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Abstract 

This thesis may be divided into two parts: the first describes the Finite Element Method 
(FEM) and its application to guided wave problems. The second part is devoted to scattering 
configurations, specifically the use of the Boundary Element Method (BEM) and the hybrid 
Finite Element Method-Boundary Element Method (FEM-BEM) to obtain solutions for 
scattering problems. The formulations are restricted to two dimensions throughout the 
thesis. 

A variational formulation is introduced and the implementation of boundary conditions 
is described. The use of vector approximation functions for the Finite Element Method is 
explained and the advantages highlighted. The properties of these functions are derived and 
graphical representations are given. A comparison between a lower order and higher order 
approximation is made. This is applied to problems which demonstrate the capabilities of 
the Finite Element Method such as ridged waveguides and circular waveguides containing 
eccentric dielectric rods. Results obtained compare well to analytic solutions, in the cases 
where these are available. 

An integral equation for scattering problems is derived. This relates the tangential field 
components on a contour enclosing a scattering object to the scattered fields and enables 
a solution to be obtained when the tangential components on the contour are known. It 
is shown how the interior region enclosed by the contour is discretised and how the Finite 
Element Method can be coupled with the Boundary Element Method by imposing continuity 
conditions on the enclosing contour. The resulting system of equations obtained may be 
solved. Solutions for scattering from perfectly conducting cylinders are obtained and compare 
well to analytic results. 
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Opsomming 

Hierdie tesis bestaan uit twee dele: die eerste beskryf die toepassing van die Eindige Element 
Metode (EEM) vir golfieier probleme. Die tweede deel handel oor strooiings probleme en 
die toepassing van die hibriede Eindige Element-Randelement Metode om numeriese oplos­
sings vir hierdie tipe probleme te vind. Die formulerings in hierdie tesis is deurgaans twee­
dimensioneel van aard. 

'n Variasionele formulering word beskryf saam met die geassosieerde randvoorwaardes. 
Die gebruik van vektor basis funksies vir die Eindige Element Metode word beskryf en 
die voordele uitgelig. Die eienskappe van hierdie vektor funksies word grafies voorgestel 
en herlei. Verskillende orde benaderings is ge1mplimenteer en die akkuraatheid van die 
benaderings word ondersoek. Probleme wat die vermoe van die metode ten toon stel is 
gekies, byvoorbeeld golfleiers met riwwe en ronde golfleiers wat dielektriese silinders bevat. 
In die gevalle waar analitiese oplossing beskikbaar is, vergelyk die Eindige Element resultate 
goed met die analitiese oplossings. 

In die tweede deel van die tesis word 'n integraal vergelyking wat van toepassing is op 
strooiingsprobleme, afgelei. Die tangensiale veld-komponente op 'n kontoer wat 'n voorwerp 
omsluit word in verband gebring met die verstrooide veldkomponente elders in die omgewing 
rondorn die voorwerp. Die diskretisasie van die ornsluite gebied en die koppeling van die 
Eindige Element Metode met die Rand-Element Metode deur kontinulteitsvoorwaardes op 
die kontoer word bespreek. 'n Stelsel van vergelykings word gevorm wat opgelos kan word 
om die veldkomponente op die kontoer en sodoende die strooiingseffek van 'n voorwerp te 
bepaal. Die strooiingseffek van perfek geleidende silinders is bepaal en vergelyk goed met 
analitiese oplossings. 
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Introduction and Overview of this 
Thesis 

The phenomenon of electromagnetic wave propagation, from visible light to radio waves, 
has fascinated many over the past few centuries. With the concepts of wave propagation 
understood the focus now is the practical application of it to antenna design, military ap­
plications and many more applications which become possible. The design engineer needs a 
solid foundation in electromagnetics and good modelling tools. Here is the opportunity for 
those who enjoy the challenges of numerical modelling of electromagnetic wave propagation 
as accurately and as effectively as possible in terms of computational times. Many techniques 
exist to model the behaviour described by Maxwell's equations. Some of these are approxi­
mate techniques which are valid for high frequencies, while others such as integral equation 
methods are exact, but computationally intensive. Paging through relevant periodicals, it is 
clear these numerical methods are an active region of research and many contributions, of 
which many are applications, are published every month. 

The Finite Element method is a differential equation technique and is well suited to 
the modelling of inhomogeneous structures with complex geometries. It involves the dis­
cretisation of the entire volume (in three dimensional modelling) . The matrices involved 
are usually sparse and special storage schemes exist which save memory space and allow 
large matrices to be handled with relative ease. Techniques to solve sparse matrix systems 
reduce the computational time associated with these problems. However, infinite problem 
domains cannot be handled with this technique without termination of the region by the use 
of absorbing boundary conditions or some other form of termination. The Finite Element 
Method for guided wave configurations is applied effectively to analyse and design waveguide 
structures. Examples of these are filters and increased-bandwidth waveguides; for example, 
ridged waveguides. Another application is the analysis of dielectric loaded cavities. 

The Boundary Element Method is an integral equation method and allows infinite do­
mains to be considered. The formulation is exact (the implementation is not exact, since 
the solution is approximated with basis functions which are genrally of low order) and is 
equally valid for far field solutions and near field solutions. It requires discretisation of a 
surface enclosing a volume (3D) and incorporates the Sommerfeld radiation condition into 
the formulation, which means that any solution obtained will satisfy this requirement. Un­
fortunately, densely populated matrices are generated and an huge amount of memory space 
is required to solve problems large in terms of wavelengths. 

The hybrid Finite Element-Boundary Element Method (FEM-BEM) is the combination 
of both methods, exploiting the advantages of each in the region where it is most appro-
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priately used. The FEM-BEM is often used for antenna design, for example cavity backed 
antenna arrays and the analysis of infinite periodic arrays. It is also applied to determine 
the radar scattering effect of structures. Very relevant today is the modelling of the effect 
of radiation on the human body, which can be investigated by the use of this method. The 
characterisation of the scattering effect of materials and propagation environments is another 
possibility. A restrictions of the technique is the electromagnetic size of the configuration 
considered, since at least a tenth of a wavelength discretisation is required to obtain accurate 
results. · 

The subject of this thesis is the investigation of the details of the implementation of 
the Finite Element Method (FEM) and finally the hybrid Finite Element-Boundary Ele­
ment Method (FEM-BEM) as applied to respectively guided wave and scattering problems. 
All the work presented was restricted to two dimensional geometries. This simplifies the 
discretisation of the configurations and focuses the attention on the technique itself. 

Chapter 1 briefly introduces the reader to the FEM technique. The minimisation of 
a functional that corresponds to the solution of a boundary value problem is presented. 
Boundary conditions and discretisation details are mentioned. Chapter 2 is a summary of 
the literature on vector based finite elements, describing the most recent developments. It is 
shown that various possibilities exist in the case of the basis functions, which determine the 
accuracy and reliability of the results. A motivation for the use of vector basis sets is given. 
In chapter 3 a hierarchical basis set is chosen from the options available and the element 
matrices are derived .for the two-dimensional case. The properties of the approximations 
as derived from the basis set implemented are explained. An interesting property, which 
is characteristic of the basis set chosen, is the different orders of approximation used for 
normal and tangential components on boundaries. This is derived and illustrated. Higher 
order approximations are also examined. It is explained how the TE and TM modes are found 
and whether the E or H field is discretised to obtain the desired modes. The application of 
the theory in chapters 1 to 3 for guided wave structures is presented in chapter 4. Examples 
are chosen that demonstrate the capabilities of the Finite Element method when a vector 
basis set is implemented. ' 

The rest of the thesis describes scattering problems. Chapter 5 contains the derivation in 
the two dimensional case of the scattering equations. Huygens' principle is the starting point 
for the discretisation and setting up of matrix equations. The derivations are specifically 
two dimensional and it is based on the three dimensional derivations found in the literature. 
Chapter 6 presents results obtained for scattering configurations for which analytic solutions 
are available. This chapter is followed by a general overview of the thesis and comments on 
the results which were obtained. 
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Chapter 1 

Introduction to the FEM method 

1.1 Introduction 

This chapter serves as a general introduction to the basics of the Finite Element method. 
It is an overview of the method and aims to highlight the most important concepts. The 
book by Silvester and Ferrari [1] is both an excellent introductory text, and a source of 
much more detailed information. Jin [2] contains a chapter on variational principles for 
electromagnetics and [1] also contains more detail on some of the topics presented in this 
chapter. A familiarity with simplex elements and coordinates is assumed in this chapter. 
The basics of these elements are explained in appendix A. 

1.2 Formulation 

The FEM method is traditionally based on the minimum energy principle. This is equivalent 
to minimisation of the energy functional [3] 

F(V) = ~ {{ (~(\7 x U) · (\7 x U) - k~qV · V)dS 
2 lln p 

(1.1) 

where U may be the E or H field, while p and q are the material parameters in the region 
under consideration. If U represent the E -field vector, then p = µr and q =Er· Similarly, if 
U represents the H-field vector, p =Er and q = µr. 

It can be shown that the solution to the differential equation 

£V=f (1.2) 

associated with a boundary-value problem can be obtained by minimisation of the associated 
energy functional [2]. In this case the differential equation is the vector Helmholtz equation 

1 
\7 x - \7 x u - k~q u = 0 

p 

Certain requirements for the differential operator£ must be met. 

(1.3) 

Jin [2] proves that the differential equation results from the functional F when the first 
variation is zero. He then proves that the minimum of the functional F corresponds to the 
point where the first variation is zero. 
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The finite element method divides the problem domain into elements, where basis func­
tions are used to approximate the field variable over each element. The discretised energy 
functional is now minimised. In this case, simplex elements are used. A simplex element 
in lD is a line segment, in 2D it is a triangle and a tetrahedron in 3D. Attention will be 
restricted to triangular elements (2D simplexes). 

U is approximated inside every element as 

n 

Velement = L wk(r)uk 
k=l 

(1.4) 

for a vector formulation. The basis function (wk), is a vector function of position r in the 
element. uk is an edge coefficient in this case. 

However, for a scalar formulation, the field variable may be expressed as a function of 
the variable's value at each of the n nodes on an element (which are not necessarily only the 
three vertex points) 

n 

Ue1ement = L WkUk 
k=l 

(1.5) 

Here uk is the nodal coefficient at node k. Note that in this case the basis function is 
a scalar function. The first type of expansion as presented in equation (1.4) will be used. 
This is a more recent development than nodal expansions. Nodal based FEM were previously 
employed for both structural engineering and electromagnetic problems. At this stage mostly 
vector formulations are in use by the electromagnetics community. It is also possible to 
implement both vector and scalar basis functions in the same problem [4], although this will 
not be described in this thesis. 

