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1. Introduction. Recall that a binary n-code is a subspace X of the GF (2)-
vector space V := GF (2)n. Two binary n-codes X,X ′ ⊆ V are equivalent if for some
permutation σ of the symmetric group Sn on {1, 2, . . . , n} we have

X ′ = Xσ := {(x1σ, . . . , xnσ)| (x1, . . . , xn) ∈ X},

where iσ is the image of i under σ. Let b(n) be the number of equivalence classes of
binary n-codes. It is well known that b(n) is also the number of nonisomorphic binary
matroids on an n-set. The asymptotic behavior of b(n) was posed as open problem
14.5.4 in [O].

Here the setting of binary codes suits us better. For a field K let G(n,K) be the
(possibly infinite) number of K-linear subspaces of Kn. Mostly, K will be GF (q),
in which case we write G(n, q) instead of G(n,K). Because each equivalence class of
binary n-codes has cardinality at most n! it follows that b(n) ≥ G(n, 2)/n! for all n.
It will be a corollary of our main theorem that for n → ∞ asymptotically

b(n) ∼ G(n, 2)/n!.(1)

For σ ∈ Sn let Tσ : V → V be the vector space automorphism defined on the canonical
base by Tσ(ei) := eiσ. Let L(Tσ) be the lattice of all Tσ-invariant subspaces in the
sense of linear algebra, meaning the lattice of all subspaces U with Tσ(U) ⊆ U . Since
here Tσ is bijective, Tσ(U) ⊆ U is equivalent to Tσ(U) = U , i.e., to U being a “fixed
point.” This allows us to apply the Cauchy–Frobenius lemma (erroneously called
Burnside’s lemma):

b(n) =
G(n, 2)

n!
+

1

n!

∑
σ∈Sn−{id}

|L(Tσ)|,(2)

hence proving (1) is equivalent to showing

∑
σ∈Sn−{id}

|L(Tσ)| = o(G(n, 2)).(3)
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692 MARCEL WILD

There are (n2 ) permutations τ ∈ Sn with one 2-cycle and n−2 cycles of length 1. Any
such transposition τ yields a Tτ with at least G(n−1, 2) invariant subspaces. Indeed,
say Tτ switches e1 and e2. Then the n− 1 vectors e1 + e2, e3, . . . , en are fixed by Tτ .
Hence

(
n

2

)
G(n− 1, 2) is a lower bound for

∑
σ∈Sn−{id}

|L(Tσ)|.(4)

This shows that (3) can only be true if G(n, 2) grows superexponentially with n.
Proving (3) was undertaken in [W1] but, as pointed out by Lax [L], there is an error
in the proof of [W1, Lemma 6]. The error is fixed in the present article, which also
improves upon style and organization. In fact, we shall wind up with a stronger result
but as a golden thread it may be helpful, at least in section 2, to think of (3) as our
target. The stronger result consists of rather sharp lower and upper bounds for b(n)
when n is large enough. These bounds are derived in sections 3 and 4, respectively,
and the pieces are put together in section 5.

2. Four lemmata. The first lemma reduces our preliminary target (3) to the

statement that the left-hand side of (3) is o(2n
2/4).

Lemma 1. For all prime powers q there are positive constants d1(q) and d2(q)
such that

lim
m→∞

G(2m + 1, q)

q(2m+1)2/4
= d1(q) and lim

m→∞

G(2m, q)

q(2m)2/4
= d2(q).

Furthermore, all di(q) are less than 32 and rounded to six decimals, d1(2) is 7.371949,
and d2(2) is 7.371969.

