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SUMMARY 
 
 
The purpose of the study was to investigate the effect of mid rotation fertilizer application 

on leaf area index (LAI), basal area and volume increment in thinned Pinus radiata stands 

on the most common soils of the Boland region in the Western Cape. 

 

The study was conducted on a range of sites in the Boland region of MTO Forestry 

Company, chosen to reflect the two most common soil types and a water availability 

gradient in each soil type.  A factorial combination of fertilizer treatments with three levels 

each for nitrogen (N) at 0, 100 and 200 kg ha-1 and phosphorus (P) at 0, 50 and 100 kg ha-

1 was used.  This design was replicated four times across a gradient of water availability 

for each of the two common soil groups, forming a complete trial series.  All replications 

were laid out in P. radiata stands that had received their mid-rotation thinning prior to 

treatment implementation.  

 

LAI, diameter at breast height and height measurements as well as foliar analysis were 

determined before the implementation of the study in 2008 and then subsequently at 

predetermined intervals in 2009 and 2010.  Leaf area index and stem volume increment 

were measured in order to evaluate the influence on growth efficiency.  LAI was estimated 

using the gap fraction method with the use of a ceptometer.  Volume increment was 

calculated using diameter and height measurements and basal area was calculated by 

means of diameter measurements. The abovementioned growth responses were then 

used to determine the effect of increased nutrient availability on stand growth. 

There were no significant interactions detected between any of the factors, N, P and water 

availability class in their effect on LAI, basal area, volume increment and growth efficiency.  

LAI increment responded significantly to N and P in the first year but only to P in the 
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second year after treatment.  Significant basal area responses to N and P were recorded 

in the second but not the first year.  This might have been due to the fact that trees had to 

re-build their canopies after thinning before a basal area response could be obtained.  For 

the variables where an analysis of total growth response over the two year period was 

done, basal area increment and volume increment significantly responded to the 

application of nitrogen but not to phosphorus.  Growth efficiency was not significantly 

influenced by either nitrogen or phosphorus over the full two year monitoring period.  

Water availability class consistently and significantly influenced basal area increment, 

volume increment and growth efficiency over the two year period as well as during year 

one and year two.  

 

The best responses generally occurred as a result of the additive effects of N and P.  The 

growth response did not remain the same across the water availability classes.  The wetter 

sites tended to have greater responses than the drier sites.  Although these are still early 

results, the growth responses could be attributed to an increase in LAI.  Nutrient analysis 

through vector analysis indicated that the additional N and P from fertilizer application 

were taken up by the trees thereby resulting in greater LAI and increased stem wood 

production.   
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OPSOMMING 
 
 
Die studie het ten doel gestel om die effek van mid-rotasie bemesting op blaar oppervlak 

indeks (BOI), basale oppervlakte- en volume aanwas te ondersoek in gedunde opstande 

van Pinus radiata op die mees algemene grondtipes van die Bolandstreek, Wes-Kaapland.  

 

Eksperimente is uitgelê oor 'n reeks van groeiplekke in die Bolandstreek wat gekies is om 

'n water beskibaarheidsgradient te verteenwoordig oor elk van die twee mees algemene 

grondtipes.  'n Faktoriaal-kombinasie van kunsmisbehandelings met drie vlakke elk van 

stikstof [(N) teen 0, 100 en 200 kg ha-1] en fosfor [(P) teen 0, 50 en 100 kg ha-1] is 

toegedien.  Hierdie ontwerp is vier maal herhaal oor 'n gradient van grondwater 

beskikbaarheid, oor elk van die twee mees algemene grondtipes, om sodoende 'n 

volledige eksperimentele reeks te vorm.  Elke herhaling is uitgelê in 'n P. radiata opstand 

wat reeds 'n mid-rotasie dunning ondergaan het voor implementering van die kunsmis 

behandelings.  

 

Metings van BOI, deursnee op borshoogte, boomhoogte asook blaarmonsters is geneem 

voor implementering in 2008 en daarna met vooraf bepaalde tussenposes in 2009 en 

2010.  Die BOI en stam volume aanwas is bepaal om die effek van behandelings op groei-

effektiwiteit te evalueer.  Die gaping fraksie tegniek is gebruik om BOI te skat met behulp 

van 'n sonvlek septometer.  Volume aanwas is bereken vanaf deursnee en hoogtemetings 

en basale oppervlak aanwas vanaf deursnee-metings.  Metings van al bogenoemde 

groeireaksies is gebruik om die effek van verhoogde voedingstof beskikbaarheid op 

opstandsgroei te evalueer.  

Daar was geen betekenisvolle interaksies tussen enige van die faktore N, P of water 

beskikbaarheidsklas met betrekking tot reaksies op BOI, basale oppervlak- en volume 
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aanwas of groei-effektiwiteit nie.  Die BOI het betekenisvol gereageer op N en P in die 

eerste jaar, maar slegs op P in die tweede jaar na behandeling.  Basale oppervlakte 

aanwas is betekenisvol verbeter deur N en P in die tweede jaar maar nie in die eerste jaar 

nie.  Dit is waarskynlik as gevolg van die feit dat opstande eers hul kroondak moes herstel 

(na dunnings) voordat 'n reaksie in basale oppervlak verkry kon word.  Vir die 

veranderlikes waar 'n analise van die groeireaksie oor die volle twee jaar 

moniteringsperiode gedoen is, het basale oppervlak- en volume aanwas betekenisvol 

gereageer op stikstof maar nie op fosfor nie.  Groei-effektiwiteit is nie betekenisvol 

geaffekteer deur N of P oor die volle twee jaar moniteringsperiode nie. Water 

beskikbaarheidsklas het basale oppervlak en volume aanwas asook groei-effektiwiteit 

betekenisvol en voortdurend beïnvloed in die eerste en tweede jaar, asook gedurende die 

volle twee jaar moniteringsperiode.  

 

Die beste groeireaksie is oor die algemeen verkry waar N en P gesamentlik toegedien is 

en waar dus aanvullende reaksies verkry is.  Groeireaksies het betekenisvol verskil na 

gelang van water beskikbaarheidsklas, met die grootste reaksie op die natste groeiplekke.  

Hoewel hierdie vroeë resultate is, kan ons die meganisme van die reaksie primêr toeskryf 

aan 'n toename in BOI.  Vektor analise van blaar voedingstof vlakke het aangedui dat 

addisionele N en P na kunsmis toediening opgeneem is, wat die weg gebaan het vir 'n 

toename in BOI en verhoogde volume aanwas. 
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1 
 

CHAPTER 1: INTRODUCTION 
 

1.1 Background  
 
 
The South African forestry industry depends almost entirely on a man-made resource for 

its commercial softwood supply.  The total area that is currently under plantation is 1 257 

341 hectares (ha).  Pine plantation accounts for 660 104 ha (52.5%) of this total area 

(Forestry South Africa, 2009).  The saw log and veneer industry is an economically 

important component of the South African forestry sector producing approximately 4 895 

000 m3 of timber annually, valued at close to R1,8 billion in 2008 (Forestry South Africa, 

2009).  The demand for timber and timber based products is expected to increase in the 

country in future.  The current softwood sawlog resource of 660 104 ha is unable to 

sustain the demand for sawn timber and South Africa has already become an importer, 

rather than an exporter of sawn timber (Crickmay and Associates, 2004).   

 

This increase in demand will require the total area under plantation forestry to be 

increased in order to satisfy this increase by locally produced timber.  It is however, an 

option that cannot be expected to yield much as the area under forestry has actually been 

decreasing over the years.  It has decreased by 9.1% from 1998 to 2008 (Forestry South 

Africa, 2009).  Table 1.1 presents a steady downward trend in new afforestation for 

softwood sawlog production for a decade since 1991.  Plantation fires have added on to 

the problem by causing widespread damage in commercial plantations.  Table 1.1 also 

shows the area of softwood plantation damaged by fire for the same period. 
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Table 1.1:  New afforestation as well as fire damage in commercial softwood sawlog 

plantations in South Africa for one decade since 1991 collated from 

(Crickmay and Associates, 2004)  

 

Year 
 
 

Area afforested for softwood  
sawlog production (ha) 

Area damaged by Fire 
(ha) 

1991/92 
1992/93 
1993/94 
1994/95 
1995/96 
1996/97 
1997/98 
1998/99 
1999/00 
2000/01 
2001/02 
 

5 450 
5 067 
3 650 
2 405 
1 853 
2 297 
   583 
1 279 
   427 
1 180 
1 740 

  5 684 
  7 590 
14 124 
20 106 
  7 044 
  8 071 
  5 109 
11 001 
10 649 
12 219 
11 860 

Average 2 352 10 314 
 

1 This data refers to new afforestation only and does not include the replanting of the existing 
plantation land once it has been harvested.  
2 The term "damaged" includes totally destroyed timber.  
 

With the area under softwood plantation declining, this implies that production has to be 

increased on the areas that are currently under plantation forests.  This can be achieved 

through some of the following strategies;  

i) Increasing growth rates through tree breeding 

ii) Better site species matching and  

iii) Improved silvicultural practices.  

These strategies will help to reduce the shortfall in the forestry industry (Donald et al., 

1987). 
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The commercial forestry resource in South Africa is managed through intensive silviculture 

with fast-growing exotic species, with the primary aim of optimizing yield for the saw timber 

industry (Louw & Scholes, 2002).  The majority of areas that are under plantation forestry 

in South Africa are located on sites of moderate productivity.  Although growth rates in 

South Africa may compare favourably with international norms for subtropical forestry, the 

productivity of many sites is below the potential and often growth rates vary widely within a 

relatively small geographic area (Louw & Scholes, 2002).   

 

The growth rate of sawlog plantations in South Africa is approximately  

11.2 m3 ha-1 a-1 on 25 to 35 year rotations (Crickmay and Associates, 2004).  In a recent 

study by Badenhorst (2010) in the Boland area in the Western Cape, the growth rate for 

Pinus radiata was pegged at 10.7 m3 ha-1 a-1.  The soils in the Western Cape are generally 

nutritionally poor, extremely leached, acid and low in bases and phosphorus (Donald et al., 

1987; Payn & Clough, 1988).  In southern Australia, plantations of P. radiata have also 

been established across a wide range of soils with a low nutrient capacity with growth 

rates of approximately 12.35 green tons ha-1 a-1 (Fox et al., 2006).  Productivity is therefore 

often limited by nutrient availability (Hopmans et al., 2008).  The use of fertilizers to raise 

the productivity is one field that holds considerable promise in the forestry industry (Fox et 

al., 2006).  Research which has been undertaken in the country since 1930’s indicates that 

there are many cases where the use of inorganic fertilizers at planting was found to 

increase productivity in pine stands (Donald et al., 1987; Herbert & Schönau, 1989 & 

1990).  
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1.2 Justification of study 
 

While the effects of fertilizer application at planting on plantation productivity are fairly 

established in South Africa, the effects of mid- and late-rotation fertilization are not well 

known and understood (Campion, 2006).  The application of fertilizer to semi-mature 

conifer stands has become a standard practice in many parts of the world for example in 

Australia (Hopmans et al., 2008) the south eastern United states (Fox et al., 2006), New 

Zealand (Rivaie & Tillman, 2009) and Chile (Albaugh et al., 2004a; Albaugh et al., 2007).  

The increasing demand for sawtimber on local and international markets has resulted in 

pressures to increase wood production from South African forest plantations.  A key 

strategy for improving productivity from planted forests is to optimize tree nutrition at 

various stages throughout a rotation by management interventions.  

 

The potential for economic gains that can be obtained by the addition of fertilizers to late-

rotation softwood stands has in recent years, attracted the interest of sawn timber growers 

in South Africa (Campion, 2006).  The application of fertilizer towards the end of the 

rotation is an attractive option from both a wood production and an economic perspective.  

The economic advantages of mid- and late-rotation fertilizer applications include some of 

the following: 

• Increased log size and therefore value per unit volume (Carlyle, 1995; Yang, 1998). 

• Reduction in extraction costs per unit volume because of the larger log size 

(Donald, 1987; Yang, 1998). 

• Reduction in the length of the compound interest period (Donald, 1987) before final 

harvesting, leading to a maximization of return on investment in fertilization (Turner 

et al., 1996). 
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• A lower risk associated with the shorter time period between nutrient addition and 

return on investment (harvesting) when hail or insect pests can damage the trees 

(Carlson et al., 2000). 

• The quality of the additional wood is superior to that derived from first thinning or 

from fertilization at planting because of less juvenile wood, as the additional wood is 

clear (knot free) high quality, mature wood (Schutz, 1976; Donald, 1987; Turner et 

al., 1992). 

• Fertilizer application is easier (Schutz, 1976) (broadcast as opposed to application 

on a per tree basis), thus preventing root scorch and mortality (Carlson et al., 2000). 

• When fertilizer is applied after canopy closure, it does not stimulate weed growth 

(Morris, 1987). 

 

The strategy of the South African forestry industry of maximizing biological productivity as 

well as economic benefit will require a profound improvement in the understanding of the 

interrelationships in forest ecosystems to allow for the appropriate implementation of 

specific management strategies (Louw & Scholes, 2002).  In some of the South African 

research programmes that have been conducted so far, failure to understand the stand 

response mechanism to changes in resource availability resulted in poor or erratic 

responses upon implementation (du Toit, 2006).  Results from such research programmes 

cannot be easily extrapolated to other sites.  Sites will always have varying fertilizer 

element requirements and the magnitude of the responses will also vary.  Many stands 

that did not respond to improved nutrition, or responded poorly, did so under conditions of 

water stress (Donald et al., 1987; Payn & Clough, 1988; Herbert & Schonau, 1990).  It is 

therefore important to implement fertilization with adequate precision on a site-specific 

basis.  It is also necessary to understand the interrelationships between nutrition and water 

availability gradient in nutritional experiments in order to better understand the response 
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mechanisms under areas of varying soil water availability and enable extrapolation of the 

results to areas of similar characteristics (du Toit, 2006).  

 

In most countries where application of fertiliser is done as a standard practice to semi-

mature conifer stands, nutrition is the factor limiting growth; moisture is seldom limiting 

(Donald, 1987).  In South Africa however, moisture rather than nutrition is usually the 

factor limiting growth (Donald, 1987).  Hydrological research in South Africa indicates that 

water is the most important limiting input in the growth of exotic trees such as eucalyptus, 

pine, and wattle (Tewari, 2005).  Drought is a normal feature of South Africa’s climate and 

its occurrence is inevitable (Kunz & Smith, 2001).  

Widespread and sustained droughts have periodically affected southern Africa including 

South Africa over the past three decades (Dube & Jury, 2000).  One of the worst droughts 

experienced in the country was in 1992/1993.  This drought had a devastating effect on 

the survival and growth of trees in forestry plantations (Forest Owner’s Association, 1993).  

A water availability gradient was therefore an important factor incorporated in this study. 

 

Nitrogen is the element most likely to be limiting at late stages of the rotation in many 

plantations (Miller, 1981; Fox et al., 2006).  It is apparent from some research results that 

applications of N will not result in an increase in growth if there is a dominating deficiency 

of P (Snowdon & Waring, 1990; Turner et al., 1996).  The bulk of soils planted with P. 

radiata in the Cape forestry regions are poor compared with agricultural soils and low in 

both macro and micro nutrients (Donald et al., 1987; Payn et al., 1988; Payn & Clough, 

1988).  One of the major problems affecting plantation forestry in the Cape regions of 

South Africa and indeed throughout most Southern Africa is an inherent phosphate 

deficiency (Payn & Clough 1987).  The problem can be diagnosed visually from some 

stands with characteristic spindly tree form and low biomass with needles concentrated at 
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the end of branches, dead top occurrence, flaky bark and resin production (Payn et al., 

1988).  

The study  therefore focused on N and P as these are the elements that several local 

studies in the past have identified to be the major limitations to optimum production in 

South African plantations, and most specifically so in the Southern and Western Cape. 

 

It is necessary for a forestry manager to accurately identify sites and stands which will 

provide an economic response to fertilization in order to manage plantations efficiently 

(Carlyle, 1998).  This can be achieved by the development of a decision support system 

that can be used by forest managers to better predict responsive stands in their 

plantations.  This can have economic benefits as companies will not blindly follow the 

general application of fertilizer to all compartments, but only to those where a response to 

fertilization has been predicted (Fisher & Binkley, 2000).   

The study therefore developed key components that can be built into a future decision 

support system. 

1.3 Objectives of the study 
 
 
The objectives of the study were to: 

1. Determine the effect of mid rotation fertilizer application on leaf area index (LAI), 

basal area increment and volume increment in thinned P. radiata compartments  on 

the most common soils of the Boland region. 

2. Determine the effect of soil water availability on the magnitude of the growth 

response. 

3. Develop building blocks that can be built into a decision support system that can be 

used by forest managers to predict the potential response of a stand to fertilization 

on a site-specific basis.  
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1.3.1 Hypotheses 
 
 
The basic hypotheses for the study were: 

1. N and P fertilization increases stand LAI, basal area and volume increment.  

2. The magnitude of the response is related to soil water availability. 

 

1.3.1.1 Key Research Questions  

 

The following questions were key to achieving the objectives of the study: 

• Does N and/or P application affect foliar nutrient concentration, stand LAI, basal 

area increment and volume increment? 

• What are the optimum quantities of N and P needed in order to maximise growth on 

the most common soil groups? 

• Does the optimum N:P ratio stay the same across the soil water availability 

gradient? 

• What is the magnitude of the response across the water availability gradient? 

• Is the growth response mainly attributable to an increase in LAI? 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



9 
 

CHAPTER 2: LITERATURE REVIEW 
 

2.1 Introduction 
 
 
How does a stand translate higher nutrient availability into greater stem growth?  This is a 

question that has been asked by D. Binkley as far back as 1986.  The answer(s) to this 

question is (are) critical in any analysis of the effect of fertilization on tree growth.  Though 

there has been work done in the country on mid-rotation fertilization of pine stands, there 

is however, limited local literature linking the studies to water availability and light 

interception (through changes in LAI) on pines in South Africa.  This has led to 

considerable reliance on studies done on pines in other countries like the United States, 

New Zealand and Australia reported in this section on literature review.   

This chapter presents an overview of the literature on this topic with a focus on the 

following: 

• Effects of fertilization after canopy closure on LAI, basal area increment and 

volume response under pines and  

• Effects of water and nutrient availability on growth in existing mid rotation 

stands. 

2.2 Effect of fertilization on basal area and stem volume increment 

 

Why do nutrient limitations appear to be so common in forest plantations?  Nutrient 

limitations develop when a stand's potential nutrient use can no longer be met by soil 

nutrient supply (Figure 2.1). 
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Figure 2.1:  The concept of soil nitrogen supply and a stand’s potential and actual use of 

nitrogen as related to stand age (from Fox et al., 2007).  100 lbs / acre on the 

Y-axis is approximately equal to 112 kg ha -1 

 

 

When trees are young, use of nutrients is minimal owing to their small size, low leaf area, 

and lack of site occupancy.  As leaf area development and stand growth accelerates, use 

of nutrients also increases rapidly.  The supply of readily available nutrients is however, 

being rapidly sequestered within the accumulating forest floor and tree biomass.  As the 

canopy closes, the environmental conditions conducive to high nutrient availability are no 

longer present (Allen et al., 1990).  The result is that a stand's nutrient requirement for 

maximum growth will therefore generally outstrip soil supply (particularly for N) around 

time of canopy closure.  As nutrient supply diminishes, leaf area production and, in turn, 

growth become regulated (and limited) by the available nutrient pools.  The majority of field 

trials in mid-rotation southern pine stands (8 to 20 years old) in the Southeast United 

States have shown strong responses to additions of N and P (Martin et al., 1999).  

Several other studies on fertilization effects on basal area and volume have produced 

different reports on the responses and sometimes conflicting reports.  Some studies even 
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recorded no responses or even negative responses.  This section will explore some of the 

various responses that have been reported in literature.  Volume growth responses vary 

depending on stand/site attributes and the rates of N and/or P applied.  Results from an 

extensive series of mid-rotation fertilizer trials in P. taeda stands established by the Forest 

Nutrition Cooperative in America indicated that over 85 percent of the stands fertilized 

were responsive to additions of N+P.  Growth gains averaging 30% (3.48 m3 ha-1 a-1) over 

a six-year period following a one-time application of approximately 223 kg ha-1 N and 28 

kg ha-1 P were typical (Fox, et al., 2006).  

 

 
Figure 2.2:  Volume growth response to N and P applications to mid-rotation Pinus 

taeda stands. (from Fox et al., 2006).  100 lbs / acre on the X-axis is 

approximately equal to 112 kg ha -1 and 100 ft 3/ acre is approximately 

equal to 7.0 m 3 ha -1. 

 

It was observed in these intermediate-aged stands (Figure 2.2), that little response 

occurred when P was added alone except on very P-deficient sites as indicated by low 

foliar P concentrations and very low leaf areas (Fox et al., 2006). 
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Turner et al. (1996) reported a 21% volume response in another study with 21 trials that 

investigated the effect of post thinning fertilization in P. radiata in New South Wales in 

Australia.  While the reported trials were on sites with differing site characteristics, all sites 

showed that significant growth responses could be obtained.  The highest responses for 

both basal area and volume increment on all sites were with the highest level of N (400 kg 

ha-1) in conjunction with P application.  There was however, no significant response to N 

and P alone in these trials.  Many other different studies confirm the increase in basal area 

and volume increment after applying fertilizer (Carlson et al., 2000).  No significant 

response to N or P alone has been reported in some South African studies in agreement 

with Turner et al., 1996’s findings (ICFR, 1985, 1986).  Across a variety of site types in 

South Africa and abroad, fertilizers have commonly produced larger growth responses 

when N and P are applied together than either element applied alone (Donald, 1987; 

Jokela and Stearns-Smith, 1993; Turner et al., 1996).  There were relatively few 

exceptions to this finding, mostly confined to stands that were very strongly deficient in a 

single nutrient. 

 

A selection of documented responses to mid-rotation fertilization is presented in Table 

2.1a & b.  In the study by Donald (1987), the highest level of N (50 kg ha-1) was required to 

obtain a significant response to 50 kg P ha-1 and vice versa (Table 2.1a).  There was no 

additional response to the 100 kg ha-1 P level.   

In a separate experiment by Vose and Allen (1988), on a site which was N deficient before 

the study, the highest level of N (336 kg ha-1) had the highest volume production.  In this 

same experiment, similar treatments were applied on another site which was not N 

deficient before the experiment and there were no significant differences in the responses.  

Fife and Nambiar (1995) also found the highest N treatment (600 kg ha-1) to give the 
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highest response in 6-year old P. radiata stands in an experiment in which four levels of N 

were used ( 0, 150, 300 and 600 kg ha-1).  An analysis of Table 2.1a & b shows that 

quantities of nutrients used in experiments in which trees were 6 years and above ranged 

from 0 - 400 and 0 - 240 kg ha-1 for N and P respectively.  The optimum levels found in 

these different studies ranged from 50 to 400 and from 35 to 120 kg ha-1 for N and P 

respectively.  However, in some cases the optimum was due to application of a single 

element.  Recommendations of a rate of about 35 kg P ha-1 to intermediate aged stands 

where the soil water and depth (> 450 mm) requirements are met were put forward by 

Herbert and Schönau (1990) for the Cape area.  They recommended about 60 kg ha -1 of 

P for deeper soils where a N response can be expected as well.   
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Table 2.1a: Summary of fertilizer rates used by different studies in established conifer stands in Africa (mid and late rotation fertilizer 
application) 

 

 Location Species 

Stand 
age at 
which 
fertilizer 
was 
applied 

No. of 
sites Soil types and characteristics 

Trial design, levels and 
amounts of elements used 
(kg/ha) 

Optimum combination 
from study References 

CA
PE

 T
RI

AL
S 

Grabouw 
Western Cape P. radiata 15 1 Shallow, strongly leached Cartref soil 

3*3 factorial design 
-3 levels of N (0, 25, 50) 
-3 levels of P(0, 50, 100) 
 

N50P50 Donald, 1987 

Kruisfontein 
Southern Cape P. radiata 16 1 

Kroonstad, Vilafontes, and 
Pinedene 
-greyish-yellow colours 

3*2 factorial design 
-3 levels of P (0, 35, 70) 
-2 levels of K (0, 30) 
 

P35K0 Payne et al.,  1988 

Gouna 
Southern Cape P. radiata 20 1 

Longlands 
Pinedine 
-Greyish-yellow colours 
 

5 levels of P 
(30, 60, 90, 120, 240) P60 - 120 Payne et al.,1988 

M
PU

M
AL

AN
G

A 
TR

IA
LS

 

Venus, Mpumalanga P.patula 6 1 Granite derived soils 

3*2 factorial 
3 levels of N (0, 150, 300) 
-3 levels of P(0, 30, 60) 
 
 

No significant response 
from all Carlson et al., 2000 

Helvetia, Mpumalanga P.patula 9 3 Shale derived soils 

3*3 factorial 
3 levels of N (0, 100, 200) 
-3 levels of P(0, 50, 100) 
3 levels of K(0, 50, 100) 
 

N200P50K100 Carlson et al., 2000 

Westra, Mpumalanga P.patula 12 2 Shale derived soils 
4*2 factorial 
4 levels of N (0, 128, 257,385) 
-4 levels of P(0, 64, 129, 203) 

N128 Carlson et al., 2000 
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Table 2.1a: Continued 
 

 

Location Species Stand 
age at 
which 

fertilizer 
was 

applied 

No. of 
sites 

Soil types and characteristics Trial design, levels and 
amounts of elements used 

(kg/ha) 

Optimum combination 
from study 

References 

M
PU

M
AL

AN
G

A 
TR

IA
LS

 

Mpumalanga P.patula 8 4 groups -Lowveld granite derived soils 
-Highveld granite derived soils 

-Highveld quartzite derived soils 
-Escarpment soil groups 

2*5 factorial 
-2 levels of N (0, 150) 
-2 levels of P (0, 150) 
-2 levels of K (0, 150) 

-2 levels of Ca (0, 140) 
-No additional fertilizer, or a 
fertilizer re-application of the 

above elements, which 
 co-incided 

with the second thinning 
operation. 

