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Abstract 
Glycogen was isolated from E. coli and analysed for the amount of phosphate 

present within it. It was confirmed that a significant proportion of the glucose residues 

were phosphorylated at the C6 position. This glycogen phosphate was found also in 

both glgb- (glycogen branching enzyme) and glgp- (glycogen phosphorylase enzyme) 

mutants, demonstrating that a mechanism for phosphate incorporation that does not 

involve GlgP alone, and which is capable of incorporating phosphate into linear 

glucans could exist. The degree of phosphorylation depended on the amount of 

phosphate present in the media, which less being incorporated in media where 

phosphate was reduced. Screening for glycogen phosphorylating genes using a E. 

coli genomic library in a functional expression system identified the malP gene as a 

possible candidate for incorporation of the phosphate at the C6 position. There was 

no difference, however, between the glycogen phosphate content of the mutant and 

wild type. Efforts were made to construct a malp-/glgp- double mutant, but these were 

unsuccessful.  

 

In addition the influence of plants and human proteins on yeast glycogen metabolism 

was also investigated. These proteins have been demonstrated to have an effect on 

starch or glycogen in humans, plant and E. coli, but the data from this study indicated 

that this was not the case in yeast. 
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Opsomming 
Glikogeen, wat geisoleer was uit E.coli was geanaliseer vir fosfaat inhoud daarin. 

Daar was gevind dat `n beduidende proporsie van die glukose residue gefosforileerd 

was op die C6 posisie. Hierdie gefosforileerde glikogeen was ook gevind in glg-

(glikogeen vertakkingsensieme) en glgp- (glikogeen fosforileringsensieme) mutante 

wat daarop dui dat `n meganisme vir fosforilering bestaan was nie slegs aangewese 

is op die aktiwiteit van GlgP nie, en om fosfaat te inkorporeer in linêre glukane. Die 

graad van fosforilering was ook afhanklik van die hoeveelheid fosfaat teenwoordig in 

die medium, met gevolglik minder wat geinkorporeer kan word in medium waar 

fosfaat verminderd was. Seleksie-gebaseerde ondersoeking vir fosforileringsensieme 

van glikogeen deur gebruik te maak van E. coli genomiese biblioteke in `n 

funksionele uitdrukkingssisteem het die malP geen geidentifiseer as een van die 

moontlike kandidate wat verantwoordelik kan wees vir inkorporering van fosfaat in 

the C6 posisie. Daar was egter geen verskil in die fosfaat inhoud van glikogeen 

tussen die wilde tipe en die mutante. Pogings wat aangewend is om `n malp-/glgp- 

dubbel mutant te konstrueer was onsuksesvol.  

 

Verder is die invloed van plant en mens proteine op gis glikogeen ook bestudeer.  

Vroeër is aangetoon dat hierdie proteine `n invloed op stysel en glikogeen het in 

mense, plante en E. coli, maar data van hierdie studie toon aan dat dit nie die geval 

in gis is nie. 
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Chapter 1: Literature review 

 

1.1. Starch as an important polymer 

1.1.1 Starch Structure 

Starch is one of the important polymers produced in nature. After cellulose, it is the 

most abundant carbohydrate in plants (Esau, 1977) and is significant throughout the 

plant kingdom because it serves as a carbohydrate store. It is composed of two 

distinct polysaccharides: amylose and amylopectin (Fig.1.1). Amylose is a linear 

chain of α-1,4 linked glucose monomers interspersed with occasional α-1,6 glucosidic 

bonds while amylopectin is a more highly branched glucan which consists of far more 

α-1,6-glucosidic bonds in addition to the α-1,4 bonds (Hizukuri and Takagi, 1984; 

Takeda et al., 1984) and is the major constituent of starch (Zeeman et al., 2002). 

Starch is normally found in most plant organs including roots, seeds, tubers, leaves, 

stems and flowers. Plants synthesise starch as a semi-crystalline granule (diameter 

ranging from 1 µM to 100 µM depending on the species) which is insoluble in water 

(Fig.1.1). 

 

Figure 1.1 Schematic representation of a starch granule consisting of amylopectin 

and amylose moieties.  
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1.1.2 Industrial uses of starch 

Starch is a very important source of carbohydrate in the human diet and serves as a 

major staple carbohydrate for millions of people in the world. However, it also has 

various industrial applications. The world starch production by plants has been 

estimated to be around 2,850 million tons per year (Burrell, 2003) and common uses 

of it in the industry is listed in Table 1.1. 

 

Table 1.1 Examples of industrial uses of starch. 

Food and drinks Animal feed Agriculture Plastics

-Mayonnaise -Pellets -Feed coating 

-Baby food -Fertilizer

-Soft drink

-Meat product

-Confectioner

Industry type

-Biodegradable 

plastics
product

 

Pharmacy Building Textile Paper

-Tablets -Wrap

-Dusting powder -Fabrics

-Yarns -Cardboard

-Paper

-Concrete

product

Industry type

-Mineral 

fibre

-Gypsum 

board

-Corrugate 

board

 

(Source: International Starch Institute, Aarhus, Denmark web site 

http://home3.inet.tele.dk/starch) 

 

Maize is the main source of starch used by industry accounting for about 75% of the 

total (Fig.1.2). Although other starch sources such as rice, sweet potato, cassava, 

sorghum, wheat and potato are also used, their industrial demand is still low in 

comparison (Fig. 1.2). 

 

http://home3.inet.tele.dk/starch
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Figure 1.2. Percentage contribution of different sources of raw material for industrial 

starch in 1999-2001. (Source: International Starch Institute, Aarhus, Denmark. 

http://home3.inet.tele.dk/starch) 

 

Starch from all these plants differ in many aspects, such as their relative proportions 

of amylose and amylopectin as well as starch components such as phosphate 

groups, lipid, proteins and the average chain length within amylopectin. All of these 

affect the physical properties of the starch such as paste viscosity, gelatinization, 

solubility, gel stability and texture (Ellis et al., 1998). Variation in these properties 

makes starch from different sources behave in different ways. Depending on the 

need of the specific application, industries carefully examine the characteristics of the 

starch in order to get the desired product. In most cases, the industrial needs are not 

met by native (unmodified) starches, which forces industry to look for ways to modify 

them to improve their properties by alteration of physical and chemical characteristics 

(Hermansson and Svegmark, 1996).  

 

1.2 Starch metabolism 

1.2.1 Starch synthesis 

Starch is synthesized in plant leaves during the day as a product of photosynthesis 

and is broken down, transported, re-synthesised and stored in non-photosynthetic 

parts of the plants such as roots, shoots, fruits and tubers at night. Its synthesis 

involves three major enzymes namely, ADP-glucose pyrophosphorylase (AGPase), 

starch synthase (SS) and branching enzyme (BE) (Martin and Smith, 1995) (Fig.1.3). 

http://home3.inet.tele.dk/starch
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The process of starch synthesis in leaves starts with fixation of carbon dioxide from 

the atmosphere by Ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO). 

The carbon is then metabolised via the Calvin cycle where it forms fructose-6-

phosphate (Fru6P). This is converted to glucose-1-phosphate (Glc1P) by 

phosphoglucose isomerase (PGI) and phosphoglucomutase (PGM) and then to ADP-

glucose and inorganic pyrophosphate (PPi) by AGPase in a trehalose-6-phosphate 

dependent redox-regulated reversible reaction (Fu et al., 1998; Hendriks et al., 2003; 

Jin et al., 2005). AGPase is also activated by 3-phosphoglyceric acid (3-PGA) and 

inhibited by inorganic phosphate (Pi) (Ghosh and Preiss, 1966) (Fig.1.3).  

 

In leaves, AGPase is located exclusively in chloroplasts, and an absolute plastidial 

localization was presumed to be also the case in storage organs. However, in cereal 

endosperm, in addition to the plastidial isoform, a cytosolic AGPase isoform is also 

prevalent (Denyer et al., 1996; Thorbjørnsen et al., 1996; Sikka et al., 2001; Tetlow et 

al., 2003) suggesting that in cereal endosperm ADP-glucose manufactured in the 

cytosol has to be imported into the plastid. Evidence for this is provided by a specific 

ADP-glucose transporter named Brittle1 (Sullivan et al., 1991; Sullivan and Kaneko 

1995). Within the plastid, SS isoforms use ADP-glucose as a substrate and add 

glucose units to the non-reducing end of a pre-existing α-1,4-glucan chain, releasing 

ADP in the process. There are several SS isoforms in plants, the number depending 

on the species, and one specific isoform is solely responsible for amylose synthesis. 

This is an exclusively granule bound enzyme and is known as granule bound starch 

synthase (GBSS) (Nelson and Rines 1962; Van Der Leij et al., 1991; Denyer et al., 

1995; Martin and Smith 1995; Flipse et al., 1994). Other isoforms tend to be present 

both in the soluble fraction, as well as being bound to the granule and are involved in 

amylopectin synthesis. BEs introduce branch points in the chains by hydrolysing α-

1,4–glucosidic bonds and transferring the chain to form an α-1,6 bond (Borovsky et 

al., 1976) leading to the formation of amylopectin. 
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Figure 1.3 Schematic representation of the pathway of starch synthesis in 

chloroplasts. A portion of the carbon fixed in the Calvin cycle via Ribulose 1,5 

bisphosphate carboxylase/oxygenase (RuBisCO) is utilized for starch synthesis. The 

first committed step towards this, ADP-glucose pyrophosphorylase (AGPase) is 

under redox and allosteric regulation. Abbreviations: Fru6P, fructose 6-phospate; 

GIc1P, glucose 1-phosphate; Gluc6P, glucose 6-phosphate; TPT, triose-

phosphate/phosphate translocator. (Figure from Zeeman et al., 2007) 

 

Debranching enzymes (DBE) are able to cleave α-1,6 bonds and there are several 

isoforms of these, which are generally divided into isoamylase and limit dextrinase 

(LDA or pullulanase-type) classes, depending on their substrate specificities. In 

Arabidopsis there are three isoamylase (ISA1-3) isoforms and one LDA. ISA1 and 

ISA2 have been shown to be involved in starch synthesis as, when the genes coding 

for them are mutated, the plants accumulate a uncrystalline polyglucan known as 

phytoglycogen, as well as starch (Zeeman et al., 1998; Myers et al., 2000; Bustos et 

al., 2004; Delatte et al., 2005). It is speculated that DBEs are involved in tailoring the 

branched glucans into a form capable of crystallization, although the precise 
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mechanism for this remains unclear (for reviews see Ball and Morell, 2003; Zeeman 

et al., 2007; Streb et al., 2008) 

 

1.2.2 Starch phosphorylation 

The presence of small amounts of mono-esterified phosphates have been reported in 

potato starch since the early twentieth century (Fernbach, 1904). These phosphate 

groups are bound as mono-esters at the C3 and C6 positions of glucose residues 

within amylopectin, but not amylose (Posternak 1951; Hizukuri et al., 1970; Takeda 

and Hizukuri, 1982; Blennow et al., 2002). Phosphate has been found in starch 

extracted from several plant species, which indicates that many (if not all) plant 

starches are phosphorylated (Kasemsuwan and Jane 1996; Blennow et al., 2002). In 

potato (Solanum tuberosum L.) tuber starch, about 0.1% to 0.5% of the glucose 

residues are phosphorylated (Ritte et al., 2002), whereas less than 0.01% of those in 

cereal endosperm starch contain phosphate (Tabata et al., 1971; Kasemsuwan and 

Jane, 1996).  

