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Abstract 
 

 An analysis of the attitude determination and control system required for a 

small geostationary satellite is performed in this thesis. A three axis quaternion 

feedback reaction wheel control system is the primary control system used to meet the 

stringent accuracy requirements.  A momentum bias controller is also evaluated to 

provide redundancy and to extend actuator life. 

 

   Momentum dumping is preformed by magnetic torque rods using a cross-

product controller.  Performance of three axis thruster control is also evaluated.  A full 

state Extended Kalman filter is used to determine attitude and body angular rates 

during normal operation whereas a Multiplicative Extended Kalman Filter is used 

during attitude manoeuvres.   

 

 An analytical orbit control study is also performed to calculate the propellant 

required to perform station-keeping, for a specific sub-satellite location over a ten 

year period.  Finally an investigation on the effects caused by thruster misalignment, 

on satellite attitude is also performed. 
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Opsomming 
 

 Die analise van ’n oriëntasie bepalings en beheerstelsel vir gebruik op ’n 

geostasionêre satelliet word in hierdie tesis behandel. ’n Drie-as “Quaternion” 

terugvoer reaksiewiel is die primêre behereerstelsel wat gebruik word om die vereiste 

hoë akkuraathede te verkry.  ’n Momentum werkspunt beheerder word ook geëvalueer 

om oortolligheid te bewerkstellig en om die aktueerder leeftyd te verleng. 

 

 Momentum storting word deur magnetiese draaimomentstange uitgevoer met 

behulp van ’n kruisproduk beheerder.  Werkverrigting van drie-as stuwer beheerder 

word ook geëvalueer.  ’n Volle toestand uitgebreide Kalman filter word gebruik om 

die oriëntasie en liggaamhoektempos gedurende normale werking te bepaal, terwyl ’n 

vermenigvuldigende uitgebreide Kalman filter gedurende oriëntasiebewegings 

gebruik word. 

 

 ’n Analitiese studie van wentelbaan beheer word ook uitgevoer om die 

hoeveelheid brandstof te bepaal wat oor ’n tien jaar periode benodig word om die 

satelliet se posisie ten opsigte van die aarde te handhaaf.  Laastens word die invloed 

van stuwer wanbelyning op die satelliet se oriëntasie ook ondersoek.  
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Chapter 1 
 
 
Introduction 
 
1.1 Concept 
 

A Geostationary orbit (GEO) falls under the more general classification of 

Geosynchronous orbits.  A Geosynchronous satellite is a satellite whose orbital track 

on the Earth repeats regularly over a point on the Earth over a sidereal day, the period 

at which the Earth rotates a full 360 degrees (approximately 23 hours 56 minutes 4 

seconds).  If such a satellite’s orbit lies over the equator, it is called a GEO satellite.  

The inclination and eccentricity of a GEO satellite is close to zero. 

 

A more detailed description will be helpful in understanding the mechanism of 

Geosynchronous satellite orbits.  According to Kepler’s Third law, the orbital period 

of a satellite in a circular orbit increases with increasing altitude.  Space stations and 

remote sensing satellites in a low Earth orbit (LEO), typically of 400 to 650 km above 

the Earth’s surface, completes between 15 to 16 revolutions per day.  The Moon in 

comparison takes 28 days to complete one revolution.  Between these two extremes 

lies an altitude of 35786 km at which the satellite’s orbital period matches the period 

at which the Earth rotates. This is what is called a Geosynchronous satellite orbit. 

 

If a Geosynchronous satellite’s orbit is not aligned with the equator, which 

means that the orbit is inclined, it will appear to oscillate daily around a fixed point in 

the sky.  This oscillation will have the shape of a figure of eight and the size of the 

figure will be determined by the inclination value.  As the angle between the orbit and 

the equator decreases, the magnitude of this oscillation decreases.  When the orbit lies 

entirely over the equator, the satellite remains stationary, relative to the Earth’s 

surface and hence gets called geostationary. 
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Figure 1.1  Ground tracks of Geosynchronous Satellites with Different Inclinations 

 

Figure 1.1 shows that the larger the inclination of a geosynchronous satellite 

the bigger the oscillation.  Since satellite ‘C’ has a non-oscillatory ground track we 

can conclude that it is a geostationary satellite.  Therefore all geostationary satellites 

are geosynchronous but not all geosynchronous satellites are geostationary. 

This doesn’t mean that a geostationary satellite always has zero inclination.  

Inclination tends to build up due to gravitational effects of the Sun and the Moon. 

Hence the aim would be to minimise the inclination as much as possible. A detailed 

discussion on why inclination builds up and how it is minimised can be found in 

Chapter 7.  

The inclination is also dependent on the mission requirement.  For example, 

weather satellites tend to have a non-zero inclination so that they can monitor larger 

areas over a day’s period and also because the weather changes slowly, but 

communication satellites tend to have inclinations as small as possible, since 

continuous communication is required by all regions in the foot print at all times.  
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1.2 Application 

Since GEO satellites appear to be fixed over one spot above the equator, 

receiving and transmitting antennae on the Earth do not have to track the satellite. 

These antennae can be fixed in place and are much cheaper to install than tracking 

antennae. The GEO satellites find their application in global communications, 

television broadcasting and weather forecasting, and have significant military and 

defense applications. 

One disadvantage of GEO satellites is  a result of their altitude.  Radio signals 

take approximately 0.25 seconds to reach and return from a satellite, resulting in a 

small but significant signal delay, especially in live-audio interaction.  This delay can 

be ignored in non-interactive systems such as television broadcasts.  Another 

disadvantage is the loss of signal strength or the requirement for higher signal strength 

for regions above 60 degrees latitude in each hemisphere (south and north).  For 

example, satellite dishes in the southern hemisphere would need to be pointed almost 

directly to the north, thereby causing the signals to pass through the largest amount of 

the atmosphere which will cause a significant amount of attenuation.  This is not a 

major problem in the southern hemisphere as compared to the northern hemisphere as 

there isn’t much land above 60 degree latitude in the southern hemisphere. 

Furthermore, since geostationary satellites are always positioned above the 

equator, it is impossible to cover the north and the south poles. A GEO satellite 

coverage is limited to a 70 degree latitude in either hemisphere.  The Molniya or 

Tundra satellites provide coverage for regions in the pole region. 

 

1.3 History 
The idea of geosynchronous orbits was first proposed by Sir Arthur Charles 

Clarke in 1945.  He conceived this idea in a paper titled “Extra-Terrestrial Relays - 

Can Rocket Stations give Worldwide Radio Coverage ?”, published in Wireless World 

in October 1945. 

The first geosynchronous satellite was Syncom 2, launched on a Delta rocket B 

booster from Cape Canaveral on 26 July, 1963.  It was used a few months later for the 

world’s first satellite relayed telephone call between U.S President John.F.Kennedy 

and Nigerian Prime minister Abubakar Tafawa Balewa. 
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The first GEO communication satellite was Syncom 3, launched on a Delta D 

launch vehicle on 19 August, 1964.  This satellite was placed near the International 

Date Line (180 degree longitude) and was used to telecast the 1964 Summer 

Olympics in Tokyo to the United States.  There are currently approximately 300 

operational geosynchronous satellites. 

 

Note:  Syncom 1 was launched on February 14, 1963 with the Delta B launch vehicle 

from Cape Canaveral, but was lost on the way to geosynchronous orbit due to an 

electronics failure.  Later telescopic observations verified that the satellite was in an 

orbit with a period of almost 24 hours at an inclination of 33°. 

 

1.4 Launching and Positioning 
A GEO satellite can be launched into a GEO orbit in two different ways. One 

option would be to have a space shuttle (STS) take the satellite into a near Earth orbit 

of approximately 200 km altitude. Once in this altitude the satellite is ejected from the 

shuttle. In order to get the satellite into GTO (geostationary transfer orbit) a motor 

called the PKM (perigee kick motor) is fired.  This firing will give the satellite enough 

velocity to place itself into a GTO.  Once at the apogee of the GTO which has the 

same altitude as the GEO orbit, another motor called the AKM (apogee kick motor) is 

fired.  This firing circularises the orbit of the satellite thereby achieving the final GEO 

orbit.  The sequence of firing is shown in Figure 1.2. 

The other option would be to have the satellite placed in an expendable launch 

vehicle. This vehicle after launch, ejects the satellite at an altitude of around 300km.  

The velocity of the launch vehicle is such that the satellite upon ejection from the 

vehicle finds itself in the GTO.  Once at the apogee of the GTO the AKM is fired and 

the final GEO is attained. 

The advantage of the second method is that the PKM firing is completely 

eliminated thereby reducing the amount of fuel the satellite has to carry.  This is 

because of the fact that an attempt to change the velocity of the satellite near Earth 

will require a lot more fuel due to the higher influence of the geogravitational effects. 
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Figure 1.2  Orbital injection sequence using a Space Transportation System 

(From Berlin, 1988, p. 17) 

 

Figure 2.1 (in Chapter 2) shows the placement of the satellite directly into the 

GTO.  It is important to mention that the 3rd stage burn in Figure 2.1 is performed by 

the launch vehicle and not the satellite.  Examples of launch vehicles are Ariane 5 and 

Delta IV, to name a few. 

 

1.5 Thesis Overview 

The aim of this thesis is to perform a simulation study on the AODCS of a 

small GEO satellite in mission mode.  A chapter by chapter introduction of the thesis 

is as follows: 

Chapter 2 provides a detailed overview about the aim and background of this 

thesis. It also provides a simplified background on GEO satellites in general. 

