

MODELLING MARKET RISK WITH
SAS RISK DIMENSIONS:

A STEP BY STEP

IMPLEMENTATION

CARL DU TOIT

Modelling Market Risk with
SAS Risk Dimensions:

A Step By Step Implementation

Carl du Toit

Assignment presented in partial fulfillment of the requirements for the degree of

MASTER OF COMMERCE
in the Department of Statistics and Actuarial Science,

Faculty of Economic and Management Sciences,

University of Stellenbosch

Supervisor:

Prof. W.J. Conradie

April 2005

 ii

DECLARATION

I, the undersigned, hereby declare that the work contained in this assignment is

my own original work and that I have not previously in its entirety or in part

submitted it at any university for a degree.

Signature: ___________________

Date: ____________________

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to:

• my supervisor, Professor Willie Conradie. I thank you for your time,

encouragement, suggestions and contributions in the preparation of

this document. Thank you for the role that you have played in this

regard.

• Professor Michiel Kruger from the North West University, for first

introducing me to SAS Risk Dimensions. Thank you very much for all

the technical assistance, and for sharing your invaluable knowledge of

the SAS software package. Your input is much appreciated.

• Suzanne Steyn, for tending to the grammar of the text in the

document.

• the Department of Statistics and Actuarial Science at the University

of Stellenbosch, for accepting me as a postgraduate student.

• my family for all their support. I thank my mother, brother, sister,

brother in law and all the other family members for their interest,

encouragement and support throughout my study period. I would also

like to extend a special word of thanks to my late father. He has played

a huge role in my life and education.

• My girlfriend Carina. I thank you for your moral support and love.

• My friend Dewald. Thank you for being a great study partner and

friend. You have motivated, encouraged and guided me a lot during the

last few years.

• All my other friends that supported me throughout the preparation of

this document.

• God, who has provided me with talents, always supported me and

blessed me with wonderful family and friends.

 iv

SUMMARY

Financial institutions invest in financial securities like equities, options and

government bonds. Two measures, namely return and risk, are associated with

each investment position. Return is a measure of the profit or loss of the

investment, whilst risk is defined as the uncertainty about return.

A financial institution that holds a portfolio of securities is exposed to different

types of risk. The most well-known types are market, credit, liquidity, operational

and legal risk. An institution has the need to quantify for each type of risk, the

extent of its exposure. Currently, standard risk measures that aim to quantify risk

only exist for market and credit risk. Extensive calculations are usually required to

obtain values for risk measures. The investments positions that form the portfolio,

as well as the market information that are used in the risk measure calculations,

change during each trading day. Hence, the financial institution needs a business

tool that has the ability to calculate various standard risk measures for dynamic

market and position data at the end of each trading day.

SAS Risk Dimensions is a software package that provides a solution to the

calculation problem. A risk management system is created with this package and

is used to calculate all the relevant risk measures on a daily basis.

The purpose of this document is to explain and illustrate all the steps that should

be followed to create a suitable risk management system with SAS Risk

Dimensions.

 v

OPSOMMING

Finansiële instellings belê weens die aard van hul sakebedrywighede in

finansiële instrumente soos aandele, opsies, termynkontrakte en staatseffekte.

Twee maatstawwe, naamlik opbrengs en risiko word gekoppel aan elke

beleggingsposisie wat in ’n finansiële instrument geneem word. Die wins of

verlies van die belegging word gemeet deur die opbrengs, terwyl risiko die

onsekerheid ten opsigte van die opbrengs verteenwoordig.

’n Finansiële instelling wat oor ’n portefeulje van beleggings beskik, is blootgestel

aan verskeie soorte risiko’s, naamlik mark-, krediet-, likiditeits-, operasionele- en

wetlike risiko. Die instelling wil graag sy blootstelling aan elke een van hierdie

tipes risiko kwantifiseer. Daar bestaan tans slegs vir mark- en kredietrisiko,

standaard risikomaatstawwe wat in die industrie algemeen aanvaar en gebruik

word. Die berekening van die risikomaatstawwe is gewoonlik baie rekenintensief.

Markinligting sowel as inligting oor elke beleggingsposisie in die huidige

portefeulje word gebruik in bogenoemde berekeninge. Hierdie inligting verander

egter gedurende elke verhandelingsdag. Die finansiële instelling benodig dus

programmatuur om - byvoorbeeld aan die einde van elke verhandelingsdag -

sekere standaard risikomaatstawwe te bereken op grond van die nuutste mark-

en beleggingsdata.

Die gebruik van SAS Risk Dimensions bied ’n oplossing vir die

berekeningsprobleem. ’n Risikobestuur stelsel waarmee die verlangde risiko

maatstawwe daagliks bereken word, kan deur middel van hierdie sagteware

pakket geskep word.

In hierdie dokument verduidelik en illustreer ons die stappe wat gevolg moet

word om ‘n gepaste risikobestuur stelsel in SAS Risk Dimensions, te

implementeer.

CONTENTS

1. Introduction and overview 1

1.1 Introduction 1

1.2 An overview of the document 3

2. An overview of the SAS environment 9

2.1 The SAS window environment 9

2.2 SAS structures 12

2.2.1 SAS data sets 12

2.2.2 SAS programs 13

2.2.3 SAS libraries 15

2.3 An example 16

 2.4 Summary 21

3. Case study definition and workspace preparation steps 22
3.1 Case study definition 22

3.2 The preparation of the workspace 24

3.2.1 The creation of raw data files 24

3.2.2 The creation of a physical workspace on the hard drive 29

3.2.3 The creation of the appropriate SAS libraries 30

3.2.4 The conversion of raw data files into SAS data sets 32

3.2.4.1 Overview 32

3.2 4.2 Conversion with the Data step 33

3.2.4.3 Import Wizard 40

3.3 Summary 46

Contents

 vii

4. Risk environments 47
4.1 Introduction 47

4.2 The creation of a new environment in the GUI 49

 4.3 The creation of a new environment with Proc Risk 53

 4.4 Summary 56

5. Risk Dimensions variables 57
5.1 Introduction 57

5.2 The different kinds of variables 66

5.2.1 General 66

5.2.2 System defined variables 68

5.2.3 Instrument variables 72

5.2.4 Risk factor variables 76

5.2.5 Risk Factor Curves or Arrays 83

5.2.6 Output variables 86

5.2.7 Reference variables 87

5.2.8 Lag time grids 92

5.2.9 The use of the GUI to view changes in the risk environment 95

5.3 Summary 97

6. Data preparation and data-driven registration 98
6.1 Introduction 98

6.2 The modification of SAS data sets 99

6.2.1 The basic Data step and column specification 100

 6.2.2 Creating new variables 101

6.2.3 Controlling the rows of a SAS data set 115

6.3 The combination of SAS data sets 118

6.3.1 The Concatenation and Interleaving SAS data sets 118

6.3.2 Match-merging SAS data sets 122

Contents

 viii

6.4 Case study: The modification and combination of SAS data sets 126

6.4.1 Principal Components Analysis 127

6.4.2 The theoretical discussion of covariance matrices 133

6.4.3 Case study 135
6.5 Data-driven registration 139

6.5.1 General 139

6.5.2 The creation of variable definition data sets 140

6.5.3 Registering variables from variable definition data sets 148

6.6 Summary 150

 7. Method programs and instrument types 151
7.1 Introduction 151

7.2 The SAS procedure Proc Compile 153

7.3 Subroutines and Functions 154

7.4 Method programs 157

7.4.1 General 157

7.4.2 Instrument input methods 160

7.4.3 Pricing methods 161

7.4.4 Risk factor transformation methods 169

7.4.5 Other method programs 171

7.4.6 Closing remarks 171

7.5 Instrument types 173

7.6 Summary 177

8. Risk factor models 178

8.1 Introduction 178

8.2 Statistical modeling 179

8.2.1 A simple statistical model 179

8.2.2 The model structure 181

8.2.3 Distributional assumptions 182

8.2.4. Parameter estimation methods 183

Contents

 ix

8.2.5. Time dependent statistical models in the case study 183

8.3 Modelling in Risk Dimensions 186

8.3.1 The general structure of Proc Model 186

8.3.2 The options in the Proc Model statement 187

8.3.3 The specification of the model structure in Proc Model 188

8.3.4 Additional statements in the Proc Model step 191

8.3.5 The Fit statement in Proc Model 192

8.4 Risk factor models in the case study 195

8.4.1 SAS Macros 195

8.4.2 Case study 196

8.5 Copulas 199

8.6 Summary 200

9. The registration of market and portfolio data 201
9.1 Case study: Principal Components Analysis 201

9.2 The registration of market data 207

9.2.1 Market data sources 208

9.2.2 Parameter matrices 210

9.2.3 Transformation sets 215

9.3 The registration of portfolio data 217

9.3.1 Portfolio data sources 217

9.3.2 Portfolio Input Lists 220

9.3.3 Portfolio Filters 220

9.3.4 Portfolio Files 221

9.4 Summary 223

10. Risk analyses 225

10.1 Introduction 225

10.2 Market risk analyses 227

10.2.1 Sensitivity analysis 228

10.2.2 Profit/Loss curve analysis 230

Contents

 x

10.2.3 Profit/Loss surface analysis 233

10.2.4 Scenario analysis and stress testing 234

10.2.5 Value at Risk (VaR) 237

10.2.6 Delta-Normal Analysis 237

10.2.7 Simulation analyses 240

10.3 Credit risk analyses 252

10.4 General risk analyses 253

10.5 Cross-classifications 256

10.6 Projects 258

10.7 Risk analysis results and output data sets 264

10.7.1 Output data sets 264

10.7.2 Graphical illustrations 267

10.7.3 Risk factor information measures 267

10.7.4 Risk analysis results of the case study 269

10.8 Two additional SAS statements 285
10.8.1 The %Include statement 285

10.8.2 The Trace statement 285
10.9 Summary 287

11. Reports 288

11.1 Introduction 288

11.2 The SAS procedure Proc Report 290

11.3 The registration of reports 298

11.4 Reports in Casestudy_Env 300
11.5 Summary 306

12. Conclusion 307

Appendix 309
References 318

1

INTRODUCTION AND OVERVIEW

1.1 Introduction

The core business of many financial institutions, is to invest in financial

instruments like equities, government bonds, foreign currency, interest rate

swaps, options, futures and lately more and more exotic instruments.

Financial institutions need to realize growth in the value of their assets in order to

meet future liabilities. One example is life insurers that need to preserve their

profits of today to provide for large expenditures in the future. Other institutions

use financial instruments to remove uncertainty in their business environment. An

example of this is airline companies that buy futures on jet fuel and effectively fix

the price that they would have to pay for jet fuel in six months time, today.

For each investment decision there is an associated return and risk. Return is a

measure of the profit/loss associated with the investment. Risk is defined as the

uncertainty about the return of the investment. Expected return and risk are

positively related to each other. Investors want compensation in the form of a

larger expected return, when taking on more risk.

The most important kinds of risk are market risk, credit risk, operational risk,

liquidity risk and legal risk. Market risk is the risk that the portfolio of financial

instruments will decline in value, due to a change in market variables such as

Chapter 1: Introduction and overview

 2

interest rates, exchange rates and equity prices. Credit risk is defined as the

impact on the portfolio value when a counter party fails to perform an obligation.

Operational risk is the risk of losing money due to operational failure. Power

failures, the collapse of IT systems, staff problems (illness of key personnel,

strikes etc.), the evacuation of the working place and other problems that may

lead to operational failure. The risk of losing money when financial contracts are

not enforceable is called legal risk. The fifth type of risk, namely liquidity risk, is

the risk of losing money due to financial costs that may arise with liquidating a

position held. The costs are determined by the relative liquidity or illiquidity of the

market.

Various risk measures that aim to quantify market and credit risk, exist in

practise. Examples are Value at Risk (VaR) and Credit Value at Risk (CVaR).

These measures are used world-wide and are accepted standard risk measures.

It is, however, more difficult to accurately quantify operational, liquidity and legal

risk. Standard risk measures for these types of risk do not exist at present.

It is important for financial institutions to calculate all the available risk measures

for the portfolio of financial instruments that are held. The goal is to use the

information gathered from the risk measures to the company’s advantage in

subsequent investment decisions. The constituents of the portfolio, as well as,

the relevant market information may change during each trading day. Thus, the

need exists to calculate the available risk measures at the end of each trading

day for the latest market and portfolio information. The results of the analyses

need to be presented in a report that is easily interpretable. The risk managers of

the financial institutions may use this information contained in the report, during

the next trading day to make adjustments to the portfolio. Risk management

systems are used to calculate the daily measures and to generate the required

reports.

Chapter 1: Introduction and overview

 3

Risk management systems may be designed in SAS Risk Dimensions. The

systems can calculate market and credit risk measures for even the most

complex portfolios. Some of the available measures or analyses are Value at

Risk (VaR), sensitivity analysis, scenario analysis, stress testing, current

exposure analysis, potential exposure analysis, credit rating migration analysis,

descriptive statistics, cash flow analysis and portfolio optimization analysis.

Monte Carlo simulation is used during some of these analyses. SAS Risk

Dimensions also offers an extensive reporting system. The execution of the risk

management system generates reports that present all the necessary risk

measures in a user-defined way. SAS Risk Dimensions is a powerful business

tool that is more than capable of updating the risk measures on a daily basis.

Hence, the purpose of this document is to explain and illustrate the steps
that are necessary to create a suitable risk management system in SAS
Risk Dimensions. The document will make it easier for people with a risk
management background to understand and use SAS Risk Dimensions.

Not all the features of SAS Risk Dimensions are discussed in detail in this

document. These features are usually more advanced and are used for a specific

business need. It is neither less important or useful.

1.2 An overview of the document

The portfolio of financial instruments that is held by a fictitious company named

Activegrowth Limited, is used throughout the document. This case study is

discussed in detail in Section 3.1. The company invests in five financial

instruments, namely equities, options, futures, government bonds and interest

rate swaps. The company needs to calculate amongst other risk measures, a

Value at Risk estimate for the portfolio that is currently held.

Chapter 1: Introduction and overview

 4

The first step in the implementation of a suitable risk management system is the

creation of data files that contain the relevant market and position information of

the company.

Consider the following extracts from the three trade books of the company, that

contain the relevant position information:

InstType Instid Short Holding Premium Sector Strike Enddate Opttype Cprice.
Equity SOL_001 0 400 94.7 Res
Equity SLM_002 1 8500 7.8 Fin
Equity ASA_001 0 2800 30 Fin
Equity ASA_002 0 2000 28.5 Fin
Equity OML_001 0 8200 12.5 Fin
Equity OML_002 1 1400 10.1 Fin
Future ASA_QM4 0 10000 . . . 17-Jun-04 . 46.59
Future OML_Q43 0 15000 . . . 17-Jun-04 . 11.93
Future SLM_Q42 0 4000 . . . 17-Jun-04 . 9.54
Future SOL_Q41 1 14000 . . . 17-Jun-04 . 97.86
Future SOL_Q42 0 12000 . . . 17-Jun-04 . 103.29
Option ASA_O02 0 6000 4.67 . 40 29-Jun-04 EC .
Option ASA_O06 0 10000 3.8 . 33 14-Sep-04 EP .
Option SOL_O04 1 5000 5 . 88 18-Oct-04 EC .
Option SOL_O05 0 6000 4.3 . 93 27-Jul-04 EP .
Option SLM_O05 0 18000 1.2 . 8.8 15-Aug-04 EC .

InstType Instid Short Notional MaturityDate Fromdate Rcvetype FixRate Ftr_name
Int_Swap DB_IS_01 0 150000 12/17/2006 12/17/2003 Floating 0.06 JB_6_MTH
Int_Swap IB_IS_02 0 1000000 4/17/2007 4/17/2004 Fixed 0.1 JB_6_MTH
Int_Swap IB_IS_03 0 850000 5/17/2005 11/17/2003 Floating 0.065 JB_6_MTH

InstType Instid Notional Holding MaturityDate Coupon Premium Red_Amount
Gov_Bond R153_1 100 100 8/31/2010 0.13 85 100
Gov_Bond R153_2 100 600 8/31/2010 0.13 84.3 100
Gov_Bond R133_1 100 2400 9/15/2007 0.15 70 100
Gov_Bond R177_1 100 2500 5/15/2007 0.095 98 100

Each row represents a position held in a financial instrument. The name of each

instrument is included in the Insttype column. Other information about each

position is included in the remaining columns.

Chapter 1: Introduction and overview

 5

Consider the following market information at the close of the last trading day, 13

May 2004:

Date ASA OML SLM SOL Vol_ASA Vol_OML Vol_SLM Vol_SOL JB_6_MTH
05/13/2004 45 11.5 8.55 99 0.210693 0.247062 0.224054 0.28974 0.08303

The Absa equity price is included in the ASA column, for example, whilst the

annualized volatility estimate of this equity price is included in the Vol_ASA

column.

This position and market information are used, together with, other information in

various Risk Dimensions structures to value each position in the portfolio and to

calculate various risk measures, for example, Value at Risk. The calculated risk

measures are presented in reports that are viewed in Output 1.1. The creation of

these reports is the ultimate goal of the implementation of Risk Dimensions.

Output 1.1: Reports

 Market Report: 13 May 2004
 Portfolio Summary

 Type
 of Mark to Market
 instrument Value (ZAR)
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 Equity 841,135.00
 Future ‐71,826.63
 Gov_Bond 622,845.32
 Int_Swap 49,140.23
 Option 6,905.98
 ===============
 1,448,199.90

Output 1.1 continues …

Chapter 1: Introduction and overview

 6

 Market report: 13 May 2004
 95% 1‐day Value at Risk

 Mark
 to VaR as
 Instrument Market Value at percentage Estimated
 Simulation method Type (ZAR) Risk of MtM shortfall
 ƒƒƒ

 1. Hist_Sim: 1. Equity 841,135.00 187,900.00 22.34 220,137.85
 Future ‐71,826.63 37,992.13 52.89 47,001.85
 Gov_Bond 622,845.32 2,439.06 0.39 2,884.32
 Int_Swap 49,140.23 2,303.78 4.69 2,674.56
 Option 6,905.98 21,099.33 305.52 26,366.75
 + 1,448,199.90 197,437.51 13.63 228,920.24
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

 2. Cov_Sim: 1. Equity 841,135.00 92,554.44 11.00 116,546.93
 Future ‐71,826.63 85,419.13 118.92 104,859.00
 Gov_Bond 622,845.32 12,722.85 2.04 15,960.04
 Int_Swap 49,140.23 10,632.96 21.64 12,902.86
 Option 6,905.98 49,742.82 720.29 62,974.89
 + 1,448,199.90 163,646.74 11.30 201,310.00
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

 3. Model_Sim: 1 Equity 841,135.00 14,986.77 1.76 18,833.02
 Future ‐71,826.63 34,538.72 48.75 45,271.33
 Gov_Bond 622,845.32 2,120.80 0.34 2,729.93
 Int_Swap 49,140.23 1,994.84 4.06 2,480.13
 Option 6,905.98 4,756.16 61.46 10,468.18
 + 1,448,199.90 39,753.15 2.83 57,963.19
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

The mark-to-market value, as well as, three Value at Risk estimates, are

calculated each for the whole portfolio and five sub-portfolios. Every sub-portfolio

consists of positions in financial instruments that are the same, for example, a

sub-portfolio that consists only of positions in equities. Three methods are used

to calculate value at risk, namely historical simulation, covariance-based Monte

Carlo simulation and model-based Monte Carlo simulation. The results of these

three methods are viewed in Hist_Sim, Cov_Sim and Model_Sim in Output 1.1.

The starting point of the risk management system is the creation of data
files as viewed above. The end point of the risk management system is the
creation of reports as viewed in Output 1.1. These steps, as well as the other

steps that are necessary to implement a successful risk management system,

are discussed in detail from Chapters 2 to 11.

Chapter 1: Introduction and overview

 7

The layout and working of the SAS window environment is discussed in

Chapter 2. Basic SAS structures like SAS data sets, SAS programs and SAS

libraries are used in this environment.

A number of preparation steps are needed before Risk Dimensions is activated.

Various folders and data files that contain market, position and other information

are created outside the SAS environment. SAS libraries are created inside the

SAS environment. The data files that contain the market, position and other

information are imported into SAS data sets. In the SAS window environment the

SAS data sets are grouped in SAS libraries. The preparation steps that are

necessary are discussed in Chapter 3.

SAS Risk Dimensions is activated and risk environment(s) are created in

Chapter 4. A risk environment is defined as a collection of information and files,

created to implement a risk management system.

The registration of variables in a risk environment is discussed in Chapter 5.

The variables are used during the valuation of financial instruments and the

calculation of risk measures or analyses.

Data preparation in the SAS environment is discussed in Chapter 6. The

modification and combination of SAS data sets are used in this process. An

alternative variable registration method, namely data-driven registration is also

discussed in this chapter.

Special blocks of program code, called method programs are discussed in

Chapter 7. Various kinds of method programs exist. Some method programs use

variables that refer to market and position information to calculate data values for

new variables. All these variables are used in other method programs to

calculate the value of each instrument in the portfolio. For each real-life financial

instrument in the portfolio, for example, a future or an equity, a corresponding

Chapter 1: Introduction and overview

 8

Risk Dimensions structure, namely an instrument type is defined within the risk

environment. Instrument types are also discussed in Chapter 7.

The creation of statistical models called risk factor models is discussed in

Chapter 8. The models are used to predict the future values of market variables

such as interest rates and equity prices.

SAS data sets that contain market information that are used in the risk

management system are registered in a risk environment in Chapter 9. Other

SAS data sets that contain portfolio information are used to create a portfolio
file in a risk environment. The portfolio file is further used in the risk management

system. This is also discussed in Chapter 9.

Various risk analyses such as sensitivity analyses, profit/loss curves and

scenario analyses are created in Chapter 10. An important Risk Dimensions

structure, namely, a project is also created. The project combines the portfolio

file, the method programs, the market information, risk analyses and other Risk

Dimensions structures. The execution of a project leads to the calculation of the

portfolio value and the risk analyses. The information that is created by the

execution, is stored in SAS data sets called output data sets. Graphical

illustrations of some of the risk analysis results are also created in the graphical

user interface (GUI).

Reports are used to present the calculated risk measures or analyses in an

easily interpretable and user-friendly way (see Output 1.1). The reports obtain the

necessary information from the output data sets and are discussed in Chapter

11.

2

AN OVERVIEW OF THE SAS ENVIRONMENT

The SAS software package is activated by clicking on the Microsoft Windows

desktop icon by name SAS V9. The package opens into an initial window called

the SAS window environment. The SAS window environment consists of five

different windows. Each window serves a different function in the environment.

Important SAS structures like SAS programs, SAS libraries and SAS data sets

are created in these windows. The creation and use of these SAS structures are

essential in the implementation of a successful risk management system.

The purpose of this chapter is to discuss and explain the role that each window

and SAS structure plays in the SAS window environment. The concepts

mentioned above are illustrated in Example 2.1.

2.1 The SAS Window Environment

The SAS window environment, as illustrated in Figure 2.1 opens when the SAS

V9 icon is clicked on the desktop.

Chapter 2: An Overview of the SAS Environment

 10

Figure 2.1 The SAS window environment

The following windows open by default:

• Enhanced editor window,

• Log window,

• Explorer window,

• Results window and

• Output window.

SAS programs (see Section 2.2.2) are created, by typing in program or batch

code in the enhanced editor window. More than one enhanced editor window

may open at the same time. The program code is submitted in order to execute

the SAS program. This is done by clicking on the submit button or by

selecting the Run → Submit option from the pull-down menus. The whole

program or a portion of it may be submitted. The mouse is used to select a block

of program code. If the submit button is clicked, then only the selected program

code is submitted. If no selection is made then all the program code is submitted

Chapter 2: An Overview of the SAS Environment

 11

and the whole program is executed. A SAS program is saved as a SAS file with a

(*.sas) extension by selecting the File → Save As option from the pull-down

menus and then specifying the appropriate folder and file name. A SAS file is

defined in general as a file that is created and used in the SAS window

environment.

A record of the current SAS session is kept in the log window. The information

in this window includes the following:

• the program code of SAS programs that were recently submitted,

• information about the SAS files that were recently read or created,

• the execution information and results of the SAS programs and

• the relevant error and warning messages about submitted SAS programs.

The different types of messages in the log window are printed in different colours.

Program code is printed in black, successful or confirmation messages in blue,

warning messages in green and error messages in red. This feature makes it

easy to check the successful execution of a SAS program. The log window is

activated by any of the following methods: Click with the mouse anywhere in the

log window, or on the Log button, or select the View → Log option from the pull-

down menus. The log window plays a vital role in the implementation of a

successful SAS program.

The explorer window is used to view the SAS library structure (see Section

2.2.3) of the SAS window environment. The contents of a SAS library are called

SAS catalogs. A SAS catalog is defined as a SAS file that can be stored in a

SAS library. The contents of a Windows folder for example the My Computer

folder are also viewed in the explorer window. This is a new feature of SAS

Version 9. The explorer window is activated by either clicking with the mouse on

the Explorer button or by selecting the View → Explorer option from the pull-

down menus.

Chapter 2: An Overview of the SAS Environment

 12

When SAS programs are executed, various results are created. The names of

these results are listed in the results window. Similar to the explorer window it

is activated by either clicking with the mouse on the Results button or by

selecting the View → Results option from the pull-down menus.

The results that were created by SAS programs are viewed in the output
window. The output window is activated by either clicking with the mouse on the

Output button or by selecting the View → Output option from the pull-down

menus.

Each of the enhanced editor, output and log windows is cleared by selecting the

Edit → Clear All option from the pull-down menus or by selecting the Clear All

 icon.

2.2 SAS structures

SAS structures are created and used within the SAS window environment. The

basic structures, namely SAS data sets, SAS programs and SAS libraries are

discussed in detail in this section.

2.2.1 SAS data sets

In order to use a set of data in the SAS window environment for any type of

analysis it has to be stored in a special type of SAS file called a SAS data set.
SAS programs are used to create these data sets. Each SAS data set is divided

into two portions, namely the data portion and the descriptor portion.

The data portion contains the data values of the data set, in the form of a

rectangular table. Each column refers to a variable and each row contains one

record, with one observation for each variable. The data values are either

Chapter 2: An Overview of the SAS Environment

 13

character or numeric values. A variable has a character data type if its data

values contain any combination of letters, numbers or special characters. If the

data values of a variable contain only numbers with a decimal point and minus

sign optional, it is of a numeric data type.

The descriptor portion of the SAS data set contains general information about

the data set, as well as, variable specific information. The general information

consists of the name of the SAS data set, the date and time of its creation, the

number of variables it contains and the number of observations (rows) of all the

variables. The variable specific information contains the name, the label, the

position, the length and the data type of each variable in the data set.

Every observation of every single variable in the SAS data set must be a valid
data value. Missing character values are left blank and missing numeric values

are replaced by a dot. The name of a SAS data set has a maximum length of 32

characters and has to start with a letter or an underscore ”_”. The rest of the

name may consist of any combination of characters, numbers and underscores.

2.2.2 SAS programs

A SAS program is a block of program code that is saved in a SAS file with a

(*.sas) extension. SAS programs are used to create SAS data sets and to

perform many different types of analyses.

The program code is entered in the enhanced editor window and consists of a

sequence of program steps. A program step is a sequence of one or more

program statements.

The only two kinds of program steps are:

• Proc steps and

• Data steps

Chapter 2: An Overview of the SAS Environment

 14

The Proc step activates a pre-written SAS program called a SAS procedure.

This step is used to perform many different kinds of tasks, some examples are:

Proc Print, Proc Contents, Proc Import, Proc Report, Proc Compile and Proc

Risk. For example, the Proc Print procedure displays the data portion of a SAS

data set in the output window, whilst the Proc Contents procedure displays the

descriptor portion.

The Data step is used to create new SAS data sets, modify existing SAS data

sets and to transform or import raw data files into SAS data sets.

A Data step starts with a Data statement, a Proc step with a Proc statement and

both ends with a Run statement. Each statement is followed by a semicolon. The

general form of these two steps is illustrated in Figure 2.2.

Components of the Data Step Components of the Proc Step

Data _______________________;
 _______________________;

 _______________________;
Run;

Proc _______________________;
 _______________________;

 _______________________;
Run;

Figure 2.2: General form of the Proc and Data steps

Commentary statements are used to provide insight into some program

statements. In the first method, the symbols /* and */ opens and closes the

commentary statement respectively. The comments are typed between these

symbols. The star symbol, “ * ”, may also be used. The program code between

the star and the next semi-colon is viewed as commentary code. Program code

is also not case sensitive and program statements may be used in the same line

or it may extent over different lines. The statements may also begin or end in any

column of the enhanced editor window.

Chapter 2: An Overview of the SAS Environment

 15

2.2.3 SAS libraries

SAS files are created and used in the SAS window environment and are stored

physically on the hard drive. These files are grouped in folders according to

certain considerations. SAS files are not grouped according to folders in the SAS

window environment. They are grouped to a structure analogous to folders called

SAS libraries. A SAS library is defined as a collection of SAS files that are

grouped as a unit in the SAS window environment. In the creation of a SAS

library a certain folder is specified. All the SAS files in the folder are then

contents of the SAS library as well.

Temporary and permanent SAS libraries exist. The user has access to a

temporary SAS library called Work at the start of each SAS session. Suppose

that SAS files are created and grouped in this library during the current SAS

session, then at the end of the session these SAS files are automatically erased.

The user also has access to two permanent SAS libraries with names Sasuser

and Sashelp at the start of each SAS session. SAS files that are stored in these

SAS libraries are available in subsequent SAS sessions. Program code may be

used to create additional permanent libraries. Suppose further that SAS files

are created and grouped in one of the user-defined libraries, then these SAS files

are physically stored on the hard drive in the folder that was specified during the

creation of the additional library. At the end of the current session the SAS files

are still kept in the folder on the hard drive, but are not grouped as a unit (SAS

library) by the SAS Window Environment anymore. It is thus necessary to create

the SAS library (not the SAS files) again at the start of the next SAS session.

The Libname statement is used to create an additional permanent library. The

statement is a global statement outside of the Data step or Proc step and has the

following general form:

Libname Libref “Name-and-location-of-folder” ;

Chapter 2: An Overview of the SAS Environment

 16

The name of the SAS library is specified in Libref and has a maximum length of

eight characters. The name and path of the folder in which the SAS files are

stored is specified in the “Name-and-location-of-folder” option. As mentioned

previously, the name of the SAS library specified in Libref remains assigned to

the SAS files in the folder only for the current SAS session.

In Section 2.1 a SAS catalog has been described as a SAS file that can be

stored in a SAS library. Whenever it is necessary to specify a certain SAS

catalog in program code, it is referred to by its name and the SAS library it is

grouped in. The dot symbol, “.”, is used to separate the Libref from the name of

the SAS catalog. The reference takes on the following form:

Libref.Name-of-Catalog

A wide variety of information is stored as entries in a SAS catalog. SAS data sets

and Risk Dimensions environments are examples. Each entry in a SAS catalog

is called an object. A SAS data set is only one file and the SAS catalog has only

one object. The Risk Dimensions environment usually consists of many files.

Thus the corresponding SAS catalog has many objects. Risk Dimensions

environments are discussed in more detail in Chapter 4.

2.3 An example

Example 2.1: The working of the SAS window environment:

This example illustrates the use of SAS structures like SAS data sets, SAS

libraries and SAS programs within the SAS window environment. The use of the

Data step, Proc step and the Libname statement within a SAS program is also

illustrated.

Chapter 2: An Overview of the SAS Environment

 17

The objectives of the example are to:

• Create a SAS library, named Books.

• Create a new SAS data set, with name Equity_Book that contains

information about the open positions held on equities. The names of the

variables in Equity_Book are Tradeid, Instid, Holding, Currency,

PurchasePrice and Sector.

• Illustrate the data portion and descriptor portion of the Equity_Book data

set, using the SAS procedures Proc Contents and Proc Print.

The Input statement is used in the Data step to declare the variables in the SAS

data set. The name of the variables are listed in this statement and the variables

that are of character data type are specified with a dollar “$” symbol. The

Datalines statement precedes the data input in the program code and initiates the

creation of a new SAS data set. The SAS data set Equity_Book is referred to by

its two-level name Books.Equity_Book in the program code. Program Code 2.1 is

typed in the enhanced editor window.

Program Code 2.1: The Working of the SAS window environment:

/*The Libname statement creates a new library with name Books. The
location and name of the folder that is assigned to the library is
C:\Risk_Warehouse */
Libname Books "C:\Risk_Warehouse";
/*The Data statement creates a new data set, named Equity_Book in the
SAS library with name Books*/
Data Books.Equity_Book;
Input Tradeid $ Instid $ Holding Currency $ PurchasePrice Sector $;
Datalines;
2003_001 ASA 10131 ZAR 3050 FINANCIALS
2003_002 ASA 7030 ZAR 2860 FINANCIALS
2003_003 SOL 1032 ZAR 10010 RESOURCES
2003_004 SOL 2938 ZAR 10394 RESOURCES
2003_005 SOL 3920 ZAR 9843 RESOURCES
2003_006 ASA 1022 ZAR 3560 FINANCIALS
Run;
/*The data portion of Equity_Book is viewed in the output window*/
Proc Print Data= Books.Equity_Book;
Run;
/*The descriptor portion of Equity_Book is viewed in the output window*/
Proc Contents Data= Books.Equity_Book;
Run;

Chapter 2: An Overview of the SAS Environment

 18

The submit button is used to submit the program code. The contents of the

log window are checked for confirmation of a successful execution of the SAS

program. Figure 2.3 contains part of the output in the log window.

Figure 2.3: The Log Window

The log window contains no warning or error messages and a successful

execution of the SAS program is confirmed. The explorer window is used to view

the changes that have been made to the SAS library structure. The explorer

window is activated and the Libraries icon is clicked on. The new library with

name Books is viewed in Figure 2.4. The contents of this library is viewed by

clicking on the icon with name Books. The SAS catalog or SAS data set

Equity_Book is contained in this library as illustrated in Figure 2.5.

 Figure 2.4: The explorer window Figure 2.5 The explorer window

Chapter 2: An Overview of the SAS Environment

 19

The data portion of the SAS data set Equity_Book is viewed in Figure 2.6. The

illustration is created by clicking on the SAS data set icon with name

Equity_Book.

 Figure 2.6: The SAS data set Equity_Book

The names of the results that were created by the execution of Proc Print and

Proc Contents are viewed in the results window, as illustrated in Figure 2.7. A

specific result is selected by clicking on the Print: The SAS System option and

then double clicking on the data set option that has subsequently opened. The

possible results names that may be selected are viewed in Figure 2.8.

 Figure 2.7: The results window Figure 2.8 The results window

The results that were created by Proc Contents are viewed in the output window

by applying the following steps: Double click on the Contents: The SAS System

Chapter 2: An Overview of the SAS Environment

 20

option in the results window and double click again on the Data Set

Books.Equity_Book option that becomes available. The results are divided into

three parts, Attributes, Engine/Host Information and Variables. Each separate

result is viewed in the output window by clicking on the appropriate option in the

results window. The options in results window and the corresponding output in

the output window are viewed in Figure 2.9.

Figure 2.9: Results in the Output window

The full set of results in the output window is viewed by activating the output

window and scrolling down from the top to the bottom.

If a block of program code is unsuccessfully submitted, the SAS program may

enter an endless loop. The program can be halted by either pressing the Control

and Break button on the keyboard simultaneously or by clicking on the icon.

The Tasking Manager window as illustrated in Figure 2.10 opens.

Chapter 2: An Overview of the SAS Environment

 21

Figure 2.10: The Tasking Manager window

The selection of either the Cancel Submitted Statements option or the Halt

Datastep/Proc: Risk option cancels the endless loop. It is necessary to click on

the OK button to confirm the decision.

2.4 Summary

The use of the SAS window environment and the creation of basic SAS

structures in it are an integral part of implementing a successful risk management

system. The knowledge gained from this chapter is used in all the subsequent

chapters.

3

CASE STUDY DEFINITION AND
WORKSPACE PREPARATION STEPS

A fictitious case study is used to illustrate the working of SAS Risk Dimensions.

The case study is described in detail in Section 3.1 and is used in the subsequent

chapters to explain and illustrate the Risk Dimensions concepts that are

discussed.

The rest of the chapter focuses on the creation of a workspace that is necessary

before Risk Dimensions is opened. This entails:

• the creation of raw data files,

• the creation of a physical workspace on the hard drive,

• the creation of SAS libraries and

• the conversion of raw data files into SAS data sets.

3.1 Case study definition

Consider a fictitious South African company, named Activegrowth Limited. It is

an investment company that actively trades in the following financial instruments:

options, futures, government bonds, interest rate swaps and equities. The

company has recently acquired SAS Risk Dimensions and plans to use the

software package to calculate various risk measures or analyses on a daily basis.

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 23

Options and futures form the derivatives portfolio. The equity portfolio is divided

into the resources, financials and industrial sectors. The resources sector

consists primarily of mining companies, whilst banks and life insurers form the

financial sector. Manufacturing companies such as the steel giant, Iscor forms

part of the industrial sector. The government bonds and interest rate swaps,

form the interest rate derivatives portfolio. The investments in each of the

financial instruments may also be viewed as sub-portfolios.

All the open positions that are held in financial instruments are recorded in trade

books at the end of every trading day. Three trade books are used and for each

trade book a corresponding raw data file is created. One trade book is used for

equities, futures and options, whilst interest rate swaps and government bonds

are each recorded separately. Real life equities, government bonds and futures

are used in the case study. The interest rate swaps and options that are used

are, however, fictitious. The historical closing prices of the relevant market

variables, for example share prices, interest rates and swap rates are also saved

in raw data files. All the raw data files that were mentioned above contain

information that is used in the valuation of financial instruments and execution of

various risk analyses. These raw data files are discussed in more detail in

Section 3.2.1.

Risk management systems in Risk Dimensions may be designed to calculate

both market and credit risk measures. Only market risk measures are calculated

for Activegrowth Limited. The measures include Value at Risk (VaR), sensitivity

analysis, scenario analysis, profit/loss curves and profit/loss surfaces. These

analyses are performed on the whole portfolio or selected portions. Monte Carlo

simulation and historical simulation are used in the different Value at Risk

calculation methodologies.

The mark-to-market value (MtM) of the portfolio and the results obtained by

calculating the risk measures are included in batch reports. The reports supply

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 24

information about the whole portfolio, as well as, the certain specified sub-

portfolios. Five sub-portfolios are used in the case study reports. Each sub-

portfolio consists of all the position held in the same financial instrument. An

example is the futures portfolio. The reports are further easy to interpret and are

used in risk management decisions. The calculation of risk measures and the

creation of reports are discussed in Chapters 10 and 11 respectively.

3.2 The preparation of the workspace

The case study and any other similar business problems require certain

preparation steps before Risk Dimensions is opened. Some of these steps are

performed outside the SAS window environment, for example in Microsoft

Windows or Microsoft Excel. Other steps are performed in the SAS window

environment.

The following four steps provide a guide to the process of preparing the

appropriate workspace:

1. The creation of raw data files.

2. The creation of a physical workspace on the hard drive.

3. The creation of the appropriate SAS libraries.

4. The conversion of raw data files into SAS data sets.

Each of these steps is discussed in detail below. Also, see the graphical

illustration of these steps in A1 of the Appendix.

3.2.1 The creation of raw data files

A raw data file is defined as a data file that is created outside of the SAS window

environment. Observed data such as trade book information or market

information is usually captured in raw data files. Raw data files are converted

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 25

into SAS data sets. The data values contained in the SAS data sets are used

during the execution of risk analyses like Value at Risk (VaR). The captured data

usually has to be adjusted or transformed into the correct form before an analysis

can be executed. The steps that are necessary to prepare the data may be done

inside the SAS window environment using SAS programs or outside SAS in a

software program like Microsoft Excel. A combination of both software packages

is usually used.

The raw data files that are necessary for the case study are subsequently

discussed. These files are updated at the end of each trading day. Raw data

files are created for the trade books of the company and for the relevant market

information. The creation of each raw data file is discussed separately.

A raw data file that contains information about the open positions held in equities,

futures and options is created. The raw data file, named Tradebooksource

typically consists of variables (column names) like Insttype (instrument type),

Instid (instrument identification), Holding, Currency, Premium (price paid for

instrument), OptType (type of option), Strike, Enddate, Contractprice, Sector,

Book, Shortposition, Shareprice and Underlying. Each row in the data set

contains information about one position taken in a financial instrument. Most of

the columns and observations of the raw data file are presented in the following

extract:

Insttype Instid Short Holding Premium Sector Strike Enddate Opttype Cprice.
Equity SOL_001 0 400 94.7 Res
Equity SLM_002 1 8500 7.8 Fin
Equity ASA_001 0 2800 30 Fin
Equity ASA_002 0 2000 28.5 Fin
Equity OML_001 0 8200 12.5 Fin
Equity OML_002 1 1400 10.1 Fin
Future ASA_QM4 0 10000 . . . 17-Jun-04 . 46.59
Future OML_Q43 0 15000 . . . 17-Jun-04 . 11.93
Future SLM_Q42 0 4000 . . . 17-Jun-04 . 9.54
Future SOL_Q41 1 14000 . . . 17-Jun-04 . 97.86
Future SOL_Q42 0 12000 . . . 17-Jun-04 . 103.29

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 26

Extract from Tradebooksource continues…

Insttype Instid Short Holding Premium Sector Strike Enddate Opttype Cprice.
Option ASA_O02 0 6000 4.67 . 40 29-Jun-04 EC .
Option ASA_O06 0 10000 3.8 . 33 14-Sep-04 EP .
Option SOL_O04 1 5000 5 . 88 18-Oct-04 EC .
Option SOL_O05 0 6000 4.3 . 93 27-Jul-04 EP .
Option SLM_O05 0 18000 1.2 . 8.8 15-Aug-04 EC .

The raw data file by name Bondbook contains records of open positions held in

government bonds. The variables or column names are InstType, Instid,

Shortposition, Notional, Holding, Maturiydate, Currency, Coupfreq (coupon

frequency), Coupon, Red_Amount (Redemption amount) and Premium. The four

observations and most of the columns of the raw data file are included in the

following extract:

InstType Instid Notional Holding MaturityDate Coupon Premium Red_Amount
Gov_Bond R153_1 100 100 8/31/2010 0.13 85 100
Gov_Bond R153_2 100 600 8/31/2010 0.13 84.3 100
Gov_Bond R133_1 100 2400 9/15/2007 0.15 70 100
Gov_Bond R177_1 100 2500 5/15/2007 0.095 98 100

Another raw data file is created to capture information about the open positions

held in interest rate swaps. The name of the raw data file is Swapbook and

consists of the variables or column names InstType, Instid, Shortposition,

Notional, Holding, MaturityDate, Fromdate, Rcvetype (type of payment received),

FixRate, Ftr_name (name of floating rate), Currency and Coupfreq (Frequency of

payment exchanges). The three observations and most of the columns of the

raw data file is included in the following extract:

InstType Instid Short Notional MaturityDate Fromdate Rcvetype FixRate Ftr_name
Int_Swap DB_IS_01 0 150000 12/17/2006 12/17/2003 Floating 0.06 JB_6_MTH
Int_Swap IB_IS_02 0 1000000 4/17/2007 4/17/2004 Fixed 0.1 JB_6_MTH
Int_Swap IB_IS_03 0 850000 5/17/2005 11/17/2003 Floating 0.065 JB_6_MTH

The data values of the variables in the above mentioned three raw data files are

used in the valuation and the grouping of the financial instruments in the portfolio.

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 27

Historical time series data of market variables such as equity prices, interest

rates and volatility in equity prices, are contained in the raw data file,

Market_History. Each row contains the observations of all the market variables

for one day. The record in the last row (observation) contains the current date

and data values that are used to calculate the current value (mark-to-market

value) of the instruments in the portfolio. Three observations of some of the

variables or columns in the raw data file are viewed in the following extract:

Date ASA AGL SLM SOL Vol_ASA Vol_AGL Vol_SLM Vol_SOL JB_6_MTH
05/11/2004 44.9 135.45 8.73 102.5 0.209979 0.297494 0.219129 0.286326 0.08291
05/12/2004 44.5 133.5 8.41 97.5 0.21226 0.297322 0.218985 0.287471 0.08297
05/13/2004 45 133.5 8.55 99 0.210693 0.296292 0.224054 0.28974 0.08303

Another raw data file, namely, Logreturns is created. Each historical equity

price in Market_History is divided by the closing value of the equity on the

previous day. The logarithm of the ratio, is then calculated for all the equities on

each available date. An extract of the raw data file follows:

Date Ret_ASA Ret_AGL Ret_ISC Ret_OML Ret_SLM Ret_Sol
05/11/2004 0.023663 -0.00111 -0.0047 0.002601 -0.00229 0.030208
05/12/2004 -0.00895 -0.0145 0.004386 -0.01659 -0.03734 -0.05001
05/13/2004 0.011173 0 0.028049 0.012249 0.01651 0.015267

Large financial institutions are the market makers in the interest rate swap

market. The institutions are prepared to quote for a number of different

maturities a bid and an offer for the fixed rate they will exchange for a floating

rate. The bid is the fixed rate which the market makers will pay in exchange for a

floating rate, whilst the offer is the fixed rate which they have to receive in

exchange for a floating rate. The average of the bid and offer rates is called the

swap rate. Swap rates are observed in the market for varying maturities. The

swap rates, together with the JIBAR (Johannesburg Interbank Agreed Rate)

rates are used to construct a yield curve. The yield curve is used in the valuation

of financial instruments like options, futures and government bonds. The

constituents of the yield curve are called zero rates. A zero rate is the risk-free

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 28

rate of interest that can be earned for a specified maturity. The JIBAR rates are

transformed into zero rates for maturities, ranging from one month to one year.

The swap rates are transformed into zero rates using the so-called bootstrap

method (cf. Hull (2003)). The maturities of these zero rates range from one to

ten years. The length of the interval between subsequent maturities is six

months. The zero rates are calculated for each historical date in the

Market_History data set and are stored in the raw data file with name

Yieldcurve_data. The calculation of zero rates is carried out in Microsoft Excel.

An example of a variable (column name) in this data set is Unstd_3_Year. This

column contains the zero rates for historical dates corresponding to a maturity

value of 3 years. It is important to note that use of JIBAR rates and swap rates in

the yield curve construction leads to zero rates that are not strictly risk-free rates

of interest. This is true as swap rates contain a risk premium, because the

counter party may default on the interest rate payments. Two observations of

some of the variables in the raw data file are viewed in the next extract:

UNSTD_1_MTH UNSTD_3_YEAR UNSTD_5_YEAR UNSTD_8_YEAR UNSTD_10_YEAR
0.080231191 0.080628 0.088802 0.094315 0.095034
0.08011199 0.082553 0.090761 0.095316 0.095722

A raw data file named Scenariodata that will be used in scenario simulation (see

Section 10.2.7) is created. The column names are, with the exception of a few

the same as the Market_History raw data file. The values in the raw data file are

user-defined and are not observed in any financial market. Two of the

observations of some of the variables are viewed in the following extract:

ASA AGL ISC SOL Vol_ASA Vol_AGL Vol_ISC Vol_SOL JB_6_MTH
45 133.1 38 115 0.18 0.31 0.356 0.31 0.08

35.3 140 32.8 99 0.18 0.25 0.323 0.313 0.0655

The raw data files may be stored as different types of files. Only comma

delimited files with the (*.csv) extension are discussed. This type of file is easily

created in Microsoft Excel. The raw data files that are created are

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 29

Tradebooksource.csv, Swapbook.csv, Bondbook.csv, Yieldcurve_data.csv,

Logreturns.csv, Scenariodata.csv and Market_History.csv. These data files

have to be updated on a daily basis, before new risk analyses are executed.

3.2.2 The creation of a physical workspace on the hard drive

A physical workspace in the form of a folder with subfolders is created on the

hard drive of the computer. A folder with a name, for example Risk_Warehouse,

is created at a suitable space on the hard drive. Within this folder sub-folders with

the following names are created:

• Rawfiles,

• Riskdata,

• Env,

• Source,

• Local,

• Output and

• Models.