The application of 150 kg 
ha-1 of combinations of the 
following elements at first 

thinning yielded an 
economic response: 

PK applied to Highveld 
granitic sites, 

·NPK added to sites with 
shale parent materials as 

well as the escarpment soil 
groups. 

Quartzitic and Highveld 
granitic soils had erratic or 
non significant responses 

at first thinning.  

Carlson & Soko, 2000 

Mpumalanga P.patula 13 4 groups -Lowveld granite derived soils 
-Highveld granite derived soils 

-Highveld quartzite derived soils 
-Escarpment soil groups 

2*5 factorial 
-2 levels of N (0, 150) 
-2 levels of P (0, 150) 
-2 levels of K (0, 150) 

-2 levels of Ca (0, 140) 
-No additional fertilizer, or a 
fertilizer re-application of the 

above elements, which co-incided 
with the second thinning 

operation. 

The application of 150 kg 
ha-1 of the following 
elements at second 
thinning yielded an 

economic response: 
150 kg ha-1 K applied to 
Lowveld granitic sites, 

·N added to sites with shale 
parent materials, either as 

a sole application at second 
thinning, or in combination 
with NPK at first thinning, 
and Single applications of 

N or K at second thinning to 
Highveld granitic sites. 

Campion & du Toit, 
2003 
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Table 2.1a: Continued 
 

 

Location Species Stand 
age at 
which 

fertilizer 
was 

applied 

No. of 
sites 

Soil types and characteristics Trial design, levels and 
amounts of elements used 

(kg/ha) 

Optimum combination 
from study 

References 

SW
AZ

IL
AN

D 
TR

IA
LS

 

Usutu Pulp 
Swaziland 

P.patula 7 1 Granite derived soils 4*2 factorial 
4 levels of P (0, 50, 100, 200) 

2 levels of K (0, 150) 
- a single rate of N with and 

without a PK application 

-Growth rates improved by 
P and K 

Morris, 1986 

Usutu Pulp 
Swaziland 

P.patula 7 1 Gabbro derived soils 4*2 factorial 
4 levels of P (0, 50, 100, 200) 

2 levels of K (0, 150) 
- a single rate of N with and 

without a PK application 

Growth rates improved by 
P and K 

Morris, 1986 

Usutu Pulp 
Swaziland 

P.patula 12 1 Granite derived soils 4*2 factorial 
4 levels of P (0, 50, 100, 200) 

2 levels of K (0, 150) 
- a single rate of N with and 

without a PK application 

Growth rates improved by 
N 

Morris, 1986 

Usutu Pulp 
Swaziland 

P.patula 12 1 Gabbro derived soils Same as for granite derived soil Growth rates improved by 
N 

Morris, 1986 

Usuthu 
Swaziland 

P. patula 6 1 Gabbro derived soils 75kg ha -1 P and 75kg ha -1 K Effect of PK fertilizer more 
apparent towards end of 

rotation 

Crous et al., (2008) 

Usuthu 
Swaziland 

P. patula 6 1 Gabbro derived soils 3 levels of P (0, 25, 50) at 
planting and 5 years after planting 

3 levels of K (0, 25, 50) at 
planting and 5 years after planting 

 

Volume growth increased 
when foliar nutrient 

concentration of either 
element was above the 

critical level 

Crous et al., (2008) 
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Table 2.1b:  Summary of fertilizer rates used by different studies in established conifer stands outside Africa (mid and late rotation 
fertilizer application 

 
Location Species Stand age 

at which 
fertilizer 
was applied  

No. of sites Soil types and characteristics Trial design, levels and amounts of 
elements used (kg/ha) 

Optimum combination 
from study 

References 

Hinton 
Canada 

P.contorta 40 1 -well drained orthic gray luvisols 4 levels of N  
(0, 180, 360, 540) 

N360 Yang, 1998 

New South Wales 
Australia 

P. radiata 14-36 9 -quartzose sandstones 
-quartz conglomerate 
-quartz sands 

(3*3 factorial design)  
3 levels of N (0, 200, 400)  
3 levels of P (0, 75, 225)  

N400P75 

N200P75 

 
 

Turner et al., 1996 

New South Wales 
Australia 

P. radiata 14-36 9 -slates 
-shales 
- mudstones 
 

(3*3 factorial design)  
3 levels of N (0, 200, 400)  
3 levels of P (0, 75, 225) 

N400P75 

 
Turner et al., 1996 

North and South 
Carolina 

 9, 12, 14 3 -nitrogen deficient soils and non nitrogen deficient 
soils 

N*P factorial design 
4 levels of N  
(0, 112, 224, 336) 
3 levels of P (0,28, 56) 
 

N336P0 

(no significant differences in 
responses between N deficient 
and non nitrogen deficient soils) 
 

Vose & Allen, 1988 

South eastern South 
Australia 

P. radiata 6 1 Podzolised sand 4 Levels of N 
(0, 150, 300 and 600) 

N600 Fife and Nambiar, 1995 
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Gholz and Fisher (1984) reported that the response of pole-sized pine stands in the south 

eastern U.S. to a combination of N and P fertilization was much more uniform across sites 

than the response to either element alone.  Carlyle (1998) in a thinning, thinning residue 

and fertilizer application experiment also reported that basal area increment increased in 

response to the rate of N fertilizer applied.  There was however neither response to P nor 

any N × P interaction as reported by other studies.  In N fertilized treatments, growth was 

highly correlated with N uptake in the year after fertilizer application.   

In a N and P fertilization study by Hunter et al. (1986) in New Zealand, basal area 

response averaged 1.35 m2 ha-1 and ranged from -1.1 m2 ha-1 to 5.0 m2 ha-1.  The largest 

responses occurred in stands that had received fertilizer at an early age and were on soils 

poor in nitrogen such as sandy soils.  Small positive responses were associated with older 

stands or better soils.   

 

In Mpumalanga (South Africa), P. patula stands responded significantly after first thinning 

to 150 kg ha-1 applications of PK (Lowveld granitic sites) and NPK (shale-derived and 

escarpment soils).  A sub-group of the same trials responded significantly to 150 kg ha-1 

applications of N or K (Highveld granitic soils) and K alone (Lowveld granitic sites), after 

second thinning (Carlson, 2000; Carlson & Soko, 2000; Campion & du Toit, 2003).  In the 

Western Cape, combined N and P experiments in 26 year-old P. radiata stands were 

conducted.  The N application improved basal area in two of the trials and depressed it in 

the third (Donald et al., 1987).  Crous et al. (2008) conducted a P and K fertilizer 

experiment in Swaziland in the third rotation and then superimposed a P and K factorial 

trial in the fourth rotation. Details of the levels of P and K are presented in Table 2.1a.  The 

results from Crous et al.’s studies suggested that fertilizer application to successive 

rotations can be adjusted to allow for the benefit of residual P fertilizer.  A summary of 

some of the values for stand level volume responses, stand level basal area responses 
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and the rates of elements producing the results compiled from many authors on Pinus 

species are presented in Table 2.2 : 
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Table 2.2: Examples of stand level volume and basal area responses of established conifer stands to mid and late rotation fertilizer 

application (Adapted from Campion, 2006) 

 

Location Species 

Age at which 
fertilizer was 
applied (years) 

Elements 
applied 
(kg ha-1) 

No. of 
sites 

Growth 
period 
(years) 

Response 
(m3ha-1) 

Response 
(m2ha-1) Reference 

New South Wales, Australia P. radiata 16 N324 + P128 3 4 4.3 Data not presented Crane (1981) 
Boland Region, Western Cape P. radiata 15 N50 + P50 1 10 59.2 Data not presented Donald (1987) 
New South Wales, Australia P. radiata 30 N400 + P75 4 7 67 4.7 Turner et al (1996) 
New South Wales, Australia P. radiata 24 N200 + P75 3 6   8 1.4 Turner et al (1992) 
Mpumalanga Highveld granite P. patula   8 P150 + K150 1 6 19.2 2.4 Carlson and Soko (2000) 

Mpumalanga  shale P. patula   8 
N150 +P150 + 
K150 1 5 27.1 2.9 Carlson and Soko (2000) 

Mpumalanga escarpment P. patula   8 
N150 +P150 + 
K150 1 5 30.3 2.6 Carlson and Soko (2000) 

Mpumalanga escarpment shale P. patula 13 N150 1 5 30.6 1.4 
Campion and du Toit 
(2003) 

Mpumalanga Shale derived soils P. patula   9 P50K100 3 6 
Not 
indicated 2.52 Carlson et al., 2000 
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2.3 Effect of fertilization on leaf area index  
 
 
Forest production is driven by the interception of radiation and the efficiency with which 

leaves use this energy to produce stem biomass through the process of photosynthesis 

(Linder, 1985).  These processes are strongly influenced by the supply of water and 

nutrients (Linder and Rook, 1984).  High levels of intercepted radiation are associated with 

high levels of photosynthesis, and this results in high productivity.   

 

Leaf area index influences productivity through the interception of light (Gholz et al., 1990) 

and the LAI that can be maintained at a given site will be determined by the availability of 

water and nutrients (Beadle, 1997).  An increase in the availability of water and nutrient 

supply will enable a forest to deploy a large leaf area with a high canopy quantum 

efficiency level.  In addition, it will partition comparatively small amounts of fixed carbon to 

root growth as resources are plentiful and easy to obtain (Linder, 1987; Binkley et al., 

2004).  P. radiata is usually grown from 300 to 460 latitude, mainly in the southern 

hemisphere.  Photosynthetically active radiation (PAR) is sufficient for optimum yields in 

these areas and therefore radiation as such is seldom limiting but the interception of 

adequate quantities may be constrained by sub-optimal leaf area indices brought about by 

water or nutrient deficiencies (Linder, 1985).  It follows that the availability of water, 

nutrients and the interaction between these two factors effectively determine the 

magnitude of the response to additional fertilizer supplements (Linder, 1987; Goncalves et 

al., 1997).   

Canopies provide a direct link between the biophysical environment and the 

photosynthetic processes which convert solar energy into dry matter production and wood 

yield (Beadle, 1997).  Canopies set limits to production.  The size of a canopy at any one 

time is defined by its leaf area index (LAI) defined as the leaf area per unit land area 
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(Beadle, 1997).  LAI drives both the within and the below-canopy microclimate, determines 

and controls canopy water interception, radiation extinction, water and carbon gas 

exchange and is, therefore, a key component of biogeochemical cycles in ecosystems.  

Any change in canopy LAI by management practice is therefore accompanied by 

modifications in stand productivity.   

The amount, display and duration of leaf area largely determine the amount of radiation 

intercepted by forest canopies (Vose and Allen, 1988).   

 

Strong relationships have been reported between productivity and leaf area index for 

several conifers in different trials (Binkley & Reid, 1984).  These observations support the 

proposition that a forest stand’s ability to intercept radiation is the major determinant of its 

biomass production (Linder, 1985).  Canopy leaf area intercepts PAR and, through 

photosynthesis, converts absorbed light energy into dry matter (Cannell, 1989).  The 

empirical relationship between intercepted photosynthetically active radiation (IPAR) and 

dry matter production suggests that increased radiation absorbed, or increased efficiency 

of conversion of absorbed radiation to biomass, will increase dry matter produced 

(Cannell, 1989).  Since the early fifties it has been suggested that the environment 

regulates plant productivity through its influence on leaf area, carbon fixation and carbon 

allocation patterns (Vose & Allen, 1988).  Environmental factors limiting leaf area include 

nutrient availability, water availability and temperature.  Photosynthetic efficiency is 

influenced by the same environmental factors.  Because of the difficulties involved in 

determining the relationships between carbohydrate production and allocation to stem 

wood, growth efficiency has been used as a surrogate parameter for this relationship in 

some fertilization studies (Binkely and Reid, 1984). 
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According to a study of P.taeda growing on sites of varying nitrogen limitations in North 

Carolina, nitrogen fertilization significantly increased LAI (up to 60%) on N deficient sites 

while as P additions had no effect (Vose & Allen, 1988).  When tree growth is stimulated 

by fertilization, a significant part, and if not most of the response is due to an increase in 

the total leaf area of the photosynthetic surface (Linder & Rook, 1984).  An increased 

nutrient supply may however result in a denser canopy which will reduce the light levels in 

the lower crown, reducing the depth of the green crown, so even though photosynthesis 

may be improved by fertilization, the dense shade in the canopy decreases the 

photosynthetic production per unit leaf (Linder and Rook, 1984).  In another study by Allen 

et al. (2005) where production efficiency was assessed, LAI was not significantly affected 

by fertilization for stands of P.taeda and P.elliottii.  The response in LAI due to fertilization 

may therefore be proportional to the degree of resource limitations that exist at a given 

site, since poorer sites have greater room for improvement.   

 

2.4 Effects of water and nutrient availability on growth in mid-rotation pine stands 
 
 
Much of the variation in wood production in forest plantations is due to variation in light 

interception and the leaves’ efficiency to produce stem biomass through photosynthesis 

(Linder, 1985; Fox et al., 2006).  The supply of water and nutrients has a very strong 

influence on these processes (Linder and Rook, 1984).  Figure 2.3 illustrates the 

relationship between volume growth and leaf area in southern pine plantations in the 

Southeast United States of America.  
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Figure 2.3:  Relationship between annual volume growth and leaf area and factors known 

to affect productivity. 100 ft3/ acre is approximately equal to 7.0 m 3 ha-1 (from 

Forest Nutrition Cooperative, 2006). 

 

 

Conversely if resources are limited, the forest will have to deploy a large amount of fixed 

carbon to the roots and not to above ground growth.  It follows that the availability of water, 

nutrients and the interaction between these two factors effectively determine the 

magnitude of the response to additional fertilizer supplements (Gonçalves, et al., 1997; 

Linder, 1987).  Herbert and Schönau (1990) also concluded that the availability of soil 

water is critical for responses to P and that once foliar P is well above the critical level of 

0.10%, nitrogen may become a limiting nutrient on sandy soils.  Thus the better the site 

quality (with respect to available soil water) the larger the response to fertilizer and the 

greater the benefits of adding N to P.  Studies of P radiata, P. sylvestris and Eucalyptus 

globulus have indicated that leaf area and consequently wood production are below 

optimum levels in many parts of the world (Fox et al, 2006). 

 

Low nutrient availability and low soil water availability, high vapour pressure deficits and 

high temperatures also adversely affect leaf area production and/or retention.  In a study 
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by McMurtrie et al. (1990) done in Canberra in southeastern Australia, values of LAI were 

consistently higher for stands that had received both fertilizer and irrigation than those that 

had received no fertilization and irrigation.  

Chronically low levels of available soil nutrients, principally nitrogen and phosphorus on 

loamy or sandy soils, were found to be more limiting to growth in established stands than 

water limitations in the Southeast United States (Albaugh et al., 1998).  Both water and 

nutrient limitations can reduce leaf area through reduced foliage production or early 

senescence and they can also affect growth efficiency through effects on photosynthesis 

and carbon allocation.  In the Southeast United States, water availability is however 

thought to have less effect on leaf area than nutrient availability because most leaf area 

production in the region occurs in the spring when soil water availability is high and 

evapotranspiration demand is low.  In contrast, water availability is thought to have a 

greater effect on growth efficiency because photosynthesis of existing leaf area can be 

reduced by drought during summer months when soil water availability may be low and 

evapotranspiration demand is high (Sampson & Allen 1999, Albaugh et al., 2004b). 

 

2.5 Interaction of soil water and nutrient availability 
 

To be absorbed by plant roots, nutrients need to be released from the solid to the solution 

phase of the soil.  All processes controlling the transfer and changes in form of nutrients 

are closely related to soil water content.  Soil water content is one of the main factors 

affecting diffusion and ion activity in the soil solution (Goncalves et al., 1997).  Water 

availability and its interaction with nutrients may have overriding influences on the 

magnitude of stand response to silvicultural practices (Nambiar et al., 1984).  There are 

strong interactions between water and fertilizer in water-limited environments (Sheriff, 

1996).  On sites with low soil water availability, stands may respond poorly to fertilization, 
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even when levels of nutrient availability are low (Allen, 1987; Jokela et al., 1988; McMurtrie 

et al., 1990).  Under similar management regimes, the variability in fertilizer responses is 

likely to stem primarily from variations in inherent nutrient supply capacity of soils and the 

availability of soil water (du Toit, 2006).  Numerous studies have shown that fertilization is 

most beneficial when trees are not water stressed (Sands and Mulligan, 1990).  In a study 

of P. radiata stands in Australia, the magnitude of the response to fertilizer applied after 

the first, second and third thinning operations were influenced by climatic conditions, 

particularly rainfall during the growing season over the period one to four years following 

fertilization (Turner et al., 1996).  When fertilizer is applied late in the rotation, the 

response can be determined by available water and may not occur unless fertilization is 

combined with an increase in available water as is the case after thinning (Nambiar et al., 

1984).   

 

Experimental data suggest that nutrient uptake of e.g. Ca and Mg is relatively insensitive 

to water deficits, but the uptake rates of N and especially P may be reduced (Sands & 

Mulligan, 1990).  The interaction between soil water and nutrients is thus complex.  

Fertilizing on sites where rainfall is high and soils are permeable can lead to excessive 

leaching and low efficiency of fertilizer uptake (Ballard, 1984).  The response to fertilization 

on sites where rainfall is low or erratic can be uncertain, because moist conditions which 

are conducive to uptake of added fertilizer cannot be relied upon.  On the other hand, if 

fertilizer uptake is high, perhaps because of sufficient rainfall following fertilization, it is 

possible that leaf-area index will increase to a level which is unsustainable in relation to 

long-term moisture availability (Nambiar, 1985; Linder, 1987).  Temporal or seasonal 

changes in water availablilty may thus also have a profound impact on a stand's response 

to fertilization.   

Stellenbosch University  http://scholar.sun.ac.za



27 
 

However, Allen et al., (2005) found that LAI was not significantly affected by irrigation in an 

experiment where P.taeda and P.elliottii were involved.   

What then is the key to optimizing leaf area and growth efficiency and thereby achieving 

optimum value?  According to Fox, et al., (2006) and du Toit (2006), there is need to 

develop and implement site specific silvicultural practices.  These practices may include: 

• Use of high quality planting stock 

• Matching the right species to the right site 

• Suppression of competing vegetation and 

• Site-specific fertilizer application 

2.6. Diagnosis of nutrient deficiencies and effect of fertilization on foliar nutrients 
and relationship to growth responses 

 
 
Diagnostic techniques are important in a forest fertilization program in order to ensure the 

most effective use of the fertilizer material.  Some of the methods that can be used include 

the following: 

i. Visual symptoms 

ii. Foliar analysis  

iii. Soil analysis and 

iv. Fertilizer trials (Pritchett, 1979) 

Each of these methods can have a useful place in diagnosing instances of deficiencies 

and likely response of trees to fertilizer treatment.  The focus of this section will however 

be on foliar analysis though an overview of soil analysis will be given. 

2.6.1 Soil Tests 
 
 
Soil analyses, though useful in forestry can be limited by; 

i. Lack of correlation data for interpreting test results in terms of tree response to 

fertilizers, 
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ii. Lack of information on what soil layer (depth) to sample, and 

iii. Uncertainty as to what nutrient form or fraction to extract (Pritchett, 1979). 

When the above challenges are overcome, soil analysis can yield results that can be very 

useful in predicting sites that are potentially responsive to fertilizer treatment. 

2.6.2 Foliar Analysis 
 

Analysis of foliar nutrient levels is very useful for monitoring the growth and nutrient status 

of trees (Payne & Clough, 1987).  It is widely used to identify nutrient-deficient stands, e.g. 

P. taeda in the southern United States (Wells & Allen, 1985), P. radiata in New Zealand 

(Mead and Gadgil, 1978), and P. radiata in Australia (Snowdon & Waring, 1990).  Foliar 

analysis is a more reliable method of diagnosing pronounced deficiencies in older trees, 

and this technique does suffer from sampling difficulties (Pritchett & Comerford, 1983) 

(e.g. difficulties in accessing the upper third of the crown).  The method can also be 

affected by other factors like climate (Louw & Scholes, 2002), season (Schönau, 1981), 

genetic variation, competition, plant age, and position in the plant (Schutz, 1990).  

Furthermore, the “dilution effect” on needle concentrations, associated with the increase in 

dry weight due to the storage of carbohydrates, can also lead to substantial variation in 

foliar nutrient concentration (Linder, 1995). 

It is essential, therefore, to use standardized procedures when sampling and processing 

foliage; otherwise, a reliable comparison of measured foliar values with published 

interpretative criteria may not be possible �Brockley, 2001). 

 

If foliar analysis is to be of any meaningful use, sampling should yield foliar material that is 

representative of the stand sampled, and accurately reflect the nutrient status of the trees 

(Payne & Clough, 1987).  Samples should represent the best possible relationships with 

growth and growth response (Lambert, 1984).  As a number of factors can affect nutrient 
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foliar concentrations, sampling procedures must be carefully controlled to reduce variation.  

A particular time of year is usually chosen for sampling as the concentrations of nutrient 

elements can vary from one season to another.  In the Western Cape (winter rainfall area)  

the most stable period for sampling is considered to be January to March, when nutrient 

levels are lowest because the nutrient levels reach a maximum during winter (Schutz, 

1976).  This period of sampling is in agreement with Mead and Will, (1976) where foliar 

sampling of P radiata in New Zealand was recommended to be done from late January to 

March for both N and P.  Fife and Nambiar (1997) also noted that in an experimental site 

in South eastern South Australia with a cool wet winter (June–September) N concentration 

was at its lowest between November and March.  Sampling in this experiment was done 

between September and March.  It is recommended by most authorities that sampling be 

done during the dormant period when there is relatively slow growth when concentrations 

should be most stable and in equilibrium with the nutrients in the soil (Schutz, 1976; Fife & 

Nambiar, 1997; Brockley, 2001).   

 

Foliar analysis has been widely used to evaluate the probability of response to fertilization 

in the south eastern United States of America (Jokela et al., 1988).  This technique is 

based on the assumption that a particular stand will respond to added nutrients when foliar 

concentrations fall below established critical levels (Jokela et al., 1988).  The “critical” level 

of a nutrient is defined as the concentration below which a significant increase in growth 

would be expected from the application of that nutrient provided other factors are not 

limiting (Pritchett & Comerford, 1983).  Foliar analyses can be used to identify sites where 

an acute nutrient deficiency occurs, but are less suitable for reliably predicting growth and 

fertilizer response in areas of marginal deficiency, or where other growth limiting factors, 

such as soil moisture, may limit response to improved nutrition (Allen, 1987; Jokela et al., 

1988).  In Australia, foliar analysis can generally discriminate between highly deficient and 
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sufficient mid-rotation P. radiata stands, however, this technique may prove unreliable 

when nutritional status is intermediate (Carlyle, 1998).  

 

Of all the diagnostic tools available for selecting responsive stands, foliar analysis appears 

to have the most potential according to Crane (1984) because it provides a combined 

assessment of all the factors that influence nutrition, such as nutrient supply, plant uptake, 

translocation and growth and is therefore an integrated index of site supply as well as 

stand demand for a nutrient (Allen, 1987).  However, foliar analysis does not take water 

availability into account.  Water limitations could therefore limit responses.  The diagnostic 

techniques for identifying intermediate-aged stands that will be biologically responsive to 

fertilization have undergone substantial revision (Albaugh et al., 1998).  The linkages 

among stand productivity, leaf area, and nutrient availability can be used.  Differences 

between a stand's current leaf area and its potential leaf area can be used to estimate 

responsiveness to nutrient additions.  LAI of a fully stocked stands of P. taeda in the 

Southeastern United States (basal area >23 m2 ha-1) should generally be 3.5 or greater; 

otherwise, the stand is probably in need of N+P (Forest Nutrition Cooperative, 2006).  The 

probability and magnitude of response will be greater at lower leaf areas.   

 

Nitrogen fertilization often increases foliar nitrogen concentration which in turn may 

increase photosynthetic capacity.  A positive relationship between foliar N and 

photosynthetic capacity may be dependent on the inherent fertility of the site, i.e., larger 

increases for sites with more nutrient limitations (Allen et al., 2005).  A study of induced 

nutrient deficiency in Picea sitchensis seedlings showed that, under nutrient-limiting 

conditions, additions of nitrogen increased foliar N and net photosynthesis up to a point, 

after which, further additions of nitrogen yielded increases in foliar N, but no change in 

photosynthesis (Chandler & Dale, 1995).  In mature pine stands however, higher foliar N 
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may not necessarily enhance photosynthesis.  Turner et al., (1992) also found out that 

application of N led to high concentration of N in the foliage but this declined with time.  

Phosphorus concentrations were actually depressed by the application of N.  This could 

have been caused by an antagonism between these elements.   

2.6.3 Vector analysis and use for predicting growth responses to fertilizer 
application  

 

Unlike techniques that are based on a single measure of nutrient concentration, vector 

analysis compares nutrient concentration, nutrient content and a measure of plant growth 

simultaneously in a graphical format (Haase & Rose, 1995).  Timmer and Armstrong 

(1987) reported that diagnoses based on vector analysis matched visual symptoms, 

growth performance and nutritional responses due to fertilizer treatments more accurately 

than methods based on critical or optimum nutrient levels.  With vector analysis 

preliminary growth response data and nutrient-deficiency diagnoses, based on increases 

in needle weight and shifts in foliar nutrient concentration and content of added and non-

added nutrients, can be obtained within a year of treatment (Haase & Rose, 1995).  There 

is documented evidence from some studies that there is a strong positive correlation 

between the needle weight produced during the first year after treatment and subsequent 

stem wood response (Valentine & Allen, 1990).   
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CHAPTER 3:  MATERIALS AND METHODS 
 

3.1 Introduction  
 
 
This chapter gives a description of the study sites, treatments applied, measurements 

done and statistical data analysis methods used.  The study was conducted on a range of 

sites in the Boland region of MTO Forestry Company (MTO), chosen to reflect the two 

most common soil types and a water availability gradient in each soil type.  We opted for a 

factorial combination of fertilizer treatments with three levels each for nitrogen and 

phosphorus.  This design was replicated four times across a gradient of water availability 

for each of the two common soil groups, forming a complete trial series.  All replications 

were laid out in P. radiata stands that had received their mid-rotation thinning prior to 

treatment implementation.  

