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Abstract

Spoken dialogue systems accessed over the telephone network are rapidly becoming more

popular as a means to reduce call-centre costs and improve customer experience. It is

now technologically feasible to delegate repetitive and relatively simple tasks conducted

in most telephone calls to automatic systems. Such a system uses speech recognition to

take input from users. This work focuses on the speech generation component that a

specific prototype system uses to convey audible speech output back to the user.

Many commercial systems contain general text-to-speech synthesisers. Text-to-speech

synthesis is a very active branch of speech processing. It aims to build machines that

read text aloud. In some languages this has been a reality for almost two decades. While

these synthesisers are often very understandable, they almost never sound natural. The

output quality of synthetic speech is considered to be a very important factor in the user’s

perception of the quality and usability of spoken dialogue systems.

The static nature of the spoken dialogue system is exploited to produce a custom

speech synthesis component that provides very high quality output speech for the partic-

ular application. To this end the current state of the art in speech synthesis is surveyed

and summarised. A unit-selection synthesiser is produced that functions in Afrikaans,

English and Xhosa.

The unit-selection synthesiser selects short waveforms from a recorded speech corpus,

and concatenates them to produce the required utterances. Techniques are developed for

designing a compact corpus and processing it to produce a unit-selection database. Speech

modification methods were researched to build a framework for natural-sounding speech

concatenation. This framework also provides pitch and duration modification capabilities

that will enable research in languages such as Afrikaans and Xhosa where text-to-speech

capabilities are relatively immature.
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Opsomming

Telefoniese, spraakgebaseerde dialoogstelsels word steeds meer algemeen, en is ’n doeltref-

fende metode om oproepsentrumkostes te verlaag. Dit is tans tegnologies moontlik om

’n groot aantal eenvoudige transaksies met automatiese stelsels te hanteer. Sulke stelsels

gebruik spraakherkenning om intree van die gebruiker te ontvang. Hierdie werk fokus op

die spraakgenerasiekomponent wat ’n spesifieke prototipestelsel gebruik om afvoer aan

die gebruiker terug te speel.

Vele kommersiële stelsels gebruik generiese teks-na-spraak sintetiseerders. Sulke teks-

na-spraak sintetiseerders is steeds ’n baie aktiewe veld in spraaknavorsing. In die algemeen

poog navorsing om teks te kan lees en om te sit in verstaanbare spraak. Sulke stelsels

bestaan nou al vir ten minste twee dekades. Alhoewel heeltemal verstaanbaar, klink

hierdie stelsels onnatuurlik. In telefoniese spraakgebaseerde dialoogstelsels is kwaliteit

van die sintetiese spraak belangrik vir die gebruiker se persepsie van die stelsel se kwaliteit

en bruikbaarheid.

Die dialoog is meestal staties van aard en hierdie eienskap word benut om hoë kwaliteit

spraak in ’n bepaalde toepassing te sintetiseer. Om dit reg te kry is die huidige stand van

sake in hierdie veld bestudeer en opgesom. ’n Knip-en-plak sintetiseerder is gebou wat

werk in Afrikaans, Engels en Xhosa.

Die sintetiseerder selekteer kort stukkies spraakgolfvorms vanuit ’n spraakkorpus, en

las dit aanmekaar om die vereiste spraak te produseer. Outomatiese tegnieke is ontwikkel

om ’n kompakte korpus te ontwerp wat steeds alles bevat wat die sintetiseerder sal nodig

hê om sy taak te verrig. Verdere tegnieke prosesseer die korpus tot ’n bruikbare vorm vir

sintese.

Metodes van spraakmodifikasie is ondersoek ten einde die aanmekaargelaste stukkies

spraak meer natuurlik te laat klink en die intonasie en tempo daarvan te korrigeer. Dit

verskaf infrastruktuur vir navorsing in tale soos Afrikaans en Xhosa waar teks-na-spraak

vermoëns nog onvolwasse is.
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Chapter 1

Introduction

1.1 Artificial Speech

Interest in artificially reproducing human speech dates back to as long ago as 1779, when

C.G. Kratzenstein built a system of acoustic resonators to explain the production of

vowels. Von Kempelen later demonstrated a more successful machine. His used bellows

which supplied air to a reed which excited a resonator in the form of a deformable leather

tube. The operator manipulated the tube to produce the different resonances needed

to produce vowels. Fricative consonants were produced by different whistles. A famous

mechanical system was Dudley’s Voder. More sophisticated methods had to wait for

electronics; first analogue, later digital. Dunn built the first all-electrical machine that

produced intelligible speech. A skilled human could play it like a musical instrument. [1]

Digital signal processing made better modelling of the signal possible and more pow-

erful generic computers enabled better “reading” of text. One ground-breaking system

still serves as a lesson in the art of speech synthesis: Klatt’s MITalk [2]. It is a fully

general text-to-speech system, and uses extensive rule-based modelling of language and

speech sounds to attain its goal.

Speech synthesis, and later general text-to-speech conversion, remained mostly a re-

search toy, a means to test and refine models of speech production, pathology and percep-

tion. Recently, along with improvements in speech recognition, the capabilities emerged

to build commercially viable speech interfaces. Many potential applications exist where

the dialogue with a human agent is sufficiently repetitive for automatic systems to provide

1
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Telephone Interface

(TTS)
Speech Generation

Business Logic

Speech Recognition
(ASR)

Dialogue Controller

Figure 1.1: General architecture of telephone-based spoken dialogue systems. The in-

put speech is decoded by the Automatic Speech Recognition (ASR) component, the dia-

logue controller determines the flow of the dialogue based on the input and the business

logic, and the TTS component turns the response information into an audible utterance.

a cost-effective alternative to employing people. Marketing of such systems claim that

they also improve customer experience.

Such commercial applications drive the need for more natural and pleasant synthetic

speech, as this is the component cited as having the greatest influence on the user’s

perception of quality of a complete speech interface system. Synthesising natural-sounding

speech is still a major research issue involving wide-ranging fields of study.

1.2 Motivation for this Study

Spoken Dialogue Systems (SDS) are rapidly becoming mainstream as the quality of auto-

matic speech recognition, speech synthesis and natural language understanding improves.

The ultimate goal of SDS is to allow humans to interact with computers using normal

dialogue. Current commercial applications focus on simpler and more repetitive tasks.

Figure 1.1 shows the basic structure of such systems. The user enters requests via the

speech recognition components. Requests are interpreted by the natural language under-

standing component and then a dialogue manager decides what action to perform next.

It contains a dialogue model to keep track of the state of the discourse, consults external

resources, such as databases, and then uses that information to generate a response. The

speech generation component turns the response into speech which conveys it back to the

user.
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The dialogue model considered here is turn-based and can be represented as a finite-

state network, with each state representing a turn in the dialogue. The system starts by

eliciting some user input and then changes state based on its interpretation thereof. Upon

entering a new state, an appropriate prompt is played back to the user. This is also the

basis of the industry-standard VoiceXML specification for specifying dialogues for speech

interaction with machines [3].

The user might for example request more information at some point in the dialogue.

Based on the input, the dialogue model progresses to a state where it gives the user

the desired information, and presents her with choices again. This type of system takes

specific actions at each state. The contents of the reply may be generated automatically,

but most commercial systems today script the reply explicitly using so-called “slot-and-

filler” prompt generation. In this paradigm, a sentence that contains variable information

contains a slot where information phrases such dates, amounts or strings of digits are

filled in at run-time. The point to note is that the variability of the system’s responses is

limited.

Errors in the dialogue may arise in several ways. To understand how, consider the

following levels on which the interaction takes place [4]:

Speech: The user and the SDS both use audible speech to communicate.

Words: The speech carried between the participants contains words. It is important

that the wording of both parties convey the information clearly. Humans use words

naturally, but may not always phrase their intentions clearly, and the purpose of the

dialogue designer is to minimise the variability in the user’s responses by minimising

the number of potential ambiguities. This certainly affects the speech recognition

and natural language understanding components of the system. A primary concern

in this regard is that the speech generation component generates understandable

speech.

Intention: The speech uttered by each participant is intended to convey information—

conversion into words loses some information and causes some “noise”. Also, humans

put much more than mere words into their speech. The speech synthesis component

has to render speech clearly and with the proper characteristics, so that it is not
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misunderstood by the user. For example, the intonation of the utterance plays a

significant role in distinguishing between questions and statements in spoken lan-

guage. Prosody indicates as much of the syntactic phrasing and dialogue turns as

the verbal content of the reply. Such discourse effects in speech play a significant

role in determining turns. For example, unclear renditions of questions could be

confusing and disrupt the efficient flow of the dialogue as intended by the dialogue

designer.

Even if one considers the SDS to be stupid or hard of hearing, the judgement of the

quality of an SDS depends in no small part on appropriateness and clarity of the system’s

replies. It is therefore important to strive toward more natural speech in terms of proper

intonation, clear pronunciation of words and high voice quality. This is especially difficult

in languages in which speech synthesis has not been extensively researched.

1.3 Background

This section first gives some background on speech synthesis in general. Section 1.3.1

provides a brief and qualitative breakdown of verbal communication which sets the stage

for the rest of this work. Section 1.3.2 follows with an overview of speech synthesis.

1.3.1 Verbal Communication

Verbal communication as studied by linguists can be divided into various levels of ab-

straction. We start with the most concrete field of study, the speech signal itself, and

progress to the most abstract constructs in language.1

Speech Signal: The study of characteristics and digital processing of the sound pressure

waves of speech.

Phonetics and Phonology: The study of the natural production and perception of

speech sounds.

1Adapted from Jurafski et al. [5]. We add the lowest element in the hierarchy: the speech signal.
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Morphology: The study of the formation of words from the root morphemes through

changes the morphemes themselves and the addition of prefixes and suffixes.

Syntax: The study of the structural relationships between words.

Semantics: The study of meaning of words and utterances.

Pragmatics: The study of how people use language to accomplish goals.

Discourse: The study of the composition of units larger than a single utterance and

their relationships.

The speech signal is generally considered to consist of several components. The com-

ponents can be traced to various physiological features of the vocal tract. An engineering

description of the vocal equipment is presented by Deller et al. [1, Chapter 3]. A brief

summary of required supporting concepts follows. Their relationship to various properties

of the signal in the time and frequency domains is detailed in Chapter 3.

Phonemically2, speech sounds are classified into two main classes. Consonants are

produced by forcing air through partial or complete constrictions in the vocal tract, pos-

sibly accompanied by vocal chord activity. Partial constriction while air is being forced

out of the lungs, produces sustained sounds. These are named according to where the

constriction occurs, such as palatal: [s,z] and [S,Z], velar: [x], dental: [T,D] or labiodental:

[f,v].3 Total constriction is usually in the form of a short build-up of pressure followed by

a burst, such as [t], [k] or [p]. Sustained constriction with the velum open to the nasal

cavity results in the nasal sounds, such as the bilabial: [m], palatal: [n] or uvular [ð].

Vowels are produced when the vocal tract is open and the vocal chords active.

Phonemes can be rendered in a massive range of ways through changing pitch, speaking

rate, loudness (intensity) and the co-articulation effects from surrounding phonemes. The

higher-level content of speech dictates the precise use of this variation.

2The terminology used here follows Deller et al. [1]. A phoneme is the smallest theoretical unit of

speech whose change results in a change in meaning, where its audible incarnation is the phone. Phones

are much more varied than phonemes.

3International Phonetics Association (IPA) symbols are written between [ ]. Where two IPA symbols

are used in this section, separated by a comma, the second one is voiced.
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At the morphological and lexical levels, sequences of phonemes are grouped into

words. Their rendition by a speech synthesiser requires awareness of how the vocal system

transitions between various configurations to render the phoneme sequence. Depending

on the language, some syllables may be more prominent than others and are the basic

units that carry specific patterns of loudness and pitch modulation.

Relationships between words contribute as much to the meaning of a utterance as the

meanings of the words themselves. The syntax of a language specifies the allowed rela-

tionships between words, grouping them into phrases and sentences. Correct indication

of syntax through subtle effects on the way the phonemes are produced and placement of

breathing pauses allow listeners to perceive the correct syntax. The grouping of inflections

used to indicate the higher-level features of the phonemes is known as prosody. It has

two main components:

1. intonation, expressed mostly through pitch and loudness, and

2. the duration of phones relative to one another.

Phonemes are commonly referred to as segments, and prosody as a collection of supra-

segmental effects.

Eventually there comes a point where it must be asked what the intent of producing

the utterance was. Human speech is all about this intent. The linguistic schools of

semantics and pragmatics deal with this level.

Semantics, pragmatics, syntax, words and phonemes themselves influence how pho-

nemes are rendered in the speech act. Perception of speech relies on the proper production

of phonemes under all these influences.

Text is another form of verbal communication, and it also embodies structure. In

fact, syntax is an integral part of writing expressed in the words themselves, punctuation

and formatting. Semantic information is also expressed in text, but the mechanism differs

from spoken language. It is usually in more subtle aspects like choice of words, formatting

and paragraph breaks. Transforming text to spoken speech is the aim of TTS. It has been

argued that this goal may be inappropriate as much written material was never written

to be spoken [6]; the two forms are not equivalent. This transformation between forms of
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verbal communication has many practical applications however, and the challenge is to

infer enough of the missing information from text in order to usefully synthesise speech.

The interplay between levels of the hierarchy of information is tremendously complex

and theoretically it has to be understood to render text into speech. The challenge in

speech synthesis has always been to find a workable compromise. Early TTS systems

modelled everything, in keeping with their purpose as research tools. Detailed modelling

is also a good means to compact representations which enabled research with the limited

computing power available. The inaccurate modelling of the speech production apparatus

is to blame for their robot-like quality. As voice quality improved, poor intonation mod-

elling and text interpretation was blamed for the synthesiser’s bland speaking style. The

focus of current research in TTS is on these aspects in order to produce more natural-

sounding speech output.

In this work, the text is written to be spoken, and the dialogue has been mapped

out beforehand. This gives us the opportunity to encode a human’s interpretations up

to the semantic level rather than model all the levels of meaning in the text and speech

automatically. The implication is that we record utterances in the context of the dialogue,

and index them correctly. Indeed, as Chapter 2 will expound, the correspondence between

the speaker’s interpretation and rendition of the prompts, and the sufficient indexing of

the recordings, is the main challenge and art.

1.3.2 Speech Synthesis

TTS is the art of creating audible speech from text. In almost all approaches to the prob-

lem, the input text is processed into a symbolic form. This form describes the linguistic

aspects of the utterance in the hierarchy of Section 1.3.1 in enough detail that a model of

speech production can produce speech.

Speech synthesisers are in a sense an expression of our understanding of speech. In

the early days especially, every aspect of producing speech from text was built using

detailed models. Naturally the reach of the models was finite, and the highest level on

the hierarchy (Section 1.3.1) reached, was the syntactic level. The most basic influence of

syntax on the speech signal was modelled in the form of intonation and duration models.
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Figure 1.2: Data-flow in speech synthesis, showing the major processes or components,

and their products.

Figure 1.2 shows the typical steps performed when synthesising speech: from input

text, to the string of units that describes the sound, to finally producing the waveform.

Variations abound, but the same basic information is always needed to build an intelligible

utterance. The following sections explain how each step adds the information needed to

eventually arrive at audible speech.

1.3.2.1 Text Normalisation

Text normalisation is the initial step in the synthesis process, forming the synthesiser’s

text interpretation capability. It is important that the text to be analysed linguistically in

the next step, is of a standard form and does not contain ambiguities about the meaning

of words and symbols. The classic example is that of saying a number as a date or a string

of isolated digits. Another is abbreviations, for example “dr.” can be read as “doctor” or

“drive”, depending on the context. Where syntax and parts of speech help to distinguish

between possible renditions of an abbreviation or other token, the text normalisation

component may be integrated with downstream components.

Approaches are typically rule-based, whether they are hand-written or deduced from

large amounts of text by automatic means. The intended purpose of the synthesiser

determines the scope of what will be needed here. A system that has to read news must
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be able to determine what to say from anything one might find in a typical news item.

When a synthesiser will only need to be capable of “reading” specially written utterances,

one could build a much simpler text normalisation component.

1.3.2.2 Linguistic Analysis

The next step is to derive all the information that is needed to determine how an utterance

should be pronounced.

Closest to the signal level, speech is described from a phonological point of view,

starting with the first writing systems that employed symbols to represent syllables. This

implies that knowledge about the phonemes enables one to determine the pronunciation.

Klatt successfully used this approach in MITalk [2], and it is still the basis of modern TTS.

MITalk performs extensive morphological analysis, with a lexicon of morphs, to produce

a phonetic transcription that describes the utterance to be synthesised. For novel words,

a set of hand-written Letter-to-Sound (LTS) rules were employed. Modern synthesisers

use a variety of techniques, but most involve a large lexicon for word pronunciation, and

LTS rules for unknown words. There is a tendency toward automatically deriving LTS

rules from large lexicons [7].

Once the text is in a standard form and word pronunciations are available, higher-

level information about the utterance must be derived to produce natural prosody. The

parts of speech of the words are first derived, usually using a mix of tags from a lexicon,

automatic methods based on Weighted Finite-State Transducers (WFST) or Classification

and Regression Trees (CART), and morphological parsing. The parts of speech may be

used to group the words into prosodic phrases, assigning phrase and utterance breaks.

The features of each word thus derived can be used to assign a high level description of

prosody [8], which is used to compute pitch and duration.

Semantic effects on the spoken utterance need to come from the dialogue level or

higher, and cannot be derived from the text. For example, the final phrase of an utterance

carries special significance in signalling to the other party in the conversation that a

response is expected, that more information will follow or to emphasise new information.

Attempts have been made to introduce tag-sets into speech synthesis input that can
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provide this information and more [9, 10, 11]. It is used to render prosodic aspects

correctly.

1.3.2.3 Prosody: Intonation and Duration

There exists a massive body of research into inferring prosody from syntactic [12, 13]

and semantic information, and desired speaking style [10, 14]. Much of this research is

language specific, and only those languages that have been studied extensively, and for

which mature text analysis systems exist, have had success with this level of modelling.

It remains the difficult problem in speech synthesis.

1.3.2.4 Waveform Synthesis

The waveform synthesis component is charged with rendering a speech signal with the

characteristics specified by the upstream modules in the text-to-speech synthesiser. Put

simply, it must produce a correct sequence of phonemes with correct prosody.

Waveform synthesis has been done in a variety of ways. The earliest came to be to

test and demonstrate understanding of the speech production mechanism and of speech

perception. The analogue approaches mentioned above amounted to physical models of

speech production. Indeed, this modelling interest continues in speech research. Articu-

latory synthesis is still studied, and some consider it the most viable long-term option for

truly flexible speech synthesis [15].

Voice-coding (as practised in the telecommunication industry) provides a number of

encoding schemes for speech. When coupled with a level of phonological encoding, such

as a diphone or unit-selection synthesiser, some of these proved very useful for producing

high quality speech [16, Chapters 6,7 and 16][17, 18].

Linear prediction coding is the most prominent of these. It enables decomposition of

various components of the speech signal into compact representations. It does this in a way

that holds some intuitive agreement with our understanding of speech production. This

enables manipulation of the separate components in intuitive ways. Sinusoidal models

arose in recent years as useful encoding parameterisations. Chapter 3 deals with this

topic.
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1.4 Objectives

This thesis has as its main objective the implementation of a speech generation component

for an SDS. Toward that goal we

1. survey current methods in speech synthesis, and

2. distill from that survey all that is necessary to allow a relatively simple implemen-

tation.

3. We also demonstrate the application of these techniques to obtain:

• quick to implement and workable synthesis of previously unsynthesised lan-

guages, and

• very high quality

in the setting of an SDS employing a “slot-and-filler” Natural Language Generation

(NLG) component.

1.5 Contributions

This thesis makes these contributions:

1. An extensive literature study is presented on the unit-selection methodology of

speech synthesis (Chapter 2) and useful signal processing techniques (Chapters 3

and 4) in this context.

2. A limited-domain synthesiser was implemented and the principle shown to work well

for languages where several linguistic components do not yet exist. (Section 2.6)

3. An automatic method for deciding the contents of a compact and complete speech

corpus is presented. (Section 2.3)

4. An automatic method for performing phonetic alignment on small corpora is devel-

oped. (Section 2.6.3.2)
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5. The first incarnation of the system was evaluated, and several shortcomings identi-

fied. (Section 2.6.5).

6. A synthesis engine based on Linear Prediction Pitch-Synchronous Overlap-Add

was implemented to help alleviate some of the shortcomings of the limited-domain

methodology. (Chapter 3)

7. The aforementioned synthesis engine requires pitch-tracking; a robust pitch tracking

algorithm tailored to the signal synthesis component was developed to that end.

(Chapter 4)

1.6 Overview and Organisation of this Work

The trade-off between encoding and modelling, or moving knowledge from the synthesiser

into the data [6] is the underlying theme for this work.

Chapter 2 discusses unit-selection synthesis and sketches a picture of the movement

of speech synthesis from modelling to ever more intricate encoding and indexing of the

encoded speech. Constraining the output of the synthesiser in this way to incorporate

all the prior knowledge about the task at hand allows one to avoid much of the intricate

modelling, and to encode the knowledge in carefully constructed data instead. This study

works toward that end in the context of a specific spoken dialogue system application. It

is found that in a limited domain virtually everything can be delegated to the process of

making a small set of recordings, and indexing them appropriately.

Finally, a partial return to knowledge expressed in rules and models is made to improve

the results and to make the synthesiser more robust. Chapter 3 discusses methods to

modify the encoded speech to make it conform to a model in specific situations where

the encoding can be shown to fail. The modification component requires very good pitch-

tracking, the topic of Chapter 4.

To summarise, we aim to use the opportunity given by cheaper computing power and

the constrained environment of an SDS to build appropriate speech synthesis up to the

semantic level. First, as much information as possible is encoded by making appropriate
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recordings. Finally a brief return to modelling is made to modify the speech signal in

cases where the encoding philosophy is too restrictive.



Chapter 2

Waveform Synthesis by Unit

Selection

2.1 Introduction

The first attempts to synthesise speech on digital computers involved detailed models of

speech production, as well as complex sets of rules to determine the parameters of these

models. The classic examples include the Voder (where the parameters come from the

human “player”) and formant-based systems like MITalk [2]. Later, the idea of setting

up templates for parameter progressions came to lessen the role of the rules in specifying

the parameters. Realisations of speech waveforms based on the templates are constructed

by concatenating the short waveforms synthesised from each template. The classic exam-

ple of this level of concatenative speech synthesis is the diphone synthesiser, where the

inventory of templates attempts to cover all the transitions between different phones or al-

lophones. Classic diphone synthesisers make clear decisions about the inventory of speech

sounds that can be produced, and then rely on signal processing techniques to extend the

set to cover pitch and duration variations, for example. These templates of parameter

progressions are captured by analysing speech recorded for that purpose, usually a series

of nonsense words.

Modern speech synthesisers make use of cheaper, faster computers by extending the

inventories. While some follow phonological arguments to define a much larger set of

predefined unit templates, others go on to the point where they use large corpora of fluent

14
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speech directly. The synthesiser selects short pieces of speech waveform from a corpus and

concatenates them to produce the required utterance. As such, the inventory is defined

implicitly by the data that the synthesiser has access to. Such a speech synthesiser is

called a unit-selection, or concatenative synthesiser. Two common observations support

this technique [19, 20]:

1. speech spoken in one context may be used in another, and

2. sections of a speech waveform may be concatenated without audible distortion.

Figure 2.1 depicts the unit-selection synthesis process in general. The synthesiser

starts by extracting a number of candidates for each “unit” from its database of fluent

speech, and then selects one from each set. The selected units are concatenated to produce

the final utterance.

Unit-selection synthesis forms the basis for the current drive of making speech synthe-

sisers trainable. The fact that a large amount of single speaker data is available, allows the

exploitation of the same data to train models for predicting the pitch and duration from

the linguistic specification. The predominant view here is that our knowledge of speech

production is too limited and that the knowledge may be shifted from the synthesis engine

to the data. Unit-selection synthesisers give up some of the flexibility and control that

more detailed models and even diphone synthesis have, making it more difficult to build

reliable unit-selection synthesisers.

Since it uses the recordings directly or with very minor modification and attempts to

mimic the prosody seen in the database, a unit-selection synthesiser can usually imitate

the person whose voice was recorded for its construction quite convincingly. So much so

in fact, that it becomes viable to build a synthesiser that produces speech in the style

that would suit the application.

This discussion immediately raises several issues.

• The waveforms must be indexed so that the synthesiser can find appropriate units.

How can this be done efficiently, and what is meant by a “unit”? (Section 2.2)

• Which units are needed by the synthesiser to perform well on its intended task?

(Section 2.3)
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Figure 2.1: The unit-selection synthesiser receives a synthesis request in the form of a

symbolic target specification, and from a set of candidates for each “unit” in the target,

finds an optimal example. Next the optimal examples are concatenated, and sometimes

modified.
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• How do we select units from the corpus to best synthesise the required utterance?

