
 

 

 

A DETAILED ANALYSIS OF THE IMPERFECTIONS OF 

PULSEWIDTH MODULATED WAVEFORMS ON THE 

OUTPUT STAGE OF A CLASS D AUDIO AMPLIFIER 

 

Francois Koeslag 

 

 

Dissertation presented in partial fulfilment of the requirements for the degree  

of Doctor of Philosophy in Engineering at the University of Stellenbosch 

 

 

 

 

 

 

 

 

Supervisor: Prof. H. du T. Mouton  

Co-supervisor: Dr. H.J. Beukes 

 

December 2008



 

 

- i -

DECLARATION 
 

By submitting this dissertation electronically, I declare that the entirety of the work 

contained therein is my own, original work, that I am the owner of the copyright thereof 

(unless to the extent explicitly otherwise stated) and that I have not previously in its entirety 

or in part submitted it for obtaining any qualification. 



 

 

- ii - 

SUMMARY 
 

Although the Class D topology offers several advantages, its use in audio amplification 

has previously been limited by the lack of competitiveness in fidelity compared to its linear 

counterparts. During the past decade, technological advances in semiconductor technology 

have awakened new interest since competitive levels of distortion could now be achieved. The 

output stage of such an amplifier is the primary limiting factor in its performance. In this 

dissertation, four non-ideal effects existing in this stage are identified and mathematically 

analysed. The analytical analysis makes use of a well-established mathematical model, based 

on the double Fourier series method, to model the imperfections introduced into a naturally 

sampled pulsewidth modulated waveform. The analysis is complemented by simulation using 

a strategy based on Newton’s numerical method. The theory is verified by a comparison 

between the analytical-, simulated- and experimental results. 
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OPSOMMING 
 

Die klas D topologie bied verskeie voordele, maar die toepassing daarvan in oudio 

versterkers was beperk tot op hede as gevolg van onvergelykbare vlakke van distorsie in 

vergelyking met analoog versterkers. Tegnologiese vooruitgang in halfgeleier tegnologie oor 

die laaste dekade het tot nuwe belangstelling gelei in die toepassing van die klas D topologie 

in oudio versterkers, siende dat kompeterende vlakke van distorsie nou haalbaar was. Die 

uittreestadium van hierdie versterkers is die beperkende faktor in distorsie. Hierdie proefskrif 

identifiseer en analiseer vier nie-ideale effekte wiskundig. Daar word gebruik gemaak van ‘n 

wel bekende metode, gebaseer op die dubbele Fourier reeksuitbreiding, om die nie-idealiteite 

in ‘n natuurlik gemonsterde pulswydte gemoduleerde golfvorm te modelleer. Die analise 

word aangevul deur simulasies gebaseer op ‘n strategie wat gebruik maak van Newton se 

numeriese metode. Die teorie word geverifieer deur ’n vergelyking tussen die analitiese-, 

simulasie- en eksperimentele resultate. 
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PDM   Pulse Duration Modulation 

PNPWM  Pseudo Naturally Sampled Pulsewidth Modulation 

PTE   Pulse Timing Error 

PTEs   Pulse Timing Errors 

PWM   Pulsewidth Modulation 

TEPWM  Trailing Edge Pulsewidth Modulation (Uniform or Natural) 

TENPWM  Trailing Edge Natuarally Sampled Pulsewidth Modulation 

TEUPWM  Trailing Edge Uniformly Sampled Pulsewidth Modulation 

UPWM  Uniformly Sampled Pulsewidth Modulation 

THD   Total Harmonic Distortion 
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GLOSSARY 
 
BVDSS  breakdown voltage 

Cfilt  demodulation filter capacitor 

CGD  gate-to-drain capacitance 

CGS  gate-to-source capacitance 

Ciss  input capacitance 

D  duty cycle 

DA1  diode of high side switch of phase leg A 

DB1  diode of high side switch of phase leg B 

DA2  diode of low side switch of phase leg A 

DB2  diode of low side switch of phase leg B 

f0  reference frequency 

fc  carrier/switching frequency 

gm  transconductance 

iA  inductor current flowing in phase leg A 

iB  inductor current flowing in phase leg B 

�iL  inductor current ripple component 

iL  inductor current 

IL  inductor current (scalar) 

iD  drain current 

ID  drain current (scalar) 

io  output load current 

Io  output load current (scalar) 

Lfilt  demodulation filter inductor 

M  modulation index 

rDS(on)  on-state resistance 

RG  gate resistance 

Rload  load resistance 

TA1  high side switch of phase leg A 

TB1  high side switch of phase leg B 

TA2  low side switch of phase leg A 
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TB2  low side switch of phase leg B 

tdt  dead time 

td(vr)  turn-on delay (rising voltage) 

td(vf)  turn-off delay (falling voltage) 

tvf  voltage fall time 

tvr  voltage rise time 

Tc  switching period 

Vd  DC bus voltage 

vDS  drain-to-source voltage 

vo  output load voltage 

VDF  diode forward voltage 

vGS  gate-to-source voltage 

VGS  gate-to-source voltage (scalar) 

VGS(th)  gate-to-source threshold voltage 

�0  angular modulating frequency (rad/s) 

�c  angular switching frequency (rad/s) 
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LITERATURE 

 

 

 

1.1 INTRODUCTION 
 

The Class D mode of operation was originally introduced in 1959 by Baxandall for the 

potential application in oscillator circuits [1]. Since then it has found several widespread 

applications in power electronics. More recently, audio amplifiers implementing this topology 

have emerged on a large scale. Although the Class D topology offers several advantages, its 

use has previously been limited by the lack of competitiveness in fidelity compared to its 

linear counterparts. Until recently, this drawback has been the result of limitations in 

semiconductor technology [2]. Due to technological advances in this field during the past 

decade, however, new interest has been awakened in the application of this topology in audio 

amplification, since competitive levels of distortion could now be achieved [2]. 

Two primary motivations currently drive the research in this field of which efficiency can 

be regarded as the first and most important [3]. This increased efficiency over conventional 

analogue amplifiers has the effect of decreasing supply requirements. Moreover, the lower 

power loss is also decreasing or even eliminating the use of heatsinks. The resultant higher 

levels of efficiency translate into smaller, lower cost designs. The second motivation is that 

audio is increasingly derived from digital sources. This is an advantage since the output stage 

can be driven directly from a digital signal after pulse code modulation (PCM) to pulsewidth 

modulation (PWM) conversion, creating a purely digital audio amplifier without the need for 

any digital-to-analogue conversion [4]. 

 

1.2 BASIC CONCEPT AND DEVELOPMENT 
 

Class D stages operate in switched mode, which means that the power transistors in the 

output stage are either fully on or fully off. Since only two possible states exist, such an output 

stage relies on the amplification of some binary intermediate signal. 
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The audio signal thus needs to be modulated in and out of this intermediate signal. PWM 

is currently the most popular form of this binary signal used in Class D audio amplifiers [5]. 

Early research in this field was based on this method in combination with Class D power 

stages to accomplish the amplification [6], [7]. Several modulation methods currently exist for 

creating PWM, of which the earliest and most basic is called natural sampling. This method 

utilizes the normal form of analogue signals directly. The analogue audio input is compared to 

a reference waveform (modulated) whose frequency is multiples higher than that of the audio 

bandwidth in order to represent the input signal accurately. The resulting switching output is 

then fed to the power stage, which performs the necessary amplification. The amplified audio 

signal is then recovered (demodulated) once the output waveform has been passed through a 

low-pass filter. Alternatively, when digital signals are available, the conventional method is 

first to convert to analogue and then to proceed with the above mentioned modulation process. 

Since audio is increasingly derived from digital sources, the logical next step was to 

generate the PWM directly from digital code. Early publications on this subject proposed 

system architectures running at high modulator speeds of tens of GHz [6]. Such systems were 

clearly impractical due to the limitations posed by the power stage. The digital counter 

frequency was brought down to several tens of MHz by the introduction of noise shaping 

techniques, but performance was still limited due to distortions introduced by the modulation 

process [5]. This problem was addressed by the introduction of a technique called the 

enhanced concept of power digital-to-analogue conversion [8]. This method relies on pre-

processing of the input signal in order to compensate for the distortion introduced by the 

modulation process. Results from simulations on this subject were published as early as 1990 

[9]. The next major advance in this field was the implementation of sigma-delta modulation. 

However, early research again identified the problem of high pulse frequencies which were 

degrading audio performance during amplification in the power stage [8]. This problem was 

addressed by reducing the pulse frequency with a technique called ‘bit flipping’. A complete 

design and implementation of this architecture can be found in [10]. 
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1.3 SYSTEM IMPERFECTIONS 
 

It is well known that PWM introduces harmonic distortion. Early research based on the 

double Fourier series revealed this fact [11]. The analysis in [11] confirms that the output 

spectrum captures the input spectrum, but signal dependant harmonics proportional to 

ordinary Bessel functions are created at multiples of the switching frequency, accompanied by 

their respective sidebands. These sidebands appear in the audio band if the carrier frequency 

is not high enough, which results in distortion. However, by selecting a high carrier to 

fundamental ratio these harmonics can be minimized to negligible values. A switching 

frequency of more than ten times the modulating frequency results in harmonic levels below 

−144 dB [12]. 

From the previous section it is evident that early research paid special attention to the 

digital implementation of the conversion process to PWM. Several schemes were introduced 

to minimize and overcome the limitations posed by the uniformly sampled PWM (UPWM) 

modulation process. Such an example is the ‘cross-point detector’ found in the enhanced 

concept of power digital-to-analogue conversion. The original analogue waveform is 

represented by the uniform samples of the digital signal. However, from the spectral analysis 

it is evident that uniform sampling introduces distortion within the baseband [1], [13]. The 

linearizer improves (i.e. reduces) this distortion by approximating natural sampling using a 

technique called pseudo naturally sampled PWM (PNPWM). This is done by estimating the 

crossing point of the modulating and reference waveform through interpolation of additional 

data points using numerical methods. An analogue PWM process is also prone to distortion. 

This can either be a result of noise appearing in the modulating signal or of non-ideal effects 

associated with the reference waveform. Carrier non-linearity leads to timing errors within the 

sampling process. Previous work has shown that minor deviations in carrier linearity 

influence distortion significantly [14]. 

It is evident that natural sampling provides a basis for achieving low distortion. This 

suggests that the power stage is the primary limiting factor in the performance of Class D 

audio amplifiers [12]. Several imperfections in the output stage contribute to distortion. These 

non-ideal effects can be categorized into two main groups [15], i.e. pulse-timing errors (PTEs) 

and pulse-amplitude errors (PAEs). The former group is a result of three sources of which the 

first is distortion due to power supply imperfections. The output voltage of a Class D audio 
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amplifier is directly proportional to the supply voltage. Any voltage fluctuations caused as a 

result of current drawn by the amplifier introduce an error in the output [16]. The second 

pulse amplitude error (PAE) results from the non-linear switch impedance. Finally, the 

ringing effect caused by the resonant action between the parasitic inductance and capacitance 

also leads to amplitude errors. PTEs exist as a result of the non-ideal switching characteristics 

of the power devices. These errors can be sub-divided into two groups, i.e. errors occurring as 

a primary or secondary consequence of the non-ideal switching behaviour. Typical PTEs 

resulting from the primary consequence, assuming a power metal oxide semiconductor field 

effect transistor (MOSFET) as switching device, include the non-zero turn-on and turn-off 

delays, as well as the non-zero, non-linear turn-on and turn-off switching transitions. The 

well-known pulse timing error (PTE) resulting from dead time can be classified as a 

secondary consequence of the switching behaviour. The scope of this dissertation as well as 

general assumptions are considered in the following section. 

 

1.4 CIRCUIT DEFINITIONS, SCOPE AND GENERAL ASSUMPTIONS 
 

In this dissertation an investigation is launched into the parameters affecting total 

harmonic distortion (THD) in the output stages of Class D switching audio amplifiers. A 

general system representation, discussed below, is shown in Figure 1.1. 
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Figure 1.1: Basic circuit parameters and definitions. 
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The focus of this investigation is limited to a discrete, open loop system. The waveform 

generated by the digital source is assumed to be a result of a perfect, single-sided, two-level 

PNPWM process, effectively reproducing NPWM. The output stage topology is assumed to 

be either a half-bridge or full-bridge configuration with the current flow in each phase leg 

(denoted A and B) defined in Figure 1.1. The gate drivers are assumed to be ideal, i.e. they 

switch in zero time with no propagation delay existing between the gating signals supplied to 

the upper and lower metal oxide semiconductor field effect transistors (MOSFETs) of each 

phase. The MOSFETs are considered perfectly matched. The imperfections associated with 

the power supply and the filter are neglected. The basic definitions of the circuit parameters 

defined in Figure 1.1 remain unchanged for the rest of this dissertation. 

 

1.5 EXISTING LITERATURE AND CONTRIBUTIONS 
 

A detailed study of existing literature falling within the scope of each aspect investigated 

in this dissertation will now be considered. This includes a general overview on each subject 

involved herein, after which a more focussed review of highly relevant reports is presented. 

Each sub-section concludes with the list of contributions made by this dissertation. 

 

1.5.1 ANALYTICAL DETERMINATION OF THE SPECTRUM OF NPWM 

 

Pulsewidth modulation is a non-linear process which results in a non-periodic pulse train. 

This means that one-dimentional Fourier analysis cannot be applied. This complicates the 

analytical determination of the spectrum significantly. W.R. Bennet [11] and H.S. Black [17] 

introduced a method for determining the modulation products analytically by representing the 

pulse train as a three-dimensional (3-D) unit area. The analysis was originally proposed for 

use in communication systems, and expanded to power converter systems by S.R. Bowes [18] 

and B. Bird [19]. A further study by D.G. Holmes [20] involved the derivation of an 

expression for uniform and natural sampling where the reference waveform is sinusoidal, 

requiring only one Bessel function multiplication for each harmonic. An alternative method 

for determining the spectrum of PWM analytically has been introduced by Z. Song and D.V. 

Sarwate [21].  
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The spectrum of PWM can also be found by applying the fast Fourier transform (FFT) to 

a simulated time-varying switched waveform (such as PSpice). This approach has both 

advantages and disadvantages. One major advantage is the reduction in mathematical effort 

compared to analytical computation. The downside is that the time resolution of the 

simulation has to be very high in order to produce accurate crossing points between the 

modulating and carrier waveforms. This in turn requires significant computing power, which 

is very time-consuming. In contrast, the analytical solutions exactly identify the frequency 

components created by the modulation process. Moreover, the harmonic composition of the 

waveform is also shown, i.e. the individual contributions of the fundamental low frequency 

component, baseband harmonics, carrier harmonics as well as sideband harmonics to the 

spectrum. This information cannot be supplied via simulation. 

 

Relevant Literature 

 

The analytical analysis presented in [22] employs W.R. Bennet’s [11] method to establish 

the harmonic composition of PWM in the presence of a non-zero dead time. The analysis 

shows how the 3-D unit area can be modified to accommodate this delay. A publication, 

“Analytical Calculation of the Output Harmonics in a Power Electronic Inverter with Current 

Dependent Pulse Timing Errors”, by the author [23] addresses the limitations posed by the 

current model in [22]. 

 

Limitations posed by existing Literature 

 

The investigation in [22] effectively demonstrates the modifications necessary to 

incorporate constant time delays within the 3-D unit area. However, the proposed model 

cannot be applied directly to the analysis in this dissertation since the inductor current model 

in [22] is very limited. Furthermore, as will be discussed later in this section, the majority of 

PAEs and PTEs are dependent on the current magnitude which results in varying delays. The 

model in [22] only includes a constant time delay. As mentioned, W.R. Bennet’s [11] method 

has two advantages over the simulation of a time-varying waveform, i.e. the exact magnitudes 

of the harmonic components can be determined rapidly from the coefficients, and secondly, 

the harmonic composition of the spectrum can be determined. With the inclusion of non-ideal 
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effects the analytical integration becomes tedious, which is apparent from the solutions in 

[22]. As will be shown in Chapter 3, no closed form solution describing the Fourier 

coefficients can be obtained with the inclusion of a more realistic inductor current model 

within the 3-D unit area, and should be solved numerically. The first advantage of using this 

method is thus slightly more complex in the presence of non-ideal effects than for the ideal 

case. Moreover, as shown in [22], dead time dependent modulation products are created, 

which mean that the sideband harmonics extending within the audible band might not decay 

as rapidly as for the ideal case. Since the THD is calculated from the harmonic magnitudes up 

to a certain frequency (typically 20kHz for audio), each harmonic component should be added 

individually within this band. This restriction holds for all analytical methods of calculating 

the spectrum of PWM. 

This limitation is overcome by simulation. However, as mentioned, a very accurate 

crossing point between the natural intersection of the reference and carrier waveforms is 

required. This is especially true in audio applications where the non-linearities are very subtle. 

To conclude, both the analytical calculation and the simulation are useful. Whereas the 

analytical solution gains insight into the harmonic composition, the simulation (if fast and 

accurate) is more useful in practice. 

 

Contributions in this Dissertation 

 

The analytical analysis for the incorporation of the constant time delay reported in [22] is 

generalised, after which it is extended to include non-linear current dependent delays with a 

more realistic inductor current model. A fast, accurate simulation method is introduced, which 

allows for rapid calculation of the spectrum of PWM with the inclusion of the non-linearities. 

 

1.5.2 DEAD TIME 

 

Dead time, often referred to in the literature as blanking time [24], can be regarded as the 

most dominant source of distortion in inverters with switching frequencies greater than 

150kHz [25]. Since practical switching devices have non-zero turn-on and turn-off times, an 

immediate transition in a phase leg results in the flow of a cross-conduction current between 

the voltage rails. In order to avoid this shoot-through condition, a turn-on delay is introduced 
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at each on to off transition of the switching devices to prevent simultaneous conduction. This 

delay is referred to as dead time. Dead time has been an active topic of research within power 

electronics for many years. Various analytical approaches for the modelling of its effect for 

different sampling methods have been published to date, notably [22] and [26]. Literature on 

its effect within switching audio amplification is also well established [15], [25]. Another 

publication [27] introduces a method in which the dead time is effectively reduced to zero. 

 

Relevant Literature 

 

The analysis in [25] models the dead time within the time domain by varying the input 

duty cycle and measuring the corresponding output duty cycle. The Fourier transform of the 

duty cycle error is determined next; from this the harmonic distortion can be calculated. The 

dead band referred to in [25] is a consequence of a change in current polarity during the dead 

time. The average duty cycle remains more or less constant in this region, which leaves the 

output voltage floating. The constant variable k (expressed as a percentage of the duty cycle 

above 50%) describes the level at which the dead band exists. 

As a starting point, the initial theory reported in [15] calculates the Fourier transform of 

the square wave resulting from the average error introduced over a single switching cycle, i.e. 

for a purely sinusoidal inductor current. The analysis is then extended in which an inductor 

current model with a non-zero ripple component, expressed as a scaled ratio of the peak 

output and ripple current, is considered. The initial expression obtained for a purely sinusoidal 

inductor current is adapted to accommodate the additional constraint. 

The analytical analysis presented in [22] utilises the double Fourier series to calculate the 

harmonic components of naturally sampled PWM (NPWM) with dead time. The analysis is 

performed for an inductor current which is either purely sinusoidal, or it has a ripple 

component that satisfies the constraint of only changing polarity once over one half-cycle of 

the modulating waveform. 

 

Limitations posed by existing Literature 

 

The first complication regarding the direct application of the analysis in [25] within an 

open loop system is that, in order to achieve acceptable levels of distortion, practical values of 
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dead time need to be orders of magnitude smaller. This means that the inductor current rarely 

changes polarity during the dead time, effectively eliminating the dead band. The constraint is 

met by setting time t2=t1 in [25]. Secondly, k is directly correlated to the inductor current 

ripple. This suggests that, for any given circuit, a measurement first needs to be performed in 

order to establish the value of k before the distortion can be calculated. If it is assumed that 

t2=t1, the analysis in [15] corresponds to that proposed in [25] with the indirect relation to the 

filter inductor expressed in terms of peak current. The shortcoming of both the above 

mentioned models is that the analysis is performed in the time domain, i.e. by varying the 

switching frequency while keeping the remaining parameters constant, the distortion will not 

necessarily remain unaffected. This dependence of the cross modulation products on dead 

time was noted in [22]. The analytical method considered in [22] overcomes the limitation 

posed by [15] and [25]. However, the analysis is effectively limited to a purely sinusoidal 

inductor current. Although the effect of dead time is well established, the limitations posed 

within current models suggest that there is still no complete model for predicting the isolated 

effect of dead time on distortion within open loop applications. 

 

Contributions made by this Dissertation 

 

An analytical model is introduced, in which a realistic inductor current model is 

incorporated. For a given dead time, the harmonic composition of the spectrum can be 

determined directly from a given set of circuit parameters. The analytical model is 

accompanied by an equivalent simulation model. 

 

1.5.3 NON-ZERO TURN-ON AND TURN-OFF DELAYS 

 

The turn-on and turn-off delays exist as a result of the time required for the charge or 

discharge of the MOSFET’s input capacitance. It is well known that the analytical expressions 

describing these delays are dependent on the current polarity and the current magnitude [24], 

[28]. 
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Relevant Literature 

 

The fundamental analysis presented in [15] first noted that distortion arises from these 

delays (referred to as delay distortion). Moreover, it suggested that the distortion exists as a 

result of two contributions, of which the first is due to the differential delay resulting from the 

inherent polarity dependency. The second contribution results from the non-linear current 

modulation. The proposed solution was to minimize the external gate resistance and to 

optimize the applied gate voltage such that these delays cancel each other out. The current 

modulation was considered negligible compared to other error sources after which the 

analysis concluded that delay distortion is generally not a limiting factor in switching output 

stages. 

The time domain analysis of the effect of the turn-on and turn-off delays presented in 

[29], respectively referred to as finite speed turn-on and finite speed turn-off, considers the 

individual impact of each delay on the average voltage during the dead time. The analysis 

describes the scenario in which the above mentioned delays offer to minimize the average 

error voltage within the dead time. 

 

Limitations posed by existing Literature 

 

Although the distortion mechanism was identified in [15], there was no detailed analysis 

illustrating its exact effect. This shortcoming was addressed in [29] to a cartain degree. 

However, the analysis focused on the interaction between the timing errors rather than on 

quantifying the individual effect of the turn-on and turn-off delays. Although the end goal 

within a system’s design remains low overall distortion, insight is gained into the distortion 

mechanisms by considering the individual effects. Furthermore, the analysis in [29] was 

performed in the time domain, which means that the sideband switching harmonics resulting 

from the modulation process were unknown. This, however, is a concern since the differential 

delay noted in [15] suggests that an effect similar to dead time exists, which has been shown 

to influence the modulation products [22]. 
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Contributions made by this Dissertation 

 

The isolated effect of the turn-on and turn-off delays on THD is established. An 

simulation model is introduced in which the inherent current polarity and non-linear current 

magnitude dependencies are modelled. 

 

1.5.4 NON-ZERO TURN-ON AND TURN-OFF SWITCHING TRANSITIONS 

 

The non-zero intrinsic gate-to-drain capacitance within the power MOSFET structure 

leads to non-zero switching transitions. Since this capacitance is a non-linear function of the 

drain-to-source voltage, a non-linear switching curve is introduced. Early work in [24], [28] 

has shown its dependence on both current polarity and magnitude. 

 

Relevant Literature 

 

The non-linear switching characteristic was noted in [15]. However, for purposes of 

simplicity, a linear transition with equal rise and fall switching times were assumed. A brief 

analysis followed, which illustrated a moderate influence. The analysis concluded that, in 

practice, the effect of the switching transitions contributes to noise and distortion, but is less 

dominant than other error sources. 

The analysis in [29] contains an investigation determining the effect of the switching 

node capacitance on the rising and falling edge transitions during the dead time. This is 

achieved by establishing the average error voltage at the switching node resulting from a 

constant capacitance, i.e. a linear transition. Various switching scenarios are presented during 

the period of dead time from which a time domain representation of the error voltage as a 

function of the duty cycle can be established. 

 

Limitations posed by existing Literature 

 

Like the methods mentioned in Sections 1.5.2 and 1.5.3, the analysis in [15] and [29] was 

performed in the time domain. The error at the switching node in [29] was found from the 

average error resulting from the charge or discharge of the switching node capacitance during 
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the dead time. This only has an effect on the rising edge for a negative inductor current, and 

the falling edge for a positive inductor current. The remaining edges were assumed to switch 

in zero time between the various voltage levels. Moreover, the switching node capacitance’s 

effect becomes less dominant at low current. This, in turn, means that the MOSFET’s 

switching charteristic dominates in this state. 

 

Contributions made by this Dissertation 

 

A closed form solution describing the MOSFET’s switching curve in the presence of a 

non-linear gate-to-drain capacitance is derived, from which a simple approximation to the 

switching curve for both edges can be established. Distortion analysis of the non-linear 

switching transition compared to a linear swithing transition is performed via simulation. 

 

1.5.5 PARASITICS AND REVERSE RECOVERY 

 

It is well known that the stray parasitic elements existing within practical power 

MOSFETs lead to unwanted voltage transients when switched at high speeds. The current 

literature contains several detailed investigations on the sources giving rise to this effect. 

Analytical expressions have been derived in which the switching behaviour of the MOSFET 

is modelled in the presence of both the common source and switching loop inductance, 

addressing trade-offs between overshoot, switching speed and energy loss [30]. Another 

publication contains analytical solutions for overshoot in the presence of PCB stray 

inductances [31]. The analysis of reverse recovery in literature [32], [33] has mostly been 

limited to the influence on efficiency and switching device ratings. Distortion analysis 

resulting from its effect has only been mentioned briefly in previous work [15], [32], [33]. 

 

Relevant Literature 

 

In [32] it was mentioned that the ringing effect mainly alters the high frequency (HF) 

spectrum; it was thus concluded that the exact influence is not easily generalized due to its 

strong dependence on practical implementation.  
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The effect of the reverse recovery on the switching waveform was considered in [32]. 

The analysis was limited to the impact on the switching waveforms, and it was concluded that 

it would only marginally affect system performance. The power loss analysis in [33] included 

the effect of the parasitic components in the analysis. Reverse recovery was included in [33] 

as part of a power loss analysis, noting that this effect only occurs during forced 

commutation, i.e. during the dead time. The distortion analysis included in [33] stated that the 

effect was not easily quantified theoretically, and it was thus modelled as a current dependent 

delay prior to the switching transition. 

 

Limitations posed by existing Literature 

 

No analysis was included on either effect in [32]. The above mentioned reports [32], [33] 

on both subjects were mostly limited to power loss rather than distortion. The inclusion of its 

effect into the model mentioned in [33] was in terms of a PTE. To knowledge, the effect of 

reverse recovery as a PAE on distortion has yet to be established. 

 

Contributions made by this Dissertation 

 

The effect of reverse recovery on distortion is determined by means of a simulation 

model. Its effect is modelled as an additional constraint within the analysis of the parasitics. 