1.3 Discretisation and Boundary Conditions 

1.3.1 Discretisation of the Functional 

The discretised functional is 

(1.6) 

[U] is the unknown coefficient .matrix of the discretised field variable. Every element is 
numbered and every edge is assigned an edge number, which corresponds to the unknown 
coefficient with the same index. These coefficients are all contained in the coefficient matrix. 
The matrices S and T are included in (1.6) . These are referred to as element matrices, 
where a distinction is made between global element matrices and element matrices for single 
elements. The latter is indicated with the superscript e, to indicate that only one element is 
considered. The global element matrices are found by combining the effect of every individual 
matrix. This must be done since (1.6) requires matrices containing contributions from all 
the elements. 
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To obtain an equation enabling one to solve for the unknown field variable, minimisation 
with respect to each edge coefficient in turn must be done. This leads to 

[S][U] - k2 [T][U] = 0 (1.7) 

Here [SJ and [TJ are global matrices. Now [SJe and [TJe (for a single element) must first be 
found: 

[SJfi =fl ~(\7 x wi) · (\7 x wi)drl 

[Tjfj =fl QWi · Wjdfl 

(1.8) 

(1.9) 

wi and wi are the i-th and j- th basis functions defined on element e and n is the area of 
the element (2D) or the volume of the element (3D). 

Tables with [SJ and [T] matrices for 3D CT /LN 1 are listed by Lee and Mittra [3] while 
Jin [2] does the same for the 2D case (CT /LN). 

Now the global [SJ and [T] matrices are found from the individual element matrices; this 
process is referred to as assembly. It amounts to adding the energy contributions from 
every element and is described in Silvester and Ferrari [1 J. Integration is performed over 
every element. Useful integration formulae for simplex integrals are given by Jin [2, p. 82J. 

1.3.2 Boundary Conditions 

The boundary conditions that will be encountered are Dirichlet (essential): U x n = O or 
Neumann: n. \7 x u =Vo. 

The boundary conditions are specified with the boundary value problem that is to be 
solved. 

1.3.3 Natural and Essential Boundary Conditions and Natural 
Continuity Conditions 

Previously it was mentioned that the first variation of the functional is set to zero. This 
results in a boundary integral forced to zero [lJ. There are three possibilities. The boundary 
integral is over a boundary where either the essential or natural boundary conditions are 
required, or the boundary is between two adjacent elements which may also have different 
material parameters. 

Let the approximation to the solution be U and u the correct solution. When the 
tangential components of the correct solution are known, the boundary integral is zero. This 
is 

nxU=nxu (1.10) 

If the essential boundary conditions are not specified, the natural boundary condition 

n·\7Xu=0 (1.11) 

1constant tangential, linear normal components on boundaries, these are the lowest order basis functions 
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is forced by the fact that the first variation is set to zero [1]. 
The third possibility is that the boundary is an inter-element boundary. On inter-element 

boundaries there is no contribution to the first variation, which ensures that the solution 
obtained is not dependent on the discretisation. Silvester and Ferrari [1] also show that 
tangential continuity on inter- element boundaries is the only requirement to ensure that 
the first variation of the functional is zero. This also holds when material discontinuities 
occur. In the case where adjacent elements have identical material parameters, the normal 
components are continuous; this is referred to as a natural continuity condition. 

Tangential continuity between elements is enforced by equating coefficients of adjacent 
edge basis functions. Normal continuity is not enforced. Adjacent edges are often numbered 
in the opposite direction e.g. edge (i,j) and edge(j,i) , which may require that coefficients of 
the adjacent oppositely directed elements must be equal in magnitude, but different in sign. 
However, this is dependent on the form of the basis function and due to the vector nature 
of the basis functions. 

Silvester and Ferrrari [1] use a connection matrix idea to explain how the nodal continuity 
is established. This is done in the same way for edge continuity. It is in fact what is implicitly 
done when element matrices are connected, but the matrix multiplication is much too time 
consuming to be effective. For this reason the effect of the connection matrix is explained 
here and in the code the elements of the connected matrix are simply inserted into the correct 
positions. 

Figure 1.1: Connection of two disconnected elements where 3 basis functions are defined on 
an element. The numbers indicated represent the edge numbers. 

Consider two disconnected elements numbered as shown in figure 1.1. Here we have the 
disconnected coefficients numbered 1 to 6. The triangle edges are numbered 1 2 3 and 6 4 5 
where edges 2 and 5 must be connected. 

The disconnected coefficient matrix from (1.6) is now 

U1 

U2 

U3 

U4 

U5 

U5 

(1.12) 

(note that the order of numbering is arbitrary) and the associated disconnected element 
matrix S (for CT /LN or 3 degrees of freedom) as an illustration 
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Su S12 S13 0 0 0 
S21 S22 S23 0 0 0 

sdis = 
S31 S32 S33 0 0 0 

(1.13) 
0 0 0 S44 S45 S45 

0 0 0 S54 S55 S55 

0 0 0 S54 S55 S55 

Now note that the coefficients 2 and 5 should be equal in magnitude, possibly opposite in 
sign if edges 2 and 5 are oppositely directed. The connection matrix C relates the connected 
and disconnected coefficient vectors and eliminates the identical coefficients 

Udis = CUcan 

where Ucon is now the coefficient matrix containing each edge coefficient only once. 
example in figure 1.1 the expression (1.14) is 

U1 1 0 0 0 0 
0 1 0 0 0 U1 

U2 

0 0 1 0 0 
U2 

U3 

0 0 0 1 0 
U3 

U4 

U5 0 1 0 0 0 
U4 

U5 0 0 0 0 1 U5 

The connection matrix now leads to smaller global element matrices S and T 

Scan= C'SdisC 

Tcon = C'TdisC 

Then the connected element S matrix is now 

Su s12 s13 
s21 s22 + s55 s23 

Scan= s31 s32 s33 
0 ±s45 0 
0 ±s65 0 

0 0 
±s54 ±s56 

0 0 
s44 s46 
s64 s66 

(1.14) 

For the 

(1.15) 

(1.16) 

(1.17) 

The same holds for the T matrix (1.9). The sign in the indicated positions depends on 
whether the edges are numbered in the same or in the opposite directions and the form of 
the basis functions. These will be discussed in the next chapter, but it will become clear 
that 

(0.5) 
W ·· tJ 

(1) 
wij 

(0.5) 
-wji 

(1) 
W· · Ji 

for the half and first order basis functions, whose form is shown later. 

(1.18) 

(1.19) 
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1.4 Various Basis Functions 

It has already been shown that one has a choice between a scalar approximation or a vector 
formulation. The choice depends on whether the problem considered can be reduced to 
a scalar problem (2D configurations or 3D with one of the object dimensions infinite) or 
whether it is more conveniently expressed as a vector problem. The manifestation of spurious 
modes associated with the choice is also important. Spurious modes are modes which satisfy 
the boundary conditions but are not valid solutions of the wave equation. These are obtained 
along with the valid solutions and are difficult to identify when a scalar formulation is used, 
since their wavenumbers are similar to the correct ones. The vector formulation results in 
zero or very small wavenumbers for spurious modes, enabling easy identification of these. 

When vector basis functions are considered, the two options are hierarchical or in­
terpolatory functions. (It is possible to use functions which are neither hierarchical nor 
interpolatory e.g. as in [5]) 

Finite elements are hierarchical when each lower order basis set is a subset of the basis set 
for any higher order set [4]. The advantage of using hierarchical functions is that the order 
of approximation is easily increased by simply adding more (higher order) functions. The 
interpolatory basis functions have the advantage of lower element matrix condition numbers 
than hierarchical basis functions [ 6], which informally speaking is a measure of the degree of 
ill- posedness of the element matrices. 

1.5 Conclusion 

The finite element method was described, along with the important concepts that will be 
used in the remainder of the thesis. The FEM can be summarised as: a discretisation of the 
domain with the associated basis functions; the minimisation of the functional, bearing in 
mind the boundary conditions; and finally the solution of the matrix equation that resulted 
from this process. The vector basis sets were chosen even though it is possible to formulate 
the two dimensional problems as a scalar problem. In this thesis the vector basis sets are 
specifically implemented to investigate their properties in the two dimensional case, where 
the geometry is reasonably simple and the Finite Element mesh easily visualised. 
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Chapter 2 

Literature Survey : Vector Basis 
Functions 

2 .1 Introduction 

The aim of this chapter is to expose the basic ideas available in the literature and to follow the 
development of this field over the past few years. It is interesting that not all of the ideas 
entertained by researchers were correct. One of the most interesting concepts associated 
with these basis functions is the possibility that spurious modes could be introduced, should 
it be implemented incorrectly. The various possible options found in the literature will 
be compared with the properties listed. A detailed description of the derivation of these 
properties for the basis set used by the author will be delayed until the next chapter. 

2.2 Spurious modes 

The following definitions are used frequently throughout the literature. 

Definition 2.1 The edge element space is the set of all possible fields that can be expressed 
as a linear combination of the edge basis functions associated with the edges of the mesh. 

M 

E ={EI E = L:eiwi(x,y)} (2.1) 
i=l 

M is the number of edges in the mesh. 

Definition 2.2 The curl null space is G ={EI EE E and 'V x E = 0 inn} 

Spurious modes are modes which are non-physical, i.e. they cannot exist. However, these 
modes are valid solutions to the vector Helmholtz equation, but do not satisfy all of the 
Maxwell equations [9]. In [7] the origin of spurious modes in both the scalar case and for 
vector basis functions is examined. This article explains parts of the material discussed by 
Nedelec, which is unfortunately not easily understood by non-mathematicians. It is stated 
that spurious modes are "badly formed static solutions" which means basically that spurious . 

,(.11 •II/~~ 
... <~ 

.:::: -~ 
~ .-. .,,. -

, '·' 
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2D (triangle) 3D (tetrahedron) 
edge 3k 6k 
face k(k - 1) 4k(k - 1) 

entire domain - k(k-l)(k-'..!) 
? 

total k(k + 2) klk+:.!Hk+JJ 
? 

Table 2.1: Number of degrees of freedom for order Hk(curl). 

solutions are of the form \7 ¢ with ¢ a scalar function. An interesting comment here is that 
spurious solutions, being static solutions, do not propagate and thus do not affect the validity 
of far-field solutions. 

In earlier papers it is often stated that divergence free bases are required for non spurious 
modes (8, p. 12]. This notion became very popular and was widely accepted for a while 
before it was exposed as a mistake [7] and (9]. 

The approximation should be such that the curl of the approximation contains all of the 
terms in the curl range space of p- th order, for a p- th order of convergence to be established. 

Note that the number of terms in a complete polynomial of order pis 0.5(p + l)(p + 2). 
This is also referred to as its dimension. Now the edge space E, defined above, is referred to 
as HP( curl), with p the highest order of complete polynomial in the range space of the curl 
operator. The dimension of HP(curl) is the sum of the dimensions of the curl range space 
and the curl null space. Spurious modes are caused by either (1) an incomplete polynomial 
function in the null space of the curl operator or (2) a linear dependence existing among the 
basis functions [10]. 

N edelec [11] set down constraints for approximations in terms of basis sets that would 
result in optimal basis functions with correct null space modelling, ensuring that all spurious 
modes have zero eigenvalues. 

