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Abstract 

 

Continuous cropping without replenishing the nutrient component of soils will eventually 

lead to the depletion of soil nutrients.  Small scale farmers in Zimbabwe often do not 

have the financial means to buy fertilizer and this problem is exacerbated by scarcity of 

commodities such as fertilizers. The use of herbaceous legumes such as mucuna (Mucuna 

pruriens) can assist to recapitalize soil fertility depletion and improve subsequent maize 

productivity in sandy loam soils in the small holder farming sector of Zimbabwe.  In this 

study the effect of phosphorus (P) application to a mucuna crop, the effect of mucuna 

management options and the application of nitrogen (N) to the subsequent maize crop 

was investigated.  

The experiment was carried out during the 2007 to 2009 seasons at the Grasslands 

Research Station in Marondera in Zimbabwe. The soils are classified as humic ferrolsols 

and are predominantly of the kaolinitic order with sandy loams of low fertility and are 

slightly acid (pH CaCl = 5.2). A randomized complete block design was used for the effect 

of P on mucuna productivity and the effect of P and mucuna management options on the 

soil properties. The treatments were  two P rates (P0 and P40 = 0 kg P ha
-1

 and 40 kg P 

ha
-1

  respectively) applied to a preceding mucuna crop,  four mucuna management 

options [1) fallow (F) (no mucuna planted = control), 2) mucuna ploughed-in at flowering 

(MF), 3) all mucuna above ground biomass removed at maturity and only roots were 

ploughed-in (MAR) and 4) mucuna pods removed and the residues ploughed-in (MPR)].  

A split-plot design was used to study the effect of P application to mucuna, mucuna 

management options and N rates on the growth and yield of the subsequent maize crop.  

The four N treatments [N0 = 0 kg N ha
-1

, N40 = 40 kg N ha
-1

, N80 = 80 kg N ha
-1

 and 
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N120 = 120 kg N ha
-1

] were applied to a subsequent maize crop.  Growth and 

development parameters such as biomass production, leaf area index, nutrient content of 

the foliage and grain yield were determined in the mucuna and maize crops.  Soil 

parameters investigated included nutrient content, pH, bulk density and porosity. 

 Phosphorus application in these particular soil conditions positively influenced 

mucuna biomass production and therefore enhanced the role of mucuna as a rotational 

crop by increased positive effects on the subsequent maize crop.  The incorporation of 

above-ground biomass of mucuna had positive effects on all soil properties investigated. 

The MF and MPR management options increased the soil organic matter (OM) and 

reduced bulk density which leads to an improvement in porosity (f) of the soil. Mucuna 

incorporated at flowering (MF) and P40 treatment combination resulted in the highest 

mineral N, P, potassium (K), calcium (Ca) and magnesium (Mg) levels.  

A significant three-way interaction (P<0.05) between mucuna management 

options, nitrogen rates and time was observed in terms of biomass production and all 

nutrients in the leaves of the subsequent maize crop. The main findings were that the MF 

management option had the highest biomass and foliar nutrient accumulation through-out 

all the treatment combinations. In general the MF management option gave the highest 

maize yield across all the treatment combinations. 

Incorporation of mucuna biomass into the soil prior to planting a maize crop 

therefore improve soil physical and chemical qualities resulting in improved soil 

conditions for a subsequent maize crop which in turn lead to higher maize yields.  

Including a mucuna rotational crop have a similar effect on maize yield than application 

of 80 kg ha
-1

 of fertilizer N. 
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 Opsomming 

Aanhoudende verbouing van gewasse op dieselfde grond sonder om voedingstowwe aan 

te vul lei uiteindelik tot die agteruitgang van die grond se vrugbaarheid.  Kleinboere in 

Zimbabwe het meestal nie die finansiële vermoëns om bemestingstowwe te koop nie en 

die probleem word vererger deur die onbekombaarheid van kommoditeite soos 

bemestingstowwe.  Die gebruik van kruidagtige peulplant gewasse soos mucuna 

(Mucuna pruriens) kan bydra om grondverarming teen te werk en om die produksie van 

‗n daaropvolgende mielie aanplanting in sandleemgronde in ‗n kleinboerstelsel in 

Zimbabwe te verhoog.  In hierdie studie is die invloed van fosfor (P) toediening aan ‗n 

mucuna aanplanting, die invloed van bestuursopsies van die mucuna en die toediening 

van stikstof (N) aan die daaropvolgende mielie aanplanting ondersoek. 

Die eksperiment is tydens die  2007 tot 2009 reënseisoen by die Grasslands 

Research Station in Marondera in Zimbabwe uitgevoer. Die grond word geklassifiseer as 

humiese ferrolsols en is hoofsaaklik sanderige leemgrond van die kaolinitiese orde  met 

lae vrugbaarheid en is effens suur (pH CaCl = 5.2).  ‘n Volledig ewekansige blokontwerp is 

gebruik om die invloed van P op die produktiwiteit van mucuna te bepaal asook die 

invloed van P toediening en mucuna bestuursopsies op grondeienskappe.  Die 

behandelings was twee P vlakke (P0 = 0 kg P ha
-1

 en P40 = 40 kg P ha
-1

) wat aan ‗n 

voorafgaande mucuna aanplanting toegedien is, vier mucuna bestuursopsies  [1) braak (F) 

(geen mucuna geplant = kontrole),  2) mucuna ingeploeg met blomtyd (MF), 3) alle 

bogrondse mucuna biomassa verwyder by rypwording en slegs wortels ingewerk  (MAR) 

en 4) mucuna peule verwyde en die res van die bogrondse material ingeploeg  (MPR)] en 

vier N behandelings [N0 = 0 kg N ha
-1

, N40 = 40 kg N ha
-1

, N80 = 80 kg N ha
-1

 en N120 

= 120 kg N ha
-1

] toegedien aan ‗n daaropvolgende mielie aanplanting.   Groei en 

ontwikkeling parameters soos biomassa produksie, blaaroppervlakindeks, nutriëntinhoud 

van die blare en graanopbrengs is in die mucuna en mielie aanplantings ondersoek.  

Grondeienskappe soos nutriëntinhoud, pH, bulkdigtheid en porositeit is gemeet. 
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Fosfaat toediening aan hierdie spesifieke grondtipe het mucuna produksie positief 

beïnvloed en dus die rol van mucuna as rotasiegewas verbeter deur positiewe reaksies in 

die daaropvolgende mielie aanplanting.  Die inwerk van bogrondse mucuna biomassa het 

al die fisiese grondeienskappe wat ondersoek is positief beïnvloed.  Die MF en MPR 

bestuursopsies het organiese materiaal inhoud van die grond verhoog en bulkdigtheid 

verlaag wat lei tot verbeterde grondporeusheid (f).   Mucuna wat tydens blomvorming 

ingewerk is (MF) lei tot die hoogste minerale N, P, kalium (K), kalsium (Ca) en 

magnesium (Mg) vlakke.  

‗n Betekenisvolle drie-rigting interaksie  (P < 0.05) tussen    mucuna 

bestuursopsies, N vlakke en tyd is waargeneem in terme van biomassa produksie en in 

terme van al die nutriëntvlakke in die mielieblare wat ondersoek is.  Die hoofbevindinge 

was dat die MF bestuursopsie die hoogste biomassa produksie en blaarnutriënt 

akkumulasie oor alle behandelingskombinasies tot gevolg gehad het.   In die algemeen 

het die MF bestuursopsie die hoogste mielie-opbrengs oor alle behandelingskombinasies 

tot gevolg gehad. 

Die inwerk van mucuna materiaal in die grond voordat mielies geplant word 

verbeter dus fisiese en chemiese toestande in die grond wat grondtoestande verbeter vir 

die daaropvolgende miegewas en uiteindelik lei tot hoër mielie-oeste.  Die insluiting van 

mucuna as ‘n rotasiegewas het diesefde effek op mielie-opbrengs as die toediening van 

80 kg ha
-1

 N bemesting. 
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Chapter 1: General Introduction 

 

The small-holder farming regions in Sub Saharan Africa (SSA) are densely populated and 

are intensively cropped resulting in soil fertility decline, reduction in cereal yield and 

agricultural sustainability problems (Stoorvogel et al., 1993; Smaling et al., 1997;  

Govaerts et al., 2007). Monoculture cereal production systems have also contributed to 

serious decline in soil fertility (Fisher et al., 2002). In the past, long term fallows were 

used to improve soil fertility. However with the current population pressure, the use of 

long term fallows has become unsustainable (Smaling et al., 1997). 

The above problems did not spare Zimbabwe. Currently most small holder 

farmers do not practice proper fallowing and the fallows are too short to effectively 

restore soil fertility. Fertilizer use is very low because it is unaffordable.  On average 

farmers in SSA use 8.4 kg ha
-1

 of plant nutrients, far short of what is needed to 

compensate for the harvested nutrients (Sanchez & Palm, 1996). The current economic 

problems and critical shortages of fertilizers have led to a shift to other sources of 

nutrient replenishment such as green manure and crop sequencing. 

Most small holder farming areas of Zimbabwe are characterized by fragile soils 

that are deficient in major nutrients such as nitrogen and phosphorus and are low in 

organic matter (Tagwira et al., 1991; Piha, 1993). They are derived from granites and are 

thus sandy and inherently infertile (Grant, 1981). The clay mineralogy is predominantly 

1:1.  This ratio shows poor cation exchange capacity (CEC) and very acidic pH 

(Nyamapfene, 1991; Hussein, 1997). These soil conditions have a negative impact on the 

yield of maize. 

The perennial droughts that have affected Zimbabwe since 1982 have almost 

wiped out all the livestock in most communal lands. The depletion in livestock numbers 

has seen manure production dwindling in most households in Zimbabwe. Low manure 

levels have resulted in depleted soil nutrition (Tagwira et al., 1991). The current 

shortages of fertilizers have also hit hard on the nutrient recapitalization in the small 

holder farming sector. The above scenario has affected the production levels of major 

crops like maize.  
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With low manure production levels and scarcity of fertilizers at play there is need 

to turn to long term organic sources of nutrients. The use of herbaceous legumes such as 

mucuna (Mucuna pruriens) can help to recapitalize nutrient deficiencies in the small 

holder farming sector of Zimbabwe. Herbaceous legumes help in building up soil fertility 

through litter fall, which will be returned to the soil during decomposition and fixation of 

atmospheric nitrogen (Sanchez & Palm, 1996; Rao & Suresh, 1999).  Mucuna has the 

capacity to establish ground cover rapidly, produce a large above ground biomass and 

accumulate nutrients with consequent beneficial impacts on main crop yield in various 

environments (Eilita et al., 2003). 

Unlike inorganic sources of nutrients, organic sources may not release nutrients to 

coincide with crop demand and uptake (Swift, 1987; Mafongoya & Nair, 1997).  

Syncronization of the nitrogen (N) supply and demand will lead to increased N-use 

efficiency by minimizing the opportunity for N loss (Woomer & Swift, 1995; Shoko, et 

al., 2007). 

 

1.1 Rationale of study 

 

Most work done on mucuna focuses on its importance as a source of N. Nitrogen use 

efficiency is also governed by the dynamics and availability of other factors such as 

phosphorus (P), organic matter and pH. Therefore there is need to study the dynamics of 

phosphorus, organic matter, pH, soil physical properties and some trace elements in a 

mucuna-maize production system on kaolinitic sandy loam soils in Zimbabwe.  The study 

of most sustainable phosphorus, mucuna and nitrogen interaction for maize production 

will help to close the information gaps and will hopefully provide motivation for a much 

wider acceptance of mucuna in farming systems in Zimbabwe.  

 

1.2 Main hypotheses 

 

1 The use of P does not affect the productivity of mucuna on a sandy loam soil. 

2 There is no effect of P rate, mucuna management option and N rate on maize 

production.  



 3  

1.2 Objectives 

 

The main objective of the study was to assess the effect of P, mucuna management 

options and N on maize production on a kaolinitic sandy loam soil in Zimbabwe. The 

specific objectives, the integral of which will give answers to the main objective were: 

1. To investigate the effects of P on the productivity of mucuna on depleted sandy 

loam soil in Zimbabwe. 

2. To assess the effect of P and mucuna management option on the physical and 

chemical properties of a depleted sandy loam soil in Zimbabwe. 

3. To explore the effect of P, mucuna management option and N on the production 

of the subsequent maize crop on a depleted sandy loam soil in Zimbabwe. 

 

 

1.3 Thesis outline 

This thesis is written in form of publications and hence each chapter will have its own 

Materials and Methods section. There are no General Materials and Methods section. 

Therefore the materials and methods section of the chapters contain duplication 

because of the format of the thesis. 

Chapter 2 reports on the literature study. In Chapter 3 the effect of P on mucuna 

productivity is described. The sub-hypothesis tested in this Chapter is: ―P does not 

affect productivity of mucuna on a sandy loam soil‖. In Chapter 4 the effect of P and 

management options of mucuna on the soil physical properties, pH and organic 

matter is described. The sub-hypothesis tested in this Chapter is: ―P and mucuna 

management options do not affect physical properties, pH and organic matter of the 

sandy loam soil in Zimbabwe‖. Only two P levels were used since the study is 

focusing on the effect of P or no P on the subsequent maize crop. The effect of P and 

mucuna management options on the soil chemical properties is documented in 

Chapter 5. The sub-hypothesis tested is: ―P and mucuna management options do not 

affect soil chemical properties‖.   

Chapter 6 studies the effect of P rate, mucuna management option and N rate on 

the biomass, leaf area index and foliar nutrient content of the subsequent maize crop 
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on a depleted sandy loam soil. The sub-hypothesis tested is: ―P, mucuna management 

options and N do not influence the biomass, leaf area index and foliar nutrient content 

of maize on a sandy loam soil‖. In Chapter 7 the effect of P rate, mucuna 

management option and N rate on the yield and yield components of the subsequent 

maize crop on a depleted sandy loam soil is reported. The sub-hypothesis tested is: 

―P, mucuna management options and N do not influence the yield and yield 

components of the subsequent maize crop on a depleted sandy loam soil.‖  The 

study‘s overall discussions, conclusions and recommendations are made in Chapter 8. 

1.5 References 

EILITTA, M., SOLLENBERGER, L.E., LINTELL, R.C. & HARRINGTON, L.W., 
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Chapter 2:  Literature study 

 

2.1 Cereal-legume cropping systems 

 

Soil fertility management is now priority in African agricultural development policies. A 

decline in soil fertility across sub-Saharan Africa is evident and characterised mainly by 

nutrient mining and soil degradation (Stoorvogel & Smaling, 1990; Van der Pol, 1992; 

Scoones & Toulmin, 1999; Hilhorst & Muchena, 2000). 

The use of legumes in mixed cropping systems is one of the traditional soil-

fertility maintenance strategies (Nyambati, 1997). The most common production systems 

of integrating legumes into cropping systems include the following: simultaneous 

intercropping, relay intercropping, rotations and improved fallows (Weber, 1996). The 

use of legumes in cropping systems offers considerable benefits because of their ability to 

ameliorate soil fertility decline through fixation of atmospheric N  and improve the yield 

of the subsequent crops (Weber, 1996; Giller et al., 1997; Shoko, et al., 2007).  

Two mechanisms have been postulated by which cereal crops benefit from 

legumes in these multiple cropping systems (Giller et al., 1991; Giller et al., 1994; Giller 

& Cadisch, 1995): (1) through immediate transfer in which N travels from the legume 

directly to the associated crop, and (2) through residual effects in which N fixed by the 

legumes is available after senescence of legume residues to an associated sequentially 

cropped non-legume. It is generally believed that the second mechanism is more 

important.  Shoko and Tagwira (2005) also noted that legumes have the potential to 

improve soil pH and the availability of OM exchangeable bases and some trace elements 

such as Zn and Cu.  According to Ledgard and Giller (1995), nutrient benefits of these 

systems may accrue more to subsequent crops after root and nodule senescence and 

decomposition of fallen leaves. However, these grain legumes contribute little or no N to 

associated cereal crops because a large proportion (60-70%) of the N is removed during 

grain harvest (Giller et al., 1998).  The use of forage legumes in many parts of the tropics 

is limited because they do not contribute directly to the human food supply.  
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2.2 Replenishing soil fertility 

Low soil fertility due to monoculture cereal production systems is recognized as one of 

the major causes for declining per capita food production in SSA (Sanchez et al., 1997). 

Nutrient balance studies in SSA have shown that on a hectare basis an average of 22 kg 

N, 2.5 kg P and 15 kg K are lost annually ( Sanchez et al., 1997). The losses can be as 

high as 112 kg N, 3 kg P and 70 kg K in the intensely cultivated lands (Stoorvogel et al., 

1993; Sanchez et al., 1997; Van den Bosch et al., 1998). These losses are much higher 

than the estimated inorganic fertilizer use in Africa of 5 to 10 kg (FAO, 1995; Heisey & 

Mwangi, 1996). This emphasizes the need for soil fertility replenishment in SSA. 

Sustainable crop production in many soils of sub-Saharan Africa requires high nutrient 

inputs because the soils are either derived from parent material with low levels of 

essential nutrients like P and Zn or have been depleted of available P through continuous 

cropping with insufficient P inputs (Sanchez et al., 1997). The Oxisol soils that are 

widespread in this region have a major chemical constraint of high P fixation (Deckers et 

al., 1994). The low native soil P, high P fixation by soils with high Fe and Al 

concentration and nutrient depleting effects of long-term cropping without additions of 

adequate external inputs have contributed to P deficiencies in many tropical soils (Jama 

et al., 1997; Tisdale et al., 1999). Phosphorus can be replenished either immediately with 

high, one-time P application in soils with high P-sorption capacity, or gradually with 

moderate seasonal applications at rates sufficient to increase P availability in soils with 

low to moderate P-sorption capacity (Buresh et al., 1997). The combination of P and N 

replenishment may have a synergistic effect. 

The elimination of P deficiency can enhance N2 fixation by legumes (Giller et al., 

1997; Palm et al., 1997). Application of organic materials such as legume residues may 

increase crop-available P either directly by the process of decomposition and release of P 

from the biomass or indirectly by the production of organic acids (products of 

decomposition) that chelate Fe or Al, reducing P fixation (Nziguheba et al., 1998). Palm 

et al. (1997) showed that whereas mucuna contains sufficient N in 2 or 3 t of leafy 

material to match the requirement of a 2-t crop of maize, they cannot meet the P 

requirements and must be supplemented by inorganic P in areas where P is deficient. 

Jama et al. (1997), working in western Kenya, indicated that it was economically 
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attractive to integrate superphosphates (SP) with Mucuna pruriens.  Having high N to P 

ratios, the organic material provides the required N for the crop and the SP meets the 

additional requirement for P.  

Although inorganic fertilizers are the most effective amendments to maintain soil 

fertility or alleviate nutrient deficiencies, their high cost, inaccessibility and strict 

recommendations limit their use, particularly by smallholder farmers in SSA (Vlek, 1993; 

Nandwa & Bekunda, 1998). Continuous use of fertilizer alone cannot sustain crop yield 

and maintain soil fertility in the long-term because of soil acidification, loss of soil 

organic matter and soil compaction (Tisdale et al., 1999; Shoko et al., 2007). 

Juo et al. (1995a; 1995b) and  Kang (1993), working on an Alfisol soil in Nigeria, 

reported a soil pH decline from 6.2 to 5.1 during 10 yr of  maize continuous cropping 

with the annual application of 160 to 200 kg N ha
-1

.  Several other examples of 

acidification and the decline of soil organic matter and exchangeable nutrients in sub-

Saharan Africa are given in a review by Franzluebbers et al. (1998). 

 

2.3 Factors affecting biological nitrogen fixation 

 

The most important factors influencing the quantity of N fixation by rhizobia are soil pH, 

mineral nutrient status, photosynthetic activity, climate and legume management (Tisdale 

et al., 1999). Soil acidity can restrict the survival and growth of rhizobia (Tisdale et al., 

1999). According to Giller and Wilson (1993) soil acidity affects nodulation and N 

fixation processes. Soils which are acid contain aluminum, manganese and hydrogen ions 

which injure rhizobia and legume roots (Tisdale et al., 1999; Chien, 2001; Shoko et al., 

2007). 

A high rate of photosynthetic production is strongly related to increased N 

fixation by rhizobia ( Poppi & Norton 1995; Chien, 2001). Factors that reduce the rate of 

photosynthesis will reduce N fixation. These factors include reduced light intensity, 

moisture stress and low temperature (Tisdale et al., 1999). Maximum amounts of N are 

added when legumes are incorporated at flowering (Mpepereki et al., 1999). This is so 

because there is no N partitioning into the seed. Seed is the biggest N sink in legumes 

(Shoko & Tagwira, 2005). Giller and Wilson (1993) found that the yields of subsequent 
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crops are higher after green manuring than after dry harvested legumes if the soils has 

been monocropped for several years. 

 

2.4 Synchrony between mineralized nutrients and their uptake 

 

The efficiency of transferring N from a legume green manure to the succeeding crop 

depends on synchronizing the N release from the legume residue with the demand of the 

recipient crop. The plant species and management practices have a great influence on the 

success of this synchronization, and N mineralization is also affected by moisture, 

temperature and soil factors such as texture, mineralogy, acidity, biological activity and 

the presence of other nutrients (Myers et al., 1994). Uptake of N and other nutrients by 

maize continues until near maturity, but the highest demand for N is at the start of the 

reproductive stage (R1) when grain filling is initiated to R6 at physiological maturity 

(Karlen et al., 1988). The fraction of total N added that is taken up by the crop is known 

as the N recovery value (NIV). The reported NIV values for most organic residues are in 

the range 10 to 30% by the first crop (Giller & Cadisch, 1995; Mafongoya & Nair, 1997) 

and between 2 and 10% by the second crop (Mafongoya & Nair, 1997). Factors 

influencing the synchrony and therefore NIV from organic manures by annual crops 

include type of species, biomass quality and method and time of application (Mafongoya 

et al., 1997; Tian et al., 2000).  Giller and Cadisch (1995) reported that approximately 

20% of the N from high quality green manure residue is recovered by the first crop.  

Incorporation of the legume residue improves N recovery compared to surface 

placement (Mafongoya & Nair, 1997). This has been attributed to elimination of N losses 

through ammonia volatilization (Giller and Cadisch, 1995). Van Noordwijk and 

Purnomosidi (1992) found that N uptake by maize following mucuna was 147 kg ha
-1

 

higher than the control crop, while the N content of live biomass incorporated was only 

71 kg ha
-1

. They attributed this to the large amount of litter fall during the growth period, 

a quantity that exceeded the live biomass measured at the end of the growth period (Van 

Noordwijk & Purnomosidi, 1992).  
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2.5 Fallows involving forage legumes 

 

The potential of forage legumes like Mucuna pruriens to increase the productivity of 

crop-livestock systems has received increased attention in recent years because declining 

soil fertility and scarcity of livestock feeds are major constraints limiting agricultural 

productivity in these systems (Nnadi & Haque, 1988).  

In reviewing the effect of forage legume fallows on subsequent crops in sub-

humid West Africa, Scoones and Toulmin (1999) found that maize following 

Stylosanthes had greater grain yields than maize following natural fallows, but the 

responses varied depending on species of the fallow legume. These positive effects were 

attributed to improved soil properties such as soil bulk density, soil moisture retention, 

cation exchange capacity (CEC), organic C and soil N (Mpepereki et al., 1999; Tisdale et 

al., 1999).  

Studying the rotational effects of forage legumes, Muhr et al. (1999) found that 

even though large amounts of N, P and K (up to 120, 10 and 135 kg ha
-1

, respectively) 

were removed as dry season herbage, nutrient accumulation in the remaining biomass 

increased grain yields of subsequent maize grown on the legume plots. The nutrient 

export in legume fallow biomass removed in the preceding dry season apparently did not 

preclude the subsequent yield response of maize, but responses varied depending on the 

sites‘ fertility status (Nyambati et al., 2002). 

Green manure legumes grown in rotation with cereal crops have the capacity to 

provide high quality organic inputs to meet N demands of subsequent crops (Carsky et 

al., 1999; Tian et al., 2000).  However Drechsel et al. (1996) argue that incorporating 

these non-food legumes in the farming system requires a sacrifice of land and labour that 

is normally devoted to crop production.  