(Section 2.4)

• How do we splice the selected units in order to minimise audible artifacts? (Sec-

tion 2.5)

This chapter explores these questions from literature on the topic, and then distills an

answer to the problem stated in Chapter 1.

Chapter 3 discusses signal processing of the waveforms for smooth concatenation and

possibly improving the fulfilment of the target specification by modifying pitch and dura-

tion. Chapter 1 touched on issues of determining the specification of the target utterance.

2.2 Indexing the Corpus

A unit-selection synthesiser takes the place of the waveform synthesiser in the TTS func-

tional block diagram in Figure 1.2. Its input is linguistically augmented phonemic targets.

Since unit-selection synthesisers make use of fluent speech databases, their indexing of the

data may allow advantageous use of higher-level linguistic features, including stress, ac-

cent, syllable boundaries and word boundaries. There exists a close synergy between the

capability of the text analyser, the annotation used for the database and the actual speech

in the database.

The first widely known unit-selection synthesiser was a system called CHATR. It was

developed at ATR Interpreting Telecommunication Research Laboratories in Japan [21].

The first versions of CHATR used phonemes1 as the basic unit for concatenation, so that

concatenation occurs at the phoneme boundaries.

The suitability of concatenating at phoneme boundaries is questionable. Yi conducted

a detailed study of English phonology with concatenative synthesis in mind, and con-

structed a large number of common phoneme sequences from a large lexicon [22, 20].

The sequences were constructed manually and in such a way that the boundaries of the

1A note on terminology: we use the term phoneme to be a linguistically distinct unit, i.e. substituting

a different phoneme would result in a change of meaning. A phone is a realisation of the more abstract

idea of the phoneme.
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phoneme sequence are conducive to simple and distortion-free concatenation. Concate-

nation in areas where the source changes from voiced to unvoiced or vice versa, were

virtually inaudible. Further good splice points are indicated by the observation that stop

sounds bear very little co-articulation effects, making either side of the stop sound a good

join spot. “Variable length” units are then defined to be phonemes or parts of phonemes

between good join spots, and the units were recorded in various prosodic contexts.

A Japanese synthesiser has been built on similar ideas of predefining a large set of

units based on commonly occurring strings of phonemes [23], and designing the speech

corpus to provide good examples.

In almost all of these approaches to segmenting a corpus of speech into units, the

eventual unit selection is performed through optimising, among other things, the total

sum of concatenation costs (see Section 2.4). Most modern systems borrow this idea from

CHATR. In this scheme, the concatenation cost of concatenating two units that happen

to be consecutive in the original recordings, can be hard-wired to zero. This encourages

the system to select longer sets of consecutive units, resulting in variable length or non-

uniform units.

This flexible, data-dependent means of selecting longer synthesis units can be used to

exploit the increase in concatenation points that smaller units give, without necessarily

causing more concatenation points. Both the creators of CHATR and researchers at

AT&T experimented with half-phones as the fundamental unit of concatenation [24].

Using half-phones allows the concatenation of sections from the database in the stable

regions of vowels. The system is then still free to concatenate speech sections at the

boundaries of stop sounds too. An advantage this scheme has, is that it can mimic the

concatenation of diphones where appropriate. Note that this idea could break down very

badly if the join costs are ignorant of the underlying phonetics (See Section 2.4.3).

Another fine-grained approach that allows more flexibility in where to join the units,

is an exploitation of properties of the speech recognition technology used to automati-

cally segment the corpus. Hidden Markov Model (HMM) techniques have been used for

automatic phonemic labelling of speech synthesis corpora [21, 25, 26]. Most use sim-

ple three-state left-to-right acoustic models, one per phonemic label. Instead of drawing

phoneme boundaries on the transitions between different phoneme models, one can label
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each state transition, resulting in three labels per phoneme. The synthesiser allows splices

to be made at the boundaries of each of these so-called senones [27, 26].

Much of the variation in human speech comes from higher-level considerations: the

effect of syntax, semantics, discourse and their realisation in prosody. It follows that

finding the desired units in the database based only on their phonetic context will very

likely produce inappropriate candidates. Including higher-level features in the candidate

search results in much more natural-sounding speech [28, 29, 30].

The choice of higher-level features depends on the quality of the text analysis compo-

nent of the synthesiser and how much variation is available in the data. Also critical is

the quality of the labelling [31, 32, 33, 27]. Even expert human labellers often disagree

on how to assign higher-level labels like ToBI tags [12] to a segment of speech. Solutions

are a combination of introducing automatic techniques to hopefully improve consistency,

and simplifying the labelling scheme [33, 28]. The latter aids both human and automatic

labellers.

The same ambiguity is found in the choice of the set of phone or phoneme labels. Only

sparse mention is made of this subject in the literature on unit selection. Synthesisers

that define the set of units beforehand need to make explicit mention of all the distinct

sounds the synthesiser can produce. Unit-selection synthesisers move the finer distinctions

from the synthesiser to the data and so they can actually perform better when a phoneme

label describes a somewhat wider range of phenomena. That it can even be considered

to build synthesisers based on the orthographic spelling of words, without converting to

a phonemic representation, is testimony to this [34].

Another topic which is rarely addressed in the literature, is how well the text analyser’s

interpretation of the input utterances and the annotation of the database matches the

interpretation of the speaker who delivered the speech for the database. This affects

the quality of the synthesiser in a fundamental way. Steps in the direction of explicitly

capturing and replicating speaker behaviour have been taken [35, 36], and automatic

labelling of corpora incorporating multiple possible pronunciations have been reported [37,

38]. Methods exist to train models of duration and intonation of units on single speaker

corpora [33, 37], further adopting speaker specificities.

To conclude, unit-selection synthesisers require time-aligned symbolic information to
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select candidate units. Phonemic labelling forms the basis of most indexing schemes.

Higher-level labelling is often added to give clues about the context of a phone, which

enables a synthesiser to find an appropriate set of candidates. At first sight it might appear

that the more detail the annotation contains, the better. However, the consideration of

wider than phonetic constraints that result from the global optimisation process, allow

unit-selection synthesisers to get the finer details from the data. The annotation should

better enable this, rather than being more specific. This phenomenon is another question

about the roles of rules and data in speech synthesis [7].

2.3 Corpus Design

The speech quality that results from unit-selection speech synthesis is the result of a

synergy between the contents of the corpus, the way it is indexed and the text-analyser.

The text-analyser gives targets to the unit-selection synthesiser, which has to be able

to find relevant waveforms from that, and the corpus must contain a sufficient number

of relevant examples. The first unit-selection synthesisers simply used as much data

as they could, but the cost of synthesis quality data is high and the results not quite

predictable. The success of synthesisers that explicitly define a set of units in the style

of diphone synthesisers, alludes to the benefits of carefully giving the synthesiser what

it needs [22, 23, 39]. In this section we briefly report on techniques to design compact

corpora that provide coverage of the intended language or domain.

The first question to answer would be what it means to cover the language or domain.

Donovan [25] simply selected many random sentences and recorded them. Van Santen et

al. [40, 41] and Möbius [42] argue that most phonetic events in speech are rare, and that

because of the overwhelming number of rare events, the synthesiser is likely to come across

many of them. This is the so-called Large Number of Rare Events (LNRE) phenomenon.

A random corpus of the order of a thousand spoken sentences will certainly not contain

that many different events. The domain or language is covered by the corpus if it contains

examples of everything the synthesiser must be able to produce. Note that since the

text-analyser gives the requests to the waveform synthesiser, it is usually sufficient if the

corpus covers the output domain of the text-analyser.
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Secondly, what events must the corpus cover? The combinatorial growth in the number

of units as wider phonetic and higher-level contexts are taken into account, forces a

compromise between more and more detailed features and corpus size. The Next-Gen

system at AT&T simply uses a “large enough” corpus, following CHATR. At IBM [37] the

corpus is designed to contain more than a minimum number of all the diphones produced

by the text-processing front-end on a large text corpus. The IBM synthesiser’s corpus is

built by using a greedy algorithm that selects the sentence with the largest number of new

diphones at each iteration. Others still cover triphones [43]. Others go further and try to

cover the most common morphemes, syllables and phoneme strings, in various prosodic

contexts [44]. It is also possible to see which acoustic variations of phonemes are needed

when synthesising a large text corpus [45]. The selection statistics are then used to design

a more compact corpus, or to compact the existing one. Its application for database

design is limited to allowing better datasets to be built once a very comprehensive one

has already been used in unit-selection synthesis. To ensure smooth transitions between

words, a strictly limited-domain synthesiser should exhaustively cover all the word pairs

possible in its target domain. It is an accepted fact that unit-selection corpora that try

to cover everything in the language would probably never have enough data [46, 42].

Once it has been decided what the goal of the covering is, a very large corpus of text is

used to get many sentences and the text-analyser of the synthesiser is used to find all the

symbols that each sentence could contribute to the corpus, if it were selected. We take

the frequencies of phonemic events in the large phonetised text corpus to represent that

of the language, or at least the representation of it in the domain which the synthesiser

targets. The product of text selection is a corpus whose frequency of occurrence of the

chosen type of events is much more dense in rare events than the original large database;

its histogram of event frequencies will be much flatter.

2.3.1 Text Selection

Analogous to speech recognition systems, data-driven speech synthesisers are only as good

as the underlying data. As discussed above, the synthesiser must be able to produce a

wide range of rare events and as many as possible of these must be present in the database.

Since the waveform synthesiser produces waveforms from the output of the text-processing
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front-end, exercising the front-end using sentences from a large corpus of text is a good

way to build training data. Each sentence produces certain symbols. Symbols are most

often comprised of a phoneme, indications of its phonetic context and perhaps selected

higher-level features such as lexical stress or accent. The goal of text selection is then

to choose a subset of these sentences, such that as many of the symbols as possible are

present at least a certain number of times, in the smallest subset of the original sentences.

Selecting the smallest subset can be formulated as the set covering problem. Given

a global set Σs = {s1, s2, s3, . . ., sj, . . ., sM−1} of all possible symbols, and a set S of N

small subsets of Σs, S = {Ss
0, S

s
1, S

s
2, . . ., S

s
N−1} with Ss

i ⊂ Σs i ∈ [0;N − 1], select the

smallest subset So ⊂ S that contains all or a sufficient number of the symbols in Σs. The

definition of the symbols sj depends on the problem at hand, as described in Section 2.2.

This problem has an optimal solution, but it is NP-complete [47]. Approximate solu-

tions employing greedy selection algorithms have been employed with very usable results.

Several variations exist [40, 43, 45]. The basic form of the algorithm is depicted in Fig-

ure 2.2.

The particular forms of the done() and score() functions determine the performance

of the algorithm. To cover diphones for an entire language, one would include a certain

minimum number of examples of each diphone. A consideration for a database for training

speech recognition models or duration prediction systems could also be to cover the data

sufficiently for estimation of parameters of a model [40]. The designer of a limited-domain

synthesiser would be most interested in recording as few utterances as possible, but needs

at least one example of each word or word pair in the relevant contexts.

In the classic version of the algorithm, the score() function would simply return the

number of symbols in Ss
i not yet covered sufficiently in So, and the algorithm terminates

when a minimum number of each symbol has been selected. A refinement suggested by

van Santen [40] is to score each symbol sj in a set Ss
i by the inverse of its frequency over

the entire set S. The score of the subset Ss
i is the sum of the individual symbol’s scores.

In that way, the algorithm prefers sentences containing the rarest symbols, and selects

them first while common symbols are picked up in passing. Once one or more examples of

a symbol have been selected, up to a threshold, it no longer contributes to the score of a

subset Ss
i , and the algorithm terminates when no utterances score above 0. In this form,
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Initialise: Start with two arrays, S ← {Ss
0, S

s
1, S

s
2, . . ., S

s
N−1} and

So ← ∅

Iterate:

while not done(So),

let i∗ = arg maxi score(S
s
i )

add Ss
i∗ to So

remove Ss
i∗ from S

Figure 2.2: The greedy algorithm for set-covering.

the greedy algorithm has to compute score() for each sentence in the corpus, for as many

times as the algorithm is iterated. For large sets, it becomes expensive very quickly.

The last refinement we make, is to compute score() only on the sentences that will

contribute the rarest, as yet uncovered, symbol. Once the rarest symbol has been covered

sufficiently, the algorithm moves on to cover the second rarest, and so on. In this way,

the number of computations of score() per iteration is reduced from the size of the set S,

to the frequency of the next rarest symbol at each iteration. An additional initialisation

step is required to collect, for each symbol, a list of the sentences that contain it. The

cost of this collection step is small compared to running through the full set at each

iteration. The more common units are picked up in passing, while the algorithm ensures

the presence of examples of all the symbols.

Experiments on the diphone and triphone sets described below, as well as limited-

domain tasks described in Section 2.6 show that the refinement to score() causes about

5% of the selected sentences to differ. There was no significant difference in the symbol

coverage statistics and the resulting set size. The difference in computational cost is two

to three orders of magnitude on a practically sized set.
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2.3.1.1 Experiments

An experiment was conducted using roughly 280 000 English sentences harvested from

electronic books from Project Gutenberg. The sentences were selected using a simple

regular expression that disallowed a large number of sentences since they contained illegal

characters, such as quotation marks. Each sentence was transcribed into a phonemic

string using the English text-analysis facilities of Festival [48]. The sentences contain

many proper nouns and some phrases in French, German and other languages. These and

other out-of-lexicon words were transcribed by Festival using letter-to-sound rules that

were trained on the included CMU lexicon of about 80 000 English words. As a result,

there are mistakes in the pronunciations. When using the selected data to build general

synthesisers, the issue of pronunciations must be addressed for all these words.

The set of phonemic sentences were converted to a set of diphone sentences, containing

1 540 diphones. A theoretical total of 2 116 diphones is possible, but not all possible

combinations of two phonemes occur in a language. Only 270 sentences were needed to

obtain at least one occurrence of each diphone. If each diphone has to be in the corpus

at least five times, the selected set is enlarged to 1 046 sentences. Requiring 10 examples

enlarged the selected set to 1 977, which is still a viable number to record and process.

Figure 2.3 shows the fraction Nj/NS, where Nj is the number of occurrences of the

particular diphone sj and NS is the sum of all the Nj in the set of sentences under

consideration:

NS =
M−1
∑

j=0

Nj. (2.1)

The diphones are indexed by j in order of increasing cardinality in the original large set of

sentences, S. Since the graph remains monotonically increasing, the order of units are the

same in the selected sets. Plots are shown for minimum values of Nj ∈ {1, 5, 10} examples

of each diphone in the database. The more common units are still much more common

than rare ones, but the percentage of rare units has increased. The resulting database is

much more dense a representation of the diphones that occur in the initial large set.

Figure 2.4 shows the fraction Nj/NS for the total number of triphones for the complete

set of sentences, as well as the selected sets for a minimum of 1, 5 and 10 examples of each

triphone in the database. The total number of triphones is 30 571, many more than the
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Figure 2.3: The distribution of the diphones in the Project Gutenberg set of sentences

and the selected sets. The plots show the fraction Nj/NS , where Nj is the number of

occurrences of a particular diphone sj and NS is the total number of diphones in the

selected set. Plots are shown for minimum values of Nj ∈ {1, 5, 10} examples of each

diphone in the database.

diphones and far fewer than the total number of possible combinations of three phonemes:

97 336. Covering each triphone at least once required 7 166 sentences, an approximately

40× reduction in size of the text corpus. The reason that triphones require so many more

sentences to cover, is that the sentence length stayed the same, and thus the probability

of finding a sentence that yields more than one rare symbol is much lower than in the

diphone case. One option is to throw away these very rare cases and rely on diphone

coverage to synthesise them when they do occur [43].

Covering triphones using an algorithm that forces the rarest symbol to be present in

the selected subset, is perhaps not the best way to ensure good coverage. It is however

desired when selecting text for limited-domain synthesisers. Another option is to select

sentences according to a score derived using phonological knowledge, and without the

last optimisation mentioned in the previous section. The selection algorithm can then

focus on what is important to the synthesiser, at the cost of not covering all the tokens

exhaustively [40]. It could also be argued that this is a better way to cover symbols in

light of the errors that most certainly occurred during the text to phoneme conversion.

This section discussed selecting text for speech synthesisers. Further applications
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Figure 2.4: The distribution of the triphones in the Project Gutenberg set of sentences

and the selected sets with minimum counts of 1, 5 and 10. The triphones sj are sorted

in order of increasing cardinality.

include the design of compact training and testing corpora for speech recognition. Since

this set-covering method is very efficient, it can be used to design an optimal set of

sentences given constraints on the final database size and the choice of symbols using a

rapid prototyping approach to see how various factors influence the size of the selected

set.

2.4 Unit Selection

2.4.1 Search

A crucial insight from the development of CHATR was that the search for the optimal

unit in each bin could be cast as a search through a finite-state network, analogous to

that in HMM-based speech decoding [19].

Synthesis starts by building a set of candidates for each unit in the target (see Sec-

tion 2.4.2). Each candidate in each set is fully connected to all the candidates in the

preceding set to form a weighted finite-state network, from which an optimal path can be

found using a Viterbi search. Section 2.4.3 discusses the weights in more detail. Figure 2.1
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shows a hypothetical network constructed from a set of candidates, and one possible search

path.

The size of the database could quite easily grow to the order of hundreds of thousands

of units, and as Section 2.4.3 will show, this means that the search could become very

computationally expensive.

2.4.2 Candidates

When the synthesiser receives its synthesis request, it starts by finding all the units in

its database that could fit into the utterance it has to produce. CHATR worked by

simply taking all realisations of a phoneme from the required context in the database and

considering them to be viable candidates.

2.4.2.1 Phonological Structure Matching

Another approach which is particularly well-suited to limited domains, is Phonological

Structure Matching (PSM) [49, 50]. In this case the database is annotated in a hierarchical

fashion.

Phrase: Each phrase has its beginning and end times marked.

Word: Phrases contain words, and these could have associated features such as phrase

position (initial, internal, final), sentence position, boundary tone type (rising eg.

at the end of a question, falling eg. at the end of a statement).

Syllable: The words contain syllables. The syllables can be marked according to lexical

stress or tone accent.

Phonemes: The syllables in turn contain phonemes. Features of phonemes include syl-

labic position: onset or coda.

Figure 2.5 shows an example adapted from Schweitzer et al. [50]. They assigned primary

and secondary features to each unit. Primary features include phonetic transcription,

stress, word and phrase boundaries. The secondary features are not necessary for a unit

in the database to be a candidate for selection, but the unit is scored later on how well it
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n
syl coda
syl stress

ah
syl coda
syl stress

h
syl onset
syl stress

d
syl onset

r dax
syl coda syl coda syl coda

the total is two thousand, four hundred rand.Phrase

hundred

phrase med
sentence med...

...

... ...

phrase init
sentence med
word single

f ao h ah n
sentence med
phrase med
word init
lexical accent

r ae n d
low phrase boundary
phrase final
sentence final
word single

d r ax d
sentence med
phrase med
word final

four rand
sentence final
phrase final
low phrase boundary

phrase init
sentence med
high  accent

Phonemes

Syllable

Word

Figure 2.5: An example of the phonological structure in PSM. The search for candidate

units start at the phrase level, and proceeds through the word, syllable and phoneme

levels until suitable candidates are found. The example is adapted from Schweitzer

et al. [50], and depicts their notion of primary and secondary features.

matches the secondary features of the target specification. Secondary features are different

at each level of the phonological tree. At the word level they include boundary tone, pitch

accent type and phrase position. More detailed levels add features, such as word position

for syllables and syllabic position for phonemes.

The synthesis algorithm proceeds by finding the best matching candidates at each

level, starting at the top. If it does not find any units, or perhaps less than a minimum

number, at the phrase level, it proceeds to search for candidates at the word level. It

continues downward to the phoneme level. In limited domains, or at least when the

database has been augmented with domain specific phrases, this approach could yield

very good results with minimal computational load in cases where only a few units are

needed to synthesise the utterance.

Alternatively, one could make the units smaller, for instance phones or half-phones.

All these units are binned together, one bin of candidates for each unit in the target

specification. Instead performing a beam search to optimise the search, the units in the

database can be indexed so that more appropriate candidates are selected. That is the

topic of Section 2.4.2.3.
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2.4.2.2 WFST-based Methods

Two new and related methods are those by Yi [20] and Bulyko [27]. Both use Weighted

Finite-State Transducers (WFSTs) to jointly predict prosody, find good candidate units

and find the optimal subset of units to concatenate. Yi goes further and devises a method

for training weights for a general phonemically aware join cost. Jointly predicting prosody

and performing optimal unit selection allows the prosody available in the data to influence

the selection process, making the procedure more robust to missing phenomena in the

data. The challenge of indexing the data appropriately remains.

2.4.2.3 Acoustic Clustering

Another idea, also found in speech recognition, is to automatically cluster units of the

same type, as they may have acoustically different realisations. A clustering method would

have to allow the synthesiser to reach the correct cluster, based on symbolic features of

units at synthesis time. The Classification and Regression Tree (CART) method has been

used in speech recognition [51], and has also been explored for use in synthesis since the

early 1990’s [25, 37, 52]. It continues to find application in unit-selection synthesis. At

synthesis time, the features of a symbolic target unit is used to find the leaf node of the

tree which indicates a smaller and more appropriate set of candidates.

There are two prominent ways to use the trees. As an example of one, Donovan built

the decision trees as part of HMM training on the single speaker database. The HMMs

are used for automatic phonetic alignment of the data, with units being labelled as the

waveforms that align to each state of the phoneme models [25, 37]. The units that belong

to each state are clustered by maximising the log-likelihood of Gaussian mixture models

over a set of questions about phonetic contexts.

The second approach is that of Black and Taylor [52], as found in Festival [48]. One

major difference from Donovan’s incarnation is that it uses an acoustic distance mea-

sure D(V, U) between two units V and U of the same type. Equation 2.2 describes the

distance measure. The units V and U are represented acoustically as two sequences of

M-dimensional vectors. V (i, j) is the j’th component of the i’th vector of unit V (i, j),
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and likewise for U(i, j).

D(V, U) =
NVWdur

NU
+

1

NV

NV −1
∑

i=0

M−1
∑

j=0

Wj | U(biNU/NV c, j)− V (i, j) | (2.2)

with NV ≥ NU .

Wdur is a weight that determines the importance of the difference in duration on the total

distance and Wj is the weight of the difference between the j’th components of the vectors

that make up the units. The shorter unit is matched linearly in time to the longer one.

Thus, D(U, V ) is a weighted Mahalanobis distance-based measure of acoustic similarity.

The impurity of the cluster is defined as the mean of the distances of each unit to all the

others of the cluster of units.

Building the Decision Trees

In both the acoustic distance and log-likelihood incarnations of the clustering algorithm,

trees are built using a greedy algorithm. The algorithm starts with all the units in the

set to be split. In a synthesiser where phonemes are used, all the units will be of the

same phoneme type. Methods that use HMMs and log-likelihoods to build decision trees

naturally cluster units corresponding to HMM states. At each iteration, the algorithm

splits the cluster under examination according to questions about symbolic features that

describe the unit. The question which results in the best gain in log-likelihood, or the two

clusters with the lowest impurity, is chosen. Each resulting cluster is examined in turn,

and in the same way. The algorithm terminates when

• no more clusters with more units than a threshold exist,

• no more splits would result in a bigger drop in impurity than a threshold or

• when a maximum number of clusters have been reached.

Typical examples of questions include questions about

• surrounding phonemes,

• types of the surrounding phonemes (vowel, consonant, voiced, unvoiced, dental,

palatal, rounded, etc.),
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yesno

Syllable accented is 0

pitch < 108Hz previous consonant is alveolar

part−of−speech = 0 pitch < 100Hz

yesno

duration < 0.1328 next consonant is lateral

yesnoyesno

Figure 2.6: The target unit [oi<] (a diphthong) is dropped down the tree associated

with it and questions about its context used to lead to the correct cluster. This cluster

of units is used in the Viterbi search for this unit.

• syllable position,

• stress and

• predicted pitch.

The intended use of the CART is to reach the correct cluster with only the symbolic syn-

thesis request on hand. Therefore only symbolic information obtained by text processing

or mark-up may be used to build the decision trees.

Figure 2.6 depicts a decision tree with questions about the features of a target unit.

Note that the pitch and duration questions refer to the predicted pitch and duration. The

pitch and duration targets are predicted using the same parts of speech, stress, accent

and other linguistic information as is available to the trees. They may, however, still

provide useful summary information according to which to find appropriate units. In this

example the CART building algorithm seems to have had too many questions to choose

from, as it is difficult to see the relevance of the question about the parts of speech being

undefined.

The tree clustering method deals with data scarcity implicitly, in that clusters will only

be split if there is a sufficient number of examples and there is significant gain in splitting

a cluster. Another, less fortunate property of clustering data using a greedy algorithm to

approximate the optimal split, is its tendency toward data fragmentation. The data may

be split such that equally appropriate candidate units may end up in different clusters [37].