2.3 The Advantages of Edge-based Functions 

The edge- based vector functions identify very clearly the tangential components of the 
fields and provide tangential continuity by simply equating edge coefficients, as was shown 
in chapter 1. The tangential and normal components are clearly separable. In the case 
of nodal based functions, the tangential and normal components are both forced to be 
continuous. On material interfaces, the normal component of the field vector is physically 
required to be discontinuous, and this can only be modelled correctly with the use of the 
vector basis functions, where normal continuity is not imposed. The edge- based function 
also provides better modelling at sharp corners, where singularities are found and the field 
changes direction rapidly. The properties of edge- based functions results in better spurious 
mode modelling, in fact all the spurious modes are associated with zero eigenvalues and are 
now easily identified. 
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Webb March '94 :Peterson (2D) June '96 :Savage and Peterson March '98 :Savage 
H0 (curl) 1-6: A/v Aj - A/v Ai 1-6: Ai \7 Aj - A/V Ai 1-3: Ai'V'Aj - Aj'V'Ai 1-6: Ai'V'Aj - Aj'V'Ai 
Linear 7-12:Ai'V'Aj + A/V'Ai - - -
H 1 (curl) 8 face functions: 1-6: Ai'V'Aj i =J j; 1-12: Ai \7 Aj i =J j; 1-6: A/v' Ai - Aj \7 Ai 

13-16: AkAj \7 Ai 7: A2A3 \7 A1 - A1A2 \7 AJ 8 face functions: 7-12: Ai'VAj+Aj'VAi 
17-20: AkAi'VAj 8: A1A3\7A2 - A1A2'VA3 AiAj'Vk - AiAk'Vi i<j<k 8 face functions as before 

AiAj \7 k - AiAk \7 i i<j<k 

Stellenbosch University  https://scholar.sun.ac.za
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2.4 Degrees of Freedom and the Assignment of These 
to Element Edges and Faces 

A finite element has associated with it degrees of freedom which have been defined by Nedelec 
[11]. These are associated with edges, faces and the entire domain of the finite element. The 
number of these are basically the number of unknowns for an element and are explained in 
table 2.1. 

2.4.1 Hierarchical Functions 

Table 2.2 summarises the subtle differences of basis functions as implemented by various 
workers. It is clear that the H 0 (curl) basis functions are always of the form given, in fact, 
even in the interpolatory case (see [6]) these basis functions are incorporated into the basis 
sets. Webb [12] proposed a hierarchical basis set which is compared to the scalar basis 
functions in his article. This is the only case where the linear hierarchical basis functions 
are suggested. Peterson [9] works in 2D and presents the 2D basis sets, but these are not 
hierarchical. Savage and Peterson [5] later extended this work to 3D and presented higher 
order basis sets up to order H2 (curl). The most recent addition is by Savage [6], who 
shows fully hierarchical basis sets up to order H3 (curl) and also for comparison gives the 
interpolatory basis sets up to order H 3 (curl). Element matrix derivations of H 0 (curl) (3D) 
may be found in [3] and 2D in [2]. H1(curl) element matrices for the basis set in table 
2.2 (Savage and Peterson) are given in [5]. Note that the H0 (curl) basis functions are also 
referred to as CT/LN (constant tangential- linear normal components on element edges) 
basis functions and the H 1 (curl) basis functions are referred to as LT/QN (linear tangential­
quadratic normal components on element edges) basis functions. This will be explained in 
chapter 3. 

A less standard assignment of degrees of freedom was done in [13] as shown in figure 2.1. 
Here the third edge in the centre of the element is expressed in terms of the other two, since 
the three edge functions inside the element cannot be linearly independent. However, [13] 
does not show how the degrees of freedom would be assigned for higher order approximations. 
The degrees of freedom are k(k + 2), which is as shown in table 2.1. 

2.4.2 Interpolatory Functions 

While Webb [12] proposed the scheme of hierarchical basis functions, it is also possible to 
derive interpolatory vector functions in a similar manner as was done in the scalar case. 
The same interpolation functions [1] ~(p, >i) are used again, ~(p, >i) has i zeros spaced l/p 
apart, from zero to i;l. 

i-i >i - k/n 
~(n, >i) = II ·; k/ 

k=O z n - n 

Shifted interpolation functions are also defined 

(2.2) 
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Figure 2.1: Assignment of degrees of freedom in [13]. 

' / I 
l ,j 'll.2 
I \ / / 

\ I i I 
' \ I \ I 

\ / / \ / \ , 

2 031 0'22 013 3 

Figure 2.2: Interpolation nodes for first set of basis functions. 

~(p, .X) I4-1(P, .X - l/p) 

_ { (i!l)! ni:\ (p.x - k), 
1, i = 1 

(2.3) 

This modified or shifted polynomial has no zero at A = 0, which is a useful property of which 
the importance will become evident later. 

The basic approach is to take the product between the usual H0 (curl) (table 2.2) vector 
basis function and a scalar p-th order polynomial; specifically the product of a standard 
interpolation function (referred to as a Silvester polynomial) and two modified functions is 
used to form the basis functions. 

The set of basis functions are then given in [14] as 
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2 

l1"1 
\ / ' 

' I \I 

3 

Figure 2.3: Interpolation nodes for second set of basis functions. 

2 

/ \., ,l ·. 

/ \ ' 
\,/ \/ 

3 

Figure 2.4: Interpolation nodes for third set of basis functions. 

n}ik(r) = Nijk~(p + 2, >-.i)Ri(P + 2, >-.2)Rk(p + 2, >-.3)fh(r) 
i=O,l, ... ,p j,k=l,2, ... ,p+l 

n;i~(r) = Ni~k~(p + 2, >-.i)Ri(P + 2, >-.2)Rk(p + 2, >-.3)!l2(r) 
i=O,l, ... ,p j,k=l,2, ... ,p+l 

f!fik(r) = Nijk~(p + 2, >-.i)Ri(P + 2, >-.2)Rk(p + 2, >-.3)!l3(r) 
i = O,l, ... ,p j,k = 1,2, ... ,p+ 1 

where i + j + k = p + 2. 

14 

(2.4) 

This is illustrated for the case where p = 2 in figures 2.2, 2.3 and 2.4. Interpolation nodes 
occur only on one of the edges. This is due to the fact that only the standard interpolation 
function has a zero at ).. = 0, while the two modified functions do not have this zero. 
Each of the general forms of the basis functions above lead to 6 basis functions, where each 
one of these interpolates at one of the nodes shown in the above figures. The numbering 
indicates the indices i, j, and k, which correspond to the functions in 2.4. To eliminate 
linear dependencies of the basis functions, only two of the three basis functions which are 
interpolatory at each interior point are retained. 

The degrees of freedom are the same number as before i.e. (p + l)(p + 3) as in the 
hierarchical case. 
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In the same manner it is shown in [14] how to define these interpolation functions on 
tetrahedrons and brick elements. Full expressions for these are given in [14] for first to third 
order approximations. 

2.5 Conclusion 

All the possible options may leave the reader confused as to which basis set is the best to 
use. An interesting question is whether a variation on the above basis sets or something 
entirely new could not perhaps provide better performance. Required for any basis set is 
linear independence, and preferably adherence to Nedelec's constraints, which will assure 
proper null space modelling. Certainly Nedelec's [11, 15] publications were the foundation 
for most of the further work by engineers. 
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Chapter 3 

Hierarchical Basis Functions 

3.1 Introduction 

In the previous chapter the properties of hierarchical basis functions were discussed. The 
difference between interpolatory and hierarchial basis functions was also explained. This 
chapter will focus on hierarchical vector basis functions. The properties will be investigated 
and the advantages of the structure highlighted. 

3.2 Properties 

The field variable at any point inside or on the element boundaries is expressed as the 
combined effect of every basis function used for the specific element. The vector basis 
function is highly suited to enforce the required tangential continuity between elements in 
a very natural manner. Tangential components between elements are made continuous, 
while continuity is not imposed on the normal components explicitly, allowing them to be 
discontinuous at inhomogenous boundaries. 

Consider a 2D linear complete vector function 

M = x[A +Bx+ Cy]+ y[D +Ex+ Fy] (3.1) 
Here the degrees of freedom are the six unknowns, A,B,C,D,E and F. Nedelec proposed 
constraints to reduce the degrees of freedom, by determining which actually contribute to 
non-spurious modes. The constraints in two dimensions are: 

aMx =O 
ax 

a My 
--=0 ay 

aMx aMy 
--+--=0 ay ax 

(3.2) 

(3.3) 

(3.4) 
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Order Basis functions 
CT/LN wk= >-./v>-.j - >-.jv>-.i k = 1, 2,3 

{ >.;V' >.; - .';'V' >.; k = 1,2,3 

LT/QN 
_ )..iV' )..i + >-./v )..i k =4,5,6 
wk-

k=7 - (V' )..i))..j)..k 
(V' Aj))..i)..k k=8 

Table 3.1: Hierarchical basis functions. 

These reduce the number of constraints to three : 

M' = x[A +Cy]+ y[D - Cx] (3.5) 

Consider the vector wave equation for the E- field: 

(3.6) 

Equation (3.6) makes it clear that the curl-curl operator reduces any vector function ex­
pressed as the gradient of a scalar function to zero, which results in a zero eigenvalue so­
lution. The Nedelec constraints reduce the number of zero eigenvalues, which correspond 
to spurious solutions. Inspection of this vector function (3.5) reveals that the x component 
is linear in y and the y component is linear in x. This is sometimes referred to as a half 
order function, since it is linear in x (or y) and constant in x (or y). This is the form of the 
vector approximation which is proposed and more descriptively referred to as a CT /LN basis 
function. The CT /LN property results from the combination of basis functions of the form 
(3.5), and in this 2D case three basis functions will be employed to obtain the three degrees 
of freedom. These are the first three functions listed in table 3.1. In the same manner, a 
complete quadratic function with 8 degrees of freedom is reduced to 6 degrees of freedom , 
using constraints determined by Nedelec [11]. Now all of the six basis functions in table 3.1 
are included and the approximation is referred to as LT /QN. These were all calculated and 
plotted in figures 3.2 to 3.9 over a typical element. Jin [2, p. 236] also shows plots of the 
first three basis functions. 

3.2.1 CT /LN Approximation 

These basis functions produce constant tangential components and linear normal components 
on element boundaries. The form of the basis functions as suggested by Webb [4] was chosen 
and is given in table 3.1. The three basis functions are shown on a typical element in figures 
3.2, 3.3 and 3.4. These are vector functions and are associated with the edge on which it 
has both a tangential and a normal component. The function has normal components on 
all three edges, but only on one edge does it have a tangential component. This can be seen 
on the above figures. A distinction must be made between the properties of a single basis 
function and that of the combined effect. It is instructive to examine a Eingle function with 
the form of the first three functions given in table 3.1. 
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1 

3 ' " ··· ··_-\ .... 

2 

Figure 3.1: The geometry of the simplex element. 