Proof. Let q be fixed and put Gn := G(n, q). Note that G0 = 1, G1 = 2. By [A,
p. 94] one has

Gn+1 = 2Gn + (qn − 1)Gn−1 (n ≥ 1).(5)

Letting un := q−n2/4Gn (n ≥ 0), it follows from (5) that

un = 2q−n/2+1/4un−1 + (1 − q−n+1)un−2 (n ≥ 2).(6)

Letting τn = τn(q) := 2q−n/2+1/4 + 1 − q−n+1, an := 2q−n/2+1/4τ−1
n , and

bn := (1 − q−n+1)τ−1
n , we have an + bn = 1 and

un = τn(anun−1 + bnun−2) (n ≥ 2).(7)

From u0 = 1, u1 = 2q−1/4, τn > 1 (n ≥ 2), and (7) it follows that

un ≥ min{u0, u1} > 0 (n ≥ 0).(8)

As to an upper bound, from u0 = 1 and u1 ≤ 2 ·2−1/4 < 1.7 we get a2u1 + b2u0 ≤ 1.7,
so (7) yields u2 ≤ (1.7)τ2, u3 ≤ (1.7)τ2τ3, and so forth. One checks that τn(q) ≤ τn(2)
for n ≥ 2 and τn(2) ≤ 1 + 2−n/3 for n ≥ 7, whence

un ≤ (1.7)τ2(2) · · · τ6(2) ·
∏
k≥7

(1 + 2−k/3) < (1.7) · (6.8) · e0.97 < 32 (n ≥ 0).(9)
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THE ASYMPTOTIC NUMBER OF BINARY CODES 693

The convergence of the latter infinite product follows by taking natural logarithms
and noticing that

∑
k≥7 ln(1 + 2−k/3) is bounded by

∑
k≥7 2−k/3 < 0.97. From (6)

and (9) it follows that

|un+2 − un| = | − q−n−1un + 2q−
n
2 − 3

4un+1| ≤ 32q−
n
3 (n ≥ 0).

Iterating and applying the triangle inequality yields

|un+2k−un| ≤ 32(q−
n
3 + q−

(n+2)
3 + · · ·+ q−

(n+2k−2)
3 ) ≤ 32

q−
n
3

1 − q−
2
3

(n ≥ 0).(10)

Cauchy’s criterion therefore guarantees that both d1(q) := limm→∞ u2m+1 and d2(q) :=
limm→∞ u2m exist. They are nonzero by (8). Clearly, (10) implies

|d2(q) − u2m| ≤ 32
q−

2m
3

1 − q−
2
3

(m ≥ 0).(11)

Combining (7) and (11), one can compute d2(q) to any desired accuracy. Ditto for
d1(q).

In order to get a handle on L(Tσ) we need the minimal polynomial

min(Tσ, t) =

s∏
i=1

pi(t)
μi ,

where the pi(t) ∈ GF (2)[t] are irreducible and μi ≥ 1 (1 ≤ i ≤ s). We seek an upper
bound for s = s(σ). Since min(Tσ, t) has degree at most n and since there are only
finitely many irreducible polynomials in GF (2)[t] of any given degree, it is clear that
for any fixed ε > 0 one can force s ≤ εn for all σ ∈ Sn, provided n is large enough.
For us it will suffice that

for all large enough n one has s ≤ (0.06)n for all σ ∈ Sn.(12)

It is well known that if

Vi := ker(pi(Tσ)μi), ni := dim(Vi) (1 ≤ i ≤ s),

then V = V1 ⊕ · · · ⊕ Vs; and if Ti := (Tσ � Vi), then Ti : Vi → Vi has minimal
polynomial min(Ti, t) = pi(t)

μi . Furthermore, by [BF, p. 812]

L(Tσ) 
 L(T1) × L(T2) × · · · × L(Ts).(13)

Assume that our σ is a product of r disjoint cycles C1, . . . , Cr of lengths λj = 2αj ·uj ,
where αj ≥ 0 and uj ≥ 1 is odd. The upcoming (14) and (15) will be the only
facts for which we refer to [W1]. Namely, if we standardize p1(t) := t + 1, then its
corresponding parameters μ1 and n1 satisfy [W1, Lemma 4]

μ1 = max{2αj | 1 ≤ j ≤ r}(14)

and [W1, Lemma 5]

r ≤ n1 = 2α1 + 2α2 + · · · + 2αr ≤ n.(15)
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694 MARCEL WILD

For instance, σ := (1, 2, . . . , 11, 12)(13, 14, 15)(16, 17) has n1 = 22 + 20 + 21 = 7 and
a base of V1 is

e1 + e5 + e9, e2 + e6 + e10, e3 + e7 + e11, e4 + e8 + e12, e13 + e14 + e15, e16, e17.