Merging small clusters again after splitting may yield better decision trees.
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Phonemic Context in Building CARTs

Donovan [37] performed extensive experiments to determine how much effect questions

about phonemic context had on the resulting synthesis quality. They compared systems

built with questions derived by considering

• one phoneme on either side,

• two phonemes on either side,

• three phonemes on either side,

• one phoneme on either side and a tag which gave the position in the syllable and

• one phoneme on either side and a tag which described three possibilities for lexical

stress on the central phoneme.

In each case word boundary markers were inserted as an additional “phoneme”. In speech

recognition word error rate experiments, the extended contexts had a worthwhile effect.

Their synthesis system also used these questions, indicating that they resulted in splits

with worthwhile log-likelihood gains. During listening tests however, the improvement

in modelling had not been carried over to the final product. One hypothesis offered was

that the subsequent processing after candidates had been obtained from the tree was the

source of much of the synthesis artifacts listeners described as unpleasant. Specifically,

discontinuities at the join locations and signal processing artifacts were to blame, and the

improved modelling is powerless further down the synthesis chain.

Another possibility is that the required transitions simply were not present in the

database, causing join artifacts. Again, the synthesiser is only as good as the underlying

data and, the range of questions from the Festival system may be too wide to really be

supported by any amount of data.

2.4.3 Concatenation and Target Costs

Inspired by CHATR, modern unit-selection synthesisers weigh transitions in the state

transition network according to target and join costs. Let V i be the i’th target unit
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in the sequence of units to be synthesised. For each target unit V i, the unit-selection

algorithm assembles a set of candidate units U i
n.

The target cost Ct(V i, U i
n) expresses how well candidate unit U i

n matches the target

specification V i from the synthesis request. The join or concatenation cost Cc(U i−1
m , U i

n)

indicates how well candidate units U i
n and U i−1

m would fit together if they were selected

and concatenated. Hunt and Black [19] define the two costs as the weighted sum of various

sub-costs:

Ct(V i, U i
n) =

Nt−1
∑

j=0

W t
jC

t
j(V

i, U i
n), (2.3)

Cc(U i−1
m , U i

n) =

Nc−1
∑

j=0

W c
jC

c
j (U

i−1
m , U i

n). (2.4)

The target sub-costs are derived by assigning numerical values to differences in various

symbolic features of the units. The most common concatenation sub-cost is a distance

between acoustic features at the end of U i−1
m and at the beginning of U i

n.

Sub-costs that have been used in the realisation of Ct(V i, U i
n) include differences in

predicted duration, pitch and energy with the values of the candidate units, phonetic

context differences (in the absence of acoustic clustering) and considerations based on the

amount of signal modification a unit would have to undergo [37, 19].

The join cost tries to infer how smoothly two units would join if selected. This natu-

rally leads to distance measures inspired by human speech perception. Klabbers et al. [53]

investigated the use of several distance measures based on comparison of the spectral en-

velope of speech frames in the context of diphone-based synthesis. Listeners were asked

to rate discontinuities and the correlation of the distance measures with respect to the

listener ratings were compared. According to their study Mel-scaled cepstra did not per-

form very well at all, while a Kullback-Leibler distance-based measure correlated quite

well with the perceptual measurements.

In a subsequent study at IBM [54], a similar set of tests were performed. The support-

ing observation was that the perception of the join cost was highly dependent on phonetic

context. They again used a decision tree to cluster the difference of vectors at both sides

of a join. A “typical” difference could be derived for each phonemic context in this way.

When the join cost is to be computed for two units at synthesis time, the decision tree
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is consulted, and the distance is computed in a way that takes the typical difference for

that context into account. Since speech is highly dynamic, one would expect a distance

measure that “knows” what the difference should be rather than one that simply measures

similarity to perform much better. The results correlate better with listeners’ perception

than other measures tested by a large margin.

While the tree-based distance measure provides very good results in computing join

costs, it must still be balanced with the target costs, and target sub-costs must be balanced

with each other. Several attempts at training the weights W t
j to work well with the

join cost computation have been made in other contexts [19, 20, 31]. Some claim that

the results are usually better than what can be obtained by manual tuning. Coorman

et al. claim that manual tuning based on linguistic expertise gives better results [55].

They go one step further and base join costs on additional features such as pitch and

devise non-linear functions for the cost based on the absolute value of the pitch and

the pitch difference to indicate acceptable ranges for feature differences. It should be

noted, however, that the unit-selection search is quite robust to surprisingly large weight

variations. This type of manual tuning is labour intensive and runs the risk of the resulting

weights being specific to the training set, speaker or database.

Yi [20] proposes a formulation where weights are derived off-line during the build

process. The information-theoretic distances that he derives from decision tree clustered

acoustic data is used to automatically train join and target weights for different clusters.

The results are shown to correlate very well with that of a detailed phonological study. The

distances amount to an extension of the context-aware distance measure built at IBM [54],

to include target costs and provide a phonological basis for the observed improvement in

listener correlation.

2.4.4 Optimisations

Hunt and Black [19] reduced the computational cost of the search significantly by per-

forming a beam search with a beam width of 20-40, and report that it did not affect

synthesis quality dramatically.

Off-line pre-selection and pre-computation of costs have been reported to make an

order of magnitude difference in computational cost with virtually no difference in output
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quality. The idea stems from the observation that a large number of units in the database

are never joined and that a relatively small number of join costs need to be pre-computed

and stored [56]. The idea of pre-computing join costs becomes even more pertinent when

used in conjunction with acoustic clustering, as join costs can be computed per cluster.

While the pre-computation of join costs makes a significant difference, it does not by itself

reduce the size of the database that needs to be shipped with the synthesiser. Donovan

presents a comparison between several ideas that made it into the literature [37]. The

best algorithms obtain speed increases of around a factor of two, and a resulting database

size of 58% of the original database’s non-silence units.

2.5 Unit Concatenation

In cases where the units selected were consecutive in the database, the two waveforms can

simply be concatenated, but the usefulness of a unit-selection synthesiser lies in its ability

to re-sequence the speech units. There are three domains in which the unit concatenation

results in discontinuity.

• Time domain discontinuity is marked by impulses at the join location where

the last sample of the left-hand unit and the first of the right hand unit differs by

a large amount. Time domain discontinuities are most easily smoothed by aligning

the units according to pitch-marks and then simply cross-fading between the left

and right units. Another reason could be that the difference in loudness at the join

location may not be natural in the phonetic context.

• Spectral discontinuities occur when the vocal tract is in a different position on

the right-hand side of the join than on the left. This is a thorny issue, since the

configuration of the vocal tract changes all the time during speaking, but suffice it

to say here that the difference must not be unnatural.2

Solutions include better distance measures for unit-selection join costs and signal

processing to smooth the spectrum of the signal (see Chapter 3).

2See the discussion on acoustic distance measures and the idea of capturing the typical difference

between cepstra given the phonetic context in Section 2.4.3.
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• Prosodic discontinuity is difficult to quantify. General TTS synthesisers rely on

the global specification of prosody, the selection of appropriate units and modifi-

cation of the units to fit the target prosody. Examples include pitch discontinuity,

loudness discontinuity and unnatural differences in duration of concatenated units.

Chapter 3 addresses the signal processing side of these issues.

2.6 Implementation

The effect of encoding to side-step the difficult problem of modelling speech is that the

synthesiser sounds more similar to the speaker who delivered the database than diphone

synthesisers do. Many modern synthesisers not only use the phonetic examples in the

database, but also train prosodic models from it. This trend can be pushed even further

by using the data as is, and explicitly use the prosody encapsulated in the database. Of

course the synthesiser would need significantly more context for each unit to get correctly

realised units from the database. Wider contexts require many more units, except if the

synthesiser’s output domain is restricted.

The type of dialogue system targeted in this study uses a finite-state network to define

turns. At each turn the machine responds with a scripted slot-and-filler prompt. There

are filler types of which the vocabulary is closed, like digit-strings (telephone numbers,

credit card numbers, reference numbers, etc.), dates, times, amounts and numbers. These

form the bulk of the required utterances. There are also open types, consisting mostly of

proper nouns as found in addresses. The closed types can be completely specified before

building the synthesiser, while the synthesiser would need to infer much more detail about

the novel words in the open filler types.

Focusing on closed types, and theoretically open types but with restricted vocabu-

lary, allows one to remove all the modelling except for a phonemic specification from the

synthesis engine. The limitations placed on the abilities of the synthesiser still allows it

to meet the requirements of the SDS, while allowing very high quality, natural-sounding

synthesis without the need for good text analysis or prosodic modelling. Although minor-

ity languages like Afrikaans and Xhosa have been studied for some time, computer usable

lexica, morphological parsers and prosodic models have not been built yet. Deferring
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this task to the data makes it possible to build synthesisers that can function in dialogue

systems with higher flexibility than simple prompt playback systems and much higher

quality than immature general synthesisers.

The success of a limited-domain synthesiser lies in the data it is given (Section 2.6.2),

and its ability to find the correct units (Section 2.6.4). Phonemic alignment and other

processing of the recorded speech into a unit-selection synthesis database is discussed in

Section 2.6.3. A prototype Hotel Reservation System (HRS) dialogue is used for experi-

ments throughout [57].

2.6.1 Text Processing

The limited-domain synthesiser requires a bare minimum of text processing. Phrasing

is indicated explicitly by punctuation, with the intention that it influences phrase final

prosody directly and predictably. A comma indicates continuation of the utterance, while

a full stop, exclamation mark, question mark and colon should be interpreted by the

speaker as being utterance final, and he or she will probably realise a low boundary tone,

for example.

Orthographic to phonetic conversion is accomplished using the freely available CMU

American English lexicon distributed with Festival [48]. A lexicon is available for Afrikaans,

but its utility is limited by the Afrikaans practise of forming compound words. Xhosa

was transcribed using letter-to-sound rewrite rules [58]. The HRS dialogue in all three

languages contained many domain specific words. In Afrikaans and Xhosa, all loan words

and proper nouns had to be manually transcribed and entered into an exception lexicon.

The exception lexicon is consulted before the language lexicon or letter-to-sound rules.

2.6.2 Corpus Design

The dialogue of the SDS is written as a set of prompts for each state of the dialogue.

The bulk of the prompts are static, i.e. they never change. The dynamic prompts contain

information items, or slots, to be filled from information provided by the business logic of

a voice application. The primary interest for coverage lies with the dynamic prompts. All

the prompts are carefully written to have phrasing indicated explicitly by the punctuation.
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At first sight, making sure that the database contains all the words it might need seems

sufficient. This does not ensure smooth joins between words, however. Since the database

provides the correct prosody and does not cover for diphones, drawing units smaller than

words from the data to aid in splicing words is not viable either. The solution is to cover

for word bigrams.

The natural language generation component of the dialogue system is used to obtain

a very large number of sentences intended to at least contain all the word bigrams the

synthesiser might encounter. Each sentence is processed into a set of tokens or symbols

for the greedy set-covering algorithm. The symbols are constructed so that they encode

phenomena relevant to the limited-domain synthesiser. For instance, phrase final words,

sentence final words and words inside phrases differ in their prosody, so that the database

needs examples of all three. Words immediately following a pause can be concatenated to

any preceding pause, and thus pauses could be considered a cost-free transition between

different words. Consequently, word bigrams are constructed according to these rules:

• any two words next to one another is a bigram and

• a punctuation mark after a word is counted as a “word”, so that “rand_,” is a valid

bigram and “,_and” is omitted.

Note for example that “rand_.” is a different bigram, and will also be present in the

selected set. Also, pauses are not considered for construction of bigrams. They are

incorporated through their implication by punctuation.

The principle was tested by first generating sentences for selection from the informa-

tion items we expected: dates, digit-strings, amounts and numbers. The format of each

information item is fixed:

dates: “<day of the week>, the <day> of <month>, <year>.”,

digit-strings: “<digit> <digit> <digit>, <digit> <digit> <digit>.”,

numbers: “<number>.”, and

amounts: “<number> rand, and <number> cents.”
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Examples of all types except digit-strings in English and Xhosa were generated by simply

enumerating all the possibilities, resulting in 372 date sentences, 10 000 numbers (up

to 10 000) and 10 000 amounts (up to 10 000 rand). The format for digit-strings was

chosen to allow one sentence to contain a number of different events. Enumerating the

digit-string sentences would lead to a massive set and so 20 000 random examples were

generated.

The digit-strings show the concept of explicit phrasing in the punctuation well: the

comma indicates a phrase final word rather than an utterance final one. Indeed, the

speakers all pronounced the digit before the comma with a rising boundary tone, indicating

that more is to follow. The utterance final word preceding the full-stop carried a falling

boundary tone.

A prototype synthesiser built on this set indicated that the numbers seemed to be over-

specified. In English, we can insert commas at places where a speaker would typically

pause, for example: “four thousand, five hundred and eighty rand.”. This reduces the set

of eleven bigrams that would be needed if all transitions from “thousand” and all words

following needed to be covered, to three. Note that the word “and” after “hundred” and

the “of” in the dates have a similar effect of breaking bigrams.

A final observation that helps to select fewer sentences to record, is that in English

numbers, amounts and dates there are eight words that end in “-ty” and seven that end

in “-teen”. The suffix could have a similar effect of breaking bigrams as the pause and

“and” or “of” had if we had split it from the words. Another way to view this is that these

glue words or syllables take the number of possible transitions from M × N to M + N .

Figure 2.7 presents this graphically. Xhosa has a conjunctive writing style which attaches

suffixes and prefixes to words in number phrases that indicate noun classes, so that the

solution of manually identifying common prefixes and suffixes is even more worthwhile.

When selecting prompts for recording for a particular dialogue, it is desirable that

all the word bigrams that link the sentence with the fillers are covered. We do this by

generating many random fillers, and putting them into the slots in carrier phrases to

construct a large set of random sentences. The greedy algorithm is blinded to all the

filler-internal bigrams by removing them from the list of symbols to cover. This ensures

that only bigrams at filler boundaries are covered. Many filler-internal bigrams will be
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one
two
three
four
five
six
seven
eight
nine

one
two
three
four
five
six
seven
eight
nine

ty
twenty
thirty
forty

twen
thir
for

Figure 2.7: The introduction of an artificial glue word takes the number of word-word

transitions from M ×N to M × 1 + 1×N = M + N .

Phrase type English Xhosa

Split Not Split Split Not Split

Carriers with fillers 123 183 108 172

Digit-strings 17 16 24 23

Dates 8 13 11 321

Numbers and Amounts 4 34 17 156

Table 2.1: Selection statistics for limited-domain fillers. Splitting off common prefixes

and suffixes introduces a number of bigram breaks, so that fewer tokens need to be

covered and fewer sentences recorded. The splits make a much bigger difference in

Xhosa because of its conjunctive writing style.

picked up in passing.

Next, all the bigrams from the sentences selected are again used to seed a selection of

“sentences” that contain only one filler per sentence, and nothing of the carriers. This final

step mops up the remaining filler-internal word bigrams. The resulting set of sentences

is guaranteed to contain at least one example of each word bigram that can occur in the

domain. This scheme ensures that the recording set contains a minimum number of full

sentences, while still providing all the needed word bigrams.

The number of sentences selected for each filler-only sentence, and the carrier sentences

with filled slots are shown in Table 2.1. Figure 2.8 shows the frequencies of occurrence of

tokens in the manner of Figures 2.3 and 2.4.

A small change was made in the splitting algorithm for the Afrikaans and English HRS

system dialogues: the phrase final words were not split. This is because of the importance

of the prosody of phrase final words in indicating the end of a phrase. This change only

required about 15 additional prompts to be recorded, and provided high quality phrase
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Figure 2.8: The distribution of the word bigrams selected for English and Xhosa HRS

dialogues. The bigrams were enumerated from the rarest to the most common. The

plots show Nj , which is the number of occurrences of bigram number j. The set is very

dense in that most of the bigrams occur only once.

final versions of filler words to the database. In the Xhosa prompts this required no more

prompts to be recorded, since in the HRS dialogue no splittable words occurred in a

phrase final position.

As has been mentioned before, the dialogue is carefully written to indicate phrasing

and pauses explicitly by punctuation. It removes the need for phrasing algorithms in

minority languages, and helps the prompt selection process to cover the domain in fewer

utterances.

The next step is to record the prompts. Delivering the prompts with consistency

in pronunciation and intonation, as well as closely following the pauses indicated by

the punctuation, is quite an art. The voice artists must be reminded of the context of

each prompt to ensure that they encode the proper semantics into the utterances. A

further consideration is that examples of a filler word will be reused in different sentences;

consistency in pronunciations is a requirement.

2.6.3 Processing the Synthesis Database

The unit-selection synthesiser needs access to indexing information and several pre-computed

features of the speech waveforms in order to find the correct units, compute join costs

and concatenate units properly.
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Pitch-marks: Pitch-marks are assigned to the waveform, ideally a pitch-mark to each

of the pitch-pulses, and uniformly spaced markers of sufficient resolution in the

unvoiced regions. The pitch-marks are used in concatenation, and acoustic features

are computed pitch-synchronously. Chapter 4 deals with pitch extraction in more

detail.

Feature extraction: Pitch-synchronous cepstra for acoustic distance computation are

computed for speech frames of 4 times the pitch-period, centred on each pitch-

mark. In the Linear Prediction (LP) Pitch-Synchronous Overlap-Add (PSOLA)

(Chapter 3) case, the LP coefficients and residual are computed as well.

Phonemic alignment: The synthesiser indexes the data by phoneme labels. The phoneme

sequence is generated by the same text processing, lexical look-up and letter-to-

sound rules as will be used during synthesis. The phoneme sequence can be aligned

with the recorded prompt manually, using a speech synthesiser to provide a reference

utterance for Dynamic Time-Warping (DTW) or HMMs. We have experimented

with both and given enough data, the HMM method is preferred.

2.6.3.1 Phonemic Alignment using a Speech Synthesiser

After recording, the database consists of sentences, one per wave-file, and a phonemic

transcription of each. The problem now is to find the time alignment of the phoneme

labels with the waveform. This problem is related to continuous speech recognition,

and as such, DTW [1, Chapter 11] has been applied to it. DTW requires a reference

waveform, or a set of features of the same phoneme string, against which to align the

utterance. The reference waveform can be constructed if a general speech synthesiser is

available. Figure 2.9 outlines the process.

The quality of the existing speech synthesiser is irrelevant since only the speech recog-

nition features of the output is used. Prosody and join artifacts have very little effect on

the ability of the DTW to align. Experiments were conducted using an American English

diphone synthesiser, and 12 dimensional cepstra including C0. For some speakers this

worked quite well, although the alignment of labels in at least 20% of the English HRS

dialogue’s prompts had to be corrected manually.
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Figure 2.9: Phonemic alignment of recorded speech using a speech synthesiser and

DTW. (Adapted from [38].)

The same synthesiser, but with Xhosa letter-to-sound rules, was used to align the

Xhosa prompts.3 The results were not usable at all. We expected the DTW to be more

robust but the speaker reduced many unstressed syllables to mere whispers, and a number

of the vowels were not close to any in the American English synthesiser’s repertoire.

The experience with Afrikaans was similar. The lexicon contained many mistakes,

and the female speaker’s speech was very different from the diphone synthesiser’s output;

she spoke much faster, and articulated much less clearly during de-emphasised parts. It

seems normal to do so in Afrikaans and better care should be taken during recording to

ensure better agreement with the test-processing subsystem’s output.

Another approach which seemed feasible, was to repeat the sentence selection task

using the recorded prompts as the large set, and then selecting words instead of word

bigrams. The selected subset of the corpus can be aligned manually, and used to construct

3The subjective impression of the Xhosa letter-to-sound rules were that, although phonetically strictly

accurate, they seemed to over-generate compared with what the speaker actually pronounced. The proper

way to improve the orthographic to phonetic conversion would be to use post-lexical processing with parts

of speech and stress in mind.
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a limited-domain synthesiser that has all the correct words. This synthesiser could then

be used to align the remainder. This would work much better, since the same speaker

is used for the reference utterances. It still requires manual alignment of 89 out of 359

prompts for English, and 129 out of 351 prompts for Xhosa. In some cases the only really

important words that require accurate alignment are the filler words. Only labelling

these would reduce the number of words needed, and thus the number of prompts to be

segmented manually. However, this reduction would render the synthesiser completely

unable to cope with minor changes in the dialogue, and to exploit good join spots in the

carrier sentence between filler phrases reliably.

In light of these troubles, HMM alignment provides an alternative if suitable initial-

isation for the phoneme models can be found and the data scarcity problem dealt with.

That is the topic of the next section.

2.6.3.2 Phonemic Alignment using HMMs

The problem of automatic alignment is to align a known phoneme string and a matching

waveform; the desired output is a time alignment of the phoneme string. This problem

can be solved using HMMs from a speech recogniser with a Viterbi search to perform

the segmentation. This section briefly describes the design and training of the models

from the TIMIT corpus [59] first, and presents some results of the alignment compared to

manual alignment. Embedded re-estimation with much simplified Maximum a Posteriori

(MAP) adaptation is suggested to improve the alignment results. It concludes with a

brief description of forced alignment using the adapted HMMs and a discussion of the

results. Some theoretical background is given in Appendix A to clarify the simplified

MAP training.

Classical mono-phone continuous density HMMs are structured as depicted in Fig-

ure A.1. The HMMs have no skip transitions, and model the observations at each state

with a multivariate Gaussian Mixture Model (GMM) with eight components. The mod-

els are trained using the forward-backward algorithm on the TIMIT training set (with

the closure phonemes merged with the associated stop sounds). This provides a three-

state model for each phoneme label in the TIMIT phoneme set. Silence is modelled as

a phoneme, but using an eight-state ergodic HMM with a single multivariate Gaussian
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a24

a33
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Figure 2.10: Merging vowel models to build diphthong and triphthong models.

Probability Density Function (PDF) to model the observations at each state.

The English HRS synthesiser uses the standard US English phone-set shipped with

Festival [48], which is quite close to the TIMIT phone-set for American English. The

multi-lingual phone-set devised for Xhosa and Afrikaans differs significantly, so that the

alignment system needs new models for the different phonemes. Since the models have

already been initialised, and many of the phonemes in the TIMIT phone-set have close

counterparts in the multi-lingual phone-set, it makes sense to devise a mapping from the

TIMIT phone-set to the multi-lingual phone-set. The mapping is complicated by the fact

that the multi-lingual phone-set has more consonants, diphthongs, triphthongs and finer

distinctions between vowels than the TIMIT set. The solution is to merge vowel models

into diphthongs or triphthongs as shown in Figure 2.10, and map phonemes to their

closest counterparts. The skip states are introduced to allow some flexibility in duration

in light of the fact that the diphthongs are often somewhat shorter than the two vowels

constituting it. The skip weight is made equal to the forward weight, and the weights are

then scaled to sum to one. If b represents the weights of Model 1 in the merge, then we

compute the weights a of the new model as follows:

a22 =
b22

b22 + 2b23
, (2.5)

a23 = a24 =
b23

b22 + 2b23
, (2.6)

a33 =
b33

b33 + 2b34
, (2.7)

a34 = a35 =
b34

b33 + 2b34
. (2.8)

These models were used in a forced alignment configuration to determine the locations

of the phoneme boundaries. The alignment results are shown in Figures 2.11 and 2.12.
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Figure 2.11: Alignment results on the English HRS corpus using (a) the TIMIT models

mapped to the US English phone-set, (b) the TIMIT models trained using the simplified

MAP procedure and (c) the TIMIT models trained using the simplified MAP procedure

on both the English and Afrikaans HRS corpora in the multi-lingual phone-set. The

vertical axis shows the range of alignment errors in milliseconds, with the horizontal axis

showing the percentage of labels which was within this range from the reference data.
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Figure 2.12: Forced alignment results for the Xhosa HRS corpus using (a) TIMIT

models directly, and (b) using MAP adapted models.

The first alignment of the three HRS corpora using the TIMIT models was not very

useful for unit-selection synthesis: it made too many mistakes that were far wider than

the phonemes it was supposed to find. In the English HRS corpus the very different accent

of the speaker, the different channel characteristics and inaccuracies in the orthographic

to phonetic conversion with respect to the natural speech were to blame. These factors

were amplified dramatically in the case of the Xhosa and Afrikaans HRS corpora. In

light of this finding, new phoneme models were constructed by mapping a small number

US English models to a large number of multi-lingual phoneme models. Diphthongs and

triphthongs were constructed by concatenating phoneme models as previously detailed.

Clearly the models need to be adapted to the data we intend to align. Simply training

using embedded re-estimation did not work, as the deliberately compact HRS corpus is too

small for many of the Gaussian PDFs to be estimated properly. MAP adaptation of the

models is a more sensible choice than the Maximum Likelihood (ML) approach [60]. The

simplified MAP training algorithm uses the initialised models’ parameters as estimates

of the prior probabilities, and then adds a constant number of artificial data points to

the data used for estimating the parameters of the HMM. In this way, if enough data is

available, the estimate is biased to favour the data, and if too little data is available, it

favours the prior. This solves the data scarcity problem in an elegant way, while allowing

the data that is in the corpus to have a big say in the final models. The adapted models

were used for forced alignment, and the results also shown in Figures 2.11 and 2.12. The
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results are clearly much better, and tests with the resulting limited-domain synthesiser

were very encouraging.