Edge Contributions of a Single CT /LN Basis Function 

In the 2D case a useful identity is found in [10] which will be used to decompose the basis 
function into normal and tangential components with respect to the element boundaries: 

ft . 
VAi = _ ____: 

hi 
(3.7) 

hi is the height of the triangle from base i, while ni is the unit normal to this edge. Refer to 
figure 3.10 for the numbering of triangle edges and appendix A. One of the vector functions 
will be - Ai ( ~) + Aj ( ~), where use was made of ( 3. 7). Consider the con tri bu ti on on each of 
the edges: 
edge (i,k) : Aj = 0 , leaving only a normal component -~ 

J 

edge (kJ) : Ai = 0, leaving only a normal component ~ 
edge (i,j) : a tangential and normal component is found 'on thiS edge. Now the combination 
of these functions to obtain the degrees of freedom described by Nedelec [11] is described. 
Consider the E- field expressed in terms of the basis functions: 

E 

(3.8) 

Here Ei is defined as £i · ei, which incorporates the length of the element edge with the 
constant Ei· (3.8) is rewritten in terms of normal components with the use of (3.7) 

Il1 Il2 Il3 
E = --h (-E1A2 + E3A3) - -h (E1A1 - E2A3) - -(E2A2 - E3A1) (3.9) 

1 2 h3 

Consider now the contribution on an edge, for example edge (2,3) and note that 

A1 = 0 

A2 + A3 = 1 
VA2 = -\7 A3 (3.10) 
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On edge(2,3), the field in (3.9) is reduced to 

(3.11) 

with the use of (3.10) . 
Tangential component on edge (2,3) 
Let t23 be the tangential unit vector to edge (2,3). From figure 3.1 , it can be derived 

that t23 ·n2 = - sin(03). The tangential component is - 5~28 , which can be reduced to simply 
-e2. This shows that the tangential edge contribution is a constant. It is true in general for 
every one of the three edges. 

Normal component on edge (2,3) 
From figure 3.1, it can be shown that n1 ·n2 = - cos 03. The normal component magnitude 

is now - ( ~ + cosi:E2
) + A2 El'tiE3. Finally the approximated field on edge (2,3) is 

A {E3 cos 03E2 \ El+ E3} A 

-e2t23 - - + + -"2 n23 
h1 h2 h1 

(3.12) 

It is clear from (3.12) that the tangential component is constant and the normal component 
is linear in a simplex coordinate. Hence these basis functions combine to form the CT /LN 
basis set. 

3.2.2 LT /LN Basis functions 

These basis functions produce linear tangential and linear normal components on element 
edges. The first six functions of table 3.1 forms Webb's LT /LN basis set. The approximation 
was implemented and found that this higher order approximation is less accurate than the 
lower order CT /LN approximation. This is a surprising result, and an explanation was 
required. On investigation it was found that the form suggested by Webb [4] contained a 
linear dependence and should not be used. However, a slightly altered form works well, 
although it is not optimal. Dibben and Meta taxis [16], who referred to their LT /LN element 
as a "linear element", remarked on this fact and showed that although the rate of convergence 
is higher as the mesh is refined, the average error is higher for the linear element (LT /LN in 
the terminology used here) than for the standard CT /LN approximation. 

3.2.3 LT/QN Basis functions 

These basis functions produce linear tangential and quadratic normal components on element 
boundaries. When a more accurate approximation of the field variable is required, one 
could increase the number of basis functions to 8 as shown in table 3.1, to obtain a LT/QN 
approximation. The last two basis functions are face functions. These are associated with the 
face of a triangle (or the face of a tetrahedron in 3D) since there is no tangential contribution 
on any edge of the element. This property can be seen from figures 3.8 and 3.9. Also there 

- is no contribution, tangential or normal, on two edges. In this way tangential coSotinuity 
between elements, which was established previously by enforcing tangential continuity for 
the first 6 basis functions, is not affected. These face functions add normal components to 
two of the three edges, which introduce the quadratic normal components. 
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Figure 3.2: The first basis 
function over an element. 

Figure 3.5: The fourth basis 
function over an element. 

Figure 3.8: Tl-.e seventh ba­
sis function (face function) 
over an element. 

Figure 3.3: The second ba­
sis function over an element. 

Figure 3.6: The fifth basis 
function over an element. 

Figm ..; 3.9: The eighth ba­
sis function (face function) 
over an element. 

Figure 3.4: The third basis 
function over an element. 

Figure 3. 7: The sixth basis 
function over an element. 

20 
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Figure 3.10: Edge-based functions and the degrees of freedom for a triangular element. 
Reprinted from [ 17]. 

The E field expressed in terms of the 8 basis functions and the 8 coefficients is 

E E 1 w~~·
5) + E2w~~·5) + Eaw~~-5) + E4w~~) + Esw~~) + E5wW + e1f1 + esf2 

\7 Ai [.\2(E4 - E1) + Aa(Ea + E5) + e1A2Aa] 

+ \7 .\2 [-\1 (E1 + E4) + .\a(Es - E2) + es-\1.\a] 
+ \7.\1(E6 - E3 ) + A2(E2 +Es)) (3.13) 

(the face coefficients are indicated with ei since the Ei includes the edge length) 
Here it is clear that quadratic terms in the simplex elements are introduced. This is also 

quadratic in Cartesian coordinates, since the simplex coordinates are linear in x and y. The 
face functions introduces an unsymmetric approximation over each element. 

These were the highest order of approximation implemented, however it is possible to 
introduce more basis functions associated with higher order approximations. However, the 
computational cost increases rapidly with higher orders and it would be even more apparent 
in three dimensional modelling. 

3.3 Derivation of the S matrix : LT /QN 

The element matrix for the CT /LN case in two dimensions is derived by Jin [2]. However, 
the LT/QN element matrices have not appeared before and had to be derived. 

The E-field is expressed in terms of the eight vector basis functions 

3 6 8 

E = L Emw~·5) + L Emw~) + L emw~·5) (3.14) 
m=l m=4 m=7 

These basis functions are defined in table 3.1. 
To derive the S-matrix, \7 x E must be calculated. 
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(3.15) 

This was done by Lee and Mittra (3] for the first three basis functions in the 3D case. Here 
the notation of Jin (2] will be followed. 

Using vector identities it can be shown that V x w~Y = 0. This results in an 8 by 8 
S-matrix, containing the submatrix ScT/LN for the half order basis function described in (2], 
some of the rest filled with zeros and the submatrix Sface, which results from the added face 
functions. 

[ 

[SCT/LN] 
[OJ 
[OJ 

The S matrix for the LT /QN case is now 

g2 
1 

f, 1 £2 f,~ 
f, 1 f3 f 2£3 4 

S=~ 0 0 0 
A 0 0 0 

0 0 0 
0 0 0 
0 0 0 

where A is the area of the element. 

[OJ [OJ · 1 
[OJ [OJ 
[OJ [SJaceJ 

0 
0 0 
0 0 0 
0 0 0 1/8 
0 0 0 5/48 1/8 

3.4 Derivation of the T matrix : LT /QN 

The T matrix is symmetric as seen from (3.18): 

(3.16) 

(3 .17) 

(3.18) 

Only the lower part of the symmetric T matrix is shown here , as calculated for the 2D 
LT /QN approximation. 
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2(/22 
+!11 -ft2) 

(/12 +hs 2(/33 
-ft3 -h2) +h2 -/23) 

(/12 +!ts (/31 +hs 2(/11 
-i11 -2hs) -2ft2 -/33) +fs3 -ft3) I 

2(/22 (/23 -h2 (/12 -ft3 I 2(/22 

j 
-ft1) -h2 +2/13) +!11 -2hs) I h2 +/11) 

( /23 -ft2 2(/23 (/13 -hs (2fts +h2 2(/33 
-2ft3 +h2) -h2) +/Js +2ft2) +h2 +/23) +h2 +/23) 

(/21 -ft3 (/31 +hs 2(/11 (/12 +!ts (/13 +ha 2(/11 
-!11 +2hs) -2ft2 +/33) -fss) +!11 +2/23 ) +fs3 +2ft2 l -l-fa3 

U12 (2/13 (2ft1 (/12 2(/13 (2ft1 
-2/11) -2ft2) -ft3) +2/11) +ft2) +!ts) 2/3ft 1 

l (2h2 (hs 2(/22 (2h2 (hs 2(i22 
-ft2) -2/22) -ft2) +ft2) +2/22) +ft2) l/2ft2 2/3h2 

(3.19) 

fij is defined 
fij = bibj + CiCj (3.20) 

with bi and ci the same constants defined with simplex coordinates. Refer to Appendix A 
for a definition of these constants. 

The CT /LN S and T matrices are found by taking the top left 6x6 submatrix from the 
above matrices. This is possible since hierarchical basis function were implemented. 

3.5 Application to Guided Wave Problems 

The matrix equation (1.7) is an eigenvalue problem, which means that there are a number 
of solutions for k, the cutoff frequencies of each mode, and corresponding to every k there is 
a solution for U. 

The code was applied to the calculation of the cutoff frequencies of propagating modes 
in cylinders of possible arbitrary cross section, for both the TE and TM modes. 

The mesh generation was done by the use of Delaunay triangulation code which is avail­
able in Matlab version 5. A short description of the Delaunay triangulation technique is 
given in appendix D. Advantage may be taken of symmetry, which reduces the number of 
unknowns to be solved. One must be careful to ensure that non-symmetric modes are not 
lost if this is done. 
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Recall from section 1.2 that U is either the E-field E or H field H. The energy functional 
is 

F(U) = ~ {{ ( _!_(V x U) · (V x U) - k5qrU · U)dS 
2 JJs Pr 

The boundary conditions at a perfectly conducting surface are 

iixE=O 

n·B=O 

(3.21) 

(3.22) 

where ii is defined in the usual manner. Now either the TE or TM modes can be found 
by substituting the correct field variable and the relative material parameters in the correct 
positions. 

3.5.1 TE Modes 

In this case U = E and p = µr, q = Er· The TE modes have no z directed E- field, so 
that the E-field is contained in the transverse plane. This enables the discretisation of the 
2D transverse plane cross-section of the waveguide. The boundary condition enforced is the 
essential boundary condition which constrains the tangential E- field on the boundary to 
zero. This must be enforced explicitly. 

3.5.2 TM Modes 

Let U =Hand p =Er, q = µr. Now there is no z-directed H- field. Once again the transverse 
plane cross-section is discretised. The boundary condition is the natural boundary condition 
ii· D = 0 or ii· (V x H) = 0 which is equivalent since Eis time-varying [1, p. 98-99]. It is 
implemented by leaving the edge H- fields unconstrained, the boundary condition is implied 
and comes naturally with the energy functional (3.21). A requirement or boundary condition 
that is not mentioned since it is rather obvious, is that the field variable must be continuous 
along adjacent edges. This is enforced by the FEM element connection procedure. 

3.6 Conclusion 

In this chapter, the hierachical basis functions were listed and the properties as a result of the 
form discussed. It is shown that the normal components on element edges are approximated 
with one order higher than the tangential components on element edges. S and T matrices 
were derived. The next step is to apply the theory to realistic problems of engineering 
importance. 
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Chapter 4 

Results for Circular and Ridged 
Waveguides 

4.1 Introduction 

In this chapter results are presented for 2D eigenvalue problems. The first aim is to examine 
the reliability and accuracy of the formulation by application to a simple problem: that of 
a circular cross-section waveguide, so that a comparison with analytic data can be made. 
Ridged waveguides will then be examined and field plots generated. 

4.2 Circular Waveguides 

The code was applied to calculate the cutoff frequencies of propagating modes in circular 
cylinders of infinite length and radius 1 m, for the TE and TM modes. The accuracy of 
CT/LN and LT/QN approximations is examined by comparing the values calculated with 
the FEM technique to the exact cutoff frequencies. In both cases the entire cross-section of 
the waveguide was discretised into 200 elements. For the CT /LN approximation there were 
280 degrees of freedom and for the LT/QN approximation there were 960 degrees of freedom. 