Observe that while min(Tσ, t) is just the least common multiple of the polynomials
tλj + 1 (1 ≤ j ≤ r), the prime factors of min(Tσ, t) are unpredictable, and hence
there is no general connection between the number r of disjoint cycles of σ and the
number s of direct factors of L(Tσ). It is well known that the expected value of r(σ)
asymptotically is ln(n) as n → ∞. Question: What is the expected value of s(σ) as
n → ∞?

Lemma 2. For large enough n all σ ∈ Sn have |L(Tσ)| ≤ |L(T1)| ·2
(n−n1)2

8 +(0.3)n.

Proof. Since Ti is bijective we have Tμi

i �= 0, so pi(t) = t is impossible, so each
pi(t) (2 ≤ i ≤ s) has degree di ≥ 2. Fix Ti : Vi → Vi with 2 ≤ i ≤ s. According to [BF,
Thm. 6] one can write Ti = Q+S, where S : Vi → Vi is semisimple and Q : Vi → Vi is
nilpotent. Moreover, putting K := GF (2)[t]/pi(t), the map Q is K-linear in a natural
sense and L(Ti) = LK(Q). Since K 
 GF (2di) and dimK(Vi) = ni/di, it follows from
Lemma 1 that

|L(Ti)| ≤ G

(
ni

di
, 2di

)
≤ 25 · (2di)(ni/di)

2/4 = 25 · 2n2
i /4di .

Using (12) and di ≥ 2 (2 ≤ i ≤ s) we get

|L(Tσ)| ≤ |L(T1)|(25 · 2n2
2/8) · · · (25 · 2n2

s/8)

≤ |L(T1)| · (25)(0.06)n · 2n2
2/8+···+n2

s/8

≤ |L(T1)| · 2(0.3)n+(n2+···+ns)
2/8.

The trick to decompose Ti as S + Q with Q nilpotent and L(Ti) = LK(Q) also
works for Ti = T1. In fact one verifies at once that T1 = I+(T1+I) with (T1+I)μ1 = 0
and L(T1) = L(T1 + I). However, di ≥ 2 is essential in the proof of Lemma 2; for

d1 = 1 one only gets the triviality (in view of Lemma 1) |L(T1)| = O(2n
2
1/4). On the

other hand, information about ker(Q) is only available when i = 1, and that is what
makes the next lemma tick.

Lemma 3. Let σ ∈ Sn have r disjoint cycles. With T1, n1, μ1 derived from Tσ as
above, one has

(a) |L(T1)| ≤ G(r, 2) ·G(n1 − r, 2),
(b) |L(T1)| ≤ G(r, 2)μ1 .

Proof. Let W be any K-vector space with dim(W ) = n and Q : W → W a linear
nilpotent map, say Qm−1 �= Qm = 0. Let Q2 := Q � im (Q). Note that Q2 �= Q2 but
im (Q2) = im (Q2). It is easy to see [BF, Thm. 7] that

L(Q) =
⋃

X∈L(Q2)

[X,Q−1(X)],(16)

where Q−1(X) := {w ∈ W | Q(w) ∈ X} and [X,Q−1(X)] := {Y ∈ L(W )| X ⊆ Y ⊆
Q−1(X)} is an interval of the lattice L(W ) of all subspaces of W . Its length is

dim(Q−1(X)) − dim(X) = dim(kerQ) =: κ1.(17)
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THE ASYMPTOTIC NUMBER OF BINARY CODES 695

Since Q2 : im(Q) → im(Q) and dim(imQ) = n − κ1 it follows from (16) and (17)
that

|L(Q)| ≤ |L(Q2)| ·G(κ1,K) ≤ G(n− κ1,K) ·G(κ1,K).(18)

Iterating this idea, observe that ker(Q2) = ker(Q)∩ im(Q), hence κ2 := dim(kerQ2) ≤
κ1. Putting Q3 := Q2 � im(Q2) one deduces, as above,

|L(Q2)| ≤ |L(Q3)| ·G(κ2,K),

which, when substituted into (18), yields

|L(Q)| ≤ |L(Q3)| ·G(κ2,K) ·G(κ1,K).