Chapter 3 will deal with the different types of models used in the simulation. 

A description of each model will be given, depending on the importance and 

complexity. 
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Chapter 4 looks at the actuators and sensors used for the AODCS in this 

specific case. Placement of sensors will also be evaluated. A brief general actuator 

analysis for GEO satellites will also be done. 

Chapter 5 investigates various types of attitude control methods possible. 

Emphasis will be given on the different types of combinations (of actuators) possible 

with final accuracy in mind. 

Chapter 6 covers the attitude estimation techniques performed. EKFs are used 

to estimate attitude, angular rates and angular rate bias. A thorough mathematical 

analysis will be performed. 

Chapter 7 evaluates different orbit control techniques and calculations from a 

purely theoretical point of view. Also an analysis of the attitude control problem 

during orbit control manoeuvres is performed. 

Chapter 8 provides a summary of the main chapters and recommendations on 

how the presented work can be advanced. 
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Chapter 2 
 
 
Overview 
 
2.1 Aim 
 

The aim of this thesis as mentioned earlier is to perform a simulation study on 

the AODCS of a small GEO satellite, in mission mode.  The error in attitude of the 

satellite in mission mode is expected be less than 0.1 degrees in mission mode.  The 

satellite is assumed to have a mass of 500kg after launch and positioning.  This is also 

called beginning of life (BOL) mass. To understand what mission mode really is, the 

following explanation will be helpful. 

             

The control of a GEO satellite after separation from the launch vehicle can be 

divided into three modes.  They are the following: 

• De-spin mode – De-spinning the satellite after ejection from the launch vehicle 

so that the satellite can acquire references like the Sun, Earth or some other 

reference like a star. 

• Acquisition mode – Acquiring the Sun (Sun acquisition) in order to deploy the 

solar panels. Earth acquisition so that the communication antenna can be 

deployed and also to provide the satellite with a reference about its orientation 

in space. 

• Mission mode – Once the above mentioned steps have been performed the 

satellite is ready to be commissioned and be operational.  The satellite stays in 

this mode so that uninterrupted communication is maintained during the entire 

mission period.  
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      Figure 2.1  Satellite stages from launch vehicle separation to normal mission 

mode (From Maral and Basquet, 1986, p 310) 

 
Figure 2.1 shows us the different modes of the satellite from ejection from the 

launch vehicle to the final operational phase.  After the apogee motor is fired, the 

satellite enters geosynchronous orbit.  The satellite will be tumbling at some rate and 

the satellite must be de-spun.  The control mode used during this stage is called the 

de-spin mode.  Next the acquisitions of the Sun and Earth are initiated and the solar 

panels are deployed.  The satellite now has the ability to power itself.  Also, the 

batteries get charged in order to deliver power during eclipse.  The satellite is now 

oriented so as to give coverage over the intended geographical area.  These processes 

constitute the acquisition mode.  Minor orbit corrections are performed if necessary.  

Once these corrections are done the satellite is ready to perform normal operations.  

The satellite is now able to perform its mission and its mode of operation from this 

point onwards is called mission mode. 
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2.2 Attitude Coordinates 

The attitude or orientation of the satellite is defined with respect to certain 

coordinates. Any object or body in flight needs to have a frame of reference so that 

one can uniquely define its attitude in a 3-dimensional coordinate system.  For a body 

in space an additional frame of reference is required in order to define the orbit in 

space. 

The main reference coordinates are namely, the inertial coordinates, the orbit 

coordinates and the body coordinates. 

 

2.2.1 Inertial coordinates 

The inertial coordinates used here are also called Geocentric Inertial 

Coordinates. It has its IX -axis pointing towards the vernal equinox, the IZ -axis 

pointing towards the Earth’s geometric North Pole and the IY -axis completing the 

orthogonal set. 

 
Figure 2.2  Inertial coordinates (Geocentric Inertial coordinates) 

 

In Figure 2.2 we can see the vernal equinox is the point where the ecliptic 

(plane of the Earth’s orbit around the Sun) crosses the equator from south to north.  
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2.2.2 Orbit coordinates 

The orbit coordinates has its origin at the spacecraft’s centre and maintains its 

position relative to the Earth as the spacecraft moves in orbit.  The OZ -axis is in the 

nadir direction, the OY -axis is in the orbit anti-normal direction and the OX -axis 

completes the orthogonal set.  The OX -axis will be in the orbit velocity direction for a 

circular orbit (which is true for a GEO). 

 
Figure 2.3  Orbit coordinates 

                       

 The orbit coordinates helps in defining the orbit of the satellite with respect to 

Earth. It acts as a connecting link between the inertial coordinates and the body 

coordinates.  The relation between the inertial coordinates and the orbit coordinates is 

shown in Figure 2.4.  The pos
uuuv

 and vel
uuuv

 vectors are the position and velocity vectors 

of the satellite. In a case where a vector in the inertial coordinates has to be 

transformed to the orbit coordinates, a transformation matrix is used.  This matrix is 

based on the position and velocity vectors.  The transformation matrix is calculated in 

Section A.1 (Appendix A). 
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Figure 2.4   Inertial and Orbit coordinates 

 
Note:  Actually the origin of  the orbit coordinates A will coincide with  point A' .  
The above illustration is to avoid overlap of the OX  axis and OZ  axis with the vel

uuuv
 

and pos
uuuv

 vectors respectively. 
 

2.2.3 Body coordinates 

The body coordinates are also called spacecraft fixed coordinates.  This frame 

is used to define the orientation of the satellite body with respect to the reference 

frame.  The mentioned coordinates has its origin at the centre of mass (CoM) of the 

satellite and is fixed with respect to the satellite, as the name suggests.  The BZ -axis is 

along the boresight of the communication antenna.  The BY -axis is parallel to the solar 

panels and BX -axis completes an orthogonal set. Figure 2.5 shows the body 

coordinates. 

The relation between the orbit coordinates and the body coordinates is shown 

in Figure 2.6.  The satellite in the nominal position will have its body frame aligned 

with the orbit frame.  Figure 2.6 shows an offset of the satellite from the nominal 

position.  A vector in the orbit coordinates is transformed to the body coordinates 

using the DCM.  The DCM is an orthonormal matrix.  Similarly a vector in the body 

coordinates can be transformed to the orbit coordinates using an inverse DCM.  
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Figure 2.5  Body coordinates (normal position) 

 

 

 
Figure 2.6  Orbit and Body coordinates 
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2.3 Attitude Definitions 
The attitude of the satellite can be defined by Euler angles.  An Euler angle 

rotation is defined as successive angular rotations about the three orthonormal frame 

axes.  These angles are obtained from an ordered series of right hand rotations from 

the orbit coordinates ( O O OX Y Z ) to the body coordinates ( B B BX Y Z ). 

An Euler 2-1-3 sequence of rotations is used in this thesis. The first 

manoeuvre is a rotation along the Pitch axis (defined byθ ), followed by a Roll 

rotation (defined byφ ) and finally a Yaw rotation (defined byψ ).  Figure 2.7 shows 

the rotation sequence. 

 
Figure 2.7  Euler 2-1-3 rotation 

 

The attitude transformation matrix from the orbit coordinates to the body coordinates 

is given as, 

 213[ ] = [ ] =
c c s s s s c c s s s c
s c c s s c c s s c s c

c s s c c
θφψ

ψ θ ψ φ θ ψ φ ψ θ ψ φ θ
ψ θ ψ φ θ ψ φ ψ θ ψ φ θ

φ θ φ φ θ

+ − +⎡ ⎤
⎢ ⎥− + +⎢ ⎥
⎢ ⎥−⎣ ⎦

A A  (2.1) 

 

The Euler angle representation is the most easily understood attitude 

representation, because of its clear physical interpretation in angles. The drawback 

though is that it suffers from singularities.  The problem of singularity in the above 

mentioned Euler representation is discussed in Appendix B.  Another representation 

of attitude is using the Euler axis vector and the rotation angle of the Euler axis.  This 

representation also encounters problems because of the presence of trigonometric 

functions which is also discussed in Appendix B.  In order to overcome all these 
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issues we fortunately have a representation which makes use of the Euler symmetric 

parameters or quaternions. The main drawback of this representation is that it lacks 

physical interpretation.  The quaternions are represented as, 

                                                       

1

2

3

4

sin
2

sin
2

sin
2

cos
2

x

y

z

q e

q e

q e

q

Φ
=

Φ
=

Φ
=

Φ
=

 (2.2) 

      
where, 

               , ,x y ze e e  = components of unit Euler axis vector in orbit coordinates 

                        Φ  = rotation angle around Euler axis 

We can see that the quaternion elements will satisfy the constraint of, 

                                                  2 2 2 2
1 2 3 4 1q q q q+ + + =  (2.3) 

     
The attitude transformation matrix in Equation (2.1) can be rewritten in terms of the 

quaternions as;          

 

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 1 2 3 4

2( ) 2( )

[ ( )] 2( )      2( )

2( ) 2( )

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤− − + + −
⎢ ⎥

= − − + − + +⎢ ⎥
⎢ ⎥+ − − − + +⎣ ⎦

A q  (2.4) 

If the transformation matrix is in terms of the Euler angles then the quaternion 

elements can be calculated from a comparison of Equation (2.1) and Equation (2.4) as 

shown; 

 

0.5
4 11 22 33

1 23 32 2 31 13 3 12 21
4 4 4

0.5[1 ] ,

0.25 0.25 0.25[ ], [ ], [ ]

q a a a

q a a q a a q a a
q q q

= + + +

= − = − = −

 (2.5) 

 The quaternion element 4q is called the pivot.  Cases where 4q  is a very small 

number, numerical inaccuracies occur while calculating the remaining elements. 