Reviewing studies on organic matter technologies for integrated nutrient 

management in smallholder farming systems of southern Africa, Snapp et al. (1998) 

concluded that the use of mucuna as rotational crop with maize has a lower N yield 

potential as compared to fallow systems. On-farm research in West Africa has shown that 

integration of these legumes into the farming systems and adoption by farmers could be 
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improved if the legumes have multiple uses (Becker, 1995; Becker & Johnson, 1998; 

Versteeg et al., 1998a).  

 

2.6 Potential of mucuna as a fallow crop 

 

It is estimated that N fixation ranging from 0 to 250 kg N ha
-1

 can be achieved from 

herbaceous legumes (Sanginga et al., 1996a; Ibewiro et al., 2000b). The contributions of 

legume residues to soil improvement and crop production depend largely on the amount 

of biomass produced, chemical composition and method of application (Sanginga et al., 

1996a; Mafongoya & Nair 1997; Palm et al., 1997; Tian et al., 2000; Shoko et al., 2007).  

Hairiah and Van Noordwijk (1989) reported that in a growth period of 14 weeks 

(wk) on an acid soil in Onne, Nigeria, mucuna contributed 110 kg N ha
-1

.  Work done by 

Mandimba (1995) in Brazzaville, Congo showed that  mucuna  incorporated at flowering 

as green manure increased the grain yield of maize up to 56% (to a total of 3.6 t ha
-1

) 

compared to a control that did not receive any N fertilizer (2.3 t ha
-1

). This was 

comparable to the yields of maize fertilized with 100 kg N ha
-1

 (3.7 t ha
-1

). Based on 

survey information, in Honduras, Mausolff & Farber (1995) estimated that use of mucuna 

as a cover crop combined with a fifth of the recommended inorganic fertilizer increased 

maize grain yield from 0.7 to 2 t ha
-1

 and reduced cost per hectare by 22%. 

Sanginga et al. (1996a) reported that when mucuna was fertilized with P in West 

Africa, it accumulated about 166 kg N to 310 kg N ha
-1

 in 12 wk.  Sanginga et al. (1996a) 

also indicated that mucuna derived 70% of its N from atmospheric N, representing 167 

kg N ha
-1

 12 wk
-1

 in the field. Mucuna intercropped in maize obtained a greater 

proportion of its N (74%) from fixation than did mucuna planted alone (66%), suggesting 

that competition for soil N influences the proportion of N fixed by mucuna. Maize 

succeeding a sole crop of mucuna resulted in a maize grain yield equivalent to that 

obtained with 120 kg N ha
-1

 of inorganic fertilizer (Sanginga et al., 1996b).  

In an on-farm study in a derived savanna of West Africa, Versteeg et al. (1998a) 

indicated that when mucuna was used as an annual fallow cover crop, it produced a 

biomass of 6 to 12 t ha
-1

   and improved subsequent maize grain yields by 70% compared 

to yields from continuously cropped maize. There was also an increase in the succeeding 
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maize growth parameters (height, leaf area, dry matter production, ear-leaf N 

concentration) compared to monoculture maize. However an N supplement of 40 kg ha
-1

 

had a higher response than any of the monoculture system (Akobundu et al. 2000).  

Working in a derived savanna of West Africa and sub-humid highlands of East 

Africa respectively, Carsky et al. (1999) and Wortmann et al., (2000) evaluated various 

management options of mucuna to improve fallows and recorded that maize yield was 

higher where N supplement was applied on mucuna which was ploughed under at 

flowering than in non-cropped fallows. The use of herbaceous legumes like mucuna as a 

fallow crop in maize production system showed some promising improvement in 

concentrations of Ca, Zn, Cu, Fe, B and Mo in the grain and vegetative biomass (Chabi-

Olaye et al., 2006). Soil pH and exchangeable Ca were not reduced during a 15-year 

period of continuous mucuna production.Soil organic matter (SOM), infiltration and 

porosity increased with continuous mucuna use (Chabi-Olaye et al., 2006; Wang et al., 

2006).  

 

2.7 Adaptation characteristics of mucuna  

 

Mucuna tolerates low soil fertility, acidic soils and drought conditions (Hairiah et al., 

1991; Burle et al., 1992; Weber, 1996), properties which indicate its potential for 

surviving and producing biomass during the drier part of the year. In reviewing the 

challenges for research and development of legume-based technologies for the African 

savannas, Weber (1996) concluded that mucuna is among the species adapted to cropping 

systems in sub-Saharan Africa (Maasdorp  & Titterton, 1997). 

When used as a cover crop, mucuna has a nematicidal effect (McSorley et al., 

1994) as well as the ability to smother weeds (Fujii et al., 1992; Becker & Johnson, 1998; 

Versteeg et al., 1998a), particularly broad leaved weeds (Hepperly et al., 1992).  In West 

Africa, the ability of mucuna to control a local weed, Imperata cylindrica, seemed to 

have a major influence on its adoption (Weber, 1996; Versteeg et al., 1998a), indicating 

that farmer adoption of cover crop/green manure technology may not only be based on 

agronomic yield, but other factors/uses may also be important (Becker et al., 1995). 
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2.8 Effect of mucuna underground and aboveground biomass on subsequent crop 

 

It is estimated that roots may be the source of 30 to 60% of the C in the soil organic pool 

(Heal et al., 1997). It is estimated that nodulated legume roots contain 15 to 50 kg N ha
-1

 

(Unkovich et al., 1994; Ibewiro et al., 1998). This amount of root N represents < 15% of 

total plant N (Peoples et al., 1995).  On an acid soil, 6-wk-old mucuna had a shallow root 

system (within 15 cm) and a shoot:root ratio of 6.7:1 (Hairiah et al., 1992). Roots 

contributed only 2 kg N ha
-1

 compared to above-ground biomass that contributed 21 kg N 

ha
-1

. Work carried out in Zimbabwe by Muza (1998) reported that mucuna roots 

contained lower N concentrations (1.38%) compared to above-ground biomass (1.96%). 

However Tian and Kang (1998) found that roots of mucuna contained higher N 

concentration (2.62 %) compared to shoots (1.66 %). The lignin concentrations in the 

roots of mucuna were higher (24.5%) than in the shoot (7.2%) (Tian & Kang, 1998). 

Conversely the roots contained lower polyphenol concentrations (0.63%) than shoots 

(3.54 %). The higher lignin concentration in roots suggests that, in combination with 

shoot stubble, the remaining biomass after removal of the top canopy may be of low 

quality (Nyambati, 1997). Smyth et al. (1991) observed lower yields and N accumulation 

by maize when mucuna roots were incorporated into the soil compared to whole biomass 

incorporation and attributed this reduction to the removal of the N in above-ground 

biomass.  Smyth et al. (1991) found an increase in maize grain yield of 0.8 t ha
-1 

when 

mucuna roots were incorporated compared to a zero-N treatment.  

Oikeh et al. (1998) working in either low or high fertility sites in a moist tropical 

savanna, showed that independent of the differences in soil fertility, N uptake and N 

partitioned into grain, stover, and cob were 20% higher after legume-maize rotations than 

in maize monocrops. Ibewiro et al. (1998) studied the N contribution of mucuna, lablab, 

cogongrass and maize roots, shoots, and whole-plant biomass to succeeding maize. They 

showed that although N contribution from mucuna roots was only 3 and 4% of the total 

N, their incorporation resulted in maize grain yield that was 38 % of the yield obtained 

when whole residue was incorporated. Significant increases in maize yields following 

mucuna even when mucuna was burned to ease land preparation (Vine, 1953) supports 
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the hypothesis that below-ground parts may contribute significant N to subsequent maize. 

Despite the availability of data on the contribution of whole-plant biomass incorporation, 

more information is needed on the contribution of below-ground biomass plus stem- 

stubble and litter to succeeding maize (Ibewiro et al., 2000a). 

 

2.9 Anti-nutritive factors of mucuna 

 

Although mucuna seed has a high protein concentration and its quality is comparable to 

that of soybean (Ravindran & Ravindran, 1988), it contains a toxic chemical [3, 4-

dihydroxyphenyl alanine (Levodopa, or L-Dopa)] (Lorenzetti et al., 1998; Siddhuraju & 

Becker, 2001).  L-Dopa can be toxic to humans if consumed at levels above 1.5 g d
-1

 

(Lorenzetti et al., 1998; Nyambati et al., 2002). It has been reported that the oxidation 

products of L-Dopa conjugate with SH group of proteins (cystein) forming a protein 

bound 5-S43 cysteinnyldopa cross links, leading to polymerization of proteins (Takasaki 

& Kawakishi, 1997). A procedure to prepare detoxified mucuna flour is available 

(Versteeg et al., 1998b), but this may demand extra labor. Mucuna seed was extensively 

used in the southern USA as part of a ration for cows at the beginning of the last century 

(Tracy & Coe, 1918) and no toxic effects were observed, suggesting that the L-Dopa in 

mucuna forage may have minimal detrimental effects on ruminant animals. Mucuna 

contain other anti-nutritional factors such as polyphenols, tannins, trypsin inhibitor 

activity, cyanogenic glycosides and hemaglutanating activities (Rajaram & Jonardhanan, 

1991).  

 

 

2.10 Integrated nutrient management for the improvement of maize productivity 

 

Integrated Nutrient Management (INM), which seeks to maximize the complementary 

effects of mineral and organic nutrient sources is emerging as an important approach in 

improving soil productivity of smallholder farming systems (Smaling et al., 1996; Palm 

et al., 1997; Fanzluebbers et al., 1998).  The INM concept is based on the premise that 

the decline in soil productivity can be attributed in part to the negative nutrient budgets 
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(the amount of nutrients removed compared to the amount of nutrients being put into the 

system) in most agricultural production systems in sub-Saharan Africa (Smaling & 

Braun, 1996). Thus, under maize monoculture production systems recycling of nutrients 

from organic sources alone may not be sufficient to sustain crop yield. Nutrients exported 

from the soil through harvested biomass and lost from the soil through various processes 

such as soil erosion, leaching, and denitrification must be replaced with nutrients from 

external sources (Cahn et al., 1993; Swift et al., 1994a).  

Several long-term experiments conducted in SSA have shown that a combination 

of inorganic fertilizers and organic manures slowed the decline in soil organic matter 

after continuous cropping compared to when inorganic fertilizers were used alone or 

when no inputs were used (Swift et al., 1994b; Kapkiyai et al., 1999). Studies in 

Zimbabwe on N mineralization from poor quality manures have shown that 

decomposition of these manures can lead to N immobilization and that N availability can 

be increased by supplementing with leguminous inorganic sources of N like mucuna 

(Murwira & Kirchmann, 1993). Akobundu et al. (2000) showed that applying a low 

fertilizer rate (30 kg ha-1
 N, P, and K) with mucuna residue, significantly increased maize 

grain yield in a moist savanna of West Africa. In reviewing results on the combined use 

of organic and inorganic nutrient sources in sub-Saharan Africa, Palm et al. (1997) 

concluded that high and sustained crop yields can be obtained with judicious use of 

organic residues combined with inorganic fertilizers. They attributed this advantage to 

enhanced synchrony of nutrient release and demand by the recipient crop, increased 

nutrient-use efficiency and residual effects of soil organic matter associated with 

combined nutrient additions compared to inorganic fertilizers applied alone. 
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Chapter 3 

The effect of P on the productivity of mucuna (Mucuna pruriens) on a 

depleted sandy loam soil in Zimbabwe 

 

Abstract 

Positive responses to increased soil phosphorus (P) supply have been noted for several 

leguminous species including mucuna (Mucuna pruriens). The major objective of this 

research was to investigate the effect of two P levels on the productivity of mucuna on a 

depleted kaolinitic sandy loam soil in Zimbabwe. Two P treatments [P0 = 0 kg P ha
-1

 and 

P40 = 40 kg P ha
-1

] were applied prior to planting a mucuna crop. The following 

parameters were investigated; biomass, leaf area index (LAI), nodulation data, nitrogen 

(N) fixed, foliar nutrient dynamics and yield and yield quality. The P40 treatment 

resulted in significant increases in biomass, leaf area index, nodulation and N fixation 

compared to the P0 treatment.  The foliar N, P and calcium (Ca) content also increased 

significantly in the P40 treatment compared to the P0 control while magnesium (Mg) and 

potassium (K) levels were not significantly different. The final pod yield and overall pod 

quality was also higher in the P40 treatment compared to the P0 treatment.  These results 

imply that P application in these particular soil conditions will positively influence 

mucuna production and therefore enhance the role of mucuna as a rotational crop by 

increased positive effects on the subsequent maize phase. 

 

Keywords: mucuna, N fixation, phosphorus, smallholder farmer 
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P.J.Pieterse & GA Agenbag, 2009. The effect of P on the productivity of mucuna (Mucuna pruriens) on a 

depleted sandy loam soil in Zimbabwe. 
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Introduction  

Phosphorus (P) is an essential macronutrient for legume growth and function (Ribet & 

Drevon, 1996).  The P requirements of host plants for optimal growth and symbiotic 

nitrogen fixation processes have been assessed by determination of nodule development 

and functioning (Sa & Israel, 1991; Israel, 1993). The influence of P on symbiotic 

nitrogen fixation in mucuna (Mucuna pruriens) has received considerable attention, but 

its role in the process still remains unclear (Hairiah et al., 1995).  Robson and O‘Hara 

(1981) concluded that P nutrition increased symbiotic nitrogen fixation in most legumes 

by stimulating host plant growth rather than by exerting specific effects on rhizobial 

growth or on nodule formation and function.  

Decreased specific-nitrogenase activity in nodules of P deficient legume plants 

was associated with decreased energy status of host plant cells of nodules (Valverde et 

al., 2002). These latter observations imply specific involvement of P in symbiotic 

nitrogen fixation (Israel, 1987; Ribet & Drevon, 1996; Valverde et al., 2002). However, 

the mechanism to convert inorganic P into different forms of organic P is not known, 

especially concerning the formation and functioning of symbiotic nodules (Vadez et al., 

1997). 

Nodulation, growth and development and yield of legumes is stimulated by 

exogenous P supply (Jakobsen, 1985; Sanginga et al., 1996; Gentili & Huss-Danell, 

2002).  Kolawole and Kang (1997) found that P fertilization increased above-ground 

biomass, root DM biomass, nodulation and concentrations of nitrogen (N), P, potassium 

(K), calcium (Ca), magnesium (Mg) and zinc (Zn) of various legumes. The large increase 

in nodule mass caused by an increase in P levels is due to increased nodule numbers per 

plant and increased average mass of individual nodules. This enhances N fixation and 

increases legume biomass and yield (Valverde et al., 2002). 

Mucuna is a trailing legume species which can be utilized as a mulch crop, fodder 

crop or green manure crop (Maasdorp & Titterton, 1997; Muhr et al., 1999).  Work done 

by Hikwa et al. (1998) on depleted soils in Zimbabwe reported average mucuna  biomass 

yields of 4.1 t ha
-1

 in a season with P application and 3.3 t ha
-1 

without P  application. 

Work done in West Africa in a sandy soil by Muhr et al. (1999) showed that mucuna can 

produce biomass ranging from 4 to 6 t ha
-1

 in 25 weeks with P supplementation while 
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Maasdorp and Titterton (1997) who worked in Zimbabwe on a reddish brown clay soil 

observed mucuna biomass production of 2 – 4 t ha
-1

 in 18 weeks with P supplementation. 

The major objective of this study was to assess the effect of P on the productivity 

of mucuna in a kaolinitic sandy loam soil in Zimbabwe.  Mucuna was identified as a 

suitable rotational crop with maize in this area (Maasdorp & Titterton, 1997) and 

optimizing mucuna biomass production will most probably have positive effects on 

fodder production for livestock and subsequent maize production.  

 

Materials and methods 

Experimental site 

The experiment was carried out at the Grasslands Research Station in Marondera 

in Zimbabwe. It is situated at approximately 18
o 

11
1
S latitude and 31

o 
30

1
E longitude at 

an altitude of 1200 m above sea level.  At this site the average annual rainfall is 900 mm 

per annum (20-year mean), falling predominantly in the hot summer months (November 

to March). The winters are relatively cool and dry (Table 3.1) 

(http://www.worldweather.org/130/c00958.htm).  The mean US Weather Bureau class A 

pan evaporation is 1750 mm (Nyakanda, 1997).  

The soils are classified as humic Ferrolsols based on the FAO/UNESCO system 

(FAO UNESCO, 1994) and are equivalent to a Kandiudalfic Eutaudox in the USDA soil 

taxonomy system (Soil Survey Staff, 1991).The soils are predominantly of the kaolinitic 

order with loamy sands of low fertility (Hussein, 1997).  In general these soils are slightly 

acid (pH CaCl  = 5.2) with organic matter content of 0.33%  (Hussein,1997).  Soil analyses 

performed on soil samples taken before the trial started showed a mineral N content of 15 

ppm at the time of sampling as well as a P content of 15.8 ppm, K content of 0.15 meq%, 

Ca content of 0.2 meq% and Mg content of 0.03 meq% (Shoko, unpublished data). 
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Table 3.1 Rainfall data for the experimental site for 2007 and 2008 (Grasslands Research Station, 

Marondera, Climatological Section) and long-term climatological data for Marondera 

(http://www.worldweather.org/130/c00958.htm) 

 

 

 

Month 

 

Mean temperature (ºC) 

 

Mean total rainfall (mm) 

 

Mean 

number 

of rain 

days 

 

Daily 

minimum 

 

Daily 

maximum 

 

Long 

term 

 

2007 

 

2008 

Jan 15.3                         23.6   193.4 333.1 352.5 14 

Feb 13.1              24.5              149.1 48 10 12 

Mar 15.8              23.9             90.3 14 74 9 

Apr 12.5              22.8              48.7 0 0 5 

May 11.9               21.0      10.1 0 0 2 

Jun 6.2      18.3 5.4 0 0 1 

Jul 5.3       18.4 3.0 0 0 1 

Aug 6.3            25.0       3.0 0 0 1 

Sep 12.5      25.5 6.8 0 0 1 

Oct 13.5        26.0     40.3 85.5 11 5 

Nov 14.8           25.9     113.1 157.2 137.4 10 

Dec 14.5         24.3      187.7 429.2 282.6 15 

 

Crop establishment  

The experimental area was ploughed, disced and planted to Mucuna pruriens var. utilis in 

August 2007 (first season crop) and July 2008 (second season crop). Mucuna was planted 

using an inter-row spacing of 45 cm and intra row spacing of 10 cm.  Two phosphorus 

treatments (40 and 0 kg P ha
-1

) were applied as pre-planting fertilizer.  Weed control was 

done twice using mechanical methods.  Irrigation was applied strategically to supplement 

rainfall when the mucuna crop started to show signs of moisture stress. 

http://www.worldweather.org/130/c00958.htm
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Experimental design and treatments applied 

The experimental design was a Randomised Complete Block Design (RCBD) with 2 P 

treatments [P0 = 0 kg P ha
-1

 and P40 = 40 kg P ha
-1

] applied prior to planting a mucuna 

crop. Single Super Phosphate (SSP) was applied as basal fertilizer. The performance of P 

on mucuna was measured on the following parameters; biomass and LAI (at different 

stages during the growing season), nodulation, N fixed, foliar nutrient analyses, days to 

50% flowering, pod numbers and weight, yield and yield quality.  In the case of biomass 

and LAI the experimental designs were a 2X2 and 2X3 factorial respectively with factors 

P level and Time (time of sampling).  The treatments were replicated 4 times. The plot 

size was 10 m x 10 m and the nett plot area was 5 m x 5 m. The net plot area was marked 

at the center of each plot. The rest of the area was used for other destructive 

measurements such as leaf area and biomass determinations. 

 

Biomass and Leaf Area Index (LAI) determination 

Biomass (dry weight) was determined at 4 and 8 weeks after emergence (WAE) and LAI 

was determined at 4, 6 and 8 WAE.  The plants from the net plot were partitioned into 

leaves and stems. Dry mass was determined by oven drying the components at 80
o
C to 

constant weight before weighing.  LAI was determined using a Delta-T Leaf Area Meter 

(Model 2). 

 

Nodulation  

Nodulation counts were carried out at flowering. Number of live and dead nodules per 

plant was recorded. Ten plants for each plot were randomly sampled. The dry weight of 

the nodules was also determined.  

 

Estimation of nitrogen fixed 

The proportion of nitrogen fixed was estimated using the N abundance difference method 

(Ankomah, 1998). Weeds from the unfertilized plots were used as non-fixing reference 

crops. The weeds were also sampled at the time of sampling the mucuna plants. Both the 

mucuna and weed samples were oven dried to constant weight at 60
0
 C and then nitrogen 

was determined using the Micro- Kjeldahl method (Okalebo et al., 1993). The difference 
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between the N levels in the two plant populations estimate the amount of N fixed. The 

amount of N fixed was determined at flowering and maturity of mucuna. 

  

Foliar nutrient analyses 

From the same plants that were sampled for biomass determination the following 

nutrients were analysed from the whole plant at flowering and from leaves and pods at 

maturity: N, P, K, Ca and Mg. The analyses of the mentioned nutrients were done using 

standard procedures as described by AOAC (1990). 

 

Yield components  

Yield determinations were carried out based on the net plot yield. The net plot yield was 

used to estimate yield (t ha
-1

). The pod quality parameters measured were fibre and 

protein using standard analytical methods described by AOAC (1990). 

 

Statistical analyses 

Statistical analysis of the data was performed using the STATISTICA software, version 

8.02 program (StatSoft, 2004).  Analysis of variance (ANOVA) was conducted to 

determine significance of treatment effects. Means were separated using Bonferroni 

studentised range for testing least significant differences at the 5% level when ANOVA 

revealed significant (P < 0.05) differences among the treatments.  

 

Results  

Biomass accumulation 

There was a significant interaction (P < 0.05) between P level and time of sampling in 

both years in terms of biomass of stems and total plants only (Figure 3.1). At 8WAE the 

stem mass and total biomass produced by plants of the P40 treatment was significantly 

higher than that of the P0 plants in both years. Total biomass of mucuna almost doubled 

in the P40 treatment from 4 WAE to 8 WAE.  Leaves produced significantly higher 

biomass yields at both sampling times in both years at P40 compared to P0.  
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Figure 3.1  Dry matter accumulations by mucuna (a) leaves, (b) stems and (c) whole plant at  4 

and 8 WAE under PO & P40 treatments (P0 = No P applied (control) and P40 = 40 kg P ha-1 

applied). 

 

Leaf Area Indices (LAI) 

Leaf area was measured at 4, 6 and 8 WAE over two seasons to determine the effect of P 

as illustrated in Figure 3.2. There was significant interaction (P < 0.05) between time of 

sampling and P level in both seasons. The P40 treatment had a significantly (P < 0.05) 

higher LAI at 6 and 8 WAE in 2007 and at 8 WAE in 2008 but not at 4 WAE in any of 

the seasons.  Phosphorus applications can help to increase LAI faster. The results show a 

LAI of 1.3 and 1.06 for the P40 and P0 treatments respectively at 8 WAE.  
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Figure 3.2 LAI for mucuna in (a) 2007 season and (b) 2008 season under P0 & P40 treatments 

(P0 = No P applied (control) and P40 = 40 kg P ha-1 applied).   

 

 Nodulation 

The results (Table 3.2) showed that the P40 treatment significantly increased nodulation 

compared to the P0 treatment. The two seasons means show that the P40 treatment 

produced 75% (98), 91% (90) and 47%( 1.1g) more nodules, live nodules and nodule dry 

weight than the P0 treatment (56, 47 and 0.75 g respectively).   

 

Table 3.2 Nodule numbers, number of live nodules and nodule dry weight (DW) per plant of 

mucuna at 2 P levels during the 2007 and 2008 seasons (P0 = No P applied (control) and P40 = 

40 kg P ha-1 applied). Means followed by the same unbold letter in a row in a season and those 

followed by the same bold letter in a row for the 2 seasons means are not significantly different at 

P = 0.05 

 

 2007 season 2008 season  2 seasons mean 

P Level P0 P40 P0 P40 P0 P40 

No. of nodules plant
-1 

55a 97b 58a 100b 56a 98b 

No. of live nodules plant
-1 

45a 87b 50a 94b 47a 90b 

Nodule DW plant
-1

 (g) 0.67a 1.08b 0.82a 1.12b 0.75a 1.1b 
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Estimation of nitrogen fixed 

Nitrogen fixed at flowering in the mucuna crop (mean of two years) was 82% more in the 

P40 treatment (164 kg ha
-1

) than in the P0 treatment (90 kg ha
-1

) (Table 3.3). This trend 

was also evident at maturity. The use of P therefore enhances nitrogen fixation in mucuna 

as shown in Table 3.3.  