From tables 4.1 and ?? it can be seen that the LT /QN solutions are in most cases (but 
not always) more accurate than the CT/LN solutions. This result agrees with Savage and 
Peterson's comment in [5, p.878] : "Although the convergence of any particular eigenvalue is 
usually erratic, the general error behaviour of the two methods is apparent when the average 
error of several modes is visualised". The two methods referred to here are a low order and 
high order approximation, respectively. Also note that for the TM case the average error is 
higher. This can be explained by the fact that normal continuity conditions are implied by 
the formulation , but are dependent on an integration over the entire structure. 
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Peterson [9] published his results for the circular cylinder with radius one wavelength and 
infinite length. He found that some wave numbers appeared more than once and remarked 
that these repeated values "appear to represent genuine wavenumbers". When the corre­
sponding field plots are drawn it becomes clear what these values represent. Figures 4.3 and 
4.4 correspond to wavenumbers 1.8454 (the TE11 mode) and 1.8382 which is a mode with a 
similar field distribution but different orientation with respect to the central axis. This latter 
mode is a degenerate mode. From table 4.1 it is evident that there are a number of these 
modes. Figures 4.6 and 4.8 also illustrate this, figure 4.6 is the genuine T E21 mode, while 
figure 4.8 is a degenerate mode. Degenerate modes have identical cutoff frequencies but 
different field distributions [18]. These may exist physically i:o. contrast to spurious modes 
which are entirely non-physical and cannot exist. 

4.3 Ridged Waveguides 

Ridged waveguides are known to lower the cutoff frequency of the TE10 mode while increasing 
the cutoff frequencies of the higher order modes, resulting in a larger bandwidth. Possible 
configurations are single, double and quadruple ridged waveguides. [19, p. 457]. 

4.3.1 Double Ridged Waveguide 

The waveguide parameters as defined in figure 4.1 were b/a = 0.45, d/b = 0.5 and s/a = 0.4. 
The cross-section was discretised into a uniform mesh of 128 triangular elements. 

No analytical solution is available for this type of waveguide, but approximations are 
available for the cutoff wavelength of the first mode [20]. These results have a maximum 
error of between 1 and 3 percent according to Pyle [20] for the worst case wheres/a<< 1. 
The results are compared in table 4.3. 

E- field vector plots for the first four TE modes are shown in figures 4.15 to 4.18. The 
change of direction of the E- field at the corners is made possible by the vector basis functions. 

4.3.2 Single Ridged Waveguide 

The waveguide parameters as defined in figure 4.2 were b/a = 0.45, d/b = 0.5 ands/a= 0.4. 
The cross-section was discretised into a uniform mesh of 128 triangular elements. 

Once again an approximation for the TE10 mode is given in [20]. The results are compared 
in table 4.4. E- field vector plots for the first four TE modes are shown in figures 4.19 to 
4.22. 

4.4 Circular Waveguide Loaded with Eccentric Dielec­
tric Cylinder 

In the previous applications, the guiding structures were air-filled. One of the strengths of 
the FEM technique is the ease with which inhomogeneously filled guides can be analysed. 
This application was chosen to demonstrate this. 



Stellenbosch University  https://scholar.sun.ac.za

CHAPTER 4. RESULTS FOR CIRCULAR AND RIDGED WAVEGUIDES 27 

Exact TE wavenumbers (first 6) CT/LN LT/QN CT /LN error 3 LT/QN error 3 
1.841 1.8482 1.8382 0.391 -0.152 

1.8482 1.8454 0.391 0.239 
3.054 3.0674 3.0430 0.439 -0.344 

3.0797 3.0461 0.842 -0 .259 
3.831 3.8274 3.8030 -0.094 -0.731 
4.19 4.2273 4.1654 0.890 -0.587 

4.2273 4.1675 0.890 -0 .537 
5.317 5.3223 5.2128 0.156 -1.546 

5.3323 5.2298 0.156 -1.64 
5.2462 -1.332 

5.331 5.3325 5.2944 0.028 0.0687 
5.3525 5.3518 0.3 0.39 

Table 4.1: The TE modes: exact and calculated for circular waveguide radius 1 m. The 
guide cross-section was discretised into 200 elements. 

Exact TM wavenumbers (first 6) CT/LN LT/QN CT /LN error 3 LT /QN error 3 
2.405 2.4201 2.4016 0.628 -0.141 
3.832 3.8547 3.7971 0.592 -0.9f 1 

3.8547 3.8296 0.592 -0.00626 
5.136 5.1731 5.0729 0.722 -0.8392 

5.1953 5.0814 1.154 -1.0631 
5.520 5.5204 5.4499 0.0072 -1.2771 
6.380 6.4543 6.2432 1.1646 -2.1442 

6.4453 6.2632 1.0235 -1.831 
7.016 7.009 6.7520 -0.09977 -3.7628 

7.009 6.9518 -0.09977 -0.915 
7.558 7.6738 7.3315 1.5321 -2.997 

7.7043 7.3602 1.936 -2.617 

Table 4.2: The TM modes: exact and calculated for circular waveguide radius 1 m. The 
guide cross-section was discretised into 200 elements. 

I 

d : 
···'·· 

' s ' :- -·-- ------- --- --: 

a 

b 

Figure 4.1 : Dimensions of the cross-section of a double ridged waveguide. 
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a 

Figure 4.2: Dime'nsions of the cross-section of a single ridged waveguide. 

Pyle's TE cutoff wavelength ( ~) CT /LN result ( ~) LT /QN result (~) 
2.652 2.7338 2.664 

- 1.0718 1.0200 
- 0.8816 0.8772 
- 0.8807 0.8764 
- 0.6625 0.6448 

28 

Table 4.3: The TE modes: Pyle's approximation for T E 10 cutoff wavelength (normalised by 
a) and FEM results for a double ridged waveguide. The guide cross-section was discretised 
into 64 elements. 

Pyle's TE cutoff wavelength ( ~) CT /LN result ( ~) LT/QN result(~) 
2.785 2.8318 2.7914 

- 1.1983 1.1666 
- 0.8806 0.8742 
- 0.7991 0.8001 
- 0.656 0.6433 

Table 4.4: The TE modes: Pyle's approximation for T E10 cutoff wavelength (normalised by 
a) and FEM results for a single ridged waveguide .. The guide cross-section was discretised 
into 128 elements. 
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Figure 4.3: Calculated E- field 
configuration for k=l.8382 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.5: Calculated E- field 
configuration for k=3.0430 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4. 7: Calculated E- field 
configuration for k=3.8030 mode; 
LT /QN approximation, 200 element 
discret isation. 

' I I j I I I 

\ \ I I I I I I 

' \ \ \ I I j I , 

' \ I I I I I J I ' 
' I \ I l j I I I I I . I I I 

Jt t { t 
I I I 

. I I I I I I 

' ' I l I I ' 
' I I I j I I I I ' 
, I I I I I I I \ 

, I I \ I I I \ 

I I I I I I 

Figure 4.4: Calculated E- field 
configuration for k=l.8454 mode; 
LT /QN approximation, 200 element 
discretisation. 

Figure 4.6: Calculated E- field 
configuration for k=3.0461 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.8: Calculated E- field 
configuration for k=4.1654 mode; 
LT /QN approximation, 200 element 
discretisation. 
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__ ..,... /' ' ' ..... ..._...._ _ 

Figure 4.9: Calculated E- field 
configuration for k=4.1675 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.11: Calculated E- field 
configuration for k=5.2462 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.13: Calculated E- field 
configuration for k=5.2944 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.10: Calculated E- field 
configuration for k=5.2298 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.12: Calculated E- field 
configuration for k=5.2944 mode; 
LT/QN approximation, 200 element 
discretisation. 
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Figure 4.14: Calculated E- field 
configuration for k=5 .3525 mode; 
LT /QN approximation, 200 element 
discretisation. 
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Figure 4.15: Calculated E field configu­
ration for T E10 mode; LT /QN approx­
imation, 128 element discretisation. 
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Figure 4.17: Calculated E field configu­
ration for third mode; LT /QN approx­
imation, 128 element discretisation. 
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Figure 4.19: Calculated E field configu­
ration for T E 10 mode; LT /QN approx­
imation, 128 element discretisation. 

, \ I I , 
I \ 1 , \ \ I , 
I I j / ~----+--+--.__... , , t \ \ t 
: : \

1 
\ t i t ~ l ~d \ ; 

' l \ I f ..+---+~--~/I t , 
l I \ \ 

I I \ \ ' 
- I I f I , 

I ' \ I ' 

Figure 4.16: Calculated E field con­
figuration for second mode; LT /QN 
approximation, 128 element discretisa­
tion. 
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Figure 4.18: Calculated E field configu­
ration for fourth mode; LT /QN approx­
imation, 128 element discretisation. 
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Figure 4.20: Calculated E field con­
figuration for second mode; LT /QN 
approximation, 128 element discretisa­
tion. 
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Figure 4.21: Calculated E field configu­
ration for third mode; LT /QN approx­
imation, 128 element discretisation. 

Figure 4.22: Calculated E field configu­
ration for fourth mode; LT/QN approx­
imation, 128 element discretisation. 
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Figure 4.23: Dimensions of the cross-section of the eccentrically loaded dielectric cylinder. 
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Figure 4.24: Calculated E field configuration for k=2.97 mode; CT /LN approximation, 17 4 
element discretisation. 

The cylinder has radius 0.4 wavelengths, and the inner part has Er = 1, while the outer 
part has Er = 3.6. The inner radius is 0.2 wavelengths and the distance between the centres 
of the cylinders is 0.1 wavelengths. 

Figures 4.24, 4.25 and 4.26 show the E -field distribution for various wavenumbers. The 
patterns can not be confirmed with published results, but the E-field lines "bend away" 
from the area with lower dielectric constant, as expected and the results seem to be correct . 
The boundaries of the structure have been superimposed on the field plot to assist with 
interpretation of the results. 

4.5 Conclusion 

The wavenumbers calculated compare quite well with the known values in the circular wave­
guide case, while the results for the ridged waveguides also compare well with the approxi­
mate wavenumbers calculated by Pyle. Field plots of the E-field distribution were included 
to present the results in a graphical way, also confirming their validity. In the case of the 
circular waveguide, these plots may be compared with ones in [19, p.480-481] . The field dis­
tribution inside the ridged waveguide for various modes and the loaded circular waveguide 
were calculated. These were also as expected. Thus it is found that the edge- based Finite 
Element method for eigenvalue configurations provides reliable results. 
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\ \ 

Figure 4.25: Calculated E field configuration for k=3.05 mode; CT /LN approximation, 17 4 
element discretisation. 
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Figure 4.26: Calculated E field configuration for k=6.06 mode; CT /LN approximation, 174 
element discretisation. 
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Chapter 5 

Two- dimensional Scattering 
Problems 

5 .1 Introduction 

Often the problem domain is infinite, which requires some form of termination. Scattering 
configurations are examples of these. Absorbing boundary conditions may be implemented, 
or possibly artificial absorbers. Here the approach followed was to divide the problem do­
main into two regions. The Finite Element Method is applied in the interior region, and a 
Boundary Element Method or Boundary Integral Method on the boundary between the re­
gions. The two regions are coupled by fictitious surface currents. This is a hybrid technique 
referred to as the FEM-BEM (Finite Element- Boundary Element method). The formulation 
and application pertaining to two- dimensional configurations will be discussed. 