The raw data files that are created in Section 3.2.1 are stored in the Rawfiles

folder. For the case study Tradebooksource.csv, Swapbook.csv, Bondbook.csv,

Logreturns.csv, Yieldcurve_data.csv, Scenariodata.csv and Market_history.csv

are stored in this folder. All the SAS data sets that are created in the SAS

window environment are stored in the Riskdata folder. Risk environments that

are created are stored in the Env folder. SAS programs are stored in the Source

folder. The Local folder is used during the data-driven variable registration

process, discussed in Section 6.5. Statistical models are fitted on the historical

data values of some of the market variables in Chapter 8. The models are used

to predict future values of the market variables. The output from these fitted

models is stored in the Models folder. The execution of risk analyses creates

output data sets. These data sets contain a variety of information regarding the

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 30

risk analyses that are used in the risk management system. The output data sets

are stored in the Output folder. Windows Explorer is used to create the folders

mentioned above. The role that folders play in the workspace is graphically

illustrated in A1 in the Appendix.

3.2.3 The creation of the appropriate SAS libraries

The necessary folders in the workspace were created in the previous section.

Corresponding SAS libraries are created for some of these folders in this section.

A SAS library is necessary if a SAS catalog for example a SAS data set is stored

in a folder by the execution of program code. If the SAS file or other type of file is

stored in the folder by another method, no SAS library is necessary. Thus, the

way in which files are stored in a folder determines the need for a corresponding

SAS library.

SAS programs and raw data files are saved directly in the Source and Rawfiles

folders respectively. SAS programs are saved by using the File → Save option

from the pull-down menus in the SAS window environment. Raw data files are

created outside the SAS window environment and are stored directly in the

Rawfiles folder. Thus, there is no need to create corresponding SAS libraries for

the Source and Rawfiles folders.

SAS programs are used to create SAS catalogs, for example SAS data sets, in

the SAS window environment. These files have to be stored on the hard drive.

SAS programs cannot store these files directly in folders, but are able to create

and group these files in SAS libraries. It is necessary to assign a SAS library to a

corresponding folder on the hard drive. This enables the SAS catalogs to be

stored in the appropriate folders via SAS libraries during the execution phase of

the SAS program. In the case study example SAS data sets and other SAS

catalogs are stored in the Riskdata, Env, Models, Output and Local folders.

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 31

Thus, it is necessary to create corresponding SAS libraries with names Riskdata,

Env, Models, Output and Local.

User-defined macro variables are used to shorten the program code that is

necessary to create and use SAS libraries. A global program statement namely,

%Let is used to assign macro variables and has the following general form:

%Let macro-variable-name string-assigned-to-macro-variable;

For example, the name RiskPath is given to the location of the physical

workspace C:\Risk_Warehouse in the following code:

%Let RiskPath = C:\Risk_Warehouse;

Whenever it is necessary to use the character string C:\Risk_Warehouse in

program code, only the macro variable name, with a preceding ampersand “&”,

i.e. &Riskpath is used.

With the code:

%Let Rawfiles = &Riskpath\Rawfiles;

a new macro variable with name Rawfiles is created and refers to the character

string C:\Risk_Warehouse\Rawfiles that specifies the location of the folder on the

hard drive.

The following user-defined macro variables are also assigned:

%Let Source = &RiskPath\Source;
%Let RiskData = &RiskPath\RiskData;
%Let Env = &RiskPath\Env;
%Let Local = &RiskPath\Local;
%Let Models = &RiskPath\Models;
%Let Output = &RiskPath\Output;

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 32

The following Libname statements use the user-defined macro variables to

create SAS libraries with names RiskData, Local, Env, Models and Output in the

SAS window environment:

Libname RiskData "&RiskData";
Libname Local "&Local";
Libname Env "&Env";
Libname Models "&Models";
Libname Output "&Output";

3.2.4 The conversion of raw data files into SAS data sets

3.2.4.1 Overview

Raw data files are updated at the end of each trading day. The data files

typically contain market, position and other information that are used in the

execution of risk analyses. In order to use information contained in the data files

within the SAS window environment or in Risk Dimensions, the information has to

be contained in SAS data sets. Thus, it is necessary to create algorithms that

are able to convert raw data files into SAS data sets on a daily basis.

Raw data files may be stored as different types of files. The column structure

determines the type of raw data file. Each column refers to a variable and each

row contains a record of one observation of each column. Only raw data files

where the data values are separated by commas (comma separated value files)

are discussed in this document.

Two conversion methods are considered. The first method is to use the Data
step in program code. It requires a large amount of program code, but has the

advantage that the format of the data values in the raw data files can easily be

changed. The second method, is to use the Import Wizard. It is a point and click

graphical interface that creates the desired SAS data sets quite easily. It also

produces program code that may be used to repeat the process for similar raw

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 33

data files. Although this method is suitable for various different types of raw data

files, it is not very adaptive to the format in which data values are stored in the

raw data file. The data values have to be in a pre-specified format, without any

missing values in the first row. If this criterion is not met, this method either fails

to create a SAS data set or it creates a corrupt data set.

In the case study, seven files, namely Tradebooksource.csv, Swapbook.csv,

Bondbook.csv, Logreturns.csv, Yieldcurve_data.csv, Scenariodata.csv and

Market_History.csv that are stored in the Rawfiles folder are converted or

imported into SAS data sets. The names of the corresponding SAS data sets are

Tradebook, Swapbook, BondBook, Logreturns, Yieldcurve_data,

Scenariodata and Market_History and are stored in the SAS library named

RiskData.

3.2.4.2 Conversion with the Data step

The Data step may be used to convert or import raw data files into SAS data

sets. The basic structure of the Data step necessary to read a raw data file is

illustrated in Figure 3.1.

Components of Data Step
Data ____________________;
Infile ____________________;
Input ____________________;
Informat ____________________;
Format ____________________;

 ____________________;
Run;

Figure 3.1: The basic structure of Data step used in the conversion process

The components (statements) of the data step will subsequently be discussed:

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 34

The Data statement names, the SAS data set that is being created, together with

the SAS library that it is grouped in. The general form of the Data statement

follows:

Data Libref.Catalog;

The name of the SAS library is specified in the Libref option and the name of the

SAS data set in the Catalog option. The SAS data set is stored in the temporary

library Work if the Libref option is omitted.

The Infile statement specifies the path and the name of the raw data file that is

converted. The Input statement specifies the names of the variables (columns)

in the raw data file that are included in the SAS data set. The Informat

statement and Format statement are optional statements. The Data step has a

default way of reading data from the raw data file. A SAS instruction, namely a

SAS informat is used to manually define the way the data values are read from

the raw data file. SAS informats may be included in the Input statement or in the

Informat statements. Another SAS instruction, namely a SAS format is used to

alter the way in which the data values of SAS data sets are presented. SAS

formats are included in the optional Format statements. More than one Informat

statement and Format statement may be included in the Data step.

SAS informats

It is necessary to study SAS informats in detail, before the implementation of this

instruction is illustrated in the Data step. SAS informats are only used within

Informat statements in this section.

The Informat statement has the following general form:

Informat Name-of-variable SAS-informat-used;

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 35

The name of the variable that is read from the raw data file is specified in the

Name-of-variable option. The Informat statement makes use of the SAS informat

specified in SAS-informat-used option to read the variable in a manually defined

way. An Informat statement may be specified for each variable that is read.

A SAS informat has the following general form:

$informat-name.d

The “$” symbol is only used when the variable that is imported is of character

data type. The decimal point “.” is a required delimiter and the “d” is an optional

argument. The “d” is used to indicate the number of decimal places that are

allocated for a numeric variable.

SAS informats are used to read numeric values, character values, numeric

values with dollars or commas as well as date values. A SAS informat specifies

the type of data to be read, as well as, the maximum length of the data values of

the variable. For example, if a data value in the raw data file is a name with nine

characters and the SAS informat is specified with a maximum length of eight,

then only the first eight characters are read and stored in the SAS data set.

The following Informat statement reads the values of the variable named Holding.

The SAS informat, 8.0, specifies that the data values contained in Holding are

numeric, of maximum length 8 and that no allowance is made for any decimal

points.

Informat Holding 8.0;

The values of the variable Currency are read with the following Informat

statement:

Informat Currency $3.;

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 36

The SAS informat, “$3.”, specifies that the data values in Currency are read as

character values with a maximum length of 3 characters.

Date values are stored as special numeric values within the SAS environment. A

date value is interpreted as the number of days between the specified date and

the first of January 1960. Suppose the data values in the variable Enddate is

stored in the DDMMYY format, for example 13MAY04, in the raw data file, then

the data values of this variable are read with the following Informat statement:

Informat Enddate date7.;

The data values in the Enddate variable are stored in the DDMMYY format. The

SAS informat namely date7. reads these values from the raw data file and

ensures that it is stored as valid SAS date values, for example 16204.

Table 3.1 contains a list of SAS informats that are frequently used in either the

Informat or Input statements. The column named, Raw Data Value, illustrates

the format in which the data values are stored in the raw data file. The SAS

informats that are used to manipulate the way in which the data values are read

are viewed in the Informat column. The SAS Data Value column illustrates the

format in which the data values are stored in the SAS data set.

 Table 3.1: SAS informats

Raw Data Value Informat SAS Data Value
 1 2 3 4 5 6 7 → 8.0 → 1 2 3 4 5 6 7
 1 2 3 4 . 5 6 7 → 8.0 → 1 2 3 4 . 5 6 7
 1 2 3 4 5 6 7 → 8.2 → 1 2 3 4 5 . 6 7
 1 2 3 4 . 5 6 7 → 8.2 → 1 2 3 4 . 5 6 7
 B O B B Y → $8. → B O B B Y
 B O B B Y → $Char8. → B O B B Y
 $ 1 2 , 3 4 5 → Comma7.0 → 1 2 3 4 5
0 5 / 1 3 / 2 0 0 4 → MMDDYY10. → 1 6 2 0 4
 0 5 / 1 3 / 0 4 → MMDDYY8. → 1 6 2 0 4
 1 3 M A Y 2 0 0 4 → Date9. → 1 6 2 0 4
1 3 / 0 5 / 2 0 0 4 → DDMMYY10. → 1 6 2 0 4

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 37

SAS formats

A SAS instruction, called a SAS format is used to alter the format in which the

data values of the newly created SAS data set are displayed. The SAS formats

are included in the Format statement within the Data step.

The general form of the format statement is:

Format Name-of-variable SAS-format-used;

The name of the variable that is viewed is specified in the Name-of-variable

option. The Format statement uses the SAS format, specified in SAS-format-

used to view the data values of the variable in the SAS data set in a certain

format.

SAS formats have the following general form:

Format-name.d

The decimal point “.” is a required delimiter and the “d” argument is optional. The

“d” argument indicates the number of decimal places that are used in the

presentation of the data values of a numeric variable.

Consider the variable named Holding again. The data values contained in this

variable have been saved in the SAS data set as numeric data values with

maximum length of eight and no decimal points, for example 12345678. If the

data set is viewed, the data values are presented well, if commas are added, for

example 12,345,678. This is achieved by using the following Format statement:

Format Holding comma10.;

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 38

If the format width is not specified large enough in the SAS format, the displayed

value is automatically adjusted to fit into the width. If the format statement was:

Format Holding comma8.;

the displayed value would have been 12345678, since the commas could not fit

into the maximum length specified.

When the SAS data set is opened the value of the variable Enddate can be

viewed in any other data format. The following format statement lets the data

values of the Enddate variable be viewed as DDMMYYYY, for example

13MAY2004.

Format Enddate date9.;

Table 3.2 contains a list of SAS formats that are used in Format statements. The

Stored Value column illustrates the format in which the data values are stored in

a SAS data set. The SAS formats that are used in Format statements are

contained in the Format column. The format in which the data values in the SAS

data set are presented is viewed in the Displayed Value column.

Table 3.2: SAS formats

Stored Value Format Displayed Value
12345.6789 → Comma12.2 → 12,345.68
12345.6789 → 12.2 → 12345.68
12345.6789 → Dollar12.2 → $12,345.68
12345.6789 → Dollar8.2 → 12345.68
12345.6789 → Dollar5.2 → 12345
16024 → MMDDYY6. → 051304
16024 → MMDDYY10. → 05/13/2004
16024 → Date7. → 13MAY04
16024 → Date9. → 13MAY2004
16024 → Worddate. → May 13, 2004
16024 → Weekdate. → Thursday, May 13,

2004

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 39

The conversion of Tradebooksource.csv into a SAS data set

Consider the raw data file, by name Tradebooksource that has been created as a

comma separated value file with a (*.csv) extension. The data values in each

row (observation) are separated by a comma. Notepad is used to view the

structure of the Tradebooksource.csv file and this is illustrated in Figure 3.2.

Figure 3.2: The raw data file, Tradebooksource.csv

The data step in Program Code 3.1 is used to convert the raw data file,

Tradebooksource.csv, into a SAS data set with the name Tradebook that is

stored in the SAS library with name Riskdata.

Program Code 3.1: The conversion of Tradebooksource.csv

/*The SAS data set named Tradebook is created in the SAS library
Riskdata*/
Data Riskdata.Tradebook;
/*The raw data file is specified as Tradebooksource.csv and is imported
from the C:\Risk_Warehouse\Rawfiles folder*/
Infile "&Rawfiles\Tradebooksource.csv"
/*The delimiter is set to a comma and the Firstobs option specifies that
the first row of data values is row number 2*/
Delimiter = ',' Firstobs = 2;

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 40

Program Code 3.1 continues…

/*The SAS informats contained in the Informat statements manually
define the way in which the data values in the raw data file are read*/
Informat Insttype $6.;
Informat Instid $9. ;
Informat Shortposition 1.;
Informat Holding 5.;
Informat Currency $3.;
Informat Premium 8.;
Informat Underlying $4.;
Informat Sector $10.;
Informat Strike 5.;
Informat Enddate date7.;
Informat Opttype $3.;
Informat Book $9.;
Informat ContractPrice 6.;
Informat SharePrice $10.;
/*The SAS format that is included in the Format statement specifies the
format in which the data values of Enddate is presented*/
Format Enddate date9.;
/*The names of all the variables that are included in the SAS data set
are specified in the Input statement. The names of variables with a
character data type are followed with a "$" sign.*/
Input Insttype $
 Instid $
 Shortposition
 Holding
 Currency $
 Premium
 Underlying $
 Sector $
 Strike
 Enddate
 Opttype $
 Book $
 Contractprice
 Shareprice $;
Run;

It is important to note that in Program Code 3.1 the SAS informats were used in

the Informat statements.

3.2.4.3 Import Wizard

The import wizard is a tool that is used to convert or import raw data files into

SAS data sets. The mouse is used to point and click on options in a series of

windows. The tool has the capability of converting different types of raw data

files into SAS data sets. Examples are comma separated value files (*.csv),

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 41

Microsoft Excel spreadsheets (*.xls) and delimited files (*.*). The import wizard

can also generate program code that is used to perform subsequent conversions

of the same type. To ensure that a correct SAS data set is created, all the date

values in the raw data file are stored in the following format: MM/DD/YYYY.

The steps that are necessary to convert the raw data file, named

Market_History.csv into a SAS data set are discussed in the next few pages. The

first step is selecting the File → Import Data option from the pull-down menus.

The Select import type window as illustrated in Figure 3.3, opens.

Figure 3.3: The Select Import Type window

The selection of Comma Separated Values is made in the Data Source List

option. After clicking on the Next button, the Select file window opens as

illustrated in Figure 3.4.

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 42

 Figure 3.4: The Select File window

The physical location of the file to be imported or converted is specified and the

Next button is clicked. Hence, the Options button is selected and the Delimited

File Options window as illustrated in Figure 3.5 opens.

Figure 3.5: The Delimited File Options window

The value for the First row of data option is set to “2” and the OK button is

clicked. The Select File window (Figure 3.4) opens again and the Next button is

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 43

clicked. The Select Library and member window opens as illustrated in Figure

3.6.

Figure 3.6: The Select Library and member window

The destination library is chosen as Riskdata and Market_History is specified as

the name of the new SAS data set. The Next button is clicked once again and

the Create SAS statements window as illustrated in Figure 3.7 opens.

 Figure 3.7: The Create SAS statements window

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 44

The program code that is created, is saved in the Source folder in a SAS file

named Importcode.sas. The Finish button is clicked to finish the conversion

process. The log window is browsed to check for any error or warning

messages, as well as, to confirm that the raw data file has been successfully

converted into a SAS data set.

The program file, named Importcode.sas is stored in the

C:\Risk_Warehouse\Source folder and is illustrated in Figure 3.8.

 Figure 3.8: The SAS program file Importcode.sas

The SAS procedure Proc Import executes the importation of the data set. The

name of the new SAS data set is specified in the Out option. The Datafile option

is used to specify the physical location of the raw data file that will be converted.

The type of raw data file is specified in the DBMS option. The CSV specification

in this option means that a comma separated value file with an (*.csv) extension

is imported. The Getnames and Datarow statements refer to the headings and

starting point of actual data values in the raw data file.

The procedure Proc Import in Program Code 3.2 is used to convert the remaining

raw data files in the case study into the SAS data sets with the same names.

The newly created SAS data sets are grouped in the SAS library, named

Riskdata. The statements and options in the procedure Proc Import are used in

the same way as in Figure 3.8.

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 45

Program Code 3.2: The conversion of raw data files into a SAS data sets

Proc Import Out = Riskdata.Market_History
 Datafile = "&Rawfiles\Market_history.csv"
 DBMS = CSV Replace;
 Getnames = yes;
 Datarow = 2;
Run;
Proc Import Out= Riskdata.Swapbook
 Datafile = "&Rawfiles\Swapbook.csv"
 DBMS = CSV Replace;
 Getnames = yes;
 Datarow = 2;
Run;
Proc Import Out = Riskdata.Bondbook
 Datafile = "&Rawfiles\Bondbook.csv"
 DBMS = CSV Replace;
 Getnames = yes;
 Datarow = 2;
Run;
Proc Import Out = Riskdata.Yieldcurve_data
 Datafile = "&Rawfiles\Yieldcurve_data.csv"
 DBMS = CSV Replace;
 Getnames = yes;
 Datarow = 2;
Run;
Proc Import Out = Riskdata.Logreturns
 Datafile = "&Rawfiles\Logreturns.csv"
 DBMS = CSV Replace;
 Getnames = yes;
 Datarow = 2;
Run;
Proc Import Out = Riskdata.Scenariodata
 Datafile = "&Rawfiles\Scenariodata.csv"
 DBMS = CSV Replace;
 Getnames = yes;
 Datarow = 2;
Run;

It is simpler and quicker to use Proc Import on a daily basis than to use the

import wizard again.

Chapter 3: The Case Study Definition and Workspace Preparation Steps

 46

3.3 Summary

The case study that is used in the remainder of the document was outlined in

broad terms in Section 3.1. The first steps in implementing a successful risk

management system for the case study were illustrated in the rest of this chapter.

Appropriate raw data files, folders and SAS libraries were created. The methods

that are available to convert or import a raw data file into a SAS data set were

discussed in detail in Section 3.2.4. Seven raw data files were also converted into

SAS data sets. A graphical illustration of the workspace is available in A1 of the

Appendix.

The next step in the process, namely the creation of risk environments is

discussed in the next chapter.

4

RISK ENVIRONMENTS

4.1 Introduction

Consider the case study as described in Section 3.1. The company ActiveGrowth

invested in a portfolio of financial instruments and has the need to calculate

various risk measures that portray the company’s exposure to risk. Various

structures are created in Risk Dimensions in order to implement a suitable risk

management system. Examples of the creation of Risk Dimensions structures

include:

• the registering of variables containing market and position data values,

• the creation of pricing functions and instrument types,

• the registration of market and portfolio data sources,

• the creation of risk factor models and

• the creation of risk analysis structures.

Each risk management problem is unique and requires a different combination of

Risk Dimensions structures. All the structures that are created to address a

particular part of a risk management problem are grouped together in a special

Risk Dimensions structure called a risk environment. One or more risk

environments may be used in a particular risk management system.

Chapter 4: Risk Environments

 48

The main part of SAS Risk Dimensions is the graphical user interface or the

GUI. It is used to view the existing structures in a particular risk environment. The

GUI may also be used to create new risk environments and additional structures

in existing risk environments. A number of pull-down menus that are specifically

designed to assist the creation of new structures exists. The structures are

created one at a time and the occasional text input is also required.

The GUI of each risk environment is divided into six different tree views. Each

tree has a separate tab and is used to display a certain group of Risk Dimensions

structures. The structures are listed in the following tree views:

• The Analysis tree,

• the Portfolios tree,

• the Market Data tree,

• the Risk Models tree,

• the Report Gallery tree and

• the Configuration tree.

SAS programs are also used to create structures in risk environments. The

program code in the SAS procedure Proc Risk is used to create Risk

Dimensions structures.

The process of creating new Risk Dimensions structures in the GUI is easy to

understand and execute. The method of using program code in Proc Risk is more

difficult at first. This method is, however, very effective if the amount of

structures that needs to be created is quite large.

The optimal solution is to use mainly program code, but in certain areas where it

is easier, the GUI method should be used. The GUI is used to view the

structures that were created by Proc Risk in risk environments.

Chapter 4: Risk Environments

 49

It is possible to create more than one risk environment for a risk management

problem. Risk environments are able to inherit information from one another.

This is useful, for example, when pricing functions created in one environment

are used in other environments. The pricing functions are stored at one physical

location on the hard drive, but are used in both environments. A risk environment

inheritance structure may also be specified. This is determined by the order in

which the environments are inherited. This topic is not covered in detail, as the

case study requires only one risk environment.

4.2 The creation of a new environment in the GUI

The following steps illustrate the creation of a new risk environment in Risk

Dimensions. The GUI is used to create the new environment. If the SAS window

environment is open, the icon that activates the GUI is found in the top left-hand

corner of the screen:

Figure 4.1: The GUI Icon

The word risk is typed into the icon and the button is clicked.

Figure 4.2: The GUI Icon with the word risk

The Initial Risk Environment window opens, as illustrated in Figure 4.3.

Chapter 4: Risk Environments

 50

Figure 4.3: The Initial Risk Environment window

The Create a new environment option is selected in this window and the OK

button is clicked. The New Environment window opens:

Figure 4.4: The New Environment window

Chapter 4: Risk Environments

 51

The environment name Casestudy_Env and the description The Case Study

Environment is specified in this window. No inheritance structure is specified and

the OK button is clicked. The Casestudy_Env risk environment opens in the

Analysis tree as illustrated in Figure 4.5. Specific types of Risk Dimensions

structures may be viewed later under the Specifications Library, Analysis Projects

and Results options. In a similar way the other Risk Dimensions structures are

grouped under different options in the other trees. The contents of the other

trees are viewed by clicking on the name of a tab, for example Portfolios.

Figure 4.5: The Analysis tree of Casestudy_Env

The Casestudy_Env is saved in an unspecified default folder. In order to save

the risk environment in the Env folder that was created in Section 3.2.2, the File

→ Save Environment as option from the pull-down menu, is used.

Chapter 4: Risk Environments

 52

The Save Environment window opens in Figure 4.6.

Figure 4.6: The Save Environment window

The Browse button is clicked on and the Save As window as illustrated in Figure

4.7 opens:

Figure 4.7: The Save As window

The Env folder is specified in the Save in option. The file name is specified as

Casestudy_Env with an (*.sas7bcat) extension. The Save button is clicked. The

Save Environment window opens, as illustrated in Figure 4.8.

Chapter 4: Risk Environments

 53

Figure 4.8: The Save Environment window

If the OK button is clicked, a confirmation message that the risk environment has

been saved, appears on the screen. This is illustrated in Figure 4.9.

Figure 4.9: The Confirmation window

4.3 The creation of a new environment with Proc Risk

The starting point of this process is to create a new user-defined macro variable,

named RiskEnv. This macro variable refers to the risk environment with name

Casestudy_Env that is stored as a SAS catalog in Program Code 4.1. The

physical location of the catalog is also specified.

%Let RiskEnv = &RiskPath\Env\Casestudy_Env;

In further program code, the risk environment named Casestudy_Env is referred

to as &RiskEnv. Program Code 4.1 is used to create this new risk environment

that is stored as a SAS catalog in the Env folder. The SAS catalog will also

appear in the SAS library named Env. The Environment statement in Proc Risk

Chapter 4: Risk Environments

 54

is used to create new environments, open existing environments and save

changes to environments.

Program Code 4.1: The creation of a new risk environment, CaseStudy_Env.

/*This procedure creates structures within SAS Risk Dimensions*/
Proc Risk;
/*The Environment statement is used to create a new environment with
name Casestudy_Env in the C:\Risk_Warehouse\Env folder */
Environment new = "&RiskEnv" ;
/*The Environment statements is used to save the Casestudy_Env
environment*/
Environment save;
Run;

If the risk management needs of the case study company had been more

complex it may have been necessary to inherit information from other risk

environments. Suppose the Casestudy_Env risk environment needs to inherit

information from another risk environment, named Physical_Asset_Env, then the

Inherit option in the Environment statement is used to inherit the information as

illustrated in Program Code 4.2.

Program Code 4.2: The inheritance of another risk environment.

Proc Risk;
Environment new = "&RiskEnv" Inherit = "Physical_asset_env";
Environment save;
Run;

If Program Code 4.1 is executed the new risk environment is created. The GUI is

used to view the newly created risk environment. The word risk is typed into the

GUI icon and the button is clicked.

Figure 4.10: The GUI Icon

Chapter 4: Risk Environments

 55

The Initial Risk Environment window opens. The Button: Choose from existing

environments is selected. The Browse button is clicked and the name and

physical location of the Casestudy_Env environment is specified.

Figure 4.8: The Initial Risk Environment window

The OK button is clicked and the risk environment Casestudy_Env opens. The

Analysis tree is viewed as illustrated in Figure 4.9.

Chapter 4: Risk Environments

 56

Figure 4.9: The Analysis tree of Casestudy_Env

In the subsequent SAS programs the procedure Proc Risk is used to create

additional Risk Dimensions structures in this environment. An updated version of

the risk environment is viewed each time, by repeating the steps described

above.

4.4 Summary

The creation of a risk environment by using either the GUI or Proc Risk was

discussed in this chapter. In the case study, the procedure Proc Risk will be used

further to create a series of Risk Dimensions structures that form the risk

management system. The GUI will be used on a regular basis to view these

structures.

5

RISK DIMENSIONS VARIABLES

5.1 Introduction

Risk Dimensions variables are the first Risk Dimensions structures that are

created in a risk environment. The variables are registered in a risk environment

and are used to refer to data values that are needed in different stages of the risk

management process. Some of the uses of the variables are discussed in the

remainder of this section.

Some of the registered variables are used in the valuation of financial

instruments. The following example illustrates the comparison between the

valuation of an instrument in the real world and the steps that are necessary to

implement the valuation process in SAS Risk Dimensions.

Suppose the financial instrument under consideration is an option on an equity.

The Black Scholes pricing function),,,,(0 trKSf σ is used to value each option

in the portfolio where:

• 0S = the current market price of the underlying equity,

• K = the strike price of the option,

• σ = the annual volatility of the underlying equity,

• r = the risk-free rate of interest and

• t = the time to expiry.

Chapter 5: Risk Dimensions Variables

 58

Risk Dimensions variables are used to refer to data values that are used as input

values in the pricing function),,,,(0 trKSf σ .

Consider the Tradebook SAS data set. The data values that are necessary in the

calculation of the pricing function),,,,(0 trKSf σ are stored in the columns with

names Strike, Enddate, OptType and Underlying. For each of the columns a

Risk Dimensions variable with the same name is registered. The rows

(observations) of the data set are read one at a time. Each row represents one

open position held in a financial instrument and contains a record of one

observation for each column. For each row: the variable Strike contains the

strike price (K) of the option, the data value contained in the variable Enddate

minus the date of valuation equals the time to maturity (t) input value, and the

data value in the variable OptType specifies if the option is a call or put and thus,

which Black Scholes pricing method is to be used.

Suppose the data value in the Underlying column for a specific row, is SOL, then

this means that the underlying equity is a Sasol equity. The current data values

of the Sasol equity price and corresponding annualized volatility are contained in

the Market_History SAS data set. Risk Dimensions variables with names SOL

that refer to the price of the underlying equity (0S) and Vol_SOL that refer to the

annualized volatility of the underlying equity (σ), are subsequently registered.

These variables link the data values in Market_History to the pricing function

),,,,(0 trKSf σ .

In the risk management process, a yield curve is constructed. The curve consists

of zero rates (risk-free rates of interest) with varying maturities. A Risk

Dimensions variable is created for each zero rate. Examples of the variable

names are ZR_1_MTH, ZR_3_MTH, ZR_6_MTH, ZR_12_MTH and

ZR_2_YEAR. Linear interpolation is used to derive an estimate for the input

parameter r (for a corresponding t) from the data values contained in these

Chapter 5: Risk Dimensions Variables

 59

variables. It is important to note that the data values that are used in the zero

rate variables like ZR_1_MTH, ZR_3_MTH, ZR_6_MTH, ZR_12_MTH and

ZR_2_YEAR are not stored in SAS data sets. Some of the data values that are

stored in SAS data sets are transformed into data values for these variables.

The transformation process is discussed in Chapter 9.

In the risk management process, financial instruments are grouped or classified
according to data values of registered variables, for example the variable Book.

Each observation in the SAS data sets Tradebook, Swapbook and Bondbook has

one data value for Book. The data values contained in Book are either Com, Der

or Int_Der. The words are shortened descriptions for commodities, derivatives

and interest rate derivatives. All the positions with a data value of Com are

grouped together. This also holds for positions with data values of Der or

Int_Der. The grouping or classification may be used in the creation of sub-

portfolios.

Variables are also used in the calculation of risk measures like Value at Risk

and the modelling of a time series of market data. These topics are discussed

in detail in Chapter 10 and 8. Variables are also used to refer to calculated risk

measure values and references that are used in pricing functions. Examples of

these variables are discussed later in this chapter.

The objective of the rest of this chapter is to guide the user through the process

of variable registration. Variables are defined by the graphical user interface

(GUI) or by using Proc Risk in a SAS program. The GUI registers variables one

at a time, so if the amount of variables to be registered is substantial, the

effectiveness of this method declines. The method of using a SAS program with

Proc Risk as a step, is the preferred method. This method is quite effective for

registering large quantities of variables, since the program code necessary for

the registration of an extra variable is not long. The GUI is used to view the

variables that are registered in the risk environment (see Section 5.2.9). The

Chapter 5: Risk Dimensions Variables

 60

variable structure of a risk environment is listed under the Variables Definitions

option in the Configuration tree in the GUI and is illustrated in Figure 5.1.

Figure 5.1: The Configuration tree of the Casestudy_Env risk environment

If the Variable Definitions option is selected, the different kinds of variables are

shown:

Figure 5.2: The Variable Definitions option in the Configuration tree.

Chapter 5: Risk Dimensions Variables

 61

All variables that have been registered in the risk environment are viewed in the

Configuration tree of the GUI. The variables are listed under the appropriate

variable types, that were assigned during the registration process.

It is important to determine which variables need to be registered and

furthermore, how these variables need to be registered. A variable can be

registered in many different ways. The use of the variable in the risk environment

is the deciding factor in the way it is registered. The different kinds of variables

that are available in each risk environment are discussed in detail in Section 5.2.

The registration process is illustrated in terms of the case study. An alternative

variable registration method, data-driven registration, is discussed in Chapter 6.

Consider the case study again. The variables that need to be registered in the

Casestudy_Env risk environment are broadly divided into two groups:

1. The relevant variables that refer to data values in the Tradebook,

Bondbook, Swapbook, Logreturns, Yieldcurve_data, Market_history

and Scenariodata SAS data sets.

2. The variables that are necessary for the risk management system, but

refer to values that are not available in these SAS data sets.

The variables in group 1 are declared either by using Proc Risk in a SAS

program or data-driven registration (see Chapter 6). The variables contained in

group 2 can only be declared by using Proc Risk.

Table 5.1 contains the name, description, purpose and data type of the variables

that need to be registered for the case study. An example and the group

specification for each variable are also included.

Chapter 5: Risk Dimensions Variables

 62

Table 5.1: List of variables that are registered in the Casestudy_Env environment

Variable
name

Description Purpose of
variable

Data
type

Example Group

Currency Currency of interest
rate

Used in valuation of
instruments

Currency
code

ZAR 1

InstType Type of instrument Classifies an
instrument

Character Equity,
Option,
Future

1

Instid Instrument Identification Unique name for
instrument

Character SOL_001

1

Holding Amount of instruments
in position taken

Used in valuation of
portfolio value

Numeric 10000 1

Shortposition Short position of
position held

Indicates whether
position held, is

long or short

Numeric 0 (long)
1 (short)

1

Strike Strike price of option Used in valuation of
an option

Numeric 100 1

Enddate Redemption day of an
option or future

Used in valuation of
an option or a

future

SAS date
value

16624 1

OptType Type of Option
(EC, AC EP, AP)

Used to contain full
information about
the type of option

Character EC
(European

Call)

1

Input_OptType Type of Option
(Call or Put)

Used in the
valuation of an

option

Character Call 2

Book Book of commodities,
derivatives and interest

rate derivatives

Classify between
different groups of

instruments

Character Der
(Derivative)

1

Premium Price paid for
instrument

Used to calculate
profit of position

Numeric 34.5 1

Sector Equity sector Classify between
equity sectors

Character Fin
(Financials)

1

Underlying Underlying asset of the
derivative

Used in valuation of
an option or a

future

Character SOL 1

Marketprice Market price of equity Used in the
valuation of an

equity

Character ASA 1

Contractprice Contract price of future Used in the
valuation of a future

Numeric 87.2 1

Daily_profit Value of instrument
minus premium paid

Used to calculate
profit of position

Numeric 34.2 2

Coupfreq Frequency of bond
coupon payments

Used in valuation of
a bond

Numeric 6 1

Fixrate Fixed interest rate used
in swap payments

Used in valuation of
an interest rate

swap

Numeric 0.08 1

Notional Notional amount used
in bond and swap

positions

Used in valuation of
a swap and a bond

Numeric 1000 000 1

Chapter 5: Risk Dimensions Variables

 63

Variable
name

Description Purpose of
variable

Data
type

Example Group

Fromdate Date used for exchange
dates in interest rate

swaps

Used in valuation of
an interest rate

swap

SAS Date
Value

16517 1

Ftr_name Name of floating
interest rate

Used in valuation of
an interest rate

swap

Character JB_6_MTH 1

RcveType Indicator of receiving
payments

(floating or fixed)

Used in valuation of
an interest rate

swap

Character Floating 1

Coupon Coupon rate of bonds Used in valuation of
a bond

Numeric 0.13 1

Red_Amount Redemption amount of
bonds

Used in valuation of
a bond

Numeric 100 1

ZR_1_MTH One month zero rate Used in yield curve
construction

Numeric 0.075 2

ZR_3_MTH Three month zero rate Used in yield curve
construction

Numeric 0.077 2

ZR_6_MTH Six month zero rate Used in yield curve
construction

Numeric 0.078 2

ZR_12_MTH Twelve month zero rate Used in yield curve
construction

Numeric 0.08 2

ZR_18_MTH Eighteen month zero
rate

Used in yield curve
construction

Numeric 0.081 2

ZR_2_YEAR Two year zero rate Used in yield curve
construction

Numeric 0.082 2

ZR_30_MTH Twenty four month zero
rate

Used in yield curve
construction

Numeric 0.083 2

ZR_3_YEAR Three year month zero
rate

Used in yield curve
construction

Numeric 0.084 2

ZR_42_MTH Thirty month zero rate Used in yield curve
construction

Numeric 0.085 2

ZR_4_YEAR

Four year zero rate Used in yield curve
construction

Numeric 0.086 2

ZR_54_MTH Fifty four month zero
rate

Used in yield curve
construction

Numeric 0.087 2

ZR_5_YEAR Five year zero rate Used in yield curve
construction

Numeric 0.088 2

ZR_66_MTH Sixty six month zero
rate

Used in yield curve
construction

Numeric 0.089 2

ZR_6_YEAR Six year zero rate Used in yield curve
construction

Numeric 0.0895 2

ZR_78_MTH Seventy eight month
zero rate

Used in yield curve
construction

Numeric 0.09 2

ZR_7_YEAR Seven year zero rate Used in yield curve
construction

Numeric 0.091 2

ZR_90_MTH Ninety month zero rate Used in yield curve
construction

Numeric 0.09 2

ZR_8_YEAR Eight year zero rate Used in yield curve
construction

Numeric 0.094 2

ZR_102_MTH One hundred and two
month zero rate

Used in yield curve
construction

Numeric 0.09 2

Chapter 5: Risk Dimensions Variables

 64

Variable name Description Purpose of
variable

Data
type

Example Group

ZR_9_YEAR Nine year zero rate Used in yield curve
construction

Numeric 0.096 2

ZR_114_MTH One hundred and
fourteen month

zero rate

Used in yield curve
construction

Numeric 0.09 2

ZR_10_YEAR Ten year zero rate Used in yield curve
construction

Numeric 0.098 2

JB_6_MTH JIBAR 6 Month
yield

Used as a floating
rate for interest rate

swaps

Numeric 0.078 1

Prin1 Contains the first
principal

component

Used in risk factor
modelling

Numeric -2.57392 2

Prin2 Contains the
second principal

component

Used in risk factor
modelling

Numeric 1.2453 2

Prin3 Contains the third
principal

component

Used in risk factor
modelling

Numeric -3.14143 2

ASA ABSA equity price Used in valuation of
instruments

Numeric 36.43 1

SOL Sasol equity price Used in valuation of
instruments

Numeric 89.31 1

ISC Iscor equity price Used in valuation of
instruments

Numeric 35.32 1

SLM Sanlam equity
price

Used in valuation of
instruments

Numeric 7.89 1

OML Old Mutual equity
price

Used in valuation of
instruments

Numeric 12.21 1

AGL Anglo equity price Used in valuation of
instruments

Numeric 133.50 1

ASA_Vol Volatility of Absa
equity price

Used in valuation of
an equity option

Numeric 0.31 1

SOL_Vol Volatility of Sasol
equity price

Used in valuation of
an equity option

Numeric 0.28 1

ISC_Vol Volatility of Iscor
equity price

Used in valuation of
an equity option

Numeric 0.24 1

SLM_Vol Volatility of Sanlam
equity price

Used in valuation of
an equity option

Numeric 0.23 1

OML_Vol Volatility of Old
Mutual equity price

Used in valuation of
an equity option

Numeric 0.35 1

AGL_Vol Volatility of Anglo
equity price

Used in valuation of
an equity option

Numeric 0.27 1

UNSTD_1_MTH One month rate Used in yield curve
construction

Numeric 0.067 1

UNSTD_3_MTH Three month rate Used in yield curve
construction

Numeric 0.071 1

UNSTD_6_MTH Six month rate Used in yield curve
construction

Numeric 0.073 1

UNSTD_12_MTH Twelve month rate Used in yield curve
construction

Numeric 0.075 1

Chapter 5: Risk Dimensions Variables

 65

Variable name Description Purpose of
variable

Data
type

Example Group

UNSTD_18_MTH Eighteen month
rate

Used in yield curve
construction

Numeric 0.076 1

UNSTD_2_YEAR Two year rate Used in yield curve
construction

Numeric 0.08 1

UNSTD_30_MTH Twenty four month
rate

Used in yield curve
construction

Numeric 0.081 1

UNSTD_3_YEAR Three year month
rate

Used in yield curve
construction

Numeric 0.082 1

UNSTD_42_MTH Thirty month rate Used in yield curve
construction

Numeric 0.083 1

UNSTD_4_YEAR Four year rate Used in yield curve
construction

Numeric 0.084 1

UNSTD_54_MTH Fifty four month
rate

Used in yield curve
construction

Numeric 0.085 1

UNSTD_5_YEAR Five year rate Used in yield curve
construction

Numeric 0.086 1

UNSTD_66_MTH Sixty six month
rate

Used in yield curve
construction

Numeric 0.087 1

UNSTD_6_YEAR Six year rate Used in yield curve
construction

Numeric 0.0885 1

UNSTD_78_MTH Seventy eight
month rate

Used in yield curve
construction

Numeric 0.09 1

UNSTD_7_YEAR Seven year rate Used in yield curve
construction

Numeric 0.091 1

UNSTD_90_MTH Ninety month rate Used in yield curve
construction

Numeric 0.09 1

UNSTD_8_YEAR Eight year rate Used in yield curve
construction

Numeric 0.094 1

UNSTD_102_MTH One hundred and
two month rate

Used in yield curve
construction

Numeric 0.09 1

UNSTD_9_YEAR Nine year rate Used in yield curve
construction

Numeric 0.097 1

UNSTD_114_MTH One hundred and
fourteen month rate

Used in yield curve
construction

Numeric 0.098 1

UNSTD_10_YEAR Ten year rate Used in yield curve
construction

Numeric 0.101 1

Chapter 5: Risk Dimensions Variables

 66

5.2 The different kinds of variables

5.2.1 General

As mentioned earlier, the purpose and use of a variable in a risk environment,

determines the way in which it is registered.

Each variable is registered as one of the following nine kinds of Risk Dimensions

variables:

1. System defined variables are a list of variables created automatically

by SAS, for example Currency.

2. Instrument variables contain all the available information about

financials instruments when the positions are taken, for example

Premium.

3. Risk factor variables are used to refer to market information, for

example ASA (the ABSA equity price).

4. Risk factor curves are arrays of risk factor variables. An example is a

yield curve that consists of zero rates with different maturities.

5. Output variables are used to carry a value computed in a pricing

method to the output data sets, for example Daily_profit.

6. Reference variables are used to link market information and portfolio

information together during pricing methods. An example of a variable

of this kind is Price.

7. Lag time grids are used when a lagged value of a risk factor is

needed during a pricing method. An example is the value of the risk

factor variable JB_6_MTH four months ago, that is necessary in the

valuation of an interest rate swap.

8. Project variables are an advanced topic of Risk Dimensions. They

are used to pass information between user-defined functions.

Chapter 5: Risk Dimensions Variables

 67

9. State variables are also an advanced feature of SAS Version 9 that
are used to pass market state information between user-defined

functions.

Project and State variables are not discussed in this document.

Each variable is registered or declared as one of the nine kinds of variables

above. In addition, attributes are registered for each variable that elaborates the

way in which it is declared. Certain attributes are compulsory for certain kinds of

variables, whilst various optional attributes also exist.

Irrespective of which kind of variable is considered, the following three attributes

need to be declared:

• Name,

• Type and

• Role.

Each variable must have a valid SAS name with a maximum length of 32

characters. Any combination of characters, numbers and underscores are

allowed in the name. The data type of the values of the variable are defined in

the attribute type. Character and numeric data types are allowed for all the kinds

of variables. Additional data types are available for some kinds of variables. The

role attribute is very useful in certain risk analyses. Special roles are assigned to

some variables, but the majority of variables are assigned a generic role. The

range of optional attributes differs for each kind of variable. More information

will be included in the separate variable discussions.

The seven different kinds of variables that are used most frequently in Risk

Dimensions environments, are discussed in detail in Sections 5.2.2 to 5.2.8. The

case study is used to illustrate the use of each kind of variable.

Chapter 5: Risk Dimensions Variables

 68

5.2.2 System defined variables

Not all the variables that are used in the risk environment are defined by the user.

System defined variables are variables that are automatically created by Risk

Dimensions. A new risk environment already contains system defined variables.

The variables are used in the valuation and grouping of financial instruments. It

is also used for the computed values of the pricing functions of the instruments.

Background information about the most frequently used system defined variables

is discussed in this section.

Consider the three SAS data sets named Tradebook, Swapbook and Bondbook.

These data sets contain information about the open positions held in financial

instruments. The columns with names InstType and Instid are used to contain

information about the type of financial instrument, as well as, a unique

identification. Corresponding system defined variables with the same names

exist. The variables are:

InstType

 This variable provides a link to the Risk Dimensions structure, named

an instrument type. The names of the financial instruments

(instrument types) in the portfolio are stored as data values in this

variable. Instrument types are discussed in detail in Section 7.5.

Examples of data values contained in the variable, are equity, option

and future.

InstID

 This variable refers to an identification of the instrument held in the

open position. An example is SOL_001, which means that the

instrument is the Sasol equity with an identification number of 001.

Chapter 5: Risk Dimensions Variables

 69

As mentioned above, a Risk Dimensions structure, called an instrument type is

created for each type of financial instrument during the creation of the risk

management system. A list of variables is specified for each instrument type

during the creation of the structure. Instid and InstType may not be included in

this list.

The following system defined variables are used to provide information about the

financial instruments in the portfolio and may be included in the variable list of an

instrument type:

Collateral
 It is a numeric flag that identifies instruments that are held as collateral,

but are not owned. Instruments with a non-zero value for Collateral are

only used in credit exposure analysis and are not included in the

portfolio file.

CounterpartyID

 It is a character variable that contains information about the

counterparty of the position held.

Currency

 Instruments can be valued in different currencies. This variable is used

to translate the calculated values in a foreign currency, into the

corresponding value of the reporting currency. Currency is a character

variable of length three and must contain a valid three letter ISO

currency code, for example ZAR.

Holding

 The Holding variable refers to the number of instruments held in the

position.

Chapter 5: Risk Dimensions Variables

 70

Maturitydate

 Maturitydate refers to the maturity date of the instrument held in the

position and must be a valid SAS date value.

NetSetID

 The variable is used to control the netting of instruments in credit

exposure calculations.

ShortPosition

 It is a numeric flag that indicates a short position in the instrument. A

non-zero value indicates a short position.

The following system defined variables are used to contain calculated values.

The calculated values are obtained, for example, from the valuation of an

instrument.

VALUE

 The computed instrument value is assigned to this variable.

The variable _VALUE_ is a required variable in each pricing method.

BaseCase

 It is a zero-one numeric flag that indicates whether the base-case

mark-to-market valuation is being computed.

BaseDate

This variable refers to the date of the base-case mark-to-market.

The following system defined variables contain calculated values and may

appear in any output data set, created by the execution of a risk analysis, for

example Value at Risk.

Chapter 5: Risk Dimensions Variables

 71

Value

 The displayed value is the value of the position held. It is the

 value of one instrument, multiplied by the value in the

 variable Holding, taking short positions and currency

 calculations into account.

NatValue

 It is the value of the open position in the native currency.

 The value of one instrument is multiplied by the value in the

 Holding variable, taking short positions also into account.

FX_Rate

 The value of the foreign exchange rate that is used to translate the

 value of the instrument to the reporting currency, is used in this

 variable.

date

 This variable refers to the date of valuation, on which the

 instruments are priced and the portfolio value is calculated.

 Although this variable is a system defined variable, it is listed in the

 Risk Factor Variables option in the Configuration tree of the GUI.

Cashflow

 The variable is used in the valuation of financial instruments. It is

 discussed in more detail in Section 7.4.3.

Other system defined variables are: Altype, Alposition, Inst_Number, InstSource,

Insttotal, NumeraireCurrency, SimulationCase, SimulationCategory,

SimulationHorizon, SimulationInterval, SimulationMode, SimulationReplication,

SimulationTime, Cfbucket, Cumbucket, Exposure, MacaulayCnvx, MacaulayDur,

Modified_Cnvx, Modified_Dur, Return, _Cash_, _Cumcf_, _Type_, _Name_,

Chapter 5: Risk Dimensions Variables

 72

CValue, _NValue_, _CFCUR_, _CFDate_, _CFAMNT_, Cash_Flows and

Quad_Value. In depth knowledge about these variables is not essential in the

case study risk management system. Hence, these variables are not discussed

in this document. In a different case study problem it might be necessary to study

these variables in more detail.

Case study

All the variables in Table 5.1 must be declared or registered as some kind of Risk

Dimensions variable. The first step of the registration process is to find all the

variables that are already declared as system defined variables. There is no

further need to declare them.

The following variables are already declared as system defined variables:

InstType, Instid, Currency, Holding and Shortposition.

5.2.3 Instrument variables

Variables that refer to information that define some of the characteristics of the

financial instruments in the portfolio are declared as instrument variables.

If a position is taken in an option, the following variables contain information

regarding this position: Strike (strike price of the option), Enddate (date of expiry)

and OptType (the type of option: European call, American call or European put).

The data value in the variable Book namely Der classifies the option as a

derivative. All these variables mentioned and others are declared as instrument

variables.

The Declare Instvars statement is used to declare instrument variables with the

necessary attributes in program code. The general form of this statement follows:

Chapter 5: Risk Dimensions Variables

 73

Declare Instvars = (Name Type Length Role “Optional Attributes”);

A valid SAS name must be specified in the name attribute.

