THE ASYMPTOTIC NUMBER OF BINARY CODES AND BINARY MATROIDS*

MARCEL WILD ${ }^{\dagger}$

Abstract

The asymptotic number of nonequivalent binary n-codes is determined. This is also the asymptotic number of nonisomorphic binary matroids on n elements.

Key words. asymptotic enumeration, binary codes, binary matroids, lattice of invariant subspaces

AMS subject classifications. Primary, 94A10, 05A16; Secondary, 05B35, 05A30
DOI. 10.1137/S0895480104445538

1. Introduction. Recall that a binary n-code is a subspace X of the $G F(2)$ vector space $V:=G F(2)^{n}$. Two binary n-codes $X, X^{\prime} \subseteq V$ are equivalent if for some permutation σ of the symmetric group S_{n} on $\{1,2, \ldots, n\}$ we have

$$
X^{\prime}=X_{\sigma}:=\left\{\left(x_{1 \sigma}, \ldots, x_{n \sigma}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in X\right\}
$$

where $i \sigma$ is the image of i under σ. Let $b(n)$ be the number of equivalence classes of binary n-codes. It is well known that $b(n)$ is also the number of nonisomorphic binary matroids on an n-set. The asymptotic behavior of $b(n)$ was posed as open problem 14.5.4 in [O].

Here the setting of binary codes suits us better. For a field K let $G(n, K)$ be the (possibly infinite) number of K-linear subspaces of K^{n}. Mostly, K will be $G F(q)$, in which case we write $G(n, q)$ instead of $G(n, K)$. Because each equivalence class of binary n-codes has cardinality at most n ! it follows that $b(n) \geq G(n, 2) / n$! for all n. It will be a corollary of our main theorem that for $n \rightarrow \infty$ asymptotically

$$
\begin{equation*}
b(n) \sim G(n, 2) / n! \tag{1}
\end{equation*}
$$

For $\sigma \in S_{n}$ let $T_{\sigma}: V \rightarrow V$ be the vector space automorphism defined on the canonical base by $T_{\sigma}\left(e_{i}\right):=e_{i \sigma}$. Let $\mathcal{L}\left(T_{\sigma}\right)$ be the lattice of all T_{σ}-invariant subspaces in the sense of linear algebra, meaning the lattice of all subspaces U with $T_{\sigma}(U) \subseteq U$. Since here T_{σ} is bijective, $T_{\sigma}(U) \subseteq U$ is equivalent to $T_{\sigma}(U)=U$, i.e., to U being a "fixed point." This allows us to apply the Cauchy-Frobenius lemma (erroneously called Burnside's lemma):

$$
\begin{equation*}
b(n)=\frac{G(n, 2)}{n!}+\frac{1}{n!} \sum_{\sigma \in S_{n}-\{i d\}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|, \tag{2}
\end{equation*}
$$

hence proving (1) is equivalent to showing

$$
\begin{equation*}
\sum_{\sigma \in S_{n}-\{i d\}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=o(G(n, 2)) \tag{3}
\end{equation*}
$$

[^0]There are $\binom{n}{2}$ permutations $\tau \in S_{n}$ with one 2 -cycle and $n-2$ cycles of length 1 . Any such transposition τ yields a T_{τ} with at least $G(n-1,2)$ invariant subspaces. Indeed, say T_{τ} switches e_{1} and e_{2}. Then the $n-1$ vectors $e_{1}+e_{2}, e_{3}, \ldots, e_{n}$ are fixed by T_{τ}. Hence

$$
\begin{equation*}
\binom{n}{2} G(n-1,2) \quad \text { is a lower bound for } \sum_{\sigma \in S_{n}-\{i d\}}\left|\mathcal{L}\left(T_{\sigma}\right)\right| \text {. } \tag{4}
\end{equation*}
$$

This shows that (3) can only be true if $G(n, 2)$ grows superexponentially with n. Proving (3) was undertaken in [W1] but, as pointed out by Lax [L], there is an error in the proof of [W1, Lemma 6]. The error is fixed in the present article, which also improves upon style and organization. In fact, we shall wind up with a stronger result but as a golden thread it may be helpful, at least in section 2 , to think of (3) as our target. The stronger result consists of rather sharp lower and upper bounds for $b(n)$ when n is large enough. These bounds are derived in sections 3 and 4, respectively, and the pieces are put together in section 5 .
2. Four lemmata. The first lemma reduces our preliminary target (3) to the statement that the left-hand side of (3) is $o\left(2^{n^{2} / 4}\right)$.

LEMMA 1. For all prime powers q there are positive constants $d_{1}(q)$ and $d_{2}(q)$ such that

$$
\lim _{m \rightarrow \infty} \frac{G(2 m+1, q)}{q^{(2 m+1)^{2} / 4}}=d_{1}(q) \quad \text { and } \quad \lim _{m \rightarrow \infty} \frac{G(2 m, q)}{q^{(2 m)^{2} / 4}}=d_{2}(q)
$$

Furthermore, all $d_{i}(q)$ are less than 32 and rounded to six decimals, $d_{1}(2)$ is 7.371949, and $d_{2}(2)$ is 7.371969 .