Scattering from arbitrary three dimensional bodies solved by the FEM-BEM method is 
discussed by both [1] and [2]. In the first reference a weighted residual formulation (Galerkin) 
is used, while Jin chose to use a variational formulation. However, these are essentially 
equivalent. Jin's formulation is adapted here for the 2D case, which is not described explicitly 
or to be found in the literature. 

An excellent overview article by Jin [21] discusses the principles of coupled FE-BI (Finite 
Element- Boundary Integral) methods and serves as an useful introduction. 

5.2 FEM-BEM Formulation 

5.2.1 Geometry 

The scatterer is surrounded by a fictitious contour, C, which encloses the scatterer as tightly 
as possible to minimise computational effort. All non-homogeneous material must be en­
closed by C. In this way the infinite problem domain is divided into two regions which are 
separated by C. The infinite surface must be closed, therefore it is surrounded by another 
contour, Cinf, which is infinitely far away from the scattera. 
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sinf "·-.. 

BEM region 

Figure 5.1: FEM-BEM geometry. Here C00 represents a contour enclosing 8 00 at a distance 
infinitely far away from the scatterer. 

A much simpler problem to solve would have been that of sources specified in an infinite 
free space region, since the free space Green's functions are known and the field variable 
may be calculated over the whole domain. The problem will now be reduced to this simpler 
configuration. Effective surface currents are formulated on C, which represent the effect of 
the non-homogenous material. Note that the surface currents are still unknown at this stage. 
Now there are two decoupled regions : 

Regionl (BEMregion) The infinite free space area outside C, with surface currents on 
a contour C as sources. 

Region 2 The area inside C with surface currents specified on C, ensuring continuity 
between region 1 and 2. To solve for the scattered fields, it is necessary to solve for the field 
variable(E or H) over the whole of the area enclosed by C, as well as for the fictitious surface 
currents on C. 

5.2.2 Key steps 

• An integral equation relating the field variable over the problem domain with the 
relevant Green's function is developed. 

• The integration in the integral equation above involves an integration over an infinite 
domain. This is now rewritten as integration over the bounding contour of the surface. 

• After some manipulation the E- field (or H- field) is expressed as the sum of the incident 
field and a term involving the surface current sources and the relevant Green's function. 
It can be represented as 
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E = Einc + LM(m' x "V' x E(r')) + LJ(m' x E(r')) 

where LM and LJ are integro-differential operators. 
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(5.1) 

• The equation is now written entirely in terms of the components of the field tangential 
to the contour C and discretised using the vector expansion as described. 

• Finally the dot-product with the basis functions employed on the contour is taken and 
integration over the whole contour is performed. This results in one of the equations 
that will be used to solve for the surface currents. 

• The second equation is found by applying the Finite Element technique inside C, 
which also includes the surface currents on C. The functional is modified to include a 
contribution from the boundary between the regions, which is the contour C. 

5.2.3 BE treatment of the exterior region 

What follows is a derivation that leads to a mathematical statement of Huygens's principle 
[22]. 

E(r) is the total field produced by the superposition of an incident field Einc and the 
scattered field originating form the scatterer. Einc is defined as the field that would be 
present in the absence of the scatterer. 

E satisfies the vector Helmholtz equation: 

"V x "V x E - k5E(r) = -jk0 z0J(r) (5.2) 

Let V be the 2D dyadic Green's function given by 

G(r', r) = [! + :'6 "V"V] G0 (r, r') (5.3) 

which satisfies 
"V x "V x G(r', r) - k5G(r', r) = I6(r - r') r' E S00 (5.4) 

This is a function of r' and r which represent the source and observation points respectively. 
Note that the Green's function is symmetric with respect to these two variables, a property 
that will be utilised later. 

Taking the dot product of (5.2) with G('F', r), the 2D free space dyadic Green's function, 
and integrating over S00 results in: 

g ["V x "V x E(r)] · G(r', r) - k5E(r) · G(r', r)dS 
'JJSOO 

= _ ,-f{., jkoZoJ(r) · G('F', r)dS 
'JJSOO 

(5.5) 
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The integration over an infinite (closed) surface can be replaced by integration over 
the contour enclosing the surface, with the use of Green's second vector- dyadic identity 
(Appendix C) for the 2D case 

,.ff., (vx v x E). G(r', r) - E. (V xv x G(r', r))dS 
':/Jsoo 

= i [(m x E). (V x G(r', r)) + (m xv x E). G(r', r)]df (5.6) 
Coo 

where m =ix n, i the unit vector along c and m the unit vector perpendicular to the x-y 
plane in which the contour c is contained. Here n = z. In this way m x E le is the tangential 
E- field on the contour C, just as n x E le has the same~agnitude as the .tangential E- field 
in the 3D case to a surface enclosing a volume. E and G(r', r) both satisfy the Sommerfeld 
radiation condition; this allows the integration over C00 to be reduced to an integration over 
the contour C. Noting that G(r', r) satisfies (5.4) and combining (5.2), (5.4) and (5.6) we 
obtain 

j h [E(r) · I6(r - r')dS + Einc(r') 
Soo 

= £[m x E(r)] · [V x G(r', r)] + [m xv x E(r)] · G(r', r)]df 

where Einc represents the field radiated by the source current J. (5.7) simplifies to 

E(r') = Einc(r')df + £[(m' x E) · (V' x G(r', r)) 

+ [m' x V x E(r)] · G(r', r)]df 

G(r', r) is symmetric in r and r', allowing rand r' to be exchanged: 

E(r) = E(r)inc(r) + £[(m x E(r') · (V' x G(r', r)) 

+ (m x V x E(r')) · G(r', r)]df 

(5.7) 

(5.8) 

(5.9) 

Using vector and dyadic identities, the expressions containing dyadics are reduced to expres­
sions containing vectors only (see Appendix C) 

E(r) Einc(r) + £[m' x E(r')] x V''G0 (r,r')) + [m' x V'' x E(r)]G0 (r,r') 

+ :'5 V'' · [m' x V'' x E(r')]V'G0 (r, r'))df (5.10) 

This is valid for any r in S00 , with r' restricted on C, where the source currents are found. 
From this, the E- field outside the contour S can be found at any point and is dependent 
on m' x E(r') and m' x V' x E(r) on the entire C. These are in fact proportional to the 
magnetic and electric surface currents, which are both unknowns. E is the total E- field, a 
superposition of the incident field and the scattered field due to the surface currents on C. 
For a scattering problem, the E (or H) field far from the scatterer is of importance, and to 
find it the magnetic and electric surface currents on C must be solved. (5.10) was derived 
directly for the 2D case. Sil.tee the derivations in the literature were for the 3D case, another ~ 
method to derive this equation was used to verify it. In this approach the 2D equations 
are derived directly from the 3D equations by integrating the 3D Green's functions over the 
infinite dimension. This confirms that the derivation of (5.10) is correct. 
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It is clear that the 2D equations can be found from the 3D equations by simply substi­
tuting the 2D free space Green's functions for the 3D Green's functions and replacing closed 
surface integrals by closed contour integrals. Thus the 2D Green's function is simply the 3D 
Green's function integrated along the infinite z-axis [24]. To solve for the electric surface 
current directly, (5.10) is rewritten with the use of Maxwell's curl equation as 

E(r) Einc(r) + £ {[n' x E(r')] x V''G0 (r, r')) - jk0TJJ(r')Go(r, r') 

~:Y'' · J(r')V'G0 (r, r'))}df' (5.11) 

The unit vector iii is now replaced with the more often used n, where n from here onwards 
is taken as representing m. Both the MFIE and EFIE (see next section) will be employed 
to solve for scattering from a perfectly conducting cylinder with TE or TM incidence. This 
will be used to decouple the BEM from the FEM and thus enabling separate testing of the 
codes. 

5.3 Electric Field Integral Equation (EFIE) 

When a perfectly conducting object is considered, the EFIE may be considered as a simpli­
fication to (5.11) and the MFIE a simplification to the dual of (5.11) in terms of the total 
H-field. The boundary condition is zero tangential E-field on the surface of the conductor: 

m x E(r') lc = 0 (5.12) 

This reduces (5.11) to 

Einc = i jkTJJGo(r, r')df.' + i jkV', · JV'G0 (r, r')df' 
c c T/ 

(5.13) 

With the use of the identity V'G0 (r, r') = -V''G0 (r, r') and taking the cross-product with fi , 
(5.13) is 

n x Einc(r) n x £UkTJJs(r')Go(r, r') 

+ j: V'' · J 9 (r1)Y''Go(r, r')]df' r' and r E S (5.14) 

The divergence of the surface currents causes a problem when a piecewise constant approx­
imation is used to approximate the surface current J 9 [25]. (5.14) contains the divergence 
of the surface current. The resulting Dirac- delta functions at the boundary edges represent 
the accumulated surface charges at these positions. This degrades the accuracy of the results 
when the elements are very long and the positions of the accumulated charge are affected. 
Decreasing thP. length of the elements should improve the approximation. 
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5.4 Magnetic Field Integral Equation (MFIE) 

The MFIE can be derived in a similar manner and is 

~J =ii X Hine+ ii X J J3 (r') X V'Go(r, r')d1' (5.15) 
2 le 

(It is only valid for a closed surface [26, p. 255]). According to Peterson (25], the MFIE 
leads to more accurate results than the EFIE listed above. 

5.5 Discretisation 

The MFIE, EFIE and BEM equations can all be employed to solve for both TE or TM 
incidence. In the case of the BEM equation, the dual formulation in terms of the H- ~elds 

may also be discretised. Only vectors which lie in the cross-sectional plane (labelled the x,y 
plane) can be discretised (a two- dimensional implementation is considered here). This is 
not really a limitation. In the case of T Ez incidence, E and J is discretised, since this is 
contained in the x-y plane. The H -field cannot be discretised directly. For T Mz incidence, 
Hand n x E must be discretised. 

Consider the TE incidence case, which was chosen since the surface current varies more 
distinctively with changing diameters than in the case of TM incidence and is therefore a 
better test of the accuracy of the implementation. J and E are expanded using edge-based 
vector basis functions: 

k=l 

(5.16) 

Here N is the total number of basis functions and Ns the number of basis functions on the 
boundary C. Note that m x E = m x I:f=1 ek[S]k which is the magnetic surface current on 
contour C. 

An important distinction must be pointed out: in the MFIE and EFIE case where a 
perfectly conducting cylinder is considered, the boundary elements are line segments and 
are one- dimensional simplex elements. In the FEM-BEM case, the line segments are the 
edges of two- dimensional simplexes (triangles). In both cases the approximation on the 
boundary elements can either be constant or perhaps even linear, but not of higher order 
with any of the 2D hierarchical basis sets described in this thesis. This is due to the fact that 
the order of approximation for hierarchical basis sets is increased by adding face functions 
inside the element which contribute normal components to the boundaries while leaving the 
tangential components unaffected. This is the reason why tangential components can not 
be of higher order than a linear approximation in the two dimensional case for hierarchical 
basis sets. 



