next-generation technique as presented by Van

Den Driessche [19] for compartmental models especially those with several

infected groups as shown in Appendix A.

The spectral radius of equation (A.6) is the maximum value of the eigenvalues

which gives the effective threshold quantity of the model as:

χ = r1

(ρ+b)
+

{

ρ

ρ+b

}

r2

(γ+b)
(2.27)

In this case, the threshold quantity of the model χ is a linear combination

of the threshold quantity of the Subgroups of the infected individuals in

the primary stage, Ry1
= r1/(ρ + b) and in the asymptomatic stage, Ry2

=

r2/(γ + b) of the disease progression. A factor κ = ρ/(ρ + b) can be defined

as the probability that an infective individual will leave the primary stage of

infection and enter the next stage of the asymptomatic infection.
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Because of variable population size, system (2.22) is more complicated for

calculating the equilibrium points especially the endemic equilibrium. There-

fore a different approach from the standard method is used under which the

dynamic behaviour of the population size (equation (2.21)) is considered.

But, before we do this, our first result is a theorem concerned with the exis-

tence of this equilibrium. For this, we use our threshold obtained in equation

(2.27). (Our proof to this theorem is similar to the one given by Lin et al

[17]). Therefore, we start with the following definition:

Definition 2.3.1 If as t → ∞ an equilibrium is reached, we can define the

equilibrium values as y2(t) → y∗

2, y1(t) → y∗

1, and z(t) → z∗.

Theorem 2.3.2 The system in (2.22) has a unique endemic equilibrium

point if the threshold quantity χ > 1 and a disease free equilibrium other-

wise.

Proof. When the equilibrium is attained, the right hand side of system (2.22)

become equal to zero. Using the third equation of equation (2.22) we obtain

y∗

1 =
(γ + b − γy∗

2)y
∗

2

ρ
. (2.28)

Substituting (2.28) in the second equation in (2.22) with (2.23) gives:

a0y
∗4
2 + a1y

∗3
2 + a2y

∗2
2 + a3y

∗

2 = 0 (2.29)
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where

a0 = −γ2r1

a1 = −(2γr1(γ + b) − r1ργ − r2ργ + γ2ρ)

a2 = −(r1ργ + r1(γ + b)2 + r1ρ(γ + b) + r2ρ(γ + b) + r2ρ
2 − γρ(ρ + b) − γρ(γ + b))

a3 = ρ(ρ + b)(γ + b) [χ − 1] (2.30)

Equation (2.29) gives y∗

2 = 0 always.

If y∗

2 6= 0, then (2.29) becomes

F (y∗

2) = a0y
∗3
2 + a1y

∗2
2 + a2y

∗

2 + a3 = 0 (2.31)

But we know that y∗

2 ∈ (0, 1), thus F (0) = ρ(ρ+ b)(γ + b) [χ − 1] and F (1) =

r2ργ−γ2(r1+ρ)−(γ+b)2(ρ+b)
[

χ + ρ

γ+b

]

. If χ < 1 then F (0) < 0 & F (1) < 0;

if χ > 1 then F (0) > 0 & F (1) < 0. But also, F
′

(y∗

2) < 0 since a0 < 0,

a1 < 0, and a2 < 0 which makes the end points F
′

(0) < 0 and F
′

(1) < 0 for

0 ≤ y∗

2 ≤ 1. Thus, this shows that F (y∗

2) is a decreasing function. Therefore,

there is a unique root y∗

2 which accounts for the endemic equilibrium when

χ > 1 and a disease free equilibrium otherwise. �

If the system approaches a disease free equilibrium, then
∫ t

0
y2(t)dt → c0

(constant) asymptotically and the total population in equation (2.21) change

according to

N(t) = N0e
(b−µ)te−γc0 (2.32)

But in this case, c0 = 0. Therefore, if b−µ < 0, then N(t) decays asymptot-

ically exponentially, N(t) remains constant if b − µ = 0, and grows asymp-
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totically exponentially if b − µ > 0. Thus, since y2(t) → 0 asymptotically,

then from the third equation in (2.22), y1(t) → 0 asymptotically and also by

(2.23) and (2.24), z(t) → 1 asymptotically. Therefore, by 2.3.1, the disease

free equilibrium P0 = (z∗, y∗

1, y
∗

2) = (1, 0, 0).

If the system approaches the endemic equilibrium as it is proved in theorem

2.3.2, then
∫ t

0
y2(t)dt → c1 + y∗

2t asymptotically with c1 =
∫ T

0
y2(t)dt − y∗

2T

therefore from (2.21) we have

N(t) = N∗

0 ect (2.33)

where N∗

0 = N0e
c1 and

c = b − µ − γy∗

2 (2.34)

N(t) decays asymptotically exponentially if c < 0, remains constant if c = 0

and grows asymptotically exponentially if c > 0. Since 0 < y∗

2 < 1, then

c ranges from b − µ − γ when y∗

2 → 1 to b − µ when y∗

2 → 0 (i.e c =

(b − µ − γ, b − µ)).

From (2.34), we obtain y∗

2 = (b − µ − c)/γ and Substituting this in the

third equation in (2.22) we have y∗

1 = (µ + γ + c)(b − µ − c)/γρ. By (2.23),

z∗ = γρ− (µ + γ + c− ρ)(b− µ− c)/γρ which gives the endemic equilibrium

Pe = (z∗, y∗

1, y
∗

2).

To analyze the stability of the equilibria, we establish a Jacobian matrix J

and employ the Routh-Hurwitz technique to study the local stability of the

equilibria. The Jacobian matrix of the system (2.22) is as follows:
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J =











−b − r1y
∗

1 − r2y
∗

2 + γy∗

2 −r1z
∗ (γ − r2)z

∗

r1y
∗

1 + r2y
∗

2 r1z
∗ − (ρ + b) + γy∗

2 r2z
∗ + γy∗

1

0 ρ −(γ + b) + 2γy∗

2











(2.35)

At the disease free equilibrium P0, (2.35) becomes

J |(P0) =











−b −r1 (γ − r2)

0 r1 − (ρ + b) r2

0 ρ −(γ + b)











(2.36)

From the matrix in (2.36), we find that λ1 = −b and the rest of the eigen-

values λ2 and λ3 are obtained from

∣

∣

∣

∣

∣

∣

r1 − (ρ + b) − λ r2

ρ −(γ + b) − λ

∣

∣

∣

∣

∣

∣

(2.37)

which gives a characteristic equation

λ2 − (r1 − 2b − ρ − γ)λ + (γ + b)(ρ + b) {1 − χ} = 0 (2.38)

The roots of the characteristic equation above give the other two eigenvalues

λ2,3 =
1

2

{

(r1 − 2b − ρ − γ) ±
√

(r1 − 2b − ρ − γ)2 − 4([(γ + b)(ρ + b) {1 − χ}]
}

of the Jacobian matrix obtained at the disease free equilibrium.
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Clearly we see from the eigenvalues that λ1 < 0 always, and if χ < 1 then

λ2,3 < 0, therefore the disease free equilibrium is stable. If χ > 1, then either

one or both λ2,3 > 0 and the disease free equilibrium is unstable. This is

true because χ > 1 allows the disease to spread in the population. If the

disease free equilibrium could be stable, then the endemic equilibrium could

not exist because the epidemic would die out before spreading in the entire

population.

We study the stability of the endemic equilibrium point by linearizing our

system around Pe to obtain the following characteristic equation:

a0λ
3 − a1λ

2 − a2λ − a3 = 0 (2.39)

where

a0 = 1

a1 = a + d + g

a2 = cab1 + ρf − g(d + a) − ad

a3 = g(ad − bca) + ρ(be − af)

with a = (γ − r2)y
∗

2 − r1y
∗

1 − b, b1 = r1y
∗

1 + r2y
∗

2, ca = −r1z
∗, d = r1z

∗ +

γy∗

2 − (ρ + b), e = (γ − r2)z
∗, f = r2z

∗ + γy∗

1, and g = 2γy∗

2 − (γ + b). Since

all model parameters are positive, then it is clear that ca < 0, b1 < 0, d < 0,

and f > 0. But also if γ < r2 the condition that makes χ > 1, then, a < 0,

g > 0, and e < 0. Under these conditions, a1 < 0, a2 < 0, and a3 < 0 with a0

being always positive. By the Routh-Hurwitz criteria and the Descartes rule

of signs, the characteristic equation in (2.39) has roots with only negative

real parts and hence the endemic equilibrium point Pe is stable. If γ > r2,
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then a > 0, g < 0, and e > 0 and therefore, the endemic equilibrium point is

unstable.

2.4 Numerical simulation

2.4.1 Parameter values

We split the exit rate from the population into two parts; the natural death

rate, µ and the increased mortality due to AIDS, γ. We derive the values

of µ from the life expectancy 1/µ of people in a given country. In Sub-

Saharan Africa for example, majority of the young adults are expected to

live an average of 50 years [20]. Thus µ = 0.02 years−1 with the birth rate

being b = 0.03 on average for a general case might be suitable. Some cases

where AIDS has already shown its impact, for example Swaziland for which

b = µ = 0.02; Botswana and Zambia where there are higher mortality rates

than birth rates (b = 0.02 and µ = 0.03) are ignored, as the rates are due to

AIDS.

The survival times of a HIV/AIDS infected individual depends on factors like

gender, vaccination and treatment, poverty and wealth, nutrition, biological

make up and the region where the person lives. In Sub-Saharan Africa, a

region where the large majority of HIV infections are spread heterosexually

and the epidemic is more mature, there is a substantial difference in age of

infection between men and women, with women becoming infected at an ear-

lier age [21, 22, 23]. Furthermore, an approximate of 9.4 years survival time

for women and 8.6 years for men [24] has been estimated by the UNAIDS.

Vaccination and treatment of infected persons has also shown to cause a de-
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lay in developing AIDS through reduction of the number of copies of viruses

in the body [25]. This has led to an increase of survival rates of HIV positive

individuals.

Perelson et al [7, 8] has shown that an infected individual stays in the asymp-

tomatic stage of HIV progression before developing AIDS for about 10 to 15

years. In the AIDS stage an infected individual remains only for a period

of about 1 to 2 years, as it has been revealed from the Rakai study [5]. So

this confirms that the survival period of a HIV infected person can be less

or more than 10 years.

Understanding how infectious a person can be when infected, and estimating

the rate at which this person is able to transmit HIV to others, has been

difficult in the scientific community since one can not perform experiments.

Rapatski et al [6] using data from studies which were carried out in the Gay

community in San Francisco City in the USA has shown using mathematical

models (finding the best fit to data) that transmission rate of the viruses

by stage differs when an infected individual progresses from one stage to

another. The findings from the model showed that infected persons in the

primary stage are 12 times more likely to infect the susceptible than those

in the asymptomatic stage.