 

1.6 DISSERTATION OUTLINE 
 

This section contains a broad outline of the structure and research methodology used in 

this dissertation. Firstly, a review of the double Fourier series analytical solution for ideal 

NPWM is considered. This review is necessary since the integral limits are modified in later 

chapters to take account of PTEs. An accurate simulation strategy is next developed for 

NPWM which allows for rapid calculation of the spectra. A general analysis for the 

incorporation of PTEs within the double Fourier series method of analysis is introduced. The 

findings achieved are used to extend the analytical NPWM solution as much as possible to 

account for PTEs. The time based simulation strategy is applied to validate both analysis 

approaches. When the analytical solution becomes too complex, the simulation strategy can 
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be applied with confidence because of the match achieved. Finally, the analytical and 

simulation results are compared to experimental results to verify the validity of the research. 
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cT 2 

A FUNDAMENTAL 

ANALYSIS OF PWM 

 

 

2.1 INTRODUCTION 
 

Communication systems require a message signal to shift into another frequency range to 

make it suitable for transmission over a communication channel. Power electronics also 

utilize such a frequency shift to control the switching device(s) of a converter in order to 

realize a target reference voltage or current. This frequency shift is termed modulation and 

can be defined as ‘the process by which some characteristic of a carrier is varied in 

accordance with a modulating wave’ [36]. The inverse process, corresponding to a shift back 

into the original frequency range, is known as demodulation. 

PWM, also referred to in text as pulse duration modulation (PDM) or pulse length 

modulation [17], is a very well established modulation strategy for controlling the output of 

power electronic converters. It can be described as the ‘modulation of a pulse carrier in which 

the value of each instantaneous sample of a continuously varying modulating wave is caused 

to produce a pulse of proportional duration’ [17]. 

This chapter focuses on the fundamental concepts of PWM and serves as a foundation to 

the following chapters. Firstly, some well-known concepts involving the various methods of 

modulation are reviewed, after which the double Fourier series method of analysis, originally 

introduced by W.R. Bennet [11], is considered. A novel simulation strategy, which allows for 

accurate and rapid calculation of the spectrum, is then introduced. 

 

2.2 FUNDAMENTAL CONCEPTS OF PWM 
 

The primary criterion of all modulation schemes is to create an intermediate signal that 

has the same fundamental volt-second average as the reference waveform at any instant in 

time [13]. PWM thus requires the calculation of the exact duration of each pulse, which is 

necessary to preserve the original modulating waveform. 



CHAPTER 2 A FUNDAMENTAL ANALYSIS OF PWM 
  

 

- 16 - 

The pulse width is generated by a simple comparison between the reference waveform 

and a high frequency carrier (sawtooth or triangular) waveform. The sampling process used to 

determine the pulse duration can be either natural or uniform, with three possible methods of 

modulating the pulse width. Either the leading, trailing or both edges of the modulated 

waveform can be varied to produce the desired pulse width as illustrated in Figure 2.1. The 

grey lines represent the modulated edges. 

 

t

(a) (b) (c)  

Figure 2.1: (a) Leading edge, (b) trailing edge and (c) double edge modulation [17]. 

 

NPWM, sometimes referred to in literature as analog PWM [42], is the earliest and most 

simple PWM strategy [13]. It is generated whenever the sample instant occurs at the natural 

intersection of the modulating and carrier waveform. Figure 2.2 illustrates NPWM for leading 

edge (LENPWM), trailing edge (TENPWM) and double edge (DENPWM) modulation. 

 

(a) (b) (c)

t

t

 

Figure 2.2: Generation of (a) LENPWM, (b) TENPWM and (c) DENPWM. 
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UPWM is achieved whenever switching occurs at the intersection of a regular or 

uniformly sampled reference waveform and the carrier waveform. Figure 2.3 shows UPWM 

for leading edge (LEUPWM), trailing edge (TEUPWM) and double edge (DEUPWM) 

modulation. For LEUPWM and TEUPWM, illustrated in Figure 2.3 (a) and (b) respectively, 

sampling of the reference waveform respectively takes place at the vertical rise (leading) or 

fall (trailing) following the sawtooth ramp. The crosspoint is then determined by directly 

comparing the amplitude of the sampled reference with the carrier waveform. 

 

(a) (b) (c) (d)

t

t

 

Figure 2.3: (a) LEUPWM, (b) TEUPWM, (c) symmetrical DEUPWM and (d) asymmetrical DEUPWM. 

 

For DEUPWM, sampling can be symmetrical or asymmetrical. Symmetrical UPWM 

results when the sampled reference is taken at either the positive or negative peak of the 

triangular waveform with its amplitude held constant over the carrier period. This concept is 

illustrated in Figure 2.3 (c) and (d). The extent to which a pulse can be modulated is also 

known as the modulation index. This variable, denoted by M, is usually referred to as either a 

fraction with unity as its maximum value, or as a percentage. Note that, in the following 

sections, when referring to LEPWM, TEPWM or DEPWM, it is applicable to both natural 

and uniform sampling. As mentioned in Chapter 1, single-sided NPWM is assumed. The 

justification of this assumption within Class D applications (employing digital PWM) is that 

the PNPWM process approximates NPWM using numerical calculation of the intersection 

between the reference and carrier waveforms. Thus, approximating DENPWM requires twice 

the amount of intersections, which in turn increases the amount of logic cells required. 
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2.3 THE ANALYTICAL SPECTRUM OF PWM 
 

The spectrum of a signal provides an alternative viewpoint as a function of frequency that 

is often more meaningful and revealing than the original function of time. PWM is a non-

linear process, which results in distortion of the modulating signal. Determining the spectrum 

of PWM is thus very helpful, since it creates a better understanding of the non-linearities 

involved. However, these non-linearities also complicate the analytical analysis significantly. 

The remainder of this section contains a summary of the double Fourier series method of 

analysis presented in [17] and [13]. This-well established analytical method was originally 

introduced by W.R. Bennet [11] for purposes of communication systems [17], [13]. S. Bowes 

and B. Bird [19] expanded this to power converter systems [13]. The fundamental concept of 

this theory is explained for ideal two-level PWM. As a starting point, the analysis assumes the 

existence of two independently periodic time functions given by: 
 

cx tω=   (2.1) 

0y tω=   (2.2) 

These two functions of time represent a high frequency carrier wave and low frequency 

modulating waveform respectively. The pulse train created by the comparison of these two 

functions is generally non-periodic [17]. This poses a problem for Fourier analysis. W.R. 

Bennet [11] addressed this problem by representing the pulse train by a 3-D area. 

 

A

D

S

B

C

 

Figure 2.4: Definition of the 3-D area introduced by W.R. Bennet [11]. 
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The configuration defined in Figure 2.4 corresponds to a TENPWM signal and was 

arbitrarily chosen for purposes of illustration of the concept which will now be explained. The 

area defined contains identical walls with flat tops at the same height. These walls are parallel 

to each other and all perpendicular to the surface S which they rest upon. Next, assume that 

the walls are scaled into square cells in such a way that one wall exists for every 2� units in 

the x-direction, and that one complete cycle of the waveform defining the right hand side of 

each wall exists for every 2� units in the y-direction. This makes it possible to represent the 

height of the cells by a double Fourier series with x and y as input arguments, denoted by 

F(x,y). Figure 2.5 shows an extraction of Figure 2.4 with the appropriate scaling. 

 

x

y

( )F x,y

2π

2π
 

Figure 2.5: Appropriate scaling of the 3-D unit area of Figure 2.4. 

 

The Fourier series can now be developed. Consider two planes that are both 

perpendicular to plane S, denoted by A and B in Figure 2.4. Both planes are parallel to the x-

axis. With B fixed, the projection of the intersection of plane A onto plane B produces a series 

of rectangular pulses in the x-direction all with equal duration, shown at the top of Figure 2.4. 

By moving plane A to a new point of intersection on the y-axis while still keeping it parallel to 

the x-axis, another projection of equal pulses is created. It can thus be concluded that the 

intersection the latter plane at any arbitrary point on the y-axis (denoted y1) will always 

produce a periodic function in the x-direction. This makes it possible to describe these pulses 

with a simple Fourier series: 
 

( ) ( ) ( ) ( ) ( )1 0 1 1 1
1

1
( , ) cos sin

2 m m
m

F x y a y a y mx b y mx
∞

=

� �= + +� ��  (2.3) 
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With coefficients: 
 

( ) ( ) ( )
2

1 1

0

1
, cos , 0,1,2,...,ma y F x y mx dx m

π

π
= = ∞�  (2.4) 

( ) ( ) ( )
2

1 1

0

1
, sin , 1, 2,3,...,mb y F x y mx dx m

π

π
= = ∞�  (2.5) 

These coefficients depend on a specific point of intersection with the y-axis. Since they 

are also periodic with respect to y, it is possible to represent them with another Fourier series 

for all possible values of y. This is given by: 
 

( ) ( ) ( )0
1

1
cos sin

2m m mn mn
n

a y c c ny d ny
∞

=

� �= + +� ��  (2.6) 

( ) ( ) ( )0
1

1
cos sin

2m m mn mn
n

b y e e ny f ny
∞

=

� �= + +� ��  (2.7) 

With the coefficients defined as: 
 

( )
2

0

1
cosmn mc a ny dy

π

π
= �   (2.8) 

( )
2

0

1
sinmn md a ny dy

π

π
= �   (2.9) 

( )
2

0

1
cosmn me b ny dy

π

π
= �   (2.10) 

( )
2

0

1
sinmn mf b ny dy

π

π
= �   (2.11) 

By substituting the Fourier expansion for the coefficients in Eq. (2.6) and (2.7) into the 

original series and expanding for the coefficients in Eqs. (2.8) to (2.11), the double Fourier 

series can be determined by trigonometric manipulation of the terms as: 
 

( ) ( ) ( )00 0 0
1

1
, cos sin

2 n n
n

F x y A A ny B ny
∞

=

� �= + +� ��  (2.12) 

( ) ( )0 0
1

cos sinm m
m

A mx B mx
∞

=

� �+ +� ��  
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( ) ( )
1 1

cos sinmn mn
m n

A mx ny B mx ny
∞ ±∞

= =±

� �+ + + +� ���  

Where: 
 

( ) ( )
2 2

2
0 0

1
, cos

2mnA F x y mx ny dx dy
π π

π
= +� �   (2.13) 

( ) ( )
2 2

2
0 0

1
, sin

2mnB F x y mx ny dx dy
π π

π
= +� �   (2.14) 

The complex form is given by: 
 

( ) ( )
2 2

2
0 0

1
,

2
j mx ny

mn mn mnC A jB F x y e dx dy
π π

π
+

= + = � �  (2.15) 

The Fourier series of Eq. (2.12) can be related to time by substituting for Eqs. (2.1) and 

(2.2). Also, for each moment of time inserted into Eqs. (2.1) and (2.2), a specific point is 

defined within the area. The combination of these equations for equal time corresponds to a 

straight line with slope �0/�c. Again, consider two planes, denoted by C and D in Figure 2.4. 

Both these planes are perpendicular to plane S. Plane C includes the origin while plane D is 

fixed at a point parallel to the x-axis. The projection of the intersection of plane C with the 

walls onto plane D will produce a series of pulses of varying duration. This projection is 

shown at the bottom of Figure 2.4. Since the Fourier series represents the height at any point 

within the defined area, it must also define the height along the straight line corresponding to 

the time functions of Eqs. (2.1) and (2.2). This makes it possible to represent a series of pulses 

with varying duration by means of a double Fourier series. 

The significance of each term in Eq. (2.12) will now be discussed. The carrier index 

variable and baseband index variable are defined as m and n respectively. The integer values 

of these variables define the absolute frequency of the harmonic components by the relation 

m�c+n�0. The first term in Eq. (2.12) exists at a frequency where both m and n are equal to 0. 

This corresponds to the DC offset of the modulated wave. The frequency components of the 

second and third term represent special groups of harmonics. For the case where m=0 (second 

term), the harmonics are defined by n alone. This corresponds to the baseband harmonics 

created by the modulating wave. Note that the desired fundamental output is defined when 

n=1, with all other integer values of n unwanted. In a similar manner, for the case where n=0 
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(third term), the frequency components are defined by m alone. This corresponds to the 

harmonics created by the carrier wave and exists at multiples of the switching frequency. The 

fourth and final term is formed by a combination of all possible harmonic pairs formed by the 

sum and difference of the carrier and modulating wave with the exception of the special case 

where n=0. These combinations are generally referred to as sideband harmonics [13]. The 

analysis and solutions which now follow are summarized from [17] and [13]. 

 

The Spectrum of LENPWM 

 

The sawtooth carrier and modulating waveform which will be used to derive an 

expression for LENPWM are shown in Figure 2.6. The carrier waveform of (a) is defined by: 
 

( ) 1 for the region 0 2
x

f x x π
π

= − + ≤ <  (2.16) 

With the modulating waveform of (b) given by: 
 

( ) ( )cos for 0 1f y M y M= < <   (2.17) 

 

(a) (b)

x
2��0

( )f x

( ) ( )f y = Mcos y

( )
x

f x = +1�−

1+

1−

( )f y

y

0 � 2�

1+

1−

 

Figure 2.6: (a) Sawtooth carrier waveform and (b) modulating waveform for LENPWM. 

 

The output voltage equals Vd (half-bridge) whenever the reference waveform is greater 

than the carrier waveform, and it equals zero whenever the carrier waveform is greater than 
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the reference waveform. As a result of these two conditions f (x,y) can take on two values over 

the region 0�x�2�. Stated mathematically: 
 

( ) ( ) ( ), when cos 1, or cosd

x
f x y V M y x M yπ π

π
= > − + > − +  (2.18) 

( ) ( ) ( ), 0 when cos 1, or cos
x

f x y M y x M yπ π
π

= < − + < − +  (2.19) 

Figure 2.7 illustrates the 3-D unit area defined by Eqs. (2.18) and (2.19). 
 

y

x
0 � 2�

2�

�

dV

0

( ) +x = Mcos yπ π

 

Figure 2.7: 3-D unit area for LENPWM. 

 

The complex Fourier coefficient of Eq. (2.15) can now be evaluated by inserting the 

limits defined in Figure 2.7. The expression yields: 
 

( )

( )cos2 2

2
0 0 cos2

M y

jmx jmx jnyd
mn

M y

V
C e dx e dx e dy

π ππ π

π ππ

− +

− +

� �
= +� 	

� 	� �
� � �  (2.20) 
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Eq. (2.20) can now be evaluated for different values of the index variables m and n. For 

m=n=0, Eq. (2.20) can be simplified to: 
 

( )

( )cos2 2

00 00 2
0 0 cos2

M y

d

M y

V
A jB dx dx dy

π ππ π

π ππ

− +

− +

� �
+ = +� 	

� 	� �
� � �  

( )
2

0

cos 2
2
d

d

V M
y dy V

π

π
= +�  

dV=   (2.21) 

Rewriting Eq. (2.21) into its real and complex parts yield: 
 

00 dA V=  and 00 0B =   (2.22) 

The DC component can now be found by substituting Eq. (2.22) into Eq. (2.12): 
 

00

2 2
dA V

=   (2.23) 

For m=0, n>0 the inner integral of Eq. (2.20) gives: 
 

( )

( )cos2 2

0 0 2
0 0 cos2

M y

jnyd
n n

M y

V
A jB dx dx e dy

π ππ π

π ππ

+

+

� �
+ = +� 	

� 	� �
� � �  

( )
2 2

0 0

cos
2 2

jny jnyd dV M V
y e dy e dy

π π

π π
= − +� �  (2.24) 

Substituting for cos(y)=(e jy+e−jy)/2 Eq. (2.24) leads to: 
 

( ) ( )
2 2

1 1

0 04 4
j n y j n yd dV M V M

e dy e dy
π π

π π
+ −

= − +� �  (2.25) 

The first term in Eq. (2.25) always integrates to zero for all values of n>0. The second 

term integrates to a non-zero value only when n=1. Evaluating the latter for this condition, 

Eq. (2.25) gives: 
 

01 01 2
dV M

A jB+ = −   (2.26) 
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Eq. (2.26) represents the magnitude of the fundamental low frequency harmonic 

component. Note that this is the ideal desired output since the modulating waveform of Eq. 

(2.17) is preserved with no additional baseband harmonics resulting from the modulation 

process (Eq. (2.26) equals zero for all n>1). For m>0, n=0, the integral of Eq. (2.20) leads to: 
 

( )

( )cos2 2

0 0 2
0 0 cos2

M y

jmx jmxd
m m

M y

V
A jB e dx e dx dy

π ππ π

π ππ

− +

− +

� �
+ = +� 	

� 	� �
� � �  

( )
2

cos

2
0

1
2

jm M y jmdV
e dy

j m

π
π π

π
− +� �= −� ��  

( )
2

cos

2
02

jm M yjmd dV V
j j e e dy

m m

π
ππ

π π
−

= − + �  (2.27) 

The integral in Eq. (2.27) corresponds to a Bessel function of the first kind. Substituting 

for the relation in Eq. (A1.11) with �=�M and �=y and noting that: 
 

( ) ( ) ( )cos sin 1
mj me m j mπ π π= + = −  (2.28) 

Eq. (2.27) can be simplified to: 
 

( ) ( )01 1
mdV

j J Mm
m

π
π

� �= − − −� �   (2.29) 

Eq. (2.29) represents the carrier harmonics. For m>0, n�0, Eq. (2.20) can be evaluated: 
 

( )

( )cos2 2

2
0 0 cos2

M y

jmx jmx jnyd
mn mn

M y

V
A jB e dx e dx e dy

π ππ π

π ππ

− +

− +

� �
+ = +� 	

� 	� �
� � �  

( )( )
2

cos

2
0

1
2

jm M y jnydV
e e dy

j m

π
π π

π

− − +� �= −� ��  

( )
2

cos

2
02

jm M yjm jnydV
j e e e dy

m

π
ππ

π
−= �  (2.30) 

The integral in Eq. (2.30) again corresponds to a Bessel function of the first kind. 

Substituting for the relation in Eq. (A1.7) results in: 
 

( ) ( )21
j nmd

n

V
j e J Mm

m

π

π
π

= −   (2.31) 
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Eq. (2.31) defines the sideband harmonics. The complete solution to LENPWM can be 

found by substituting Eqs. (2.21), (2.26), (2.29) and (2.31) into the double Fourier series of 

Eq. (2.12) to give: 
 

( )0( ) cos
2 2
d d

LENPWM

V V M
f t tω= −   (2.32) 

( ) ( ) [ ]( )0
1

1
1 1 sin

md
c

m

V
J Mm m t

m
π ω

π

∞

=

� �− − −� ��  

( ) ( ) [ ] [ ]0
1 1

1
1 sin

2

md
n c

m n

V
J Mm m t n t n

m

π
π ω ω

π

∞ ±∞

= =±


 �
+ − + −� 


� �
��  

 

The Spectrum of TENPWM 

 

Figure 2.8 (a) and (b) respectively represent the sawtooth carrier waveform and 

modulating waveform that will be used to construct the 3-D unit area for TENPWM. 

 

(a) (b)

x
2�

�
0

( )f x

( ) ( )f y = Mcos y

( ) x
f x = 1� −

1+

1−

( )f y

y

0 � 2�

1+

1−

 

Figure 2.8: (a) Sawtooth carrier waveform and (b) modulating waveform for TENPWM. 

 

The carrier waveform of (a) is defined by: 
 

( ) 1 for the region 0 2
x

f x x π
π

= − ≤ <   (2.33) 
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While the modulating waveform of (b) is given by: 
 

( ) ( )cos for 0 1f y M y M= < <   (2.34) 

Using the same switching constraints described in the previous section, the following two 

mathematical conditions can be constructed: 
 

( ) ( ) ( ), when cos 1, or cosd

x
f x y V M y x M yπ π

π
= > − < +  (2.35) 

( ) ( ) ( ), 0 when cos 1, or cos
x

f x y M y x M yπ π
π

= < − > +  (2.36) 

 
y

x
0 � 2�

2�

�

dV

0

( ) +x = Mcos yπ π

 

Figure 2.9: 3-D unit area for TENPWM. 

 

The unit area can now be constructed using the constraints defined in Eqs. (2.35) and 

(2.36). This is illustrated in Figure 2.9.  
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Rewriting Eq. (2.15) by inserting the limits defined in Figure 2.9, the expression yields: 
 

( )

( )cos2 2

2
0 0 cos2

M y

jmx jmx jnyd
mn

M y

V
C e dx e dx e dy

π ππ π

π ππ

+

+

� �
= +� 	

� 	� �
� � �  (2.37) 

Eq. (2.37) can now be evaluated for different values of the index variables m and n to 

determine the magnitude of the harmonic components created. For m=n=0, Eq. (2.37) can be 

simplified to: 
 

( )

( )cos2 2

00 00 2
0 0 cos2

M y

d

M y

V
A jB dx dx dy

π ππ π

π ππ

+

+

� �
+ = +� 	

� 	� �
� � �  

( )
2

0

cos
2 2
d dV M V

y dy
π

π
= +�  

2
dV

=   (2.38) 

The result obtained in Eq. (2.38) is exactly the same as that of the previous section. The 

DC component can thus be written as: 
 

00

2 2
dA V

=   (2.39) 

For m=0, n>0, the inner integral of Eq. (2.37) gives: 
 

( )

( )cos2 2

0 0 2
0 0 cos2

M y

jnyd
n n

M y

V
A jB dx dx e dy

π ππ π

π ππ

+

+

� �
+ = +� 	

� 	� �
� � �  

( )
2 2

0 0

cos
2 2

jny jnyd dV M V
y e dy e dy

π π

π π
= +� �  (2.40) 

The first term of Eq. (2.24) is the exact negative of the first term of Eq. (2.40). The 

solution can thus be obtained directly by adapting Eq. (2.26). This gives: 
 

01 01 2
dV M

A jB+ =   (2.41) 

Similar to Eq. (2.26), Eq. (2.41) defines the magnitude of the fundamental low frequency 

harmonic component.  
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For m>0, n=0, Eq. (2.37) can be written as: 
 

( )

( )cos2 2

0 0 2
0 0 cos2

M y

jmx jmxd
m m

M y

V
A jB e dx e dx dy

π ππ π

π ππ

+

+

� �
+ = +� 	

� 	� �
� � �  

( )
2

cos

2
0

1
2

jm M y jmdV
e dy

j m

π
π π

π
+� �= −� ��  

( )
2

cos

2
0

2

2 2
jm M yjmd dV V

j j e e dy
m m

π
ππ

π π
= − �  (2.42) 

Once again the integral in Eq. (2.42) corresponds to a Bessel function of the first kind. 

The solution is given by: 
 

( ) ( )01 1
mdV

j J Mm
m

π
π

� �= − −� �   (2.43) 

Eq. (2.43) defines the carrier harmonics. For m>0, n�0, Eq. (2.37) integrates to: 
 

( )

( )cos2 2

2
0 0 cos2

M y

jmx jmx jnyd
mn mn

M y

V
A jB e dx e dx e dy

π ππ π

π ππ

+

+

� �
+ = +� 	

� 	� �
� � �  

( )
2

cos

2
0

1
2

jm M y jm jnydV
e e dy

j m

π
π π

π
+� �= −� ��  

( )( )
2

cos

2
02

jm M y jnydV
j e e dy

m

π
π π

π

+
= − �  (2.44) 

Again, the integral in Eq. (2.44) represents a Bessel function of the first kind. Substituting 

for the relation in Eq. (A1.7), Eq. (2.44) can be written as: 
 

( ) ( )21
j nmd

n

V
j e J Mm

m

π

π
π

= − −   (2.45) 

Eq. (2.45) represents the sideband harmonics situated around multiples of the carrier 

harmonics.  
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By next substituting the results achieved in Eqs. (2.38), (2.41), (2.43) and (2.45) into the 

double Fourier series of Eq. (2.12) and relating the result to time using Eqs. (2.1) and (2.2), 

the complete solution to TENPWM can be expressed as: 
 

( )0( ) cos
2 2
d d

TENPWM

V V M
f t tω= +   (2.46) 

( ) ( ) [ ]( )0
1

1
1 1 sin

md
c

m

V
J Mm m t

m
π ω

π

∞

=

� �+ − −� ��  

( ) ( ) [ ] [ ]0
1 1

1
1 sin

2

md
n c

m n

V
J Mm m t n t n

m

π
π ω ω

π

∞ ±∞

= =±


 �
− − + −� 


� �
��  

 

The Spectrum of DENPWM 

 
Figure 2.10 illustrates the carrier waveform and reference waveform that will be used to 

derive the derivation of the expression for DENPWM.  

 

(a) (b)

x
2��0

( )f x

( ) ( )f y = Mcos y

( ) 2x
f x = 1� −

1+

1−

( )f y

y

0 � 2�

1+
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( )
2x

f x = + 3�−

 

Figure 2.10: (a) Triangular carrier waveform and (b) modulating waveform for DENPWM. 

 

The triangular carrier wave shown in Figure 2.10 (a) is defined over two regions: 
 

( )
2

1 for the region 0
x

f x x π
π

= − ≤ <  (2.47) 
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( )
2

3 for the region 2
x

f x xπ π
π

= − + ≤ <  (2.48) 

The modulating wave illustrated in Figure 2.10 (b) is defined by: 
 

( ) ( )cos for 0 1f y M y M= < <   (2.49)Once again the output voltage 

switches state under the same conditions as described for LENPWM and TENPWM. For the 

region defined by 0�x<�: 
 

( ) ( ) ( )
2

, when cos 1, or cos
2 2d

x
f x y V M y x M y

π π

π
= > − < +  (2.50) 

( ) ( ) ( )
2

, 0 when cos 1, or cos
2 2

x
f x y M y x M y

π π

π
= < − > +  (2.51) 

Also, for the region bounded by � �x<2�: 
 

( ) ( ) ( )
32

, when cos 3, or cos
2 2d

x
f x y V M y x M y

π π

π
= > − + > − +  (2.52) 

( ) ( ) ( )
32

, 0 when cos 3, or cos
2 2

x
f x y M y x M y

π π

π
= < − + < − +  (2.53) 

Eqs. (2.50) to (2.53) define the limits of the unit area shown in Figure 2.11. Inserting the 

limits defined in Figure 2.11 into the complex Fourier coefficient defined by Eq. (2.15), the 

expression yields: 
 

( )( )

( )( )
3

cos cos
2 22 2 2 2

2
30 0 cos cos

2 2 2 2

2

M y M y

jmx jmx jmx jnyd
mn

M y M y

V
C e dx e dx e dx e dy

π π π π
π π

π π π ππ

+ − +

+ − +

� �
� 	

= + +� 	
� 	� �
� � � �  (2.54) 

Eq. (2.54) can now be evaluated for the different values of the index variables m and n. 

For m=n=0, the integral of Eq. (2.54) simplified to: 
 

( )( )

( )( )
3

cos cos
2 22 2 2 2

00 00 2
30 0 cos cos

2 2 2 2

2

M y M y

d

M y M y

V
A jB dx dx dx dy

π π π π
π π

π π π ππ

+ − +

+ − +

� �
� 	

+ = + +� 	
� 	� �
� � � �  

( )
2

0

cos
2
d

d

V M
y dy V

π

π
= +�  

dV=   (2.55) 
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y

x
0 � 2�

2�

�

dV

0

�
2

3�
2

cos( ) +x= M y
2 2
π π

cos( ) + 3x= M y
2 2
π π

−

dV

 

Figure 2.11: 3-D unit area for DENPWM. 

 

The result achieved in Eq. (2.55) is exactly the same as that of the previous two sections. 