 

3.2 Description of study sites  
 
 
The study was conducted at MTO's Grabouw and Kluitjieskraal plantations.  These 

plantations are located in the Western Cape’s Boland region.  The Boland region has a 

typical Mediterranean type climate with cool and wet winters (Donald et al, 1987).  Winter 

rainfall in the Boland region predominantly falls from May/June to August/September.  

Grabouw is situated in the Elgin basin and Kluitjieskraal is situated on the footslopes of the 

Waterval Mountains in the Breë River Valley.  The Kluitjieskraal plantation is beside the 

town of Wolseley, approximately forty kilometres North West of Worcester. 
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3.2.1 Description of selected compartments 
 

Pinus radiata compartments that had received second thinning with a stand density 

ranging from 396 to 501 stems ha -1 and a slope of less than 150 were used in the study.  

The age of the stands ranged from 13 to 17 years (Table 3.4).  Mean annual precipitation 

within the study sites ranged from 754 mm to 1188 mm (Table 3.4).   

 

The replications were renamed for the purposes of use in this study as indicated in Table 

3.1.  They were spread over four wetness categories for each broad soil group (1 - 4) with 

1 being the driest and 4 the wettest.  A description of the wetness categories follows:  

There is evidence that some of the sites (Kluitjieskraal B7 in particular) receive 

water inputs by lateral flow from upslope positions.   

A complementary M.Sc. study has been conducted to gauge available water 

across sites with higher precision using a soil water balance complemented by a 

carbon isotope approach (Fischer, 2011).  Seeing that these findings have not yet 

been applied to the fertilizer trial series, a tentative ranking of water availability 

(categories 1 - 4) had to be used in this thesis, based partly on quantitative and 

partly on qualitative data.  We thus evaluated rainfall and its distribution, potential 

evaporation data, effective soil depth classes, detailed water balance information 

(where available), and evidence of additional water supply to sites through lateral 

flow (supported by stand LAI values before and after treatment implementation), to 

construct the tentative ranking.  

Considerable effort went into selecting compartments where each one had fairly 

homogeneous soil and stand conditions.  The study sites were distributed between two 

major soil groups in the Boland area as follows:  

(a) Sandy soils, which will be referred to as sands in this document (mostly lithic 

soils i.e. Cartref, Glenrosa and Fernwood soil families) and  
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(b) Chromatic soils with a loamy texture, which will be referred to as loams (mostly 

cumulic or oxidic soils derived from shale or granite and represented by the soil 

families Oakleaf, Tukulu, Clovelly, Hutton Griffin, Inanda and Kranskop) (Ellis, 2008; 

Fey, 2010). 

One of the replications (L3) as shown in Table 3.1 was destroyed by a wildfire soon after 

treatment implementation in 2009 before any measurements could be taken. 

 
 
Table 3.1:  Wetness and soil group categories for each replication in the trial series. 
 

Compartment Replication code1,2 

Grabouw J27 

Grabouw D12 

Grabouw E14 

Kluitjieskraal B7 

Kluitjieskraal B39 

Grabouw M13a 

Jonkershoek M423 

Grabouw G36a 

S1 

S2 

S3 

S4 

L1 

L2 

L3 

L4 
1 The letters S and L in the replication code column refer to the major soil groups of Sands 

and Loams respectively. 
2 The subscript numbers (1 – 4) refer to the water availability classes with 1 being the driest 

and 4 the wettest.  
3 This replication was destroyed in a wildfire shortly after treatment. 
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The replications are distributed as shown in Figures 3.1-3.2 below. 

 

Figure 3.1:  The location of fertilizer trial replications in Grabouw plantation 
compartments D12 (S2), E14 (S3), G36 (L4), M13a (L2) and J27 (S1).  

 

M13a 

D12 
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Figure 3.2:  The location of fertilizer trial replications in Kluitjieskraal plantation 

compartments B39 (L1) and B7 (S4). 

 
 

3.3 Treatments 
 
 
Sample plots in each compartment were chosen based on the following; 

• Relatively uniform terrain, 

• Healthy trees free of diseases and pests,  

• Uniform canopy.  

N was applied as limestone ammonium nitrate (LAN 28% N) and P was applied as 

concentrated superphosphate (20.3% P + 0.5% added Zn).  Table 3.2 shows the levels of 

N and P that were used in the trial.  The experiment had four replications across a gradient 

of soil water availability.  Fertilizer was broadcast and split into two equal applications, 

50% in winter (June/July) and 50% in spring (September/October) 2008.  The splitting was 

B39 
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done in order to avoid situations of fertilizer being leached out if all was to be applied at 

once. 

 
Table 3.2:  Levels of N and P used in the mid-rotation fertilizer trial. 
 

Element and level Nutrient element applied (kg ha-1) 

N0 

N1 

N2 

P0 

P1 

P2 

    0 

100 

200 

    0 

  50 

100 

 

3.4 Measurements 
 
 
Diameter, height, LAI measurements and foliar analysis were done as detailed in this 

section.  The dimensions of the outer and measurement plots used in the study are given 

in Table 3.3.  

 
Table 3.3:  Plot dimensions used in the N x P mid-rotation fertilizer trial.  
 
Replication Inner plot 

dimensions(m) 
Inner plot 
area (m2) 

Outer plot 
dimensions 

(m) 

Outer plot 
area (m2) 

S1 20.5 x 28 574 30 x 40 1200 

S2: 10 x 50 500 20 x 60 1200 

S3: 20.5 x 28 574 30 x 40 1200 

S4: 18 x 28 504 30 x 40 1200 

L1: 18 x 28 504 30 x 40 1200 

L2: 18 x 34 612 25 x 48 1200 

L4: 18 x 28 504 30 x 40 1200 
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Each inner plot was surrounded by a buffer ranging from 3.5 m to 6 m. 

Existing tree row spacing and the location of extraction rows in field compelled us to allow 

for slight variations on the plot dimensions to maximise stand uniformity.  We planned to 

establish all replications in compartments that had been selectively thinned from below, 

however, this was not possible as MTO had implemented large-scale third row thinnings to 

catch up on thinning backlogs.  This forced us to implement two replications in sites that 

had received third row thinnings (Table 3.4).  Table 3.4 presents the stand characteristics 

before fertilizer application. 
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Table 3.4:  Summary of P. radiata stand characteristics at the commencement of the mid-rotation study in 2008 when the trees where 
13 to 17 years old. 

 
Rep Code Mean annual 

precipitation 
(mm) 1 

Effective soil 
depth class 2 

 

Lithology Soil 
description3 

Age of stand  
(years) 

Mean dbh (cm) Mean Ht 
(m) 

Stocking 
(Stems ha-1) 

Basal area 
(m2  ha-1) 

Initial LAI 
(m2 m-2) 

Initial VOL 
(m 3 ha-1) 

 
     

      
4S1 ±754 Very shallow Sandstone Cb 2 15 17.9 14.2 501 12.6 1.1  71.6 

S2 ±1138 Very shallow Sandstone Fc 1 15 25.3 16.9 458 23.1 2.2 147.6 

4S3 ±1188 Deep Sandstone Cb 4 & 5 13 19.4 16.1 476 14.3 1.5  90.1 

S4 ±782 5 Deep Sandstone Hf 1 14 23.1 16.2 406 17.1 2.9 106.2 

L1 ±782 Very shallow Shales Db 4 14 17.6 12.3 432 10.5 1.9  51.9 

L2 ±800 Shallow Shales Db 1 17 21.5 15.3 396 14.4 1.4  86.3 

L3 -6  

  

 

      

L4 ±954 Mod. to deep Shales Ba 1 16 26.8 19.8 401 22.7 2.8 169 

1 Rainfall estimates were interpolated between closest reliable weather stations. 
2 Derived from a combination of stone content, effective soil depth and soil texture classes, after Herbert (2000) 
3 Codes refer to Forestry soils database (FSD) format, where Cb = hydromorphic soils with an E horizon; Fc = lithocutanic soils; Hf = soils with E horizon and high carbon topsoils; Db 
= Non-red duplex soils; Ba = chromatic neocutanic soils. 
4 Compartments where non-selective (third row) thinning was used. 
5 Site enriched by substantial subsurface water flow from upslope positions which greatly prolongs the duration of the season of water availability, thus rated as S4, i.e. having highest 
water availability,    
6 Replication destroyed in a wildfire soon after treatment.   
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3.4.1 Foliar analysis 
 
 
Pre-fertilization foliar samples were taken in September in 2008.  Foliage was taken from 

six trees in the control plot of each compartment.  These were then bulked to give a 

representation of the before fertilization scenario per compartment.  Post fertilization data 

in the trial was planned for collection in year 1 (2009), 3 (2011),  

5 (2013) and 7 (2015) as there were no resources to get more frequent data.  The foliar 

data used in this study was therefore collected in 2009.  Post fertilization samples were 

taken from each plot of each replication in September 2009.  Post fertilization foliage 

samples were collected from six trees in each measurement plot.  The current season’s 

foliage that had reached maturity was collected from second-order branches in the top 

third of the crown.  At least two branches per tree were sampled.  The samples were taken 

manually with tree pruning scissors with extending connections to enable sampling in the 

upper third of the crown.  The six samples collected from each plot were then bulked by 

equal weight to give a representative sample for the plot.  The dry weight of 300 needles 

was determined for each plot.  The samples were then dispatched to a commercial 

laboratory for nutrient concentration determination.  

3.4.2 Vector analysis 
 

Vector analysis (Timmer and Stone, 1978) was used to determine the nutrient status and 

growth responses to treatment.  The results of nutrient concentration as determined in the 

laboratory from the foliar samples described under 3.4.1 were used for vector analysis 

calculations.  The nutrient content was calculated for each nutrient for each treatment by 

taking the product of nutrient concentration and unit dry weight.  The weight of 300 

needles was used as the unit dry weight.  Post-fertilizer control plot in each replication was 

used as the reference point for calculations of relative nutrient concentration, relative 
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nutrient content and relative dry weight for the different nutrients for all the treatments in 

that given replication.   

A software called Sigma plot was then used to produce nomograms for each of the 

nutrients for each replication.  A table was then constructed to summarise the vector 

analysis results for the one year period after fertilizer application.  An arbitrary 

classification of the vectors was used where negligible referred to a vector with a relative 

nutrient content below 100, small with a relative nutrient content from +100 to 200, 

medium with a relative nutrient content from +200 to 300 and large any vector with a 

relative nutrient content above 300.  Relative nutrient content was used as it captures both 

the nutrient concentration and the unit dry weight.  Vector analysis was also conducted on 

the average response observed across all the trials with mean volume increment per 

treatment used as a surrogate for needle dry weight.  

 

Critical levels, nutrient ratios and vector analysis techniques were then compared in order 

to identify where the techniques corresponded in identifying nutrient deficiencies and 

where they did not.   

 

3.4.3 LAI measurements 
 
 
Pre-fertilization LAI of each compartment was determined in spring 2008 (September).  

Post-fertilization LAI was taken after a period of approximately six months.  Measurements 

were therefore taken during the autumn period (March-May 2009), spring of 2009 and the 

last measurements were taken during autumn 2010 (March-May).  Leaf area index (LAI) 

was estimated using a ceptometer (AccuPAR (LP-80)) which measures the sun fleck area 

with an array of sensors.  The gap fraction relates leaf area to the probability of light 

passing uninterrupted through the canopy (Lang et al., 1985) by comparing the radiation 
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environment at the base of the canopy with a simultaneous measurement above or outside 

the canopy.  The AccuPAR calculates LAI based on the above and below-canopy 

photosynthetically active radiation (PAR) measurements along with other variables that 

relate to the canopy structure and position of the sun.  These variables are zenith angle, a 

fractional beam measurement value, and a leaf area distribution parameter (�) for the 

particular canopy (Decagon Devices Inc, 2004).  An extinction coefficient of 0.5 was used. 

3.4.4 Volume estimation 
 
 
Diameter at breast height (Dbh, 1.3 m above ground) and the height of all trees in each 

measurement plot were measured in June/July 2008 before fertilizer application.  Post 

fertilization measurements were then done in June/July 2009       (1 year after fertilizer 

application) and the last measurements were taken in June/July 2010 (2 years after 

fertilizer application).   

All diameter measurements were done using diameter tapes.  All height measurements 

were done using a hypsometer (Vertex IV).  

To ensure that diameter measurements were taken on precisely the same height of the 

tree (1.3 m) on each measurement, a white band was painted around the circumference of 

the tree at breast height.  In cases were knot whorls were present at breast height, 

measurements were taken above and below the whorls and the average determined to 

ensure that tree volumes were not unreliable.  Windy conditions were avoided when height 

measurements were taken.  These measurements were used to estimate plot volume and 

basal area.  

The following equation based on the Schumacher and Hall model was used to estimate 

standing tree volume: (Bredenkamp, 2000) 
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ln V = b0 + b1 ln(dbh + f) + b2 ln H 

where: ln = natural logarithim to base e 

V = Stem volume (m3, underbark) to 75mm tip diameter 

 dbh = breast height diameter(cm, over bark) 

 f = correction factor 

 H = tree height (m) 

 b0 = -9.9651 

 b1 = 1.8454 

 b2 = 1.0139 

 f = 0 

The volume of each tree in the plot was calculated and summed to determine the plot 

volume.  The plot volume was then scaled up to stand volume per hectare (m3 ha-1) 

3.4.5 Basal area estimation 
 
 
The basal area of each tree in the plot was calculated and summed to determine the plot 

basal area.  The plot basal area was then scaled up to basal area per hectare. 

3.4.6  Growth Efficiency 
 
 
Growth efficiency was taken as the volume increment produced per unit of leaf area during 

the period under consideration and expressed as m3 ha-1 a-1 LAI-1.  The average leaf area 

index over the measurement period was used in calculations.  The average for the 

different measurement periods was calculated as follows: 
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Year 1 (2009):  (LAI1 + LAI2)/2 

Year 2 (2010): (LAI2 + LAI3)/2 

Over the two year period (2008 – 2010): (LAI1 + LAI2+ LAI3)/3 

Where: 

LAI1  was the autumn LAI in 2009 

LAI2 was the spring LAI in 2009 

LAI3 was the autumn LAI in 2010 

The spring 2010 LAI has not been included as it had not been measured by the time of the 

thesis write up. 

3.5 Statistical Analysis 
 
 
The statistical significance of N, P and water availability class as main effects and the two-

way interactions thereof were analysed using the General linear models (GLM) procedure 

in STATISTICA version 10 (Statsoft Inc., 2010).  The experiment could not be designed to 

interpret the highest order interactions among N, P, soil type and water availability class, 

as this would have meant doubling the size of the experiment.  There were no adequate 

stands to accommodate this large size of an experiment in the chosen area of study.   

 

With limited possibilities for testing interactions, it was more prudent to investigate the 

effects of water availability class, as soil water availability is the major limiting factor to 

plantation forestry in the region.  Soil type was thus not used as a factor in the treatment 

structure of the statistical analyses.  However, the replications were laid out across two of 
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the most common soil types in the area, and as such, the results are highly representative 

of plantation forest sites in the Boland region.  

LAI, basal area and volume at the start of the study before treatment application were 

used as covariates for the analyses where LAI increment, basal area increment and 

volume increment were the dependant variables respectively.  Volume at the start of the 

study was used as a covariate for the GE analyses.  Whenever the covariate was not 

significant, it was excluded from the analysis to improve the power of the test.  The use of 

covariates provided a means of removing the confounding effect of differences in initial 

stocking and standing volume between plots.  Seeing that the work was done in fairly 

variable stands, the F probability was set at 10%. 

 

A complete ANOVA was also done to determine the effect of N and P fertilizer on foliar 

nutrient levels one year after applying the treatments.   

Linear regression analysis was used to examine the relationship between initial LAI before 

treatment and volume increment over the two year period after treatment.  It was also used 

to examine the relationship between initial basal area before treatment and volume 

increment over the two year period after treatment.  
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CHAPTER 4:  RESULTS  
 

4.1  Nutrient Analysis 
 

4.1.1 Critical levels and nutrient ratios 
 
The foliar nutrient concentrations of each replication were determined before fertilizer 

treatments were implemented and are presented in Table 4.1a.  
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Table 4.1 a: Foliar nutrient concentrations of 13 to 17 year old P. radiata trees in control plots of each replication taken before mid-
rotation fertilizer application in 2008. 

 

           Replication code & 

Compartment 

N P K Ca Mg Mn Fe Cu Zn B 

 % mg kg-1 

S1:  Gr-J27 1.24 0.06 0.71 0.41 0.14 58 152 4 17 36 

S2:  Gr-D12 1.17 0.08 0.48 0.39 0.15 66 113 3 15 23 

S3:  Gr- E14 1.06 0.08 0.54 0.29 0.13 101 128 3 16 37 

S4:  Kk-B7 1.31 0.15 0.85 0.33 0.17 212 1006 5 25 27 

L1:  Kk-B39 1.38 0.10 0.79 0.18 0.15 836 1419 5 17 23 

L2:  Gr-M13a 1.21 0.06 0.65 0.38 0.16 146 97 3 15 36 

L3:  Jh-M42 No data as replication was lost in a wildfire. 

L4:  Gr-G36 1.4 0.07 0.46 0.35 0.22 384 95 4 10 32 

NORMS5 1.21 0.14 0.50 0.08 0.10 25 70 2.4 14 17 

Adequate 1.2-2.0 0.14-0.3 >0.5 0.08-0.45 0.1-0.4 25-400 70-200 2.4-9.0 14-64 16-70 

marginal 1-1.2 0.1-0.14 0.35-0.5 0.06-0.07 0.06-0.08 11.0-20 40-70 2.1-2.3 11-13 10-16.0 

deficient <1.0 <0.1 <0.35 <0.06 <0.05 <10 <35 <2 <11 5-12 
1Non shaded =adequate; 2 Light shaded and italicised = marginal; 3 Dark shaded = deficient; 4 Bolded = very high levels ;  
5Norms according to Boardman et al., 1997 
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According to critical norms by Boardman et al., (1997) all the replications used in the study 

(Table 4.1a) had adequate nutrient concentrations of Ca, Mg, Mn, Fe, Cu, B and Zn at the 

beginning of the study except L4 which had a deficiency of Zn and L1 and S4 which had Fe 

concentrations above the accepted levels.  Replication L1 also had Mn levels above the 

acceptable, although levels below 2000 mg kg-1 are usually still not toxic to most conifers.  

Potassium was adequate in all replications except in S2 and L4 which had marginal 

concentrations of the element.  There was a P deficiency in all replications in Grabouw.  

However, in Kluitjieskraal, L1 had marginally deficient concentrations of P while S4 had 

borderline adequate levels.  According to Boardman et al., (1997), there was a marginal N 

deficiency in all the Grabouw sites except L4 which had adequate concentrations of N.  

Both replications at Kluitjieskraal had adequate nitrogen levels.  If however one uses the 

1.5% critical level according to Will (1985), all the replications did not have N at the 

sufficiency level. 

 

Table 4.1 b below shows the nutrient ratios within the control plot of each replication 

before treatment. 
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Table 4.1 b: Foliar nutrient ratios relative to nitrogen of 13 to 17 year old P. radiata trees in control plots of each replication before 
fertilizer application in 2008. 

 

Rep P/N 
% 

K/N 
% 

Ca/N 
% 

Mg/N 
% 

Mn/N 
% 

Fe/N 
% 

Cu/N 
% 

Zn/N 
% 

B/N 
% 

S1 5 57 33 11 0.47 1.23 0.03 0.14 0.29 

S2 7 41 33 13 0.56 0.97 0.03 0.13 0.20 

S3 8 51 27 12 0.95 1.21 0.03 0.15 0.35 

S4 11 65 25 13 1.62 7.68 0.04 0.19 0.21 

L1 7 57 13 11 6.06 10.28 0.04 0.12 0.17 

L2 5 54 31 13 1.21 0.80 0.02 0.12 0.30 

L3 
  No data      

L4 5 33 25 16 2.74 0.68 0.03 0.07 0.23 

NORMS4 10 35 2.5 4 0.05 0.2 0.03 0.05 0.05 
1No shading = Optimum; 2Dark shaded = below optimum level; 3 Bolded = above optimum 
4Norms according to Linder, 1995 

 

Nutrient ratio analysis (Table 4.1b) of the replications before treatment revealed that the ratios for K, Ca, Mg, Mn, Fe, Zn and B relative to 

nitrogen were above the optimum ratios except for Cu in L2 and K in L4.  The P/N ratio was below the optimum for all the replications 

except in S4 where it was above the optimum level. 

The nutrient concentrations one year after fertilization are shown in Table 4.2a.  
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Table 4.2a:  Foliar nutrient concentrations of 14 to 18 year old P. radiata trees in 
treatment plots of each replication taken one year after mid- rotation fertilizer 
application in 2009. Highlighted values are below the critical levels. 

 

 N P K Ca Mg Mn Fe Cu Zn B 

  
  %     mg kg-1   

S 1
 G

r-J
27

 

Optimum1 >1.52 0.14 0.5 0.08 0.1 25 70 14 2.4 17 

N0P0 1.3 0.05 0.57 0.22 0.06 61 144 16 3 25 

N0P1 1.23 0.08 0.76 0.36 0.05 91 139 23 3 27 

N0P2 1 0.11 0.61 0.33 0.08 73 103 20 3 20 

N1P0 1.66 0.04 0.63 0.16 0.07 54 89 15 3 25 

N1P1 1.2 0.1 0.78 0.26 0.04 51 102 15 3 25 

N1P2 1.14 0.1 0.62 0.32 0.1 60 92 15 3 24 

N2P0 1.66 0.03 0.4 0.15 0.02 43 98 21 3 18 

N2P1 1.29 0.08 0.48 0.24 0.12 45 114 16 4 28 

N2P2 1.57 0.12 0.62 0.37 0.07 127 111 17 3 29 

S 2
 G

r-D
12

 

N0P0 1.04 0.07 0.28 0.42 0.09 99 94 19 2 22 

N0P1 1.07 0.13 0.45 0.42 0.1 94 92 27 3 21 

N0P2 1.18 0.11 0.51 0.44 0.07 100 79 20 6 21 

N1P0 1.27 0.09 0.51 0.36 0.07 116 72 27 4 18 

N1P1 1.22 0.12 0.43 0.37 0.08 157 67 26 3 24 

N1P2 1.3 0.16 0.39 0.44 0.11 105 85 25 3 21 

N2P0 1.52 0.11 0.42 0.35 0.05 96 96 19 5 18 

N2P1 1.47 0.12 0.38 0.42 0.08 95 87 20 3 19 

N2P2 1.44 0.14 0.34 0.38 0.09 110 94 22 4 26 

S 3
 G

r-E
14

: 

N0P0 1.2 0.1 0.53 0.21 0.03 105 92 18 3 27 

N0P1 1.16 0.15 0.47 0.28 0.05 96 99 18 3 20 

N0P2 1.22 0.2 0.47 0.3 0.07 147 89 21 7 24 

N1P0 1.43 0.14 0.62 0.31 0.11 110 78 19 3 26 

N1P1 1.35 0.14 0.52 0.35 0.1 109 72 19 3 19 

N1P2 1.36 0.17 0.61 0.33 0.06 104 82 18 5 18 

N2P0 1.61 0.11 0.44 0.23 0.05 85 95 19 5 19 

N2P1 1.36 0.11 0.48 0.38 0.02 179 79 23 3 21 

N2P2 1.46 0.12 0.42 0.33 0.08 116 79 28 4 16 
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Table 4.2a continued 
 

 N P K Ca Mg Mn Fe Cu Zn B 

 

   %     mg kg-1   

S 4
: K

k-
B7

 

Optimum >1.52 0.14 0.5 0.08 0.1 25 70 2.4 14 17 

N0P0 1.39 0.13 0.82 0.36 0.13 212 153 4 18 25 

N0P1 1.34 0.12 0.62 0.27 0.09 209 149 4 22 23 

N0P2 1.21 0.11 0.8 0.48 0.16 231 208 3 17 31 

N1P0 1.72 0.15 0.67 0.62 0.29 448 128 4 25 38 

N1P1 1.6 0.13 0.75 0.35 0.14 269 125 4 18 20 

N1P2 1.28 0.11 0.53 0.5 0.14 275 226 3 16 19 

N2P0 2.01 0.12 0.76 0.42 0.16 250 112 5 25 24 

N2P1 1.93 0.12 0.62 0.39 0.17 273 133 5 25 21 

N2P2 1.77 0.12 0.66 0.23 0.09 113 142 4 19 28 

L 1
:  

Kk
-B

39
 

N0P0 1.97 0.08 0.53 0.06 0.08 195 183 5 15 24 

N0P1 1.72 0.1 0.69 0.13 0.02 607 153 5 28 23 

N0P2 1.44 0.1 0.57 0.13 0.1 505 193 5 37 36 

N1P0 1.53 0.07 0.51 0.12 0.06 283 107 4 18 20 

N1P1 1.57 0.11 0.56 0.15 0.1 346 158 5 18 23 

N1P2 1.87 0.12 0.5 0.3 0.13 552 165 5 28 18 

N2P0 2.2 0.1 0.55 0.13 0.03 461 135 5 26 29 

N2P1 1.91 0.11 0.48 0.17 0.08 229 233 4 19 26 

N2P2 1.87 0.1 0.5 0.1 0.05 377 131 4 17 22 

L 2
:  

Gr
-M

13
a 

N0P0 0.94 0.05 0.42 0.29 0.07 100 102 2 22 24 

N0P1 1.03 0.08 0.52 0.32 0.15 212 109 3 38 30 

N0P2 0.89 0.07 0.5 0.35 0.11 169 75 3 30 30 

N1P0 1.48 0.05 0.51 0.34 0.1 97 105 3 30 28 

N1P1 1.15 0.08 0.46 0.24 0.09 83 76 3 22 26 

N1P2 1 0.1 0.48 0.4 0.09 113 96 2 30 26 

N2P0 1.69 0.05 0.47 0.18 0.05 70 97 3 24 22 

N2P1 1.51 0.08 0.48 0.3 0.04 118 115 3 22 37 

N2P2 1.4 0.1 0.53 0.37 0.11 112 111 6 31 26 

L 4
:  

Gr
-G

36
 

N0P0 1.49 0.08 0.3 0.41 0.21 390 80 3 14 32 

N0P1 1.22 0.09 0.18 0.33 0.18 403 74 4 19 29 

N0P2 1.29 0.06 0.2 0.47 0.15 385 84 4 15 27 

N1P0 1.64 0.07 0.3 0.28 0.12 266 70 4 15 20 

N1P1 1.58 0.09 0.4 0.42 0.13 221 108 4 13 19 

N1P2 1.41 0.09 0.48 0.33 0.1 222 84 3 16 29 

N2P0 1.53 0.09 0.36 0.46 0.15 371 86 4 16 28 

N2P1 1.7 0.1 0.23 0.4 0.19 598 63 4 15 31 

N2P2 1.57 0.18 0.94 1.33 0.32 217 102 6 82 36 
1 Norms according to Boardman et al., 1997 
2Optimum for N according to Will, 1985
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Nitrogen concentration in Table 4.2a was found to be generally below the critical level of 

1.5% according to Will (1985) for all treatments except in S1 (N1P0; N2P0; N2P2), S2 (N2P0), 

S3 (N0P1), S3 (N2P0), S4 (N1P0; N1P1 ; N2P0; N2P1 ; N2P2 ), L1 (all were above the critical 

except N0P2), L2 (N2P0; N2P1) and L4 (N1P0; N1P1 ; N2P0; N2P1 ; N2P2).  Phosphorus 

concentration was below the critical levels for most of the treatments in all replications 

except S2 (N1P2; N2P2), S3 (N0P1; N0P2; N1P0; N1P1; N1P2) and S4 (N1P0).  Potassium levels 

were above the critical for all treatments in S4 and for all treatments in L1 except N2P1.  The 

nutrient concentration for Ca was above the critical for all treatments in all replications 

except in L1 (N0P0).  Magnesium concentration was generally below the critical level 

except in S4 and L4.  Nutrient concentrations for all the micronutrients measured were 

above the critical levels for all treatments in all replications except for isolated cases such 

as for Fe in S2 (N1P1) and Cu (N0P0), Zn, L4 (N1P1) and B in S3 (N2P2).   