 

The mechanism by which phosphate is incorporated into starch was unknown until 

the discovery of a 157 kDa starch-granule-bound protein, originally named R1 

(Lorberth et al., 1998). The R1 gene was first identified in potato and its antisense 

inhibition resulted in approximately a 90% reduction of starch bound phosphate, 

indicating a role of this protein in starch phosphorylation (Lorberth et al., 1998). 

Interestingly, the antisense potato plants also displayed an inhibition of starch 

degradation in both cold stored tubers and leaves. However, the reason why 

decreased levels of starch phosphate affect its degradation has remained unclear 

until recently (discussed further in Section 1.2.3). 

 

It has been demonstrated that the R1 protein phosphorylates glucose moieties in 

starch at the C6 position. This was shown firstly by expressing the full length potato 

cDNA in E. coli, which then produced glycogen (a storage polyglucan similar to 

starch) containing increased amounts of covalently bound phosphate (Lorberth et al., 

1998). More recently, the mechanism by which the R1 acts was elucidated (Ritte et 

al., 2002; 2006, Mikkelsen et al., 2004). The enzyme utilizes ATP as a phosphate 

donor in a dikinase mechanism, transferring the γ-phosphate to water and the -

phosphate to the C6 position on glucose monomers within amylopectin. The enzyme 

was thus renamed glucan, water dikinase (GWD). The phosphorylation at the C3 
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position of amylopectin is performed by a similar enzyme, but this enzyme only 

phosphorylates amylopectin which has been pre-phosphorylated by the GWD 

(Kötting et al., 2005; Ritte et al., 2006; Hejazi et al., 2008). This second enzyme is 

therefore named phosphoglucan, water dikinase (PWD) (Baunsgaard et al., 2005; 

Kötting et al., 2005). 

 

1.2.3 Starch degradation 

As previously mentioned, starch accumulates in chloroplasts during the day as a 

product of photosynthesis. During the night, it is degraded and converted to sucrose 

before being exported to non-photosynthetic parts of the plant. Starch degradation 

involves a number of enzymes, all of which have multiple isoforms. Over the past 

decade much effort has been spent into understanding the roles of these various 

enzymes. This has led to a general model for Arabidopsis where most starch 

degradation is accomplished by β-amylases (BAM) with maltose being the main 

sugar being exported from the chloroplast (Fig.1.4). The evidence for this is reviewed 

in the rest of the section.  

 

 

 

 

 



Chapter 1 

 8 

 

Figure 1.4 A generalised model for the pathway of starch degradation in Arabidopsis 

leaves. Starch, hydrolysed to maltose and glucose during the dark, is converted to 

sucrose before being exported to heterotrophic tissue. Refer to text for further details. 

(Figure from Zeeman et al., 2007) 

 

Initially, it was thought that α-amylase (AMY) proteins, endohydralases capable of 

cleaving α-1,4 bonds within the amylopectin molecule, is the key enzyme in starch 

degradation (Fig.1.4). However, a recent mutational study questions this and further 

suggests that it may even be involved in leaf starch synthesis (Yu et al., 2005). There 

are three genes that code for α-amylase isoforms in the Arabidopsis genome (Yu et 

al., 2005). One of these, AMY3 (At1g6930), has been demonstrated to be localised in 

the chloroplast (Stanley et al., 2002) but an insertion mutation that was isolated 

showed no reduction in starch degradation in Arabidopsis leaves (Yu et al., 2005). 

On the other hand, the other two α-amylases (AMY1 and AMY2) are not predicted to 

have transit peptides, suggesting that they are not chloroplastidic. In addition, the 

triple mutant of amy1/amy2/amy3 showed no effect on starch metabolism (Yu et al., 

2005), suggesting that AMYs are not essential for starch degradation in Arabidopsis. 

 

Recently, an Arabidopsis mutant was manufactured that lacked all DBE activities 

(Streb et al., 2008). As was discussed above (Section 1.2.1) some debranching 
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enzyme isoforms appear to be involved in starch synthesis. When all four 

debranching enzyme isoforms are mutated in Arabidopsis, starch synthesis in leaves 

is abolished (Streb et al., 2008). However, when AMY3 is mutated in addition to that, 

starch accumulation is restored (Streb et al., 2008) demonstrating that starch 

synthesis can be accomplished without DBEs. Based on this data Streb et al. (2008) 

proposed a model for starch synthesis where amylopectin is produced by starch 

synthases and branching enzymes which is capable of crystallization to form starch 

granules. The process is enhanced by ISA1/ISA2 enzymes which remove the branch 

points. Glucans produced by starch synthases and starch branching enzymes cannot 

be debranched in the absence of ISA1 and/or ISA2. This delays the formation of 

secondary structures which leads to the formation of phytoglycogen. In the isa1/isa2 

double mutant short chains can be removed by ISA3 and/or LDA, which leads to the 

production of some abnormal amylopectin although the majority of glucan remain 

soluble in the form of phytoglycogen (Streb et al., 2008). In the absence of all DBEs 

the glucans produced cannot be degraded by debranching enzymes and are 

subjected to additional α-amylolysis and β-amylolysis, leading to the formation of 

limited glycogen–like structure. In the absence of all DBEs and AMY3, amylopectin is 

only subjected to β-amylolysis, which allows crystallization of the glucan and, 

therefore starch accumulation is restored.  

 

BAM isoforms, on the other hand, are exoamylases, that can degrade the outer 

amylopectin chains, producing maltose, until they reach an α-1,6 branch point after 

which degradation is terminated. There are nine β-amylase’s in Arabidopsis assigned 

BAM1 to BAM9 (Smith et al., 2004). Four of the nine isoforms (BAM1,-2, -3, and -4) 

in Arabidopsis are predicted to be chloroplastidially localised (Fulton et al., 2008). 

The repression of one chloroplast-localised β-amylase in potato and Arabidopsis 

(BAM3) leads to a reduction in starch degradation in leaves, indicating a significant 

involvement of this isoform in starch degradation (Scheidig et al., 2002; Kaplan and 

Guy, 2005). Recently, Fulton et al. (2008) further demonstrated that while a mutation 

in BAM4 impairs starch breakdown, that BAM1 is necessary for starch breakdown in 

the absence of BAM3, and that BAM2 shows no function in starch degradation. The 

roles of the other BAM isoforms remains unknown. 

 

Although it is clear that β-amylase isoforms are the main route for starch degradation 

in Arabidopsis leaves, other enzymes are also necessary for the complete catabolism 
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of amylopectin. This is due to the fact that β-amylases are unable to digest α-1,6 

branch points. As discussed above there are four enzymes in Arabidopsis known to 

be able to digest α-1,6 bonds, namely three isoamylases and one limit dextrinase. 

ISA1 and ISA2 are involved in starch synthesis (Zeeman et al.,1998; Myers et al., 

2000; Bustos et al., 2004; Delatte et al., 2005), but ISA3 and LDA have been 

demonstrated to be involved in starch degradation (Wattebled et al., 2005; Delatte et 

al., 2006). Loss of ISA3 causes a reduction in starch degradation but when LDA is 

mutated there is no significant change (Wattebled et al., 2005). However an isa3/lda 

double mutant leads to a greater repression of starch degradation than in the single 

isa3 mutant, suggesting that in the absence of ISA3 LDA is required. An isa3/lda 

double mutant also leads to the accumulation of soluble branched oligosaccharides 

and an increase in AMY3 activity (Wattebled et al., 2005).  

 

Although β-amylases produce maltose exclusively, debranching enzymes will lead to 

the production of longer malto-oligosaccharides (MOS). These are minor in 

comparison with the production of maltose and can be degraded by β-amylase to 

maltose and maltotriose. Maltotriose cannot be catabolised by β-amylase, and is 

further metabolised by disproportionating enzyme (D-enzyme) (Critchley et al., 2001). 

This enzyme transfers α-1,4 bonds from one linear polyglucan to another. A mutation 

in D-enzyme leads to a minor impairment of starch degradation, and plants which 

accumulate maltotriose and other longer MOS (Critchley et al., 2001). Consistent 

with the proposed major role of β-amylase during starch degradation, it has been 

found that maltose (the product of β-amylase) is the major metabolite exported from 

the chloroplast. This was first found by in vitro experiments performed on isolated 

chloroplasts from different plants (Neuhaus and Schulte, 1996; Ritte and Raschke, 

2003; Servaites and Geiger, 2002; Weise et al., 2004). Later the gene coding for the 

maltose transporter was also identified. This was done by isolating a mutant, maltose 

excess 1 (mex1), from Arabidopsis which accumulates excess amount of maltose. 

Map based cloning of the mutated gene led to the identification of a protein that is 

present in the chloroplast membrane and which is able to transport maltose (Niittylä 

et al., 2004). The mex1 mutant not only accumulates maltose, but is unable to 

degrade starch demonstrating that maltose is the major sugar produced during starch 

degradation. Interestingly, a putative glucose transporter has also been characterised 

in spinach chloroplasts (Schäfer et al., 1977) and further cloned from spinach, 
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tobacco, tomato, Arabidopsis as well as maize (Weber et al., 2000). The role of this 

in regards to starch degradation, however, is unknown. 