On the other hand, in communities such as Sub-Saharan Africa where het-

erosexual transmission is the main mode of HIV transmission, a Rakai study

by Wawer et al [5] and Quinn et al [4] presented the analysis which provides

the first empirical data on the substantial variation in transmission by stage

of HIV infection after seroconversion. The study also showed that the rate

of HIV transmission within the first two and a half months was almost 12

times higher than that observed in chronic couples. This presents observed
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evidence that the HIV transmission rate for those individuals in the pri-

mary stage of HIV progression (r1) is higher than that of individuals in the

asymptomatic stage (r2).

The transmission rate, r as used in the simple model is estimated using the

second equation in (2.3) at the steady state as

r =
b + γ − γy∗

1 − y∗
(2.40)

where y∗ is the endemic equilibrium state of infections which can take any

value in the interval (0, 1). The minimum value that r can take is b+γ when

y∗ → 0 and if y∗ → 1 then r → ∞. Therefore, our model shows that r can

take any value in (b + γ,∞).

According to our staged model, r1 can be calculated as a function of y∗

2.

Writing equation two in (2.22) at the steady state in terms of y∗

2 with r2 =

r1/12 gives

r1 =
(b + ρ − γy∗

2)Φ

{1 − (Φ + 1)y∗

2}Φ + {1 − (Φ + 1)y∗

2} /12
(2.41)

with Φ = (µ + γ + c)/ρ and c given by equation (2.34).

As the rate at which individuals become infected is increased, the prevalence

level y∗, y∗

2 at the steady state also increases (figure 2.2(a and b)). This tells

us that a careful fitting of parameters r, r1 and r2 is required when using

mathematical models to explain some biological systems such as population

and the effect of HIV/AIDS. We also find that if the rates at which people

become infected are at their minimum values, the models show a disease
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Figure 2.2: A relationship between the transmission rate to the equilibrium value

for (a) y∗ (b) y∗2 in the interval (0, 1) and (c) y∗1 with c ∈ (−0.08, 0.01) with varying

γyear−1. Other parameters: b = 0.03, ρ = 6.0year−1 and µ = 0.02
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clearance (i.e. y∗ = 0, y∗

2 = 0) and the quantity χ become equal to one. Ac-

cording to our models, a disease persists in the population if the transmission

rates are above their minimum values. The rate at which infected individuals

die due to AIDS is found to have an effect in the the equilibrium proportions.

As γ is increased, more infected people die before the equilibrium is attained

leading to low levels of y∗ and y∗

2. It has also been found that y∗

1 increases

with r1 to a peak value after which it decreases to b/ρ (figure 2.2(c) ). For

different values of the AIDS induced mortality, y∗

1 is shown to increase as

γ is decreased. This is due to the fact that the survival period of infected

individuals is increased.

2.4.2 Effect of transmission rates in HIV estimation

When modelling, one has to be specific about the group of people in the

society for which the HIV prevalence estimation is to be done. General

models might lead to missunderstanding about the spread of the disease in

a general population. The results shown in figure 2.3 give clear evidence on

how difficult it can be to obtain quality information if one is to estimate the

impact of HIV in a given community.

As the rate of transmitting HIV is increased, the proportion of the infected

group rise more quickly. The increase in the transmission rates is also found

to increase χ in both models. For example, in the simple model as r is

increased from 0.167 to 0.5, χ increased from 1.28 to 3.85. In the staged

model, as r1 was increased from 2.0 to 6.0, r2 from 0.167 to 0.5, χ also

was found to increase from 1.61 to 4.82. Therefore, rates of transmitting the

disease has an impact on the spread and estimations as the potential measure
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of the disease growth (χ) has shown.

The proportions of infected individuals remain high over time after the initial

rise (figure 2.3(b) and 2.3(c)) and a different behaviour of new infections

is also shown (figure 2.3(a)). As shown, the peak occurs at high and low

transmission rates, and the proportion then drops back to a non-zero value.

However, in the epidemiology of HIV, a disease that spreads quickly, we do

not expect the peak incidence to occur after a very long period of time. Our

results show that when r1 is reduced to 2 and r2 to 0.167, the curve for new

infections peak can occur after a very long time has passed (2.3(a)). This

kind of dynamic behaviour is possible in some groups of people with low risk

behaviour under which the rate of disease acquisition is low.

Generally, the results obtained in this section have been representative of

some section of a given population. In some populations, the disease has

shown a very high impact with prevalence curves being high and incidence

having a peak at short time, while in other cases the impact of the disease

is low. In such a case, one has to avoid generalization of results to a general

population, since they may lead to overestimation or underestimation.

2.4.3 Mortality effect in the spread of the epidemic

Since the number of infections depend on the number of susceptibles which

an infected individual is able to infect, it is important to investigate the effect

of survival time. Figure 2.4 show the effect caused by the change in AIDS

mortality. As the death rate is increased, that is, as the survival period is

lowered, the proportion of infected individuals increases slowly. The increase
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Figure 2.3: Transmission effect for (a) proportion of new infections (b) Prevalence

in the staged model and (c) Prevalence in the simple model. Parameters: b = 0.03,

γ = 0.1year−1, ρ = 6.0year−1, µ = 0.02 at r1 = 6.0, 4.0 and 2.0, and r2 = r = 0.5,

0.33 and 0.167.
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in HIV infection is low because more people are dying and therefore these

have a small impact as compared to the case the AIDS mortality rates are

low. AIDS mortality can be lowered by treating HIV infected individuals.

In the developed countries and in some developing countries, including those

of Sub-Saharan Africa, the drug zidovudine (AZT) and other treatment com-

binations have suppressed the intensity of HIV development in the patients

body and thus prolonged the incubation2 period, for those who can afford

the treatment. The prolonging patients incubation period is good in the

sense that an individual lives longer and continues to serve the nation, but

at the same time, it is expensive for both the individual as well as the nation.

However, there is a danger that such patients can infect many individuals

in a more destructive way as they can practice sexual activities, which can

be a disadvantage for the society. The threshold quantity, χ proves in this

regard that as the incubation period of an infected individual is increased by

any means, the number of secondary infections also increases. For example,

when the average infected person is to survive for 8 years (γ = 0.125 year−1),

10 years (γ = 0.1year−1) or 12 years (γ = 0.08year−1); then χ have to be

2.13, 2.54 or 3.0 respectively.

Figure 2.4(a) shows a different kind of results. In the early stage of the

epidemic, the proportion of new infection curves show very similar rise during

this period. A switch between the curves occurs at the peak value and

the difference between the curves becomes large and observable during the

mature stage of the epidemic. At large t, lowering γ (increasing survival time

of infected people) causes no more infections.

2An incubation period is defined as a period from HIV infection to AIDS development.
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Figure 2.4: Mortality effect for (a) proportion of new infections (b) Prevalence in

the staged model and (c) Prevalence in the simple model. Parameters: b = 0.03,

ρ = 6.0year−1, r1 = 4.0, r2 = r = 0.33, µ = 0.02 at γ = 0.08, 0.1 and 0.125 year−1
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2.4.4 The impact of stages in HIV predictions

To illustrate the effect of stages in this situation, we compare the results

obtained from the two models. We address the question: is it necessary

to incorporate stages of disease progression when modelling the spread of

HIV/AIDS? Particularly, we are interested in understanding whether the

inclusion of stages has or hasn’t an effect on the overall infection and pro-

gression of the epidemic in the population as well as on estimation of future

trend. If this does not have any effect, then extending the model to incorpo-

rate stages of progression is not an important factor and therefore modelling

while considering a single group of infected individuals is a better and sim-

pler way to understand the pattern of the epidemic and can produce quality

information on the disease. If the effect exists, then a careful choice of the

model is a good idea for modellers.

In comparing the two models, we run simulations by varying the transmission

rates to find out whether there exist a value for r different from r2 such that

the results for the staged model are reproduced. We found no value for r that

gives the above property. In all simulation trials performed, stages showed a

large impact at low t while the single stage model had its impact at very large

t. This made it difficult to fit the results from the two models. However, it

was possible to fit the results from the two model for lower t than for large t.

As y2 is as large as y because individuals in y1 progress to y2 within a very

short period of time, we further considered the case where r = r2 to find

out more difference on the two models during a short term. The results for

this case are shown in (figure 2.5). The results showed a clear difference in

the prevalence, AIDS mortality rate curves and the total population (figure
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2.5(a, c and d)). It was found that, the prevalence of infected individuals is

high for the simple staged model and low for the model with a single group of

infected individuals. y2 rises highly just after the epidemic starts to exist in

the population. For this example, we also found that the effective thresholds

for the two models are different being high for the staged model (χ = 2.41)

and low for the model with a single group of infected people (χ = 1.92).

This difference may be due to the contribution by the primary stage shown

in (figure 2.5(b)) because individuals in this stage are found to have a high

amount of viruses in the bloodstream which makes the transmission of the

HIV easier to others [4, 5, 8, 7].

Due to high prevalence of infected individuals, the AIDS mortality rates are

also high (figure 2.5(c)). The difference in the AIDS mortality curves for the

two models have a similar trend to that found in the prevalence curves. This

has been due to the disease increased mortality being proportional to the

prevalence levels of infected persons. As peoples’ death affects the total pop-

ulation, the impact of the epidemic is found to be different for the populations

of the two models. The population for the simple staged model experiences

a mortality impact earlier than the total population for the simple model

(figure 2.5(d)).

2.5 Summary and Conclusion

In this chapter, we formulated and explored two simple models for the spread

of the HIV epidemic one of which incorporated stages of HIV progression of

an infected individual. The local analysis of these models are performed

and numerical simulation examples are also performed to understand some
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Figure 2.5: A comparison between the simple HIV model and the staged model

for (a) Prevalence, (b) proportion of new infections, (c) AIDS mortality rates, and

(d) Total population at r1 = 3.0, r2 = r = 0.25, ρ = 6.0, γ = 0.1, µ = 0.02 and

b = 0.03

demographical and epidemiological dynamical behaviour. A comparison for

these models is also carried out to reveal the effect of introducing stages of

HIV progression.

We analyzed the effect of varying the two main parameters, the rates of

transmitting the disease r, r1, r2 and the disease caused death rate (γ). The

findings show that the rate of transmitting the viruses is the driving force
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in the spread of the disease while the disease death rate has little impact in

general.

Apart from the results found to be general for both models, there are some

specific findings shown by the staged model. When r1 and r2 are varied, a

switch between the new infection curves is found to occur at large t. This is

an interesting result which needs careful attention when dealing with disease

incidence and transmission rate. One can easily draw different conclusions

on the relation between the transmission rate and the persistence of new

infections.