Both the Afrikaans and English HRS corpora were recorded by the same speaker.

Although the corpora use different subsets of the multi-lingual phone-set, the overlap

was sufficient to encourage joining the corpora. The results are very similar, although

subjectively the result produces a slightly better synthesiser.

Although the MAP procedure allows the model parameters to at least be stable in the

absence of sufficient data, the data scarcity problem remains however; the model accuracy

cannot be good where it has no data.

In keeping with the fact that the bulk of the variation in phonemic context of phonemes

in the limited-domain HRS corpora occur at word boundaries, it seems that the boundaries

in these locations are the most accurate. However, the phoneme boundaries inside words

are typically consistent across different examples of the word, thus not diminishing their

utility.

The synthesisers built from the three HRS corpora were tested using a set of test

sentences designed using the greedy selection algorithm. The test-set contains all the

word bigrams, and thus provides an extensive functional test. In the Afrikaans corpus only

about 15 mistakes had to be corrected manually. Subjectively, the resulting synthesisers

in Xhosa and English sounded better than the manually aligned versions. Inspection of

the labels showed that where it succeeds, the adapted HMM aligner draws its boundaries

very consistently, i.e. it always finds the same location in terms of the features for the

boundary of a phoneme. The variation introduced by the admittedly hurried, but still

time-consuming manual alignment resulted in inconsistently drawn boundaries. These

inconsistencies cause distances to be computed between sounds that do not correspond to

their labels, making the naive cepstral distance measure work in a somewhat haphazard

fashion.

2.6.4 Specialisation of Unit-Selection Synthesis

The limited-domain restrictions imposed on the synthesiser enable some short-cuts that

make it much simpler and faster, as long as it can be assured that the synthesiser has the

correct units from appropriate contexts.
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2.6.4.1 Candidate Selection

The system works with phonemes as units and requires the candidates to come from

the same word as is requested in the target specification. The database design phase

(Section 2.6.2) ensures that words that occur at the end of a phrase, in the middle of

phrases and those at the end of a sentence are all present.

Units in the database are named according to a hierarchical scheme that takes into

account which word the unit is from, the prefix or suffix (if any) and the position in the

phrase it is from. The prefix or suffix comes from the manually constructed list of words

to split as discussed in Section 2.6.2. The hierarchy has three levels. At synthesis time,

a level 1 name is constructed for each unit in the target specification, and the database

searched for all the examples of that unit. If no level 1 name is found, the database is

searched for the less specific level 2 name. If the level 3 name is not found, synthesis fails,

since that implies that the word is not present in the database.

The names for split words are built up as shown in Table 2.2. The level 1 name

indicates a very specific context, namely the word with its prefix or suffix, and the phrase

position as a simple indication of prosody. As the search proceeds through levels 1 to

3, the unit name becomes less specific and it is constructed in such a manner that more

examples of a unit name will be available at level 3 than at level 1. The increase in

number of examples comes at the cost of looser requirements on the context of the word

that the unit comes from. In Table 2.2 <ph> represents the phoneme label and <word> is

the “word” part of a word, eg. “six” in “sixteen” or “thoba” in “lesithoba”4. Note that

“thoba” is not the root morpheme, but it was a convenient choice of identifier given the

form of the other Xhosa number words. The <pp> indicates phrase position: comma, mid

or stop for phrase final, phrase internal or sentence final, respectively.

In principle, the database should contain level 1 or 2 names for all units that could

result from the dialogue that the system was built with. In practice however, changes

had to be made to the dialogue. The third level in the hierarchical naming scheme made

synthesis more robust in these cases, while restricting the candidates to the smallest and

most appropriate set.

4“Lesithoba” is the form of the Xhosa word for nine, when referring to a noun of the “ama-” class.
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Level Prefix Suffix

Word

1 <ph>_<word>_<prefix>_<pp> <ph>_<word>_<suffix>_<pp>

2 <ph>_<word>_<prefix> <ph>_<word>_<suffix>

3 <ph>_<word> <ph>_<word>

Example (Word)

1 t_thoba_lesi:_mid s_six_:teen_stop

2 t_thoba_lesi: s_six_:teen

3 t_thoba s_six

Suffix/Prefix

1 <ph>_<prefix> <ph>_<suffix>_<pp>

2 no name <ph>_<suffix>

3 no name no name

Example (Suffix/Prefix)

1 l_lesi: t_:teen_mid

2 no name t_:teen

3 no name no name

Table 2.2: The hierarchical naming scheme for unit names. If units named in level 1 in

a synthesis request can not be found, the unit type name is relaxed to level 2 to include

more units.
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Units from all other words, i.e. those not in the split word list, are simply named

<ph>_<word>_<pp> in level 1. In level 2 they do not have a name, and in level 3 they

are <ph>_<word>. This is done so that split words in which the word part coincides with

another word may be joined in the candidates they give. The split word “sixteen” is one

such example.

While crude from a computational linguistics point of view, this scheme allows small

sets of appropriate candidates to be extracted from the corpus, and reduces its size. It

makes this possible without relying upon morphological parsing and detailed language

specific knowledge, at the cost of being language and domain specific.

2.6.4.2 Join Costs

In the notation of Equation 2.3, the concatenation cost is computed from three weighted

sub-costs.

• A fundamental frequency cost defined as the difference between the pitch period T0

in seconds at the end of unit U i−1
n and at the start of unit U i

n: Cc
T0

(U i−1
n , U i

n) =

T0,U i−1
n
− T0,U i

n
.

• A weighted Mahalanobis distance between the final cepstral vector of candidate

U i−1
n and the first vector of a candidate U i

n for the next unit. The cepstral vector

excludes the zeroth cepstral component.

• The difference between a normalised zeroth cepstral component, or C0. The nor-

malisation makes the variance of the zeroth component comparable to the other

components.

The weights for the cepstral distance was set to 1. In this strictly limited-domain

synthesiser we regard continuity in energy and pitch to be very important. The weights

of the fundamental frequency sub-cost and the C0 difference were set through inspection

in order to emphasise them over the cepstral distance in cases where the pitch and power

discontinuity is high.

The cost of concatenating units that happen to be consecutive in the corpus is set

to 0, encouraging the Viterbi algorithm to select contiguous sequences of units. Another
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interpretation is that the selection algorithm becomes “greedy” for longer, non-uniform

units from the database.

2.6.4.3 Unit Selection

Candidates are selected by a Viterbi search. The hierarchical naming of candidates in

the database restricts the search already, and in most cases there are fewer than five

candidates to consider.

The only exception lies in selecting candidates for pauses. The simplest solution is to

make one artificial pause unit and not consider the ones in the database to be candidates

at all. In that way, different phrases are completely decoupled, and many pause units are

removed from consideration to make the search faster.

2.6.4.4 Concatenation

Units are concatenated in a simple pitch-synchronous way. The pitch-marks nearest to

the unit boundaries are aligned. The join algorithm cross-fades from one unit to the next

between two pitch-marks. A more sophisticated method is described in Chapter 3.

2.6.5 Results

This section presents four examples. In the first example synthesis worked very well, and

the result reflects that. All the units were realised by level 1 representatives. The second

example comes from a sentence in the dialogue that needed to be modified. Thus a level

2 unit was used, since the word in the proper position in the phrase was not available.

The third example illustrates a situation that results from the fact that we take prosody

straight from the database. The speaker delivered some of the sentences in a lower pitch,

and the best path found by the Viterbi search contained one large prosodic discontinuity.

The utterance is phonetically correct, but the prosodic effect makes the sentence less

understandable. In Example 4 a label was misplaced and part of an incorrect phoneme

included in the synthesis. The accompanying CD-ROM contains the audio for these

examples and more.
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2.6.5.1 Example 1: Perfection

The following sentence was synthesised:

“So you’ll be arriving on the sixteenth of February, two thousand.”

The unit-selection synthesiser was able to produce the sentence using only units in their

level 1 specifications. The labelling for this database was manually corrected, and there-

fore the phoneme labels describe the waveform correctly. Figure 2.13 shows the resulting

waveform. The concatenation points indicate phoneme boundaries where concatenation

between units that were not consecutive in the database occurred.

The concatenation between [@] and [ô] in “February” occurred in a voiced region.

Figure 2.14 shows the concatenation spot in more detail. Note that the pitch cycles are

synchronised perfectly, and the rise in amplitude is smooth.

Incidentally, this example shows the potential for mismatch between the interpretation

of the linguistic processing and the speaker during recording. The linguistic front-end used

the American English pronunciation lexicon shipped with Festival, and the speaker spoke

in a South-African English accent, potentially resulting in different pronunciations of

“February”. She pronounced it in the American way however. The word context would

have allowed the correct waveform to be selected, even though the label is technically

incorrect.

2.6.5.2 Example 2: A good recovery

The following randomly generated test sentence contained a request for the word “thou-

sand”, followed by a comma.

“Sorry, the departure date the twelfth of April, two thousand, is before the

arrival date, the thirteenth of July, twenty fifteen.”

At level 1, the hierarchical naming scheme will search for units named <ph>_thousand_comma.

Since that failed, it looked for <ph>_thousand, the level 3 name. Figure 2.15 shows the

result for the phrase “two thousand”. The prosody is acceptable, and although the con-

catenation between [u] and [T] may seem rather abrupt, it occurs at a point where the ex-
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Figure 2.13: Synthesis Example 1. The plot shows the waveform, phoneme labels and

boundaries, as well as the concatenation points, indicated by asterisks.
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Figure 2.14: Detail of “February”. The amplitude also matches up well on either side

of the concatenation spot.

citation signal changes from harmonic to noise and the spectral envelope changes rapidly.

Thus it is not noticeable.

2.6.5.3 Example 3: Prosodic Discontinuity

Although somewhat contrived, this example illustrates the problems of prosodic and spec-

tral discontinuity. The original utterance is

“Now for the number of rooms.”

For purposes of dialogue flow, this was changed to

“Now for the rooms.”

The synthesised utterance is shown in Figure 2.16. There are join locations on either

side of the [@] of the word “the”. (The [@] is shown by /ax/ in Figure 2.16.) The unit

for [@] was extracted from a context where a [b] followed it. Figure 2.16 also details the

spectrogram of the region around the concatenations. The run-up from the [@] to the [b]

can be seen in the spectrogram. This spectral discontinuity is clearly audible.

The pitch contour varies rapidly through a large range. Such a wide range from start

to finish of such a short utterance is unnatural.
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Figure 2.15: The result of the synthesis of “. . . April, two thousand, is . . . ”. The word

“thousand” was recorded in a different context.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

−100

0

100

200

300

n aw f aor dh ax r uw m z

P
itc

h 
[H

z]

Time [s]

Time

F
re

qu
en

cy

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

500

1000

1500

2000

2500

3000

3500

Figure 2.16: The result of synthesis where a sharp pitch and spectral discontinuities

occur. The effect can clearly be seen around 0.8s in both the time domain plot and the

spectrogram.
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Figure 2.17: Detail of the synthesised signal for “eenhonderd”. The unwanted [x]

sound appears because of a labelling error.

2.6.5.4 Example 4: Labelling Errors

By far the most common reason for failure of the synthesiser is labelling errors. Figure 2.17

illustrates part of the Afrikaans phrase:

“. . . eenhonderd en vyftig . . . ”

or phonetically:

[e:nhOn@rt en f@i<ft@x].

The recording that delivered the phonemes after the first [n], contained a labelling error

that include the preceding [x@] from the word “nege”. As a result, it was synthesised as

[e:nx@hOn@rt en f@i<ft@x].

2.7 Conclusions & Suggestions

The HRS was demonstrated in English, Afrikaans and Xhosa. The system worked very

well. In most cases the prompts were very clear, and the reactions of first-time users led

to the belief that the semantics encoded in the prompts were appropriate.

The approach followed here makes it possible to rapidly build custom voices that are

capable of more variability in prompts than the standard concatenation-based systems
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used in Dual Tone Multi-Frequency (DTMF)-based interactive voice response systems.

Computational efficiency is also such that 50 channels could easily be serviced using an

entry-level personal computer.

That said, the system still has its problems. The Xhosa voice worked very well, and

virtually no examples of synthesis were found that had clear synthesis artifacts. The

English and especially the Afrikaans systems suffered from many more problems. The

most notable was prosodic discontinuity in the forms of large pitch discontinuities and

even changes in speaking rate and articulation quality. Utterances that were recorded in

the same session were generally more similar.

The delivery of the recordings is certainly to blame. Over-dramatisation of the

Afrikaans and English prompts made consistency much more difficult. The Xhosa speaker

did not exhibit this tendency. The Xhosa prompts were also delivered by a male. It ap-

pears that men not only have lower pitch, but also modulate their pitch in a much smaller

range.

Recording the prompts, selecting and instructing the speaker, and designing the dia-

logue all remain in the realm of art. It is only with some experience that good results can

be obtained. This is a natural consequence of encoding rather than modelling. Chapter 3

takes a partial turn toward modelling again, with encouraging results.

There are several areas in which to extend and improve on the groundwork laid here.

• The major effort in building any new voice (assuming the existence of the phoneme

set and lexica) remains the alignment of phoneme labels. Embedded re-estimation

followed by forced alignment is the most automatic way to do it, and the data

scarcity problem can be solved in two ways.

1. If more than one system is to be built, it makes sense to use previously recorded

prompts by the same speaker in the embedded re-estimation step.

2. Adding more data by including a small set of prompts designed to cover di-

phones in emphasised and de-emphasised syllables, will dramatically improve

labelling. At the same time it will provide data for rendering novel words, such

as proper nouns.
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• Labelling errors and especially fine errors will continue to plague data-driven sys-

tems. Optimal coupling is a good angle of attack on the problem of labels not exactly

corresponding to the data or not being totally consistent. Its major shortcoming,

however, is its lack of awareness of the nature of the underlying signal.

In principle it should be possible to treat voiced and unvoiced (rapidly changing or

sustained) speech in different ways, identifying good join spots in the signal. This

would be expensive computationally but could also be run off-line to identify join

locations as part of the build process.

• Alternatively, and especially in light of the abilities developed in Chapter 3, it would

make sense to explicitly consider join locations in the middle of vowels and nasals.

As mentioned before, concatenating units on phoneme boundaries is not the best

way in all cases.

• The phonetically aware join costs [37, 20] that recognise good directions and rates of

change in various contexts, will also help as development proceeds in the direction

of synthesising novel words.
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Speech Modification

3.1 Introduction

The limited-domain unit-selection synthesiser developed in Chapter 2 has its failings.

Most notable are spectral and power discontinuities and unnatural pitch transitions. This

chapter concerns itself with the modification of the speech signal to smooth the concate-

nations and otherwise improve the quality and naturalness of the concatenated speech.

In the past, model-driven speech synthesisers used models of speech signal production

to generate the speech signal. Among these were formant synthesisers and articulatory

synthesisers. In the spirit of the modern trend of encoding rather than modelling subtle

signal properties, we would rather modify the speech by a small amount. This amounts

to a return to modelling of simpler, better-understood aspects to repair damage to the

signal caused by concatenation. A requirement is that it leaves the encoded higher-level

properties intact.

The bulk of the speech synthesisers described in the literature use speech modification

methods to make the prosody, as expressed in duration and pitch, conform to targets

set by the linguistic components of the synthesiser. Setting the prosodic targets requires

detailed linguistic information to be deduced from the input text, approaching general

TTS and thus being beyond the scope of this work. This chapter focuses on means to reach

pitch and duration targets and to only set pitch targets for smoothing concatenations.

The techniques presented here are important, as they form the basis for signal synthesis in

TTS. This approach provides the infrastructure needed for future research on intonation

60
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and duration modelling.

3.2 Literature Overview

The literature on speech modification and speech coding contain much overlapping ma-

terial, with the drive to find more compact parameterisations for the speech signal as the

common goal. Speech coding applications want more compact information to transmit,

and those wishing to modify the speech signal, hope to find more relevant parameters to

modify. The literature seems to focus on the distinction between parametric and non-

parametric approaches [61, 18, 62], but it is sensible to present the taxonomy of speech

modification methods in terms of how they separate various aspects of the signal.

A study of voiced speech leads, via the lossless tube model of the vocal tract [1, Chapter

3], to a model of speech production known as the source-filter approach. This model views

the speech production process as a source signal passed through a filter whose properties

vary through time. Voiced speech contains periodic source waveforms originating in the

larynx, and the filter consists of the entire vocal tract, sometimes including the nasal

cavity. The vocal tract has three main resonant cavities, and constrictions sometimes

shorten the vocal tract (consider the [p], where the vocal tract length is effectively zero),

and move the place of excitation.

Of particular interest to speech synthesis is co-articulation effects. In producing an

utterance, the articulators have to change through a sequence of configurations. It is well

known that to produce intelligible speech, the synthesiser has to mimic the transitions.

The diphone synthesiser mentioned in Chapter 2 explicitly captures transitions between a

small number of idealised sounds, usually phonemes. In contrast, the unit-selection syn-

thesiser lifts the restrictions on the number of sound types and therefore vastly increases

the number of transitions. By its data-driven nature, the unit-selection synthesiser is

subject to failure due to missing phenomena in the data. Relatively simple signal models

can provide some of the missing information, enabling a graceful recovery.

Section 3.2.1 gives a qualitative view of various aspects of the speech signal, based on

the physiology of speech production. Section 3.2.2 discusses the most prominent directions

in speech modification.
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3.2.1 Signal Components

We now turn to manifestations of the speech production mechanism on the speech signal.

Figure 3.1 illustrates a speech signal of the spoken word “flattery”, [flæt@ôi], and the power

spectrum in the middle of each phoneme. The unvoiced consonants, [f] and [t], look like

coloured noise, albeit with different temporal properties. Indeed, the unvoiced consonants

have been successfully produced in vocoders using Gaussian noise modulated in time and

frequency. The voiced sounds, [l], [æ], [@], [ô] and [i] are all clearly periodic when viewed

on a short enough time-scale. The periodicities show up clearly as harmonics in the

frequency domain. The voiced signal also contains a significant time-modulated noise

component, due to turbulence noise from air forced through the vocal tract. Generally

speaking, the two components overlap in frequency, with the harmonic structure clearly

dominant at lower frequencies.1

The power spectra of voiced speech sounds have similar fine structure, while the main

difference lies in the envelope of the spectra. The same holds for the unvoiced sounds. This

property has long been exploited in speech recognition and coding, where the envelope

is encoded by a small number of parameters, discarding the phonemically redundant

information about the fine spectral structure.

The source-filter model of speech production holds that the envelope is due to the filter

realised by the vocal tract, and that the rapidly varying excitation, containing various

mixtures of harmonic and time-modulated noise signals, affects the fine structure. The

filter (spectral envelope) expresses certain resonances, called formants. The relationship

between the first and second formants has been strongly linked to specific vowels.

Speech modification methods that aim to modify the pitch have to separate the phone-

mic information contained in the vocal tract configuration as expressed in the filter param-

eters, the spectral envelope and formants, from the excitation signal. Simply resampling

the signal will raise or lower the pitch, but it will also shrink or stretch the envelope,

changing the formant frequencies. While the vowel identity is typically retained, the per-

ceived vocal tract length changes, resulting in the well-known cartoon chipmunk effect.

1This section gives an intuitive account based on [1, Chapter 2].
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Figure 3.1: The speech signal of the word “flattery”, [flæt@ôi], illustrating a fricative,

vowels, a lateral, an approximant and a stop sound. The power spectrum in the middle

of each speech sound is also shown. The smoothed envelope obtained by LP analysis is

shown by a thick, smooth line.



Chapter 3. Speech Modification 64

LP PSOLA
Explicitly parameterise

envelope first

FD PSOLA

and excitation

Phase Vocoder

Sinusoidal Modelling
Parameterisation of the

Phase Vocoder

Harmonic Modelling
Make harmonic assumption

explicit

Time Domain

Non−parametric explicit

Frequency Domain

Decomposition that allows

and envelope

separation of envelope

excitation and envelope

TD PSOLA
Implicitly separate 

separate processing of excitation

noise components

Deterministic/Random

Decomposition
Separate the harmonic and 

Figure 3.2: A taxonomy of speech modification methods. All these separate the vocal

tract effect from the excitation. Some go further and decompose the excitation into

harmonic and noise components. The extent to which the three different components

are parameterised varies.

3.2.2 Speech Modification

This section describes methods of separating the vocal tract effect from the excitation

signal under assumption of the validity of the source-filter model, and possibly even

further separating the noise and deterministic components of the excitation signal. A

taxonomy of speech modification methods is depicted diagrammatically in Figure 3.2.

The frequency-domain approaches have many parametric and non-parametric ways to

use the information in the signal.

Section 3.2.2.1 glosses over the plethora of frequency-domain methods for separating

speech components. Section 3.2.2.2 describes a simple time-domain method that has

been the baseline for pitch and duration modification for the past decade. Section 3.2.2.3

describes a hybrid time and frequency-domain method and is emphasised as it forms the

basis for the implementation discussed in Section 3.3. Section 3.2.3 considers options for

smoothing the spectrum around concatenations.

3.2.2.1 Frequency-domain Methods

The phase vocoder as first published by Flanagan [63] revolutionised the field of digital

signal processing methods for modifying speech. It relies on explicit decomposition of
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the signal into time-frequency components through a sub-sampled Short-time Fourier

Transform (STFT). The sub-sampled STFT is realised by a bank of filters, equally spaced

in frequency. Later refinements by Portnoff, Seneff and Crochiere [61] established the links

between the filterbanks proposed by Flanagan and the STFT. Modern techniques use

the Fast Fourier Transform (FFT) and its inverse in various configurations, performing

manipulations directly in the frequency domain. Frequency-domain techniques often use

constant-length frames with constant frame spacing. The frames are typically spaced

so that they overlap. Frequency-domain methods operate under narrow-band conditions

to resolve harmonics in the spectrum. The longer window imposed by the narrow-band

requirement also explains why frequency-domain techniques are often reported to have

trouble with rapid transitions in the speech signal. Pitch-synchronous frames with and

without pitch-related frame lengths have been used to increase the time-resolution of the

parameter estimation [18, 64, 65].

Modification of the harmonic content of signals, while keeping formant information in-

tact, requires separation of these two components. As previously illustrated in Figure 3.1,

this amounts to modifying the harmonic frequencies of the signal spectrum, leaving the

envelope intact. Extraction of the excitation part of the spectrum can be done in a

number of ways, including LP or all-pole modelling [66, Chapter 11][1, Chapter 5], ho-

momorphic filtering (the cepstrum) [67][66, Section 4.6][1, Chapter 6] and heuristics that

use the peaks in the spectrum [18], effectively flattening the spectrum. Resampling and

padding the spectrally flattened Discrete Fourier Transform (DFT), and re-applying the

previously separated envelope achieves the required pitch modification. The significant

problems that all frequency-domain methods face, are

• maintaining phase coherence among frequency components and continuity from

frame to frame, and

• modelling and modification of unvoiced speech.

Further developments, related partly to increases in computing power, exploit the fact

that a periodic signal can be described by a line-spectrum. This description is effectively a

sum of sinusoids, and encodes only the peaks in the spectrum as sinusoids. Each sinusoid

is fully described by its phase, amplitude and frequency. Many different methods of

extracting the sinusoids from the signal have been proposed:
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• spectral peak picking and tracking schemes [17, 67],

• instantaneous frequency methods [68, 69],

• analysis by synthesis [70, 71],

• matching pursuits [65], and matching pursuits extended to include human auditory

modelling [72], and

• optimisation of the amplitude and phase parameters of a linear combination of

harmonically related sinusoids [18].

Sinusoidal methods amount to a parameterisation of the DFT. Its proponents claim not

only improved ability to modify pitch by larger factors, but also the flexibility to model

more subtle aspects of the sound. The pitch can be modified by moving the harmonic

sinusoids around under the envelope, effectively resampling it. Some go one step further

and enforce the harmonic relationship between the sinusoids. This simplifies the phase co-

herence problem, and makes a more compact database and more computationally efficient

synthesis possible [73, 18].

Sinusoidal decomposition methods share the difficulty of modifying unvoiced speech

with other pitch modification methods—the synthesised sounds gain a tonal quality at

even moderate pitch raising or time-stretching factors. Solutions to this problem require

isolating the sinusoidal or deterministic part of the signal from the noise or random part.

The possibility of separating the components along the frequency axis is an often-cited

advantage of sinusoidal decompositions.

The Harmonics plus Noise Model (HNM) assigns a signal adaptive maximum voiced

frequency [18], above which no more sinusoids are extracted. The harmonic spacing

between sinusoids and their amplitudes are manipulated to modify pitch. The noise

component is modelled using LP in the frequency-domain, and the time-modulation of

the noise is modelled by computing the average power from non-overlapping 2ms windows.

Synthesis realigns the time-domain peaks of the noise signal with the modified harmonic

signal, maintaining the reportedly important coherence between the harmonic and noise

components.

Others assign the deterministic or random label to specific sinusoidal tracks, obtained

by associating peaks in successive frames and grouping them into longer-lived sinusoids.
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During synthesis they could randomise the phases [67] or even the frequencies [73] of those

sinusoids deemed to be noise. It is also possible to subtract the sinusoids form the original

signal to obtain the sinusoidal modelling residual and then consider that to be noise [71].