By induction and because of |L(Qm+1)| = 1, one gets

|L(Q)| ≤ G(κm,K) · · ·G(κ2,K) ·G(κ1,K),

where κm ≤ κm−1 ≤ · · · ≤ κ2 ≤ κ1 are defined in the obvious way. Therefore

|L(Q)| ≤ G(dim(kerQ),K)m.(19)

We are interested, for fixed σ ∈ Sn, in the case K = GF (2), Q = T1 +I, W = V1, n =
n1, m = μ1. To fix ideas suppose that (2, 5, 7, 9) is one of the cycles of σ. It gives
rise to exactly one nonzero v ∈ V with Tσ(v) = v; namely v := e2 + e5 + e7 + e9.
Therefore Q(v) = 0. Thus, clearly dim(kerQ) = r. See (15) for the relation between
r and n1. Claim (a) now follows from (18) in view of L(T1) = L(T1 + I). Claim (b)
follows from (19).

Notice that more than n/2�!2n permutations σ ∈ Sn have Tσ = T1 or, what
amounts to the same, n1(σ) = n. This is most easily seen when n = 2α1 happens to
be a power of 2. Then even (n− 1)! permutations σ ∈ Sn have n1(σ) = n, namely by
(15) all the n-cycles.

In what follows r = r(σ), n1 = n1(σ), and log is the logarithm to base 2. Putting
D1 := {σ ∈ Sn |n1 ≤ n− 6 log n},
D2 := {σ ∈ Sn \ D1 |1 ≤ r ≤ 8 log n1},
D3 := {σ ∈ Sn \ D1 |8 log n1 < r < n1 − 8 log n1},
D4 := {σ ∈ Sn \ D1 |n1 − 8 log n1 ≤ r ≤ n− 1},

it is clear that Sn−{id} is the disjoint union of the sets Di (1 ≤ i ≤ 4). The remainder
of the article essentially amounts to giving upper bounds for each of the four sums∑

σ∈Di
|L(Tσ)|. For i = 4 a lower bound will be needed as well.

Lemma 4.

∑
σ∈D1

|L(Tσ)| = O(2(n2/4)−n logn),(20)

∑
σ∈D2

|L(Tσ)| = O(217n log2 n),(21)

∑
σ∈D3

|L(Tσ)| = O(2(n2/4)−n logn).(22)
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696 MARCEL WILD

Proof. Without always mentioning it, Lemma 1 will be used throughout the proof.
As to (20), fix n and consider the maximum of the function

x2

4
+

(n− x)2

8
+ (0.3)n (0 ≤ x ≤ n− 6 log n).

Since for big enough n this maximum is obtained at x = n − 6 log n, it follows from
Lemma 2 (and Lemma 1) that for all σ ∈ D1

|L(Tσ)| = O(2
n2
1
4 +

(n−n1)2

8 +(0.3)n) = O(2
(n−6 log n)2

4 +
(6 log n)2

8 +(0.3)n) = O(2
n2

4 −2n logn),

which, in view of |D1| ≤ n! ≤ nn = 2n logn, yields

∑
σ∈D1

|L(Tσ)| = 2n logn ·O(2
n2

4 −2n log n) = O(2
n2

4 −n logn).

As to (21), from r ≤ 8 log n1 ≤ 8 log n and μ1 ≤ n and Lemma 3(b) one deduces

|L(T1)| ≤ G(8 log n, 2)n ≤
(
8 · 2(8 log n)2/4

)n

= O(216n log2 n + 3n).

Since σ ∈ D2 implies σ �∈ D1, whence n1 > n− 6 log n, Lemma 2 yields

∑
σ∈D2

|L(Tσ)| = 2n logn ·O(216n log2 n+ 36 log2 n
8 +3.3n) = O(217n log2 n).

As to (22), for all σ ∈ D3 one derives from Lemma 3(a) that

|L(T1)| ≤ G(r, 2) ·G(n1 − r, 2) = O(2
r2

4 +
(n1−r)2

4 )

= O(2
(8 log n1)2

4 +
(n1−8 log n1)2

4 ) = O(2
n2
1
4 −3n1 logn1),

so by Lemma 2

|L(Tσ)| = O(2
n2
1
4 +

(n−n1)2

8 −3n1 logn1+(0.3)n) = O(2
n2

4 −3n1 logn1+(0.3)n) = O(2
n2

4 −2n logn).