One of the following data types is specified for each instrument variable:

• Num numeric values,

• Char character values,

• Date SAS Date Values and

• Array SAS arrays.

The length attribute is only declared if the type attribute is defined as char. It

specifies the length of the largest data value in the variable. The role attribute

defines the use of the instrument variable. If the variable is used to value an

instrument, the variable is defined as an instrument attribute (role = var). If the

instrument variable is used to group or classify instruments, the variable is

specified as a classification variable (role = class).

If an option is considered again, then variables like Strike, Enddate and OptType

are necessary in the pricing method and are hence defined as instrument

attributes. The data values in the variable Book are used to group or classify the

instruments in the portfolio. Hence, Book is defined as a classification variable.

The following optional attributes may be specified for an instrument variable in

the Declare Instvars statement:

Label = label

 A descriptive character label may be specified for the variable.

Chapter 5: Risk Dimensions Variables

 74

Drop = variable-name

 The variable specified in variable name is not included in the output

data sets (see Section 10.7). Output data sets are created by the

execution of risk analyses such as Value at Risk.

Format = “Format”

 A SAS format, that is used to display the variable values in a certain

format, may be specified.

Group = “Group”

 A group is specified for the variable. Variables are displayed by the

group attributes in the Configuration tree of the GUI. If no group is

specified, this attribute is set equal to the value of the role attribute of

the variable.

Postvar = value

 The value specified in this attribute indicates that the value of the

instrument variable is calculated by a Postvar method program. More

information about Postvar method programs is available in Section 7.4.

Case study

The following variables in Table 5.1 are registered as instrument variables:

Strike, Enddate, OptType, Input_OptType, Book, Premium, Sector, Underlying,

Marketprice, Contractprice, Coupfreq, Fixrate, Notional, Ftr_Name, Fromdate,

Rcvetype, and Red_Amount.

Variables that are registered as instrument variables are used either to:

• Value instruments (role = var) or

• Group or classify instruments (role = class)

Chapter 5: Risk Dimensions Variables

 75

The variables Strike, Enddate and Underlying are used in the valuation of the

options. The data values in the variable OptType specifies if the option is a

European call (EC), an American call (AC) or a European put (EP). The variable

Input_OptType specifies if the option is a call or a put. Marketprice is used in the

valuation of equities, while the variables Contractprice and Underlying are used

in the valuation of futures. The variables Coupfreq, Notional, and Red_Amount

are used in the valuation of government bonds. Fixrate, Notional, Ftr_Name,

Fromdate and Rcvetype are used in the valuation of interest rate swaps. The

Premium variable is used in the calculation of profit. The variables Sector and

Book may be used to classify or group instruments in the portfolio. Program

Code 5.1 illustrates the registration of instrument variables in the Casestudy_Env

risk environment, by using the procedure Proc Risk.

Program Code 5.1: The registration of instrument variables.

/*This procedure creates structures within SAS Risk Dimensions*/
Proc Risk;
/*The Casestudy_Env risk environment is opened*/
Environment open = "&RiskEnv";
/*The following statement declares instrument variables within the
Casestudy_Env environment*/
Declare Instvars =
 (Strike num var Label = "Strike price of option",
 Enddate date var Label = "Date of expiry",
 Premium num var Label = "Cost of instrument",
 Underlying char 12 var Label = "Underlying asset",
 Marketprice char 10 var Label = "The equity price",
 Contractprice num var Label = "Contract price of Future",
 OptType char 6 var Label = "Type of option EC/AC/EP/AP",
 Input_OptType char 6 var Label = "Option type in pricing
 method",
 Sector char 12 class Label = "The Equity Sectors",
 Coupfreq num var Label = "Coupon Frequency",
 Fixrate num var Label = "Fixed Interest Rate in swap",
 Notional num var Label = "Nominal amount of interest
 rate swap",
 Ftr_name char 12 var Label = "Floating Interest Rate
 Name",
 Fromdate date var Label = "Previous exchange date of
 swap",
 Rcvetype char 12 var Label = "Indicator of receiving swap",
 Coupon num var Label = "Coupon rate of bond",
 Red_Amount num var Label = "The Redemption amount of
 the bond",
 Book char 12 class Label = "The type of trade book");

Chapter 5: Risk Dimensions Variables

 76

Program Code 5.1 continues …

/*The Casestudy_Env is saved, with the added instrument variables
declared above*/
Environment save;
Run;

5.2.4 Risk factor variables

The historical information of market variables, for example, equity prices and

interest rates is stored in the SAS data set Market_History in the case study.

Market information has also been used to create the SAS data sets Logreturns

and Yieldcurve_data. The logarithm of the daily return between equity prices has

been calculated in Logreturns. The JIBAR Rates and swap rates were used to

calculate zero rates for different maturities. The calculated zero rates are

contained in Yieldcurve_data. The calculations were done outside of the SAS

environment in Microsoft Excel. Thus, the columns in these SAS data sets

contain observed or derived market information. The column names of these

data sets are registered as risk factor variables.

It is further, possible to use the data contained in the SAS data sets to derive

new data values that are used in the risk management system. These values are

derived or calculated in the Risk Dimensions. It follows that risk factor variables

also have to be created to contain these new data values. Examples of risk

factor variables that are first assigned values in Risk Dimensions, are discussed

in Program Code 5.2 later in this section.

Market variables are used to calculate the value of the financial instruments in

the portfolio. A risk factor variable may be viewed as the Risk Dimensions

variable that corresponds to a market variable. All the different interest rates,

instrument prices and derived variables are declared as risk factor variables in

the risk environment. These risk factor variables are used and referred to in

pricing methods and risk analysis calculations.

Chapter 5: Risk Dimensions Variables

 77

The Declare Riskfactors statement is used to declare or register risk factor

variables in a risk environment and has the following general form:

Declare Riskfactors = (Name Type Role “Optional Attributes”);

One of the following data types is specified for each risk factor variable:

• Num numeric values

• Date SAS date values

The role of a risk factor variable determines how it can be used in risk analyses.

One of the following role attributes is required for a risk factor variable:

• Var specifies an undefined or generic role for the risk factor

 variable.

• IR specifies that the risk factor variable is an interest rate. This

 makes the declaration of the Currency and Maturity

 attributes compulsory.

• FX specifies that the risk factor variable is an exchange rate

 between two currencies. This makes the declaration of

 the Currency, Fromcur and Tocur attributes compulsory.

• FX_Spot specifies that the risk factor variable is a spot exchange rate

 between two currencies. The attributes Currency, Fromcur

 and Tocur must be declared.

• Volatility specifies that the risk factor variable is the volatility of

 another risk factor variable. The Basevar attribute has to be

 specified.

Optional attributes

The following optional attributes may be specified for each risk factor variable in

the Declare Riskfactors statement:

Chapter 5: Risk Dimensions Variables

 78

Basevar = risk-factor-variable-name

The attribute is used when the role attribute is set to Volatility. The

name of the risk factor variable that is provided with a volatility

estimate, is specified.

Category = category-list

The values specified in the category-list option are user-defined. This

attribute is used in the calculation of marginal and conditional Value at

Risk (VaR). Marginal VaR analysis is performed by fixing all the risk

factor variables in the category and changing all the risk factor

variables that are not in the category. Conditional VaR analysis is

performed by fixing all the risk factor variables that are not in the

category and changing all the risk factor variables in the category. The

use of the attribute is discussed in more detail in Chapter 10.

Currency = currency-code

This attribute is used only in the declaration of risk variables with

interest rate roles. It specifies the currency for an interest rate variable.

Format = format

The SAS format that is used to display values of the risk factor variable

that is declared, is specified in this attribute.

Fromcur = currency-code

The currency that is converted by the foreign exchange rate is

specified in this attribute.

Label = variable-label

A descriptive label may be specified for the risk factor variable.

Chapter 5: Risk Dimensions Variables

 79

Laggrid = timegrid-name

The name of the lag time grid structure that contains lagged values of

the risk factor variable declared, is specified. Time grids are discussed

in detail in Section 5.2.8.

Maturity = number

A maturity value is assigned to the risk factor variable. This value is

measured in the maturity unit that is specified in the Munit attribute.

Munit = maturity-unit

A time unit is assigned to the maturity value as specified in the Maturity

attribute.

Mlevel = measurement-level

The measurement level of the risk factor variable is specified as either

interval or ratio. The default value is ratio and may only contain values

greater or equal to nought.

Refmap = Reference-variable - Reference-Key-Value

Reference variables are linked with reference key values by this

attribute. This is essential for use in pricing methods. The use of this

attribute is discussed in more detail in Section 5.2.7.

Tocur = currency-code

The currency that is created by the foreign exchange rate is specified

in this attribute.

Group = variable group

A group is assigned to the risk factor variable. Risk factor variables are

grouped in the GUI according to the value in the group attribute. If the

Chapter 5: Risk Dimensions Variables

 80

group attribute is not explicitly specified, the value is set equal to the

value of the role attribute of the risk factor variable.

Case study

All the market variables containing data values in the Market_History, Logreturns

and Yieldcurve_data data sets are declared as risk factor variables in the

Casestudy_Env risk environment. Other market variables that are derived by

transforming market variables in Risk Dimensions, and that are needed later on

in the risk analysis process, are also declared as risk factor variables. Program

Code 5.2 is used to declare the risk factor variables in the Casestudy_Env risk

environment.

Program Code 5.2: The registration of risk factor variables.

Proc Risk;
Environment open = "&RiskEnv";
/*The following statement declares the risk factor variables in the
Casestudy_Env risk environment*/
Declare Riskfactors =
(JB_6_MTH num ir Label = "Floating Rate of Swap" Laggrid = grid1
 Refmap = (floatingrate = "JB_6_MTH") Currency = ZAR
 Maturity = 0.5 year Category = "IR",
/*The risk factor variable above is declared with a numeric data type
(type = num) and an interest rate role (role = ir). The Maturity
attribute is specified as 6, followed by the maturity unit, namely
month. The Currency attribute is compulsory, because an interest rate
role is specified. Label, Laggrid, Refmap, and Category are optional
attributes that are also specified. */
 SOL num var Group = "Commodity" Label = "Sasol Equity Price"
 Refmap = (price = "SOL") Category = "Commodity"
 Mlevel = interval,
 ASA num var Group = "Commodity" Label = "Absa Equity Price"
 Refmap = (price = "ASA") Category = "Commodity"
 Mlevel = interval,
 SLM num var Group = "Commodity" Label = "Sanlam Equity Price"
 Refmap = (price = "SLM") Category = "Commodity"
 Mlevel = interval,
 ISC num var Group = "Commodity" Label= "Iscor Equity Price"
 Refmap = (price = "ISC") Category = "Commodity"
 Mlevel = interval,
 OML num var Group = "Commodity" Category = "Commodity"
 Label = "Old Mutual Equity Price" Refmap = (price = "OML")
 Mlevel = interval,

Chapter 5: Risk Dimensions Variables

 81

Program Code 5.2 continues …

AGL num var Group = "Commodity" Label= "Anglo Equity Price"
 Refmap = (price = "AGL") Category = "Commodity"
 Mlevel = interval,
/*The six risk factor variables above are declared as having a numeric
data type (type = num) and a generic variable role (role = var). The
Refmap attribute is discussed in more detail in Section 5.2.7. The
Group, Mlevel, Category and Label attributes are also specified. */
 Vol_AGL num volatility Group = "Volatility" Basevar = AGL
 Label = "Volatility in Anglo Equity Price"
 Category = "Volatility",
 Vol_ASA num volatility Group = "Volatility" Basevar = ASA
 Label = "Volatility in Absa Equity Price"
 Category = "Volatility",
 Vol_ISC num volatility Group = "Volatility" Basevar = ISC
 Label = "Volatility in Iscor Equity Price"
 Category = "Volatility",
 Vol_OML num volatility Group = "Volatility" Basevar = OML
 Label = "Volatility in Old Mutual Equity Price"
 Category = "Volatility",
 Vol_SLM num volatility Group= "Volatility" Basevar = SLM
 Label = "Volatility in Sanlam Equity Price"
 Category = "Volatility",
 Vol_SOL num volatility Group = "Volatility" Basevar = SOL
 Label = "Volatility in Sasol Equity Price"
 Category = "Volatility",
/*The six variables above are declared as having a numeric data type
(type = num) and a volatility role (role = volatility). Due to the
volatility role, the Basevar attribute is also specified. The optional
attributes Group and Label are also defined.*/
 ZR_1_MTH num ir Label = "1 month Zero Rate" Currency = ZAR
 Maturity = 1 month Category = "IR",
 ZR_3_MTH num ir Label = "3 month Zero Rate" Currency = ZAR
 Maturity = 3 month Category = "IR",
 ZR_6_MTH num ir Label = "6 month Zero Rate" Currency = ZAR
 Maturity = 6 month Category = "IR",
 ZR_12_MTH num ir Label = "12 month Zero Rate" Currency = ZAR
 Maturity = 12 month Category = "IR",
 ZR_18_MTH num ir Label = "18 month Zero Rate" Currency = ZAR
 Maturity = 1.5 year Category = "IR",
 ZR_2_YEAR num ir Label = "2 year Zero Rate" Currency = ZAR
 Maturity = 2 year Category = "IR",
 ZR_30_MTH num ir Label = "2.5 year Zero Rate" Currency = ZAR
 Maturity = 2.5 year Category = "IR",
 ZR_3_YEAR num ir Label = "3 year Zero Rate" Currency = ZAR
 Maturity = 3 year Category = "IR",
 ZR_42_MTH num ir Label = "3.5 year Zero Rate" Currency = ZAR
 Maturity = 3.5 year Category = "IR",
 ZR_4_YEAR num ir Label = "4 year Zero Rate" Currency = ZAR
 Maturity = 4 year Category = "IR",
 ZR_54_MTH num ir Label = "4.5 year Zero Rate" Currency = ZAR
 Maturity = 4.5 year Category = "IR",
 ZR_5_YEAR num ir Label = "5 year Zero Rate" Currency = ZAR
 Maturity = 5 year Category = "IR",

Chapter 5: Risk Dimensions Variables

 82

Program Code 5.2 continues …

ZR_66_MTH num ir Label = "5.5 year Zero Rate" Currency = ZAR
 Maturity = 5.5 year Category = "IR",
 ZR_6_YEAR num ir Label = "6 year Zero Rate" Currency = ZAR
 Maturity = 6 year Category = "IR",
 ZR_78_MTH num ir Label = "6.5 year Zero Rate" Currency = ZAR
 Maturity = 6.5 year Category = "IR",
 ZR_7_YEAR num ir Label = "7 year Zero Rate" Currency = ZAR
 Maturity = 7 year Category = "IR",
 ZR_90_MTH num ir Label = "7.5 year Zero Rate" Currency = ZAR
 Maturity = 7.5 year Category = "IR",
 ZR_8_YEAR num ir Label = "8 year Zero Rate" Currency = ZAR
 Maturity = 8 year Category = "IR",
ZR_102_MTH num ir Label = "8.5 year Zero Rate" Currency = ZAR
 Maturity = 8.5 year Category = "IR",
 ZR_9_YEAR num ir Label="9 year Zero Rate" Currency = ZAR
 Maturity = 9 year Category = "IR",
ZR_114_MTH num ir Label="9.5 year Zero Rate" Currency = ZAR
 Maturity = 9.5 year Category = "IR",
ZR_10_YEAR num ir Label="10 year Zero Rate" Currency = ZAR
 Maturity = 10 year Category = "IR",
/*The twenty two variables above are used to construct a yield curve.
They are declared as having a numeric data type (type = num) and an
interest rate role (role = ir).Due to the interest rate role, the
Currency and Maturity attributes are also specified. The optional
attributes Label and Category are also defined. Data values are assigned
to these variables in Risk Dimensions. This is discussed in Chapter 9.*/
 UNSTD_1_MTH num var Label = "1 month Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_3_MTH num var Label = "3 month Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_6_MTH num var Label = "6 month Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_12_MTH num var Label = "12 month Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_18_MTH num var Label = "18 month Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_2_YEAR num var Label = "2 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_30_MTH num var Label = "2.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_3_YEAR num var Label = "3 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_42_MTH num var Label = "3.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_4_YEAR num var Label = "4 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_54_MTH num var Label = "4.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_5_YEAR num var Label = "5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_66_MTH num var Label = "5.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_6_YEAR num var Label = "6 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,

Chapter 5: Risk Dimensions Variables

 83

Program Code 5.2 continues …

 UNSTD_78_MTH num var Label = "6.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_7_YEAR num var Label = "7 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
 UNSTD_90_MTH num var Label = "7.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
UNSTD_8_YEAR num var Label = "8 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
UNSTD_102_MTH num var Label="8.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
UNSTD_9_YEAR num var Label = "9 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
UNSTD_114_MTH num var Label = "9.5 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
UNSTD_10_YEAR num var Label = "10 year Unstd Zero Rate"
 Category = "Var" Mlevel = interval,
/*The twenty two variables above are used in the construction of a yield
curve. Although the starting values are interest rates, the variable
may later contain negative values after transformation has taken place.
Thus they are declared as having a numeric data type (type = num) and an
unspecified role (role = var).The Mlevel, Label and Category attributes
are also defined for each variable.*/
 Prin1 num var Mlevel = interval
 Label = "The First Principal Component",
 Prin2 num var Mlevel = interval
 Label = "The Second Principal Component",
 Prin3 num var Mlevel = interval
 Label = "The Third Principal Component");
/*The three variables above are used to refer to the values of the first
three principal components, that are used in the risk management system.
They are declared as having a numeric data type (type = num) and an
unspecified role (role = var). The Mlevel and Label attributes are also
defined for each variable.*/
Environment save;
/*The Casestudy_Env is saved, with the added risk factor variables that
were declared above*/
Run;

5.2.5 Risk factor curves or arrays

Risk factor variables were discussed and declared in the previous section. Risk

factor variables may be grouped together to form another Risk Dimensions

structure called a risk factor curve or a risk factor array. A risk factor curve is

also a special type of a SAS array (see Section 6.2.2). Risk factor curves are

used to construct yield curves and other vector data types in a risk environment.

Chapter 5: Risk Dimensions Variables

 84

The following two steps are necessary in the construction of a yield curve (or

another type of curve) in Risk Dimensions:

1. Register a risk factor variable for each one of a series of interest rates (or

another type of rate), each with a different maturity value (see Section

5.2.4).

2. Create a risk factor curve from these risk factor variables.

Yield curves are generally used in the pricing functions of financial instruments

like options and futures.

The following general form of the Array statement is used to declare risk factor

curves in the Proc Risk procedure.

Array Name Role Elements = () “Optional Attributes” ;

A suitable name for the risk factor array is specified in the name option. The

names of the risk factor variables that are used in the risk factor curve are

specified in the Elements option. Each of these variables must have the same

value specified in the risk factor variable attribute type. There is no need to

specify a type attribute for the risk factor curve as it has the same data type as

the risk factor variables in the curve.

One of the following role attributes is specified for each risk factor curve:

• Var The elements of the array have an undefined or generic role.

• IR Interest rates are the elements of the array. This makes the

 declaration of the Currency attribute compulsory.

• FX The elements of the curve are exchange rates.

Chapter 5: Risk Dimensions Variables

 85

Optional attributes

The following optional attributes may be specified for the risk factor curves:

Category, Currency, Fromcur, Tocur, Group, Label and Refmap. The

descriptions of these attributes are the same as in Section 5.2.4.

Case study

Program Code 5.3 is used to create a risk factor curve named Zero_Curve in the

Casestudy_Env risk environment.

Program Code 5.3: The registration of risk factor curves.

Proc Risk;
Environment open = "&RiskEnv";
Array Zero_Curve ir currency=ZAR
 Elements = (ZR_1_MTH ZR_3_MTH ZR_6_MTH ZR_12_MTH ZR_18_MTH
 ZR_2_YEAR ZR_30_MTH ZR_3_YEAR ZR_42_MTH ZR_4_YEAR
 ZR_54_MTH ZR_5_YEAR ZR_66_MTH ZR_6_YEAR ZR_78_MTH
 ZR_7_YEAR ZR_90_MTH ZR_8_YEAR ZR_102_MTH ZR_9_YEAR
 ZR_114_MTH ZR_10_YEAR)
 Refmap = (Zcurve = "ZAR");
/*The type attribute is omitted and the role attribute is set to
interest rate (ir). The Currency attribute is compulsory. The risk
factor variables that are listed in Elements statement, are included in
the risk factor curve. The Refmap attribute is discussed in more detail
in Section 5.2.7.*/
Environment save;
Run;

The yield curve, named Zero_Curve is used in the valuation of options, futures,

government bonds and interest rate swaps in the Casestudy_Env risk

environment. Consider an option. The Black Scholes pricing function (see

Section 5.1) is used to calculate the value of an option. One input value in this

pricing method is the risk-free rate of interest namely r that corresponds to the

time to expiry (t). The yield curve named Zero_Curve is constructed from the

risk factor variables ZR_1_MTH, ZR_3_MTH, …, ZR_10_YEAR. Each one of

these risk factor variables has an interest rate value and a maturity value.

Suppose the value of t falls between two maturity values on yield curve. The

pricing function or method uses linear interpolation to calculate a value for r

Chapter 5: Risk Dimensions Variables

 86

from the interest rate values of these two neighbouring points. The use of the

yield curve Zero_Curve is discussed in more detail in Section 7.3.

5.2.6 Output variables

A Risk Dimensions structure, called a method program is discussed in Chapter 7.

One kind of method programs, called pricing methods is used to calculate the

current value of each financial instrument in the portfolio. The calculated values

are stored in the SAS data sets called output data sets that are created during

the calculation process. Output variables are used to refer to data values that

are derived from the calculated values in the data sets and the other data values

of instrument variables. The output variables are also viewed in the output data

sets.

An example is used to illustrate the concepts in the previous paragraph. In a

pricing method the value of the instrument is computed and stored in the system-

defined variable named _VALUE_. The instrument variable Premium contains

the purchase price of the financial instrument. An output variable named

Daily_profit, is assigned as _VALUE_ minus Premium. The profit of keeping

each instrument is viewed in the Daily_Profit variable or column of the output

data set Instvals. This data set is created during the execution of the pricing

method (see Section 10.6) and is stored in the Output library.

The general form of the Declare Outvars statement in Proc Risk follows. This

statement is used to register output variables in risk environments.

Declare Outvars = (Name Type Role “Optional attributes”);

A valid SAS name is specified in the Name attribute.

Chapter 5: Risk Dimensions Variables

 87

The Type attribute has two available options, namely:

• Num A numeric output variable is specified.

• Array[n] An output variable that is an array of size n, is specified.

The Role attribute has to be specified as computed. A descriptive label may be

declared in the Label attribute.

Several other optional attributes are also available for output variables.

Examples are Comptype, Postprice and Rollup. The detail of these attributes is

not discussed in this document.

Case study

Program Code 5.4 is used to create the output variable named Daily_Profit in the

Casestudy_Env risk environment.

Program Code 5.4: The registration of output variables.

Proc Risk;
Environment open = "&RiskEnv";
/*The output variable (Role = computed) named Daily_Profit is of numeric
data type and has the optional attribute Label.*/
Declare Outvars = (Daily_Profit num computed
 Label= "The MTM value minus Premium");
Environment save;
/*The Casestudy_Env is saved, with the added output variable declared
above*/
Run;

5.2.7 Reference variables

Reference variables are used to simplify the valuation process of financial

instruments. Reference variables form part of a process called reference
mapping. It enables the usage of a single pricing method for all the financial

Chapter 5: Risk Dimensions Variables

 88

instruments of a certain type. Reference mapping is discussed at the end of this

section.

Reference variables are declared by the Declare References statement in Proc

Risk:

Declare References = (Name Type Length Role “Optional attributes”);

One of the following data types is specified:

• Num is a reference to a numeric Risk Dimensions variable.

• Array is a reference to a risk factor array.

• Parameter is a reference to a Risk Dimensions structure called a

 parameter matrix (see Section 9.2.2).

One of the following roles is specified:

• Var is a reference to a generic risk factor variable.

• IR is a reference to an interest rate variable.

• FX is a reference to an exchange rate variable.

• FX_Spot is a reference to a spot exchange rate.

The optional attributes Label and Group may also be specified for reference

variables.

Program Code 5.5 is used to declare the necessary reference variables in the

Casestudy_Env risk environment.

Chapter 5: Risk Dimensions Variables

 89

Program Code 5.5: The registration of reference variables.

Proc Risk;
/*The Casestudy_Env environment is opened*/
Environment open = "&RiskEnv";
Declare References = (Floatingrate num ir Label = "Ref to interest rate
 in interest rate swap",
 Price num var Label = "Ref to equity price",
 Zcurve array var Label = "Ref to Zero curve");
Environment save;
/*The Casestudy_Env is saved, with the added reference variables
declared above*/
Run;

The explicit declaration of reference variables, as presented in Program Code 5.5

is not necessary. The reference variables were already assigned during the

registration of risk factor variables and risk factor curves. The optional attribute

with name Refmap was used during these registrations. Program Code 5.2 and

5.3 may be viewed to confirm this. The Refmap attribute is discussed in detail in

the reference mapping process that is discussed in this section. If the reference

variables are not registered separately, they are, however not listed under

Reference variables option in the Configuration tree of the GUI.

Reference mapping

A process called reference mapping links open positions in the portfolio data to

the appropriate market information in risk factor variables, to ensure the correct

valuation of the instrument. This enables the usage of a single pricing method for

all the instruments of a certain type.

Consider the following partial trade book and market information of the case

study company Activegrowth Limited:

Chapter 5: Risk Dimensions Variables

 90

Trade book

Insttype Instid Short Holding Currency Underlying Enddate Book ContractPrice
FUTURE SOL_Q42 0 12000 ZAR SOL 17-Jun-04 Der 103.29
FUTURE SOL_Q43 1 8000 ZAR SOL 17-Jun-04 Der 99.55
FUTURE AGL_Q41 0 5000 ZAR AGL 17-Jun-04 Der 145.32
FUTURE AGL_Q42 1 5000 ZAR AGL 17-Jun-04 Der 156.43

Market information

Date ASA AGL ISC OML SLM SOL JB_6_MTH
5/13/2004 45.00 133.50 32.90 11.50 8.55 99.00 0.07638

Valuation

The formula that is used to calculate the mark-to-market value of a future on an

equity may be expressed in the following words:

Value = (Value-of-underlying-equity – Contractprice) x (some-discounting-factor)

The data values of the instrument attributes Enddate and Contractprice are

necessary in the calculation of the formula. These values are obtained from the

trade book or equivalently, the Risk Dimensions structure called a portfolio file

(see Section 9.2.4). The value of the underlying equity, contained in the market

data is also needed. The following reference mapping steps are necessary for

a correct valuation of the future:

Step 1

The optional attribute Refmap is used in the reference mapping process to assign

a reference variable and a reference key value to each risk factor variable that

requires it. The assigning is done during the registration of the risk factor

variable.

Chapter 5: Risk Dimensions Variables

 91

The generic form of the Refmap attribute is:

Refmap = (Refvar = “Refkey”)

The reference variable specified in Refvar is used in pricing methods. The

reference key value specified in “Refkey” is used to find the name of a risk factor

variable that refers to the market information that is used in pricing methods.

The following extract from the program code used in the case study illustrates the

use of the Refmap attribute to assign reference variables:

Extract from Program Code 5.2: The registration of risk factor variables

Declare Riskfactors
(SOL num var Group = "Commodity" Label = "Sasol Equity Price"
 Refmap = (Price = "SOL") Category = "Commodity"
 Mlevel = interval,
 AGL num var Group = "Commodity" Label= "Anglo Equity Price"
 Refmap = (Price = "AGL") Category = "Commodity"
 Mlevel = interval);

The reference variable named Price and reference key values named SOL and

AGL are assigned respectively.

Step 2

The second step of the reference mapping process is done in pricing methods

(see Section 7.4.3). The correct references are made within the pricing method to

enable the use of only one pricing function for instruments of the same type. The

name of an instrument attribute is used to reference it. The reference to a risk

factor variable has the following generic form:

Referencevariable.InstrumentAttribute

Chapter 5: Risk Dimensions Variables

 92

The following program code in the pricing method is used to value the future:

VALUE = (Price.Underlying - ContractPrice)*discountingfactor);

The name of the reference variable is Price and the name of the instrument

attribute is Underlying. The data values of Underlying provide a link to the risk

factor variables SOL and AGL. The data values of these risk factor variables are

necessary for correct valuation. It also follows that the values specified in the

Refkey attributes in step 1 are data values of the instrument attribute Underlying

in the trade book.

It is important to note that only step 1 of the reference mapping process takes

place in this chapter. The second step namely the creation of pricing methods is

discussed in Section 7.4.3. The pricing methods and the reference mapping

process are only executed in Chapter 10. It is important in this chapter to create

the correct reference variables and Refmap attributes. A closing remark is to note

that reference variables are only used in pricing methods and not in other

structures in Risk Dimensions.

5.2.8 Lag time grids

The pricing method of most financial instruments requires only position

information and the current values of the risk factor variables. A historical or
lagged value of a risk factor variable is, however necessary in the valuation of

interest rate swaps. The value of the next floating payment is necessary in the

valuation of the instrument. This value is usually determined by the value of the

floating interest rate six months before the next exchange date. The historical

value of the floating rate or corresponding risk factor variable has to be obtained

for use in the pricing method.

Chapter 5: Risk Dimensions Variables

 93

The Risk Dimensions variable, named a lag time grid provides part of a solution

to this problem. A lag time grid is defined as a list of time element
specifications that is used to obtain lagged or historical values of risk factor

variables. The historical values of the risk factor variables are stored in a SAS
data set. The pricing method as discussed in Section 7.4.3 uses lag time grids to

access the correct historical value in the SAS data set. Lagged values may be

actual historical values, simulated values or linearly interpolated values and are

defined with respect to the date of valuation.

The Timegrid statement in the Proc Risk procedure is used to define a lag time

grid. A list of time element specifications is also assigned in this statement.

Program Code 5.6 is used to create a lag time grid in the Casestudy_Env risk

environment.

Program Code 5.6: The creation of a lag time grid in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
/*A lag time grid named Grid1 is created in the following statement. A
list of time element specifications is also assigned*/
Timegrid Grid1 (1 month, 45 days, 2 month, 75 days, 3 month, 4 month,
 5 month,6 month, 12 month);
Environment save;
Run;

In order to link a risk factor variable to the appropriate lag time grid, the Laggrid

attribute is specified during risk factor variable registration. In the case study the

risk factor variable JB_6_MTH is used to contain historical values of floating

interest rates. The following extract from Program Code 5.2 illustrates how the

risk factor variable JB_6_MTH is linked with the lag time grid named Grid1.

Extract from Program Code 5.2: The registration of risk factor variables

Declare Riskfactors =
(JB_6_MTH num ir Label = "Floating Rate of Swap" Laggrid = grid1
 Refmap = (floatingrate = "JB_6_MTH") Currency = ZAR
 Maturity = 0.5 year Category = "IR",

Chapter 5: Risk Dimensions Variables

 94

It is important to note that the lag time grid named Grid1 has to be created first,

before it may be referred to in the Laggrid attribute. Thus, Program Code 5.6 has

to be submitted before Program Code 5.2.

The lagged values of the risk factor variables are used in the pricing methods of

instruments like interest rate swaps. There are two methods available to access

these values, namely the use of variable suffixes or the Rlag() function.

Variable suffixes are used to retrieve the actual lagged values for all the

available time points. The three suffixes available are:

• .lgrid It returns the actual values of lag time grid points stated in

 terms of portion of a year.

• .lags It returns the values of the risk factor variable at the points of

 the grid in correspondence with .lgrid.

• .nlag It returns the size of the lag time grid.

The suffixes are concatenated with the name of the lag time grid when used in

pricing methods, for example Grid1.lgrid, Grid1.lags and Grid1.nlag. The

disadvantage of this method is that a lot of time points are not defined and a lot of

lagged values are thus irretrievable. This method is not used for the case study.

The Rlag() function, used in pricing methods, makes use of linear interpolation

to retrieve the lagged values. The general form of the function is:

Lagged_value = Rlag(Risk-factor-variable-name, Time-value);

The value specified in Time-Value is stated in terms of a portion of a year. The

function does not make allowance for extrapolation. If the Time-Value specified

is larger than the largest time element specified in the lag time grid, a missing

Chapter 5: Risk Dimensions Variables

 95

value is returned. It is also important to note that the accuracy of the linear

interpolation increases if more time points are specified in the lag time grid.

The following statement is used in the pricing method of interest rate swaps in

the case study:

Flotrate = Rlag(floatingrate.ftr_name, (_date_ -fromdate)/365.25);

The use of lag time grids in pricing methods is discussed in more detail in Section

7.4.3.

5.2.9 The use of the GUI to view changes in the risk environment

The graphical user interface (GUI) is activated to view the changes that have

been made by the Proc Risk procedure to the risk environment. The variables

that were registered in the Casestudy_Env risk environment are used to illustrate

the process of activating the GUI. This activation, may however be done after

each execution of a Proc Risk procedure.

To activate the GUI, the word risk is typed into the GUI icon and the button is

clicked.

Figure 5.3: The GUI Icon

The Initial Risk Environment Window opens. The Choose from existing

environments option is chosen. The Browse button is used to set the location

and file name of the existing environment to C:\Risk_Warehouse\Env\

casestudy_env. After these options have been chosen the OK button is clicked.

Chapter 5: Risk Dimensions Variables

 96

Figure 5.4: The Initial Risk Environment Window

The GUI opens and the contents of the Casestudy_Env risk environment are

viewed. The variables that were created by Program Code 5.1 to 5.6 are viewed

under the Variable Definitions option in the Configuration tree. The registered

instrument variables are viewed in Figure 5.5 and are grouped according to the

attribute role. A window that contains the attribute information about a variable, is

opened when a variable name is double clicked on.

Figure 5.5: The Variable Definitions option in the Configuration Tab

Chapter 5: Risk Dimensions Variables

 97

The registered risk factor variables are viewed in Figure 5.6 and are grouped

according to the Group attribute. A window containing the variable attribute

information is opened when a variable name is double clicked on.

Figure 5.6: The Risk Factor variables in the Variable Definitions option

The other kinds of variables may be viewed in a similar way.

5.3 Summary

The registration of Risk Dimensions variables was discussed in this chapter. It

forms a very important part of the risk management system. All the necessary

variables must be determined and registered in the correct way. The variables

are used in the Risk Dimensions structures that are discussed in later chapters of

this document.

6

DATA PREPARATION AND
DATA-DRIVEN REGISTRATION

6.1 Introduction

The data values in SAS data sets are used in the execution of various risk

analyses in Risk Dimensions. Different risk analyses require different data

values and SAS data sets. The creation of the appropriate SAS data sets may

be done by two methods. Table 6.1 contains a brief summary of the two

methods.

Table 6.1: The data preparation methods

Steps Method 1 Method 2

1 The creation of raw data files The creation of raw data files

2 The modification and combination

of raw data files

The conversion of raw data files

into SAS data sets

3 The conversion of raw data files

into SAS data sets

The modification and combination

of SAS data sets

Consider the first method. The observed data values are captured in raw data

files. The raw data files are then modified or combined to create new raw data

files that contain the appropriate information for the risk analyses. These data

files are created outside of the SAS window environment in a program such as

Chapter 6: Data Preparation and Data-Driven Registration

 99

Microsoft Excel for example. The raw data files are converted or imported into

SAS data sets. The data values in these sets are used in the execution of various

risk analyses. The detail of the first method was discussed in Chapter 3.

Consider the second method. The observed market, position and other

information, are again, captured in raw data files. These files are imported or

converted into SAS data sets. These SAS data sets are modified and combined

to form new SAS data sets that contain the appropriate data values for the risk

analyses. Steps 1 and 2 of this method were also discussed in Chapter 3. Step 3

namely the modification and combination of SAS data sets are discussed in

Sections 6.2 and 6.3 of this chapter.

A combination of the two methods is used in the case study. Data preparation is

done inside and outside of the SAS window environment. Some preparation

steps are easier in Microsoft Excel than in the SAS environment and vice versa.

An alternative variable registration method, namely data-driven registration

may be used to register Risk Dimensions variables. The column names of SAS

data sets, for example Tradebook and Market_History are registered as

instrument variables and risk factor variables. In order to understand and

execute the process of data-driven registration, it is necessary understand the

method of modifying SAS data sets.

6.2 The modification of SAS data sets

The SAS concepts and SAS structures that are used to modify SAS data sets are

discussed in this section.

Chapter 6: Data Preparation and Data-Driven Registration

 100

6.2.1 The basic Data step and column specification

The basic Data step is used to modify an existing SAS data set in this section.

An input SAS data set is modified and stored as a SAS data set with either the

same name or a new name. If the same name is specified, the new SAS data

set replaces the existing SAS data set. If a new name is specified, a new SAS

data set is created and the existing SAS data set still exists.

The Data step that is used is slightly different from the Data step that was

discussed in Section 3.2.4. The new SAS data set that is created is specified in

the Data statement. The Set statement is used to read the input SAS data set

with all its observations (rows) and variables (columns). In order to overwrite an

existing SAS data set, the same name is specified in both the Data and Set

statements.

Not all the variables in the existing SAS data set need to be written to the new

SAS data set. Two data set options, namely the Drop and Keep options are used

to specify the variables that are written to the new SAS data set. The Drop

option specifies the variables that are not written to the new SAS data set. The

Keep option specifies the variables that are written to the new SAS data set.

They are mutually exclusive options and only one is used, depending on the

easiest to implement. The Rename option is used to give columns in the input

SAS data set, new names in the new SAS data set. Example 6.1 is used to

illustrate the basic modification of SAS data sets.

Example 6.1: The specification of columns or variables in SAS data sets

Consider the Tradebook SAS data set again. It has 49 observations and 14

variables. The variables are Insttype, Instid, Shortposition, Holding, Currency,

Premium, Underlying, Sector, Strikeprice, Enddate, Opttype, Book, ContractPrice

and Marketprice. The following data step is used to create a new SAS data set

Chapter 6: Data Preparation and Data-Driven Registration

 101

that contains all the observations, but only the following columns: InstType,

InstrumentId, Shortposition, Holding, Currency and Premium. The variable

InstrumentId is the new name for the variable Instid that was specified in the

input data set.

Program Code 6.1: The registration of output variables

/*A new SAS data set named NewTradebook is created in the library
RiskData. The Keep option specifies the variables that are included.*/
Data RiskData.NewTradebook (Keep = InstType InstrumentId
 Shortposition Holding Currency Premium);
/*The input data set is Tradebook and is stored in the Riskdata library.
The variable Instid in the input SAS data set has the new name
InstrumentID in the new SAS data set*/
Set RiskData.Tradebook (rename = (Instid = InstrumentID));
Run;

The Keep option in Program Code 6.1 may be replaced by the following Drop

option and will lead to the same result.

(Drop = Underlying Sector Strikeprice Enddate Opttype Book
 ContractPrice Shareprice)

6.2.2 Creating new variables

The assignment statement in the Data step is used to create new variables in

existing SAS data sets. The general form of the assignment statement is:

New-Variable = expression;

The name of the new variable is specified in the New-Variable option. The

expression is any valid combination of constants, existing variables,

operators, internal SAS functions (see Table 6.3) and parentheses.

Constants are values that are of character or numeric data type, for example the

word JIBAR or the number 10. All the variables in the input data set may be used

in the expression. The use of SAS functions in the expression is discussed after

Chapter 6: Data Preparation and Data-Driven Registration

 102

Example 6.2. Table 6.2 contains all the operators and parentheses that are valid

for use in the expression of the assignment statement.

Table 6.2: Operators and parentheses

Symbol Definition
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
() Grouping

Parentheses are used in program code to present expressions in a neat and

easy understandable way. Parentheses may be used nested and each left

parenthesis must have a corresponding right parenthesis.

The Length statement is used to define the length of data values of a variable in

the SAS data set explicitly. The statement is made before the variable is used in

an expression. If no length statement is used, the length of the data values of the

variable is determined in the assignment statement. The general form of the

length statement is:

Length variable(s) $ length;

Example 6.2 is used to illustrate the addition of new variables in an existing SAS

data set. A new SAS data set is formed.

Example 6.2: The assignment of new variables and length specifications

Suppose new variables, for example Total_Outlay of numeric data type and

Region of character data type are created for an existing SAS data set. The

length statement is used to explicitly define the length of the data values of these

Chapter 6: Data Preparation and Data-Driven Registration

 103

variables. Program Code 6.2 is used to create these new variables and length

specifications:

Program Code 6.2: The creation of new variables and length specifications

/*A new SAS data set named WesternCape_Outlay is created in the library
Work. The Keep option specifies the variables that are included in the
new SAS data set.*/
Data Work.WesternCape_Outlay(keep=Total_Outlay Region);
/*The input data set Tradebook is stored in the Riskdata library.*/
Set RiskData.Tradebook;
/*The Length statement specifies the maximum length of the data values
for the new variables Total_Outlay and Region*/
Length Total_Outlay 8 Region $ 15;
/*The general form of the assignment statement is New-Variable =
expression;*/
Total_Outlay = Holding*Premium;
Region= "Western Cape";
Run;

The total outlay is the amount of units bought or sold (Holding) multiplied by the

purchase price (Premium) per unit. The variable Region indicates the region

where the units have been bought. The newly created SAS data set

WesternCape_Outlay is viewed in Figure 6.1.

Figure 6.1: The WesternCape_outlay SAS data set

Chapter 6: Data Preparation and Data-Driven Registration

 104

Internal SAS functions

A wide variety of built-in or internal SAS functions exist and are used to assign

data values to new variables in the data step. The SAS functions are used in the

expression option of the assignment statement. The SAS functions are divided

into the following three groups: SAS date functions, SAS character functions

and SAS arithmetic functions.

SAS date functions are used only in the Data step. Their input arguments are

single data values or variables referring to many data values. The data type of

the input arguments has to be in the correct format as illustrated below. The

following SAS date functions are frequently used in data steps:

Year(SAS-date)

 Calculates the appropriate year from a SAS date value and returns the

year as a four digit value.

Qtr(SAS-date-value)

 Calculates the appropriate quarter of year from a SAS date value and

returns a number from 1 to 4.

Month(SAS-date-value)

 Calculates the appropriate month from a SAS date value and returns a

number from 1 to 12.

Day(SAS-date-value)

 Calculates the appropriate day from a SAS date value and returns a

number between 1 and 31.

Chapter 6: Data Preparation and Data-Driven Registration

 105

Weekday(SAS-date-value)

 Calculates the appropriate day of the week from a SAS date value and

returns a number from 1 to 7, where 1 represents Sunday, 2 Monday

etc.

Intnx(“interval”,start-from-date-value,increment)

 A SAS date value is incremented by a specified number of intervals to

form a new SAS date value. The original SAS date value is specified in

the start-from-date-value option, the length of the intervals in “interval”

and the number of increments in increment. The function returns the

new SAS date value. For example, an increment of 1 and an

“interval” of “month” advances the start-from-date-value forward to the

date of the first day of the next month. If the increment was specified

as 0, the SAS date value of the first day of the month in which the start-

from-date-value is contained would have been returned.

Intck(“interval”,date1,date2)

 An interval length is specified in “interval”. The function returns the

number of these intervals between the two specified dates.

Mdy(month,day,year)

 This function calculates the SAS date value from the specified month,

day and year input values.

Today()

 The data value of today is obtained from the system clock and returned

 in SAS date value format.

More SAS date functions exist, but are not discussed. Program Code 6.3 is used

to illustrate the way in which SAS date functions are used in the data step.

Chapter 6: Data Preparation and Data-Driven Registration

 106

Program Code 6.3: The use of SAS date functions

/*A SAS data set named DateValues is created in the temporary library
Work*/
Data Work.DateValues;
/*The Today() SAS function obtains the SAS date value of today from the
 internal clock (16238) and assigns it to variable Today_Date */
Today_Date = Today();
/*The year in which the variable Today_Date falls (2004) is extracted
 by the SAS function Year and is assigned to the variable This_Year*/
This_Year = Year(Today_Date);
/*The quarter of the year in which the variable Today_Date falls (2)
 is extracted by the SAS function Qtr and is assigned to the variable
This_Quarter*/
This_Quarter = Qtr(Today_Date);
/*The month in which the variable Today_Date falls (6) is extracted by
the SAS function Month and is assigned to the variable This_Month*/
This_Month = Month(Today_Date);
/*The day of the month on which the variable Today_Date falls (16) is
extracted by the SAS function Day and is assigned to the variable
 This_Day*/
This_Day= Day(Today_Date);
/*The day of the week on which the variable Today_Date falls (4) is
extracted by the SAS function Weekday and is assigned to the variable
This_Weekday*/
This_Weekday = Weekday(Today_Date);
/*The SAS function Intnx assigns the variable First_of_This_Month the
value of the first day of the month in which the variable Today_Date
falls (16223)*/
First_of_This_Month = Intnx("month",Today_Date,0);
/*The SAS function Intnx assigns the variable First_of_Next_Month the
value of the first day of the next month after the month in which
the variable Today_Date falls (16253)*/
First_of_Next_Month = Intnx("month",Today_Date,1);
/*The SAS function Intck counts the number of intervals (Days) between
the data values of the First_of_This_Month and First_of_Next_Month
variables. (31)*/
Number_Days = Intck("day",First_Of_This_Month,First_Of_Next_Month);
/*The SAS function Mdy assigns the SAS date value, obtained by the
input parameters contained in the following variables: This_Month,
This_Day and This_Year to the variable Todays_Date_Value (16238)*/
Todays_Date_Value = Mdy(This_Month,This_Day,This_Year);
Run;

The SAS data set named Datevalues in the Work library is viewed in Figure 6.2.

Figure 6.2: The Datevalues SAS data set

Chapter 6: Data Preparation and Data-Driven Registration

 107

Although the use of the SAS date values is described for only one observation of

the variables in Example 5.4, the program code is capable of handling variables

with many data values.

SAS character functions are used to modify the data values of variables that

are of character data type. New character variables are also created.

The following SAS character functions are used in Data steps:

Upcase(argument)

 All the character values in the argument are converted into the

uppercase.

Scan(argument,n,delimiter)

 The delimiter specified splits the argument into parts. The n input

parameter specifies which part of argument is returned by the function.

Index(argument,extract)

 The function returns the position of the first occurrence of the extract in

the argument.

Substr(argument,position,n);

 The function is used to either extract or replace a substring of the

argument. The placement in the expression determines the result of

using this function. This concept is discussed in more detail in the

example below.

Compress(argument, “characters- to-remove”)

 This function removes specific characters from a character string. The

specific characters are specified in the “characters to remove” option.

Chapter 6: Data Preparation and Data-Driven Registration

 108

More SAS character functions exist, but are not discussed in this document. It is

important to note that all character comparisons are case-sensitive. Program

Code 6.4 is used to illustrate the use of SAS character functions in the data step.

Program Code 6.4: The use of SAS character functions

/*A data set named CharacterValues is created in the temporary library
Work*/
Data Work.CharacterValues;
/*The character string "jb_1_mth" is assigned as data value to the
variable Interest_Rate*/
Interest_Rate = "jb_1_mth";
/*The SAS function Scan is used to assign the character string before
the first "_" of the data value of variable Interest_Rate (jb) to the
variable Prefix*/
Prefix = Scan(Interest_Rate,1,"_");
/*The SAS function Scan is used to assign the character string before
the second "_" and after the first "_" of the data value of variable
Interest_Rate(1) to the variable Mat_Num.*/
Mat_Num = Scan(Interest_Rate,2,"_");
/*The SAS function Scan is used to assign the character string before
the third "_" and after the second "_" of the data value of variable
Interest_Rate (mth) to the variable Mat_Unit.*/
Mat_Unit = Scan(Interest_Rate,3,"_");
/*The SAS function Index returns the position (6) of the extract "m" in
the data value of the variable Interest_Rate*/
Index_M = Index(Interest_Rate,"m");
/*The SAS function Substr extracts the first to second characters of the
data value of Interest_Rate (jb) and assigns this substring to the
variable Prefix1*/
Prefix1 = Substr(Interest_Rate,1,2);
/*The SAS function Upcase converts all the data values of the variable
Prefix1 and assigns this character string (JB) to the variable
Upcase_Prefix*/
Upcase_Prefix = Upcase(Prefix1);
/*The SAS function Substr replaces the first and second characters of
the data values of the variable Interest_Rate (jb) with the data values
contained in the variable Upcase_Prefix (JB)*/
Substr(Interest_Rate,1,2) = Upcase_Prefix;
/*The SAS function Compress removes the substring "mt" from the data
values of the variable Interest_Rate and assigns the remaining substring
(JB_1_h) to the variable New_Rate*/
New_Rate = Compress(Interest_Rate,"mt");
Run;

The SAS data set named Charactervalues that is grouped in the Work library is

viewed in Figure 6.3.