The most sophisticated methods seem to be iterative procedures which decompose the

periodic and aperiodic components on a frame-by-frame basis in the frequency domain [74,

75].

3.2.2.2 Time-domain Methods: Time-domain PSOLA

PSOLA has become the de facto standard method for pitch modification. Its concep-

tual simplicity, low computational complexity and high-quality for moderate pitch and

duration modification factors (0.5 to 2.0), have made it ubiquitous. The three original

flavours are Time-domain (TD) PSOLA, Linear Prediction (LP) PSOLA and Frequency-

domain (FD) PSOLA. The latter two are hybrids since they perform explicit separation of

components in the frequency domain before further time-domain processing. FD PSOLA

is not described further.

TD PSOLA analyses the signal x(n) at pitch-synchronous time-instants, referred to

as analysis time-instants or pitch-marks. Let ηm be the m’th discrete analysis time. The

length Lwin of the analysis window hm(n) is related to the local pitch period at the analysis

time-instant, N0(ηm), by a factor which is typically in the range µ ∈ [2, 4]. We choose

the window length Lwin to be the smallest odd integer such that Lwin ≥ µN0(ηm). If a

continuous window function ht(t) that is non-zero for −1
2
≤ t ≤ +1

2
and zero elsewhere,

is sampled at discrete intervals, then

hm(n) =







ht

(

n
Lwin

)

, −Lwin+1
2

≤ n ≤ Lwin−1
2

0, elsewhere.
(3.1)

The analysis short-time signals xm(n) are then

xm(n) = hm(n)x(n + ηm). (3.2)

Note that the analysis frames are centred around n = 0.

TD PSOLA performs synthesis by first computing the sequence of synthesis time-

instants ηk and associating each of them with zero or more analysis time-instants. A
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ηk−4 ηk−3 ηk−2 ηk−1 ηk ηk+1 ηk+2 ηk+3 ηk+4

ηm−4 ηm−3 ηm−2 ηm−1 ηm ηm+1 ηm+2 ηm+3 ηm+4

x(n)

y(n)

Figure 3.3: A diagrammatic representation of the mapping of synthesis time-instants

to analysis time-instants, m(k) : k → m. The mapping of time-instants constitute the

temporal translation of short-time signals that achieves time-scaling and pitch modifica-

tion.

simple and convenient algorithm to compute the synthesis time-instants is described in

Section 3.3.2.2. The synthesis time-instants are placed according to the desired local

pitch and are associated with analysis time-instants according to the time-warping to be

applied, expressed by writing m as a function of k. The mapping of synthesis parameters

to analysis parameters, m(k), may in general be many-to-many, i.e. some k may be

associated with zero or more consecutive m, and vice versa. This implies that some short-

time signals may be repeated or deleted in the synthesis process. Figure 3.3 illustrates

the mapping between the two time axes diagrammatically.

The second step in synthesis is to add the short-time signal xm(k)(n) at its computed

location ηk in the output signal. The simplest form of overlap-add to obtain the output

signal y(n) can be written as

y(n) =
∑

k

xm(k)(n− ηk). (3.3)

More sophisticated methods of performing the overlap-add are available [61]. The simple

approach in Equation 3.3 leads conveniently to an expression for the frequency-domain

interpretation of TD PSOLA. This synthesis method is also particularly well suited to

LP PSOLA, as it is efficient and the particulars of the LP synthesis algorithm solves the
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inter-frame continuity problem (see Section 3.3). The analysis and synthesis signals are

also illustrated in Figure 3.3.

Although “astonishingly simple” [61], TD PSOLA results in very high quality synthesis

for moderate pitch and time modification factors. A frequency-domain interpretation

shows how the time-domain procedure results in much the same operation as frequency-

domain approaches: under certain conditions the spectral envelope is effectively resampled

at the harmonic frequencies of the synthetic signal. In this way it accomplishes the same

as the simplest forms of sinusoidal methods.

To see the resampling property of TD PSOLA, we follow the analysis of Moulines and

Charpentier [64] for the deterministic, or periodic, component of the signal. It is adapted

slightly to better correspond to the implementation in Section 3.3. Assume for simplicity

that

• the analysis signal is periodic and has a constant pitch period of N0 samples,

• that a constant pitch modification factor β is applied, and

• that β is also applied to time scale modification so that the mapping m(k) : k → m

is one-to-one.

• Furthermore, the analysis window h0(n) = ht(n/Lwin), is assumed to be a square

window such that the length of the short-time signals are exactly Lwin = βN0 and

odd, and therefore do not overlap.

By these assumptions the analysis time-instants are

ηm = mN0, (3.4)

and the synthesis time-instants are

ηk = kβN0, (3.5)

and m(k) = k. The synthesis equation becomes

y(n) =
∑

k

x0(n− kβN0),

=
∑

k

h0(n− kβN0)x(n− kβN0). (3.6)



Chapter 3. Speech Modification 70

Since x(n) is periodic, y(n) consists of translated copies of the same prototype waveform,

which we denote x0(n) = h0(n)x(n). As a consequence, y(n) is also periodic. The Fourier

series expansion for the discrete periodic signal y(n) is defined as [66]

y(n) =
1

βN0

βN0−1
∑

q=0

cqe
j2πqn/βN0, (3.7)

with the Fourier coefficients given by2

cq =

βN0−1
∑

n=0

y(n)e−j2πqn/βN0. (3.8)

The continuous and periodic Discrete-Time Fourier Transform (DTFT) of a single period

of y(n), namely the DTFT of x0(n) is defined as

X0(ω) =

∞
∑

n=−∞

x0(n)ejωn. (3.9)

Since x0(n) has a limited time-span due to the square window h0(n) of length βN0, the

DTFT becomes

X0(ω) =

βN0−1
∑

n=0

x0(n)ejωn. (3.10)

Comparing this spectrum of a single prototype analysis short-time signal to the Fourier

coefficients of the synthesised signal y(n) as expressed in Equation 3.8, leads to the final

result:

cq = X0

(

2πq

βN0

)

. (3.11)

The Fourier coefficients are complex numbers representing the magnitude and phase

of sinusoids that make up the line spectrum of the periodic signal. The spectral envelope

of these sinusoids is the DTFT of a single prototype short-time frame.

Since the analysis window length varies as the inverse of the pitch period modification

factor β, raising the pitch shortens the window and increases its bandwidth, while lower-

ing it lengthens the window and decreases its bandwidth. Figure 3.4 shows the Fourier

transforms for values of β ∈ {0.5, 1.0, 2.0}. The window bandwidth can be seen to smooth

2The normalisation factor 1

βN0

has been added to the synthesis equation (Equation 3.7) of the Fourier

series expansion to match [64].



Chapter 3. Speech Modification 71

−0.02 −0.01 0 0.01 0.02

−0.5

0

0.5

am
pl

itu
de

time [s]
0 1000 2000 3000 4000

−40

−20

0

20

40

frequency [Hz]
m

ag
ni

tu
de

 [d
B

]

−0.02 −0.01 0 0.01 0.02

−0.5

0

0.5

am
pl

itu
de

time [s]
0 1000 2000 3000 4000

−40

−20

0

20

40

frequency [Hz]

m
ag

ni
tu

de
 [d

B
]

−0.02 −0.01 0 0.01 0.02

−0.5

0

0.5
am

pl
itu

de

time [s]
0 1000 2000 3000 4000

−40

−20

0

20

40

frequency [Hz]

m
ag

ni
tu

de
 [d

B
]

Figure 3.4: The Fourier transform of a single short-time analysis signal (thick line) and

those of synthesised signals with β ∈ {0.5, 1.0, 2.0}. The window bandwidth can be seen

to smooth out formants when β = 0.5 and resolve pitch harmonics when β = 2.0. The

thick line shows a single short-time frame in both frequency and time domains.

out formants when β = 0.5 and resolve pitch harmonics when β = 2.0, resulting in the at-

tenuation of every second harmonic. A further distortion follows from the high side-lobes

of the square window, which masks the lower-magnitude high-frequency components.

PSOLA (as cast here) resamples the spectrum uniformly, while the most successful

sinusoidal methods selectively resample only the region of the spectrum deemed to be

harmonic. They can then apply more appropriate modelling to the noise component of the

signal. Higher modification factors and more stringent quality requirements necessitate

this decomposition between noise and harmonics.

Note that the square window used in the synthesis equation results in a buzzy quality

as it effectively introduces impulses of various amplitudes at frame boundaries. In practice,
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TD PSOLA requires an overlapping window that tapers to zero at the edges to be applied,

as shown in Figure 3.3. Also note that at values of β > 1.5, copies of the waveform

will start to resemble the original waveform. This is seen in the frequency domain as

the resampling of a harmonic spectrum for β = 2.0 in Figure 3.4, where every second

harmonic is attenuated. Therefore µ = 4 is typically the maximum allowable value if a

tapered window like a Hamming window is used.

3.2.2.3 Hybrid Methods: Linear Prediction PSOLA

The other two variants of PSOLA, LP PSOLA and FD PSOLA, explicitly separate enve-

lope modelling (in the frequency domain) and modifying the spacing between the pitch

harmonics (in the time domain). Advantages of LP PSOLA is that the LP analysis in-

herently smooths the spectrum to obtain the envelope and models it parametrically. This

allows different frame lengths to be used for estimation of the envelope parameters and

PSOLA analysis and synthesis. The separation also allows deliberate modification of the

spectral envelope for

• smoothing the spectral envelope over join locations in concatenative synthesis, and

• adapting the envelope to the pitch and amplitude modification [76].

The analysis frames are centred on the pitch-synchronous analysis time-instants ηm

used for PSOLA analysis. The frame length is set to a multiple of the local pitch pe-

riod, µN0(n), and µ > 2, so that it incorporates a small number of pitch periods. In

this work, LP analysis of order d constructs the Yule-Walker equations using the biased

short-time autocorrelation estimate and solves them using the Levinson-Durbin recursion.

The result is the (d+ 1)-dimensional vector am of filter coefficients ai, i ∈ {0, 1, 2, . . ., d},

of a minimum-phase all-pole model of the vocal tract, with a0 = 1 [66, Chapter 11].

The sequence of LP filters represents the progression of the vocal tract though the utter-

ance. Examples of the spectral envelopes encoded by the LP coefficients are depicted in

Figure 3.1.

In the z domain the transfer function of the filter can be written as

Hm(z) =
1

∑d
i=0 aiz−i

. (3.12)



Chapter 3. Speech Modification 73

0 50 100 150 200 250 300 350
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
A

m
p

li
tu

d
e

time [samples]

0 1000 2000 3000 4000 5000 6000
−60

−40

−20

0

20

frequency [Hz]

M
a

g
n

it
u

d
e

 [
d

B
]

0 50 100 150 200 250 300 350
−0.04

−0.02

0

0.02

0.04

0.06

A
m

p
li
tu

d
e

time [samples]

0 1000 2000 3000 4000 5000 6000

−40

−20

0

20

40

frequency [Hz]

M
a

g
n

it
u

d
e

 [
d

B
]

Hm(z)

1

Hm(z)

Figure 3.5: The linear prediction residual. The left-hand-side panel shows the original

signal in the time and frequency domains, and the right-hand side the residual signal.

The frequency-domain plot on the right hand side also shows the magnitude response of

the LP filter as a thick smooth line.

Figure 3.5 shows a short-time analysis frame in the time and the frequency domains,

before and after inverse filtering with 1/Hm(z). The spectrum of the residual or linear

prediction error can be seen to be approximately flat, and harmonic. In this way the

vocal tract and excitation information have been effectively separated. The envelope may

be re-applied by filtering the residual through Hm(z).

Figure 3.6 depicts the result of the PSOLA process on the residual of the signal in

Figure 3.4. The residual short-time signals were also windowed using a Hamming window

of length µN0, with µ = 2. This smooths the spectrum at modification factors of β ≥ 2,

and so removes the distortion of the spectrum caused by a window that resolves the pitch

harmonics. Because of the flatness of the spectrum compared to the steep spectral tilt in

the spectrum of the original short-time signals (Figure 3.4), the window’s side-lobes do

not distort higher frequencies either.

3.2.3 Spectral Smoothing for Concatenative Synthesis

Concatenation of speech segments can lead to unnatural discontinuities in the spectral

envelope. The sudden jumps in formant frequencies degrade the perceived quality and

understandability of the synthetic speech, even though the spectral envelope sometimes
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Figure 3.6: PSOLA on the LP residual, again for β ∈ {0.5, 1.0, 2.0}. In this case

µ = 4 during LP analysis and µ = 2 during PSOLA analysis of the residual. Note that

the DSP window’s sidelobes have no influence on this signal at higher frequencies due

to its lower dynamic range, and the formants are not distorted since they have been

separated from the time-domain signal by LP inverse filtering. The Hamming window

lowers the frequency resolution of the analysis so that pitch harmonics are not resolved

when β = 2.0.
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changes rapidly during natural speech. In some contexts, rapid changes are natural, while

in others, the rapid change in the synthesised speech cannot be realised by the human

speech apparatus, and thus sounds unnatural.

Some work has been done to alleviate the discontinuities by devising smarter join costs

(see Section 2.4.3), extending the corpus [77, 53] or modifying the signal to smooth the

discontinuities.

The envelope can also be processed heuristically to smooth spectral discontinuities that

arise from concatenative synthesis [78, 79]. The need for envelope smoothing first arose

from voice coding, where spacing consecutive frames further apart reduces the bit-rate.

Chappell and Hansen [78] compared interpolation of various alternative representa-

tions of LP parameters, as the polynomial coefficients themselves cannot be interpolated

without a good chance that the LP filter may become unstable. The filter coefficients

am can be converted to and from these representations without loss of information [1,

Chapter 5].

• Roots of the LP polynomial. Since the complex conjugate roots of the LP

polynomial are directly associated with the resonances that the filter encodes, it

makes intuitive sense that they be interpolated over frames in concatenation regions.

The difficulty with using the roots is that the roots from frames on the left must be

associated with roots on the right of the concatenation region. Especially in filters

of higher orders (12–24), this becomes more error-prone.

• Line-spectral Frequencies. Another direct representation of the resonances, line-

spectral frequencies also do not suffer from the association problem.

• Interpolation of the Cepstrum. While interpolation of the cepstrum will yield

stable envelopes, it is very “brute force” as there is no physical interpretation; the

formants simply fade out and in at different locations.

• Interpolation of Log-Area Ratios (LAR) [79]. Log-area ratios are derived from

the reflection coefficients computed during Levinson-Durbin solution of the Yule-

Walker equations. LARs are traditionally used where the reflection coefficients must

be quantised for transmission. Reflection coefficients may also be used. Although
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the trajectory of the interpolated filter coefficients will differ, it has been found

experimentally to make no perceptible difference.

Section 3.3 elaborates on an implementation and experiments performed on interpolating

LARs.

3.3 Implementation

A waveform synthesiser was implemented for the limited-domain concatenative synthesiser

described in Chapter 2. It uses the limited-domain corpus (with parameters for LP

PSOLA synthesis computed and stored beforehand) and concatenates the waveforms into

the utterance required by a synthesis specification.

3.3.1 Analysis

LP PSOLA requires the sequence of analysis time-instants, the associated short-time

signal and the LP filter coefficients for each short-time signal. Each utterance in the

database is automatically pitch-marked and segmented into voiced and unvoiced signals

in a way that gives priority to finding periodic regions in the waveform. The time-instants

are positioned in locations that work well with the time-domain modification technique.

Chapter 4 is devoted to the topic of finding good analysis time-instants.

The input waveform is filtered using a pre-emphasis filter with transfer function

H(z) = 1− αz−1. (3.13)

A value of α = 0.98 was used throughout. This filter introduces a zero near the frequency

z = 1, which lessens the severe spectral tilt in voiced speech. This has been shown to

improve the stability of the LP analysis. It can also be argued that the zero cancels

a pole in the vocal tract system that is due to the glottis and not part of the vocal

tract configuration determined by phonemes [1]. LP analysis is performed on Hamming-

windowed frames centred on the analysis time-instants. The frame length is set to four

times the pitch period. The biased autocorrelation is used to compute the Levinson-

Durbin recursion. The LP order is determined experimentally to be as low as possible
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without causing audible distortion at pitch modification factors of β = 0.5 and β = 2.0.

The waveforms were sampled at 16kHz, and an LP order of 20 was used throughout these

experiments.

Each short-time analysis frame is inverse filtered using its LP filter coefficients and

stored.

3.3.2 Synthesis

3.3.2.1 Inputs

The synthesiser takes as input the corpus of phonemically labelled utterances, the ex-

tracted features as described above and a synthesis specification. The synthesis specifi-

cation provides an index of the recorded utterance, as well as the start and end times of

each unit to be concatenated. Each unit’s phoneme type is also indicated. More detail on

the recognised phoneme types is provided in Section 3.3.2.3. If duration and pitch targets

were available, they would also be present in the synthesis specification. Furthermore,

the source data contains markers indicating whether the frame is voiced or unvoiced. The

pitch and duration of unvoiced regions are not modified.

3.3.2.2 Computing the Synthesis Time-Instances

The synthesis time-instants define the pitch in the voiced regions of the synthetic wave-

form, and their association with analysis time-instants through m(k) determine the time-

warping function. They can be computed from

• the analysis time-instants,

• the desired pitch N0(ηm) or pitch modification factor β(ηm) at each analysis time-

instant, and

• the desired time-stretching factor at each analysis time-instant. The time-stretching

factor could also be given indirectly by specifying the source and target times of

beacons. This implies a piece-wise linear, monotonically rising time-warping func-

tion.
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The synthesis time-instants are produced by keeping two time variables, ηm, the source

time, and ηk, the target time. They are initialised to the same utterance starting value

η0. They are related through ηm = D(ηk). The algorithm “walks” forward in target

time. Each new synthesis time-instant is obtained by adding the target pitch period:

ηk+1 = ηk + N0(D(ηk)). If ηk > ηm, then m is incremented until ηm > ηk, keeping the

analysis and synthesis at the same phonemic point in the utterance. At each iteration

the new values for k and m are added to the mapping of synthesis time ηk to analysis

time ηm, m(k). The resulting lock-step between m and k takes care of the repetition and

deletion of frames.

This simple algorithm associates the LP parameters and short-time residual signal

with the closest values to D(ηk) in the analysis set of short-time parameters. More so-

phisticated versions could interpolate the LP coefficients and residual signals between

neighbouring sets of values. The parameter variation from frame to frame seems suffi-

ciently slow that the interpolation scheme is not needed. It makes no audible difference

and incurs considerably increased computational expense. Large time-scale modification

factors will cause multiple copies of each analysis short-time signal, resulting in a charac-

teristic droning sound which could be alleviated by interpolation. Typical speech synthesis

applications do not require such extreme modifications.

3.3.2.3 Spectral Smoothing of Concatenations

The limited-domain concatenative synthesiser often spliced waveforms at places where

both sides of the join are voiced, but have different formant frequencies. The resulting

spectral discontinuities are quite prominent and are often reinforced by accompanying

pitch discontinuities. The discontinuous joins usually occur where a data shortage exists

in the corpus, or where the indexing is incorrect or inconsistent.

Similar joins occurred between voiced and unvoiced waveforms, but these were much

less noticeable, as the spectral envelope and the excitation characteristics change rapidly

in these regions anyway. Furthermore, the pitch can vary widely across unvoiced regions

in natural speech. Therefore we focus on joins between voiced phonemes.

After computing the synthesis time-instants and copying the synthesis LP parameters

from their analysis counterparts, the transitions are smoothed by interpolating the spec-
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trum as represented by the reflection coefficients at each synthesis time-instant. Smooth-

ing is applied to a region of pre-determined size to the left and to the right of the join

location ηJ . That is, the indices of the synthesis times at the left-hand side boundary

of the smoothing region, at the join location and at the right-hand side boundary of the

smoothing region are NL, NJ and NR, respectively.

Transitions between different classes of phonemes can be observed to progress over

different lengths of time. The transition from the [l] to the [æ] in the word “flattery”,

for example, (see Figure 3.1) is very fast compared to the transitions around the ap-

proximant [ô]. Similarly, short time constants hold for transitions from vowels to nasals.

Transitions from vowels to glides ([y], [w]), approximants ([r]) and other vowels are gener-

ally slower. Another effect is that nasal and lateral phonemes cause co-articulation effects

in the surrounding vowels, rather than bear the effects themselves. This is because the

semi-constricted configuration of the vocal tract allows less variation than does the open

configuration that produces the vowel.

Bearing this in mind, Table 3.1 is used to determine the time span of the regions left

and right of the join location to be smoothed. The times were determined heuristically.

Slightly longer time constants worked well for a large number of observed cases. In some

cases, however, the units to be concatenated are very short due to labelling variation or

inclusion in de-emphasised syllables. Longer smoothing time constants have been found

to cause the smoothing operation to destroy very short phonemes. Instead of making

the times longer, the region from ηL to ηR is stretched by a factor of 1.2 by inserting

some new synthesis frames into the concatenation region. The stretching factor was

introduced because vowels, nasals, laterals and approximants are sometimes much shorter

than expected, and it allows shortening the amount of time taken up by the smoothing

regions. Some additional awareness of phoneme type and length would be useful to make

this algorithm more robust.

Figure 3.7 depicts the smoothing process for concatenation between the two vowels [E]

and [a]. A target value for the d-dimensional vector of smoothed reflection coefficients at

the join location ηJ , κ̃J
3, is computed by taking the arithmetic average of values of the

3The reflection coefficients κm are calculated from the LP coefficients am. It is an equivalent repre-

sentation, and can be converted back easily [1].
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Phoneme Class Time (seconds)

Vowel 0.04/0.03

Nasal 0.01

Lateral 0.01

Approximant 0.05

Voiced Stop 0

Voiced Fricative 0

Table 3.1: Smoothing time values for various voiced phoneme classes. There are two

times for vowels, the shorter is used when smoothing it into a nasal or a lateral.

reflection coefficients at ηL and ηR:

κ̃J =
κL + κR

2
. (3.14)

The target weight wk, k ∈ [L,R], for interpolation of the spectrum progresses linearly

from 0 to 1 from ηL to the join location ηJ . From the join location it progresses linearly

from 1 to 0 at the right-hand edge of the smoothing region, ηR. The smoothed reflection

coefficient values are computed by:

κ̃k = wkκ̃J + (1− wk)κk. (3.15)

This scheme morphs the spectral envelope to the target spectral envelope in J − L

pitch cycles, and fades it from the target envelope to the envelope on the right-hand

side of the join in R − J pitch cycles. The asymmetric weighting around the join spot

allows the tempo of the interpolation to be varied according to the phonetic class. This

simple scheme avoids the association problems of interpolating the roots of the LP filter

polynomial and still results in smooth formant movements, as can be seen by the example

in Figures 3.8 and 3.9.

The waveform interpolation on the short-time LP residual frames operates using the

same weights [78]. The two short-time residual frames to be added are aligned on their

centres, and values outside the time range of each frame is taken to be zero.

Informal experiments showed that if only spectral smoothing or waveform interpolation

was applied, the discontinuity was still clearly audible. This can be attributed to the fact
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Figure 3.8: Formant movements in smoothed concatenations. The example spectra

were obtained by interpolation of a splice of [E] to [a]. The spectra are the same as in

Figure 3.7. The thick lines show the spectra of the two endpoints of the interpolation.
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that the LP modelling by itself cannot account for the difference in phase scattering and

amplitude differences in the residual on either side of the join. Section 3.4.1 presents some

toy experiments on nonsense words synthesised from phonemes recorded in isolation.

3.3.2.4 Waveform Synthesis

At this stage of synthesis, each synthesis time-instant has its own LP parameters and

residual, which are either simple copies of those at the associated analysis time or inter-

polated versions. The residual y(n) is produced using non-overlapping frames as given

by Equation 3.3, with the synthesis window hk(n) a square window centred on zero such

that

−b(ηk − ηk+1)/2c+ 1 ≤ n ≤ b(ηk+1 − ηk)/2c, (3.16)

where ηk is the index in y(n) of the centre of the synthesis frame.

Filtering the residual signal with a time-varying all-pole filter with coefficients ak

results in the desired synthesised waveform s(n). Where the frame is part of a smoothed

region, a short-time speech waveform with the modified spectral envelope is produced.

Care must be taken with filter transient responses. The filter input signal is y(n), the

PSOLA processed residual signal. It is filtered through the all-pole filter Hk(z) using a

simple implementation of the difference equation

s(n) = y(n)−
d
∑

p=1

aps(n− p) (3.17)

When the index n crosses the boundary of a frame, the filter parameters ak are updated

with the associated filter parameters for that frame, leaving the filter memory intact.

The progression through time of the envelope given by the filter parameters has been

smoothed by the large overlap between analysis windows. Thus the disturbance caused

by this additional filter input is not audible. (See Section 3.4.3.)