 

Days to 50% flowering 

Significant differences (P < 0.05) in days to flowering as influenced by P are illustrated in 

Figure 3.3.  Mucuna in the P0 treatment reached 50% flowering about 9 to 10 days earlier 

than in the P40 treatment in both seasons. 

 

Table 3.3 Estimated N fixed by mucuna during the 2007 and 2008 seasons under P0 & P40 

treatments (P0 = No P applied (control) and P40 = 40 kg P ha-1 applied). Means followed by the 

same unbold letter in a column in a season and those followed by the same bold letter in a column 

for the 2 seasons means for each sampling time are not significantly different at P = 0.05 

 2007 season  2008 season  2 seasons mean 

 N fixed (kg ha
-1

) 

Sampling time    

At flowering:    

P0 89a 91a 90a 

P40                 162b 166b 164b 

*At maturity:    

P0 62a 59a 61a 

P40 92b 90b 91b 

 

 * At maturity = mucuna biomass - pods 
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Figure 3.3 Days taken to reach 50 % flowering by mucuna under P0 & P40 treatments (P0 = No 

P applied (control) and P40 = 40 kg P ha-1 applied. 

 

Foliar nutrient content 

Total nutrient content in the foliage of mucuna at flowering and maturity as well as in 

pods are shown in Table 3.4. Trends were similar in both seasons and the following 

discussion refers to the mean values for the two seasons. The two P treatments showed 

significant differences (P < 0.05) because the P40 treatment resulted in   23%, 57% and 

6%, higher N, P and Ca contents respectively at flowering compared to the P0 treatment.  

Magnesium and K levels were higher (although not significantly) in the P0 treatment than 

in the P40 treatment.  At maturity mucuna foliage in the P40 treatment had significantly 

higher (17 %, 31 %, 38 % and 23 %, respectively) N, P, K and Ca contents than in the P0 

treatment but the Mg levels did not differ significantly between treatments.   

There were significant (P < 0.05) differences between treatments with regard to 

all the nutrients in mature pods (Table 3.4).  Pods from the P40 treatment had 24%, 

150%, 8%, 100% and 150% higher concentration of N, P, K, Ca and Mg respectively 

than pods in the P0 treatment. 
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Yield and yield quality 

Significant differences (P < 0.05) between P treatments in terms of yield and yield quality 

is documented in Table 3.5.  The final pod yield over two seasons was 34% higher in the 

P40 treatment (1.8 t ha
-1

) compared to the P0 treatment (1.3 t ha
-1

). There were also 

significant differences (P < 0.05) between treatments in terms of pod quality as measured 

by protein content.  The protein content of pods was approximately 50% higher in the 

P40 treatment than in the P0 treatment in both seasons.  The P0 treatment showed a 2% 

lower fibre content in 2007 but a 4% higher fibre content in 2008 compared to the P40 

treatment.  The effect of P on fibre content of the pods is therefore inconclusive.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37  

 

Table 3.4 Nutrient content in foliage of mucuna at flowering and maturity and in mature pods 

after two P treatments (P0 = No P applied (control) and P40 = 40 kg P ha -1 applied). Means 

followed by the same letter in a column in a season are not significantly different at P = 0.05  

  

    N 

 

     P 

 

      K 

 

     Ca 

 

     Mg 

                                                                            % 

At flowering:      

2007 season      

         P0 5.2a 0.7a 2.5a 4.8a 1.0a 

     P40 6.6b 1.1b 2.3a 5.2b 0.9a 

     2008 season      

P0 5.2a 0.7b 2.6a 5.0a 1.0a 

   P40 6.3b 1.1a 2.4a 5.3b 0.9a 

At maturity:      

2007 season      

         P0 4.1a 0.8a 0.8a 2.7a 0.4a 

     P40 4.8b 1.3b 1.1b 3.2b 0.5a 

      2008 season      

P0 4.1a 0.9a 0.8a 2.6a 0.4a 

   P40 4.6b 1.3b 1.1b 3.2b 0.3a 

In pods:      

2007 season      

         P0 4.5a 0.2a 1.1a 0.3a 0.2a 

     P40 5.6b 0.5b 1.3b 0.6b 0.5b 

        2008 season      

P0 4.5a 0.3a 1.1a 0.3a 0.2a 

   P40 5.6b 0.5b 1.5b 0.6b 0.5b 
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Table 3.5 Pod yield, protein and fibre content of mucuna in P0 and P40 treatments (P0 = No P 

applied (control) and P40 = 40 kg P ha-1 applied).  Means followed by the same unbold letter in a 

row in a season and those followed by the same bold letter in a row for the 2 seasons mean are 

not significantly different at P = 0.05.   

 2007 season 2008 season  2 seasons mean cv % 

Parameter P0 P40 P0 P40 P0 P40  

Pod yield(t ha
-1

) 1.3a 1.8b 1.3a 1.8b 1.3a 1.8b 18 

Protein (%) 15a 23b 15a 23b 15a 23b 18 

Fibre (%) 12a 14b 16b 12a 14b 13a 13 

 

Discussion   

This study showed that P application as a basal fertilizer has the potential to increase 

mucuna biomass under depleted sandy soil conditions. In general legumes show large 

biomass responses to P fertilizer applications, but Hairiah et al. (1995) working in 

Indonesia found no response of mucuna to P applications on soils with low P content.  In 

contrast, Tian et al. (1998), in a pot experiment, found large increases in biomass 

production of several legumes including mucuna in poor soil amended with P but even 

larger increases in fertile soil.  However in follow-up experiments in the field the results 

were variable leading to the conclusion that other environmental stress factors influenced 

the response of legumes to applied P. 

The high nodule numbers, dry weights and live nodules in the P40 treatment 

indicate that P is a requirement for effective symbiotic nitrogen fixation in mucuna. The 

use of P therefore enhances nitrogen fixation in mucuna which in turn resulted in a higher 

biomass in the P40 treatments. This finding is fully supported by other researchers such 

as Vadez et al. (1997) and Valverde et al. (2002) for other legume crops. Phosphorus is 

essential in the conversion of ATP to ADP which will provide legumes with energy to fix 

N (Robson & O‘Hara, 1981).  
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Nitrogen fixation was highest in the P40 treatment at flowering and at maturity.  

The high N fixation is attributable to the role of P in nodulation (Sanginga et al., 1996; 

Valverde et al., 2003).    The P40 treatment delayed flowering by about 10 days. This 

delay could be attributable to the effect of P on vegetative growth of mucuna at the 

expense of flowering.  This finding is in contrast to the findings of Turk et al. (2003) and 

Keatinge et al. (1985) who both found that P application accelerated time to 50% 

flowering in legume species.  

Phosphorus played an important role in nutrient accumulation in mucuna foliage. 

Most nutrient levels were higher in the P40 treatment than in the P0 treatment.  Kolawole 

and Kang (1997) noted that P is essential in the energy required for the movement of the 

nutrients up the plant. The incorporation of mucuna at flowering will help to improve not 

only N status of the soil but other nutrients like P, K, Mg and Ca levels in the soil as well.   

Higher foliar contents of these nutrients in mucuna that is incorporated should improve 

the growth and development of the subsequent crop (Tisdale et al., 1999; Shoko et al., 

2008).  

Magnesium and Ca have a liming effect. These help to neutralize the hydrogen 

ions, which are sources of acidity (Tisdale et al., 1999).  Nitrogen concentration in pods 

is very high. This implicates that substantially reduced amounts of N will be incorporated 

into the soil when pods are harvested at maturity before above ground biomass is 

ploughed in.  However, Carsky et al. (1999) found that below ground biomass of legume 

fallow crops also contributed significantly to the yield of a subsequent maize crop. 

The higher pod yield in the P40 treatment shows a similar trend to the findings by 

Sanginga et al. (1996) and Gentili and Huss-Danell (2002). The influence of P on 

luxurious growth of mucuna had a positive effect on protein content. Mean fibre content 

over two seasons was lower in the P40 treatment than in the P0 treatment but not so 

pronounced as to make a difference in digestibility of the pods.  Given the 50% increase 

in protein the overall effect of the P40 treatment will be an increase in fodder quality of 

the pods.   

In general, P application improved the biomass production of mucuna, the 

nutrient content of the plants as well as the quality of the pods.  This may lead to a higher 
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amount of better quality fodder if it is to be used as animal fodder.  However, in the crop 

production systems in these parts of Zimbabwe it will most probably be used to enhance 

soil fertility and to supplement N in a subsequent maize production phase (Hikwa et al., 

1998).  Increased biomass production and improved nutrient content of the mucuna plants 

may have a more positive effect on the subsequent crop (Sanginga et al., 1996; Carsky et 

al., 1999; Muhr et al., 1999; Shoko et al., 2007).  The application of supplementary P to 

increase aforementioned factors may therefore be a cost-effective way of optimizing 

maize production in the depleted sandy soils of this region.   

 

Conclusion 

The results indicate that P plays a crucial role in mucuna productivity in a depleted sandy 

soil in Zimbabwe.  The small-holder farmers can improve the productivity of their 

mucuna crop if they apply P and can improve the pod yield as well as the quality of the 

pods for animal consumption.  The improved biomass production and higher nutrient 

content may have positive effects on a subsequent maize crop by substituting some of the 

N fertilizer required by the maize and by generally improving the nutrient status and soil 

organic matter. Further research to determine optimum P application rates for different 

soils and climatic conditions for mucuna production may be carried out. 
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Chapter 4 

 

The effect of P and mucuna (Mucuna pruriens) management options on 

soil organic matter, soil pH and physical properties of a depleted sandy 

loam soil in Zimbabwe 

 

 

Abstract  

It has been noted that the continuous use of fertilizer alone cannot sustain crop yield and 

maintain soil fertility. In the long run the soil pH, soil organic matter (SOM), physical 

properties such as bulk density (Db), particle density (Dp) and porosity (f) will 

deteriorate. Inclusion of a leguminous crop such as mucuna (Mucuna pruriens) in a 

rotational system may alleviate these problems.  The major objective of this research was 

to investigate the effect of two P levels and four mucuna management options on SOM, 

pH and physical properties of a depleted kaolinitic sandy soil in Zimbabwe. The 2 P 

treatments were P0 = 0 kg P ha
-1

 and P40 = 40 kg P ha
-1

 and the 4 mucuna treatments 

were MF=mucuna incorporated at flowering, MAR= mucuna above ground removed at 

maturity and only roots incorporated, MPR = above ground biomass except pods 

incorporated at maturity and F = Fallow (control). The following parameters were 

investigated; SOM, soil pH, Db, DP and f. The MF and P40 treatment combination 

increased the SOM, Db, DP and f significantly compared to other treatments. The MF 

and MPR management options in combination with the P0 treatment resulted in the most 

acceptable soil pH for maize production. The incorporation of above-ground biomass of 

mucuna had positive effects on all soil properties investigated. 

Keywords: mucuna management, organic matter, soil pH, soil physical properties 
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Introduction  

It has been shown that on the poorly buffered kaolinitic soils found in many areas in the 

tropics, including sub-Saharan Africa, continuous use of fertilizer alone cannot sustain 

crop yield and maintain soil fertility, because soil pH, soil organic matter (SOM) and 

physical properties such as bulk density (Db), particle density (Dp) and porosity (f) will 

deteriorate in the long run (Juo et  al., 1995a; 1995b).  

Kang (1993), working on an Alfisol soil in Nigeria, reported a soil pH decline 

from 6.2 to 5.1 during 10 yr of continuous cropping with maize under inorganic N 

fertilizer regimes. Several other examples of acidification and the decline of soil organic 

matter and exchangeable nutrients in sub-Saharan Africa are given in a review by 

Franzluebbers et al.  (1998). This means that there is need to find alternative organic 

sources which will improve soil pH, SOM and soil physical properties. The incorporation 

of a legume crop at flowering will help to increase N, K and Ca levels in the soil and 

improve SOM (Shoko et al., 2007).   

          Shoko et al. (2007) noted that monoculture practices in cereal crops increase soil 

acidity. Acidification increases the amount of heavy metals in the soil (Tisdale et al., 

1999; Sullivan, 2003). Hydrous oxide metals such as Fe and Al inhibit the availability of 

essential bases (Tisdale et al., 1999). This prevents the plant from taking up essential 

nutrients especially the basic cations. So there is need to use other means to raise the soil 

pH.  Maize monoculture practices call for the excessive use of N fertilizers such as 

ammonium sulphate, ammonium nitrate, urea, ammonium phosphate and ammonium 

hydroxide all of which have some acidifying effects on the soil (Tisdale et al., 1999).  

The use of organic sources of N such as mucuna can help to address problems of acidity. 

The contribution of root biomass from legume rotational crops to the nutrient and 

organic matter of the soil is believed to be important for soil fertility maintenance and 

carbon sequestration, as the below-ground biomass forms a substantial proportion of the 

total biomass in an ecosystem (Juo et al., 1995a). It is estimated that roots may be the 

source of 30 to 60% of the C in the soil organic pool (Heal et al., 1997). Root tissues are 

continuously sloughed off and replaced, and these sloughed-off tissues, along with 

senescent and dead roots, constitute a substantial source of organic matter addition to the 

soil ecosystem. 
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          According to Sanginga et al. (1996) and Carsky et al. (1999) the influence of 

mucuna on soil physical properties and SOM depends on soil type, management and 

environmental conditions. In many cropping systems, soil management to increase SOM, 

improve soil pH and improve Db for crop production has been approached via the use of 

crops as green manure and the return of crop residues of rotational legume crops such as 

mucuna (Becker et al., 1995; Snapp et al., 1998; Whitbread et al., 1999, 2000).  

Soil acidity is one of the most important constraints that must be addressed. It 

does not in itself reduce growth, but it affects the associated chemical environment 

(Alaban et al., 1990). Some nutrients become more soluble at low pH and end up being 

leached down through the soil profile and into the water supply (Chien, 2001). 

Work done by Alaban et al. (1990) in the Philippines from 1970 to 1989 showed a 

significant decrease in organic matter content of the soil from 27 g kg
-1

 to 17 g kg
-1

 due to 

monoculture production systems of cereal crops.  Continuous cereal monoculture 

cropping and removal of crop residues results in the deterioration of the physical, 

chemical and biological properties of the soil (Giller et al., 1994). Under this 

monoculture system the soil will have poor cation exchange capacity (CEC), become 

susceptible to erosion and compaction due to machinery movement and develop poor 

water holding capacity and infiltration rates. The improvement of soil organic matter 

through incorporation of legume crops such as mucuna biomass can help to improve the 

water holding capacity, increase the CEC and improve the availability of nitrogen (N), 

phosphorous (P) and potassium (K) in the soil. 

 According to Hussein (1997) and Brady (1974) Db of sandy soils are higher than 

that of clays. Mucuna biomass if incorporated has the potential to increase SOM. This 

increase in SOM may improve soil aggregation which will result in an increase in pore 

spaces and a reduction in Db (Brady, 1974). 

The major aim of this study was to determine the effects of P application and 

mucuna management options on the dynamics of soil pH, SOM and some physical 

properties of a kaolinitic sandy loam soil in the dry savanna area of Zimbabwe.  This is 

important because mucuna was identified as a potential rotational cropping legume in 

maize production systems in these areas.  
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Materials and methods 

Experimental site 

The experiment was carried out at the Grasslands Research Station in Marondera in 

Zimbabwe. It is situated at approximately 18
o 

11
1 

S latitude and 31
o 

30
1
E longitude at an 

altitude of 1200 m above sea level.  At this site the average annual rainfall is 900 mm per 

annum (20-year mean), falling predominantly in the hot summer months (November to 

March). The winters are relatively cool and dry (Table 4.1) 

(http://www.worldweather.org/130/c00958.htm).  The mean US Weather Bureau class A 

pan evaporation is 1750 mm (Nyakanda, 1997).   

Table 4.1  Rainfall data for the experimental site  for  2007 and 2008 (Grasslands 

Research Station, Marondera,  Climatological Section) and long-term climatological data 

for Marondera (http://www.worldweather.org/130/c00958.htm) 

 

 

 

 

Month 

 

Mean temperature (ºC) 

 

Mean total rainfall (mm) 

 

Mean 

number 

of rain 

days 

 

Daily 

minimum 

 

Daily 

maximum 

 

Long 

term 

 

2007 

 

2008 

Jan 15.3                         23.6   193.4 333.1 352.5 14 

Feb 13.1              24.5              149.1 48 10 12 

Mar 15.8              23.9             90.3 14 74 9 

Apr 12.5              22.8              48.7 0 0 5 

May 11.9               21.0      10.1 0 0 2 

Jun 6.2      18.3 5.4 0 0 1 

Jul 5.3       18.4 3.0 0 0 1 

Aug 6.3            25.0       3.0 0 0 1 

Sep 12.5      25.5 6.8 0 0 1 

Oct 13.5        26.0     40.3 85.5 11 5 

Nov 14.8           25.9     113.1 157.2 137.4 10 

Dec 14.5         24.3      187.7 429.2 282.6 15 

http://www.worldweather.org/130/c00958.htm
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The soils are classified as humic Ferrolsols based on the FAO/UNESCO system 

(FAO UNESCO, 1994) and are equivalent to a Kandiudalfic Eutaudox in the USDA soil 

taxonomy system (Soil Survey Staff, 1991). The soils are predominantly of the kaolinitic 

order with loamy sands of low fertility (Hussein, 1997).  In general these soils are slightly 

acid (pH CaCl  = 5.2) with organic matter content of 0.33%  (Hussein,1997).  Soil analyses 

performed on soil samples taken before the trial started showed a mineral N content of 15 

ppm at the time of sampling as well as a P content of 15.8 ppm, K content of 0.15 meq%, 

Ca content of 0.2 meq% and Mg content of 0.03 meq% (Shoko  et al. unpublished data). 

 

Crop establishment  

The experimental area was ploughed, disced and planted to Mucuna pruriens var. utilis in 

August 2007 (first season crop) and July 2008 (second season crop). Mucuna was planted 

using an inter row spacing of 45 cm and intra row spacing of 10 cm.  Two phosphorus 

treatments (40 and 0 kg P ha
-1

) were used as pre-planting fertilizer.  Weed control was 

done twice using mechanical methods.  Irrigation was applied strategically to supplement 

rainfall when the mucuna crop started to show signs of moisture stress. 

 

Experimental design and treatments applied 

The experimental design was a split plot with 2 P treatments as main plot factors [P0 = 0 

kg P ha
-1

 and P40 = 40 kg P ha
-1

] applied prior to planting a mucuna crop and 4 mucuna 

treatment as sub-plot factors [MF = mucuna incorporated at flowering, MAR = mucuna 

above ground biomass removed at maturity and only roots incorporated, MPR = above 

ground biomass except pods incorporated at maturity and F = Fallow (control)]. Single 

Super Phosphate (SSP) was applied as basal fertilizer. The influence of P application and 

mucuna management options were measured on pH, SOM, Db, particle density (Dp) and 

porosity (f) of the soils. The treatments were replicated 4 times. The plot size 10mx 10 m.  

The nett plot area was 25 m
2
.  The remainder of the plot area was used for other 

destructive sampling measurements. 
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Soil sampling  

Soils were sampled before planting mucuna in 2007 and were also done 30 days after the 

incorporation of mucuna in 2007 and 2008. Soil samples were collected at 0-30 cm depth 

by taking five cores per plot using a 50 mm diameter augur. The five sub samples were 

thoroughly mixed to obtain one composite sample per plot. Subsequently 500 g of soil 

were weighed from each composite sample and taken to the laboratory for analyses. The 

collected soil was analysed for pH, OM, Db, Dp and f.  

 

Determination of SOM 

Soil organic matter was determined by the Loss-on-Ignition method (AOAC, 1990). The 

soil sampled was dried overnight at 80
0
C in an oven. Then 5 g of dry soil was weighed 

and put in a crucible with a known weight. The crucibles were heated in a muffin furnace 

at 450° C for until constant weight for 24 hrs.. The crucibles were reweighed after 

heating and the difference in weight was noted to find the amount lost (organic matter). 

 

Determination of Soil pH 

This was done using the 0.01M CaCl solution method (Okalebo et al., 1993). 

 

Determination of Db and Dp 

This was done following the protocol outlined by Tagwira (1992). 

 

The following models were used for the determination of the physical properties of the 

soil: 

Bulk density (Db)   =   Mass of oven dry soil (g)/ Total volume of the soil (cm
3
)      Eqn 1 

Particle Density (Dp) = Mass of soil solids (g) / Volume of the soil (cm
3
)                Eqn  2 

%Porosity (f) =   1-{ Db / Dp} x 100                                                                         Eqn   3 

 

Statistical analyses 

Statistical analysis of the data was performed using the STATISTICA software, version 

8.02 program (StatSoft, 2004).  Analysis of variance (ANOVA) was conducted to 

determine significance of treatment effects. Means were separated using Bonferroni 
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studentised range for testing least significant differences at the 5% level when ANOVA 

revealed significant (P < 0.05) differences among the treatments.  

 

Results  

In terms of all the parameters measured the data showed the same trends in both seasons 

and although the data of both seasons will be shown only the mean data over two seasons 

will be discussed in the following sections. 

 

SOM 

The significant (P < 0.05) interaction between P treatments and mucuna management 

options in terms of SOM accumulation over two seasons is illustrated in Table 4.2. In the 

P0 treatment the MF treatment accumulated significantly (P < 0.05) more SOM than the 

MPR, F and MAR treatments (0.64, 0.44, 0.26 and 0.26 % respectively).  The MPR 

treatment in turn had significantly higher SOM levels than the MPR and F treatments.  

The P40 treatment showed similar trends to the P0 treatment with the exception of 

the MAR treatment that accumulated significantly (P < 0.05) more SOM than the F 

treatment. Under this P treatment MF had the highest SOM of 0.86 %.  

 

Soil pH 

There were significant interactions (P < 0.05) between the P treatments and mucuna 

management options. The P0 treatment showed on average over two seasons significant 

soil pH increases in all treatments where mucuna was planted compared to the natural 

fallow treatment whereas in the P40 treatment all the mucuna treatments significantly 

reduced the pH compared to the natural fallow treatment (Table 4.3). The increase in pH 

caused by the mucuna treatments in the P0 treatment is however not big enough to 

influence plant growth significantly.  The reduction in soil pH from 5.12 to 4.64 by the 

MPR treatment in the P40 treatment however, may have detrimental effects on plant 

growth. 
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Table 4.2 Percent soil organic matter of the sandy soil under different management options of 

mucuna during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) 

and P40 = 40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above 

ground biomass removed and only roots incorporated, MPR = only pods removed and all the 

other above ground biomass was incorporated and F= Fallow (control). Figures followed by the 

same unbold letter in a season and those followed by the same bold letter for the 2 season means 

are not significantly different at P = 0.05.  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 0.26      

F
 

0.26a 0.26a 0.26a 0.27a 0.26a 0.26a 

MF
 

0.63c 0.86e 0.64d 0.90f 0.64c 0.88e 

MAR
 

0.25a 0.42b 0.27a 0.48c 0.26a 0.45b 

MPR 0.43b 0.77d 0.45b 0.82e 0.44b 0.80d 

 

Table 4.3 Soil pH (Cacl) levels of the sandy soil under different management options of mucuna 

during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) and P40 = 

40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above ground 

biomass removed and only roots incorporated, MPR = only pods removed and all the other above 

ground biomass was incorporated and F= Fallow (control). Figures followed by the same unbold 

letter in a season and those followed by the same bold letter for the 2 season means are not 

significantly different at P = 0.05.  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 5.12      

F
 

5.12c 5.12c 5.13e 5.12d 5.13d 5.12d 

MF
 

5.31e 5.22d 5.41g 4.92c 5.36f 5.07c 

MAR
 

5.22d 4.86b 5.23f 4.85b 5.23e 4.86b 

MPR 5.22d 4.60a 5.21e 4.64a 5.22d 4.62a 
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Db and Dp 

There were significant interactions (P < 0.05) between P treatments and mucuna 

treatments in terms of Db and Dp. At both P levels the mucuna treatments significantly (P 

< 0.05) reduced Db compared to the natural fallow treatment.  At both P levels the MAR 

treatment had the least effect on the Db, although it was still significantly lower than the 

F treatment (Table 4.4).  The same trends were evident for the Dp parameter (Table 4. 5) 

but Dp values were higher than the Db values due to the organic material in the soil.  