Chapter 6: Data Preparation and Data-Driven Registration

 109

Figure 6.3: The Charactervalues SAS data set

SAS arithmetic functions are used to create summary statistics in the data

step. The following arithmetic functions are used:

Sum(argument,argument,….)

 The function returns the sum of the input arguments.

Mean(argument,argument,….)

 The function returns the arithmetic average of the input arguments.

Program Code 6.5 is used to illustrate the use of SAS arithmetic functions in the

data step.

Program Code 6.5: The use of SAS arithmetic functions

/*A data set with the name ArithmeticValues is created in the temporary
library Work*/
Data Work.ArithmeticValues;
/*The SAS function Sum assigns the sum of the input values to the
variable Total*/
Total = Sum(10000,5000,12000,12200);
/*The SAS function Mean assigns the arithmetic mean of the input
parameters to the variable Average*/
Average = Mean(10000,5000,12000,12200);
Run;

The Arithmeticvalues SAS data set in the Work library is viewed in Figure 6.4.

Chapter 6: Data Preparation and Data-Driven Registration

 110

Figure 6.4: The Arithmeticvalues SAS data set

Conditional logic

Conditional statements like the Else If-Then statement are also used to create

new or additional variables in the SAS data set. The value of a new variable is

based on whether a specified condition in the expression statement is true or

false.

The general form of the Else If-Then statement in the data step follows:

If expression then statement;
Else If expression then statement;
Else If expression then statement;
….

Table 6.2 contains the valid comparison operators that may be used in the

expression of the Else If-Then statement.

Table 6.2: Comparison operators

Letters Symbol Definition
EQ = equal to
NE ^= not equal to
GT > greater than
LT < less than
GE >= greater than or equal to
LE <= less than or equal to
IN equal to one of a list

Chapter 6: Data Preparation and Data-Driven Registration

 111

Program Code 6.6 illustrates the use of conditional logic to create new variables

to existing SAS data sets. The data values of the new variables Position and

Holding_Group and Business are based on the data values contained in

Shortpostion, Holding and Instid respectively.

Program Code 6.6: The use of conditional logic to create new variables in
 SAS data sets

/*The SAS data set NewTradebook is created in the temporary library
Work. The Keep option specifies the variables that are included in this
data set.*/
Data Work.NewTradebook(keep = InstType Instid ShortPosition Position
 Holding Holding_Group Business);
/*The Set statement specifies that the input SAS data set named
Tradebook is stored in the Riskdata library*/
Set Riskdata.Tradebook;
/*The following statement specifies the maximum length of the data
values of the new variables*/
Length Position $ 6
 Business $ 15
 Holding_Group $ 8;
/*The Else-If-Then statement and comparison operator "=" are used to
assign data values to the new variable Position*/
If ShortPosition = 1 then Position= "Short";
Else if ShortPosition = 0 then Position = "Long";
/*The Else If-Then statement, comparison operators "=", ">=", "<" and
the logical operator (and) are used to assign data values to the new
variable Holding_Group*/
If Holding < 5000 then Holding_Group = "Small";
Else if Holding >= 5000 and Holding < 10000 then
 Holding_Group = "Medium";
Else if Holding >= 10000 then Holding_Group = "Large";
/*The Else-If-Then statement, the Substr function and comparison
operator (in) are used to assign data values to the new variable
Business*/
If
Substr(Instid,1,3) in ("SOL" "AGL" "ISC") then Business = "Resources";
Else if
Substr(Instid,1,3) in ("OML" "SLM") then Business = Life_Insurer";
Else if
Substr(Instid,1,3) = 'ASA' then Business = "Bank";
Run;

The SAS data set named Newtradebook in the Work library is viewed in Figure

6.5.

Chapter 6: Data Preparation and Data-Driven Registration

 112

Figure 6.5: The NewTradebook SAS data set

The Else If-Then statement may also be used in method programs that are

discussed in Section 7.3.

The do loop

The do loop is used to perform repetitive calculations and thus simplify program

code. This loop is used in data steps or in method programs.

The general form of the simple iterative do loop is:

Do index-variable = start To stop By increment;
SAS statements
End;

The start, stop and increment values are established at the start of the Do loop

and cannot be changed during the iterative process. The default value specified

for increment is 1.

Chapter 6: Data Preparation and Data-Driven Registration

 113

The structure of the do loop may be modified into a do loop with a value list
that has the following general structure:

Do index-variable = value1, value2, value3, ...;
SAS statements
END;

Program Code 6.7 illustrates the use of both forms of the do loop.

Program Code 6.7: Both forms of the do loop

/*The SAS data set DoLoopValues is created in the temporary library
Work. The Drop option specifies the variables that are not included in
the data set.*/
Data Work.DoLoopValues(drop = n);
/*The values of the variables, Sum1 and Sum2 are initialized as nought*/
Sum1=0;
Sum2=0;
/*The general form of the Do loop is used to calculate the sum of the
the numbers 1 to 100*/
Do n = 1 to 100;
Sum1 =Sum1 + n;
End;
/*The Do loop with a value list is used to calculate the sum of the
values specified in the value list*/
Do n= 1,3,5,7,8,9,15;
Sum2 = Sum2+n;
End;
Run;

The SAS data set DoLoopvalues in the Work library is viewed in Figure 6.6.

Figure 6.6: The DoLoopvalues SAS data set

Chapter 6: Data Preparation and Data-Driven Registration

 114

SAS Arrays

In the SAS program language, a SAS array is not a data structure, but rather a

temporary grouping of certain variables in a specified order. A SAS array is

identified by an array name, is not a variable and exists only for the current

duration of the data step that it is used in. Each value in an array is called an

element and is referenced by a subscript that represents the position of the

element in the array. SAS arrays are used in data steps, user-defined SAS

functions (see Section 7.2) and method programs. They are also used with the

do loop to perform repetitive calculations.

In Section 5.2.5 the Risk Dimensions variable, named risk factor curves or risk

factor arrays were discussed. Risk factor arrays are a special type of a SAS

array. In the following extract from Program Code 5.3 the use of the Array

statement to create SAS arrays is illustrated. The name of the array is specified

as Zero_Curve and the elements are specified as ZR_1_MTH,

ZR_3_MTH,…, ZR_10_YEAR.

Extract from Program Code 5.3: The registration of risk factor arrays

Array Zero_Curve ir Currency = ZAR
 Elements = (ZR_1_MTH ZR_3_MTH ZR_6_MTH ZR_12_MTH ZR_18_MTH
 ZR_2_YEAR ZR_30_MTH ZR_3_YEAR ZR_42_MTH ZR_4_YEAR
 ZR_54_MTH ZR_5_YEAR ZR_66_MTH ZR_6_YEAR ZR_78_MTH
 ZR_7_YEAR ZR_90_MTH ZR_8_YEAR ZR_102_MTH ZR_9_YEAR
 ZR_114_MTH ZR_10_YEAR)
 Refmap =(Zcurve = "ZAR");

The do loop that was discussed earlier in this section is used together with SAS

arrays to perform repetitive calculations. Suppose that the value of each element

of Zero_Curve has to be incremented by one percentage point, then Program

Code 6.8 is used to make this adjustment.

Chapter 6: Data Preparation and Data-Driven Registration

 115

Program Code 6.8: The do loop and SAS arrays in repetitive calculations

/*Each element is referenced by its position in the array, for example
Zero_Curve{5} refers to ZR_18_MTH*/
Do i = 1 to 22;
Zero_Curve{i} = Zero_Curve{i}+ 0.01;
End;

The use of SAS arrays and do loops to perform repetitive calculations are further

illustrated in Section 7.3.

6.2.3 Controlling the rows of a SAS data set

Consider the Data step again. The name of the new SAS data set is specified in

the Data statement and the name of the input SAS data set is specified in the Set

statement. Two new statements, namely the If statement and Where statement

are used to control the rows of the new SAS data set. These statements select

a subset of the rows of the input SAS data set and only these rows are written to

the new SAS data set. The data values of the variables (columns) of the SAS

data set are used in these statements to determine the subset of rows. The

variables are, either already in the input SAS data set or are newly created

variables in the Data step.

The use of the If and Where statements in terms of controlling the rows are

illustrated in terms of the SAS data set with name Tradebook that is stored in the

Riskdata library.

The If statement is used only in the data step and has the following general

form:

If expression;

Chapter 6: Data Preparation and Data-Driven Registration

 116

The following program code ensures that only rows that contain observations of

Equity or Future as data values for the InstType variable are included in the new

SAS data set. The other rows are excluded.

If InstType in ("Equity" "Future");

The Where statement is used in both Data and Proc steps and has the following

general form:

Where expression;

In the following program code all the rows that do not have ASA as observation

of the data value for the variable Underlying are included in the new SAS data

set.

Where Underlying ^= "ASA";

The following special operators may also be used in the Where statement:

Like

 The operator selects observations by comparing character values to

specified patterns. A percentage sign “%” replaces any number of

characters and an underscore “_” replaces one character.

=*

 The operator selects observations that contain a spelling variation of

the word or words that are specified.

Contains or ?

 Only observations that include a specified substring are included in the

 new data set.

Chapter 6: Data Preparation and Data-Driven Registration

 117

Is null or is missing

 Observations that have missing values for the specified variable are

included in the new data set.

Between-and

 The operator selects observations in which the value of the variable

falls within a range of values.

The use of each special operator that was discussed above is illustrated by

Program Code 6.9 to Program Code 6.13.

Program Code 6.9: The special operator like

/*All the observations of the variable Instid that starts with a "S" are
included in the new SAS data set.*/
Where Instid like "S%";

Program Code 6.10: The special operator =*

/*All the observations that have data values for the variable Instid
that are "SLM" or a variation there of, are included in the new SAS data
set.*/
Where Instid =* "SLM";

Program Code 6.11: The special operator Contains

/*All the observations that have the substring "AGL" as part of their
data values for the variable Instid are included in the new SAS data
set*/
Where Instid Contains "AGL";

Program Code 6.12: The special operator is missing

/*All the observations that have a missing data value for the variable
OptType are included in the new SAS data set*/
Where OptType is missing;

Chapter 6: Data Preparation and Data-Driven Registration

 118

Program Code 6.13: The special operator between-and

/*All the observations that have a data value for Holding that lies
between 3000 and 8000 are included in the new SAS data set*/
Where Holding between 3000 and 8000;

It is important to note that when a Where statement follows another Where

statement in the Data or Proc step, it replaces the previous one.

The modification of SAS data sets in the context of the case study is discussed in

Section 6.4.

6.3 The combination of SAS data sets

The methods that are available for the combination of two or more SAS data sets

into a single SAS data set are discussed in this section. Concatenation and

interleaving is discussed in Section 6.3.1. Match-merging is discussed in

Section 6.3.2.

6.3.1 The Concatenation and Interleaving SAS data sets

A concatenation combines two or more SAS data sets, one after the other, into

a single SAS data set. The Set statement in the Data step is used to perform the

concatenation. The new data set contains all the observations (rows) of the

original data sets in sequential order, as well as, all the variables (columns). The

names of the variables of the original data sets may differ. If this happens the

observations from the one data set have missing values for variables defined

only in other data set.

The general form of the Data step for concatenation:

Data SAS-data-set;
Set Sas-data-set-1 SAS-data-set-2;
Run;

Chapter 6: Data Preparation and Data-Driven Registration

 119

The order of the data sets specified in the Set statement determines the order of

the observations in the new data set. Any number of data sets may be specified.

Interleaving is a more refined method of combining two or more data sets into a

single data set. The original data sets are first sorted according to the data

values of a specific variable, for example InstType. The Set statement is again

used in the Data step to specify the names of the original data sets. An

additional statement in the Data step, the By statement is used to specify the

order of the observations in the new data set according to the data values of a

variable for example InstType. The data sets that are created through

interleaving contain all the observations and variables from the original data sets.

The SAS procedure named Proc Sort is used to sort the observations of the

original data sets according to the data values of a specific variable.

The general form of Proc Sort is:

Proc Sort Data = Input-SAS-data-set ;
 Out = Output-SAS-data-set ;
By <Descending> variable-name ;
Run;

The name of the unsorted SAS data set is specified in the Data option. The name

that is assigned to the resulting sorted SAS data set, is specified in the Out

option. If this option is omitted the sorted version of the data set specified in the

Data option replaces the original data set. The order of sorting is defined as

descending by using the word Descending in the By statement. If no word is

specified in this statement the order of sorting is ascending.

The procedure Proc Sort rearranges the observations in SAS data sets, can sort

on multiple variables in descending or ascending order and treats missing values

as the smallest possible values.

Chapter 6: Data Preparation and Data-Driven Registration

 120

The Data step with a Set and By statement is used to interleave the sorted SAS

data sets. The general form of the Data step that is used in interleaving follows:

Data SAS-data-set;
Set SAS-data-set-1 SAS-data-set-2;
By <Descending> variable-name;
Run;

The name of the new SAS data set, is specified in the Data statement and the

names of the sorted input SAS data sets are included in the Set statement. The

data values of the variable specified in variable-name are used to determine the

order of the observations in the new data set. The order of the observations may

be ascending or descending as specified in the By statement.

The concatenation and interleaving concepts are illustrated in Example 6.3.

Example 6.3: The concatenation and interleaving of SAS data sets

Consider SAS data sets, Book1 and Book2 in the temporary SAS library Work.

The data sets have the following form:

Work.Book1: Work.Book2:

Program Code 6.14 is used concatenate Book1 and Book2 into the SAS data

set with name FinalBook.

Program Code 6.14: The concatenation of Book1 and Book2

Data Work.Finalbook;
Set Work.Book1 Work.Book2;
Run;

Insttype Premium Region
 Option 7.5 WCape
Future 0 WCape
Equity 42.4 WCape

Insttype Premium
Gov_Bond 89.3
Int_Swap 0
Gov_Bond 90.2

Chapter 6: Data Preparation and Data-Driven Registration

 121

The resulting structure of Finalbook follows:

Insttype Premium Region
 Option 7.5 WCape
Future 0 WCape
Equity 42.4 WCape
Gov_Bond 89.3
Int_Swap 0
Gov_Bond 90.2

The input SAS data sets were combined one after the other in the new SAS data

set. The observations of the second input data set have missing values for the

variable Region that are found only in the first input data set.

In Program Code 6.15 the SAS data sets Book1 and Book2 are used to illustrate

the concept of interleaving.

Program Code 6.15: The interleaving of Book1 and Book2

/*The sorted versions of the SAS data set Book1 and Book2 in the Work
library replace their unsorted versions. The observations of both data
sets are sorted in ascending order according to the data values of the
Insttype variable */
Proc Sort Data = Work.Book1;
By Insttype;
Run;
Proc Sort Data = Work.Book2;
By Insttype;
Run;
/*The rows of the new SAS data set Finalbook in the Work library are in
ascending order according to the data values in the Insttype variable*/
Data Work.Finalbook;
Set Book1 Book2;
By Insttype;
Run;

The resulting structure of Finalbook follows:

Insttype Premium Region
Equity 42.4 WCape
Future 0 WCape
Gov_Bond 89.3
Gov_Bond 90.2
Int_Swap 0
Option 7.5 WCape

Chapter 6: Data Preparation and Data-Driven Registration

 122

The observations of the new data set are in alphabetical or ascending order

according to the data values of the Insttype variable.

6.3.2 Match-merging SAS data sets

Match-merging is another method of combining the observations of two or more

SAS data sets into a single SAS data set. One or more observations from the

original data sets are combined into a single observation in the final SAS data

set according to the data values of a common variable. The number of

observations in the new data set is less or equal to the sum of the observations

of the original data sets.

If all the variables of the original data sets contributed to an observation in the

new data set, a match occurs. If this is not the case, the observation is a non-
match.

Consider the observations of the original data sets. The observations in these

data sets may have a one-to-one, a one-to-many or a many-to-many

relationship. If a single observation in one data set is related to a single

observation in another data set then a one-to-one relationship holds. In a one-to-

many relationship, unique observations in one data set are related to multiple

observations in the second data set. If multiple observations in one data set are

related to multiple observations in another data set, a many-to-many relationship

holds.

The observations of the data sets that are used in the match-merging process

are first sorted by Proc Sort (see Section 6.3.1) according to the values of a

common variable. The Data step with a Merge and By statement are used for the

match-merging process.

Chapter 6: Data Preparation and Data-Driven Registration

 123

The general form of the step follows:

Data SAS-data-set;
Merge SAS-data-set-1 (IN=IN1)
 SAS-data-set-2 (IN=IN2);
By variable-name;
Run;

The Data statement specifies the name of the final SAS data set. The names of

the input SAS data sets are specified in the Merge statement. The In options in

the Merge statement are used in determining matches and non-matches. The

variable specified in the In option (In1 or In2) has a value of 1 (match) when the

data set contributed to the observation in the final data set. In the case of a non-

match, the variable has a value of 0. All the observations, matches and non-

matches, except the variables In1 and In2, are written by default to the final SAS

data set. The If statement control may be used to write only matches or non-

matches to the final data set.

If the same variable name occurs in more than one data set but the variables

contain different information, the result of the match-merging may be

unsatisfactory. The Rename data set option in the Merge statement is used to

change the name of a variable from an input data set in the final data set. The

general form of the Rename data set option follows:

SAS-data-set(Rename= (old-name = new-name));

The Rename option is also useful when the variable specified in the By statement

has a different name in each of the original data sets. This option is used to

change the names so that they match. The new variable name is then specified

in the By statement. Example 6.4 is used to illustrate the concept of match-

merging.

Chapter 6: Data Preparation and Data-Driven Registration

 124

Example 6.4: The match-merging of SAS data sets

Consider SAS data sets, Book and Traderinfo in the temporary SAS library Work.

Information about the open positions held is in Book variable. The identification

number of the trader for the transaction is in the TraderID variable. The name of

the instrument is stored in the Insttype variable and the date of the transaction in

the variable Date. Further information about the traders that carry transactions

out is stored in the Traderinfo SAS data set. The variable TraderID again refers

to an identification number of the trader, the variable Trader to the name of the

trader and the variable Date to the date that the trader was hired. The data sets

have the following form:

Work.Book: Work.Traderinfo:

The original data sets Book and Traderinfo are combined into a single data set,

named Finalset. In both data sets Book and Traderinfo a variable Date exists, but

these variables contain different information. The Rename option is used to solve

this problem. Program Code 6.16 and 6.17 are used to match-merge the two

data sets in a single data set, making allowance first for non-matches and then

matches.

TraderID Insttype Date
11384 Equity 05/11/04
27604 Future 04/13/04
27604 Equity 05/04/04
11384 Option 05/05/04
35001 Future 05/11/04
27604 Option 05/10/04

TraderID Trader Date
11384 Jacobs 03/04/93
35001 Smith 10/11/03
20030 Adams 07/03/96
27604 Barnard 09/09/00

Chapter 6: Data Preparation and Data-Driven Registration

 125

Program Code 6.16: Match merging with non-matches:

/*The SAS data sets Book and Traderinfo in the Work library are first
sorted. The sorted versions of these SAS data sets replace their
unsorted versions. The observations of both data sets are sorted in
ascending order according to the data values of the TraderID variable */
Proc Sort Data = Work.Book;
By TraderID;
Run;
Proc Sort Data = Work.Traderinfo;
By TraderID;
Run;
/*The name of the combined SAS data set is Finalset and is specified in
Data statement. The Date variables in Book and Traderinfo are renamed as
TradeDate and DateOfHire in Finalset respectively. The observations of
Finalset are created by the data values of the common variable
TraderID.*/
Data Work.Finalset;
Merge Work.Book (Rename = (Date = TradeDate))
 Work.Traderinfo (Rename = (Date = DateOfHire));
By TraderID;
Run;

The resulting SAS data set with name Finalset in the Work library follows:

TraderID Insttype TradeDate Trader DateOfHire
11384 Equity 05/11/04 Jacobs 03/04/93
11384 Option 05/05/04 Jacobs 03/04/93
20030 Adams 07/03/96
27604 Future 04/13/04 Barnard 09/09/00
27604 Equity 05/04/04 Barnard 09/09/00
27604 Option 05/10/04 Barnard 09/09/00
35001 Future 05/11/04 Smith 10/11/03

The third observation of the data set is a non-match observation. The trader with

name Adams has no transactions in the trade book. No data values for variables

of Book, namely InstType or TradeDate are associated with this observation.

Program Code 6.17 is used to match-merge the two data sets in a single data

set, making only allowance for matches:

Chapter 6: Data Preparation and Data-Driven Registration

 126

Program Code 6.17 Match-merging with matches:

/*Assume that the original SAS data sets have been sorted according to
the data values of the TraderID variable. The In data set option is used
to control matches. The matching observations have a value of 1 for
both the temporary variables Inbook and InInfo. The If statement is used
to select the subset of matching observations. */
Data Finalset;
Merge Work.Book (Rename = (Date = TradeDate) In = InBook)
 Work.Traderinfo (Rename=(Date = DateOfHire)In = InInfo);
By TraderID;
If Inbook = 1 and InInfo = 1;
Run;

The structure of the SAS data set with name Finalset follows:

TraderID Insttype TradeDate Trader DateOfHire
11384 Equity 05/11/04 Jacobs 03/04/93
11384 Option 05/05/04 Jacobs 03/04/93
27604 Future 04/13/04 Barnard 09/09/00
27604 Equity 05/04/04 Barnard 09/09/00
27604 Option 05/10/04 Barnard 09/09/00
35001 Future 05/11/04 Smith 10/11/03

6.4 Case study: The modification and combination
 of SAS data sets

The concepts that were discussed in Sections 6.2 and 6.3 are illustrated in terms

of the case study in this section. A statistical analysis method, named principal
components analysis (see Section 6.4.1) is applied to the SAS data set, named

Yieldcurve_data. The results of the analysis are stored in other SAS data sets.

The information stored in these SAS data sets is combined with various other

SAS data sets to form new SAS data sets. The final SAS data sets are used in

Risk Dimensions. A theoretical discussion of variance-covariance matrices is

included in Section 6.4.2. The variance-covariance matrix is stored in a SAS

data set and is used in covariance-based Monte Carlo simulation. This

Chapter 6: Data Preparation and Data-Driven Registration

 127

simulation method is one of the methods that is used to calculate Value at Risk

and is discussed in more detail in Chapter 10. The implementation of all these

concepts, in terms of the case study, is discussed in Section 6.4.3.

6.4.1 Principal Components Analysis

The theoretical aspects of the statistical technique, named principal
components analysis are discussed in this section.

The definition of eigenvalues and eigenvectors are made first (Johnson et al.

(2002)).

Definition: Eigenvalues

Let A be a square matrix of size kk × . Let I be the identity matrix of the same

size kk × . The scalars kλλλ ,,, 21 K that satisfy the polynomial equation

 0=− IA λ (6.1)

are called the eigenvalues of a matrix A .

Definition: Eigenvectors

Let A be a square matrix of size kk × and let λ be an eigenvalue of A . If the

non-zero vector x of dimension 1×k is such that

 xx λ=A (6.2)

then x is said to be an eigenvector of the matrix A associated with the

eigenvalue λ .

Consider p random variables named pXXX ,,, 21 K . Principal components are

defined as particular linear combinations of these variables. Suppose further that

pXXX ,,, 21 K have a covariance matrix ∑ and a correlation matrix ρ . Principal

Chapter 6: Data Preparation and Data-Driven Registration

 128

component analysis may be executed in two different ways that leads to slightly

different results. The eigenvalues and eigenvectors of either the covariance

matrix ∑ or the correlation matrix ρ are used in the analysis. The covariance

matrix method is discussed first. The results and concepts applied in this

method are also used in the correlation matrix method.

Consider the random vector],,,[' 21 pXXX K=X with a covariance matrix ∑ that

has eigenvalues .21 pλλλ ≥≥≥ K Consider further the following linear

combinations:

 pp XaXaXaY 12121111 ' +++== KXa1

 pp XaXaXaY 22221212 ' +++== KXa2

 M

 pppppp XaXaXaY +++== K2211'Xap

where],,,[21 ipii aaa K=ia denotes a vector of size).1(×p

It follows that:

 ii aa ∑= ')(iYVar for pi ,,2,1 K=

 ki aa ∑= '),(ki YYCov for pki ,,2,1, K=

The principal components are defined as those uncorrelated linear

combinations pYYY K,, 21 whose variances are as large as possible.

The first principal component is the linear combination with the maximum

variance. Thus it is the combination that maximizes 11 aa ∑= ')(1YVar . The

values of the coefficient vectors are restricted to unit length.

Chapter 6: Data Preparation and Data-Driven Registration

 129

It follows that:

 The first principal component is the linear combination Xa1 ' that

 maximizes ()Xa1 'Var subject to 1' =11 aa

 The second principal component is the linear combination Xa '2 that

 maximizes ()Xa '2Var subject to 1' 22 =aa and

 0),'(=X'aXa 21Cov

 The i’th principal component is the linear combination Xa 'i that maximizes

)'(Xa iVar subject to 1' =ii aa and

 0),'(=X'aXa kiCov for ik <

Results 6.1 and 6.2 (Johnson et al. (2002)) contain essential results that are used

in principal component analysis.

Result 6.1

Consider the random vector],,,[' 21 pXXX K=X again with corresponding

covariance matrix ∑ . Further let ∑ have the eigenvalue-eigenvector pairs

),(,),,(),,(21 p21 eee pλλλ K

 where

 .21 pλλλ ≥≥≥ K

Then the i’th principal component is given by

 pipiii XeXeXeY K++== 2211'Xei for pi ,,2,1 K= (6.3)

Chapter 6: Data Preparation and Data-Driven Registration

 130

It also follows that:

 iiYVar λ=∑= ii ee ')(for pi ,,2,1 K= (6.4)

 0'),(=∑= ki eeki YYCov for ki ≠ (6.5)

If some of the eigenvalues iλ are equal, then the corresponding eigenvectors ie

and thus iY are not unique. It thus follows that the coefficient vector that

maximizes)(1YVar is the eigenvector of the largest eigenvalue, namely 1λ .

Result 6.2

Consider the random vector],,,[' 21 pXXX K=X with corresponding covariance

matrix ∑ . Further let ∑ have the eigenvalue-eigenvector pairs

),(,),,(),,(2211 pp eee λλλ K

where

 .21 pλλλ ≥≥≥ K

Further let

 XeXeXe p21 ',,',' 21 === pYYY K

denote the principal components.

It follows that:

VarianceTotal

∑

∑

=

=

=

+++=
Σ=

=

+++=

p

i i

p

p

i i

pp

YVar

trace

XVar

1

21

1

2211

)(

)(

)(

λλλ

σσσ

K

K

 (6.6)

Chapter 6: Data Preparation and Data-Driven Registration

 131

It also follows that that the proportion of the total population variance that is

explained by the k’th principal component is equal to:

p

k

λλλ
λ

K++ 21

.

The first few principal components usually contribute a large proportion of the

total population variation (usually 80% to 90%). The original p factors may then

be replaced by these few principal components without much loss of information.

The variables],,,[' 21 pXXX K=X are standardized in the second method of

principal component analysis. Consider the following standardized variables:

11

11
1

)(
σ
μ−

=
XZ

22

22
2

)(
σ
μ−

=
X

Z

 M

pp

pp
p

X
Z

σ

μ)(−
= (6.7)

The standardized variables may also be written in matrix notation as

))((2/1 μXZ −= V (6.8)

where],,,[' 21 pZZZ K=Z ,

],,,[' 21 pXXX K=X ,

],,,[' 21 pμμμ K=μ and

Chapter 6: Data Preparation and Data-Driven Registration

 132

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

pp

V

σ

σ
σ

L

MOMM

L

L

00

00
00

22

11

2/1

It follows that

 0)(=ZE (6.9)

 and

 ρ=∑= −− 12/112/1)()()(VVCov Z . (6.10)

The principal components of Z are obtained from the eigenvectors of the

correlation matrix ρ of X . It is important to note that the eigenvalue-eigenvector

value pairs),(ieiλ from ρ are generally not the same as the ones derived from

∑ .

Result 6.3 (Johnson et al. (2002)) is essential in the correlation matrix method

of principal component analysis.

Result 6.3

The i’th principal component of the standardized variables],,,[' 21 pZZZ K=Z with

ρ=)(ZCov is given by

)()('' 12/1 μXeZe ii −== −VYi for pi ,,2,1 K= . (6.11)

The eigenvalue-eigenvector pairs for ρ is denoted by

),(,),,(),,(21 p21 eee pλλλ K

with

Chapter 6: Data Preparation and Data-Driven Registration

 133

 .21 pλλλ ≥≥≥ K

It also follows that:

VarianceTotal

p

YVar

ZVar
p

i i

p

i i

=

=

=

∑
∑

=

=

1

1

)(

)(

 (6.12)

It follows that the proportion of the total population variance that is explained by

the k’th principal component of Z is equal to:

p
kλ (6.13)

where the kλ is the kth-largest eigenvalue of ρ .

The application of principal component analysis in the SAS window environment

is discussed in Section 6.4.3.

6.4.2 The theoretical discussion of covariance matrices

Consider a random vector 1 2' [, , ,]pX X X=X K of size .1×p The pp× population

variance-covariance (or just covariance) matrix ∑ is symmetric and has the

following form:

Chapter 6: Data Preparation and Data-Driven Registration

 134

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==∑

pppp

p

p

XCov

σσσ

σσσ
σσσ

L

MOMM

L

L

21

22221

11211

)(

where

iiσ denotes the variance of iX and

ijσ denotes the covariance between iX and jX .

The sample variance-covariance (or just covariance) matrix S is used to

estimate ∑ . Suppose n observations of each the p variables pXXX ,,, 21 K

are made. Let

 1, 2' , , px x x⎡ ⎤= ⎣ ⎦x K

denote the vector of sample averages constructed from the n observations.

The sample variance-covariance matrix S has the following form:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

pppp

p

p

sss

sss
sss

S

L

MOMM

L

L

21

22221

11211

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−

−−−−−

−−−−−

=

∑∑∑

∑∑∑

∑∑∑

===

===

===

n

j pjp
n

j pjpj
n

j pjpj

n

j jpjp
n

j j
n

j jj

n

j jpjp
n

j jj
n

j j

xx
n

xxxx
n

xxxx
n

xxxx
n

xx
n

xxxx
n

xxxx
n

xxxx
n

xx
n

1
2

1 221 11

1 221
2

221 2211

1 111 11221
2

11

)(1))((1))((1

))((1)(1))((1

))((1))((1)(1

L

MOMM

L

L

Consider a SAS data set containing historical data values of certain market

variables. Each column is a variable and each row (observation) contains a

Chapter 6: Data Preparation and Data-Driven Registration

 135

record of one data value for each variable. The sample variance-covariance

matrix of the p variables is calculated by the SAS procedure Proc Corr. The

covariance matrix is written to a new SAS data set. The calculation and use of

the sample variance-covariance matrix is discussed in the next section with

reference to the case study.

6.4.3 Case study

The modification and combination of SAS data sets in the case study context

are discussed in this section. The execution of principal components
analysis and the estimation of a sample of a variance-covariance matrix are

also discussed.

Program Code 6.18 is used to ensure that only observations with valid data

values for the variable Date in Market_History SAS data set are used in further

processing. Market_History is grouped in the Riskdata library.

Program Code 6.18: Modification of Market_History

Data RiskData.Market_History;
Set RiskData.Market_History;
Where Date is not missing;
Run;

The SAS procedure Proc Princomp is used to perform principal component

analysis in the SAS window environment. The SAS data set, named

Yieldcurve_data is specified in the Data option. The data set consists of

historical data of the zero rates for different maturities. A statistical model may

be fitted on each of the zero rates (see Chapter 8). The models are used to

predict a future value for each risk factor variable. This forms the predicted future

yield curve. These predicted values are perturbed by a series of simulated values

in Monte Carlo simulation (see Chapter 10) that are used in the estimation of

Value at Risk. The problem is that the movements in the zero rates for different

Chapter 6: Data Preparation and Data-Driven Registration

 136

maturities tend to be highly correlated. Thus, the negative and positive

perturbations that are used in the simulation process may lead to inaccurate
results. This is discussed in more detail in Section 10.2.7. The use of principal

components analysis leads to a better solution. The first few principal

components that explain a large proportion of the total variance are used in the

modelling of a future yield curve. This is discussed in more detail in Chapter 8.

Only the calculation of the principal components is discussed in this section.

The default method of Proc Princomp is the correlation matrix method. Principal

components are calculated from the eigenvectors of the correlation matrix. The

SAS data set specified in the Out option will contain the original data set (as

specified in the Data option), as well as, the principal components that are

obtained from the analysis. The SAS data set that is specified in the Outstat

option will contain the means, standard deviations, number of observations,

correlations, eigenvectors and eigenvalues from the analysis.

Program Code 6.19 is used to perform principal component analysis on the data

set Yieldcurve_data.

Program Code 6.19: Principal Component Analysis

Proc Princomp Data=Riskdata.Yieldcurve_data noprint
Out = Work.PC_Scores
Outstat=Work.PC_Statistics;
Run;

A scree plot is a useful visual aid to determine an appropriate number of

principal components. The eigenvalues are ordered from largest to smallest. A

scree plot is a plot of the magnitude of the eigenvalue (y-axis) versus its number

(x-axis). In order to determine the appropriate number of components, the user

looks for an elbow or a bend in the scree plot. The scree plot of the eigenvalues

of the correlation matrix, calculated in Program Code 6.19 is illustrated in Figure

6.7.

Chapter 6: Data Preparation and Data-Driven Registration

 137

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21

Number
Ei

ge
nv

al
ue

s

Figure 6.7: The scree plot of the eigenvalues

It follows from Figure 6.7 that the bend is after the second principal component.

The historical data that is used in the analysis is of a relatively short length,

namely only 127 observations. It may be that the third principal component may

have a larger influence on the variance if the observations were more. The

decision is thus made to use the first three principal components in subsequent

analyses. These components explain 98.616% of the total population variance.

Program Code 6.20 is used to create new and update existing SAS data sets to

contain the results from the execution of principal component analysis.

Program Code 6.20: The creation and modification of SAS data sets

/*The Date variable from Market_History and the first three principal
component variables from PC_Scores are used to create a new SAS data set
named Prindata in the Riskdata library.*/
Data Riskdata.Prindata (keep = Date Prin1 Prin2 Prin3);
Merge Riskdata.Market_History Work.PC_Scores;
Run;
/*The three principal component variables are added to the
Market_History data set, by using the Merge statement in the data
step.*/
Data Riskdata.Market_History;
Merge Riskdata.Market_History Riskdata.Prindata;
Run;
/*The Current_Market SAS data set are created from the last observation
of the Market_History SAS data set. The observation contains the market
information of the valuation date. */
Data RiskData.Current_Market;
 Set RiskData.Market_History;
 If _N_ = 127 then Output;
Run;

Chapter 6: Data Preparation and Data-Driven Registration

 138

Program Code 6.21 continues …

/*The eigenvectors of the first three principal components are stored in
the Eigenvectors SAS data set in the Riskdata library.*/
Data Riskdata.Eigenvectors(Drop =_Type_);
Set PC_Statistics;
Where _Name_ in ("Prin1" "Prin2" "Prin3");
Run;
/*The mean and standard deviation of each variable in Yieldcurve_data
are stored in the Mean_Std SAS data set in the Riskdata library. The
information is obtained from the PC_Statistics data set.*/
Data Riskdata.Mean_Std (Drop=_Type_ _Name_);
Set Work.PC_statistics;
Where _Type_ in ("MEAN" "STD");
Run;

The SAS procedure named Proc Corr is used in Program Code 6.21 to calculate

a sample variance-covariance matrix from historical market data values. The

variance-covariance matrix is stored in a SAS data set with name Market_Covar

in the Riskdata library.

Program Code 6.21: The creation of a covariance matrix in a SAS data set

/*The SAS data set Market_History in the Work library is created from
the SAS data set with the same name in the Riskdata library. The
variable with name Date is dropped.*/
Data Work.Market_History(Drop = Date);
Set Riskdata.Market_History;
Run;
/*Proc Corr is used to create a sample variance-covariance matrix. The
matrix is stored with other observations in the SAS data set that is
specified in the Outp option. The matrix is calculated from the SAS
data set that is specified in the Data option. The Cov option in the
Proc statement is necessary in the creation of the variance-covariance
matrix.*/
Proc Corr Cov noprint
Data= Work.Market_History
Outp= Work.Market_Cov;
Run;
/*The variance-covariance matrix part of the SAS data set Market_Cov is
written to the new SAS data set Market_Covar in the Riskdata library.*/
Data RiskData.Market_Covar;
Set Market_Cov;
Where _Type_ = "COV";
Run;

The resulting SAS data sets are used in further analyses in Risk Dimensions.

Chapter 6: Data Preparation and Data-Driven Registration

 139

6.5 Data-driven registration

6.5.1 General

The Risk Dimensions variables that are registered in a risk environment are

divided into two groups in Section 5.1. The first group are the variables that are

contained in SAS data sets like Tradebook, Bondbook, Swapbook,

Market_History and Yieldcurve_data. The second group are the variables that

are not contained in any SAS data sets. Data-driven registration is an

alternative method to register the first group of variables. It is a method that

registers Risk Dimensions variables from the variable or column names in SAS

data sets. This method works very well for case studies where the number of

variables in the SAS data sets is large. The variables in the second group that

are necessary in the risk environment are still registered by Proc Risk as

described in Section 5.2.

The variables that are necessary in the Casestudy_Env risk environment is listed

in Table 5.1. Each variable has a value of either 1 or 2 for the Group column. The

following two methods of variable registration are available:

1. The registration of the variables of both groups by using Proc Risk

(Chapter 5).

2. The registration of the variables in group 1 by data-driven registration (this

section) and the registration of the variables in group 2 by using Proc Risk

(Chapter 5).

The data-driven registration process consists of two parts. In the first part, the

SAS procedure, Proc Contents and the descriptor portion of the SAS data set are

used to create a new SAS data set. This new SAS data set is called a variable
definition data set and contains the variable names and attributes of the original

Chapter 6: Data Preparation and Data-Driven Registration

 140

SAS data set. Various variable definition data sets are created from the first

variable definition data set and contain specific information about each attribute

of each variable. In the second part of the process the information contained in

the variable definition data sets is read into SAS Risk Dimensions and the

variables are registered appropriately in the risk environment.

6.5.2 The creation of variable definition data sets

The first step in data-driven registration, is to create a SAS data set called a

variable definition data set that contains all the relevant names and attributes

for the variables contained in the original SAS data set. If the case study is

considered, a variable definition data set is created for each of the following SAS

data sets, Tradebook, Bondbook, Swapbook, Market_History and

Yieldcurve_data.

Program Code 6.22 is used to create a variable definition data set for the risk

factor variables. The SAS procedure Proc Contents is used to create the

variable definition data sets. The Market_History and Yieldcurve_data data sets

that are stored in the Riskdata library are specified in the Data option of the

separate procedures. The variable definition data sets are specified in the Out

option. The data set is Rf_Vardef and is grouped in the Work library.

Program Code 6.22: The creation of the variable definition data set Rf_Vardef

/*Proc Contents is used to create the variable definition data sets as
specified in the Out option. The name of the original SAS data set is
specified in the Data option. */
Proc Contents Data = RiskData.Market_History
 Out = Work.Rf_vardef1 ;
Run;
Proc Contents Data = Riskdata.Yieldcurve_data
 Out = Work.Rf_vardef2;
Run;
/*Concatenation is used to combine the two variable definition data sets
created by Proc Contents into a single data set*/
Data Work.Rf_vardef;
Set Work.Rf_vardef1 Work.Rf_vardef2;
Run;

Chapter 6: Data Preparation and Data-Driven Registration

 141

Each variable of the SAS data sets Market_History and Yieldcurve_data,

together with its attributes is recorded as a row in the SAS data set Rf_Vardef.

The most important attributes are name, type and length. The data portion of the

Rf_Vardef SAS data set is viewed in Figure 6.8.

Figure 6.8: The Rf_Vardef SAS data set

The third row of this data set, containing the variable attributes of Date is not

necessary for further analysis. Program Code 6.23 is used to modify the variable

definition data set with name Rf_Vardef so that the third row is excluded.

Program Code 6.23: The modification of the Rf_Vardef SAS data set

Data Work.Rf_vardef;
Set Work.Rf_vardef;
Where Name not in ("Date");
Run;

Program Code 6.24 to Program Code 6.26 is used to convert the attribute

information in the variable definition data set Rf_Vardef into more specific

variable definition data sets that are stored in the permanent library, Local.

Program Code 6.24 is used to create a variable definition set that contains

information about the risk factor variables that need to be registered in the risk

environment.

Chapter 6: Data Preparation and Data-Driven Registration

 142

Program Code 6.24: The creation of a variable definition set for risk factor
 variables

/*A variable definition data set, Riskfactor_vardef is created in the
SAS library Local. The keep option specifies the variables that are
kept in this data set.*/
Data Local.Riskfactor_vardef (Keep = Name Kind Type Length Munit Mlevel
 Role Maturity Currency Group Refname1
 Label);
/*The following statement specifies the maximum length of the data
values of the new variables*/
Length Kind Type Role Group Mlevel $ 15;
/*The Set statement specifies that the input SAS data set Rf_vardef is
grouped in the Work library. The Rename option specifies that the
variable, named Type in Rf_Vardef is renamed to Sastype in
Riskfactor_vardef.*/
Set Rf_Vardef(Rename = (Type = Sastype));
/*A new variable named Kind is created. Each data value in this variable
is the character string Factor*/
Kind = "Factor";
/*Conditional logic is used to assign the data type attribute of each
variable*/
If Sastype = 1 then type = "num";
Else if Sastype = 2 then type = "char";
/*The names of the variables are used with conditional logic to assign
attributes to certain variables, for example JB_6_MTH */
If Scan(name,1,"_") = "JB" then do;
Role = "IR";
Maturity = Input(scan(name,2,"_"),8.);
Munit = "month";
Currency = "ZAR";
Group = "IR";
Label = "The JIBAR Month Yield";
Substr(label,11,2)=maturity;
End;
Else if upcase(scan(name,1,"_")) = "VOL" then do;
Role = "Volatility";
Group = "Volatility";
Refname1 = Scan(name,2,"_");
Label= "The volatility of";
Substr(label,20,4) = Scan(name,2,"_");
End;
Else if Upcase(scan(name,1,"_")) = "UNSTD" then do;
Role = "Var";
Group ="Var";
Label = " Unstd Zero Rate";
Substr(label,1,4) = Scan(name,2,"_");
Substr(label,4,5) = Scan(name,3,"_");
End;

Chapter 6: Data Preparation and Data-Driven Registration

 143

Program Code 6.24 continues …

Else do;
/*Not one of the above*/
Role = "VAR";
Group = "Commodity";
Mlevel = "Interval";
Label = "The generic risk factor ";
Substr(label,25,4) = Scan(name,1,"_");
End;
Run;

The resulting variable definition data set by name Riskfactor_vardef is viewed in

Figure 6.9.

Figure 6.9: The Riskfactor_vardef SAS data set

Program Code 6.25 is used to create a variable definition data set that contains

information about the risk factor variable attribute Refmap for certain variables.

Chapter 6: Data Preparation and Data-Driven Registration

 144

Program Code 6.25: The creation of a variable definition set for reference
 variables

/*A variable definition data set, Refvars is created in the SAS library
Local. The Keep option specifies the variables that are kept in this
data set.*/
Data Local.Refvars (Keep = Name Refvar Refkey);
/*The following statement specifies the maximum length of the data
values of the new variables*/
Length Refvar $32
 Refkey $20;
/*The Set statement specifies that the input SAS data set is Rf_vardef
that is stored in the Work library.*/
Set Rf_vardef;
/*The Where statement specifies which rows are included in the new SAS
data set*/
Where Name in ("SOL" "AGL" "SLM" "ISC" "OML" "ASA" "JB_6_MTH");
Refvar = "Price";
Refkey = Name;
Run;

The resulting variable definition data set with name Refvars is viewed in Figure
6.10.

Figure 6.10: The Refvars SAS data set

A variable definition data set that contains information about the Category

attribute for each risk factor variable, is created. This attribute is used in the

calculation of marginal and conditional Value at Risk. Program Code 6.26

creates the variable definition data set Cat_Def in the library Local:

Chapter 6: Data Preparation and Data-Driven Registration

 145

Program Code 6.26: The creation of a variable definition set for risk factor
 attribute with name categories

/*A variable definition data set, Cat_def is created in the SAS library
Local. The keep option specifies the variables that are kept in this
data set.*/
Data Local.Cat_def (Keep = Name Category);
/*The following statement specifies the maximum length of the data
values of the new variables*/
Length Category $32;
Set Rf_vardef;
If Upcase(Scan(name,1,"_")) = "JB" then Category = "IR";
Else if Upcase(Scan(name,1,"_")) = "UNSTD" then Category = "Var";
Else if Upcase(Substr(name,1,4)) = "PRIN" then Category = "Var";
Else if Upcase(Scan(name,1,"_")) = "VOL" then Category = "Volatility";
Else do;
Category = "Commodity";
End;
Run;

The structure of the SAS data set Cat_Def is illustrated in Figure 6.11.

Figure 6.11: The Catdef SAS data set

Program Code 6.27 is used to create a variable definition data set Inst_vardef

that contains information about the instrument variables that need to be

registered in the risk environment. The SAS procedure Proc Contents is used to

create variable definition data sets for the SAS data sets Tradebook, Swapbook

Chapter 6: Data Preparation and Data-Driven Registration

 146

and Bondbook respectively. The Set statement in the Data step is used to

combine these data sets to create Inst_vardef.

Program Code 6.27: The creation of variable definition data sets for the
 instruments variables

/*Proc Contents is used to create the variable definition data sets as
specified in the Out option. The name of the original SAS data set is
specified in the Data option. */
Proc Contents Data=RiskData.TradeBook Out = Work.Inst_vardef1 ;
Run;
Proc Contents Data=RiskData.Swapbook Out = Work.Inst_vardef2 ;
Run;
Proc Contents Data=RiskData.Bondbook Out = Work.Inst_vardef3 ;
Run;
/*The Data step is used to modify the Inst_Vardef2 and Inst_Vardef3 SAS
data sets*/
Data Work.Inst_vardef2;
Set Work.Inst_vardef2;
Where Upcase(name) not in ("BOOK" "PREMIUM" "MATURITYDATE");
Run;
Data Work.Inst_vardef3;
Set Work.Inst_vardef3;
Where Upcase(name) not in ("BOOK" "COUPFREQ" "NOTIONAL" "PREMIUM");
Run;
/*The three variable definition data sets are combined into one variable
definition data set in the following data step*/
Data Work.Inst_vardef;
Set Work.Inst_vardef1 Work.Inst_vardef2 Work.Inst_vardef3;
Run;

Each variable of the SAS data sets Tradebook, Bondbook and Swapbook,

together with, its attributes, is recorded as a row in the SAS data set Inst_Vardef.

The most important attributes are name, type and length. Figure 6.12 is used to

view the data portion of the Inst_Vardef data set.

Chapter 6: Data Preparation and Data-Driven Registration

 147

Figure 6.12: The Work.Inst_vardef SAS data set

Program Code 6.28 is used to convert the attribute information in the variable

definition data set Inst_Vardef into a more specific variable definition data set,

named Instrument_Vardef that is stored in the permanent library, Local.

Program Code 6.28: The creation of a variable definition set for instrument
 variables

/*A variable definition data set, Instrument_vardef is created in the
SAS library Local. The variables that are kept in this data set are
specified in the Keep option.*/
Data Local.Instrument_vardef(keep = Name Kind Type Length Role Label);
/*The following statement specifies the maximum length of the data
values of the new variables*/
Length Type $12 Role $18 Kind $15;
/*The Set statement specifies that the input SAS data set is Inst_vardef
that is grouped in the Work library. The Rename option specifies that
the variable Type in the Inst_vardef is renamed to Sastype in
Instrument_vardef.*/
Set Inst_vardef(Rename = (Type = Sastype));
/*A new variable with name Kind is created. Each data value of this
variable is the character string Instrument*/
Kind = "Instrument";
/*Conditional logic is used to assign the data type attribute of each
variable*/
If Sastype = 1 then Type = "num";
Else if Sastype = 2 then Type = "char";

Chapter 6: Data Preparation and Data-Driven Registration

 148

Program Code 6.28 continues …

/*The data value of Shareprice for the name variable is changed to
MarketPrice*/
If Upcase(Name) = "SHAREPRICE" then Name = "Marketprice";
/*A classification role is assigned to Sector and Book*/
If Name in ("Sector" "Book") then Role = "Class";
Else do;
Role = "Var";
End;
Label = name;
/*The Where statement specifies which rows are included in the new SAS
data set*/
Where Upcase(Name) not in ("INSTTYPE" "CURRENCY" "HOLDING"
 "MATURITYDATE" "SHORTPOSITION" "INSTID");
Run;

The data portion of the Inst_vardef SAS data set is viewed in Figure 6.14.