Proof. Let q be fixed and put $G_{n}:=G(n, q)$. Note that $G_{0}=1, G_{1}=2$. By [A, p. 94] one has

$$
\begin{equation*}
G_{n+1}=2 G_{n}+\left(q^{n}-1\right) G_{n-1} \quad(n \geq 1) \tag{5}
\end{equation*}
$$

Letting $u_{n}:=q^{-n^{2} / 4} G_{n}(n \geq 0)$, it follows from (5) that

$$
\begin{equation*}
u_{n}=2 q^{-n / 2+1 / 4} u_{n-1}+\left(1-q^{-n+1}\right) u_{n-2} \quad(n \geq 2) \tag{6}
\end{equation*}
$$

Letting $\tau_{n}=\tau_{n}(q):=2 q^{-n / 2+1 / 4}+1-q^{-n+1}, a_{n}:=2 q^{-n / 2+1 / 4} \tau_{n}^{-1}$, and $b_{n}:=\left(1-q^{-n+1}\right) \tau_{n}^{-1}$, we have $a_{n}+b_{n}=1$ and

$$
\begin{equation*}
u_{n}=\tau_{n}\left(a_{n} u_{n-1}+b_{n} u_{n-2}\right) \quad(n \geq 2) \tag{7}
\end{equation*}
$$

From $u_{0}=1, u_{1}=2 q^{-1 / 4}, \tau_{n}>1(n \geq 2)$, and (7) it follows that

$$
\begin{equation*}
u_{n} \geq \min \left\{u_{0}, u_{1}\right\}>0 \quad(n \geq 0) \tag{8}
\end{equation*}
$$

As to an upper bound, from $u_{0}=1$ and $u_{1} \leq 2 \cdot 2^{-1 / 4}<1.7$ we get $a_{2} u_{1}+b_{2} u_{0} \leq 1.7$, so (7) yields $u_{2} \leq(1.7) \tau_{2}, u_{3} \leq(1.7) \tau_{2} \tau_{3}$, and so forth. One checks that $\tau_{n}(q) \leq \tau_{n}(2)$ for $n \geq 2$ and $\tau_{n}(2) \leq 1+2^{-n / 3}$ for $n \geq 7$, whence
$(9) u_{n} \leq(1.7) \tau_{2}(2) \cdots \tau_{6}(2) \cdot \prod_{k \geq 7}\left(1+2^{-k / 3}\right)<(1.7) \cdot(6.8) \cdot e^{0.97}<32 \quad(n \geq 0)$.

The convergence of the latter infinite product follows by taking natural logarithms and noticing that $\sum_{k \geq 7} \ln \left(1+2^{-k / 3}\right)$ is bounded by $\sum_{k \geq 7} 2^{-k / 3}<0.97$. From (6) and (9) it follows that

$$
\left|u_{n+2}-u_{n}\right|=\left|-q^{-n-1} u_{n}+2 q^{-\frac{n}{2}-\frac{3}{4}} u_{n+1}\right| \leq 32 q^{-\frac{n}{3}} \quad(n \geq 0) .
$$

Iterating and applying the triangle inequality yields

$$
\begin{equation*}
\left|u_{n+2 k}-u_{n}\right| \leq 32\left(q^{-\frac{n}{3}}+q^{-\frac{(n+2)}{3}}+\cdots+q^{-\frac{(n+2 k-2)}{3}}\right) \leq 32 \frac{q^{-\frac{n}{3}}}{1-q^{-\frac{2}{3}}} \quad(n \geq 0) \tag{10}
\end{equation*}
$$

Cauchy's criterion therefore guarantees that both $d_{1}(q):=\lim _{m \rightarrow \infty} u_{2 m+1}$ and $d_{2}(q):=$ $\lim _{m \rightarrow \infty} u_{2 m}$ exist. They are nonzero by (8). Clearly, (10) implies

$$
\begin{equation*}
\left|d_{2}(q)-u_{2 m}\right| \leq 32 \frac{q^{-\frac{2 m}{3}}}{1-q^{-\frac{2}{3}}} \quad(m \geq 0) \tag{11}
\end{equation*}
$$

Combining (7) and (11), one can compute $d_{2}(q)$ to any desired accuracy. Ditto for $d_{1}(q)$.

In order to get a handle on $\mathcal{L}\left(T_{\sigma}\right)$ we need the minimal polynomial

$$
\min \left(T_{\sigma}, t\right)=\prod_{i=1}^{s} p_{i}(t)^{\mu_{i}}
$$

where the $p_{i}(t) \in G F(2)[t]$ are irreducible and $\mu_{i} \geq 1(1 \leq i \leq s)$. We seek an upper bound for $s=s(\sigma)$. Since $\min \left(T_{\sigma}, t\right)$ has degree at most n and since there are only finitely many irreducible polynomials in $G F(2)[t]$ of any given degree, it is clear that for any fixed $\epsilon>0$ one can force $s \leq \epsilon n$ for all $\sigma \in S_{n}$, provided n is large enough. For us it will suffice that

$$
\begin{equation*}
\text { for all large enough } n \text { one has } s \leq(0.06) n \text { for all } \sigma \in S_{n} \text {. } \tag{12}
\end{equation*}
$$