The DC component can thus once again be written as: 
 

00

2 2
dA V

=   (2.56) 

For m=0, n>0, evaluation of Eq. (2.54) leads to: 
 

( )( )

( )( )
3

cos cos
2 22 2 2 2

0 0 2
30 0 cos cos

2 2 2 2

2

M y M y

jnyd
n n

M y M y

V
A jB dx dx dx e dy

π π π π
π π

π π π ππ

+ − +

+ − +

� �
� 	

+ = + +� 	
� 	� �
� � � �  

( )
2 2

0 0

cos
2 2

jny jnyd dV M V
y e dy e dy

π π

π π
= +� �  (2.57) 

The integral of Eq. (2.57) corresponds to that of Eq. (2.40).  
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Evaluating Eq. (2.57) using the same technique discussed in the previous section gives: 
 

01 01 2
dV M

A jB+ =   (2.58) 

The latter solution represents the fundamental low frequency harmonic component. For 

m>0, n=0, Eq. (2.54) can be written as: 
 

( )( )

( )( )
3

cos cos
2 22 2 2 2

0 0 2
30 0 cos cos

2 2 2 2

2

M y M y

jmx jmx jmxd
m m

M y M y

V
A jB e dx e dx e dx dy

π π π π
π π

π π π ππ

+ − +

+ − +

� �
� 	

+ = + +� 	
� 	� �
� � � �  

( ) ( )
2 3

cos cos
2 2 2 2

2
02

j mM y j m j mM y j m
dV

e e e e dy
j m

π π π π π

π

−� �
= −� 	

� �
�  

( ) ( )
2 23

cos cos
2 2 2 2

2 2
0 02 2

j m j mM y j m j mM y
d swV V

j e e dy j e e dy
m m

π ππ π π π

π π

−

= − +� �  (2.59) 

Both integrals in Eq. (2.59) correspond to Bessel functions of the first kind. By 

substituting again for the relation in Eq. (A1.11) results in: 
 

3

2 2
0 2

j m j m
dV

j J Mm e e
m

π ππ

π

� �
 �
= −� 	� 


� � � �
 (2.60) 

Rewriting the exponential functions in brackets as the sum of sine and cosine functions, 

Eq. (2.60) can be simplified to: 
 

0

2
sin

2 2
dV

J Mm m
m

π π

π


 � 
 �
= � 
 � 


� � � �
  (2.61) 

Eq. (2.61) represents the carrier harmonics. For m>0, n�0, Eq. (2.54) integrates to: 
 

( )( )

( )( )
3

cos cos
2 22 2 2 2

2
30 0 cos cos

2 2 2 2

2

M y M y

jmx jmx jmx jnyd
mn mn

M y M y

V
A jB e dx e dx e dx e dy

π π π π
π π

π π π ππ

+ − +

+ − +

� �
� 	

+ = + +� 	
� 	� �
� � � �  

( ) ( )
2 3

cos cos
2 2 2 2

2
02

j mM y j m j mM y j m jnydV
e e e e e dy

j m

π π π π π

π

−� �
= −� 	

� �
�   

( ) ( )
2 2

cos cos
2 2 2 2

2 2
0 02

j m j mM y j m j mM yjny jnyd dV V
j e e e dy j e e e dy

m m

π ππ π π π

π π

−

= − +� �  (2.62) 
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By substituting for the Bessel function relation given in Eq. (A1.7), Eq. (2.62) can be 

written as: 
 

3

2 2 2 2

2

j m n j m n
d

n

V
j J Mm e e

m

π π π π
π

π


 � 
 �
− +� 
 � 


� � � �
� �
 �

= −� 	� 

� � � 	� �

 (2.63) 

Eq. (2.63) in turn can be simplified to: 
 

2
sin

2 2 2
d

n

V
J Mm m n

m

π π π

π


 � 
 �
= +� 
 � 


� � � �
 (2.64) 

The latter solution represents the sideband harmonics. Substituting for Eqs. (2.55), (2.58), 

(2.59) and (2.64) the double Fourier series describing the unit area of Figure 2.11 can be 

found: 
 

( )0( ) cos
2 2
d d

DENPWM

V V M
f t tω= +   (2.65) 

[ ]( )0
1

2 1
sin cos

2 2
d

c
m

V
J Mm m m t

m

π π
ω

π

∞

=


 � 
 �
+ � 
 � 


� � � �
�  

[ ] [ ]( )0
1 1

2 1
sin cos

2 2 2
d

n c
m n

V
J Mm m n m t n t

m

π π π
ω ω

π

∞ ±∞

= =±


 � 
 �
+ + +� 
 � 


� � � �
��  

 

2.4 SPECTRAL PLOTS AND GENERAL DISCUSSION 
 

The spectra for the analytical method described in the previous section will now be 

briefly discussed. The results presented in this section are once again summarized from [17] 

and [13]. The Fourier coefficients defined in Eq. (2.15) represent the magnitudes of the 

harmonic components. The spectrum can thus easily be found through evaluation of the index 

variables m and n for the different values described in Section 2.3. Note that the parameters 

used in this section correspond to M=0.85, Vd=10V and a carrier to fundamental ratio 

�c/�0=384. The voltage spectrum for LENPWM is shown in Figure 2.12 (a). From this 

illustration the fundamental low frequency harmonic component can be seen to be present at 

order 1. The first two carrier harmonics existing at integer multiples of the switching 

frequency, together with their respective sidebands are also shown in this spectral plot. 



CHAPTER 2 A FUNDAMENTAL ANALYSIS OF PWM 
  

 

- 35 - 

0 96 192 288 384 480 576 672 768768
-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

Harmonic Number [-]

M
ag

ni
tu

de
 [

dB
V

]

Fundamental Component

Carrier 2 with SidebandsCarrier 1 with Sidebands

 
0 96 192 288 384 480 576 672 768

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

Harmonic Number [-]

M
ag

ni
tu

de
 [

dB
V

]

Fundamental Component

Carrier 1 with Sidebands Carrier 2 with Sidebands

 
(a)      (b) 

 
Figure 2.12: Analytical voltage spectrum of (a) LENPWM (or TENPWM), and (b) DENPWM. 

 

Upon examination of Figure 2.1 it is evident that LENPWM is achieved when reversing 

the time scale of TENPWM and vice versa [17]. Stated mathematically: 
 

( ) ( ) ( ) ( ), andLENPWM TENPWM TENPWM LENPWMf t f t f t f t= − = −  (2.66) 

As a result TENPWM produces exactly the same magnitude spectrum as LENPWM. 

Figure 2.12 (b) represents the harmonic voltage spectrum for DENPWM. The fundamental 

low frequency harmonic component represented by Eq. (2.58) is shown together with the 

carrier and sideband harmonics at multiples one and two of the switching frequency. Note 

that, upon inspection of Eq. (2.61), it is evident that the sine function equals zero for all even 

values of the index variable m. Similarly, Eq. (2.64) equals zero when either both m and n are 

even or when both of them are odd. This has the net effect of eliminating all even sideband 

harmonics around even multiples of the carrier frequency as well as cancelling all odd 

sideband harmonics around odd multiples of the carrier frequency. 

 

2.5 SIMULATION STRATEGY 
 

The analytical solutions obtained in Section 2.3 identify exactly the frequency 

components created by the modulation process. These harmonic components can also be 

found by applying the FFT to a simulated time-varying switched waveform (such as PSpice) 

[13]. This approach has both advantages and disadvantages. One major advantage is the 

reduction in mathematical effort compared to analytical computation. The downside is that the 
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time resolution of the simulation has to be very high in order to produce accurate crossing 

points between the reference and carrier waveforms. This in turn requires significant 

computing power, which is very time-consuming. The use of this simulation strategy is 

eliminated for application in this dissertation since the errors in pulse width introduced by a 

lack of precision could exceed the subtle non-ideal effects that some of the less dominant 

sources of distortion might have. The latter requirement calls for a very precise, time effective 

simulation method to insure accurate modelling of the non-ideal effects. In this section a 

novel simulation strategy based on accurate cross-point calculation using Newton−Raphson’s 

numerical method is introduced to meet the simulation requirement. 

2.5.1 THE NEWTON-RAPHSON NUMERICAL METHOD 

In general, the solution to the roots of a non-linear equation cannot be found analytically 

and the equation is solved by approximate methods [37]. These estimates are usually based on 

the concept of iteration which, as a starting point, requires an initial guess. From this initial 

value an iterative procedure generates a set of approximations, which are assumed to 

presumably converge to the desired root. The Newton-Raphson method, also referred to in 

literature as Newton’s method [38], utilizes a straight-line approximation to obtain the roots 

of a non-linear equation. Figure 2.13 shows an arbitrarily chosen non-linear function f (t) for 

which a single root exists. The fundamental concept of Newton’s method is to replace this 

non-linear function with a linear approximation in the vicinity of the root and then to solve for 

the latter. This linear function is chosen to be the tangent line to f (t). Assume that t0 

represents the initial guess to the root of f (t). The intersection of the tangent line to f (t0) with 

the x-axis produces a better estimate to the root than that of the initial guess. A convergent set 

of approximations can thus be formed by calculating the tangent at each new point of 

intersection produced by the previous iteration.  
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0

( )f t

0( )f t

0t1t2t

 

Figure 2.13: Geometric representation of the Newton-Raphson numerical method. 

 

Through geometric analysis of Figure 2.13 an expression for the approximation to the 

root can now be derived. The slope of the line tangent to f (t0) can be found by calculating the 

ratio of variation in both the t and y direction (�y/�t). By noting that the derivative of f (t0), 

denoted by f '(t0). also represents the gradient the following can be stated: 
 

( )
( )

( )0

0

0 1

0
'

f t
f t

t t

−
=

−
  (2.67) 

Solving Eq. (2.67) for t1 leads to: 
 

( )
( )

0

1 0

0'

f t
t t

f t
= −   (2.68) 

The general case of Eq. (2.68) can be written as: 
 

( )
( )1 '

n

n n

n

f t
t t

f t+
= −   (2.69) 

Eq. (2.69) represents the solution to Newton-Raphson’s numerical method. Note that the 

number of iterations depends on the required accuracy. By defining an error criterion |tn+1−tn| 

to which each iteration can be compared, the process can terminate as soon as the error 

becomes smaller than the required accuracy. 
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2.5.2 CROSS-POINT CALCULATION USING NEWTON-RAPHSON’S METHOD 

This section will show how Newton-Raphson’s numerical method can be utilized to 

determine the spectra of TENPWM and DENPWM. 

 

TENPWM 

 

The single pulse illustrated in Figure 2.14 corresponds to the pth pulse of a TENPWM 

waveform, denoted by pTENPWM. The low frequency modulating wave is represented by 

mTENPWM(t) while the carrier waveform is denoted by cTENPWM(t). The output switches to the 

positive rail whenever the modulating wave is greater than the carrier waveform with the 

inverse situation corresponding to a transition to the negative rail.  

Since the leading edge of the switched output voltage remains fixed for TENPWM the 

width of the pulse is solely determined by the trailing edge. The crossing point of the latter 

two waveforms is given by: 
 

( ) ( ) ( ) ( ), or alternatively 0TENPWM TENPWM TENPWM TENPWMm t c t m t c t= − =  (2.70) 

 

t

TENPWMpW

TENPWMp

cT( ) cTENPWMp -1 T

TENPWM cp T

( )TENPWMm t
( )TENPWMc t

0

TENPWMn 1t +

t

0

dV

1

1

 

Figure 2.14: Generation of TENPWM. 
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The modulating wave of Eq. (2.70) is defined by: 
 

( ) ( )0cos with 0 1TENPWMm t M t Mω= < <  (2.71) 

The carrier waveform, which produces the pth pulse of the switched output voltage, can 

be written directly from Figure 2. as: 
 

( ) ( ) ( )
2

2 1 for 1TENPWM TENPWM TENPWM c TENPWM c

c

c t t p p T t p T
T

= − − − < <  (2.72) 

The nonlinear function fTENPWM(t) can now be defined in such a way that: 
 

( ) ( ) ( )TENPWM TENPWM TENPWMf t m t c t= −   (2.73) 

 

Substituting for Eqs. (2.71) and (2.72), Eq. (2.73) can be simplified to: 
   

( ) ( ) ( )0

2
cos 2 1 for 1TENPWM TENPWM c TENPWM c

c

M t t p p T t p T
T

ω= − + − − < <  (2.74) 

The roots of Eq. (2.74) can be determined by using the general solution to the 

Newton−Raphson numerical method described in Eq. (2.69). The approximation to the 

crossing point for TENPWM for the same limits bounding Eq. (2.74) is given by: 
 

( ) ( )

( )

0

1

0 0

2
cos 2 1

2
sin

TENPWM TENPWM

TENPWM TENPWM

TENPWM

n n TENPWM

c
n n

n

c

M t t p
T

t t
M t

T

ω

ω ω
+

− + −

= −

− −

 (2.75) 

With the origin taken as reference, Eq. (2.75) represents the intersection of the 

modulating wave with the pth pulse of the carrier waveform. The width of the corresponding 

switched output voltage can thus be found through geometric analysis of Figure 2.14 as: 
 

( )1 1
TENPWM TENPWMp n TENPWM cW t p T

+
= − −   (2.76) 

According to the definition of the carrier waveform given by Eq. (2.72), the point of 

intersection of the pth pulse can occur anywhere within the interval bounded by 

(pTENPWM−1)Tc<t<pTENPWMTc. With the initial guess (n=1) chosen as one half of the latter 

interval quick convergence to the root will be assured.  
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Thus: 
 

1

1

2TENPWM TENPWM ct p T

 �

= −� 

� �

  (2.77) 

 

DENPWM 
 

Consider the pth pulse of the DENPWM waveform shown in Figure 2.15. The switching 

conditions are exactly the same as for TENPWM. The carrier waveform is denoted by 

cDENPWM(t), while the reference wave is represented by mDENPWM(t). For this method of 

modulation the pulse width is determined by the points of intersection of both the leading and 

trailing edge of the modulated waveform. The crossing point can be determined by: 
 

( ) ( ) ( ) ( ), or alternatively 0DENPWM DENPWM DENPWM DENPWMm t c t m t c t= − =  (2.78) 

 

t

t

DENPWM2n +1t

DENPWMpW

DENPWMp

cT( )DENPWM cp -1 T

DENPWM cp T

( )DENPWMm t
( )DENPWMc t

0

0

DENPWM1n +1t

dV

1

1

 

Figure 2.15: Generation of DENPWM. 

 

With the reference waveform of Eq. (2.78) defined by: 
 

( ) ( )0cos with 0 1DENPWMm t M t Mω= < <  (2.79) 
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Since the carrier consist of two line segments, it must be defined over two regions as: 
 

( )
( )

( )

4
4 1 1

4
4 1

DENPWM

c

DENPWM

DENPWM

c

t p
T

c t

t p
T

� � �− − +� ���
= �
�− + −
��

  (2.80) 

For the respective regions: 
 

( ) ( )

( )

1 2 1
2

2 1
2

c
DENPWM c DENPWM

c
DENPWM DENPWM c

T
p T t p

T
p t p T

�
− < < −��

= �
� − < <
��

 (2.81) 

Defining the non-linear function fDENPWM(t) gives: 
 

( ) ( ) ( )DENPWM DENPWM DENPWMf t m t c t= −   (2.82) 

By substituting for the modulating and carrier waveforms respectively defined in Eqs. 

(2.79) and (2.80), Eq. (2.82) can be defined over the two intervals as: 
 

( ) ( )

( ) ( )

0

0

4
cos 4 1 1

4
cos 4 1

DENPWM

c

DENPWM

c

M t t p
T

M t t p
T

ω

ω

� � �− + − +� ���
= �
� + − −
��

 (2.83) 

For the respective regions: 
 

( ) ( )

( )

1 2 1
2

2 1
2

c
DENPWM c DENPWM

c
DENPWM DENPWM c

T
p T t p

T
p t p T

�
− < < −��

= �
� − < <
��

 (2.84) 

An approximation to the roots of Eqs. (2.83) can be found by applying Newton’s method 

in Eq. (2.69).  
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Thus, the estimate of the intersection of the modulating and carrier waveforms for 

DENPWM over the region (pDENPWM−1)Tc<t<(2pDENPWM−1)Tc/2 can be defined as: 
 

( ) ( )

( )

1 1

1 1

1

0

1

0 0

4
cos 4 1 1

4
sin

DENPWM DENPWM

DENPWM DENPWM

DENPWM

n n DENPWM

c
n n

n

c

M t t p
T

t t
M t

T

ω

ω ω
+

� �− + − +� �
= −

− −

 (2.85) 

For the interval bounded by (2pDENPWM−1)Tc/2<t<pDENPWMTc the intersection is given by: 
 

( ) ( )

( )

2 2

2 2

2

0

1

0 0

4
cos 4 1

4
sin

DENPWM DENPWM

DENPWM DENPWM

DENPWM

n n DENPWM

c
n n

n

c

M t t p
T

t t
M t

T

ω

ω ω
+

− − −

= −

− −

 (2.86) 

From Figure 2.15 it is evident that the width of the pth pulse can be found by calculating 

the difference between Eqs. (2.85) and (2.86), which leads to the expression: 
 

2 11 1DENPWM DENPWM DENPWMp n nW t t
+ +

= −   (2.87) 

Using a similar argument as for TENPWM, the initial guess’ (n=1) of Eqs. (2.85) and 

(2.86) can be established as: 
 

( )
11 4 1 1

4DENPWM

c
DENPWM

T
t p� �= − +� �   (2.88) 

( )
21 4 1

4DENPWM

c
DENPWM

T
t p= −   (2.89) 

 

Spectra of TENPWM and DENPWM 

 

Consider the single rectangular pulse, denoted by gi(t) where −�<i<+�, with amplitude 

Vd and width Wp illustrated in Figure 2.16 (a), generated as a result of a NPWM process. In 

order to simplify the mathematical representation and analysis of this function, gi(t) was 

chosen to be situated around the origin with a DC offset equal to Vd/2. 
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Figure 2.16: (a) Time domain and (b) magnitude spectrum representation of a rectangular pulse. 

 

The rectangular function of Figure 2.16 (a) can be described mathematically by: 
 

( )
for the region

2 2
0 elsewhere

p p

d
i

W W
V t

g t
�

− < <�
= �
��

 (2.90) 

The Fourier Transform of gi(t), denoted by Gi ( )f , can be computed as: 
 

( )
2

2

2

Wp

Wp

j ft

i dG f V e dtπ−

−

= �    

( )sin p

d p

p

fW
V W

fW

π

π

� �
= � 	

� 	� �
  (2.91) 

To simplify the result, the function in brackets can be further reduced by defining the sinc 

function often found in communications theory [40]. It is defined as: 
 

( )
( )sin

sinc
πλ

λ
πλ

=   (2.92) 

Where � represents the independent variable. As shown in Figure 2.17, the function 

decays as � increases, oscillating through positive and negative values with its zero crossings 

existing at integer values of �. 
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Figure 2.17: The sinc function. 

 

It has a maximum value of unity at �=0. By noting that �=fWp Eq. (2.91) reduces to: 
 

( ) ( )sinci d p pG f V W fW=   (2.93) 

Figure 2.16 (b) shows the magnitude spectrum |Gi ( )f | of the rectangular pulse gi(t). 

Consider the pulse of Figure 2.18 (a). Suppose that this pulse is shifted by a constant time t0 in 

such a way that its leading edge coincides with that of Figure 2.18. For the pth pulse of a 

TENPWM waveform this time shift t0 corresponds to: 
 

( )0 1
2

TENPWMp

TENPWM c

W
t p T= − +   (2.94) 

In a similar manner the DENPWM of Figure 2.15 can also be related to the pulse of 

Figure 2.16 (a). This is given by: 
 

0 1 2
DENPWM

DENPWM

p

n

W
t t

+
= +   (2.95) 

Figure 2.18 illustrates the time shifting of the rectangular pulse of Figure 2.16 (a) by a 

constant amount t0. Depending on the method of modulation, the width Wp can either 

correspond to Eq. (2.76) or (2.87). 
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Figure 2.18: Time shifting of the rectangular pulse of Figure 2.16 (a). 

 

The effect of the time shift on the spectrum can be determined by calculating the Fourier 

Transform of the pulse illustrated in Figure 2.18 (b) as: 
 

( )
0

0

2

pt W

j ft

i d

t

G f V e dtπ

+

−= �  

( ) 02sinc j ft

d p pV W fW e π−=   (2.96) 

From Eq. (2.96) it is evident that, if the function gi(t) is shifted by a positive constant time 

t0, it is the equivalent of multiplying its Fourier Transform by a factor exp(−2�ft0) [40]. The 

multiplication has the effect of only altering the phase of Gi ( )f  by an amount corresponding 

to −2�ft0 while the magnitude remains unaffected. From this discussion it is evident that each 

individual pulse of a PWM waveform can be represented by a rectangular wave shifted by 

some constant time t0. The complete pulse train, denoted by g(t), can be found as: 
 

( ) ( )i
i

g t g t
∞

=−∞

=�   (2.97) 

Where gi(t) is defined in Eq. (2.96). Applying the Fourier Transform, the result yields: 
 

( ) ( )i
i

g t g t
∞

=−∞

� �� �ℑ = ℑ� � � 	� �
�   (2.98) 
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From Lebesgue’s Convergence Theorem 15 [41] it can be shown that: 
 

( ) ( )i
i

g t g t
∞

=−∞

� � � �ℑ = ℑ� � � ��   (2.99) 

2.5.3 SIMULATION RESULTS 

Table 2.1 and Table 2.2 respectively compare the analytical results to the simulations for 

TENPWM and DENPWM using the proposed strategy. The conditions used correspond to 

those of Section 2.4. The fundamental component and first carrier with its respective sideband 

harmonis are shown in both tables. 

 

TABLE 2.1 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR TENPWM. 
 

Harmonic Number [-] Analytical Magnitude [V] Simulated Magnitude [V] 

1 8.5000 8.5000 
… … … 

382 2.9709 2.9709 
383 2.8683 2.8683 
384 5.5435 5.5435 
385 2.8683 2.8683 

386 2.9709 2.9709 

 
The results of the simulations of both TENPWM and DENPWM are consistent with the 

analytical solutions, which confirms the validity of the proposed model. Note that the 

simulations were performed with ten iterations of Newton’s method (accurate to −280 dB). As 

already mentioned in Section 2.4, all even sideband harmonics around even multiples of the 

carrier frequency as well as all odd sidebands around odd multiples of the carrier frequency 

are eliminated for ideal DENPWM. 

 

 

 

 



CHAPTER 2 A FUNDAMENTAL ANALYSIS OF PWM 
  

 

- 47 - 

TABLE 2.2 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR DENPWM. 
 

Harmonic Number [-] Analytical Magnitude [V] Simulated Magnitude [V] 

1 8.5000 8.5000 
… … … 

382 2.4385 2.4385 
383 0.0000 0.0000 
384 7.6596 7.6596 
385 0.0000 0.0000 

386 2.4385 2.4385 

 
2.6 GENERAL DISCUSSION 
 

Consider the analytical and simulated spectra of TENPWM respectively shown in Figure 

2.19 (a) and (b) for �c/�0=8. The remaining parameters correspond to those of the previous 

section. The fundamental low frequency harmonic component and the first two carrier 

harmonics (m=1 and m=2) together with their respective sidebands are shown. Since the 

index variables of the analytical solutions of Section 2.4 define a specific harmonic according 

to the relation m�c+n�0 it is possible to plot the individual contribution of m=1 and m=2 with 

its respective sidebands. This is shown in Figure 2.19 (a). 
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Figure 2.19: (a) Analytical and (b) simulated spectrum of TENPWM with �c/�0=8. 
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The spectrum shown in Figure 2.19 (b) differs significantly from that shown in (a). The 

reason for this is that the various overlapping harmonics of the analytical solution have been 

plotted individually, and not summed. The harmonic magnitudes of the spectra of Figure 2.19 

(a) and (b) are compared in Table 2.3. Note that the analytical solution in (a) will produce the 

same result as in (b) if the various overlapping harmonics are summed. The value of �c/�0 

used was merely for purposes of illustration of the concept and is not realistic for 

implementation in practical systems. Moreover, the phasor summation of the harmonic 

components is not of great concern when considering the ideal case at high carrier to 

fundamental ratios due to its negligible amplitude caused by the rapid decay of the sidebands. 

However, as will be shown in Chapters 5 to 9, when considering non-ideal effects these 

sidebands do not decay as quickly. 

 

TABLE 2.3 

ANALYTICAL AND SIMULATED HARMONIC MAGNITUDES OF THE SPECTRUM SHOWN IN FIGURE 2.19. 
 

Harmonic Number [-] Analytical Magnitude [V] Simulated Magnitude [V] 

1 8.5000 8.5074 
… … … 
6 2.9709 2.9626 
7 2.8683 2.8394 
8 5.5435 5.4544 
9 2.8683 3.1061 

10 2.9709 2.4372 

 

The analytical analysis provides a tool with which the sole contribution of each harmonic 

component is established, more specifically, the individual contribution of the baseband and 

sideband harmonics within the audible band. 

 

2.7 SUMMARY 
 

Fundamental concepts of PWM were considered, after which the double Fourier series 

method of analysis for calculating the spectrum of PWM analytically was reviewed. A 

simulation strategy, based on Newton’s numerical method, was introduced which allows for 
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rapid and accurate calculation of the spectrum of PWM. The results of the proposed 

simulation strategy correlated to those of the analytical method, verifying its validity. 
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vft

swv

3 

INCORPORATION OF PTES IN THE 

DOUBLE FOURIER SERIES METHOD 

 

 

3.1 INTRODUCTION 
 

A method, introduced in the paper “Analytical Calculation of the Output Harmonics in a 

Power Electronic Inverter with Current Dependent Pulse Timing Errors” [34] by the author, 

for the incorporation of current dependent PTEs within the double Fourier series method of 

analysis is considered in this chapter. 

The incorporation of dead time within W.R. Bennet’s [11] method has been reported in 

[22], which effectively includes a current polarity dependent delay within the ideal analysis. 

In this chapter the analysis in [22] is generalised and extended. This serves as a general 

analytical tool in which the harmonic components of a NPWM waveform can be calculated in 

the presence of current dependent PTEs. The analysis starts off with a brief overview of a 

known approximation to the inductor ripple current in Section 3.2. The analysis presented in 

Sections 3.3 to 3.6 covers the incorporation of the PTEs within the 3-D unit area. A general 

analysis of that presented in [22] for the inclusion of a constant delay which is independent of 

current is given in Section 3.3. A purely sinusoidal current dependency is included in Sections 

3.4 and 3.5, respectively covering a polarity dependency and non-linear magnitude 

dependency. In addition to the analysis in [22] the former section distinguishes between 

sampling on the leading or trailing edge of the NPWM waveform. Section 3.6 shows how the 

inductor current model of Section 3.2 can be incorporated into the 3-D unit area. 

 

3.2 REALISTIC INDUCTOR CURRENT MODEL 

 
Since the expressions describing the various PTEs and PAEs are current dependent, it is 

imperative that a proper and accurate inductor current model first be established before 

proceeding with the construction of the analytical and simulation models in Chapters 5 to 9.  
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Consider the inductor voltage vL(ideal) and current iL(ideal) waveforms for an ideal switching 

transition illustrated in Figure 3.1. This illustration represents a half-bridge topology with Vd 

being the applied bus voltage. 
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Figure 3.1: Voltage across and current through the inductor. 