Figure 6.14: The Local.Inst_vardef SAS data set

6.5.3 Registering variables from variable definition data sets

A special set of program statements are used to read the variable information

from the variable definition data sets and to register these variables in the

specified risk environment.

Chapter 6: Data Preparation and Data-Driven Registration

 149

The program statements are:

Readvars

 It registers instrument variables and risk factor variables.

Readcategories

 It registers the risk factor variable attribute, named Category, that is

used in marginal and conditional simulation.

Readrefs

 It registers reference variables and reference keys. The reference

variables and reference keys have to be specified in the risk factor

variable attribute Refmap.

Program Code 6.29 uses the information contained in the variable definition data

sets that were created in Program Code 6.22 to Program Code 6.28, to register

the appropriate variables in the Casestudy_Env risk environment.

Program Code 6.29: The registration of variables in the risk environment

Proc Risk;
/*The Environment statement is used to create a new environment, named
Casestudy_Env is created in the folder C:\Risk_Warehouse\Env */
Environment new = "&RiskEnv";
/*The appropriate Read statement is linked to the appropriate variable
definition data set to register the correct variables*/
Readvars Data = Local.Riskfactor_vardef;
Readrefs Data = Local.Refvars;
Readcategories Data = Local.Cat_def;
Readvars Data = Local.Instrument_vardef;
/*The Environment statement is used to save the Casestudy_Env
environment*/
Environment save;
Run;

Chapter 6: Data Preparation and Data-Driven Registration

 150

6.6 Summary

The first important topic that was discussed in this chapter is data preparation in

the SAS window environment. The modification and combination of SAS data

sets were used in the data preparation methods. The resulting SAS data sets are

used in risk analyses. Other SAS concepts like the Where and If statements,

SAS arrays and Do loops were also discussed. These concepts will also be used

in subsequent chapters. A theoretical discussion of principal component analysis

and variance-covariance matrices, respectively were also included. The

calculation of principal components and a sample variance-covariance matrix for

the case study was executed in the SAS environment. Lastly an alternative

variable registration method, namely data-driven registration was discussed with

reference to the case study.

7

METHOD PROGRAMS AND
INSTRUMENT TYPES

7.1 Introduction

The registration of SAS Risk Dimensions variables in a risk environment was

illustrated in Chapter 5. The Risk Dimensions structures that are created next

are method programs and instrument types.

 A method program is a block of program code that is used to directly access

and change the values of the registered Risk Dimensions variables. The three

different types of method programs that are discussed in detail are:

• Pricing methods,

• Instrument input methods and

• Risk factor transformation methods.

A pricing method is used to calculate the value of a financial instrument and

assign the value to the system-defined variable _Value_. An instrument input
method is used to calculate data values for instrument variables from the data

values of other instrument variables. A risk factor transformation method is

used to calculate data values for risk factor variables from the data values of

other risk factor variables.

Chapter 7: Method Programs and Instrument Types

 152

An instrument type plays the same role in Risk Dimensions as a financial

security in the real world. Examples are instrument types with names such as

Equity, Future, Bond, Option and Int_Swap. A list of variables that is necessary

to group and value the instrument, as well as a pricing method is specified for

each instrument type. An instrument input method may be used optionally.

Method programs make use of SAS subroutines and user-defined SAS
functions to ensure that program code that is frequently used does not have to

be re-written in each of the different method programs. SAS subroutines and

user-defined SAS functions are callable blocks of program code and have input

and output parameters.

The SAS procedure, named Proc Compile is used to create method programs,

SAS subroutines and user-defined SAS functions and is discussed in Section

7.2. The Instrument statement in Proc Risk is used to create instrument types.

The steps that are necessary to create the above mentioned Risk Dimensions

structures may be summarized as follows:

1. The necessary SAS subroutines and user-defined SAS functions are

created with Proc Compile (see Section 7.3).

2. The necessary method programs are created with Proc Compile. The

subroutines and functions of Step 1 are used within the method programs

(see Section 7.4).

3. An instrument type is created for each type of financial instrument in the

trade book or portfolio with the Instrument statement (see Section 7.5). A

list of Risk Dimensions variables and a pricing method is required for each

instrument type.

Chapter 7: Method Programs and Instrument Types

 153

7.2 The SAS procedure Proc Compile

The SAS procedure by name of Proc Compile is used to create SAS subroutines,

user-defined SAS functions and method programs that are used in Risk

Dimensions. The general form of the Proc Compile procedure is illustrated in

Program Code 7.1.

Program Code 7.1: The general form of the Proc Compile procedure

Proc Compile Env = "Environment-name"
 Outlib = "Catalog-name"
 Package = "Package-name";
Statements that create Subroutines, Functions or Method Programs;
Run;

The Env option is used to specify the name and physical location of the SAS

catalog that contains the objects of the risk environment in which the user-

defined functions, subroutines and method programs are created and used. The

SAS catalog is stored as a SAS file on the hard drive. The Outlib option is used

to specify the SAS catalog where the user-defined functions, subroutines and

method programs are stored. The name and location of the SAS catalog that is

specified in the Env option is usually also specified in the Outlib option. The

user-defined functions, subroutines and method programs are thus stored in the

SAS catalog that also contains the risk environment that they are used in. A

package is defined as a collection of related subroutines or function. The

Package option is used to specify a name for the package in which the compiled

user-defined functions, method programs and subroutines are stored. The

statements that are used to create the method programs, subroutines or

functions are listed after the Proc Compile statement and before the Run

statement.

Various other options may also be specified in the Proc Compile statement, but

are not discussed in this document. The options are however useful in modifying

Chapter 7: Method Programs and Instrument Types

 154

the structure in which the functions are stored and grouped. The use of Proc

Compile is illustrated in Sections 7.3 and 7.4.

7.3 Subroutines and Functions

SAS subroutines and user-defined SAS functions are used in method

programs to ensure that program code that is frequently used does not have to

be re-written in each of the different method programs.

A SAS subroutine is a block of program code that may have multiple input and

output parameters. Subroutines are created in the Proc Compile procedure (see

Section 7.2) and are called or executed in method programs. The Subroutine

statement is used to declare a SAS subroutine. The Endsub statement ends the

subroutine declaration. The Group option, groups similar subroutines together

within the package, as specified in Package option in the Proc Compile

statement. The Outargs statement specifies all the variables that are used as

output parameters. The rest of the variables specified in the Subroutine

statement are used as input parameters. A subroutine is executed in a method

program by using the Call statement. The execution is illustrated in Section 7.4.

Consider the case study again. The yield curve, named Zerocurve consists of a

series of risk-free interest rate values for corresponding time to maturity values.

The yield curve is used in the calculation of an estimate of the risk-free rate of

interest r for a given time to maturity t . The following linear interpolation function

is used in the determination of r for a given t :

 1ir = for 1mt ≤

jj

j
jjj mm

mt
iiir

−

−
×−+=

+
+

1
1)(for 1+≤≤ jj mtm

 nir = for nmt ≥ (7.1)

Chapter 7: Method Programs and Instrument Types

 155

where

ji = the interest rate value of the j’th element of the yield curve,

jm = the maturity value of the j’th element of the yield curve,

n = the number of elements in the yield curve.

A SAS subroutine with name RF_Interp is created and is used in the

Casestudy_Env risk environment. The input parameter, named Time is defined in

terms of a fraction of a year. The spotval[*] input parameter denotes a SAS array

that consists of risk-free interest rates values. The input parameter maturity[*]

contains the corresponding time to maturity of each of the risk-free interest rates.

The variable RF_Rate is an output parameter and contains the value of the risk-

free rate of interest that corresponds to the time to maturity of the variable Time.

The variables that are used in a subroutine do not have to be defined in the risk

environment. The creation of the RF_Interp subroutine that uses (7.1) is

illustrated in Program Code 7.2.

Program Code 7.2: The RF_Interp subroutine

/*The SAS procedure, Proc Compile is used to create a subroutine that is
defined in the Casestudy_Env risk environment. The subroutine is also
saved in the SAS catalog that contains the Casestudy_Env environment and
is grouped in the package named Yieldcurve*/
Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" Package = Yieldcurve;
/*The name of the subroutine is RF_Interp, a label is specified and the
subroutine is grouped under the Interpolation kind of subroutines and
functions in the Yieldcurve package*/
Subroutine RF_Interp(Time,Spotval[*],Maturity[*],RF_Rate)
 Label = "Risk-free rate of interest" Group = "Interpolation";
/*The variable RF_Rate is defined as an output parameter*/
Outargs RF_Rate;
/*The Dim function assigns the value of the number of elements in the
SAS array to the variable named Npoint. */
Npoint = Dim(spotval);
/*The following If and Do statements are used to derive a value for the
risk-free rate of interest for a specified time to maturity, using
linear interpolation as illustrated in (7.1)*/
If (time <= maturity{1}) then spotrate = spotval{1};
If (time >= maturity{npoint}) then spotrate = spotval{npoint};

Chapter 7: Method Programs and Instrument Types

 156

Program Code 7.2 continues…

If (time > maturity{1}) and (time < maturity{Npoint}) then
 Do;
 Do j = 1 to npoint-1;
 If(time > maturity{j}) and (time <= maturity{j+1}) then
 do;
 spotrate= spotval{j} + ((spotval{j+1} - spotval{j})
 * (time - maturity{j})
 / (maturity{j+1} - maturity{j}));
 End; /*The third do*/
 End; /*The second do*/
 End; /*The first do*/
/*The output parameter RF_Rate is assigned to contain the value of the
variable Spotrate that contains the calculated risk-free rate of
interest*/
RF_Rate = spotrate;
Endsub;
Run;

The SAS subroutine named RF_Interp is viewed under the Function library option

in the Configuration tree in the GUI. This subroutine is created in a SAS program

and is thus, listed under the SAS language heading. The package is specified as

Yieldcurve. The subroutine is grouped in the package under the Interpolation

group. Figure 7.1 illustrates the grouping of the subroutine.

Figure 7.1: The grouping of the SAS subroutine RF_Interp

Chapter 7: Method Programs and Instrument Types

 157

A user-defined SAS function is a special case of a SAS subroutine. It has

multiple input parameters, but only one output parameter that is returned. The

Function statement in the procedure Proc Compile is used to declare a user-

defined SAS function. The Endsub statement ends the function declaration. The

Kind option specifies the kind of function that is being declared and it is usually

one of Price, Input, Trans or Kind. Other user-defined kinds may also be

specified.

Program Code 7.2 may be modified to change the subroutine RF_Interp into a

user-defined SAS function with the same name. The Subroutine statement is

replaced with the Function statement and the Group option with the Kind option.

A Return statement that returns the value of the output parameter Rf_Rate is

added before the Endsub statement. The user-defined function RF_Interp will

have the same use as the subroutine with the same name.

The subroutine and user-defined functions that were discussed above are both

created in SAS programs. SAS Risk Dimensions offers, in addition the facility to

import functions that are created in the programming languages C or C++. This

enables the creation and use of more complicated subroutines and pricing

functions that may be very useful in practical applications. The importation of C

functions is an advanced topic and is not covered in this document.

7.4 Method programs

7.4.1 General

A method program is a block of program code that is used to directly access

and change the values of the registered Risk Dimensions variables. This program

code is used to calculate data values for registered variables that are not

observed in the SAS data sets that contain market and position information. The

Chapter 7: Method Programs and Instrument Types

 158

data values of the registered variables that are observed in these data sets are,

however, used in the calculations.

The six different kinds of method programs that are available are:

• Instrument input methods

• Pricing methods,

• Risk factor transformation methods,

• Postpricing methods,

• Postvar methods and

• Project methods.

A pricing method is assigned to each instrument type. It is used to calculate the

value of each open position taken in the instrument type. The calculated value is

assigned to the system-defined variable, named _Value_. An instrument input
method is used to calculate data values for instrument variables, based on the

data values of other instrument variables. A risk factor transformation method

uses the data values of some risk factor variables to calculate data values for

other risk factor variables. These three kinds of method programs are discussed

in detail in Sections 7.4.2 to 7.4.4. The other three kinds of method programs are

mentioned briefly in Section 7.4.5.

The creation of method programs and the use of subroutines, functions and

variable suffixes in it, are discussed in the rest of this section.

The Method statement in Proc Compile starts a method block and the

Endmethod statement ends the block. The Kind option in the Proc statement

specifies the kind of method that is being declared. The available options in Kind

are: Input, Price, Trans, Postprice, Postvar and Project.

Chapter 7: Method Programs and Instrument Types

 159

Method programs use subroutines or user-defined functions to ensure that

frequently used program code is not repeated. A subroutine is executed in a

method program by the Call statement.

The Call statement has the following general form:

Call Subroutine-name(variable1,variable2,variable3);

A user-defined SAS function is executed in a method program, by a statement

that has the following general form:

Variable-name = Function-name (parm1,parm2,parm3);

The parameters denoted by parm1, parm2 and parm3 are all input parameters.

The variable specified in the Return statement, within the user-defined function,

carries data values to the variable specified in variable-name.

Subroutines and functions with the same name may be stored in different

packages. If a duplicate subroutine name exists, the subroutine name is prefixed

with the package name upon usage. For example, in order to use the subroutine

named Linear in the Future package, the subroutine name is specified as

Future.Linear within the Call statement.

A special feature, named variable suffixes provides access to special portions

or attributes of Risk Dimensions variables in method programs.

Some of the available suffixes are:

.Mat

 The value of the Maturity attribute of a risk factor variable is accessed

by this suffix.

Chapter 7: Method Programs and Instrument Types

 160

.Dim

 The number of elements in a risk factor array is accessed..

Vol

 The volatility estimate of a risk factor variable is accessed by this suffix.

The data values contained in these suffixes are used pricing methods to execute

the correct valuation of the instrument types. The use of the suffixes is illustrated

in pricing methods of the Casestudy_Env in Section 7.4.3.

The six different kinds of method programs are subsequently discussed and

illustrated in terms of the case study. A few closing remarks about the use of

method programs are discussed in Section 7.4.6.

7.4.2 Instrument input methods

An instrument input method uses the data values of some instrument variables

to derive new data values for other instrument variables. Consider the instrument

variable OptType in the SAS data set Tradebook. The data values contained in

this variable is either EC, AC or EP. This indicates a European Call, an

American Call or a European Put option. The instrument input method created in

Program Code 7.3 uses these data values to create new data values for the

Input_OptType variable that are either CALL or PUT. The pricing method of the

option instrument uses these values to perform the correct valuation.

Program Code 7.3: The Instrument Input Method OptType_Input

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" Package = Options;
Method OptType_Input kind = Input label = "Correct OptType";
If OptType = "EC" or "AC" then Input_OptType = "CALL";
If OptType = "EP" then Input_OptType = "PUT";
Endmethod;
Run;

Chapter 7: Method Programs and Instrument Types

 161

7.4.3 Pricing methods

Each instrument type (see Section 7.5) must have an associated pricing
method. The pricing method is used to calculate the value of each open position

that is held in the instrument type. The calculated value is assigned to the

system-defined variable, named _Value_. Output variables may be optionally

assigned in pricing methods.

The pricing methods and theoretical formulas that are used to calculate each of

the five financial instruments in the case study are subsequently discussed.

Options

The Black-Scholes formulas (cf. Hull(2003)) are used to value the European call

(C) and put options (P). The formulas have the following form:

)()(210 dNKedNSC rT−−= (7.2)

)()(102 dNSdNKeP rT −−−= − (7.3)

where

T

Tr
K
S

d
σ

σ)
2

()ln(
2

0

1

++
= and

 Tdd σ−= 12

with

)(xN = the cumulative probability distribution function for a standardized

 normal distribution,

0S = the current value of the underlying equity,

Chapter 7: Method Programs and Instrument Types

 162

σ = the annualized volatility of the underlying equity,

T = the time to maturity of the option,

r = the continuously compounded risk-free rate of interest and

K = the strike price of the option.

It is important to note that an American Call option is valued by the same formula

as a European call option. Program Code 7.5 is used to value the Option

instrument type, making use of the formulas described above.

Program Code 7.5: The Option_Prc Pricing Method

Proc Compile Env="&RiskEnv" Outlib="&RiskEnv" ;
Method Option_Prc kind=price;
Time = (Enddate - _date_)/365.25;
/*The subroutine RF_Interp is used to calculate the value of the risk-
free rate of interest for the corresponding time to maturity as
contained in the variable Time*/
Call RF_Interp(time,Zcurve.currency,Zcurve.currency.MAT,RF_Rate);
/*The Black-Scholes pricing formulas BLKSHCLPRC and BLKSHPTPRC are used
to value the Call and Put options. The variable suffix .Vol is also
used.*/
If Input_OptType = "CALL" then _VALUE_ =
BLKSHCLPRC(Strike,time,Price.Underlying,RF_Rate,Price.Underlying.Vol);
If Input_OptType = "PUT" then _VALUE_ =
BLKSHPTPRC(strike,time,Price.Underlying,RF_Rate,Price.Underlying.Vol);
/*The difference between the value of the instrument type and the amount
initially paid for it, is contained in the output variable Daily_Profit
*/
Daily_profit = _VALUE_ - premium;
Endmethod;
Run;

Futures

The formula (cf. Hull(2003)) that is used to calculate the value of a future on an

equity has the following form:

 rTeCSF −−=)(00 (7.4)

Chapter 7: Method Programs and Instrument Types

 163

where

0F = The value of the future on the valuation date,

0S = the current value of the underlying equity,

C = fixed price payable on the maturity date for the equity,

T = the time to maturity of the future and

r = the continuously compounded risk-free rate of interest and

The pricing method that is used to value the Future instrument type is illustrated

in Program Code 7.6.

Program Code 7.6: The Future_Prc Pricing Method

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" ;
Method Future_Prc Kind = price;
Time= (Enddate - _date_)/365.25;
/*The subroutine RF_Interp is again used in the calculation of the
appropriate risk-free rate of interest. The variable suffix .Mat is also
used.*/
Call RF_Interp(Time,Zcurve.Currency,Zcurve.Currency.Mat,RF_Rate);
VALUE = (Price.Underlying - ContractPrice)*(exp(-RF_Rate*time));
Daily_profit = _VALUE_;
Endmethod;
Run;

Equities

The Equity_Prc pricing method in Program Code 7.7 is used to calculate the

value of the Equity instrument type. The value of equity is simply the latest

observed market data value.

Program Code 7.7: The Equity_Prc Pricing Method

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" ;
Method Equity_Prc kind = price;
Value = Price.MarketPrice;
Daily_profit = _VALUE_ - premium;
Endmethod;
Run;

Chapter 7: Method Programs and Instrument Types

 164

Interest Rate Swaps and Government Bonds

The system-defined variable or structure, named _Cashflow_ is used in the

valuation of both interest rate swaps and government bonds. The characteristics

of this variable are discussed before the theoretical formulas and pricing methods

of the interest rate swaps and government bonds are discussed.

Consider the _Cashflow_ variable. Elements that contain different values may be

specified for this variable. The data values that are contained in the elements are

used in the valuation process.

The available elements are:

.Num

 The number of cash flows or payments that are used in the valuation of

the instrument is stored in this element.

.

Matdate

 The dates of the different cash flows are specified in this element.

.Matamt

 It specifies the amounts payable on the cash flow dates.

.Repdate

 The repricing dates of the cash flows are stored in this element.

.Repamt

 It specifies the repricing amounts for the cash flows.

.CFint

 The amount of interest income is stored in this element.

Chapter 7: Method Programs and Instrument Types

 165

The first three elements are required. All the elements, except .Num may be

either SAS arrays or scalars. The use of the _Cashflow_ variable is illustrated in

the pricing methods, discussed later in this section.

The formula that is used to calculate the value of an interest rate swap)(swapV

depends on the discounted value of the fixed)(fixB and floating)(floatB payments.

The present value (cf. Hull(2003)) of the fixed rate payments is defined as:

 ∑=
−− +=

n

i
trtr

fix
nnii LekeB

1
 (7.5)

where

k = the fixed payment made on each payment date,

it = time until the)1(ni ≤≤ payments are exchanged,

ir = the risk-free rate of interest corresponding to maturity it and

L = the notional amount of money in the swap agreement.

The present value (cf. Hull(2003)) of the floating rate payments is defined as:

 11)(* tr
float ekLB −+= (7.6)

where

*k = the floating rate payment made on the next payment date,

L = the notional amount of money in the swap agreement,

1t = time until the next payment is exchanged and

1r = the risk-free rate of interest corresponding to maturity 1t .

Chapter 7: Method Programs and Instrument Types

 166

In a position where the case study company Activegrowth is to receive fixed

payments and pay floating payments, the following equation (cf. Hull(2003))

holds:

 floatfixswap BBV −= (7.7)

If the type of payments were reversed, the signs before fixB and floatB in (7.7) also

reverse. Program Code 7.8 is used to value interest rate swaps, making use

(7.5), (7.6) and (7.7).

Program Code 7.8: The Swap_Prc Pricing Method

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv";
Method Swap_Prc kind = price;
valdate = _date_;
If (valdate > MaturityDate) then _VALUE_ = 0.0;
/*The number of remaining payments and the date of the first payment are
calculated*/
mondiff = Intck('month', valdate, MaturityDate);
nflow = int(mondiff/coupfreq) + 1;
firstdate = Intnx ('month', maturitydate, - (nflow - 1) * coupfreq)
 + day(maturitydate)-1;
/*The number of remaining fixed and floating payments are stored in the
.num suffix of the system-defined variable _Cashflow_*/
CASHFLOW.num = nflow;
CASHFLOW.fix.num = nflow;
CASHFLOW.float.num = nflow;
/*The payments that are received are either floating or fixed payments
*/
Fixsign = 1; flotsign = 1;
If RcveType = "Floating" then fixsign = -1;
Else flotsign = -1;
/*The dates of the remaining payments are determined and stored in the
.matdate suffix of the system-defined variable _Cashflow_*/
Do i = 1 to nflow;
 CASHFLOW.matdate[i] = Intnx("month",firstdate,(i-1)* Coupfreq)
 + day(maturitydate)-1;
 CASHFLOW.fix.matdate[i] = _CASHFLOW_.matdate[i];
 CASHFLOW.float.matdate[i] = _CASHFLOW_.matdate[i];
End;
/*The floating rate is determined by a lag time grid*/
Count = 0;
Do i = 1 to nflow;
 If (fromdate < valdate) and (count < 1) then
 Do;
 Count = 1;

Chapter 7: Method Programs and Instrument Types

 167

Program Code 7.8 continues…

 ResetDate = Intnx('month', _CASHFLOW_.matdate[i],-1 *coupfreq) +
 day(maturitydate)-1;
 Time = (_CASHFLOW_.matdate[i] - valdate)/365.25;
 Floatrate = Rlag(floatingrate.ftr_name,(valdate-ResetDate)/365.25);
 End;
 Else
 Do;
 Time = (_CASHFLOW_.matdate[i] - valdate)/365.25;
 End;
/*The risk-free rate of interest is used to determine the discounted
value of the future payments*/
 Call RF_Interp(time, Zero_Curve, Zero_Curve.mat, Rfrate);
 CASHFLOW.fix.matamt[i] = (0.5)*Fixrate*notional*fixsign*
 exp(-1 *Rfrate*time);
 CASHFLOW.float.matamt[i] = (0.5)*floatrate*notional*flotsign*
 exp(-1*Rfrate*time);
/*The notional amounts are added to the floating and fixed interest
payments*/
 If i = 1 then _CASHFLOW_.float.matamt[i] = _CASHFLOW_.float.matamt[i]+
 flotsign * notional * exp(-1*Rfrate*time);
 If i = (nflow) then
 CASHFLOW.fix.matamt[i] = _CASHFLOW_.fix.matamt[i] +
 notional*fixsign*exp(-1*Rfrate*time);
 If _CASHFLOW_.matdate[i] > Maturitydate then _CASHFLOW_.matamt[i]= 0;
End;
/*The present value of the fixed payments is calculated*/
FixSum = 0;
i = 1;
Do While (_CASHFLOW_.fix.matdate[i] <= Maturitydate and
 i <= _CASHFLOW_.fix.num);
 Fixsum = Fixsum + _CASHFLOW_.fix.matamt[i];
 i = i + 1;
End;
/*The present value of the next floating payment and notional amount due
are calculated */
Floatsum = 0;
Floatsum = _CASHFLOW_.float.matamt[1];
/*The value of the interest rate swap is the difference between the two
sums calculated above. */
VALUE = Floatsum + Fixsum;
Daily_profit = _Value_;
Endmethod;
Run;

A relatively simple formula is used to calculate the value of government bonds.

The formula is not the prescribed method used by the Bond Exchange of South

Africa, as no allowance is made for accrued interest. The value of the bond is

defined as the sum of the discounted future cash flows. An appropriate risk-free

Chapter 7: Method Programs and Instrument Types

 168

rate of interest is used for each future date. The value of the bond is formally

defined as:

 ∑=
−− +=

n

i
trtr

bond
nnii CeDeV

1
 (7.8)

where

D = the periodical coupon payment,

C = the maturity amount payable on the maturity date,

it = time until the)1(ni ≤≤ payments are exchanged and

ir = the risk-free rate of interest corresponding to maturity it .

The pricing method that is used to value government bonds in the

Casestudy_Env is illustrated in Program Code 7.9. The method program uses

(7.9).

Program Code 7.9: The Gov_bond_Prc Pricing Method

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" ;
Method Gov_Bond_Prc desc = "Gov Bond Pricing method" Kind = price;
/*A very accurate method is used to determine the first coupon date
after the date of valuation*/
valdate = _date_;
valday = day(valdate);
valmonth = month(valdate);
valyear = year(valdate);
matday = day(maturitydate);
matmonth = month(maturitydate);
matyear = year(maturitydate);
mondiff = (matyear - valyear) * 12 + matmonth - valmonth;;
moninc = mod(mondiff, coupfreq);
If moninc = 0 and (valday > matday) then moninc = coupfreq;
nflow = (mondiff-moninc)/coupfreq + 1;
nextday = matday;
nextmon = mod(valmonth + moninc, 12);
nextyear = valyear + (valmonth + moninc - nextmon)/12;
If nextmon eq 2 and nextday > 28 then do;
 If (mod(nextyear, 4) eq 0)
 then nextday = 29;
 else nextday = 28;
 end;

Chapter 7: Method Programs and Instrument Types

 169

Program Code 7.9 continues…

If (nextmon eq 4 or nextmon eq 6 or nextmon eq 9 or nextmon eq 11)
 and nextday > 30 then nextday = 30;
Nextnum = nextday * 1000000 + nextmon * 10000 + nextyear;
Nextchar = put(nextnum, 8.);
Nextdate = input(nextchar, ddmmyy8.);
/*The SAS date value of the first coupon date is saved in the .matdate
suffix of the _Cashflow_ system-defined variable*/
Cashflow.matdate[1] = nextdate;
/*The dates of the remaining coupon payments are calculated*/
Do i = 2 to nflow;
 Lastmon = month(_Cashflow_.matdate[i-1]);
 Lastyear = year(_Cashflow_.matdate[i-1]);
 nextday = matday;
 nextmon = mod(lastmon + coupfreq, 12);
 nextyear = lastyear + (lastmon + coupfreq - nextmon)/12;
 If nextmon eq 2 and nextday > 28 then
 Do;
 If (mod(nextyear, 4) eq 0)then nextday = 29;
 Else nextday = 28;
 End;
 If (nextmon eq 4 or nextmon eq 6 or nextmon eq 9 or nextmon eq 11)
 and nextday > 30 then nextday = 30;
 Nextnum = nextday * 1000000 + nextmon * 10000 + nextyear;
 Nextchar = put(nextnum, 8.);
 Nextdate = input(nextchar, ddmmyy8.);
 Cashflow.matdate[i] = nextdate;
End;
/*The value of the bond is calculated as the sum of the discounted
coupon and maturity payments*/
q = Coupfreq * 30/360;
prc = 0;
Do i = 1 to nflow;
 Time = intck('day', _date_, _cashflow_.matdate[i])/365.25;
 Call RF_Interp(time,Zcurve.currency,Zcurve.currency.MAT,RF_Rate);
 prc = prc + notional * coupon * q * exp (- (RF_Rate * time));
 If (i eq nflow) then
 Do;
 prc = prc + Red_Amount * exp (- (RF_rate * time));
 End;
End;
VALUE = prc;
Daily_profit= _Value_ - Premium;
Endmethod;
Run;

7.4.4 Risk factor transformation methods

A risk factor transformation method is used to calculate data values for some

risk factor variables from the market data values of other risk factor variables. A

Chapter 7: Method Programs and Instrument Types

 170

risk factor transformation method is used to calculate the data values of a yield

curve in the case study. The yield curve consists of risk factor variables like

ZR_1_MTH, ZR_3_MTH,…, ZR_10_YEAR. For example ZR_1_MTH refers to

the zero rate that corresponds to a one month maturity value. The risk factor

transformation method Mod_Zerorates is used to derive data values for these

variables from the data values contained in the risk factor variables

UNSTD_1_MTH, UNSTD_3_MTH,…, UNSTD_10_YEAR. The yield curve is

used to calculate risk-free interest rates for certain specified maturities during the

valuation of financial instruments like futures and options. Program Code 7.4 is

used to create the risk factor transformation method Mod_Zerorates in the

Casestudy_Env risk environment. It is important to note that the detail of

Program Code 7.4 is only discussed in Chapter 9.

Program Code 7.4: The Risk Factor Transformation Method Mod_ZeroRates

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" ;
Method Mod_ZeroRates Kind = trans;
%Unstandardize(UNSTD_1_MTH,1,ZR_1_MTH);
%Unstandardize(UNSTD_3_MTH,2,ZR_3_MTH);
%Unstandardize(UNSTD_6_MTH,3,ZR_6_MTH);
%Unstandardize(UNSTD_12_MTH,4,ZR_12_MTH);
%Unstandardize(UNSTD_18_MTH,5,ZR_18_MTH);
%Unstandardize(UNSTD_2_YEAR,6,ZR_2_YEAR);
%Unstandardize(UNSTD_30_MTH,7,ZR_30_MTH);
%Unstandardize(UNSTD_3_YEAR,8,ZR_3_YEAR);
%Unstandardize(UNSTD_42_MTH,9,ZR_42_MTH);
%Unstandardize(UNSTD_4_YEAR,10,ZR_4_YEAR);
%Unstandardize(UNSTD_54_MTH,11,ZR_54_MTH);
%Unstandardize(UNSTD_5_YEAR,12,ZR_5_YEAR);
%Unstandardize(UNSTD_66_MTH,13,ZR_66_MTH);
%Unstandardize(UNSTD_6_YEAR,14,ZR_6_YEAR);
%Unstandardize(UNSTD_78_MTH,15,ZR_78_MTH);
%Unstandardize(UNSTD_7_YEAR,16,ZR_7_YEAR);
%Unstandardize(UNSTD_90_MTH,17,ZR_90_MTH);
%Unstandardize(UNSTD_8_YEAR,18,ZR_8_YEAR);
%Unstandardize(UNSTD_102_MTH,19,ZR_102_MTH);
%Unstandardize(UNSTD_9_YEAR,20,ZR_9_YEAR);
%Unstandardize(UNSTD_114_MTH,21,ZR_114_MTH);
%Unstandardize(UNSTD_10_YEAR,22,ZR_10_YEAR);
Endmethod;
Run;

Chapter 7: Method Programs and Instrument Types

 171

7.4.5 Other method programs

The last three kinds of method programs are discussed briefly in this section.

Postpricing method programs perform calculations based on the values that

are created by the valuation of instruments. These methods are executed after

the valuation is finished, but before the aggregation occurs.

Postvar methods are used to perform calculations based on the values created

by the valuation of instruments and the statistics resulting from simulation

analyses. The calculations are done after the instrument pricing and simulation

analyses occur, but are before aggregation.

The last kind of method program called project methods are used in memory

management. The programs are executed after the market states are created,

but before any pricing is done.

These programs are advanced features of Risk Dimensions and are not

discussed in further detail in this document.

7.4.6 Closing remarks

A last few remarks about method programs is made in this section.

The variables that are used in the program code of method programs must be

either registered in the risk environment or first used in an assignment
statement. The value of the undefined variable may be explicitly defined or it

may be defined in terms of other variables. It also possible to include a large

portion of the program code in subroutines or instrument input methods. This will

make the length of the pricing methods shorter. The only problem is that the

Cashflow system-defined variable may not be used in the subroutines and

input methods. SAS arrays have to be used instead.

Chapter 7: Method Programs and Instrument Types

 172

It is also important to note that pricing methods and the other kinds of method is

are only created during this section and are not executed. The valuation of the

financial instruments or instrument types in the portfolio is only done in Chapter

10.

Method programs may also be divided into method blocks. This enables time

saving, as some parts of the program code in the method program are not run

unnecessarily. This is very useful when handling large portfolios. The block-

types that are used in Risk Dimensions are Main, Init, Term, Inst_Init and

Inst_Term. Method blocks are also an advanced feature of Risk Dimensions and

are not discussed further in this document.

The method programs that were created in the case study are viewed under the

Method Program Library option in the Configuration tree of the GUI. The

instrument input method with name OptType_Input is listed under the Instrument

Input heading. The pricing methods Equity_Prc, Future_Prc, Gov_Bond_Prc,

Swap_Prc and Option_Prc are listed under the Instrument Pricing heading. The

risk factor transformation Modzero_Rates is listed under the Risk Factor

Transformation heading. Figure 7.2 is used to illustrate the grouping of these

structures in the GUI.

Figure 7.2: The Method Program Library of the Casestudy_Env

Chapter 7: Method Programs and Instrument Types

 173

7.5 Instrument types

In the financial world, companies and investors invest in the different financial

instruments that are available. In the case study the company ActiveGrowth

invested in options, equities, interest rate swaps, government bonds and futures.

The next step in the risk management system, is to register each of these

financial securities as a structure known as an instrument type. Each

instrument type that is declared has an associated pricing method and list of

Risk Dimensions variables. The pricing method is used to determine the value

of each position held in this instrument. The data values of the list of variables

that are specified, are necessary to value and classify the instrument. An

optional instrument input method may also be assigned for an instrument

type.

Instrument types may inherit attributes from other instrument types that have

already been declared. Frequently used variables are then only defined once in

a base type instrument and are inherited by other instrument types. The variables

and pricing methods may also be inherited, if it is specified. The value of

instrument types may be determined by discounted cash flows or by a quadratic

approximating function. Only the discounted cash flows are discussed.

Instrument types are created by the Instrument statement. The following

options may be specified in this statement:

Variables = (variable-list)

 The variable list is required. All the variables that are used to value

and classify the instrument are included in the list, except some of the

system-defined variables, for example InstType (see Section 5.2).

Chapter 7: Method Programs and Instrument Types

 174

Methods = (method-kind1 method-name1, method-kind2 method-name2)

 One pricing method and a maximum of ten instrument input methods

are assigned for each instrument type. The names specified in method-

name option must already exist as method programs.

Valrecord = valuation-method

 It specifies that instruments of this type include additional data to be

used to value the instruments. The valuation-method option may be

either specified as Cashflows or Quadratic.

Basetype = instrument-type-name

 The attributes of instrument type assigned in the instrument-type-name

option are used for the instrument type that is currently being declared.

 Label = “Label-name”

 A descriptive label may be specified.

Program Code 7.10 is used to create the necessary instrument types in

Casestudy_Env risk environment. An instrument type is created for each of the

following financial instruments: an equity, an option, a future, an interest rate

swap and a government bond.

Program Code 7.10: The creation of Instrument Types in Casestudy_Env

Proc Risk;
Environment Open = "&RiskEnv";
/*The frequently used variables are defined in a base instrument type,
named Root. No other instrument options are specified */
Instrument Root
 Variables = Holding,Book,Currency,ShortPosition,Premium);
/*An instrument type, named Option is created. The instrument type by
name of Root is inherited with all its variables. Additional variables
are assigned in the Variables option. The instrument input method,
named OptType_Input and the pricing method by name of Option_Prc are
used to value each position in an instrument of this type*/

Chapter 7: Method Programs and Instrument Types

 175

Program Code 7.10 continues…

Instrument Option
 Basetype = Root
 Variables = (Strike, EndDate, OptType, Input_OptType,
 Underlying)
 Methods =(Input OptType_Input, Price Option_Prc);
/*The instrument types named Equity, Future, Int_Swap, and Gov_Bond are
also created. The Root instrument type, with all its variables are often
inherited. A pricing method, as well as additional variables ,is
assigned for each instrument type. */
Instrument Equity
 Basetype= root
 Variables=(MarketPrice, Sector)
 Methods = (Price Equity_Prc);
Instrument Future
 Basetype = Root
 Variables = (Contractprice, Underlying,Enddate)
 Methods = (price Future_Prc);
Instrument Int_Swap
 Basetype = Root
 Variables = (Notional Maturitydate RcveType Fixrate
 Ftr_name Coupfreq Currency Fromdate)
 Methods = (price Swap_Prc);
Instrument Gov_Bond
 Basetype = Root
 Variables = (Maturitydate, Coupon, Notional, Coupfreq,
 Red_Amount)
 Methods = (price Gov_Bond_Prc);
/*The Casestudy_Env is saved, with the added instrument types declared
above*/
Environment save;
Run;

An unlimited variety of financial instruments may be registered as instrument

types. The only restriction is that each instrument type must have an associated

pricing method and list of variables.

The system-defined variable InstType provides a link from the position data to the

appropriate instrument type definition, for each instrument or record in the trade

book or portfolio.

Consider the following partial record in the trade book:

InstType Instid Short Holding Currency Underlying Enddate Cprice.
Future SOL_QM4 1 4000 ZAR SOL 17-Jun-04 97.86

Chapter 7: Method Programs and Instrument Types

 176

The data value in the InstType variable is Future. In order to calculate the value

of this position, an instrument type with the same name (Future) must be created,

together with a pricing method and an appropriate variable list. If the data value

contained in the InstType variable does not have a corresponding instrument

type with the same name, an error occurs and the position is not valued.

The instrument types created in the Casestudy_Env risk environment are viewed

under the Instrument Types heading in the Configuration tree of the GUI as

illustrated in Figure 7.3.

Figure 7.3 The Instrument Types in Casestudy_Env

Chapter 7: Method Programs and Instrument Types

 177

7.6 Summary

Two Risk Dimensions structures, namely method programs and instrument types

were created in this chapter. Method programs are used to access and change

the data values of the Risk Dimensions variables that were registered in

Chapter 5. Various method programs that differ in the type of variables that they

access, are discussed in the chapter. The most important kinds are pricing

methods, instrument input methods and risk factor transformation methods. An

instrument type is created in Risk Dimensions to play a similar role to a financial

instrument in the real world. A pricing method and a list of variables are assigned

to each instrument type during registration.

The actual valuation of each position in the trade book only takes place in

Chapter 10. The instrument types and trade book are used to create a Risk

Dimensions structure named a portfolio file in Chapter 9.

8

RISK FACTOR MODELS

8.1 Introduction

Consider a risk factor variable, for example ASA that refers to the value of the

ABSA equity price. The current value of this variable is used in the calculation of

the mark-to-market (MtM) value of the portfolio. Suppose that a time series of

historical daily closing values of this variable exists. A statistical model with a

known form, for example the Garch(1,1) model may be fitted on the data values.

The fitted model is used to predict the value of the risk factor variable, ASA, for

a certain time in the future, for example the next trading day.

If a statistical model is fitted on the data values of a risk factor variable, it is called

a risk factor model. A risk factor model may be fitted separately on each of the

risk factor variables, or simultaneously on all the risk factor variables. The

predicted future values of the risk factor variables are used together with Monte

Carlo simulation to create an estimate of Value at Risk (VaR) for a certain time

horizon. This method of calculating VaR is called model-based Monte Carlo

simulation and is discussed in detail in Chapter 10.

The general concepts of statistical modeling are discussed in Section 8.2. The

models that are used in the context of the case study are also discussed. The

implementation of risk factor models in Risk Dimensions is discussed in detail in

Section 8.3. The program code that is used to create the risk factor models in the

Chapter 8: Risk Factor Models

 179

Casestudy_Env risk environment is discussed in Section 8.4. Some general

remarks about an advanced statistical function, named copula function, are made

in Section 8.5. The chapter ends with some closing remarks.

8.2 Statistical modelling

The key steps that are necessary in the process of fitting a statistical model are:

1. The formulation of the model structure,
2. the distributional assumptions that are made and

3. the parameter estimation method that is used.

The implementation of these steps is discussed, firstly, in terms of a simple

statistical model in Section 8.2.1. Thereafter, each step is discussed in detail in

Sections 8.2.2 to 8.2.4.

8.2.1 A simple statistical model

An introduction into the process of statistical modelling is discussed in this

section. A simple statistical model, namely a straight line, is fitted on a set of

observed data values. The knowledge that is gained during the introduction to

statistical modelling will be useful when more complex models are considered

later in the chapter.

Suppose a set of n observed data values for the variables x and y are

available. Let),(ii yx denote the i’th observed pair. A scatter plot may be used to

illustrate the data values graphically. Suppose further that a statistical model

namely a straight line, needs to be fitted on the observed data values. Then the

fitted model is used to extrapolate from the observed data values.

Chapter 8: Risk Factor Models

 180

The model structure is formulated as a mathematical equation. The structure of

the model may, for example have the following form:

 iii xy εβα ++= for ni K,2,1= (8.1)

A few definitions about the symbols that comprise the formula are made. The

variable iy is defined as the dependent or endogenous variable, as it depends

on the value of ix . The variable ix is defined as the exogenous or independent

variable. The unknown constants α and β are called model parameters. The

iε variable is defined as the error term.

The values of the variable { }ix may be used as input values in the equation and

may be varied over a user-defined interval. The values of the parameters α and

β may be estimated by a variety of parameter estimation methods. One method,

namely the method of ordinary least squares, is discussed later in this section.

The estimated parameters α̂ and β̂ denote the intercept and slope of the line

respectively. If the unknown parameters α and β are replaced by α̂ and β̂ in

(8.1) the model is said to be fitted. The deterministic or non-random part of the

model structure may be defined as:

 ii xy βα ˆˆˆ += (8.2)

where

=iŷ the predicted value of the model corresponding to ix .

The error term iε forms the random part of the equation. The error terms are

calculated as the difference between the actual or observed value (iy) and the

predicted)ˆ(iy value for each of the observed ix values.

Chapter 8: Risk Factor Models

 181

 That is:

 iii yye ˆˆ −= (8.3)

The fitted model may be used to extrapolate beyond the observed data values.

The model, is thus, used to predict a value jŷ for a value of jx that does not form

part of the observed data values { }ii yx , that were used to fit the model. The error

term jε and the actual value jy is then unknown. It is useful to assume an

identical statistical distribution for each of the error terms. Examples include:

the normal, lognormal or the t-distribution.

The parameters α and β may be estimated by a variety of parameter

estimation methods. One of these is the method of ordinary least squares. The

function:

 () ()∑∑
==

−−=−
n

i
ii

n

i
ii xyyy

1

2

1

2ˆ βα (8.4)

is minimized with respect to α and β . The estimates α̂ and β̂ minimize the sum

of the squared distances between the actual and predicted values of each value

of y in the sample. The straight line that fits the data best, is thus obtained. The

fitted statistical model, namely a straight line may be used in extrapolation.

8.2.2 The model structure

A more general model structure is considered in this section. The formulated

model structure may consist of a single equation or a system of equations.

The equations may further be, nonlinear in the parameters, nonlinear in the

observed variables, or nonlinear in both the parameters and variables. The

phrase “nonlinear in the parameters” means that the mathematical relationship

Chapter 8: Risk Factor Models

 182

between the variables and parameters is not required to have a linear form. The

linear model as in (8.1) is a special case of a nonlinear model. The system of

equations may be written as:

 εxyy +=),,(θf (8.5)

where

y = is a vector of endogenous or dependent variables,

x = is a vector of exogenous or independent variables,

θ = is a vector of parameters and

ε = is a vector of unknown error terms.

Each equation in the system of equations in (8.5) defines a predicted value for a

unique endogenous variable. It is important to note, that in the modelling of risk

factor variables, the interest is sometimes not only in the mean of the

endogenous variable, but also in the variance. Examples of more complex model

structures are discussed in Section 8.2.5.

8.2.3 Distributional assumptions

The second step in the modeling process, is the distributional assumptions that

are made with respect to the error terms { }iε . Normally the error terms are

assumed to be independently, identically distributed. An assumption about the

variance of { }iε is also made and tested. If the variance is constant, it is called

homoscedasticity. If the variance is not constant, it is called heteroscedasticity.

The distributional assumptions about the error terms also play a role in some of

the parameter estimation methods, for example, maximum likelihood.

Chapter 8: Risk Factor Models

 183

8.2.4. Parameter estimation methods

Consider the vector of unknown parameters θ in the model equations. For

example in (8.1) α and β are considered. A variety of parameter estimation

methods may be used to estimate these parameters. The estimation methods

share the following common goal: Find the set of parameters that make

equation),,(θxyf predict well.

The following parameter estimation methods are generally used:

• Ordinary least squares (OLS),

• seemingly unrelated regression (SUR),

• generalized method of moments (GMM) and

• full information maximum likelihood (FIML).

The accuracy of these estimation methods depends on the data that are

available.

8.2.5. Time dependent statistical models in the case study

A special type of statistical model, namely a dynamic or a time dependent
model, is discussed in this section. The models that are used in the case study

are discussed later.

Statistical models, where the current values of the endogenous variables depend

on past or lagged values of the exogenous and endogenous variables, are used

frequently in risk factor modelling. These types of models are called dynamic or

time dependent models. Let tŷ denote the predicted value of the endogenous

variable at time t . The variable ity −ˆ is called the lag i of the variable tŷ . The

Vasicek interest rate model and the Garch(1,1) model are examples of time

Chapter 8: Risk Factor Models

 184

dependent models. These models are used in the case study to model equity

prices, volatilities and interest rates. They are subsequently discussed.

The Vasicek interest rate model has the following model structure:

 ,))(11 tttt rateraterate εθκ +−×+= −− (8.6)

 σ=)var(trate (8.7)

where

 trate = the predicted value of the interest rate at time t ,

)var(trate = the variance of the interest rate,

 κ ,θ and σ are the unknown parameters and

 tε = the error term at time t .

The unknown parameters are estimated and the value of trate is predicted. The

model is fitted on the risk factor variables Prin1, Prin2 and Prin3 in the next

section.

A statistical model needs to be fitted on each of the equities that are used in the

case study. The goal is to create a statistical model that accurately predicts future

equity prices. The following notation definitions are made:

TS = the price of the equity at time T ,

0S = the price of the equity at time 0 and

μ = expected continuously compounded rate of return on the equity per annum.

Chapter 8: Risk Factor Models

 185

Two assumptions about the behaviour of the equity prices are made, namely:

1. Expected return of the equity)(μ is constant and

2. The volatility of the equity price is zero.

If TS grows at a continuously compounded rate of return per annum of μ , then

(cf. Hull(2003)):

 TT
T eSeSS μμ

0
)0(

0 == − (8.8)

If time 0 is replaced by time 1−T in (8.8), it follows that:

 μ=
−1

ln
T

T

S
S (8.9)

Consider the time series of closing values of each trading day that are available

for each equity in the case study. Each time series of closing values is

transformed by taking the logarithm of the ratio of the closing price to the

previous day’s closing price (
1

ln
−T

T

S
S). A statistical model is fitted separately on

each of the transformed time series. The model is a straight line with a slope of 0

and an intercept parameterμ and forms part of the Garch(1,1) model that is

formulated in (8.10). The equity prices in the case study that are fitted by this

model in Section 8.4.2 are ASA, AGL, SOL, SLM, ISC and OML.