From the explorations, it was found that the majority of the infectives do not

spread the disease during its early stage (figure 2.5(a)). Instead, individuals

in the primary stage play a major role in transmitting the viruses. If this

group could somehow be identified and convinced to refrain from risky be-

haviours, at least while they are highly infectious, the impact of the epidemic

could perhaps be reduced.

The results from the models gave the expected trend or behaviour of HIV/AIDS.

Since the models were formulated without considering all important factors

for the spread of HIV and simulated not by fitting parameters to any ex-

isting data, we could not expect to obtain results which are consistent with

reality. But in general, stages showed a large impact in the overall results.

It is therefore important to use this approach (incorporating stages) when

modelling the spread of the HIV.



Chapter 3

Delayed death in HIV spread
models

HIV infected patients survive for some years after they have acquired the

disease. The disease does not kill immediately, it takes some time before

weakening the immune system although the viruses replicate1 quickly in the

human body. An infected person has a long time to transmit the viruses to

other people. In such a case, a disease is to spread within the human popu-

lation and therefore cause some other unexpected dynamical behaviour. Due

to the emergence of several efforts in preventing and treating HIV patients,

treatment - drugs have been developed and they played an important role in

reducing HIV/AIDS - related mortality in industrialized countries as well as

for those who have access to them in resource poor settings. The increase in

the life expectancy of an infected individual has been due to the sustained

1reproduction and generation of new viruses
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reduction of viral reproduction by these drugs, which improves immune func-

tion and prolongs AIDS - free survival. With this motivation, this chapter

investigates the effects that may arise in estimating the impact of HIV us-

ing mathematical models. We do this by studying a model that takes into

account a constant time delay in the occurrence of AIDS death by assuming

an equal survival period in all infected individuals in any setting.

3.1 Introduction

Mathematical models of the spread of HIV/AIDS used for predictions are

constrained by the differences in survival times that exist between HIV in-

fected individuals. These differences are due to genetic heterogeneity, socio-

economic aspects of life and geographical locations. The development of

treatment interventions has also increased the differences in HIV survival

among people in developed countries and in developing nations. As there

has been no common survival time for all HIV infected individuals, the mod-

elling approach on AIDS death has become more difficult to carry out.

The Weibull distribution has been commonly used as an incubation distri-

bution [26, 27]. A similar distribution is used to explain the survival prob-

abilities of HIV infected individuals [28, 24] under which this probability

decreases as one progresses from HIV infection to death. This distribution

is found to have a good fit to data in a short term. Due to the introduction

of an effective antiretroviral therapy (ART), the incubation period defined

with approximately parameterized Weibull distribution could form a different

shape in a long term.
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Although it has been difficult to estimate the HIV survival period, HIV/AIDS

models have been studied by several authors [29, 30, 11]. Most of which have

assumed an exponential distribution of the infectious period. This assump-

tion is equivalent to assuming that the chance of dying of AIDS within a

given time interval is constant, regardless of time since infection. In the

present chapter we consider the opposite case. The case where all infected

individuals have the same survival period, and after this time has lapsed an

individual must die. Doing this, a step functional behaviour of HIV survival

is considered through the introduction of a single and constant time delay in

the occurrence of AIDS death.

In the course of developing our model, we employ a delay to mathematically

represent the time lag between the initial infection and the death of an in-

fected individual (i.e. survival period). Of interest are delay equations of the

form:

du(t)

dt
= F (u(t), u(t− τ)) (3.1)

where τ > 0 is the time delay with an initial condition being a function

defined in the interval [−τ, 0].

The application of delay equations has been carried out by many other au-

thors especially in population studies and epidemiology [31, 14], with ap-

plication to HIV spread models [10, 15, 32]. Among the deficiencies of the

models we studied in the second chapter is that we considered the entire

population. In models which consider only the sexually active population,

the recruitment rate into the adult population can not be considered to act

instantaneously as there is a time delay to take into account the time to
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adulthood. In such cases, some authors have considered this time delay that

determine the maturation of individuals moving from childhood to adult-

hood and or age structure in populations [33, 24, 34]. This time delay in

HIV/AIDS spread models is mostly considered to be 14 or 15 years that

represent the number of years for an individual to be considered an adult in

a sexually active population.

In this chapter, we further extend the deterministic model with stages of HIV

progression studied in chapter 2 to include a time delay in the occurrence

of AIDS death of HIV infected individuals. As it has been known that

HIV infected individuals do not die immediately after they are infected, they

survive for a given period of time. We devote this chapter to the investigation

of the question: Does it matter to have a delay in AIDS mortality; what effect

does this have?

3.2 Model derivation

Since the infected class is divided into two subclasses; those in the primary

stage Y1(t) and those in the asymptomatic stage Y2(t) as it has been described

in chapter 2, the mortality increase due to the disease occurs in Y2(t). Assum-

ing τ to be the expected period for an infected individual to survive which

in the present study is assumed to be constant for all infected individuals,

then Y2(t) can be redefined as an integral as follows:

Y2(t) = ρ

∫ t

0

Y1(s)e
−µ(t−s)θ(s − (t − τ))ds (3.2)

The integral is the summation of all individuals who got infected and en-
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tered Y1 at time s ≥ 0 and have remained infective through to time t. The

term e−µ(t−s) is the survivor probability of infected individuals from causes

other than HIV/AIDS. These individuals became infected at time s and have

survived to time t. Our step function θ(x) is defined as follows:

θ(x) =







1 if x ≥ 0

0 if x < 0
(3.3)

The integral in equation (3.2) when differentiated under (3.3) is equivalent

to the delay differential equation (DDE)

dY2(t)

dt
= ρY1(t) − µY2(t) − ρY1(t − τ)e−τµ (3.4)

which describes the dynamics of the group of individuals in the asymptomatic

stage.

The term ρY1(t − τ)e−τµ represents the number of individuals who were

infected τ years ago and have survived from natural death and are currently

dying of AIDS. Note that these individuals are in the asymptomatic stage of

HIV progression.

Therefore, the dynamics of the disease in the population with a time delay

in the AIDS death changes according to the system of nonlinear differential

equations below:



3.2. Model derivation 47

dZ(t)

dt
= bN(t) − r1

Z(t)Y1(t)

N(t)
− r2

Z(t)Y2(t)

N(t)
− µZ(t)

dY1(t)

dt
= r1

Z(t)Y1(t)

N(t)
+ r2

Z(t)Y2(t)

N(t)
− µY1(t) − ρY1(t) (3.5)

dY2(t)

dt
= ρY1(t) − µY2(t) − ρY1(t − τ)e−τµ

where N(t) is the population size at time t given by Z(t) + Y1(t) + Y2(t).

Note that all parameter and variable definitions in this model stay similar to

those in the previous chapters.

The total population changes exponentially in the absence of the disease, and

in the presence of the epidemic (adding the equations in (3.5)) the population

changes according to

dN(t)

dt
= (b − µ)N(t) − ρY1(t − τ)e−τµ (3.6)

In terms of proportions; z(t) = Z(t)/N(t), y1(t) = Y1(t)/N(t),

and y2(t) = Y2(t)/N(t), the system in (3.5) gives

dz(t)

dt
= b − bz(t) − r1z(t)y1(t) − r2z(t)y2(t) + ρe−τµz(t)y1(t − τ)α(t)(3.7)

dy1(t)

dt
= r1z(t)y1(t) + r2z(t)y2(t) − (ρ + b)y1(t) + ρe−τµy1(t)y1(t − τ)α(t)

dy2(t)

dt
= ρy1(t) − by2(t) − ρe−τµy1(t − τ)α(t) + ρe−τµy1(t − τ)y2(t)α(t)

with

y1(t − τ) =
Y1(t − τ)

N(t − τ)
(3.8)
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and

α(t) =
N(t − τ)

N(t)
. (3.9)

Equation (3.6) also becomes

dN(t)

dt
=

{

b − µ − ρe−τµy1(t − τ)α(t)
}

N(t) (3.10)

integrating to

N(t) = N0 exp(

∫ t

0

{

b − µ − ρe−τµy1(s − τ)α(s)
}

ds) (3.11)

3.3 Model Outcomes

In this section, the equilibrium points are found. A question is raised, ’How

do different parameter values affect the equilibrium points?’ To answer this

question, a full analysis in a numerical approach is applied.

3.3.1 Equilibria

Definition 3.3.1 If as t → ∞ the system in equation (3.7) attain an equi-

librium state, then we can define y1(t− τ) → y∗

1, y1(t) → y∗

1, y2(t) → y∗

2 and

α(t) → α∗.

Setting the system in equation (3.7) to zero at the equilibrium and applying

the definition (3.3.1), the disease free equilibrium (1, 0, 0) is found.
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But also from the third equation we can obtain y∗

2 as

y∗

2 =
ρy∗

1(e
−τµα∗ − 1)

ρe−τµα∗y∗

1 − b
(3.12)

To calculate y∗

1 from the system above is more difficult, therefore, we use a

similar approach to that used in the staged model. Using equation (3.9) and

(3.11) we can obtain

α(t) = exp

[

−τ(b − µ) + ρ exp(−τµ)

{
∫ t

0

y1(s − τ)α(s)ds +

∫ t−τ

0

y1(s − τ)α(s)ds

}]

= exp

[

−τ(b − µ) + ρ exp(−τµ)

{∫ t

t−τ

y1(s − τ)α(s)ds

}]

(3.13)

Choosing t large in such a way that within the interval (t − τ, t) both α(t)

and y1(t − τ) are constant, (3.13) gives

α∗ = exp
[

−τ(b − µ) + τρe−τµy∗

1α
∗

]

(3.14)

from which we find

y∗

1 =
ln α∗ + τ(b − µ)

τρα∗e−τµ
(3.15)

and substituting equation (3.15) in (3.12) gives y∗

2 in terms of α∗ as

y∗

2 =
ρ(e−τµα∗ − 1)(ln α∗ + τ(b − µ))

α∗ρe−τµ(ln α∗ − τµ)
(3.16)

and z∗ = 1 − y∗

1 − y∗

2 which approximates the endemic equilibrium point.
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3.3.2 Relationship between transmission rate and the

equilibrium values

Since the transmission rate of HIV to uninfected individuals has been the

most important factor in the spread of the disease, we analyze its relation

to the endemic equilibrium derived in the above section. This provides us

with an understanding of the disease persistence in the population at large

t. This is in contrast to most of our discussions which are limited to a small

interval of time under which the model has physical meaning for the disease

studied.

Considering the system in equation (3.7) at the steady state, we can obtain

r1 from the second equation. Applying the definition given in (3.3.1) and the

relation r2 = r1/12, then

r1 =
(ρ + b)y∗

1 − ρe−τµα∗y2∗
1

(1 − y∗

1 − y∗

2)(y
∗

1 +
y∗

2

12
)
. (3.17)

Knowing that y∗

1 ∈ (0, 1), and y∗

2 ∈ (0, 1), one can find the space in which

r1 lies. But since both y∗

1 and y∗

2 depend on α∗, the ranges of steady state

variables can be different and hence change the range of r1. Thus, it is better

to find the range of α∗. To do this, we consider the condition that y∗

1+y∗

2 ≤ 1.