Here the last equality holds since n1 > n−6 log n. As previously, one now argues that

∑
σ∈D3

|L(Tσ)| = 2n logn ·O(2
n2

4 −2n logn) = O(2
n2

4 −n logn).

The asymptotic behavior of b(n) will depend on the size of

Z(n) :=
∑
σ∈D4

|L(Tσ)|.

Lemma 4 guarantees that the sum of the other |L(Tσ)| is negligible in comparison.

By Lemmata 1 and 4 it would suffice to show that Z(n) = o(2n
2/4) in order to prove

(1). But we strive for more than (1). This requires a sharper upper bound for Z(n)
(section 4), as well as a lower bound for Z(n) (section 3).
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THE ASYMPTOTIC NUMBER OF BINARY CODES 697

3. A lower bound for Z(n). Consider a transposition τ ∈ Sn. As seen in the
introduction, L(Tτ ) has size at least G(n− 1, 2). Here is the precise value:

If r(τ) = n− 1, then |L(Tτ )| = 2G(n− 1, 2) −G(n− 2, 2).(23)

To see (23) consider without loss of generality the transposition τ = (1, 2). We claim
that

L(T(1,2)) = {U ∈ L(V )| 〈e1 + e2〉 ⊆ U or U ⊆ 〈e1 + e2〉⊥}.(24)

To see (24), let U ∈ L(T(1,2)) be such that e1 + e2 �∈ U . We have to show that

U ⊆ 〈e1 + e2〉⊥. Assume to the contrary some x =
∑n

i=1 λiei in U has scalar product
(e1+e2) ·x �= 0. Then x = e1+

∑n
i=3 λiei or x = e2+

∑n
i=3 λiei, say the former. From

T(1,2)(x) = e2+
∑n

i=3 λiei being in U we get the contradiction e1+e2 = x+T(1,2)(x) ∈
U . This establishes one inclusion in (24). The reverse inclusion is similar and left to
the reader.

By (24), L(T(1,2)) is the union of the G(n − 1, 2)-element interval sublattices

[〈e1 + e2〉, V ] and [0, 〈e1 + e2〉⊥], whose intersection is the G(n− 2, 2)-element interval
sublattice [〈e1 + e2〉, 〈e1 + e2〉⊥]. This gives (23).

We now double the lower bound in (4). More precisely, because G(n − 2, 2) =
o(G(n− 1, 2)) it follows from (23) and Lemma 1 that

∑
r(σ)=n−1

|L(Tσ)| ≥
(
n

2

)
· 2 · 7.3719 · 2

(n−1)2

4 (n large).(25)

Because r(σ) = n−1 implies σ ∈ D4, the right-hand side of (25) is also a lower bound
for Z(n).

4. An upper bound for Z(n). From Lemma 1 and the proof of (25) it follows
at once that upon transition from 7.3719 to 7.37197 one has

∑
r(σ)=n−1

|L(Tσ)| ≤
(
n

2

)
· 2 · 7.37197 · 2

(n−1)2

4 (n large).(26)

In order to prove that

∑
σ∈D4

|L(Tσ)| ≤
(
n

2

)
· 2 · 7.37198 · 2

(n−1)2

4 (n large),(27)

put

D := {σ ∈ Sn| n1(σ) > n− 6 log n and n− 14 log n ≤ r(σ) ≤ n− 1}.

All σ ∈ D4 satisfy n1(σ) > n− 6 log n, as well as

r ≥ n1 − 8 log n1 > (n− 6 log n) − 8 log n = n− 14 log n,

so D4 ⊆ D. In view of (26) it thus suffices to show

∑
σ∈D,r(σ)≤n−2

|L(Tσ)| = o(2
(n−1)2

4 ) = o(2
n2

4 −n
2 ).(28)
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698 MARCEL WILD

Fix σ ∈ D with r(σ) ≤ n−2. Consider Tσ and the associated T1. Putting n1 := n1(σ)
and r := r(σ), Lemma 3(a) yields

|L(T1)| ≤ G(r, 2) ·G(n1 − r, 2)

= O(2
r2

4 +
(n1−r)2

4 ) = O(2
(n−2)2

4 + 22

4 ) = O(2
n2

4 −n).