It is well known that if

$$
V_{i}:=\operatorname{ker}\left(p_{i}\left(T_{\sigma}\right)^{\mu_{i}}\right), \quad n_{i}:=\operatorname{dim}\left(V_{i}\right) \quad(1 \leq i \leq s),
$$

then $V=V_{1} \oplus \cdots \oplus V_{s}$; and if $T_{i}:=\left(T_{\sigma} \upharpoonright V_{i}\right)$, then $T_{i}: V_{i} \rightarrow V_{i}$ has minimal polynomial $\min \left(T_{i}, t\right)=p_{i}(t)^{\mu_{i}}$. Furthermore, by [BF, p. 812]

$$
\begin{equation*}
\mathcal{L}\left(T_{\sigma}\right) \simeq \mathcal{L}\left(T_{1}\right) \times \mathcal{L}\left(T_{2}\right) \times \cdots \times \mathcal{L}\left(T_{s}\right) \tag{13}
\end{equation*}
$$

Assume that our σ is a product of r disjoint cycles C_{1}, \ldots, C_{r} of lengths $\lambda_{j}=2^{\alpha_{j}} \cdot u_{j}$, where $\alpha_{j} \geq 0$ and $u_{j} \geq 1$ is odd. The upcoming (14) and (15) will be the only facts for which we refer to [W1]. Namely, if we standardize $p_{1}(t):=t+1$, then its corresponding parameters μ_{1} and n_{1} satisfy [W1, Lemma 4]

$$
\begin{equation*}
\mu_{1}=\max \left\{2^{\alpha_{j}} \mid 1 \leq j \leq r\right\} \tag{14}
\end{equation*}
$$

and [W1, Lemma 5]

$$
\begin{equation*}
r \leq n_{1}=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{r}} \leq n . \tag{15}
\end{equation*}
$$

For instance, $\sigma:=(1,2, \ldots, 11,12)(13,14,15)(16,17)$ has $n_{1}=2^{2}+2^{0}+2^{1}=7$ and a base of V_{1} is

$$
e_{1}+e_{5}+e_{9}, e_{2}+e_{6}+e_{10}, e_{3}+e_{7}+e_{11}, e_{4}+e_{8}+e_{12}, e_{13}+e_{14}+e_{15}, e_{16}, e_{17}
$$

Observe that while $\min \left(T_{\sigma}, t\right)$ is just the least common multiple of the polynomials $t^{\lambda_{j}}+1(1 \leq j \leq r)$, the prime factors of $\min \left(T_{\sigma}, t\right)$ are unpredictable, and hence there is no general connection between the number r of disjoint cycles of σ and the number s of direct factors of $\mathcal{L}\left(T_{\sigma}\right)$. It is well known that the expected value of $r(\sigma)$ asymptotically is $\ln (n)$ as $n \rightarrow \infty$. Question: What is the expected value of $s(\sigma)$ as $n \rightarrow \infty$?

Lemma 2. For large enough n all $\sigma \in S_{n}$ have $\left|\mathcal{L}\left(T_{\sigma}\right)\right| \leq\left|\mathcal{L}\left(T_{1}\right)\right| \cdot 2^{\frac{\left(n-n_{1}\right)^{2}}{8}}+(0.3) n$.
Proof. Since T_{i} is bijective we have $T_{i}^{\mu_{i}} \neq 0$, so $p_{i}(t)=t$ is impossible, so each $p_{i}(t)(2 \leq i \leq s)$ has degree $d_{i} \geq 2$. Fix $T_{i}: V_{i} \rightarrow V_{i}$ with $2 \leq i \leq s$. According to [BF, Thm. 6] one can write $T_{i}=Q+S$, where $S: V_{i} \rightarrow V_{i}$ is semisimple and $Q: V_{i} \rightarrow V_{i}$ is nilpotent. Moreover, putting $K:=G F(2)[t] / p_{i}(t)$, the map Q is K-linear in a natural sense and $\mathcal{L}\left(T_{i}\right)=\mathcal{L}_{K}(Q)$. Since $K \simeq G F\left(2^{d_{i}}\right)$ and $\operatorname{dim}_{K}\left(V_{i}\right)=n_{i} / d_{i}$, it follows from Lemma 1 that

$$
\left|\mathcal{L}\left(T_{i}\right)\right| \leq G\left(\frac{n_{i}}{d_{i}}, 2^{d_{i}}\right) \leq 2^{5} \cdot\left(2^{d_{i}}\right)^{\left(n_{i} / d_{i}\right)^{2} / 4}=2^{5} \cdot 2^{n_{i}^{2} / 4 d_{i}}
$$

Using (12) and $d_{i} \geq 2(2 \leq i \leq s)$ we get

$$
\begin{aligned}
\left|\mathcal{L}\left(T_{\sigma}\right)\right| & \leq\left|\mathcal{L}\left(T_{1}\right)\right|\left(2^{5} \cdot 2^{n_{2}^{2} / 8}\right) \cdots\left(2^{5} \cdot 2^{n_{s}^{2} / 8}\right) \\
& \leq\left|\mathcal{L}\left(T_{1}\right)\right| \cdot\left(2^{5}\right)^{(0.06) n} \cdot 2^{n_{2}^{2} / 8+\cdots+n_{s}^{2} / 8} \\
& \leq\left|\mathcal{L}\left(T_{1}\right)\right| \cdot 2^{(0.3) n+\left(n_{2}+\cdots+n_{s}\right)^{2} / 8}
\end{aligned}
$$