Stellenbosch University  https://scholar.sun.ac.za

CHAPTER 5. TWO- Dil'vIENSIONAL SCATTERING PROBLEMS 41 

Now the surface currents are approximated as piecewise constant over each boundary 
element. 

Here [SJ is a one element matrix, since only one basis function (CT /LN) is used 

In the case of LT /QN approximation it would be 

[SJ = [w~·5lwU)J 

(5.11) is discretised, tested with n x [Sk]T and integrated over C: 

Ns Ns 

L Es J (ns X [Ss]T) · (ns X [Ss])d£ = L(fis X [Ss]T) · (ns X Einc)d£ 
s=l ~ s=l 

Ns Ns 

+~~Et fc. (n x [Ssf) ·ns x fc/nt x [St]) x V'G0 (r,r')d£'d£ 

Ns Ns 

-jkoTJ LL lt 1 (ns x [Ssf). ns x 1 [St]Go(r, r')d£'d£ 
s=l t=l C1c Ct 

· Ns Ns 

- ~T/ LL lt 1 (ns x [Ssf) · fis x 1 V' · [St]VGo(r, r')de'd£ 
0 s=l t~l C1c Ct 

(5.19) may be written as a matrix equation 

[B][E]c = [b] + [P][E]c + [Q][J] 

where the matrices are given by 

{ ns x [SJ; · ns x [S]
9
d£ le. 

{ ns x [SJ;' · ns x Eincdf le. 
{ ns x [SJ;· ns x { fit x [S]t x VGode'd£ 

le. let 

- -jk0 TJ { n x [SJ;· n x { ([S]tGo + k12 V' · [S]t'V'Go)d£'d£ 
1~ 1~ 0 

and are similar, but not identical to the 3D equations presented in [2]. 

(5 .17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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boundary element t 
-=::;;::o=::b;:se:::._rvation point 

source point 

Figure 5.2: Different source and observation elements 

5.6 FEM Treatment of the Interior Region 

42 

Inside the area enclosed by the contour C, a Finite Element formulation is used, with the 
functional to be minimised including an additional boundary contribution: 

The minimised functional leads to the second matrix equation 

where 

[K](E] + [BjFEM[J] = 0 

[B]~EM = -jkTJ { [SJ;· [S]
9
df 

le. 

(5.22) 

(5.23) 

(5.24) 

Here, note that the [ E]-column matrix includes the E- field coefficients on the contour 
itself and those of the interior region, while the [E]c column matrix that will be encountered 
later is only the E- field coefficients on the contour C. The boundary conditions on C links 
the BE and FEM equations: 

ii x Elc_ 

ii x Hie_ 
(5.25) 

Now there are two matrix equations in [E] and [J], (5.20) and (5.23), with [E]c contained in 
[E], allowing [E] and [J] to be solved. The discretisation of 5.23 is as described in chapter 
1, however evaluation of the BE equations requires numerical integration and extraction of 
singularities which occur. 
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Figure 5.3: Case where source point and boundary point can be identical 

5. 7 Extractic~n of Singularities and Evaluation of Inte­
gral Equations 

5.7.1 Origin of Singularities 

The relevant Greens' function is 

Go(r, r') = iHa2l (koR) where R =I r - r' I (5.26) 

The imaginary component of the Hankel function is singular when r = 0. (5.19) involves 
a double integration over the contour C, on which both the source and observation points 
are restricted. In figures 5.2 and 5.3 the source and observation points are shown on the 
boundary elements. The source element is named s and the observation element is labelled 
t. f is defined as the unit vector from r' to r'. When source and observation points are 
identical, r = 0. The diagonal entries of the Q and P matrices contain the contribution 
from the singular integrals. Analytic integration can be performed in this case to evaluate 
the integrals at these singular points. Table 5.1 gives the dimensions of all the matrices 
involved. The Hankel function can be expressed as an infinite sum and integrated analytically 
(Appendix B). Eventually this was found to be unnecessary, and non- coincident integration 
points were used. 

5.7.2 Numerical Integration 

Gaussian integration (10 point and 8 point) was chosen. A short introduction to Gaussian 
integration may be found in (27, p. 40-41], while tables with Gaussian integration formulae 
for various number of points are found in (28]. Appendix B shows the expressions that were 
integrated analytically. 

5.8 Calculation of Far Fields and Scattering Width 

The two matrix equations can be solved for J s on the boundary C and the E- field over the 
interior region and on the boundary. Finally the i:;cattering effect of th~ structure can be 
determined. The far fields must be found to do this. The same boundary equation (5.11) can 
be used to calculate the E- field far from the scatterer, when the sources on the boundary 
are known. 
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Matrix Dimension 
K NxN 

B11l!J Nx Ns 
BF.l!JM Ns x N 

p Ns x N 
Q Ns X Ns 
b Ns x 1 
E N x 1 
J Ns x 1 

Table 5.1: FEM-BEM matrix dimensions. 

Consider (5.11) again: 

E(r) Einc(r) + £ {[m' x E(r')] x V''Go(r, r')) - jkoTJJ(r')Go(r, r') 

~:V'' · J(r')V'G0 (r,r')}d£ 
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(5.27) 

In a discretised form (5.27) may be used to calculate the far fields from the known surface 
currents. Here r is set to be far away from the scatterer while r' is found on the contour C. 
Each element has a contribution to the field at a point far from the scatterer. 

The two dimensional radar cross sections for TE and TM incidence are defined as 

[
I Hscat 12] afff = lim 27rr I z. 12 r-+oo H!nc 

(5.28) 

[
I Escat 12] af/f = lim 27rr I z. 12 r-+oo E!nc (5.29) 

The scattering width is the radar cross- section normalised with respect to a wavelength of 
lm. 

As it was chosen to work with E- fields and not H- fields, the z- directed H- field is not 
directly known. However the E field components are known and the z directed H field may 
be calculated from this, or a simpler approach could be followed. For the time harmonic 
case (in a sourceless region), one of Maxwell's equations is 

V' x H = jwEE 

In cylindrical coordinates, the E field is expressed as 

E = _1_ [r~ 6Hz _ (fi6Hz] 
jwE r 6¢ 6r 

(5.30) 

(5.31) 

In the far field the r component may be neglected, as it has a ~ dependence. Now the 
scattering width is calculated using only the phi component of the E field: 
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(5.32) 

5.9 Conclusion 

In this chapter the formulation and implementation of a method to solve a problem of infinite 
domain was presented. The 3D equations are found in many textbooks. It was shown 
that the two- dimensional scattering equations may be found simply by substituting the 
two- dimensional Green 's function for the three- dimensional Green 's function and replacing 
surface integrals by contour integrals. Although the E- and H- fields cannot be discretised 
directly, it was found that the scattering equation (5.27) may be applied for TE and TM 
incidence. Two integral equations which contain terms similar to (5.27), (5.15) and (5.14) , 
were discretised and used to solve scattering from perfectly conducting cylinders. 
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Applications and Results of 2D 
Scattering 

6.1 Introduction 

In chapter 5, the formulation and the construction of the matrices were discussed. All 
the tools are now available to investigate the application of the technique to simple and 
more complicated structures. To validate the code, examples where analytical solutions are 
available for comparison were chosen. 

The MFIE and EFIE solutions of scattering from conducting cylinders were investigated 
to examine the effect of constant tangential components. As these terms appear in the FEM­
BEM coupled technique, this proved to be very instructive. These results are also presented 
here. 

6.2 Scattering from Perfectly Conducting Cylinders 

In this case the fields are zero everywhere inside the cylinders and the only unknown is the 
surface current J s. 

Solutions to the EFIE 

For comparison purposes, an example from [19, p. 716], where the EFIE solution for a 
cylinder with radius 1 wavelength and discretisation 540 elements was presented, was chosen 
(figure 6.1). The ripple in the approximation which is characteristic of the EFIE solution, is 
also apparent in [19], although scalar basis functions were used in that case. 
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In this representation, the divergence of the surface current is the derivative of a piecewise 
constant approximation, which are dirac- delta functions at the element boundaries. This 
does not appear in the MFIE case, which explains why the EFIE solution is not as accurate. 
The ripple effect is also due to this approximation. However, the accuracy improves with 
an increase in the number of elements, although the ripple effect is not decreased. Higher 
order basis functions could be used to eliminate the discontinuities in the approximation, but 
the highest order approximation which is possible in the 2D case is a linear one. This will 
not remove the discontinuities between elements and the dirac- delta functions will still be 
present. The discontinuities were also evident in results by Peterson [9], who implemented 
linear tangential components. 

Figure 6.1 shows the effect of a discretisation of 80 elements, to enable comparison with 
the MFIE solution, figure 6.3, where an 80 element discretisation (about 1/12 wavelength 
elements) is used. It also shows the result for a 540 element discretisation (one would 
never use so many elements except for a convergence investigation such as this), to enable 
comparison to [19, p. 716]. The scattering width calculated from the solution in figure 6.1 
is shown in figure 6.2. 

Solutions to the MFIE 

The result for the magnetic field equation is compared to the analytic solution in figure 6.3. 
Good agreement is found. Much le_ss boundary elements are necessary than in the previous 
case. In both cases the scattering width was calculated: figures 6.2 and 6.4. 

6.3 Conclusion 

Good agreement between analytic and computed results were obtained for EFIE and MFIE 
solutions. The reason for the ripple effect in the EFIE solution was discussed and a compar­
ison made of EFIE solutions with a different number of boundary elements. 
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Figure 6.1: Solution for I J 9 I on the surface of a perfectly conducting cylinder, radius 1 wave­
length and infinite length, compared to the analytic solution. (Incident E field magnitude 1 
V/m) 
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Figure 6.2: The scattering width calculated from the EFIE solution (540 elements) compared 
to the scattering width analytic solution. A perfectly conducting cylinder with radius 1 
wavelength and infinite length was considered. 
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Figure 6.3: Solution for I Js I on the surface of a perfectly conducting cylinder, radius 
1 wavelengths and infinite length, compared to the analytic solution. (Incident E field 
magnitude 1 V /m, 80 boundary elements.) 
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Figure 6.4: The scattering width calculated from the MFIE solution compared to the scat­
tering width analytic solution. A perfectly conducting circular cylinder radius 1 wavelength 
and infinite length was considered. 
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Chapter 7 

Conclusion 

In this thesis only vector based finite elements were used. In the case of eigenvalue problems 
one of the advantages that became clear is that when used correctly, spurious modes are 
easily identified as those with zero eigenvalues. Continuity is enforced in a very natural 
manner. The results obtained were accurate and as expected confirmed the reliability of 
the basis sets implemented. Typical average error percentages for the TE and TM circular 
waveguide CT /LN wavenumbers were 0.33% and 0.6% respectively for the specific discretisa­
tion mentioned. A LT /LN approximation of the field variable was found to be inappropriate. 
It must be emphasised that the eigenvalues and the field values over the object cross-section 
were obtained in no particular order, and it is not obvious from the list of eigenvalues, which 
correspond to the modes of interest to the user. This was particularly noticeable in the 
case of the circular cross-section cylinder, which is rotationally symmetric and results in the 
inclusion of degenerate modes. Only when looking at the field patterns can these modes 
be identified. No degenerate modes were found in the case of the ridged waveguides or the 
dielectric cylinders with eccentric dielectric cylinders, which are not rotationally symmetric. 