Other possible combinations of calculating the quaternion elements are discussed in 

Appendix B. 
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It is also essential to extract the Euler angles from the transformation matrix to 

enable physical interpretation of the attitude. The Euler angles can be calculated from 

Equation (2.4) with the aid of Equation (2.1). 

 

 32 31 33 12 22(Roll) asin( ), (Pitch) atan2( ), (Yaw) atan2( )a a a a aφ θ ψ= − = =  (2.6)  

 

Note:  The above representation is valid only for Euler 2-1-3 rotation and ‘atan2’ is a 

four quadrant function. 

 
2.4 Equations of Motion  

The equations of motion of a satellite is categorised into the dynamic and the 

kinematic equations of motion. 

 

2.4.1 Euler Dynamic Equations of Motion 

The dynamic equations of motion of a spacecraft find its origin from the 

Coriolis theorem. The equations give the relation between the internal torques and 

external torques acting on the spacecraft. 

     Coriolis theorem gives us the relation between the acceleration of a vector C, in an 

inertial coordinate system (I) and a frame (R) rotating with an angular velocity ω  as, 

 
I R

d d
dt dt

ω⎛ ⎞ ⎛ ⎞= + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

C C C  (2.7) 

 

The differential equations which describe the motion of a spacecraft are given as, 

 I I I
B M T D B B− × −I w wI ω = T + T + T ω (Iω + h ) h&&  (2.8) 

A comparison of Equation (2.7) and Equation (2.8) shows that the vector in 

consideration is I
BI wC = (I ω + h ) , which is the total internal angular momentum of the 

spacecraft.   

 
The terms involved in Equation (2.8) are as follows; 

 
xx xy xz

yx yy yz

zx zy zz

I I I

I I I

I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

II =    = moment of inertia tensor in body coordinates 
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ix

I
B iy

iz

ω
ω

ω

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎣ ⎦

ω   = body angular rate vector in inertial coordinates 

      
wx

wy

wz

h
h

h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

wh =  =  angular momentum of reaction wheels in body coordinates 

 MT   =  magnetic torque vector in body coordinates 

 TT    =  thruster torque vector in body coordinates  

 DT   =  external disturbance torques in body coordinates 

where, 

 = + +D aero gg solarT T T T  

and, 

 aeroT   =  aerodynamic disturbance torque 

 ggT   =  gravity gradient disturbance torque 

 solarT   =  solar radiation disturbance torque 

 

2.4.2 Quaternion Kinematics 

The kinematics equations describe the motion of a spacecraft irrespective of 

the forces which cause the motion. It is described by the relation between quaternions 

and their rates using the orbit referenced angular rates. The differential equation 

describing the kinematics is given as, (source of equation is discussed in Appendix B) 

 1
2

=q Ωq&  (2.9) 

where, 

 

0

0

0

0

oz oy ox

oz ox oy

oy ox oz

ox oy oz

ω ω ω

ω ω ω

ω ω ω

ω ω ω

−⎡ ⎤
⎢ ⎥
−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

=Ω  (2.10) 

and, 

                                         
ox

O
B oy

oz

ω
ω

ω

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎣ ⎦

ω  = body angular rate vector in orbit coordinates 
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The body angular rate vector in orbit coordinates are related to the angular rate vector 

in inertial coordinates by, 

 
0

( )
0

O I
B B o tω

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

ω ω A %  (2.11) 

where, 
 ( ) {1 2 cos( )}o o o ot e t Mω ω ω≈ + +% for small values of orbit eccentricity e (2.12) 

and, 

                 ( )o tω% = true orbit angular rate 
                 oω      = orbit mean motion 
                 oM     = orbit mean anomaly at epoch 
 
 
2.5  Task overview 

The AODCS requires a combination of different actuators and sensors. The 

block diagram of the entire system is shown below. As seen, the estimated parameters 

are used in the control algorithms and care must be taken to minimise the effects of 

sensor noise in the control torques. All disturbance torque models are discussed in 

Chapter 3 along with various reference vectors for the sensors. The different sensor 

models are discussed in Chapter 4.  

 
Figure 2.8  System Block Diagram 
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Different control algorithms have been evaluated and the performance of each 

algorithm has been evaluated in Chapter 5 and Chapter 7.  Most control algorithms 

are feedback algorithms. The attitude and angular rates are fed-back to the controllers.  

It so happens that the attitude has to be estimated from sensor data.  Angular rate 

measurements are available from fibre optic gyroscopes (FOG), but these are used 

very sparingly as they need to last the entire mission period.  So, when FOGs are not 

used, the angular rates need to be estimated.  Estimation techniques are discussed in 

Chapter 6.  An analysis of the satellite dimension and the tools used in the study will 

be discussed in the following sub-sections. 

 

2.5.1 Satellite model 

The model of the satellite used in the study is shown in Figure 2.9.  

Dimensions of the satellite in all three axes are also shown. The main body 

dimensions are, 1 x 1.5 x 1.2 metre.  The solar panels have dimensions of, 2 x 1 meter 

and the antenna a radius of 0.4 metre.  The dimensions of the satellite are vital in 

modelling the solar radiation torque accurately.  Solar radiation torque is calculated in 

Section 3.6.1.  The mass of the satellite and the appendage orientation, determines the 

moment of inertias along each axis, which is one factor influencing the size of the 

actuators.        

 

2.5.2 Fictional Hardware 

Though no physical hardware is used in this thesis because of it being a 

simulation study, all sensors and actuators that might be used for the AODCS have 

been modelled in software. Sensors that have been modelled include a magnetometer, 

fine Sun sensor (FSS), Earth sensor (ES) and FOGs. 

Reference vectors are modelled to provide a reference for the spacecraft. 

Reference models include an IGRF model (reference for magnetometer 

measurements), Sun vector model and Nadir vector model (reference for Sun and 

Earth sensor measurements).  These reference models are discussed in Chapter 3.  The 

vectors measured by the sensors are related to the respective reference vectors by the 

DCM.  
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Figure 2.9  Dimensions and Orientation of Satellite in Orbit 

 

2.3.3 Software 

The tools used for the simulation purposes are Matlab® and Simulink®. All 

associated software (models and control algorithm) was written in ANSI C and 

compiled in Matlab® using the ‘mex’ command which is a tool used to compile low 

and medium level languages in Matlab®. 
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Chapter 3 

 

Simulation Models 
Models are an integral part of any type of simulation study.  In this study we 

require models of the satellite’s orbit, Earth’s magnetic field, model of the Sun and 

Earth.  Also the disturbance torques acting on the satellite has to be modelled.  An 

analysis of the different models used, will be performed in this chapter. 

 

3.1 SDP4 Orbit Propagator 

The SDP4 orbit propagator is an orbit propagator used to propagate the orbit 

of deep space objects.  Any object with an orbital period of more than 225 minutes is 

categorised as a deep space object. The propagator uses a TLE (two line element) set 

generated by NORAD as its input.  The interpretation of the TLE can be found in 

Appendix D. 

The propagator gets initial values of the satellite’s inclination, eccentricity, 

mean motion, mean anomaly, epoch of orbit (time instant at which TLE was 

generated), drag term, etc. from the TLE.  The input variable to the propagator is the 

time since epoch.  The most important outputs include the altitude, latitude, longitude, 

geodetic latitude and true anomaly of the satellite.  

The propagator takes into account the gravitational effects of the Sun and the 

Moon on the orbit of the satellite.  It also considers the sectoral and tesseral harmonics 

of the Earth which determines the longitudinal drift on a body due to the oblateness of 

the Earth.  The orbit of the satellite can be propagated for any amount of time. 

The TLE used in the simulation study is of the satellite named Astra 1B.  Astra 

1B was launched on 2nd March, 1991 from Kourou, French Guiana.  The satellite has 

a nominal position of 19.5°East.  The graph (Figure 3.1) on the following page shows 

the longitude and latitude of Astra 1B over a 30 day period.  A slight drift in the 

longitude of the satellite can be observed.  This is the reason why station-keeping 

manoeuvres are required.  These techniques are discussed in Chapter 7. 
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Figure 3.1  Latitude and Longitude of Astra 1B 

 

3.2 IGRF model 
The IGRF model is a series of mathematical models of the Earth’s magnetic 

field and its yearly secular variation, which is updated every 5 years by the IAGA.  

The latest available model is a 13th order model which provides accuracies up to 

0.1nTesla. The model used in this study is a 10th order IGRF model which has an 

accuracy of 1nTesla. The coefficients have been updated for the year 2005. The 

mathematical modelling is discussed in Appendix C.   