The Garch(1,1) model is used in the modelling of the return (see above) and

variance of equity prices . The theoretical form is:

 ttret ημ += (8.10)

Chapter 8: Risk Factor Models

 186

 ttt h εη ×= (8.11)

 1
2

1 −− ×+×+= ttt hh βηαϖ (8.12)

where

 tret = the predicted value of the log return of the equity price at time t ,

 th = the predicted variance of the log return of the equity price at time t ,

 tε = the error term at time t ,

 ϖ = the constant part of the volatility,

 α = the coefficient of the lagged squared residuals and

 β = the coefficient of the lagged volatility.

The Garch(1,1) model is fitted separately on the time series of the log ratio of the

closing prices of each equity in Section 8.4. The square root of tĥ is used as an

estimate of the volatility of the equity prices. This estimate is used to predict

values for Vol_ASA, Vol_AGL, Vol_SLM, Vol_ISC, Vol_OML and Vol_SOL in the case

study.

8.3 Modelling in Risk Dimensions

8.3.1 The general structure of Proc Model

The SAS procedure named Proc Model is used to create statistical models in

Risk Dimensions. The statistical models are fitted on the historic values of risk

factor variables and are called risk factor models. The procedure is able to

accommodate various user-defined model structures and provides a wide range

of error distributions and parameter estimation methods. The statistical models

that are created by this procedure are also registered directly as risk factor

Chapter 8: Risk Factor Models

 187

models in the appropriate risk environment in Risk Dimensions. The general

structure of Proc Model is illustrated in Program Code 8.1.

Program Code 8.1: The general structure of Proc Model

Proc Model Data = Libref.SAS-data-set Options;
Parm p1 p2 … pn ;
Endogenous y1 y2 … ym;
Model-Structure-Equations;
Optional statements;
Fit y1 y2 … ym | Fit options;
Run;

8.3.2 The options in the Proc Model statement

Several options are available in the Proc Model statement before the first semi-

colon.

The name of the SAS data set that contains the historical data values that are

used to estimate the parameter values in the model, is specified together with its

SAS library in the Data option.

Several other optional options are available in the Proc Model statement. The

Outspec option is used to save a model specification in a risk environment. A

model specification is a model object that contains the equation(s) that define the

structure of the model, but that are not fitted to a particular data set. The names

and equations of the model specifications that are saved in a risk environment,

are viewed in the Risk Models tree of the GUI. Although it is not required to

create model specifications in the risk management system, it provides useful

information about the model structures.

Chapter 8: Risk Factor Models

 188

The available options in the Outspec option are:

Catalog

 The name and SAS library of the SAS catalog that contains the

appropriate risk environment, is specified in this option.

Modname = model-name

 A suitable name for the model specification is specified in this option.

Modlabel = “Label”

 A descriptive label is specified for the model specification.

Several other options exist in the Proc Model statement, but are not discussed.

8.3.3 The specification of the model structure in Proc Model

The structure of the risk factor model is formulated in the centre or main part of

the Proc Model step. Equations are specified for the mean and variance of the

risk factor variable(s). A variety of lag functions and random number
functions may also be used in the equations that are formulated. A few

examples of the program code that are used to formulate the model structures in

Proc Model are included at the end of this section.

The model structure may be formulated either in normal or general form. Recall

the model structure from (8.5):

 εxyy +=),,(θf (8.5)

This formula is written in normal form as it is written in terms of an equation for

the endogenous variable. It may also be written equivalently in general form as:

 εxy =),,(θf (8.12)

Chapter 8: Risk Factor Models

 189

The error term is isolated one side of the equality sign in general form.

The model structure may be specified in normal or general from in the centre or

main part of the Proc Model step. If the structure is specified in normal form it is

automatically converted into general form during the execution of Proc Model. All

the risk factor models that are formulated in this chapter are formulated in the

normal form. The detail of the general form is omitted.

Consider (8.1). The following equivalent model structure is specified in Proc

Model:

y = alpha + beta*x

Consider an endogenous variable y like in the equation above. The prefixes that

follow may also be used in the model structure equations:

• h.y specifies the variance of y,

• dert.y defines the derivative
dt
dy ,

• resid.y is the residual of y,

• nresid.y is the normalized residual of y, calculated as
).(

.
yhsqrt
yresid ,

• MSE.y is the mean-squared error value of y.

A variety of lag functions may also be used in the model structure equations.

The three most commonly used functions are:

• LagX,

• XLagX and

• ZLag

Chapter 8: Risk Factor Models

 190

The value specified by LagX(i,variable) function, is the i’th past value of the

variable. The index i is not fixed and is bounded by 0 and X. Furthermore, if i is

omitted, the X’th past value of the variable is used. If X is also omitted, the

previous value of the variable is used. The ZlagX(i,variable) function is the same

as the LagX(i,variable) function, except that all the missing values are set to zero.

The XlagX(variable,default) function is also similar. The only difference is that

the missing values are set to the value that is specified in the default option. The

XlagX function is very useful in handling the start of a time series that is modelled

by a time dependent model.

Advanced lag functions named DifX, ZdifZ and MovavgX are also available in the

procedure, but are not discussed.

Random number functions may also be used in Proc Model. Examples include

Ranbin(), Rancau(), Ranexp(), Rannon() and Ranuni(). The Rangam() function,

draws, for instance a random number from a Gamma distribution.

Other SAS program code like the If-then-Else statement, the Do loop, as well as

SAS arrays, may also be used in the formulation of the model structure

equations.

Examples

Consider the Vasicek interest rate model in (8.6) and (8.7). The equivalent of

these equations in Proc Model is written as:

Rate = Lag(rate) + kappa*(theta-Lag(rate));
h.Rate = sigma;

Chapter 8: Risk Factor Models

 191

Consider the Garch(1,1) model in (8.10), (8.11) and (8.12). The equivalent of

these equations in Proc Model is written as:

ret = mean;
h.ret = arch0 + arch1(resid.ret*resid.ret) + garch1*zlag(h.ret);

The program code of the Garch(1,1) and Vasicek models that are used in the

case study, is discussed in more detail in Section 8.4.2.

8.3.4 Additional statements in the Proc Model step

Various other required and optional statements are available in Proc Model. The

statements are:

Parameters

 The names of the parameters that are used in the model are listed in

this statement. Initial or starting values for the parameters may also be

optionally defined.

Endogenous

 The names of the dependent or endogenous variable(s) that are used

in the model structure equations are included in this statement.

Exogenous

 The names of the independent or exogenous variables that are used in

the model structure equations are listed in this statement.

Errormodel

 The distribution of the error terms in the model are specified in this

statement. The empirical distribution may be specified.

Chapter 8: Risk Factor Models

 192

ID

 The name of the variable that is used to identify the lagged values of

the endogenous and exogenous variables is specified in this

statement. The data values of the variable that is specified, should be

SAS date values, with a time interval between the values.

Restrict

 Boundaries or restrictions on the values of the parameters in the

model, may be specified in this statement.

Label

 A suitable label may be specified for each parameter in the model.

These statements are used in the creation of the risk factor models that are used

in the Casestudy_Env risk environment. The risk factor models are created in

Section 8.4.2.

8.3.5 The Fit statement in Proc Model

The Fit statement in Proc Model is used to specify a parameter estimation
method in the model, to save the fitted model in a risk environment, to control

the output of the fitted models and to specify various printing options.

A parameter estimation method is specified in the Fit statement. The method

that is specified is used to estimate the parameter values that make the model

structure predict future values the best. The model structure with the estimated

parameter values is called a fitted model. A fitted model may also be described

as a model specification that was estimated on a particular data set.

Some of the parameter estimation methods that may be specified in the Fit

statement are ordinary least squares (OLS), seemingly unrelated regression

Chapter 8: Risk Factor Models

 193

(SUR), generalized method of moments (GMM) and full information
maximum likelihood (FIML).

The first and sometimes the second derivatives of the specified model equations,

have to be taken in order to estimate the parameter values. Analytical formulas

are used to calculate the derivatives where possible. When this is not possible an

iterative minimization process may be used. Risk Dimensions support two

iterative processes, namely the Gauss-Newton method or the Marquardt-
Levenberg method. The Method option in the Fit statement is used to specify

either the Gauss or the Marquardt option. The maximum number of iterations

that are used in the processes is specified by the value in the Maxiter option.

If the model is highly nonlinear, good starting values for the parameters have to

be specified. One method is the specification of starting values for the

parameters in the Parameter statement. A more sophisticated method entails

the use of the Start and Startiter options in the Fit statement. The Start option

is used to specify the starting values of the parameters. If more than one starting

value is specified for one or more of the parameters, a grid search is performed

over all the possible combinations of the values and the best combination is

chosen as starting values for the iterations. The Startiter option is then used to

specify the number of minimization iterations that are performed at each grid

point. The use of these options leads to better parameter estimates for the

model.

The Outcat option in the Fit statement is used to save a fitted model, together

with, its results or output in a risk environment. The following options are

available in this option:

Catalog

 The name and SAS library of the SAS catalog that contains the risk

environment, is specified in this option.

Chapter 8: Risk Factor Models

 194

Modname = model-name

 The name of the fitted model is specified in this option. This name

appears in the risk environment.

Modlabel = “Label”

 A descriptive label may be specified for the fitted model.

Dim

 The dimension of the model is specified in this option.

Interval

 The interval of the data is specified in this option.

Some examples of options that may be used in the Fit statement to control the

output of the fitted models are:

Out = SAS-data-set

 The name of the SAS data set that contains the residuals, actual

values and predicted values of each fitted model, is specified. Only the

residual values are printed by default.

Outactual

 This option ensures that the actual values of the endogenous variable

in the model are written to the SAS data set that was specified in the

Out option.

Outpredict

 If this option is specified, the predicted values of the fitted model are

included in the SAS data set that is specified in the Out option.

Chapter 8: Risk Factor Models

 195

Outest = SAS-data-set

 The name of the SAS data set that contains the parameter estimates

and optionally the covariances of the estimates, are specified in this

option.

Outcov

 This option ensures that the covariance matrix of the parameter

estimates are written to the SAS data set specified in Outest in addition

to the parameter estimates.

Various printing options are also available in the Fit statement. These options

print information about the fitting of the risk factor model in the output window of

the SAS window environment. These options are not discussed in this document,

but may be useful in monitoring finer detail of the modelling process.

8.4 Risk factor models in the case study

Proc Model is used in Section 8.4.2 to fit risk factor models on the time series

data of the risk factor variables in the case study. A structure named a SAS
macro that is used in Section 8.4.2 is first discussed in Section 8.4.1. SAS

macros are used to shorten the program code that is necessary to fit the risk

factor models in Section 8.4.2.

8.4.1 SAS Macros

The use of macro variables were discussed in Chapter 2. SAS Macros are also

used to eliminate the use of redundant program code. The difference is that a

SAS macro may not only contain a character string, but may also contain a whole

SAS procedure, like Proc Model for instance. Macros are used in the next

Chapter 8: Risk Factor Models

 196

section, to fit a risk factor model separately on each one of a series of risk factor

variables, without duplicating program code.

The %Macro statement is used to create a SAS macro. The name of the macro,

as well as input parameters, is specified in this statement. The macro is ended

by the %Mend statement. The name of the macro object is also specified in this

statement. A SAS procedure like Proc Model may be included between these

statements. The macro is activated in program code by preceding the name of

the macro with the % sign. Input parameters and output parameters may also be

specified. The use of SAS macros is illustrated in Program Codes 8.2 and 8.3.

8.4.2 Case study

Consider the case study. The yield curve consists of risk-free interest rates with

different maturities that were calculated from observed JIBAR rates and swap

rates. The problem is that the interest rates are usually highly correlated.

Principal components analyses were used to reduce the dimensions of the yield

curve from twenty-two to three. Program Code 8.2 is used to fit a separate

Vasicek interest rate model on the historical data of each of the three principal

components, namely Prin1, Prin2 and Prin3. A future value for each of the

principal components is predicted. The predicted values of the three principal

components are transformed into predicted values for the original twenty-two risk

factor variables in the next chapter.

Program Code 8.2: The Vasicek model fitted on the principal components

/*A macro object named CreateYieldModel is created. It has the input
parameter named rate*/
%MACRO CreateYieldModel(rate);
/*The SAS data set Prindata in the SAS library Riskdata contains the
data values of the risk factor variables, used in the modelling process.
A model specification is created in the Outspec option.*/
Proc Model Data=Riskdata.Prindata
Outspec =(Env.Casestudy_Env Modname= PC_&Rate
 Modlabel="&Rate and Vasicek");

Chapter 8: Risk Factor Models

 197

Program Code 8.2 continues…

/*The endogenous variable, is the variable specified in the %Macro
statement*/
Endogenous &rate;
/*The names of the parameters are specified*/
Parameters kappa theta sigma;
/*The model structure equations are specified*/
&rate = Lag(&rate) + kappa * (theta - Lag(&rate)) ;
h.&rate = sigma;
/*The Date variable is used to identify the lagged values of the
endogenous variables*/
Id date;
/*Descriptive labels are specified for the parameters*/
Label kappa = "Speed of Mean Reversion";
Label theta = "Long term Mean";
Label sigma = "Constant Variance";
/*The distribution of the error terms is assumed to be normal*/
Errormodel = normal;
/*The name of the endogenous variable that is fitted is specified.
Fitting options like the Method option, and the Fiml and Maxiter options
are used. Various output options, for example Outcov, Outest, Out and
Outpredict are also specified. The Outcat option is used to save the
fitted model in the risk environment.*/
Fit &rate / Method = Marquardt Fiml Maxiter = 100 Outcov Outactual
 Outest=Models.cov&Rate Out = Models.res&Rate
 Outpredict noprint
 Outcat =(Env.Casestudy_Env interval = weekday dim = 1
 Modname=PC_&Rate Modlabel="&Rate and Vasicek");
Quit;
/*The macro object is ended*/
%MEND createYieldModel;
/*The macro object is activated and is used to fit the Vasicek model on
each of the three principal components separately.*/
%CreateYieldModel(Prin1);
%CreateYieldModel(Prin2);
%CreateYieldModel(Prin3);

The Garch(1,1) model is used to predict future values of risk factor variables like

ASA, as well as its corresponding volatility ASA_Vol, in the case study. Volatility

is defined as the standard deviation of return or the square root of the variance of

return. A SAS macro is used again and enables the use of one Proc Model

procedure for six risk factor variables. Program Code 8.3 is used to create and

save the the Garch(1,1) model in the Casestudy_Env risk environment.

Chapter 8: Risk Factor Models

 198

Program Code 8.3: The Garch(1,1) model fitted on risk factor variables

/*The %Macro statement is used to create the macro object named
CreateModel and input parameter Eq. The statements in the Proc Model
procedure are broadly the same as in Program Code 8.2*/
%MACRO CreateModel(Eq);
/*The SAS data set Logreturns in the SAS library Riskdata contains the
historical data values of the logarithm of the daily return of the risk
factor variables.*/
Proc Model Data = Riskdata.Logreturns
Outparms = Models.parms_&Eq noprint
Outspec = (Env.Casestudy_Env Modname = ret_&Eq
 Modlabel = "&Eq return and GARCH(1,1)");
Endogenous Ret_&Eq ;
Parameters p0
 arch0
 arch1
 garch1;
Ret_&Eq = p0;
h.ret_&Eq = arch0 + arch1 * xlag(resid.ret_&Eq**2,mse.ret_&Eq)
 + garch1 * xlag(h.ret_&Eq,mse.ret_&Eq);
Restrict arch0 >= 0.00001,
 arch1 >= 0.00001,
 garch1 >= 0.00001,
 arch0 + arch1 + garch1 =1;
Label arch0 = "Constant part of conditional volatility";
Label arch1 = "Coefficient of lagged squared residuals";
Label garch1 = "Coefficient of lagged conditional volatility";
&Eq = zlag(&Eq)*exp(ret_&Eq);
Vol_&Eq = sqrt(arch0 + arch1 * (xlag(ret_&Eq,resid.ret_&Eq) - p0)**2 +
 garch1 * zlag(Vol_&Eq));
Id date;
Errormodel = normal;
Fit Ret_&Eq / Method = Marquardt Fiml Maxiter = 1000 Outpredict
 Outactual Outest = Models.cov&Eq
 Out= Models.res&Eq
 Outcat = (Env.Casestudy_Env interval = weekday dim=1
 Modname = ret_&Eq Modlabel = "&Eq return and GARCH(1,1)");
Quit;
%MEND CreateModel;
/*The macro object is used to fit the Garch(1,1) model on the six risk
factor variables*/
%CreateModel(ASA);
%CreateModel(OML);
%CreateModel(AGL);
%CreateModel(ISC);
%CreateModel(SLM);
%CreateModel(SOL);

The model specifications and the fitted models in the Casestudy_Env risk

environment, are viewed in the Risk Models tree of the GUI. The model

Chapter 8: Risk Factor Models

 199

specifications are listed under the Specifications option and the fitted models

under the Fitted Models option. Figure 8.1 is used to view the fitted models.

Figure 8.1 The Risk Models tree of the Casestudy_Env risk environment

8.5 Copulas

The use of the statistical function, named a copula is discussed briefly in this

section.

Consider a set of risk factor variables that are necessary in the valuation of the

portfolio. It is known that the use of a multivariable normal distribution for the set

of risk factor variables is inappropriate. It is also known that it is not feasible to

estimate all at once, a non-normal multivariate system of equations with

hundreds of risk factor variables as dependent variables in a large parameter

space. The alternative is that each risk factor variable is fitted separately with an

appropriate distribution. The disadvantage of this method is that the use of

Chapter 8: Risk Factor Models

 200

separate models would ignore the interrelationships between the different risk

factor variables.

The use of copula functions or simply, copulas in Risk Dimensions provides a

solution to this problem. Separate risk factor models are again fitted on each of

the risk factor variables. Copulas integrate the marginal distributions of the

separate models into a single joint distribution for the set of risk factor variables.

Copula methodologies is a study field on its own. It is an advanced topic in Risk

Dimensions and is not discussed further in this document.

8.6 Summary

Consider the risk factor variables that are used in the valuation of the portfolio

value of the case study company. Statistical models, called risk factor models

were fitted on the historical data values of these risk factor variables, in this

chapter. The models are used together with model-based Monte Carlo simulation

in Chapter 10, to calculate an estimate of Value at Risk.

9

THE REGISTRATION OF MARKET
AND PORTFOLIO DATA

Three topics are discussed in this chapter. The first topic is the use of principal
component analysis in the case study. This process is discussed in detail in

Section 9.1. The other two topics are the registration of market and portfolio
data and are discussed in Section 9.2 and 9.3 respectively.

9.1 Case study: Principal Components Analysis

The use of principal components analysis in the case study, is discussed in

this section.

Consider the yield curve that is used in the case study. The curve consists of

twenty-two risk-free rates of interest or zero rates, each with a varying maturity

value. The risk-free rates are calculated from observed market rates like the

JIBAR rates and swap rates. A risk factor model (see Chapter 8) may be fitted on

the historical data of each of the zero rates to obtain a predicted future value for

each rate. The predicted values are used with Monte Carlo simulation in the

calculation of Value at Risk as discussed in Chapter 10. This method of

calculating an estimate of Value at Risk, is known as model-based Monte Carlo

simulation.

Chapter 9: The Registration of Market and Portfolio data

 202

The values in the twenty-two risk factor variables are usually highly correlated

with each other. This presents a problem. The predicted values are each

perturbed by either a negative or a positive value, leading to simulated values

that are less correlated. The use of principal component analysis allows the use

of a small subset of the risk factor variables, without losing too much information.

The principal components are also less correlated with each other.

The steps that would be necessary to implement model-based Monte Carlo

simulation firstly without and secondly with principal component analysis are

listed below.

The necessary steps without PCA are:

1. Historical and current data values of the original twenty-two zero
rates with varying maturities are calculated from swap and JIBAR rates

and are stored in the Yieldcurve_data SAS data set (see Sections

3.2.1 and 3.4).

2. A risk factor model is fitted on the historical data values of each of the

zero rates. A predicted future value for each zero rate is obtained.

3. Monte Carlo simulation (see Chapter 10) is used to perturb the

predicted value of each zero rate. A series of simulated values is

created for each zero rate.

4. The simulated zero rates and other simulated values risk factor variable

values, are used together with portfolio information, pricing methods,

instrument types and other Risk Dimensions structures (see Chapter

10) to calculate an estimate of Value at Risk.

Chapter 9: The Registration of Market and Portfolio data

 203

PCA is used in the case study. The steps that are used in model-based Monte

Carlo simulation are listed below. Some of these steps were done in previous

chapters, some need to be done in this chapter and some are only done in

Chapter 10.

The necessary steps are with PCA:

1. Historical and current data values of the original twenty-two zero
rates with varying maturities are calculated from swap and JIBAR rates

and are stored in the Yieldcurve_data SAS data set (see Sections

3.2.1 and 3.4).

2. Principal components analysis (see Section 6.4.3) is used to create

three principal components from the original twenty-two zero rates.

3. A risk factor model is fitted on the historical data values of each of the

principal components (see Section 8.4). A predicted future value for

each principal component is obtained.

4. Monte Carlo simulation (see Chapter 10) is used to perturb the

predicted value of each principal component. A series of simulated

values is created for each zero rate.

5. The series of simulated values for each of the three principal
components needs to be reverted into a series of simulated values

for each of the original twenty-two zero rates. The steps that are

necessary in the reversion, are discussed in detail in Sections 9.2.2

and 9.2.3. A theoretical discussion about the reversion follows later in

this chapter.

Chapter 9: The Registration of Market and Portfolio data

 204

6. The simulated zero rates and other simulated values risk factor variable

values, are used together with portfolio information, pricing methods,

instrument types and other Risk Dimensions structures (see Chapter

10) to calculate an estimate of Value at Risk.

The second process is subsequently discussed in more detail.

Step 1 was executed in Sections 3.2.1 and 3.4.

Consider step 2. The PCA was performed by the correlation method and the

calculated value of the i’th principal component of the risk factor variables

],,,[' 2221 XXX K=X is given by

)ˆˆ()ˆ('ˆˆ 12/1 μXei −= −VYi for .22,...2,1=i (9.1)

where

)122(:ˆ ×ie = the eigenvector corresponding to the i’th largest eigenvalue iλ̂ ,

],,,['ˆ 2221 xxx K== xμ

and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

22.22

22

11

2/1

00

00
00

ˆ

s

s
s

V

L

MOMM

L

L

The principal components 2221
ˆ,,ˆ,ˆ YYY K were calculated by the SAS procedure

Proc Princomp in Section 6.4.3. Only the first three largest principal components

were used in further analyses, as they declares 98.616% of the total population

variation.

Chapter 9: The Registration of Market and Portfolio data

 205

The Vasicek risk factor model was used in Program Code 8.2 to predict the future

value of each of the three principal components (Prin1, Prin2 and Prin3) one

trading day from the date of valuation (step 3).

Step 4 is only discussed in Chapter 10.

All the simulated values of the three principal components must be reverted to

simulated values for the original twenty-two risk factor variables (step 5). A

theoretical discussion about the transformation formula follows:

An equation for X̂ in terms of Ŷmust be derived. (9.1) is rewritten as (9.2) in

vector and matrix notation.

)ˆˆ()ˆ(ˆˆ 12/1 μXY −= −VE (9.2)

where

]ˆ,,ˆ,ˆ['ˆ
2221 YYY K=Y ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=×

'ˆ

'ˆ
'ˆ

)2222(:ˆ

22

2

e

e
e1

M
E is a matrix of eigenvectors and

the earlier definitions of iê , μ̂ and 2/1V̂ that still apply.

Then, (9.2) is written in terms of]ˆ,,ˆ,ˆ['ˆ
2221 XXX K=X as follows:

 YμX ˆ'ˆˆˆˆ 2/1 EV+= (9.3)

Chapter 9: The Registration of Market and Portfolio data

 206

with

 22
ˆ'ˆ IEE = where 22I is the identity matrix of size 2222× .

If only the first three principal components are used (9.3) reduces to the following

 YμX ˆ'ˆˆˆˆ 2/1 EV+= (9.4)

where

]ˆ,ˆ,ˆ[ˆ
321 YYY=Y and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

'ˆ
'ˆ
'ˆ

)223(:ˆ

3

2

1

e
e
e

E is a matrix of eigenvectors

The predicated and simulated values of 21
ˆ,ˆ YY and 3̂Y are contained in the risk

factor variables Prin1, Prin2 and Prin3. Three Risk Dimensions structures,

namely a linear transformation matrix (see Section 9.2.2), a risk factor
transformation method (see Section 7.4.4) and a transformation set (see

Section 9.2.3) are used in the transformation process. The linear transformation

matrix Eigenvectors in Program Code 9.3 is used to calculate the value of Ŷ'Ê .

The risk factor transformation method Mod_Zerorates is then used to calculate

the value of X̂ by multiplying 2/1V̂ by Ŷ'Ê and adding μ̂ . Eigenvectors and

Mod_Zerorates are used in the transformation sets Eigenvectortrans and

Modzerotrans respectively (see Section 9.2.3).

The vector]ˆ,,ˆ,ˆ['ˆ
2221 XXX K=X contains the simulated future values of the

original twenty-two zero rates. The risk factor variables ZR_1_MTH,

ZR_3_MTH , …,ZR_10_YEAR refer to the simulated zero rates.

Chapter 9: The Registration of Market and Portfolio data

 207

The simulated values of the zero rates and other risk factor variables like ASA,

together with portfolio information, pricing methods, instrument types and other

Risk Dimensions structures are used in Chapter 10 to calculate an estimate of

Value at Risk by the model-based Monte Carlo simulation methodology (step 5).

9.2 The registration of market data

The data values of risk factor variables that are observed in the market, are used

in the valuation of instrument types and in the calculation of risk measures. The

relevant market data values are stored in SAS data sets such as Market_History

and Yieldcurve_data in the Riskdata library. The data values of these data sets

must be made accessible for the registered pricing methods in the risk

environment. A Risk Dimensions structure called a market data source is used

for this purpose. It is a pointer to the actual location of the SAS data set and

enables the access of the data values in Risk Dimensions and is discussed in

Section 9.2.1. Another Risk Dimensions structure, called a parameter matrix, is

discussed in Section 9.2.2. One form of parameter matrix, namely the general
type, is created to contain market information that remains constant during the

entire duration of the risk management system. The parameter matrix is linked to

a SAS data set that contains the information which remains constant. The other

type of parameter matrix, namely a linear transformation matrix is used in risk

factor transformation. Risk factor transformation method programs (see Section

7.4.4) and linear transformation matrices are used in another Risk Dimensions

structure, called a transformation set. The transformation sets are used to

execute the risk factor variable transformations. The three Risk Dimensions

structures are used in the registration of market data and are discussed in detail

below.

Chapter 9: The Registration of Market and Portfolio data

 208

9.2.1 Market data sources

As mentioned above, market data sources are used to make the market data in

SAS data sets available to Risk Dimensions. They are pointers to the actual

locations of the SAS data sets that contain the market data. Different types of

market data sources exist. The type of risk analysis that is performed on the SAS

data set determines the type of market data source that is created. The

Marketdata statement is used in the Proc Risk procedure, to create market data

sources. The general form of this statement is illustrated in Program Code 9.1.

Program Code 9.1: The general form of the Marketdata statement

Marketdata Source-name
 File = “physical-location-file”
 Type = source-type
 Interval = interval
 Label = “label”;

The available options are:

Source-name

 The name of the market data source that is created, is specified in this

option.

File = “physical-location-file”

 The physical location of the SAS data set that contains market data is

specified in quotation marks, in this option.

Type = source-type

 The type of the market data source, is specified in this option. The

value of the type option may be one of the following: Current,

Timeseries, Covariance, Datafeed, Volatilities, Correlation, Changes,

Scenarios, Transform or Parameter.

Chapter 9: The Registration of Market and Portfolio data

 209

The Label and Interval options are optional.

Different risk analyses require different types of market data sources. Table 9.1

contains examples of the risk analyses (see Chapter 10) that require certain

market data sources.

Table 9.1: The required market data sources for certain risk analyses

Analysis Market data type
All analyses Current market data
Delta-Normal Analyses Covariance matrix
Historical Simulation Time series data
Scenario Simulation Scenario data
Scenario, Profit/Loss curve and surface Volatility data (Optional)
Monte Carlo Simulation Covariance matrix (covariance-

based simulation) or time series
data (model-based simulation)

Program Code 9.2 is used to create eight market data sources in the

Casestudy_Env risk environment.

Program Code 9.2: The creation of market data sources in Casestudy_Env

/*The name, type and interval of each market data source and the
physical location of each SAS data set is specified*/
Proc Risk;
Environment Open = "&RiskEnv";
 Marketdata Current File = "&RiskData\Current_Market"
 Type = current;
 Marketdata History File = "&RiskData\Market_history"
 Type = timeseries
 Interval = weekday;
 Marketdata Yieldcurve_data
 File ="&RiskData\Yieldcurve_data"
 Type= timeseries
 Interval = weekday;
 Marketdata Princompdata
 File = "&RiskData\Prindata"
 Type = timeseries
 Interval = weekday;
 Marketdata Covar
 File = "&RiskData\Market_Covar"
 Type = covariance
 Interval = weekday;

Chapter 9: The Registration of Market and Portfolio data

 210

Program Code 9.2 continues…

 Marketdata Eigenvectors
 File= "&RiskData\Eigenvectors"
 Type= transform
 Interval = weekday;
 Marketdata Mean_Std
 File= "&RiskData\Mean_Std"
 Type= parameters
 Interval = weekday;
 Marketdata Scenariodata
 File="&RiskData\Scenariodata"
 Type=scenarios;
Environment save;
Run;

9.2.2 Parameter matrices

It is not always necessary to assign Risk Dimensions variables to contain data

values in the risk environment. If the data values that are used remain constant

during the risk analysis process, it is easier to use a parameter matrix. A

general type of parameter matrix exists, as well as a special type, called a linear
transformation matrix.

The general type of parameter matrix is a Risk Dimensions structure that is used

for the numerical values that stay constant and are used in both risk factor

transformation method programs and pricing methods. The parameter matrix is

first created from the SAS data set that holds the constant values. During the

execution of the pricing methods and risk factor transformation methods, the

values of the constants are then called from the parameter matrices. The

difference between the use of risk factor variables and parameter matrices is that

the values of risk factor variables may be changed during the analyses process.

It is also necessary to register each risk factor variable, together with a range of

variable attributes. It follows that it is easier to implement a parameter matrix for

constant data values than it is to register a risk factor variable for each value

separately.

Chapter 9: The Registration of Market and Portfolio data

 211

The general type of parameter matrix is registered in a risk environment with the

Parameter statement in Proc Risk. The following options available in this

statement, for the registration of a general parameter matrix are:

Matrix-Name

 A suitable name needs to be specified for the parameter matrix.

Data

The name of a market data source that already exists, is specified in

this option. The market data source has to be of type parameters.

Column

 The names of the columns of the SAS data set that are included in the

parameter matrix are listed in this option. The order of listed names

determines the order of the columns in the matrix. This option is not

required. If it is left out, all the columns or variables except _Name_ are

read from the SAS data set.

Row

 This option is used to identify and order the observations that are read

from the SAS data set. The identifications are based on the data

values of the _Name_ column. This option is also optional and if it is

left out, all the rows of the SAS data will be read into the parameter

matrix.

The Parameter statement is used in Program Code 9.3 to create a general type

of parameter matrix in the Casestudy_Env risk environment.

The linear transformation matrix is used in risk factor transformation. It may be

used as an alternative or supplement to risk factor transformation methods. The

matrix needs to be contained in a SAS data set.

Chapter 9: The Registration of Market and Portfolio data

 212

Consider a linear transformation matrix)(: pnA × . Further let:

)1(: ×ny = a vector of input risk factor variables and

)1(: ×pz = a vector of output risk factor variables.

The execution of the linear transformation matrix leads to the calculation of z

where

 yz 'A= (9.5)

A linear transformation matrix is used in the case study to transform the values of

principal components into data values for the original risk factor variables.

The Parameter statement in Proc Risk is also used to create a linear
transformation matrix in a risk environment. The following options are available

in this statement:

Matrix-Name

 A suitable name needs to be specified for the linear transformation

matrix.

Data

The name of a market data source that already exists, is specified in

this option. The market data source has to be of type transform.

Lintrans

 This option is specified to ensure that the parameter matrix that is

created by the Parameter statement is a linear transformation matrix.

Chapter 9: The Registration of Market and Portfolio data

 213

Row

 The names of the risk factor variables that contain the input values in

the linear transformation matrix, are specified in this option.

Column

The names of the risk factor variables that receive the output data

values, are specified in this option.

The linear transformation matrix, named Eigenvectors and the parameter matrix

of general type named Mean_Std, is created in Program Code 9.3. Eigenvectors

is used to calculate the value of Ŷ'Ê in (9.4). Equivalently, it can be said that

data values are calculated for the risk factor variables UNSTD_1_MTH,

UNSTD_3_MTH,…, UNSTD_10_YEAR from the risk factor variables Prin1, Prin2

and Prin3.

Program Code 9.3: The creation of parameter matrices in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
/*The name of the parameter matrix is Eigenvectors. A market data source
with the same name that is of type transform is specified in the Data
option. The Column, Row and additional Lintrans option is also
specified. Values are derived for Unstd_1_MTH, …, Unstd_10_Year from the
values contained in Prin1, Prin2 and Prin3.*/
Parameter Eigenvectors
 Data=Eigenvectors Lintrans
 Column = (UNSTD_1_MTH UNSTD_3_MTH UNSTD_6_MTH
 UNSTD_12_MTH UNSTD_18_MTH UNSTD_2_YEAR UNSTD_30_MTH
 UNSTD_3_YEAR UNSTD_42_MTH UNSTD_4_YEAR UNSTD_54_MTH
 UNSTD_5_YEAR UNSTD_66_MTH UNSTD_6_YEAR UNSTD_78_MTH
 UNSTD_7_YEAR UNSTD_90_MTH UNSTD_8_YEAR UNSTD_102_MTH
 UNSTD_9_YEAR UNSTD_114_MTH UNSTD_10_YEAR)
 Row = (Prin1 Prin2 Prin3);
/*The name Mean_Std is specified for the parameter matrix. A market data
source with the same name (Mean_Std) of the parameters type, is
specified in the Data option. The Column and Row option is also
specified*/
Parameter Mean_Std
 Data=Mean_Std
 Column = (UNSTD_1_MTH UNSTD_3_MTH UNSTD_6_MTH UNSTD_12_MTH
 UNSTD_18_MTH UNSTD_2_YEAR UNSTD_30_MTH UNSTD_3_YEAR
 UNSTD_42_MTH UNSTD_4_YEAR UNSTD_54_MTH UNSTD_5_YEAR
 UNSTD_66_MTH UNSTD_6_YEAR UNSTD_78_MTH UNSTD_7_YEAR

Chapter 9: The Registration of Market and Portfolio data

 214

Program Code 9.3 continues…

 UNSTD_90_MTH UNSTD_8_YEAR UNSTD_102_MTH UNSTD_9_YEAR
 UNSTD_114_MTH UNSTD_10_YEAR);
Environment save;
Run;

The values of a parameter matrix of general type may be retrieved in a pricing
method or a transformation method, by using the PMXELEM subroutine. It is a

built-in subroutine in Risk Dimensions and can return a single value or a full row

or column from the matrix. The use of the PMXELEM subroutine is illustrated in

Program Code 9.4.

Program Code 9.4: The PMXELEM subroutine in the case study

/*A macro object, named Unstandardize is created. Two input parameters
and an output parameter are specified. In the macro object data values
are retrieved from the parameter matrix, named Mean_Std. The retrieved
values are added to the value of the input parameter Unstdrate to form a
new value for the output parameter Zerorate.*/
%MACRO Unstandardize(Unstdrate,counter,Zerorate);
Call PMXELEM(Mean_Std,1,&counter,mean);
Call PMXELEM(Mean_Std,2,&counter,std);
&zerorate = mean + std * &unstdrate;
%MEND Unstandardize;

As previously mentioned, Program Code 9.3 was used to calculate data values

for the twenty-two risk factor variables UNSTD_1_MTH, UNSTD_3_MTH,…,

UNSTD_10_YEAR from the risk factor variables Prin1, Prin2 and Prin3. The risk

factor transformation method Mod_Zerorates in Program Code 7.4 uses these

values, together with the SAS macro, named Unstandardize from Program Code

9.4 to derive values for the risk factor variables ZR_1_MTH,

ZR_3_MTH,… ,ZR_10_YEAR. Consider (9.4) again:

 YμX ˆ'ˆˆˆˆ 2/1 EV+= (9.4)

Chapter 9: The Registration of Market and Portfolio data

 215

The Mod_Zerorates method uses Ŷ'Ê , multiplies it by 2/1V̂ and adds μ̂ . This

concludes Step 5 of the second process, as simulated values for the original

twenty-two zero rates are thus obtained. Program Code 7.4 is listed again.

Program Code 7.4: The Risk Factor Transformation Method Mod_ZeroRates

Proc Compile Env = "&RiskEnv" Outlib = "&RiskEnv" ;
Method Mod_ZeroRates Kind = Trans;
%Unstandardize(UNSTD_1_MTH,1,ZR_1_MTH);
%Unstandardize(UNSTD_3_MTH,2,ZR_3_MTH);
%Unstandardize(UNSTD_6_MTH,3,ZR_6_MTH);
%Unstandardize(UNSTD_12_MTH,4,ZR_12_MTH);
%Unstandardize(UNSTD_18_MTH,5,ZR_18_MTH);
%Unstandardize(UNSTD_2_YEAR,6,ZR_2_YEAR);
%Unstandardize(UNSTD_30_MTH,7,ZR_30_MTH);
%Unstandardize(UNSTD_3_YEAR,8,ZR_3_YEAR);
%Unstandardize(UNSTD_42_MTH,9,ZR_42_MTH);
%Unstandardize(UNSTD_4_YEAR,10,ZR_4_YEAR);
%Unstandardize(UNSTD_54_MTH,11,ZR_54_MTH);
%Unstandardize(UNSTD_5_YEAR,12,ZR_5_YEAR);
%Unstandardize(UNSTD_66_MTH,13,ZR_66_MTH);
%Unstandardize(UNSTD_6_YEAR,14,ZR_6_YEAR);
%Unstandardize(UNSTD_78_MTH,15,ZR_78_MTH);
%Unstandardize(UNSTD_7_YEAR,16,ZR_7_YEAR);
%Unstandardize(UNSTD_90_MTH,17,ZR_90_MTH);
%Unstandardize(UNSTD_8_YEAR,18,ZR_8_YEAR);
%Unstandardize(UNSTD_102_MTH,19,ZR_102_MTH);
%Unstandardize(UNSTD_9_YEAR,20,ZR_9_YEAR);
%Unstandardize(UNSTD_114_MTH,21,ZR_114_MTH);
%Unstandardize(UNSTD_10_YEAR,22,ZR_10_YEAR);
Endmethod;
Run;

9.2.3 Transformation sets

The Risk Dimensions structure, called a transformation set is used to execute

risk factor transformation methods and linear transformation matrices. Only the

transformation methods and transformation matrices that are defined as part of a

transformation set are used in risk analyses. The Rftrans statement is used to

specify the name of the transformation set, together with the risk factor

transformation methods and linear transformation matrices that comprise the set.

Chapter 9: The Registration of Market and Portfolio data

 216

An optional label may be specified. Program Code 9.5 is used to specify

transformation sets in the Casestudy_Env risk environment.

Program Code 9.5: The creation of transformation sets in Casestudy_Env

/*A separate transformation set is created for the risk factor
transformation method Mod_Zerorates and the linear transformation matrix
Eigenvectors.*/
Proc Risk;
Environment open = "&RiskEnv";
Rftrans Eigenvectortrans Eigenvectors;
Rftrans Modzerotrans Mod_ZeroRates;
Environment save;
Run;

The contents of the Market Data tree in the GUI of the Casestudy_Env risk

environment is viewed in Figure 9.1.

Figure 9.1: The Market Data tree of Casestudy_Env in the GUI

Chapter 9: The Registration of Market and Portfolio data

 217

9.3 The registration of portfolio data

In the financial world, a portfolio of financial instruments is kept by a financial

institution. In our case, the case study institution named Activegrowth. The first

step of implementing this portfolio in the SAS environment was to create raw data

files that contain all the necessary information regarding open positions held.

The next step was the conversion of the raw data files into SAS data sets. The

information contained in the SAS data sets was used to register instrument

variables that are used in pricing methods and instrument classification. The

position information in the SAS data set needs to be accessed. The Risk

Dimensions structure called a portfolio data source is created for each SAS

data set that contains position information. It is a pointer to the physical location

of the SAS data set. A portfolio input list is the next structure that is created. It

is a list of portfolio data sources that is aggregated into one unified portfolio. The

Risk Dimensions structure, named a portfolio filter is created next. This

structure enables the creation of various portfolios by using conditioning logic

statements on the data values of certain instrument variables. Lastly, a portfolio
file is created by reading the data as specified in the portfolio input lists and

portfolio filters. All the position information is now available in the risk

environment and is ready for use by pricing methods.

9.3.1 Portfolio data sources

The information relating to the open positions held by a company are contained

in SAS data sets such as Tradebook, Swapbook and Bondbook. In order to use

the data values in these data sets in the risk environment, portfolio data
sources are created. A portfolio data source is a structure that manages the

way in which the position data is imported into the risk environment.

A portfolio data source is created by the Instdata statement in the Proc Risk

procedure. The following options are available in this statement:

Chapter 9: The Registration of Market and Portfolio data

 218

Name

A suitable name is specified for the portfolio data source.

File

The name and physical location of the SAS data set that contains the

position information, is specified.

Format

 The format of the data in the SAS data set is specified in this option.

The available format options are simple, sparse, cash flow and

quadratic.

Label

 A descriptive label may be specified.

Variables = (Column-name = Instrument-Variable)

This option is used to rename the column names of the SAS data sets

to instrument variables names. These instrument variables must

already be registered in the risk environment. The rename option is

specified in a from = to way, from the column name of the data set to

the instrument variable name.

Type

If all the observations in the SAS data set are about the same

instrument, then the Type option may be used to specify the name of

the instrument. It is then, not necessary to include the system-defined

variable InstType in the data set.

Here, we need to discuss the different formats in which the data values are

stored in SAS data sets, as specified in the Format option, in more detail. A data

set with a simple format contains one observation for each instrument. The

Chapter 9: The Registration of Market and Portfolio data

 219

sparse format is used when the data set contains one observation for each field

of each instrument. The cash flow format is used when each observation

contains one cash flow of each instrument. The quadratic format is used for the

data sets that contain the first and second derivatives of each instrument as

observations.

Certain system-defined variables have to be included in the SAS data sets for

specified formats. In the case study the simple format is used and only the

requirements for these data sets are discussed.

A SAS data set with a simple format contains one observation for each

instrument. The system-defined variables InstID and InstType have to be

columns in the data set. The data values in InstID are unique and no duplication

may exist. The variable InstType contains the names of the instrument types

that were created in Section 7.4. The remaining columns of the data set contain

the instrument variables that were declared in Section 5.2.3.

Program Code 9.6 is used to register the necessary portfolio data sources in the

Casestudy_Env risk environment.

Program Code 9.6: The registration of portfolio data sources

Proc Risk;
Environment open = "&RiskEnv";
/*The Tradebook SAS data set in the SAS library Riskdata, is specified
in the File option. A Label is specified, as well as, the simple format
in the Format option. The data set variable Shareprice is renamed to the
instrument variable Marketprice. The portfolio data sources Swapbook and
Bondbook are also registered.*/
 Instdata Tradebook
 File = "&RiskData\Tradebook"
 Label = "Trade Book"
 Variables = (Shareprice = Marketprice)
 Format = simple;
 Instdata Swapbook
 File = "&RiskData\Swapbook"
 Label = "Swap Book"
 Format = simple;

Chapter 9: The Registration of Market and Portfolio data

 220

Program Code 9.6 continues…

 Instdata Bondbook
 File = "&RiskData\Bondbook"
 Label = "Bond Book"
 Format = simple;
Environment save;
Run;

9.3.2 Portfolio Input Lists

A portfolio input list is a list of portfolio data sources. It is used to combine

different portfolio data sources into a list that is used as input in the creation of a

portfolio file. It is thus, an intermediate step in the creation of a portfolio file and

is necessary even when only one portfolio data source exists. The Sources

statement in Proc Risk is used to specify the name of the portfolio input list and

the list of portfolio data sources that are included. Program Code 9.7 is used to

combine the portfolio data sources Tradebook, Bondbook, and Swapbook into a

portfolio input list with name All_Deals_List.

Program Code 9.7: The registration of portfolio input lists

Proc Risk;
Environment open = "&RiskEnv";
Sources All_Deals_List Tradebook Swapbook Bondbook;
Environment save;
Run;

9.3.3 Portfolio Filters

A portfolio filter is used to select only a subset of the information contained in a

portfolio input list, to pass on to the portfolio file. A logical expression in

program code is used to select the subset. A requirement is specified and only

the observations (rows) that meet the requirement are used in the portfolio file.

Chapter 9: The Registration of Market and Portfolio data

 221

The Filter statement in Proc Risk creates a portfolio filter. The Where option is

used to create a conditional expression in the Filter statement. An optional label

for the portfolio filter may also be specified. Only the names of registered

instrument variables are used in the conditional expression. Portfolio filters with

names Derivatives_Filter, Commodity_Filter and Int_Der_Filter are created in

Program Code 9.8. For example, if Derivatives_Filter is used in the creation of a

portfolio file, only the observations that have a data value of Der for the

instrument variable Book will be included in the portfolio file.

Program Code 9.8: The registration of portfolio filters

Proc Risk;
Environment open = "&RiskEnv";
 Filter Derivatives_Filter where "Book='Der'";
 Filter Commodity_Filter where "Book='Com'";
 Filter Int_Der_Filter where "Book='Int_Der'";
Environment save;
Run;

The use of portfolio filters in the creation of portfolio files is discussed in the next

section.

9.3.4 Portfolio Files

The final step in the creation of Risk Dimensions structures for position data, is

the creation of portfolio files. A portfolio file is a binary SAS data file that is

created in a format that is ready to be priced by the SAS Risk Engine. Thus, only

portfolio files are used to represent position information in risk analyses.

A portfolio input list and optionally a portfolio filter is specified as inputs to a

portfolio files. A portfolio file is created by reading the data values contained in

the SAS data sets, that are specified in the portfolio data sources, into Risk

Dimensions. The portfolio data sources are specified in a portfolio input list.

Chapter 9: The Registration of Market and Portfolio data

 222

The Read Sources statement in Proc Risk is used to create the portfolio files. A

portfolio input list and an optional portfolio filter (in the Filter option) are specified

in this statement. The name of the resulting portfolio file is specified in the Out

option. More than one portfolio file may be created in a risk environment. One of

the portfolio files created in Program Code 9.9 is a portfolio file by name of

Derivatives_File. A portfolio input list named All_Deals_List and a portfolio filter

named Derivatives_Filter is used in a Read Sources statement. In Section 7.5 a

variables list was specified for each instrument type during registration. Only the

variables specified then are included in the portfolio file. The portfolio file is

static, meaning that if the position information of the company changes, a new file

has to be created.

Program Code 9.9: The registration of portfolio files

Proc Risk;
Environment open = "&RiskEnv";
 Read Sources = All_Deals_List Out = All_Deals_file;
 Read Sources = All_Deals_List Out = Derivatives_File
 Filter = Derivatives_Filter;
 Read Sources = All_Deals_List Out = Commodity_File
 Filter=Commodity_Filter;
Environment save;
Run;

The contents of the Portfolios tree in the GUI of the Casestudy_Env risk

environment is viewed in Figure 9.2.

Chapter 9: The Registration of Market and Portfolio data

 223

Figure 9.2: The Portfolios tree of Casestudy_Env

9.4 Summary

The part that principal component analysis plays in the case study context was

discussed in Section 9.1. The steps that are necessary for a successful

implementation of PCA were discussed in detail. The need for Risk Dimensions

structures such as parameter matrices and risk factor transformation methods

were also illustrated in terms of PCA.

SAS data sets containing market information were registered in the risk

environment, as market data sources. The role of other market data structures

such as parameter matrices and transformation sets was also discussed in

Section 9.2.