 

A complete ANOVA (Appendix 4.3l) was conducted for N and P to determine if the 

treatments had any statistically significant effect on foliar nutrient concentration.  The p 

values revealed that the treatments had a statistically significant effect on N (p<0.001) and 

P (p=0.059).  There was no significant interaction between N and P (p=0.990).  Table 4.2b 

and 4.2c show the effect of N and P fertilizer on foliar N and P respectively one year after 

applying the fertilizer treatments.   
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Table 4.2b:   Effect of N and P fertilizer on foliar N levels one year after applying the 
treatments to mid-rotation P. radiata trees.  Different letters indicate 
significant differences between the means at the 10% level of significance 
(upper case for P fertilizer quantity means and lower case for N fertilizer 
quantity means). 

 
 Kg P ha-1 

Kg N ha-1 0 50 100 Means 

0 1.33 1.25 1.18 1.25 c 

100 1.53 1.38 1.34 1.42 b 

200 1.75 1.60 1.58 1.64 a 

Means 1.54 A 1.41 B 1.37 B 1.44 

 
 
 
Table 4.2c:   Effect of N and P fertilizer on foliar P levels one year after applying the 

treatments to mid-rotation P. radiata trees.  Different letters indicate 
significant differences between the means at the 10% level of significance 
(upper case for P fertilizer quantity means and lower case for N fertilizer 
quantity means). 

 
 Kg P ha-1 

Kg N ha-1 0 50 100 Means 

0 0.08 0.12 0.11 0.11 a 

100 0.09 0.11 0.12 0.11 a 

200 0.09 0.10 0.13 0.11 a 

Means 0.09 A 0.11 B 0.12 B 0.11 
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The foliar N was increased by increasing quantities of N fertilizer.  However, the 

application of P fertilizer had a negative effect on foliar N levels and resulted in a decrease 

in foliar N when either 50 or 100 kg P ha-1  was applied (Table 4.2b). 

Foliar P concentration was only affected by P fertilizer.  Foliar P concentration increased 

significantly from 0.09 to 0.11 when 50 kg P ha-1  was applied.  Although an increase in P 

fertilizer to 100 kg P ha-1   increased foliar P further to 0.12 this was not statistically 

different from P50 level.  Even the highest application of P did not raise the foliar P 

concentration above the 0.14 critical limit (Table 4.2c). 

 

A complete ANOVA was also conducted for K, Ca, Mg, Mn, Fe, Cu, Zn and B to determine 

if the treatments had any statistically significant effect on foliar nutrient concentration.  The 

p values revealed that the treatments had no statistically significant effect on all these 

elements and there was no significant interaction between N and P (Data not presented). 

 

The P/N ratio was generally below the optimum level for all treatments in all replications 

one year after fertilizer application (Table 4.3). The following ratios were above the 

optimum for all treatments in all replications: Ca/N, Mn/N, Fe/N Zn/N and B/N.  Because 

fertilizer N and P affected foliar N, it had an indirect effect on the element: N as well. 
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Table 4.3:  Foliar nutrient ratios of 14 to 18 year old P. radiata trees in treatment plots of 
each replication taken a year after mid-rotation fertilizer application in 2009.  
Highlighted values are below the critical level. 

 
Rep 

 P/N K/N Ca/N Mg/N Mn/N Fe/N Cu/N Zn/N B/N 
 

     %     
 1Optimum 10 35 2.5 4 0.05 0.2 0.03 0.05 0.05 

S1  
Gr-J27 

N0P0 4 44 17 5 0.47 1.11 0.02 0.12 0.19 

 N0P1 7 62 29 4 0.74 1.13 0.02 0.19 0.22 
 N0P2 11 61 33 8 0.73 1.03 0.03 0.20 0.20 
 N1P0 2 38 10 4 0.33 0.54 0.02 0.09 0.15 
 N1P1 8 65 22 3 0.43 0.85 0.03 0.13 0.21 
 N1P2 9 54 28 9 0.53 0.81 0.03 0.13 0.21 
 N2P0 2 24 9 1 0.26 0.59 0.02 0.13 0.11 
 N2P1 6 37 19 9 0.35 0.88 0.03 0.12 0.22 
 N2P2 8 39 24 4 0.81 0.71 0.02 0.11 0.18 

S2 
Gr-D12 

N0P0 7 27 40 9 0.95 0.90 0.02 0.18 0.21 

 N0P1 12 42 39 9 0.88 0.86 0.03 0.25 0.20 
 N0P2 9 43 37 6 0.85 0.67 0.05 0.17 0.18 
 N1P0 7 40 28 6 0.91 0.57 0.03 0.21 0.14 
 N1P1 10 35 30 7 1.29 0.55 0.02 0.21 0.20 
 N1P2 12 30 34 8 0.81 0.65 0.02 0.19 0.16 
 N2P0 7 28 23 3 0.63 0.63 0.03 0.13 0.12 
 N2P1 8 26 29 5 0.65 0.59 0.02 0.14 0.13 
 N2P2 10 24 26 6 0.76 0.65 0.03 0.15 0.18 

S3  
Gr-E14 

N0P0 8 44 18 3 0.88 0.77 0.03 0.15 0.23 

 N0P1 13 41 24 4 0.83 0.85 0.03 0.16 0.17 
 N0P2 16 39 25 6 1.20 0.73 0.06 0.17 0.20 
 N1P0 10 43 22 8 0.77 0.55 0.02 0.13 0.18 
 N1P1 10 39 26 7 0.81 0.53 0.02 0.14 0.14 
 N1P2 13 45 24 4 0.76 0.60 0.04 0.13 0.13 
 N2P0 7 27 14 3 0.53 0.59 0.03 0.12 0.12 
 N2P1 8 35 28 1 1.32 0.58 0.02 0.17 0.15 
 N2P2 8 29 23 5 0.79 0.54 0.03 0.19 0.11 

S4  
Kk-B7 

N0P0 9 59 26 9 1.53 1.10 0.03 0.13 0.18 

 N0P1 9 46 20 7 1.56 1.11 0.03 0.16 0.17 
 N0P2 9 66 40 13 1.91 1.72 0.02 0.14 0.26 
 N1P0 9 39 36 17 2.60 0.74 0.02 0.15 0.22 
 N1P1 8 47 22 9 1.68 0.78 0.03 0.11 0.13 
 N1P2 9 41 39 11 2.15 1.77 0.02 0.13 0.15 
 N2P0 6 38 21 8 1.24 0.56 0.02 0.12 0.12 
 N2P1 6 32 20 9 1.41 0.69 0.03 0.13 0.11 
 N2P2 7 37 13 5 0.64 0.80 0.02 0.11 0.16 
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Table 4.3 continued 
 

Rep 
 P/N K/N Ca/N Mg/N Mn/N Fe/N Cu/N Zn/N B/N 

 
     %     

 Optimum 10 35 2.5 4 0.05 0.2 0.03 0.05 0.05 
L1 Kk-

B39 N0P0 4 27 3 4 0.99 0.93 0.03 0.08 0.12 

 N0P1 6 40 8 1 3.53 0.89 0.03 0.16 0.13 
 N0P2 7 40 9 7 3.51 1.34 0.03 0.26 0.25 
 N1P0 5 33 8 4 1.85 0.70 0.03 0.12 0.13 
 N1P1 7 36 10 6 2.20 1.01 0.03 0.11 0.15 
 N1P2 6 27 16 7 2.95 0.88 0.03 0.15 0.10 
 N2P0 5 25 6 1 2.10 0.61 0.02 0.12 0.13 
 N2P1 6 25 9 4 1.20 1.22 0.02 0.10 0.14 
 N2P2 5 27 5 3 2.02 0.70 0.02 0.09 0.12 

L2 Gr 
M13a N0P0 5 45 31 7 1.06 1.09 0.02 0.23 0.26 

 N0P1 8 50 31 15 2.06 1.06 0.03 0.37 0.29 
 N0P2 8 56 39 12 1.90 0.84 0.03 0.34 0.34 
 N1P0 3 34 23 7 0.66 0.71 0.02 0.20 0.19 
 N1P1 7 40 21 8 0.72 0.66 0.03 0.19 0.23 
 N1P2 10 48 40 9 1.13 0.96 0.02 0.30 0.26 
 N2P0 3 28 11 3 0.41 0.57 0.02 0.14 0.13 
 N2P1 5 32 20 3 0.78 0.76 0.02 0.15 0.25 
 N2P2 7 38 26 8 0.80 0.79 0.04 0.22 0.19 

L4 Gr-
G36 

N0P0 5 20 28 14 2.62 0.54 0.02 0.09 0.21 

 N0P1 7 15 27 15 3.30 0.61 0.03 0.16 0.24 
 N0P2 5 16 36 12 2.98 0.65 0.03 0.12 0.21 
 N1P0 4 18 17 7 1.62 0.43 0.02 0.09 0.12 
 N1P1 6 25 27 8 1.40 0.68 0.03 0.08 0.12 
 N1P2 6 34 23 7 1.57 0.60 0.02 0.11 0.21 
 N2P0 6 24 30 10 2.42 0.56 0.03 0.10 0.18 
 N2P1 6 14 24 11 3.52 0.37 0.02 0.09 0.18 
 N2P2 11 60 85 20 1.38 0.65 0.04 0.52 0.23 

1Norms according to Linder, 1995 

 

The changes in nutrient concentration for the different treatments a year after treatment 

are presented in Table 4.4.  When P is added the foliar N concentration decreases across 

all levels of N and when no N is applied.   The application of N had no significant effect on 

foliar P levels and in absolute terms, except for the N200P50 treatment, the P foliar levels 

increased very slightly with an increase in N quantity across all levels of P fertilizer.  Both 
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N and P application did not have a significant effect on the foliar concentration for all the 

other elements. 
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Table 4.4:  Change in foliar nutrient concentration of each element relative to control plots of each replication after fertilizer application 
in 2009. 

 
Rep Treatment N P K Ca Mg Mn Fe Cu Zn B 

 
 %     mg/kg     

S1 Gr-J27 N0P1 -0.07 0.03 0.19 0.14 -0.01 30 -5 0 7 2 

 N0P2 -0.3 0.06 0.04 0.11 0.02 12 -41 0 4 -5 

 N1P0 0.36 -0.01 0.06 -0.06 0.01 -7 -55 0 -1 0 

 N1P1 -0.1 0.05 0.21 0.04 -0.02 -10 -42 0 -1 0 
 N1P2 -0.16 0.05 0.05 0.1 0.04 -1 -52 0 -1 -1 

 N2P0 0.36 -0.02 -0.17 -0.07 -0.04 -18 -46 0 5 -7 

 N2P1 -0.01 0.03 -0.09 0.02 0.06 -16 -30 1 0 3 

 N2P2 0.27 0.07 0.05 0.15 0.01 66 -33 0 1 4 

S2 Gr-D12 N0P1 0.03 0.06 0.17 0 0.01 -5 -2 1 8 -1 
 N0P2 0.14 0.04 0.23 0.02 -0.02 1 -15 4 1 -1 

 N1P0 0.23 0.02 0.23 -0.06 -0.02 17 -22 2 8 -4 

 N1P1 0.18 0.05 0.15 -0.05 -0.01 58 -27 1 7 2 

 N1P2 0.26 0.09 0.11 0.02 0.02 6 -9 1 6 -1 
 N2P0 0.48 0.04 0.14 -0.07 -0.04 -3 2 3 0 -4 

 N2P1 0.43 0.05 0.1 0 -0.01 -4 -7 1 1 -3 

 N2P2 0.4 0.07 0.06 -0.04 0 11 0 2 3 4 
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Table 4.4 continued 
Rep Treatment N P K Ca Mg Mn Fe Cu Zn B 

 
 %     mg/kg     

 
 

S3 Gr-E14: 

 
 

N0P1 

 
 

-0.04 

 
 

0.05 

 
 

-0.06 

 
 

0.07 

 
 

0.02 

 
 

-9 

 
 
7 

 
 
0 

 
 
0 

 
 

-7 
 N0P2 0.02 0.1 -0.06 0.09 0.04 42 -3 4 3 -3 

 N1P0 0.23 0.04 0.09 0.1 0.08 5 -14 0 1 -1 
 N1P1 0.15 0.04 -0.01 0.14 0.07 4 -20 0 1 -8 

 N1P2 0.16 0.07 0.08 0.12 0.03 -1 -10 2 0 -9 

 N2P0 0.41 0.01 -0.09 0.02 0.02 -20 3 2 1 -8 

 N2P1 0.16 0.01 -0.05 0.17 -0.01 74 -13 0 5 -6 
 N2P2 0.26 0.02 -0.11 0.12 0.05 11 -13 1 10 -11 

S4:  Kk-B7 N0P1 -0.05 -0.01 -0.2 -0.09 -0.04 -3 -4 0 4 -2 

 N0P2 -0.18 -0.02 -0.02 0.12 0.03 19 55 -1 -1 6 

 N1P0 0.33 0.02 -0.15 0.26 0.16 236 -25 0 7 13 

 N1P1 0.21 0 -0.07 -0.01 0.01 57 -28 0 0 -5 
 N1P2 -0.11 -0.02 -0.29 0.14 0.01 63 73 -1 -2 -6 

 N2P0 0.62 -0.01 -0.06 0.06 0.03 38 -41 1 7 -1 

 N2P1 0.54 -0.01 -0.2 0.03 0.04 61 -20 1 7 -4 

 N2P2 0.38 -0.01 -0.16 -0.13 -0.04 -99 -11 0 1 3 
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Table 4.4 continued 
Rep Treatment N P K Ca Mg Mn Fe Cu Zn B 

 
 %     mg/kg     

L1:  Kk-B39 N0P1 -0.25 0.02 0.16 0.07 -0.06 412 -30 0 13 -1 

 N0P2 -0.53 0.02 0.04 0.07 0.02 310 10 0 22 12 

 N1P0 -0.44 -0.01 -0.02 0.06 -0.02 88 -76 -1 3 -4 

 N1P1 -0.4 0.03 0.03 0.09 0.02 151 -25 0 3 -1 
 N1P2 -0.1 0.04 -0.03 0.24 0.05 357 -18 0 13 -6 

 N2P0 0.23 0.02 0.02 0.07 -0.05 266 -48 0 11 5 

 N2P1 -0.06 0.03 -0.05 0.11 0 34 50 -1 4 2 

 N2P2 -0.1 0.02 -0.03 0.04 -0.03 182 -52 -1 2 -2 

 
 

L2:  Gr-M13a 

 
 

N0P1 

 
 

0.09 

 
 

0.03 

 
 

0.1 

 
 

0.03 

 
 

0.08 

 
 

112 

 
 
7 

 
 
1 

 
 

16 

 
6 

 N0P2 -0.05 0.02 0.08 0.06 0.04 69 -27 1 8 6 

 N1P0 0.54 0 0.09 0.05 0.03 -3 3 1 8 4 

 N1P1 0.21 0.03 0.04 -0.05 0.02 -17 -26 1 0 2 
 N1P2 0.06 0.05 0.06 0.11 0.02 13 -6 0 8 2 

 N2P0 0.75 0 0.05 -0.11 -0.02 -30 -5 1 2 -2 

 N2P1 0.57 0.03 0.06 0.01 -0.03 18 13 1 0 13 

 N2P2 0.46 0.05 0.11 0.08 0.04 12 9 4 9 2 

L4:  Gr-G36 N0P1 -0.27 0.01 -0.12 -0.08 -0.03 13 -6 1 5 -3 
 N0P2 -0.2 -0.02 -0.1 0.06 -0.06 -5 4 1 1 -5 

 N1P0 0.15 -0.01 0 -0.13 -0.09 -124 -10 1 1 -12 

 N1P1 0.09 0.01 0.1 0.01 -0.08 -169 28 1 -1 -13 

 N1P2 -0.08 0.01 0.18 -0.08 -0.11 -168 4 0 2 -3 
 N2P0 0.04 0.01 0.06 0.05 -0.06 -19 6 1 2 -4 

 N2P1 0.21 0.02 -0.07 -0.01 -0.02 208 -17 1 1 -1 

 N2P2 0.08 0.1 0.64 0.92 0.11 -173 22 3 68 4 
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4.1.2 Vector Analysis 
 
 
Vector analysis (Timmer and Stone, 1978) was also used to determine the responses to 

the treatments one year after fertilization.  Interpretation of the vectors is based on the 

magnitude and direction of each vector.  These aspects depend on the changes in nutrient 

concentration, content and unit dry weight as shown in Figure 4.1 (Haase & Rose, 1995).  

The weight of 300 needles was used as the unit dry weight for this study.

 

 

Figure 4.1:  Interpretation of shifts in dry weight, nutrient concentration and nutrient 

content (figure and table from Haase & Rose, 1995. Forest Science: Vol 41. 

No. 1: 54 – 66). 

 

Shifts to the right or left of the diagonal represent increases or decreases respectively, 

shifts along a diagonal line indicate no change in dry weight.  Shifts along the horizontal 
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and Stone, 1978) was also used to determine the responses to 

the treatments one year after fertilization.  Interpretation of the vectors is based on the 

magnitude and direction of each vector.  These aspects depend on the changes in nutrient 

, content and unit dry weight as shown in Figure 4.1 (Haase & Rose, 1995).  

The weight of 300 needles was used as the unit dry weight for this study.
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gure and table from Haase & Rose, 1995. Forest Science: Vol 41. 

 

Shifts to the right or left of the diagonal represent increases or decreases respectively, 

shifts along a diagonal line indicate no change in dry weight.  Shifts along the horizontal 

and Stone, 1978) was also used to determine the responses to 

the treatments one year after fertilization.  Interpretation of the vectors is based on the 

magnitude and direction of each vector.  These aspects depend on the changes in nutrient 

, content and unit dry weight as shown in Figure 4.1 (Haase & Rose, 1995).  

The weight of 300 needles was used as the unit dry weight for this study. 

Interpretation of shifts in dry weight, nutrient concentration and nutrient 

gure and table from Haase & Rose, 1995. Forest Science: Vol 41. 

Shifts to the right or left of the diagonal represent increases or decreases respectively, 

shifts along a diagonal line indicate no change in dry weight.  Shifts along the horizontal 
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indicate no change in nutrient concentration but shifts along the vertical represent a 

change in concentration.  Shifts along the vertical indicate no change in content but shifts 

along the horizontal indicate a change in content.  Table 4.5 constructed according to the 

description under 3.4.2 shows a summary of the vectors for all the elements investigated.  

The response of each element to the application of the treatment that yielded the largest 

volume growth response for the site is presented in Table 4.5.   
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Table 4.5:  Vector analysis results one year after fertilizer application (2009) with largest (most important) vectors in shaded cells. The treatment with largest 
growth response (for which all vectors on that specific replication are shown) is indicated in the first column. For each nutrient element in turn, the 
relative size of the vector (negligible, small, medium or large), as well as its components (using coding from Figure 4.1, i.e. + or - for nutrient mass, 
concentration and content), a vector shift symbol and a possible diagnosis is given. 

 
Replication &  
Compartment 
(Best treatment) 

Vector 
description 

N P K Ca Mg Mn Fe Cu Zn B 

S1:  Gr-J27 
(N200P100) 

Relative size Small  Large  Small  Medium  Small  Medium   Negligible  Small   Small   Small   
Code (shift) +++   (C) +++   (C) +++   (C) +++   (C) +++   (C) +++   (C) - - -   (F) +0+   (B) +0+   (B) +++   (C) 
Interpretation Deficiency Deficiency Deficiency Deficiency Deficiency Deficiency Excess Sufficiency Sufficiency Deficiency 
Diagnosis Limiting Limiting Limiting  Limiting  Limiting  Limiting Non limiting Non limiting Non limiting Limiting 

S2:  Gr-D12 
(N200P0) 

Relative size Large  Large  Large  Medium  Small  Medium  Medium   Large  Medium   Medium  
Code (shift) +++   (C) +++   (C) +++   (C) +-+    (A) +-+   (A) +-+   (A) +0+   (B) +++   (C) +0+   (B) +-+   (A) 
Interpretation Deficiency Deficiency Deficiency Dilution Dilution Dilution Sufficiency Deficiency Sufficiency Dilution 
Diagnosis Limiting  Limiting  Limiting  Non limiting Non limiting Non limiting Non limiting Limiting Non limiting Non limiting 

S3:  Gr- E14 
(N200P0) 

Relative size Small  Small   Small   Small  Medium   Small   Small   Medium  Small   Negligible    
Code (shift) +++   (C) +++   (C) +-+   (A) +++   (C) +++   (C) + - +   (A) +++   (C) +++   (C) +++   (C) - - -    (F) 
Interpretation Deficiency Deficiency Dilution Deficiency Deficiency Dilution Deficiency Deficiency Deficiency Excess 
Diagnosis Limiting  Limiting  Non limiting Limiting  Limiting  Non-Limiting  Limiting Limiting Limiting Non limiting 

S4:  Kk-B7 
(N200P50) 

Relative size Small  Negligible   Negligible   Negligible   Small   Small   Negligible    Small   Small   Small   
Code (shift) -++    (E) ---   (F) +-+   (A) ---   (F) -++   (E) -++   (E) ---   (F) -++   (E) -++   (E) -++   (E) 
Interpretation Excess  Excess  Dilution Excess  Excess  Excess  Excess  Excess  Excess  Excess  
Diagnosis Non limiting Non limiting Non limiting Non limiting Non limiting Non limiting Non limiting Non limiting Non limiting Non limiting 

L1:  Kk-B39 
(N100P50) 

Relative size Small  Medium  Small  Large Small  Medium  Small  Small  Small  Small  
Code (shift) +-+   (A) +++   (C) +++   (C) +++   (C) +0+   (B) +++   (C) +++   (C) +-+   (A) +++   (C) +++   (C) 
Interpretation Dilution Deficiency Deficiency Deficiency Sufficiency Deficiency Deficiency Dilution Deficiency Deficiency 
Diagnosis Non limiting Limiting Limiting  Limiting  Non limiting Limiting  Limiting  Non limiting Limiting  Limiting  

L2:  Gr-M13a 
(N200P100) 

Relative size Small  Small    Small  Small  Small  Small  Small  Medium   Small  Small  
Code (shift) -++   (E) +++   (C) +++   (C) +++   (C) +++   (C) +++   (C) +-+   (A) +0+   (B) +++   (C) +++   (C) 
Interpretation Excess  Deficiency Deficiency Deficiency Deficiency Deficiency Dilution Sufficiency Deficiency Deficiency 
Diagnosis Non limiting Limiting  Limiting  Limiting  Limiting  Limiting  Non limiting Non limiting Limiting Limiting 

L3:  Jh-M42  N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
L4:  Gr-G36 
(N200P50) 

Relative size Small  Small  Small   Small   Small   Medium  Small  Small  Small  Small  
Code (shift) +++   (C) +++   (C) +-+   (A) +-+   (A) +-+   (A) +++   (C) +-+   (A) +++   (C) +0+   (B) +-+   (A) 
Interpretation Deficiency Deficiency Dilution Dilution Dilution Deficiency Dilution Deficiency sufficiency Dilution 
Diagnosis Limiting Limiting Non limiting Non limiting Non limiting Limiting Non limiting Limiting Non limiting Non limiting 
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The plus, minus or zero in Table 4.5 indicate the shifts in direction.  A vector description is 

provided in which the terms, deficiency, excess, sufficiency and dilution refer to the 

nutrient concentration status of the element before fertilizer application.  The terms limiting 

and non - limiting indicate whether the initial nutrient concentration before fertilizer 

application could have limited growth or not.  Seeing that the size of a particular vector is 

an indication of the degree of, e.g. limitation or excess, only the cells with relatively large 

vectors have been shaded in Table 4.5.  Vector nomograms with largest (most important) 

vectors per compartment are presented in Appendix 4.1.  Grabouw S2  had four of the ten 

elements investigated classified as large responses. 