An extension of this work should be the application to three dimensional problems, 
which, except for the complication of geometry, should not require much additional effort. 
In this case higher order approximations than those obtained with LT /QN basis sets are not 
advised, as the computational times will be a restriction for larger structures. However, this 
depends on the computational infrastructure available. 

As some difficulties were experienced with the coupling of the Finite Element Method 
and the Boundary Element Method at the time of writing, no comments about the accuracy 
of this hybrid technique can be made. Individually these techniques have been examined 
and provided satisfactory results as was demonstrated in chapters 4 and 6. The scattering 
data presented had to be limited to scattering from perfectly conducting cylinders. 

On completion of the combination of the FEM-BEM, it will be possible to examine 
the scattering or absorbing effect of materials that can be modelled as a composition of 
dielectric, magnetic and perfectly conducting materials. The formulation can also handle 
lossy materials, although this has not been tested. 
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Appendix A 

Simplex Coordinates and Simplex 
Elements 

Simplex coordinates (also referred to as barycentric coordinates) are associated with simplex 
elements. Simplex elements are lines in lD, triangles in 2D and tetrahedrons in 3D. This 
reveals the pattern, an N-dimensional simplex has N+l vertices. Now simplex coordinates 
are defined on these elements and are entirely local within simplex elements. Figure A.1 
gives an introduction to one dimensional and two dimensional simplex elements. It shows 
how on a line (a lD element) only two simplex coo~dinates are defined, each varying linearly 
from the one node to the other between 0 and 1. An arbitrary point P is shown on both the 
lD simplex and the 2D simplex and the expressions for the simplex coordinates are given in 
each case. 

The advantage of simplex coordinates is that it is not necessary to consider the shape or 
the position of an element. Derivations are simply done for a simplex element and afterwards 
scaled by the area or the edge lengths, depending on where it is used. As an example, consider 
the following identity [2, p. 82] which is used for the calculation of the T matrix in chapter 
1: 

,.{{_ )..k )..m )..ndxd = 2k!m!n! A 
'ifwe 1 2 3 y (k + m + n + 2)! 

(A.l) 

A is the area of the triangle. Here the integral for any triangular element is known and 
scaled with the element area. 

The coordinates always satisfy in N dimensions: 

(A.2) 

which imply that it is normalised. 
Conversion from Cartesian coordinates to simplex coordinates is easily made by the use 

of 
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lD simplex 

A-1 ~ ! -------------------J : "-2 
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2 
"-1=0 
"-2=1 

_ Lp2 Lp1 
A,1 - - and "'2_= -

L12 L12 

2D simplex 

"-1 ) .. :r=O 
A-rl 

I At point Pl 
Al =Ab. P23 

Ab. 123 

A-3 = Ab.Pl2 

Ab. 123 
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A,3=l 
3"-1 ,A-2=0 

I Al + A2 + A3 = l I 

Figure A.l: The simplex elements in lD and 2D. 

[ 

Ai l l [ X2Y3 - X3Y2 Y2 - Ya X3 - X2 l [ 1 l 
A2 = 2A XaY1 - X1Ya Ya - Y1 x1 - X3 x 

Aa X1Y2 - X2Y1 Y1 - Y2 x2 - x1 Y 

(A.3) 

in the 2D case, which is of interest here [1]. 
The gradient of a simplex coordinate VA is often encountered and is in fact the building 

block for the vector basis function. A list of properties can be found in [1, p. 298 ], but the 
most important properties are illustrated in figure A.2, where V A2 is shown: the gradient of 
a simplex element is a vector, which is constant over the entire element and is perpendicular 
to the basis opposite the vertex with which it is associated. 

Some definitions and identities used often is listed below: 
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Figure A.2: The gradient of the simplex coordinate A2 over an entire element. 

Only in 2D: 

ai = Xi+1Yi+2 - XiYi+l 

bi = Yi+l - Yi-1 

Ci= Xi-1 - Xi+i 
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(A.4) 

(A.5) 
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Appendix B 

Analytic Integration 

This section contains the analytic integration required for the scattering equations. 
The expression that contains the singularity is: 

i ih,9 X [Ss] · ih,9 X i [Sr] Go(r, r')dfd£' 
c. Ct 

= { { (m9 x\1>.s)·(rhsxY'>.s)dfd£' 
le. let 

(B.l) 

To write the above using simplex coordinates, the relationship Rs>.s = f and Rt>.t = f' is 
useful 

(B.2) 

Now let r = llr - r'll =I Rel(>.s - >.t) l=I m I, then m = Rel(>.s - >.t) l=I m I, then 
m = R(>.s - >.t), dm = Rd>.t 

(B.3) 

This can be written as the sum of two integrals with the general form 

fl [f(>..) 
lo lo Ho(ko I m l)dmd>.s (B.4) 

The function f (>.s) is -R>.s in the first case or R(l - >.8 ). It can be shown that the contri­
bution from these two integrations is equal in magnitude and opposite in sign and therefore 
the integration is done .once and the result th~n doubled. The contribution from one of these 
terms will be considered. 

A transformation is necessary to since the required limits of integration is from 0 to 1 
(the reason for this will be clear later) 
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m 
p = J(>.s) 

(B.4) is now 

and may be split up into 

fo1 fo 1 

f(>.s)Jo(koP I f (>.s) l)dpd>.s 

-j fo 1 fo1 

f(>.s)Yo(kop I f(>.s) l)dpd>.s 

Now the series expansion of the Bessel functions is used: 

Jo(kop I f(>.s) I) 
00 (-l)k(kof (>.s)P) 2k 

- ~ 22k(k!)2 

Yo(kop [ f (>.s) I) - Jo(kop I f(>.s) [) [1n kof ~>.s)P + 1] 
2 oo (-l)m-lh 

+ ;: fl 22m(m!)2m (kof(>.s)P)2m 

- A+B 

The second term of (B. 7) consists of three parts 

- j fo 1 fo 1 
f (>.s)Jo(kop I f(>.s) I) ln ko I ~(>.s)P dpd>.s 

- j/ fo 1 fo 1 

f(>.s)Jo(koP [ f(>.s) [)dpd>.s 

2 fl fl oo (-l)m-lh 
+ j;: lo lo J(>.s) {; 22m(m!)2m (kop I J(>.s) [)2kdpd>.s 
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(B.5) 

(B.6) 

(B.7) 

(B.8) 

- I +II +III= B (B.9) 
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A 
oo (-l)k(¥)2kR JrR 'E (k!)2(2k + 1)(2k + 2) - -2-

I 
. oo (-l)k(¥)2k [ ln(¥) [ 1 1 ]] 

-J E (k!)2 R (2k + 1)(2k + 2) + (2k + 2)(2k + 1)2 - (2k + 1)3 

II 
. oo (-l)k(¥)2kR JrR 

-J, E (k!)2(2k + 1)(2k + 2) - -2-

2 . oo ( )mh ko2m 
III = _}_ L - mT Rel2m+l 

7r m=l (m!)2(2m + 1)(2m + 2) 
(B.10) 

The results are now added and doubled. Qst = 2KQ(A +I+ II+ III) 
Now the diagonal entries of the Q matrix are calculated from this result by adding enough 

terms of the infinite series to ensure numerical convergence. The analytic integration is 
similar to that found in [29], which was used as a reference since there are similarities 
between the scalar and vector implementations. 
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Appendix C 

Manipulation of Terms in Scattering 
Equations 

The manipulation of expressions which are found in chapter 5 is shown here. 

C.0.1 The second vector-dyadic Green's identity in 2D 

A reference is made in chapter 5 to the 2D second vector-dyadic Green's identity. This could 
not be found in a reference for two dimensions. The derivation is a direct adaptation of the 
3D derivation presented in [30, p. 70]. The surface divergence theorem is 

(C.l) 

where m = l x n [23, p 299]. vs is the surface divergence; it may be interchanged with the 
transversal del operator Vt since the surface has no curvature in the 2D case [30, p. 90]. 
Finally, the transversal del operator may interchanged with V, since the vector function f 
above, has no z-variation. Let f =ax V x b - bx V x a, then 

ff b · (V x V x a) - a· (V x V x b)dS 

= f m. (ax v x b) - b. (m xv x a)df 

= f (m x a) · (V x b) + b · (m x v x a)df (C.2) 

(C.2) is now the second 2D vector-vector Green's identity. To form the vector-dyadic identity 
(C.2) is simply elevated to the vector-dyadic form in the manner shown in [23, p. 10-11] and 
the form obtained is now 

ff {b · (V x V x a) - a · (V x V x b)}dS 

f (m x a) · (V x b) + (m xv x a) . bdf (C.3) 
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C.0.2 Manipulation of the scattering equation 

The term .fc{ m x E(r) · (V' x G(r', r) )di' contains dyadic functions, which can be manipulated 
and rewritten in terms of vectors only. 

Consider 

V' x G(r', r) ' = 1 ' V x (I+ k2 VV)G0 (r, r) 
0 

- 1 
- V' x 7Go(r, r') + V' x ( 2 VVG0 (r, r')) 

ko 

The second part is found to be zero so that V' x G(r', r) = V' x JG0 (r, r'). 
Then 

where the identity 

has been used. 

£ n x E(r) · (V' x G(r', r))dl' 

£ n x E(r) · V' x JG0 (r, r')df' 

£ n x E(r) · V'G0 (r, r') x Jdf' 

- £ n x E(r) x VG0 (r, r')df' 

A· (VG x J) = (Ax VG)· f =A x VG 

(C.4) 

(C.5) 

(C.6) 
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Appendix D 

Mesh Generation 

It is not a trivial problem to generate meshes with desirable properties, and numerous pub­
lications on this topic are available. While a region may be meshed with uniform elements, 
this is not always possible or desirable. Often Delaunay mesh generators are used. 

D.1 Delaunay Triangulation 

D.1.1 Definition 

The Delaunay tessellation is defined in terms of its dual, the Voronoi tessellation. Given a set 
of points in a plane, the Voronoi tessellation consists of contiguous tiles, each tile containing 
all the points closest to the defining point of that tile. A more formal and exact statement 
of this is the definition 1 in [31]. Now the Delaunay tessellation is the connected triangles 
formed by connecting points in adjacent tiles. 

D.1.2 Properties 

Empty Circumcircle Property 

Three given points in a plane uniquely define a circle through these points. The centre of 
this circumcircle is the intersection of the perpendicular bisector of each side of the triangle 
formed by connecting the three points. 

A Delaunay triangulation leads to the circumcircle of each triangle to be empty, i.e. no 
vertices of other triangles may be found inside or on the perimeter of the circumcircle. This 
test is used when tessellations are constructed to verify that the mesh satisfies the definition. 

Maximising Minimum Angles 

It can be proved that a Delaunay triangulation guarantees that the minimum angle formed 
by the triangulation is maximised [31]. Similarly the maximum angle is minimised. 
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Figure D.l: Delaunay and Voronoi tessellation indicated for nodes representing half of a 
circular waveguide cross section. 
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