Therefore, from this we find α∗ ∈ (eτµ,∞).

Figure 3.1(a) shows the relation that exists between the transmission rate

and the equilibrium value for the proportion of infected individuals in the

primary stage (y∗

1). The proportion of new infections increases rapidly as

r1 is increased to a critical value of r1τ dependent on τ at which y∗

1 peaks.
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Figure 3.1: Relationship between the transmission rate (r1) and the equilibrium

values. (a) y∗1 and (b) y∗2 with α∗ ∈ (eτµ, 8) at b = 0.03, µ = 0.02, ρ = 6.0year−1,

and τ = 8, 10 and 12 years
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Above the critical value, y∗

1 decreases to a non zero value. This has to do

with the fact that as the transmission rate is increased, more new infections

occur earlier (i.e. when t is small) which results in a reduction of susceptible

persons during the early stage of the epidemic. This phenomenon suppresses

y1 at large t causing it to stabilize at a lower proportion. It has been also

found that if r1 is below 1, the endemic equilibrium does not appear and only

the disease free equilibrium holds.

What we find in figure 3.1(b) is different from what we have seen in figure

3.1(a). The equilibrium level for the prevalence, y∗

2 has a different kind of

relationship with the transmission rate. As r1 is increased, y∗

2 also increases

approaching a constant value.

A reduction in the equilibrium value for the prevalence levels can be achieved

by reducing the rate at which individuals become infected. We also learn

that, focusing on the stabilization of the proportion of new infections of the

epidemic in the population can give false information on the burden and

spread of the epidemic. One might think that the rate of transmission is low

by just looking at the new infection proportion stabilization. This may also

give false information on the prevalence. In fact, even if the new infections

stabilizes at a low level, still the prevalence might stabilize at a higher level.

This also might give incorrect impression if one is to use new infections to

estimate the infection rate. This imbalance between the new infections and

prevalence stabilization cause confusion as it can give different information

on the spread of the disease in the society. Therefore, one has to be careful

when using these two different epidemiological and demographical pieces of

information to address the epidemic problem in any society since any change

in the infection rate results in a shift in equilibrium values.
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3.3.3 Transmission effect and the emergence of Oscil-

lations

Further analysis of the model (equation 3.7) shows the variation that may

occur in the proportion of new infection and prevalence curves as the trans-

mission rates are changed. The incidence curves in figure 3.2(a) shows a

quick rise when the rates are increased. Increasing the rates of transmission

enables more people who are in the risk group to acquire the disease and

therefore increase the new infections in the population. This continues until

a peak is attained, after which the curve drops very quickly in a similar man-

ner to its initial rise. But, the new infections continue while decreasing, and

eventually they stabilize at low proportions if the rates are at large values.

It has also been found that if the transmission rate is increased, a quick rise

and stabilization in the prevalence (figure 3.2(b)) occurs at very high levels

which seem to be unrealistic to have such a large fraction of the population

infected. A different behaviour for the stabilization of the prevalence when

compared to that of the proportion of new infections is also observed. Preva-

lence curves tend to stabilize at high values as r1 and r2 are increased. This

is because most of the infections occur at low t, and the fact that mortality

is delayed.

In addition we found the occurrence of small oscillations which then die out

immediately before the endemic equilibrium is achieved(figure 3.2). How-

ever, the parameter values for which these periodic solutions occur may be

unrealistic. In the special cases when b = µ = 0, b = µ 6= 0, and b 6= 0 but

µ = 0, oscillations still arise in the solutions. This leads us to a conclusion

that oscillations occurring are due to the delayed death of infected individ-
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Figure 3.2: Development of periodic solutions in the (a) new infection curves and

(b) prevalence curves for the system in (3.7) when r1 and r2 are increased from

2.0 to 6.0 and 0.167 to 0.5 respectively with b = 0.03, µ = 0.02, ρ = 6.0year−1,

and τ = 10years.



3.4. The influence of a delay 55

uals. Hethcote and Van de Driessche [10] in their model that consisted of

both a variable population and a delay, found that a constant delay for the

infectious period can lead to periodic solutions. These oscillations do not oc-

cur for the analogous ordinary differential equations SIS models for example,

in which recovery is proportional to the number of infectives. It is therefore

important to understand the correlation that exist between rates of infection,

and the incidence and prevalence levels in models with delay.

3.4 The influence of a delay

This section investigates the effect that may occur as a result of introducing

a delay in the model. We do this through changing some parameter values

while leaving others unchanged and a comparison between the simple staged

model discussed in chapter 2 together with the model with delay is made to

reveal the delay effect.

3.4.1 Effect of survival time of HIV positive persons

The main difficulty with forecasting is that many different empirical curves

fit the available data; in some cases well. Although these curves give rea-

sonably consistent predictions in a short term, the predictions can be quite

divergent in a long term. ( This model ignores the possibility of changes that

occur through medical break-through. For example, to date, the effective-

ness of combination anti-retroviral therapy, have been demonstrating a large

reduction in both progressions to AIDS and AIDS-related deaths. But there

have been no data on the exact size of treatment-induced delay on AIDS
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caused mortality [35] ). Therefore, simulation results for different values of τ

(figure 3.3) are generated to investigate effects caused by the life expectancy

of infected individuals.
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Figure 3.3: Effect of the survival periods, τ years for the (a) Proportion of new

infections, y1 (b) Prevalence, y2 (c) AIDS mortality rates and (d) Total population.

Parameters: r1 = 3.50, r2 = 0.292, µ = 0.020, b = 0.030 and ρ = 6.0year−1.

It has been found from the results that as τ is increased, predictions show

roughly similar results in a short period of about 10 years measured from

the start of the epidemic for the incidence, prevalence and the total popula-

tion. However, differences arise at large t. During low t, mortality due to the

epidemic are not occurring and people are still surviving although they are
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infected. Another related finding is that, as τ is increased, the proportion of

infected individuals in the primary stage is lowered while that in the asymp-

tomatic stage is increased. For the disease like HIV/AIDS, treatment as a

means to life extension reduces the amount of virus copies which then allows

these individuals to move back to their previous stages, the asymptomatic

stage of HIV development [18]. As the transmission rates is proportional to

the viral load [4, 5], then these individuals have a low chance to transmit the

disease.

3.4.2 A comparison with the staged model

The effect of a delay in AIDS mortality is assessed by considering the changes

in the demographics. The results of the model developed in this chapter

which takes into account the effect of delay, are compared to the results

obtained from the simple staged model (No-delay) developed in chapter 2.

The comparison is made by considering two scenarios.

Scenario one: A similar rise in the prevalence.

In this scenario, a similar rise in the prevalence curves in both models is

considered. We assume that the asymptomatic group in both models is

similar at the early stage of the disease noting that AIDS mortality in both

models have not shown their impact yet. With a similar rise in prevalence

level in this case, the prevalence level in both models is set at 40% when t

is at 20 years (figure 3.4(b)). To obtain this, the rates of transmission in

the No-delay model were set higher values (r1 = 3.065 and r2 = 0.255) than

in the model with delay (r1 = 2.689 and r2 = 0.224). This is due to the

fact that before t = 10 years, the asymptomatic group in the model without
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delay experiences disease caused mortality immediately after it starts to exist.

This is not the case for the model with delay. During this period, there is

no disease related mortality at all since the survival period of all infected

individuals is not reached at 10 years (i.e. y1(t−10) = 0). So, the prevalence

of infected individuals in this model is expected to rise more quickly than

in the model without delay. We investigated the difference that occur in

the prevalence itself at t > 20 years and study the effect that happens in

the proportions of infected individuals in the primary stage (figure 3.4(a)),

disease caused mortality rates (figure 3.4(c)) and the population size (figure

3.4(d)) for all t.

Since r1 and r2 are higher in the model without delay, most of the infections

occurs earlier and the proportion of new infections become higher during this

period (figure 3.4(a)). This results in high prevalence level (figure 3.4(b)) at

large t. The saturation of uninfected people at a low level leads to low

occurrence of new infections later. Despite the fact that the new infections

curves have a difference in their rise, still we find that they both peak at the

same time (i.e. t = 20 years) although at different levels. It is also found

the mortality rates for the model with delay to be higher than those in the

model without delay at large t. This is simply because when infected people

start dying, they do so at a very high rate in the model with delay.

The rising rates of deaths due to the disease are expected to result in a

reduction of population growth and hence a decrease of population size in

both models. The population size is affected in two ways: the first way is

due to the increase in disease ”mortality rates” and the second way is due

to a reduction in ”births” as a result of deaths occurring. Generally, it is

found that the population size in the model without delay begins to show
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Figure 3.4: A comparison between the simple staged model (No delay case) and

the model with delay while considering same initial rise in the prevalence curve

(y2). (a) Proportion of new infections, y1 (b) Prevalence, y2 (c) AIDS mortality

rates and (d) Total population. Parameters: r1 = 3.065 and r2 = 0.255 for the

No delay case and r1 = 2.689 and r2 = 0.224 for the model with delay. Other

parameters: ρ = 6.0year−1, µ = 0.02 and b = 0.03.

a decrease as the disease mortality starts to occur earlier. The population

size in the model with delay continues to grow for almost 10 years longer

measured from the time at which the population in the No-delay model start

showing a decrease. This is due to τ = 10 years as it has been used in

the numerical simulation. By the time when the mortality rises to the high

plateau values, the total population is decreased at a very high rate causing
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it to switch over with the population size for the model without delay.

Scenario two: Same transmission rates.

Having studied the scenario where the rates of transmitting the disease are

low and different, we now consider the second scenario in which large and

same values for the transmission rates are assigned in the two models. For

t < 10 years, this produces a quick and similar rise in the incidence level for

both models (figure 3.5(a)). However, at very small scale, a small difference

is observed which is not significant. Although during this period disease

caused mortality exist in the model without delay, they are not high enough

to cause a large impact. This causes the rise of the prevalence curves (figure

3.5(b)) for both models to be similar too.

During t ≥ 10 years, differences are found to occur under which the delay

results in the occurrence of oscillatory behaviour for the proportions of new

infections, prevalence, and mortality rates as y1(t − 10) 6= 0. Since y1(t −

10) takes a rise similar to y1(t) in the last 10 years, therefore, within the

time interval 10 < t < 20, the curve for mortality rates for the model with

delay (figure 3.5(c)) rises quickly. Therefore, this has a large impact in the

proportions of new infections (figure 3.5(a)), prevalence level (figure 3.5(b)),

and the population size (figure 3.5(d)). Infections in this case are allowed

to take place fast in the risk population and therefore disease mortality are

found to be lower. Hence the population size in the delay model experience

a large impact and decreases faster than in the model without delay.
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Figure 3.5: A comparison between the simple staged model (No delay case) and

the models with delay at the same transmission rates. (a) Proportion of new

infections, y1 (b) Prevalence, y2 (c) AIDS mortality rates and (d) Total population.