 

Nitrogen was found to be deficient in all compartments used except in replications S4, L1 

and L2 and was most likely limiting growth.  Phosphorus was deficient in all sites except in 

replication S4.  It appears that fertilization with N and P allowed stands to also take up 

substantially more Cu in S2 and Ca in L1, thereby alleviating pronounced growth limitations 

posed by low levels of these nutrients.  Other than the cases mentioned above, other 

elements were generally present in foliage in adequate concentrations.  A growth 

response is likely to be observed in those compartments indicated as limiting, if the 

elements indicated as deficient are applied. Alternatively, application of one or more 

limiting nutrient(s) may improve growth to a point where uptake of an additional limiting 

nutrient (not present in the fertilizer treatment) is also improved, as shown above.  

Replications on sites with fast growth rates in the unfertilized state (S4 and L4) generally 

had smaller vectors, indicating that fewer acute deficiencies exist there, however these 

replications still responded strongly to fertilisation as demonstrated in the following 

sections.  

Vector analysis was also conducted on the average response observed across all the 

replications and the results are shown in Figure 4.2 - 4.3 compared to the post fertilization 
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control treatment (N0P0).  The data that was used for this is presented in Appendix 4.2 (a) 

– (b).  

 

 
 

Figure 4.2: Relative response of foliar N, P, K, Ca and Mg nutrient levels for all the 

treatments compared to the control treatment from a mid-rotation fertilizer 

trial to illustrate vector analysis. 

 

 

The vector analysis shows that of the macro nutrients, P was the main limiting nutrient as 

compared to the others as the major vectors were associated with P, indicating that 

addition of P corrected a deficiency. 
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Figure 4.3: Relative response of foliar Mn, Fe, Cu, Zn and B nutrient levels for all the 

treatments compared to the control treatment from a mid-rotation fertilizer 

trial to illustrate vector analysis. 

 

 

The vector analysis shows that of the micro nutrients, Zn was the main limiting nutrient as 

compared to the others as the major vectors were associated with Zn, indicating that 

treatment corrected a Zn deficiency. 

4.1.3 Comparison of vector analysis, critical values and nutrient ratios in the 
prediction of stands with nutrient deficiencies 

 
 
Table 4.6 presents a comparison of the three methods, vector analysis, critical levels and 

nutrient ratios in identifying nutrient deficiencies before the application of the fertilizer 

treatments.  This table is a summary of findings from Table 4.2a, 4.3 and 4.5.  The control 

plot of each replication one year after fertilizer application was used as the before 

fertilization status for the critical levels and nutrient ratios.  
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Table 4.6: Comparison of vector analysis, critical levels and nutrient ratios. Critical levels and nutrient ratio's were calculated from the 
unfertilized control. The set of vector analysis results are contrasts between the treatment with the largest growth response 
and the unfertilized control for each replication (see Table 4.5). Standard terminology for each method was adhered to. 

 
Replication & 
Compartment 

 
 N P K Ca Mg Mn Fe Cu Zn B 

S1:  Gr-J27 
 

Vector Analysis Deficient Deficient Deficient Deficient Deficient Deficient Excess Sufficient Sufficient Deficient 
Critical levels marginal Deficient Adequate Adequate 1B/l m & d Adequate Adequate Adequate Adequate Adequate 

Nutrient Ratios N/A Deficient Not deficient Not deficient Not deficient Not deficient Not deficient Deficient Not deficient Not deficient 

S2:  Gr-D12 
 

Vector Analysis Deficient Deficient Deficient Dilution Dilution Dilution Sufficient Deficient Sufficient Dilution 
Critical levels Deficient Deficient Deficient Adequate Marginal Adequate Adequate Deficient Adequate Adequate 

Nutrient Ratios N/A Deficient Deficient Not deficient Not deficient Not deficient Not deficient Not deficient Deficient Not deficient 

S3:  Gr- E14 
 

Vector Analysis Deficient Deficient Dilution Deficient Deficient Dilution Deficient Deficient Deficient Excess 
Critical levels Marginal 1B/l m & d Adequate Adequate Deficient Adequate Adequate Adequate Adequate Adequate 

Nutrient Ratios N/A Deficient Not deficient Not deficient Deficient Not deficient Not deficient Borderline Not deficient Not deficient 

S4:  Kk-B7 
 

Vector Analysis Excess Excess Dilution Excess Excess Excess Excess Excess Excess Excess 
Critical levels Marginal Marginal Adequate Adequate Adequate Adequate Adequate Adequate Adequate Adequate 

Nutrient Ratios N/A Deficient Not deficient Not deficient Not deficient Not deficient Not deficient Borderline Not deficient Not deficient 

L1:  Kk-B39 
 

Vector Analysis Dilution Deficient Deficient Deficient Sufficient Deficient Deficient Dilution Deficient Deficient 
Critical levels Marginal Deficient Adequate Marginal Marginal Adequate Adequate Adequate Adequate Adequate 

Nutrient Ratios N/A Deficient Deficient Not deficient Not deficient Not deficient Not deficient Not deficient Not deficient Not deficient 

L2:  Gr-M13a 
 

Vector Analysis Excess Deficient Deficient Deficient Deficient Deficient Dilution Sufficient Deficient Deficient 
Critical levels Deficient Deficient Marginal Adequate Marginal Adequate Adequate Deficient Adequate Adequate 

Nutrient Ratios N/A Deficient Not deficient Not deficient Not deficient Not deficient Not deficient Deficient Not deficient Not deficient 

L4:  Gr-G36 
. 

Vector Analysis Deficient Deficient Dilution Dilution Dilution Deficient Dilution Deficient Sufficient Dilution 
Critical levels Marginall Deficient Deficient Adequate Adequate Adequate Adequate Adequate Adequate Adequate 

Nutrient Ratios N/A Deficient Deficient Not deficient Not deficient Not deficient Not deficient Deficient Not deficient Not deficient 
 
1 =borderline between marginal and deficient 
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The three methods predicted the same result of P deficiency in all replications but differed 

in the prediction for P in S4.  They also predicted the same non deficiency result for all 

elements in S4 except for P where vector analysis predicted an excess as compared to 

marginal for critical levels and deficient for nutrient ratio.  The critical levels and nutrient 

ratio methods generally predicted the same outcome for all nutrients in all replications, 

except in a few cases where they differed for example; Cu in S1 and L4 and K in L1.  Vector 

analysis generally differed with the other two methods when it came to the deficiency of 

nutrients.  Where vector analysis predicted deficiency of a nutrient, in most cases the other 

two methods predicted no deficiency for the same nutrient; for example K, Ca, Mn, and B 

in S1 and Mn, Fe, Zn and B in L1.   

 

4.2 Leaf area index response to N, P and water availability class  
 
 
LAI at time of treatment implementation was used as a covariate for the analysis.  Where 

the covariate was found not to be statistically significant, it was excluded from the model to 

increase the power of the test.  The ANOVA outputs for the analyses done for LAI at 12 

months and at 24 months are presented in Appendix 4.3 (a) and (b).  There was no 

covariate used for the analysis for LAI at 12 months as it was not significant but the 

analysis for LAI at 24 months used the covariate.  There was no significant interaction 

between N and P (p=0.925), water and N (p=0.519) or water and P (p=0.696) when LAI 

increment data from all replications were pooled together at 12 months.  No significant 

interaction between N and P (p=0.322), water and N (p=0.829) or water and P (p=0.659) 

was detected at 24 months.  There was however a significant effect of N (p=0.020 and P 

(p=0.056) as single factors on LAI increment at 12 months (Figure 4.4 - 4.5).  The increase 

for N (up to 200 kg ha -1) was linear (Figure 4.4).  An LSD test showed that the highest 

level of N (N200) was significantly different from the control (p=0.003) but not significantly 
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different from N100 (Appendix 4.4(a).  Both P50 (p=0.011) and P100 (p=0.030) significantly 

increased LAI over that of the control although there was no statistically significant 

difference between the two (Appendix 4.4(b)).  Water availability class did not significantly 

influence LAI at 12 months (p=0.227). 
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Figure 4.4:   Leaf area index increment response to N at 12 months after treatment 

(vertical bars denote p = 0.90 confidence intervals)  
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Figure 4.5: Leaf area index increment response to P at 12 months after treatment 

(vertical bars denote p=0.90 confidence intervals)  

 

 

Figure 4.6 shows a photographic representation of treatment N200P100 and the control 

(N0P0) in replication S1.  
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Figure 4.6: A photograph taken in 2009 in a 16 year old stand showing the control N0P0 

(left) and N200P100 (right) in replication S1 (Sandy soils) as described in 

Chapter 3. 

 

 

There was a marked observable difference in the amount and density of foliage between 

these treatments with N200P100 having more and darker green foliage than the control.  

Figure 4.7 shows treatment N200P100, which is adjacent to treatment N200P0 in replication 

L2.   
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Figure 4.7: A photograph taken in 2009 in an 18 year old stand showing treatment 
N200P0 (foreground) and N200P100 (background) in replication L2 (Loam soils) 
as described in Chapter 3. 

 
 
The trees clearly have very sparse foliage in treatment N200P0 but dark and dense foliage 

for N200P100.  

 

There was no significant effect of N (p=0.131) but there was a significant effect of P 

(p=0.031) and water availability class (p=0.014) as single factors on LAI increment at 24 

months (Figure 4.8 - 4.9). 

 

 

The LSD analysis at 24 months revealed that both P50 (p=0.003) and P100 (p=0.001) were 

significantly different from the control but were not themselves statistically different from 

each other as shown in Appendix 4.4(c). 
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Figure 4.8: Leaf area index increment response to P at 24 months (vertical bars denote 

p=0.90 confidence intervals)  

 

Water availability had a significant effect on LAI increment at 24 months after treatment.  

The highest water availability class (class 4) increased with a significantly larger margin 

than class 2 and class 3 (Figure 4.9 and Appendix 4.4d). 
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Figure 4.9: Leaf area index increment response to water availability class at 24 months 

(vertical bars denote p=0.90 confidence intervals)  

 

A stepwise regression that was done with LAI increment at 24 months (when water 

availability class had a significant effect) as the dependent variable and N, P and water 

availability class as the predictor variables retained N and P as better predictors for LAI 

increment but dropped water availability class (Appendix 4.5).  This indicates that of the 

two, nutrient availability and water availability, nutrient availability may have had a greater 

impact on LAI.  This will be explored further in the discussion section.  Linear regression 

was done between initial LAI and the leaf area increment at 24 months (Appendix 4.11).  

There was a weak but negative linear relationship with r2= 0.07. 
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4.3 Basal area increment response to N, P and water availability class 
 
 
Initial basal area in 2008 was used as a covariate for this analysis.  Where the covariate 

was found not to be statistically significant, it was excluded from the model to increase the 

power of the test.  The covariate was not significant for the analysis of basal area 

increment response in year 1 to N, P and water availability class.  No covariate was used 

for total basal area increment analysis over the two years as it was also no significant. 

The ANOVA outputs for all the analysis done for basal area increment in year 1, year 2 

and total over the two year period are presented in Appendix 4.3 (c) - (e).  

 

There was no interaction between N and P (p=0.999), N and water availability class 

(p=0.993) and P and water availability class (p=1.000) in 2009. Both N (p=0.518) and P 

(p=0.951) did not have a significant effect on basal area increment in 2009 as single 

factors but water availability class had a significant effect (p=0.003).  Figure 4.10 shows 

the graph for the response of basal area increment in year 1 to water availability.  
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Figure 4.10: Basal area increment response to water availability class in year 1 (2009) 

(vertical bars denote p= 0.90 confidence intervals)  

 

An LSD test showed that water availability class 4 was significantly different from all the 

other classes (Appendix 4.4e).   

 

There was a significant effect due to N (p<0.001), P (p=0.061) and water availability class 

(p=0.044) as main effects in 2010.  No significant interaction was detected between N and 

P (p=0.762), N and water availability class (p=0.869) and P and water availability class 

(p=0.907) in 2010.  Figures 4.11 – 4.13 show the graphs for the significant effects of the 

main factors.  Both N100 (p=0.016) and N200 (p<0.001) were significantly different from the 

control although they were not significantly different from each other (Figure 4.11 and 

Appendix 4.4f).   
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Figure 4.11: Basal area increment response to N in 2010 (vertical bars denote p=0.90 

confidence intervals)  

 

The two levels of P, P50 (p=0.029) and P100 (p=0.043) were significantly different from the 

control but they were also not significantly different from each other (Figure 4.12 and 

Appendix 4.4g). 
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Figure 4.12: Basal area increment response to P in 2010 (vertical bars denote p=0.90 

confidence intervals)  

 

Water availability had a significant effect on basal area increment in year 2 after treatment, 

The highest water availability class (class 4) increased with a significantly larger margin 

than the other three classes (Figure 4.13 and Appendix 4.4h). 
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Figure 4.13: Basal area increment response to water availability class in year 2 (2010) 

(vertical bars denote p=0.90 confidence intervals)  

 

When total basal increment (2008-2010) was considered, no significant interaction was 

detected between N and P (p=0.967), N and water availability class (p=0.987) and P and 

water availability class (p=0.997).  Nitrogen (p=0.074) and water availability class 

(p<0.001) had a significant effect on total basal area increment but P was not significant 

(p=0.573).  Figures 4.14 - 4.15 show graphs for total basal area increment response to N 

and water availability class. 

 

The highest level, N200 (p=0.033) was significantly different from the control but N100 was 

not (Figure 4.14 and Appendix 4.4i). 
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Figure 4.14: Total basal area increment response to N over the two year period (2008 – 

2010) (vertical bars denote p=0.90 confidence intervals)  

 

Water availability class 4 had a significantly higher increment than all the other classes 

(Figure 4.15 and Appendix 4.4j).  The other three classes were however, not significantly 

different from each other. 
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Figure 4.15: Total basal area increment response to water availability class (2008-2010) 

(vertical bars denote p=0.90 confidence intervals)  

 

4.4 Analysis of volume growth response to N, P and water availability class  
 
 
Initial volume at the start of the study before fertilizer application in 2008 was used as a 

covariate for this analysis.  Where the covariate was found not to be statistically significant, 

it was excluded from the model to increase the power of the test.  The covariate was 

significant for volume increment analyses in year 2 and when total volume increment was 

considered.  No covariate was used for year 1 analysis as it was not significant. 

The ANOVA outputs for all the analyses done for volume increment in year 1, year 2 and 

total over the two year period are presented in Appendix 4.3(f)-(h).   

There was no interaction between N and P (p=0.992), N and water availability class 

(p=0.943) and P and water availability class (p=0.867) in 2009.  Nitrogen (p=0.185) and P 
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(p=0.901) did not have a significant effect on volume increment in 2009 as single factors 

but water availability class had a significant effect (p<0.001). 

Figure 4.16 and Appendix 4.4(k) show that water availability class 4 was significantly 

different from all the other classes (all p values<0.001) and had the greatest volume 

increment in 2009.  Class 2 was significantly different from class 1 (p<0.001) and class 3 

from class 2 (p=0.068).   
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Figure 4.16: Volume increment response to water availability class in year 1 (2009) 

(vertical bars denote p=0.90 confidence intervals)  

 

No significant interaction was detected between N and P (p=0.991), N and water 

availability class (p=0.977) and P and water availability class (p=0.968) in 2010. 
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There was however a significant effect due to both N (p=0.028), and water availability 

class (p<0.001) as main effects in 2010 (Figure 4.17-4.18) but P had no significant effect 

(p=0.142).  Figure 4.17 shows the linear increase up to 200 kg ha-1 for N in 2010.  The 

highest level of N, N200 had a significantly higher increment than the control (Appendix 

4.4.l).   
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Figure 4.17: Volume increment response to N in year 2 (2010) (vertical bars denote 

p=0.90 confidence intervals)  

 

Figure 4.18 and Appendix 4.4(m) show that only water availability class 4 was significantly 

different from all the other classes (all p values<0.001).  Classes 1, 2 and 3 were however, 

not significantly different from each other. 
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Figure 4.18: Volume increment response to water availability class in year 2 (2010) 

(vertical bars denote p=0.90 confidence intervals)  

 

No significant interaction was detected between N and P (p=0.998), N and water 

availability class (p=0.994) and P and water availability class (p=0.935) when total volume 

increment over the two year period was considered. 

There was however a significant effect due to both N (p=0.036), and water availability 

class (p<0.001) as main effects (Figure 4.19 - 4.20) but P had no significant effect 

(p=0.327). 

The highest level of N, N200 (p=0.059) was significantly different from the control but not 

significantly different from N100 (Appendix 4.4n). 
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Figure 4.19: Volume increment response to N over the two year period (2008-2010) 

(vertical bars denote p=0.90 confidence intervals)  

 

Table 4.7 below shows the significant N response as well as the trend if of a further 

increase in volume (although not significant at this stage) if P is applied.  The N fertilizer 

increased the mean as the quantity of fertilizer increased from 0 to 200 kg ha -1.   
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Table 4.7:   Mean volume increment per treatment over two year period (m3 ha -1) in a 
P.radiata mid-rotation fertilizer. Different letters indicate a significant 
difference between the N fertilizer means at the 10% level.  

 
 

Mean volume increment over two years(m3 ha -1) 

 Kg P ha-1 

Kg N ha-1 0 50 100 Means 

0 29.6 32.6 32.1 31.4b 

100 33.1 38.3 36.9 36.1a 

200 36.5 40.2 39.8 38.8a 

Means 33.1 37.0 36.3 35.5 

 
 

Water availability class 4 was significantly different from all the other classes (p<0.001 for 

all) and class 2 was also significantly different from class 1 (p=0.007) (Appendix 4.4o)  
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Figure 4.20: Volume increment response to water availability class over the two year 

period (2008-2010) (vertical bars denote p=0.90 confidence intervals)  

 

Water availability class 4 (the wettest) consistently had the highest increment which was 

significantly different from all the other classes in 2009, 2010 and when total volume 

increment from 2008-2010 was considered. 

 

4.5 Analysis of Growth efficiency response to N, P and water availability  
 
 
Initial volume in 2008 was used as a covariate for this analysis.  Where the covariate was 

found not to be statistically significant, it was excluded from the model to increase the 

power of the test.  The covariate was not significant for year 1 but was significant for year 

2 and over the two year period.  The ANOVA outputs for all the analyses done for growth 
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efficiency in year 1, year 2 and over the two year period are presented in Appendix 4.3 (i) 

– (k).   

 

There was no significant interaction detected between N and P (p=0.936), N and water 

availability class (p=0.908) and P and water availability class (p=0.559) in 2009. 

There was however a significant effect due to water availability class (p=<0.001) (Figure 

4.21).  Both N (p=0.733) and P (p=0.746) had no significant effect.  Water availability class 

4 had a significantly higher increment than all the other classes.  (Appendix 4.4p).  Class 2 

was also significantly different from class 1 (p=0.001).   
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Figure 4.21: Growth efficiency responses to water availability classes in 2009 with vertical 

bars denoting p=0.90 confidence intervals.  
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There was no significant interaction detected between N and P (p=0.964), N and water 

availability class (p=0.332) and P and water availability class (p=0.268) in 2010.  There 

was however a significant effect due to water availability class (p=<0.010) and N 

(p=0.057).  Phosphorous was not significant (p=0.142).  Class 4 had the highest growth 

efficiency which was significantly different from class 1 (p=0.003) and from class 2 

(p=0.007) but not significantly different from class 3 (Figure 4.22 and Appendix 4.4q). 
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Figure 4.22: Growth efficiency responses across different water availability classes in 

2010 with vertical bars denoting p=0.90 confidence intervals.  

 

No significant interaction was detected between N and P (p=0.974), N and water 

availability class (p=0.621) and P and water availability class (p=0.351) when total GE was 

considered.  Only water availability class had a significant effect on total growth efficiency 

(p=0.091) (Figure 4.23). Both N (p=0.179) and P (p=0.742) did not have a significant 
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effect.  Water availability class 4 was significantly different from all the other classes 

(Appendix 4.4r).   
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Figure 4.23: Growth efficiency responses across different water availability classes (2008-

2010) with vertical bars denoting p= 0.90 confidence intervals.  
 

Table 4.8 below presents a summary of the p values for the response of all the 

measurement variables analysed in this study to N, P and water availability class. 
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Table 4.8:  A summary of all p values from the separate ANOVAs for the 
response of leaf area index, basal area and volume  
increment, growth efficiency in year 1, year 2 and over the  
two year period and foliar N and P concentration a year after treatment. 

 

FACTOR MEASUREMENT VARIABLE RESPONSE IN YEAR 1(2009) RESPONSE IN YEAR 2 (2010) RESPONSE 
(2008 - 2010) 

NI
TR

OG
EN

 
    

LAI increment 0.020 0.131 N/A 

Basal area increment 0.518 p<0.001 0.074 

Volume increment 0.185 0.028 0.036 

Growth efficiency 0.733 0.057 0.179 

Foliar N p<0.001 N/A N/A 

 

    

PH
OS

PH
OR

US
 

    

LAI increment 0.056 0.031 N/A 

Basal area increment 0.951 0.061 0.573 

Volume increment 0.901 0.142 0.327 

Growth efficiency 0.746 0.142 0.742 

Foliar P 0.059 N/A N/A 

 

    

W
AT

ER
 

   

LAI increment 0.227 0.014 N/A 

Basal area increment 0.003 0.044 p<0.001 

Volume increment p<0.001 p<0.001 p<0.001 

Growth efficiency p<0.001 0.010 0.091 

    

     
 

1 All shaded p values were significant at the 10% level of significance. 
 

Table 4.8 shows that LAI increment responded significantly to N and P in the first but not 

the second year after treatment. It also shows that significant basal area responses to N 

and P were recorded in the second but not the first year. The fact that trees had to re-build 

their canopies before a basal area response could be obtained will be explored in the 

discussion section.  Table 4.8 also shows that for the variables where an analysis for the 

total response over the two year period was possible, basal area increment and volume 

increment significantly responded to the application of nitrogen but not to phosphorus.  

Foliar N and P were significantly affected by application of N and P fertilizer.  
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Growth efficiency was not significantly influenced by both nitrogen and phosphorus over 

the two year period.   

Water availability class consistently and significantly influenced basal area increment, 

volume increment and growth efficiency over the two year period as well as during year 1 

and year 2.  

 

Appendix 4.6 presents a summary of the least squares mean values for all the response 

variables over the study period (2008 – 2010) across the different water availability 

classes.  Although there was no significant interaction between N and P, this appendix 

shows the expected LS means if the various combinations of N and P are applied in the 

different water availability classes.  

4.6  Relationships between variables in the study 
 

Various linear relationships between variables were explored and are presented below. 

4.6.1 Relationship between LAI and volume increment  
 
 
The scatter graph in Figure 4.24 shows that there is generally a positive relationship 

between initial LAI before treatment and the volume increment obtained.  A linear 

regression for each of the treatments revealed that there was a positive linear relationship 

as all the treatments had an r2 >0.60 except for N100P50 which had  

r2 = 0.23 (Appendix 4.7).  
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Figure 4.24:  Relationship between initial LAI before treatment and volume 

increment over the two year period. 

 

The separate linear regression analysis lines for each treatment are presented in Appendix 

4.7 

Appendix 4.8 shows the positive linear relationship (r2 =0.67) between initial LAI at the 

start of 2010 and the volume increment obtained in the same year.  As the initial LAI 

increased, the volume increment also increased.  

4.6.2  Relationship between basal area and volume increment  
 
 
The scatter graph in Figure 4.25 shows that there is generally a positive relationship 

between initial basal area before treatment and the volume increment obtained.  A linear 

regression for each of the treatments revealed that there was a positive linear relationship 

as most of the treatments had an r2 >0.50 except for N0P0 which had  

r2 = 0.41, N100P50 which had r2 =0.39 and N100P100 which had r2 =0.32 (Appendix 4.9).  
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Figure 4.25:  Relationship between initial basal area before treatment and volume 

increment over the two year period. 

 

4.6.3  Other relationships investigated 
 
 
Appendix 4.10 shows the positive linear relationship (r2 =0.65) between initial LAI at the 

start of 2010 and the basal area increment obtained in the same year.  As the initial LAI 

increased, the basal area increment also increased.  

Linear regression was done to determine the relationship between initial LAI and the LAI 

increment in 2010.  The positive linear relationship had a low r2 value of 0.26 (Appendix 

4.11).  
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CHAPTER 5: DISCUSSION 
 

5.1 Nutrient analysis  
 
 
This study based the interpretation of the nutrient concentrations on Boardman et al., 

(1997)’s norms.  Critical values for P. radiata have not been developed in the Western and 

Southern Cape regions hence the use of values from other areas.  An interpretation of the 

foliar results before treatment according to the norms by Boardman et al., (1997) indicated 

that phosphorus was the only macro element with levels below the critical one in 

replications S1, S2, S3, L2, and L4.  Replication L1 had a marginal P concentration while S4 

had adequate concentrations (Table 4.1a).  All the other elements were marginal or 

adequate.  Relative to the norms by Boardman et al., (1997), the nutrient concentrations in 

our study were generally not too low except for P.  All the replications had adequate 

nutrient concentrations of Ca, Mg, Mn, Fe, Cu, B and Zn at the beginning of the study 

except L4 which had a deficiency of Zn and L1 and S4 which had Fe concentrations above 

the accepted levels.  Replication L1 also had Mn levels above the acceptable, although 

levels below 2 000 mg kg-1 are usually still not toxic to most conifers.  Potassium was 

adequate in all replications except in S2 and L4 which had marginal concentrations of the 

element.   