 

By next assuming that vo remains constant over one cycle of the switching period an 

expression describing ΔiL can be constructed from Figure 3.1 as: 
 

0

1 1

2 2

cDT

d d
L o o c

filt filt

V V
i v dt v DT

L L

 � 
 �

Δ = − = −� 
 � 

� � � ��  (3.1) 

Where vo is assumed to follow the reference voltage exactly. Thus: 
 

( )0cos 2
2

d
o

V M
v f tπ=   (3.2) 

By next substituting Eq. (3.2) into Eq. (3.1) and noting that D=((1+Mcos(2�f0t)/2), the 

expression in Eq. (3.1) is simplified to: 
 

( )2

2
d

L
filt c

V
i D D

L f
Δ = −   (3.3) 

The result achieved was also noted in [33]. From Eq. (3.3) it can be seen that the 

maximum deviation in ΔiL occurs at D=50% while the minimum is established at either the 
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maximum or minimum value of D. The remainder of this section identifies two possible 

scenarios in which the inductor current can manifest itself. Figure 3.2 defines the upper and 

lower envelope of the inductor current which is respectively represented by iL(upper_env) and 

iL(lower_env). Current io is assumed to be purely sinusoidal as well as in phase with the output 

voltage. Variables iL(upper_env) and iL(lower_env) can respectively be defined as: 
 

( )( _ ) 0cos 2
2

L
L upper env o

i
i I f tπ

Δ
= +   (3.4) 

( )( _ ) 0cos 2
2

L
L lower env o

i
i I f tπ

Δ
= −   (3.5) 

Where ΔiL is defined in Eq. (3.3) and: 
 

2
d

o
load

V M
I

R
=   (3.6) 

From Figure 3.2 (a) and (b) two scenarios of the inductor current can be defined. For (a) 

M was chosen such that iL(upper_env) is always distinctly positive and iL(lower_env) is always 

distinctly negative. This condition governs inductor current Scenario �. 
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Figure 3.2: Definition of the inductor current for (a) Scenario ���� and (a) Scenario ����. 

 

Scenario � occurs when both iL(upper_env) and iL(lower_env) cross through zero at some point 

in time over one complete cycle of the modulating waveform. This is shown in Figure 3.2 (b). 

Note that during this state iL(upper_env) and iL(lower_env) are still defined by Eqs. (3.4) and (3.5). 
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TABLE 3.1 

DEFINITION OF THE BASIC VARIABLES USED THROUGHOUT THIS CHAPTER. 
 

Variable Value 

Vd 10 V 

RL 8.2 � 

Lfilt 10.4 uH 

f0 1 kHz 

fc 384 kHz 

 

Unless stated otherwise, the basic variables used within the rest of this chapter 

correspond to those defined in Table 3.1. When referring to results within Scenario � or 

within Scenario �, the governing condition described holds. 

 

3.3 INCORPORATION OF TIME DELAYS 
 

Suppose that the duty cycle of an ideal TENPWM waveform needs to be altered in order 

to produce a constant positive DC offset VDC(offset) with respect to the ideal case. A possible 

solution for achieving this requirement is to adapt the switching strategy in such a way that 

the modulated (trailing) edge of the switched output voltage’s turn-on is delayed by some 

constant time td. Similarly, still for a TENPWM waveform, assume that the same negative 

constant DC offset −VDC(offset) relative to the ideal case is required. This can be achieved by 

delaying the unmodulated (leading) edge by td. The relation between VDC(offset) and td for the 

two scenarios can be found by averaging the delay over a complete switching cycle which 

results in: 
 

( )

for the trailing edge

for the leading edge
d d c

DC offset
d d c

t V f
V

t V f

+�
= �

−�
  (3.7) 

The following two sub-sections show how these requirements can be incorporated into 

the 3-D unit area. 
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3.3.1 MODULATED EDGE 

 

Figure 3.3 illustrates an extract of pulses of a TENPWM waveform with the modulated 

edge delayed by td. The ideal modulated edge is represented by the dashed line.   

 

dt

t

cT

d2V

dt dt

 

Figure 3.3: Definition of td introduced on the modulated edge. 

 

The incorporation of time delays within the double Fourier series method of analysis 

necessitates a slight modification within the unit area. Since the pulse train is defined along 

the intersection of the straight line y=(�0/�c)x with the various walls within the 3-D unit area, 

the corresponding mapping of td (in radians) �d' needs to be defined along the this line. Figure 

3.4 shows a visual representation of this concept. 
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c
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Figure 3.4: Definition of the constant time delay mapping �d' within the 3-D unit area. 

 

Consider Figure 3.5 which shows a two-dimensional (2-D) representation of Figure 3.4. 

The function defining the modulated edge thus needs to be shifted in both the x and y 
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directions in such a way that point A is now located at A' with the distance from A to A' 

equaling �d'. However, since the pulse train is represented by the projection of the 

intersection of the function defined along the straight line y=(�0/�c)x onto a plane parallel to 

the x-axis the actual time delay introduced is �d instead of �d'. This results in an error �err 

being introduced. 
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0
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errΦ

'
dΦ

dΦ
 

Figure 3.5: 2-D representation of the error introduced for the modulated edge. 

 

The correct delay can be included into the unit area by shifting the ideal modulated edge 

by the corresponding radians �d=2�fctd (since the mapping of Tc=2� within the unit area) in 

the positive x-direction, and adjusting the y-offset (denoted yoffset) in such a way that point A 

coincides with A', i.e. yoffset=(�0/�c)�d. If it is assumed that the ideal modulated edge is 

described by x=�Mcos(y)+�, the delayed edge is given by: 
 

( )cos offset dx M y yπ π= − + + Φ   (3.8) 

This is illustrated in Figure 3.6. By next inserting the limits defined in Figure 3.6 the 

complex Fourier coefficient of Eq. (2.15) can be written as: 
 

( )cos2

2
0 0

offset dM y y

jmx jnyd
mn

V
C e dx e dy

π ππ

π

− + +Φ� �
� 	=
� 	
� �
� �   (3.9) 
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Figure 3.6: 3-D unit area for TENPWM with delay �d. 

 
Table 3.2 compares the analytical and simulation results for TENPWM with the addition 

of the delay. Note that td=10ns and M=0.8. It is evident that the harmonic magnitudes of the 

analytical and simulation results correlate, which verifies the validity of the argument. 

 

TABLE 3.2 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR TENPWM WITH A CONSTANT TIME DELAY 

INTRODUCED ON THE MODULATED EDGE. 
 

Harmonic Number Analytical Magnitude [V] Simulated Magnitude [V] 

1 8.0000 8.0000 
… … … 

383 3.1435 3.1435 
384 6.0866 6.0866 

385 3.1435 3.1435 
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3.3.2 UNMODULATED EDGE 

 

Figure 3.7 shows an extract of the pulses of a TENPWM waveform with the leading edge 

delayed by td. The ideal modulated edge is once again represented by the dashed line. 

 

dt

t

cT

d2V

dt dt

 

Figure 3.7: Definition of td introduced on the unmodulated edge. 

 

Consider Figure 3.8 which represents a 2-D sketch of the error introduced on the 

unmodulated edge of a TENPWM waveform. In a similar manner as described in Section 

3.3.1, the unmodulated edge needs to be shifted in the x direction by an amount �d. However, 

since the leading edge is unmodulated, i.e. independent of y, the projection of the intersection 

of the function defined along the straight line y=(�0/�c)x with point A' produces the same 

projected distance �d onto a plane parallel to the x-axis as the projection of the intersection of 

a function defined along a line parallel to the x-axis and point B. 
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Figure 3.8: 2-D representation of the error introduced for the unmodulated edge. 
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It is thus evident that, for an unmodulated edge (no y-dependency), no correction is 

necessary in the y direction. The corresponding delay within the unit area is thus simply 

defined by �d=2�fctd. 

 

3.4 INCORPORATION OF A SINUSOIDAL CURRENT POLARITY DEPENDENCY 
 

Consider a TENPWM waveform which is governed by some inductor current polarity 

dependency. Suppose that, during the negative half-cycle of a purely sinusoidal inductor 

current, the trailing edge is delayed by an arbitrarily chosen time (denoted td). This section 

shows how this condition can be incorporated into the 3-D unit area. Since the current polarity 

can be sampled on either edge of the TENPWM waveform the analysis needs to be divided 

into two parts. 

 

3.4.1 POLARITY DEPENDENCY SAMPLED ON THE TRAILING EDGE 

 

In this section it is assumed that the current polarity is sampled on the time instant of 

switching of the ideal modulated trailing edge. This sampling process is illustrated in Figure 

3.9 for a carrier to fundamental ratio chosen as �c/�0=5. Note that the ideal modulated edge 

is represented by the dashed line. 

  

0Li <

0Li > 0Li >

dt dt dt
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cT

 

Figure 3.9: Proposed arbitrary inductor current polarity dependency sampled on the ideal trailing edge. 
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This condition can next be integrated into the 3-D unit area. Firstly, the various areas 

within the unit area, during which the inductor current is positive and negative, need to be 

identified. Since the polarity is assumed to be sampled on the switching instant of the ideal 

modulated edge the current polarity can be defined over the regions as shown in Figure 3.10. 
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Figure 3.10: Definition of the various current zones within the 3-D unit area. 

 

The slope with pivots existing at the polarity transition sampled on the trailing edge 

illustrated (y=�/2 and y=3�/2) is necessary in order to keep the sampled current polarity 

constant over the region 0<x�2�. Figure 3.11 represents a combination of Figure 3.9 and 

Figure 3.10 with the required mapping. The relation within the 3-D unit area using the 

proposed polarity sampling process is clearly visible from this illustration. Consider the 

region within Figure 3.11 for which the inductor current is negative. In this area the trailing 

edge is delayed by td in accordance with the original requirement. A corresponding mapping 

equalling �d=2�fctd thus needs to be introduced in accordance with the analysis described in 

Section 3.3.1. In the region where the inductor current is positive, both the leading and 

trailing edges correspond to those of ideal TENPWM.  
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Figure 3.11: Combination of Figure 3.9 and Figure 3.10 illustrating the sampling process. 

 

The 3-D unit area describing these conditions is shown in Figure 3.12. Note that the 

linear sections existing within intervals y1<y� y2 and y3<y� y4 are defined at a slope �0/�c to 

ensure a single crossing point at the intersection of line y=(�0/�c)x with the walls. The 

complex Fourier coefficient of Eq. (2.15) can next be written by inserting the limits defined in 

Figure 3.12 such that: 
 

( ) ( )101 2

1

cos

2
0 0 0

c y yM yy y
jmx jny jmx jnyd

mn

y

V
C e dx e dy e dx e dy

ω
ω

ππ π

π

− ++� � �� �� � 	= + +� 	� � 	� 	� � � ��
� � � �  (3.10) 

( ) ( ) ( )33 04

2 3 3

cos cos2

0 0 0

c
offset d y yM y y M yy y

jmx jny jmx jny jmx jny

y y y

e dx e dy e dx e dy e dx e dy

ω
ω

ππ π π ππ − +− + +Φ + �� �� � � � 	� 	� 	+ + +� 	 	� 	� 	 � 	� �� � � � �
� � � � � �  

Where y1=�/2, y2=�/2+(�0/�c)�d, y3=3�/2 and y4=3�/2+(�0/�c)�d. 
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Figure 3.12: 3-D unit area for TENPWM with current polarity dependency. 

 

Table 3.3 shows a comparison between the analytical and simulation results for 

TENPWM including the current polarity conditions. The parameters used correspond to 

td=10ns and M=0.8. The analytical and simulation results correlate. 

 

TABLE 3.3 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR TENPWM WITH INDUCTOR CURRENT POLARITY 

CONDITION SAMPLED ON THE TRAILING EDGE. 
 

Harmonic Number Analytical Magnitude [V] Simulated Magnitude [V] 

1 7.9511 7.9511 
2 0.0002 0.0002 
3 0.0163 0.0163 

… … … 
383 3.1609 3.1609 
384 6.0722 6.0722 

385 3.1613 3.1613 

 



CHAPTER 3 INCORPORATION OF PTES IN THE DOUBLE FOURIER SERIES METHOD  
 

 

- 62 - 

3.4.2 POLARITY DEPENDENCY SAMPLED ON THE LEADING EDGE  

 

In this section it is assumed that the current polarity is sampled on the time instant of 

switching of the ideal unmodulated leading edge. This is shown in Figure 3.13 for a carrier to 

fundamental ratio �c/�0=5. The ideal modulated edge is represented by the dashed line. 
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Figure 3.13: Proposed arbitrary inductor current polarity dependency sampled on the ideal leading edge. 

 

Similar to methodology followed in Section 3.4.1, the first step in integrating the 

condition described in Figure 3.13 into the 3-D unit area is to define the various regions for 

which the inductor current is positive and negative. Since the current polarity is assumed to be 

sampled on the leading edge the various regions need to be defined at a slope �0/�c as shown 

in Figure 3.14, with the pivot point as indicated. This ensures that the polarity sample is held 

constant over a single switching period 0<x�2�. 
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Figure 3.14: Definition of the various current zones within the 3-D unit area. 

 

A combination of Figure 3.13 and Figure 3.14 is shown in Figure 3.15. From this 

illustration it can be seen how the polarity is sampled and held over a single switching period. 

From Figure 3.13 it is evident that the trailing edge need to be delayed by td if the current 

polarity is negative on the switching instant of the ideal unmodulated leading edge. Once 

again a corresponding mapping of �d=2�tdfc needs to be introduced within the region in 

Figure 3.14 for which the inductor current is negative. 
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Figure 3.15: Combination of Figure 3.13 and Figure 3.14 illustrating the sampling process. 

 

The 3-D unit area representing this condition described is shown in Figure 3.16. No 

closed form solution for variables y1…4 can be achieved and thus needs to be solved 

numerically. Variable y1 can be calculated from x=�Mcos(y)+� and y=(�0/�c)x+�/2. Also, y3 

can be determined from x=�Mcos(y)+� and y=(�0/�c)x+3�/2. The remaining variables y2 and 

y4 are found by respectively adding (�0/�c)�d to y1 and y3. The limits of Figure 3.16 

correspond to those defined in Eq. (3.10) with only y1…4 being different. 
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Figure 3.16: 3-D unit area for TENPWM with current polarity dependency. 

 

Table 3.4 shows a comparison between the analytical and simulation results for 

TENPWM including the current polarity conditions. The parameters used correspond to 

td=10ns and M=0.8. It can be seen that similar results are produced.  

 

TABLE 3.4 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR TENPWM WITH INDUCTOR CURRENT POLARITY 

CONDITION SAMPLED ON THE LEADING EDGE. 
 

Harmonic Number Analytical Magnitude [V] Simulated Magnitude [V] 

1 7.8727 7.8727 
2 0.0006 0.0006 
3 0.0424 0.0424 

… … … 
383 3.1879 3.1879 
384 6.1619 6.1619 

385 3.1887 3.1888 
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(a)      (b) 

 
Figure 3.17: Simulated TENPWM spectra for sampling on the (a) trailing and (b) leading edge. 

 

Figure 3.17 (a) shows the simulated spectra using the sampling process of Section 3.4.1 

while (b) shows the spectra with sampling on the leading edge described in this section. The 

difference in clearly visible. 

 

3.5 INCORPORATION OF A PURELY SINUSOIDAL NON-LINEAR INDUCTOR 

CURRENT MAGNITUDE DEPENDENCY IN THE 3-D UNIT AREA 
 

Consider a TENPWM waveform of which either the leading or trailing edge is governed 

by some non-linear purely sinusoidal inductor current magnitude dependency. The current 

dependent delay td introduced is assumed to be governed by the arbitrarily chosen relation: 
 

( )
2

0 0cosd scalingt k I tω=   (3.11) 

Where kscaling is a constant scaling variable. In this section it is shown how this condition 

can be incorporated into the 3-D unit area by applying the methodology introduced in 

Sections 3.3 and 3.4. Note that the current magnitude is assumed to be sampled on the same 

edge on which the error is being introduced. 
 

3.5.1 THE UNMODULATED LEADING EDGE   

 

In this section the unmodulated leading edge is delayed in accordance with the relation 

defined in Eq. (3.11). Since the current magnitude is sampled on the leading edge, the current 
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polarity zones defined in Figure 3.14 hold. Next, the equivalent mapping of Eq. (3.11) within 

the unit area can be established as �d=2�fckscaling and y=�0t. As mentioned in Section 3.3.2, 

the ideal leading edge of a TENPWM waveform is independent of y. By adding Eq. (3.11) to 

the leading edge a y dependency is introduced. This means that the adjustment (yoffset) 

discussed in Section 3.3 must be included. The expression describing the current dependent 

leading edge is thus given by: 
 

( )
2

0 cosd scaling offsetI y yΦ = Φ −   (3.12) 

Where yoffset=(�0/�c)�d. This allows for the 3-D unit area to be constructed, which is 

illustrated in Figure 3.18. 
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Figure 3.18: 3-D unit area for TENPWM with current magnitude dependency. 
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By inserting the limits defined in Figure 3.18 into Eq. (2.15) yields: 
 

( )cos2

2
02

offset

d

M y y

jmx jnyd
mn

V
C e dx e dy

π ππ

π

− +

Φ

� �
� 	=
� 	
� �
� �   (3.13) 

Table 3.5 shows a comparison between the analytical and simulation results for 

TENPWM including the current polarity conditions. The parameters used correspond to 

td=10ns, M=0.8. The analytical and simulation results correlate well. 

 

TABLE 3.5 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR TENPWM WITH INDUCTOR CURRENT MAGNITUDE 

DEPENDENCY SAMPLED ON THE TRAILING EDGE. 
 

Harmonic Number Analytical Magnitude [V] Simulated Magnitude [V] 

1 8.0000 8.0000 
2 0.0326 0.0326 
3 0.0000 0.0001 

… … … 
383 3.1435 3.1435 
384 6.0169 6.0169 

385 3.1435 3.1435 

 

3.5.2 THE MODULATED TRAILING EDGE   

 

In this section the modulated trailing edge is considered. The current magnitude is 

sampled on the ideal trailing edge which means that the polarity zones defined in Figure 3.10 

apply. The equivalent mapping of Eq. (3.12) within the unit area is the same as in Section 

3.5.1. The 3-D unit area representing these conditions is shown in Figure 3.19. The complex 

Fourier coefficient of Eq. (2.15) can be written as: 
 

( )cos2

2
02

offset

d

M y y

jmx jnyd
mn

V
C e dx e dy

π ππ

π

− +

Φ

� �
� 	=
� 	
� �
� �   (3.14) 

Where �d is defined in Eq. (3.12). A comparison between the analytical an simulation 

results are shown in Table 3.6. 
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Figure 3.19: 3-D unit area for TENPWM with current magnitude dependency. 

 

The conditions correspond to those of Section 3.5.1. From Table 3.6 it can be seen that 

the analytical and simulation results correlate well. 

 

TABLE 3.6 

COMPARISON OF ANALYTICAL AND SIMULATION RESULTS FOR TENPWM WITH INDUCTOR CURRENT MAGNITUDE 

DEPENDENCY SAMPLED ON THE LEADING EDGE. 
 

Harmonic Number Analytical Magnitude [V] Simulated Magnitude [V] 

1 8.0000 8.0000 
2 0.0326 0.0326 
3 0.0000 0.0001 

… … … 
383 3.1435 3.1435 
384 6.0169 6.0169 

385 3.1435 3.1435 
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3.6 INCORPORATION OF SECTION 3.2 WITHIN THE 3-D UNIT AREA 
 

The previous section assumed a purely sinusoidal inductor current. In this section it will 

be shown how the current model of Section 3.2 can be integrated into the unit area to provide 

a tool where the ripple current can be parsed as a parameter to model more realistic polarity 

dependencies. The objective is achieved via simple manipulation of Eq. (3.3) in which D 

needs to be described as a continuous function with the required mapping of Tc=2� within the 

unit area. Since y=2�f0t and D=((1+Mcos(2�f0t))/2) Eq. (3.3) can be rewritten as: 
 

( )2 21 cos
8

d
L

filt c

V
i M y

L f
� �Δ = −� �   (3.15) 

Since iL(upper_env) and iL(lower_env) are respectively defined on the trailing and leading edges 

the implementation has to be done with Section 3.4 in mind. Figure 3.20 defines the various 

current polarity zones for iL(upper_env) within the 3-D unit area according to the analysis of 

Section 3.4.1. 
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Figure 3.20: Definition of the various current zones for iL(upper_env) within the 3-D unit area. 
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In a similar manner Figure 3.21 defines the various current polarity zones for iL(lower_env) 

within the 3-D unit area according to the analysis of Section 3.4.2. Note that no closed form 

solution can be achieved for variables y1…4 and that it must thus be solved numerically. 
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Figure 3.21: Definition of the various current zones for iL(lower_env) within the 3-D unit area. 

 

A general power electronic tool has been introduced in this chapter. However, within 

switching audio applications, the analysis can be simplified by noting that yoffset � 0 if fc>>f0. 

This assumption will be applied for the rest of this dissertation. 

 

3.7 SUMMARY 
 

A general analytical tool has been developed which allows for the calculation of the 

harmonic composition of naturally sampled PWM in the presence of current dependent pulse 

timing errors. The analysis was verified by simulation. The analysis firstly considered a 

purely sinusoidal inductor current after which a more realistic current model with a non-zero 

ripple was included. The proposed analytical models and simulation results correlated. 
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4.1 INTRODUCTION 
 

The power MOSFET has been available since the early 1980’s [24]. Even though the 

power BJT was developed during the 1950’s [28] and has continued to evolve ever since, 

fundamental drawbacks exist in its operating characteristics. The development of the power 

MOSFET was primarily driven by the limitations posed by the power BJT. 

The BJT is a current controlled device. This means that a continuous current must be 

applied to its base in order to keep the device in the on state. Even larger reverse base currents 

are required to ensure rapid turn-off. The base drive circuitry required thus tends to be 

complex and expensive. The required gate drive characteristics compromise both efficiency 

and linearity. The power BJT’s safe operating area is limited by its inability to handle high 

voltages and currents simultaneously. Another limitation is the difficulties of using the 

devices in parallel. This can be ascribed to the decrease in forward voltage drop for increasing 

temperature, which in turn leads to current diversion to a single device. 

In contrast, the MOSFET is a voltage controlled device. Its insulated gate structure need 

only be supplied with current in order to charge and discharge the input capacitance during 

switching transitions. This means that no steady state current is required in the on or off state. 

The gate drive requirements are thus greatly simplified as a result of the high input 

impedance. Furthermore, since current conduction occurs only through transport of majority 

carriers, no delays are introduced as a result of the recombination process associated with the 

injection of minority carriers. This leads to faster switching times than the power BJT. Since 

the power MOSFET is not subject to second breakdown, the safe operating area is also much 

greater than that of the power BJT. Lastly, these devices can easily be mounted in parallel 

because the forward voltage drop increases with increasing temperature. This results in even 

current distribution amongst paralleled devices. 
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From the brief discussion above it is evident that the power MOSFET represents a closer 

approximation to an ideal switch than the power BJT. It thus finds its application in audio 

switching amplifiers in which fidelity is the primary design parameter. This chapter describes 

the fundamental operation of the power MOSFET on a semiconductor level. The inclusion of 

this overview is essential since the non-ideal effects investigated in Chapters 5 to 8 are either 

a primary or secondary consequence of its operation. The first four sections of this chapter 

(4.2 to 4.5) contain a fundamental overview of the basic structure, operation and dynamic 

characteristics, which are summarized from [24]. Section 4.6 describes the operation within a 

single phase leg, in which all non-ideal effects considered in this dissertation are included. 

Note that the above mentioned analysis is adapted and summarized from [32]. 

 

4.2 POWER MOSFET STRUCTURE 
 

Figure 4.1 illustrates a vertical diffused MOSFET (VDMOS). This device is fabricated 

using a n+ pn- n+ structure and is termed an enhancement mode n-channel MOSFET. This 

vertical structure consists of alternating n-type and p-type doped semiconductor layers with 

the n+ top layer labelled the source and the n+ bottom termed the drain. The p-type region is 

known as the body with the n- layer called the drift region. 
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Figure 4.1: Vertical cross-sectional view of a power MOSFET [24]. 
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From Figure 4.1 it should be noted that a parasitic BJT exists within the n+ pn- n+ 

structure with the p body region representing its base. This BJT must be kept in the off state at 

all times, since forward biasing would lead to unwanted conduction, which in turn can result 

in device breakdown. The source metallization connects the p body region to that of the n+ 

top layer, creating a short circuit between the base and the emitter of the parasitic BJT. This 

short leads to an integral diode being connected between the drain and source regions. 

 

4.3 POWER MOSFET OPERATION 
 

From Figure 4.1 it seems that current flow between the gate and source terminals is 

impossible since one of the pn junctions will always be reverse biased. Moreover, the gate 

metallization is isolated by a layer of silicon dioxide (SiO2), which rules out the possibility of 

minority carrier injection. In order to have current flow between the drain and source 

terminals, it is imperative to establish a conductive path between the n+ source and n- drift 

regions. This path is created by applying a positive voltage to the gate terminal (with respect 

to the source). The positive charge existing on the gate electrode requires an equal but inverse 

negative charge on the silicon beneath the SiO2 layer. The electric field established in this way 

attracts electrons to the p base region just beneath the SiO2 while repelling majority carriers 

(holes). This creates a depletion region. An increased gate voltage attracts more electrons to 

the surface while repelling more holes. This results in an increased depletion region with the 

holes pushed into the p base area beyond the depletion boundary. These additional holes are 

neutralized by electrons from the n+ source region. An equilibrium is established once the 

density of the free electrons beneath the gate oxide is equal to the density of free holes beyond 

the depletion region. This channel of free electrons beneath the SiO2 is known as the inversion 

layer. The value of applied gate voltage at which this inversion layer is formed is known as 

the gate-to-source threshold voltage. In this state the free electrons just below the gate oxide 

are highly conductive and can be regarded as a n-type semiconductor. The application of a 

drain voltage will result in current flow through the channel region. The power MOSFET is 

switched into the off state by turning the gate voltage back to zero. This is done by creating a 

short circuit between the gate and source terminals. Since the electrons are no longer attracted 

by the induced electric field, the channel between the n+ source and n- drift region is broken. 
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4.4 CHARACTERISTIC CURVES 
 

Figure 4.2 (a) shows a plot of iD as a function of vDS for various values of the VGS for a n-

channel device. The power MOSFET is cut off whenever vGS is smaller than VGS(th). In this off 

state the pn-junction is reverse biased and the device is able to block any voltage smaller than 

BVDSS. As shown in Figure 4.2 (a), when operating in the active region the drain current is 

only dependent on vDS. The power MOSFET enters the ohmic region whenever 

vGS−VGS(th)>vDS>0. 
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Figure 4.2: (a) Output and (b) transfer characteristic curves [24]. 

 

This condition is achieved by driving the device with a relatively large VGS. In this state 

vDS is small, and it is determined by the device’s on-state resistance and operating current. 

Figure 4.2 (b) illustrates iD as a function of vGS. 

 

4.5 POWER MOSFET DYNAMIC MODEL 
 

The switching speed of the power MOSFET is limited to the charge and discharge of the 

input gate capacitance due to its insulated gate structure. Figure 4.3 shows a cross-sectional 

view of the power MOSFET structure, illustrating the location of the parasitic capacitances. 