 

The GWD protein incorporates phosphate into starch, and its removal in mutant and 

transgenic plants leads both to a decreased accumulation of starch bound phosphate 

and to a repression of starch degradation (Lorberth et al., 1998, Yu et al., 2001; 

Nashilevitz et al., 2009). According to Ritte et al. (2004), starch in the green algae 

Chlamydomonas reinhardtii and potato leaves is mainly phosphorylated while it is 

being degraded. In addition, higher levels of phosphate were observed on the outer 

surface of potato granule at night than during the day (Ritte et al., 2004). This 

indicates a link between starch phosphorylation and its degradation. Yu et al. (2001) 

suggested that the starch phosphorylation leads to an increase in hydrophilicity of the 

starch particles, which makes it more accessible to degradative enzymes. Recently, it 

was discovered that incubating starch with β-amylase (BAM1) and GWD leads to a 

starch degradation rate three times greater than with BAM1 alone (Edner et al., 

2007). It is therefore hypothesised that β-amylase (BAM1) first degrades starch, 

which provides space for GWD to attack the neighbouring double-helix within the 

amylopectin. This enables the GWD to unwind the double helix and phosphorylate 

one strand at a time. BAM1 then degrades the individual chains up to the 

phosphorylated residue (Edner et al., 2007; Hejazi et al., 2008) (Fig.1.5). 

 

Until recently, many aspects of starch degradation were not well understood. One of 

these is what happens to the phosphate covalently bound to the amylopectin. A clue 

as to the enzyme involved in this comes from a study of the recently identified Starch 

Excess 4 (SEX4) protein, mutations in which lead to a starch excess phenotype in 

Arabidopsis leaves (Kerk et al., 2006; Niittylä et al., 2006; Sokolov et al., 2006). 

SEX4 contains both carbohydrate binding and dual specificity-phosphatase domains, 

is plastidial targeted, binds and dissociates to starch granules during the day and 

night, respectively (Niittylä et al., 2006; Sokolov et al., 2006). sex4 mutants decrease 

the rate of starch degradation in Arabidopsis, however, the phenotype is complex as 

it also leads to the reduction of the activity of an α-amylase isoform (Zeeman et al., 

1999). One proposed role of SEX4 is to dephosphorylate starch. This has been 

demonstrated through incubation of SEX4 with starch granules leading to their 

dephosphorylation and through the demonstration that sex4 mutants accumulate 

phosphorylated oligosaccharides (Kötting et al., 2009). It is assumed that starch 
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phosphate has to be removed prior to its degradation, possibly as a signal for starch 

catabolism to begin, or to make the starch molecule more accessible for starch 

degrading enzyme(s) (Edner et al., 2007). Evidence for this comes from the work 

done by Kötting et al. (2009) where they incubated the SEX4 protein and starch 

granules with ISA3, BAM3 and GWD, resulting in increased in vitro granule 

degradation. Since BAM cannot degrade a glucan chain past a phosphate group or a 

branched α-1,6 chain, there is a limitation in maltose release (Edner et al., 2007). 

Removal of branched points by ISA3 or the removal of phosphate by Sex4 would 

enable further degradation of the glucan chain by BAM (Kötting et al., 2009). This 

demonstrates that Sex4 is required for starch degradation and confirms early 

speculation that phosphate has to be removed prior to degradation for some 

enzymes to function (see also Fig. 1.4 and Fig. 1.5 for proposed models of starch 

degradation).  
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Figure 1.5 Proposed model for the involvement of phosphorylation and 

dephosphorylation events during the initial phases of starch breakdown. Starch 

catabolism is dependent on phosphorylation of GWD and PWD of the starch granule 

(top panel). This allows the amylopectin to partially unwind, and BAM3 and SEX4 can 

release maltose and phosphate, respectively. ISA3 hydrolyses branch points and 

releases malto-oligosaccharides (bottom left panel). Without SEX4 phosphate is not 

removed and less maltose is released by BAM3 (bottom right panel). (Figure from 

Kötting et al., 2009) 
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PTPKIS2 (At3g01510) is a protein found in Arabidopsis which has a very similar 

sequence to SEX4 (Fordham-Skelton et al., 2002). Recent work by Comparot-Moss 

et al. (2009) showed that SEX4 and PTPKIS2 (which has been renamed Like Sex 

Four 1; LSF1), has a function in starch degradation also. sex4/lsf1 double mutants 

demonstrated a greater accumulation of starch than individual mutants. However, 

LSF1 cannot replace SEX4 in starch degradation. It might be that LSF1 acts as a 

glucan phosphatase but on different groups of phosphate than those removed by 

SEX4, or that it acts as a protein phosphatase which activates one or more enzymes 

involved in starch degradation. A third locus is also found in the Arabidopsis genome 

which is highly similar to SEX4 and is known as LSF2 (At3g10940). It isn’t known if 

this codes for a protein involved in starch degradation and, if so, what its specific role 

is. 

 

1.3 Starch and glycogen are storage polyglucans with similar biosynthetic 

pathways 

While starch is a storage form of glucose in many plants, glycogen is the storage 

form of glucose in animals, bacteria, and fungi. Glycogen is a branched 

polysaccharide made of α-1,4-glucose subunits with a few α-1,6 glucose branch 

points but differs from starch in that it is uncrystalline and water soluble. It is 

synthesised by glycogen synthases from ADP-glucose in bacteria and UDP-glucose 

in mammals and fungi (Greenberg and Preiss, 1964).  

 

Glycogen accumulates under conditions of limited growth when carbon sources are 

in excess (Preiss and Romeo, 1989). Enzymes involved in glycogen metabolism in E. 

coli are encoded in the glg operon (Romeo et al., 1988) which consists of five open 

reading frames. These are named glgA (encoding glycogen synthase), glgB 

(encoding glycogen branching enzyme), glgC (encoding ADP-glucose 

pyrophosphorylase), glgP (encoding glycogen phosphorylase) and glgX (encoding 

glycogen debranching enzyme).  

 

The organization of the gene cluster shows that the glg genes may be transcribed as 

two tandomly arranged operons, glgBX which consist of glgB and glgX and glgCAP 

which consist of glgC, glgA and glgP genes (Preiss and Romeo, 1989) (Fig.1.6). At 

the transcriptional level, glgCAP is positively regulated by both guanosine 5’-

diphosphate 3’-diphosphate (ppGpp), which is synthesised by relA (Bridger and 
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Paranchych, 1978; Romeo and Preiss 1989; Taguchi et al., 1980; Romeo and Preiss, 

1990; Traxler et al., 2008), and cyclic AMP (cAMP) (Dietzler et al., 1977; Dietzler et 

al., 1979; Urbanowski et al., 1983) (Fig.1.6). Recent work by Montero et al. (2009) 

also demonstrated that the transcriptional unit glgCAP is influenced by the PhoP-

PhoQ genes which, in turn, are controlled by Mg+ concentrations When these genes 

were mutated it led to less glycogen accumulating in E. coli (Montero et al., 2009). 

However at the post-transcriptional level synthesis is negatively regulated by the 

CsrA gene which binds to two positions within glgCAP and this prevents glgC 

translation (Baker et al., 1992; Romeo et al., 1993; Yang et al., 1996; Liu and 

Romeo, 1997). 

 

Figure 1.6 Schematic representation of the organization and transcriptional 

regulation of the glg operon in E. coli. Refer to text for details. 

 

Knockout mutations in glgC lead to E. coli that cannot accumulate glycogen as they 

are unable to produce ADP-glucose (Creuzat-Singal et al., 1972). One specific glgC 

mutation (glgC16) affects the metabolic regulation of the glgC protein suggesting that 

it is no longer inhibited by its normal allosteric repressor (Pi). Cells carrying this 

mutation accumulate large amounts of glycogen and stain dark–brown with iodine 

(Damotte et al., 1968). Mutations in the glgA gene further leads to a lack of glycogen 

synthase activity and these mutants form colonies that do not stain brown when 

exposed to iodine as they do not accumulate glycogen despite the presence of ADP-

glucose pyrophosphorylase (Damotte et al., 1968) (Fig.1.7). Furthermore, mutation of 

the glgB gene leads to the accumulation of linear polysaccharides which do not stain 

brown when exposed to iodine, but rather blue (Damotte et al., 1968). When glgP is 

mutated, E. coli colonies stain brown with iodine in comparison to the wild type, 

indicating that they accumulate more glycogen than usual. This has been 

demonstrated in glgp- mutants to be due to reduced glycogen breakdown (Alonso-



Chapter 1 

 16 

Casajús et al., 2006). Similarly, disruption of the glgX gene by homologous 

recombination leads to E. coli that are less able to degrade glycogen (Dauvilleé et al., 

2005). 

 

 

Figure 1.7 Schematic representation of glycogen synthesis in E. coli. Refer to text for 

details. 

 

1.4 Lafora disease 

Laforin is a dual-specificity phosphatase which was originally thought to be 

conserved in vertebrates (Ganesh et al., 2004) and which is essential for normal 

glycogen metabolism. However, it was demonstrated recently that Laforin 

orthologues are present in five protists (Gentry et al., 2007) as well as invertebrates 

(Gentry and Pace, 2009). In addition Laforin shows significant homology to the 

Arabidopsis SEX4 protein (Edner et al., 2007).  
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It is the only known phosphatase in animals with a highly conserved polysaccharide 

binding domain (Worby et al., 2006). In humans, mutations in the laforin gene 

contributes to the Lafora disease, which is a neurodegenerative disorder that results 

in severe epilepsy and death (Lafora and Gluck, 1911; Minassian et al., 1998; 

Serratosa et al., 1999). The Lafora disease is characterised by abnormal 

accumulation of glycogen. Patients that are suffering from this disease accumulate 

Lafora bodies (LBs) which are poorly branched glycogen-like polyglucans located in 

the cytoplasm of the cells of most organs that normally accumulate little glycogen, 

like liver, neurones and skin (Harriman et al., 1955; Schwarz and Yanoff, 1965) and 

are essentially an insoluble form of glycogen (Lafora and Gluck, 1911; Minassian et 

al., 1998). The LBs more closely resemble plant starch than glycogen (Yokoi et al., 

1968a; Yokoi et al., 1968b; Sakai et al., 1970). Current research has indicated that 

Laforin can dephosphorylate glycogen and amylopectin in vitro, which led to the 

hypothesis that Laforin is a glucan phosphatase (Worby et al., 2006; Gentry et al., 

2007). Glycogen from mammals contains significant amount of phosphate (Lomako 

et al., 1993). This was demonstrated in recent studies where glycogen-bound 

phosphate has shown a 4-fold elevation in the liver and muscle of Laforin deficient 

mice (Tagliabracci et al., 2007; Tagliabracci et al., 2008).  