SAS data sets that contain position information are registered as portfolio data
sources in a risk environment. The portfolio data sources may be combined into

a portfolio input list. The list is used, together with a portfolio filter, to create a

portfolio file. A portfolio filter may be used to create a portfolio file which is only

Chapter 9: The Registration of Market and Portfolio data

 224

a subset of all the open positions that are held by the company. The portfolio file

is ready for use in pricing methods and risk analyses.

The market and portfolio data that were registered in this chapter are used in the

next chapter, in the calculation of various risk measures.

10

RISK ANALYSES

10.1 Introduction

A wide range of analytical methods that may be used as risk analyses, exists in

Risk Dimensions. The majority of the methods are grouped as either market or

credit risk analyses. A third and smaller group, is defined as general risk

analyses, as it may be applied to determine market or credit risk.

We first review the definitions of market and credit risk. Market risk is defined as

the potential change in the portfolio value, due to a change in the values of the

risk factor variables. Credit risk is defined as the potential change in the

portfolio value, due to defaulting of obligations by counter parties. An example of

credit risk is the potential defaulting of the counter party on the exchange

payments of an interest rate swap.

The market risk analyses that are available in Risk Dimensions are discussed in

detail in this Section 10.2. The analyses are:

• Sensitivity analysis

• Profit/Loss Curve analysis

• Profit/Loss surface analysis

• Scenario analysis and stress testing

• Delta-Normal analysis

Chapter 10: Risk Analyses

 226

• Simulation analyses

 – Historical simulation

 – Scenario simulation

 – Monte Carlo simulation

The execution of the market risk analyses, listed above, generates results that

provide information about:

• How changes in risk factor variables values affect the portfolio value,

• the importance of risk factor variables relative to the portfolio value and

• an indication of the amount of risk that is contained in the portfolio.

The credit risk analyses that are available in Risk Dimensions are discussed in

broad terms in Section 10.3. It is an advanced topic that falls outside the focus

of this document.

Several general risk analysis methods are also available in Risk Dimensions.

The methods may be used in both market and credit risk analyses. The available

methods are discussed in Section 10.4.

A Risk Dimensions structure, called a cross-classification is discussed in

Section 10.5. This structure is used to create sub-portfolios of the portfolio file.

The results of the execution of risk analyses are reported separately for each

sub-portfolio.

The market risk analyses that are created in Section 10.2 are executed in a Risk

Dimensions structure, called a Project. This structure is discussed in Section
10.6. It is an important structure that brings together market data sources, cross-

classifications, transformation sets, portfolio files and risk analyses. The projects

are activated by the Runproject statement and for the first time in the

Chapter 10: Risk Analyses

 227

implementation of the risk management system, the actual calculation of risk

measures takes place.

The execution of a Risk Dimensions project leads to the creation of various SAS

data sets. These data sets contain the results of the execution of the risk

analyses and are called output data sets. Some of the most frequently used

output data sets, as well as, the graphical illustrations that are also created by the

execution of a project, are discussed in Section 10.7.

Two SAS statements, namely the Trace and %Include statements are discussed

in Section 10.8. These statements are very useful in debugging and shortening

SAS program code.

It is important to define the concept of market states at this stage. One data

value is assigned to each risk factor variable for each trading day. The set of

data values (one data value for each risk factor variable) is called a market
state. The set of data values for the current date or date of valuation is called the

base-case market state. A market state is necessary in the calculation of the

portfolio value.

10.2 Market risk analyses

The creation of the different market risk analyses that are available in Risk

Dimensions, is discussed in this section. These risk analyses are only executed

in Section 10.6. The execution of each type of analysis brings different

information into consideration for the risk manager.

Chapter 10: Risk Analyses

 228

10.2.1 Sensitivity analysis

Sensitivity analysis is used to provide information about how the portfolio value

changes, if the value of a risk factor variable changes by a specified amount. The

vector of first order derivatives (deltas) of the portfolio value with respect to a list

of risk factor variables is calculated by default. It is also possible to calculate

second order derivatives (gammas), cross-derivatives, derivatives with respect

to time (thetas) and derivatives with respect to the volatility of risk factor

variables (vegas). The calculations are all executed at the base case market

state.

The Sensitivity statement in Proc Risk is used to create a sensitivity analysis

structure in the risk environment. The statement has the following general form:

Sensitivity Name Vars = Variable-list Options ;

Various options are available in the Sensitivity statement. The following two

options are required:

Name

 The name of the sensitivity analysis structure is specified in this option.

Vars = variables-list

 The names of the risk factor variables that are included in the

sensitivity analysis, are specified. If this option is omitted derivatives

are calculated with respect to all risk factor variables.

Several other options may also be specified in the Sensitivity statement in the

Options option. They are:

Chapter 10: Risk Analyses

 229

Hessian

 The use of this option specifies that the matrix of second and cross-

derivatives is calculated.

Theta

 This option requests that the derivatives with respect to time are also

calculated.

Vega

 The inclusion of this option enables the calculation of derivatives with

respect to the volatilities of the specified risk factor variables.

Evaldate

 The date on which the analysis is executed is specified in this option. If

this option is omitted the date of valuation that is specified elsewhere is

used.

Label = “Label”

 A descriptive label may be specified for the sensitivity analysis

structure.

Numerical or analytical techniques are available to calculate the derivatives.

Only the default technique, namely the numerical method is discussed. The

numerical formulas for delta ()Δ and gamma ()Γ follows:

 () ()
h

hxFhxF
2

−−+
=Δ

 (10.1)

 () () () ()
2h

xFhxFxFhxF −−+−+
=Γ

 (10.2)

Chapter 10: Risk Analyses

 230

Each one of the risk factor variables is perturbed up and down by the amount of

h . The portfolio value is calculate as)(hxF + and)(hxF − for each of these

movements.

A sensitivity analysis structure, named Sensit is created in the case study risk

environment in Program Code 10.1. A list of risk factor variable names, as well

as, the theta option is specified.

Program Code 10.1: Sensitivity analysis in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
Sensitivity Sensit Vars = (ASA AGL ISC SOL SLM OML Vol_ASA Vol_SOL)
 theta;
Environment save;
Run;

Sensit is executed in Section 10.6. The results that are created by the execution

of this structure are discussed in Section 10.7.

10.2.2 Profit/Loss curve analysis

The next risk analysis structure, a Profit/Loss curve, calculates the portfolio

value for different market states that are created by varying a single risk factor

variable over a grid of values, whilst the other variable values remains fixed. The

portfolio value is recalculated at each point on the grid. The curve is a graphical

structure that is used to visualize the impact that changes in the value of one risk

factor can have on the portfolio value.

The PLcurve statement in Proc Risk is used to create Profit/Loss curves in the

risk environment. Program Code 10.2 is used to illustrate the general form of this

statement.

Chapter 10: Risk Analyses

 231

Program Code 10.2: The PLcurve statement

PLcurve name
Curves= (rf_name_1 min = min-value max = max_value n = num type,
 rf_name_2 min = min-value max = max_value n = num type,
 rf_name_3 min = min-value max = max_value n = num type);

The name option in the PLcurve statement is used to assign a name to a set of

Profit/Loss curves.

The specifications of each curve are listed in the Curves option and are

separated from the next curve’s specifications by a comma. Several options are

available in the Curves option. They are:

rf_name_i

 The name of the risk factor variable that is used in the i’th Profit/Loss

curve, is specified in this option.

min

 The starting point of the grid of risk factor variable values is specified in

this option.

max

 The end point of the grid of risk factor variable values is specified in

this option.

n

 The number of data values on the grid is specified in this option.

type

 The type of perturbations that is used for the risk factor variable values,

is specified in this option. The value specified in this option, the base

Chapter 10: Risk Analyses

 232

case risk factor variable value and the values specified in the min and

max options are used to determine the boundary points of the grid. The

available options in type are:

• Abs The values in the min and max options are added to the

 base case value to create the boundary points of the

 grid.

• Rel The values in min and max are multiplied by the base

 case value to obtain the boundary points of the grid.

• Std The base case value is again multiplied by the values in

 the min and max options, but also by the standard

 deviation of the risk factor variable to obtain the

 boundary points of the grid.

• Value The specified values in the min and max options are used

 as the boundary points of the grid.

The value specified in the n option is used, together with the calculated starting

and ending points of the grid, to determine the data values on the grid.

Subsequent data values are a constant distance from each other.

Six Profit/Loss curves in two sets are created in the Casestudy_Env risk

environment by Program Code 10.3.

Program Code 10.3: Profit/Loss curves in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
Plcurve Equity_Curve
 Curves = (SOL min = 60 max = 85 n = 25 value,
 ASA min = -0.20 max = 0.2 n = 21 rel,
 SLM min = -3 max = 3 n = 21 abs,
 ISC min = -0.50 max = 0.5 n = 25 std);

Chapter 10: Risk Analyses

 233

Program Code 10.3 continues…

Plcurve Rate_Curve
 Curves = (ZR_6_MTH min = -0.20 max = 0.2 n = 25 rel,
 ZR_2_YEAR min = -0.50 max = 0.5 n = 31 rel);
Environment save;
Run;

The sets of Profit/Loss curves, Rate_Curve and Equity_Curve, are executed in

Section 10.6. The results that are created by the execution of these sets are

discussed in Section 10.7.

10.2.3 Profit/Loss surface analysis

Profit/loss surface analysis is an extension of profit/loss curve analysis. The

difference is that the portfolio value is calculated for market states that are

created, by varying the values of two risk factor variables over a two-dimensional

grid of values. The values of the rest of the risk factor variables are kept fixed.

The portfolio value is recalculated at each point on the two-dimensional grid. The

results of the analysis are illustrated in a graph.

The Plsurface statement is used to create a profit/loss surface. The general form

of this statement is included in Program Code 10.4.

Program Code 10.4: The PLsurface statement

PLsurface name
 rf_name1 (min= min-value max=max_value n = num type)*
 rf_name2 (min= min-value max=max_value n = num type),
 rf_name3 (min= min-value max=max_value n = num type)*
 rf_name4 (min= min-value max=max_value n = num type);

Program Code 10.4 illustrates the situation where one Profit/Loss surface

analysis is created. The options that are used in the PLsurface statement are the

Chapter 10: Risk Analyses

 234

same as the options in the PLcurve statement. Program Code 10.5 is used to

create the profit/loss surface, named Equity_Rate_Surface in the Casestudy_Env

risk environment. The values of the risk factor variables ASA and ZR_6_MTH,

are perturbed.

Program Code 10.5: The Equity_Rate_Surface Profit/Loss surface

Proc Risk;
Environment open = "&RiskEnv";
PLsurface Equity_Rate_surface
 ASA(min = -0.20 max = 0.2 n = 21 rel)*
 ZR_6_MTH(min = -0.20 max = 0.2 n = 25 rel);
Environment save;
Run;

The Equity_Rate_Surface analysis structure is executed in Section 10.6. The

results of the execution of this structure are discussed in Section 10.7.

10.2.4 Scenario analysis and stress testing

In scenario analysis and stress testing the value of the portfolio is calculated

for user-defined values of one or more risk factor variables. The base case

values are used for the remaining variables. The difference between the two

analyses is that in scenario analysis, relatively small changes in the risk factor

variable values are considered, whilst in stress testing, extreme changes in the

risk factor variable values are considered.

Scenario analysis or stress testing is very useful when the investor calculates a

projected value for a risk factor variable such as an interest rate and he or she

wants to see the impact of this change on the portfolio value. The Scenario

statement is used to create a scenario analysis or a stress testing structure. The

general form of this statement is illustrated in Program Code 10.6.

Chapter 10: Risk Analyses

 235

Program Code 10.6: The Scenario statement

Scenario name
Changes = (rf_name1 value type,
 rf_name2 value type,
 rf_name3 value type,
 rf_nameN value type)
Options ;

A suitable name is assigned to the scenario analysis or stress testing structure, in

the name option.

The names of the risk factor variables, as well as the changes in their values, are

specified in the Changes option. The following three options exist in this option:

rf_name1,…,rf_nameN

 The names of the risk factor variables that are perturbed are specified

in this option.

Value

 Numerical values are specified in this option.

Type

 This option may be specified as Abs, Rel or Std.

The values that are specified in the Value and Type options of the Changes

option, determine the size of the changes in the risk factor variable values.

Additional options may also be specified in the Scenario statement in Options.

The following option is an example:

Chapter 10: Risk Analyses

 236

Kind

 This option is used to specify the dependent variable that is analysed.

The default value PL, is used to calculate the profit or loss arising from

the scenario relative to the current portfolio value. The credit exposure

of the portfolio under the scenario conditions are calculated by

specifying the Exposure value in this option. The names of registered

output variables may also be specified in this option.

Program Code 10.7 is used to create a scenario analysis and stress testing

structure in the Casestudy_Env risk environment. A scenario analysis structure,

named Scenario1 and a stress testing structure, named Stress1 are created.

User-defined values for six risk factor variables are specified. These values,

together with the base case values of remaining variables, are used to calculate

the value of the portfolio. The portfolio value of the scenario is compared to the

current portfolio value. Small changes to the base case values are specified in

Scenario1 and large changes in Stress1.

Program Code 10.7: Scenario analysis and stress testing in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
Scenario Scenario1
Changes = (ZR_3_MTH 0.005 abs, ZR_6_MTH 0.005 abs, SOL 0.1 rel,
 Vol_SOL 0.01 abs, ISC -0.1 rel);
Scenario Stress1
Changes = (ZR_3_MTH 0.05 abs,ZR_6_MTH 0.06 abs, SOL 0.55 rel,
 Vol_SOL 0.1 abs, ISC -0.5 rel);
Environment save;
Run;

The scenario analysis and stress testing structures that were created above, are

executed in Section 10.6. The results that are created by the execution are

discussed in Section 10.7.

Chapter 10: Risk Analyses

 237

10.2.5 Value at Risk (VaR)

A very important market risk measure, namely Value at Risk is discussed in this

section. The calculation of Value at Risk is an attempt to quantify the total market

risk in the portfolio into a single number or value. Consider a time horizon t and

a confidence level p . Value at Risk (VaR) is defined as the loss in portfolio value

over a time horizon t that are exceeded with probability p−1 , (cf. Hull(2003). The

definition may also be written into the following statement:

“The company is p percent certain that it will not lose more than VaR rand in the

next t days.”

An estimate of Value at Risk may be calculated by various methods. Four
different methods, namely Delta-normal analysis, historical simulation,

covariance-based Monte Carlo simulation and model-based Monte Carlo
simulation are used in this chapter to provide estimates of VaR. Each one of the

methodologies is discussed separately later in the chapter.

VaR is one the most informant and frequently used risk measurements in the

financial world. Certain financial institutions such as large banks are also forced

by legislation to calculate VaR as part of their risk management system. The

calculation of VaR for the portfolio that is held by the company in the case study,

is discussed later in this chapter.

10.2.6 Delta-Normal Analysis

Delta-normal analysis is used to calculate an estimate of the portfolio Value at

Risk (VaR).

The analysis method is based on two assumptions. The first is that changes in

the portfolio value have an approximately linear relationship with changes in the

Chapter 10: Risk Analyses

 238

values of the risk factor variables. The second assumption is that the changes in

the portfolio value, as well as, the changes in the values of the risk factor

variables, are normally distributed.

The second assumption may be extended so that the changes in the risk factor

variable values have a multivariate normal distribution, with a zero mean and

a user-defined covariance matrix. The covariance matrix is estimated from the

historical data values of the risk factor variables. The SAS procedure Proc Corr

in Program Code 6.21 is used to perform the estimation. A theoretical discussion

about covariance matrices is included in Section 6.4.2.

Suppose that the values of n risk factor variables are necessary in the

calculation of the portfolio values. The formula that is used to calculate the Delta-

Normal Value at Risk follows:

 XX ∑= ˆ'αzVaRDN (10.3)

where

[]nXXX K,,' 21=X ,

iiX Δ= if the i’th risk factor variable has an interval measurement level,

ii SX Δ= 0 if the i’th risk factor variable has a ratio measurement level,

iΔ = the derivative of the portfolio value with respect to the i’th risk factor variable,

0S = the base case market state,

∑̂ = the user-provided covariance matrix and

αz = the quantile of the standard normal distribution corresponding to a

 confidence level of α .

Chapter 10: Risk Analyses

 239

The Deltanormal statement in Proc Risk is used to create a Delta-Normal

analysis structure in a risk environment. The following options are the most

frequently used in the statement:

Data = covariance- market data-source

 The market data source that contains the user-provided covariance

matrix, is specified in this option.

Interval

 The interval of the data in the covariance matrix is specified in this

option.

Label

 A descriptive label may be specified for the structure.

Conditional = category-list

 This option specifies the risk factor variable category for conditional

VaR analysis. Conditional VaR is calculated by perturbing all the

values of the risk factor variables that belong in the category-list, while

fixing the data values of the other risk factor variables.

Marginal= category-list

 The risk factor variable categories for marginal VaR analysis are

specified in this option. The values of the risk factor variables values in

the category-list are fixed, whilst the values of the remaining variables

are perturbed.

Program Code 10.8 which follows is used to create a Delta-Normal analysis

structure, named Delta_Sim in the case study risk environment. An unconditional,

a conditional and a marginal estimation of VaR are calculated. The Conditional

option is used to perturb the values of the risk factor variables with Commodity

Chapter 10: Risk Analyses

 240

specified in the Category attribute, whilst fixing the values of the other variables.

The Marginal option is used to fix the values of the risk factor variables that have

a Volatility category and to perturb the values of the remaining variables.

Program Code 10.8: Delta-Normal analysis in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
Deltanormal Delta_Sim
 Data = Covar
 Interval = weekday
 Conditional = Commodity
 Marginal = Volatility;
Environment save;
Run;

The calculations of the Delta-Normal analysis, Delta_Sim, are executed in

Section 10.6. The results that are obtained from the execution are discussed in

Section 10.7.

10.2.7 Simulation analyses

Simulation analyses are used to create a set of potential market states. The

portfolio value is calculated for each of the market states. This creates a

distribution for the portfolio value, that is used in the calculation of Value at Risk

and other risk measures.

Four simulation methods are available in Risk Dimensions. The difference

between the methods is that they use different techniques in the generation of

the potential market states. The methods are:

Historical simulation
 The market states are based on historical risk factor variable values.

Chapter 10: Risk Analyses

 241

Scenario simulation
 The market states are created by user-defined changes from the base

 case market state.

Covariance-based Monte Carlo simulation
 The risk factor variable values are perturbed according to the user-

 provided covariance matrix, to generate market states.

Model-based Monte Carlo simulation
 A statistical model is fitted to the historical data values of each of the risk

 factor variables. Future predicted values are obtained for each variable.

 The predicted values of the models are perturbed to generate market

 states.

The Simulation statement in Proc Risk is used to create a simulation analysis

structure in a risk environment. The general form of this statement follows:

Simulation name Method = simulation-method Options;

A suitable name for the simulation structure is specified in the name option. The

simulation method that is used in the structure is specified in the Method option.

The available methods are Historical, MonteCarlo, Covariance and Scenario.

Each of the simulation methods have their own list of additional options that may

be used in the Simulation statement.

The following optional options may, however, be specified for all the available

methods:

Conditional = (category-list)

 The list of risk factor categories that is used in the calculation of

Conditional VaR, is specified in this option.

Chapter 10: Risk Analyses

 242

Marginal = (category-list)

 The list of risk factor categories that is used in the calculation of

Marginal Value at Risk, is specified in this option.

Horizon = (horizon-list)

 A list of time horizons that are used in multiple horizon simulations is

specified. The simulation analysis produces Value at Risk results for

each time horizon point.

Kind = (variable-list)

 This option specifies the dependent variables that are analysed in the

simulation analysis. In addition to the default, P/L, any registered

output variable may also be calculated.

Generator = generating-method

 The method that is used to generate random numbers is specified, for

example pseudo.

Ndraw = value

 The number of simulation iterations is specified in this option.

Seed = value

 The value specified in this option is used as starting value in the

random number generation.

Each one of the four simulation methods are discussed separately in the

remainder of the section.

Chapter 10: Risk Analyses

 243

Historical Simulation

Suppose that the closing values of all the risk factor variables for the past n

trading days are available, then the daily changes in these historical values are

used to create a set of possible market states for a specified time point (for

example 1 trading day) in the future. The market states are used to create a

distribution for the value of the portfolio. The)%1(α− Value at Risk estimate is

calculated as current portfolio value, minus the value of the 100×α ’th percentile

of the portfolio value distribution.

The Mlevel attribute is used to specify the measurement level of each risk factor

variable as interval or ratio. The set of possible future market states are created

differently for interval and ratio risk factor variables. Let tX be the value of a risk

factor variable t trading days ago with 0X the base case value. The following two

methods are used in determining the market states:

Mlevel = Interval:

1. The changes are calculated as the difference between the consecutive values

 of the risk factor variable, i.e.

 1−−= tt XXChange for 1,,1 −= nt K

2. The new market states are created by adding the changes to the base case

 value of the risk factor variable, i.e.

 ChangeXstateMarket += 0

Chapter 10: Risk Analyses

 244

Mlevel = Ratio:

1. The changes are calculated as the ratio of consecutive values of the risk

 factor variable, i.e.

1−

=
t

t

X
X

Change for 1,,1 −= nt K

2. The new market states are created by multiplying the base case market

 value by the changes, i.e.

 ChangeXstateMarket ×= 0

One of the strengths of historical simulation is that no assumption is made about

the underlying distribution of the changes in the values of the risk factor

variables. Thus, it is also not necessary to estimate any parameter values. The

methodology of historical simulation is easy to understand and consistent with

the idea that the changes in risk factor variables are from any distribution.

The weakness of historical simulation is, however, the assumption that the set of

possible future market states are fully represented by the changes in the

historical values of the risk factor variables. Another way of stating this, is that all

the possible future changes in the risk factor variable values for the specified time

horizon have already occurred in the previous time period of n days. It is not

always possible to get enough data on all the risk factor variables over a

reasonable long period of time. The market states are then predicted on a limited

amount of data and historical simulation may lead to an unreliable estimate of

VaR.

Chapter 10: Risk Analyses

 245

Four additional options are available in the Simulation statement for historical

simulation. The options are:

Data

 The name of the market data source that is of the time series data type

is specified.

Startdate

 The date of the first observation from the historical data that is used in

the simulation analysis, is specified.

Enddate

 The date of the last observation from the historical data that is used in

the simulation analysis, is specified.

Overlap/Nooverlap

 This option is used if the time horizon of the simulation is larger than 1,

for example 3. The market states are then generated by using the

changes resulting from three consecutive observations of historical

data (for example observations 1, 2 and 3). If the Overlap option is

specified, the next market state is generated by observations 2, 3 and

4. However, if the Nooverlap option was specified, the next market

states would have been generated by observations 4, 5 and 6.

Program Code 10.9 is used to create the historical simulation structure, named

Hist_Sim in the Casestudy_Env risk environment. The method of simulation is

chosen as Historical, the market data source History is specified, the interval of

the data is chosen as Weekday and suitable starting and ending dates for the

simulation are specified.

Chapter 10: Risk Analyses

 246

Program Code 10.9: The historical simulation structure Hist_Sim

Proc Risk;
Environment open = "&RiskEnv";
Simulation Hist_Sim Method = Historical
 Data= History
 Interval = weekday
 Startdate = '05NOV2003'd
 Enddate = '13MAY2004'd;
Environment save;
Run;

The execution of the historical simulation structure named Hist_Sim is discussed

in Section 10.6. Various output data sets and a graphical illustration is created

by the execution and is discussed in Section 10.7.

Scenario Simulation

Similar to historical simulation, scenario simulation is used in Risk Dimensions

to create a list of market states, by adding changes in the risk factor variable

values to the base case values. The difference between the two simulation

methods is that in scenario simulation the market states are based on user-
defined changes in the risk factor variable values. A SAS data set that contains a

list of user-defined values for each of the risk factor variables is created. The

changes in the consecutive risk factor variable values that are read from the data

set are added to the base case values to create a list of market states. The value

of the portfolio is calculated for each market state, creating a distribution for the

portfolio value.

Scenario simulation may be very effective if the values in the SAS data set are

based on good investor information. If the company believes that the scenarios

created are likely to happen in the foreseen future it may adjust the make-up of

the current portfolio.

Chapter 10: Risk Analyses

 247

Two additional options in the Simulation statement are used in scenario

analysis. The options are:

Data

 The name of a market data source that is of the scenarios data type is

specified.

Match

 This option is used to match values from the scenario data set. The

matching may be done by date (Match = Date) or by horizon (Match =

Horizon). If no matching is done the (Match = None) option is chosen.

Consider the case study. The SAS data set named Scenariodata contains the

list of user-defined values of each of the sixteen risk factor variables that are

used in the valuation of the portfolio. The data set was registered as a market

data source with the same name in Program Code 9.2. A scenario simulation

structure, named Scen_Sim is created in the Casestudy_Env risk environment by

Program Code 10.10. The method is specified as Scenario, the market data

source named Scenariodata is specified as well and no matching is taking place.

Program Code 10.10: The scenario simulation structure Scen_Sim

Proc Risk;
Environment open = "&RiskEnv";
Simulation Scen_Sim Method = Scenario
 Data = Scenariodata;
Environment save;
Run;

The execution of the Scen_Sim is discussed in Section 10.6. The output data

sets and graphical results that are created by the execution, is discussed in

Section 10.7.

Chapter 10: Risk Analyses

 248

Monte Carlo simulation

Monte Carlo simulation is used to good effect, if the assumption that the

changes in the risk factor variables values have a certain underlying statistical

distribution, is made. Monte Carlo simulation may be used to simulate a set of

market states from any statistical distribution. The portfolio is again valued for

each market state, creating a distribution of portfolio values. An estimate of VaR

is calculated from the distribution.

The reliability of the distribution assumptions and the accurate estimation of

parameter values are central to the effectiveness of Monte Carlo simulation and

thus, the reliability of the Value at Risk estimate calculated by this method.

Monte Carlo simulation also uses historical values of the risk factor variables to

generate possible future scenarios. The advantage of this method over historical

simulation is, however, that the set of predictions are not limited to the exact

scenarios that were observed in the historical data set. Another advantage of

Monte Carlo simulation is that it is not constrained by normality as applies to the

Delta-normal method.

The two available Monte Carlo simulation methods, namely covariance-based

and model-based simulation are subsequently discussed.

Covariance-based Monte Carlo simulation

Covariance-based Monte Carlo simulation is used to provide another method of

calculating a Value at Risk estimate. This method produces a set of market

states by assuming that the changes in risk factor variable values are normally

distributed.

Chapter 10: Risk Analyses

 249

The same user-provided covariance matrix that is used in Delta-Normal analysis,

is also used in this method. The matrix is estimated from the historical data

values of the risk factor variables and is of size p p× .

The first step in this method is the calculation of the Cholesky root, L , of the user-

provided variance-covariance matrix,Σ . The formula is:

 'LLΣ = (10.4)

The Cholesky root matrix is a lower triangular matrix of size p p× and is the

square root of the covariance matrix.

A vector ε of p independent identically distributed (0,1)N random variables is

subsequently created. It is known that

pIEVar ==)'()(εεε (10.5)

A set of correlated perturbations,η , is created by multiplying L by ε :

 εη L= (10.6)

It follows that:

 Σ==== ''))(()()(LLILVLLVV pεεη (10.7)

Hence, the correlated perturbations have the same variability and correlation as

the original risk factor variable data values. The next step in the method is to add

the correlated perturbations to the base case market state, to create a simulated

market state.

Chapter 10: Risk Analyses

 250

If a risk factor variable is defined as having an interval measurement level, the

perturbations are added to the base case. For the i’th risk factor variable:

 1 0 iX X η= +

However, if the risk factor variable is defined as having a ratio measurement
level, the following formula is used for the i’th risk factor variable:

 1 0exp(ln())iX Xη= +

The process is to create a new vector ε , leading to a new vector η and a new

market state is repeated for a number of iterations. The portfolio value is

calculated for each of the market states. The distribution of portfolio values is

used to obtain an estimate of Value at Risk.

Program Code 10.11 is used to create a covariance-based Monte Carlo

simulation structure, named Cov_Sim in the Casestudy_Env risk environment.

The simulation method is specified as Covariance, the data interval as weekday

and the predicted time horizon as 1 day. The seed, ndraw and generator options

are also specified.

Program Code 10.11: The covariance-based simulation structure Cov_Sim

Proc Risk;
Environment open = "&RiskEnv";
Simulation Cov_Sim Method = Covariance
 Interval = weekday
 Seed = 54321
 Ndraw = 1000
 Generator = pseudo
 Horizon =1;
Environment save;
Run;

The execution of Cov_Sim is discussed in Section 10.6 and the results that are

obtained from the execution are discussed in Section 10.7.

Chapter 10: Risk Analyses

 251

Model-based Monte Carlo simulation

Risk factor models were discussed in chapter 8. An equation structure was

specified for each risk factor variable and the required model parameters were

estimated. The models were used to forecast future values of the risk factor

variables. The fitted models are perturbed in this section by model-based
simulation to create a set of random market states. The portfolio value is

calculated again for each market state. The resulting distribution of the portfolio

value is used to calculate an estimate of VaR.

The following additional options in the Simulation statement are frequently used

in Model-based Monte Carlo simulation.

Data

 The name of the market data source that is used to fit the risk factor

models, is specified in this option.

Errmod

 The error distribution that is used in Monte Carlo simulation is

specified. It may be the distribution that was used to fit the model

(asfit), the empirical distribution (empirical) with t-distribution tails or the

normal distribution (normal).

Interval

 The data interval that is used in simulation is specified.

Consider the case study again. A risk factor model is fitted to fifteen risk factor

variables of the sixteen risk factor variables, that are used to calculate the value

of the portfolio. The risk factor variable JB_6_MTH is used to refer to a floating

rate in interest rate swaps and is not modeled. Program Code 10.12 is used to

create the model-based Monte Carlo simulation structure, named Model_Sim in

Chapter 10: Risk Analyses

 252

the Casestudy_Env risk environment. The Montecarlo method and the market

data source History are specified. The interval, Errmod, seed, ndraw, generator

and horizon options are also specified.

Program Code 10.12: The model-based simulation structure Model_Sim

Proc Risk;
Environment open = "&RiskEnv";
Simulation Model_Sim Method = Montecarlo
 Data = History
 Interval = weekday
 Errmod = normal
 Seed = 12345
 Ndraw = 1000
 Generator = pseudo
 Horizon = 1 ;
Environment save;
Run;

10.3 Credit risk analyses

One of the possible risks that financial companies are exposed to, is credit risk.

It is defined as the change in portfolio value due to defaulting on an obligation by

a counter party. Various credit risk analyses are available in Risk Dimensions.

They are used to obtain information about the amount and type of credit risk the

company is exposed to.

Some examples of analyses are Current exposure analysis, Potential
exposure analysis and Credit Rating migration.

Current exposure analysis is used to calculate the credit exposure of the

portfolio that the company holds, using the base case market state.

Potential exposure analysis is used to calculate the credit exposure of the

predicted future values of the portfolio. Monte Carlo simulation is used to predict

the future market states that are used to create the future portfolio values.

Chapter 10: Risk Analyses

 253

Credit risk migration is used to create more complicated credit risk analyses.

Each of the counterparties in the open positions that are held is given a credit

rating. This might be, for example a high, medium or low risk of default rating.

The strength of credit risk migration is that it makes provision for the fact that the

probability of a counterparty defaulting, may change over time. If the probability

changes a sufficient amount of percentage points, the credit rating category will

also change. The use of credit risk migrations leads to a sophisticated prediction

of credit risk at future dates.

The credit risk analyses in Risk Dimensions is not discussed in further detail as it

falls outside the focus point of this document. They may, however, be used to

great effect in a credit risk management system.

10.4 General risk analyses

Risk Dimensions offers other risk analyses methods, in addition to the market

and credit risk analyses that were already discussed or mentioned in this chapter.

One of the general methods, namely Descriptive Statistics analysis is

discussed in detail whilst an overview is given of the other two namely Cash
Flow analysis and Portfolio optimization analysis.

A Portfolio statistics structure is used to calculate general, descriptive

statistical measures of the data values of instrument variables like Coupon or

Premium. The general measures include the minimum, maximum, mean and

standard deviation. The calculated value of a measure, for example, the

minimum may furthermore be stored in an output variable that is included in

some output data sets. The descriptive statistics may also be used in postprice or

postvar method programs for further analysis.

Chapter 10: Risk Analyses

 254

The Statistics statement in Proc Risk is used to create a portfolio statistics

structure in a risk environment. The general form of this statement is:

Statistics name
 stat-1 variable-name-1 = output-variable-name-1,
 stat-2 variable-name-2 = output-variable-name-2,
 …
 stat-n variable-name-n = output-variable-name-n ;

The name of the portfolio statistics structure is specified in the name option. The

set of specifications for each descriptive statistic, is separated by a comma. The

following options are used to create the specifications:

stat-i

 The statistical measure that is used is specified in this option. The most

frequently used measures are the minimum (min), maximum (max),

number of values (N), standard deviation (std) and mean (mean).

variable-name-i

 The name of the instrument variable that is used in the calculation of

the i’th descriptive statistic, is specified in this option.

output-variable-name-i

 The name of the output variable that receives the calculated value of

the i’th statistical measure, is specified in this option.

Program Code 10.13 is used to create the portfolio statistics structure named

Premium_Stats in the Casestudy_Env risk environment. The structure is used to

calculate the minimum, maximum, mean and standard deviation of the values

contained in the instrument variable Premium. The output variables

min_Premium, max_Premium, mean_Premium and std_Premium are created to

refer to the calculated statistical measures.

Chapter 10: Risk Analyses

 255

Program Code 10.13: Portfolios statistics structure Premium_Stats

Proc Risk;
Environment open = "&RiskEnv";
Statistics Premium_Stats
 min Premium = min_Premium,
 max Premium = max_Premium,
 mean Premium = mean_Premium,
 std Premium = std_Premium;
Environment save;
Run;

The Premium_Stats structure is executed in Section 10.6. The results that are

obtained by execution are discussed in Section 10.7.

Another general risk analysis structure, named Cash Flow analysis is used to

manage the risk associated with the possible gaps between the rate of return

earned on assets and the cost of liabilities that may arise. The difference

between the net inflow of cash from assets and the net outflow of cash from

liabilities for a given time period, is defined as gaps. A positive gap is a positive

net cash flow and a negative gap a negative net cash flow, for a given time

period. Liquidity gaps, interest rate gaps, as well as duration gaps for a certain

time period, are some of the measurements that are calculated. A liquidity gap

refers to the difference between the amount of assets and liabilities held. Interest

rate gaps arise when the assets and liabilities that are held are indexed to

different market related interest rates. If the market movements of the interest

rates differ in size or direction, the interest rate gaps arise. Duration gaps arise

when the sensitivities of the assets and liabilities to parallel changes in the yield

curve are not matched. Cash flow analysis is a very useful analysis structure, but

is not discussed further in detail.

The last general risk analysis structure that is discussed briefly is a Portfolio
optimization structure. The structure is used to optimize the value of a

statistical measure without violating certain user-defined constraints. The

constraints may include other statistical measures or certain user-defined bounds

Chapter 10: Risk Analyses

 256

within and across cross-classifications. A well known example of this structure is

mean-variance optimization.

An example of an optimization problem for the case study company may be:

• Maximise the expected return on the portfolio held, by keeping the

variance of return below a user-defined level and by not investing more

than 40% of the total portfolio in equities.

Risk Dimensions support three methods of optimization, namely:

• Return versus standard deviation of return,

• return versus expected shortfall and

• return versus Value at Risk.

The expected shortfall of a portfolio value is defined as the expected portfolio

value given that the loss is greater or equal to Value at Risk. The portfolio

optimization structure is not discussed in further detail as it falls outside the focus

of the document.

10.5 Cross-classifications

The execution of risk analyses creates results that supply information about how

the value of the portfolio will change for certain changes in the values of the risk

factor variables. The whole portfolio file is analyzed by default. Thus, the effect of

the changes in the risk factor variable values on the value of the whole portfolio,

is measured.

The next Risk Dimensions structure, called a cross-classification is used to

create certain sub-portfolios of the portfolio file. The data values of instrument

variables and certain system-defined variables are used to determine the sub-

portfolios. The effect of the changes in the values of the risk factor variables will

Chapter 10: Risk Analyses

 257

now also be measured on the values of the sub-portfolios, in addition to the value

of the whole portfolio.

Consider the case study Activegrowth that has open positions in five different

financial instruments or instrument types, namely equities, futures, interest rate

swaps, options and government bonds. The company may use a cross-

classification to create sub-portfolios that consist of only one instrument type

each. Examples of sub-portfolios are, an equity portfolio, an options portfolio, a

futures portfolio etc. Risk analyses will be executed on the whole portfolio, as well

as the five sub-portfolios.

The CrossClass statement in Proc Risk is used to create a cross-classification

structure in a risk environment. The names of the instrument variables and

system-defined variables that are used to create the sub-portfolios are also

specified in this statement. The general form of the statement is:

Crossclass name (variable list);

The name of the structure is specified in the name option.

One or more variable names may be listed in the variable list option. If more

than one variable name is listed, then two methods exist whereby the sub-

portfolio is created. These methods are subsequently discussed.

Suppose two variables, variable1 and variable2 are specified in the variable list. It

is optional to separate the variables by an asterisk “*”. This implies that:

1. All combinations of variable1 and variable2 will be analysed separately,

2. all levels of variable1, summed over variable2, as well as all levels of

variable2 summed over variable1, will be analysed and

3. the complete portfolio will be analysed separately.

Chapter 10: Risk Analyses

 258

If the asterisk is omitted, the second option changes to only:

 2. All levels of variable1 summed over variable2 will be analysed.

The other two options remain the same, regardless of the asterisk. More than

one variable list can also be specified to create different reporting structures for a

single Crossclass statement.

Program Code 10.14 is used to create the cross-classification structure, named

By_Insttype in the Casestudy_Env risk environment. The data values of the

system-defined variable, named InstType is used to create the sub-portfolios.

Each one of the sub-portfolios consists of positions that are held in the same

instrument type.

Program Code 10.14: The cross-classification named By_Insttype

Proc Risk;
Environment open = "&RiskEnv";
Crossclass By_Insttype (InstType);
Environment save;
Run;

Cross-classifications are used in Risk Dimensions projects that are discussed in

the next section.

10.6 Projects

Various Risk Dimensions structures have been created from Chapter 3 to Section

10.5. The information in these structures is combined into a single Risk

Dimensions structure called a project, in this section. The combination takes

place during the creation of the project structure. The created project may then

be activated. This leads to the execution of the calculations that are necessary in

Chapter 10: Risk Analyses

 259

risk analyses. Calculations, such as the calculation of the portfolio value are done

for the first time in the risk management system.

Projects collect information from the following Risk Dimensions structures:

• Portfolio files,

• market data sources, parameter matrices, transformation sets,

• risk analysis structures,

• risk factor models,

• cross-classifications,

• reports and

• other information.

The information is passed on to the Risk Dimensions engine that performs all the

necessary calculations.

The Project statement in Proc Risk is used to create a project structure in a risk

environment and has the following general form:

Project name Portfolio = portfolio-file Options;

The name of the project structure is specified in the name option. The following

general options are also available in this statement:

Analysis = analysis-list

 A list of the names of the risk analysis structures that are used to

perform risk analyses on the portfolio, is specified in this option.

Crossclass = name

The name of a cross-classification structure that is used to create sub-

portfolio in the project, is specified. If this option is omitted, results are

only calculated for the whole portfolio.

Chapter 10: Risk Analyses

 260

Currency = currency-code

 The three letter currency code, for example ZAR, of the reporting

currency, is specified in this option.

Data = market-data-list

 The list of market data source names that provide the market data is

specified. At least one market data source of type Current has to be

specified.

Label = "label"

A descriptive label may be specified for the project structure.

Models = models-list

 The list of fitted risk factor models that are used in Monte Carlo

simulation, is specified.

Options = (options-list)

 Analysis and output options may be specified in this option. An

example of an analysis option is the specification of a value for alpha.

This value is used as the quantile value in Value at Risk calculations.

The names of the output data sets that contain information about the

calculated risk analyses, are also specified in this option. The contents

of the data sets are then also available in the Analysis tree of the GUI.

Examples of the available data sets are discussed in Section 10.7.

Outpath = "Path"

 The name and path of the folder where the analysis results folder is

created in, is specified.

Chapter 10: Risk Analyses

 261

Outlib= SAS-library

 The name of the SAS library corresponding to the output folder, is

specified in this option.

Portfolio = portfolio-file

 The name of the portfolio file that is used in the project, is specified in

this required option.

Reports = report-list

 A list of report structures is specified in this option. Reports are

discussed in detail in Chapter 11.

Rftrans = transformation-set-list

 The list of transformation sets that is necessary in the project, is

specified.

Rundate = date

The base date or date of valuation of the project is specified. The date

for example, 1 January 2004 is written as '1jan2004'd.

Statistics = name

 The name of the portfolio statistics structure that calculates descriptive

statistics for the instrument variables, is included in this option.

Other options are also available in the Project statement, but are not discussed

as they are not necessary in the context of this document.

The Runproject statement is used to execute the analyses that are specified in

Risk Dimensions projects. The general form of this statement is:

Runproject name-of-project Options;

Chapter 10: Risk Analyses

 262

The Data, Date, Currency, Options, Out, Outpath, Outlib, Portfolio and Report

options may be specified in this statement. These options are exactly the same

as the corresponding options in the Project statement that were discussed above.

If values are specified in these options, they replace the values of the

corresponding options in the Project statement.

Other options available in the Runproject statement enable user to control the

processing of the project. The project may be paused at an intermediate step and

the results that have been created thus far, may be stored as output. The

processing may also be split between multiple Runproject statements and

recombined in subsequent processing. This is, however, not done for the case

study.

Program Code 10.14 is used to create a project structure, named

Casestudy_Proj in the Casestudy_Env risk environment. Risk analysis structures,

a cross-classification structure, a reporting currency, market data sources, risk

factor models, various output options, a portfolio file, reports, transformation sets

and a base date are also specified in the Project statement. A Runproject

statement is used to execute the calculation of the various risk analyses in the

Casestudy_Env risk environment.

Program Code 10.14: The project structure named Casestudy_Proj

Proc Risk;
Environment open = "&RiskEnv";
Project Casestudy_Proj
 Analysis= (Sensit Equity_Curve Rate_Curve Scenario1 Stress1
 Equity_Rate_surface Delta_Sim Hist_Sim Cov_Sim
 Model_Sim Scen_Sim)
 Crossclass = By_Insttype
 Currency = ZAR
 Data = (Current History Covar)
 Models = (PC_Prin1 PC_Prin2 PC_Prin3 Ret_ASA Ret_AGL Ret_SLM
 Ret_SOL Ret_ISC Ret_OML)
 Options = (alpha= 0.05 instvals simstates allstates)
 Out = Output
 Outlib = Output
 Outpath = "&Riskpath"

Chapter 10: Risk Analyses

 263

Program Code 10.14 Continues…

 Portfolio = All_deals_File
 Report = Summary_Report
 Rftrans = (Eigenvectortrans Modzerotrans)
 Rundate='13May2004'd
 Statistics = Premium_Stats;
Runproject Casestudy_Proj ;
Environment save;
Run;

The Risk Dimensions structures that were created in this chapter are viewed in

the Analysis tree of the GUI. The risk analysis structures, portfolio statistics

structures and cross-classifications are viewed under the Specification Library

option in the Analysis tree. The risk analyses are viewed under the Analyses

option, the statistics structure under the Portfolio Statistics options and the cross-

classifications under the Cross Classifications option. The project structures that

are created are viewed under the Analysis Projects option in the Analysis tree.

Figure 10.1 is used to view the Risk Dimensions structures that were created in

Sections 10.2 to 10.6 in the Casestudy_Env risk environment.

Figure 10.1: The Analysis tree of the Casestudy_Env risk environment

Chapter 10: Risk Analyses

 264

10.7 Risk analysis results and output data sets

The execution of a project structure, for example Casestudy_Proj, leads to the

creation of risk analysis results.

Three types of risk analysis results are created, namely:

• SAS data sets, called output data sets,

• graphical illustrations and

• an additional feature, named relative information measures.

These three types of results are discussed in Sections 10.7.1, 10.7.2 and 10.7.3.

The results of the execution of Casestudy_Proj are discussed in Section 10.7.4.

10.7.1 Output data sets

Various SAS data sets, called output data sets are created by the execution of a

project structure in Risk Dimensions. The output data sets are grouped in a SAS

library, for example Output. The output data sets may be viewed by the following

two methods:

• The output data sets are listed under the Data Files option of the Results

option in the Analysis tree of the GUI. A data set may be viewed by

selecting the appropriate name in the Data Files option.

• The output data sets may also be viewed by selecting the

name of an output data set in the Explorer window of the SAS window

environment. The output data sets are grouped in a SAS library, for

example Output, in this window.

Chapter 10: Risk Analyses

 265

Some of the most frequently used output data sets are:

Allprice

 The value of each instrument type for each market state that is

generated by the project execution, is contained in this data set.

Errors

 The instrument types that could not be properly priced are contained in

this data set. If there are no errors, this data set is not created.

Instvals

 This data set contains one observation for each instrument type in the

portfolio, that is valued for the base case market state. The sensitivities

of the instrument values relative to the risk factor variables are also

stored in the data set if a sensitivity analysis is executed.

Mktrates

 The base case market state forms the one and only observation of this

data set.

Mktstate

 The data set contains one observation for each market state that is

used to value the portfolio. The market states are created by the risk

analyses that are included in the project.

Shocks

 The simulated random shocks that are generated by the simulation

analyses are stored in this data set.

Chapter 10: Risk Analyses

 266

Simdens

 This data set contains the probability density estimate results of all the

specified simulation analyses.

Simrfs

 Summary statistics of the simulated risk factor variable values are

contained in this data set.

Simrfim

 Simulation risk factor information measures are included in this data

set.

Simstat

 This data set contains statistical measures of the simulated probability

distributions of all the simulation analyses.

Simstate

 The simulated market states that are generated by the simulation

analyses forms this data set.

Simvalue

 This data set contains the portfolio value for each replication of the

simulations.

Summary

 The base case mark-to-market value, the instrument variable statistics

results (if requested) and the sensitivities of the portfolio value (if

requested) are contained in this data set. One observation is made for

each cross-classification group in this data set.

Chapter 10: Risk Analyses

 267

The Summary, Simdens and Simstat output data sets are created by default

during the execution of a project. The other data sets are created by specifying

the names of the data sets in the Options option in the Project or Runproject

statements. Note that in order to create the Mktstate and Simstate output data

sets the Allstates and Simstates options have to be used respectively.

The output data sets that are used in the case study are discussed in Section

10.7.4.

10.7.2 Graphical illustrations

The graphical illustrations that may be created by the execution of a project

include:

• Profit/Loss curves,

• Profit/Loss surfaces and

• the graphical illustrations of the distribution function of the portfolio value

under Scenario, Historical, covariance-based Monte Carlo and model-

based Monte Carlo simulation.

The available graphical illustrations are listed in the Reports option in the Results

option in the Analysis tree of the GUI. A graphical illustration is viewed by clicking

on the appropriate option in the Reports option. The graphical illustrations that

are created in the case study are discussed in Section 10.7.4.

10.7.3 Risk factor information measures

Risk factor information measures are used to measure the relative importance

of each one of the risk factor variables to the portfolio value. The measures are

calculated for simulation analyses.

Chapter 10: Risk Analyses

 268

The measure is computed from the joint bivariate distribution of the risk factor

variables and the portfolio value. A discrete bivariate distribution is used to

estimate the continuous joint distribution. The distribution is estimated by

classifying the simulated portfolio value and corresponding risk factor values into

a 5-by-5 table. Each simulated risk factor value and corresponding portfolio value

is classified as either very low, low, moderate, high, or very high. The

classifications of the portfolio value are based on the 20’th, 40’th,60’th and 80’th

percentiles of the unconditional distribution. The classifications of the risk factor

variables are based on cut points that are calculated from the sample moments.

The number of classifications in each cell of the 5-by-5 table is calculated to form

a contingency table.

The formula for the risk information measure for this discrete joint distribution is

defined as:

 ∑∑
= =

5

1

5

1
2)

)()(
),((log),(

i j jfif
jifjif (10.8)

where

),(jif = the observed fraction of simulations in which the portfolio value falls in

 category i and the risk factor variable value falls in category j ,

)(if = the fraction of simulations were the portfolio value falls in category i ,

)(jf = the fraction of simulations where the risk factor variable values falls in

 category j .