Parameters: r1 = 4.0, r2 = 0.33, ρ = 6.0year−1, µ = 0.02 and b = 0.03

3.5 Summary and Conclusion

Deficiencies of national statistics in countries most severely affected by HIV/AIDS

make it difficult to assess the impact of the epidemic on mortality. When

working with limited and defective data it is important to utilize all available

sources of information. This chapter discussed a model describing the dy-

namics of the population affected by HIV and the role played by introducing



3.5. Summary and Conclusion 62

a time delay in the occurrence of AIDS deaths for infected individuals.

It was shown that the proportion of new infections and the prevalence of

the disease are mainly determined by transmission rates not by HIV survival

period extension. The model showed these results as it was compared with

the simple staged model discussed in chapter 2. The two models did not show

a large difference in the prevalence and the proportion of infected individuals

in the primary stage of HIV progression. However, some oscillatory behaviour

in the solutions were shown though they seemed to occur at transmission rate

values which are higher than those required in most populations.

The effect of increasing HIV survival period was also investigated. The hy-

pothesis was that increasing HIV infected individuals’ survival time through

treatment increases the proportion of infected individuals in the population

or facilitate the spread of HIV as the time to continue infecting is increased.

From the model simulations, it was shown that HIV survival has a low im-

pact in the spread of the disease. Survival time was found not a facilitator

of the spread of the disease in its early stage but a low impact was found to

occur during the maturity stage.

The main finding in this chapter has been the effect of the delay in the model.

Our simulations have indicated that models of death strongly determine dis-

ease mortality rates. AIDS mortality rates for the model with delay were

found to be far higher than those in the model without delay. From this, the

results suggest that if one is to project AIDS mortality using mathematical

models, then a delay in the mortality must be included as more treatment

efforts are now in action.

Prolonged incubation periods of HIV/AIDS was found to enlarge the epi-
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demic in a model that included a time delay by Mukandavire et al [32].

Our results have shown that increasing the survival time of HIV positive

individuals may increase the prevalence of the HIV disease but decrease the

new infections in a long term. This happens due to the accumulation of

infected individuals in the asymptomatic group which measures the disease

prevalence.



Chapter 4

The role of risk groups in HIV
predictive estimates

An individual’s belief in his or her personal risk level to illness or disease is an

important element in nearly all models, both general and HIV/AIDS specific,

as it influences the adoption of risk reducing behaviour and/or preventive

strategies. Survey results for the year 2005 [21] in South Africa have shown

the presence of people (66%) who believed that they would NOT contract

HIV. However, there are differences in HIV risk levels among different groups

[23]. Some HIV models, whose projections are widely used, have included the

group of individuals NOT at risk to HIV infection in addition to groups of

various levels of risk. For instance this was done in the Epidemic Projection

Package (EPP) developed by the UNAIDS [28] and the ASSA model for

South Africa [33]. This chapter extends the models discussed in chapter 2 to

include risk groups. We do this by investigating the effect of different aspects

such as initialization, levels of risk, and the division of new recruits into the
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groups of the model

4.1 Introduction

The spread of HIV in any population varies from one group of individuals to

another due to differences in exposure. In different regions marked variations

occur in both HIV incidence and prevalence [23, 21]. The possible explana-

tions for these variations lies in the differences of risk factors. These can be

categorized into three main groups as follows:

• Behavioural factors

These include commercial and transactional sex, sex and alcohol con-

sumption, violence in sexual relationships, non-disclosure of HIV sta-

tus, and partner concurrency 1

• Socio-economic and demographic factors

These include income, education and employment, economic migration,

urban-rural differentials, age and risk factors for transmission among

intravenus drug users (IDUs)

• Biomedical factors

These include sexually transmitted infections (STIs) such as syphilis,

herpes, gonorrhoea, and bacteria vaginosis, the use of hormonal contra-

ceptive especially injectable contraceptives, and younger age especially

in women.

1Having more than one partner
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On the basis of data from Carletonville in South Africa, MacPhail et al [36]

found that among biological risk factors, susceptibility to HIV infection was

30% higher in females than in men. In a similar way, in a national population-

based survey conducted in the year 2002 in South Africa, females were found

to have a higher prevalence (about 12.8% ) than males (about 9.5%) [37].

While biological factors are clearly important, a number of survey studies

have suggested that social and behavioural factors are equally important

[21, 23]. Rehle et al [37] showed that major differences in HIV prevalence

exist within locality, province, race, and age. The study found the highest

prevalence in the African community (12.9%) followed by the white commu-

nity (6.2%), coloured (6.1%) and Indians (1.6%).

Despite these obvious differences in HIV prevalence and differences in risk

factors among individuals, most of the mathematical models of the spread

of the HIV epidemic have not captured this fully. In most models a uni-

form risk group of people is considered. In some cases the infected group is

divided according to infectiousness. We ask the question: are these models

representative? In some models the population is divided into core groups

[13, 12] and in some risk behaviour in sexually transmitted disease have been

considered [38].

When modeling while including risk groups, one need to consider how new

individuals are recruited into the groups. Hyman and Li [39] studied a model

that considered susceptibility of individuals. In their model, new individuals

were distributed into the subgroups of susceptible, based on their inherent

susceptibility. According to this, we ask the question: does the manner new

individuals are recruited into the risk groups matter?
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In any modeling approach, it is important to know how many individuals

are in a given risk group. However, this has been not possible for surveys

as individuals may not give correct information about their behaviour or

disease related information. With this, different assumptions are being made

regarding the initial population groups. Therefore, initialization is also an

important aspect in producing predictive estimates of the HIV impact in the

population since the more people are assumed not to be at risk, the smaller

the impact of the disease. In that case, we ask a question: how does the

initial size of the risk groups change model results?

Since it has not been easy to identify or obtain information about individu-

als’ risk levels, modellers are required to assume values and we ask another

question: How do assumptions about risk groups affect predictive estimates

of the spread of the disease?

In this chapter, we focus, investigating in a numerical approach the above

questions by extending the simple model for the spread of HIV developed in

chapter 2 to include risk groups.

4.2 Including the NOT group

4.2.1 With recruitment proportional to the size of the

group

This section investigates the effect of introducing the non risk group of in-

dividuals (NOT group). We assume a community that has two groups of

people with no interaction between them. One of them is exposed to HIV
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infection and the other is not. New individuals are recruited into their re-

spective groups at a rate proportional to the size of the group. That is, those

born by the NOT group X(t) are also assumed to be NOT at risk and those

born by the risk group (Z(t)+Y (t) ) are assumed to be at risk. Thus, with all

parameter definitions and conditions remaining similar to the models studied

in the previous chapters, we can write our system of equations as follows:

dX(t)

dt
= bX(t) − µX(t)

dZ(t)

dt
= b(Z(t) + Y (t)) − r

Z(t)Y (t)

N(t)
− µZ(t) (4.1)

dY (t)

dt
= r

Z(t)Y (t)

N(t)
− µY (t) − γY (t)

With N(t) = X(t) + Z(t) + Y (t) and dN(t)
dt

= (b − µ)N(t) − γY (t)

Writing the system of equations above in terms of proportions, we have:

dx(t)

dt
= γx(t)y(t)

dz(t)

dt
= by(t) − rz(t)y(t) + γz(t)y(t) (4.2)

dy(t)

dt
= rz(t)y(t) − by(t) − γy(t) + γy2(t)

where x(t) + z(t) + y(t) = 1

Model outcomes

Since the NOT fraction x(t) satisfies x(t) = 1−z(t)−y(t), we can work with

the last two equations in (4.2). At the equilibrium state, dz(t)
dt

= dy(t)
dt

= 0
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and therefore,

by∗ − rz∗y∗ + γz∗y∗ = 0 (4.3)

rz∗y∗ − by∗ − γy∗ + γy∗2 = 0 (4.4)

We see that, equation (4.3) is satisfied when y∗ = 0 or z∗ = b
r−γ

.

Substituting y∗ = 0 into equation (4.4) we see that both equations (4.3) and

(4.4) are satisfied for any value of z∗. If we substitute z∗ = b
r−γ

into equation

(4.4) we obtain y∗ = 1− b
r−γ

. Therefore, we have two equilibria of which one

is a disease free equilibrium DFE = (z∗, 0) with 0 < z∗ ≤ 1 and the other is

an endemic equilibrium given by EEP = (z∗, y∗) = ( b
r−γ

, 1 − b
r−γ

).

But from equation (4.2), one can see that the solution x(t) can only be zero

if and only if x(0) = 0. Otherwise x(t) > 0 for all t. But from the equilibria

obtained, the endemic equilibrium point has shown that the equilibrium value

for x∗ is zero. For a population that has a non risk group, x(0) is never

zero. Therefore, we can discard the endemic equilibrium point as it is not

applicable according to the demand of the model. Thus, only the disease

free equilibrium holds. However, this disease free equilibrium depends on

the initial conditions as we see from the phase portrait diagram shown below

(figure 4.1).

The long-term behaviour of the solutions

From the phase portrait above (figure 4.1), limt→∞ z(t) > 0 if z(0) > 0 and

limt→∞ y(t) = 0 for all initial values (z(0), y(0)). This means that every

orbit in the plane tends to an equilibrium point on the line y = 0, that is,

eventually all infectives die, and the disease dies out.
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Figure 4.1: A phase portrait showing the dependence of the disease free equilib-

rium on initial conditions. Parameters: b = 0.03, µ = 0.02, γ = 0.1, and r = 0.5

Our model has shown a distinctive characteristic behaviour of a typical epi-

demic outbreak; that an infective fraction curve must first increase from an

initial value near zero, reach peak, and then decrease towards zero as a func-

tion of time (figure 4.1 and 4.2). The susceptible fraction z(t) is also shown

to decrease, but the final susceptible fraction is not zero (i.e. z(∞) > 0), in

fact it is easy to see that z∗ > b/(r − γ).
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Figure 4.2: A Time series diagram for the proportions. Parameters: b = 0.03,

µ = 0.02, γ = 0.1, and r = 0.5 at x(0) = 0.5, z(0) = 0.499 and y(0) = 0.001.

4.2.2 With recruitment proportional to the total pop-

ulation

In this model, one new parameter is introduced: p, the recruitment fraction.

The equation for the infective class (Y ) remains as in the basic model. This

follows the assumption we made in chapter 2 that vertical transmission is not

taken into account. Due to this assumption, our extended model describes

the dynamics of the disease with new individuals recruited only into the

NOT group (X) and the susceptible class (Z). The model assumes that even

though some of the new individuals might have been born by individuals
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who are exposed to infection, they may not inherit their parents behaviour.