 

Table 4.4 Bulk density (Mgm-3) of the sandy soil under different management options of mucuna 

during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) and P40 = 

40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above ground 

biomass removed and only roots incorporated, MPR = only pods removed and all the other above 

ground biomass was incorporated and F= Fallow (control). Figures followed by the same unbold 

letter in a season and those followed by the same bold letter for the 2 season means are not 

significantly different at P = 0.05.  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 1.5      

F
 

1.5d 1.5d 1.5d 1.5c 1.5d 1.5d 

MF
 

1.3b 1.2a 1.2a 1.3b 1.2a 1.3b 

MAR
 

1.5d 1.4c 1.4c 1.4c 1.4c 1.4c 

MPR 1.3b 1.2a 1.3b 1.3b      1.3b 1.3b 

 

% Porosity (f)  

The significant (P < 0.05) interaction between P treatments and mucuna management 

options in terms of porosity dynamics over two seasons is illustrated in Table 4.6. The P0 

treatment showed significant differences (P < 0.05) between all the mucuna management 

options. The MF management option at P0 treatment improved the porosity of the sandy 

soils by 6.4%, 13.2 % and 16.8 % compared to the MPR, MAR and F management 

options respectively (Table 4.6).  The 51.4% porosity of the soil in the MF management 

option indicates that the soil is sufficiently porous.  
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Table 4.5 Particle density (Mgm-3) of the sandy soil under different management options of 

mucuna during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) 

and P40 = 40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above 

ground biomass removed and only roots incorporated, MPR = only pods removed and all the 

other above ground biomass was incorporated and F= Fallow (control). Figures followed by the 

same unbold letter in a season and those followed by the same bold letter for the 2 season means 

are not significantly different at P = 0.05.  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 2.67      

F
 

2.67b 2.66b 2.66b 2.64b 2.67b 2.65b 

MF
 

2.53a 2.52a 2.52a 2.51a 2.52a 2.51a 

MAR
 

2.66b 2.67b 2.64b 2.66b 2.65b 2.66b 

MPR 2.53a 2.53a 2.51a 2.51a 2.52a 2.52a 

 

The P40 treatment also showed significant differences (P < 0.05) between the MF, 

F and MPR treatments.  However there were no significant differences (P > 0.05) 

between the F and MAR treatments in the P40 treatment. The MF management option 

improved the porosity of the soil by 19.1 % and 3.2% compared to the F and MAR 

treatments at P40 treatment.  At the P40 treatment the MF and MPR management option 

values of 52.2 % and 50.6 % respectively showed that the soils are sufficiently porous for 

crop growth. 
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Table 4.6 Porosity (%)of the sandy soil under different management options of mucuna during 

the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) and P40 = 40 kg P 

ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above ground biomass 

removed and only roots incorporated, MPR = only pods removed and all the other above ground 

biomass was incorporated and F= Fallow (control). Figures followed by the same unbold letter in 

a season and those followed by the same bold letter for the 2 season means are not significantly 

different at P = 0.05.  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 42      

F
 

42a 43a 43a 43.8a 44a 43.4a 

MF
 

50.2d 52.4e 52.4d 50.2c 51.4d 52.2d 

MAR
 

43.8b 43.8b 47b 43.8a 45.4b 43.8a 

MPR 48.6c 53e 48.2b 48.2b 48.3c 50.6d 

 

Discussion 

The MF management option has the potential to increase soil organic matter more than 

the MAR, MPR and F management options. The MPR management option can improve 

the SOM content at both P levels. The incorporation of above ground biomass of mucuna 

as green manure at flowering stage (MF) provided the soil microbes with plant material 

for decomposition. This decomposition will always add SOM to the soil (Shoko et al., 

2007).  The optimum organic matter content of sandy soils in Zimbabwe is at least 1.5 % 

(Tagwira, 1992).  

 Therefore the MF management option at the P0 and P40 treatments and the MPR 

management option at the P40 treatment will boost the SOM for the subsequent maize 

crop to the required levels for the small holder farmer on a sandy soil.  Work done by 

Shoko et al. (2007) and Wang et al. (2009) on  other grain legumes such as  soyabeans 

and cowpea support the findings in this study that mucuna has the potential to add more 

SOM when ploughed in at green manuring stage than after the pods were harvested 

(removed) at maturity. Higher SOM levels will improve the CEC, fertility, water holding 

capacity, microbial biomass, porosity and aeration of sandy soils (Kang, 1993).  This will 

increase the final yield of the subsequent maize crop. 
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 Soil pH directly affects the growth and life of plants because it affects the 

availability of all the plant nutrients. Most of the essential plant nutrients are readily 

available in between pH 5.2 and 8.8 (Hussein, 1997). Nitrogen, for example has its 

greatest solubility between pH 5.2 and 6.8. The pH levels of the MF and MPR mucuna 

management options at P0 treatment are optimal for the availability of N, P, K, Ca, Mg 

and S (Hussein, 1997).  The pH levels will neutralize toxic oxides like Al, Fe and H. The 

subsequent maize crop can do well and produce high yields on these treatments without 

any liming at all. However some liming of about 1 300 kg CaCo3 ha
-1

 may be required to 

raise the pH for the MAR and F management options under P0 treatment if the farmers 

are to realize good maize yields. The above lime quantity is enough to raise the soil pH 

with 0.5 units in sandy soils in Zimbabwe (Tagwira, 1992). 

 However at the P40 treatment the MF, MAR and MPR management options 

increased soil acidity. Farmers will need to lime the soils. The decrease in pH could be 

attributed to an increase in carbonic acid and other acids responsible for acidulation of P 

(Tisdale et al., 1999; Chien, 2001).  Increased crop growth will result in a higher Ca 

uptake and the microbial decomposition of SOM added to the soil will also have an 

acidifying effect. 

A  Db of soil which is close to 1.2 Mg m
-3

 shows a crumby structured soil that can 

sustain plant growth and development (Hussein, 1997) and can increase the yield of the 

subsequent maize crop. The MF and MPR management options have lower Db of 1.2 and 

1.3 Mg m
-3

 respectively compared to the F and MAR management options at the P0 

treatment and a Db of 1.3 Mg m
-3

 in the P40 treatment. This Db ensures good water 

holding capacity, aeration and porosity. This can be beneficial to the small holder farmer. 

The reduced Db can be attributed to the large sums of organic matter which the MF and 

MPR management options added to the sandy soils.  

Soil with a porosity of about 50% is good for crop production. Such a soil is well 

aerated, well drained and supports microbial activity (Fageria et al., 1991). The MF 

management option ensured that such porosity levels (> 50 %) were achieved in both P 

treatments. The improved porosity can be attributed to increased SOM as a result of the 

incorporation of the mucuna biomass at flowering. This management option may help the 

smallholder farmer to realize good yields from the subsequent maize crop. The MF 



 56  

management option can help to reduce losses of N through denitrification and 

volatilization due to improved drainage and water holding capacity of the soil. Improved 

water holding capacity will also help to mitigate against short duration droughts. Results 

from the F and MAR management option treatments show that the smallholder farmers 

may need to supplement with kraal manure to improve the porosity of the sandy soil. 

 

Conclusion 

The MF management options resulted in the highest SOM, Db, DP and f at the P40 

treatment. This shows the potential of mucuna as an ameliorant to soil physical properties 

when incorporated at flowering stage. However in this management combination it may 

be necessary to lime the soil to increase its pH to required levels for maize production. At 

the P0 treatment the MF and MPR management options had the most acceptable soil pH, 

negating the necessity to apply lime, but this treatment combination resulted in less 

optimal SOM, Db, Dp and f levels. The response of the maize crop to the better SOM, 

Db, Dp and f levels at the MF and P40 treatment will determine whether it will be 

beneficial to add 40 kg of P to the mucuna crop. The cost of the P fertilizers and the 

subsequent liming may be nullified by the higher yields from and/or lower N 

requirements of the subsequent maize crop.  
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Chapter 5 

The effects of P and mucuna (Mucuna pruriens) management options on the 

chemical characterisation of a depleted sandy loam soil in Zimbabwe 

 

Abstract 

Low soil fertility due to monoculture crop production systems is recognized as one of the 

major causes for declining per capita food production in sub-Saharan Africa. The major 

objective of this research was to investigate the effect of two P levels and four mucuna 

management options on soil chemical properties on a depleted kaolinitic sandy soil in 

Zimbabwe. The 2 P treatments were P0 = 0 kg P ha
-1

 and P40 = 40 kg P ha
-1

 and the 4 

mucuna treatments were MF=mucuna incorporated at flowering, MAR= mucuna above 

ground biomass removed at maturity and only roots incorporated, MPR = above ground 

biomass except pods incorporated at maturity and F = Fallow (control). The following 

soil nutrients were investigated; Nitrogen, Phosphorus, Potassium, Calcium, Magnesium 

and Zinc. The MF management option and P40 treatment resulted in the highest N, P, K, 

Ca and Mg levels. However the P40 and mucuna treatments had significantly lower Zn 

levels than in the P0 and mucuna treatment combinations.  

Keywords: exchangeable bases, major nutrients, mucuna, Zn  
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Introduction 

Low soil fertility due to monoculture crop production systems is recognized as one of the 

major biophysical causes for declining per capita food production in sub-Saharan Africa 

(Sanchez et al., 1997). Nutrient balance studies in this region have shown that on average 

22 kg N, 2.5 kg P, and 15 kg K per hectare are lost annually and losses can be as high as 

112 kg N, 3 kg P, and 70 kg K per hectare in the intensively cultivated highlands of 

Africa (Stoorvogel et al., 1993;Van den Bosch et al., 1998). These losses are much 

higher than the estimated inorganic fertilizer use in Africa of 5 to 10 kg per hectare 

(FAO, 1994; Heisey & Mwangi, 1996). This emphasises the need for soil fertility 

replenishment through the use of organic sources such as herbaceous legumes like 

mucuna.  

Most smallholder farmers in Zimbabwe practice monoculture crop production 

systems. Maize is one of the crops which are commonly used in these systems. 

Monoculture can lead to depletion of inherent soil fertility (Murwira & Kirchmann, 

1993). This results in a serious threat to sustainability of maize production in Zimbabwe.   

The use of legume crops such mucuna has the potential to improve the chemical 

and physical characteristics of inherently poor soils such as sands (Palm, 1995). The 

improvement of the soil structure helps to reduce the adverse effects of soil erosion and 

decreasing cation exchange capacity (Murwira & Kirchmann, 1993). 

Application of organic materials  such as herbaceous legumes like mucuna may 

increase crop-available N, P, K, Ca and Zn either directly by the process of 

decomposition of the biomass or indirectly by the production of organic acids (products 

of decomposition) that chelate Fe or Al and thus improving the CEC of the soil 

(Nziguheba et al., 1998). 

Palm (1995) and Jama et al. (1997) showed that whereas mucuna contains 

sufficient N in 2 or 3 t of leafy material to match the requirement of a 2 t crop of maize, it 

cannot meet the P requirements and must be supplemented by inorganic P in areas where 

P is deficient. Judicious application of inorganic fertilizers is recognized as an 

indispensable means of overcoming soil fertility decline and decreasing food production 

per capita (Mokwunye & Hammond, 1992; Vlek, 1993; Nandwa &  Bekunda, 1998). 
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It is estimated that N  fixation ranging from 0 to 250 kg N ha
-1

 with a median of 

110 kg N ha
-1

 can be achieved from annual legumes with growth periods of 100 to 150 d 

(Giller & Wilson, 1991; Sanginga et al., 1996; Ibewiro et al., 2000). The contributions of 

legume residues to soil improvement and crop production depend largely on the amount 

of biomass produced (Sanginga et al., 1996), chemical composition (Palm & Sanchez, 

1991; Tian et al., 1992; Constantinides & Fowness, 1994), and method of application 

(Mafongoya  &  Nair, 1997). The decomposition and nutrient release by these residues 

are also affected by both climatic and edaphic factors, including the biological activity 

and availability of nutrients in the soil (Myers et al., 1994; Mugendi & Nair, 1997).  

It is estimated that nodulated legume roots contain from 15 kg to 50 kg N ha
-1

 

(Chapman & Myers, 1987; Bergersen et al., 1989; Unkovich et al., 1994; Ibewiro et al., 

1998; Tian & Kang, 1998). This amount of root N represents a minimum 15% of total 

plant N (Peoples et al., 1995). 

The major objective of this study was to assess the role played by mucuna 

management options on the chemical characterisation of the soil.  This is important 

because mucuna was identified as a potential rotational cropping legume in maize 

production systems in these areas. 

 

Materials and methods 

Experimental site 

The experiment was carried out at the Grasslands Research Station in Marondera in 

Zimbabwe. It is situated at approximately 18
o 

11
1
S latitude and 31

o 
30

1
E longitude at an 

altitude of 1200 m above sea level.  At this site the average annual rainfall is 900 mm per 

annum (20-year mean), falling predominantly in the hot summer months (November to 

March). The winters are relatively cool and dry (Table 5.1) 

(http://www.worldweather.org/130/c00958.htm).  The mean US Weather Bureau class A 

pan evaporation is 1750 mm (Nyakanda, 1997).   
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Table 5.1   Rainfall data for the experimental site  for  2007 and 2008 (Grasslands Research 

Station, Marondera,  Climatological Section) and long-term climatological data for Marondera 

(http://www.worldweather.org/130/c00958.htm) 

 

 

 

 

Month 

 

Mean temperature (ºC) 

 

Mean total rainfall (mm) 

 

Mean 

number 

of rain 

days 

 

Daily 

minimum 

 

Daily 

maximum 

 

Long 

term 

 

2007 

 

2008 

Jan 15.3                         23.6   193.4 333.1 352.5 14 

Feb 13.1              24.5              149.1 48 10 12 

Mar 15.8              23.9             90.3 14 74 9 

Apr 12.5              22.8              48.7 0 0 5 

May 11.9               21.0      10.1 0 0 2 

Jun 6.2      18.3 5.4 0 0 1 

Jul 5.3       18.4 3.0 0 0 1 

Aug 6.3            25.0       3.0 0 0 1 

Sep 12.5      25.5 6.8 0 0 1 

Oct 13.5        26.0     40.3 85.5 11 5 

Nov 14.8           25.9     113.1 157.2 137.4 10 

Dec 14.5         24.3      187.7 429.2 282.6 15 

 

The soils are classified as humic Ferrolsols based on the FAO/UNESCO system 

(FAO UNESCO, 1994) and are equivalent to a Kandiudalfic Eutaudox in the USDA soil 

taxonomy system (Soil Survey Staff, 1994).  The soils are predominantly of the kaolinitic 

order with loamy sands of low fertility (Hussein, 1997).  In general these soils are slightly 

acid (pH CaCl  = 5.2) with organic matter content of 0.33%  (Hussein,1997).  Soil analyses 

performed on soil samples taken before the trial started showed a mineral N content of 15 

ppm at the time of sampling as well as a P content of 15.8 ppm, K content of 0.15 meq%, 

Ca content of 0.2 meq% and Mg content of 0.03 meq% (Shoko, unpublished data). 

 

http://www.worldweather.org/130/c00958.htm
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Crop establishment  

The experimental area was ploughed, disced and planted to Mucuna pruriens var. utilis in 

August 2007 (first season crop) and July 2008 (second season crop). Mucuna was planted 

using an inter-row spacing of 45 cm and intra row spacing of 10 cm.  Two phosphorus 

treatments (40 and 0 kg P ha
-1

) were used as pre-planting fertilizer.  Weed control was 

done twice using mechanical methods.  Irrigation was applied strategically to supplement 

rainfall when the mucuna crop started to show signs of moisture stress. 

 

Experimental design and treatments applied 

The experimental design was a split plot with 2 P treatments as main plot factors [P0 = 0 

kg P ha
-1

 and P40 = 40 kg P ha
-1

] applied prior to planting a mucuna crop and 4 mucuna 

treatments as sub-plot factors [MF=mucuna incorporated at flowering, MAR= mucuna 

above ground removed at maturity and only roots incorporated, MPR = above ground 

biomass except pods incorporated at maturity and F = Fallow (control)]. Single Super 

Phosphate (SSP) was applied as basal fertilizer. The effect of P and mucuna management 

options was measured on N, P, K, Ca, Mg and Zn content of the soils. The treatments 

were replicated 4 times.  

 

Soil sampling  

Soils were sampled before the planting of mucuna in 2007 and were also done two 

months after the incorporation of mucuna in 2007 and 2008, shortly before planting of 

the subsequent maize crop. Soil samples were collected at 0-30 cm depth by taking five 

cores per plot using a 50 mm diameter augur. The five sub samples were thoroughly 

mixed to obtain one composite sample per plot. Subsequently 500 g of soil were weighed 

from each composite sample and taken to the laboratory for analyses. The collected soil 

was analysed for N, P, K, Ca, Mg and Zn. The analyses were done using the procedures 

described by AOAC (1990). 

 

Statistical analyses 

Statistical analysis of the data was performed using the STATISTICA software, version 

8.02 program (StatSoft, 2004).  Analysis of variance (ANOVA) was conducted to 
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determine significance of treatment effects. Means were separated using Bonferroni 

studentised range for testing least significant differences at the 5% level when ANOVA 

revealed significant (P < 0.05) differences among the treatments.  

 

Results  

Since the data largely showed the same trends in 2007 and 2008, only the results of the 

analyses of the mean data over the two seasons will be discussed in the following 

sections. However the data for the separate seasons is also given in Tables 2 to 6. 

 

Mineral Nitrogen (N) 

The significant interactions (P < 0.05) between mucuna management options and P 

treatments on mineral N content of the soil over two seasons are illustrated in Table 5.2. 

The MF and MPR management options had significantly (P < 0.05) higher mineral N 

contents in the soil as result of the P40 treatment but there were no significant differences 

in the mineral N content of soil as a result of the P0 and P40 treatments in the F and 

MAR management options. The MF management option resulted in a 55 % (P0) to 61.9 

% (P40) increase in the mineral N content of the soil when compared to the F and MPR 

management options and 13.4 % (P40) to 15.1% (P0) more N than the MPR management 

option.  

 

Phosphorus (P) 

There were no significant interactions between P and mucuna management options. 

However there were significant differences (P < 0.05) in the phosphorus content (ppm) of 

the 0-30 cm soil profile between the P0 (18.21 ppm P) and P40 (19.9 ppm P) treatments.  

The MF management option resulted in the highest P levels in the soil followed by the 

MPR management option (Table 5.3).  There were no significant differences in the P 

content of the soil between the F and MAR mucuna management options.  
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Table 5.2 Mineral nitrogen (ppm) of the sandy soil under different management options of 

mucuna during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) 

and P40 = 40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above 

ground biomass removed and only roots incorporated, MPR = only pods removed and all the 

other above ground biomass was incorporated and F= Fallow (control). Values followed by the 

same unbold letter in a season and those followed by the same bold letter for the 2 season means 

are not significantly different at P = 0.05  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 15.03      

F 15a 15a 15.01a 15.01a 15a 15a 

MF 23.25c 24.25c 23.28e 24.32f 23.26d 24.29e 

MAR 15.9a 15a 15.8b 15.01a 15.8a 15a 

MPR 20.25b 21b 17c 21.10d 20.21b 21.42c 

 

Potassium (K) 

Significant interactions (P < 0.05) between mucuna management options and the P 

treatments on exchangeable K content of the soil over two seasons are shown in Table 

5.4.  In the case of the MF and MPR management options the P40 treatment resulted in 

significantly (P < 0.05) higher K levels in the soil but this was not true for the F 

management option. The MF management option resulted in significantly (P < 0.05) 

higher K levels compared to the F, MAR and MPR management options regardless of the 

P treatment. The MF management option in the P0 treatment increased K levels with 

620% and 40% compared to the F and MAR management options respectively.  A similar 

trend was observed in the P40 treatment. 
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Table 5.3 Phosphorus (ppm) of the sandy soil under different management options of 

mucuna during the 2007 and 2008 seasons after two P treatments (P0 = No P applied 

(control) and P40 = 40 kg P ha
-1

 applied). MF = mucuna incorporated at flowering, MAR 

= Mucuna above ground biomass removed and only roots incorporated, MPR = only pods 

removed and all the other above ground biomass was incorporated and F= Fallow 

(control). Values followed by the same unbold letter in a season and those followed by 

the same bold letter for the 2 season means are not significantly different at P = 0.05 

 

                                              2007 season                    2008 

season 

 

2 seasons mean 

Mean for 

mucuna 2 

seasons 

mean 
Treatment                          PO P40 P0 P40 P0 P40 

Before planting mucuna 16       

F 17.90b 17.75b 18b 19b 17.95a 18.35a 18.15a 

MF 20.50c 22.50d 20.15c 23.75f 20.3b 23.1c 21.7c 

MPR 16.25a 18b 18.9b 18.56b 16.58a 17.5a 17.04a 

MAR 18b 20c 18b 21d 18a 20.5b 19.25b 

P treatments (mean)     18.21a 19.9b  

 

Calcium (Ca) 

There were significant interactions (P < 0.05) between mucuna management options and 

P treatments on exchangeable Ca content of the soil over two seasons (Table 5.5). As in 

the case of N and K, the F and MAR management options had similar Ca contents with 

the P0 and P40 treatments. The P40 treatment however resulted in significantly (P < 

0.05) higher exchangeable Ca content compared to the P0 treatment in the MF and MPR 

management options.  The MF management option increased the exchangeable Ca 

content with 5% (P40) - 41% (P0) and 1370 % (P0) to 1380 % (P40) but decreased with 

65.2% (P0) to 64% (P40) compared to the MPR, F and MAR management options 

respectively.  
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Table 5.4 Potassium (meq %) of the sandy soil under different management options of mucuna 

during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) and P40 = 

40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above ground 

biomass removed and only roots incorporated, MPR = only pods removed and all the other above 

ground biomass was incorporated and F= Fallow (control). Values followed by the same unbold 

letter in a season and those followed by the same bold letter for the 2 season means are not 

significantly different at P = 0.05 

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 0.15      

F 0.15a 0.15a 0.15a 0.15a 0.15a 0.15a 

MF 1.09e 1.17f 1.07d 1.15e 1.08d 1.16f 

MAR 0.82b 0.85b 0.80b 0.83b 0.81b 0.83b 

MPR 0.99c 1.04d 1.00c 1.04d 1.00c 1.05d 

 

Table 5.5 Calcium (meq %) of the sandy soil under different management options of mucuna 

during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) and P40 = 

40 kg P ha-1 applied). MF = mucuna incorporated at flowering, MAR = Mucuna above ground 

biomass removed and only roots incorporated, MPR = only pods removed and all the other above 

ground biomass was incorporated and F= Fallow (control). Values followed by the same unbold 

letter in a season and those followed by the same bold letter for the 2 season means are not 

significantly different at P = 0.05  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 0.19      

F 0.19a 0.20a 0.20a 0.22a 0.20a 0.21a 

MF 2.94f 3.10g 2.95d 3.12e 2.94d 3.11e 

MAR 1.78b 1.89c 1.82b 1.92b 1.80b 1.90b 

MPR 2.08d 2.96e 2.08c 2.94d 2.08c 2.95d 
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Magnesium (Mg) 

No significant (P > 0.05) interactions between P treatment and mucuna management 

options could be observed.  The P treatments did not significantly (P > 0.05) influence 

exchangeable Mg (Table 5.6).  However the MF management option resulted in 

significantly (P < 0.05) higher Mg levels than the F, MAR and MPR management 

options.  The MPR and MAR management options also resulted in a significantly (P < 

0.05) higher Mg content than the F management option but there were no significant 

differences between the MPR and MAR management options. Soils from the MF 

management option had 60 % and 42.3 % more Mg than the F (control) and MPR 

management options respectively. 