The simple splicing of LP residual signals might seem naive at first, with the potential

to cause buzziness. Note however that the LP inverse filtering whitens the spectrum,

decorrelating the samples. Therefore the frame-level concatenation simply splices se-

quences of decorrelated samples with similar variance. The join is therefore perfectly

natural for the type of signal.
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The effect of pre-emphasis is finally removed by filtering the waveform through

H(z) =
1

1− αz−1
. (3.18)

3.4 Evaluation

Attempts to test the ability of the speech modification system are frustrated by the lack of

good targets to modify concatenated speech to. The result of setting any target inevitably

only allows the result to be as good as the target that has been set.

To show the speech modification component in isolation, three experiments were con-

structed. The first (Section 3.4.1) concatenates vowels recorded in isolation and shows the

operation of the spectral smoothing method. The next two (Section 3.4.2) sets the pitch

target by simply smoothing the pitch contour, and by manually flattening some unnatural

pitch excursions. The accompanying CD-ROM contains the audio of these examples, and

more.

3.4.1 Isolated Spectral Smoothing Experiments

Figure 3.9 depicts the concatenation with and without smoothing of three phones of the

nonsense word [maE], as well as a naturally spoken version. Clear discontinuities can

be seen in the simply concatenated version. The formants in the recorded utterance

clearly move at the vowel boundary, which is mimicked closely in the smoothed version

of the nonsense word. Perceptually, the smoothing also results in a convincing transition.

Concatenating disparate phonemes is an admittedly artificial situation, but it shows the

ability to smooth formant movements well. The result is supported subjectively. This

type of smoothing is an enabling factor when extending the unit-selection synthesiser to

general TTS.

3.4.2 Making Pitch Targets

Two experiments show that the pitch modification produces very good results in the

limited-domain synthesiser, improving naturalness in most cases. It also shows the need
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Figure 3.9: Spectrograms of the nonsense word [maE]: unsmoothed, smoothed and

natural versions. The smoothed version (middle panel) resembles the natural version

(bottom panel).
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Figure 3.10: The pitch contour of the utterance: “I’m sorry, we only have eleven

double rooms, and seventy-nine single rooms in that period.” Two smoothed target pitch

contours are shown. One was low-pass filtered to 2.5Hz, and the high pitch excursion,

at about 3.5s, in the word “nine” has been flattened manually. The other was low-pass

filtered to 1Hz in order to produce a more exaggerated effect.

for prosody modelling if the synthesiser is to be extended in the direction of general

TTS. The first experiment adds a simple pitch smoothing operation to the concatenative

synthesiser. Some examples do sound better, and on a whole the operation does not

lower voice quality. In the second, two test sentences were identified in which severe

discontinuity occurred, both in the spectral envelope and in pitch. The pitch contour was

edited manually.

3.4.2.1 Pitch Smoothing

Figure 3.10 shows the pitch contour for the utterance: “I’m sorry, we only have eleven

double rooms, and seventy-nine single rooms in that period.” The pitch contour was lin-

early interpolated through unvoiced regions, connecting the ends of voiced pitch sections.

The resulting contour was resampled at 100Hz, and low-pass, zero-phase filtered to 2.5Hz.

Many of the sharp high-pith or low-pitch sections occur at the edges of voiced regions,

and thus the pitch modification does not operate there.

Generally speaking, this reduced the over-dramatisation in the English HRS record-

ings. The result from the pitch modification sounded very convincing; informal listening

tests involving four non-expert listeners and one speech recognition expert listener showed

that listeners did not have a consistent preference for unsmoothed or smoothed utterances.

This is so in spite of clearly audible differences in the intonation of the utterances. Listen-

ers also said that the voice sounds more mature and professional in the smoothed versions;
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Figure 3.11: A smoothed pitch contour of the utterance: “Now for the rooms.” from

Section 2.6.5.3. The very high pitch excursion at the start of the utterance has been

flattened manually, and the pitch range has been compressed.

critique on voice quality was never given.

Smoothing the pitch contour even more by setting the low-pass filter’s cut-off frequency

to less than 2Hz resulted in the utterances sounding sleepy. There are also concerns about

deformed pitch accents in Xhosa.4

3.4.2.2 Manual Pitch Correction

Figure 3.11 show the pitch contour of the utterance: “Now for the rooms.” from Sec-

tion 2.6.5.3. The abrupt rise in pitch at the start has been clipped. Following that, the

pitch contour range for the entire utterance was compressed by subtracting the mean

value, dividing the result by a factor of 1.5, and adding the mean again. The waveforms

are available on the accompanying CD-ROM.

Figure 3.12 shows the spectrogram of the utterance around the concatenation region

between “the” and “rooms”. Note the gently smeared formants and smoother amplitude

transition around the join location.

The utterance now sounds more subdued, and the concatenation is less disturbing.

The word “Now” was selected from a different utterance whose entire pitch contour is

higher. The word “Now” still sounds shrill however. That may be attributed to differences

in loudness, the effect of the loudness on the spectral envelope and the possibility that

4Here we are taking the view of Roux et al. [80] that a strong case may be made for Xhosa to be a

pitch accent language.
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Figure 3.12: Detail of the spectral envelope around the concatenation point between

“the” and “rooms” (at 0.21s): the top panel is the spectrogram from Section 2.6.5.3 and

the bottom panel shows the smoothed version.

the speaker was closer to the microphone than when recording the utterance from which

“rooms” was selected.

3.4.3 Pitch-mark Location

Figure 3.13 illustrates the effect of the location of the analysis pitch-marks on the resulting

synthesis. The pitch tracking algorithm described in Chapter 4 favours synchronising on

the highest peaks in the pitch cycle. The two sets of pitch-marks were obtained by running

the pitch tracker on the original waveform, and on the inverted waveform obtained by

multiplying by −1. Since the peaks that seem to correspond with the location of impulsive

excitation of the vocal tract extend downward, the best pitch-marks for this sample are

extracted from the inverted waveform. This is not always the case for this particular

speaker. Note that the same pitch periods are extracted, but they are out of phase.

The distortion of the waveform in the lower panel in Figure 3.13 is clearly audible.

Examination of the PSOLA-processed LP residual signal in Figure 3.14 reveals an atten-
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Figure 3.13: The effect of pitch-mark location on synthesis. The top panel shows

the original waveform with the two sets of pitch-marks. The two bottom panels show

synthesised signals with each set of pitch-marks. The bottom panel clearly does not

resemble the original waveform as well as the middle panel. It exhibits clear time-varying

distortion of the pitch pulses.
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Figure 3.14: The effect of pitch-mark location on the LP residual. The bottom panel

shows the residual signal that resulted in the distorted version from Figure 3.13. Note

the deformed peaks. The filter parameters are updated halfway between synthesis time-

instants, in the region of the higher amplitude portions of the pitch-cycle.

uation in the peaks of the residual signal. This is due to the Hamming windowing of the

residual frames during analysis. The peak in the pitch cycle in the residual signal should

fall in the centre of the window. The square windowing for the non-overlapping synthesis

operation also affects some peaks.

Another hypothesis is that updating the filter parameters during a high amplitude

portion of the pitch cycle is not desirable. This point is also raised by Rank [79].

Possible solutions and enhancements to the pitch determination algorithm are dis-

cussed at the end of Chapter 4.

3.5 Conclusions & Suggestions

Many comparisons exist between novel speech modification methods and TD PSOLA. It

should be noted that they mostly compare two methods on a diphone synthesis prob-

lem. Few specify the windows they used to obtain the analysis short-time signals, or the

interpolation they used to obtain the new synthesis pitch-marks or synthesis short-time

signals. It is therefore difficult to judge the objectivity of such reports. Pitch transplanta-
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tion experiments with varying requirements on the range of pitch or duration adjustment,

would be more appropriate.

Much criticism has been levelled at LP-based approaches: they often give a quality of

vocoded speech. The major cause for this is that the residual is often processed to reduce

its storage requirements. In this work, the residual is stored directly, resulting in perfect

resynthesis if no modification is performed. Apart from increased storage requirements,

this approach is computationally very efficient.5 A general synthesiser’s database might

contain on the order of thousands of prompts, suggesting that the storage problem should

be addressed.

The LP PSOLA approach (with no overlap) we have taken here, has been shown to

provide very high quality speech modification in the context of limited-domain concate-

native synthesis. None of the excellent voice quality has been lost, and it has shown the

ability to overcome the limited-domain synthesiser’s most pertinent data shortage prob-

lems: the prosodic and spectral discontinuities. Accurate global pitch specification will

complete this capability.

Listeners commented that the voice sounds more mature and professional in the

smoothed versions. No critique on voice quality was ever given, suggesting that the

LP PSOLA approach delivers excellent results for the requirement of adapting pitch in

this setting.

This work is only the beginning of building such a system, however. Some work needs

to be added to build a fully automatic system.

• In some cases the phoneme labels were spaced very close together. It occurred

when speech was de-emphasised, and was thus spoken very fast and not articulated

clearly. Sometimes phonemes were smoothed away completely because they fall

inside the smoothing region. As remedy, the smoothing system needs more phonemic

awareness.

• Knowledge about average durations of phonemes in particular words will aid in

5The synthesiser performs synthesis from synthesis specification to a waveform at about 20 times real-

time on a 400MHz Pentium II-based personal computer. The experiments were all done at a sampling

rate of 16kHz.
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setting adaptive phonetically aware smoothing time-constants. Setting good dura-

tion targets for phonemes, followed by time-scale modification in the LP PSOLA

framework, will further improve the robustness to labelling variation.

• Modification of loudness is easy in this framework. The next step is to obtain targets

for modification of loudness.

• The spectral envelope should also be modified in conjunction with the pitch, loudness

and speaking rate changes.

• An interesting approach to pursue is fusion units [77]. Fusion units explicitly encode

the trajectories that the envelope parameters should take in a particular phonetic

context. The difficulty here is that the fusion units must also be in the database.

This makes it an ideal approach to attempt if the limited-domain corpora are ex-

tended to diphone coverage.

The modification framework provided here shows that speech modification capable of very

high quality output has been in existence for some time. The major shortcoming of TTS

systems is modelling of speech production to a level where good targets can be set for the

waveform synthesis step.



Chapter 4

Pitch Determination

“One of the most conspicuous features of the normal speech signal is the

regularly occurring periodicity at its so-called voiced parts. When first en-

countered, these clear regularities are so striking that many a young scientist

in speech research has thought that it should not be too difficult to measure

these periodicities with a high degree of reliability.” — Hermes [81]

4.1 Introduction

Over the years, a vast number of solutions to the problem of pitch determination in

speech signals have been proposed. It appears that every body of speech signal processing

research includes its own work on the subject. It is almost a right of passage for speech

researchers. The age of easy availability of digital computing and digital signal processing

made this an even more prolific field.

We present an overview of work on Pitch Determination Algorithms (PDAs). The

presentation draws on overviews from [62, 81, 82] to set the stage for a brief discussion

on more recent developments. Sections 4.4 and 4.5 explain and evaluate a PDA that

simultaneously optimises a selection of pitch-mark locations (time-domain peaks), as well

as the selection of pitch frequency candidates from a simple frequency-domain pitch de-

termination method.

92
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Figure 4.1: A short segment of a speech waveform showing a voiced and an unvoiced

phone. The bottom panel shows the speech signal; the top panel shows the accompanying

laryngograph measurement. The pitch-pulses caused by the vibration in the vocal folds

can be seen very clearly in the voiced part.

4.2 Defining Pitch

Pitch is a quality of a sound that humans perceive. While many people may have trouble

discerning quantitatively exactly what the pitch of a voice or instrument is, they generally

agree on whether a sound has pitch, and on whether the pitch of two different sources are

similar or not. Intonation is almost completely embodied in pitch, hence our interest in

measuring and manipulating it.

Pitch is associated with voiced speech, which is produced by regular vibrations in the

vocal tract. The effect of these vibrations can be seen very clearly in the speech waveform

in Figure 4.1. The sharp peaks follow shortly after the Glottal Closure Instances (GCI).

The GCI are those moments in a speech waveform where the vocal folds close, just before

they open to release the impulse that excites the vocal tract system. Also note how

suddenly the vibration starts and then stops again. This supports the notion that speech

can be split into voiced and unvoiced parts.

Pitch has been linked to various properties of signals. The most conspicuous is the
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similarity between sections of the waveform, spaced at regular intervals in time. We know

from Fourier theory that such a regular spacing results in harmonically spaced peaks in

the magnitude spectrum. That these properties are strongly linked to pitch is further

supported by research into the working of the human auditory system.

The main consumer of pitch information in this work is the waveform synthesiser.

Many such algorithms are pitch-synchronous [61, 18], and even those that are not, also

require pitch-pulse locations to ensure phase continuity [71, 67]. These all work on the

principle that pitch is contained in the finer harmonic structure of the spectrum or in

periodic regions in the voiced waveform.

The properties of voiced speech signals and requirements of downstream signal pro-

cessing modules indicate that the aim of the PDA should be to

• determine where pitch is present in the signal (the voiced/unvoiced decision),

• measure the pitch where it is present (pitch determination in voiced speech), and

• determine pitch-related time-instants useful to the waveform synthesiser.

A secondary aim is to make PDAs as automatic as possible. Many PDAs have a number

of parameters that allow the user to tune the PDA for a specific situation. This makes the

PDA unreliable and much more difficult to evaluate and compare performance to others.

4.3 Overview of Pitch Tracking Methods

Most PDAs involve three steps, depicted in Figure 4.2. First is a feature extraction or

enhancement step. Feature extraction can be broken down further into pre-processing and

transforming to a domain where pitch may be better represented. Pre-processing steps

like pre-whitening and pre-emphasis are performed to enhance features that the pitch

candidate extraction step can use, and suppress features that might confuse it. In some

cases the pre-processor attempts to tag voiced and unvoiced segments in the waveform

as well. More recent algorithms employ statistical methods, and from that point of view,

pitch candidate extraction could also be thought of as pitch hypothesis extraction. Finally,

a post-processing step classifies each time-instant as voiced or unvoiced, and in the voiced
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Figure 4.2: General flow diagram of PDAs. Speech signals are sometimes pre-processed

to highlight desired features. The feature extraction step represents the signal in a way

that is more conducive to finding the pitch. The post-processing step removes some

types of errors that stem from the feature extraction step. Finally a pitch contour is

obtained.

case selects an optimal pitch. The optimality criterion may be as simple as selecting the

highest scoring pitch for each frame, or it may attempt to optimise the pitch candidate

selection over multiple frames.

4.3.1 Pitch Feature Extraction

Pitch in a signal manifests itself as similar waveforms repeating in the time domain. The

burst in the pitch-pulse bursts are generally wide-band phenomena, due to the discon-

tinuity of the airflow through the glottis. In the frequency domain the quasi-periodic

nature of the signal produces clear harmonics in a spectrogram, with the pitch generally

considered to correspond with the fundamental frequency. The feature extraction step in

the pitch determination process attempts to exploit some or all of these manifestations of

voiced excitation.

Pitch feature extraction usually produces a vector of pitch hypotheses for a frame of

speech. Each element of the vector represents the likelihood of a corresponding frequency
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to be the correct pitch. Other methods extract only a limited number of hypotheses at

each analysis instant [83].

4.3.1.1 Overview

The earliest PDAs were implemented in analogue electronics. They mostly consisted

of filtering out the first harmonic. For relatively simple speech, without wide variation

in pitch, band-pass filters could be tuned to a band which always contained only the

fundamental. With the advent of digital electronics, PDAs that pick successive peaks,

count zero crossings, calculate autocorrelation and perform a myriad of heuristics became

more popular. The increase in computing power of digital devices led to the ability to

integrate pitch information across the entire frequency-domain bandwidth.

Time-domain Pitch Feature Extraction

Autocorrelation is still a very popular basis for implementations of pitch trackers [84].

The idea that pitch in speech gives rise to a waveform that is similar to itself at regular

intervals in time, leads one to believe that the autocorrelation function should show a

peak at the pitch-period. Similarly, since unvoiced sounds resemble stationary coloured

noise, the autocorrelation should not show any distinct peaks except at the origin. An

estimate of the autocorrelation sequence, r(n), of a speech frame x(n) of length N is given

by

r(n) =
1

N

N−1
∑

k=0

x(k)x(k + n) (4.1)

where x(n) is assumed to be zero outside the range n ∈ [0, N−1]. Figure 4.3 illustrates the

result. One of the main drawbacks of autocorrelation is that the first formant resonance

may boost higher harmonics. In such cases, the autocorrelation function will have higher

peaks at half the correct delay, giving rise to pitch doubling errors.

Autocorrelation is commonly used with spectral whitening by linear prediction to

remove the effect of formants before autocorrelation is computed. This constitutes the

well-known SIFT algorithm by Markel as described in [1, Section 5.6]. The idea is that the

time-varying formants and loudness change the waveform so that periods are less similar.

Therefore removing such effects through inverse filtering should improve the results.
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Figure 4.3: Autocorrelation of a voiced and an unvoiced segment of speech. The top

panel shows a voiced segment of speech and its autocorrelation, The bottom panel shows

that of an unvoiced segment of speech. Both plots have been normalised by dividing by

the autocorrelation at zero delay. Note that the value at the maximum of the normalised

autocorrelation gives a measure of similarity at a delay, and thus a voiced/unvoiced

threshold can be set on this value.

Other popular pre-processing approaches for autocorrelation analysis include taking

the exponent of the signal while preserving sign, and centre clipping. Both these non-

linear operations introduce or reinforce harmonics of the fundamental and highlights the

higher amplitude parts of the pitch cycle.

Autocorrelation allows for a consistent normalisation through normalising its value

at zero lag, or equivalently, normalising the frame power. This property simplifies the

setting of thresholds on the autocorrelation value to build a voiced/unvoiced classifier.

A similar idea is the Amplitude Magnitude Difference Function (AMDF), defined by

ψ(n) =
1

N

N−1
∑

k=0

|x(k)− x(k + n)|. (4.2)

It can be seen that at values for n where the signal is similar to itself, ψ(n) has small

values [1, 62]. The AMDF can be shown to be similar to the autocorrelation while being

cheaper to compute, since it does not involve multiplication.

Many variations on the basic theme of similarity in the time domain exist. The

best known is probably the Super-Resolution Pitch Determinator (SRPD) [85] and the
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Enhanced Super-Resolution Pitch Determinator (eSRPD) of Bagshaw [86]. It works by

maximising the correlation between adjacent, non-overlapping regions in the signal, and

setting a multitude of interdependent thresholds to simultaneously determine voicing and

pitch.

A significant problem in pitch determination is coping with various types of noise.

Shimamura and Kobayashi [87] deduced that autocorrelation and the AMDF respond

independently to additive noise. They exploited this by weighting the value of the auto-

correlation function at each lag value with the value of the AMDF at the same lag. This

is claimed to yield a more robust measure with the efficiency of autocorrelation and the

AMDF.

As new signal processing techniques proliferate into the mainstream of signal process-

ing, they too are applied to pitch determination. The Discrete Wavelet Transform (DWT)

has the property that it highlights discontinuities in signals and their derivatives, and al-

lows the localisation of events in both time and frequency. A number of attempts to

exploit this has surfaced [88, 89, 90]. State-space embedding techniques from non-linear

dynamics have also been employed [91, 92] to spot deterministic and stochastic regions in

the signal, as well as determine the cycle period in the deterministic regions.

Frequency-domain Pitch Feature Extraction

The frequency domain provides a rich space from which to distill features. An old and

very direct method to locate the pitch in the frequency domain, is to pick the fundamental

peak in the short-time discrete Fourier transform. The frame must be long enough for

the harmonics to be discriminated. The frames could also be zero-padded to interpolate

the spectrum for more accurate peak-picking.

In voiced speech signals, especially those with low pitch, the fundamental frequency

often has a lower amplitude than higher harmonics. This makes such a naive method prone

to miss the fundamental altogether and make pitch doubling errors. This illustrates the

necessity of integrating information across the spectrum when performing pitch feature

extraction in the frequency domain.

A more refined method is either the Harmonic Sum Spectrum (HSS) or the Har-

monic Product Spectrum (HPS), where regions of a processed FFT are combined in a
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way that reinforces harmonics [81]. The HSS and the HPS are forerunners of the har-

mogram [93]. Incorporating information from higher harmonics allows such a pitch fea-

ture extractor to find the correct pitch even though the fundamental may be completely

missing. Frequency-domain PDAs gain this advantage from the fact that they can use

information about harmonics over the entire spectrum.

Seneff [94] developed one of the first published methods that explicitly use peaks in the

magnitude spectra of speech frames to derive pitch. The method relies on the observation

that voiced regions of speech show clear harmonics in frequencies under about 1kHz. The

fact that harmonics are all F0 Hz apart in the spectrum is exploited by a heuristic that

first throws out peaks it judges to be spurious, and then accumulates counts of distances

between peaks. The peak in the resulting histogram of distances is then identified as the

pitch. Much of the robustness of the method stems from its ability to discern between

spurious and true peaks in the spectrogram. It suffers from the fundamental shortcoming

of having many parameters that customise performance for a specific speaker.

The best-known method of measuring pitch in the frequency domain is based on the

cepstrum. The method is originally by Noll [1, Chapter 6]. It exploits the ability of the

real cepstrum to separate the periodic excitation and the effect of the vocal tract on the

periodic excitation. The development by Deller et al. [1, Chapter 6] shows that one can

expect the effect of the vocal tract on the cepstrum to decay quickly along the cepstral

“time”-axis, and the excitation to show up in periodic pulses at the pitch delay. Pitch

feature extraction using the cepstrum relies on the assumption that the window used to

compute the cepstrum is at least as long as a small number of pitch-periods1.

Using Features from Sinusoidal Analysis

The investigation of sinusoidal methods for speech coding and synthesis leads to a new

derived set of features to describe signals. Analysis of sinusoidal parameters under the

assumption that they are harmonically related, is a popular and effective way to encode

and modify speech. The harmonic assumption gives an accurate requirement to test pitch

and voicing hypotheses for a particular frame of speech. This section highlights some of

1In practise implementations use windows that are three to four times the length of the period of the

lowest pitch that they expect to see.
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the efforts in the literature to exploit these facts in the context of sinusoidal coding.

McAulay and Quatieri [95] used a method to minimise the mean squared error that

a re-synthesised signal would have with respect to F0 if the sinusoidal components of

the signal were assumed to be harmonic. The criterion that has to be optimised can be

shown to be free of spurious peaks at sub-harmonics of the true pitch of the speech frame.

To perform a Voiced/Unvoiced (V/U) decision, they set a threshold on the ratio of the

energy of the original signal, and the energy of the difference between the harmonically

reconstructed signal and the original.

Another way of computing the fit of an observed spectrum to a harmonic hypothesis

of fundamental frequency F0 is the spectral comb. It amounts to nothing more than

maximising over F0 the correlation between the magnitude spectrum of a frame of speech

and a frequency-domain comb function with components at {F0, 2F0, 3F0, . . .} convolved

with the frequency response of the window function.

An efficient algorithm to derive the pitch based on the spectral comb was proposed by

Chazan [96]. First, peaks are picked out from the magnitude spectrum. The algorithm

heuristically throws out spurious ones. It proceeds to add values to a histogram of pitch

hypotheses. A strong sinusoid observed at frequency f could be a component of a periodic

signal with fundamental f/n for any integral n > 0. To paraphrase, all pitch hypotheses

that could give rise to a sinusoid at the observed frequency are reinforced. Again, clever

heuristics allow the algorithm to ignore most of the peaks, speeding it up. This method

suffers from the same propensity to pick sub-harmonics of the pitch as does HPS and

HSS.

Several methods find sinusoidal components in the signal using the notion of instan-

taneous frequency, computed from the phase spectrum [68, 97, 98]. These have also been

employed more directly in finding the pitch.

Auditory-Based Pitch Tracking

Biologically inspired PDAs have been improving steadily over the past two decades, follow-

ing improving understanding of the human auditory system and the increase in available

computing power. The HSS, HPS and spectral comb type methods agree with some of

auditory theory, a reason often cited for their strength [81].
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Newer methods explicitly operate on the hypothesis that the human auditory system

perceives pitch by first decomposing the incoming waveform into narrow-band spectral

components. Each spectral component is further processed essentially in the time domain,

after which the information across the spectral components is integrated to split multiple

overlapping pitches. AMPEX [99] is a famous PDA that operates in this way, although

it only tracks a single pitch, and incorporates a speech-specific decision on whether the

signal contains pitch. Other examples include [100] and [101]. Coupled with sophisticated

post-processing methods, these time-frequency methods show promise in tracking multiple

additive periodicities [83]. Such systems offer the hope of being the fourth generation of

PDAs in the classification scheme of Hermes [81].

4.3.2 Post-processing of Pitch Features

The next step in a PDA is post-processing or pitch optimisation. Pitch estimators almost

always work with short frames of speech. Post-processing in PDAs imposes constraints

on consecutive estimates from the pitch estimator, and thus attempts to remove common

local errors that the pitch estimator might make.

The most common constraint imposed follows from the observation that pitch nor-

mally does not change much over the space of time between frames. Realisations of

this constraint range from simple median filtering of the pitch contour to constructing

sophisticated statistical models to enable tracking multiple tones.