And therefore they are recruited into the NOT group. Some of those born

by individuals who are completely not exposed to infection may also develop

risk behaviour and therefore they are recruited into the susceptible class.

That is, of the total number of offspring of the total population, bN(t), a

fraction p are recruited into X, while fraction 1−p are recruited into Z. Our

model is thus given by:

dX(t)

dt
= pbN(t) − µX(t)

dZ(t)

dt
= (1 − p)bN(t) − r

Z(t)Y (t)

N(t)
− µZ(t) (4.5)

dY (t)

dt
= r

Z(t)Y (t)

N(t)
− µY (t) − γY (t)

With population size N(t) being X(t) + Z(t) + Y (t) which changes dynami-

cally as

dN(t)

dt
= (b − µ)N(t) − γY (t) (4.6)

All other parameters have similar definitions as in previous models.

Following a similar calculation, we can now write the above equations in

proportions as:

dx(t)

dt
= pb − bx(t) + γx(t)y(t)

dz(t)

dt
= (1 − p)b − bz(t) − rz(t)y(t) + γz(t)y(t) (4.7)

dy(t)

dt
= rz(t)y(t) − by(t) − γy(t) + γy2(t)

where x(t) + z(t) + y(t) = 1 and
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dN(t)

dt
= (b − µ − γy(t))N(t) (4.8)

Model outcomes

We define a threshold quantity

R = rz(t)/(γ + b) (4.9)

as a replacement number of our model. This quantity depends on the sus-

ceptible proportion z(t) at any point in time. We also found two equilibrium

points,

• Equilibrium 1: No disease is found to establish itself. This is a trivial

outcome of the model and it is given by (x∗, z∗, y∗) = (p, 1 − p, 0). At

this point, we can write the model replacement number in equation

(4.9) as RDFE = r(1 − p)/(b + γ). Using the normal method of local

stability, the eigenvalues obtained from the Jacobian matrix at this

equilibrium are as follows: λ1 = λ2 = −b and λ3 = (b + γ) [RDFE − 1].

If RDFE < 1, we find that λ1,2,3 < 0 and therefore, the equilibrium is

stable. Otherwise, λ1,2 < 0 while λ3 > 0. For this case, this point is

unstable.

• Equilibrium 2: A disease establishes itself and persists. This point is

given by:
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x∗ =

√

Axr2 + (−4 b γ2 p − 2 γ3 + 2 b γ2) r + γ4 + Bx

2 γ r

z∗ =

√

4 b γ p r2 + γ2 r2 − 2 b γ r2 + Bz + Az

2 r2 − 2 γ r

y∗ =
−

√

4 b γ p r2 + γ2 r2 − 2 b γ r2 + By + Ay

2 γ r − 2 γ2
(4.10)

where

Ax = 4 b γ p + γ2 − 2 b γ + b2

Bx = (γ − b) r − γ2

Az = (γ + b) r − γ2

Bz = b2 r2 − 4 b γ2 p r − 2 γ3 r + 2 b γ2 r + γ4

Ay = (γ + b) r − γ2 − 2 b γ

By = b2 r2 − 4 b γ2 p r − 2 γ3 r + 2 b γ2 r + γ4

To perform the stability analysis of this point is fairly complicated,

therefore, we use a numerical approach, to study how results change as

a function of our new parameter.

Long term effect of the recruitment fraction

On the equilibrium

Our endemic equilibrium above (equation 4.10) has a dependence on our

new parameter, the recruitment fraction, p. While keeping all other param-

eters unchanged, we study its effect on the equilibrium by the use of phase

diagrams (figure 4.3). The findings from this investigation show that the en-

demic equilibrium is stable (figure 4.3). But the equilibrium shifts when the
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recruitment fraction is varied. When this parameter is increased, more new

individuals are recruited into the NOT group which then makes a susceptible

group small. This leads to few infections and as infections continue, deaths

occurs and hence a low level in the stability points is attained.
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Figure 4.3: Phase portraits showing the shifting pattern of the endemic equilib-

rium due to change in the recruitment fraction p at different initial conditions. p

increases from top left to bottom right with p = 0.01, 0.2, 0.5 to 0.99 respectively.

Parameters: b = 0.03, µ = 0.02, γ = 0.1, r = 0.5

Although the equilibrium point is dependent on the new parameter, it is not

influenced by initial conditions. This implies that, in any community, the
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development of the disease in a long term does not depend on how many

individuals were initially subject to infection. Although, the initial division

is important in the early stage of the epidemic.

On the proportions

Dividing a population into risk and non-risk groups of uninfected individuals

means a careful recruitment of new individuals into the groups is required.

Results from our model have shown that, when the recruitment fraction is

increased, fewer new individuals are recruited into the susceptible group and

more of the them into the non-risk group (figure 4.4). As expected, this is

found to decrease the proportion of the infected group as the majority of in-

dividuals in the population are not subjected to infection. As infections take

place in the small risk group, this group decreases leading to low infections

in the long term.

Although the rise in the curves for the proportions of infected individuals

might be quite similar at low t for a small change in the recruitment fraction,

the long term results still show a difference (figure 4.4). This is due to the

fact that, when p is increased, the risk group is increased by a smaller value

and hence it gets saturated at lower levels at large t. This then reduces the

number of individuals getting infected or entering the infected group.

Another result found from our simulation is that, the recruitment fraction

does not affect the peaking property of an epidemic curve. Even if the epi-

demic does not show a significant impact, the peak in the prevalence does not

disappear. Instead its occurrence continues to exist at all values of p ∈ [0, 1].
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Figure 4.4: Time series diagrams at different values of the recruitment fraction

parameter p. p increases from top left to bottom right with p = 0.01, 0.2, 0.5 to

0.99 respectively. Parameters: b = 0.03, µ = 0.02, γ = 0.1, r = 0.5

4.3 Risk variations

In this section, we further extend the simple model studied in chapter 2. The

extension is made through the introduction of an equation describing levels

of risk to infection. This equation represents a susceptible population (Z1)

in which the risk level varies between high and low values. We assume that

the risk level for the second group (Z = Z2) does not change. The model
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does not include direct or individual parameters which are responsible for

the change of a risk behavior of individuals (e.g. concelling, education, STI

or STDs, etc). We assume a parameter φ to describe only the relative risk

level of the subgroup, Z1 (i.e. individuals are assumed to have homogeneous

risk). A reduction of φ represents a decrease in risk factors of individuals in

group Z1.

Since we have divided our susceptible group into two subgroups, then the next

task is to decide how we are to recruit new individuals into these groups. We

assume a similar manner of new individuals entrance into these two groups

as in the model discussed in section 4.2.2. A fraction p of new individuals

bN(t) are recruited into the first risk group ( Z1) and 1 − p into the second

risk group (Z2). All other parameter definitions remain similar to those used

in the previous models. The model equations describing the dynamics of our

population are given as follows:

dZ1(t)

dt
= pbN(t) −

rφZ1(t)Y (t)

N(t)
− µZ1(t)

dZ2(t)

dt
= (1 − p)bN(t) −

rZ2(t)Y (t)

N(t)
− µZ2(t) (4.11)

dY (t)

dt
=

rφZ1(t)Y (t)

N(t)
+

rZ2(t)Y (t)

N(t)
− µY (t) − γY (t)

With N(t) = Z1t) + Z2(t) + Y (t) and dN(t)
dt

= (b − µ)N(t) − γY (t) and the

corresponding proprotions are
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dz1(t)

dt
= pb − rφz1(t)y(t) − bz1(t) + γz1(t)y(t)

dz2(t)

dt
= (1 − p)b − rz2(t)y(t) − bz2(t) + γz2(t)y(t) (4.12)

dy(t)

dt
= rφz1(t)y(t) + rz2(t)y(t) − by(t) − γy(t) + γy2(t)

where z1(t) + z2(t) + y(t) = 1

4.3.1 The role of risk to infection in determining model

outcomes

To illustrate the effect of changing the risk levels, we run simulations using

the system with proportions (equation 4.12). Since our main concern is to

study the behaviour that may be due to the risk levels, we compare different

scenarios of changing φ with equal division in recruitment of new individuals

into the two risk groups.

If the risk parameter (φ) is decreased to lower values, a low rise in the preva-

lence curve occurs (figure 4.5). It has also been found that the prevalence

curve of the disease peaks and remains endemic at a relatively low level when

group (Z1) is at low risk. We also note that in the absence of any risk factor

(when φ = 0), the model in (equation 4.11) becomes the same to the model

in equation (4.5).

When φ is increased to higher values, the prevalence curve (figure 4.5(b)),

does not peak. The curve shows that the disease remains endemic at a very

high level. For φ = 1, Z1 becomes like to Z2 and therefore forming a single

group with a uniform risk level as in the original form (see equation (2.1)).
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Figure 4.5: Effect of the risk parameter φ (a)Top: φ = 0.1 and (b)Bottom: φ = 0.5

Parameters: p = 0.5, b = 0.03, µ = 0.02, γ = 0.1, r = 0.5
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4.4 Summary and conclusion

In this chapter we have investigated some of the key properties of epidemic

models. The aspect of dividing new individuals into the risk groups was

shown to have a critical impact on results. Our study on this aspect has

shown that new individuals born by individuals who have no risk behaviour,

should retain or inherit their parents behaviour. This would enable the dis-

ease to die out in the long term.

Furthermore, our investigation explored some initialization aspects of the

uninfected groups. Our results show, that in the case of recruitment staying

within its group, a small change in the initial conditions may result in a

large change in the equilibrium point. However, from some initial division

onwards, the equilibrium may continue to be fairly stable.

The effect of different risk levels was also investigated. It was found that a

group risk level is the determinant of the occurrence of a peak in the epidemic

curve. As most epidemic curves have been showing peaks, with our results

we can conclude that these peaks are due to the presence of groups which

have low risk of disease infection. Therefore, it should not be generalized

that a peak in prevalence occurs in any population.



Chapter 5

Discussion and Conclusion

5.1 Summary and conclusions

This study has been concerned with developing a very simple HIV/AIDS

spread model which is then extended to explain different properties that

arise in any population where HIV exists. We were specifically interested

in understanding how these properties influence the spread of HIV/AIDS

and their effects on predictions. Specifically, we wanted to determine the

contribution of these properties in making HIV/AIDS predictive estimates

close to reality, as HIV surveillance systems and methods are improving,

and the dynamic behaviour of the disease is becoming clearly understood.

In studying these properties, we raised some other issues such as the rate

of HIV transmission, the survival period of HIV infected individuals, the

degree of risk behaviour in acquiring HIV, the manner new individuals are
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recruited into different risk groups and the decision on how many individuals

are initially present in a given risk group.