The inputs for the IGRF model are obtained from the SDP4 propagator.  The 

generated vector of the IGRF model is transformed from the inertial coordinates to the 

orbit coordinates.  The transformation matrix from the inertial to the orbit frame is 

discussed in Appendix A.  The magnetic field in the orbit coordinates is related to the 

body coordinates through the DCM.  The measurements of the magnetometer will be 

in body coordinates if the magnetometer is aligned along the body axis.  If not, the 

magnetometer measurements have to be transformed from the sensor coordinates back 

to body coordinates. 
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3.3 Sun model 
A model of the Sun’s orbit is used to determine the altitude and position of the 

Sun. The distance of the Sun is measured in the Geocentric inertial coordinates.  This 

distance vector is then converted to the position in terms of a sub-Sun latitude and 

longitude point on the Earth’s surface.  The altitude of the Sun is also calculated.  The 

latitude used here is the geodetic latitude which takes into account the flattening of the 

Earth at the poles (Wertz, 1978).  The idea behind using a model of the Sun, is to have 

a position vector of the Sun with respect to the satellite as a reference to the FSS and 

also for modelling the solar radiation torque. 

The calculation of the Sun position vector with respect to the satellite is 

summarised below, 

 

1)  Sun vector from satellite in inertial coordinates =  Sun vector from Earth in inertial          

    coordinates – Satellite vector from Earth in inertial coordinates 

 = −I I I
SAT EARTH EARTHS S Sat  

 

2)  Normalise I
SATS  to obtain the unit vector 

 =
I

I SAT
VEC I

SAT

S
S

S
 

 

3)  Transform I
VECS  unit vector from inertial to orbit coordinates 

 =O I
VEC VECS [T]S  

 The transformation matrix [T] is derived in Appendix A. 
 

3.4 Eclipse model 
Modelling the eclipse is very essential in the simulation analysis of a 

spacecraft. The eclipse duration for a GEO satellite can vary from approximately 70 

minutes during the equinoxes, to no eclipse during periods greater than 21 days before 

and after the equinoxes.  A graphical representation (Figure 3.2) is shown next: 
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Figure 3.2  Declination of Sun over an entire year 

     (From Maral and Bossquet, 1986, p 178) 

 

The figure above shows the angle of declination of the Sun with respect to the 

equator. The declination becomes 23.5 degrees (angle between ecliptic and equatorial 

plane) during the solstices.  As expected the declination becomes zero during the 

equinoxes.  The duration of the eclipse is the maximum at the equinoxes and 

gradually decreases or increases, after or before the equinox, respectively.  Eclipse is 

absent between declination angles of 23.5 degrees and 8.7 degrees (angular radius of 

the Earth). 

Occurrence of the eclipse in an orbit depends on the angular distance between 

the Sun and the satellite.  Figure 3.3 shows that eclipse occurs when the angular 

distance between the Sun and the satellite (α ) is greater than ( 90 β° + ),  

where, 

E Oacos( R R )β =   

ER  = Equatorial radius of the Earth 

OR  = Radius of Satellite Orbit from the centre of Earth 
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Figure 3.3  Eclipse Geometry 

 

α can be calculated from the Sub-satellite and Sub-Sun points as shown: 

α = acos[ cos(LAT) cos(SLAT) cos(LON-SLON)  +  sin(LON) sin(SLON)] 

LAT, LON = Latitude and longitude of satellite on Earth’s surface 

SLAT, SLON = Latitude and longitude of Sun on Earth’s surface 

 

3.5 Nadir vector 
The nadir vector is a reference vector which provides the position of the Earth. 

It constantly points towards the centre of the Earth from the orbit of the satellite. 

Intuitively from Figure 2.4, one can see that the nadir vector should be in the opposite 

direction as compared to the position unit vector. The negative unit position vector is 

then transformed to the orbit coordinates using the transformation matrix.  

The nadir (nadia) vector calculation can be summarised as follows, 

1) Obtain Nadir unit vector in inertial coordinates. 

 pos= −I
VECE

uuuv
 

 

2) Transform Nadir unit vector from inertial to orbit coordinates 

=O I
VEC VECE [T]E  

  The transformation matrix [T] is the same as in Section 3.3. 
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3.6 Disturbance torques 

The main causes of disturbance torques on any Earth orbiting satellite (near or 

far) are the following: 

1) Aerodynamic Drag 

2) Gravity-gradient  

3) Solar radiation 

 

                       We will now calculate each disturbance torque and see which one is 

significant enough to a level where it requires modelling. 

 

3.6.1 Aerodynamic drag torque 

The aerodynamic drag depends on the altitude of the orbit (which influences 

the velocity of the satellite), spacecraft geometry and location of centre of mass. A 

simplified scalar approximation is given as, 

                                               ( )aero psF c cmT = −  (3.1)  

where, 

                         

20.5[ ]
( 0)

d

d

PA

F C A V
atmospheric density

C drag coefficient
A projected area
V spacecraft velocity

c centreof aerodynamic pressure
cm centreof mass

ρ
ρ
=
= ≈
=
=
=
=
=

     

The aerodynamic drag can be completely ignored because of the fact that there 

is no atmosphere above 800km.  Since atmospheric density becomes zero, aeroT is 

chosen to be zero as well. 

 

3.6.2 Gravity-gradient torque (GG) 

The factors influencing the GG torque are spacecraft inertias and orbit altitude. 

The GG torque tends to keep the satellite nadir pointing, if there happens to be a 

misalignment in Roll or Pitch and can be positively used for low accuracy attitude 

stabilisation. 
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Newton’s law and experience tells us that the influence of gravity is less at  

geostationary altitude as compared to low Earth altitudes. And also the misalignment 

in Roll and Pitch should be minimal because the satellite has to be nadir pointing 

always so as to provide continuous coverage. It would still be analytically helpful to 

have some calculated value for GG torque at geostationary altitude. A simplified 

expression for GG torque is as given below,      

                            3

3 (2 )
2gg XX ZZT I I sin

R
μ θ= −  (3.2) 

where, 

                            

14 3 2(3.986x10 )

( , )XX

ZZ

Earth's gravity constant m s
R Radius of orbit

I Moment of inertia along X axis or Y axis if larger
I Moment of inertia along Z axis

Deviation from Z axis

μ

θ

=
=
=
=
=

                      

 

From the above expression we can calculate the GG torque. Moment of inertia 

values are calculated in Appendix E. Maximum deviation from Z axis is assumed to 

be 0.1 degrees. With these values, the GG torque is calculated to be approximately 
-95.355x10 Nm.  For a more precise and accurate calculation refer Steyn (1995) or 

Wertz (1978). 

 

3.6.3 Solar Radiation torque 

The solar radiation torque is dependent on the type of surface being projected, 

the area of the projected surface and the distance between the centre of mass and 

centre of solar pressure. Solar radiation torque is completely independent of the 

altitude of the orbit.  A simplified expression is, 

                    ( )solar PST F c cm= −  (3.3) 

where, 

  (1 ) cosS
S

F
F A q i

c
= +                                                                                                              

  

2

8

(1367 )

(3x10 / )

( 0.6 0 1)

S

S

F Solar constant W m

c Speed of light m s
A Projected Surface Area
q Reflectance factor say usually between and

=

=
=
= −
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  PS

i Angleof incidenceof Sun
c centreof solar pressure
cm centreof mass

=
=
=

 

  

The term ( )solar PST F c cm= −  in true sense is a vector product of the form 

T =r xF .  For the time being we do the scalar calculation to analyse the magnitude 

and not the direction. 

The solar panel areas are not considered because the two panels will cancel 

each other out because of opposite vector distances. Therefore projected area 

calculations need to take into account only the main satellite body and the antenna.  

The maximum projected area for solar torque calculations would be [(1.5m x 1.2m) + 

(0.8m x 0.4m)].  The centre of mass will be offset towards the +Z body axis due to the 

presence of the communications antenna.  If the distance between the centre of solar 

pressure and centre of mass is assumed to be 0.4m and the angle of incidence of the 

Sun to be 0 degrees (worst case scenario) then,  

                            F = 51.5462x10−  N  

and 

                        66.1824x10solarT −=  Nm 

 

Thus from the calculated values of individual disturbance torques one can 

conclude that the solar radiation torque is the most significant disturbance torque.  

The GG torque is lesser than the solar torque by an order of three.  Taking this into 

consideration the GG torque was also ignored.  A more accurate and complex model 

was used to analyse the solar radiation in the simulations.     
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Chapter 4 

 

Actuators & Sensors 
The actuators and sensors are an integral part of any control system. 

Placement of sensors is also significant so as to optimise the sensing capability. 

 

4.1  Actuators 
Actuators are devices used to deliver the control motions (linear or rotational) 

to the spacecraft according to the measurements from the sensors.  The actuators used 

in the study will be reaction (momentum) wheels, magnetic torque rods and reaction 

thrusters. Other possible actuators that can be used on GEO satellites are CMGs 

(Control Moment Gyros) and solar flaps.  The CMG is generally used on spacecrafts 

that are huge and heavy (generally >1000kg) and is complex.  Since the mass of the 

spacecraft in consideration is 500kg the CMG is avoided as the other actuators are 

capable of providing the required amount of actuation. Solar flaps are external 

appendages which make use of the solar pressure to perform slow manoeuvres and to 

damp nutation.  It is generally not used on small GEO satellites. 

 

4.1.1 Reaction (Momentum) Wheels 

Reaction (momentum) wheels are momentum exchange devices that are used 

to transfer momentum to the satellite to control its attitude to some commanded 

reference value.  The reaction wheel is a flywheel, which is controlled by an electric 

motor.  Physically the reaction wheel and the momentum wheel is the same.  When 

the reaction wheel is operated at some momentum bias it is called a momentum 

wheel.  From here on, the flywheel will be called a reaction wheel and not a 

momentum wheel except for cases where a momentum bias is required, for which the 

latter convention will be used. 