 

Foliar P concentration was only affected by P fertilizer.  Foliar P concentration increased 

significantly from 0.09 to 0.11 when 50 kg P ha-1  was applied.  Although an increase in P 

fertilizer to 100 kg P ha-1 increased foliar P further to 0.12 this was not statistically different 

from P50 level.  Even the highest application of P did not raise the foliar P concentration 

above the 0.14 critical limit. (Table 4.2c and Appendix 4.2 a). 

In absolute terms the highest level of N and P resulted in the highest P concentration.  

Carlson and Soko, (2001) reported an increased foliar P concentration in a Pinus patula 
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stand after fertilizer application.  Tritchet et al., (2008) also found that for Pinus pinaster, 

foliar P concentration was increased when fertilizer was applied.  Fertilization with P 

significantly increased foliar P concentrations in all treatments in Pinus taeda stands in 

Texas (Sypert, 2006).   

 

Foliar N concentration was generally adequate in all the sites before treatment in our study 

according to Boardman et al., (1997) (Table 4.1a).  Although the values for N were mostly 

above the critical value, they were still not in the upper range for sufficiency.  If the value of 

1.5% developed for N in P. radiata in New Zealand and published by Will (1985), is applied 

to the study’s data in Table 4.1a (before treatment), all replications show that N is not 

available at the adequate levels.  The mean foliar N concentration for each treatment was 

below the critical level of 1.5% a year after treatment except for N200 where it was 1.64% 

(Table 4.2b) .  An ANOVA revealed that the treatments had a significant effect on foliar N 

level (Table 4.2b).  The foliar N was increased by increasing quantities of N fertilizer.  

However, the application of P fertilizer had a negative effect on foliar N levels and resulted 

in a decrease in foliar N when either 50 or 100 kg P ha-1  was applied (Table 4.2b).  It is 

interesting to note that due to the antagonistic effect of fertilizer P on foliar N values 

(possibly inducing a deficiency), the 1.5% level was only achieved when at least 200 kg 

ha-1 N was applied together with P or when N was applied on its own.   

Carlson and Soko, (2001) reported an increase in foliar N concentration when fertilizer was 

applied to Pinus patula.  Fertilization with N significantly increased N concentrations of 

Pinus taeda in most treatments in a study by Sypert, (2006) in Texas.  Pre-treatment N 

concentrations, though generally marginal in our study, they still displayed concentration 

increases with N applications.  We conclude that tree growth may have been limited by low 

N supply, but that this was not detected by the critical level approach since several other 

factors are also limiting growth, for example P and soil water.  Under these conditions of 

Stellenbosch University  http://scholar.sun.ac.za



97 
 

sub-optimal growth, N levels may appear sufficient at first inspection.  However, when 

other growth limitations are removed or partially removed, N actually becomes limiting too.  

The fertilizer treatments therefore successfully increased foliar N and P nutrient levels 

close to or even above the critical target concentrations.  These results confirm that N and 

P were growth-limiting nutrients at our experimental sites.  Nitrogen and P fertilizer did not 

have a statistically significant effect on foliar nutrient concentrations for all the other 

elements considered in this study. 

 

Nutrient ratios have been traditionally used as indicators of the nutrient balance occurring 

in the foliar tissue (Linder, 1995; Carlson & Soko, 2001, du Toit and Oscroft, 2003).  The 

P/N ratio before treatment was below the optimum for all replications except S4 where it 

was optimum (Table 4.1 b).  The other nutrient ratios were generally above the optimum.  

The P/N ratio remained generally below the optimum level for all treatments in all 

replications one year after fertilizer application (Table 4.3).  However, in treatments where 

the highest level of P (100 kg ha-1) was applied, P/N ratios generally approached (and 

sometimes exceeded) the norm of 10 proposed by Linder (1995).  It can be concluded that 

P is strongly limiting growth across all replications and that the application of P fertilizer 

has addressed this problem partially or fully.  

When vector analysis was used for the average response across all sites, P was found to 

be the main limiting nutrient as compared to the others as the major vectors were 

associated with P, indicating that addition of P corrected a deficiency (Figure 4.2).  The 

vector analysis also showed that of the micro nutrients, Zn was the main limiting nutrient 

as compared to the others as the major vectors were associated with Zn, indicating that 

treatment corrected a Zn deficiency (Figure 4.3).  Zn is often used as an additive in P-

containing fertilizers to counter possible antagonistic effects of P and Zn uptake by higher 
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plants.  The application of Zn-containing P fertilizers appears to have been the appropriate 

choice in this trial series.  

The application of fertilizer also affected other elements that were not applied.  For 

example K and Cu in S2 had the deficiency addressed by fertilization as well as Ca in L1.  

 

The three methods, critical levels, nutrient ratios and vector analysis detected a P 

deficiency in all replications except in S4 where they differed.  The critical levels method 

and nutrient ratios generally predicted the same outcome in most cases.  Vector analysis 

predicted more deficiencies than the other two methods.  This might have been due to the 

fact that vector analysis incorporated growth response as well as nutrient content, which 

might have eliminated effects associated with dilution and luxury consumption when only 

foliar or nutrient ratios are used.   

 

Vector analysis indicated that the N and P deficiencies that existed in the sites at the start 

of the study were alleviated by the application of the best treatment for each site (Table 

4.5).  Best treatment refers to the treatment that had the largest volume response.  Figure 

4.2 also confirmed the deficiency of P before treatment, when vector analysis was 

conducted on the average response observed across all the replications compared to the 

post fertilization control treatment (N0P0).  This study did show that foliar responses to N 

and P fertilization are likely when they are found to be in the marginal level.   

In a study by Ngono and Fisher, (2004) where different methods were also compared, it 

was concluded that vector analysis was more reliable than critical levels and that the two 

methods differed in predicting volume response across sites.  In our study vector analysis 

was fundamentally different in that it incorporated growth response as well as nutrient 

content.  While critical levels and nutrient ratios required the use of predetermined 

standards, vector analysis did not need these.  This can be one of the biggest advantages 
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of the method especially when different conditions occur in factors that were used to come 

up with the predetermined standards for critical levels and nutrient ratios.  Critical values 

for P. radiata in the study area were not available and the values from other areas 

according to Boardman et al., (1997) and Will (1985) for critical values and by Linder 

(1995) for nutrient ratio norms were therefore used.  A small change in the critical value 

can change the classification.  Between critical and sufficient levels, growth response is 

expected although it might not be economically viable. 

The three methods have their advantages and disadvantages and work best when used 

together, thus, greater diagnostic result could be obtained by combining the diagnostic 

results of the three techniques.  

 

5.2 Leaf area index response 
 
 
There were no significant interactions detected among N, P and water availability class at 

12 months and at 24 months.  There was a significant effect of N on LAI at 12 months but 

not at 24 months.  The highest level of nitrogen (N200) gave the highest response which 

was 79% higher than the control (Figure 4.4).  There was a linear increase in LAI 

increment up to 200kg ha -1.  A significant response to P was detected at both 12 months 

and 24 months.  When P levels were considered, both P50 and P100 were significantly 

higher than the control at both 12 and 24 months (Figure 4.5 & 4.8).  There was a 68% 

and 57 % increase for P50 and P100 respectively over the control at 12 months and a 102% 

and 113 % increase for P50 and P100 respectively over the control at 24 months.  Water 

availability class had a significant influence only at 24 but not at 12 months.   
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The response at 12 months for N agrees with a study of P. taeda growing on sites of 

varying nitrogen limitations in North Carolina, where nitrogen fertilization significantly 

increased LAI (up to 60%) on N deficient sites (Vose & Allen, 1988).  In our study, vector 

analysis revealed that both N and P were generally deficient in the study sites (Table 4.5).  

Low nutrient availability has been found to be a principal factor causing suboptimal levels 

of leaf area in many areas (Vose & Allen, 1988; Albaugh et al., 1998).  When tree growth 

is stimulated by fertilization, a significant part, and if not most of the response is due to an 

increase in the total leaf area of the photosynthetic surface (Linder and Rook, 1984).  In 

another study by Allen et al., (2005), LAI was not significantly affected by fertilization for 

stands of P. taeda and P. elliottii.  In our study, there was a general trend that an 

increased level of N caused an increase in LAI.  More increment was obtained on the 

wettest sites than on the driest sites at 24 months (Figure 4.9).  This is also supported by 

Appendix 4.6 where water availability class 4 generally has higher means than the driest 

site (class 1).  Some studies suggest that chronically low levels of available soil nutrients, 

particularly N and P on loamy or sandy soils, are more limiting to growth in established 

stands than water limitations (Albaugh et al., 1998; Albaugh et al., 2004b; Sampson & 

Allen 1999).   

 

The soils in the Boland are known to be poor and deficient particularly in P (Donald et al., 

1987; Payn et al.,1988; Badenhorst, 2010).  Vector analysis, critical levels and nutrient 

ratios all confirmed the P deficiency in most of the sites.  Although both water and nutrient 

limitations can reduce leaf area through reduced foliage production or early senescence, 

water availability is thought to have less effect on leaf area than nutrient availability (in the 

cited literature) because most leaf area production in the southeast United States occurs in 

springtime, a period when soil water availability is high and evapotranspiration demand is 

low (Forest Nutrition Cooperative, 2006).  The effects of water availability and nutrient 
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resources on forest productivity according to Trichet et al., (2008), depend on local climate 

and soil conditions, with irrigation (water availability) having a more marked effect in 

Mediterranean type climates and fertilization having a stronger effect on growth responses 

where annual evapotranspiration rates are lower and precipitation levels are higher.  A 

stepwise regression that was done in this study with LAI increment at 24 months (when 

water availability class had a significant effect) as the dependent variable and N, P and 

water availability class as the predictor variables retained N and P as better predictors but 

dropped water availability class (Appendix 4.5).  This may indicate that in our study 

nutrient availability could have had a greater influence on leaf area increment than water 

availability class. 

 

On sites that have few limitations on leaf area production before fertilization, it may happen 

that the response of LAI is relatively small after fertilization and that a larger, perhaps more 

significant response would be expected after fertilization on those sites where serious 

limitations on LAI existed before fertilizer application.  A few such cases (S1 and L2 are 

depicted in the left hand side of the scatter plot of Appendix 4.11 (these are sites where 

LAI was predominantly limited by N and P, not water).  However, linear regression of initial 

LAI versus LAI increment at 24 months in our study revealed that there was an 

insignificant negative linear relationship.  It showed that the LAI before treatment was a 

very poor predictor of increment in LAI after treatment (Appendix 4.11).  Initial LAI before 

treatment did not therefore drive LAI increment in our study.  Low LAI can indicate poor 

nutrition and/or low soil water supply.  Fertilization will partially correct poor nutrition but 

will not alleviate a site water limitation, hence a poor response can be obtained when LAI 

is low to start with as a result of a water limitation.  LAI will therefore not always be a good 

predictor of canopy response to fertilization.  
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5.3 Basal area increment response 
 
 
There was no interaction among N, P and water availability class in 2009, 2010 and when 

the total basal area increment over the two year period was considered.  Both N and P did 

not have a significant effect on basal area increment in 2009.  There was however, a 

significant effect due to water availability class (p=0.002) in 2009 (Figure 4.10).  Basal 

area increment was found to be influenced by N, P and water availability class in the 

second year after fertilizer application.  In a study by Carlson and Soko (2000), of 17 

fertilizer trials in eight year old Pinus patula compartments in Mpumalanga, trials that were 

on shale parent material responded immediately to N with responses to P becoming 

significant three years after fertilizer application.  Basal area increment did not respond to 

either N or P fertilizer in the first year, but did respond in the second year.   

When total basal area increment was considered (2008-2010), only N and water 

availability class had a significant effect with phosphorus not making a significant influence 

(Figure 4.14 - 4.15).  Archibald and Smith, (2010) also obtained similar results at Bracken 

(KwaZulu-Natal) where a rate of 200 kg ha -1 of nitrogen and 100 kg ha -1 of phosphorous 

was applied in a 22.1 year old Pinus patula stand.  Their early results two years after 

fertilization revealed that the application of N significantly increased the two year basal 

area increment compared to the control and no significant growth response to P or 

interaction between N and P were recorded.  The increase in basal area due to fertilizer 

application observed in our study agrees with Turner et al. (1995) where, in eleven of the 

twelve N+P factorial trials, application of N and/or P resulted in significant gains in tree 

basal area increment over a four year study period.  The annual productivity gains due to 

N and P treatments were not apparent until the second year in our study as it was in 

Turner’s study where it peaked in the period 2-4 years post-treatment. 
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Since the magnitude of the response in basal area increment was greater in 2010 than in 

2009, alongside a greater response in LAI increment in 2009 but not in 2010,  the leaf area 

put on in 2009 was responsible for the significant basal area increment detected in the 

second year after fertilizer application.  There was a positive correlation (r = 0.51)  

between 2009 LAI increment and basal area increment in 2010.  Linear regression of LAI 

at the start of 2010 and the basal area increment in the same year indicated that there was 

a strong positive linear relationship with r2 = 0.65 (Appendix 4.10).  The greater the initial 

LAI therefore, the greater the basal area increment that is likely to be obtained after 

treatment.  This result is striking because stands with poor initial LAI first had to invest in 

rebuilding LAI and then had a very limited amount of time to increase basal area growth 

(effectively only during 2010).  If we allow a longer response time after the canopy 

rebuilding phase of 2009, we may even find that some stands with poor initial LAI may 

perhaps rebuild their canopies and thereafter still achieve a fair basal area growth 

response.  Longer term monitoring will be needed to see if this may happen.  Based on 

these very early responses, one might recommend that due to the larger responses, sites 

with higher LAI values and that show nutrient deficiency should give a better return on 

investment.   

 

In stands of P. taeda and P. elliottii in the southeast United States of America, it is 

considered that the LAI of a fully stocked stand (basal area >23 m2 ha -1) should be at 

least 3.5 m2 m -2; otherwise, the stand will probably be in need of N+P (Forest Nutrition 

Cooperative, 2006; Fox et al., 2007).  Minimum LAI that a stand needs to have in order for 

it to have optimum production was not determined in this study as longer term monitoring 

is needed.  However, Figure 4.24 showed that most of the treatments that produced 

periodic volume increments of more than 40 m3 ha-1 over the two year period had LAI 

values exceeding 2 m2 m-2.    
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Basal area increment for the levels, N100 (20%) and N200 (30%) significantly differed from 

the control although not different from each other in 2010 (Figure 4.11). However level N200 

(24% basal area increment) was the only one significantly different from the control when 

total basal increment was considered (Figure 4.14).  These percentage increases due to N 

are higher than those reported by Archibald and Smith, (2010) where the increase was 2.9 

% higher on fertilized sites than on those not fertilized.  The magnitude of the response to 

N ranged from nil to 25% in the first year after treatment in a study by Carlson and Soko, 

(2000).  Water availability class 4 (the wettest) significantly differed from all the other 

classes in 2009, 2010 and 2008-2010 (Figure 4.10, 4.13 & 4.15).  Class 4 had a basal 

area that was 50% more than that of Class1 for the total basal area increment.  The effects 

of water availability on stem wood growth will be discussed in more detail under volume 

growth response. 

 

5.4 Volume growth response 
 
 
There was no significant interaction among N, P and water availability class in 2009, 2010 

and when the total over the two year period was considered.  Both N and P did not have a 

significant effect on volume increment in 2009.  In 2010, N had a significant effect where 

N200 had a response of 4.15 m3 ha-1 (23%) more than the control (Figure 4.17).  When the 

volume increment over the two year period was considered (Figure 4.19 and Table 4.7), 

N200 had a response of 6.53 m3 ha-1 (20% more than the control) which is more than what 

Carlson and Soko reported, an increase of 2.9 m3 ha-1 in Pinus patula over a five year 

period.  Archibald and Smith, (2010) found an increment that translated to 13.8 m3 ha-1 

over a two year period in a Pinus patula stand at Bracken.  Phosphorus had no significant 

effect in 2009, 2010 and over the two year period in our study.  The lack of a significant 

response over the two year period for P is similar to Archibald and Smith’s findings where 
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there was no significant P response and also no interaction between N and P.  Volume 

increment was found to be significantly influenced by water availability class in 2009, 2010 

and over the two year period (Figure 4.16, 4.18 & 4.20).  Class 4, the wettest had a 

volume increment response that was 30.85 m3 ha-1 (125%) over that of the driest class, 

class1 over the two year period. 

 
Although there was no significant volume increment response to N and P application in 

2009, there was a significant response to N in 2010.  Leaf area index significantly 

increased in 2009, a year after fertilizer application.  Forest production is mainly driven by 

the interception of radiation and the efficiency with which tree leaves use this energy to 

produce stem biomass through the process of photosynthesis (Linder, 1985).  These 

processes are strongly influenced by the supply of water and nutrients (Linder and Rook, 

1984).  High levels of intercepted radiation are therefore associated with high levels of 

photosynthesis, and this will result in high productivity.  Since the magnitude of the 

response for volume was greater in 2010 than in 2009, the leaf area put on in 2009 was 

responsible for the significant volume increment detected in the second year after fertilizer 

application.  There was a positive correlation (r = 0.52) between 2009 LAI increment and 

volume increment in 2010.  Linear regression between the LAI at the start of 2010 against 

the volume increment in that year revealed a positive relationship with r2 = 0.67 (Appendix 

4.8).  An increase in the availability of nutrient supply after fertilizer application might have 

enabled the trees to deploy a large leaf area with a high canopy quantum efficiency level.  

When initial LAI before treatment was regressed against the total volume increment over 

the two year period, a strong positive linear relationship was also obtained (Figure 4.24 

and Appendix 4.7) where r2 was generally above 0.65 for most treatments.  A high LAI 

therefore results in better volume increment compared to a low initial LAI.  Besides a high 

initial LAI, a high initial basal area before treatment also had a positive linear relationship 

(r2 generally above 0.5 for all treatments) with volume increment obtained over the two 
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year period (Figure 4.25 and Appendix 4.9).  Stands with a high initial basal area before 

treatment are therefore likely to yield more volume increment after treatment than stands 

with low initial basal area. 

 

Donald (1987) reported that N50P50 gave the best results (34% more than the control) in 15 

year old Pinus radiata stands on sandy soils in Grabouw, Western Cape where the highest 

level of N applied was 50 kg ha -1 and for P it was  

100 kg ha -1.  Our study has shown that there is some benefit in applying more than 50kg 

ha -1 for N (as suggested by Donald, 1987) as there was a linear increase in volume 

increment up to 200 kg ha -1.  When the mean volume increment across all sites for each 

treatment was considered in our study (Appendix 4.2b), the treatment with the highest 

mean was N200P50 (37% more than the control).  Our study therefore confirms Donald’s 

results that 50 kg N ha -1 in the Grabouw area, could be beneficial.  This study also added 

on to Donald’s findings by indicating that the N application rate can be raised above 50 kg 

ha -1 and still yield more volume increment as shown by the linear increase in volume up to 

200 kg ha -1.  Other studies in other site types found application rates that are in 

agreement with our study.  Campion (2006) in a review of literature also reported typical 

application rates ranging from 100 – 300 kg N ha-1
 and 50 – 100 kg P ha-1 in South Africa.  

Carlson et al., (2000) also found that the application of N provided a large improvement in 

tree growth and that the response was linear with the greatest improvement being to the 

application of 200 kg ha-1
 N in a P.patula study in Mpumalanga.  The question still to be 

answered is “Would the application of more than 200 kg N ha -1 bring anymore significant 

growth and related economic benefit in South Africa?”  The capacity of stands with low 

LAI's to take up large quantities of nitrogen has to be questioned. It may be better to test 

higher levels of application by means of re-applications in a couple of years' time.  An 

analysis of Table 2.1 shows that N amounts used in various experiments in which trees 
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were 6 years and above ranged from 0 – 400 and the optimum levels found in these 

different studies ranged from 50 – 400 kg ha -1.  Longer term evaluation of the Boland 

fertilizer series (with possible additional application of fertilizer) will have to be conducted 

to answer this question satisfactorily.  Herbert and Schönau (1990) recommended a rate of 

35 kg ha -1 of P where the soil water (moist) and depth (> 450 mm) requirements are met.  

An application of 60 kg ha -1 was recommended for deeper soils.  When N and P were 

applied separately in our study, they produced poorer volume increment results than the 

application of the elements in combination.  There was no interaction between N and P in 

2009, 2010 and over the two year period.  The results for N and P were therefore additive.  

It is thus important to apply N and P simultaneously to get maximum benefit, as both 

appear to be limiting.    

 

One of the most important factors that influenced the fertilizer responses is the water 

availability class.  Water availability class consistently significantly influenced volume 

increment during year 1, year 2 and over the two year period (Table 4.8).  The wettest 

class (class 4) had a higher volume increment response than the drier sites (Appendix 4.4 

k, m and o).  The magnitude of the volume increment response over the two year period 

for class 4 was 123% higher than that of class 1.  The water availability determines not 

only whether a response to nutrient additions occurs, but also the magnitude of the 

observed response (Sands & Mulligan, 1990).  Sheriff (1996) found that there are strong 

interactions between fertilizer and water availability in water-limited environments which 

was not the case in our study where there was no interaction detected between water 

availability and any of the nutrients applied.  However, on sites where inadequate moisture 

limits growth, fertilization is only likely to provide modest growth gains (Allen, 1987).  

Results obtained from trials investigating the response of 12 year old, unthinned, P. patula 

to fertilizer applications in Swaziland, showed that the N response may be related to the 
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rainfall (and hence soil moisture content) occurring at the time of trial establishment 

(Morris, 1993).  The optimal N responses occurred when the soil moisture content was 

high in Morris’s study. 

5.5  Growth efficiency response  
 
 
There was no interaction between N, P and water availability class in 2009, 2010 and over 

the two year period.  Nitrogen significantly influenced growth efficiency only in 2010 but not 

in 2009 and over the two year period.  Phosphorous did not have a significant effect in 

2009, 2010 and over the two year period.  There was however, a significant effect due to 

water availability class in 2009, 2010 and over the two year period.  Class 4 had the 

highest growth efficiency response in 2009, 2010 and over the two year period which was 

significantly different from the other classes (Figure 4.21-4.23).  

 

Irrigation and/or fertilization increased GE in several studies (Albaugh et al., 1998) while 

having no effect in other studies (Vose and Allen, 1988).  Allen et al., (2005) found that GE 

was not affected by fertilization for P. taeda and P. elliottii but was increased by irrigation.  

The results from our study showed that the wettest sites generally had higher GE than the 

driest sites in both 2009, 2010 and over the two year period (Figure 4.21 – 4.23).  Water 

availability class 4 had a growth efficiency which was 65 % more than class 1 in 2009, 

11% in 2010 and 36% over the two year period.  Nitrogen only significantly increased 

growth efficiency in 2010 but not in 2009 or over the two year period.  Phosphorous did not 

significantly increase growth efficiency in both years and over the two year period.  Water 

availability had a more significant role in growth efficiency than nitrogen and phosphorus 

application.  Allen and Albaugh (1999) reported increases of growth efficiency of 8% due 

to irrigation in a Pinus taeda study in the southeastern U.S.A.  The effects of water 

availability and nutrient resources on forest productivity depend on local climate and soil 

conditions, with irrigation (water availability) having a more marked effect in Mediterranean 
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type climates (Trichet et al., 2008).  The Boland region experiences a Mediterranean type 

of climate which might have caused water to have a more significant role than nutrient 

availability on GE. 
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CHAPTER 6:  CONCLUSIONS AND RECOMMENDATIONS 
 
 
The results that have been presented in this study are preliminary responses to N and P 

across different water availability classes.  These responses should continue to be 

monitored over a longer period in order to determine whether the trends observed will 

remain the same, and to quantify the longer term responses.   

 

The application of N fertilizer increased the foliar N concentration linearly as the quantity of 

N fertilizer increased.  The lowest application of P50 fertilizer increased the foliar P 

concentration but doubling this quantity did not increase the foliar P level significantly 

further, although there was a small increase in absolute terms. 

 

An important finding is that the application of P fertilizer had a negative effect on the foliar 

N levels and might have induced a N deficiency.  Application of P without N is therefore 

not recommended.  .   

 

Nitrogen and P increased LAI significantly in the first year and the influence of P was 

maintained in the second year, while that of N became insignificant in the second year.  As 

the volume increment was positively correlated with an increase in LAI, it is anticipated 

that the response seen in LAI will eventually also be seen in volume increment.  

The volume increment trend corresponds to that of the basal area, which indicates that the 

response to P fertilizer might occur over a longer period than that of N.  The largest 

responses were observed when 200 kg ha -1 of N was applied.  Increasing this quantity 

might result in even a larger volume response.  This should be investigated in future by 

applying larger quantities of N, or by means of reapplication of N in the existing trials.   
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All the early results indicate that there is no additional benefit of applying 100 kg ha -1 of P 

instead of 50 kg ha -1.  Furthermore, sites that had the largest LAI had the greatest 

increase in basal area after fertilizer application.  Thus the early results indicate that the 

return on investment will probably be the highest on sites with a large LAI.  However, it is 

not yet possible to conduct an economic analysis.  The early results indicate that the 

application of 200 kg ha -1  in combination with 50 kg ha -1  had an additive effect, resulting 

in the largest volume response, in absolute terms of 7.6 m3 ha -1 (23%) compared to the 

control, over a two year period.  It is not certain if this magnitude of response will be 

maintained till rotation end. 