 

Table 5.6 Magnesium content (meq %) of a sandy soil under different management options of 

mucuna during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) 

and P40 = 40 kg P ha-1 applied) (MF = mucuna incorporated at flowering, MAR = Mucuna above 

ground biomass removed and only roots incorporated, MPR = only pods removed and all the 

other above ground biomass was incorporated and F= Fallow (control)). Values followed by the 

same unbold letter in a season and those followed by the same bold letter for the 2 season means 

are not significantly different at P = 0.05.  Values followed by the same italicized letter are not 

significantly different at P = 0.05 

 

                                              2007 season                    2008 

season 

 

2 seasons mean 

Mucuna 

management 

option (2 

seasons 

mean) 
Treatment                          PO P40 P0 P40 P0 P40 

Before planting mucuna 0.03       

F 0.03a 0.03a 0.04a 0.03a 0.03a 0.04a 0.04a 

MF 0.27d 0.28d 0.26c 0.29c 0.27c 0.28c 0.28c 

MPR 0.16c 0.16c 0.16b 0.16b 0.16b 0.16b 0.16b 

MAR 0.13b 0.17c 0.14b 0.17b 0.14b 0.17b 0.16b 

P  treatments (mean)     0.15b 0.13a  
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Zinc (Zn) 

Significant interactions (P < 0.05) between mucuna management options and the P 

treatments on Zn content of the soil over two seasons are shown in Table 5.7.  In contrast 

to the other elements discussed the P0 treatment resulted in significantly (P < 0.05) 

higher Zn levels where mucuna was planted. No significant differences in Zn levels 

between the P0 and P40 treatments were noted in the F management option. Again the 

MF management option resulted in the highest Mg levels followed by the MPR and MAR 

management options.  The two seasons‘ average in the P0 treatment shows that the MF 

management option had 43 % and 119.9 % more Zn than the MPR and F management 

options respectively.  

 

Table 5.7 Zinc content (ppm) of a sandy soil under different management options of mucuna 

during the 2007 and 2008 seasons after two P treatments (P0 = No P applied (control) and P40 = 

40 kg P ha-1 applied)  (MF = mucuna incorporated at flowering, MAR = Mucuna above ground 

biomass removed and only roots incorporated, MPR = only pods removed and all the other above 

ground biomass was incorporated and F= Fallow (control)). Values followed by the same unbold 

letter in a season and those followed by the same bold letter for the 2 season means are not 

significantly different at P = 0.05  

 2007 season 2008 season  2 seasons mean 

Treatment P0 P40 P0 P40 P0 P40 

Before planting mucuna 4.10      

F 4.13a 4.09a 4.12a 4.10a 4.12a 4.10a 

MF 9.07f 8.79e 9.06e 8.82d 9.06f 8.80e 

MAR 5.06b 4.10a 5.08b 4.12a 5.07b 4.11a 

MPR 6.35d 6.20c 6.32c 6.18c 6.33d 6.19c 

 

Discussion 

Mucuna has the potential to improve soil chemical characteristics for the small holder 

resource-poor-farmers in Sub Saharan Africa. The results of the study indicated that 

smallholder farmers can save on N fertilizer if they incorporate a mucuna crop at 

flowering (MF) compared to the traditional fallow system (F). The fallow (control) 

management option resulted in a soil N content of 15ppm.  Such a soil N level will need 
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about 100 kg N ha
-1

 to allow farmers to harvest about  3-4 t ha
-1

 on sandy textured soils 

(Tagwira, 1992; Akinnifesi et al., 2006).  However the application of the MF 

management option under the P40 treatment increased N content of the soil to 24.3ppm.  

Such a soil will need only about 60 kg N ha
-1 

for farmers to realize a yield of 3-4 t ha
-1

 

(Pal, 1991; Tagwira, 1992; Akinnifesi et al., 2006).  However if farmers remove pods 

from the mucuna crop and incorporate the rest of the above ground biomass the soil will 

need about 80 kg N ha
-1

 to realize the same yield.  The P0 and MF treatment combination 

will need a supplement of about 70 kg N ha
-1

. 

The soils in this study, similar to many other soils in sub Saharan Africa, may not 

sustain satisfactory maize production because of serious P deficiencies (Pal, 1991; 

Akinnifesi et al., 2006). Similar to the recommendations by Tagwira (1992), Hussein 

(1997) and Nyakanda (1997) the results of this study showed that P in the soil was 

inadequate at all P and mucuna management treatment combinations.  Phosphorus levels 

should be > 30 ppm for it to be adequate for a maize crop (Tagwira, 1992). The MAR and 

MPR management options  in the P0 treatment will require a supplementation of 50 kg P 

ha
-1

 to meet the maize P requirements in Zimbabwe as stipulated by Tagwira (1992).  

However if farmers use the MF management option they only need to supplement with 

40 kg P ha
-1

 to meet the maize P requirements in Zimbabwe.  The P40 and MF treatment 

combination will improve soil P and farmers will need to supplement with about 35 kg P 

ha
-1

 to meet the maize P requirements in Zimbabwe compared to the MPR and P40 

treatment combination which will need about 40 kg ha
-1

. 

The level of exchangeable bases in this study indicated that they have been 

improved by the mucuna management options. The application of the P40 and the MF 

treatment combinations may result in farmers needing to supply about 20 kg K ha
-1

 to 

meet the K requirements for sandy soils.  However the application of P40 and other 

mucuna treatments may require of farmers to supplement with 30 kg K ha
-1

.  The fallow 

(F) management option will require supplementing with 40 kg K ha
-1

 (Tagwira, 1992; 

Tisdale et al., 1999).  The availability of other exchangeable bases (Ca & Mg) can be 

enhanced by soil liming with Dolomite or quicklime at 800 kg ha
-1

 to raise the pH of the 

soil to ensure availability of these nutrients to maize crops.  The optimum Ca and Mg 

requirements for maize production are less than 1.5 and 0.2 (meq %) respectively 
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(Tisdale et al., 1999). The MF and MPR management options seem to have supplied 

adequate Ca for the subsequent maize crop. This could be attributed to the incorporation 

of Ca in the biomass of mucuna at flowering and maturity. For Mg it appears as if the MF 

management option provided adequate Mg. Since Mg is an essential component of the 

chlorophyll pyrole (Foy, 1992; Brady & Weil, 1996) this could mean that the mucuna 

which was incorporated whilst green in the MF management option had sufficient Mg in 

its foliage to satisfy the Mg requirements of a subsequent maize crop.   

The application of mucuna management options under the P40 treatment showed 

lower Zn content than under the P0 treatment. This could be attributed to a more rigorous 

rooting system due to P application and hence a more effective removal of Zn from the 

soil. The acidifying effect of P on soil pH could also contribute to the low available Zn 

levels (Tisdale et al., 1999).  This will lead to the extraction of inherent Zn in the soil 

(Brady & Weil, 1996; Tisdale, et.al. 1999).  Maize requires 21 to 70 ppm of Zn in 

Zimbabwe (Tagwira, 1992). The results of this study indicated that P0 and MF treatment 

combination will supply about 50 % of the optimum Zn requirements of a maize crop. 

However about 75 % of Zn requirements needs to be supplemented when using other 

mucuna management options with either the P0 or P40 treatments. 

 

Conclusion 

Phosphorus treatments and mucuna management options showed some great impact on 

the availability of essential nutrients. Generally mucuna incorporated at flowering (MF) 

at the P40 treatment will result in a saving on N, P and K fertilizers.  However Zn levels 

are somehow negatively affected by mucuna management options under the P40 

treatment.  The study also emphasized the need for farmers to supplement with inorganic 

fertilizers to realize better yields even when mucuna is used as a rotational crop.  Mucuna 

treatments however reduced the inorganic fertilizer requirements. 
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Chapter 6  

 

The effect of phosphorus, mucuna management options and nitrogen on 

the biomass, leaf area index and foliar nutrient content of maize on a 

depleted sandy loam soil in Zimbabwe 

 

 

Abstract 

Sufficient nutrient levels in leaves of crops have substantial effects on plant growth, 

development
 
and grain yield, as it is a fundamental constituent of many

 
leaf cell 

components. In this study; the effect of phosphorus, mucuna management options and 

nitrogen on the biomass, leaf area index (LAI) and leaf nutrient content of maize on a 

depleted sandy loam soil in Zimbabwe was investigated. The experimental design was a 

split- split- plot with two P rates ( P0 and P40) applied to the mucuna crop, four mucuna 

management options [1) fallow (F) (no mucuna planted = control), 2) mucuna ploughed-

in at flowering (MF), 3) all mucuna above ground biomass removed at maturity and only 

roots were ploughed-in (MAR) and 4) mucuna pods removed and the residues ploughed-

in (MPR)] and four N treatments [N0 = 0 kg N ha
-1

, N40 = 40 kg N ha
-1

, N80 = 80 kg N 

ha
-1

 and N120 = 120 kg N ha
-1

] applied to a subsequent maize crop. Data was collected at 

5, 6, 7 and 8 weeks after emergence (WAE). Biomass, LAI and foliar nitrogen, 

phosphorus, potassium, calcium and magnesium in the subsequent maize crop were 

determined.  A significant three-way interaction (P<0.05) between mucuna management 

options, nitrogen rates and time was observed in terms of biomass production and all 

nutrients in the leaves of the subsequent maize crop. Significant three-way interactions 

between phosphorus rates, nitrogen rates and time as well as a significant 2-way 

interaction between phosphorus and time were observed in terms of biomass and nitrogen 

respectively in the foliage of the subsequent maize crop. However there was no 

interaction of the four factors for LAI development, but significant differences were 

noted between times of sampling, nitrogen rates and mucuna management options as 

independent factors. Significant differences were also noted between the P0 and P40 
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treatments for phosphorus, potassium, calcium and magnesium levels in the leaves of 

maize. Generally the MF and MPR management option had significantly higher nutrient 

contents in the leaves of maize than the F and MAR management options. The F and 

MAR did not differ significantly in terms of most parameters.  

 

Keywords: biomass, fertilizers, foliar nutrients, leaf area index, maize, mucuna options  

Introduction 

The declining soil fertility resulting from monoculture crop production systems with little 

or no fertilizer application, has been cited as the most important constraint threatening 

food production on smallholder farms in sub-Saharan Africa (Adesina et al., 2000). 

Previous studies carried out on the use of cover crops showed that inclusion of mucuna 

(Mucuna pruriens) as a fallow crop supplemented with low fertilizer rates, could improve 

maize growth. Work done by Smyth et al. (1991) and Oikeh et al. (1998) on mucuna- 

maize production systems showed that there was lower biomass of maize when mucuna 

roots were incorporated into the soil compared to whole biomass incorporation and 

attributed this reduction to the removal of the N in above-ground biomass. These positive 

effects of mucuna biomass incorporation on maize biomass among other growth 

parameters were attributed to improved soil properties such as soil bulk density, soil 

moisture retention, cation exchange capacity (CEC), organic C and soil N (Tisdale et al., 

1999). 

It is well known that nutrient deficiencies in most cultivated crops during the growth 

season causes nutrient imbalances, leading to reduced yield. Among the essential 

macronutrients; nitrogen (N) , calcium (Ca) and magnesium (Mg) are described as the 

most important elements for vegetative growth, flowering and fruit bearing of crops 

(Mengel & Kirkby, 1987; Shaahan et al., 1999). One of the results of N, Ca and Mg 

deficiency is lack of chlorophyll formation and a low chlorophyll density in plant leaves 

(Mengel & Kirkby, 1987). Sufficient nutrient level is a fundamental constituent of many
 

leaf cell components, particularly those associated with the
 
photosynthetic apparatus, 

including carboxylating enzymes and
 
proteins of membranes (Pandey et al., 2000). It is 

important to always monitor the K critical levels in the maize crop because its limiting 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC3-3Y9H83W-J&_user=613892&_coverDate=12%2F23%2F1999&_rdoc=1&_fmt=full&_orig=article&_cdi=5159&_docanchor=&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=f3c59d9014f163b68829691d95af5bc1#b1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC3-3Y9H83W-J&_user=613892&_coverDate=12%2F23%2F1999&_rdoc=1&_fmt=full&_orig=article&_cdi=5159&_docanchor=&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=f3c59d9014f163b68829691d95af5bc1#b1
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effect also affects the performance or availability of other basic cations (Brady & Weil, 

1996).  

Phosphorus is an essential element for root development and its deficiency can render 

the crop barren as the roots will not be able to absorb sufficient essential nutrients due to 

a poorly developed rooting system (Tisdale et al., 1999). It is also important for energy 

producing reactions in cells, such as the release of energy when adenosine triphosphate 

(ATP) is converted to adenosine di-phosphate (ADP) (Brady & Weil, 1996). 

The aim of this study was to determine the effects of P application on a preceding 

mucuna crop, mucuna management options and N fertilizer rates on the biomass, LAI 

and nutrient content of the leaves of a subsequent maize crop from early vegetative to the 

flowering stages in a sandy loam soil in Zimbabwe. Mucuna was identified as a suitable 

rotational crop with maize in this area (Maasdorp & Titterton, 1997) and optimizing 

mucuna biomass production will most probably have positive effects on the vegetative 

foliar nutrient content and yield of the subsequent maize crop.  

 

Materials and methods 

Experimental site 

The experiment was carried out at the Grasslands Research Station in Marondera in 

Zimbabwe. It is situated at approximately 18
o 

11
1
S latitude and 31

o 
30

1
E longitude at an 

altitude of 1200 m above sea level.  At this site the average annual rainfall is 900 mm per 

annum (20-year mean), falling predominantly in the hot summer months (November to 

March). The winters are relatively cool and dry (Table 1) 

(http://www.worldweather.org/130/c00958.html).  The mean US Weather Bureau class A 

pan evaporation is 1750 mm (Nyakanda, 1997).   
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Table 6.1 Rainfall data for the experimental site for 2007 and 2008 (Grasslands Research Station, 

Marondera, Climatological Section) and long-term climatological data for Marondera 

(http://www.worldweather.org/130/c00958.htm) 

 

 

 

 

Month 

 

Mean temperature (ºC) 

 

Mean total rainfall (mm) 

  

 

Mean 

number of 

rain days 

 

Daily 

minimum 

 

Daily 

maximum 

 

  Long       

term 

 

 

  2007 

 

 

     2008                 

 

 

  2009 

Jan          15.3                         23.6   193.4 333.1 352.5 366.3 14 

Feb 13.1              24.5              149.1 48 10 56.6 12 

Mar 15.8              23.9             90.3 14 74 86.5 9 

Apr 12.5              22.8              48.7 0 0 12 5 

May 11.9               21.0      10.1 0 0 0 2 

Jun 6.2      18.3 5.4 0 0  1 

Jul 5.3       18.4 3.0 0 0  1 

Aug 6.3            25.0       3.0 0 0  1 

Sep 12.5      25.5 6.8 0 0  1 

Oct 13.5        26.0     40.3 85.5 11  5 

Nov 14.8           25.9     113.1 157.2 137.4  10 

Dec 14.5         24.3      187.7 429.2 282.6  15 

 

The soils are classified as humic Ferrolsols based on the FAO/UNESCO system 

(FAO UNESCO, 1994) and are equivalent to a Kandiudalfic Eutaudox in the USDA soil 

taxonomy system (Soil Survey Staff, 1994). The soils are predominantly of the kaolinitic 

order with loamy sands of low fertility (Hussein, 1997).  In general these soils are slightly 

acid (pH CaCl  = 5.2) with organic matter content of 0.33%  (Hussein,1997).  Soil analyses 

performed on soil samples taken before the trial started showed a mineral N content of 15 

ppm at the time of sampling as well as a P content of 15.8 ppm, K content of 0.15 meq%, 

Ca content of 0.2 meq% and Mg content of 0.03 meq% (Shoko, unpublished data). 

 

 

http://www.worldweather.org/130/c00958.htm
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Crop establishment  

The field which was planted to mucuna in both seasons (2007 and 2008) was ploughed, 

disced and planted to the subsequent maize crop, variety, SC 513 (early maturing). The 

maize crop was planted on 22 December 2007 (first season crop) and 8 December 2008 

(second season crop). An inter-row spacing of 90 cm and intra row spacing of 25 cm was 

used to achieve a plant population of about 44444 plants ha
-1

. A seeding rate of 25 kg ha
-1

 

was employed. Planting was done by hand. No basal fertilizer was applied to the maize 

crop.  This was done to simulate the resource- poor farmers‘ practice.  The N treatments 

were split-applied twice at as a top dressing. The first dressing of 40 kg N ha
-1

 was 

applied at 4 weeks after emergence (WAE) and the balance of each of the treatments was 

applied at tasseling stage in both seasons. Weed control was done twice using mechanical 

methods.   

 

Experimental design and treatments applied 

The experimental design was a split-split- plot with 2 P treatments  applied to the mucuna 

crop as main plot factors [P0 = 0 kg P ha
-1

 and P40 = 40 kg P ha
-1

 which is 0 and 100% of 

the recommended rate], four mucuna management options [1) fallow (F) (no mucuna 

planted = control), 2) mucuna ploughed-in at flowering (MF), 3) all mucuna above 

ground biomass removed at maturity (MAR) and 4) mucuna pods removed and the 

residues ploughed-in (MPR)] as sub plot factors and 4 N treatments [N0 = 0 kg N ha
-1

, 

N40 = 40 kg N ha
-1

, N80 = 80 kg N ha
-1

 and N120 = 120 kg N ha
-1

 representing about 0, 

33, 66 and 100 % of the recommended rate] applied to the subsequent maize crop as sub-

sub-plot factors. The treatments were replicated 4 times. The plot size was 10 m x 10 m. 

 

Biomass and Leaf Area Index (LAI) determination 

Biomass (dry weight) and LAI were determined at 5, 6, 7 and 8 weeks after emergence 

(WAE).  From each plot an area of 2m
2
 was sampled per sampling week for total biomass 

determination. Dry mass was determined by oven drying the components at 80 
o
C to 

constant weight before weighing. Leaf components from the plants which were sampled 

for biomass were also used for LAI determination. LAI was determined using a Delta-T 

Leaf Area Meter (Delta-T area meter MK 2, Cambridge, UK). 
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Foliar nutrient analyses 

From the same plants that were sampled for biomass determination 10 plants were 

randomly selected. The leafy parts were then removed from the plants for analyses. They 

were analysed for N, P, K, Ca and Mg. The analyses of the mentioned nutrients were 

done using standard procedures as described by AOAC (1990). 

 

Statistical analyses 

Statistical analysis of the data was performed using the Statistica package (Software, 

version 8.02). Analysis of variance (ANOVA) was conducted to determine the interaction 

of factors. Means were separated using Bonferroni adjustment for testing least significant 

differences at the 5% level when ANOVA revealed significant (P < 0.05) differences 

among the treatments. The treatment factors compared were P rates, mucuna 

management options, N rates and time. 

 

Results     

The combined data for the 2007/08 and 2008/09 seasons are presented because the data 

for the separate seasons showed similar trends for the parameters measured. The data 

showed no significant seasonal effects. 

 

Biomass  

Although the study looked at 4 factors (P rates, mucuna management options, N rates and 

time) there was no significant (P > 0.05) 4-way interaction. However there were two 

significant 3-way interactions (P < 0.05), namely, mucuna management options x 

nitrogen rates x time and phosphorus treatments x nitrogen rates x time.   

 

Mucuna management options, nitrogen rates and time interaction 

The significant (P < 0.05) 3-way interaction of mucuna management options, nitrogen 

rates and time is illustrated in Table 2. Biomass  increased with time of sampling and 

through out all the 4 sampling times the MF and N120 treatment combination had a 

significantly (P < 0.05) higher biomass followed by the MPR and N120 treatment 
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combinations. However the MF and N0 treatment combination did not differ significantly 

from the F (control) and N120 treatment combination at all sampling times except at 6 

WAE. Invariably, through-out the sampling period the MPR and N120 treatment 

combination was always second in terms of biomass for the subsequent maize crop to the 

MF and N120 treatment combination.  The F and MAR mucuna management options did 

not differ significantly from each other at any N rate over all sampling times. 

 

Phosphorus treatments, nitrogen rates and time interaction 

A significant interaction (P < 0.05) between phosphorus treatment, nitrogen rates and 

time in terms of the biomass of maize was noted (Table 3). The N120 rate produced 

significantly (P < 0.05) more biomass throughout the sampling times in both the P0 and 

P40 treatments. In the majority of cases the N rates did not show significant differences 

between the P treatments. Only at 6 WAE in the N0 treatment and at 8 WAE in the N120 

treatment did the P40 treatment produced significantly more biomass than in the 

corresponding P0 treatments. 

 

Leaf Area Indices (LAI) determination 

There were no significant (P > 0.05) interactions between the four factors (P rates, 

mucuna management options, N rates and time) used in this study in terms of LAI. 

However there were significant (P < 0.05) differences between treatments within factors 

of N rates, mucuna management options and times of sampling. There were no P 

treatment effects. 

 

Effect of mucuna management options on LAI 

The LAI of maize under the MF mucuna management option (2.73) were significantly (P 

< 0.05) higher than the MPR mucuna management option (1.99). Both these management 

options had significantly higher LAI than the F (1.09) and MAR (1.12) mucuna 

management options which did not differ significantly from each other. The MF mucuna 

management option resulted in a 143.8% and 37.7% higher LAI than the F and MPR 

options respectively. The LAI of maize under the MPR and MF management option is 

considered sufficient for maximum productivity. 
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Table 6.2 Combined (2007/08 and 2008/09 seasons) biomass (tha-1) of maize as influenced by 

mucuna management options, nitrogen rates and time interactions on a sandy loam soil in 

Zimbabwe (MF = mucuna incorporated at flowering, MAR = mucuna above ground biomass 

removed and only roots incorporated, MPR = only pods removed and all the other above ground 

biomass was incorporated and F = Fallow (control); N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 

80 kg N ha-1, N120 = 120 kg N ha-1).  Values followed by the same letter are not significantly 

different at P = 0.05 

                                                                                            Maize biomass (t ha
-1

) 

                                                              ……………….Weeks after emergence…………... 

Mucuna options                 N (kg ha
-1

) 5 6 7 8 

 

F 

0 0.73a 1.36b 1.53c 2.03d 

40 1.23b 1.52c 1.63c 2.31f 

80 1.54c 2.22f 2.11d 2.32f 

120 1.59c 2.31f 2.52g 3.00h 

 

MF 

0 1.58c 2.00d 2.59g 2.97h 

40 2.03d 2.45g 2.53g 3.11h 

80 2.11d 3.12h 3.13h 4.00j 

120 2.41f 3.54i 3.94j 5.13L 

 

MPR 

0 1.51c 1.78e 2.04d 2.36f 

40 1.83e 2.08d 2.04d 2.43g 

80 1.89e 2.56g 2.45g 3.59i 

120 2.04e 2.98h 3.17h 4.50k 

 

MAR 

0 0.88a 1.38c 1.51c 2.13e 

40 1.25b 1.69c 1.64c 2.36f 

80 1.30b 2.25f 2.05e 2.30f 

120 1.62c 2.34f 2.53g 3.06h 
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Table 6.3 Combined (2007/08 and 2008/09 seasons) biomass (tha-1) accumulation of maize as 

influenced by phosphorus, nitrogen rates and time interactions on a sandy loam soil in Zimbabwe 

after two P treatments (P0 = No P applied (control) and P40 = 40 kg P ha-1) applied to the mucuna 

crop and four N rates (N0 = 0 kg N ha-1, N40 = 40 kg N ha-1 , N80 = 80 kg N ha-1 , N120 = 120 

kg N ha-1) applied to the maize crop. WAE is weeks after emergence. Values followed by the 

same letter is not significantly different at P = 0.05  

                              ………………………… Maize biomass ((t ha
-1
)……………………… 

                                                     P0                                P40 

 

     N  (kgha
-
) 

 

0 

 

40 

 

80 

 

120 

 

0 

 

40 

 

80 

 

120 

    5WAE 

    6WAE 

   7WAE 

   8WAE 

1.19a 1.57b 1.69c 1.89d 1.15a 1.60b 1.74c 1.94d 

1.59b 1.88d 2.50f 2.70g 1.67c 1.97d 2.57f 2.80g 

1.88d 1.93d 2.40e 3.01h 1.96d 1.99d 2.47e 3.06h 

2.34e 2.51f 3.01h 3.86i 2.41e 2.59f 3.10h 3.99j 

 

Effect of N rates on LAI 

The LAI of maize under the N120 (2.68) and N80 (2.0) nitrogen rates did not differ 

significantly (P > 0.05) and the LAI of maize under the N0 (0.75) and N40 (1.20) 

nitrogen rates did not differ significantly from each other either. However the N80 and 

N120 rates had significantly (P < 0.05) higher LAI than the N0 and N40 rates. 