The trick to decompose T_{i} as $S+Q$ with Q nilpotent and $\mathcal{L}\left(T_{i}\right)=\mathcal{L}_{K}(Q)$ also works for $T_{i}=T_{1}$. In fact one verifies at once that $T_{1}=I+\left(T_{1}+I\right)$ with $\left(T_{1}+I\right)^{\mu_{1}}=0$ and $\mathcal{L}\left(T_{1}\right)=\mathcal{L}\left(T_{1}+I\right)$. However, $d_{i} \geq 2$ is essential in the proof of Lemma 2 ; for $d_{1}=1$ one only gets the triviality (in view of Lemma 1) $\left|\mathcal{L}\left(T_{1}\right)\right|=O\left(2^{n_{1}^{2} / 4}\right)$. On the other hand, information about $\operatorname{ker}(Q)$ is only available when $i=1$, and that is what makes the next lemma tick.

Lemma 3. Let $\sigma \in S_{n}$ have r disjoint cycles. With T_{1}, n_{1}, μ_{1} derived from T_{σ} as above, one has
(a) $\left|\mathcal{L}\left(T_{1}\right)\right| \leq G(r, 2) \cdot G\left(n_{1}-r, 2\right)$,
(b) $\left|\mathcal{L}\left(T_{1}\right)\right| \leq G(r, 2)^{\mu_{1}}$.

Proof. Let W be any K-vector space with $\operatorname{dim}(W)=\bar{n}$ and $Q: W \rightarrow W$ a linear nilpotent map, say $Q^{m-1} \neq Q^{m}=0$. Let $Q_{2}:=Q \upharpoonright \operatorname{im}(Q)$. Note that $Q_{2} \neq Q^{2}$ but $\operatorname{im}\left(Q_{2}\right)=\operatorname{im}\left(Q^{2}\right)$. It is easy to see [BF, Thm. 7] that

$$
\begin{equation*}
\mathcal{L}(Q)=\bigcup_{X \in \mathcal{L}\left(Q_{2}\right)}\left[X, Q^{-1}(X)\right] \tag{16}
\end{equation*}
$$

where $Q^{-1}(X):=\{w \in W \mid Q(w) \in X\}$ and $\left[X, Q^{-1}(X)\right]:=\{Y \in \mathcal{L}(W) \mid X \subseteq Y \subseteq$ $\left.Q^{-1}(X)\right\}$ is an interval of the lattice $\mathcal{L}(W)$ of all subspaces of W. Its length is

$$
\begin{equation*}
\operatorname{dim}\left(Q^{-1}(X)\right)-\operatorname{dim}(X)=\operatorname{dim}(\operatorname{ker} Q)=: \quad \kappa_{1} \tag{17}
\end{equation*}
$$

Since $Q_{2}: \operatorname{im}(Q) \rightarrow \operatorname{im}(Q)$ and $\operatorname{dim}(\operatorname{im} Q)=\bar{n}-\kappa_{1}$ it follows from (16) and (17) that

$$
\begin{equation*}
|\mathcal{L}(Q)| \leq\left|\mathcal{L}\left(Q_{2}\right)\right| \cdot G\left(\kappa_{1}, K\right) \leq G\left(\bar{n}-\kappa_{1}, K\right) \cdot G\left(\kappa_{1}, K\right) \tag{18}
\end{equation*}
$$

Iterating this idea, observe that $\operatorname{ker}\left(Q_{2}\right)=\operatorname{ker}(Q) \cap \operatorname{im}(Q)$, hence $\kappa_{2}:=\operatorname{dim}\left(\operatorname{ker} Q_{2}\right) \leq$ κ_{1}. Putting $Q_{3}:=Q_{2} \upharpoonright \operatorname{im}\left(Q_{2}\right)$ one deduces, as above,

$$
\left|\mathcal{L}\left(Q_{2}\right)\right| \leq\left|\mathcal{L}\left(Q_{3}\right)\right| \cdot G\left(\kappa_{2}, K\right)
$$

which, when substituted into (18), yields

$$
|\mathcal{L}(Q)| \leq\left|\mathcal{L}\left(Q_{3}\right)\right| \cdot G\left(\kappa_{2}, K\right) \cdot G\left(\kappa_{1}, K\right)
$$

By induction and because of $\left|\mathcal{L}\left(Q_{m+1}\right)\right|=1$, one gets

$$
|\mathcal{L}(Q)| \leq G\left(\kappa_{m}, K\right) \cdots G\left(\kappa_{2}, K\right) \cdot G\left(\kappa_{1}, K\right)
$$

where $\kappa_{m} \leq \kappa_{m-1} \leq \cdots \leq \kappa_{2} \leq \kappa_{1}$ are defined in the obvious way. Therefore

$$
\begin{equation*}
|\mathcal{L}(Q)| \leq G(\operatorname{dim}(\operatorname{ker} Q), K)^{m} \tag{19}
\end{equation*}
$$