 

Water availability significantly influenced tree growth.  The wetter sites responded better 

than the drier sites.  In cases where resources are limited and there is a mix of wet and dry 

sites, it would be better to fertilize the wetter sites as they are likely to yield more volume 

increment than if drier sites of similar soil type were to be fertilized.  The magnitude of the 

volume response in the drier sites however, suggest that even these dry sites can still be 

fertilized with justifiable economic benefit in situations where the financial capacity permits. 

 

Although these are still early results, the growth response could be attributed primarily to 

an increase in LAI.  This is supported by the fact that there was a significant increase in 

LAI a year after fertilizer application while volume did not significantly increase during the 

same period.  Volume only significantly increased in the second year after fertilizer 

treatment when the additional leaf area contributed to more stem wood production. 
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The destruction of replication L3 by fire posed a serious limitation to the analysis of 

interaction of N, P, soil type and water availability.  This analysis would have enabled the 

prediction of the best treatment within a given soil type in a particular water availability 

class.  This can still be pursued in future nutritional studies. 

 

Nutrient analysis through vector analysis indicated that the additional N and P from 

fertilizer application were taken up by the trees.  This was evidenced by the existing N and 

P deficiencies that were corrected.  Vector analysis can be a good tool to use for 

determining the response to fertilizer treatments in fertilizer trials.  It enables the 

researcher to detect responses as early as one year after fertilizer application. 

 

Due to the fact that we are dealing with early responses, we have made no attempt to 

present a comparison of economic viabilities of applying various treatments at this stage.  

A detailed economic analysis would however, be necessary in future once the responses 

have been monitored for over a longer period of at least five years. 

 
 

 

  

Stellenbosch University  http://scholar.sun.ac.za



113 
 

REFERENCES  
 
 
Albaugh, T.J., Allen, H.L., Dougherty, P.M., Kress, L.W., & King, J.S., 1998. Leaf area and 

above and belowground growth responses of loblolly pine to nutrient and water additions. 

Forest Science. 44:317-328. 

 

Albaugh, T. J., Rubilar, R., Alvarez, J., & Allen, H. L., 2004a.  Radiata pine response to 

tillage, fertilization and weed control in Chile.  Bosque 25(2):5-15.  

 

Albaugh, T.J, Allen, H.L., Dougherty, P.M., & Johnsen, K.H., 2004b. Long term growth 

responses of loblolly pine to optimal nutrient and water resources availability. Forest 

Ecology and Management. 192:3-19. 

 

Albaugh, T. J., Allen, H. L., & Thomas, R., 2007.  Historical Patterns of Forest Fertilization 

in the Southeastern United States.  Southern Journal of Applied Forestry. 31(3):129-13. 

 

Allen, H.L., 1987.  Forest fertilizers. Nutrient amendment, stand productivity, and 

environmental impact. Journal of Forestry 85:37-47. 

 

Allen, H.L., Albaugh, T.J., 1999. Ecophysiological basis for plantation production: A loblolly 

pine case study. Bosque 20(1): 3-8. 

 

Allen, H.L., Dougherty, P.M.,& Campbell, R.G. 1990. Manipulation of water and nutrients 

practice and opportunity in southern U.S. pine forests. Forest Ecology and Management. 

30:437-453. 

Stellenbosch University  http://scholar.sun.ac.za



114 
 

Allen, C. B., Will, R. E., & Jacobson, M. A. 2005. Production efficiency and radiation use 

efficiency of four tree species receiving irrigation and fertilization. Forest Science. 

51(6):556-569. 

 

Archibald, A., & Smith, C. 2010. Early growth responses to fertilisation at final thinning of 

two Pinus patula sawtimber stands ICFR Technical Note 01/2010. Institute for Commercial 

Forestry Research.  Pietermaritzburg. South Africa.  

 

Badenhorst, J.J., 2010.  The effect of fertilising Pinus radiata stands at mid rotation age in 

the Western Cape province on leaf area, growth efficiency and stand productivity. M.Sc. 

Thesis, University of Stellenbosch. South Africa.  

 

Ballard, R., 1984. Fertilisation of plantations.  In: G.D. Bowen and E.K.S. Nambiar (eds), 

Nutrition of Plantation Forests. Academic Press. London. 

 

Beadle, C.L., 1997. Dynamics of leaf and canopy development. In: E.K.S .Nambiar, & A.G. 

Brown, (eds.). 1997. Management of Soil, Nutrients and Water in Tropical Plantation 

Forests. ACIAR: Canberra. 

 

Binkley, D., & Reid, P., 1984.  Long-term responses of stem growth and leaf area to 

thinning and fertilization in a Douglas-fir plantation. Canadian Journal of Forest 

Research:14:656-660. 

 

Binkley, D., 1986. Forest Nutrition Management. John Wiley and Sons, New York.  

 

Stellenbosch University  http://scholar.sun.ac.za



115 
 

Binkley, D., Stape, J.L., & Ryan, M.G. 2004. Thinking about efficiency of resource use in 

forests. Forest. Ecology and. Management. 193:5-16. 

 

Boardman, R., Cromer, R.N., Lambert, M.J. & Webb, M.J., 1997. Forest Plantations. In D J 

Reuter and J B, Robinson (eds.). Plant analysis: an interpretation manual. CSIRO 

Publishing, Collingwood, Australia.  

 

Bredenkamp, B.V, 2000.  Volume and mass of logs and standing trees. In: D L Owen 

(ed.). South African Forestry Handbook. Vol 1. Fourth edition. Southern African Institute of 

Forestry, Pretoria. pp167-174. 

 

Brockley, R. P., 2001.  Foliar analysis as a planning tool for operational fertilization. In 

Proceedings. Fertilization and Economics: Enhanced Forest Management Conference, 

March 1-2, 2001, Edmonton, Alberta. 

 

Campion, J., 2006. The effects of mid- and late-rotation fertilizer application on tree growth 

and wood quality in sawtimber stands: A critical review of the literature ICFR Bulletin 

Series 16/2006. Institute for Commercial Forestry Research, Pietermaritzburg, South 

Africa. 

 

Campion, J. & du Toit, B., 2003. Impacts of fertilizer applied at second thinning on basal 

area growth of Pinus patula in the Mpumalanga area. ICFR Bulletin Series 18/2003. 

Institute for Commercial Forestry Research, Pietermaritzburg, South Africa.  

 

 

Stellenbosch University  http://scholar.sun.ac.za



116 
 

Cannell, M.G.R., 1989. Light interception, light use efficiency and assimilate partitioning in 

poplar and willow stands. In J.S .Pereira, & J.J. Landsberg (eds.). 1989. Biomass 

production by fast-growing trees. Kluwer Academic Publishers, Dordrecht. The 

Netherlands. 

 

Carlson, C.A., 2000. Impact of fertilization at first thinning on Pinus patula basal area 

increment in Mpumalanga. Southern African Forestry Journal 189:35-45. 

 

Carlson, C. A., & Soko, S., 2000. Impacts of fertilizer applied at first thinning to basal area 

growth of P. patula in the Mpumalanga area. ICFR Bulletin Series 11/2000. Institute for 

Commercial Forestry Research.  Pietermaritzburg. South Africa.  

 

Carlson, C. A., & Soko, S., 2001. Foliar and litter data collected from a trial series 

investigating the response of P patula to fertilizer applied at first thinning. ICFR Bulletin 

Series 11/2001. Institute for Commercial Forestry Research.  Pietermaritzburg. South 

Africa.  

 

Carlson, C., Morris, A.,& Soko, S., 2000. Mid-rotation nutrition trials in pine pulpwood 

stands in Mpumalanga. ICFR Bulletin Series 05/2000. Institute for Commercial Forestry 

Research. Pietermaritzburg. South Africa. 

 

Carlyle, J.C., 1995. Nutrient management in a Pinus radiata plantation after thinning: the 

effect of nitrogen fertilizer on soil nitrogen fluxes and tree growth. Canadian Journal of 

Forest Research 25:1673-1683. 

 

Stellenbosch University  http://scholar.sun.ac.za



117 
 

Carlyle, J.C., 1998. Relationships between nitrogen uptake, leaf area, water status & 

growth in an 11-year-old Pinus radiata plantation in response to thinning, thinning residue, 

and nitrogen fertilizer. Forest Ecology and Management 108:41-55. 

 

Chandler, J.W., & Dale, I.E., 1995. Nitrogen deficiency and fertilization effects on needle 

growth and photosynthesis in Sitka spruce (Picea sitchensis). Tree Physiology. 15:813-

817. 

 

Crane, W.J.B., 1981. Growth following fertilisation of thinned Pinus radiata stands near 

Canberra in south-eastern Australia. Australian Forestry 44:14-25. 

 

Crane, W.J.B., 1984. Fertilization of fast-growing conifers. In: D.C .Grey, A.P.G. Schönau, 

& C.J. Schutz, (eds.). 1984. IUFRO Symposium on Site and Productivity of Fast Growing 

Plantations. Pretoria and Pietermaritzburg, South Africa. South African Forest Research 

Institute, Department of Environment Affairs, Pretoria. Volume 1. pp233-251. 

 

Crickmay and Associates, 2004.  Supply and demand study of softwood sawlog and sawn 

timber in South Africa.  Crickmay and Associates. South Africa. 

 

Crous, J.W., Morris, A.R., & Scholes, M.C., 2008.  Growth and foliar nutrient response to 

recent applications of phosphorus (P) and potassium (K) and to residual P and K fertilizer 

applied to the previous rotation of Pinus patula at Usutu, Swaziland.  Forest Ecology and 

Management. 256:712-721 

 

 

Stellenbosch University  http://scholar.sun.ac.za



118 
 

Decagon Devices Inc., 2004. Accupar PAR/LAI Ceptometer model LP – 80 Operator’s 

manual, Version 1.2. www.decagon.com. (Accessed 2011)  

 

Donald, D.G.M., 1987. The application of fertilizer to pines following second thinning. 

South African Forestry Journal 142:13-16. 

 

Donald, D.G.M., Lange, P.W., Schutz, C.J. & Morris, A.R., 1987. The application of 

fertilizers to pines in southern Africa. South African Forestry Journal 141:53-62. 

 

Dube, L.T., & Jury, M.R., 2000. The nature of climate variability and impacts of drought 

over KwaZulu-Natal, South Africa. South African Geographical Journal 82(2): 44 - 53. 

 

du Toit, B., 2006. Information requirements to fertilize Plantations with greater precision in 

a dry country, In P. A. Ackerman, D. W. Langin, & M.C. Antonides (eds.). 2006. Precision 

Forestry In Plantations, semi-natural and natural forests. Proceedings of the International 

Symposium, Stellenbosch University, South Africa, March 2006. Stellenbosch University, 

Stellenbosch.  

 

du Toit, B., & Oscroft, D., 2003. Growth response of a eucalypt hybrid to fertilization at 

planting across five site types in Zululand. ICFR Bulletin 21/2003. Institute for Commercial 

Forestry Research. Pietermaritzburg, South Africa. 

 

Ellis, F., 2008. Personal communication with Dr. F. Ellis, Senior lecturer in Pedology,  

Stellenbosch University. 

Fey, M., 2010. Soils of South Africa: Their distribution, properties, classification, genesis, 

use and environmental significance.  Cambridge University Press.  

Stellenbosch University  http://scholar.sun.ac.za



119 
 

Fife, D.N., & Nambiar, E.K.S., 1995. Effect of nitrogen on growth and water relations on 

radiata pine families. Plant and Soil. 169:279-289.  

 

Fife, D.N., & Nambiar, E.K.S., 1997. Changes in the canopy and growth of Pinus radiata in 

response to nitrogen supply.  Forest Ecology and Management 93:137-152. 

 

Fischer, P.M., 2011.  �13C as indicator of soil water availability and drought stress in Pinus 

radiata stands in South Africa.  M.Sc. Thesis. University of Stellenbosch 

 

Fisher, R. F., & Binkley, D., 2000. Ecology and Management of Forest Soils. John Wiley 

and sons. New York. 

 

Forest Nutrition Cooperative. 2006. Forest Nutrition Cooperative. 

http://www.forestnutrition.org/synthesis.htm (accessed 2010). 

 

Forest Owners Association. 1993. SA forestry industry drought survey 1992/93. Forest 

Owners Association, Rivonia, South Africa. 

 

Forestry South Africa, 2009. South African Forestry Facts for the Year 2007/2008. 

http//www.forestry.co.za/website_industry_data. (accessed 2010) 

 

Fox, T.R., Allen, H.L., Albaugh, T.J., Rubilar, R. & Carlson, C.A., 2006. Forest Fertilization 

in Southern Pine Plantations. Better Crops :90 (3):12-15. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



120 
 

Fox T.R.; Allen H. L., Albaugh T.J., Rubilar R., & Carlson C.A., 2007  

Tree Nutrition and Forest Fertilization of Pine Plantations in the Southern United States. 

Southern Journal of Applied Forestry. 31(1):5-11. 

 

Gholz, H.L., & Fisher, R.F., 1984. The limits to productivity: Fertilization and nutrient 

cycling in coastal plain slash pine forests. In: E.L. Stone, (ed.). Forest Soils and Treatment 

Impacts. Proceedings of the Sixth North American Forest Soils Conference. The University 

of Tennessee, Knoxville. Department of Forestry, Wildlife and Fisheries, The University of 

Tennessee, Knoxville. pp105-120. 

 

Gholz, H.L., Ewel, K.C., & Teskey, R.O., 1990. Water and forest productivity.  Forest 

Ecology and Management: 30:1-18. 

 

Goncalves, J.L.M., Barros, N.F., Nambiar, E.K.S., & Novais, R.F., 1997. Soil and stand 

management for short rotation plantations. In: E.K.S .Nambiar, & A.G. Brown, (eds.) 

Management of Soil, Nutrients and Water in Tropical Plantation Forests. ACIAR 

 

Haase, D.L., & Rose, R., 1995. Vector analysis and its use for interpreting plant nutrient 

shifts in response to silvicultural treatments. Forest Science . 41(1):54-66. 

 

Herbert, M.A. 2000. Site requirements and species matching: Eucalypt and Wattle 

Species. In: (Ed.) Owen, D.L. South African Forestry Handbook, Vol 1, 4th Edition, South 

African Institute of Forestry, Pretoria: pp85-94. 

 

Stellenbosch University  http://scholar.sun.ac.za



121 
 

Herbert, M.A., & Schönau, A.P.G., 1989. Fertilising commercial forest species in southern 

Africa: Research progress and problems (Part 1). South African Forestry Journal. 151:58-

70. 

 

Herbert, M.A., & Schonau, A.P.G., 1990. Fertilising Commercial Forest Species in 

Southern Africa: Research Progress and Problems (Part 2). South African Forestry Journal 

152:34-42. 

 

Hopmans,P., Collett, N.C., Smith, I.W., & Elms,S.R.,2008. Growth and nutrition of Pinus 

radiata in response to fertilizer applied after thinning and interaction with defoliation 

associated with Essigella californica.  Forest Ecology and Management 255:2118–2128. 

 

Hunter, I.R., Graham, J.D., Prince, J.M., & Nicholson, G.M. 1986. What site factors 

determine the 4-year basal area response of Pinus radiata to nitrogen fertilizer? New 

Zealand Journal of Forestry Science: 16(1):30-40 

 

ICFR (Institute for Commercial Forestry Research), 1985. ICFR Annual Research Report 

(ed. MacLennan, L), Institute for Commercial Forestry Research. Pietermaritzburg. South 

Africa: pp64-65. 

 

ICFR (Institute for Commercial Forestry Research), 1986. ICFR Annual Research Report 

(ed. MacLennan, L), Institute for Commercial Forestry Research, Pietermaritzburg, South 

Africa.p50.  

 

Jokela, E.J., Harding, B., & Troth, J.L., 1988. Decision-making criteria for forest fertilization 

in the southeast: An industrial perspective. Southern Journal of Applied Forestry 12:153-

160. 

Stellenbosch University  http://scholar.sun.ac.za



122 
 

Jokela, E.J., & Stearns-Smith, S.C., 1993. Fertilization of established southern pine 

stands: Effects of single and split nitrogen treatments. Southern Journal of Applied 

Forestry 17:135-138. 

 

Kunz, R.P., & Smith, C.W.,  2001. An initial assessment of drought risk for the forestry 

areas in the summer rainfall region of Southern Africa. ICFR Bulletin Series 15/2001. 

Institute for Commercial Forestry Research. Pietermaritzburg. South Africa. 

 

Lambert, M.J., 1984. The use of foliar analysis in fertilizer research. In: D.C.Grey, 

A.P.G.,Schonau, & C.J. Schutz, (eds.). 1984. Symposium on site and productivity of fast 

growing plantations. SAFRI, Department of Environmental Affairs, Pretoria 1:269-291. 

 

Lang, A.R.G., Yeuqin, X. & Norman, J.M., 1985. Crop structure and the penetration of 

direct sunlight. Agricultural and Forest Meteorology, 35:83-101. 

 

Linder, S., 1985. Potential and actual production in Australian forest stands. In: Landsberg, 

J.J. and Parsons, W. (eds.). Research for Forest Management. CSIRO, Melbourne. pp11-

35. 

 

Linder, S., 1987. Responses to water and nutrients in coniferous ecosystems. In: Schulze, 

E.-D. and Zwölfer, H. (eds.). Potentials and Limitations of Ecosystem Analysis. Springer-

Verlag, Berlin. pp180-202. 

 

Linder, S., 1995. Foliar analysis for detecting and correcting nutrient imbalances in Norway 

spruce. Ecological Bulletins 44: 178-190. 

 

Stellenbosch University  http://scholar.sun.ac.za



123 
 

Linder, S., & Rook, D.A., 1984. Effects of mineral nutrition on carbon dioxide exchange 

and partitioning of carbon in trees. In: G.D. Bowen, & E.K.S. Nambiar, (eds.). Nutrition of 

Plantation Forests. Academic Press, London. pp 211-236. 

 

Louw, J.H.,& Scholes, M., 2002. The influence of site factors on nitrogen mineralization in 

forest soils of the Mpumalanga escarpment area: South Africa. Southern African Forestry 

Journal 193:47-63. 

 

Martin, S.W., Bailey, R.L, Jokela., E.L., 1999. Growth and yield predictions for lower 

Coastal Plain slash pine plantations fertilized at mid-rotation. Southern Journal of Applied 

Forestry. 23:39-45. 

 

McMurtrie R.E., Benson M.L., Linder S., Running S.W., Talsma T., Crane W.J.B., & Myers, 

B.J., 1990.  Water/Nutrient Interactions Affecting the Productivity of Stands of Pinus 

radiata.  Forest Ecology and Management. 30:415-423. 

 

Mead, D.J., & Will, G.M., 1976. Seasonal and between tree variation in nutrient levels in 

Pinus radiata foliage. New Zealand Journal for Forest Science, 6:3-13.  

 

Mead, D.J., & Gadgil, R.L., 1978. Fertilizer use in established radiata pine stands in New 

Zealand. New Zealand Journal of Forestry Science 8:105-134.  

 

Miller, H.G., 1981. Forest fertilization: Some guiding concepts. Forestry 54:157-167. 

 

Morris, A. R., 1986. Soil fertility and long term productivity of Pinus patula in Swaziland. 

Unpublished Ph.D. Thesis, University of Reading, UK. 

Stellenbosch University  http://scholar.sun.ac.za



124 
 

Morris, A. R., 1987. Recommendations for fertilizer application to Pinus patula on the 

Usushwana igneous complex. Forest Research Document  19/87. Usutu Pulp Company. 

 

Morris A R., 1993. Trial series R152: Season of application effects on late stage nitrogen 

fertilizer responses in Pinus patula. Forest Research Document 10/93. Usutu Pulp Co. Ltd, 

Swaziland.  

 

Nambiar, E.K.S., 1985. Critical processes in forest nutrition and their importance for 

management. In: J.J. Landsberg and W. Parsons (eds), Research for Forest Management. 

CSIRO,Melbourne, pp52-72. 

 

Nambiar, E.K.S., Squire, R.O., Sands, R. & Will, G.M. 1984. Manipulation of water and 

nutrients in plantations of fast growing species. In: Grey, D.C., Schönau, A.P.G. and 

Schutz, C.J. (eds.). IUFRO Symposium on site and productivity of fast growing plantations. 

Pretoria and Pietermaritzburg, South Africa. South African Forest Research Institute, 

Department of Environment Affairs, Pretoria. Volume 1. pp489-505. 

 

Ngono, G., & Fisher, R.F., 2004. Nutritional diagnoses in loblolly pine (Pinus taeda L.) 

established stands using three different approaches.  

Forest Ecology and Management. 203:195-208. 

 
Payn, T.W., & Clough, M.E. 1987. Seasonal Variation of Foliar Nutrient Concentrations in 

Pinus radiata in the Southern Cape. South African Forestry Journal 143:37-41. 

 

Payn, T.W., & Clough, M.E., 1988. Diffrential fertilization of pine plantations on acid forest 

soils. South African Forestry Journal 147:16-25. 

 

Stellenbosch University  http://scholar.sun.ac.za



125 
 

Payn, T. W., de Ronde, C. & Grey, D.C. 1988. Phosphate Fertilisation of Mature Pinus 

radiata Stands.  South African Forestry Journal 147:26-31. 

 

Pritchett, W.L., 1979.  Properties and management of forest soils.  John Wiley & Sons. 

New York. 

 

Pritchett, W.L., & Comerford, N.B., 1983. Nutrition and fertilization of slash pine. In: Stone, 

E.L. (ed). The Managed Slash Pine Ecosystem: Proceedings of a symposium held at the 

University of Florida, 1981. University of Florida, School of Forest Resources and 

Conservation, Gainesville, Florida. pp69-90. 

 
Rivaie, A. A., & Tillman, R.W., 2009.  Growth response of second-rotation Pinus radiata on 

an orthic allophanic soil to P fertilizer and weed control. Taiwan Journal of Forest Science 

24(4):11-24.  

 

Sampson, D.A., & Allen, H.L., 1999. Regional influences of soil available water and 

climate, and leaf area index on simulated loblolly pine productivity. Forest Ecology and 

Management. 124:1-12. 

 

Sands, R. & Mulligan, D.R., 1990. Water and nutrient dynamics and tree growth. Forest 

Ecology and Management 30:91-111. 

 

Schonau, A.P.G., 1981. Seasonal changes in foliar nutrient content of Eucalyptus grandis. 

South African Forestry Journal 119:1-4 

 

Stellenbosch University  http://scholar.sun.ac.za



126 
 

Schutz, C.J., 1976. A review of fertilizer research on some of the more important conifers 

and eucalypts planted in subtropical and tropical countries, with special reference to South 

Africa. Bulletin 53. The Department of Forestry, Pretoria, South Africa. 89 pp. 

Schutz, C.J., 1990. Site relationships for Pinus patula in the Eastern Transvaal 

escarpment. PhD thesis. Dept. of Soil Science and Agrometeorology, University of Natal, 

Pietermaritzburg, 334 pp.  

 

Sheriff, D.W., 1996. Responses of carbon gain and growth of Pinus radiata stands to 

thinning and fertilizing. Tree Physiology 16:527-536. 

 

Snowdon, P., & Waring, H.D., 1990. Growth responses by Pinus radiata to combinations 

of superphosphate, urea and thinning type. Forest Ecology and Management 30:313-325. 

Statsoft, Inc., 2010. Statistica 10. http//www.statsoft.com. 

 

Sypert, R.H., 2006. Diagnosis of Loblolly Pine (Pinus taeda L.) Nutrient Deficiencies by 

Foliar Methods. M.Sc. Thesis. Virginia Polytechnic Institute and State University. 

http://scholar.lib.vt.edu. (accessed 2011) 

 

Tewari, D.D., 2005. Should commercial forestry in South Africa pay for water? Valuing 

water and its contribution to the industry. www.wrc.org.za (accessed 2011) 

 

Timmer, V.R., & Stone, E.L., 1978. Comparative foliar analysis of young balsam fir 

fertilized with nitrogen, phosphorus, potassium, and lime. Soil Science. Society. American. 

Journal. 42:125–130. 

 

Stellenbosch University  http://scholar.sun.ac.za



127 
 

Timmer, V.R, & Armstrong, G. 1987. Diagnosing nutritional status of containerised tree 

seedlings: Comparative plant analysis. Soil Science. Society. American Journal. 51:1082-

1086. 

 

Trichet, P., Loustau, D., Lambrot, C., & Linder, S., 2008. Manipulating nutrient and water 

availability in a maritime pine plantation: effects on growth, production, and biomass 

allocation at canopy closure. Annals of Forest. Science. 65 (2008) 814 

 

Turner, J., Knott, J.H., & Lambert, M., 1995. Fertlization of Pinus radiata plantations after 

thinning. I productivity gains.Research devision. Australian Forestry, 59(1):7-21. 

 

Turner, J., Knott, J.H., & Lambert, M., 1996. Fertilization of Pinus radiata plantations after 

thinning. I. Productivity gains. Australian Forestry 59:7-21. 

 

Turner, J., Lambert, M.J., Bowman, V., & Knott, J., 1992. Two post thinning fertilizer trials 

in Pinus radiata in New South Wales, Australia. Fertilizer Research 32:259-267. 

 

Valentine, D.W., Allen, H.L., 1990. Foliar responses to fertilization identify nutrient 

limitation in loblolly pine. Canadian. Journal of. Forest. Research. 20:144–151. 

 

Vose, J.M.,& Allen, H.L., 1988. Leaf area, stemwood growth, and nutrition relationships in 

loblolly pine. Forest Science 34:547-563. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



128 
 

Wells, C., & Allen, L., 1985. When and where to apply fertilizer: A loblolly pine 

management guide. General Technical Report SE-36. U.S. Department of Agriculture, 

Forest Service, Southeastern Forest Experiment Station, Asheville, North Carolina. 24pp. 

 

Will, G., 1985. Nutrient deficiencies and fertiliser use in New Zealand exotic forests. FRI 

Bulletin No 97. Forest Research Institute, New Zealand Forest Service. 