To explore these properties and describe the contribution of stages of HIV

progression in the spread of HIV and in changing predictive estimates, we

used the simple HIV model as a starting point. After studying the model for

our quantitative study, and incorporating the stages explicitly, we showed

that this inclusion of the stages qualitatively captured the dynamics we be-

lieve to be important in the early stages of HIV progression. A search in

the literature resulted in reasonable estimates for many of the parameters

in the models, and analysis of the model equations provided conditions that

were used to estimate the remaining parameters, the transmission rates. We

discovered that, there are differences in results between the two models, with

predictions being higher in a short term when stages are considered and low

when they are not. It appears that the main driver is the presence of the

primary stage. These findings are confirmed by the results obtained from

clinical studies [4, 5].

In an attempt to understand what key details were left out of the staged

model, we extended our model to include other reasonable details. In the

extended model, we assumed that AIDS deaths have a profound effect on

both the spread of the disease and predictions. We altered the mechanism of

AIDS deaths occurrence and consider an explicit constant time delay for all

infected individuals from their initial infection to death. The main difference

occurs in the mortality rates curves as they depend much on how long infected

individuals live.

For further understanding of the key properties, our simple single staged

model in chapter (2) was then extended to include risk groups. It is shown
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that for the disease not to have a large impact on the population, the majority

of individuals must refrain from risk behaviour. This can lead to disease

clearance especially when new individuals do not develop risk behaviors (e.g.

NOT group), instead they inherit their parent’s behaviour.

In all models considered in this study, stages have shown an important role.

Their inclusion increases the prevalence level of the disease in the population

especially during its early development. The difference between the model

that considers a single group of infected individuals and the model with stages

(that divides infected individuals according to stages), is that with a single

group of infected people, all individuals in this group transmit the viruses

at an equal rate. In the staged model, individuals transfer the viruses to

uninfected individuals at different rates. It is this factor that is important.

The study has shown that even if the model with a single group of infected

individuals include all other factors, it still can not reproduce results of the

model with stages.

In addition, our study discovered an important feature in epidemiological

modelling and the spread of diseases. HIV/AIDS like other diseases, its

epidemic curves are claimed to rise to a peak and then decrease to a constant

value if the disease is assumed to persist in the population. This feature has

been occurring in survey data as well as in results predicted by mathematical

models of disease dynamics in populations. Our study revealed that, if the

population does not have risk groups, then this feature in epidemic curves

can not occur. As shown by our model results in chapter (2) and chapter

(3), in a long-term, the epidemic curves are not affected either by introducing

stages or time delay in AIDS mortality. The prevalence curves can only grow

to form a plateau but not a peak. This is true for prevalence curves, while
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curves for incidence or proportion of new infections can indeed have a peak.

The introduction of risk groups has lead to an occurrence of peaks in the

prevalence curves.

5.2 Limitations and future directions

In this study, we developed, expanded and improved on the simple HIV

spread model to address some specific questions on spread and predictions

of HIV/AIDS. Our results have been based on estimated parameter values

which may however not apply in some cases. All of the models in this study

dealt with an idealized situation. By creating a model using differential

equations, we have assumed that all individuals in a given stage or risk

group in acquiring the disease, modeled with same parameter values. A

more realistic model would allow for the possibility that parameter values

are not constant over time, and are different in different regions.

The assumption that the total population is not constant has lead to in-

creased non linearity of the terms in the proportion forms of the models. We

have assumed that the total population decreases asymptotically due to the

disease persistence. This has lead us to approximate the endemic equilib-

rium points in some models. However, this assumption is not applicable to

the models which incorporated risk groups. The total population might not

decrease asymptotically due to the presence of groups which are at less risk

or no risk at all to infection.

Our study is also limited by having few parameters in the models. For

example, we have studied the effect of changing survival periods of infected
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individuals in a general case. It could be interesting if one would include

parameters that describe the effects due to treatment programmes directly.

The time delay introduced in the model studied in chapter (3) assumed that

people die following a step function distribution which is an extreme case. It

would be interesting to have a distribution which is between the step function

and an exponential distribution to explain the occurrence of AIDS deaths.

Another limitation of this work is that the models studied considered a single

sex group of people. It does not divide individuals according to gender.

Both males and females are treated equally and the HIV transmission rate

is equally considered. In reality, females are at more risk than males [23, 21,

22, 40, 36]. Although the models in chapter (4) divides the population into

subgroups like the NOT group and other groups with different risk levels,

still the models do not allow movement of individuals from one risk group to

another. It would be helpful to allow these movements as some individuals

refrain from risk behaviour while others are increasing risk.

In general, our work has provided an understanding of how difficult it can

be to produce quality HIV/AIDS information using mathematical models.

However, a model that combines all the features studied in this thesis would

be an added advantage. As HIV/AIDS data has been improving through

improvements in collection methods, clear understanding of the disease and

its characteristics etc, more complexity in models will be needed.



Appendix A

Determination of the
reproduction number for the

staged model

We rearrange the system (2.22) by starting with the infectious groups and

ending with the susceptible group as

(
dy1(t)

dt
,
dy2(t)

dt
,
dz(t)

dt
)T . (A.1)

From our new system (A.1), we define a matrix F with new infections and

a matrix V by negating the inflow and outflow of individuals in the system.

Thus
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F =











r1zy1 + r2zy2

0

0











(A.2)

V =











(ρ + b)y1 − γy1y2

−ρy1 + (γ + b)y2 − γy2
2

b(1 − z) + r1zy1 + r2zy2 − γzy2











(A.3)

Differentiating F and V with respect to the infected subgroups y1 and y2 at

the disease free equilibrium, the following matrices are obtained:

F =





r1 r2

0 0



 (A.4)

V =





(ρ + b) 0

−ρ (γ + b)



 (A.5)

Next we find the a Jaconbian matrix using F and the inverse of a matrix V

FV −1 =











r1

ρ+b
+ r2ρ

(ρ+b)(γ+b)
r2

γ+b

0 0











(A.6)

The eigenvalues of equation (A.6) are λ1 = r1

ρ+b
+ r2ρ

(ρ+b)(γ+b)
and λ2 = 0.



Appendix B

Computer programs

The python programs presented here are used for the simulation of the sys-

tems with proportions.

B.1 Simple HIV model program

#Importing the modules

from scipy import *

from scipy.integrate import odeint

#Parameter assignment

b = 0.03

rho = 0.12

mu = 0.02

r = 0.4 #This parameter can vary

# Function definitions for f0 = dz/dt, y[0] = z, y[1]=y, y[2] = dN/dt

def f0(y,t):

return b - r*y[1]*y[0] - b*y[0] + rho*y[0]*y[1]
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def f1(y,t):

return r*y[1]*y[0] -b*y[1] - rho*y[1] + rho*y[1]*y[1]

def fN(y,t):

return (b - mu - rho*y[1])*y[2]

y_dot = [0,0,0]

def f(y,t):

y_dot[0] = f0(y,t)

y_dot[1] = f1(y,t)

y_dot[2] = fN(y,t)

return y_dot

#Initialization of z0 and y0

y_initial = [0.999,0.001,1.0] # Can be changed

t = arange(0.,500.,0.01) # Times at which y is calculated

y = odeint(f,y_initial,t) # calling odeint solver

fout = open(’simple_model.data’,’w’)

data=[]

for i in range(len(t)):

data.append([t[i], y[i][0], y[i][1], y[i][2]])

print >> fout, array(data) #writing data to a file for plotting

fout.close()

#computing data for y* and ra=r

data1 = []

for y_star in arange(0.,0.9,0.01):

ra =((b + gamma) - gamma*y_star)/(1-y_star)

data1 = data1 + [[y_star,ra]]

equilibData = take(data1,[0,1],axis = 1)
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B.2 Simple staged model program

from scipy import *

from scipy.linalg import *

import math

#parameter assignment: b,mu and rho are assumed constant

b = 0.03

mu = 0.02

r1 = 4.0

r2 = r1/12

rho = 6.0

gamma = 0.1

fout = open(’staged_model.data’,’w’)

#Function definition for the model equations

def fy1(t,y1,y2): #for dy1/dt

equationy1=r1*(1-y1-y2)*y1+r2*(1-y1-y2)*y2-(rho + b)*y1+gamma*y1*y2

return equationy1

def fy2(t,y1,y2): #for dy2/dt

equationy2 = rho*y1 - (gamma + b)*y2 + gamma*y2*y2

return equationy2

def fN(t,y2,N): #for dN/dt

equationN = (b - mu - gamma*y2)*N

return equationN

#Defining the rungekutta order four function

def rk4(fy1,fy2,fN,t,y1,y2,N,h,tmax):

table = [[t,y1,y2,N]]

while t < tmax:

d1 = h*fy1(t,y1,y2)

p1 = h*fy2(t,y1,y2)

g1 = h*fN(t,y2,N)

d2 = h*fy1(t+0.5*h,y1+0.5*d1,y2+0.5*p1)

p2 = h*fy2(t+0.5*h,y1+0.5*d1,y2+0.5*p1)

g2 = h*fN(t+0.5*h,y2+0.5*p1,N+0.5*g1)
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d3 = h*fy1(t+0.5*h,y1+0.5*d2,y2+0.5*p2)

p3 = h*fy2(t+0.5*h,y1+0.5*d2,y2+0.5*p2)

g3 = h*fN(t+0.5*h,y2+0.5*p2,N+0.5*g2)

d4 = h*fy1(t+h,y1+d3,y2+p3)

p4 = h*fy2(t+h,y1+d3,y2+p3)

g4 = h*fN(t+h,y2+p3,N+g3)

t += h

y1 += (d1+2.*d2+2.*d3+d4)/6.

y2 += (p1+2.*p2+2.*p3+p4)/6.