The reaction wheel has its own advantages and disadvantages. It is faster 

compared to the torque rods but slower compared to thrusters. A major advantage of 

the reaction wheel is that it is a linear actuating device unlike thrusters. The 

significant disadvantage of a reaction wheel is that it suffers mechanical wear-out 
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when operated continuously over years. Another disadvantage is that it can generate 

only torques and not forces. 

 

4.1.2  Magnetic Torque Rods 

Magnetic torque rods are actuators which generate a torque using the magnetic 

field of the Earth and the magnetic moment.  The torque rods consist of a magnetic 

core and a coil. A magnetic moment is produced when the coil is energised by passing 

current through it.  The direction of the torque can be controlled by changing the 

direction of the current through the coil.  Magnetic torque rods do not suffer 

mechanical wear-out because of the absence of moving parts, thereby lasting 

throughout the entire mission.  Also it doesn’t require any fuel which reduces the 

mass though the rods have their own mass.  The torque generated is highly dependent 

on the magnitude of the magnetic field. 

 
Figure 4.1  Earth’s Magnetic field  

 

As shown in Figure 4.1 the magnetic North-South axis is inclined to the 

geographic North-South axis by approximately 11° .  The magnetic field experienced 

by the satellite depends on the altitude and orientation of the satellite orbit.  For a 
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GEO satellite the magnetic field will always be constant since the satellite is fixed 

with respect to a point on the Earth.  Also the torque producing capability along the 

Y-axis is limited because the magnetic field is mainly along the same axis.  Placing a 

torque rod along the Y-axis will provide no improvement in performance but just an 

additional weight burden.  Therefore magnetic torque rods are placed only along the 

X and Z body axis and not along the Y-axis. 

A GEO satellite will experience a magnetic field of approximately 100 nTesla.  

So, if  torque rods with a magnetic dipole moment of 275Am are used then a torque of 
37.5 10−× Nm can be generated.  The main disadvantages of the torque rods are that 

the torques generated are completely dependent on the Earth’s field direction and they 

are slow actuation devices. 

 

4.1.3  Reaction Thrusters 

Reaction thrusters are used for various attitude control and orbit control 

operations. Attitude control is performed using low power thrusters (LPTs) where as 

orbit control uses high power thrusters (HPTs).  The attitude control operations using 

thrusters will be discussed in Chapter 5 and orbit control operations in Chapter 7.  

Propulsion systems can be classified according to the propellant used as shown below. 

 
Figure 4.2  Propulsion system classifications 

 

As the classification suggests, the chemical propulsion system offers more 

options and variations. Complexity and efficiency of the propulsion systems increases 
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from left to right in Figure 4.2.  Chemical propulsion offers a very good trade off in 

terms of complexity and efficiency.  

Solid propulsion is mainly used for stages from lift-off to the placement of the 

satellite in the orbit whereas liquid propulsion is used for in-orbit operations.  The 

propulsion system used in the analysis of thruster dependent operations will be the 

monopropellant propulsion system.  It offers a slightly better advantage over the 

bipropellant system in terms of the efficiency to mass ratio of the overall propulsion 

system. Also monopropellant systems would be a better choice for small GEO 

satellites.  As the name suggests the monopropellant system uses a single propellant 

and the most popular fuel is hydrazine ( 2 4N H ) which is also called rocket fuel.  

Hydrazine can be extremely hazardous if not handled properly.  Other fuel options 

include hydrogen peroxide ( 2 2H O ). 

Thruster arrangement is highly important in all types of mission in order to 

optimise the performance of the sub-system. 

 
Figure 4.3  Thruster arrangement for a GEO Satellite placed 19.5°  East 

 

Thruster arrangement is highly dependent on the type and mission of the orbit. 

Figure 4.3 shows a single thruster system. Thrusters are arranged such that they can 

provide control torques (both positive and negative) along each body axis. All 

satellites will have an additional system to provide redundancy in case of failure. Each 

thruster has its own application with some of them performing multiple applications. 
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Table 4.1  Thruster application 

Thruster  Manoeuvre 

HPT North-South Station-keeping  

LPT (5 and 6) / (3 and 4) East-West Station-keeping 

LPT 2 or LPT 1 Positive Roll or Negative Roll 

LPT 5 or LPT 6 Positive Pitch or Negative Pitch 

LPT 4 or LPT 3  Positive Yaw or Negative Yaw 

 

It is important to note that there exists no specific thruster arrangement 

configuration and the arrangement varies from mission to mission. Placement of East-

West and North-South station-keeping thrusters requires more explanation and can be 

found in Chapter 7.    

 

4.2 Sensors 

Sensors that are used in ADCS include a magnetometer, FSS, ES and FOGs.  

All sensors are modelled such that they are mounted along the body axis except for 

the FSS.  The sensor measurements are obtained by transforming the respective 

reference vectors using the estimated DCM. All physical sensors in reality need to be 

calibrated.  This is avoided in this case because this is a simulation study.  Sensor 

noise is modelled as a random noise signal and then correlated with individual peak 

sensor noise values.   

 

4.2.1  Magnetometer 

The IGRF model (Appendix C) output in orbit coordinates is transformed to 

body coordinates using the estimated DCM from the EKF.  The peak magnetometer 

noise value is assumed to be 1 nTesla.  The magnetometer measurements are used in 

the EKF and also in the magnetic controllers for the magnetic torque rods.  Figure 4.4 

shows the magnetic field experienced by the satellite under normal attitude 

conditions. As expected the highest magnetic field component is along the Y body 

axis. Also the magnitude of the total field is approximately 101nTesla. This data can 

be verified by any geomagnetic website (mentioned in bibliography). 
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Figure 4.4  Modelled magnetometer output 

 

4.2.2  Earth Sensor 

The Earth Sensor (ES) model used is a simplified model of MiDES-G Earth 

sensor (Appendix F).  MiDES-G provides horizon position information along the Roll 

and Pitch axis.  The sensor placement is such that the optical head (boresight) of the 

sensor points towards the centre of Earth. In other words, it is aligned along the 

satellite Z+  body axis.  The sensor has a circular field of view (FOV) of 33.6° .  The 

optical assembly of MIDES-G makes use of a multi pixel detector array in each of the 

two (Roll and Pitch) hybrid detector assemblies.  Each detector has a high resolution 

area as well as a low resolution area thereby making it hybrid.                  

  The high resolution area of each detector is modelled to be 26.4°  (Figure 4.5).  

The rest of the detector being 7.2° , is the low resolution part at either end of the 

detector.  The low resolution pixels were modelled to have noise levels three times 

larger than the high resolution pixel area.  So, if the Earth disk were to move about the 

X or the Y axis by more than 4.5°  then the output of the sensor will have 

measurements with larger noise levels. Any change in attitude (along the Roll and 

Pitch axis) will be directly translated into sensor output which is displayed directly in 

angles. If the satellite makes a motion of 8.1°  in Roll or Pitch then the boundary of 

the Earth disk goes out of the ES’s FOV. 
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Figure 4.5  Nominal position of Earth Disk on Orthogonal Detectors 

 

      The disadvantage of the ES is that it provides no Yaw data which means 

that any rotation of the spacecraft along the Yaw ( Z+ ) axis will not be sensed by the 

ES. The ES output for step inputs (Roll = 2°  and Pitch  = 3° ) is shown in Figure 4.6  
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Figure 4.6  Earth sensor output 
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4.2.3  Fine Sun Sensor 

The model of the fine Sun sensor (FSS) is based on the DSS2 (Appendix F).  

The main feature of the FSS is that it has a very wide rectangular FOV of +/-60 

degrees.  The FSS has to be optimally placed in order to view the Sun in the best 

possible manner.  The FSS needs a frame of its own (sensor frame) with respect to the 

satellite. This is because of the fact that if the sensor was to be placed in the body 

frame the boresight of the sensor would be oriented towards Earth (nadir vector).  

With a Pitch or Roll rotation of 180° the FSS boresight can be oriented in the opposite 

direction which helps in negating the influence of eclipse on the sensor.  It is 

important to note that eclipse will still occur on the satellite but just that the FSS 

would not experience it because the Earth will no longer come in between the FSS 

and the Sun. 

Figure 4.7 shows the geometrical representation of the above mentioned 

arrangements. It can be intuitively seen that Case b) is a better arrangement as 

compared to Case a).     

 
Figure 4.7  Single body mounted FSS arrangements 

 

The other possible arrangement would be to mount the FSS on to the solar 

panels so that the Sun is always in the FOV of the sensor. The solar panels rotate a 
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rate of 360° /day in order to keep the angle between Sun and the panels to be 90° .  

This helps in achieving complete coverage of the Sun over an entire orbit period. 

Another possibility is to use three FSSs, placed back to back to provide 

complete orbit coverage of 360° .  This arrangement also provides redundancy.  The 

disadvantage of using three FSSs, is that it makes the overall AODCS hardware very 

expensive. This arrangement is not widely used.  The output of the FSS is in terms of 

the azimuth and elevation angle of the Sun, with respect to the satellite. 

Figure 4.8 shows the output of the FSS in terms of the azimuth and the 

elevation angle when a single sensor is used while Figure 4.9 gives the FSS angles 

when three sensors are placed back to back as mentioned in the previous paragraph.  