The eSRPD algorithm performs post-processing by extensive heuristic thresholding

and the non-linear smoothing technique by Rabiner et al. [102].

Dynamic Programming (DP) is a useful idea in speech processing in general, as well as

in pitch post-processing [103, 104, 105, 106, 62, 88]. The algorithm can be implemented

to run on pitch hypotheses in the frequency domain [62], or in the time domain [88,

103]. Some algorithms, like that of Entropic as implemented in Snack [107], enforce

pitch continuity through only evaluating the preceding five frames through the Dynamic

Programming (DP) procedure. DP is appropriate and highly effective because it yields a

globally optimised result.

Bagshaw [108] stylises the pitch contour through linear and non-linear operations to
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make it more understandable when presented visually and to make it more readily usable

by automatic prosodic transcription tools.

4.3.2.1 Statistical Post-processing

As pitch feature extraction techniques improve and applications move to more difficult

problems like multi-pitch extraction, more sophisticated post-processing methods become

important.

Wu, Wang and Brown [83] propose a very promising scheme capable of tracking pitches

of two periodic signals added together. An HMM is set up without training. This model

derives a set of pitch hypotheses from frames of speech using an auditory motivated

technique to form the observation nodes in the HMM. These are then combined prob-

abilistically to form the observation probabilities given each state. Each of the hidden

states represent a pitch hypothesis. The state transition probabilities represent the pitch

dynamics from each speech frame to the next. Wu, Wang and Brown have found that the

transition between pitch states on continuous pitch tracks can be accurately described by

a sampled Laplacian distribution. The parameters of the Laplacian can easily be esti-

mated from existing pitch tracks. To form the decision between zero, one or two periodic

phenomena being present in the signal, they introduce further states and variability to

how the observation probabilities are computed. The final voicing decision and pitch

tracks are computed using the Viterbi algorithm’s optimal path.

An older approach is that of Gu and Van Bokhoven [100]. They constructed a much

simpler three-state HMM for enforcing the continuity constraint of pitch-tracks. Their

HMM had one state to describe the case where the quantised pitch stays constant, one

for increasing and one for decreasing pitch. The output PDFs describe the pitch value

and the pitch change from the previous frame. Results from this type of modelling was

only tested on waveforms constructed from one utterance by a male, and one by a female.

Two HMMs were then trained on male and female speech and used to evaluate the dual

pitch extractor.

These HMM approaches exploit the continuity property of pitch and optimise globally

through the Viterbi search.
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Figure 4.4: The Directed Acyclic Graph Pitch-tracking algorithm.

4.4 Implementation

Several pitch modification methods operate pitch-synchronously, and they need to know

the locations of the pitch-pulses. It is sufficient to know the location of the maximum

energy in each pitch cycle. More importantly, they need precise locations for pitch-pulses

at the onset and end of voicing. The estimates that frequency-domain methods yield are

imprecise here because they operate on an entire frame of speech, and the onset of voicing

is a very dynamic region in the speech signal.

Inspired by the ability of dynamic programming algorithms to find good pitch can-

didates in the frequency domain, and applications where good time-domain locations for

pitch-pulses are found [103, 88], a pitch tracker was developed that gives good locations

of pitch-pulses according to time-domain energy fluctuations and frequency-domain infor-

mation.

Figure 4.4 outlines the proposed algorithm. The feature extraction step produces two

sets of features: in the time domain it band-pass filters the signal and finds energy peaks;

in the frequency domain it computes the HPS. The post-processing algorithm incorporates

these two sources of information into a Directed Acyclic Graph (DAG). The best path

through the graph selects good peaks in the time-domain waveform. A further heuristic

step (using autocorrelation) removes spurious peaks that slipped through the optimisation

process to constitute a voicing decision.

The algorithm’s input consists of a pitch search range (given by the lowest (flow) and



Chapter 4. Pitch Determination 104

1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62

−6

−4

−2

0

2

4

time [s]

am
pl

itu
de

Smoothed Waveform

1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62

−6

−4

−2

0

2

4

6

time [s]

am
pl

itu
de

Speech Signal

Figure 4.5: The band-pass filtered energy contour from which the time-domain peaks

are extracted, and the speech signal.

the highest (fhigh) expected pitch frequencies in Hz) and an input signal sampled at fs Hz.

4.4.1 Pitch Feature Extraction

The time-domain feature extraction has to provide good locations for placing pitch-marks.

Peaks in the energy contour of the signal provide good candidates for processing algorithms

like PSOLA [61].

To this end, the waveform is band-pass filtered to between 40Hz and 1kHz to remove

high-frequency noise components from the signal, squared and then band-pass filtered

again to the pitch search range to obtain a smooth energy contour. The original sign of

the sample values are restored after squaring. All filtering is performed in a zero-phase

manner to preserve the location of the peaks in time. Figure 4.5 shows the original speech

waveform along with its smoothed energy contour. The positive peaks are selected and

their locations in time and the square roots of their heights are stored. The square root

compression was introduced to alleviate a problem with some valid peaks being much

lower than their neighbours during the post-processing procedure.
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Other possibilities exist for extracting the time-domain peaks from the waveform.

Specifically, since LP PSOLA as described in Chapter 3 is the principal user of pitch-

marks, it could be argued that the LP residual is a better waveform from which to extract

the time-domain peaks. For some speakers this gives very consistent results, but for the

speaker who delivered the prompts for the Afrikaans and English HRS systems, it failed

all too often.

The frequency-domain feature extraction computes the HPS based on the description

by Bagshaw [108]. Figure 4.6 illustrates the process for a frame of voiced speech. The

logarithm of the discrete power spectrum, P (l), is computed from the DFT of a 30ms,

Hamming-windowed speech frame. The frame is zero-padded to yield a DFT with a length

of LP , chosen so that the frequency resolution is at least 2Hz. Next, P (l) is smoothed by

convolving it with a Hamming window of length Lwin, h(l), centred around l = 0. The

power spectrum is mirrored around zero to alleviate edge effects: P (l) = P (−l), l < 0.

Psmooth(l) = P (l) ∗ h(l). (4.3)

The length of the window Lwin is about 2.5 times the widest expected separation between

harmonics, (LPfhigh/fs), and its length is odd.

Lwin = 2

⌊

2.5× (LPfhigh/fs)

2

⌋

+ 1. (4.4)

The smoothed log spectrum Psmooth(l) is subtracted from the log spectrum. This yields

the log-spectrum equivalent of a high-time liftered cepstrum Pexc(l) that contains only

excitation information:

Pexc(l) = P (l)− Psmooth(l). (4.5)

It should also be clear that the harmonics in harmonic signal frames will be higher than

0, while the noise and leakage energy in between will be lower than zero. This means that

the negative logarithms of sub-harmonics will subtract from the HPS, while harmonics of

a pitch hypothesis will add to it. The HPS Phps(l) can now be computed using

Phps(l) = exp

(

NH
∑

n=1

Pexc(nl)

)

. (4.6)

The compression harmonic factor NH determines how many harmonics of a pitch hypo-

thesis are multiplied together to form the HPS. In practice a value of 5 is often reported.



Chapter 4. Pitch Determination 106

Smoothing

+ −
+

100 150 200 250 300 350 400 450 500
0

10

20

H
P

S
 m

a
g

n
itu

d
e

frequency [Hz]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

−0.01

0

0.01

a
m

p
lit

u
d

e

time [s]

0 500 1000 1500 2000 2500 3000 3500 4000

−60

−40

−20

0

frequency [Hz]m
ag

ni
tu

de
 [d

B
]

0 500 1000 1500 2000 2500 3000 3500 4000

−60

−40

−20

0

frequency [Hz]m
ag

ni
tu

de
 [d

B
]

0 500 1000 1500 2000 2500

−10

0

10

frequency [Hz]m
ag

ni
tu

de
 [d

B]

30ms frame

log Power Spectrum

Harmonic compression:

HPS

P
(f

)
P

sm
o
o
th

(f
)

P
h
p
s
(f

)
P

ex
c
(f

)

Figure 4.6: Computing the HPS. The logarithm of the power spectrum is computed.

Then it is smoothed according to the highest fundamental frequency expected, and the

smoothed spectrum is subtracted. The multiplicative harmonic compression is finally

applied.
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Figure 4.7: Pitch information cast as a weighted graph. Each vertex represents a time-

domain peak and weights are assigned to the edges according to how well their spacing

agrees with a frequency-domain pitch extraction method.

4.4.2 Post-processing of Pitch Features

The aim of post-processing of the time-domain and frequency-domain features is to select

a good subset of time-domain peaks with large amplitudes that are also well spaced

according to the frequency-domain information in the HPS in the region. The peaks

and how they are related can be viewed as a graph, as depicted in Figure 4.7.2 Each

vertex represents a peak in the time-domain feature-set. If the weights on the edges are

correctly constructed, the optimal path through the graph will go through vertices that

represent tall peaks with good temporal spacing, considering the frequency-domain pitch

information.

4.4.2.1 Building the DAG

The vertices represent the time-domain peaks. The graph building algorithm takes each

vertex in order of increasing time and constructs edges from it to each following peak,

up to 50ms forward. The time difference between the peak under consideration and a

following peak gives the pitch hypothesis supported by the edge between the vertices that

represent them.

The algorithm is illustrated in Figure 4.8, and described in Figure 4.9. Let the Nv

vertices be vn, n ∈ 0, 1, 2, . . ., Nv − 1. The time of vn is tn, and its height is hn. The

weight of the edge from vn to vm is wnm. The height of the HPS at time tn for pitch

frequency fnm is Phps(bLP fnm/fsc), where fnm = 1/[tm − tn]. Note that Phps(l) is the

2The graph terminology follows the conventions in computer science [47]: A vertex is a node in the

graph and edges connect vertices. Edges may be directional, i.e. they connect vertices only in one

direction, and they may have weights associated with them.
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Figure 4.8: Schematic representation of the weight assignment to edges.

highest value of the harmonic product spectra computed from the three frames nearest to

tn. This ensures that a good pitch value is found at the onset and stopping of voicing.

Let Mn be the set of integers that index destination vertices vm from vn. The weight

wnm, m ∈ Mn, is then calculated by

wnm = (hn + hm) · Phps(bLPfnm/fsc). (4.7)

The graph is directed and acyclic since all the departing edges from a vertex go forward

in time; none go back. It is therefore impossible that cycles exist. If vertices are in

topologically sorted order, the following holds true: for any edge wnm, n < m. This holds

for the pitch graph as the vertices are sorted in order of increasing time and edges are

constructed to point forward in time.

4.4.2.2 Best Path Search

The path through the DAG with the highest cumulative additive weights, gives the desired

pitch-mark locations. An efficient greedy algorithm that searches the DAG for the best
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Input:

– Peak heights: hn

– Peak times: tn

– HPS: Phps

Iterate:

For n ∈ 0, 1, 2, . . ., Nv − 1

Mn ← {m : 0 < tm − tn < 0.05}

For m ∈ Mn

wnm ← (hn + hm) · Phps(bLP fnm/fsc)

Figure 4.9: The algorithm for connecting the vertices into a DAG. The temporal

separation between peaks is used to look up the “goodness” of that time difference in

the HPS. The frequency-domain score is then multiplied by the sum of the peak heights

connected by the vertex in question.
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path is shown in Figure 4.10 [47]. It requires that the graph be directed and acyclic,

and that the vertices be visited in topologically sorted order, to yield a globally optimal

solution.

The algorithm stores two additional values per vertex.

• The cost of the current best path to each vertex is stored in the array d(n). All d(n)

are initialised to −∞.

• The vertex from which the best path was obtained for each vertex vn is stored in

the array p(n).

The algorithm starts with the first vertex v0, and applies the following procedure to each

vertex in the topological order. At each vertex vn, it visits all the vertices that follow it

through edges. The score of the path through vn to a following vertex vm is d(n) + wnm.

If d(n) + wnm > d(m), then a path going through the current vertex vn is better than

what previous visits to vm could produce, and the new best path replaces the previous

one: vm: d(m)← d(n) + wnm and p(m)← n.

Finally, the vertices extracted by the best path search can be found by starting at the

last vertex vn, n = Nv − 1, and pushing p(n) unto a queue. The process is repeated for

each previous vertex vp(n), until the first vertex is reached.

4.4.2.3 Voicing Decision

In regions where the HPS contains strong peaks that agree with the spacing of tall time-

domain peaks, the optimal path yields the subset of “good” pitch-mark candidates. In

unvoiced and silence regions there will still be peaks, but their spacing will not be as

regular and will not correlate as well with the frequency-domain features as in the voiced

regions. The selected peaks are sufficiently well-behaved for three simple decision criteria

to make adequate voicing decisions.

1. The autocorrelation of short signal frames around two adjacent pitch-marks must

be higher than the threshold Vac, which defaults to 0.4 in the implementation.

2. The energy in the signal at the pitch-mark must also be higher than a threshold,

Vp. The threshold Vp is set quite low; its purpose is only to exclude silence.



Chapter 4. Pitch Determination 111

Input:

– Destination index sets for each vertex: Mn, n ∈ {0, 1, 2, . . ., Nv−1}.

– Edge weights wnm, n ∈ {0, 1, 2, . . ., Nv − 1}, m ∈ Mn.

Output:

– The sequence of vertices through which the optimal path goes, Q.

Initialise: d(0)← 0 ; d(n)← −∞, n ∈ {1, 2, 3 . . .Nv − 1}

Iterate:

For n ∈ 0, 1, 2, . . ., Nv − 1

For m ∈ Mn

if d(n) + wnm > d(m) then

d(m)← d(n) + wnm

p(m)← n

Backtrack:

Q← ∅

n← Nv − 1

while n 6= 0

add p(n) to Q

n← p(n)

Figure 4.10: The algorithm for searching the DAG. It iterates over the vertices in

topological order. At each vertex the score at the destination node of each edge, is

updated.
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3. Pitch-marks must occur in groups of at least four to be considered voiced speech,

and their time spacing may not differ by more than a factor Vs. The default is

Vs = 1.25 in the implementation.

4.5 Experiments

4.5.1 Test Methodology

The profusion of PDAs described in the literature indicates the difficulty of the problem

of pitch determination. The large number of options may well be due to the difficulty

of comparing performance of PDAs, making the choice a haphazard affair. This section

first discusses the efforts of Rabiner [109], where methods of evaluating and comparing

PDAs were first reported. Next, three more modern publications are briefly discussed to

highlight what they have in common. Lastly, a simplified evaluation framework is defined.

Rabiner et al. [109] published the first and most cited work on evaluation of PDAs.

They defined several scores by which to compare PDAs, and also compared seven standard

techniques that are still used today. They first derived a ground truth by a semi-automatic

procedure3, and then ran all their implementations on the data using the same framing of

the signals. The first important score they define is the percentage of gross pitch errors,

Egross. This is defined as the percentage of the total number of voiced frames where

the PDA measured the pitch incorrectly by more than a set percentage or threshold.

According to Stylianou [110], one should aim for a Egross < 3% error for harmonic re-

synthesis to remain acceptable. They also defined Efine, which is the mean and standard

deviation of the measurements in all frames that are voiced and where no gross pitch errors

were made. Another important measurement is the voiced/unvoiced error, quantified in

Eu→v and Ev→u, defined as the ratio of the number of frames that were misclassified as

either voiced or unvoiced and the number of voiced frames in the reference data.

Kawahara and De Cheveingé [111] discuss the evaluation of PDAs in general. They

also evaluated ten common PDAs, including eSRPD, on data that is readily available.

3Dated 1976, the reference data set was quite small (only about 20 sentences), since the semi-automatic

method they used already required 60 hours of computer time.
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The goal of their testing was to compare PDAs in terms of how accurately they could find

pitch at a specific time in the utterance. They limited the measurements to regions in the

waveforms where pitch is unambiguous and did not consider the errors made by PDAs

in the regions where pitch is poorly defined. Referring back to Figure 4.1, only regions

where the pitch-pulses are regularly spaced in both the speech and laryngograph signals

are labelled as voiced for their purposes. This labelling was performed manually, and

regions corresponding to regular vibration in the laryngograph were automatically pitch-

marked using simple heuristics. The PDAs were scored on the number of frames where

they measured the pitch incorrectly. Only frames that are voiced in the ground truth

data were taken into account, and where possible, the voiced/unvoiced decision feature of

the PDAs were disabled, forcing them to provide a pitch estimate at every time-instant.

In this paradigm, PDAs are compared on Egross only. Error rates were often higher than

what the tested PDAs’ authors claimed, due to sub-optimal parameter variations. This

shows the difficulty of using PDAs that have many tunable parameters.

The first problem is therefor to obtain the ground truth, i.e. a set of data that is believed

to be correct and according to which PDAs can be compared. Rabiner et al. [109] used a

semi-automatic labelling procedure. Bagshaw [108] used recordings of speech utterances

for which time-synchronised laryngograph data is also freely available. The laryngograph

measures the conductance between two electrodes stuck to either side of the speaker’s

throat. This allows one to deduce a measure of surface area of contact of the vocal folds,

and thus the pitch-period. (See Figure 4.1 for an example of a speech waveform with

the accompanying laryngograph data.) The relative simplicity of the laryngograph data

makes it easy to use heuristics to locate pitch-pulses exactly, and then compute the pitch

in a given frame.

Two corpora with laryngograph data were used in the evaluation of the DAG-based

pitch tracker. The first data set was released by Bagshaw [86]. It contains 50 sentences

spoken by one male and one female speaker, totalling 260 seconds of clean speech.

The Keele Speech Database is also freely available [112]. It includes the laryngograph

waveform with ten utterances varying from 25 to 40 seconds each, 5 by male and 5 by

female speakers. The data also includes information about whether pitch is present in the

speech waveform, the laryngograph, both or none. We use this information to leave the
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doubtful regions out of consideration in the calculation of Egross. Some of the speakers

croak excessively, and the laryngograph data is quite noisy, making this a difficult set to

work with. Comparisons with other PDA implementations are not available for this data

set.

The ground truth was derived by running the DAG PDA on the much simpler laryngo-

graph data, as suggested by Plante [112]. This ensured that only regions of the waveform

that contained well-behaved pitch-pulses are considered as voiced, due to the second crite-

rion of the voiced/unvoiced decision. The pitch-marks were manually inspected, and the

pitch search range was restricted for each speaker to give the best results. The reference

thus amounts to data that conforms to the principles of Kawahara and De Cheveingé [111].

The manual inspection of the laryngograph signals and the derived pitch-marks confirmed

this.

4.5.1.1 Scoring the DAG PDA

Much of the work on pitch tracking concerns robustness to noise and tracking of perceived

pitch. Since the goal in this work is modification and good concatenation locations, the

aim is to find regions in the signals that agree with the signal models used for modification.

Noise robustness and perceived pitch where the waveform is not vaguely periodic are

ignored.

The graph-based PDA will be scored on two different categories:

• Pitch accuracy as reflected by Egross. This metric is the same as was used by

De Cheveigné and Kawahara [111], and indicates the percentage of voiced frames

where the pitch tracker made a gross error. Note that in their study, the PDAs gave

a pitch estimate even on frames that contain no tonality. However, only frames that

are voiced according to the reference data are taken into account for the scoring

process. In this test, the PDA performs a voiced/unvoiced decision, and only regions

where the reference and PDA output agree on voicing are taken into account.

• Voiced/Unvoiced accuracy as reflected by Ev→u and Eu→v. The PDA provides

a voiced or unvoiced decision. Silence counts as unvoiced speech.
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Fine pitch errors, Efine, are disregarded in this work. The PDA being tested puts pitch-

marks on the high amplitude part of the pitch cycle, and therefore the pitch can be

considered correct if no gross pitch errors exist. Significant errors will be shown by Egross,

Ev→u and Eu→v.

4.5.2 Results

Table 4.1 show the values of Egross, Ev→u and Eu→v for the Bagshaw and Keele data

sets. The DAG PDA compares favourably on Egross with the best PDAs in the study by

Kawahara and De Cheveingé [111] on the Bagshaw set. Note that the DAG PDA was run

with a general search range of 50–500Hz, and defaults on its remaining parameters for all

the speakers.

The results for Ev→u and Eu→v seem less encouraging, but still compares favourably

with published results [83, 86], especially considering that in these publications, the

ground truth data were manually corrected. Manual inspection further explains the

results—many voiced regions are simply not visible in the speech signal, while they are

clear in the laryngograph. These were found to make up a large proportion of Ev→u. Un-

voiced speech was most often misclassified at the edges of voiced regions where impulsive

unvoiced sound occurred. These gave rise to peaks in the time-domain features, and were

close enough to harmonic regions to fool the frequency-domain feature extraction.

The results on the Keele set is less encouraging. Manual inspection revealed numerous

cases where the voice is very croaky and quite irregular, or the laryngograph is corrupted

beyond salvage. The provided labelling of dubious regions in the speech and laryngograph

brings the voiced/unvoiced error results in line with those on the Bagshaw database.

Further manual inspection reveals a result that matches very well with “naked eye” pitch

tracking. It must also be said that the Keele database is not as clean as the Bagshaw one,

as its purpose was a wider field of research than was attempted here.

4.6 Conclusions & Suggestions

A PDA has been presented that successfully integrates time-domain and frequency-domain

data to yield pitch-marks that are useful for pitch-synchronous pitch and duration mo-
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Bagshaw Keele

Egross 0.6% 2%

Ev→u 10% 12%

Eu→v 4% 4%

Table 4.1: Pitch-tracking results for the DAG PDA.

dification schemes. As far as perceived pitch is concerned, this work hardly scratches

the surface. The ability of pitch modification schemes is limited when no clear harmonic

behaviour is present anyway. For clean speech from speakers whose voices will work

well with speech synthesis and voice modification schemes, the DAG PDA achieves good

results with very few parameters to fine-tune.

The biggest failing of this incarnation of the pitch tracker is its enforcement of two

assumptions regarding the nature of pitch in speech:

1. voiced speech contains regularly spaced, easy to discern pitch-pulses, and

2. pitch shows up as clear harmonics in the magnitude spectrum that can be extracted

using the HPS.

This makes it prone to miss voiced regions in croaky voices where clear peaks can be

found but they are not regularly spaced. Voiced speech (where pitch is clearly present

and regular) may not have clear peaks, often causing the graph pitch tracker to lose

synchronisation. This results in jumps in the pitch contour where it was not overly

detrimental to the DAG optimisation score—the new synchronisation could make up for

the loss incurred by one low scoring transition. Such “re-synchronisation” events cause

breaks in voiced regions.

The test methodology and results confirm the difficulty of evaluating PDAs using

reference data. It has been suggested that speech synthesisers or vocoders be used, but

this is complicated by the myriad of other factors and interactions in a complex system

such as a speech synthesiser. It would also not be representative of the problem of finding

analysis time-instants in natural speech for LP PSOLA.

The work of Wang, Wu and Brown [83] shows another way of how auditory-based time-

domain and frequency-domain features can be joined to yield good pitch estimates. The



Chapter 4. Pitch Determination 117

graph pitch post-processing scheme has the advantage that it does not require parameters

to be trained, and provides another way of integrating pitch information from both time

and frequency domains into one pitch estimate. More sophisticated pre-processing as

proposed by Wang et al. could improve the DAG PDA.

The DAG PDA synchronises pitch-marks by positioning them on peaks in the band-

pass filtered intermediate waveform. Synchronisation on peaks in the LP residual is

perhaps more relevant to LP PSOLA synthesis. This proved difficult in practice since the

phase spectrum is often smeared, and thus a discernible peak is not always available.

A technique that enabled building a high-quality vocoder at ≈ 2000 bits per second

computes the phase-equalised pitch waveform [113]. The residual is put through a phase

equalisation filter. The phase smearing in the LP residual was found to evolve slowly

enough that processing each frame in the LP residual in this way does not result in

audible phase modulation artifacts. The phase-equalised residual exhibits much clearer

peaks than the unprocessed residual waveform, and synthesis using the phase-equalised

residual is reportedly equivalent to using the original residual. Synchronising the pitch-

marks on these peaks rather than peaks in the original waveform, would yield much more

robust and appropriate pitch-mark placement in the LP PSOLA context.



Chapter 5

Conclusion & Suggestions

The state-of-the-art in unit-selection waveform synthesis techniques in speech synthesis

has been surveyed and summarised. A limited-domain synthesiser for a prototype hotel

reservation system has been built and tested in three different languages. The synthesiser

is more flexible than simple prompt playback systems and gives much better output

quality than simple concatenative systems. A baseline system for high quality speech

modification was necessary to alleviate some of the shortcomings of the unit-selection

system. It also provides the necessary infra-structure for future work on different aspects

in speech synthesis.

Corpus design and post-recording processing procedures were developed for building

the voices. These automate much of the work involved in producing high quality voices

for specific applications, enabling a short turn-around time for new voices.

This work also laid the groundwork for more general synthesis. The waveform syn-

thesis principles explored here are staples of the field of TTS. The LP PSOLA waveform

synthesiser repairs some of the damage done by the concatenation procedure, making it

more robust. More significantly, it provides the ability to realise high quality speech with

prosody as predicted by automatic systems. This ability is crucial to further research in

prosody prediction in languages such as Xhosa and Afrikaans.