 

Effect of time of sampling on LAI 

Significant differences (P < 0.05) between some times of sampling on the LAI of maize 

were noted. No significant differences (P > 0.05) were noted between 5 WAE (1.18) and 

6 WAE (1.26) and also not between 7 WAE (1.97) and 8 WAE (2.49). The LAI of maize 

at 7 WAE and 8 WAE was significantly higher than at 5 WAE and 6 WAE. 
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Figure 6.1 Average (2007 and 2008 seasons) nitrogen (%) in leaves of maize showing the 

mucuna management options, nitrogen rates and time interactions on a sandy loam in Zimbabwe 

(MF = mucuna incorporated at flowering, MAR = Mucuna above ground biomass removed and 

only roots incorporated, MPR = only pods removed and all the other above ground biomass was 

incorporated and F = Fallow (control); N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1, 

N120 = 120 kg N ha-1 applied to the subsequent maize crop). LSD value is for all the mucuna 

management options. 

 

 

 

LSD (0.05) = 0.22 
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Nitrogen content 

Mucuna management options, nitrogen rats and time interaction in terms of N in maize leaves 

The significant (P < 0.05) 3-way interaction of mucuna management option, nitrogen 

rates and time on N concentration in leaves of maize is illustrated in Figure 6.1. Nitrogen 

concentration in leaves of maize significantly (P < 0.05) decreased from 5 WAE when 

compared to that of 8 WAE through out the treatment combinations. Maize planted on 

the MF management option and N120 rate had significantly highest N through out the 

sampling times.  However the MF management option and N0 rate treatment 

combination did not differ significantly from the F (control) management option and N80 

rate combinations at 5 WAE. The MPR management option and N0 rate combinations 

did not differ significantly (P > 0.05) from the F management option and N40 rate 

combinations at 5 WAE. The MAR and F management option were not significantly 

different in most cases. 

 

Phosphorus rate and time of sampling interaction in terms of N in leaves of maize 

There was a significant (P < 0.05) 2-way interaction between the P treatments and time 

on N in the leaves of maize (Table 6.4).  Nitrogen concentration in the leaves of maize 

significantly decreased from 5 when compared to that of  8 WAE.  Maize under the P40 

treatment had 9.9%, 7.3%, 21.7% and 24% more N than P0 at 5, 6, 7 and 8 WAE 

respectively. However N content in maize leaves receiving the P40 treatment at 5 and 6 

WAE were not significantly different. 

 

Table 6.4 Average nitrogen (%) in leaves of maize showing phosphorus and time interactions on 

a sandy loam soil during the 2007 and 2008 seasons. (WAE = weeks after emergence; P0 = No P 

applied (control) and P40 = 40 kg P ha-1). Values followed by the same letter are not significantly 

different at P = 0.05 

Time of sampling P0 P40 

5 WAE 1.73e 1.89g 

6 WAE 1.78f 1.90g 

7 WAE 0.61b 0.73d 

8 WAE 0.51a 0.64c 
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Phosphorus 

The P concentration in mucuna showed a significant (P < 0.05) 3-way interaction of 

mucuna management option, nitrogen rate and time (Figure 6.2). The P concentration in 

leaves of maize significantly (P < 0.05) increased systematically from 5 to 8 WAE in all 

the mucuna management options and in all the N rates. 
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Figure 6.2  Average (2007 and 2008 seasons) phosphorus (%) in leaves of maize showing the 

mucuna management options, nitrogen rates and time interactions on a sandy loam in Zimbabwe 

(MF = mucuna incorporated at flowering, MAR = Mucuna above ground biomass removed and 

only roots incorporated, MPR = only pods removed and all the other above ground biomass was 

incorporated and F = Fallow (control); N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1, 

LSD (0.05)= 0.13 
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N120 = 120 kg N ha-1 applied to the subsequent maize crop). LSD value is for all the mucuna 

management options. 

 

The MF and MPR management options had more P in leaves at NO rate at 5 WAE than 

the F management option at N120 rate at 8 WAE. The MF and MPR management options 

had a bigger increase of P with time than the F and MAR management options. The 

MAR and F management options did not differ significantly in most of the sampling 

weeks and N treatments.  
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Figure 6.3  Average (2007 and 2008 seasons) potassium (%) in leaves of maize showing the 

mucuna management options, nitrogen rates and time interactions on a sandy loam in Zimbabwe 

(MF = mucuna incorporated at flowering, MAR = Mucuna above ground biomass removed and 

only roots incorporated, MPR = only pods removed and all the other above ground biomass was 

incorporated and F = Fallow (control); N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1, 

LSD (0.05) = 0.1 
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N120 = 120 kg N ha-1 applied to the subsequent maize crop). LSD value is for all the mucuna 

management options. 

 

Potassium 

Figure 6.3 shows a significant (P < 0.05) 3-way interaction of mucuna management 

option, nitrogen rate and time in terms of K content of maize leaves. The K concentration 

in leaves of maize significantly (P < 0.05) decreased from 5 to 8 WAE in all the mucuna 

management options and in all the N rates. At 8 WAE the K content in the MF and MPR 

management option were inversely related to the N rate applied, in contrast with the 

situation at 5 WAE. 

 

Calcium 

As in the case of K, the concentration of Ca decreased when comparing the content at  5 

WAE to that at 8 WAE in a 3-way interaction of mucuna management option, nitrogen 

rate and time (Figure 6.4). The Ca levels in the F and MAR management options did not 

differ significantly over all N rates. The MF and MPR management options showed 

differences between the N rates at 5 WAE which the MAR and F management option did 

not. However at 7 WAE and 8 WAE these differences disappeared. 

 

Magnesium 

The Mg concentration in maize showed a significant (P < 0.05) 3-way interaction of 

mucuna management option, nitrogen rate and time (Figure 6.5). The Mg concentration 

in leaves of maize significantly (P < 0.05) decreased from 6 to 8 WAE in the MF and 

MPR mucuna management options over all the N rates. The MF and MPR and N80 and 

N120 treatment combinations had significantly higher Mg in their leaves at 5 and 6 WAE 

compared to other N rates.  The F (control) and the MAR management options did not 

differ significantly through-out the sampling times under all the N rates and there was no 

reduction in Mg content with time. 
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Figure 6.4  Average (2007 and 2008 seasons) calcium (%) in leaves of maize showing the 

mucuna management options, nitrogen rates and time interactions on a sandy loam in Zimbabwe 

(MF = mucuna incorporated at flowering, MAR = Mucuna above ground biomass removed and 

only roots incorporated, MPR = only pods removed and all the other above ground biomass was 

incorporated and F = Fallow (control); N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1, 

N120 = 120 kg N ha-1 applied to the subsequent maize crop). LSD value is for all the mucuna 

management options. 

 

 

LSD (0.05) = 0.01 
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Figure 6.5  Average (2007 and 2008 seasons) magnesium (%) in leaves of maize showing the 

mucuna management options, nitrogen rates and time interactions on a sandy loam in Zimbabwe 

(MF = mucuna incorporated at flowering, MAR = Mucuna above ground biomass removed and 

only roots incorporated, MPR = only pods removed and all the other above ground biomass was 

incorporated and F = Fallow (control); N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1, 

N120 = 120 kg N ha-1 applied to the subsequent maize crop). LSD value is for all the mucuna 

management options. 

 

Effect of P on P, K, Ca and Mg concentration in leaves 

There were significant differences (P < 0.05) between the P40 and P0 treatments with 

regards to P, K, Ca and Mg concentration in leaves of maize (Table 6.5). The P40 

treatment resulted in higher P, K, Ca and Mg concentrations when compared to the P0 

treatment.    

LSD (0.05)= O.O2 
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Table 6.5 Effect of P levels applied to a preceding mucuna crop on the % P, K, Ca and Mg 

content in leaves of maize on a sandy loam soil in Zimbabwe (P0 = No P applied (control) and 

P40 = 40 kg P ha-1). Values followed by the same letter in a row are non significantly different at 

P =0.05 

Nutrients P0 P40 

Phosphorus (%) 0.48a 0.51b 

Potassium (%) 0.70a 0.72b 

Calcium    (%) 0.17a 0.19b 

Magnesium (%) 0.22a 0.23b 

 

Discussion 

Biomass 

The MAR and F mucuna management options combined with the N0 treatment resulted 

in the lowest biomass throughout the sampling times during the 2007/2008 and 

2008/2009 seasons. This trend could be attributed to low inherent N in the soil as well the 

inability of the mucuna root biomass in the MAR management option to supply sufficient 

N to the subsequent maize crop.  These findings confirm research done by Smyth et al. 

(1991) and Oikeh et al. (1998). The MF management option resulted in the highest maize 

biomass production in all the N treatments throughout the sampling weeks. This high 

biomass values could be due to the high N content of the incorporated mucuna green 

manure (incorporated at flowering) enhanced by the supplementation of inorganic N. 

This is supported by Carsky et al. (1999) and Giller et al. (1998) who found that mucuna 

incorporated at maturity did not add as much N as when incorporated at flowering 

because most N will be removed with the harvested pods unlike in green manuring 

systems. The results of this work also showed that the MF and N0 treatment 

combinations did not differ significantly from the F and N120 treatment combination at 6 

WAE. In critical fertilizer shortage times in Zimbabwe farmers can still obtain high 

biomass which will translate into high yield potential when they use mucuna and 

incorporate it at flowering with no N supplements. If farmers decide to use the MPR 
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management option alone they may realize the same biomass yield as when using F and 

supplementing with N80 (60% of the recommended rate). 

The biomass yield of maize was significantly higher under the N120 treatment in 

both P treatments. The higher biomass obtained at the N120 rate in the P40 treatment at 8 

WAE could be attributed to the influence of P at this late stage. Phosphorous is immobile 

in the soil and therefore for the first 6 WAE after emergence the maize crop could have 

suffered from P deficiencies due to a still developing root system. 

 

Leaf Area Index 

The LAI of maize under the MF and MPR mucuna management options were 2.73 and 

1.99 respectively. Since the maize was planted in 0.9m row widths these LAI values will 

maximize interception of photosynthetic active radiation (PAR) since they are greater 

than or equal to 2.0 (Keating & Wafula, 1992; Zhou, et al., 2003).  The high LAI could 

be due to the increase in soil N from the MF and MPR management options which were 

incorporated (Shoko et al, unpublished data). High N concentrations influence foliar 

expansion and elongation (Amanulla et al., 2007).  

The application of N80 and N120 did not result in significant LAI differences 

between the two rates. The LAI of maize from these two rates were above 2.0. This 

means maize under these treatments would maximize interception of PAR and hence 

have maximum net productivity. This could be due to the influence of N on foliar 

elongation and expansion (Amanulla et al., 2007).  

 

Nutrient content in leaves 

Determining nutrient levels in leaves is important as they may give a guide to 

supplementation with inorganic fertilizers to improve crop productivity. The critical N 

levels considered to be sufficient for maize are 3.0- 5.0 % and 1.8 – 2.7% for the 

vegetative growth and tasselling stages respectively (Mills & Jones, 1996). The 

vegetative stage for the variety under study is up to about 6 WAE and the tasseling is up 

to 8 WAE. This study shows that the MF management option at N80 and N120 rates as 

well as the MPR management option at the N80 rate may give the farmer‘s maize 

sufficient N for the early vegetative growth as well as at tasseling. Work done by Muhr et 
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al. (1999) in West Africa supports my findings when they also found that green manuring 

of mucuna contributed to higher N content in subsequent maize crop than incorporating 

mucuna at maturity. The sufficient N levels could be attributable to additional 

accumulation of fixed N by the MF and MPR management options. The sufficient N 

levels will enhance chlorophyll formation and then boost protein synthesis and general 

productivity of the crop on sandy loam soils (Brady & Weil, 1996). The F and MAR 

management options resulted in N levels which was less than the critical levels at both 

growth stages. 

 The MF and MPR management options had sufficient P to sustain maize 

production at the vegetative stage.  These treatments had more than the critical level of 

0.3 – 0.5 % required (Mills & Jones, 1996). This P level is important for root 

development and hence efficient nutrient absorption. However the F and MAR 

management option under all the N rates were below the critical levels at the vegetative 

stage. The F and MAR management option were below the critical level of 0.20 – 0.40 % 

at tasseling stage. The steady increase in P level in the leaves of maize as the crop 

matures can be attributed to the slow mineralization of P, which will be readily available 

to plants when they have matured (Tisdale et al., 1999). 

 The results of this study show that all the treatment combinations reflected K 

levels which were below the recommended critical level of 2.0 - 4.0% and 1.2% at the 

vegetative and tasseling stages respectively (Mills & Jones, 1996).  Sandy soils have 

limited inherent K (Hussein, 1997). This will call for K supplementation with inorganic 

fertilizers.  

Generally Ca levels were sufficient under all the treatment combinations at the 

vegetative stage (> 0.2 %).  The satisfactory Ca levels could also be attributable to 

sufficient inherent soil Ca at the site (Shoko, unpublished data).    

 Magnesium plays an important role in photosynthesis. The results of the study 

show that the F (control) and the MAR generally had lower Mg levels than the 

recommended level of 0.15 % at the vegetative stage (Mills & Jones, 1996).  However 

the MF and MPR management options under all the N rates had higher Mg levels than 

the recommended level at the vegetative stage. At the tasseling stage the Mg level was 

within the recommended critical level of 0.10- 0.30 %. Memon et al. (2007) found that 
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legume management practices which enhance N availability will lead to crops not 

showing deficiency symptoms of Mg. These findings can be loosely linked to the 

enhancement of N by the MF and MPR management options to the subsequent maize 

crop and hence sufficient Mg being found in the leaves of maize. 

 

Conclusion 

Mucuna incorporated at flowering and supplemented with either 80 or 120 kg N ha
-1

 

resulted in a maize crop with the highest biomass through out the sampling weeks. The 

LAI is also higher with application of higher N rates and the use of the MF and MPR 

management options. This study emphasizes the need to use organic sources of N such as 

mucuna because they slowly mineralize N. However farmers can supplement with about 

30% of the recommended N when they decide to use the MPR management option 

(harvest the mucuna pods at maturity and plough under the rest of the biomass) and 

realize biomass and LAI values similar to adding 120 kg N ha
-1

 in a maize monoculture 

system.  The use of the MF management option alone can see farmers realize the same 

biomass and LAI values as with the application of 120 kg N ha
-1

 in a maize monoculture 

system.  

The analysis of the nutrient content of maize tissue is important as it will give 

farmers a more accurate indication regarding the deficiency levels of nutrients. This will 

also give the farmers the correct fertilizer supplementation rates.  The MF and MPR 

management options can help to supply the soil with some nutrients since they represent 

the organic part of mucuna which will be incorporated. These sources of nutrients can 

help to guard against the loss pathways of N such as leaching and volatilization (Hussein, 

1997).  
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Chapter 7 

The effect of P, mucuna management options and N on the yield and 

yield components of maize on a depleted sandy loam soil in Zimbabwe  

 

 

Abstract 

Most of the smallholder farmers use sub-optimal amounts of fertilizers due to cash 

limitations and poor access to fertilizer markets hence the need to integrate legumes like 

mucuna into their cropping systems. In this study, the effect of P, mucuna management 

options and N on the yield and yield components of maize on a depleted sandy loam soil 

in Zimbabwe was investigated. The experimental design was a split- split- plot with two 

P rates (P0 and P40) applied to a preceding mucuna crop,  four mucuna management 

options [1) fallow (F) (no mucuna planted = control), 2) mucuna ploughed-in at flowering 

(MF), 3) all mucuna above ground biomass removed at maturity and only roots were 

ploughed-in (MAR) and 4) mucuna pods removed and the residues ploughed-in (MPR)] 

and four N treatments [N0 = 0 kg N ha
-1

, N40 = 40 kg N ha
-1

, N80 = 80 kg N ha
-1

 & 

N120 = 120 kg N ha
-1

] applied to a subsequent maize crop. The cob length, number of 

grains per cob, cob diameter, 1000 dry grain weight, grain yield, stalk weight and harvest 

index of maize were determined. Significant three-way interactions between phosphorus, 

mucuna management options and nitrogen rates were observed in terms of cob length, 

harvest index and 1000 grain weight. Significant two-way interactions between mucuna 

management options and nitrogen rates was observed in terms grain yield, stalk weight 

and cob diameter. Differences were also noted between mucuna management options and 

nitrogen rates as independent factors in terms of number of grains per cob.  In general the 

MF management option gave a higher yield across all the treatment combinations. 

Keywords: biomass, maize yield, mucuna management options, N rates, smallholder 

farmer, yield components 
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Introduction 

Positive residual effects of N-fixing legumes on subsequent cereals in rotations have been 

widely reported in both old and modern agriculture (Giller & Wilson, 1991; Kumwenda 

et al., 1995). The yield increases have been primarily attributed to an improvement in the 

N availability in the soils. Studies on the predominantly sandy soils of Southern Africa 

have shown the complexity of soil fertility problems on smallholder farms and the 

challenges in developing sustainable management options (Scoones et al., 1996;  Snapp 

et al., 1998). There are limited opportunities for building soil organic matter in the 

smallholder farming mainly because of monoculture production systems (Giller & 

Wilson, 1991), rendering farmers to rely heavily on external nutrient inputs on a seasonal 

basis. However, most of the smallholder farmers use sub-optimal amounts of fertilizers 

due to cash limitations and poor access to fertilizer markets (Kumwenda et al., 1995; 

Ahmed et al., 1996).  

This whole issue of nutrient supply to maize production systems calls for 

increased efficiency in use and recycling of both exogenous and endogenous nutrient 

pools in the cropping systems. Although work has been done on mucuna as a rotational 

crop (Mausolff & Farber, 1995) not much has been done on the ability of a mucuna crop 

which was managed differently with regard to P application and residue handling on the 

growth and yield of the subsequent maize crop management on a kaolitic sandy loam soil 

in Zimbabwe.   

The aim of this study was to determine the effects of P application to a preceding 

mucuna crop, mucuna management options and N fertilizer application rates on the yield 

and yield components of a subsequent maize crop on a sandy loam soil in Zimbabwe.  

Mucuna was chosen for this study because of its ability to grow on relatively infertile soil 

and its tolerance to drought and other environmental stress (Maasdorp & Titterton, 1997; 

Muhr et al., 1999).  

 

Materials and methods 

Experimental site 

The experiment was carried out at the Grasslands Research Station in Marondera in 

Zimbabwe. The Grasslands Research Station is situated at approximately 18
o 

11
1
S 
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latitude and 31
o 

30
1
E longitude at an altitude of 1200 m above sea level.  At this site the 

average annual rainfall is 900 mm per annum (20-year mean), falling predominantly in 

the hot summer months (November to March).  The winters are relatively cool and dry 

(Table 7.1) (http://www.worldweather.org/130/c00958.htm). The mean US Weather 

Bureau class A pan evaporation is 1750 mm (Nyakanda, 1997).   

 

Table 7.1 Rainfall data for the experimental site for 2007 and 2008 (Grasslands Research Station, 

Marondera, Climatological Section) and long-term climatological data for Marondera 

(http://www.worldweather.org/130/c00958.htm) 

 

 

 

 

Month 

 

Mean temperature (ºC) 

 

Mean total rainfall (mm) 

  

 

Mean 

number of 

rain days 

 

Daily 

minimum 

 

Daily 

maximum 

 

  Long       

term 

 

 

  2007 

 

 

     2008                 

 

 

  2009 

Jan          15.3                         23.6   193.4 333.1 352.5 366.3 14 

Feb 13.1              24.5              149.1 48 10 56.6 12 

Mar 15.8              23.9             90.3 14 74 86.5 9 

Apr 12.5              22.8              48.7 0 0 12 5 

May 11.9               21.0      10.1 0 0 0 2 

Jun 6.2      18.3 5.4 0 0  1 

Jul 5.3       18.4 3.0 0 0  1 

Aug 6.3            25.0       3.0 0 0  1 

Sep 12.5      25.5 6.8 0 0  1 

Oct 13.5        26.0     40.3 85.5 11  5 

Nov 14.8           25.9     113.1 157.2 137.4  10 

Dec 14.5         24.3      187.7 429.2 282.6  15 

 

The soils are classified as humic Ferrolsols based on the FAO/UNESCO system 

(FAO UNESCO, 1994) and are equivalent to a Kandiudalfic Eutaudox in the USDA soil 

taxonomy system (Soil Survey Staff, 1994).  The soils are predominantly of the kaolinitic 

order with loamy sands of low fertility (Hussein, 1997).  In general these soils are slightly 
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acid (pH CaCl  = 5.1) with organic matter content of 0.33%  (Hussein,1997).  Soil analyses 

performed on soil samples taken before the trial was established showed a mineral N 

content of 15 ppm at the time of sampling as well as a P content of 15.8 ppm, K content 

of 0.15 meq%, Ca content of 0.2 meq%, Mg content of 0.03 meq% and organic matter 

was 0.26 % (Shoko et al., unpublished data). 

 

Crop establishment  

The field which was planted to mucuna in both seasons (2007 and 2008) was ploughed, 

disced and planted to the subsequent maize crop, variety, SC 513 (early maturing). The 

maize crop was planted on 22 December 2007 (first season crop) and 8 December 2008 

(second season crop). An inter-row spacing of 90 cm and intra row spacing of 25 cm was 

used to achieve a plant population of about 44444 plants ha
-1

. A seeding rate of 25 kg ha
-1

 

was employed. Planting was done by hand. No basal fertilizer was applied to the maize 

crop.  This was done to simulate the resource- poor farmers‘ practice.  The N treatments 

were split-applied twice at as a top dressing. The first dressing of 40 kg N ha
-1

 was 

applied at 4 weeks after emergence (WAE) and the balance of each of the treatments was 

applied at tasseling stage in both seasons. Weed control was done twice using mechanical 

methods.  Rains were above normal during the experimental season so that was no 

irrigation supplementation. 

 

Experimental design and treatments applied 

The experimental design was a split-split-plot with 2 P treatments  applied to the mucuna 

crop as main plot factors [P0 = 0 kg P ha
-1

 and P40 = 40 kg P ha
-1

 which is 0 and 100% of 

the recommended rate], four mucuna management options [1) fallow (F) (no mucuna 

planted = control), 2) mucuna ploughed-in at flowering (MF), 3) all mucuna above 

ground biomass removed at maturity (MAR) and 4) mucuna pods removed and the 

residues ploughed-in (MPR)] as sub plot factors and 4 N treatments [N0 = 0 kg N ha
-1

, 

N40 = 40 kg N ha
-1

, N80 = 80 kg N ha
-1

 and N120 = 120 kg N ha
-1

 representing about 0, 

33, 66 and 100 % of the recommended rate] applied to the subsequent maize crop as sub-

sub-plot factors. The treatments were replicated 4 times. The plot size was 10 m x 10 m. 

The following variables were determined; dry de-husked cob length, dry cob diameter, 
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number of grains per cob, 1000 grain weight, grain yield, dry stalk weights and harvest 

index. A net plot of 5 m x 5 m (25 m
2
) was used to determine the variables 

 

Dry de-husked cob length  

At harvest 20 plants per plot were selected and de-husked cob lengths were recorded by 

means of a measuring tape and mean lengths were calculated. 

 

Dry Cob diameter  

The diameters from the same cobs that were used for length measurements were recorded 

with the help of a measuring tap at harvest and the mean diameter was calculated. 

  

Number of grains per cob 

The number of grains was counted on the same cobs that were used for cob length 

measurements and their means were calculated. 