 

1.5 Is polyglucan phosphorylation a general phenomenon? 

The fact that dual specific phosphatases involved in polyglucan metabolism are 

present in both mammals and plants indicates that this process might be 

evolutionarily very ancient. As such it might also be present in other organisms. The 

yeast genome contains several genes coding for such proteins, but their role is not 

well understood. Although phosphate has been reported to be present in E. coli 

glycogen there are no obvious genes within its genome that code for proteins that 

play a similar role to SEX4 and Laforin. 

 

1.6 Summary 

Starch often has to be chemically modified before use, for example by incorporation 

of phosphate. Phosphorylation of starch, therefore, is necessary for some industrial 

utilization. Increased phosphorylation, for example, prevents the crystallization of the 

final product (Ellis et al.,1998) and increases the hydration capacity of starch after 

gelatinization, which influences both paste viscosity and gel formation (Lorberth et 

al., 1998). If such modifications can be carried out in planta, the need for expensive 
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and environmental damaging chemicals would be reduced. One way of doing this 

would be by identifying genes from other organisms that can phosphorylate 

polyglucans and use them to produce genetically modified plants which express the 

proteins coded for by these genes in plant plastids. E. coli glycogen has been 

reported to contain low levels of covalently bound phosphate (Lorberth et al., 1998; 

Viksø-Nielsen et al., 2002). The first aim of this project was to confirm the presence 

of phosphate in E. coli glycogen as reported in the previous two studies. After 

confirmation of this the second aim was to identify the gene(s) that incorporate the 

phosphate. The mechanism for incorporation of phosphate into glycogen is, however, 

unknown and, therefore the third aim of this study was to establish the mechanism of 

phosphate incorporation in E. coli glycogen In addition, the data discussed above 

about the Lafora protein indicates that mammalian glycogen is also phosphorylated. 

It is thus possible that glycogen from other species might also contain phosphate. 

The fourth aim was to try and evaluate whether yeast glycogen also contains 

phosphate by examining the effect of enzymes involved in polyglucan phosphate 

metabolism on yeast glycogen accumulation. 
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Chapter 2 

Chapter 2: Identification of glycogen phosphorylating genes from E. 

coli. 

 
2.1 Introduction 
Starch phosphorylation is a common phenomenon in plants that has been well 

documented over the past few years. It is phosphorylated by two enzymes, the 

glucan water dikinase (GWD) (Lorberth et al., 1998; Ritte et al., 2002) and 

phosphoglucan water dikinase (PWD) (Baunsgaard et al., 2005; Kötting et al., 2005) 

(see Chapter 1, section 1.2.2). One of the first pieces of evidence that GWD was able 

to phosphorylate polyglucans was the observation that when it was expressed in E. 

coli, the glycogen within the E. coli became highly phosphorylated (Lorberth et al., 

1998). Interestingly, both in that study and in a similar second one (Viksø-Nielsen et 

al., 2002) small amounts of phosphorylated glucose moieties at the C6 position were 

determined in the glycogen from the strain containing the empty vector as a control. 

This amount ranged between approximately 0.2-0.9 nmol glucose-6-phosphate.mg-1 

glycogen (Lorberth et al., 1998; Viksø-Nielsen et al., 2002).  

 

Further evidence for the presence of phosphate in E. coli glycogen comes from a 

study of Scheidig (2006) who employed an E. coli functional expression system to 

identify plant genes that can degrade starch. Bacteria that were engineered to 

accumulate large amounts of linear glucans stain blue with iodine vapour and, when 

transformed with a potato cDNA library, the isolated colonies that stained white 

contained plant genes that code for proteins which was able to degrade the glucans 

(Scheidig, 2006). Several of the genes isolated did indeed code for starch 

degradative enzymes (Scheidig et al., 2002; Scheidig, 2006); however, one of them 

turned out to be a potato homolog of the Arabidopsis Like Sex4-2 (Lsf2) gene. As 

was discussed in the general introduction (Section 1.2.2) the predicted primary 

protein sequence of Lsf2 shows high similarity to the SEX4 protein and SEX4 has 

been demonstrated to act by dephosphorylating starch (Edner et al., 2007; Kötting et 

al., 2009). The precise role of Lsf2 has yet to be elucidated; however, given its 

similarity to SEX4 it is reasonable to assume that it also acts in a polyglucan 

dephosphorylating manner. 
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Furthermore, studies within the Institute for Plant Biotechnology (IPB) have 

demonstrated that expression of AtSEX4 in E. coli leads to bacteria that are not able 

to accumulate glycogen (James Lloyd, unpublished data). It is not yet clear why 

expression of these two proteins in E. coli would have this effect, however, one 

hypothesis would be that they act by removing phosphate from the glycogen, either 

stopping it being manufactured, or leading to it being degraded quickly. 

 

Genes coding for proteins involved in glycogen metabolism in E. coli are present 

within the glg operon (Chapter 1, Fig.1.6). The enzymes involved in glycogen 

synthesis are GlgA, GlgB and GlgC, (Latil-Damotte and Lares, 1977) while GlgP and 

GlgX are known to be involved in its degradation (Dauvillée et al., 2005; Alonso-

Casajús et al., 2006). The question arises that, if phosphate is indeed present in E. 

coli glycogen, by which mechanism it gets incorporated? The only known enzymes 

able to do this are GWD and PWD, but there appears to be no genes in the E. coli 

genome coding for proteins which show significant similarities to these. One 

theoretical possibility, based on the enzymes coded for in the glg operon, is that GlgP 

could incorporate phosphate in the C6 position of the glucose monomers of 

glycogen. Glucan phosphorylases catalyse the reversible reaction where the glucose 

moiety of glucose-1-phosphate is either incorporated into, or liberated from, a 

polyglucan. Enzymes in this class are generally named due to their substrate 

specificity, for example glycogen phosphorylase uses glycogen as its preferred 

polyglucan substrate while starch phosphorylase utilises starch. It has been 

hypothesised (Lorberth et al., 1998) that these enzymes could also use glucose-1,6-

bisphosphate as a sugar donor instead of glucose-1-phosphate. Glucose-1,6-

bisphosphate is known to be present in E. coli as it is a required allosteric activator of 

phosphoglucomutase (Joshi and Handler, 1964) and is thought to be produced in E. 

coli in a phosphodismutase reaction (Leloir et al., 1949).  

 

Here we postulate that, if GlgP uses glucose-1,6-bisphosphate in the polymerization 

direction, it would lead to incorporation of phosphate in the C6 position of the 

glucosyl moiety in glycogen. In order to test this, the phosphate content in E. coli 

glycogen was first re-examined by determining the amount of glucose 6-phosphate 

present in glycogen of three bacterial strains. Secondly, a functional expression 

screen was performed to identify several putative E. coli proteins that might be 
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involved in glycogen phosphorylation. The results of this will be discussed in the 

context of current models of glycogen metabolism.  

 
2.2 Materials and methods 
2.2.1 Chemicals 
All oligo-nucleotides used in this study were purchased from Inqaba Biotech 

(Pretoria, South Africa) and Integrated DNA Technology (IDT) (Coralville, USA). All 

the chemicals used in enzyme assays were purchased from Roche Biochemicals 

(Mannheim, Germany) or Sigma Aldrich Fluka (SAF) chemical company (St. Louis, 

MO, USA), unless stated otherwise. All reagents and chemicals were of analytical 

grade.  

 

2.2.2 E. coli strains and plasmid used in this study 
Different E. coli strains were obtained to study glycogen phosphorylation in this 

project and are listed in Table 2.1. In addition, the plasmids used are also listed 

(Table 2.1). 
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Table 2.1. E. coli strains and plasmids used in this study with their genotypes and 

source or reference. 

Strain no./name Genotype/relevant characteristic Source or reference

DH5α fhuA2  ∆(argF-lacZ)U169 phoA glnV44 
Φ80  ∆(lacZ)M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17

Invitrogen

BW25113 ∆(araD-araB)567 , ∆lacZ4787 (::rrnB-3), 
lambda-, rph-1 , ∆(rhaD-rhaB)568 , hsdR514

Datsenko and Wanner, 2000

JW5689-1 ∆malP751::kanR,rph-1 Baba et al., 2006

JW3395 ∆glgB765::kanR,rph-1 Baba et al., 2006

JW3391 ∆glgP761::kanR,rph-1 Baba et al., 2006

JW3483 ∆gadW::kanR,rph1 Baba et al., 2006

JW3484 ∆gadX::kanR,rph1 Baba et al., 2006

KV832 ∆glgB::kanR,rph1 Kiel et al ., 1987

pKD46 AmpR Datsenko and Wanner, 2000

pACYC184 CmR and TetR New England Biolabs, Frankfurt 
am Main, Germany

pACAG CmR and TetR, Kossmann et al., 1999

pBluescript SK(+) AmpR Stratagene, La Jolla, CA, USA

E.coli  strain

Plasmids

 
 
2.2.3 Growth of E. coli, and measurement of glucose-6-phosphate and glucose 
content in glycogen  
Either Kornberg liquid media (Romeo and Preiss, 1988; 1.1% (w/v) K2HPO4, 0.85% 

(w/v) KH2PO4, 0.6% (w/v) yeast extract, 0.5% (w/v) glucose), or ½ phosphate 

Kornberg media (0.55% (w/v) K2HPO4, O.425% (w/v) KH2PO4, 0.6% (w/v) yeast 

extract, 0.5% (w/v) glucose) containing appropriate antibiotics was prepared. 10ml of 

media was inoculated with E. coli and incubated at 37oC overnight with shaking. Cells 

from the cultures were harvested by centrifugation at 20 000g for 2 minutes at room 

temperature. 