It further follows that)()(jfif is the joint frequency for the),(ji cell of the table

that would be expected if the two variables were statistically independent. The

relative information is therefore the expectation of the log ratio of the observed

joint frequency to the joint frequency under independence. The use of this

Chapter 10: Risk Analyses

 269

measure is illustrated for the simulation analyses of the case study, in Section

10.7.4.

10.7.4 Risk analysis results of the case study

The risk analysis results that are created in the Casestudy_Env risk environment

are discussed in this section. The results are listed under the Results option in

the Analyses tree of the GUI. This is illustrated in Figure 10.2. The results that

are created by each risk analysis are discussed separately after this figure.

The name of the folder (Output) that is used to contain the output data sets is

created under the Results option in the Analysis tree. Two options, namely the

Data Files option and the Reports option are created automatically in this option.

The output data sets are viewable under Data Files whilst the graphical

illustrations and relative information measures are viewable under the Reports

option. Some of the output data sets may be viewed under both options. Figure

10.2 is used to view the structure of the Output folder in the Analysis tree of the

Casestudy_Env risk environment.

Figure 10.2: The Results option in the Analysis tree of Casestudy_Env

Chapter 10: Risk Analyses

 270

The output from the various risk analysis methods are discussed next.

Sensitivity analysis

The output data sets, named Sens and Sens2 are created by the execution of a

sensitivity analysis structure for example, the Sensit structure in the case

study. The contents of these data sets may be viewed by selecting the Sensitivity

Analysis and the Sensitivity Analysis 2nd form options under the Data Files option

respectively. The explorer window may also be used to view the data sets.

Part of the information contained in the Sens data set is illustrated in Figure 10.3.

For example, the change in the value of the whole portfolio for a one rand change

in the Anglo equity price, is R 5,421. The change in the value of the sub-portfolio

of futures, for a one rand change in the value of the Anglo equity price is R 3,971.

Figure 10.3: The output data set Sens

Chapter 10: Risk Analyses

 271

Profit/Loss curves

The execution of a Profit/Loss curves structure creates an output data set,

named Plcurve, as well as a set of graphical illustrations in the Reports option.

The output data set Plcurve is stored in the Output library and is viewed either by

electing the Profit/Loss curves option in the Data Files option or using the

explorer window. The graphs of the profit/loss curves are viewed by selecting the

ProfitLossCurvePlot option in the Reports option. One of the six profit/loss

curves, namely the changes in the portfolio value for a grid of values of the SLM

risk factor variable is viewed in Figure 10.4.

Figure 10.4: The SLM Profit/Loss curve in the Equitycurve set

The information about the grid points used in the plot is accessed by selecting

the Table option in Figure 10.4. The change in portfolio value might also be

specified as percentage and not the absolute value. As the company holds a net

long position in Sanlam equities, the profit increases as the value of SLM

increases.

Chapter 10: Risk Analyses

 272

Profit/Loss surfaces

The execution of a Profit/Loss surface analysis also creates an output data set

and a graphical illustration. The output data set, named Plsurf, is stored in the

Output library. It is viewed, either by selecting the Profit/Loss Surfaces option in

the Data Files option or by using the Explorer window. The Profit/Loss surface

plot is viewed by selecting the ProfitLossSurfacePlot option in the Reports option.

The Equity_Rate_surface Profit/Loss surface is graphically illustrated in Figure

10.5.

Figure 10.5: The Equity_Rate_surface Profit/Loss surface

It is already known that an increase in either ASA or ZR_6_MTH leads to an

increase in the profit of the portfolio. Figure 10.3 further illustrates that ASA has

a bigger influence on the portfolio profit than ZR_6_MTH.

Scenario analysis and stress testing

An output data set, named Scen that is grouped in the Output library is created

during the execution of scenario analysis and stress testing. The contents of

Chapter 10: Risk Analyses

 273

the data set are viewed by clicking on the Scenario Analysis option under the

Data Files option. The explorer window may also be used. The data set is viewed

in Figure 10.6.

Figure 10.6: The output data set named Scen

The portfolio value under Scenario1 and Stress1 will be respectively

R149,382.50 and R796,371.46 less than the current portfolio value.

Delta-Normal analysis

The execution of a Delta-Normal analysis structure creates an output data set

named Dvar that are grouped in the Output library. The contents of the data set

are viewed by either selecting the Delta-Normal Analysis option in the Data Files

option or by using the explorer window. The contents of the data set are

illustrated in Figure 10.7.

Chapter 10: Risk Analyses

 274

Figure 10.7: The output data set named Dvar

The unconditional Value at Risk is R 174,622.33, the Conditional Value at Risk is

R 180,655.40 and the Marginal Value at Risk is R 174,921.03.

Simulation analyses

The four simulation analyses in the case study environment are historical

simulation, covariance-based Monte Carlo simulation, model-based Monte Carlo

simulation and scenario simulation. If these analyses are executed various output

data sets, graphical illustrations and risk factor variable information measures are

created. These three types of results are discussed separately for each one of

the simulation analyses, later in this section.

The estimates of the probability density functions of all the four simulation

analyses are contained in the Simdens output data set. The contents of this data

set may be viewed by clicking on the Simulation Distributions option in the Data

Files option. The output data set Simstate is activated by clicking on the

Simulation Statistics option in the Data Files option. The simulation statistics of all

Chapter 10: Risk Analyses

 275

four simulation analyses are available in this data set. The Simrfim data set may

be activated by clicking on the Simulation Risk Factor Information Measures

option in the Data Files option. The risk factor information measures of all the

simulation analyses are contained in this data set. These output data sets may

also be viewed using the explorer window.

The SimulationDensityPlot option in the Reports option is used to view the

relevant contents of the Simdens, Simrfim and Simstate data sets separately for

each of the simulation analyses. The contents of Simdens and Simrfim are

graphically illustrated.

Historical simulation

Consider the execution of the historical simulation structure, Hist_Sim. The

probability density function of the simulated portfolio value is viewed in Figure

10.8.

Figure 10.8: The probability density estimate of historical simulation

Chapter 10: Risk Analyses

 276

The fifth percentile of the distribution is shown with the red arrow. The Value at

Risk estimate is equal to the distance between this point and 0.

Figure 10.9 is used to view the relevant part of the Simstate output data set for

historical simulation. This is viewed by clicking on the Statisitics tab.

Figure 10.9: The simulation statistics of Hist_Sim

The 95% 1-day Value at Risk estimate, produced by historical simulation is

R197,437.51. A confidence level is also calculated for the estimate. Various

statistical measures are also available in the table illustrated in Figure 10.9.

The relative importance of the risk factor variables to the portfolio value in the

historical simulation analyses, is viewed in Figure 10.10. The risk factor variables

are listed in order of highest to lowest relative information measures. The

variables SOL, ASA, Vol_AGL, AGL and Prin2 have the largest influence on the

portfolio value under historical simulation analysis. The relative information

measures of the rest of the risk factor variables may be viewed by scrolling down.

Chapter 10: Risk Analyses

 277

Figure 10.10: The risk factor information measures of Hist_Sim

Covariance-based Monte Carlo simulation

Consider the execution of the covariance-based Monte Carlo simulation

structure, named Cov_Sim. Figure 10.11 is used to view the estimate probability

density function of the portfolio value.

Figure 10.13: The probability density estimate of Cov_Sim

Chapter 10: Risk Analyses

 278

The fifth percentile of the distribution that is used in the estimation of VaR, is

marked with a red arrow. The portfolio distribution may be standardized with

respect to the base case portfolio value by clicking on the Percentage button.

The estimated probability distribution function may be also be viewed by clicking

on the Distribution button.

The part of the Simstate output data set that contains information about Cov_Sim

is viewed in Figure 10.12. The Figure is viewed by clicking on the Statisitics tab.

Figure 10.12: The simulation statistics of Cov_Sim

The estimated 95% 1-day VaR is R163,646.74 which is 11.30% of the current

portfolio value.

The risk factor information measures of Cov_Sim are illustrated in Figure 10.13.

The risk factor variables that have the largest influence on the portfolio value

under covariance-based Monte Carlo simulation are ASA, SLM and Vol_SLM.

Chapter 10: Risk Analyses

 279

Figure 10.15: The risk factor information measures of Cov_Sim

Model-based Monte Carlo simulation

Consider the execution of the model-based Monte Carlo simulation structure,

named Model_Sim. The estimated probability density function of the portfolio

value is viewed in Figure 10.14.

Figure 10.14: The probability density estimate of Model_Sim

Chapter 10: Risk Analyses

 280

The statistics of the Model_Sim simulation are illustrated in Figure 10.15.

Figure 10.15: The simulation statistics of Model_Sim

The estimate of a 95% 1-day VaR is R 39,753.15 which is substantially smaller

than the estimate of the other methods. The risk factor information measures of

Model_Sim are illustrated in Figure 10.16.

Figure 10.16: The relative information measures of Model_Sim

Chapter 10: Risk Analyses

 281

The risk factor variables that play a significant part in the portfolio value are SOL

and ASA. The variables that have the third and fourth largest influence are also

equities.

Scenario simulation

Consider the execution of the scenario simulation structure, named Scen_Sim.

Figure 10.17 is used to view the estimated probability density function of the

portfolio value.

Figure 10.17: The probability density estimate of Scen_Sim

The simulation statistics of the Scen_Sim simulation analysis are viewed in

Figure 10.18.

Chapter 10: Risk Analyses

 282

Figure 10.18: The simulation statistics of Scen_Sim

The 95% 1-day VaR of the portfolio value under the user-defined scenarios is

R345,563.29. The risk factor information measures of Scen_Sim are viewed in

Figure 10.19.

Figure 10.19: The relative information measures of Scen_Sim

Chapter 10: Risk Analyses

 283

The risk factor variable ASA has a very high risk factor information value. The

other important variables are Vol_ISC, Prin3, Prin2 and ISC.

Additional output data sets in Casestudy_Env

Consider the case study again. The following output data sets are also created in

the Output library and are available in the Data Files option: Instvals, Summary,

Simstat, Simdens, Simrfim, Simstate and Mkstate.

Figure 10.20 is used to view the contents of the Instvals data set. It is viewed by

clicking on the Instrument Level Results option in the Data Files option in the

Analysis tree or by using the explorer window.

Figure 10.8: The output data set named Instvals

Information about each position that is held by the company, is recorded in a row.

Figure 10.21 is used to view the contents of the output data set, named

Summary. This is viewed by selecting the Summary Results option in the Data

Files option, or by using the explorer window.

Chapter 10: Risk Analyses

 284

Figure 10.21: The Summary output data set

The information about each instrument type held, as well as the portfolio

summary, is contained in this data set. The information includes mark-to-market

values, as well as, the values of the output variables. Examples of the output

variables are Mean_Premium that were created by the Stats_Premium portfolio

statistics structure and Daily_Profit that was used in the pricing methods

discussed in Chapter 7.

The user may also view the contents of the Mkstate output data set by clicking on

the All Analysis Market states option in the Data Files option.

Chapter 10: Risk Analyses

 285

10.8 Two additional SAS statements

10.8.1 The %Include statement

The %Include statement may be used to include the program code of one SAS

program , in another SAS program.

Suppose that the user has created a SAS program and has saved the program

as a SAS file, for example Program1.sas in the C:\Risk_Warehouse\Source

folder.

The following %Include statement in Program2 includes the whole block of

program code of Program1, in Program2.

%Include “C:\ Risk_Warehouse\Source\Program1.sas”

This statement may be very useful in the case study. The program code of each

chapter may for instance be stored in a separate SAS program. The SAS

programs may then be included in an additional program, that is executed.

10.8.2 The Trace statement

The Trace statement in Proc Risk may be used to trace the operations or

calculations that are performed as a project is executed. The actual calculations

that are performed are printed in the output window. This statement may be

very useful to detect the problem if a pricing method does not give the correct

answer. The Trace statement is created before the Runproject statement in Proc

Risk and has the following general form:

Trace Methods = method-list Variable= Variable-list Flow = Flow-list

Chapter 10: Risk Analyses

 286

Some of the most frequently used options that are available in this statement are

subsequently discussed:

Methods = method-list

 The actual calculations of the methods that are listed in this option are

printed in the output window. The execution of a project, leads to the

calculations. The values of All or None may also be specified.

Variable = variable-list

 A list of risk factor variables may be specified in this option. The values

of the risk factor variables are monitored as they change during the

execution of a project.

Flow = Flow-list

 Various options may be specified in this option and are not discussed

in detail. The options are used to determine the calculations, of which

method programs, are printed in the output window.

Level = Brief | Detailed

 The detail of the trace of the calculations is specified in this option. If

brief is specified, only assignments to variables that are within the

method are displayed in the output window. If the detailed is specified,

every mathematical calculation that is performed by the method is

printed.

The Trace statement in Program Code 10.15 is used to trace the calculations of

the Option_Prc pricing method, during the execution of the Casestudy_Proj

project. The Option_Prc method is specified in the Method options, whilst the

level option is set to detailed. The Trace statement is used before the Runproject

statement in the same Proc Risk procedure.

Chapter 10: Risk Analyses

 287

Program Code 10.15: The Trace statement in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
Trace Methods = Option_Prc Level = detailed ;
Runproject Casestudy_Proj ;
Environment save;
Run;

The use of the Trace statement in Program Code 10.15 may be extended in the

case study to include more method programs and risk factor variables.

10.9 Summary

Various market risk analysis structures were created in Section 10.2. Credit

risk analyses and general risk analyses were briefly discussed in Sections 10.3

and 10.4. Cross-classifications structures were created in Section 10.5 to

create sub-portfolios that are analysed separately by the risk analyses.

The creation and execution of project structures were discussed and illustrated

in Section 10.6. The execution of a project leads to the creation of various output
data sets. The contents of the data sets may be viewed and some may, in

addition, be graphical illustrated. Although a lot of useful information is

contained in the data sets, it is mixed with information that is not that relevant in

risk management decisions.

The next step in the risk management system makes use of reports to obtain the

useful information from the output data sets and to present it in an easily

interpretable way. The information in the reports is then used in risk management

decisions. Reports are discussed in the next chapter.

11

REPORTS

11.1 Introduction

The execution of risk analyses leads to the creation of various output data sets,

graphical illustrations and risk factor information measures, as presented in

Chapter 10. The information contained in these output data sets is essential for

the risk management system, in fact, the producing of these results is the

ultimate goal of the implementation of Risk Dimensions. The usefulness of this

information, however, ranges from less to highly useful.

The information is also not presented very efficiently. Risk Dimensions reports

provides the answer to this problem. Reports are used to extract user-defined

information from the output data sets and to present the results in an easily

interpretable way. Various different reports are available in Risk Dimensions, for

example batch reports, web-based reports and EIS reports.

Batch reports are created from the output data sets and are presented in the

output window of the SAS window environment. It is not able to generate any

graphical illustrations.

Risk Dimensions also support web-based reports. This enables the sharing of

the project results over the internet or intranet. Risk Dimensions do not have to

Chapter 11: Reports

 289

be installed on a station, to view the report. Most of the internet browsers are

able to view the report.

The third type of report, namely EIS is used together with multidimensional

databases (MDDB’s). Web-based reporting and EIS reports are very powerful

techniques in processing project results, but are both advanced topics and are

not discussed in this document.

Batch reports are created by the SAS procedure, named Proc Report from the

output data sets. The reports are saved in separate SAS program files (.sas).

The creation of these reports is discussed in detail in Section 11.2.

The Report statement in Proc Risk is used to register the batch reports that are

created in Section 11.2, in risk environments. The registered reports are listed in

the Reports option of Project statement (see Section 10.6). If the project

structure is executed, the batch reports that are created may be viewed in the

Report Gallery tree of the GUI. The registration and results of batch reports in the

risk environment is discussed in Section 11.3. The case study is referred to,

throughout the chapter. Some concluding remarks close the chapter.

In short, the three steps that are necessary to implement reports in a risk

environment are:

1. The creation of batch reports by Proc Report, that is each saved in a

separate SAS program (Section 11.2).

2. The registration of the batch reports in Risk Dimensions, using the Report

statement in Proc Risk. (Section 11.3).

3. The inclusion of the registered reports in the Reports option of the Project

statement in Section 10.6.

Chapter 11: Reports

 290

Batch reports are then generated in the risk environment during the execution of

the project structure in Section 10.6.

The reports that are created in the case study are viewed in Section 11.4.

11.2 The SAS procedure Proc Report

The SAS procedure, named Proc Report is used to create batch reports from

the data contained in SAS data sets. The reports are viewed in the Output

window of the SAS window environment. It is a very flexible method and is used

to present the data values in a customized way. It may, in addition to the existing

data values, add subtotals and a grand total for the column values.

The general form of the Proc Report procedure is:

Proc Report Data = SAS-data-set Options;
Statements;
Run;

The name of the SAS data set (output data set) that contains the information that

is used in the report, is specified in the Data option. Various options in the Proc

Report statement and other statements in the procedure are available to

customize the report. If no options and statements are used, all the observations

and variables of the data set are printed in the report. The report willl also have

the following characteristics:

• Each data value is displayed as it is stored in the data set,

• the variable names are used as the column headings in the report,

• a default width is used for the columns of the report,

• the character values are left-justified,

• the numeric values are right-justified and

• the observations of the report are in the same order as in the data set.

Chapter 11: Reports

 291

If the nowd option is specified in the Proc Report statement, the report is printed

in the output window. If this option is omitted the report is printed in a new

window in the SAS window environment. The Headline option may be used to

underline the header of the columns whilst the Headskip option is used to add a

blank line between the column headers and the first row of the report.

The variables or columns of the SAS data set that are used in the report are

specified in the Column statement in Proc Report. The order of the listing of the

variables determines the order in which they are displayed in the report.

The Define statement is used to customize the way that each variable is

presented in the report. This statement is used to specify the following

information for each column or variable in the report:

• The SAS format that is used to present the data values of the column in a

certain way,

• the width of the column,

• the name of the column header,

• the alignment of the values in the column and

• the order of the observations in the column.

 The general form of this statement is:

Define variable-name / Usage Attributes-list

A Define statement is used for each variable that is customized. The options that

are available in the statement (Usage and Attributes) may be defined in any

order.

Chapter 11: Reports

 292

Consider variables that are of character data type. The default value of Usage is

Display. This entails that all the values of the variable are displayed in the report.

The default value of the Usage option for numerical variables is Analysis. The

Usage attribute may also be specified as Group for both character and numeric

variables. This entails that all the observations that have the same data values of

this variable are collapsed into a single observation in the report. More than one

variable may be defined as Group, but all these variables must precede variables

of other types. The Usage option may also be specified as Order for both

character and numerical variables. The use of this option determines the order of

the rows in the report. The default order is ascending. A descending order is

obtained by including the word Descending in the Attributes-list of the Define

statement. The Order option also suppresses the printing of repetitious values in

the variable.

It follows that if the report contains:

• at least one display variable and no group variables, all the values of

numerical variables are included in the report.

• only numerical values, the report displays only grand totals for the numeric

variables.

• group variables, the sum of the numeric variables values are listed in the

report for each group.

The calculation of the sum of the numerical values, may be replaced by using the

following statistics in the Usage option of the Define statement:

• N number of non-missing values,

• Mean average of values in variable,

• Max maximum value in variable and

• Min minimum value in variable.

Chapter 11: Reports

 293

Various other attributes may be specified in the Attribute-list option of the Define

statement. The Format option is used to specify the SAS format that is used to

display the variable values. The width of the column in the report is specified in

the Width attribute. One of three words, namely Center, Left and Right are used

to specify the alignment of the variable values and header of the column. The

header of the column is defined by typing a suitable name between quotation

marks in the Attribute-list option. A split character may be used to split the

column headers into more than one row in the report. The splitting character is

defined by the split = “character “option in the Proc Report statement.

The report may be customized further by adding titles and footnotes. The Title

statements and Footnote statements are used to create a series of title and

footnotes respectively. These statements are global and may be used inside or

outside of the Proc step.

The general form of the Title statement is:

Titlen “Text”;

The value of n may range from 1 to 10. The titles appear at the top of each page

of the report. An unnumbered title refers to Title1. A title that is specified, is used

for all subsequent output until the title is changed or cancelled. The title on line n

and the titles on all the lines after it are cancelled by the following statement:

Titlen;

The Footnote statement is used to specify a line of text that is printed at the

bottom of each page of the report. The general form of this statement is:

Footnoten “Text”

The value of n may also range from 1 to 10 and an unnumbered footnote is

equivalent to Footnote1. The footnotes that are specified are also used until they

Chapter 11: Reports

 294

are cancelled or replaced by new footnotes. The following Footnote statement

cancels the footnote statement for line n and all the lines with higher numbers:

Footnoten;

The Rbreak summary statement in Proc Report is used to create a default

summary at the beginning or end of each report. The general form of this

statement is:

Rbreak location / options;

The location option is specified as either after or before. If after is specified, the

summary is made at the end of the report whilst if before is specified, it is placed

at the beginning of the report. The line that is before or after the report is called

the summary line. The summarize option is used to calculate summarizing

statistics in the summary line for each numeric variable. The DOL and DUL

option places a double line over and under each value that occurs in the

summary line respectively. The D character may be omitted for each option,

creating a single line.

The Break statement is used in a similar way as the Rbreak statement. It is used

to produce a default summary at a change in the value of a group variable. This

variable is known as the break variable in this context. The information contained

in the summary is applicable to a set of observations that has the same value for

the group variable. The Break statement has the following form:

Break location break-variable-name / Options;

The name of the group variable that is used as break variable is specified in the

break-variable-name option. The meaning of the location option and the

additional options of the Rbreak statement are still applicable in this statement. In

addition the Skip option may be used to write a blank line after the summary line.

Chapter 11: Reports

 295

The Suppress option is also used to omit the name of the break variable at each

summary line.

Five batch reports are created to use in the Casestudy_Env risk environment.

Program Code 11.1 is used to create a batch report that contains mark-to-
market information about the whole portfolio and each sub-portfolio created by

the Insttype cross-classification. The information is obtained from the Instvals

output data set in the Output library. The Column, Define, Rbreak and Title

statements are used. Various options are specified in these statements to

customize the report.

Program Code 11.1: The Mark-to-market Report

Proc Report Data = Output.instvals
 nowd split = "*" headline headskip;
Column Insttype Value;
Define Insttype/"Type*of*instrument" width = 15 center group;
Define Value/"Mark to Market*Value (ZAR)" width = 15 center;
Rbreak after/summarize dol;
Title1 "Market Report: 13 May 2004";
Title2 "Portfolio Summary";
Run;

Program Code 11.1 is saved in a SAS file, named Sumreport.sas and is stored in

the Source folder. This code generates the Portfolio summary table in Output

11.1, that is included later in this chapter.

Program Code 11.2 is used to create a report that will present the results of the

execution of sensitivity analysis, named Sensit in a neat way. The data values

in the report are obtained from the output data set Sens2 that are grouped in the

Output library. Various statements and options are used again to customize the

report. Note that the sub setting Where statement (see Section 6.2.3) is used.

Chapter 11: Reports

 296

Program Code 11.2: The Sensitivity Analysis Report

Proc Report Data = Output.sens2
 nowd split = "*" headline headskip;
Column Name Sensitivity Gamma;
Define Name/"Risk factor*variable" width=15 center;
Define Sensitivity/ "Delta" width = 12 center format = comma10.2;
Define Gamma/ "Gamma" width = 12 center format = comma10.2;
Where Insttype = "+";
Title1 "Market Report: 13 May 2004";
Title2 "Sensitivity Analysis";
Run;

Program Code 11.2 is saved in a SAS file, named Sensreport.sas and is stored

in the Source folder. This code generates the Sensitivity Analysis table in Output

11.1.

Program Code 11.3 is used to create a batch report to customize the information

contained in the output data set Scen. The information about the execution of the

scenario analysis structure Scenario1 and the stress testing structure Stress1

is contained in this data set. Various statements and options are used in Proc

Report to customize the report.

Program Code 11.3: The Scenario analysis and stress testing report

Proc Report Data = Output.Scen
 nowd split="*" headline headskip;
Column Resultname Insttype Value Basecasevalue PL;
Define Resultname/"Analysis" width = 15 center order;
Define Insttype/"Instrument*Type" width = 12 center;
Define Value/"MtM*of*analysis" width = 12 center;
Define BaseCasevalue/"MtM" width = 12 center;
Define PL /"Profit*or*Loss" width = 11 center;
Break after Resultname / skip ol ul summarize suppress;
Title1 "Market Report: 13 May 2004";
Title2 "Scenario analysis and stress testing ";
Where Insttype ^= "+";
Run;

Chapter 11: Reports

 297

Program Code 11.3 is contained in the SAS file Scenreport.sas that is stored in

the Source folder. This code is used to create the Scenario analysis and stress

testing table in Output 11.1.

Program Code 11.4 is used to create a batch report about the output information

from the Delta-Normal analysis, named Delta_Sim. The variable name VaR in

the output data set Dvar in the Output library is renamed to ValueatRisk in the

Dvar data set in the Work library. The values of this data set are used in the

report. Various options and statements are used in Proc Report to customize the

report.

Program Code 11.4: The Delta Normal Analysis Report

Data Work.Dvar (rename = (VaR = ValueatRisk));
Set output.Dvar;
Run;
Proc Report Data = Work.dvar
 nowd Split = "*" headline headskip;
Column Simulationmode Insttype MtM ValueatRisk VaRPct;
Define Simulationmode/"Simulation*mode" width = 13 center order;
Define Insttype/"Instrument*Type" width = 12 center;
Define MtM/"Mark-to-Market*(ZAR)" width = 14 center;
Define ValueatRisk/"Value at Risk" width = 12 center;
Define VaRpct / "VaR as*percentage*of MtM" width = 12 center;
Break after simulationmode / skip ol suppress;
Title1 "Market Report: 13 May 2004";
Title2 "Delta Normal Analyses";
Run;

Program Code 11.4 is stored as a SAS file, named Dnreport.sas in the Source

folder. This code generates the Delta Normal Analyses table in Output11.1

A report that contains the Value at Risk information of the portfolio is created in

Program Code 11.5. The information contained in the output data set Simstat is

used to create the report. Various statements and options in Proc Report are

used to create the report.

Chapter 11: Reports

 298

Program Code 11.5: The Value at Risk Report

Data Output.Simstat (rename = (VaR = ValueatRisk));
Set output.Simstat;
Run;
Proc Report data = Output.Simstat
 nowd split="*" headline headskip;
Column Resultname Insttype MtM ValueatRisk VaRPct ES;
Define Resultname/"Simulation method" width=17 center order;
Define Insttype/"Instrument*Type" width =12 center;
Define MtM/"Mark*to*Market*(ZAR)" width =12 center;
Define ValueatRisk/"Value at Risk" width =12 center;
Define VaRpct / "VaR as*percentage*of MtM" width = 10 center;
Define ES /"Estimated*shortfall" width =10 center;
Break after Resultname / skip ol suppress;
Title1 "Market report: 13 May 2004";
Title2 "95% 1-day Value at Risk ";
Run;

Program Code 11.5 is saved in SAS file, named Varreport that is stored in the

Source folder. This code generates the 95% 1-day Value at Risk table in Output

11.1.

11.3 The registration of reports

The Report statement in Proc Risk is used to register a batch report in a risk

environment. The names of the registered reports are included in the Reports

option of Project statement (see Section 10.6). The execution of the project

structure leads to the creation of the batch reports. The reports that are created

are viewed in the Report Gallery of the GUI.

First consider the general form of the Report statement:

Report name Type = “type” File = “Path\filename” Options;

The name of the batch report is specified in the name option. The type option is

used to group the reports in the GUI. It is usually specified as “Market Risk” or

“Credit Risk”. The reports with similar types are grouped together in the GUI. The

Chapter 11: Reports

 299

name and location of the SAS file that contains the batch report is specified in the

File option. A descriptive label may also be specified for the report. Another

option, namely the Sampout option is used to specify the folder that contains the

output data sets that are used in the report.

Program Code 11.6 is used to register the batch reports that were created in

Program Code 11.1 to 11.5 in the Casestudy_Env risk environment. For each

report a name, the location of the batch report, a suitable report type and a folder

that contains the output data sets are specified.

Program Code 11.6: Reports in Casestudy_Env

Proc Risk;
Environment open = "&RiskEnv";
Report Summary_Report
 File = "&Source\Sumreport.sas" /*Program Code 11.1*/
 Type = "Market Risk"
 Sampout = Output;
Report Sensitivity_Report
 File="&Source\Sensreport.sas" /*Program Code 11.2*/
 Type="Market Risk"
 Sampout=Output;
Report Scen_Report
 File="&Source\Scenreport.sas" /*Program Code 11.3*/
 Type="Market Risk"
 Sampout=Output;
Report DN_Report
 File="&Source\Dnreport.sas" /*Program Code 11.4*/
 Type="Market Risk"
 Sampout=Output;
Report VaR_Report
 File="&Source\Varreport.sas" /*Program Code 11.5*/
 Type="Market Risk"
 Sampout=Output;
Environment save;
Run;

Program Code 11.6 needs to be executed before the Program Code 10.14. The

project structure Casestudy_Proj is created in this program code. The execution

of Program Code 10.14 leads to the creation of batch reports in the Report

Gallery tree of the GUI. Figure 11.1 is used to illustrate the contents of this tree

for the Casestudy_Env risk environment. All the reports that were created had

Chapter 11: Reports

 300

the type option specified as Market Risk. Thus, all the reports are grouped under

the same option in the GUI.

Figure 11.1: The Report Gallery of Casestudy_Env

11.4 Reports in Casestudy_Env

Each batch report is viewed in the output window by clicking on the appropriate

option in the Report Gallery tree of Figure 11.1. If all the reports are clicked, the

information in Output 11.1 is obtained in the output window. The contents of this

window may be printed.

Chapter 11: Reports

 301

Output 11.1: The Market Reports

 Market Report: 13 May 2004
 Portfolio Summary

 Type
 of Mark to Market
 instrument Value (ZAR)
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 Equity 841,135.00
 Future ‐71,826.63
 Gov_Bond 622,845.32
 Int_Swap 49,140.23
 Option 6,905.98
 ===============
 1,448,199.90

 Market Report: 13 May 2004
 Sensitivity Analysis

 Risk factor
 variable Delta Gamma
 ƒƒƒ

 ASA 32,580.70 508.41
 AGL 5,420.87 0.00
 ISC 1,810.88 0.00
 SOL ‐14,945.60 89.16
 SLM 36,942.98 11,422.97
 OML 19,246.49 0.00
 Vol_ASA 35,676.71 444,937.35
 Vol_SOL ‐1,645.37 ‐53,994.04
 date ‐90.77 ‐49.11

 Market Report: 13 May 2004
 Scenario analysis and stress testing

 MtM Profit
 Instrument of or
 Analysis Type analysis MtM Loss
 ƒƒ

 1. Scenario1 Equity 831,118.50 841,135.00 ‐10,016.50
 Future ‐160,083.61 ‐71,826.63 ‐88,256.97
 Gov_Bond 622,750.63 622,845.32 ‐94.69
 Int_Swap 51,235.10 49,140.23 2,094.87
 Option ‐46,203.23 6,905.98 ‐53,109.21
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒ
 1,298,817.39 1,448,199.90 ‐149,382.50
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒ

Output 11.1: continues …

 2. Stress1 Equity 794,022.50 841,135.00 ‐47,112.50
 Future ‐561,286.17 ‐71,826.63 ‐489,459.54
 Gov_Bond 621,768.06 622,845.32 ‐1,077.26
 Int_Swap 72,863.56 49,140.23 23,723.33
 Option ‐275,539.51 6,905.98 ‐282,445.49
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒ

Chapter 11: Reports

 302

 651,828.44 1,448,199.90 ‐796,371.46
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒ

 Market Report: 13 May 2004
 Delta Normal Analyses

 VaR as
 Simulation Instrument Mark‐to‐Market Value at percentage
 mode Type (ZAR) Risk of MtM
 ƒƒƒ

 Conditional Equity 841,135.00 93,920.48 11.17
 Future ‐71,826.63 87,921.51 122.41
 Gov_Bond 622,845.32 0.00 0.00
 Int_Swap 49,140.23 0.00 0.00
 Option 6,905.98 57,365.10 830.66
 + 1,448,199.90 180,655.40 12.47
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ

 Marginal Equity 841,135.00 93,920.48 11.17
 Future ‐71,826.63 87,923.88 122.41
 Gov_Bond 622,845.32 13,274.88 2.13
 Int_Swap 49,140.23 10,580.82 21.53
 Option 6,905.98 57,466.23 832.12
 + 1,448,199.90 174,921.03 12.08
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ

 Unconditional Equity 841,135.00 93,920.48 11.17
 Future ‐71,826.63 87,923.88 122.41
 Gov_Bond 622,845.32 13,274.88 2.13
 Int_Swap 49,140.23 10,580.82 21.53
 Option 6,905.98 57,396.57 831.11
 + 1,448,199.90 174,622.63 12.06
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ

Output 11.1: continues …

 Market report: 13 May 2004
 95% 1‐day Value at Risk

 Mark
 to VaR as
 Instrument Market Value at percentage Estimated
 Simulation method Type (ZAR) Risk of MtM shortfall
 ƒƒƒ

 1. Hist_Sim: 1. Equity 841,135.00 187,900.00 22.34 220,137.85
 Future ‐71,826.63 37,992.13 52.89 47,001.85
 Gov_Bond 622,845.32 2,439.06 0.39 2,884.32
 Int_Swap 49,140.23 2,303.78 4.69 2,674.56
 Option 6,905.98 21,099.33 305.52 26,366.75

Chapter 11: Reports

 303

 + 1,448,199.90 197,437.51 13.63 228,920.24
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

 2. Cov_Sim: 1. Equity 841,135.00 92,554.44 11.00 116,546.93
 Future ‐71,826.63 85,419.13 118.92 104,859.00
 Gov_Bond 622,845.32 12,722.85 2.04 15,960.04
 Int_Swap 49,140.23 10,632.96 21.64 12,902.86
 Option 6,905.98 49,742.82 720.29 62,974.89
 + 1,448,199.90 163,646.74 11.30 201,310.00
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

 3. Model_Sim: 1 Equity 841,135.00 14,986.77 1.78 19,099.80
 Future ‐71,826.63 34,538.72 48.09 45,253.32
 Gov_Bond 622,845.32 2,120.80 0.34 2,729.93
 Int_Swap 49,140.23 1,994.84 4.06 2,480.13
 Option 6,905.98 4,756.16 68.87 9,413.29
 + 1,448,199.90 39,753.15 2.75 56,923.69
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

 4. Scen_Sim: 1. Equity 841,135.00 218,838.50 26.02 225,680.00
 Future ‐71,826.63 181,679.13 252.94 214,945.34
 Gov_Bond 622,845.32 ‐19,385.14 ‐3.11 ‐18,089.84
 Int_Swap 49,140.23 ‐17,020.09 ‐34.64 ‐16,150.66
 Option 6,905.98 89,994.73 1,303.14 109,092.48
 + 1,448,199.90 345,563.29 23.86 406,045.44
 ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒ

The information contained in Output 11.1 is easy to interpret and is used in risk

management decisions. It is possible to create reports of this type at the end of

every trading day.

The output created by batch reports may be complemented by some graphical
illustrations that are created in the SAS Enterprise Guide software program.

The program was used to create an estimated probability density function of

each of the simulation analyses in the case study risk environment. The

information in the Simdens output data set was used. Enterprise Guide generates

SAS program code that may be used in the enhanced editor window to create the

graphical illustrations in the output window. The program code is not discussed,

but it is important to take cognizance of this feature of the SAS package. The

graphical illustrations follow in Output 11.2.

Output 11.2: The probability density estimates of the simulation analyses

Chapter 11: Reports

 304

Probability Density Estimate

2. 8022458E-9

 0. 000001003

 0. 000002003

 0. 000003003

 0. 000004003

 0. 000005003

 0. 000006003

 0. 000007003

 0. 000008003

 0. 000009003

 0. 000010003

Simulated Portfolio Value (ZAR)

-
3
0
0
0
0
0

-
2
5
0
0
0
0

-
2
0
0
0
0
0

-
1
5
0
0
0
0

-
1
0
0
0
0
0

-
5
0
0
0
0

0 5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

Probability Density Estimate

 0

 0. 000000500

 0. 000001000

 0. 000001500

 0. 000002000

 0. 000002500

 0. 000003000

 0. 000003500

 0. 000004000

Simulated Portfolio Value (ZAR)

-
3
0
0
0
0
0

-
2
5
0
0
0
0

-
2
0
0
0
0
0

-
1
5
0
0
0
0

-
1
0
0
0
0
0

-
5
0
0
0
0

0 5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

Output 11.2: Continues …

Chapter 11: Reports

 305

Probability Density Estimate

 0
 0. 000001000
 0. 000002000
 0. 000003000
 0. 000004000
 0. 000005000
 0. 000006000
 0. 000007000
 0. 000008000
 0. 000009000
 0. 000010000
 0. 000011000
 0. 000012000

Simulated Portfolio Value (ZAR)

-
1
0
0
0
0
0

-
7
5
0
0
0

-
5
0
0
0
0

-
2
5
0
0
0

0 2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

Probability Density Estimate

 3. 537274E-9

 0. 000000504

 0. 000001004

 0. 000001504

 0. 000002004

 0. 000002504

 0. 000003004

 0. 000003504

 0. 000004004

Simulated Portfolio Value (ZAR)

-
5
0
0
0
0
0

-
4
0
0
0
0
0

-
3
0
0
0
0
0

-
2
0
0
0
0
0

-
1
0
0
0
0
0

0 1
0
0
0
0
0

2
0
0
0
0
0

11.5 Summary

Chapter 11: Reports

 306

It is obvious from the content of this chapter that the creation of batch reports and

graphical illustrations are the final step to present the final results of the risk

management system in a user-friendly way. The producing of these final reports

is, in fact, the ultimate goal of the implementation of Risk Dimensions. The

reports contain all the necessary information that is used in risk management

decisions and is easily updated at the end of each trading day.

12

CONCLUSION

SAS Risk Dimensions is a business tool that is used by financial institutions to

create a risk management system. The system calculates various risk measures

at the end of each trading day. The calculated values are presented in a report

that is easily interpretable. The information contained in the report is used by

senior management to make risk management decisions, during the next trading

day.

It is relatively difficult and complex to create a suitable risk management system

in Risk Dimensions. This must not be seen as a weakness of Risk Dimensions,

but rather a strength. This enables the software program to calculate risk

measures for portfolios that are far more complex than the portfolio in the case

study.

It is also important to note that not all the capabilities of Risk Dimensions were

discussed in this document. Risk Dimensions still has advanced features such as

copulas and C functions, which may be used in the creation of a risk

management system in other case studies.

It is also relatively easy to update the risk management system. Usually, only the

market and position information that change, have to be updated. The time that

Risk Dimensions takes to execute the risk management system is also relatively

quick.

Chapter 12: Conclusion

 308

Thus, to conclude it can be stated without any doubt that SAS Risk Dimensions is

a very powerful software program that may be used with great success in any

risk management environment.

 318

REFERENCES

DOBSON, A.J. (1990). An introduction to Generalized Linear Models. London:

Chapman and Hall.

HULL, J.C. (2003). Options, Futures, & Other Derivatives. New Jersey: Prentice

Hall.

JOHNSON, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical

Anlaysis. New Jersey: Prentice Hall.

SAS INSTITUTE INC. (2000). Risk Dimensions Administration and Configuration,

Release 3.1. Cary, NC: SAS Institute Inc.

SAS INSTITUTE INC. (2000). Risk Dimensions Reference: Analysis and

Modelling, Release 3.1. Cary, NC: SAS Institute Inc.

SAS INSTITUTE INC. (2000). Risk Dimensions Reference: Graphical User

Interface (GUI), Release 3.1. Cary, NC: SAS Institute Inc.

GUI,

SAS INSTITUTE INC. (2002). Risk Dimensions: Configuration and Analysis

Course Notes. Cary, NC: SAS Institute Inc.

SAS INSTITUTE INC. (2002). Risk Dimensions: Configuration and Analysis

Demonstrations, Exercised and Solutions Handout. Cary, NC: SAS Institute Inc.

 319

SAS INSTITUTE INC. (2002). SAS Essentials for Risk Dimensions Course

Notes. Cary, NC: SAS Institute Inc.

SAS INSTITUTE INC. (2004). Risk Dimensions: Configuration and Analysis

Course Notes. Cary, NC: SAS Institute Inc.

 309

APPENDIX

The role that some of the most important Risk Dimensions structures play in the

risk management program is graphically illustrated on the next few pages.

 310

Hard Drive

Risk Warehouse
Folder

Rawfiles

● Raw data files

Riskdata

● SAS data sets

Env

● Risk environments
 (Chapter 4)

Local

● Data-driven registration
 (Chapter 6)

Models

● Output from fitted
 risk factor models
 (Chapter 8)

Output

● Output data sets
 (Chapter 10)

Source

● SAS programs

Tradebooksource
Bondbook
Swapbook

Market_History
Logreturns

Yieldcurve_data
Scenariodata

Riskdata Env Local Models Output

Transform
§3.2.4

Tradebook
Bondbook
Swapbook

Market_History
Logreturns

Yieldcurve_data
Scenariodata

SAS Libraries §3.2.3

Sub folders Sub folders

Rawfiles

● Raw data files

Models

● Output from fitted
 risk factor models
 (Chapter 8)

A1: Workspace on hard drive

 311

A2: The creation of the base case
market state

Market_History
SAS data set §6.4.3

(127 rows, 17 columns)

Market_History
SAS data set §3.2.4

(127 rows, 14 columns)

Yieldcurve_data
SAS data set §3.2.4

(127 rows, 22 columns)

Prindata
SAS data set §6.4.3

(127 rows, 3 columns)

Current
SAS data set §6.4.3
(1 row, 17 columns)

Current
 Market data
source §9.2.1

Registered risk factor variables §5.2.3
i.e. ASA,…, ASA_Vol, …, Prin1, Prin2, Prin3,

ZR_1_MTH, ZR_3_MTH,..., ZR_10_YEAR.

Date ASA … ASA_Vol … Prin1 Prin2 Prin3
05/13/2004 45 … 0.21069 … 11.536 3.165 -0.568

Eigenvectors
Linear Transformation Matrix

§9.2.1

ZR_1_MTH ZR_3_MTH … ZR_10_YEAR
 0.07595 0.08040 0.10199

Mod_zerorates
Risk Factor Transformation

Method §9.2.1

Eigenvectortrans, Modzerotrans
Transformation Sets

9.2.1

Market
state

 312

Tradebook
Portfolio data source

§9.3.1

Tradebook
SAS data set §3.2.4

(InstType column)

Swapbook
SAS data set §3.2.4

(InstType column)

Bondbook
SAS data set §3.2.4

(InstType column)

Swapbook
Portfolio data source

§9.3.1

Bondbook
Portfolio data source

§9.3.1

All_deals_list
Portfolio Input List

§9.3.2

Instrument Types §7.5
• Equity
• Future
• Option
• Int_Swap
• Gov_Bond

Linked via Insttype column

Optional Portfolio filter
§9.3.3

All_deals_file
Portfolio File

§9.3.4

A3:The creation of the All_deals_file portfolio file

 313

A4: The calculation of the mark-to-market value
of the portfolio

OptType_Input
Instrument Input Method

§7.4.2 All_deals_file
Portfolio file

 §9.3.4

Base case
market state

Pricing methods §7.4.3
●Equity_Prc
●Option_Prc
●Future_Prc
●Swap_Prc
●Gov_Bond_Prc
(also use reference variables
and lag time grids)

Casestudy_Proj
Project
 §10.6

Calculated portfolio value
in output data sets

§10.7 Risk factor variables

Instrument and
system-defined
variables

via Instrument types

Instrument
variables

Instrument
variables

Rftrans, Data option in
Project statement

Portfolio option in
Project statement

Execution

 314

A5: Set of Simulated Market States used in the
Historical Simulation VaR methodology

Set of simulated values
ASA … ASA_Vol … Prin1 Prin2 Prin3
 45 … 0.20946 13.146 3.406 -0.757
 … … … … … … …
 45.5 … 0.20914 … 13.493 3.904 -0.662

Market_History
SAS data set §6.4.3

History
Market data source

§9.2.1

Hist_Sim
Historical simulation

structure §10.2.7

Eigenvectors
Linear transformation

matrix §9.2.3

Mod_zerorates
Risk factor

transformation
method §7.4.4

Set of simulated market states
ASA … ASA_Vol … ZR_1_MTH … ZR_10_MTH
 45 … 0.20946 … 0.07561 … 0.10287
 … … … … … … …
 45.5 … 0.20914 … 0.07579 … 0.10342

 315

Set of simulated values
ASA … ASA_Vol … Prin1 Prin2 Prin3
 45.19 … 0.20943 16.781 4.571 0.178
 … … … … … … …
 45.24 … 0.20929 … 15.822 3.058 0.389

Market_History
SAS data set §6.4.3

Market_Covar
SAS data set §6.4.3

Market_Covar
Market data source

§9.2.1

Eigenvectors
Linear transformation

matrix §9.2.3

Mod_zerorates
Risk factor

transformation
method §7.4.4

Set of simulated market states
ASA … ASA_Vol … ZR_1_MTH … ZR_10_MTH
 45.19 … 0.20943 … 0.07637 … 0.10546
 … … … … … … …
 45.24 … 0.20929 … 0.07632 … 0.10389

Cov_Sim
Covariance-based

Monte Carlo simulation
structure §10.2.7

Proc Corr

 Value at Risk estimate using covariance-based
Monte Carlo simulation

A6: Set of Simulated Market States used in the
Covariance-based Monte Carlo Simulation VaR

methodology

 316

Set of simulated values
ASA … ASA_Vol … Prin1 Prin2 Prin3
 44.68 … 0.30625 12.382 2.994 -0.553
 … … … … … … …
 44.12 … 0.30656 … 11.526 2.830 -0.615

Logreturns
SAS data set §3.2.4

Ret_AGL, Ret_ASA, Ret_ISC,
Ret_OML, Ret_SLM, Ret_SOL

Risk factor models §8.4.2

PC_Prin1, PC_Prin2 PC_Prin3
Risk factor models

§8.4.2

Eigenvectors
Linear transformation

matrix §9.2.3

Mod_zerorates
Risk factor

transformation
method §7.4.4

Set of simulated market states
ASA … ASA_Vol … ZR_1_MTH … ZR_10_MTH
 44.68 … 0.30625 … 0.07582 … 0.10224
 … … … … … … …
 44.12 … 0.30656 … 0.07582 … 0.10173

Model_Sim
Model-based Monte Carlo

simulation structure
§10.2.7 Prindata

SAS data set §6.4.3

Models option
in Project
statement

Models option
in Project
statement

Analysis option
in Project
statement

 A7: Set of Simulated Market States used in the
Model-based Monte Carlo Simulation VaR

methodology

 317

A8: Calculation of VaR estimates
(all three methodologies)

OptType_Input
Instrument Input Method

§7.4.2 All_deals_file
Portfolio file

 §9.3.4

Set of simulated
market states

Pricing methods §7.4.3
●Equity_Prc
●Option_Prc
●Future_Prc
●Swap_Prc
●Gov_Bond_Prc
(also use reference variables
and lag time grids)

Casestudy_Proj
Project
 §10.6

Calculated
portfolio value for

each market set
§10.7

Risk factor variables

Instrument and
system-defined
variables

via Instrument types

Instrument
variables

Instrument
variables

Rftrans, Data option in
Project statement

Portfolio option in
Project statement

Execution

VaR estimate from
distribution (set) of
calculated portfolio

values

	ACKNOWLEDGEMENTS
	SUMMARY
	OPSOMMING
	CONTENTS
	1 INTRODUCTION AND OVERVIEW
	2 AN OVERVIEW OF THE SAS ENVIRONMENT
	3 CASE STUDY DEFINITION ANDWORKSPACE PREPARATION STEPS
	4 RISK ENVIRONMENTS
	5 RISK DIMENSIONS VARIABLES
	6 DATA PREPARATION AND DATA-DRIVEN REGISTRATION
	7 METHOD PROGRAMS AND INSTRUMENT TYPES
	8 RISK FACTOR MODELS
	9 THE REGISTRATION OF MARKET AND PORTFOLIO DATA
	10 RISK ANALYSES
	11 REPORTS
	12 CONCLUSION
	REFERENCES
	APPENDIX