 

1000 maize grain weight  

At harvest maize cobs collected from each plot was air dried and threshed separately. A 

sample of 1000 grains from each treatment was obtained and the weight was recorded by 

means of an electronic balance. 

 

Maize grain yield  

After threshing of cobs from each plot the dry grains (moisture content of 9 %) were 

weighed on an electrical balance and grain yield ha
-1

 was calculated by using the 

following model: 

 

Grain yield (t ha
-1

) = Grain yield nett plot 
-1

 (kg) x 10                                   Equation 1                                                        

                                 Area of nett plot (m
-2

)             1 
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Dry maize stalk weight  

The dry stalks from each plot were harvested and weighed on a mechanical weighing 

scale and the stalk weight (t ha
-1

) was calculated using the following model: 

 

 Maize stalk weight (t ha
-1

 = Stalk weight nett plot 
-1

(kg) x 10                        Equation    2                                                                         

                                              Area of nett plot (m
-2

)              

 

Maize harvest index (HI) 

This was calculated from the data from the maize grain yield and the stalk weight using 

the following model:  

Harvest index =    Maize grain yield nett plot
-1

 (kg)                                          Equation 3 

                             Total biomass nett plot
-1

 (kg) 

 

Statistical analyses 

Statistical analysis of the data was performed using the Statistica package (Software, 

version 8.02). Analysis of variance (ANOVA) was conducted to determine the interaction 

of factors. Means were separated using Bonferroni adjustment for testing least significant 

differences at the 5% level when ANOVA revealed significant (P < 0.05) differences 

among the treatments. The treatment factors which were compared were P rates, mucuna 

management options and N rates. 

 

Results  

The data for the 2007/08 and 2008/09 were combined during analyses because there non 

significant seasonal effects. 

 

Cob length 

The significant (P < 0.05) 3-way interaction of P rate, mucuna management option and 

nitrogen rate is shown in Table 7.2. Cob lengths significantly (P < 0.05) increased with 

an increase in N and P rates across all the management options.  The MF management 

option and the N 120 treatment combination generally produced the longest cobs. The 

MF and the N0 treatment combination did not differ significantly from the F and N80 
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treatment combination in both P treatments. The MPR management option was always 

second to the MF management option.  The F and MAR mucuna management options did 

not show significant differences at N0 and N40 rates in both P treatments but in the P 40 

treatment the N80 and N120 and MAR treatment combinations produced longer cobs 

than the F management option had. 

   

Table 7.2 Dry dehusked cob lengths (2007/08 and 2008/09 seasons combined) of maize as 

influenced by interactions of P rate, mucuna management option and N rate on a sandy loam soil 

in Zimbabwe after two P treatments (P0 = No P applied (control) and P40 = 40 kg P ha-1) applied 

to the mucuna crop and four N rates (N0 = 0 kg N ha-1, N40 = 40 kg N ha-1 , N80 = 80 kg N ha-1 , 

N120 = 120 kg N ha-1) applied to the maize crop. (MF = mucuna incorporated at flowering, MAR 

= mucuna above ground biomass removed and only roots incorporated, MPR = only pods 

removed and all the other above ground biomass was incorporated and F = Fallow (control)). 

Values followed by the same letter are not significantly different at P = 0.05 

                                                           ………………………. N (kg ha
-1

)………….............. 

P treatments                    Mucuna options                  0 40 80 120 

 ……………….Cob length (cm)…………………….. 

 

P0 

F 7.4a 8.3b 11.1e 13.3g 

MF 10.8e 13.8g 16.8j 17.9k 

MPR 10d 11.5f 15.0i 15.5i 

MAR 7.5a 8.9b 11.5f 13.9g 

 

P40 

F 7a 9.3c 11.1e 14.3h 

MF 10.9e 14.5h 18.5k 20.2L 

MPR 9.9d 12.7f 16.8j 17.2k 

MAR 7.2a 9.2c 13.2g 15.1i 

 

Number of grains per cob 

There were not any significant (P > 0.05) interactions between the three factors (P rate, 

mucuna management option and N rate) used in this study in terms of number of grains 

per cob. However there were significant (P < 0.05) differences between treatments within 

factors of N rates and mucuna management options. There were no P treatment effects. 

Effect of mucuna management options on number of grains cob
-1
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The MF mucuna management option had significantly (P < 0.05) more grains (352) cob
-1 

than the other three [F (223), MAR (240) and MPR (286)] mucuna management options, 

which were not significantly different from each other.  

 

Effect of N rates on number of grains cob
-1

 

The number of grains cob
-1

under the N120 rate (310) was significantly (P < 0.05) more 

than the N 80 (290), N0 (249) and N40 (251) rates. The N0 and N40 rates did not differ 

significantly.  

 

1000 grain weight 

A significant interaction (P < 0.05) between P rate, mucuna management option and N 

rate in terms of 1000 grain weight were noted (Table 7.3). The MF  and  N80 and N120 

treatment combination had a significantly (P < 0.05) higher 1000 grain weight under both 

P treatments than the other combinations except for the MPR and N120 treatment 

combination in the P40 treatment. No significant differences were noted between the N80 

and N120 rates under the MF management option under both P treatments. The MPR 

management option showed no significant differences between the N0, N40 and N80 

rates under the P0 treatment. The MF and N0 treatment combination under the P0 

treatment did not differ significantly from the F (control) and N120 treatment 

combination at both P treatments.  The MAR and the F management options generally 

did not show significant differences between them across all the treatments. 

 

Cob diameter 

There was a significant (P < 0.05) 2-way interaction between the mucuna management 

option and N rate in terms of the cob diameters of maize (Table 7.4). The cob diameters 

increased with the increase in the N rates across all the mucuna management options. The 

cobs of the MF and N120 treatment combination had significantly (P < 0.05) larger 

diameters than the other treatment combinations. There was no significant difference 

between the MF and NO treatment combination and the F and N80 and N120 treatment 

combinations. The F and the MAR management options did differ significantly.  
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Table 7.3 Dry 1000 grain weight (2007/08 and 2008/09 seasons combined) of maize as 

influenced by interactions of P rate, mucuna management option and N rate on a sandy loam soil 

in Zimbabwe after two P treatments (P0 = No P applied (control) and P40 = 40 kg P ha-1) applied 

to the mucuna crop and four N rates (N0 = 0 kg N ha-1, N40 = 40 kg N ha-1 , N80 = 80 kg N ha-1 , 

N120 = 120 kg N ha-1) applied to the maize crop. (MF = mucuna incorporated at flowering, MAR 

= mucuna above ground biomass removed and only roots incorporated, MPR = only pods 

removed and all the other above ground biomass was incorporated and F = Fallow (control)).  

Values followed by the same letter are not significantly different at P = 0.05 

                                                             ………………………. N (kg ha
-1

)………….............. 

P treatments                    Mucuna options                  0 40 80 120 

 ………………..1000 grain wt (g)…………………… 

 

P0 

F 160.0a 171.9b 184.8c 237.8e 

MF 226.4e 254.8e 260.9f 265.4f 

MPR 213.8d 246.4e 252.3e 254e 

MAR 160.6a 173.1b 251.5e 239.5e 

 

P40 

F 194.8c 217.9d 227.6e 232.8e 

MF 239.8e 262f 297.4h 311.6h 

MPR 256.1e 249.3e 284g 297.2h 

MAR 193.0c 210.7d 228.7e 227.7e 

 

Grain yield 

Effect of mucuna management options and N rates interactions 

The significant (P < 0.05) 2-way interaction between the mucuna management option and 

the N rate on grain yield shown in Table 7.4 illustrates that the grain yield increased with 

increased N rates across all the mucuna management options. However the MF and N120 

treatment combination produced significantly (P < 0.05) higher grain yields followed by 

the MPR and N120 treatment combination. No significant differences were observed 

between the MF and N0 treatment combination and the F and N120 treatment 

combination. Also the MF and MPR management options did not differ significantly 

under the N80 and N120 rates respectively. The F and MAR management options did not 

differ significantly across all the N rates except at the N40 rate.   
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Effect of P application rates 

There were significant (P < 0.05) differences between the P0 (2.29 t ha
-1

) and the P40 

(2.34 t ha
-1

) treatments in term of the grain yield of maize. 

 

Dry stalk weight 

Effect of mucuna management options and N rates interactions 

The significant (P < 0.05) 2-way interaction between mucuna management option and N 

rate on dry stalk weight is shown in Table 7.4.  The stalk weight increased with increase 

in N rates across all the mucuna management options. The MF and N120 treatment 

combination had a significantly (P < 0.05) higher stalk weight than the other treatment 

combinations. However the MF and N0 treatment combination did not differ significantly 

with the F and N120 treatment combination. The F and MAR management options did 

not differ significantly at the N 80 and the N120 rates. 

 

Effect of P treatments and N rates interactions 

The significant (P < 0.05) 2-way interaction between the P rate and N rate showed no 

differences between the P0 and N0 (2.55 t ha
-1

), N40 (3.80 ha
-1

) and N120 (6.23 ha
-1

) 

treatment combinations and the corresponding P40 and N0 (2.59), N 40 (3.87) and N120 

(6.27) treatment combinations. However there were significant (P < 0.05) differences 

between the P0 and N80 (5.33) treatment combination and the P40 and N80 (5.49) 

treatment combination. 
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Table 7.4 Dry cob diameter, dry stalk weight and grain yield (2007/08 and 2008/09 seasons 

combined) of maize as influenced by interactions of mucuna management option and N rate on a 

sandy loam soil in Zimbabwe. N rates (N0 = 0 kg N ha-1, N40 = 40 kg N ha-1 , N80 = 80 kg N ha-1 

, N120 = 120 kg N ha-1) applied to the maize crop. (MF = mucuna incorporated at flowering, 

MAR = mucuna above ground biomass removed and only roots incorporated, MPR = only pods 

removed and all the other above ground biomass was incorporated and F = Fallow (control).  

Values followed by the same letter in a column are not significantly different at P = 0.05 

Mucuna options               N (kg ha
-1

) cob diameter(cm) stalk wt(t ha
-1

) grain yield(t ha
-1

) 

 

F 

0 4.5b 2.0a 0.36a 

40 5.0c 2.3b 0.55b 

80 6.1e 4.6d 2.02d 

120 6.3e 5.5f 2.53e 

 

MF 

0 6.0e 3.3c 2.49e 

40 6.4e 5.1f 3.12f 

80 7.1e 6.5h 4.05h 

120 7.9g 7.1j 5.06j 

 

MPR 

0 5.0c 2.4b 0.63b 

40 5.6d 4.8d 2.06d 

80 6.3e 5.8g 3.40g 

120 7.1f 6.9i 4.12h 

 

MAR 

0 4.2a 2.5b 0.43a 

40 5.3c 3.1c 0.99c 

80 6.3e 4.6d 2.29d 

120 6.4e 5.5f 2.53e 

 

Harvest Index (HI) 

A significant interaction (P < 0.05) between P treatments, mucuna management options 

and N rates in terms of the HI of maize was noted (Table 7.5).  The HI significantly (P < 

0.05) increased with increase in N rates across the mucuna management options in both P 

treatments.  The MF and N120 treatment combination had a significantly (P < 0.05) 

higher HI under both P treatments than the other combinations. However no significant 
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differences were noted between the MF and NO treatment combination and the F and 

N80 treatment combination in both P treatments. The MAR and the F management 

options did not show significant differences between P treatments across all the N 

treatments except at the N40 rate. 

 

Table 7.5 Harvest index (HI) (2007/08 and 2008/09 seasons combined)  of maize as influenced 

by interactions of P rate, mucuna management option and N rate on a sandy loam soil in 

Zimbabwe after two P treatments (P0 = No P applied (control) and P40 = 40 kg P ha-1) applied to 

the mucuna crop and four N rates (N0 = 0 kg N ha-1, N40 = 40 kg N ha-1 , N80 = 80 kg N ha-1 , 

N120 = 120 kg N ha-1) applied to the maize crop. (MF = mucuna incorporated at flowering, MAR 

= mucuna above ground biomass removed and only roots incorporated, MPR = only pods 

removed and all the other above ground biomass was incorporated and F = Fallow (control).  

Values followed by the same letter are not significantly different at P = 0.05 

 

                                                            ………………………. N (kg ha
-1

)………….............. 

P treatments                          Mucuna 

options                  

0 40 80 120 

 ………………….Harvest Index…………………….. 

 

P0 

F 0.15a 0.19b 0.34d 0.39e 

MF 0.40d 0.58e 0.60e 0.68f 

MPR 0.21b 0.41d 0.54d 0.59e 

MAR 0.13a 0.30c 0.48d 0.57e 

 

P40 

F 0.17a 0.22b 0.40d 0.58e 

MF 0.44d 0.59e 0.58e 0.68f 

MPR 0.25c 0.40d 0.56e 0.58e 

MAR 0.15a 0.31c 0.45d 0.56e 
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Discussion 

Cob size 

The results of this study showed that the use of the MF management option with any P 

treatment applied to the mucuna and no nitrogen applied to the subsequent maize crop 

will give the same results as the F (control) management option which did not include 

mucuna crop with any P treatment applied and N80 rate applied in terms of cob length. 

This could be attributed to the N fixed by mucuna at flowering (Carsky et al., 1999). 

Therefore farmers may save about 80 kg N ha
-1

 if they use the MF management option. If 

farmers decide to leave mucuna up to maturity (MPR) the results will be similar to using 

the F and N40 rate treatment combination. The total removal of above ground biomass of 

mucuna at maturity may yield the same as the F management option under all the P 

treatments and N rates and will thus not result in  any savings of N fertilizer. Legumes 

such as mucuna have a high harvest index (Giller & Wilson, 1991) and therefore the 

removal of above ground biomass prevents addition of N reserves to the soil. There is a 

strong correlation between cob length and maize grain yield (Memon et al., 2007).  

The MF and N0 treatment combination resulted in the same cob diameter as the F 

management option and the N120. The MPR management option and the N0 

combination may give the smallholder farmer the same diameter as the F (control) and 

the N120 treatment combination.  Therefore the same cob size can be attained by the MF 

and MPR management options with little or no N supplementation as can be attained with 

the F and N120 treatment combination.  

 

Grain characteristics 

The MF management option had more grains probably because of its ability to provide 

high N levels which is an essential nutrient for grain development and filling (Tisdale et 

al. 1999).  The N120 rate produced more grains than the other rates. This again can be 

attributed to the positive effect of N on grain development and cob-filling. Work carried 

out by Memon et al. (2007) showed that the number of grains will add to the total yield 

per hectare, but the weight of the grains also plays an important role. 

The 1000 grain weight is an important measurement as it determines the final 

grain yield (Memon et al.2007). Nyakanda (1997) also reported that that there is a very 
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close link between 1000 grain weight and the final yield of the maize crop.   The results 

show that if a smallholder farmer does not apply P to the mucuna crop and ploughs under 

the mucuna crop at flowering (MF) and then applies no N fertilizer to the subsequent 

maize crop he may attain the same 1000 grain weight as the F and N120 treatment 

combination at the P0 or P40 treatment in the subsequent maize crop. These results show 

the importance of N in protein synthesis which also helps in weight enhancement of the 

grain (Tisdale et al.1999). The removal of the mucuna pods and incorporation of the rest 

of the mucuna biomass (MPR) in the P0 and P40 treatments may give the same weight as 

the F management option at any P treatment and N40. The removal of all above ground 

biomass (MAR) will have the same effect as the F management option under any P and N 

treatment.  

 

Grain yield 

Maize grain yield was higher in the MF management option across all the N rates. The 

MF and N0 treatment combination increased grain yield by almost 590% compared to the 

F and N0 treatment combination. The higher yield in the MF management option could 

partly be due to the higher 1000 grain weight parameter. These findings are corroborated 

by Mandimba (1995) who found that green manuring of mucuna gave a higher yield than 

natural fallows in the Congo. Sanginga et al. (1996) and Mausolff and Farber (1995) also 

found that green manuring with mucuna resulted in a subsequent maize yield which was 

equivalent to the yield of a crop receiving 120 kg N ha
-1

 inorganic fertilizer. The 

incorporation of root biomass (MAR) only gave the same yield as the F (control). These 

findings differ from findings by Smyth et al. (1991) who found that incorporation of the 

root biomass of legumes gave a higher yield than the control. However their work was in 

an Amazon ecosystem with different soil and climatic regimes than those of this study.  

 

Dry stover weight 

The MF management option produced more stover than the other options under the same 

N rates. This could be attributed to the K incorporated with mucuna at flowering. K is an 

essential nutrient for stalk development (Tisdale et al., 1999; Shoko et al., 2009). 
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Harvest Index (HI) 

The MF management option produced a higher HI through-out the treatment 

combinations.  A higher HI indicates higher yield potential at the same vegetative 

biomass (Memon et al., 2007).  Therefore incorporation of mucuna green manure at 

flowering improved the ability of maize to produce grain yield from a given vegetative 

biomass. 

 

Conclusion 

The results of this study clearly widened the scope for the smallholder farmer when it 

comes to manipulation of mucuna. Farmers can benefit from either mucuna at maturity 

being incorporated or incorporating mucuna at flowering. The findings have shown that 

the MF and MPR management options improves maize yield compared to the normal 

farmer practice of natural fallows (F).  Implementation of these two mucuna management 

systems should increase the yield and profit of smallholder farmers whilst slowing down 

the rate of soil degradation in crop fields compared to the traditional maize monoculture 

systems.  
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Chapter 8 

 General summary, conclusion and recommendations for further 

research 

 

Discussion 

The effect of P on the productivity of mucuna on a kaolinitic sandy soil  

Phosphorus (P) is an essential macronutrient for legume growth and function (Ribet & 

Drevon, 1996).  The influence of P on symbiotic nitrogen fixation in mucuna (Mucuna 

pruriens) has received considerable attention, but its role in the process still remains 

unclear (Hairiah et al., 1995).  Robson and O‘Hara (1981) concluded that P nutrition 

increased symbiotic nitrogen fixation in most legumes by stimulating host plant growth 

rather than by exerting specific effects on rhizobial growth or on nodule formation and 

function.  The hypothesis that P did not affect mucuna productivity was rejected. 

 This study indeed revealed that the nodulation, growth and development and yield 

of mucuna on a sandy loam soil can be stimulated by exogenous P supply (Jakobsen, 

1985; Sanginga et al., 1996; Gentili & Huss-Danell, 2002). So there is need for the small 

holder farmers to apply P as a basal fertilizer during land preparation for planting mucuna 

to maximize on its productivity. The benefits from mucuna productivity will have a 

positive effect on the production of the subsequent maize crop. 

 The application of 40 kg P ha
-1

 has shown some great improvement in biomass 

production by mucuna as well as an increase in LAI which is an essential biophysical 

parameter for the interception of PAR. More nodules were found on P application than on 

non P application. The high nodule population resulted in high N fixation by the mucuna 

crop. 

Phosphorus played an important role in nutrient (N, P, K, Ca and Mg) 

accumulation in mucuna foliage. Most nutrient levels were higher in the P40 treatment 

than in the P0 treatment.  These high nutrients when incorporated will improve both the 

biological and economic yield of the subsequent maize crop. The higher pod yield in the 

treatments where P was applied also indicates the positive effect of P. The influence of P 
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on luxurious growth of mucuna had a positive effect on protein content. However the 

fibre content was lower when P was applied.  

 

The effect of P and mucuna management option on the physical and chemical 

properties of a depleted sandy loam soil 

It has been shown that on the poorly buffered kaolinitic soils found in many areas in the 

tropics, including sub-Saharan Africa, continuous use of fertilizer alone cannot sustain 

crop yield and may lead to the deterioration of the soil condition in the long run (Juo et 

al., 1995).  

The hypothesis that P and mucuna did not affect soil properties was rejected.  The 

results of this study shows that the incorporation of a legume crop at flowering will help 

to increase N, K and Ca levels in the soil and improve SOM (Shoko et al., 2007).   The 

incorporation of mucuna at flowering somehow acidified the soil pH at P40 only. This 

could be due to the acidifying effect of N fixed by mucuna. The incorporation of mucuna 

will improve SOM and thereby improving bulk density (Db) of the soil. The 

improvement of Db will also have a positive effect on porosity. This improved porosity 

will enhance microbial activity and root respiration. 

Mucuna has the potential to improve soil chemical characteristics for the small 

holder resource-poor-farmers in Sub Saharan Africa. The results of the study indicated 

that mucuna incorporated at flowering had acceptable mineral N content to sustain maize 

productivity.  The soils in this study, similar to many other soils in sub Saharan Africa, 

may not sustain satisfactory maize production because of serious P deficiencies (Pal, 

1991; Akinnifesi et al., 2006). According to the recommendations by Tagwira (1992), 

Hussein (1997) and Nyakanda (1997) the results of this study showed that P in the soil 

was inadequate at all P and mucuna management treatment combinations.  There may be 

need for farmers to apply P as a basal fertilizer to the subsequent maize crop to counter 

its deficiencies in such soils. 

 The level of exchangeable bases in this study indicated that they have been 

improved by the MF and MPR mucuna management options.  Calcium, Mg and K are 

key to the production of maize and these results are very favourable to the small holder 

farmer. The application of mucuna management options under the P40 treatment showed 
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lower Zn content than under the P0 treatment. The results of this study indicated that P0 

and MF treatment combination will supply about 50% of the optimum Zn requirements 

of a maize crop. However about 75% of Zn requirements needs to be supplemented when 

using other mucuna management options with either the P0 or P40 treatments.  

 

The effect of P, mucuna management option and N on the production of the 

subsequent maize crop on a depleted kaolinitic sandy loam soil 

The maize monoculture production system resulted in the lowest biomass, LAI and foliar 

nutrient content in the subsequent maize crop. The leaf analyses showed deficiencies of 

most essential nutrients. This has a very negative impact on the final yield of maize. This 

production system is the one which most smallholder farmers practice. This trend of low 

biomass, LAI and foliar nutrient content may be attributed to depletion of soil fertility 

associated with this practice (Tisdale et al., 1999).  However the inclusion of mucuna as a 

fallow crop may help to increase biomass and LAI as well as reducing deficiencies of 

most essential nutrients for maize production. The results of this study also confirmed 

that the incorporation of mucuna at flowering and at maturity will improve soil fertility as 

indicated by high biomass accumulation, higher LAI and sufficient nutrients in leaves of 

the maize crop.  

The hypothesis that mucuna management option did not influence maize 

vegetative production was rejected.  The results of this study showed that the use of the 

MF management option with any P treatment applied to the mucuna and no nitrogen 

applied to the subsequent maize crop will give the same results as the F (control) 

management option with any P treatment applied and N80 rate applied in terms of cob 

length, number of grains per cob, cob diameter, 1000 grain weight and the final grain 

yield. This could be attributed to the N fixed by mucuna at flowering (Carsky et al., 

1999). The findings also showed that with incorporating mucuna at maturity (MPR), the 

results will be similar to using the F and N40 rate treatment combination. All in all the 

use of mucuna as fallow crop will benefit the smallholder farmer in terms of maize 

productivity.  
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Conclusion 

The results of this study clearly widened the scope for the smallholder farmer when it 

comes to manipulation of P fertilizer, mucuna and N fertilizer.  The effect of P on general 

productivity of mucuna, as a preceding crop to maize has been positive in this study. 

These positive effects which resulted in high N fixed influenced the yield of the 

subsequent maize crop.  

The findings of this study also noted that the incorporation of mucuna at either 

flowering or maturity has some positive effects to soil health in general. However it is the 

incorporation of mucuna at flowering which had a greater positive influence on soil 

fertility and physical properties than when incorporated later.  The findings of this 

research have shown that the MF and MPR management options improve maize 

productivity compared to the normal farmer practice of natural fallows (F).  

Implementation of these two mucuna management systems with some N supplementation 

can increase the yield and profit of smallholder farmers whilst slowing down the rate of 

soil degradation in crop fields compared to the traditional maize monoculture systems. 

This study also widened the scope of income for the small holder farmer. It revealed that 

farmers can realize some income when they do not apply fertilizer and incorporate 

mucuna at maturity. This has more economic benefits than using P fertilizer and 120kg N 

ha
-1

 ha under fallow production system. 

 

Recommendation for further research 

1. There is need to do similar work under dryland conditions since this research was 

done under irrigation, a facility which most small holder farmers in Zimbabwe 

don‘t have. 