 

In order to remove soluble sugars, E. coli pellets were re-suspended in 1ml of 80% 

(v/v) ethanol and incubated at 80°C for 1 hour. The cells were harvested by 
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centrifugation at 20 000g for 10 minutes and the supernatant discarded. Glucose-6-

phosphate (Glc6P) amounts within the glycogen were determined by the method of 

Nielsen et al. (2004). Glycogen was digested by incubating the bacterial pellet in 

400μl of 0.7M HCl for 4 hours at 95°C. Following neutralization with an equal volume 

of 0.7M KOH, a half spatula of polyvinylpolypyrollidine (PVPP) was added. This was 

vortexed briefly and centrifuged at 20 000g for 10 minutes. Glc6P was determined by 

combining 200μl of assay buffer (300mM Tris-HCl (pH 6.8), 10mM MgCl2, 1mM NAD) 

and 100μl of the digest. 1U of glucose-6-phosphate dehydrogenase (from 

Leuconostoc mesenteroides) was added and the increase in absorbance was 

followed at 340nm. Glucose determination was achieved by combining 290μl of 

assay buffer (300mM Tris-HCl, pH 6.8, 10 mMMgCl2, 1mM NAD, 1mM ATP) and 10μl 

of the digest. Determination was done by adding 0.34U/0.17U of glucose-6-

phosphate dehydrogenase/hexokinase from yeast, and the increase in absorbance 

was followed at 340nm. 
 
2.2.4 Construction of E. coli libraries 
Several E. coli (DH5α strain) genomic libraries were prepared in-house in a 

pBluescript SK(+) (Stratagene, La Jolla, California) vector. This was done by means 

of partial digestion of gDNA with three independent restriction enzymes, namely 

Sau3A (average insert size 688bp), RsaI (average insert size 1034bp) and HaeIII 

(average insert size 888bp) which were ligated into the pBluescript SK(+) vector 

using the BamHI site for Sau3A digested DNA and the EcoRV site for the DNA 

digested with the other two enzymes. 
 
2.2.5 Library screening 

Libraries were transformed into E. coli glgb-::pACAG cells. The glgb- mutant was from 

the Keio collection (CGSC# 10528; Baba et al., 2006) and was obtained from the 

Yale E. coli Genetic Resource Center. These were grown on solid Luria broth (LB) 

media containing 2% (w/v) glucose at 37°C overnight and stained for accumulation of 

glycogen by exposure to iodine vapor. Colonies accumulating increased amounts of 

glycogen were isolated and plasmid DNA isolated.  

 
2.2.6 Plasmid sequencing and gene identification 

Inserts within plasmids were sequenced at the Stellenbosch University Central 

Analytical Facility (CAF).  

 35



Chapter 2 

 
2.2.7 Preparation of E. coli protein extracts 
Protein extracts were prepared by inoculating E. coli in 5ml of LB media containing 

either 2% (w/v) glucose or 2% (w/v) maltose, followed by incubation at 37°C 

overnight with shaking. The culture was then transferred to 150ml of LB media 

containing the same sugars and incubated for 37°C for 4 hours with shaking. The 

culture was harvested by centrifuging at 7875g at 4°C for 15min and the pellet re-

suspended in 5ml of buffer solution containing 50mM Tris-HCl (pH 6.8), 10% (v/v) 

glycerol, 5mM MgCl2, 2mM EDTA and 2mM DDT. The cells were disrupted by 

sonication. Protein extract was clarified by centrifugation at 8507g for 15min at 4°C, 

frozen in aliquots in liquid nitrogen and stored at -80°C until further use. 

 
2.2.8 Non-denaturing gel electrophoresis 
Discontinuous gels containing 10% (w/v) polyacrylamide and 1% (w/v) rabbit muscle 

glycogen in the separation gel were prepared without sodium dodecyl sulfate (SDS) 

according to the method of Sambrook et al. (1989). Protein was separated at 120V 

and 4°C. The gels were subsequently incubated in 3M acetic acid-NaOH (pH6.0) 

containing 20mM glucose-1-phosphate at room temperature overnight with shaking. 

The solution was discarded and the gel was stained with Lugol’s (0.2% (w/v) KI, 

0.02% (w/v) I2) solution.  

 
2.2.9 Protein determination 
Protein quantification was performed as described by Bradford (1976) with bovine 

serum albumin used as a standard. 

 

2.2.10 Maltodextrin phosphorylase activity 
Maltodextrin phosphorylase (MalP) activity was measured in a kinetic assay at room 

temperature with maltoheptaose as a substrate, with the method adapted from Xavier 

et al. (1999). The assay mix contained 50mM potassium phosphate buffer (pH 7.0), 

2mM NADP, 2.5mM maltoheptaose, 4.41U phosphoglucomutase (rabbit muscle), 

and 1U glucose-6-phosphate dehydrogenase (Leconostoc mesenteroides). The 

reaction was started by adding 10µl of protein extract to 200µl assay buffer and 

glucose-1-phosphate production was followed at 340nm. 
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2. 2.11 Generation of PCR fragments for insertional mutagenesis in E. coli. 
A PCR product was generated by using forward (5’-AACTAGCGATAA 

CGTTGTGTTGAAAATCTAAGAAAAGTGGAACTCCTATGATGGAGAAAAAAATCAC

TGGAT-3’) and reverse (5’-TCCAGACGTTTGCTTTCCATCGAGCTTCCTTAGCGTT 

TTGCCTGCCAGATTTACGCCCCGCCCTGCCACTCA-3’) primers that include 

homology extensions encoding the beginning and end of the malp gene (underlined) 

and flanking sequences homologous to the chloramphenicol acetyltransferase gene 

(not underlined). PCR was performed using the vector pACYC184 (New England 

Biolabs) as a template. The PCR product was separated using 1% (w/v) agarose gel 

electrophoresis and then purified using the QIAquckR purification kit according to the 

manufacturer’s recommendations (Qiagen). 

 
2.2.12 Transformation of pKD46 into the glgp- mutant. 
glgp- mutants were grown on LB media with kanamycin (40µg.ml-1) to an OD600 of 

0.6-0.8. The red helper plasmid pKD46 (Datsenko and Wanner, 2000) was 

transformed into electrocompetent glgp- cells which were prepared exactly as 

described previously (Sambrook et al., 1989). Cells were electroporated according to 

the manufacturer’s instructions using a Gene Pulser XcellTM Electroporation system 

(BioRaD) and incubated at 28°C for 26hr before plating on a media containing 

20µg/ml ampicillin and kanamycin (40µg.ml-1) for selection.  

 
2.2.13 Transformation of the PCR product and selection of putative double 
mutants 
The glgp- mutant carrying pKD46 was grown in liquid LB media containing 20µg.ml-1 

ampicillin and 20mM L-arabinose at 30°C to an OD600 of 0.6-0.8, and electro-

competent cells were prepared as described (Sambrook et al., 1989). The PCR 

product of the chloramphenicol resistance gene flanked by malp regions was 

electroporated into the competent cells according to the manufacturer’s instructions. 

After incubation for 26hr at 28°C cells were spread on solid LB media containing 

chloramphenicol (25µg.ml-1). 

 
2.2.14 Confirmation of loss of pKD46 plasmid  
In order to make sure that the cells lose pKD46, colonies were inoculated in LB 

media without ampicillin and grown at 42°C. The media was streaked on plates 
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lacking ampicillin and individual colonies were tested for ampicillin sensitivity by 

streaking on plates that either did, or did not, contain ampicillin.  

 

2.2.15 Confirmation of the double mutant  
PCR using 5’-GCGATAACGTTGTGTTGAAAA-3’ and 5’-ATCACAGACGGCA 

TGATGAA-3’ primers was used to examine inserts into the malp gene. The first 

(forward) primer anneals to gDNA just upstream of the first ATG in the malp gene, 

while the second (reverse) primer anneals to chloramphenicol acetyltransferase gene 

and should lead to the production of a 636bp fragment if the gene has been 

successfully disrupted. 

 
2.3 Results and Discussion  
2.3.1. Measurement of glycogen phosphate content in E. coli strains DH5α, 
CGSC7451 (glgp-) and KV832 (glgb-) 
To confirm earlier reports of phosphate in E. coli glycogen (Lorberth et al.,1998; 

Viksø-Nielsen et al., 2002) a high-throughput method for measuring glycogen 

phosphate in bacterial pellets from liquid cultures was developed. This involved 

growing E. coli cultures and sedimenting the pellets by centrifugation. The pellets 

were washed with ethanol and the remaining glycogen digested to its constituent 

monomers by heating with 0.7M HCl. Resulting sugars were then used for enzymatic 

determination of glucose and glucose-6-phosphate content.  

 

Three strains of bacteria present within the Institute of Plant Biotechnology were 

used for this initial experiment. These were DH5α (Invitrogen), KV832 (Kiel et al., 

1987) and CGSC7451 (Singer et al., 1989). DH5α is a general laboratory strain 

which contains the entire glg operon while KV832 is a glgb- mutant and CGSC7451 is 

a glgp- mutant. The reason for using the two mutant strains were firstly to test 

whether any phosphate is incorporated into linear glucan chains produced in the 

KV832 glgb- mutant and secondly to examine whether GlgP is the protein 

incorporating phosphate into glycogen.  
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Figure 2.1 Glycogen phosphate content from three E. coli strains (DH5α, KV832 

(glgb-) and CGSC7451 (glgp-), grown under high (blue bar) and moderate (magenta 

bar) phosphate conditions. Values are presented as mean ± SE (n=5) and an 

asterisk (*) indicates a value that were determined by Students t-test to be 

significantly different (P<0.05) from the respective full-strength phosphate control.  
 

The data shown in Fig. 2.1 indicates that that there are indeed significant amounts of 

phosphate in E. coli glycogen in all three of the strains used. There appears to be a 

reduction in the amount of phosphate in the glycogen when grown under moderate 

phosphate conditions in the KV832 and CGSC7451 strains in comparison with the 

high phosphate conditions. In contrast, the DH5α strain had similar phosphate 

content in the glycogen between high and moderate phosphate conditions (Fig.2.1). 