 

Yang, R.C., 1998. Foliage and stand growth responses of semi mature lodgepole pine to 

thinning and fertilization. Canadian Journal of Forest Research 28:1794-1804. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



129 
 

APPENDICES 
 

Appendix 4.1:  Vector nomograms for the vectors classified as large in Table 4.5  
 

 
(a) Vector nomogram of replication S1 showing a type C shift for the largest vector, 

treatment N2P2  
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(b) Vector nomogram of replication S2 showing a type C shift for the largest vectors, 

treatments N2P1 and N2P0.  
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(c)  Vector nomogram of replication S2 showing a type C shift for all the vectors and for 

all treatments  
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(d)  Vector nomogram of replication S2 showing a type C shift for all the vectors and for 

all treatmentc  

 
 
 
 

Stellenbosch University  http://scholar.sun.ac.za



133 
 

 
 
(e) Vector nomogram of replication L1 showing a type C shift for all the vectors and for 

all treatments.  
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(f)  Vector nomogram of replication L1 showing a type C shift for all the vectors and for 

all treatments.  
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increm

ent 
volum

e 
increm

ent. 
%

 
 

 
 

 
 

 
 

 
 

(based on 
Volum

e 
response.) 

 
 

 
 

 
(m

3 ha-1 a-
1) 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
N 

P 
K 

Ca 
M

g 
N 

P 
K 

Ca 
M

g 
N 

P 
K 

Ca 
M

g 

N0P0 

14.71 

100 

1.33 

0.08 

0.49 

0.28 

0.10 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

N0P1 

16.39 

111.42 

1.25 

0.11 

0.53 

0.30 

0.09 

94.00 

133.93 

106.96 

107.11 

95.52 

104.73 

149.23 

119.17 

119.34 

106.43 

N0P2 

16.06 

109.20 

1.18 

0.11 

0.52 

0.36 

0.11 

88.21 

135.71 

106.09 

126.90 

110.45 

96.32 

148.19 

115.84 

138.57 

120.60 

N1P0 

16.71 

113.58 

1.53 

0.09 

0.54 

0.31 

0.12 

115.01 

108.93 

108.70 

111.17 

122.39 

130.62 

123.72 

123.46 

126.27 

139.01 

N1P1 

19.10 

129.85 

1.38 

0.11 

0.56 

0.31 

0.10 

103.64 

137.50 

113.04 

108.63 

101.49 

134.58 

178.54 

146.79 

141.05 

131.79 
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 A

ppendix 4.2a continued 
 

N1P2 

18.39 

125.04 

1.34 

0.12 

0.52 

0.37 

0.10 

100.32 

151.79 

104.64 

132.99 

108.96 

125.44 

189.79 

130.84 

166.29 

136.24 

N2P0 

18.21 

123.83 

1.75 

0.09 

0.49 

0.27 

0.07 

130.98 

108.93 

98.55 

97.46 

76.12 

162.19 

134.89 

122.04 

120.69 

94.26 

N2P1 

20.09 

136.56 

1.60 

0.10 

0.45 

0.33 

0.10 

119.72 

128.57 

91.30 

116.75 

104.48 

163.50 

175.58 

124.69 

159.44 

142.68 

N2P2 

19.91 

135.39 

1.58 

0.13 

0.57 

0.44 

0.12 

118.76 

157.14 

116.23 

157.87 

120.90 

160.78 

212.76 

157.37 

213.74 

163.68 
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 A

ppendix 4.2b: 
 D

ata used for vector analysis for m
ean values across all replications of a m

id-rotation N
xP

 fertilizer trial for m
icro 

nutrients
  

Treatm
ent 

Volum
e 

Relative 
Foliar 

 
 

 
 

Relative 
 

 
 

 
Relative content 

 
 

 
 

 
increm

ent 
volum

e 
concentration 

 
 

 
 

concentration 
 

 
 

 
(based on Volum

e response.) 
 

 
 

 

 
(m

3 ha
-1 a

-1) 
increm

ent. 
%

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
M

n 
Fe 

Cu 
Zn 

B 
M

n 
Fe 

Cu 
Zn 

B 
M

n 
Fe 

Cu 
Zn 

B 

N0P0 

14.71 

100 

0.0219 

0.0122 

0.0016 

0.0015 

0.0025 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

N0P1 

16.39 

111.42 

0.0265 

0.0117 

0.0016 

0.0022 

0.0026 

120.70 

95.78 

100.00 

143.81 

101.70 

134.49 

106.72 

111.42 

160.24 

113.32 

N0P2 

16.06 

109.20 

0.0239 

0.0122 

0.0015 

0.0021 

0.0027 

108.72 

99.88 

91.23 

139.05 

106.82 

118.72 

109.07 

99.62 

151.83 

116.64 

N1P0 

16.71 

113.58 

0.0213 

0.0099 

0.0013 

0.0018 

0.0026 

97.14 

81.24 

81.58 

120.00 

104.55 

110.33 

92.28 

92.66 

136.30 

118.74 

N1P1 

19.10 

129.85 

0.0175 

0.0114 

0.0013 

0.0015 

0.0023 

79.75 

93.55 

78.07 

102.86 

89.77 

103.56 

121.48 

101.37 

133.56 

116.57 

N1P2 

18.39 

125.04 

0.0214 

0.0121 

0.0015 

0.0018 

0.0023 

97.46 

99.65 

92.98 

120.00 

90.34 

121.86 

124.60 

116.26 

150.05 

112.96 
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N2P0 

18.21 

123.83 

0.0215 

0.0103 

0.0017 

0.0019 

0.0023 

98.18 

84.29 

106.14 

129.52 

90.34 

121.57 

104.38 

131.44 

160.39 

111.87 

N2P1 

20.09 

136.56 

0.0241 

0.0119 

0.0016 

0.0018 

0.0026 

109.96 

97.54 

96.49 

117.14 

104.55 

150.17 

133.20 

131.77 

159.97 

142.77 

N2P2 

19.91 

135.39 

0.0189 

0.0112 

0.0017 

0.0028 

0.0026 

86.13 

92.15 

106.14 

188.57 

101.70 

116.62 

124.76 

143.70 

255.31 

137.70 
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Appendix 4.3:  ANOVA outputs  
 
(a) LAI response to N, P and water availability class at 12 months (2009) 
 
Source of variation Df MS F p 

Intercept 1 54.48 170.60 <0.001* 

Nitrogen 2 1.37 4.30 0.020* 

Phosphorus 2 0.99 3.11 0.056* 

Water 3 0.48 1.51 0.227 

Nitrogen x Phosphorus 4 0.07 0.22 0.925 

Nitrogen x Water 6 0.28 0.88 0.519 

Phosphorus x Water 6 0.21 0.64 0.696 

Error 39 0.32   
 

* Statistically significant results of p<0.1 

 

(b) LAI response to NP and water availability class at 24 months (2010) 
 
Source of variation Df MS F p 

Intercept 1 10.76 31.07 <0.001* 

Initial LAI (covariate) 1 3.11 8.99 0.005* 

Nitrogen 2 0.74 2.15 0.131 

Phosphorus 2 1.32 3.82 0.031* 

Water 3 1.39 4.02 0.014* 

Nitrogen x Phosphorus 4 0.42 1.21 0.322 

Nitrogen x Water 6 0.16 0.47 0.829 

Phosphorus x Water 6 0.24 0.69 0.659 

Error 38 0.35   
 

* Statistically significant results of p<0.1 
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(c) Basal area increment response to N, P and water availability class in year 1 (2009) 

 
Source of variation Df MS F p 

Intercept 1 252.97 276.41 <0.001* 

Nitrogen 2 0.61 0.67 0.518 

Phosphorus 2 0.05 0.05 0.951 

Water 3 5.12 5.60 0.003* 

Nitrogen x Phosphorus 4 0.02 0.03 0.999 

Nitrogen x Water 6 0.11 0.12 0.993 

Phosphorus x Water 6 0.04 0.04 1.000 

Error 39 0.92   
 

* Statistically significant results of p<0.1 

 

(d) Basal area increment response to N,P and water availability class in year 2 (2010) 

 
Source of variation Df MS F p 

Intercept 1 1.57 5.05 0.031* 

Initial basal area (covariate) 1 5.61 18.06 <0.001* 

Nitrogen 2 2.69 8.66 <0.001* 

Phosphorus 2 0.94 3.02 0.061* 

Water 3 0.92 2.96 0.044* 

Nitrogen x Phosphorus 4 0.14 0.46 0.762 

Nitrogen x Water 6 0.13 0.41 0.869 

Phosphorus x Water 6 0.11 0.35 0.907 

Error 38 0.31   
 

* Statistically significant results of p<0.1 
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(e) Total basal area increment response to N,P and water availability class over the two 
year period (2008-2010) 

 

Source of variation Df MS F p 

Intercept 1 1211.64 595.91 <0.001* 

Nitrogen 2 5.67 2.79 0.074* 

Phosphorus 2 1.15 0.57 0.573 

Water 3 14.57 7.17 <0.001* 

Nitrogen X Phosphorus 4 0.28 0.14 0.967 

Nitrogen X Water 6 0.32 0.16 0.987 

Phosphorus X Water 6 0.19 0.09 0.997 

Error 39 2.03   
 

* Statistically significant results of p<0.1 

 

(f) Volume increment response to N,P and water availability class in year 1 (2009) 

 

Source of variation Df MS F p 

Intercept 1 13677.68 684.97 <0.001* 

Nitrogen 2 35.16 1.76 0.185 

Phosphorus 2 2.08 0.10 0.901 

Water 3 942.19 47.18 <0.001* 

Nitrogen X Phosphorus 4 1.27 0.06 0.992 

Nitrogen X Water 6 5.61 0.28 0.943 

Phosphorus X Water 6 8.22 0.41 0.867 

Error 39 19.97   
 

* Statistically significant results of p<0.1 
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(g) Volume increment response to N, P and water availability class in year 2 (2010) 

 

Source of variation Df MS F p 

Intercept 1 82.16 2.93 0.095* 

Initial volume (covariate) 1 857.32 30.58 <0.001* 

Nitrogen 2 110.39 3.94 0.028* 

Phosphorus 2 57.65 2.06 0.142 

Water 3 227.87 8.12 <0.001* 

Nitrogen x Phosphorus 4 1.93 0.07 0.991 

Nitrogen x Water 6 5.37 0.19 0.977 

Phosphorus x Water 6 6.17 0.22 0.968 

Error 38 28.03   
 

* Statistically significant results of p<0.1 

 

(h) Total volume increment response to N, P and water availability class over the two 
year period (2008-2010) 

 

Source of variation Df MS F p 

Intercept 1 1136.54 15.46 <0.001* 

Initial volume (covariate) 1 1152.13 15.67 <0.001* 

Nitrogen 2 267.29 3.64 0.036* 

Phosphorus 2 84.56 1.15 0.327 

Water 3 1091.17 14.84 <0.001* 

Nitrogen x Phosphorus 4 2.45 0.03 0.998 

Nitrogen x Water 6 8.73 0.12 0.994 

Phosphorus x Water 6 21.74 0.30 0.935 

Error 38 73.51   
 

* Statistically significant results of p<0.1 
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(i) GE response to N,P and water availability class in year 1 (2009) 

 

Source of variation Df MS F p 

Intercept 1 1703.02 1174.84 <0.001* 

Nitrogen 2 0.45 0.31 0.733 

Phosphorus 2 0.43 0.30 0.746 

Water 3 23.88 16.48 <0.001* 

Nitrogen X Phosphorus 4 0.29 0.20 0.936 

Nitrogen X Water 6 0.50 0.35 0.908 

Phosphorus X Water 6 1.19 0.82 0.559 

Error 39 1.45   
 

* Statistically significant results of p<0.1 

 
(j) GE response to N, P and water availability class in year 2 (2010) 

 

Source of variation Df MS F p 

Intercept 1 48.28 38.22 <0.001* 

Initial volume (covariate) 1 42.84 33.92 <0.001* 

Nitrogen 2 3.91 3.10 0.057* 

Phosphorus 2 2.60 2.05 0.142 

Water 3 5.55 4.39 0.010* 

Nitrogen x Phosphorus 4 0.18 0.15 0.964 

Nitrogen x Water 6 1.50 1.19 0.332 

Phosphorus x Water 6 1.68 1.33 0.268 

Error 38 1.26   
 

* Statistically significant results of p<0.1 
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(k) GE response to N, P and water availability class over the two year period (2008-
2010) 

 

Source of variation Df MS F p 

Intercept 1 304.31 82.45 <0.001* 

Initial volume (covariate) 1 40.12 10.87 0.002* 

Nitrogen 2 6.64 1.80 0.179 

Phosphorus 2 1.11 0.30 0.742 

Water 3 8.56 2.32 0.091* 

Nitrogen x Phosphorus 4 0.44 0.12 0.974 

Nitrogen x Water 6 2.73 0.74 0.621 

Phosphorus x Water 6 4.26 1.15 0.351 

Error 38 3.69   
 

* Statistically significant results of p<0.1 

 

(l) Foliar N response to N and P fertilizer treatment one year after treatment (2009) 

 

Source of variation Df MS F p 

Intercept 1 130.18 2326.33 <0.001* 

Nitrogen 2 0.80 14.21 <0.001* 

Phosphorus 2 0.17 2.99 0.059* 

Nitrogen x Phosphorus 4 0.004 0.07 0.99 

Error 54 0.06   
 

* Statistically significant results of p<0.1 
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Appendix 4.4:  LSD tables for responses that were significant 
 
(a) LSD test for LAI response to N at 12 months (2009) 
 

Treatment N0 N100 N200 

0.70 0.99 1.25 

N0    

N100 0.106   

N200 0.003* 0.147  

 

* Statistically significant results of p<0.1 

 
(b) LSD test for LAI response to P at 12 months (2009) 
 

Treatment P0 P50 P100 

0.69 1.16 1.09 

P0    

P50 0.011*   

P100 0.030* 0.688  

 

* Statistically significant results of p<0.1 

 

(c) LSD test for LAI response to P at 24 months (2010) 
 

Treatment P0 P50 P100 

0.56 1.13 1.19 

P0    

P50 0.003*   

P100 0.001* 0.739  

 
* Statistically significant results of p<0.1 
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(d) LSD test for LAI response to water availability class at 24 months (2010) 
 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
0.94 0.66 0.57 1.49 

Water 
class 1     

Water 
class 2 0.350    

Water 
class 3 0.265 0.801   

Water 
class 4 0.378 0.089* 0.062*  

 
* Statistically significant results of p<0.1 

 

(e) LSD test for basal area increment response to water availability class in year 1 
(2009) 

 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
1.82 2.07 1.58 2.91 

Water 
class 1     

Water 
class 2 0.449    

Water 
class 3 0.542 0.223   

Water 
class 4 0.002* 0.012* 0.002*  

 
* Statistically significant results of p<0.1 

 

(f) LSD test for basal area increment response to N in year 2 (2010) 
 

Treatment N0 N100 N200 

2.15 2.58 2.79 

N0    

N100 0.016*   

N200 <0.001* 0.223  

 
* Statistically significant results of p<0.1 
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(g) LSD test for basal area increment response to P in year 2 (2010) 
 

Treatment P0 P50 P100 

2.26 2.65 2.62 

P0    

P50 0.029*   

P100 0.043* 0.862  

 
* Statistically significant results of p<0.1 

 

(h) LSD test for basal area increment response to water availability class in year 2 
(2010) 

 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
2.13 2.41 2.39 3.04 

Water 
class 1     

Water 
class 2 0.149    

Water 
class 3 0.276 0.922   

Water 
class 4 <0.001* 0.002* 0.007*  

 
* Statistically significant results of p<0.1 

 

(i) LSD test for total basal area increment response to N over the two year period 
(2008-2010) 

 

Treatment N0 N100 N200 

4.13 4.78 5.11 

N0    

N100 0.150   

N200 0.033* 0.461  

 
* Statistically significant results of p<0.1 
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(j) LSD test for total basal area increment response to water availability class over the 
two year period (2008-2010) 

 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
3.96 4.47 3.97 5.95 

Water class 
1     

Water class 
2 0.283    

Water class 
3 0.984 0.390   

Water class 
4 <0.001* 0.004* 0.002*  

 

* Statistically significant results of p<0.1 

(k) LSD test for volume increment response to water availability class in year 1 (2009) 
 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
9.34 14.84 11.42 26.04 

Water 
class 1     

Water 
class 2 <0.001*    

Water 
class 3 0.261 0.068*   

Water 
class 4 <0.001* <0.001* <0.001*  

 
* Statistically significant results of p<0.1 

 

(l) LSD test for volume increment response to N in year 2 (2010) 
 

Treatment N0 N100 N200 

17.83 20.92 21.98 

N0    

N100 0.181   

N200 0.051* 0.811  

 
* Statistically significant results of p<0.1 
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(m) LSD test for volume increment response to water availability class in year 2 (2010) 
 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
15.25 17.93 16.50 29.40 

Water 
class 1     

Water 
class 2 0.137    

Water 
class 3 0.566 0.512   

Water 
class 4 <0.001* <0.001* <0.001*  

* Statistically significant results of p<0.1 

 

(n) LSD test for total volume increment response to N over the two year period (2008-
2010) 

 

Treatment N0 N100 N200 

32.38 37.37 38.91 

N0    

N100 0.182   

N200 0.059* 0.845  

 
* Statistically significant results of p<0.1 

(o) LSD test for total volume increment response to water availability class over the two 
year period (2008-2010) 

 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
24.59 32.78 27.92 55.44 

Water 
class 1     

Water 
class 2 0.007*    

Water 
class 3 0.347 0.173   

Water 
class 4 <0.001* <0.001* <0.001*  

 
* Statistically significant results of p<0.1 
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(p) LSD test for growth efficiency response to water availability class in year 1 (2009) 
 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
4.24 5.64 4.89 6.98 

Water 
class 1     

Water 
class 2 0.001*    

Water 
class 3 0.195 0.137   

Water 
class 4 <0.001* 0.002* <0.001*  

 
* Statistically significant results of p<0.1 

(q) LSD test for growth efficiency response to water availability class in year 2 (2010) 
 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
6.59 6.69 7.03 7.77 

Water 
class 1     

Water 
class 2 0.778    

Water 
class 3 0.337 0.464   

Water 
class 4 0.003* 0.007* 0.116  

 
* Statistically significant results of p<0.1 

(r) LSD test for growth efficiency response to water availability class over the two year 
period (2008-2010) 

 

Treatment Water class 1 Water class 2 Water class 3 Water class 4 
10.83 12.33 11.92 14.75 

Water 
class 1     

Water 
class 2 0.158    

Water 
class 3 0.589 0.965   

Water 
class 4 <0.001* 0.006* 0.010*  

* Statistically significant results of p<0.1 
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Appendix 4.5:  Summary of a forward stepwise regression for LAI at 24 months 

where p to enter was 0.1 and p to remove was 0.2 

 

Effect Steps Df F to remove p to remove F to enter p to enter Effect status 

Nitrogen Step 1 1   3.491 0.066 Out 

Phosphorus  1   9.719 0.003 Entered 

Water  1   0.382 0.539 Out 

Phosphorus Step 2 1 9.719 0.003   In 

Nitrogen  1   4.018 0.05 Entered 

Water  1   0.436 0.512 Out 

Phosphorus Step 3 1 10.199 0.002   In 

Nitrogen  1 4.018 0.0495   In 

Water  1   0.458 0.501 Out 

 

Stellenbosch University  http://scholar.sun.ac.za



152 
 

Appendix 4.6:  Least squares means for leaf area, basal area, volume increment and growth efficiency for all the nitrogen and 
phosphorus levels over the different water availability classes. All predicted means were 
obtained in the presence of covariates as explained in Chapter 4.  
 

Variable Treatment 
Water 

class 1 Mean SE 
Water 

class 2 Mean SE 
Water 

class 3 Mean SE 
Water 

class 4 Mean SE 

Mean LAI increment (m2 m-2 ) N0P0 0.55 0.33 0.07 0.33 0.47 0.47 1.19 0.35 

�

N0P50 1.06 0.35 0.65 0.33 0.52 0.46 1.05 0.36 

�

N0P100 0.62 0.33 0.84 0.33 0.71 0.47 0.97 0.35 

�

N100P0 0.08 0.33 0.77 0.33 1.06 0.47 0.83 0.36 

�

N100P50 1.06 0.33 0.57 0.33 0.28 0.46 2.18 0.33 

�

N100P100 1.08 0.33 0.71 0.33 1.06 0.47 1.43 0.34 

�

N200P0 0.88 0.33 0.31 0.33 0.75 0.46 1.00 0.37 

�

N200P50 1.04 0.34 1.54 0.33 1.21 0.46 1.65 0.36 

  N200P100 1.62 0.34 1.81 0.33 0.75 0.47 1.66 0.37 

Mean Basal area increment (m2 ha -1 a -1) N0P0 1.86 0.61 1.73 0.61 1.47 0.85 2.50 0.60 

�

N0P50 2.24 0.61 1.91 0.60 1.67 0.85 2.47 0.60 

�

N0P100 1.82 0.62 1.93 0.60 1.68 0.85 2.82 0.61 

�

N100P0 1.71 0.62 2.12 0.61 2.17 0.84 2.84 0.62 

�

N100P50 2.43 0.62 2.36 0.60 2.06 0.85 3.06 0.61 

�

N100P100 2.32 0.62 2.28 0.61 2.02 0.84 2.74 0.60 

�

N200P0 1.92 0.62 2.24 0.60 2.43 0.85 2.82 0.61 

�

N200P50 2.18 0.63 2.40 0.60 2.42 0.84 3.26 0.62 

  N200P100 2.67 0.63 2.49 0.60 2.53 0.85 3.27 0.61 
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Appendix 4.6: continued 
 

Variable Treatment 
Water 

class 1 Mean SE 
Water 

class 2 Mean SE 
Water 

class 3 Mean SE 
Water 

class 4 Mean SE 

Mean volume increment (m3 ha -1 a -1) N0P0 14.22 3.66 12.22 3.60 11.79 5.04 20.60 3.61 

�

N0P50 16.09 3.66 13.42 3.57 12.28 5.05 23.76 3.62 

�

N0P100 13.32 3.72 14.09 3.56 12.09 5.06 24.74 3.68 

�

N100P0 12.80 3.70 14.83 3.60 16.87 5.03 22.32 3.75 

�

N100P50 18.61 3.68 16.24 3.58 15.24 5.03 26.30 3.66 

�

N100P100 17.23 3.71 15.15 3.58 15.04 5.03 26.14 3.62 

�

N200P0 14.80 3.74 16.65 3.56 17.37 5.03 24.03 3.65 

�

N200P50 16.44 3.77 16.98 3.55 17.16 5.03 29.76 3.73 

  N200P100 18.45 3.79 17.57 3.57 17.73 5.06 25.90 3.68 

Mean growth efficiency (m3 ha -1 a -1 LAI -1) N0P0 5.77 0.75 5.84 0.74 5.47 1.04 5.91 0.74 

�

N0P50 6.19 0.75 6.16 0.73 4.82 1.04 6.97 0.74 

�

N0P100 5.45 0.77 5.56 0.73 5.07 1.04 7.75 0.76 

�

N100P0 5.46 0.76 5.80 0.74 7.26 1.03 6.54 0.77 

�

N100P50 6.63 0.76 6.47 0.74 6.68 1.04 6.98 0.75 

�

N100P100 6.85 0.76 5.44 0.74 6.00 1.04 6.84 0.74 

�

N200P0 5.26 0.77 7.01 0.73 6.94 1.04 6.53 0.75 

�

N200P50 6.65 0.78 5.65 0.73 5.88 1.04 7.53 0.77 

  N200P100 6.14 0.78 5.67 0.73 7.34 1.04 6.62 0.76 
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Appendix 4.7:  Linear regression for initial LAI against total volume increment over 
the two year period 
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(a) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N0P0 
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(b) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N0P1 
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(c) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N0P2 
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(d) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N1P0 
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(e) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N1P1 
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(f) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N1P2 
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(g) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N2P0 

 

Stellenbosch University  http://scholar.sun.ac.za



161 
 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Initial LAI before treatment (m2 m-2)

10

20

30

40

50

60

70

80
T

ot
al

 v
ol

um
e 

in
cr

em
en

t 2
00

8 
- 

20
10

 (
m

3  h
a-1

)

  y = -0.6742 + 21.5536*x;
  r2 = 0.86

 
(h) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N2P1 

 

Stellenbosch University  http://scholar.sun.ac.za



162 
 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

Initial LAI before treatment (m2 m-2)

25

30

35

40

45

50

55

60

65
T

ot
al

 v
ol

um
e 

in
cr

em
en

t 2
00

8-
20

10
 (

m
3  h

a-1
)

 y = 11.1595 + 14.7172*x;
  r2 = 0.93

 
(i) Regression of total volume increment (2008-2010) against initial LAI before 

treatment for treatment N2P2 
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Appendix 4.8: Regression of initial LAI at the start of 2010 against volume increment 

in 2010. 
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Appendix 4.9:  Linear regression for initial basal area against total volume increment 
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(a) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N0P0 
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(b) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N0P1 
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(c) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N0P2 
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(d) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N1P0 
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(e) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N1P1 
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(f) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N1P2 
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(g) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N2P0 
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(h) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N2P1 

 

Stellenbosch University  http://scholar.sun.ac.za



172 
 

8 10 12 14 16 18 20 22 24 26

Initial basal area before treatment (m2 ha-1)

25

30

35

40

45

50

55

60

65
T

ot
al

 v
ol

um
e 

in
cr

em
en

t 2
00

8-
20

10
 (

m
3  h

a-1
)

 y = 4.0674 + 2.2571*x;
r2 = 0.73

 
(i) Regression of total volume increment (2008-2010) against initial basal area before 

treatment for treatment N2P2 
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Appendix 4.10: Regression of initial LAI before at the start of 2010 against basal area 

increment in 2010. 
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Appendix 4.11: Regression of initial LAI before treatment against LAI increment over 

24 months 
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