We are interested, for fixed $\sigma \in S_{n}$, in the case $K=G F(2), Q=T_{1}+I, W=V_{1}, \bar{n}=$ $n_{1}, m=\mu_{1}$. To fix ideas suppose that $(2,5,7,9)$ is one of the cycles of σ. It gives rise to exactly one nonzero $v \in V$ with $T_{\sigma}(v)=v$; namely $v:=e_{2}+e_{5}+e_{7}+e_{9}$. Therefore $Q(v)=0$. Thus, clearly $\operatorname{dim}(\operatorname{ker} Q)=r$. See (15) for the relation between r and n_{1}. Claim (a) now follows from (18) in view of $\mathcal{L}\left(T_{1}\right)=\mathcal{L}\left(T_{1}+I\right)$. Claim (b) follows from (19).

Notice that more than $\lfloor n / 2\rfloor!2^{n}$ permutations $\sigma \in S_{n}$ have $T_{\sigma}=T_{1}$ or, what amounts to the same, $n_{1}(\sigma)=n$. This is most easily seen when $n=2^{\alpha_{1}}$ happens to be a power of 2 . Then even $(n-1)$! permutations $\sigma \in S_{n}$ have $n_{1}(\sigma)=n$, namely by (15) all the n-cycles.

In what follows $r=r(\sigma), n_{1}=n_{1}(\sigma)$, and \log is the logarithm to base 2. Putting
$\mathcal{D}_{1}:=\left\{\sigma \in S_{n} \mid n_{1} \leq n-6 \log n\right\}$,
$\mathcal{D}_{2}:=\left\{\sigma \in S_{n} \backslash \mathcal{D}_{1} \mid 1 \leq r \leq 8 \log n_{1}\right\}$,
$\mathcal{D}_{3}:=\left\{\sigma \in S_{n} \backslash \mathcal{D}_{1} \mid 8 \log n_{1}<r<n_{1}-8 \log n_{1}\right\}$,
$\mathcal{D}_{4}:=\left\{\sigma \in S_{n} \backslash \mathcal{D}_{1} \mid n_{1}-8 \log n_{1} \leq r \leq n-1\right\}$,
it is clear that $S_{n}-\{i d\}$ is the disjoint union of the sets $\mathcal{D}_{i}(1 \leq i \leq 4)$. The remainder of the article essentially amounts to giving upper bounds for each of the four sums $\sum_{\sigma \in \mathcal{D}_{i}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|$. For $i=4$ a lower bound will be needed as well.

Lemma 4.

$$
\begin{gather*}
\sum_{\sigma \in \mathcal{D}_{1}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=O\left(2^{\left(n^{2} / 4\right)-n \log n}\right) \tag{20}\\
\sum_{\sigma \in \mathcal{D}_{2}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=O\left(2^{17 n \log ^{2} n}\right) \tag{21}\\
\sum_{\sigma \in \mathcal{D}_{3}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=O\left(2^{\left(n^{2} / 4\right)-n \log n}\right) \tag{22}
\end{gather*}
$$

Proof. Without always mentioning it, Lemma 1 will be used throughout the proof. As to (20), fix n and consider the maximum of the function

$$
\frac{x^{2}}{4}+\frac{(n-x)^{2}}{8}+(0.3) n \quad(0 \leq x \leq n-6 \log n)
$$

Since for big enough n this maximum is obtained at $x=n-6 \log n$, it follows from Lemma 2 (and Lemma 1) that for all $\sigma \in \mathcal{D}_{1}$

$$
\left|\mathcal{L}\left(T_{\sigma}\right)\right|=O\left(2^{\frac{n_{1}^{2}}{4}+\frac{\left(n-n_{1}\right)^{2}}{8}+(0.3) n}\right)=O\left(2^{\frac{(n-6 \log n)^{2}}{4}+\frac{(6 \log n)^{2}}{8}+(0.3) n}\right)=O\left(2^{\frac{n^{2}}{4}-2 n \log n}\right)
$$

which, in view of $\left|\mathcal{D}_{1}\right| \leq n!\leq n^{n}=2^{n \log n}$, yields

$$
\sum_{\sigma \in \mathcal{D}_{1}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=2^{n \log n} \cdot O\left(2^{\frac{n^{2}}{4}-2 n \log n}\right)=O\left(2^{\frac{n^{2}}{4}-n \log n}\right)
$$

As to (21), from $r \leq 8 \log n_{1} \leq 8 \log n$ and $\mu_{1} \leq n$ and Lemma 3(b) one deduces

$$
\left|\mathcal{L}\left(T_{1}\right)\right| \leq G(8 \log n, 2)^{n} \leq\left(8 \cdot 2^{(8 \log n)^{2} / 4}\right)^{n}=O\left(2^{16 n \log ^{2} n+3 n}\right)
$$

