

 indications of channelised flows. (adapted from Wickens, 1994)

Chapter 1 Introduction

Figure 3.16 Panel 1-2. Fan 3 disappears into the ground a few hundred metres to the east of the last profile.
Notes on Panel 1-2

 followed by rapid thinning (thins to less than 1 metre in 100 metres before thickening towards 4930 m). It also displays many dewatering features (indicating rapid deposition) and large volumes of MCCs.

Figure 3.17 Panel 3. The most continuous section of outcrop in the field area is the first 2.3 kilometres to the west of this area. It represents the southern Gemsbok River Valley outcrop of mid-fan Fan 3 .

Notes on Panel 3

 Lobe 1 at 0820 m , and Sub Lobe 2 at 0450 m .

Notes on Panel 3-4

Panel length is 580 metres. The two profiles on the sides, J2920246ZM and J2340249ZM, are part of Panel 3. The western correlation of Lower Lobe 4 between J2660254ZM and J2340249ZM can be walked out. This panel represents a down-dip continuation of the channelised areas identified to the northeast on Panel 3, at profile J3150245ZM. Some MCCs are located close to local amalgamation zones at 2690 m .

Figure 3.18 Panel 3-4. This section of outcrop lies slightly to the south of Panel 3. The two edge profiles are part of Panel 3.The western correlation with Fan 3 can be walked out.

Notes on Panel 5
Panel length is 400 metres, and is located 500 metres south of the western end of Panel 3. Lobe 1 is very structured and bedded, as it is 500 metres to the north.

Notes on Panel 6
Panel length is 200 metres. The first of several pinch-outs of the lower part of Sub Lobe 1 is visible here. Only the upper part of Sub Lobe 1 is continuous up-dip. Lobe 1 is still very bedded and structured.

Figure 3.19 Panels 5 and 6. They represent the first two valleys south of the Gemsbok valley. From Panel 5 onwards it becomes increasingly difficult to correctly correlate the Panels, as the outcrops become poorer and further apart.

Notes on Panel 7

Panel length is 570 metres. Interlobe C and D is at its thickest in the up-dip direction around J1680335LK. The panel is located within the thinnest section of outcrop, where all lobes show significant thinning (see Panel 12). This section is generally well structured and bedded.

Figure 3.20 Panel 7. Panel 7 is not truly a "straight line correlation, but rather a correlation around a bend in the outcrop. The two sides of the headland were close enough together to warrant the above correlation.

Notes on Panel 8-9
Panel length is 3830 metres. The western profiles represent the western most of all profiles, located on the Los Kop Twins. The outcrops are mostly ripple laminated, and are probably not situated close to a major axial zone. The Twins are located 3.2 kilometres from the nearest eastern outcrops, making correlation difficult. If correct, it supports the inferred positions of the axial zones of the sub lobes, as well as Lobe 1, located well to the west of the Gemsbok River valley.

Figure 3.21 Panel 8-9. The Los Kop twins (bottom photo) are situated some three kilometres away from the nearest correlatable outcrop to the east. As such the only a general correlation could be safely attempted.

Notes on Panel 10-11
Panel length is 930 metres. The interbedded sandstones of Interlobe C and D start to appear here. An axial zone of Lobe 4 is located at J3270331KK. This area is nearing the pinch-out of Lobe 1.

Figure 3.22 Panel 10-11. The southern most strike section. Again, most of the outcrop is located on isolated hills several hundred metres from the nearest correlatable outcrop.

Figure 3.23 Panel 12. A 4.9 kilometre north-south trending dip-section from mid-fan (north) to more proximal (south).
Notes on Panel 12
 C and D, as well as E show significant thickening down-dip (south) and become interbedded with thin-bedded sandstones. Lobe 1 pinches out at 2060 m .

Example Profile, Isopachs and Axial Positions

 gain perspective on the location of the isopach maps. The yellow circles on the isopach maps represent the location of the example profile

Figure 7.10 The final result. This model was the last to be created. It used the constrained polygon, and the reduced lithofacies. The result was a model that very closely matched the CorelDraw panels. Two cross-sections were created in roughly the same locations as the CorelDraw panels 3 and 12.

Appendix A AAPG Poster
B. INTERNAL ARCHITECTURE AND ORGANISATION
ovean
B3. Shape

$$
-2
$$

B2. Facies Distribution B3. Shape
B1. Hierarchy

ocal compensational stacking patterns				
Fig. B4.1: A. Correlation panel of the Grootfrontein south outcrop (strike section). B and C. Schematic correlation panels highlighting compensational stacking pattern of lobes and lobe elements.				
- At outcrop, the compensational stacking of lobes is most apparent in strike Grootfontein area by the thickening and thinning patterns of lobes (2,4 and 5). - The maximum depositional relief is calculated by assuming that thickness change is due to seabed topography, and these estimates are presented as angles. - From east to west, lobe 2 thins from 7.8 m to 4.2 m over 700 m (angle of 0.29°), thickens back to 10 min 500 m (angle of 0.66°) and, at the western end, thins to 6.7 m in 600 m (angle of 0.32°). Locally, lobe 4 is thickest overlying the thinner parts of lobe 2 and thins from 5.4 m to 3.2 m over 1000 m to the east (angle of 0.13°). Finally, lobe 5 has two loci of thickening situated at either end of the panel and thickens from 6 m to 9 m in 1000 m towards the east and the west (angle of 0.17°).				
Planform stacking patterns				
		Mapping of individual lobe dimensions are greater tha Therefore, the dimensions assume rates of thinning to should be considered as centroid (the volumetric cent	is possible over 15×8 the constraints afforded presented in Section B2 be constant and using pal minimum dimensions. Te po	by the outcrop. are estimates that laeocurrents, and position of a lobe
Nevertheless, the outcrop constraints indicate that the lobes are elongate in a down-dip direction with dimensions of several kilometres in length and width. Isopach maps, generated from logged thicknesses of lobes show a specific volume, position, and shape for each lobe within the field area.				

D. AUTOGENIC CONTROLS ON THE GEOMETRY AND
STACKING PATTERN OF TERMINAL LOBE DEPOSITS
The architecture of submarine fans is governed by a multitude of
D1. Finger like lobe geometry

D2. Compensational stacking patterns

 tops are at the correct levels, whereas the surfaces are literally all over the place. This is what prompted the use of a different algorithm, as the results gained with Kriging simply weren't useful.

 (1)

Figure D. 4 Panel 3 as represented by Petrel.