Phosphate was also present in the CGSC7451 strain, which is mutated in the glgp 

gene, indicating that GlgP may not be solely involved in incorporating phosphate into 

glycogen. Finally, the KV832 strain, which lacks glycogen branching enzyme, 

contained the highest amount of phosphate. This is important as in starch it is only 

the branched amylopectin fraction that contains phosphate (Posternak 1951; Hizukuri 

et al., 1970; Takeda and Hizukuri, 1982; Blennow et al., 2002), due to the substrate 

specificity of the GWD protein (Mikkelsen at al., 2004). It would be interesting, from a 

biotechnological point of view, to introduce phosphate into the amylose fraction as 

well and, as the unbranched chains in KV832 contain phosphate, the elucidation of 

the mechanism of  phosphate incorporation in E. coli  may provide a valuable tool to 

do this in plants. 
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2.3.2 E. coli library screening  

In order to identify candidate genes that might be involved in phosphorylating E. coli 

glycogen a functional screening approach was taken. This is because it was noted 

that when a specific glgb- mutant strain (CGSC# 10528) was transformed with the 

potato GWD gene it started to accumulate glucans (Fig.2.2; James Lloyd, 

unpublished data). Using the assumption that any other glycogen phosphorylating 

protein would induce the same phenotype it was decided to transform an E. coli 

gDNA library into the same glgb- mutant and isolate colonies that accumulate 

glucans. 

 

                                          Empty vector               GWD 

. 

Figure 2.2 Expression of glucan water dikinase (GWD) in a glgb- (strain CGSC# 

10528) mutant. Plates were exposed to iodine vapour to visualise glucan 

accumulation. The construct expressing GWD (right panel) accumulated significantly 

more glucans (as observed from the darker stain) than the strain containing only the 

empty vector (left panel). 

 

This indicated that glucan phosphorylation stimulated glucan accumulation in the 

particular strain. Subsequently, three E. coli gDNA libraries were transformed 

independently into this mutant which had been engineered to contain the pACAG 

plasmid (Kossmann et al., 1999). pACAG allows expression of the glgC16 E. coli 

gene, which is an unregulated form of ADP-glucose pyrophosphorylase. This allows 

large accumulation of significant amounts of glycogen in E. coli (Creuzat-Sigal et al, 

1972). Plasmids were isolated from positive staining colonies and re-transformed into 

the same strain to confirm the phenotype before sequencing. Approximately 80 000 

colonies were screened and 40 were confirmed to demonstrate a positive phenotype, 

of which 10 were randomly chosen for further analysis. Fig.2.3 shows an example of 

a plate exposed to iodine vapour. The colonies indicated with red ticks are examples 

of those selected for sequencing.  
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Figure 2.3 Iodine staining of glgb-::pACAG E. coli colonies expressing glycogen 

genes from an E. coli genomic library. Colonies were grown overnight on media 

supplemented with 2% (w/v) glucose at 37°C and were then exposed to iodine 

vapour. Numbers represent independent positive staining clones while PKS denotes 

the same strain containing the empty vector (pBluescript KS(+)). 
 

2.3.3 Analysis of gene sequences 
Sequence data was analysed using the Basic Alignment Search Tool (BLAST) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and demonstrated that the 10 sequences 

obtained encoded 6 genes. Table 2.2 shows the BLAST search results. Some of the 

genes encode proteins with known functions, but which are likely to be false 

positives. These include the cytoplasmic α-amylase (AmyA) which breaks down 

maltodextrins that have entered the cytoplasm. In can also digest polyglucans 

although starch has been proven to be a better substrate for this enzyme than 

glycogen (Raha et al., 1992). AmyA can also act as a 4-α-glucan transferase, an 

enzyme that transfers α-1,4 bonds from one linear polyglucan to another, leading to 

the production of longer malto-oligosaccharides (Raha et al., 1992).  
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Table 2.2 Proteins encoded by genes identified in the functional screen.  
Gene name /protein Gene 

symbol
NCBI accession
number

E-value Max 
identity

References

Glutamatic acid decarboxylase 
transcription factor

gadW EBT991GX01N 0.00E+00 99% Tramonti et al., 2002

Glutamatic acid  decarboxylase 
transcription factor

gadX EBUVPRBT01S 0.00E+00 97% Tucker et al.,  2002

cytoplasmic alpha-amylase amyA EBNGDU7T01N 9.00E-50 97% Raha et al.,  1992

carbon storage regulator csrB EBPPDRUR01S 0.00E+00 100% Lui et al., 1997

Transcriptional regulator MalT malT  EBR2N7RS01S 0.00E+00 99% Chapon, 1982

maltodextrin phosphorylase malP BRNFHDF01N 3.00E-134 100% Schwartz and Hofnung, 
1967

 
One of the identified gene is csrB, which is bound to csrA gene a negative regulator 

of glgCAP operon (Liu et al., l1997). Overexpression of csrB gene leads to glycogen 

accumulation in E. coli (Liu et al., 1997) Similar to the observed phenotype in this 

experiment. It is involved in transcript stability of RNA coming from the glg operon 

(Liu et al., 1997) so is unlikely to be directly involved in glycogen phosphorylation. 

 
GadX and GadW are araC-like transcription factors which are 42% similar to each 

other. They are involved in activating glutamate metabolic genes which allow E. coli 

to acclimatise to stomach acid (Tucker et al., 2002; Hommais et al., 2004; Weber et 

al., 2005; Sayed et al., 2007). In one study Tucker et al. (2003) demonstrated that 

both regulate expression of the glgS gene. glgS has been reported to influence 

glycogen accumulation as a mutation in it reduces glycogen amounts while its 

overexpression increases its amounts in E. coli (Hengge-Aronis and Fischer, 1992). 

The expression of GadX and GadW thus agrees well with the observed phenotype. 

The function and role that glgS plays, however, remains unknown. 

 

malT is a positive regulatory gene that controls the maltose operons in E. coli, 

namely malPQ, malK-lamB and malEFG (Hatfield et al., 1969; Debarbouille and 

Schwartz 1979). Danot and Raibaud (1994) reported a detailed biochemical 
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characterization of the interaction of MalT with the promoter of the malPQ operon 

and clearly showed that the maltodextrin phosphorylase gene (malP) is up-regulated 

by MalT. This was one of the other genes also identified in the screen. MalP 

catalyses a very similar reaction to the previously discussed GlgP protein by either 

incorporating or liberating glucose-1-phosphate (Glc1P) from linear maltodextrins. 

The secondary protein structure of E. coli MalP is also similar to those of E. coli GlgP 

(Kumal, 1990) and this may indicate that they have similar functions in vivo. The 

main difference between MalP and GlgP, however, is the substrate they act on. GlgP 

has a high affinity for glycogen (Hu and Gold, 1975; Kasvinsky et al., 1978) while 

MalP has a high affinity for linear oligosaccharides and low affinity for glycogen 

(<1%) (Schwartz and Hofnung, 1967). Despite this, it can be speculated that MalP, in 

a similar manner to GlgP, could utilise glucose-1-6-bisphosphate as well as glucose 

1-phosphate as substrates to incorporate phosphate into glycogen. 

 

Given that both MalP and its regulator (MalT) was identified in this screen, it was 

decided to examine the amount of phosphate in glycogen from a malp- mutant. In 

addition, the glycogen content from mutants lacking araC-like transcriptional 

regulators, GadW and GadX, was also analysed. Mutants were obtained from the 

Yale E. coli stock centre and originated from the Keio collection (Baba et al., 2006). 

They were grown in Kornberg medium and the glucose 6-phosphate content of the 

glycogen determined. Fig.2.4 shows that there was no difference in phosphate 

content in any of the mutants in comparison with the K-12 control strain, suggesting 

that none of the genes alone are involved in phosphorylating glycogen. In order to 

investigate this further, the relationship between MalP and GIgP, with the assumption 

that there might be functional redundancy between the two, was studied. 
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Figure 2.4 Glycogen phosphate content of three E. coli mutants (malp-, gadW- and 

gadX-) generated in a K-12 BW25113 background strain grown under high 

phosphate conditions. Values are presented as mean ± SE (n=3; K-12 BW25113 

n=4) and no significant differences (P<0.05) was observed as determined by 

Students t-test from the K-12 control strain. 
 

2.3.4 Analysis of glycogen and maltodextrin phosphorylase activities in glgp-

and malp- mutants 
In order to examine the functional relationship between MalP and GlgP their activities 

were examined under growth conditions with different sugar substrates. MalP has 

been shown to be induced by maltose (Schwartz, 1965) and repressed by glucose 
(Chao and Weathersbee, 1973), but it isn’t clear if the reverse is true for GlgP.   

 

Fig. 2.5 shows the native glycogen phosphorylase activity gel of protein extracts from 

the glgp- and malp- mutants in the K-12 BW25113 (WT) strain. All strains were grown 

with either glucose or maltose in the medium. As can be observed, when the three 

strains were grown with glucose supplementation, GlgP activity was present in both 

the WT and MalP extracts, but absent in the glgp- mutant. When the strains were 

grown with maltose there was repression of GlgP activity in the WT. However, in the 

malp- mutant grown on maltose GlgP activity was also present suggesting that 

metabolic repression of glgp transcription by maltose is overcome in the malp- 

mutant. 

 44



Chapter 2 

 

GlgP

2%  (w/v) maltose2%  (w/v) glucose

WT glgp‐ malp‐ WT glgp‐ malp‐
 

Figure 2.5. Non-denaturing activity gel of glycogen phosphorylase activities in K-12 

BW25113 (WT) control, glgp- and malp- mutants grown in media supplemented with 

either 2% (w/v) glucose or 2% (w/v) maltose. Proteins extract were separated on 

10% (w/v) non-denaturing PAGE containing 1% (w/v) glycogen. GlgP activities were 

assayed as described in Material and methods. The arrow indicates the expected 

band for the GlgP protein. 

 

MalP activity in the protein extract from the same E. coli strains which were grown, as 

before, in either maltose or glucose was also determined (Fig.2.6). As expected, 

MalP activity was found in both the WT and glgp- mutant when grown on maltose. 