From n1 > n− 6 log n and Lemma 2 one concludes that

|L(Tσ)| ≤ 2
(n−n1)2

8 +(0.3)n ·O(2
n2

4 −n) = O(2
n2

4 −(0.7)n+ 36 log2 n
8 ).

How many elements has D at most? We claim that D is contained in the class D′ of
all σ ∈ Sn, which have at least n−28 log n cycles of length 1. Indeed, if σ ∈ D had less
than n− 28 log n of them, then σ had less than (n− 28 log n) + 14 logn = n− 14 log n
cycles altogether, contradicting the definition of D. Hence

|D| ≤ |D′| ≤
(

n

n− 28 log n

)
[(28 log n)!] ≤ n28 log n,

which implies

∑
σ∈D, r(σ)≤n−2

|L(Tσ)| = 228 log2 n ·O(2
n2

4 −(0.7)n+ 36 log2 n
8 ) = o(2

n2

4 −n
2 ).

This proves (28) and whence (27).

5. The main theorem. We are now in a position to prove the following.
Theorem. For all sufficiently large n one has

(
1 + 2−

n
2 +2 log n+0.2499

) G(n, 2)

n!
≤ b(n) ≤

(
1 + 2−

n
2 +2 log n+0.2501

) G(n, 2)

n!
.

Proof. By Lemma 1 one has G(n, 2) ≤ 7.3720 · 2n
2/4 for all large enough n.

Together with (2) and (25) this implies that for large enough n

b(n) =
G(n, 2)

n!

⎛
⎝1 +

1

G(n, 2)

∑
r(σ)≤n−1

|L(Tσ)|

⎞
⎠

≥ G(n, 2)

n!

(
1 +

(
n

2

)
2−

n
2 +1.25 · 7.3719

7.3720

)

≥ G(n, 2)

n!

(
1 + 2−

n
2 +2 log n+0.2499

)
.

The last inequality holds because

(
n

2

)
· 7.3719

7.3720
=

n2

2

(
1 − 1

n

)
· 7.3719

7.3720
≥ n2

2
·2−0.00001 ·2−0.00002 = 22 log n−1.00003

for large n. From Lemma 4 and (27) we see that

∑
r(σ)≤n−1

|L(Tσ)| ≤
(
n

2

)
· 2 · 7.3720 · 2

(n−1)2

4 (n large).(29)
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By Lemma 1 one has G(n, 2) ≥ 7.3719 · 2n2/4 for all large enough n, so (29) yields

b(n) =
G(n, 2)

n!

⎛
⎝1 +

1

G(n, 2)

∑
r(σ)≤n−1

|L(Tσ)|

⎞
⎠

≤ G(n, 2)

n!

(
1 +

(
n

2

)
2−

n
2 +1.25 · 7.3720

7.3719

)

≤ G(n, 2)

n!

(
1 + 2−

n
2 +2 log n+0.2501

)
.

It should be clear from the proof that the exponents 0.2499 and 0.2501 in the
theorem cannot be replaced by 0.25 ± ε. However, equally clear, 0.25 ± ε can be
introduced if one distinguishes between even and odd integers. It is also obvious that
the theorem implies (1). In turn, (1) implies that the fraction β(n) of n-codes X with
nontrivial automorphism group Aut(X) := {σ ∈ Sn| Xσ = X} goes to 0 for n → ∞.
Namely, the total number b(n) of equivalence classes satisfies

b(n) ≥ β(n)G(n, 2)

n!/2
+

(1 − β(n))G(n, 2)

n!
=

(1 + β(n))G(n, 2)

n!
.(30)

By (1) this forces β(n) → 0 as n → ∞. Notice that there is no quick argument why,
conversely, (30) together with β(n) → 0 should imply (1). This relates to results in
[LPR]; see [W2] for details. A year after [W2] the mistake in [W1] was also fixed in
[H]; in fact Hou extends formula (1) to prime powers q > 2.
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