Since $\sigma \in \mathcal{D}_{2}$ implies $\sigma \notin \mathcal{D}_{1}$, whence $n_{1}>n-6 \log n$, Lemma 2 yields

$$
\sum_{\sigma \in \mathcal{D}_{2}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=2^{n \log n} \cdot O\left(2^{16 n \log ^{2} n+\frac{36 \log ^{2} n}{8}+3.3 n}\right) \quad=\quad O\left(2^{17 n \log ^{2} n}\right)
$$

As to (22), for all $\sigma \in \mathcal{D}_{3}$ one derives from Lemma 3(a) that

$$
\begin{aligned}
\left|\mathcal{L}\left(T_{1}\right)\right| & \leq G(r, 2) \cdot G\left(n_{1}-r, 2\right)=O\left(2^{\frac{r^{2}}{4}+\frac{\left(n_{1}-r\right)^{2}}{4}}\right) \\
& =O\left(2^{\frac{\left(8 \log n_{1}\right)^{2}}{4}+\frac{\left(n_{1}-8 \log n_{1}\right)^{2}}{4}}\right)=O\left(2^{\frac{n_{1}^{2}}{4}-3 n_{1} \log n_{1}}\right)
\end{aligned}
$$

so by Lemma 2
$\left|\mathcal{L}\left(T_{\sigma}\right)\right|=O\left(2^{\frac{n_{1}^{2}}{4}+\frac{\left(n-n_{1}\right)^{2}}{8}-3 n_{1} \log n_{1}+(0.3) n}\right)=O\left(2^{\frac{n^{2}}{4}-3 n_{1} \log n_{1}+(0.3) n}\right)=O\left(2^{\frac{n^{2}}{4}-2 n \log n}\right)$.
Here the last equality holds since $n_{1}>n-6 \log n$. As previously, one now argues that

$$
\sum_{\sigma \in \mathcal{D}_{3}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=2^{n \log n} \cdot O\left(2^{\frac{n^{2}}{4}-2 n \log n}\right)=O\left(2^{\frac{n^{2}}{4}-n \log n}\right)
$$

The asymptotic behavior of $b(n)$ will depend on the size of

$$
Z(n):=\sum_{\sigma \in \mathcal{D}_{4}}\left|\mathcal{L}\left(T_{\sigma}\right)\right|
$$

Lemma 4 guarantees that the sum of the other $\left|\mathcal{L}\left(T_{\sigma}\right)\right|$ is negligible in comparison. By Lemmata 1 and 4 it would suffice to show that $Z(n)=o\left(2^{n^{2} / 4}\right)$ in order to prove (1). But we strive for more than (1). This requires a sharper upper bound for $Z(n)$ (section 4), as well as a lower bound for $Z(n)$ (section 3).
3. A lower bound for $\boldsymbol{Z}(\boldsymbol{n})$. Consider a transposition $\tau \in S_{n}$. As seen in the introduction, $\mathcal{L}\left(T_{\tau}\right)$ has size at least $G(n-1,2)$. Here is the precise value:

$$
\begin{equation*}
\text { If } r(\tau)=n-1, \text { then }\left|\mathcal{L}\left(T_{\tau}\right)\right|=2 G(n-1,2)-G(n-2,2) \tag{23}
\end{equation*}
$$

To see (23) consider without loss of generality the transposition $\tau=(1,2)$. We claim that

$$
\begin{equation*}
\mathcal{L}\left(T_{(1,2)}\right)=\left\{U \in \mathcal{L}(V) \mid\left\langle e_{1}+e_{2}\right\rangle \subseteq U \text { or } U \subseteq\left\langle e_{1}+e_{2}\right\rangle^{\perp}\right\} \tag{24}
\end{equation*}
$$

To see (24), let $U \in \mathcal{L}\left(T_{(1,2)}\right)$ be such that $e_{1}+e_{2} \notin U$. We have to show that $U \subseteq\left\langle e_{1}+e_{2}\right\rangle^{\perp}$. Assume to the contrary some $x=\sum_{i=1}^{n} \lambda_{i} e_{i}$ in U has scalar product $\left(e_{1}+e_{2}\right) \cdot x \neq 0$. Then $x=e_{1}+\sum_{i=3}^{n} \lambda_{i} e_{i}$ or $x=e_{2}+\sum_{i=3}^{n} \lambda_{i} e_{i}$, say the former. From $T_{(1,2)}(x)=e_{2}+\sum_{i=3}^{n} \lambda_{i} e_{i}$ being in U we get the contradiction $e_{1}+e_{2}=x+T_{(1,2)}(x) \in$ U. This establishes one inclusion in (24). The reverse inclusion is similar and left to the reader.

By $(24), \mathcal{L}\left(T_{(1,2)}\right)$ is the union of the $G(n-1,2)$-element interval sublattices $\left[\left\langle e_{1}+e_{2}\right\rangle, V\right]$ and $\left[0,\left\langle e_{1}+e_{2}\right\rangle^{\perp}\right]$, whose intersection is the $G(n-2,2)$-element interval sublattice $\left[\left\langle e_{1}+e_{2}\right\rangle,\left\langle e_{1}+e_{2}\right\rangle^{\perp}\right]$. This gives (23).