Also, when strains were grown in glucose there was a repression of MalP activity in 

both the WT and glgp- mutant strains. This demonstrates that MalP is induced 

specifically by maltose and that its activity is not up-regulated in the glgp- mutant 

when grown in glucose media. Taken together, the data on phosphorylase activities 

of GlgP and MalP suggests that GlgP might be able to compensate for a lack of MalP 

activity (as it is induced in the malp- mutant when grown in maltose), but that the 

opposite is not true (as MalP activity is not induced in the glgp- mutant when grown in 

glucose). It should, however, be pointed out that, since these activity measurements 

were only conducted at one time point, it is possible that MalP might still be present 

in the glgp- mutant grown with glucose at a different time point. 
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Figure 2.6. Maltodextrin phosphorylase activity measured in protein extracts from K-

12 BW25113 (WT) control, glgp- and malp- mutants. E. coli were grown 

supplementated either 2% (w/v) glucose (blue bar) or maltose (magenta bar). One 

unit enzyme activity is defined as 1.0µmol of glucose-1-phosphate formed per 

minute. Values are presented as mean ± SE (n=4) and different letter denomination 

represents values that were determined by ANOVA to be significantly different 

(P<0.05) from each other. 
 

2.3.5 Production of a malp-/glgp- double mutant 
In order to examine if E. coli glycogen is phosphorylated by the combination of MalP 

and GlgP, it was decided to construct a malp-/glgp- double mutant. There are several 

ways to induce mutations in bacteria. One of the easiest is by means of 

recombination using a red recombinase method developed by Datsenko and Wanner 

(2000). E. coli are not readily transformed by linear DNA because of the presence of 

the intracellular exonuclease RecBCD that degrades linear DNA (Benzinger et al., 

1975). The red system include three genes λ, β,and exo from bacteriophage λ carried 

on a plasmid. These genes produce the proteins  Gam, Bet and Exo, respectively 

(Murphy et al., 2000). The Gam protein inhibits the RecBCD nuclease from attacking 

linear DNA while Bet and Exo are involved in creating and protecting single stranded 

overhangs from the linear DNA for recombination into the bacterial genome (Murphy 

et al., 2000). The strategy involves three basic steps. Firstly, the synthesis of oligo-

nucleotides and preparation of the cassette. Secondly, electroporation of the cassette 

into the cells carrying the target gene and thirdly, recombination. The synthesis of 
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oligo-nucleotides is normally achieved by chemical synthesis with 30-50nt homology 

to the target sequence. The linear DNA is prepared by amplifying an antibiotic 

resistance gene (in this case the chloramphenicol resistance gene). This is 

electroporated into the cells to be mutated which contain the pKD46 plasmid 

(Datsenko and Wanner, 2000) that allows expression of the λ, β,and exo genes 

required for recombination. Expression of the genes on pKD46 are driven by the 

arabinose promoter and the plasmid contains a temperature sensitive replicon to 

allow it to be easily cured from the cells. The linear DNA then replaces the targeted 

gene by homologous recombination and transformed cells can be selected based on 

acquired resistance to the antibiotic (Fig.2.7). 
 

 
Figure 2.7 Strategy for replacing the malp gene in the E. coli genome based on the 

method of Datsenko and Wanner (2000). malp is replaced with a chloramphenicol 

resistance (CmR) gene in a glgp- mutant background in order to produce a malp-/glgp- 

double mutant. 

 

Using this method, Datsenko and Wanner (2000) were able to disrupt more than 40 

genes on the E. coli chromosome without a single failure, and it has been used to 

knock out all non-lethal genes in E. coli as part of the Keio collection initiative (Baba 

et al., 2006), demonstrating the reliability of the method. However, one of the pitfalls 

in this method involves the formation of many false positives from the plasmid due to 

aberrant PCR errors. To circumvent this, Datsenko and Wanner (2000) constructed 

plasmids that were unable to replicate in E. coli strains. Because I did not have 

access to these, the plasmid pACYC184 was used as a template for the PCR with 
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the expectation to also find a significant amount of false positives. The resulting PCR 

product showed a band of approximately 700bp which should contain the 

chloramphenicol acetyltransferase gene flanked by nucleotides homologous to either 

end of malp (Fig.2.8).  

                                                         1                2 

 
Figure 2.8 Agarose gel showing a PCR product designed to produce an insertion 

mutation in the malP gene through homologous recombination. Lane 1: Lambda DNA 

marker, Lane2: PCR product. The arrow indicates the PCR product with an 

approximate size of 700bp. 

 

The excised band was transformed into glgp-::pKD46 cells and colonies were 

isolated that were resistant to both kanamycin and chloramphenicol. A screening of 

twenty of these colonies for insertion of the CmR gene into malp yielded no positives. 

The occurrence of these false positives are probably due to aberrant PCR as was 

found previously (Datsenko and Wanner, 2000). Unfortunately, due to time 

constraints I was unable to repeat this experiment; however, it will be repeated in 

future in order to test the hypothesis that MalP and GlgP in combination can lead to 

phosphate incorporation into glycogen. 
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Chapter 3 

Chapter 3: Investigation of the effect of Sex4, Lsf1, Lsf2, Lafora and 
GWD proteins on glycogen metabolism in Saccharomyces 

cerevisiae. 

 
3.1 Introduction  
Phosphatases (EC 3.1.3) are enzymes which are able to remove phosphate groups 

from a substrate. They are an important group of enzymes and can be subdivided 

into several classes. One of these are the protein phosphatases which are able to 

remove phosphate groups from amino acids within proteins which have been 

phosphorylated by protein kinases (Hanks et al., 1988). Different classes of protein 

phosphatases exist, such as tyrosine phosphatases (EC 3.1.3.48) and 

serine/threonine phosphatases (EC 3.1.3.16). Both of these remove phosphate from, 

as the name suggests, one amino acid from a specified protein. However, another 

class of protein phosphatases, known as dual specificity phosphatases (EC 

3.1.3.38), have the ability to dephosphorylate two amino acids of the same protein 

(Denu and Dixon, 1995).  

 

Although dual specificity phosphatases are generally described as being protein 

phosphatases, some are able to dephosphorylate polyglucans. The best known 

examples of these include the Laforin protein of animals (Worby et al., 2006) and the 

SEX4 protein in plants (Edner et al., 2007; Kötting et al., 2009). Both of these 

proteins are probably involved in dephosphorylating either glycogen or starch prior to 

its degradation, and their role was reviewed in detail in the introductory chapter 

(section 1.2.2 and section 1.2.3). The question arises whether this process of 

glycogen dephosphorylation (and phosphorylation) occurs in other species. One way 

to examine this is to examine the role of dual-specificity phosphatases that are 

present in other organisms. Baker’s yeast (Saccharomyces cerevisiae) contains 

several genes coding for putative dual-specificity phosphatases (Table 3.1)  
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Table 3.1 Dual-specificity phosphatase identified in the Saccharomyces cerevisiae 

genome  

Locus Reference

YVH1/YIR026C Beeser and Cooper, 2000

PPS1/YBR276C Ernsting et al ., 1997

CDC14/YFR028C Culotti and Hartwell, 1971

TEP1/YNL128W Heymont et al. , 2000

MSG5/YNL053W Doi et al ., 1994

SDP1/YIL113W Collister et al ., 2002
 

 

One of these dual-specificity phosphatases (Yvh1p) has been demonstrated to be 

involved in glycogen accumulation (Beeser and Cooper, 2000) Yvh1p is induced by 

nitrogen starvation and cold temperatures (Beeser and Cooper, 2000), and required 

for cell growth, effective sporulation (Park et al., 1996), vegetative growth (Sakumoto 

et al., 1999, 2001) and, interestingly, glycogen metabolism (Beeser and Cooper, 

2000). When it is eliminated by mutation the yeast cells cannot accumulate glycogen 

when grown on plates lacking nitrogen (Guan et al., 1992; Beeser and Cooper, 

2000). The glycogen-less phenotype noted here in yvh1p- mutant cells is different to 

what would be expected if it acts in a similar way to the SEX4 or Laforin proteins. 

Mutations in the genes coding for these lead to an accumulation of starch or 

glycogen and so it would be expected that if Yvh1p acts in a similar manner it would 

also lead to a glycogen excess phenotype. Although this is not the case it is 

interesting to speculate that this yeast protein may influence glycogen metabolism in 

some way similar to SEX4 and Laforin, yet have the opposite effect. Because Yvh1p 

is the only DSP in the yeast genome known to be involved in glycogen metabolism it 

was decided to examine if it could be complemented by human and plant DSP’s. In 

addition the effect of DSP’s and the GWD protein on glycogen metabolism in both 

wild type and yvh1p mutant yeast cells will be assessed. It is hoped that this will 

provide evidence whether or not yeast glycogen is phosphorylated.  

 
3.2 Materials and methods 
3.2.1 Chemicals 
PEG100 was purchased from Roth (Karlsruhe, Germany). All other chemicals used in 

enzymes essays were purchased from Roche Biochemicals (Mannheim, Germany) 
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and Sigma Aldrich Fluka (SAF) chemical company (St. Louis, MO, USA) unless 

otherwise stated. All reagents and chemicals were of analytical grade.  

 
3.2.2 Genes, vector and strains used in this study 
A SEX4 EST (At3g52180) was obtained from the Ohio state DNA stock center, while 

cDNA’s of Lsf1 (At3g01510) and Lsf2 (At3g10940). were kind gifts from Samuel 

Zeeman (ETH Zurich, Switzerland). A cDNA coding for Laforin (IMAGE ID≠: 824559) 

was obtained from the IMAGE collection while one coding for potato GWD: 

pPVD1constract was from James Lloyd (Institute for Plant Biotechnology (IPB, 

Stellenbosch University, South Africa). The yeast shuttle vector pPVD1, was 

obtained from the Institute of Wine Biotechnology (IWBT, Stellenbosch University, 

South Africa). 

 

Table 3.2. Yeast strains used in this study. 

Strain name Genotype Reference

BY4742 MAT α; his3 ∆1; leu2 ∆0; lys2 ∆0; 
ura3 ∆0

Brachmann et al ., 1998

Y15714 Matα; his3∆1; leu2∆0; lys2∆0; 
ura3∆0; YAL064c-a::kanMX4

Brachmann et al., 1998

 
 

3.2.3 Construct preparation 
All cDNA’s were present in pBluescript SK(+) (Stratagene, La Jolla, California). 

Laforin was digested from pBluescript with Notl and Sall and ligated into the same 

restriction sites of pPVD1. SEX4 and LSF2 were both excised from pBluescript with 

EcoRl and Sall and ligated into pPVD1 in the same restriction sites. Lsf1 was 

digested from pBluescript with EcoRl and Xbal and ligated into the same restriction 

sites of pPVD1. 