2.  There may be need to look at the use of Dorowa Phosphate rock as source of P 

instead of Single Super Phosphate. The Rock is readily available in Zimbabwe.  
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APPENDICES 

 

Appendix 1: ANOVA  for Chapter 3 :The effect of P on the productivity of mucuna 

(Mucuna pruriens) on a depleted sandy loam soil in Zimbabwe 

 

 

   1.1 Biomass of mucuna leaves 

 
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       29     8178.187500      282.006466       4.88    0.0005 

      Error                       18     1039.625000       57.756944 

      Corrected Total             47     9217.812500 

 

                                  

 

 

1.2 Biomass of mucuna stems 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       29     2265.687500       78.127155       3.01    0.0086 

      Error                       18      466.625000       25.923611 

      Corrected Total             47     2732.312500 

 

                          

1.3 Number of nodules per mucuna plant 

 
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11     16181.83333      1471.07576      12.61    <.0001 

      Error                       12      1400.00000       116.66667 

      Corrected Total             23     17581.83333 

 

                        

 1.4 Number of alive nodules per plant 
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11     14587.29167      1326.11742      11.03    0.0001 

      Error                       12      1442.33333       120.19444 

      Corrected Total             23     16029.62500 

 

 

 

1.5 Nodule biomass 
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      1.65500000      0.15045455       4.77    0.0060 

      Error                       12      0.37833333      0.03152778 

      Corrected Total             23      2.03333333 
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1.6 Days to 50 % flowering of mucuna 

 
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      838.958333       76.268939       4.47    0.0079 

      Error                       12      204.666667       17.055556 

      Corrected Total             23     1043.625000 

 

   

        

       

 

    1.7 Leaf area index of mucuna 
 

 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       35      4.69436667      0.13412476      28.01    <.0001 

      Error                       36      0.17238333      0.00478843 

      Corrected Total             71      4.86675000 

 

     

 1.8 Mucuna grain yield 

                                            Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      1.28750000      0.14305556       9.54    0.0063 

      Error                        6      0.09000000      0.01500000 

      Corrected Total             15      1.37750000 

 

  1.9 Protein content of mucuna pods 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9     25851.75000      2872.41667      15.87    0.0016 

      Error                        6      1086.00000       181.00000 

      Corrected Total             15     26937.75000 

 

                       

 

1.10 Fibre content of mucuna pods 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9     6186.562500      687.395833      32.51    0.0002 

      Error                        6      126.875000       21.145833 

      Corrected Total             15     6313.437500 
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1.11 Nitrogen content of mucuna leaves at flowering 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      5.97432917      0.54312083       4.00    0.0124 

      Error                       12      1.63126667      0.13593889 

      Corrected Total             23      7.60559583 

 

                        

1.12 Phosphorus content of mucuna leaves at flowering 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      0.42576667      0.03870606      13.92    <.0001 

      Error                       12      0.03336667      0.00278056 

      Corrected Total             23      0.45913333 

 

  

 

 

1.13 Potassium content of mucuna leaves at flowering 
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      0.79022917      0.07183902       3.40    0.0229 

      Error                       12      0.25346667      0.02112222 

      Corrected Total             23      1.04369583 

 

                                                    

1.14 Calcium content of mucuna leaves at flowering 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      3.44214583      0.31292235       6.54    0.0015 

      Error                       12      0.57441667      0.04786806 

      Corrected Total             23      4.01656250 

 

1.15 Magnesium content of mucuna at flowering 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                       11      0.16195000      0.01472273       1.19    0.3822 

      Error                       12      0.14823333      0.01235278 

      Corrected Total             23      0.31018333 

 

 

1.16 Nitrogen content of mucuna leaves at maturity 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.88615000      0.09846111       1.28    0.3940 

      Error                        6      0.46075000      0.07679167 

      Corrected Total             15      1.34690000 
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1.17 Phosphorus content of mucuna leaves at maturity 

                                              
                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      1.62320000      0.18035556      27.62    0.0003 

      Error                        6      0.03917500      0.00652917 

      Corrected Total             15      1.66237500 

 

                        

1.18 Potassium content of mucuna leaves at maturity 
                                                                                                           

Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.23077500      0.02564167      14.25    0.0021 

      Error                        6      0.01080000      0.00180000 

      Corrected Total             15      0.24157500 

 

                        

1.19 Calcium content of mucuna leaves at maturity 
 

                                             Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      1.25935625      0.13992847      14.85    0.0019 

      Error                        6      0.05653750      0.00942292 

      Corrected Total             15      1.31589375 

 

                        

 

1.20 Magnesium content of mucuna leaves at maturity 
 

                                                                                            

Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.69960625      0.07773403      13.47    0.0025 

      Error                        6      0.03463750      0.00577292 

      Corrected Total             15      0.73424375 

 

 1.21 Nitrogen content of mucuna pods 
 

                                                    Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      6.38822500      0.70980278       7.83    0.0105 

      Error                        6      0.54397500      0.09066250 

      Corrected Total             15      6.93220000 

 

1.22 Phosphorus content of mucuna pods 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.22622500      0.02513611      76.36    <.0001 

      Error                        6      0.00197500      0.00032917 

      Corrected Total             15      0.22820000 
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1.23 Potassium content of mucuna pods 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.96482500      0.10720278      26.72    0.0004 

      Error                        6      0.02407500      0.00401250 

      Corrected Total             15      0.98890000 

 

                        

1.24 Calcium content of mucuna pods 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.45285625      0.05031736       9.59    0.0062 

      Error                        6      0.03148750      0.00524792 

      Corrected Total             15      0.48434375 

 

 1.25 Magnesium content of mucuna pods 
 

                                              Sum of 

      Source                      DF         Squares     Mean Square    F Value    Pr > F 

      Model                        9      0.36360625      0.04040069     328.68    <.0001 

      Error                        6      0.00073750      0.00012292 

      Corrected Total             15      0.36434375 

 

 

 

 

 

Appendix 2: ANOVA for Chapter 4 : The effect of P and mucuna (Mucuna 

pruriens) management options on soil organic matter, soil pH and physical 

properties of a kaolinitic sandy soil in Zimbabwe 

 

 

 

2.1 Soil pH after incorporation of mucuna 

 
 

                                                Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39      1.54948594      0.03973041       2.05    0.0325 

        Error                       24      0.46418750      0.01934115 

        Corrected Total             63      2.01367344 

 

 

 

 

 

2.2 SOM after incorporation of mucuna 
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                                                Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39      2.76681094      0.07094387      12.71    <.0001 

        Error                       24      0.13391250      0.00557969 

        Corrected Total             63      2.90072344 
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    Appendix 3: ANOVA  for Chapter 5: The effects of P and mucuna (Mucuna 

pruriens) management options on the chemical characterisation of a depleted sandy 

loam soil in Zimbabwe 

 

3.1 Mineral N after incorporation of mucuna 
 

                                                Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39     761.9375000      19.5368590      13.59    <.0001 

        Error                     24      34.5000000       1.4375000 

        Corrected Total           63     796.4375000 

 

 

3.2 P after incorporation of mucuna 
                                                Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39     233.4843750       5.9867788       6.72    <.0001 

        Error                     24      21.3750000       0.8906250 

        Corrected Total           63     254.8593750 

 

3.3 Exchangeable K after incorporation of mucuna 

 
                                              Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39     10.69849844      0.27432047      49.96    <.0001 

        Error                     24      0.13178750      0.00549115 

        Corrected Total           63     10.83028594 

 

 

3.4 Exchangeable Ca after incorporation of mucuna 
 

                                             Sum of 

        Source                   DF         Squares     Mean Square    F Value    Pr > F 

        Model                    39     84.73749375      2.17275625     637.87    <.0001 

        Error                    24      0.08175000      0.00340625 

        Corrected Total           63     84.81924375 

 

 

 3.5 Exchangeable Mg after incorporation of mucuna 
 

Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39      0.50665000      0.01299103      45.62    <.0001 

        Error                     23      0.00655000      0.00028478 

        Corrected Total           62      0.51320000 
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3.6 Zn after incorporation of mucuna   
 

                                              Sum of 

        Source                    DF         Squares     Mean Square    F Value    Pr > F 

        Model                     39     183.3247000       4.7006333       5.93    <.0001 

        Error                     24      19.0393000       0.7933042 

        Corrected Total           63     202.3640000 
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 Appendix 4: ANOVA  for Chapter 6:  The effect of phosphorus, mucuna 

management options and nitrogen on the biomass, leaf area index and foliar 

nutrient content of maize on a depleted sandy loam soil in Zimbabwe 

 

 
4.1 Biomass of the subsequent maize crop 

  

 SS DF MS F p 

Intercept 441.1227 1 441.1227 70128.46 0.000000 

{5}Block 0.0000 1 0.0000 0.00 1.000000 

{1}P aplction 0.0410 1 0.0410 6.51 0.011095 

{2}MucTrtmt 95.5024 3 31.8341 5060.90 0.000000 

{3}N apliction 98.1213 3 32.7071 5199.69 0.000000 

{4}Time 121.5333 3 40.5111 6440.34 0.000000 

P aplction*MucTrtmt 0.0004 3 0.0001 0.02 0.995965 

P aplction*N apliction 0.0007 3 0.0002 0.04 0.990761 

MucTrtmt*N apliction 5.9407 9 0.6601 104.94 0.000000 

P aplction*Time 0.0012 3 0.0004 0.06 0.979758 

MucTrtmt*Time 4.9843 9 0.5538 88.04 0.000000 

N apliction*Time 12.2316 9 1.3591 216.06 0.000000 

P aplction*MucTrtmt*N apliction 0.0078 9 0.0009 0.14 0.998596 

P aplction*MucTrtmt*Time 0.0041 9 0.0005 0.07 0.999903 

P aplction*N apliction*Time 0.0081 9 0.0009 0.14 0.998419 

MucTrtmt*N apliction*Time 7.9734 27 0.2953 46.95 0.000000 

1*2*3*4 0.0127 27 0.0005 0.07 1.000000 

Error 2.4091 383 0.0063   
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4.2 LAI of the subsequent maize crop 

 

 SS DF MS F p 

Intercept 125.712 1 125.7121 6.571856 0.010741 

{5}Block 34.294 1 34.2944 1.792810 0.181378 

{1}P aplction 20.801 1 20.8013 1.087427 0.297700 

{2}MucTrtmt 336.025 3 112.0083 5.855459 0.000644 

{3}N apliction 355.447 3 118.4824 6.193905 0.000406 

{4}Time 102.830 3 34.2767 1.791882 0.148195 

P aplction*MucTrtmt 58.249 3 19.4165 1.015036 0.385953 

P aplction*N apliction 55.772 3 18.5907 0.971865 0.405975 

MucTrtmt*N apliction 225.488 9 25.0542 1.309760 0.229818 

P aplction*Time 55.323 3 18.4410 0.964038 0.409697 

MucTrtmt*Time 124.171 9 13.7968 0.721257 0.689482 

N apliction*Time 154.204 9 17.1338 0.895703 0.529089 

P aplction*MucTrtmt*N apliction 176.237 9 19.5819 1.023682 0.420203 

P aplction*MucTrtmt*Time 175.832 9 19.5368 1.021328 0.422092 

P aplction*N apliction*Time 167.454 9 18.6060 0.972668 0.462160 

MucTrtmt*N apliction*Time 533.933 27 19.7753 1.033794 0.420768 

1*2*3*4 527.838 27 19.5496 1.021993 0.436854 

Error 7326.354 383 19.1289   
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4.3 N content in maize leaves 

 

 SS D F MS F p 

Intercept 129.1664 1 129.1664 205187.1 0.000000 

{5}Block 0.0000 1 0.0000 0.0 1.000000 

{1}P aplction 1.3173 1 1.3173 2092.5 0.000000 

{2}MucTrtmt 91.2051 3 30.4017 48294.6 0.000000 

{3}N apliction 70.2993 3 23.4331 37224.6 0.000000 

{4}Time 185.8287 3 61.9429 98399.3 0.000000 

P aplction*MucTrtmt 0.0012 3 0.0004 0.6 0.602407 

P aplction*N apliction 0.0006 3 0.0002 0.3 0.826728 

MucTrtmt*N apliction 3.9462 9 0.4385 696.5 0.000000 

P aplction*Time 0.0039 3 0.0013 2.1 0.101352 

MucTrtmt*Time 18.5244 9 2.0583 3269.7 0.000000 

N apliction*Time 19.2471 9 2.1386 3397.2 0.000000 

P aplction*MucTrtmt*N apliction 0.0019 9 0.0002 0.3 0.965973 

P aplction*MucTrtmt*Time 0.0060 9 0.0007 1.1 0.398804 

P aplction*N apliction*Time 0.0062 9 0.0007 1.1 0.369277 

MucTrtmt*N apliction*Time 6.5758 27 0.2435 386.9 0.000000 

1*2*3*4 0.0159 27 0.0006 0.9 0.561394 

Error 0.2411 383 0.0006   
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4.4 P content in maize leaves 

 

 SS DF MS F p 

Intercept 22.50225 1 22.50225 40501.29 0.000000 

{5}Block 0.00051 1 0.00051 0.91 0.339733 

{1}P aplction 0.11822 1 0.11822 212.78 0.000000 

{2}MucTrtmt 12.00868 3 4.00289 7204.71 0.000000 

{3}N apliction 0.14867 3 0.04956 89.20 0.000000 

{4}Time 2.93834 3 0.97945 1762.89 0.000000 

P aplction*MucTrtmt 0.00059 3 0.00020 0.35 0.788398 

P aplction*N apliction 0.00082 3 0.00027 0.49 0.688251 

MucTrtmt*N apliction 0.61979 9 0.06887 123.95 0.000000 

P aplction*Time 0.00113 3 0.00038 0.68 0.567531 

MucTrtmt*Time 0.66626 9 0.07403 133.24 0.000000 

N apliction*Time 0.27442 9 0.03049 54.88 0.000000 

P aplction*MucTrtmt*N apliction 0.00567 9 0.00063 1.13 0.337491 

P aplction*MucTrtmt*Time 0.00201 9 0.00022 0.40 0.933501 

P aplction*N apliction*Time 0.00255 9 0.00028 0.51 0.866818 

MucTrtmt*N apliction*Time 0.65506 27 0.02426 43.67 0.000000 

1*2*3*4 0.01124 27 0.00042 0.75 0.815835 

Error 0.21279 383 0.00056   

 

 

 

 

 

 

 



 135  

4.5 K content in maize leaves 

 

 SS DF MS F p 

Intercept 42.75187 1 42.75187 43843.11 0.000000 

{5}Block 0.00118 1 0.00118 1.21 0.271461 

{1}P aplction 0.11520 1 0.11520 118.14 0.000000 

{2}MucTrtmt 43.18759 3 14.39586 14763.31 0.000000 

{3}N apliction 0.90899 3 0.30300 310.73 0.000000 

{4}Time 49.99482 3 16.66494 17090.31 0.000000 

P aplction*MucTrtmt 0.00000 3 0.00000 0.00 1.000000 

P aplction*N apliction 0.00000 3 0.00000 0.00 1.000000 

MucTrtmt*N apliction 0.70341 9 0.07816 80.15 0.000000 

P aplction*Time 0.00000 3 0.00000 0.00 1.000000 

MucTrtmt*Time 5.81860 9 0.64651 663.01 0.000000 

N apliction*Time 3.51295 9 0.39033 400.29 0.000000 

P aplction*MucTrtmt*N apliction 0.00000 9 0.00000 0.00 1.000000 

P aplction*MucTrtmt*Time 0.00000 9 0.00000 0.00 1.000000 

P aplction*N apliction*Time 0.00000 9 0.00000 0.00 1.000000 

MucTrtmt*N apliction*Time 1.91864 27 0.07106 72.87 0.000000 

1*2*3*4 0.00000 27 0.00000 0.00 1.000000 

Error 0.37347 383 0.00098   
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4.6 Ca content in maize leaves 

 

 

 SS DF MS F p 

Intercept 3.676901 1 3.676901 2990.132 0.000000 

{5}Block 0.001308 1 0.001308 1.064 0.302995 

{1}P aplction 0.251606 1 0.251606 204.612 0.000000 

{2}MucTrtmt 0.156554 3 0.052185 42.438 0.000000 

{3}N apliction 0.006047 3 0.002016 1.639 0.179804 

{4}Time 0.458896 3 0.152965 124.395 0.000000 

P aplction*MucTrtmt 0.003549 3 0.001183 0.962 0.410649 

P aplction*N apliction 0.003796 3 0.001265 1.029 0.379674 

MucTrtmt*N apliction 0.016363 9 0.001818 1.478 0.153787 

P aplction*Time 0.004604 3 0.001535 1.248 0.292073 

MucTrtmt*Time 0.027721 9 0.003080 2.505 0.008558 

N apliction*Time 0.028883 9 0.003209 2.610 0.006190 

P aplction*MucTrtmt*N apliction 0.007946 9 0.000883 0.718 0.692535 

P aplction*MucTrtmt*Time 0.009456 9 0.001051 0.854 0.566351 

P aplction*N apliction*Time 0.013803 9 0.001534 1.247 0.264607 

MucTrtmt*N apliction*Time 0.053441 27 0.001979 1.610 0.029437 

1*2*3*4 0.024352 27 0.000902 0.733 0.833583 

Error 0.470967 383 0.001230   
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4.7 Mg content in maize leaves 

 

 SS DF MS F p 

Intercept 4.296033 1 4.296033 17402.34 0.000000 

{5}Block 0.003151 1 0.003151 12.76 0.000399 

{1}P aplction 0.012800 1 0.012800 51.85 0.000000 

{2}MucTrtmt 5.689316 3 1.896439 7682.08 0.000000 

{3}N apliction 0.684316 3 0.228105 924.01 0.000000 

{4}Time 2.433841 3 0.811280 3286.33 0.000000 

P aplction*MucTrtmt 0.000000 3 0.000000 0.00 1.000000 

P aplction*N apliction 0.000000 3 0.000000 0.00 1.000000 

MucTrtmt*N apliction 1.112941 9 0.123660 500.92 0.000000 

P aplction*Time 0.000000 3 0.000000 0.00 1.000000 

MucTrtmt*Time 1.551016 9 0.172335 698.09 0.000000 

N apliction*Time 0.595316 9 0.066146 267.94 0.000000 

P aplction*MucTrtmt*N apliction 0.000000 9 0.000000 0.00 1.000000 

P aplction*MucTrtmt*Time 0.000000 9 0.000000 0.00 1.000000 

P aplction*N apliction*Time 0.000000 9 0.000000 0.00 1.000000 

MucTrtmt*N apliction*Time 0.661953 27 0.024517 99.31 0.000000 

1*2*3*4 0.000000 27 0.000000 0.00 1.000000 

Error 0.094549 383 0.000247   
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Appendix 5: ANOVA for Chapter 7: The effect of P, mucuna management options 

and N on the yield and yield components of maize on a depleted sandy loam soil in 

Zimbabwe  
 

5. 1 Cob length of maize 

 

 SS DF MS F p 

Intercept 6737.688 1 6737.688 52678.00 0.000000 

Block 0.046 1 0.046 0.36 0.547925 

P aplction 55.223 1 55.223 431.76 0.000000 

MucTrtmt 1108.366 3 369.455 2888.55 0.000000 

N apliction 1992.225 3 664.075 5192.01 0.000000 

P aplction*MucTrtmt 3.573 3 1.191 9.31 0.000008 

P aplction*N apliction 32.714 3 10.905 85.26 0.000000 

MucTrtmt*N apliction 40.688 9 4.521 35.35 0.000000 

P aplction*MucTrtmt*N apliction 4.214 9 0.468 3.66 0.000273 

Error 28.522 223 0.128   

 

 

5.2 No of grains per cob 

 

 SS DF MS F p 

Intercept 3172992 1 3172992 192.2354 0.000000 

Block 371 1 371 0.0225 0.880980 

P aplction 45609 1 45609 2.7632 0.097859 

MucTrtmt 641945 3 213982 12.9641 0.000000 

N apliction 173337 3 57779 3.5005 0.016295 

P aplction*MucTrtmt 28899 3 9633 0.5836 0.626343 

P aplction*N apliction 51304 3 17101 1.0361 0.377407 

MucTrtmt*N apliction 135453 9 15050 0.9118 0.515652 

P aplction*MucTrtmt*N apliction 156912 9 17435 1.0563 0.396423 

Error 3680784 223 16506   
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5.3 Cob diameter 

 

 SS DF MS F p 

Intercept 1447.707 1 1447.707 36038.92 0.000000 

Block 0.996 1 0.996 24.79 0.000001 

P aplction 1.485 1 1.485 36.98 0.000000 

MucTrtmt 78.866 3 26.289 654.43 0.000000 

N apliction 155.274 3 51.758 1288.46 0.000000 

P aplction*MucTrtmt 0.049 3 0.016 0.41 0.749194 

P aplction*N apliction 0.078 3 0.026 0.65 0.584190 

MucTrtmt*N apliction 6.688 9 0.743 18.50 0.000000 

P aplction*MucTrtmt*N apliction 0.332 9 0.037 0.92 0.510188 

Error 8.958 223 0.040   

 

 

 

 

5.4 Stover weight 

 

 SS DF MS F p 

Intercept 886.1603 1 886.1603 46194.98 0.000000 

Block 0.0913 1 0.0913 4.76 0.030189 

P aplction 0.4136 1 0.4136 21.56 0.000006 

MucTrtmt 149.0925 3 49.6975 2590.70 0.000000 

N apliction 516.3433 3 172.1144 8972.22 0.000000 

P aplction*MucTrtmt 0.0483 3 0.0161 0.84 0.473449 

P aplction*N apliction 0.1723 3 0.0574 2.99 0.031693 

MucTrtmt*N apliction 27.5773 9 3.0641 159.73 0.000000 

P aplction*MucTrtmt*N apliction 0.2285 9 0.0254 1.32 0.225669 

Error 4.2778 223 0.0192   
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5.5 Grain yield 

 

 SS DF MS F p 

Intercept 219.4940 1 219.4940 25926.47 0.000000 

Block 0.1174 1 0.1174 13.87 0.000248 

P aplction 0.1754 1 0.1754 20.71 0.000009 

MucTrtmt 142.4751 3 47.4917 5609.69 0.000000 

N apliction 376.6119 3 125.5373 14828.38 0.000000 

P aplction*MucTrtmt 0.0022 3 0.0007 0.09 0.966620 

P aplction*N apliction 0.0493 3 0.0164 1.94 0.123844 

MucTrtmt*N apliction 13.3534 9 1.4837 175.26 0.000000 

P aplction*MucTrtmt*N apliction 0.1196 9 0.0133 1.57 0.125456 

Error 1.8879 223 0.0085   

 

 

5.6 Harvest Index 

 

 SS DF MS F p 

Intercept 8.115120 1 8.115120 13535.98 0.000000 

Block 0.018450 1 0.018450 30.78 0.000000 

P aplction 0.003910 1 0.003910 6.52 0.011327 

MucTrtmt 2.171303 3 0.723768 1207.24 0.000000 

N apliction 4.709384 3 1.569795 2618.41 0.000000 

P aplction*MucTrtmt 0.000342 3 0.000114 0.19 0.902892 

P aplction*N apliction 0.013026 3 0.004342 7.24 0.000117 

MucTrtmt*N apliction 0.468898 9 0.052100 86.90 0.000000 

P aplction*MucTrtmt*N apliction 0.015561 9 0.001729 2.88 0.003045 

Error 0.133693 223 0.000600   

 



 141  

 

5.7 1000 grain weight 

 

 SS DF MS F p 

Intercept 2345391 1 2345391 58101.81 0.000000 

Block 120 1 120 2.98 0.085682 

P aplction 30159 1 30159 747.11 0.000000 

MucTrtmt 177905 3 59302 1469.07 0.000000 

N apliction 124284 3 41428 1026.29 0.000000 

P aplction*MucTrtmt 3962 3 1321 32.72 0.000000 

P aplction*N apliction 290 3 97 2.39 0.069283 

MucTrtmt*N apliction 9093 9 1010 25.03 0.000000 

P aplction*MucTrtmt*N apliction 25768 9 2863 70.93 0.000000 

Error 9002 223 40   

 

 

 