We now double the lower bound in (4). More precisely, because $G(n-2,2)=$ $o(G(n-1,2))$ it follows from (23) and Lemma 1 that

$$
\begin{equation*}
\sum_{r(\sigma)=n-1}\left|\mathcal{L}\left(T_{\sigma}\right)\right| \geq\binom{ n}{2} \cdot 2 \cdot 7.3719 \cdot 2^{\frac{(n-1)^{2}}{4}} \quad(n \text { large }) \tag{25}
\end{equation*}
$$

Because $r(\sigma)=n-1$ implies $\sigma \in \mathcal{D}_{4}$, the right-hand side of (25) is also a lower bound for $Z(n)$.
4. An upper bound for $\boldsymbol{Z}(\boldsymbol{n})$. From Lemma 1 and the proof of (25) it follows at once that upon transition from 7.3719 to 7.37197 one has

$$
\begin{equation*}
\sum_{r(\sigma)=n-1}\left|\mathcal{L}\left(T_{\sigma}\right)\right| \leq\binom{ n}{2} \cdot 2 \cdot 7.37197 \cdot 2^{\frac{(n-1)^{2}}{4}} \quad(n \text { large }) \tag{26}
\end{equation*}
$$

In order to prove that

$$
\begin{equation*}
\sum_{\sigma \in \mathcal{D}_{4}}\left|\mathcal{L}\left(T_{\sigma}\right)\right| \leq\binom{ n}{2} \cdot 2 \cdot 7.37198 \cdot 2^{\frac{(n-1)^{2}}{4}} \quad(n \text { large }) \tag{27}
\end{equation*}
$$

put

$$
\mathcal{D}:=\left\{\sigma \in S_{n} \mid n_{1}(\sigma)>n-6 \log n \text { and } n-14 \log n \leq r(\sigma) \leq n-1\right\}
$$

All $\sigma \in \mathcal{D}_{4}$ satisfy $n_{1}(\sigma)>n-6 \log n$, as well as

$$
r \geq n_{1}-8 \log n_{1} \quad>\quad(n-6 \log n)-8 \log n \quad=\quad n-14 \log n
$$

so $\mathcal{D}_{4} \subseteq \mathcal{D}$. In view of (26) it thus suffices to show

$$
\begin{equation*}
\sum_{\sigma \in \mathcal{D}, r(\sigma) \leq n-2}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=o\left(2^{\frac{(n-1)^{2}}{4}}\right)=o\left(2^{\frac{n^{2}}{4}-\frac{n}{2}}\right) \tag{28}
\end{equation*}
$$

Fix $\sigma \in \mathcal{D}$ with $r(\sigma) \leq n-2$. Consider T_{σ} and the associated T_{1}. Putting $n_{1}:=n_{1}(\sigma)$ and $r:=r(\sigma)$, Lemma 3(a) yields

$$
\begin{aligned}
\left|\mathcal{L}\left(T_{1}\right)\right| & \leq G(r, 2) \cdot G\left(n_{1}-r, 2\right) \\
& =O\left(2^{\frac{r^{2}}{4}+\frac{\left(n_{1}-r\right)^{2}}{4}}\right)=O\left(2^{\frac{(n-2)^{2}}{4}+\frac{2^{2}}{4}}\right)=O\left(2^{\frac{n^{2}}{4}-n}\right)
\end{aligned}
$$

From $n_{1}>n-6 \log n$ and Lemma 2 one concludes that

$$
\left|\mathcal{L}\left(T_{\sigma}\right)\right| \leq \quad 2^{\frac{\left(n-n_{1}\right)^{2}}{8}+(0.3) n} \cdot O\left(2^{\frac{n^{2}}{4}-n}\right)=O\left(2^{\frac{n^{2}}{4}-(0.7) n+\frac{36 \log ^{2} n}{8}}\right)
$$

How many elements has \mathcal{D} at most? We claim that \mathcal{D} is contained in the class \mathcal{D}^{\prime} of all $\sigma \in S_{n}$, which have at least $n-28 \log n$ cycles of length 1 . Indeed, if $\sigma \in \mathcal{D}$ had less than $n-28 \log n$ of them, then σ had less than $(n-28 \log n)+14 \log n=n-14 \log n$ cycles altogether, contradicting the definition of \mathcal{D}. Hence

$$
|\mathcal{D}| \leq\left|\mathcal{D}^{\prime}\right| \leq\binom{ n}{n-28 \log n}[(28 \log n)!] \leq n^{28 \log n}
$$

which implies

$$
\sum_{\sigma \in \mathcal{D}, r(\sigma) \leq n-2}\left|\mathcal{L}\left(T_{\sigma}\right)\right|=2^{28 \log ^{2} n} \cdot O\left(2^{\frac{n^{2}}{4}-(0.7) n+\frac{36 \log ^{2} n}{8}}\right)=o\left(2^{\frac{n^{2}}{4}-\frac{n}{2}}\right)
$$

This proves (28) and whence (27).
5. The main theorem. We are now in a position to prove the following.