The reason for the zero readings (between 0.8 and 0.9 orbit) in Figure 4.9 is due to 

eclipse.  The elevation angle is close to zero in both figures because the TLE used had 

an epoch close to the equinox. 
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Figure 4.8  Single FSS output 
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Figure 4.9  Output of three FSSs when placed back to back 

 

4.2.4  Fibre Optic Gyro 

FOGs are used to measure the inertial angular velocity of the spacecraft along 

each axis.  In a FOG, light is fed simultaneously into both ends of a long fibre optic 

coil. 

 
Figure 4.10  FOG internal diagram 
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When the coil rotates around the centre point, the counter-rotating beams 

travel slightly different distances before they reach the detector and their phases differ 

in direct proportion to the input rotation rate.  This resulting interference which is 

measured as a variation in power output, gives the input angular rate.  The longer the 

coil inside the FOG the better the resolution will be.  This is the reason why FOGs 

tend to be very expensive. 

Therefore FOGs are used very sparingly.  FOGs are used mainly while 

performing Station-keeping manoeuvres.  When FOGs are switched off, the angular 

rates are estimated (Section 6.1) and used in the feedback controllers.  The FOGs had 

to be modelled for simulation and was done as follows: 

 1
I I
fog B= + +ω ω b η  (4.1) 

where,      

          I
fogω  = FOG angular rate vector in inertial coordinates 

          I
Bω    = body angular rate vector in inertial coordinates 

          b      = FOG bias vector  

          1η     = FOG measurement noise vector 

The FOG bias vector (b) degrades the angular rate measurements and has to be 

estimated.  This estimation technique is discussed in Section 6.2.  
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Chapter 5 

 

Attitude Control  
Before discussing control algorithms it is important to determine the actuating 

capability of the main attitude actuators which are the reaction wheels.  This process 

is also called sizing of wheels.  The reaction wheels were considered to have a 

maximum torque capability of 0.2 Nm (Newton metre).  The maximum wheel speed 

is 6000rpm which provides a wheel angular momentum of 4 Nms (Newton metre 

second).  The torque levels depend on the capability of the DC motor and also on the 

size of the wheel rotor.  The torque equation is given as, 

 w w w wh T I ω= =    & &  (5.1) 

where, 

              wI  = Inertia of the wheel 

             wω&  = Angular acceleration of the wheel 

Equation (5.1) tells us that an increase in wheel size ( wI ) helps us to increase the 

torque capability, but it is important to note that a larger DC motor will be required to 

drive a bigger wheel.  Therefore increasing the size of the wheel is not the solution to 

obtain a larger torque, as it would require larger driving requirements.  The wheels 

work on the principle of conservation of angular momentum which means that any 

angular momentum present on the wheel is transferred to the satellite but with an 

opposite polarity.  This can be represented as, 

    = −w sath h  (5.2) 

 ∴ = −w CT T  (5.3) 

Comparing Equation (5.1) and (5.3) we get, 

    = −w Ch T&  (5.4) 

 

 This principle can be used in momentum biased control which will be 

discussed in Section 5.3.  Momentum bias control also makes use of magnetic control 

for the remaining axes.  It is also essential to design magnetic controllers to perform 

momentum dumping to prevent angular momentum saturation on the wheels.  
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5.1 Three axis Reaction Wheel Controllers 
 In a three axis reaction wheel controller each axis is controlled independently 

using a reaction wheel.  The controllers use attitude and angular rates as inputs.  First, 

a wheel controller using Euler angles as attitude is discussed.  But this can give us 

discontinuity problems thereby giving us reason to use quaternions as an attitude 

vector for the wheel controllers.  

 

5.1.1 Euler angle Reaction wheel control                    

The reaction wheel controllers were designed to provide a 5% settling time 

( st ) of 150 seconds and to provide a peak overshoot ( PM ) of less than 5%.  In other 

words, a damping factor (ζ ) of 0.707 for the above mentioned settling time 

specifications.  This leads to closed loop poles of, 

                              CLs = σ ± j dω−  (5.5) 

where, 

               3 σst =  with, σ = nζω  &  21-d nω ω ζ=                                                        

                                                      ∴ CLs = −0.02 ±  j0.02 (5.6) 

Control torque delivered by the reaction wheels along each axis can be described as 

follows, 

 

/ ( ) ( )

/ ( ) ( )
/ ( ) ( )

CX XX P e D

CY YY P e D

CZ ZZ P e D

T I K K

T I K K
T I K K

φ φ

θ θ
ψ ψ

= +

= +
= +

&

&

&

 (5.7) 

where eφ , eθ , eψ  are the errors between the measured angles and the commanded 

angles along each axis. φ& , θ& , ψ&  are the angular rates along the respective axis. XXI , 

YYI , ZZI  is calculated in Equation (E.9). 

 

The X-axis control torque can be represented in the s-plane as, 

 ( ) / ( ) ( ) ( )[ ]CX XX P D P DT s I K s K s s s K K sφ φ φ= + = +  (5.8) 

 

This can be rewritten as, 

( ) / ( ) P
CX XX D

D

K
T s I s K s

K
φ

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
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The above equation can be solved using the RL (Root Locus) method. P DK K− is the 

pole location in the controller and was chosen to be -0.02. DK  is obtained from the 

RL to satisfy the condition in Equation (5.6).  The same method applies to the Y and 

Z axes as well.  The value of DK  from the RL was determined to be 0.04 and PK  thus 

becomes 0.0008.  The obtained gains are then substituted into Equation (5.8). 

 

5.1.2 Quaternion Reaction wheel control 

 The quaternion feedback controller compensates for the drawbacks of the 

Euler angle controller in terms of avoiding discontinuities.  The attitude is represented 

in terms of quaternions which is called the current quaternion.  The commanded 

attitude is converted from RPY angles to quaternions. Equations (2.1) and (2.4) are 

used to obtain the commanded quaternion. Equation (2.4) is used only when 4q is the 

largest.  If not, the quaternion calculations could lead to numerical inaccuracies.  The 

alternative calculations can be found in Appendix B.  Now that both the commanded 

and measured attitudes are in terms of quaternions, the error quaternion can be 

calculated.  The error quaternion is calculated as, 

  

1 4 3 2 1 1

2 3 4 1 2 2

33 2 1 4 3

44 1 2 3 4

e c c c c

e c c c c

e c c c c

e c c c c

q q q q q q
q q q q q q

qq q q q q
qq q q q q

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5.9) 

where, 

eq = Θ cq q = error quaternion 

cq = commanded quaternion 

 q = measured quaternion                   

The error quaternion is based on quaternion division rather than normal subtraction. 

Quaternion division is discussed in Appendix B.  Equation (5.8) needs to be modified 

and can be re-written in general for all three axes as (Wie, 1998), 

 [ ]O
B− +C P vec DT = I K q K ω  (5.10) 

where,                  

[ ]T
CX CY CZT T T=CT       , control torques along each axis 

diag[ ]T
XX YY ZZI I II =   , principle axis moment of inertia of the satellite           
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1 2 3[ ]T
e e eq q qvecq =        , vector part of error quaternion 

1 2 3diag[ ]Tk k kPK =     , angular control gains along each axis 

1 2 3diag[ ]Td d dDK =   , angular rate control gains along each axis 

 

It would be easier to analyse the control over a single axis and then generalise 

in order to have a clearer understanding.  Consider a small roll rotation of Φ degrees 

along the X-axis.  The closed loop dynamics along the X-axis becomes, 

 I
XX BX X DXI h Tω + =&&  (5.11) 

 

This equation is obtained from Equation (2.8) by ignoring the gyroscopic effects 

which will be negligible for small rotations. Equation (5.11) can be rewritten as,  

 1 1 sin
2XX XX XX DXI d I k I Tφφ φ ⎛ ⎞+ + =⎜ ⎟

⎝ ⎠
&& &  (5.12) 

where, 

ox ixφ ω ω= ≈&  and [ ]1 1 1wx CX XX e oxh T I k q d ω= − = +&  

DXT = External disturbance torque along X-axis 

and, 

sin 0 0
2
φ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

vecq  

The Laplace transform of Equation (5.12) for small errors in roll angle (φ ) is, 

 2
1 1[ ( / 2)] ( ) /DX XXs d s k s T Iφ+ + =  (5.13) 

 

Equation (5.13) is similar to a damped second order system where, 1 2ζ nd ω= and 

2
1 2 nk ω= .  The control gains can be now calculated for the specifications mentioned 

in Section 5.1.1.  The same analysis applies for the Y and Z axis as well.  The control 

gains are calculated as:  diag[0.0016 0.0016 0.0016]T=PK  

                                 diag[0.04 0.04 0.04]T=DK  

It is important to note that even though the control gains are the same for all 

three axes, the control torques are also dependent on the moment of inertia along each 

axis. In other words the control torques for a similar step input along all three axes 

will be scaled due to the presence of the inertia term ‘I’ in Equation (5.10). 
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Table 5.1  Settling time versus Actuating capability versus Control gains 

Maximum step input possible (degrees) Settling Time

(seconds) X-axis    Y-axis Z-axis 

 

PK  

 

DK  

120 25 90 30 0.025 0.05 

150 40 180 45 0.0016 0.04 

180 60 180 65 0.00111 0.033 

 

Table 5.1 shows that as the settling time is made larger the control gains decrease 

which provides a larger actuating capability for a reaction wheel with a maximum 

torque level of 0.2 Nm.  The settling time of 150 seconds provides a good trade off 

between the speed of the control system and the attainable step inputs.  Large 

manoeuvres are not necessary for a GEO satellite as it has to be constantly Earth 

pointing.  In spite of this, it is always essential to provide enough room for actuation 

during the early acquisition stages and for station change, though the latter is very 

rarely performed.  