These capacitances can be divided into two primary groups of which the first is labelled CGS 

and the second of which is labelled CGD. The former capacitance can again be subdivided into 

three separate components. The first two components of CGS arise as a result of the overlap of 
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the gate electrode with the n+ source and p base regions, respectively denoted as Cn+ and Cp. 

The third capacitance exists due to the overlap of the gate electrode with the source 

metallization, labelled Cm. Note that the latter is determined by the type of insulator used 

between the gate electrode and the source metallization as well as its thickness. 
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Figure 4.3: Vertical cross-sectional view of a power MOSFET with parasitic capacitances [24]. 

 

The second capacitance exists as a result of the overlap of the gate electrode with the n- 

drift region. As mentioned, it is labelled CGD and consists of two components in series. The 

first component arises from the capacitance created by the gate electrode and oxide layer, 

which is once again determined by the thickness and type of insulating material used. The 

second component is a result of the capacitance introduced by the depletion layer. With zero 

voltage applied to the gate electrode, the depletion layer beneath the gate oxide will be at a 

minimum. By applying a positive gate voltage, the depletion layer will start forming, 

increasing for higher values of applied voltage. This in turn leads to a decrease in the 

capacitance of the depletion layer because it is widened. This process continues until the 

surface inversion layer is formed and the depletion layer is at its maximum value. In this state 

the depletion layer capacitance exhibits its lowest value. It is thus evident that these 

capacitances are not constant and change with voltage due to the partial contribution from the 

depletion layer. Figure 4.4 shows a plot of CGD as a function of vDS. 
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Figure 4.4: CGD as a function of vDS [24]. 

 

Figure 4.5 shows the circuit diagrams used to model the parasitic capacitances, with (a) 

representing the MOSFET when it is either cutoff or in the active region. During the interval 

when vGS<VGS(th) the MOSFET is cut off and iD=0. Once the threshold voltage is reached the 

device enters the active region and the current increases according to the current-voltage 

transfer characteristic of Figure 4.2 (b) with the MOSFET’s transconductance gm defining the 

slope. In this state the drain current is thus defined by gm(vGS<VGS(th)). 
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Figure 4.5: Circuit model when power MOSFET is in the (a) active and (b) ohmic region [24]. 

 

The MOSFET enters the ohmic region once vGS−VGS(th)>vDS>0. In this state the inversion 

layer has a nearly uniform thickness and effectively shorts the drain and source terminals. 

This means that the circuit model of Figure 4.5 (a) is no longer valid. Figure 4.5 (b) shows the 

equivalent circuit in the ohmic region. Note the inclusion of a non-zero rDS(on) between the 

drain and source terminals. This is a result of the resistances associated with the different 

regions of the semiconductor material. 
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4.6 POWER MOSFET SWITCHING WAVEFORMS 
 

This sub-section is adapted and summarized from [32] and serves as a brief overview of 

the MOSFET switching characteristics. Figure 4.6 illustrates the switching waveforms within 

one leg of a single phase inverter for a positive iL. 
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Figure 4.6: Switching characteristics in a single phase leg for a positive inductor current [32]. 

 

The solid bold waveforms of Figure 4.6 (a) and (b) respectively represent the practical 

gating signals of the high side and low side MOSFETs, whereas the dashed lines represent the 
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ideal waveforms. The low side MOSFET’s iD is shown in Figure 4.6 (c) with vDS represented 

by (d). The ideal switching output measured over TA2 is shown in Figure 4.6 (e). With the 

circuit diagrams representing the devices in play during the specified intervals a detailed 

description of each interval can now be constructed. This is given in Table 4.1. 

 

TABLE 4.1 

DESCRIPTION OF THE ACTION ON THE VARIOUS TIME INSTANTS OF FIGURE 4.6. 
 

Time Description 

t1 The gating signal of TA1 switches from high to low and the discharge of CGS results in td(off). 

t2 

vGS becomes temporarily clamped to a fixed value needed to maintain IL according to the 
transfer characteristic of Figure 4.2 (b). Since vGS remains constant during this interval, all of 
the input current supplied by VGS flows through CGD. This causes the vDS to drop rapidly as it 
transverses through the active toward the ohmic region of Figure 4.2 (a). 

t3 
DA2 starts its commutation sequence once vDS of TA2 goes low enough, which in turn causes vGS 
to fall rapidly. VDF of DA2 causes vDS of TA2 to fall to a value −VDF. 

t4 vGS=VGS(th) and TA1 is cut off. iL now flows completely through DA2. 

t5 

tdt is over and the gating signal of TA2 transitions from low to high. Since the inception of this 
interval both vDS and vGD equals zero, which means that TA2 never enters the active region. This 
results in rapid switching. The only requirement is the shift of charge from the DA2 to TA2. 
Once the complete current is transferred to TA2 voltage vDS falls to −iLrDS(on). 

t6 The gating signal of TA2 transitions from high to low. 

t7 
vGS=VGS(th) and TA2 is cutoff. Due to the current polarity the current will transfer directly to DA2 
again allowing for a rapid transition.VDF causes vDS to fall to −VDF. 

t8 After tdt the gating signal of TA1 changes from low to high. 

t9 
vGS=VGS(th) and thus TA1 enters the active region. The combination of intervals t8 and t9 leads to 
td(on). 

t10 

vGS becomes temporarily clamped to a fixed value needed to maintain IL according to the 
transfer characteristic of Figure 4.2 (b). Since vGS remains constant during this interval all of 
the input current supplied by VGS flows through CGD. This causes the vDS to rise rapidly as it 
transverses through the active to the ohmic region. 

t11 TA2 enters the final interval once vDS has reached its on-state value at iLrDS(on) below Vd. 

 

Figure 4.7 shows the switching waveforms within one leg of a single phase inverter for a 

negative iL. The different switching intervals can be determined in a similar manner as for the 

positive inductor current. As a result, it is not necessary to discuss it in detail. The non-ideal 

switching characteristics described in Figure 4.6 and Figure 4.7 serve as a basis for the 

analysis which follows in the remainder of this dissertation. 
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Figure 4.7: Switching characteristics in a single phase leg for a negative inductor current [32]. 

 

4.7 SUMMARY 
 

The first part of this chapter (Sections 4.2 to 4.5) summarized the basic structure, 

operation and dynamic characteristics of the power MOSFET, which have been summarized 

from [24]. The final part (Section 4.6) was adapted from [32] and considered the non-ideal 

switching behaviour within a single phase leg. This chapter thus served as a foundation in 

which the primary and secondary consequences of its operation on the switching waveform 

within a single phase leg were considered. 
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5.1 INTRODUCTION 
 

This chapter contains a detailed analysis of the effect of dead time on harmonic distortion 

in open loop class D audio amplifiers, adapted from the papers in [23] and [46] by the author. 

A fundamental analysis is considered in Section 5.2. Employing the findings in Chapter 3, an 

analytical model describing TENPWM with dead time is proposed in Section 5.3. A 

simulation model based on the strategy introduced in Chapter 2.5 is considered in Section 5.4, 

after which a detailed discussion of the analytical and simulation results follows in Section 

5.5. This chapter concludes with a summary. 

 

5.2 ANALYSIS OF DEAD TIME 
 

The analysis will be divided into two sections. Section 5.2.1 contains a detailed analysis 

for the region during which both iL(upper_env) and iL(lower_env) are positive or both of them are 

negative (inductor current Scenario � in Section 3.2). In Section 5.2.2 the remaining region 

where iL(upper_env) is positive and iL(lower_env) is negative is investigated (inductor current 

Scenario � in Section 3.2). 

 

5.2.1 A DISTINCTLY POSITIVE AND NEGATIVE INDUCTOR CURRENT (SCENARIO ����) 

 

The effect of dead time on the switched output voltage can best be described using one 

leg of the single phase inverter shown in Figure 5.1. Through simple inspection of the this 

illustration it is evident that the output voltage depends on the polarity of the output current 

when both switches (TA1 and TA2) are off. Additional states exist when the switches transition 

from off to on and vice versa. 
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Consider Figure 5.1 (a), which represents the region during which iLA is distinctly 

positive in the presence of a non-zero dead time. Referring to the illustration in (a), consider 

the transition of TA1 from on (current direction �) to off and TA2 from off to on. During tdt 

diode DA2 conducts (current direction �) while diode DA1 blocks the current flow to the 

positive rail. This results in the same output voltage as for an immediate transition of TA2 from 

off to on, which in turn corresponds to the correct output voltage. Next, with the output 

current still positive, consider the change of TA2 from on (current direction �) to off and TA1 

from off to on. Again, DA2 conducts (current direction �) while DA1 blocks the current flow to 

the positive rail. This condition leads to a loss of voltage, since the output remains clamped to 

the negative rail during tdt. 
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A2D
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A2D
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(a)      (b) 

 
Figure 5.1: Commutation sequence in a single phase leg for (a) iLA>0 and (b) iLA<0. 

 

The remaining two conditions exist when the output current is distinctly negative. Refer 

to Figure 5.1 (b). For a transition of TA2 from on (current direction �) to off and TA1 from off 

to on with the addition of tdt, DA1 conducts (current direction �) while DA2 is reverse biased. 

This results in the correct voltage at the output terminals, since the same result is achieved for 

a transition with zero dead time. The final condition is given by a transition of TA1 from on 

(current direction �) to off and TA2 from off to on for a negative output current. The 

conduction sequence of DA1 and DA2 during tdt (current direction �) is exactly the same as for 

the latter case. Since the voltage is clamped to the positive rail during tdt instead of a transition 

to the negative rail, a voltage gain is achieved. Figure 5.2 illustrates the switching waveforms 

influencing tdt for a positive inductor current. Since only tdt is considered, the remaining 

waveforms are considered as ideal. During the transition of vGS(high_side) from on to off the 

voltage is assumed to switch instantly from VGS to zero. 
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Figure 5.2: Switching waveforms for a positive inductor current. (a) Low side gate-to-source voltage. 

(b) High side gate-to-source voltage. (c) Inductor current. (d) Switched output voltage. 

 

This leads to a value of td(vf)=0. Using similar conditions vGS(high_side) results in td(vr)=0 

during a change of vGS(high_side) from off to on. This also results in instantaneous switching 

transitions, i.e. tvr=tvf=0. The inductor current polarity is sampled at the time instant of 

switching on the ideal output voltage transition, which occurs on either iL(upper_env) or 

iL(lower_env). This results in an approximation iL(approx) within region tdt as shown in Figure 5.2 

(c). The voltage loss associated with iL>0 is shown in in Figure 5.2 (d). Figure 5.3 illustrates 

the switching waveforms affecting tdt for a negative inductor current. The switching 

waveforms are idealized in exactly the same way as for Figure 5.2. The voltage gain 

associated with iL<0 is shown in in Figure 5.3 (d). 
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Figure 5.3: Switching waveforms for a negative inductor current. (a) High side gate-to-source voltage. 

(b) Low side gate-to-source voltage. (c) Inductor current. (d) Switched output voltage. 

 

5.2.2 NEITHER DISTINCTLY POSITIVE NOR NEGATIVE INDUCTOR CURRENT (SCENARIO ����) 

 

Two possible sub-scenarios exist in the region where the inductor current is neither 

distinctly positive nor negative. Firstly, consider Figure 5.4 (a) which illustrates a change in 

polarity of iL occurring within the region LE+tdt<t<TE or TE+tdt<t<LE. From the analysis in 

the previous section it is evident that the commutation sequence results in reproducing the 

ideal switching waveform, i.e. the dead time has no effect. The remaining sub-scenario exists 

when iL changes polarity during tdt. This is shown in Figure 5.4 (b) for a practical system, with 

the magenta and turquoise waveform respectively representing the switched output voltage 

and inductor current. 
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Figure 5.4: Change in current polarity (a) outside interval tdt and (b) within interval tdt [35]. 

 

The change in switching state of the output voltage is a result of reverse recovery. 

However, this dissertation assumes open loop systems tdt<<Tc and, as a result, the latter 

scenario will be ignored in the analysis. 
 

5.3 ANALYTICAL MODEL 
 

In this section a model is introduced for TENPWM which allows for the harmonic 

components created by the dead time to be calculated analytically. Since inductor current 

Scenario � reproduces the ideal case under the assumption described in the previous section, 

it is only necessary to consider Scenario �. Implementing the findings in Chapter 3 the unit 

area for TENPWM with dead time can be constructed. The leading edge with polarity 

sampled on iL(lower_env) needs to be delayed by the corresponding mapping �dt=2�fctdt within 

the region where both iL(upper_env) and iL(lower_env) are positive. In the region where both 

iL(upper_env) and iL(lower_env) are negative, the trailing edge needs to be delayed by �dt. The 3-D 

unit area representing these conditions is shown in Figure 5.5. Note that variables y1, y2, y3 

and y4 are solved numerically, as mentioned in Chapter 3. 
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Figure 5.5: 3-D unit area for TENPWM with dead time. 

 

By next inserting the limits defined in Figure 5.5, the complex Fourier coefficient of Eq. 

(2.15) can be written as: 
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The complete solution defining the unit area for TENPWM with dead time is achieved by 

substituting Eq. (5.1) into Eq. (2.12). Note that Eq. (5.1) is solved numerically. 
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5.4 SIMULATION STRATEGY 
 

The simulation technique introduced in Section 2.5 will now be adapted to determine the 

spectrum of TENPWM with dead time. The remainder of this sub-section describes the 

alterations necessary to the ideal simulation strategy of Section 2.5 to represent the pulses 

with dead time. The voltage loss and gain introduced in the TENPWM waveform with dead 

time is respectively shown in Figure 5.6 (a) and (b). Note that the parameters used in Figure 

5.6 correspond to those of the ideal case originally introduced in Figure 2.14. 
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Figure 5.6: Generation of TENPWM with dead time for (a) iL>0 and (b) iL<0. 

 

Through evaluation of Figure 5.6 (a) and (b) an expression for the width of the pth pulse 

can be found. Since the width is dependent on the current polarity, it must be defined over two 

regions. This leads to the equality: 
 

,
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Note that the time shift for the ideal case of Eq. (2.94) is also dependent on the pulse 

width. Thus, redefining the time shift in the presence of blanking time yields: 
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 (5.3) 

 
5.5 ANALYTICAL AND SIMULATION RESULTS 
 

The analytical solutions derived in Section 5.3 and the simulation model of Section 5.4 

will now be compared and discussed for TENPWM. The parameters used correspond to those 

defined in Chapter 1.1 unless stated otherwise. The parameters used in this section correspond 

to Vd=30V M=0.8, Lfilt=10.4μH and �c/�0=384 unless stated otherwise. 

5.5.1 HARMONIC COMPOSITION OF TENPWM WITH DEAD TIME 

 

In this section the effect of tdt within the audible band is considered. The plot shown in 

Figure 5.7 (a) was constructed using Eq. (5.1) in which only the baseband harmonics were 

considered, i.e. m=0. The simulation strategy of Section 5.4 was employed to construct the 

spectrum of  Figure 5.7 (b). Note that tdt=15ns in both plots. 
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Figure 5.7: (a) Analytical (m=0) and (b) simulated baseband harmonics for TENPWM. 
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From (a) it can be seen that the analytical spectrum only contains baseband harmonics at 

odd orders of the modulating waveform. The simulation in (b), however, contains additional 

even order harmonics. This suggests that the sideband switching harmonics appear as 

distortion in the audible band.  

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-100

-80

-60

-40

-20

0

20

40

Frequency [kHz]

M
ag

ni
tu

de
 [

dB
V

]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020
-100

-80

-60

-40

-20

0

20

40

Frequency [kHz]

M
ag

ni
tu

de
 [

dB
V

]

Analytical Spectrum, m=0

Analytical Spectrum, m=1

Fundamental Component

 
(a)      (b) 

 
Figure 5.8: Analytical spectrum for (a) m=1 and −383�n�−364 and (b) combination with Figure 5.7 (a). 

 

The contribution of the cross modulation products of the first carrier (m=1 and 

−383<n<−364) is shown in Figure 5.8 (a). A combination of Figure 5.7 (a) and Figure 5.8 (a) 

is illustrates in Figure 5.8 (b). The latter plot was constructed by simply plotting Figure 5.7 (a) 

on top of Figure 5.8 (a), thus not allowing for phasor summation of the various harmonics. 

 

TABLE 5.1 

ANALYTICAL AND SIMULATED MAGNITUDE OF THE BASEBAND HARMONICS FOR TENPWM. 
 

Harmonic Number [-] Analytical Magnitude [dBV] Simulated Magnitude [dBV] 

1 27.45107002 27.45106552 
3 -21.03326378 -21.03015820 
5 -49.89322182 -49.75868863 
7 -29.29112361 -29.29778067 
9 -26.85678341 -26.85776145 

11 -28.19841313 -28.19412432 
13 -32.99759418 -32.98354673 
15 -49.90858282 -49.80020594 
17 -38.05197260 -38.06822963 

19 -33.62642316 -33.62593163 
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The analytical spectrum of Figure 5.8 (b) correlates very well with the simulation of 

Figure 5.7 (b). Note that, theoretically, the complete analytical spectrum within the specified 

range can be obtained by phasor summation of all the modulation products within the 

baseband. Table 5.1 compares the magnitudes of the analytical and simulation results of the 

odd order harmonics of Figure 5.7, which correlate very well. 
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Figure 5.9: Simulated spectrum showing the first two carrier harmonics and its respective sidebands. 

 

Figure 5.9 is a spectral plot constructed using the simulation strategy of Section 5.4. The 

first two carrier harmonics with its respective sidebands are shown. From this illustration it is 

evident that the sideband switching harmonics do not decay at such a rapid rate in the 

presence of tdt as occurs in the ideal case discussed in Chapter 2. This confirms the findings. 

 

5.5.2 GENERAL RELATION TO CIRCUIT PARAMETERS 

 

Figure 5.10 (a) plots the simulated percentage THD as a function of tdt (which is 

represented as a percentage of the switching period) for M=0.8. The increase in distortion for 

increasing tdt is a well known result. Figure 5.10 (b) illustrates the relation between the THD 

and M. Since the dead time only has an effect within inductor current Scenario �, the lower 

limit of M equals 0.25 to avoid Scenario � being entering. From this plot it is apparent that 

distortion resulting from the dead time cannot be lowered by lowering M, also noted in [25]. 
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Figure 5.10: Simulated THD as a function of (a) tdt and (b) M. 

 

The percentage THD as a function of Lfilt for tdt=15ns is illustrated in Figure 5.11 (a). 

Consider the initial decrease in distortion between Lfilt=2�H and Lfilt=7�H. In this region the 

various harmonics within the baseband add in such a way that the THD decreases for 

increasing values of Lfilt. Above Lfilt=7�H they add in such a way to increase the overall 

distortion.  
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Figure 5.11: Simulated THD as a function of Lfilt for (a) tdt=15ns and (b) tdt=25ns. 

 

A similar plot to Figure 5.11 (a) is shown in Figure 5.11 (b) for tdt=25ns. The same 

relation holds. Neglecting all other effects, this suggests that for a given dead time, an 

optimum value of Lfilt can be determined. 
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5.6 SUMMARY 
 

The analysis in this chapter considered the isolated effect of dead time on harmonic 

distortion. An overview was given of this well-known effect, after which an analytical model 

based on the double Fourier series method of analysis was introduced for TENPWM. A 

simulation model was next constructed. The proposed analytical and simulation models allow 

for Lfilt as well as fc to be parsed as parameters. The analytical and simulation results achieved 

showed very good correlation. It was shown that the dead time produces even, as well as odd 

order harmonics within the audible band. Moreover, it was established that the former 

harmonics are a result of the modulation products, which in turn dependend on the switching 

frequency. It was also shown that, for a specific dead time, the THD can be optimized by 

varying Lfilt. 
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6 

THE EFFECT OF THE MOSFET  

TURN-ON AND TURN-OFF DELAYS 

 

 

6.1 INTRODUCTION 
 

It will be shown in this chapter that the MOSFET turn-on and turn-off delays lead to 

distortion within the baseband. A simulation model is presented, which is followed by a 

detailed discussion of the results achieved for TENPWM. This chapter contains a more 

detailed analysis of that presented in [46] by the author.  

 

6.2 ANALYSIS OF THE TURN-ON AND TURN-OFF DELAYS 
 

Figure 6.1 illustrates various switching waveforms for a positive inductor current. Since 

only the turn-on and turn-off delays are considered, the remainder of the switching waveform 

is idealized in an attempt to isolate the non-ideal effect under investigation. Two separate 

values of dead time, denoted tdt(low_side) and tdt(high_side) are assumed where the respective values 

represent the dead time introduced for the low side and high side MOSFET. The waveform is 

idealized if tdt(low_side)=td(vf) and tdt(high_side)=0. This is necessary to avoid simultaneous 

conduction of the switching devices. The switching transition of vGS(low_side) is also considered 

to be ideal. If all amplitude errors are neglected, for a positive inductor current, the switched 

output voltage of Figure 6.1 (d) within the turn-on and turn-off delay is independent of 

vGS(low_side). This waveform has however been included in Figure 6.1 as (b) to clarify the above 

mentioned timing requirements.Later in this section it will be shown that the inverse situation 

holds for a negative inductor current, i.e. the switched output voltage within the turn-on and 

turn-off delay is independent of vGS(high_side). Since the current polarity determines whether 

vGS(low_side) or vGS(high_side) switches the output voltage, the turn-on and turn-off delays are 

labelled in accordance with the switched output voltage rather than relating them to vGS(low_side) 

or vGS(high_side). The designations used are td(vf) and td(vr) (voltage fall and voltage rise). 
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Figure 6.1: Switching waveforms for a positive inductor current. (a) High side gate-to-source voltage. 

(b) Low side gate-to-source voltage. (c) Inductor current. (d) Switched output voltage. 

 

Consider vGS(high_side) shown in Figure 6.1 (a). An instantaneous transition in gate drive 

from vGS=VGS to vGS=0 and vice versa is assumed, with VGS well above VGS(th) according to the 

analysis in [24]. This ideal characteristic is represented by the dashed line in Figure 6.1 (a). 

The solid line represents the actual part of vGS which leads to td(vf) and td(vr). Firstly, consider 

td(vf). Once vGS transitions from VGS to zero, the actual gate-to-source voltage decreases 

exponentially as a result of the discharge of Ciss through RG. This is given by the relation [28]: 
 

G iss

t

R C
GS GSv V e

−

=   (6.1) 

The gate-to-source voltage decreases up to the point where the drain current equals the 

inductor current. Similar to the analysis in Chapter 5, iL is approximated by a constant value 

within the interval td(vf). This value is calculated on the ideal switching transition of the output 
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voltage, which occurs on iL(upper_env) and is represented by iL(approx) in Figure 6.1 (c). The 

relation between vGS and IL can be found from the transfer characteristic of the MOSFET as: 
 

( )
L

GS GS th
fs

I
v V

g
= +   (6.2) 

From Eqs. (6.1) and (6.2) td(vf) can be calculated as: 
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 (6.3) 

Using a similar approach, an expression for td(vr) can be found for a positive inductor 

current. Again, an immediate transition in the applied gate drive voltage from zero to VGS 

results in the charge of Ciss through RG by the exponential relation: 
  

1 G iss

t

R C
GS GSv V e

−
 �
= −� 
� 


� �
  (6.4) 

During the initial rising period (defined as t1) the MOSFET is in the cut-off region since 

vGS<VGS(th). This interval ends once vGS=VGS(th) which yields: 
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ln GS
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GS GS th
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  (6.5) 

At the latter instant in time the drain current will start to flow in the MOSFET and vGS 

will continue to increase in relation with Eq. (6.4). The drain-to-source voltage will increase 

in accordance with the transfer characteristic of the MOSFET up to the point where ID=IL. 

Substituting for Eq. (6.2) the equality in (6.5) can be written as: 
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Using minor alterations to those of the previous analysis, similar expressions defining 

td(vf) and td(vr) can now be constructed for a negative inductor current. Figure 6.2 illustrates the 

switching waveforms. 
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Figure 6.2: Switching waveforms for a negative inductor current. (a) Low side gate-to-source voltage. 

(b) High side gate-to-source voltage. (c) Inductor current. (d) Switched output voltage. 

 

In order to idealize the switching waveforms the dead time requirements change to 

tdt(low_side)=0 and tdt(high_side)=td(vr). The switching waveform of vGS(high_side) is assumed to be 

ideal. As already mentioned, for a negative inductor current the output voltage within the 

turn-on and turn-off delays is independent of vGS(high_side). The relation defining td(vf) for a 

negative inductor current is: 
 

( )
( )

ln for 0
L

fs

GS
d vf G iss LI

GS GS th g

V
t R C I

V V


 �
� 
= <
� 
− −� �

 (6.7) 

 

 

 



CHAPTER 6  THE EFFECT OF THE MOSFET TURN-ON AND TURN-OFF DELAYS 
  

 

- 97 - 

While td(vr) can be defined as: 
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6.3 ERROR DESCRIPTION 
 

The solutions obtained in Section 6.2 are analysed in this section. The parameters used 

for the remainder of this chapter correspond to Vd=10V M=0.85, RG=10�, VGS=10V, 

VGS(th)=4.9V, gfs=11, Ciss=810pF, L=10.7μH and �c/�0=384 unless stated otherwise. The 

plots illustrated in Figure 6.3 (a) and (b) respectively represent td(vr) for Scenario � 

(RL=120�) and Scenario � (RL=8.2�). 
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Figure 6.3: td(vr) for (a) Scenario ���� and (b) Scenario ����. 

 

From Figure 6.3 (a) it is evident that Scenario � results in a continuous curve. This can 

be ascribed to the fact that iL(lower_env) remains negative over the complete switching cycle, 

which in turn results in td(vr) being only defined by Eq. (6.8). For Scenario � the current 

changes polarity, which means that td(vr) is either defined by Eq. (6.6) or Eq. (6.8), leading to 

the abrupt change in td(vr) illustrated in Figure 6.3 (b). 
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Figure 6.4: td(vf) for for (a) Scenario ���� and (b) Scenario ����. 

 

Figure 6.4 shows a plot of td(vf) for the various scenarios of the inductor current. Similar to 

Figure 6.3 the curve in Figure 6.4 (a) is only defined by Eq. (6.3) since iL(upper_env) remains 

positive over the complete switching cycle. For Scenario � shown in Figure 6.4 (b) the 

solution is either described by Eq. (6.3) or Eq. (6.7). The analytical solutions of Eqs. (6.3), 

(6.6), (6.7) and (6.8) can next be used to construct the simulation model. 

 

6.4 SIMULATION STRATEGY 
 

With the solutions for td(vf) and td(vr) defined in Section 6.2 it is now possible to 

incorporate the delays into the simulation strategy introduced in Section 2.5. The pulse in 

Figure 6.5 represents the pth pulse of a TENPWM waveform with the addition of a non-zero 

turn-on and turn-off delay. The remaining parameters correspond to those used in Figure 2.14. 

From Figure 6.5 it can be seen that the pulse width changes to: 
 

( _ ) ( ) ( )TENPWM vr vf TENPWMp p d vr d vfW W t t= − +   (6.9) 

Since the time shift of Eq. (2.94) is also dependent on the pulse width, it needs to be 

adapted. Substituting for Eq. (6.9) the time shift of Eq. (2.94) can be written as: 
 

( ) ( ) ( )
0 1

2
TENPWMp d vr d vf

TENPWM c

W t t
t p T

− +
= − +  (6.10) 
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Figure 6.5: Generation of TENPWM with turn-on and turn-off delays. 