The limited-domain speech synthesiser’s major shortcoming is its limited vocabulary.

The fact that so much more than words have been encoded into the recorded utterances

also means that the words contained in the corpus are not usable in different contexts.

The speech modification component alleviates this to some extent, but natural intonation
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in all cases will require more sophisticated methods to determine target pitch.

5.1 Future Work

Speech synthesis is far from being a solved problem. Similar to speech recognition however,

good results may be obtained from methods that exploit the specific simplifications that

a particular application allows. This work showed the viability of exploiting the specific

form of the dialogue in an SDS using limited-domain concatenative synthesis in Afrikaans,

English and Xhosa. The next step is to start lifting some of the restrictions.

The unit-selection and waveform synthesis components developed here also provide a

basis for testing the higher-level TTS components, such as orthographic to phonetic con-

version (lexicon, rule-based orthographic to phonetic conversion and cross-word effects),

language modelling (for determining parts of speech for homograph disambiguation and

prosody) and prosodic modelling. Indeed, if the number of pages devoted to waveform

synthesis compared to the number of pages describing the text-processing modules in

Klatt’s [2] original work is an indication, the bulk of the work remains to be done.

The rest of this section discusses some directions for future work to extend the syn-

thesis methodology in this work in various directions. Section 5.1.1 mentions a simple

data-driven technique that has the potential to improve the robustness of the system to

inconsistent intonation patterns in the recordings. Section 5.1.3 highlights steps toward

lifting some constraints on the vocabulary of the synthesiser. Section 5.1.4 glosses over

the first stumbling blocks toward general synthesis.

5.1.1 Intonation

In the slot-and-filler reply generation context, it is possible to decompose intonation com-

ponents due to the utterance time-frame, and the lexical and syllable time-frames in

terms of Fujisaka’s superpositional model of intonation [8]. This could provide a data-

driven method of intonation prediction in the limited-domain synthesiser and improve

pitch continuity by providing an utterance global, coherent pitch contour.

Such a more sophisticated intonation system will make the limited-domain synthesiser

much more robust against the prosodic inconsistencies that are so difficult to control
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during recording. It will also provide a way to predict intonation for novel words, given

syllabic stress or pitch accents.

5.1.2 Improved Unit Selection

If intonation prediction and modification is to be included in such a system, the unit-

selection methodology must be made prosody-aware. It should be biased toward preferring

units that are a bit longer than desired, since shortening units loses less quality than

lengthening them. It should also prefer units with roughly the correct pitch.

The unit selection may be further improved by including heuristics to make it more

aware of the underlying phonetics. The current system splices units on phoneme boun-

daries. Vowels, diphthongs and other sustained voiced sounds are better spliced in the

middle. Slight spectral or pitch mismatches caused by this are easily removed using the

LP PSOLA speech modification engine.

5.1.3 Novel words

Synthesis of novel words in the limited-domain synthesiser requires specification of the

phonemes of the novel word, its intonation, the relative loudness of phonemes and their

duration. The phonemes can be provided by a lexicon that is extended as the new words

are introduced.1 The lexicon should also provide syllabic stress (Afrikaans and English)

and pitch accents or tonal patterns (Xhosa).

Syllabic prominence is reportedly quite regular in Xhosa, and could be usefully pre-

dicted by rules. In English and Afrikaans it can be predicted reasonably well from syllabic

stress, parts of speech or additional mark-up in the synthesis specification, also using rules.

This obviously requires that the database contains more than just the units needed for

the limited-domain task. As previously mentioned, the addition of prompts that cover

diphones in carefully selected contexts and are recorded in a fairly bland and almost

hyper-articulated style, will not only provide the needed additional units, but also make

automatic alignment using HMMs much more reliable.

1The most useful novel words would be proper nouns, on which LTS rules are of little use.
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The intonation and duration targets can be realised with high quality using the speech

modification engine described in Chapter 3.

5.1.4 General Synthesis

English and Afrikaans are stress languages, which absolutely necessitates a lexicon that

gives syllabic stress. Xhosa is traditionally viewed as a tone language, although it contains

strong elements of a pitch accent language [80]. Xhosa synthesis requires a morphological

parser and accompanying lexicon that can predict placement of various tones and pitch

accents. All three lexical systems must also be able to produce parts of speech.

Once the unit-selection synthesiser is capable of synthesising novel words, the ability

to derive these higher level features from text is the enabling factor in building fully

automatic methods of producing natural prosody.
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[43] FRANÇOIS, H. and BOËFFARD, O., “Design of an optimal continuous speech

database for text-to-speech synthesis considered as a set-covering problem..” in

Proceedings of Eurospeech, (Scandinavia), 2001.

[44] BELLEGARDA, J. R., LENZO, K., SILVERMAN, K. E. A., and

ANDERSON, V., “Statistical Prosodic Modelling: From Corpus Design to

Parameter Estimation.” IEEE Transactions on Speech and Audio Processing,

January 2001, Vol. 9, pp. 52–66.

[45] BLACK, A. W. and LENZO, K. A., “Optimal Data Selection for Unit Selection

Synthesis.” in Proceedings of Eurospeech, (Scandinavia), 2001.

[46] BLACK, A. W., “Perfect Synthesis for All of the People All of the Time.” in IEEE

TTS Workshop, (Santa Monica, California), IEEE, 2002.



BIBLIOGRAPHY 127

[47] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., and STEIN, C. (Eds),

Introduction to Algorithms. Second edition. Cambridge, Massachusetts, USA:

MIT Press, 2001.

[48] BLACK, A. W., LENZO, K. A., and CALEY, R., “The Festival Speech Synthesis

System, System Documentation.”

http://www.cstr.ed.ac.uk/projects/festival.html. August 2004.

[49] TAYLOR, P. and BLACK, A. W., “Speech Synthesis by Phonological Structure

Matching.” in Proceedings of Eurospeech, (Budapest Hungary), 1999.

[50] SCHWEITZER, A., BRAUNSCHWEILER, N., KLANKERT, T., MÖBIUS, B.,
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Speech Signals using Poincaré Maps.” in Proceedings of the 9th European Signal

Processing Conference, vol. 2, pp. 701 – 704, September 1998.

[93] HINICH, M., “Detecting a Hidden Periodic Signal when its Period is Unknown.”

IEEE Transactions on Acoustics, Speech and Signal Processing, 1982, Vol. 5,

pp. 747–750.

[94] SENEFF, S., “Real-time Harmonic Pitch Detector..” IEEE Transactions on

Acoustics, Speech and Signal Processing, 1978, Vol. 26, No. 4, pp. 358–365.

[95] MCAULAY, R. J. and QUATIERI, T. F., “Pitch Estimation and Voicing Decision

based on a Sinusoidal Model.” in ICASSP, (Albuquerque), pp. 249–252, 1990.

[96] CHAZAN, D., TZUR (ZIBULSKI), M., HOORY, R., and COHEN, G., “Efficient

Periodicity Extraction Based on Sine-wave Representation and its Application to

Pitch Determination of Speech Signals.” in Proceedings of the ICSLP, (Beijing,

China), 2000.



BIBLIOGRAPHY 132

[97] ATAKE, Y., IRINO, T., KAWAHARA, H., LU, J., NAKAMURA, S., and

SHIKANO, K., “Robust Fundamental Frequency Estimation Using Instantaneous

Frequencies of Harmonic Components.” in Proceedings of the ICSLP, (Beijing,

China), 2000.

[98] CHARPENTIER, F., “Pitch Detection using the Short-term Phase Spectrum.” in

Proceedings of the IEEE ICASSP, pp. 113–116, 1986.

[99] IMMERSEEL, L. M. V. and MARTENS, J.-P., “Pitch and Voiced/Unvoiced

Determination with an Auditory Model.” Journal of the Acoustical Society of

America, June 1992, Vol. 91, No. 6, pp. 3511–3526.

[100] GU, Y. and VAN BOKHOVEN, W., “Co-channel Speaker Separation Using a

Frequency Bin Non-linear Adaptive Filter..” in Proceedings of the ICASSP,

pp. 949–952, 1991.

[101] ROUAT, J., LIU, Y. C., and MORISETTE, D., “A Pitch Determination and

Voiced/Unvoiced Decision Algorithm for Noisy Speech..” Speech Communication,

1997, Vol. 21, pp. 191–207.

[102] RABINER, L., SAMBUR, M., and SCHMIDT, C., “Applications of Non-linear

Smoothing Algorithms to Speech Processing.” IEEE Transactions of Acoustics,

Speech and Signal Processing, 1975, Vol. 23, No. 6, pp. 552–557.

[103] GONCHAROFF, V. and GRIES, P., “An algorithm for accurately marking pitch

pulses in speech signals.” in Proceedings of the IASTED International Conference,

Signal and Image Processing, (Las Vegas, USA), 1998.

[104] HARBECK, S., KIESSLING, A., KOMPE, R., NIEMANN, H., and NÖTH, E.,
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Appendix A

Hidden Markov Models

This Appendix describes the HMM. It starts by glossing over the basic theory to de-

fine terminology and notation, and then describes the embedded re-estimation, forced

alignment and simplified Maximum a Posteriori (MAP) adaptation techniques used in

Chapter 2. Section A.6 summarises the symbols used in this Appendix.

A.1 Introduction

An HMM is a weighted finite-state machine that generates a random vector called an

observation upon entering a state [1, Chapter 12].1 In this formulation, and as is common

in speech recognition, the HMM is formulated to operate in discrete time. Figure A.1

depicts an HMM with a simple three-state structure. States 0 and 4 are null states. They

do not emit observations, and they do not swallow up time steps. We only consider first-

order HMMs, which implies that the state transition made at any one time only depends

on the current state.

The HMM models two random processes. One is the “true” underlying process that

is the state sequence of length T , X = {x(1), x(2), . . ., x(T )}, where x(t) = i, 1 ≤ i ≤ S

in an HMM with S states. The parameter aij is the probability of making the transition

from state i to state j, and can also be written as a component of the S × S matrix A.

1In the Moore form, the HMM generates a random vector upon entering a state. The Mealy form

generates the random vector at each state transition. The Moore form is used here.

134
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a01

a11

a12

a22

a23

a33

a34

0
1 2 3

4

y1 y2 y3

fy|x(y|x = 1) fy|x(y|x = 2) fy|x(y|x = 3)

Figure A.1: A three-state phoneme model, with no forward skip.

Let π(t) be the vector containing the probabilities of being in each state at time t, and

let π(1) be known. Then π(t) = At−1
π(1), since we make the first-order assumption.

The matrix A and the initial probability distribution π(1) define the underlying random

process completely.

The other random process is the observed or measured process, Y = {y(1),y(2), . . .,y(T )}.

The observed process is a series of random vectors of dimension D. For each state x(t) in

the state sequence an observed value y(t) is emitted. The HMM models the production

of these observation vectors with the conditional PDF fy|x(y|x(t)). We model it using a

weighted mixture of M Gaussian PDFs.

fy|x(y|x(t) = i) =

M
∑

m=1

wimN (y,µim,Cim) (A.1)

where

N (y,µ,C) =
1

(2π)D/2|C|1/2
exp{

1

2
(y− µ)C−1(y − µ)T} (A.2)

and
M
∑

m=1

wim = 1. (A.3)

The determinant of C is written as |C|.

From this discussion, it should now be clear that the HMMM is completely specified

by the parameters

M = {S,A,π(1), {wim,µim,Cim, 1 ≤ i ≤ S, 1 ≤ m ≤ M}} (A.4)

where we assume that the Gaussian mixtures at all states 1 ≤ i ≤ S have M components.
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[A:]

[a]

[Z]

Figure A.2: A simple compound HMM to recognise connected speech.

A.2 Speech Recognition

The simple three-state HMM in Figure A.1 can be employed to model phonemes. A

feature extraction step computes regularly spaced D-dimensional feature vectors from

the input waveform (see Section A.3) which the HMM can model as its observations.

A separate set of parameters is usually associated with each phoneme in the language,

resulting in a set of phoneme models.

The parametersM of each phoneme model are estimated from many examples of fea-

ture vector sequences associated with the particular phoneme during the training process

(see Section A.4). A set of trained models can now be used to identify a given series

of features as a specific phoneme by computing the likelihood that each phoneme model

“generated” the data, and then selecting the model whose likelihood was the highest.

A sequence of feature vectors computed from a speech waveform can be modelled

using a special compound HMM as depicted in Figure A.2 to recognise speech. The

trained phoneme models are connected through null states with transitions embodying

phoneme statistics. A Viterbi search then finds the most likely sequence of states X,

given the observation sequence Y . The most likely sequence of states implies the most

likely sequence of phonemes.

A third application is to find the boundaries of phonemes when the phoneme sequence

is known; this is the application of interest for automatic alignment of speech synthesis

corpora. Section A.5 treats it in more detail.
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A.3 Features

Ideally, the feature vectors should contain information that is pertinent to the job at

hand. In the case of phoneme modelling, the features should allow distinguishing between

phonemes. In speech recognition it has been realised early on that the spectral envelope

contains the necessary information, while spurious data such as pitch may be ignored for

many languages. Compact representations of it has been found in linear prediction and

its derived forms. A favourite is Mel-frequency cepstral coefficients (MFCCs) [1, Chapter

6]. Further work to enable the HMM to represent more perceptually valid features led

to perceptual linear prediction (PLP), and its cousin that aims to remove non-stationary

line effects from the features, RASTA.

The general feeling is that the cepstral vectors still contain too much unnecessary

information, so linear discriminant analysis and principle component analysis are often

used to reduce the dimensionality of the feature vectors. This leads to savings in compu-

tational cost while maintaining or even improving recognition results. Since cepstra do

not contain any dynamic information, the dimensionality of the data is often raised before

dimension reduction by adding difference or delta (∆) vectors to the features. These ∆’s

give an indication of velocity of change of the features. Acceleration, or ∆∆’s, are often

used as well.

In this work we chose a simple option: 12-dimensional MFCCs computed from speech

sampled at 16kHz. The so-called zeroth cepstral coefficient was included as an indication

of the energy in the signal. The vectors were computed from fixed-length 32ms frames,

with the frame centres spaced 5ms apart. The relatively low dimensionality of the data

leads to fewer parameters to estimate, which is better in light of the small size of the

training sets.

A.4 Training

The task of training an HMM is that of estimating the parameters of the modelM. This

section shows how the Expectation Maximisation (EM) re-estimation equations as given

by Deller et al. [1, Chapter 12], can be viewed as the accumulation of sufficient statistics
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from weighted examples. This interpretation then leads to the simplified MAP procedure,

used to stabilise the HMMs given too few examples of each phoneme for estimating the

parameters during embedded re-estimation.

The likelihood that an observation sequence was generated by a model can be es-

timated using the Baum-Welch estimation procedure. It provides the forward, α, and

backward, β, joint probabilities that the model was in state i at time t, and generated

the forward sequence Y t
1 = {y(1),y(2), . . .,y(t)} and will generate the backward sequence

Y T
t+1 = {y(t+ 1),y(t+ 2), . . .,y(T )}:

α(Y t
1 , i) = P (Y t

1 , x(t) = i|M) (A.5)

β(Y T
t+1, i) = P (Y T

t+1, x(t) = i|M). (A.6)

This allows us to write down the probability of generating the observation sequence and

being in state i at time t,

P (Y, x(t) = i|M) = α(Y t
1 , i) β(Y T

t+1, i), (A.7)

and the total probability of the observation sequence,

P (Y |M) =
S
∑

i=1

α(Y t
1 , i) β(Y T

t+1, i), for any 1 ≤ t ≤ T. (A.8)

Now we can write the conditional probability of x(t) = i given the observation sequence

Y :

P (x(t) = i|Y,M) =
P (Y, x(t) = i|M)

P (Y |M)
(A.9)

=
α(Y t

1 , i) β(Y T
t+1, i)

∑S
j=1 α(Y t

1 , j) β(Y T
t+1, j)

(A.10)

, νhmm(i; t). (A.11)

For later use, let νhmm(i; t) denote this quantity. It is the weight or importance that the

HMM gives to the training vector for re-estimating parameters of state i at time t. A

qualitative way to look at it is that νhmm(i; t) states how much a training sample at time

t “belongs” to state i.

Similarly, the importance of the training sample to the component m of the Gaussian

mixture at state i is expressed by the probability of the component given the observation
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and the state:

P (m|y(t), x(t) = i) =
wimN (y(t),µim,Cim)
∑M

l=1wilN (y(t),µil,Cil)
(A.12)

, νgmm(i; t,m). (A.13)

The equations for computing new estimates {w̄im, µ̄im, C̄im, 1 ≤ m ≤ M} of the

Gaussian mixture parameters {wim,µim,Cim, 1 ≤ m ≤ M} for the next iteration of the

EM algorithm are given in [1, Chapter 12] in terms of ν(i; t,m). Using Equations A.11

and A.13 it can be written as

ν(i; t,m) =
α(Y t

1 , i) β(Y T
t+1, i)

∑S
j=1 α(Y t

1 , j) β(Y T
t+1, j)

·
wimN (y(t),µim,Cim)
∑M

l=1wilN (y(t),µil,Cil)
(A.14)

= νhmm(i; t) · νgmm(i; t,m). (A.15)

This separation of the weights ν as being a result of the HMM and of the Gaussian

mixture enables a flexible software architecture that allows a hierarchical structure in

which weighted training vectors can be passed from the HMM to the correct Gaussian

mixture. This simplifies tying of parameters and sharing of Gaussian mixtures among

different states and even different phoneme models.

The equations for re-estimating the parameters of the HMM after the weights of each

training vector for each state and Gaussian component has been gathered, can now be

written as:

w̄il =

∑T
t=1 ν(i; t,m)

∑M
m=1

∑T
t=1 ν(i; t,m)

, (A.16)

µ̄il =

∑T
t=1 ν(i; t,m)y(t)
∑T

t=1 ν(i; t,m)
, and (A.17)

C̄il =

∑T
t=1 ν(i; t,m)[y(t)− µil][y(t)− µil]

T

∑T
t=1 ν(i; t,m)

. (A.18)

These equations are easily extended for multiple training sequences—as is always the

case in phoneme modelling. Let y(n, t) denote the sample at time t of the n’th out of N
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training observation sequences. Then

w̄il =

∑N
n=1

∑Tn

t=1 ν
′

∑M
m=1

∑N
n=1

∑Tn

t=1 ν
′
, (A.19)

µ̄il =

∑N
n=1

∑Tn

t=1 ν
′y′

∑N
n=1

∑Tn

t=1 ν
′
, and (A.20)

C̄il =

∑N
n=1

∑Tn

t=1 ν
′[y′ − µil][y

′ − µil]
T

∑N
n=1

∑Tn

t=1 ν
′

(A.21)

where ν ′ = ν(i;n, t,m) and y′ = y(n, t).

A.4.1 Simplified MAP

Under ideal circumstances, the estimation of full covariance Gaussian mixture components

require at least D+1 training vectors to yield invertible covariance matrices. This assumes

that the vectors do not all happen to lie in a hyper-plane that is a subspace of the D-

dimensional space. Even if they are only close to the hyper-plane, the covariance matrix

will be ill-conditioned. Often there are simply not enough examples available to estimate

the mixture properly. Remember, however, that in this application the models can be

initialised using a large amount of data, while what little data is available during the

retraining for the particular speaker who delivered the synthesis database, must have an

influence on the parameters. More data is available for some phonemes than others, and

where more data is available, the influence of the new data on the parameters should

grow. This type of problem has been studied in speaker adaptation. MAP is one such

approach [60].

A simplified implementation was available for experiments on adaptation of well ini-

tialised models for use in alignment of the HRS corpora (see Section 2.6.3.2). In principle,

the method introduces the notion of phantom observations with weight ν = 1. Each Gaus-

sian component of the mixtures in the HMM is well initialised by training on different

data, yielding the priors {wP
im,µ

P
im,C

P
im}. The NP phantom observations are chosen so

that if only they were available, the parameters would remain the same. This amounts to
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a modification of Equations A.20 and A.21:

µ̄il =
NP

µ
P
im +

∑N
n=1

∑Tn

t=1 ν
′y′

NP +
∑N

n=1

∑Tn

t=1 ν
′

and (A.22)

C̄il =
NPCP

im +
∑N

n=1

∑Tn

t=1 ν
′[y′ − µil][y

′ − µil]
T

NP +
∑N

n=1

∑Tn

t=1 ν
′

. (A.23)

The equation for estimating the weights of the Gaussian mixture (Equation A.19) remain

the same, as they require fewer examples to estimate reliably than the other parameters

of the Gaussian mixture.

A.4.2 Embedded Re-estimation

Many authors refer to the seeming ability of the HMM to organise itself according to

underlying data [1, Chapter 12]. The typical example is where a word model is constructed

with roughly one state for each expected phoneme. In such cases, the HMM has an

uncanny ability to match the states to the acoustic phenomena in the word. This is

easy to understand qualitatively. Each state has a PDF that begins to “like” a certain

distribution, and at each iteration the weight νhmmνgmm matches the state’s PDF with

training vectors that

1. are similar and

2. fits into the temporal structure of the model.

The latter suggests that limiting the temporal structure of the HMM may help to have

states “adopt” the desired acoustic phenomena.

This self-organising property can be further exploited to train phoneme models when

explicit phoneme boundaries are not available, but the phoneme sequence is known. Fig-

ure A.3 depicts the construction of an utterance model from phoneme models and the

phoneme string. During training, the model assigns certain training vectors to appropri-

ate states, and accumulates sufficient statistics for estimating the parameters M. The

accumulation is performed over all the utterance/phoneme string pairs in the training set

in the expectation step of the EM algorithm.
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pau pau

Bank of phoneme models

Phoneme string

Merged utterance model

with tied parameters

[A:]

[A:] [a]

[@][b] [9]

[9]

[@I<][i] [m] [z]

[ô] [ô]

[ô] [ô] [ô]

[ô]

[t]

[Z]

Figure A.3: An utterance model for embedded re-estimation or forced alignment. The

phoneme models are strung up into one big model by connecting their initial and final

null-states. The parameters for each phoneme model is still estimated globally so that

all the examples of each phoneme contribute to one model.

Since the temporal structure of the utterance model is very well constrained, the

phoneme models that fit their phonemes well, form boundaries within which the less well-

defined models can “find their place”. If the training set has examples of each phoneme in

many different contexts, the phoneme models should, in principle, adopt the similar parts

it is shown at each iteration, and therefore the training should converge. If this happens,

the phoneme models will represent what the designer thinks they do.

One of the strengths of the HMM is the ability to entertain multiple hypotheses as

weighted branches of the finite-state network. Given a lexicon with a number of different

pronunciations for lexical items, they can all be incorporated by introducing parallel sets

of states in the utterance model [38]. The HMM should assign greater importance to the

branch that fits the utterance better, and thus still train the correct phoneme models for

the underlying acoustics.

Good initialisation of the models is very important when performing embedded re-

estimation. At least a small amount of labelled data is necessary to bootstrap the pro-

cess [114].

A.5 Forced Alignment

Given a single speaker database, and well-trained speaker-independent phoneme models,

embedded re-estimation with the above-mentioned simplified MAP procedure provides a
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way to adapt the phoneme models to the speaker. We can now construct an utterance

model for each utterance that must be aligned with its known phoneme string, and find

the optimal state sequence using a Viterbi search. The optimal state sequence gives the

time alignment of the phoneme string. An added advantage is that the procedure can

find the correct one of several hypothesised pronunciations.

Forced alignment can be very robust. In cases where the phoneme string does not

match the pronunciation exactly, the ill-matching phonemes can still be bounded by

neighbours that match the acoustics better. In the HRS speech synthesis corpora for

instance, the speakers spoke very fast in de-emphasised parts of the utterances. Clearly

pronounced parts were aligned perfectly in spite of this. As the goal of the alignment is

limited-domain synthesis in a slot-and-filler NLG system, the clearly pronounced bits are

the important ones.
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A.6 Symbols

This section summarises the symbols used in this Appendix. The symbols have been

chosen to conform as much as possible with those of Deller et al. [1], and therefore conflict

with the symbols used in the rest of this work.

α, β The forward and backward probabilities in the Baum-Welch algorithm.

aij The probability of the HMM to transition from state i to state j.

A The transition probability matrix that contains the aij ’s.

C Covariance matrix.

D Dimensionality of the observation vectors.

fy|x(y|x = 1) PDF of y given that the present state is x = 1.

M The number of components in the Gaussian mixtures used to model

the observation probabilities.

N The number of states in the HMM.

N (y,µ,C) Gaussian PDF of the random vector y.

π(t) The vector of state occupancy probabilities at time t.

P Indicates a quantity associated with the prior estimates

in the simplified MAP scheme.

S The number of states in the HMM.

t The discrete time index.

T The length of the observation Y and state X sequences.

µim The mean vector of the Gaussian component m of state i.

wim The weight of mixture component m at state i.

x, xi The state number of the HMM, and the state number at time-step i.

y, yi The emitted observation vector, and the observation at time-step i.

Y The sequence of observed output vectors yi of length T .

Y m
n The sequence of observed output vectors yi for {n,≤ i ≤ m}.
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