  

5.2 Momentum Dumping 

Momentum dumping or momentum unloading is an integral part of all satellite 

control systems.  Momentum build up is the increase or decrease in angular velocity 

of the wheel due to external disturbance torques.  The main disturbance torque as 

discussed in Section 3.6 is the solar radiation torque.  A profile of the radiation torque 

which takes into account the position of the Sun and the satellite dimensions in Figure 

2.9 is shown in Figure 5.1.  All torque components that are cyclic but non-symmetric 

will have a bias component which causes the momentum to build up on the wheels.  

Momentum can be dumped using magnetic torque rods or reaction thrusters. 

Using magnetic rods is the more popular option, because they do not consume any 

propellant and can be smooth (linear) actuators.  But, if the dumping needs to be 

achieved in a minimal amount of time, then thrusters are preferred.  Also if the 

magnetic field is not strong enough, thrusters might be preferred. 
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Figure 5.1  Solar Radiation Torque profile (for Nadir pointing satellite) 

 

The initial control equation for momentum dumping (unloading) according to Sidi 

(1997) can be defined as, 

 ( )k k= − Δ = − −M w wNT h h h  (5.14) 

where, 

 MT  =  Control torque delivered by magnetic rods 

 k   =  dumping control gain 

 wh   =  wheel momentum vector 

 wNh  =  nominal (desired) wheel momentum vector 

 

The torque generated by the magnetic rods can be defined in general as (Section 

4.1.2), 

 =MT M × B  (5.15) 

where, M = magnetic moment vector of the magnetic rods 

 B = geomagnetic field vector in body coordinates (Equation C.14)  

 

Equating the above two equations we get, 

 k− Δ =h M × B  (5.16) 
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Equation (5.16) can be rewritten as, 

 
0

0
0

X X Z Y X

Y Y Z X Y

Z Z Y X Z

k h B B M
k h B B M
k h B B M

Δ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.17)  

 

The aim is to determine M, which cannot be done from Equation (5.17) because the 

matrix in the equation is singular.  In order to solve this problem we use the vector 

product of B on both sides of Equation (5.16). 

  
( )

2

k
B

× − Δ =

−

B h B × (M × B)
M B(M.B)=

 (5.18) 

 

When the applied magnetic moment M is perpendicular to the Earth’s magnetic field 

B, the term M.B in Equation (5.18) becomes zero.  With this assumption M becomes, 

  2 ( )k
B

− ×ΔM B h=  (5.19) 

 

Equation (5.19) can now be substituted in Equation (5.15) to obtain the magnetic 

torque delivered by the magnetic rods which is, 

 2 [ ( )]2k B
B

= − Δ − ΔMT h B B h.  (5.20) 

 

The next step is to determine the dumping (unloading gain) ‘k’.  The control torque 

MT  in general is time varying because the Earth’s magnetic field varies with time.  

But for a GEO satellite the magnetic field is almost constant as discussed in Section 

4.2.1.  In spite of the almost constant B field the torque is not constant because of the 

varying excessive momentum Δh , which is dependent on the solar radiation 

disturbance torque.  This leads to a trial and error approach to determine k.  

Ideally the easiest way to start is to choose k as zero which effectively means 

that momentum dumping is disabled.  Momentum build-up on the wheels was 

observed for 10 orbit periods in the presence of the solar disturbance torque in Figure 

5.1.  The wheel momentum profile is shown in Figure 5.2.  It can be seen that 

momentum builds up on the X and Z wheels where as the Y wheel momentum does 

not.  This is because of the near symmetric nature of the disturbance torque 

component in the Y-axis.  This simulation helps in deciding how often momentum 
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dumping needs to be done.  Even though the momentum saturation level of the wheels 

was assumed to be 4 Nms, allowing the wheel momentum to build up beyond a 

certain level (say 1 Nms) would require large magnetic torques to dump the 

momentum.  This can be achieved by increasing the size of the torque rods which is 

not always the solution, as it would lead to larger power consumption and weight. 
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Figure 5.2  Momentum profile on wheels when momentum is allowed to build up 

                        

Therefore the rods need to be sized taking into consideration the above 

mentioned factors.  The momentum can be allowed to build up to 0.4 Nms which by 

observing the above graph might be reached around 15 to 16 orbit periods.  The 

momentum on the X and Z wheels were initialised with a momentum vector of 0.4 

Nms.  Different values (saturation levels-150 2Am , 100 2Am , 75 2Am , 50 2Am ) of 

magnetic rods were used in simulation.  The saturation level of the rods was chosen so 

as to achieve an optimal trade-off between the weight of the rods, maximum 

producible torque and performance time (dumping time of excessive momentum).  A 

comparison of the physical characteristics of different magnetic rods can be found in 

Sidi (1997, p.400).  A 75 2Am  magnetic rod which weighs around 2.0 kg can provide 

a maximum magnetic torque of 7.5μNm .  This is seen as a good trade off between the 

different requirements.  Magnetic rods are placed along the X and Z-axis and not 
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along the Y-axis for reasons mentioned in Section 4.1.2. The dumping time of the 

controller is determined by the value k. 

Different simulations were performed for different values of k.  The criterion 

of choice is dependent on the settling time of the wheel momentum and the magnetic 

moment profile of the magnetic rods.  All simulations were performed with initial 

wheel momentum values of h = [0.4, -0.1, 0.4] Nms.  These values were chosen under 

the assumption that momentum dumping is done once in every 15 to 16 days.  Three 

sets of values were chosen for k: 

1) k = [25, 0, 25]  
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Figure 5.3(a)  Wheel momentum versus Magnetic moment for case 1) 

Simulations for other values of k are shown overleaf and so forth.  Comparisons of the 

three graphs and Table 5.2 show that the system in case 2) performs optimally.  

 

Table 5.2 Comparison of Momentum Dumping Controller with different values of k 

Case no: Dumping time requirement Saturation of Magnetic Rods 

1)     Largest            (2.5 orbits) Absent 

2) Less than 1)    (1.5 orbits) Present 

3) Less than 2)    (1.2 orbits) Larger than 2) 
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The table is almost self explanatory.  As expected with lower values of k in case 1) the 

momentum on the wheels get dumped very slowly but helps in avoiding saturation of 

the magnetic rods.  Increasing the gains help in making the dumping process faster, 

but at the expense of actuator saturation.   

2) k = [50, 0, 50]  
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Figure 5.3(b)  Wheel momentum versus Magnetic moment for case 2) 

 

Saturation of the rods also degrades the performance of the controller since the 

adequate torques required to dump the momentum cannot be generated if the rods 

remain saturated.  Comparison of case 2) and 3) shows a lesser rod saturation time 

without significant compromise on dumping time for case 2).  The gains were further 

fine tuned to optimise overall performance.  The final gain values are k = [56, 0, 

50] 2Am . These gain values are then substituted in Equation (5.20). 

 

It is also important to note that in spite of the absence of a magnetic rod along 

the Y-axis the momentum along this axis was reducible to acceptable levels.  This is 

possible because of the very weak coupling torque produced by the X and Z magnetic 

rods.   
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3) k = [75, 0, 75]  
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Figure 5.3(c)  Wheel momentum versus Magnetic moment for case 3) 

 

5.3 Momentum Bias Control 
A momentum biased system has a constant angular momentum which is 

provided by a momentum wheel (Section 4.1.1).  The momentum vector which is 

along the orbital plane provides the spacecraft inertial stability and this phenomenon 

is known as gyroscopic stiffness.  The gyroscopic stiffness reduces the effect of 

external disturbance torques on the X and Z axis.  This is demonstrated during the 

design of the control system.  Momentum bias alone is not sufficient to provide three 

axis stability to the system.  Some sort of active control has to be performed to keep 

the satellite within the stringent accuracy requirements.  

The advantage of a momentum biased system is that if active control is 

disrupted along either the X or Z axis or both, due to actuator failure, the satellite does 

not go into a free attitude drift.  A zero momentum system does not have this feature.  

The disadvantage of the momentum bias system is that larger control torques will be 

required to perform manoeuvres along the X and Z axis as compared to the zero 

momentum bias system. Control capability along the Y-axis is achieved by the 

momentum wheel.  There are two possible ways of performing momentum biased 

control. The normal method is to have attitude knowledge from the FSS and ES and 
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use it in the control scheme. The other method is to have no knowledge about the yaw 

axis (only ES is used) and to determine the control torque for the Z-axis using data 

from the roll axis. Both control schemes will be discussed in detail. 

The dynamic equations of motion for a momentum biased spacecraft in GEO 

orbit is as shown (derived in Section A.2.1), 

 

 
DX CX XX o wy wy

DZ CZ ZZ o wy wy

DY CY YY wy

T T I h h

T T I h h

T T I h

φ ω φ ψ

ψ ω ψ φ

θ

+ = − −

+ = − +

+ = +

&& & &

&&&

&&&

 (5.21) 

where, 

( / / )D X Y ZT   = Disturbance torques along the respective axis 

 ( / / )C X Y ZT  = Control torques along the respective axis 

        ( / / )XX YY ZZI  = Moment of inertia along respective principle axis 

      , ,φ φ φ& && = angular displacement, rate and acceleration along the X-axis 

    , ,ψ ψ ψ& &&  = angular displacement, rate and acceleration along the Z-axis 

    ,wy wyh h&  = Y-wheel momentum  

                     oω  = orbit angular rate or orbit frequency 

 

 

According to the discussion in Sidi (1997), the X and Z axis will be analysed 

together due to the coupling involved where as the Y-axis analysis is quite straight 

forward as it is being controlled by the momentum wheel.  Equation (5.21) shows the 

coupling between X and Z axis and the independent nature of the Y-axis quite clearly.  