 
 

6.5 SIMULATION RESULTS 
 

In this section the simulation model of Section 6.4 will be utilized to determine the effect 

of the non-zero td(vr) and td(vf) on distortion. The results achieved will be discussed for both 

scenarios of the inductor current. Furthermore, note that the parameters used correspond to 

those defined in Section 6.3 unless stated otherwise. 

 

6.5.1 BASEBAND HARMONICS 

 

Firstly, the effect within the baseband is determined in this section. Figure 6.6 (a) shows a 

spectral plot of the baseband harmonics for inductor current Scenario �. From Figure 6.6 it 

can be seen that Scenario � produces a much higher level of distortion than that of Scenario 

�. The reason for the distortion in Figure 6.6 (b) being so much higher than that of (a) can be 

explained when referring to Figure 6.3 and Figure 6.4. The abrupt change in td(vr) and td(vf) 

associated with Scenario � (Figure 6.3 (b) and Figure 6.4 (b)) results in the more prominent 

baseband harmonics shown in Figure 6.6 (b) than those in (a). 
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Figure 6.6: Simulated TENPWM baseband harmonics for (a) Scenario ���� and (b) Scenario ����. 

 

Table 6.1 compares the THD of Scenario � and � for various values of RG. It can be 

seen that the distortion increases for increasing values of RG. This is a result from the fact that 

td(vr) and td(vf) increase for increasing values of RG, which is evident upon simple inspection of 

Eqs. (6.3), (6.6), (6.7) and (6.8). 

TABLE 6.1 

SIMULATED THD FOR TENPWM FOR VARIOUS RG. 
 

RG [�] Simulated THD, Scenario 1 [%] Simulated THD, Scenario 2 [%] 

10 0.005969 0.011438 
22 0.013132 0.025153 
27 0.016116 0.030864 
47 0.028054 0.053691 

100 0.059690 0.114039 

120 0.071628 0.136758 

 

Table 6.2 shows a comparison between Scenario � and � for various values of VGS. 

Since Eqs. (6.3) and (6.8) are independent of VGS for Scenario � the THD remains constant. 

For Scenario � the distortion increases for increasing values of VGS. The following section 

focuses on the contribution of the sideband switching harmonics within the baseband. 
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TABLE 6.2 

SIMULATED THD FOR TENPWM FOR VARIOUS VGS. 
 

VGS [V] Simulated THD, Scenario 1 [%] Simulated THD, Scenario 2 [%] 

10 0.005969 0.011438 
11 0.005969 0.050100 
12 0.005969 0.084282 
13 0.005969 0.113984 
14 0.005969 0.140197 

15 0.005969 0.163643 

 

6.5.2 SIDEBAND HARMONICS 

 

In this section the analysis focuses on the sideband harmonics. Figure 6.7 compares the 

spectra for Scenario � and �. From the latter illustration it can be seen that the sideband 

harmonics decay at a rapid rate for Scenario �.  
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Figure 6.7: Simulated TENPWM spectra for (a) Scenario ���� and (b) Scenario ����. 

 

For Scenario � the sidebands do not roll off that quickly and thus contribute to distortion 

within the baseband, yielding an effect similar to that of dead time. 
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6.6 SUMMARY 
 

The isolated effect of the MOSFET turn-on and turn-off delay on harmonic distortion was 

considered in this chapter. Well-known analytical expressions describing these delays [24], 

[28] were implemented into a simulation model for TENPWM. 

The simulation results obtained for TENPWM showed that inductor current Scenario � 

produces much higher levels of distortion than Scenario � due to the abrupt change in the 

delays upon a change in current polarity. Furthermore, it was shown that the THD increases 

for increasing values of the delays. Lastly, the analysis showed that the sideband switching 

harmonics only increase distortion under Scenario �. 
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7 

THE EFFECT OF  NON-ZERO  

NON-LINEAR SWITCHING TRANSITIONS 

 

 

7.1 INTRODUCTION 
 

This chapter contains the analysis presented in [47] by the author, in which the isolated 

effect of the non-zero switching transitions is investigated. The analysis is based on well-

known analytical expressions describing the switching behaviour [24], [28]. A method for the 

modelling of the non-linear switching curve based on a specific MOSFET case study is then 

introduced and compared to that of a linear transition to determine its significance. A 

simulation model is also introduced, which is followed by a detailed discussion of the results 

achieved. The analysis shows that the distortion is highly dependent on current polarity rather 

than modulation and that it increases for longer switching times. Furthermore, the proposed 

non-linear switching model results in significantly higher levels of distortion than those of the 

linear transitions. 

 

7.2 ANALYSIS OF NON-ZERO RISE AND FALL SWITCHING TRANSITIONS 
 

The switching waveforms that influence intervals tvf and tvr are shown in Figure 7.1 for a 

positive inductor current. The analysis in this chapter is only concerned with the effect of the 

non-zero rise and fall transitions, and thus only the portions of the switching waveforms 

falling within these intervals are considered to be non-ideal. This requires conditions in which 

the remainder of the waveform is idealized. 

vft

swv
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Firstly, during the initial transition of vGS(high_side) from on to off the voltage is assumed to 

switch in zero time from VGS to vGS(IL). This leads to a value of td(on)=0. Using similar 

conditions vGS(high_side) results in td(off)=0 during a change of vGS(high_side) from off to on. In order 

to avoid simultaneous conduction of the switching devices, the dead time requirement has to 

be adapted in such a way that tdt(low_side)=tvf  and tdt(high_side)=0 as shown in Figure 7.1. 
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Figure 7.1: Switching waveforms for a positive inductor current. (a) High side gate-to-source voltage. 

(b) Low side gate-to-source voltage. (c) Inductor current. (d) Switched output voltage. 

 

As already mentioned in Chapter 6, for a positive inductor current with all amplitude 

errors neglected, the output voltage is independent of vGS(low_side). However, it has once again 

been included in Figure 7.1 (b) to clarify the timing requirements of the dead time. Consider 

tvf. Upon completion of interval td(on) the switched output voltage starts to fall. As in the 

analysis of Chapter 6, iL is again approximated by iL(approx) within region tvf. This value is 
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calculated on the ideal output switching transition from off to on which occurs on iL(upper_env). 

This is shown in Figure 7.1 (c). According to the MOSFET transfer characteristic vGS will also 

remain constant at a value: 
 

( ) ( )L

L
GS I GS th

fs

I
v V

g
= +   (7.1) 

Since vGS(IL) is constant, the full gate current will charge CGD. The expression describing 

IG can thus be written as: 
 

( )( )( )
L

fsL

I
GS th gGS I

G
G G

Vv
I

R R

+
= − = −   (7.2) 

The voltage vDG across CGD is given by: 
 

DG G

GD

dv I

dt C
=   (7.3) 

Since vGS is constant, the rate of change of vDS equals the rate of change of the vDG. Stated 

mathematically: 
 

DS DGdv dv

dt dt
=   (7.4) 

Substituting for Eq. (7.3) the equality in Eq. (7.4) leads to the expression: 
 

( )( )
for 0

L

fs

I
GS th g

DS
L

G GD

Vdv
I

dt R C

+
= − >   (7.5) 

An expression describing vDS during tvr can now be found in a similar manner. Since the 

drain current remains constant at a value calculated on iL(lower_env) the gate voltage is still given 

by Eq. (7.1), which in turn results in the complete IG flowing through CGD. The gate current is 

given by: 
 

( )( )
L

fsL

I
GS GS th gGS GS I

G
G G

V VV V
I

R R

− −−
= =   (7.6) 
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Note that vGS(IL) is defined in Eq. (7.1). The voltage vDG across CGD is given by Eq. (7.3) 

and since the rate of change of vDS equals the rate of change of vDG the expression for vDG 

during interval tvr can be constructed from Eqs. (7.3) and (7.6) as: 
 

( )
for 0

L

fs

I
GS GS th gDS

L
G GD

V Vdv
I

dt R C

− −
= >   (7.7) 
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Figure 7.2: Switching waveforms for a negative inductor current. (a) Low side gate-to-source voltage. 

(b) High side gate-to-source voltage. (c) Inductor current. (d) Switched output voltage. 

 

Figure 7.2 illustrates the switching waveforms affecting intervals tvf and tvr. For a 

negative inductor current the dead time changes to tdt(low_side)=0 and tdt(high_side)=tvr in order to 

isolate the switching transitions from the remaining non-ideal effects. Note that vGS(high_side) is 

assumed to be ideal and that it is once again included to state the dead time requirements. 
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Following a similar approach to that of the previous analysis for a positive inductor current, 

an expression describing vDS during tvf can be constructed as: 
 

( )( )
for 0

L

fs

I
GS GS th g

DS
L

G GD

V Vdv
I

dt R C

− −
= − <   (7.8) 

In a similar manner, an expression for vDS for interval tvr can be obtained as: 
 

( )
for 0

L

fs

I
GS th gDS

L
G GD

Vdv
I

dt R C

+
= <   (7.9) 

The expressions describing the switched output voltage during intervals tvr and tvf 

obtained will be solved in the following section. 

 

7.3 SOLUTIONS TO THE EXPRESSIONS OF THE SWITCHING CURVES 
 

The solutions to the expressions of the switching curves derived in the previous section 

will now be determined. Initially, a solution for a constant CGD is obtained, after which a more 

realistic solution for a dynamic CGD is considered. As will be shown in Section 7.3.1, a 

constant CGD results in a linear switching curve, whereas the proposed dynamic 

approximation of CGD leads to a non-linear switching characteristic. The reasoning behind the 

inclusion of both models is to show how the proposed model differs from that introduced in 

previous work [29], as well as to determine whether the non-linear switching characteristic 

has a negligible effect on distortion compared to the linear switching curve. Note that the 

solutions obtained in this section are applicable to both half-bridge and full-bridge topologies. 

 

7.3.1 CONSTANT GATE-TO-DRAIN CAPACITANCE 

 

Since CGD is dependent on vDS it is necessary to establish an approximation to achieve the 

objective of a linear switching characteristic in this section. By defining CGD1 at vDS=0 and 

CGD2 at vDS=Vd the best constant approximation is achieved by: 
 

1 2

2
GD GD

GD

C C
C

−
=   (7.10) 
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Consider a positive inductor current. The solution to vDS during tvf can be found through 

integration of Eq. (7.5) as: 
 

( )
for 0

L

fs

I
GS th g

DS d L
G GD

V
v V t I

R C

� �+
� 	= − >
� 	� �

  (7.11) 

By noting that t=tvf  if vDS is zero, the solution to tvf can be found as: 
 

( )

for 0
L

fs

d G GD
vf LI

GS th g

V R C
t I

V
= >

+
  (7.12) 

The solution to vDS during tvr can be found through integration of Eq. (7.7), which yields: 
 

( )
for 0

L

fs

I
GS GS th g

DS L
G GD

V V
v t I

R C

� �− −
� 	= >
� 	� �

  (7.13) 

Since vDS=Vd when t=tvr the solultion to tvr can be expressed as: 
 

( )

for 0
L

fs

d G GD
vr LI

GS GS th g

V R C
t I

V V
= >

− −
  (7.14) 

Using a similar approach the solutions to vDS during tvr and tvf can now also be determined 

for a negative inductor current. The solution to vDS during tvf can be found through integration 

of Eq. (7.8) as: 
 

( )
for 0

L

fs

I
GS GS th g

DS d L
G GD

V V
v V t I

R C

� �− −
� 	= − <
� 	� �

 (7.15) 

Since vDS equals zero when t=tvf the solution to tvf can be written as: 
 

( )

for 0
L

fs

d G GD
vf LI

GS GS th g

V R C
t I

V V
= <

− −
  (7.16) 

The solution to vDS during tvr can be found through integration of Eq. (7.9), which leads to: 
 

( )
for 0

L

fs

I
GS th g

DS L
G GD

V
v t I

R C

� �+
� 	= <
� 	� �

  (7.17) 
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By next noting that vDS=Vd when t=tvr the solultion can be expressed as: 
 

( )

for 0
L

fs

d G GD
vr LI

GS th g

V R C
t I

V
= <

+
  (7.18) 

The following section contains a more complex model of CGD. It is shown that the 

prosposed model leads to a non-linear solution to vDS during the switching intervals. 

 

7.3.2 DYNAMIC GATE-TO-DRAIN CAPACITANCE 

 

Since the CGD vs. vDS characteristic is MOSFET specific, a case study approach will be 

used in this section to obtain the solution to the switching curves for a varying CGD. Consider 

Figure 7.3. The bold curve in (a) represents the actual CGD vs. vDS characteristic for part 

IRFI4019H-117P obtained from the device’s datasheet [48]. 
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Figure 7.3: (a) Approximate and actual curve of CGD as a function of vDS on a log scale. (b) Approximate 

curve of CGD as a function of vDS on a linear scale for part IRFI4019H-117P. 

 

From Figure 7.3 (a) it can be seen that a good approximation to the actual curve is 

achieved via a power law of the form: 
 

CGD

GD

k

GD C DSC m v=   (7.19) 

The approximation is shown in (a) with parameters corresponding to 150 pF
GDCm = and 

0.75.
GDCk = − Figure 7.3 (b) represents the plot of (a) on a linear scale. The relation in Eq. 



CHAPTER 7 THE EFFECT OF NON-ZERO NON-LINEAR SWITCHING TRANSITIONS  
  

 

- 110 - 

(7.19) can next be used to obtain the solutions to the expressions derived in Section 7.2. 

Firstly, consider a positive inductor current. The solution to vDS during tvf can be found 

through integration of Eq. (7.5) as: 
 

( )( )
1

1

( )1
for 0

kCGD

GD

GD

C GS th fs L

DS d L
G fs C

k V g I
v V t I

R g m

+

 �� 

� �� �+ +

� 	= − >
� 	� �

 (7.20) 

Since vDS=0 when t=tvf the solution to tvf can be written as: 
 

( )

( ) ( )

1

( )

for 0
1

CGD

GD

GD

k

G fs C d

vf L

C GS th fs L

R g m V
t I

k V g I

+

= >
+ +

 (7.21) 

Eq. (7.20) can next be written in terms of tvf by rewriting Eq. (7.21) and substituting the 

result into Eq. (7.20). Since 0.75
GDCk = − Eq. (7.20) simplifies to: 

 
4

4
for 0d

DS d L
vf

V
v V t I

t
= − >   (7.22) 

From Eq. (7.22) it is evident that the switching curve can be approximated by a 

polynomial of order four. Using result of this, the remaining solutions can easily be obtained. 

For a positive inductor current, vDS during tvr is given by: 
 

( )
4

4
for 0d

DS d vr L
vr

V
v V t t I

t
= − − >   (7.23) 

Where tvr can be written as: 
 

( )

1
4

( )

4
for 0GDG fs C d

vr L

GS fs GS th fs L

R g m V
t I

V g V g I
= >

− −
  (7.24) 

Consider a negative inductor current. The solution to vDS within interval tvf can be written as: 
 

( )
4

4
for 0d

DS vf L
vf

V
v t t I

t
= − <   (7.25) 
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With tvf defined by: 
 

( )

1
4

( )

4
for 0GDG fs C d

vf L

GS fs GS th fs L

R g m V
t I

V g V g I
= <

− −
  (7.26) 

Finally, the solution to vDS during interval tvr is given by: 
 

4
4

for 0d
DS L

vr

V
v t I

t
= <   (7.27) 

While tvr in Eq. (7.27) can be written as: 
 

( )

1
4

( )

4
for 0GDG fs C d

vr L

GS th fs L

R g m V
t I

V g I
= <

+
  (7.28) 

 

7.4 ERROR DESCRIPTION 
 

In this section the solutions of the switching curves obtained in Section 7.3 are analysed. 

Note that the parameters used for the remainder of this chapter correspond to Vd=10V 

M=0.85, RG=10�, VGS=10V, VGS(th)=4.9V, gfs=11, L=10.7μH and �c/�0=384 unless stated 

otherwise. Figure 7.4 (a) and (b) respectively show a plot of tvr for Scenario � (RL=120�) 

and Scenario � (RL=8.2�) using the solutions obtained in Section 7.3.2. 
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Figure 7.4: Rise time for (a) Scenario ���� and (b) Scenario ����. 
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From Figure 7.4 (a) it can be seen that Scenario � results in a continuous curve. This can 

be ascribed to the fact that iL(lower_env) remains negative over the complete switching cycle 

which in turn results in tvr being only defined by Eq. (7.28). For Scenario � the current 

changes polarity, which means that tvr is either defined by Eq. (7.24) or Eq. (7.28), leading to 

the abrupt change in tvr shown in Figure 7.4 (b). 
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Figure 7.5: Fall time for (a) Scenario ���� and (b) Scenario ����. 

 

Figure 7.5 shows a plot of tvf for the various scenarios of the inductor current. Similar to 

Figure 7.4 the curve in (a) is only defined by Eq. (7.21) since iL(upper_env) remains positive over 

the complete switching cycle. For Scenario � shown in Figure 7.5 (b) the solution is either 

described by Eq. (7.21) or Eq. (7.26). 
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Figure 7.6: Difference in fall time for (a) Scenario ���� and (b) Scenario ����. 
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Figure 7.6 illustrates a plot of the difference in tvf for the solutions obtained in Section 

7.3.2 and Section 7.3.1. This serves as a reference for discussing of the results, which follows 

in Section 7.6. 

 

7.5 SIMULATION STRATEGY 
 

The simulation strategy of Section 2.5 can now be adapted to accommodate for tvr and tvf.  

Since a comparison between the linear and non-linear switching characteristic will be 

included, the simulation model needs to be set up for both sets of solutions obtained in 

Section 7.3. Note that models for both TENPWM and DENPWM are presented. 

 

TENPWM 

 

The pth pulse of a TENPWM waveform in the presence of a non-zero turn-on and turn-off 

switching transition is shown in Figure 7.7. The solid curves represent the non-linear 

transitions for a positive inductor current during tvr and tvf, whereas the dashed curves 

represent switching for a negative inductor current. The linear transitions are shown as grey 

lines within the latter intervals. 
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Figure 7.7: Generation of TENPWM with non-zero rise and fall times. 
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The Fourier Transform of vDS(t) during tvr including the necessary time shift t0 is given by: 
 

( ) ( )0 02 22

0

vrt
j ft j ftj ft

DS DSv t e v t e dt eπ ππ− −−
� �

ℑ =� � � 	� �
� 	� �
�  (7.29) 

Where: 
 

( )0 1TENPWM ct p T= −   (7.30) 

Depending on the current polarity, vDS(t) in Eq. (7.29) is defined by Eqs. (7.14) or (7.17) 

for linear switching curves and Eq. (7.23) or (7.27) for the non-linear approximation. The 

Fourier Transform of vDS(t) for interval tvf is given by: 
 

( ) ( )0 02 22

0

vft

j ft j ftj ft
DS DSv t e v t e dt eπ ππ− −−

� �
ℑ =� � � 	� �

� 	� �
�  (7.31) 

With t0 defined as: 
 

( )0 1
TENPWMTENPWM c pt p T W= − +   (7.32) 

In a similar manner as for tvr vDS(t) is defined by Eq. (7.11) or (7.15) for a linear 

switching curve, whereas Eq. (7.22) or (7.25) defines it for a non-linear transition. From 

Figure 7.7 it is evident that the pulse width also needs to be adapted to: 
 

( _ )TENPWM t t TENPWMvr vf
p p vrW W t= −   (7.33) 

The time shift of Eq. (2.94) is a function of the pulse width and thus needs to be altered as 

well. By substituting for Eq. (7.33) the time shift of Eq. (2.94) changes to: 
 

( )0 1
2

TENPWMp vr
TENPWM c

W t
t p T

−
= − +   (7.34) 

 

7.6 SIMULATION RESULTS 
 

The simulation model introduced in the previous section can next be implemented. In this 

section a detailed analysis of the results achieved will be considered for TENPWM. A 

discussion of the difference between the linear and non-linear switching transitions is also 
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included. Once again, throughout this section the results will be discussed for both scenarios 

of the inductor current. The parameters used correspond to those defined in Section 7.4, 

unless stated otherwise. 

 

7.6.1 BASEBAND HARMONICS 

 

The effect of tvr and tvf within the baseband is considered in this section. Figure 7.8 is a 

comparative spectral plot of the baseband harmonics of both linear and non-linear switching 

transitions, which were plotted using the respective solutions derived in Sections 7.3.1 and 

7.3.2. From Figure 7.8 it can be seen that Scenario � produces much higher levels of 

distortion than Scenario �. The reason why the distortion in Figure 7.8 (b) is so much more 

prominent can be explained when referring to Figure 7.4 and Figure 7.5. The abrupt change in 

tvr and tvf associated with Scenario � (Figure 7.4 (b) and Figure 7.5 (b)) results in more 

prominent baseband harmonics shown in Figure 7.8 (b) than in (a). 
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Figure 7.8: Simulated TENPWM baseband harmonics for (a) Scenario ���� and (b) Scenario ����. 

 

A comparison between the linear and non-linear switching transitions for various values 

of RG is represented in Table 7.1. It is evident that the distortion increases for increasing 

values of RG. Through simple inspection of the solutions in Section 7.3 it can be observed that 

tvr and tvf increase for increasing values of RG, suggesting that longer switching transitions 

result in higher levels of distortion. 
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TABLE 7.1 

SIMULATED THD FOR LINEAR AND NON-LINEAR SWITCHING TRANSITIONS FOR TENPWM FOR VARIOUS RG. 
 

Scenario 1 Scenario 2 

RG [�] 
Simulated THD, 

Linear [%] 
Simulated THD, 
Non-Linear [%] 

Simulated THD, 
Linear [%] 

Simulated THD, 
Non-Linear [%] 

10 0.000451 0.001284 0.015269 0.037130 

22 0.000993 0.002824 0.033570 0.081557 

27 0.001218 0.003466 0.041188 0.100026 

47 0.002121 0.006034 0.071619 0.173658 

100 0.004512 0.012838 0.151942 0.366910 

120 0.005415 0.015406 0.182132 0.439136 

 

Table 7.2 shows a similar comparison as Table 7.1, only for various values of VGS. The 

solutions in Section 7.3 describing tvr (Eqs. (7.18) and (7.28)) and tvf (Eqs. (7.12) and (7.21)) 

for Scenario � are independent of VGS, which results in a THD that remains constant. 

 

TABLE 7.2 

SIMULATED THD FOR LINEAR AND NON-LINEAR SWITCHING TRANSITIONS FOR TENPWM FOR VARIOUS VGS. 
 

Scenario 1 Scenario 2 

VGS [�] 
Simulated THD, 

Linear [%] 
Simulated THD, 
Non-Linear [%] 

Simulated THD, 
Linear [%] 

Simulated THD, 
Non-Linear [%] 

10 0.000451 0.001284 0.015269 0.037130 

11 0.000451 0.001284 0.015224 0.039050 

12 0.000451 0.001284 0.015177 0.040430 

13 0.000451 0.001284 0.015128 0.041469 

14 0.000451 0.001284 0.015077 0.042279 

15 0.000451 0.001284 0.015023 0.042929 

 

For Scenario � the distortion decreases for increasing values of VGS for the linear 

transitions, while the inverse holds for the non-linear switching transitions. In both Table 7.1 

and Table 7.2 it can be seen that the proposed non-linear model of Section 7.3.2 results in 

higher levels of distortion than the linear model of Section 7.3.1. This can partially be 

explained when referring to Figure 7.6 which shows the difference in tvf between the linear 

and non-linear cases. The solutions of the proposed non-linear model yields higher switching 
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times than that of the linear model, which in turn results in higher levels of distortion, as 

suggested in Table 7.1. The following section focuses on the contribution of the sideband 

switching harmonics within the baseband. 

 

7.6.2 SIDEBAND HARMONICS 

 

The following analysis shows under which circumstances the sideband harmonics are 

most likely to deteriorate distortion by contributing to the baseband harmonics. Figure 7.9 

compares the spectra of the linear and non-linear switching transitions for the various 

scenarios of the inductor current. From the latter illustration it can be seen that the sideband 

harmonics decay at a rapid rate for Scenario �. 
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Figure 7.9: Simulated TENPWM spectra for (a) Scenario ���� and (b) Scenario ����. 

 

However, for Scenario � the sidebands of the first carrier do not roll off at such a rapid 

rate and thus contribute to distortion within the baseband. This slow decay associated with 

Scenario � can be ascribed to abrupt change in tvr and tvf upon transition, as described in the 

previous section. 

 

7.7 SUMMARY 
 

This chapter focussed on the isolated effect of non-zero linear, as well as non-zero non-

linear switching transitions on harmonic distortion. The analysis included a linear model 
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based on well-known analytical expressions [24], [28] as well as a newly proposed non-linear 

model based on an approximation of the non-linear vDS vs. CGD curve of a specific power 

MOSFET. A simulation model was constructed for TENPWM.  

From the results obtained for TENPWM it was shown that inductor current Scenario � 

yields much higher levels of distortion than Scenario � due to the abrupt change in transition 

times upon a change in current polarity. It was also shown that the THD increases for 

increasing switching times. For Scenario � the sideband harmonics contribute to distortion 

within the baseband. The proposed non-linear model resulted in much higher levels of 

distortion than the linear model for both cases of the inductor current. 
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swv

8 

THE EFFECT OF PARASITICS 

AND REVERSE RECOVERY 
 

 

8.1 INTRODUCTION 
 

This chapter focusses on the effects of the turn-on and turn-off voltage transients on 

harmonic distortion. Due to the vast amount of variables involved, as well as the dependence 

on practical implementation, it is very difficult to characterise the voltage transient’s exact 

parameters [31], [32]. Thus, the proposed analysis makes use of an existing analytical solution 

and focus is shifted towards the parameters that give rise to distortion within the baseband 

rather than predicting the exact characteristic of the overvoltage for a given practical setup. 

The conditions under which the reverse recovery increases distortion are then determined, 

after which a method for modelling its effect is established. A simulation models is 

introduced for TENPWM after which a detailed discussion of the results achieved are 

considered. 

 

8.2 ANALYSIS OF THE PARASITICS AND REVERSE RECOVERY 
 

As mentioned in the previous section, the analysis will focus on the mechanism giving 

rise to distortion within an existing practical setup rather than analytically estimating the 

amplitude and frequency of the ringing effect for that specific circuit. This approach calls for 

some existing analytical solution describing the overvoltage within current literature. The 

analysis in [31] contains a detailed study of the MOSFET turn-off overvoltage transient in the 

presence of various parasitics. A closed form analytical solution for this voltage is obtained 

from equivalent circuit models of the power MOSFET and the PCB. A brief summary of the 

analysis and solution obtained in [31] now follows. 
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Figure 8.1: Equivalent circuit model of the turn-off process [31]. 