Theorem. For all sufficiently large n one has

$$
\left(1+2^{-\frac{n}{2}+2 \log n+0.2499}\right) \frac{G(n, 2)}{n!} \leq b(n) \leq\left(1+2^{-\frac{n}{2}+2 \log n+0.2501}\right) \frac{G(n, 2)}{n!}
$$

Proof. By Lemma 1 one has $G(n, 2) \leq 7.3720 \cdot 2^{n^{2} / 4}$ for all large enough n. Together with (2) and (25) this implies that for large enough n

$$
\begin{gathered}
b(n)=\frac{G(n, 2)}{n!}\left(1+\frac{1}{G(n, 2)} \sum_{r(\sigma) \leq n-1}\left|\mathcal{L}\left(T_{\sigma}\right)\right|\right) \\
\geq \frac{G(n, 2)}{n!}\left(1+\binom{n}{2} 2^{-\frac{n}{2}+1.25} \cdot \frac{7.3719}{7.3720}\right) \\
\geq \frac{G(n, 2)}{n!}\left(1+2^{-\frac{n}{2}+2 \log n+0.2499}\right)
\end{gathered}
$$

The last inequality holds because
$\binom{n}{2} \cdot \frac{7.3719}{7.3720}=\frac{n^{2}}{2}\left(1-\frac{1}{n}\right) \cdot \frac{7.3719}{7.3720} \geq \frac{n^{2}}{2} \cdot 2^{-0.00001} \cdot 2^{-0.00002}=2^{2 \log n-1.00003}$
for large n. From Lemma 4 and (27) we see that

$$
\begin{equation*}
\sum_{r(\sigma) \leq n-1}\left|\mathcal{L}\left(T_{\sigma}\right)\right| \leq\binom{ n}{2} \cdot 2 \cdot 7.3720 \cdot 2^{\frac{(n-1)^{2}}{4}} \quad(n \text { large }) \tag{29}
\end{equation*}
$$

By Lemma 1 one has $G(n, 2) \geq 7.3719 \cdot 2^{n^{2} / 4}$ for all large enough n, so (29) yields

$$
\begin{aligned}
b(n)= & \frac{G(n, 2)}{n!}\left(1+\frac{1}{G(n, 2)} \sum_{r(\sigma) \leq n-1}\left|\mathcal{L}\left(T_{\sigma}\right)\right|\right) \\
& \leq \frac{G(n, 2)}{n!}\left(1+\binom{n}{2} 2^{-\frac{n}{2}+1.25} \cdot \frac{7.3720}{7.3719}\right) \\
& \leq \frac{G(n, 2)}{n!}\left(1+2^{-\frac{n}{2}+2 \log n+0.2501}\right)
\end{aligned}
$$

It should be clear from the proof that the exponents 0.2499 and 0.2501 in the theorem cannot be replaced by $0.25 \pm \epsilon$. However, equally clear, $0.25 \pm \epsilon$ can be introduced if one distinguishes between even and odd integers. It is also obvious that the theorem implies (1). In turn, (1) implies that the fraction $\beta(n)$ of n-codes X with nontrivial automorphism group $\operatorname{Aut}(X):=\left\{\sigma \in S_{n} \mid X_{\sigma}=X\right\}$ goes to 0 for $n \rightarrow \infty$. Namely, the total number $b(n)$ of equivalence classes satisfies

$$
\begin{equation*}
b(n) \geq \frac{\beta(n) G(n, 2)}{n!/ 2}+\frac{(1-\beta(n)) G(n, 2)}{n!}=\frac{(1+\beta(n)) G(n, 2)}{n!} \tag{30}
\end{equation*}
$$

By (1) this forces $\beta(n) \rightarrow 0$ as $n \rightarrow \infty$. Notice that there is no quick argument why, conversely, (30) together with $\beta(n) \rightarrow 0$ should imply (1). This relates to results in [LPR]; see [W2] for details. A year after [W2] the mistake in [W1] was also fixed in $[\mathrm{H}]$; in fact Hou extends formula (1) to prime powers $q>2$.

REFERENCES

[A] M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979.
[BF] L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math., 19 (1967), pp. 810-822.
[H] X. D. Hou, On the asymptotic number of non-equivalent q-ary linear codes, J. Combin. Theory Ser. A, 112 (2005), pp. 337-346.
[L] R. F. Lax, On the character of S_{n} acting on subspaces of \mathbb{F}_{q}^{n}, Finite Fields Appl., 10 (2004), pp. 315-322.
[LPR] H. Lefmann, K. T. Phelps, and V. Rödl, Rigid linear binary codes, J. Combin. Theory Ser. A, 63 (1993), pp. 110-128.
[O] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1997.
[W1] M. Wild, The asymptotic number of inequivalent binary codes and nonisomorphic binary matroids, Finite Fields Appl., 6 (2000), pp. 192-202.
[W2] M. WILD, The asymptotic number of binary codes and binary matroids. This is a previous version of the present article with connections to [LPR]. Also available online at http://arxiv.org/abs/cs.IT/0408011.

[^0]: *Received by the editors August 6, 2004; accepted for publication (in revised form) April 4, 2005; published electronically November 23, 2005.
 http://www.siam.org/journals/sidma/19-3/44553.html
 ${ }^{\dagger}$ Department of Mathematics, University of Stellenbosch, 7602 Matieland, South Africa (mwild@ sun.ac.za).