N += (g1+2.*g2+2.*g3+g4)/6.

mortalityRate = gamma*y2

table.append([t,y1,y2,N])

print >> fout,’ %f %f %f %f %f’ %(t,y1,y2,N,mortalityRate)

return table

#Function call

mytable = rk4(fy1,fy2,fN,0,0.001,0.0,1.0,0.1,500)

# Computation of the reproduction nummber,Xi

Ry1 = r1/(rho+b)

Ry2 = r1/((gamma+b)*12)

Xi = Ry1 + rho*Ry2/(rho+b)

print >> fout,’# Ry1=%f Ry2=%f Xi=%f r1=%f r2=%f’ %(Ry1,Ry2,Xi,r1,r2)

fout.close()

#computing r1a=r1 for y2_st=y2* in range(0,1)

data1 = []

for y2_st in arange(0.,0.95,0.01):

c_a = b - mu - gamma*y2_st #c_a = c

y1_st = ( (mu+gamma+c_a)/rho )*y2_st

kappa = (mu + gamma + c_a)/rho

numerator = (b + rho - gamma*y2_st)*kappa

denominator = ((1-(kappa+1)*y2_st)*kappa)+((1 - (kappa+1)*y2_st)/12)

r1a = numerator/denominator

r2a = r1a/12
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data1 = data1 + [[y2_st,y1_st,r1a]]

equlibriumData = take(data1,[0,1,2],axis = 1)

B.3 Delay model program

from scipy import *

from scipy.linalg import *

from math import *

b = 0.03

mu = 0.02

r1 = 4.0

r2 = r1/12

rho = 6.0

delay = 10 #delay = tau

fout = open(’delaymodel.data’,’w’)

# Function definitions

def fz(t,z,y1,y2,y1delay,Ndelay,N):

equationz=b-b*z-r1*z*y1 -

r2*z*y2+rho*exp(-delay*mu)*y1delay*z*(Ndelay/N)

return equationz

def fy1(t,z,y1,y2,y1delay,Ndelay,N):

equationy1 = r1*z*y1 + r2*z*y2 - (b + rho)*y1 +

rho*exp(-delay*mu)*y1*y1delay*(Ndelay/N)

return equationy1

def fy2(t,y1,y2,y1delay,Ndelay,N):

equationy2=rho*y1-b*y2-rho*exp(-delay*mu)*y1delay*(1-y2)*(Ndelay/N)

return equationy2

def fN(t,y1delay,Ndelay,N):

equationN = (b - mu)*N - rho*exp(-delay*mu)*y1delay*Ndelay

return equationN
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#defining a runge kutta function

def RK4(fz,fy1,fy2,fN,t,z,y1,y2,N,h,tmax):

table = [[t,z,y1,y2,N]]

i = 0

while t < tmax:

if t-h <=delay :

y1delay = 0

Ndelay = 0

i+=1

else:

y1delay = table[i-101][2]

Ndelay = table[i-101][4]

i+=1

k1 = h*fz(t,z,y1,y2,y1delay,Ndelay,N)

d1 = h*fy1(t,z,y1,y2,y1delay,Ndelay,N)

p1 = h*fy2(t,y1,y2,y1delay,Ndelay,N)

g1 = h*fN(t,y1delay,Ndelay,N)

k2=h*fz(t+0.5*h,z+0.5*k1,y1+0.5*d1,y2+0.5*p1,y1delay+0.5*d1,

Ndelay+0.5*g1,N+0.5*g1)

d2=h*fy1(t+0.5*h,z+0.5*k1,y1+0.5*d1,y2+0.5*p1,y1delay+0.5*d1,

Ndelay+0.5*g1,N+0.5*g1)

p2 = h*fy2(t+0.5*h,y1+0.5*d1,y2+0.5*p1,y1delay+0.5*d1,

Ndelay+0.5*g1,N+0.5*g1)

g2 = h*fN(t+0.5*h,y1delay+0.5*d1,Ndelay+0.5*g1,N+0.5*g1)

k3=h*fz(t+0.5*h,z+0.5*k2,y1+0.5*d2,y2+0.5*p2,y1delay+0.5*d2,

Ndelay+0.5*g2,N+0.5*g2)

d3=h*fy1(t+0.5*h,z+0.5*k2,y1+0.5*d2,y2+0.5*p2,y1delay+0.5*d2,

Ndelay+0.5*g2,N+0.5*g2)

p3 = h*fy2(t+0.5*h,y1+0.5*d2,y2+0.5*p2,y1delay+0.5*d2,

Ndelay+0.5*g2,N+0.5*g2)

g3 = h*fN(t+0.5*h,y1delay+0.5*d2,Ndelay+0.5*g2,N+0.5*g2)

k4 = h*fz(t+h,z+k3,y1+d3,y2+p3,y1delay+d3,Ndelay+g3,N+g3)

d4 = h*fy1(t+h,z+k3,y1+d3,y2+p3,y1delay+d3,Ndelay+g3,N+g3)

p4 = h*fy2(t+h,y1+d3,y2+p3,y1delay+d3,Ndelay+g3,N+g3)
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g4 = h*fN(t+h,y1delay+d3,Ndelay+g3,N+g3)

t += h

z += (k1+2.*k2+2.*k3+k4)/6.

y1 += (d1+2.*d2+2.*d3+d4)/6.

y2 += (p1+2.*p2+2.*p3+p4)/6.

N += (g1+2.*g2+2.*g3+g4)/6.

mortalityRate=rho*exp(-delay*mu)*y1delay*Ndelay/N

table.append([t,z,y1,y2,N,M])

print >> fout,’%f %f %f %f %f %f %f %f %f

%f’%(t,z,y1,y2,N,mortalityRate,M,y1delay,Ndelay)

return table

print >> fout,’ #r1 = %f r2 = %f mu = %f b = %f rho = %f delay = %f’

%(r1,r2,mu,b,rho,delay)

results = RK4(fz,fy1,fy2,fN,fdeath,0,0.999,0.001,0,1,0,0.1,400)

fout.close()

# Calculating data for r1,y1* and y2* in a given range of

#alpha* for delay = 10years

datar1=[]

for alpha in arange(1.22,8.,0.01):

y1a = (log(alpha) + delay*(b - mu))/(delay*rho*exp(-delay*mu)*alpha)

y2a = (rho*y1a*(exp(-delay*mu)*alpha - 1))/

(rho* exp(-delay*mu)*alpha*y1a - b )

za = 1-y1a-y2a

numerator = (rho + b)*y1a - rho*exp(-delay*mu)*alpha*y1a*y1a

denomenator = (1-y1a-y2a)*(y1a + (y2a/12))

r1a = (numerator/denomenator)

r2a=r1a/12

datar1 = datar1 + [[alpha,r1a,y1a,y2a,za]]
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B.4 Model with NOT group program: part

one

from scipy import *

from scipy.integrate import odeint

b = 0.03

gamma = 0.1

r1 = 6.0 # for comparison, r2 = r=r1/12

r = r1/12

mu = 0.02

# Functions definitions with y[0] = x, y[1]=z, y[2]=y, y[3] = N

#f0 = dx/dt

def f0(y,t):

return gamma*y[0]*y[2]

#f1 = dz/dt

def f1(y,t):

return b*y[2] - r*y[1]*y[2] + gamma*y[1]*y[2]

#f1 = dy/dt

def f2(y,t):

return r*y[1]*y[2] - (b + gamma)*y[2] + gamma*y[2]*y[2]

#fN = dN/dt

def f3(y,t):

return (b - mu - gamma*y[2])*y[3]

y_dot = [0,0,0,0]

def f(y,t):

y_dot[0] = f0(y,t)

y_dot[1] = f1(y,t)

y_dot[2] = f2(y,t)

y_dot[3] = f3(y,t)

return y_dot

#Initialization of x0, z0, y0 and N0, can be changed

y_initial = [0.5,0.499,0.001, 1.0] #N0 can be any
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t = arange(0.,500.,1.)

y = odeint(f,y_initial,t)

fout = open(’modelNorecruit.data’,’w’)

data=[]

for i in range(len(t)):

data.append([t[i], y[i][0], y[i][1], y[i][2], y[i][3] ])

all = take(data, [0, 1, 2, 3, 4], axis = 1)

print >> fout, " b = %f r = %f mu = %f gamma = %f" %(b,r,mu,gamma)

print >> fout, All

fout.close()

B.5 Model with NOT group program: part

two

from scipy import *

from scipy.integrate import odeint

b = 0.03

p = 0.01

gamma = 0.1

r1 = 6.0

r = r1/12

mu = 0.02

# Functions definitions with y[0] = x, y[1]=z, y[2]=y, y[3] = N

#f0 = dz/dt

def f0(y,t):

return p*b - b*y[0] + gamma*y[0]*y[2]

#f1 = dz/dt

def f1(y,t):

return (1-p)*b -b*y[1] - r*y[1]*y[2] + gamma*y[1]*y[2]
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#f2 = dy/dt

def f2(y,t):

return r*y[1]*y[2] - (b + gamma)*y[2] + gamma*y[2]*y[2]

#fN = dN/dt

def f3(y,t):

return (b - mu - gamma*y[2])*y[3]

y_dot = [0,0,0,0]

def f(y,t):

y_dot[0] = f0(y,t)

y_dot[1] = f1(y,t)

y_dot[2] = f2(y,t)

y_dot[3] = f3(y,t)

return y_dot

#Initialization of x0, z0, y0 and N0

#y_initial = [0.5,0.499,0.001, 1.0]

t = arange(0.,500.,1.)

y = odeint(f,y_initial,t)

fout = open(’modelRecruit.data’,’w’)

data=[]

for i in range(len(t)):

data.append([t[i], y[i][0], y[i][1], y[i][2], y[i][3] ])

Alldata = take(data, [0, 1, 2, 3, 4], axis = 1)

print >> fout, " b = %f p = %f r = %f mu = %f gamma = %f" %(b,p,r,mu,gamma)

print >> fout, Alldata

fout.close()

B.6 Risk variation model program

#Importing modules

from scipy import *
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from scipy.integrate import odeint

#Parameter asignment

b = 0.03

p = 0.5 #Can be changed

gamma = 0.1

r1 = 6.0

r = r1/12

mu = 0.02

phi = 0.5 #Can be changed

# Functions definitions for f0 = dz1/dt, y[0] = z1, y[1]=z2,

# y[2]=y, y[3] = N

def f0(y,t):

return p*b - r*phi*y[0]*y[2] - b*y[0] + gamma*y[0]*y[2]

def f1(y,t):

return (1-p)*b - r*(1-phi)*y[1]*y[2] - b*y[1] + gamma*y[1]*y[2]

def f2(y,t):

return r*phi*y[0]*y[2] + r*(1-phi)*y[1]*y[2] -

(b + gamma)*y[2] + gamma*y[2]*y[2]

def f3(y,t):

return (b - mu - gamma*y[2])*y[3]

y_dot = [0,0,0,0]

def f(y,t):

y_dot[0] = f0(y,t)

y_dot[1] = f1(y,t)

y_dot[2] = f2(y,t)

y_dot[3] = f3(y,t)

return y_dot

#Initialization of x0, z0, y0 and N0

y_initial = [0.2,0.799,0.001, 1.0]

t = arange(0.,500.,1.)

y = odeint(f,y_initial,t)

fout = open(’riskVariation_model.data’,’w’)
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#data collection

data=[]

for i in range(len(t)):

data.append([t[i], y[i][0], y[i][1], y[i][2], y[i][3] ])

All = take(data, [0, 1, 2, 3, 4], axis = 1)

print >> fout, "# b = %f p = %f gamma = %f r = %f phi = %f mu = %f"

%(b,p,gamma,r,phi,mu)

print >> fout, All

fout.close()
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