 

In order to obtain an analytical expression the analysis utilizes a relatively simple 

MOSFET model in which essential design parameters are included. This model’s simplicity is 

based on the assumption that Coss is fully charged to the supply voltage (and thus constant 

during the ringing phase) before the current starts to fall. This MOSFET model is shown in 

the right hand side rectangle of Figure 8.1. Both the PCB and the component leads contribute 

to the total stray inductance. The former is modelled using a computer aided design (CAD) 

tool (InCa) in which a method (the Partial Element Equivalent Circuit) is implemented that 

permits modelling of the interconnections. The various self-and-mutual partial inductances 

and resistances are respectively represented by a single inductance and a single resistance, all 

connected in series. This circuit is shown in the left hand rectangle of Figure 8.1. The stray 

inductance Lstray is a combination of the total self-and-mutual partial inductances together 

with the lead inductances of the upper switching device while Rloop is the total partial 

resistance of the PCB tracks. From Figure 8.1 the expression describing the MOSFET’s 

external overvoltage takes the general form [31]: 
 

( ) ( )2

2
sin 1

1
ov tstray L

DS ov

sink

L I
v e t

t

ω ζ ω ζ
ζ

− � �Δ = −� �−
 (8.1) 

Where: 
 

1
, and

2
tot oss

ov tot stray D S
tot tot oss

R C
L L L L

L L C
ζ ω= = = + +  (8.2) 
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A single switching phase leg is considered as a starting point from where the analysis is 

extended to a full-bridge topology. It will be shown that the analytical solution of Eq. (8.1) is 

applicable to both scenarios of the inductor current as well as both topologies, hence the 

reason for it being introduced as a general solution at enception of this section. The analysis 

of the half-bridge topology now follows. 

 

8.2.1 ANALYSIS OF A HALF-BRIDGE TOPOLOGY 

 

The half-bridge topology provides a simple starting point for modelling the effect of the 

parasitics and reverse recovery. The two scenarios of the inductor current introduced in 

Chapter 3 once again govern the analysis, resulting in it being divided into two sub-sections. 

 

Inductor Current Scenario ���� 

 

Figure 8.2 illustrates a practical switched output voltage with a duty cycle of 50% 

measured within a single phase leg of a full-bridge inverter. Figure 8.2 (a) represents a 

switching transition of the lower switch from on to off while (b) shows a transition from off to 

on. Note that D was chosen at 50% since it provides a simple measurement environment of 

the waveforms in which Scenario � is reproduced. 
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Figure 8.2: Measured switching output voltage transitions from (a) on to off and (b) off to on. 
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The values of the circuit parameters used correspond to Vd=10V, RG=10�, VGS=14V, 

Lfilt=10.4μH, C=470nF and fc=384kHz. The waveforms of Figure 8.2 (a) and (b) can next be 

matched using the analytical solution of Eq. (8.1). Firstly, consider Figure 8.2 (a). The 

required damping and frequency of the oscillation can be determined iteratively from Rtot, Coss 

and Ltot as 5�, 70pF and 40nH respectively. The peak overvoltage is measured at 9.3V and 

exists at time tpeak=2.6ns (relative to inception of the ringing period). Substituting for t=tpeak 

into Eq. (8.1) with �vDS=�vDS(peak)=9.3V and noting that the standing current produced 

corresponds to IL=0.31A, the only unknown variables are Lstray and tsink=tif. Assuming a value 

of Lstray=30nH, tif can be determined as 0.85ns. 
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Figure 8.3: Analytically matched waveforms of (a) Figure 8.2 (a), and (b) Figure 8.2 (b). 

 

Using a similar approach, the measured undervoltage of Figure 8.2 (b) can next be 

matched. The parameters used for the damping and frequency of the ringing effect are the 

same as for Figure 8.3 (a). The peak overvoltage is measured at 4.9V and once again exists at 

2.6ns due to the frequency being the same. Substiuting for the latter peak undervoltage and 

noting that the standing current again corresponds to IL=0.31A, tsink=tir can be determined as 

1.62ns. It is thus evident that Eq. (8.1) provides an accurate solution for the modelling of both 

the over- and undervoltage. In both Figure 8.3 (a) and (b) the frequency and damping of the 

oscillation correlate well. Since IL is known and tpeak is constant, the latter argument suggests 

that the required waveform can be determined by simply establishing the practical relation 

between �vDS(peak) and tsink for a given setup. 
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(a)      (b) 

 

  
(c)      (d) 

 
Figure 8.4:  Measured voltage envelopes and inductor current for (a) M=0.1 and (c) M=0.2. Measured 

peak overvoltage at the crest of the overvoltage envelope for (b) M=0.1 and (d) M=0.2. 

 

Figure 8.4 illustrates the measured envelopes of the over- and undervoltage as well as the 

inductor current for (a) M=0.1 and (c) M=0.2 over two cycles of a 1kHz modulating 

waveform. Note that the latter values of M were chosen in such a way as to ensure that the 

inductor current remains within the boundaries of Scenario �. The corresponding peak 

overvoltage transients measured on the crest of �vDS(upper_env) are respectively shown in (b) and 

(d). These measurements are included since the aliasing effect of the oscilloscope results in a 

possible misinterpretation of the actual measurement. The solid curves shown in (a) and (c) 

have been included in order to illustrate the exact measured envelopes. From both Figure 8.4 

(a) and (c) it is apparent that a direct relation exists between the envelopes of the over- and 

undervoltage and the inductor current.  
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This relation will now be established. Firstly, consider the overvoltage. Upon inspection 

of Figure 8.4 a general expression defining �vDS(upper_env) can be determined by offsetting 

iL(lower_env) by some constant value and applying the appropriate scaling, that is: 
 

( _ ) ( _ )DS upper env offset scaling L lower envv k k iΔ = +   (8.3) 

The two unknown constants koffset and kscaling can be solved by measuring the peak 

overvoltage at the crest of �vDS(upper_env) and the corresponding IL, which is determined at the 

trough of iL(lower_env). Another measurement of the peak overvoltage at the trough of 

�vDS(upper_env) and the corresponding IL at the crest of iL(lower_env) makes it possible to solve Eq. 

(8.3). 

 

TABLE 8.1 

VARIOUS VARIABLES FOR EXPRESSING THE UPPER ENVELOPE OF THE OVERVOLTAGE FOR SCENARIO �. 
 

Measured Peak Voltage [V] Current Magnitude [A] 
M 

Crest Trough Crest Trough 
koffset kscaling 

0.1 20.80 17.60 0.4318 0.1879 23.27 13.12 

0.2 22.80 16.40 0.0566 0.5444 23.54 13.12 

 

The various variables established for M=0.1 and M=0.2 are summarized in Table 8.1. 

Note that the magnitude of the current was calculated using the solution obtained in Eq. (3.5). 

Next, consider the undervotage. From Figure 8.4 (a) and (c) it is evident that a similar relation 

to that established for the overvoltage exists for the undervoltage, which means that: 
 

( _ ) ( _ )DS lower env offset scaling L upper envv k k iΔ = +   (8.4) 

However, for some part of the interval displayed in Figure 8.4 (a) and (b) it can be seen 

that �vDS(lower_env) becomes saturated (respective measured peak undervolatage levels of 1.5V 

and 2.2V for M=0.1 and M=0.2), and thus does not follow iL(upper_env) according to the relation 

defined in Eq. (8.4). Assuming that the same latter linear relation exists during saturation, the 

crest of �vDS(lower_env) can be estimated. This allows for the calculation of koffset and kscaling.  
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For the remaining region a simple condition can be applied to �vDS(lower_env) in order to 

clamp it to the corresponding voltage during clipping. Table 8.2 contains a summary of the 

various variables. 

TABLE 8.2 

VARIOUS VARIABLES FOR EXPRESSING THE LOWER ENVELOPE OF THE UNDERVOLTAGE FOR SCENARIO �. 
 

Measured Peak Voltage [V] Current Magnitude [A] 
M 

Crest (est.) Trough Crest Trough 
koffset kscaling 

0.1 1.00 -6.80 0.4318 0.1879 -12.81 31.98 

0.2 2.00 -8.10 0.5444 0.0566 -9.27 20.71 

 

Figure 8.5 illustrates the analytical reconstruction if the measurements obtained in Figure 

8.4 are using the parameters obtained in Table 8.1 and Table 8.2. 
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Figure 8.5: Analytically reconstructed voltage envelopes of Figure 8.4 for (a) M=0.1 and (b) M=0.2. 

 

Since �vDS(upper_env) and �vDS(lower_env) define �vDS(peak) the appropriate scaling needs to be 

applied in accordance with Eq. (8.1) in order to derive an expression for �vDS. This requires 

the derivation of an expression for tsink as a function of time. Since �vDS(peak)=�vDS(upper_env) at 

t=tpeak an expression defining tsink=tif can be found from Eq. (8.1): 
 

( ) ( )( _ ) 2

2
( _ )

sin 1
1

ov peaktstray L lower env
if ov peak

DS upper env

L i
t e t

v

ω ζ
ω ζ

ζ

− � �= −� �Δ −
 (8.5) 
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In a similar manner �vDS(peak)=�vDS(lower_env) which means that an expression defining 

tsink=tir can be established from Eq. (8.1): 
 

( ) ( )( _ ) 2

2
( _ )

sin 1
1

ov peaktstray L upper env
ir ov peak

DS lower env

L i
t e t

v

ω ζ
ω ζ

ζ

− � �= −� �Δ −
 (8.6) 

By next substituting the results of Eqs. (8.5) and (8.6) into Eq. (8.1) an expression for 

�vDS can be determined for inductor current Scenario �. 

 

Inductor Current Scenario ���� 

 

Figure 8.6 illustrates measurements of the voltage envelopes as well as the inductor 

current for (a) M=0.5 and (c) M=0.8. In both cases Scenario � is reproduced at some stage of 

the switching interval. Note that the remaining conditions used correspond to those of Figure 

8.4. Figure 8.6 (b) and (d) respectively represent the corresponding overvoltage transisients of 

(a) and (c) measured on the crest of �vDS(upper_env). Consider both measurements of 

�vDS(upper_env) and �vDS(lower_env). In the region where the inductor current falls within the limits 

governing Scenario �, the same linear relation introduced in the previous section holds. 

However, in Scenario � it can be observed that �vDS(upper_env) and �vDS(lower_env) are governed 

by some other constraint. This is evident by noting that the peak overvoltage measurements 

shown in (b) and (d) are both more or less equal. 

 

  
(a)      (b) 
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(c)      (d) 

 
Figure 8.6: Measured voltage envelopes and inductor current for (a) M=0.5 and (c) M=0.8. Measured 

peak overvoltage at the crest of the overvoltage envelope for (b) M=0.5 and (d) M=0.8. 

 

Figure 8.7 (a) and (b) show a measurement similar to that of Figure 8.6 (c) and (d) with 

M=0.8 and Vd=20V. Note that the bus voltage was increased in order to magnify the effect 

observed. The additional curves inserted onto �vDS(upper_env) will now be explained. 

 

  
(a)      (b) 

 
Figure 8.7: (a) Measured voltage envelopes for M=0.8. (b) Measured peak overvoltage at the crest of 

the overvoltage envelope with Vd=20V. 

 

The dashed curves in Figure 8.7 (a) represent an extension of the estimate of the relation 

described for Scenario � within the boundaries of Scenario � while the solid curves denote 

the actual measured value of �vDS(upper_env). It is clear that a mechanism different to that 

observed for Scenario � governs �vDS(upper_env) in this region. Note that the same phenomenon 
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is observed for �vDS(lower_env). An indication as to which non-ideal effect is responsible within 

the latter interval can be established by noting that it occurs within the conditions of the dead 

time mentioned in Chapter 5, or during forced commutation as also observed and described by 

F. Nyboe [33]. For a distinctly positive inductor current the voltage loss occurs on the leading 

edge (the edge at which the overvoltage is produced). Refer to Figure 5.1 (a). At the time 

instant just before TA1 switches from off to on DA2 conducts. Once the complete current flows 

through TA1, a minority carrier reverse recovery charge Qrr must be removed before DA2 

becomes reverse biased. An inevitable shoot through current is produced until the latter 

charge is removed. In a similar manner the voltage gain occurs on the trailing edge (the edge 

at which the undervoltage is produced). Following the same methology as for a distinctly 

positive inductor current, it can be concluded from Figure 5.1 (b) that the shoot through 

current results from the reverse recovery of DA1. A relation once again exists between 

�vDS(upper_env) and iL(lower_env), as well as between �vDS(lower_env) and iL(upper_env), and it will now 

be established. 

 

t

FI

Ddi
dt

rrI

rrQ

 

Figure 8.8: Intrinsic power diode current switching characteristic during turn-off [24]. 

 

The turn-off switching characteristics of the intrinsic power diode is shown in Figure 8.8. 

A well known approximate expression describing Irr is given by [24]: 
 

62.8 10 D
rr DSS F

di
I BV I

dt
−≈ ×   (8.7) 

The switching times as well as the waveform of Figure 8.8 are dependent on the 

properties of the semiconductor as well as the practical circuit in which it finds itself [24]. 

Moreover, as emphasized in [24], the solution in Eq. (8.7) is based on various assumptions 

and thus represents a very rough estimate that essentially summarizes the trade-offs between 

the respective variables involved. Attempting to analyze the reverse recovery effect 
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analytically with the given amount of unknown factors will thus be tedious. One very useful 

observation, however, can be made from Eq. (8.7) by noting that Irr is directly proportional to 

the square root of IF for an assumed constant value of diD/dt. This allows for �vDS(upper_env) and 

iL(lower_env) to be interrelated once again. Adapting Eq. (8.3) the expression yields: 
 

( _ ) ( _ )DS upper env offset scaling L lower envv k k iΔ = +   (8.8) 

Variable koffset can be determined by noting that iL(lower_env)=0 upon a transition from 

inductor current Scenario � to Scenario �. Thus, by simply measuring the peak overvoltage 

of �vDS(upper_env) at the time instant where iL(lower_env) changes polarity from negative to 

positive, koffset can be found. The remaining unknown variable kscaling can be established by 

measuring the peak overvoltage at the crest of �vDS(upper_env) and the corresponding value of IL. 

 

TABLE 8.3 

VARIOUS VARIABLES FOR EXPRESSING THE UPPER ENVELOPE OF THE OVERVOLTAGE FOR SCENARIO �. 
 

Measured Peak Voltage [V] Current Magnitude [A] 
M 

Crest iL(lower_env)=0 Crest iL(lower_env)=0 
koffset kscaling 

0.5 23.80 23.20 0.3750 0 23.20 0.98 

0.8 23.20 22.80 0.8629 0 22.80 0.43 

 

The various variables for M=0.5 and M=0.8 are summarized in Table 8.3. In a similar 

way the relation describing the undervoltage can be written as: 
 

( _ ) ( _ )DS lower env offset scaling L upper envv k k iΔ = +   (8.9) 

The unknown variables koffset and kscaling are determined from measurement in the same 

way as for �vDS(upper_env).  

TABLE 8.4 

VARIOUS VARIABLES FOR EXPRESSING THE LOWER ENVELOPE OF THE UNDERVOLTAGE FOR SCENARIO �. 
 

Measured Peak Voltage [V] Current Magnitude [A] 
M 

Trough iL(lower_env)=0 Trough iL(lower_env)=0 
koffset kscaling 

0.5 -13.00 -12.60 0.3749 0 -12.60 0.65 

0.8 -12.80 -12.40 0.8628 0 -12.40 0.43 
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The various variables obtained for the undervoltage are summarized in Table 8.4 for 

M=0.5 and M=0.8. Before �vDS(upper_env) and �vDS(lower_env) can be reconstructed it is first 

necessary to determine the values of koffset and kscaling for Scenario �. A simple way of 

determining koffset is to note that it serves as the boundary condition between Scenario � and 

Scenario � and is thus equal to each other. The remaining variable kscaling can next be 

established from a simple measurement of �vDS(upper_env) and �vDS(lower_env) with its 

corresponding current during Scenario �. Two further measurements need to be made to 

determine the level at which the over-and-undervoltage clip during Scenario �. This allows 

for the analytical reconstruction of the measured voltage envelopes of Figure 8.6 which is 

shown in Figure 8.9. 
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(a)      (b) 

 
Figure 8.9: Analytically reconstructed voltage envelopes of Figure 8.6 for (a) M=0.5 and (b) M=0.8. 

 

Consider Figure 8.6 (b) and (d). A final remark can be made by observing that the 

frequency and waveform of the ringing effect during Scenario � correlate well to those of 

Scenario � shown in Figure 8.4 (b) and (d). This implies that the analytical solution of Eq. 

(8.1) can once again be applied to describe the over- and undervoltage waveforms. 

 

8.2.2 ANALYSIS FOR A FULL-BRIDGE TOPOLOGY 

 

Figure 8.10 illustrates a switched output voltage at D=50% measured within a full-bridge 

inverter for a switching transition of the low side switch from (a) on to off and (b) off to on.  
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Figure 8.10: Measured switching output voltage transitions from (a) on to off and (b) off to on. 

 

It will now be determined whether the solution of Eq. (8.1) can still be used to match the 

measured waveform within this topology. Figure 8.11 (a) and (b) respectively show a close-

up of the waveforms illustrated in Figure 8.10 (a) and (b). The values of the circuit parameters 

correspond to those used in Section 8.2.1. 
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(a)      (b) 

 
Figure 8.11: Analytically matched waveforms of (a) Figure 8.10 (a), and (b) Figure 8.10 (b). 

 

Using the same approach as for a single phase leg, the measured waveform of Figure 8.10 

(a) can be matched. The parameters determining the frequency and damping are the same as 

for a single phase leg. The peak overvoltage is measured at 9.6V and exists at time 

tpeak=2.6ns. Since IL=0.62A tif can be determined as 1.66ns if Lstray is assumed to take on a 

value of 30nH. Next, consider Figure 8.10 (b). Using the same parameters for the frequency 
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and damping as for (a), the undervoltage can be matched by measuring its peak value, which 

corresponds to 8.4V. Since the magnitude of IL equals 0.62A, tir can be determined as 1.89ns. 

It is thus evident that the solution of Eq. (8.1) still serves as an accurate approximation to the 

over-and undervoltage curve within the full-bridge topology. 

 

  
(a)      (b) 

 
Figure 8.12: Measured voltage envelopes for (a) M=0.2 and (b) M=0.8. 

 

Consider the measurements of �vDS(upper_env) and �vDS(lower_env) shown in Figure 8.12 for 

(a) M=0.2 and (b) M=0.8. These measurements respectively reproduce inductor current 

Scenario � and Scenario �. From Figure 8.12 (a) it is evident that the relation between 

�vDS(upper_env) (or �vDS(lower_env)) and iL(lower_env) (or iL(upper_env)) established within a single phase 

leg in Section 8.2.1 also holds within the full-bridge topology. Next, consider Figure 8.12 (b). 

The relation between �vDS(lower_env) and iL(upper_env) correlates with that achieved within a single 

phase leg. The slight kink observed in the curve of �vDS(upper_env) is a result of the switching 

transitions of the various phase legs not executing on the exact same time instant. This 

mismatch is also observed in Figure 8.10 (a).  

 

8.3 GENERAL OBSERVATIONS AND COMMENTS 
 

The analysis in Section 8.2 was performed for a given practical setup in which the 

parameters were mostly kept constant. In this section VGS and Vd will be varied in order to 

establish whether the approach used in the above analysis still holds. Note that the remaining 

parameters correspond to those of the previous section. Figure 8.13 (a) and (b) respectively 
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represent the measured voltage envelopes within a single leg of a full-bridge inverter for 

M=0.2 and M=0.8 at Vd=20V. 

 

  
(a)      (b) 

 
Figure 8.13: Measured voltage envelopes at (a) M=0.2 and (b) M=0.8 for Vd=20V. 

 

From these measurements it is apparent that the same relation established in Section 8.2 

holds at higher output power levels too. However, in the region where �vDS(upper_env) and 

�vDS(lower_env) were constant for Vd=10V (Figure 8.5 and Figure 8.9) it can now be observed 

that some relation to iL(lower_env) and iL(upper_env) once again exist. This relation can easily be 

established by simply determining whether switching occurs during the conditions of reverse 

recovery or not, i.e., during a transition from on to off under the condition iL(lower_env)>0 (or a 

transition from off to on under the condition iL(upper_env)<0) �vDS(upper_env) and �vDS(lower_env) is 

respectively described by Eqs. (8.8) and (8.9). For all other transitions a direct relation in 

accordance with Eqs. (8.3) and (8.4) can be established. Figure 8.14 (a) and (b) respectively 

represent a measurement of the voltage envelopes within a full-bridge topology for 

VGS=11.5V and VGS=12V, with M equalling 0.8 in both illustrations. 
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(a)      (b) 

 
Figure 8.14: Measured voltage envelopes for M=0.8 for (a) VGS=11.5V and (b) VGS=12V. 

 

By varying VGS the switching characteristic of each phase leg is altered, which results in 

the cancellation of �vDS(upper_env) and �vDS(lower_env) to a certain extent. This was also briefly 

mentioned by F. Nyboe [29]. However, the degree to which the parasitics contribute to 

distortion remains unknown. Furthermore, optimizing VGS to minimize the latter effect alters 

td(on), td(off), tvr and tvf , which might have a more dominant effect on the distortion. 

 

8.4 SIMULATION STRATEGY 
 

In this section it is shown how the solutions of �vDS obtained in Section 8.2 can next be 

incorporated into the simulation strategy of Section 2.5. Consider the pth pulse of a TENPWM 

waveform shown in Figure 8.15, in which �vDS is included. The Fourier Transform of the 

overvoltage during interval WpTENPWM
 including the necessary time shift t0 is given by: 

 

[ ] 0 02 22

0 2

pTENPWM
W

j ft j ftj ftd
DS DS

V
v e v e dt eπ ππ− −−

� �� �
ℑ Δ = + Δ� 	� 	� �� 	� �

�  (8.10) 

Where: 
 

( )0 1TENPWM ct p T= −   (8.11) 

Note that �vDS is defined in Eq. (8.1) with tsink=tif which is defined by Eq. (8.5). 
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Figure 8.15: Generation of TENPWM with �vDS. 

 

In a similar way the Fourier Transform of the undervoltage �vDS can be determined 

Figure 8.15 as: 
 

[ ] 0 02 22

0 2

c pTENPWM
T W

j ft j ftj ftd
DS DS

V
v e v e dt eπ ππ

−

− −−
� �� �

ℑ Δ = − + Δ� 	� 	� �� 	� �
�  (8.12) 

Where: 
 

( )0 1
TENPWMTENPWM c pt p T W= − +   (8.13) 

The undervoltage �vDS is once again defined in Eq. (8.1) with tsink=tir, which is defined in 

Eq. (8.6). Closed form solutions can be obtained for both Eqs. (8.10) and (8.12). 

 

8.5 SIMULATION RESULTS 
 

The simulation strategy of the previous section is implemented in this section to show 

how the parasitics and reverse recovery affect distortion. As mentioned and illustrated in 

Section 8.3, the exact curvature adopted by �vDS(upper_env) and �vDS(lower_env) within a full-bridge 

topology is highly dependent on VGS. Determining an analytical expression describing 

�vDS(upper_env) and �vDS(lower_env) within Scenario � is a tedious exercise. Instead, the simulation 
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results will be limited to a single phase leg. Although this does not predict the distortion 

within a full-bridge topology, it does provide insight into the distortion levels produced, as 

well as the circumstances under which distortion occurs. Since different conditions govern 

Scenario � and �, the analysis once again needs to be divided into two sections. 

 

8.5.1 BASEBAND HARMONICS 

 

This sub-section considers the effect of �vDS within the baseband. Figure 8.16 (a) 

illustrates the baseband harmonics resulting from �vDS for M=0.2. The simulation was 

constructed using the respective parameters of �vDS(upper_env) and �vDS(lower_env) defined in 

Table 8.1 and Table 8.2. Figure 8.16 (b) shows the baseband harmonics within the limits of 

Scenario � (M=0.8), constructed from the variables obtained in Table 8.3 and Table 8.4. 
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Figure 8.16: Simulated baseband harmonics with �vDS for (a) Scenario ���� and (b) Scenario ����. 

 

The baseband harmonics produced for Scenario � are a result of the constant region 

within �vDS(lower_env), shown in Figure 8.5 (b). In this region the linear relation to iL(upper_env) 

defined in Eq. (8.4) no longer holds, resulting in distortion. A similar mechanism governs 

Scenario �. In addition to the constant region also being present in both �vDS(upper_env) and 

�vDS(lower_env) shown in Figure 8.9 (b), the non-linear relation established during diode 

conduction results in additional harmonics. However, the distortion produced is not as 

prominent compared to the PTE’s analyzed in Chapters 5 to 7, especially under the conditions 

of Scenario �. 
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8.5.2 SIDEBAND HARMONICS 

 

In this sub-section the effect of the sideband harmonics within the audible band is 

considered. Figure 8.17 (a) and (b) respectively illustrate the spectrum of Figure 8.16 (a) and 

(b) over a larger frequency range.  
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Figure 8.17: Simulated sideband harmonics with �vDS for (a) Scenario ���� and (b) Scenario ����. 

 

From (a) it is evident that the sideband harmonics decay at a rapid rate for Scenario �. 

From both Figure 8.16 (a) and (b) it is apparent that the the sidebands do not roll off at such a 

rapid rate and thus contribute to distortion within the baseband. 

 

8.6 SUMMARY 
 

This chapter considered the effects of the parasitics and reverse recovery on harmonic 

distortion. The analysis made use of an existing solution to model the overvoltage and 

undervoltage ringing effect. A simulation model was constructed for TENPWM, after which 

the results were considered for a half-bridge topology. It was shown that, for both scenarios of 

the inductor current, that the PAE introduced is negligible compared to the PTEs considered 

in Chapters 5 to 7. 
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9 

COMBINATION MODEL AND 

EXPERIMENTAL VERIFICATION 

 

 

9.1 INTRODUCTION 
 

The aim of this chapter is to verify the theory that was proposed in the previous chapters. 

Section 9.2 contains a brief overview of each individual non-linearity analysed in this 

dissertation, as well as establish the validity of the proposed analytical solutions within a 

practical environment. The analytical and simulation models describing the combined effect 

of the individual error sources are constructed in Section 9.3. These models are compared to 

experimental measurements in Section 9.4, after which a summary follows in Section 9.5. 

 

9.2 OVERVIEW OF THE INDIVIDUAL NON-LINEARITIES 
 

Before the analytical and simulation models can be constructed, it is first necessary to 

consider the practical significance of the analytical solutions introduced in Chapters 5 to 8. 

The following sub-sections contain a brief overview of each individual non-ideal effect, after 

which the alterations that need to be made, if any, are identified. Unless stated otherwise, the 

parameters used in the rest of this chapter correspond to those defined in Table 9.1. 

 

TABLE 9.1 

DEFINITION OF THE BASIC VARIABLES USED THROUGHOUT THIS CHAPTER. 
 

Variable Value 
 

Variable Value 

Vd 30 V  f0 1 kHz 

Lfilt 10.4 �H  fc 384 kHz 

Rload 8.2 �  VGS(th) 4.9 V 

VGS 14 V  Ciss 810 pF 

RG 12.5 �  gfs 11 S 
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9.2.1 THE DEAD TIME 

 

Figure 9.1 illustrates two simulated plots of the THD as a function of the modulation 

index with tdt=15ns. In Figure 9.1 (a) the inductor current falls within the boundaries of 

Scenario �. As mentioned in Chapter 5, ideal TENPWM is produced in this region. The 

distortion shown is a result of the numerical error of the simulation. 
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Figure 9.1: Simulated THD vs. M with non-zero tdt for (a) Scenario ���� and (b) Scenario ����. 

 

Once Scenario � is entered, the distortion resulting from the dead time increases rapidly. 