 
3.2.4 Preparation of yeast cells 
Yeast cells for transformation were prepared according to Dohemen et al. (1991) with 

few modifications. The cells were grown in 5mL Yeast Peptone Dextrose (YPD) 

(5g.L-1 yeast extract, 10g.L-1 peptone, 10g.L-1glucose) media overnight. The culture 

was transferred to 150mL of the same media the following day and grown to an 

OD600. The cells were centrifuged at 4000g for 5min and washed in a 50mL solution 

of 1.0M sorbitol, 10mM Lysine-NaOH (pH 8.35), 3% (v/v) ethylene glycol, 5% (v/v) 
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DMSO. This was followed by centrifugation at 4000g for 5min. The pellet was 

resuspended in 2mL of the same solution. 

 
3.2.5 Yeast transformation 
To transform the constructs into the WT and yvh1p- mutant, a 20µL mixture of 5-7µg 

plasmid DNA, 10 mg.mL-1 single stranded carrier DNA (herring sperm DNA) was 

added to 20µL of freshly prepared yvh1p- mutant or WT cells. The solution was 

mixed by inverting the tube several times before adding 1.4mL of 40% (v/v) PEG100, 

0.2M Lysine-NaOH (pH 8.35) and mixed by vortexing for 1min. The solution was 

incubated at 30°C for 1hr, sedimented by centrifugation at 3000g for 5sec and 

resuspended in 1.0mL of 0.15 M NaCl, 10 mM Lysine-NaOH (pH 8.35). The cells 

were spread on selective media containing appropriate amino acid according to 

Brachmann et al. (1998) and incubated at 28°C.  

 
3.2.6 Determination of glycogen content in yeast cells 
To measure glycogen, a 10mL culture was inoculated with a colony and grown at 

28°C for 72hrs before being centrifuged at 4000g for 3min at 4°C. The media was 

discarded and the pellets were suspended in 10mL of ice cold water and centrifuged 

again for 3min at the same speed. Pellets were frozen in liquid nitrogen and stored at 

-80°C until further use. Glycogen was measured with the method adapted from 

Becker (1978) and Lillie and Pringle (1980). 500µL of 0.25M Na2CO3 at 60°C was 

added to the frozen cells and the samples placed in boiling water for 2hrs. A 450µL 

sample was taken and acidified with addition of 67µL of 6M acetic acid. 200µL of this 

solution was mixed with 800µL of NaOAc (pH 4.8) and incubated with 20µL 

amyloglucosidase (10 mg.mL-1) at 37°C for 12 hrs. The solution was neutralised with 

10µL of NaOH and centrifuged for 10min at 20 000g at room temperature. Glucose 

was determined by combining 290μL of assay buffer (300mM Tris, pH 6.8, 10mM 

MgCl2, 1mM NAD, 1mM ATP) and 10μL of the digest. Determination was done by 

adding 0.34U/0.17 U of glucose-6-phosphate dehydrogenase/hexokinase from yeast 

to the wells and the increase in absorbance was followed at 340nm. 
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3.3 Results and discussion 
3.3.1 Preparation of constructs for investigation of glycogen metabolism in 
yeast cells 
Yvh1p has been previously identified as a dual-specificity phosphatase which 

repression leads to significant decreases in glycogen (Beeser and Cooper, 2000). In 

order to identify whether plant and human dual-specificity phosphatases could 

complement Yvh1p, constructs carrying sex4, Lsf1, Lsf2 and Laforin, as well as the 

starch phosphorylating enzyme GWD were ligated in sense orientation with respect 

to the strong constitutive PGK promoter in the pPVD1 shuttle plasmid. These were 

then transformed into wild type and yvh1p- mutant yeast cells and positive 

transformants identified based on amino acid selection media. 

 

3.3.2 Measurement of glycogen content in the yeast  
Following the selection of colonies, the glycogen content in the different constructs 

was measured at a stationary growth phase (Fig.3.1). The results demonstrated that 

there was no significant difference between the glycogen in the wild type and the 

yvh1p- mutants containing the empty plasmid (pPVD1). This is surprising since 

results obtained by Guan et al. (1992) and Beeser and Cooper (2000) indicated that 

the yvh1p- mutant is unable to accumulate glycogen at the stationary phase. One 

plausible explanation for this discrepancy could be due to strain differences. The 

strain (By4742) used in this experiment is haploid, in comparison with the diploid 

HPy120 strain used by Guan et al. (1992) and Beeser and Cooper (2000).  
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Figure 3.1 Glycogen content of different yeast constructs after it reached stationary 

phase at 72hrs. Potato glucan water dikinase (GWD), dual-specificity phosphatases 

(or phosphatases-like) genes Lsf1, Lsf2 and sex4, as well as the human dual-

specificity phosphatase Laforin (Laf) was transformed into either wild type (WT; blue 

bar) or yvh1p- (magenta bar) yeast mutant backgrounds (strain By4742). An empty 

vector control (pPVD1) was also included. Values are presented as mean ± SE (n=4) 

and an asterisk (*) indicates a value that were determined by Students t-test to be 

significantly different (P<0.05) from the empty vector control in the respective 

background strains.  

 

Despite the fact that the there was no significant difference in glycogen content 

between the wild type and mutant cells, the effect of plant and human genes involved 

in polyglucan metabolism was further evaluated in the two yeast background strains 

(WT and yvh1p-). This indicated that the expression of GWD in yeast did not cause 

an increase in yeast glycogen content (Fig.3.1) as has been reported when it is 

expressed in E. coli (Viksø-Nielsen et al., 2002). Also, the Lsf1 did not lead to a 

decrease in glycogen in yeast as observed in E. coli (Scheidig, 2006). While Lsf2 did 

show a significant increase in glycogen content, this was only evident in the WT 

background (Fig.3.1). Studies within the IPB have demonstrated that the expression 

of AtSEX4 in E.coli leads to bacteria that are unable to accumulate glycogen (James 

Lloyd, unpublished data). Surprisingly, in yeast, expression of SEX4 led to more 

glycogen than the empty vector control of the corresponding background strains 
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although there was no difference between the amount of glycogen between the WT 

and yvh1p- mutant strains (Fig.3.1). This suggests that this gene does not influence 

glycogen in the same way as in E. coli. There was also no significant difference 

noted in glycogen accumulation between the empty vector control and the Laf 

construct (Fig.3.1).  

 

There might be plausible explanation to explain the results observed. Despite the fact 

that an increase in glycogen has been previously observed in yvh1p- mutants 

(Beeser and Cooper, 2000), yeast cells increase their glycogen content as a carbon 

reserve during nutrient limitations (as previously discussed). Recent studies have 

shown that Yvh1 is an essential component for ribosomal biogenesis in yeasts (Lo et 

al., 2009; Kemmler et al., 2009), and that abolishment of the C-terminal (and not the 

N-terminal where the phosphatase domain is situated) is important in this regard (Lo 

et al., 2009). It is therefore likely that increases in glycogen accumulation in yvh1p- 

mutants are independent from its phosphatase activity, and rather due to a restriction 

in cell growth due to an impaired ribosomal mechanism.  
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Chapter 4: General conclusion 
 
In this study we confirmed previous reports of covalently bound phosphate in E. coli 

glycogen (Lorberth et al., 1998; Viksø-Nielsen et al., 2002). This was done by 

digestion of glycogen in E. coli pellets and determination of the amount of glucose 6-

phosphate in comparison with glucose in the different E.coli strains. The glucose 6-

phosphate content ranged from 0.3-0.8 nmol.mg-1 glycogen, similar to those reported 

in previous studies. The exception to this was in a glycogen branching enzyme 

mutant strain (KV832) which accumulated up to 2.3 nmol glucose-6-phosphate.mg-1 

glycogen. If this is true it would be the first report of linear polyglucans containing 

covalently bound phosphate as in starch it is only the branched amylopectin fraction 

that is phosphorylated (Posternak 1951; Hizukuri et al., 1970; Takeda and Hizukuri, 

1982; Blennow et al., 2002).  

 

We also tried to isolate the gene responsible for the incorporation of phosphate using 

an E.coli gDNA library in a functional expression system. This was due to an 

observation that a glgb- E. coli mutant accumulates more glucans when it expresses 

the plant GWD protein than when it doesn’t. We therefore transformed the genomic 

library into the glgb- mutants cells, screened and isolated colonies that accumulated 

increased amounts of glucans. Sequencing of the inserts from the plasmids in the 

colonies identified several genes coding for putative phosphorylating proteins, 

including some obvious false positives. One gene, interestingly, encoded the MalP 

protein. This might be able to incorporate phosphate into glycogen utilising glucose-

1,6-bisphospate as a substrate. Determination of glycogen phosphate in a malp- 

mutant, however indicated that there might be another protein working together with 

MalP. It could be, however, that the method which was used to measure the 

phosphate in E. coli still needs to be fully optimised. Because of the similarities 

between MalP and GlgP it would be interesting to investigate the phosphorylation of 

E. coli by the combination of the two genes coding for these protein by producing a 

glgp-/malp- double mutant. We failed to produce such a mutant, but this will be 

repeated in the near future.  

 

Lastly, the effect of plant and animal genes involved in polyglucan phosphate 

metabolism in yeast glycogen was also investigated. Preliminary results from this 

indicated that GWD, Lsf1, Lsf2 and Laforin have little or no effect on yeast glycogen 
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metabolism while there appears to be an increase in glycogen content in yvh1p- 

yeast mutant cells complemented with SEX4. While the reason behind this remains 

unclear, it provides an exciting topic for future research. If expression of SEX4 truly 

increases yeast glycogen accumulation it would imply that there is indeed phosphate 

present there. It would be of great interest, therefore, to determine if this is the case 

as a first step to try and explain the phenotype. After the confirmation of phosphate in 

yeast glycogen the next step would be to construct a yeast cDNA library in order to 

screen for the gene that is incorporating the phosphate. This could be done by 

transforming the library into the glgb- E. coli mutant and screen for accumulation of 

glycogen by exposing the plate to solid iodine as was described in Chapter 2.  
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