The decrease in THD for increasing M is a result of the increase in the ratio of the 

fundamental low frequency component compared to the average error resulting from tdt. 

 

9.2.2 THE TURN-ON AND TURN-OFF DELAYS 

 

Figure 9.2 illustrates two simulated plots of THD vs. M for non-zero values of td(vr) and 

td(vf). The distortion shown in (a) is a result of the non-linear current modulation, as mentioned 

in Chapter 6 which, intuitively, increases for increasing M (increasing current magnitude). 

The curves of Figure 9.1 (b) and Figure 9.2 (b) correlate. This similarity is a result of the 

polarity dependency of td(vr) and td(vf), which leads to an abrupt change in these delays as the 

current changes polarity. This polarity dependency produces an effect similar to dead time. 
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Figure 9.2: Simulated THD vs. M with non-zero td(vr) and td(vf) for (a) Scenario ���� and (b) Scenario ����. 

 

9.2.3 THE NON-ZERO, NON-LINEAR SWITCHING TRANSITIONS 

 

Consider the measured switching waveforms shown in Figure 9.3. From the solutions 

derived in Chapter 7 for tvr (Eqs. (7.18) and (7.28)) and tvf (Eqs. (7.12) and (7.21)), it is 

apparent that the analytical switching times (�2ns) are not realistic within a practical 

enviroment. The objective of this sub-section is to determine realistic values of tvr and tvf for 

the given practical setup. Consider inductor current Scenario �. The waveforms in Figure 9.3 

were measured at a duty cycle of 50%, with the demodulation filter disconnected, i.e. Lfilt=�. 

However, it is assumed that a very small standing current still exists. 
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Figure 9.3: (a) Rising and (b) falling switching transition curves for Lfilt=�. 



CHAPTER 9 COMBINATION MODEL AND EXPERIMENTAL VERIFICATION 

 

- 141 - 

The reason for this assumption is that the switching curves are dependent on the current 

polarity, and since the focus is initially within Scenario �, the switching curves within 

intervals tvr and tvf need to be defined by Eq. (7.27) and Eq. (7.22), respectively. Using these 

equations, the measured waveforms of Figure 9.3 (a) and (b) can be matched. For this 

measurement, tvr=25ns and tvf=14ns. 
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(a)      (b) 

 
Figure 9.4: (a) Rising and (b) falling switching transition curves for Scenario ����. 

 

Consider inductor current Scenario �. Figure 9.4 (a) shows the rising edge transition for 

iL(lower_env)>0, while (b) illustrates the falling edge transition for iL(upper_env)<0. The analytical 

curves included in Figure 9.4 (a) and (b) were constructed using the solutions of Eq. (7.23) 

and Eq. (7.25), respectively. It is apparent that these solutions no longer provide a means of 

estimating the switching curve within a practical environment. Consider the non-linear 

switching curves shown at the top of Figure 9.5. These curves were obtained from the 

solutions derived in Chapter 7. In order to construct an analytical model, the analysis in 

Chapter 3 requires that the PTE be expressed in terms of a delay. This can be achieved by 

calculating the average error voltage, and then mapping it to an equivalent delay, as shown in 

Figure 9.5. Consider Figure 9.5 (a). The non-linear switching curve within interval tvr is 

defined by Eq. (7.27). The equivalent delay �1 can be calculated from the expression: 
 

4
1 4

0

1
1 0.8

vrt

vr
vr

t dt t
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 �
Δ = − =� 


� �
�   (9.1) 
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Figure 9.5: Switching curves during (a) tvr for iL<0, (b) tvr for iL>0, (c) tvf for iL>0 and (d) tvf for iL<0. 

 

The relation to the inductor current is given by Eq. (7.28), which takes the general form: 
 

1
( )vr

1

2 scaling t L

k

k k I
Δ =

+
  (9.2) 

By noting that �1=k1 when IL=0 and k2=1, the expression in Eq. (9.2) simplifies to: 
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+

  (9.3) 

Where tvr(IL=0) is the transition time at IL=0, which is established by measurement and 

kscaling(tvr) an arbitrary scaling factor. Similarly, the equivalent delay �3 can be found as: 
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The remaining variables �2 and �4 are calculated using symmetry, i.e. �2=0.2tvr and 

�4=0.2tvf. The measured values tvr(IL=0) and tvf(IL=0) thus basically serve as initial conditions. In 

reality, the boundary condition governing the transition between Scenario � and � is much 

more complex. A method for the modelling of the transition between Scenario � and 

Scenario � for short amounts of dead time is presented in Section 9.3. 

 

9.2.4 THE PARASITICS AND REVERSE RECOVERY 

 

The analysis in Chapter 8 concluded that the parasitics and reverse recovery only pose to 

deteriorate fidelity within Scenario � due to its negligible effect compared to other error 

sources within Scenario �. However, in the next section it will be shown that the noise is 

orders of magnitude larger in the former region compared to the effect of the parasitics and 

reverse recovery. As a result its effect will be omitted. 

 

9.2.5 THE INCLUSION OF NOISE 

 

A measurement of THD+N does not distinguish between harmonic distortion and noise. 

Thus, at low levels of the input signal, noise will dominate the THD+N measurement, 

decreasing as the fundamental low frequency component increases. 
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Figure 9.6: Noise vs. M for (a) Scenario ���� and (b) Scenario ����. 
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Figure 9.6 (a) and (b) illustrates the distortion resulting from noise (20nW) for Scenario 

� and Scenario �, respectively, with an ideal TENPWM applied as input. This concludes the 

basic configuration of the individual non-ideal effects. The following section introduces the 

combination model. 

 

9.3 COMBINATION MODELS 
 

In this section analytical and simulation models are introduced for TENPWM from which  

the harmonic components of the combination of the various individual sources of distortion 

can be determined. The analysis performed in the previous section illustrated that the most 

dominant non-linearities considered in this dissertation can be modelled by means of current 

dependent delays. This means that the findings in Chapter 3 can once again be applied for the 

analytical implementation. As a starting point, inductor current Scenario � is considered after 

which a method for the modelling of the transition into Scenario � is introduced. 

 

9.3.1 INDUCTOR CURRENT SCENARIO ���� 

 

In this section the analytical and simulation models are constructed which describe the 

combined effect of the non-linearities within the boundaries of Scenario �. Of the non-ideal 

effects considered, only td(vr), td(vf), tvr and tvf  influence distortion within this region. 

 

Analytical Model 

 

The findings in Chapter 3 can now be implemented to construct the 3-D unit area for the 

combination model. By noting that the corresponding error mapping of the leading edge is 

�d(LE)=2�fc(td(vr)+tvr) and the trailing edge �d(TE)=2�fc(td(vf)+tvf), the 3-D unit area representing 

the combination model can be defined. This is shown in Figure 9.7. Note that the various 

delays td(vr), td(vf), tvr and tvf are respectively defined by Eq. (6.8), (6.3), (9.3) and (9.4). 
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Figure 9.7: Combination 3-D unit area for TENPWM for Scenario ����. 

 

By next inserting the limits defined in Figure 9.7, the complex Fourier coefficient of Eq. 

(2.15) can be written as: 
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Where: 
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And: 
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The complete solution describing the unit area for the combination of the error sources is 

achieved by substituting Eq. (9.5) into Eq. (2.12). Note that Eq. (9.5)  is solved numerically. 
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Simulation Strategy 

 

The simulation technique introduced in Section 2.5 will now be adapted to determine the 

spectrum of the combination model for TENPWM within Scenario �. The remainder of this 

sub-section describes the alterations necessary to the ideal simulation strategy of Section 2.5 

to represent the pulses with the added constraints. Figure 9.8 represents the pth pulse of a 

TENPWM waveform within the boundaries of inductor current Scenario �, in which the non-

zero values of td(vr), td(vf), tvr and tvf are included. Note that the rest of the parameters used 

correspond to those of the ideal case originally introduced in Figure 2.14. 
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Figure 9.8: Combination simulation model for Scenario ����. 

 

The ideal TENPWM model of Figure 2.14 can next be adapted to include the necessary 

delays shown in Figure 9.8. Firstly, the pulse width changes to: 
 

( ) ( ) ( )TENPWM combo TENPWMp p d vr vr d vf vfW W t t t t� � � �= − + + +� � � �  (9.8) 

The time shift of Eq. (2.94) is dependent on the pulse width and thus also needs to be 

adapted.  
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Substituting for Eq. (9.8) the time shift of Eq. (2.94) can be rewritten as: 
 

( )
( ) ( )

0 1
2

TENPWMp d vr vr d vf vf

TENPWM c

W t t t t
t p T

� � � �− + + +� � � �= − +  (9.9) 

Where the various delays td(vr), td(vf), tvr and tvf are respectively defined by Eq. (6.8), (6.3), 

(9.3) and (9.4). 

 

Verification of the Proposed Analytical and Simulation Models 

 

The aim of this sub-section is to determine whether the proposed analytical and 

simulation models of the previous two sub-sections yield similar results. Figure 9.9 (a) was 

constructed using Eq. (9.5). 
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Figure 9.9: (a) Analytical (m=0) and (b) simulated baseband harmonics for TENPWM for M=0.2. 

 

The simulation strategy was employed to construct the spectrum of  Figure 9.9 (b). The 

variables used correspond to M=0.2, tvr(IL=0)=20ns, tvf(IL=0)=10ns, kscaling(tvr)=0.5 and 

kscaling(tvf)=1. It can be seen that the analytical and simulation results correlate very well. 

 

9.3.2 INDUCTOR CURRENT SCENARIO ���� 

 

The aim of this section is to construct the analytical and simulation models which 

describe the combined effect of the individual non-linearities within the boundaries of 
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Scenario �. The non-ideal effects influencing distortion in this region are td(vr), td(vf), tvr, tvf and 

tdt. However, before these models can be constructed, it is first necessary to consider the 

boundary between the two scenarios of the inductor current. 
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(a)       (b) 

 
Figure 9.10: Rising egde transition at (a) iL(lower_env)= 0− and (b) iL(lower_env)= 0+. 

 

Figure 9.10 (a) illustrates the non-ideal effects governing the rising edge transition at the 

limit of the transition of iL(lower_env) from negative to positive (iL(lower_env)=0−). At this boundary 

the total delay, denoted by tvr
−, describing the transition of the rising edge can be found from 

the equivalent time domain representation of Eq. (9.7) by substituting for IL=0, which yields: 
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The rising edge transition at the limit just after iL(lower_env) changed polarity from negative 

to positive (iL(lower_env)=0+) is shown in Figure 9.10 (b). Consider the expressions describing 

td(vr) for a negative and positive inductor current, repectively defined by Eqs. (6.8) and (6.6). 

The difference in these delays at IL=0, denoted by td(IL=0), is given by: 
 

( )
( 0)

( )

ln
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GS GS th
d I G iss

GS th

V V
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 �−
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� �
  (9.11) 

Thus, the transition of iL(lower_env) from negative to positive causes an abrupt decrease in 

td(vr). A typical value of td(IL=0) (using the parameters defined in Table 9.1) is in the vicinity of 
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6ns. This abrupt change in td(vr) effectively decreases tdt. Thus, in order to ensure a smooth 

transition between Scenario � and Scenario �, tvr
+ must be equal to tvr

−, which leads to the 

following definition of tvr within Scenario �: 
 

( )( 0) ( )Lvr I vr dt d vrt t t t−

= = − +   (9.12) 

Where tvr
− is defined in Eq. (9.11), and td(vr) given by Eq. (6.6). In a similar way, it can be 

shown that the abrupt change in td(vf) decreases tdt by adding a constant delay, defined in Eq. 

(9.11), to the trailing edge. The expression for tvf within Scenario � is given by: 
 

( )( 0) ( )Lvf I vf dt d vft t t t−

= = − +   (9.13) 

Where:  
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And td(vf) is defined in Eq. (6.7). Figure 9.11 shows a typical variation of tvr and tvf over a 

complete cycle of the modulating waveform for M=0.8.  
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Figure 9.11: Variation in (a) tvr and (b) tvf over a complete cycle of the modulating waveform. 

 

The discontinuities observed exist at the time instants when the inductor current changes 

polarity, which are governed by the boundary conditions just described. 
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Analytical Model 

 

With the boundary conditions of the previous section in mind, the analysis in Chapter 3 

can once again be applied to construct the 3-D unit area for the combination model within 

Scenario �. This is shown in Figure 9.12. 
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Figure 9.12: Combination 3-D unit area for TENPWM for Scenario ����. 

 

By next inserting the limits defined in Figure 9.11, the complex Fourier coefficient of Eq. 

(2.15) can be written as: 
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Where �d(LE) is defined by Eq. (9.6) within the region y1�y<y4, and �d(TE) defined by Eq. 

(9.7) within intervals 0�y<y2 and y3�y<2�. For the remaining intervals: 
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And: 
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Note that tvr(IL=0) is defined by Eq. (9.12), and tvf(IL=0) defined by Eq. (9.14). The complete 

solution describing the unit area for the combination of the error sources is achieved by 

substituting Eq. (9.15) into Eq. (2.12). Eq. (9.15) is once again solved numerically. 

 

Simulation Strategy 

 

In this sub-section it will be shown how the simulation technique of Section 2.5 can be 

adapted to accommodate the additional constraints introduced within Scenario �.  
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Figure 9.13: Combination simulation model for Scenario ����, (a) iL(lower_env)>0 and (b) iL(upper_env)<0. 
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Figure 9.13 represents the pth pulse of a TENPWM waveform within the boundaries of 

inductor current Scenario �. In addition to the ideal case, non-zero values of td(vr), td(vf), tvr, tvf 

and tdt are included. The rest of the parameters correspond to those of the ideal case originally 

introduced in Figure 2.14. The pulse width of the ideal TENPWM model shown in Figure 

2.14 can be adapted to include the necessary delays. In the region where iL(lower_env)>0, shown 

in Figure 9.13 (a), the pulse width changes to: 
 

( ) ( ) ( )TENPWM combo TENPWMp p dt d vr vr d vf vfW W t t t t t� � � �= − + + + +� � � �  (9.18) 

The time shift of Eq. (2.94) can be defined by substituting for Eq. (9.18), which yields: 
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W t t t t t
t p T

� � � �− + + + +� � � �= − +  (9.19) 

In the region where iL(upper_env)<0, illustrated in Figure 9.13 (b), the pulse width is given by: 
 

( ) ( ) ( )TENPWM combo TENPWMp p d vr vr dt d vf vfW W t t t t t� � � �= − + + + +� � � �  (9.20) 

While the time shift of Eq. (2.94) can be found by substituting for Eq. (9.21). This gives: 
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Verification of the Proposed Analytical and Simulation Models 

 

In this sub-section the results of the proposed analytical and simulation models for 

inductor current Scenario � will be compared to each other. The spectrum shown in Figure 

9.14 (a) was constructed from the analytical solution of Eq. (9.15), while the spectrum 

illustrated in (b) was constructed from the proposed simulation method. The parameters used 

correspond tvr(IL=0)=20ns, tvf(IL=0)=10ns, kscaling(tvr)=0.5, kscaling(tvf)=1 and M=0.8. The analytical 

spectrum only considered the baseband harmonics, i.e. m=0. The simulation of Figure 9.14 

(b), which allows for phasor summation of the various harmonics, produced similar results. 

For the given variables, this suggests that the modulation products are negligible. 
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(a)      (b) 

 
Figure 9.14: (a) Analytical (m=0) and (b) simulated baseband harmonics for TENPWM for M=0.8. 

 

9.4 EXPERIMENTAL VERIFICATION 
 

In this section the combination model of Section 9.3 is verified experimentally. Table 9.2 

contains a brief description of the physical devices, as well as the measurement equipment 

used. Note that PNPWM is generated from the source, which is a field programmable grid 

array (FPGA). The remaining circuit parameters correspond to those defined in Table 9.1. 

  

TABLE 9.2 

PRACTICAL DEVICE DESCRIPTION AND MEASUREMENT SETUP. 
 

Device Description Manufacturer Model Number 

PWM Source Altera® EP3C25Q240C8NES 
Gate Driver IC International Rectifier® IRS20124(S)PbF 

MOSFET International Rectifier® IRFI4019H-117P 
Measurement System Audio Precision® SYS-2722 

AES17 Filter Audio Precision® AUX-0025 

 

Figure 9.15 (a) is a measurement of THD+N vs. M. The corresponding simulation is 

shown in Figure 9.15 (b). The voltage rise- and fall times used for the simulation were 

measured as described in Section 9.2.3, i.e. with the output demodulation filter disconnected. 

These values correspond to tvr(IL=0)=25ns and tvf(IL=0)=14ns. The scaling variables kscaling(tvr) and 

kscaling(tvf) were determined iteratively as kscaling(tvr)=0.17 and kscaling(tvf)=0.30. 
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(a)      (b) 

 
Figure 9.15: THD+N vs. M determined by (a) measurement and (b) simulation. 

 

Note that, for the parameters defined in Table 9.1, the boundary between Scenario � and 

Scenario � is in the vicinity of M=0.25. At low values of the modulation index (up to 

M=0.15), noise dominates the THD+N measurement. The distortion resulting from the non-

linear current modulation of td(vr), td(vf), tvr and tvf becomes more dominant than noise above 

M=0.15. Once Scenario � is entered, distortion increases rapidly. Since tvr and tvf decreases 

as the current increases, the dead time is effectively phased in during the interval 

0.25<M<0.45, and hence the ramp in THD+N. Since the switching times tvr and tvf are 

described by hyperbolic functions, the decrease in switching time will become less affected 

by an increasing current. This is observed at M>0.45. Figure 9.16 shows a comparison 

between a series of measured and simulated spectra at various values of M. 
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(a) Measurement: M=0.2.   (b) Simulation: M=0.2. 
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(c) Measurement: M=0.4.   (d) Simulation: M=0.4 
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(e)  Measurement: M=0.6.   (f) Simulation: M=0.6. 
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(g) Measurement: M=0.8.   (h) Simulation: M=0.8. 

 
 

Figure 9.16: Various measured and simulated spectra. 

 

Figure 9.17 (a) shows the duty cycle error introduced over one cycle of the modulating 

waveform for M=0.2, i.e. for Scenario �. As mentioned, in this region the error is a result of 

the non-linear current modulation of td(vr), td(vf), tvr and tvf.  
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(a)      (b) 

 
Figure 9.17: Duty cycle error for (a) M=0.2 and (b) M=0.8. 

 

Figure 9.17 (b) shows the duty cycle error for M=0.8. The discontinuity observed is a 

result of the change in current polarity. Figure 9.18 (a) illustrates measurements of THD+N 

vs. M for various values of Lfilt. Figure 9.18 (b) shows the corresponding simulation. The 

scaling variables used to construct the simulation are shown in Table 9.3.  
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Figure 9.18: THD+N vs. M determined by (a) measurement and (b) simulation for various Lfilt. 

 

Consider the curves for Lfilt=5.7μH. The boundary between Scenario � and Scenario � 

is in the vicinity of M=0.4. The decrease in distortion within this region is a result of the 

symmetry between the rising edge and falling edge. This condition only occurs at the 

boundary of Scenario � and Scenario �. The difference in results achieved can be ascribed 

to the switching node capacitance, which has been omitted from the analysis. 
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TABLE 9.3 

DEFINITION OF THE SCALING VARIABLES FOR VARIOUS Lfilt. 
 

Lfilt=5.7 �H Lfilt=10.4 �H Lfilt=15.9 �H 

kscaling(tvf)=0.65 kscaling(tvf)=0.30 kscaling(tvf)=0.35 

kscaling(tvr)=0.36 kscaling(tvr)=0.17 kscaling(tvr)=0.20 

 

9.5 SUMMARY 
 

This chapter verified the theory that was proposed in Chapters 5 to 8. A brief overview of 

the individual non-ideal effects was considered, after which an analytical and simulation 

model describing the combination of the individual non-ideal effects were constructed. The 

proposed model was compared to practical measurements. 

The proposed model’s results correlated well with the practical measurements. The 

deviation from the practical measurement is a result of the switching node capacitance, which 

has been omitted in this dissertation. 
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10 

CONCLUSIONS AND  

FUTURE WORK 

 

  

10.1 INTRODUCTION 
 

This chapter contains a brief summary of the findings, contributions and conclusions of 

the analysis which was performed in this dissertation. 

 

10.2 A FUNDAMENTAL ANALYSIS OF PWM 
 

A fundamental analysis of PWM was performed in Chapter 2. Basic modulation methods 

were introduced, after which the double Fourier series method of analysis for calculating the 

spectrum of PWM analytically was reviewed. 

A simulation strategy, based on Newton’s numerical method, was introduced which 

allows for rapid, accurate calculation of the spectrum of NPWM. Simulations were performed 

for ideal TENPWM, which produced exactly the same results as the analytical computation. 

 

10.3 INCORPORATION OF PTES IN THE DOUBLE FOURIER SERIES METHOD 
 

In Chapter 3 a general analytical tool has been developed, which allows for the 

incorporation of non-ideal effects within W.R. Bennet’s [11] method. As a starting point, the 

analysis introduced in [22] was generalized. 

It was shown how a constant time delay can be incorporated into the 3-D unit area. The 

analysis was then extended to include a purely sinusoidal current polarity, as well as a 

magnitude dependency. Finally, a more realistic inductor current model with a non-zero ripple 

component was considered. The proposed analysis was verified by simulation. 
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10.4 SWITCHING DEVICE CHARACTERISTICS 
 

In Chapter 4, an overview of the power MOSFET’s structure, operation and dynamic 

characteristics were considered. The non-ideal switching operation within a single phase leg, 

summarized from [32], was considered in the final part of this chapter. 

 

10.5 THE EFFECT OF DEAD TIME 
 

A detailed analysis of the isolated effect of dead time was performed in Chapter 5. The 

analysis started off with an overview of its well-known effect, after which an analytical model 

based on the double Fourier series method of analysis was introduced for TENPWM. This 

model allows for the filter inductor and switching frequency to be parsed as parameters. The 

analytical solutions were verified by simulation. 

It was shown that the dead time produces even, as well as odd order harmonics within the 

audible band. It was shown that the former harmonics are a result of the modulation products, 

i.e., the sideband switching harmonics. It was also shown that, for a specific dead time, an 

optimum distortion level can be established by varying the filter inductance. 

 

10.6 THE EFFECT OF THE MOSFET TURN-ON AND TURN-OFF DELAYS 
 

The detailed analysis in Chapter 6 considered the isolated effect of the MOSFET turn-on 

and turn-off delays on harmonic distortion. A simulation model was introduced in which well-

known analytical solutions [24], [28] describing these delays were incorporated. 

The simulation results obtained for TENPWM showed that distortion arise as a result of 

two mechanism, of which the first is non-linear current modulation. The second mechanism 

arise due to the abrupt change in these delays upon a change in current polarity, resulting in 

an effect similar to dead time. 

10.7 THE EFFECT OF NON-ZERO, NON-LINEAR SWITCHING TRANSITIONS 
 

The sole effect of non-zero linear, as well as non-zero non-linear switching transitions 

were considered in Chapter 7. The analysis included a linear model based on well-known 

analytical expressions [24], [28] as well as a newly proposed non-linear model based on an 
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approximation of the non-linear vDS vs. CGD curve of a specific power MOSFET. A closed 

form solution describing the switching curve was obtained, after which a simulation model 

was constructed.  

It was shown that switching transitions within inductor current Scenario � results much 

higher levels of distortion than Scenario � due to the abrupt change in transition times upon a 

change in current polarity. It was also shown that the THD increases for increasing switching 

times. The sideband harmonics contribute to distortion within the baseband for Scenario �. 

The proposed non-linear model resulted in much higher levels of distortion than the linear 

model for both cases of the inductor current. 

 

10.8 THE EFFECT OF PARASITICS AND REVERSE RECOVERY 
 

Chapter 8 considered the effects of the parasitics and reverse recovery on harmonic 

distortion. The analysis made use of an existing solution to model the overvoltage and 

undervoltage ringing effect. A simulation model was constructed for TENPWM, after which 

the results were considered for a half-bridge topology. It was shown that, for both scenarios of 

the inductor current, that the PAE introduces is negligible compared to the PTEs considered 

in Chapters 5 to 7. 

 

10.9 COMBINATION MODEL AND EXPERIMENTAL VERIFICATION 
 

The theory that was proposed in Chapters 5 to 8 was verified in Chapter 10. An analytical 

and simulation model describing the combination of the individual non-ideal effects were 

constructed. The proposed model was compared to practical measurements. The proposed 

model’s results correlated well with the practical measurements. The deviation from the 

practical measurement is a result of the switching node capacitance, which has been omitted 

in this dissertation. 

 

10.10 FUTURE WORK 
 

A method has been introduced in which the harmonic composition of the output stage in 

the presence of PTEs can be determined. The analysis should be extended to include 
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amplitude errors. The interaction of the non-linear switching node capacitance with the 

MOSFET’s switching characteristic should be established, as well as the effect of the non-

linear on-state resistance. 
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APPENDIX 1: MATHEMATICAL RELATIONSHIPS 

 

1.1 JACOBI-ANGER EXPANSIONS 

The Jacobi-Anger expansion is given by: 
 

( )cosj k jk
k
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e j J eξ θ θξ
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± ±
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= �   (A1.1) 

 
Rewriting Eq. (A1.1) for positive values of k: 
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1.2 BESSEL FUNCTION INTEGRAL RELATIONSHIPS 

Multiplying the Jacobi-Anger expansion in Eq. (A1.1) by jne θ  and integrating over an 

interval bounded by arbitrary points a and b gives: 
 

( ) ( )cos
b b

j n kj jn k
k

ka a

e e d j J e dθξ θ θ θ ξ θ
∞

+± ±

=−∞

= �� �  (A1.3) 

 
Evaluating the integral on the right-hand side of Eq. (A1.3) for n k= − , the following 

expression can be derived: 
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Integrating Eq. (A1.3) for the remaining condition when n k≠ −  gives: 
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Next, consider the integration of Eq. (A1.3) over a 2π  interval: 
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The integral on the right-hand side of Eq. (A1.6) integrates to a non-zero term only when 

n k= − . Evaluating for this condition and substituting for k, Eq. (A1.6) can be written for 

n−∞ < < ∞  as: 
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The solution of Eq. (A1.7) is valid for all positive and negative integer values of n. Next, 

consider the product of Eq. (A1.2) and jne θ  for all positive integer values of n including zero, 

integrated over an arbitrary interval bounded by points a and b: 
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Evaluating Eq. (A1.8) for the particular case when 0n = : 
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Consider the integration of Eq. (A1.8) over a 2π  interval. Rewriting the expression yields: 
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Evaluating Eq. (A1.10) for the particular case where 0n = , the second term on the right-

hand side integrates to zero. The expression simplifies to: 
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1.3 SINE AND COSINE BESSEL FUNCTION RELATIONS 

Sine Relation: 
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Cosine Relation: 
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1.4 TRIGONOMETRIC IDENTITIES 

Product relations: 
 

( ) ( )
1

sin sin cos cos
2

a b a b a b� �= − − +� �   (A1.14) 

( ) ( )
1

cos cos cos cos
2

a b a b a b� �= − + +� �  (A1.15) 

( ) ( )
1

sin cos sin sin
2

a b a b a b� �= + + −� �   (A1.16) 

( ) ( )
1

cos sin sin sin
2

a b a b a b� �= + − −� �   (A1.17) 

 
Sum and difference relations: 
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