The X and Z axis components of Equation (5.21) can be Laplace transformed and 

written in the matrix from as, 

 

  

2

2

( )( )
( ) ( )

o wy wy

XX XX DX

wy o wy DZ

ZZ ZZ

h sh
s

I I T ss
sh h s T s

s
I I

ω
φ

ω ψ

⎡ ⎤
− −⎢ ⎥

⎡ ⎤⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.22) 
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The inverse of Equation (5.22) is, 

 

2

2

( ) 1
( ) ( )

o wy wy

XX XX

wy o wy

ZZ ZZ

h sh
s

I Is
s sh hs

s
I I

ω
φ
ψ ω

⎡ ⎤
− −⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ −⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.23) 

where, 

                  
2 2 2

4 21 1( ) wy o wy
o wy

XX ZZ XX ZZ XX ZZ

h h
s s h s

I I I I I I
ω

ω
⎡ ⎤⎛ ⎞

Δ = + − + + +⎢ ⎥⎜ ⎟⎜⎢ ⎥⎠⎝⎣ ⎦
 

since ( )wy o XX ZZh I Iω>> + , 

                  
2

2 2 2( ) ( ) wy
o

XX ZX

h
s s s

I I
ω

⎛ ⎞
Δ ≈ + +⎜ ⎟⎜ ⎟

⎝ ⎠
  (5.24) 

Equation (5.24) contains two second order poles. The first one being at the orbit 

frequency and the second at the nutation frequency ( nutω ) with wy
nut

XX ZZ

h

I I
ω =  

 

5.3.1   Normal Momentum bias control  

The analysis continues from Equation (5.24). Since the two second order poles 

in the equation are undamped, the aim of the control algorithm is to damp these poles 

and to decrease the steady state errors. The control torques along the X and Z axis are, 

 

 
( )
( )

CX PX DX

CZ PZ DZ

T k k
T k k

φ φ
ψ ψ

= − +

= − +

&

&
 (5.25) 

 

Equation (5.25) is then substituted into Equation (5.21) giving us 

 
( )

( )
DX XX o wy wy PX DX

CZ ZZ o wy wy PZ DZ

T I h h k k

T I h h k k

φ ω φ ψ φ φ

ψ ω ψ φ ψ ψ

= − − + +

= − + + +

&& &&

&&& &
 (5.26) 

 

Performing Laplace transforms on the above equation gives, 

 

2

2

( ) 1 ( )
( )

( ) ( )1 ( )

wyDX
PX DX o wy

XX XX XX

DZ wy
PZ DZ o wy

ZZ ZZ ZZ

shT s
s k sk h

I I I s
T s sh s

s k k s hI I I

ω
φ
ψ

ω

⎡ ⎤⎡ ⎤ + + − −⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦+ + −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.27) 
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The inverse of the above Equation (5.27) being, 

2

2

( )1 ( )
( ) 1
( ) ( )( ) 1 ( )

wy DX
PZ DZ o wy

ZZ XX XX

wy DZ
PX DX o wy

ZZZZ XX

sh T s
s k k s h

I I Is
s sh T ss

s k sk h II I

ω
φ
ψ

ω

⎡ ⎤ ⎡ ⎤+ + −⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ − + + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (5.28) 

 

where, 

        

4 3

2 2

2

( ) ( )

[ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )]

XX ZZ XX ZZ DX ZZ DZ XX

DX DZ wy ZZ PX o wy XX PZ o wy

DZ PX o wy DX PZ o wy

PX PZ o wy o wy PX PZ

s I I s I I s k I k I

s k k h I k h I k h

s k k h k k h

k k h h k k

ω ω

ω ω

ω ω

Δ = + +

+ + + − + −

+ − + −

+ + −

 (5.29) 

 

It is essential that all the coefficients of the term above must be positive in order to 

ensure stable roots. This can be done by substituting wyh = h−  with, h  > 0. Thus, 

Equation (5.29) becomes, 

  

4 3

2 2

2

( ) ( )

[ ( ) ( )]
[ ( ) ( )]

[ ( ) ( )]

XX ZZ XX ZZ DX ZZ DZ XX

DX DZ ZZ PX o XX PZ o

DZ PX o DX PZ o

PX PZ o o PX PZ

s I I s I I s k I k I

s k k h I k h I k h
s k k h k k h

k k h h k k

ω ω
ω ω

ω ω

Δ = + +

+ + + + + +

+ + + +

+ + +

 (5.30) 

 

The proportional gains PXk  and PZk  determine the final steady state errors. Therefore 

these gains can be calculated from the final value theorem. Using Equation (5.28) and 

Equation (5.30) the steady state equations (next page) are derived. The intermediate 

steps involved are derived in Section A.2.2.  

  2

( )
( ) ( )

PZ o DX
SS

PX PZ o o PX PZ

k h T
k k h h k k

ω
φ

ω ω
+

=
+ +

 (5.31) 

 2

( )
( ) ( )

PX o DZ
SS

PX PZ o o PX PZ

k h T
k k h h k k

ω
ψ

ω ω
+

=
+ +

 (5.32) 

Equations (5.31) and (5.32) are multiplied by terms o( +ω )PXk h  and o( ω )PZk h+  

respectively which leads us to the final steady state equations, 

  and
( ) ( )

DX DZ
SS SS

PX o PZ o

T T
k h k h

φ ψ
ω ω

= =
+ +

 (5.33) 
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Equation (5.33) can be rearranged to obtain the proportional gain values. 

 andDX o SS DZ o SS
PX PZ

SS SS

T h T h
k k

ω φ ω ψ
φ ψ
− −

= =  (5.34) 

 

The remaining task is to determine the differential gains which are done by assuming 

that the determinant in Equation (5.30) is made up of two second order terms with 

damped poles.  The determinant can also be written as, 

  2 2 2 2
1 1 1 2 2 2( ) ( 2 )( 2 )n n n ns s s s sζ ω ω ζ ω ωΔ = + + + +  (5.35) 

 

The coefficients of the polynomials in Equations (5.30) and (5.35) are equated to 

determine the unknowns which are DXk , DZk , 1nω  and 2nω .  Once  DXk  and DZk  are 

determined it is possible to substitute these gains along with the gains in Equation 

(5.34) back into Equation (5.26).  

 

For the practical simulation, values of DXT and DZT  were chosen from Figure 

5.1. The peak disturbance torque values are 1 Nmμ  for both DXT and DZT . The steady 

state error requirements ( SSφ and SSψ ) were chosen to be 0.05° . It is important to 

convert the steady state error to radians before substitution into Equation (5.34). The 

value of ‘ h ’ was chosen to be 2 Nms. Thus both PXk  and PZk  are calculated as 

0.0010.  

Both damping coefficients were chosen to be 0.707. These were then 

substituted in Equation (5.35). Now the coefficients in Equations (5.30) and (5.35) 

can be equated to determine the unknowns. The unknowns are calculated to be, 

DXk  = 3.14728, DZk  = 0.334291, 1nω = 0.00067 rad/sec and 2nω =0.00559 rad/sec 

 

The last two terms show the location of the closed loop poles. The calculated gain 

values are them substituted in Equation (5.25). The control torque for the Y-axis is 

calculated as shown in Section 5.1.2 and control gains for Y-axis are exactly the same 

as calculated in the second row of Table 5.1.  

The actuators used for supplying the control torques along the X and Z-axis 

are normally magnetic torque rods or thrusters.  However magnetic rods are used in 

this case.  
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Equation (5.15) can be also written as, 

 
0

0
0

MX Z Y X

MY Z X Y

MZ Y X Z

T B B M
T B B M
T B B M

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.36) 

 

MT  is replaced by CT . The term YM  is replaced by wyh& (wheel torque along Y-axis), 

since we use only two magnetic rods (long the X and Z-axis) as mentioned in Section 

5.2.  The modified matrix is of the form, 

  
0 0

1
0 0

XCX Y

CY Z X wy

YCZ Z

MT B
T B B h

BT M

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

&  (5.37) 

 

The inverse of Equation (5.37) is, 

 2
2

0 0
1

0 0

X Y CX

wy X Y Y Y Z CY
Y

Y CZZ

M B T
h B B B B B T

B
B TM

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦⎣ ⎦

&  (5.38) 

 

Now XM  and ZM  can be substituted into Equation (5.36) thus generating magnetic 

torques that are applied to the satellite. YM  in Equation (5.36) is zero since there is no 

magnetic torque rod along the Y-axis. wyh&  is the torque applied to the satellite by the 

Y-wheel. The system is now three axis stabilised. 

                 

Note: It is very important that the proportional gains ( PXk  and PZk ) should be 

multiplied by a factor of two when quaternions are used to represent attitude, in the 

control algorithm. This relation can be observed in the controllers in Section 5.1 as 

well.  Also the wheel momentum wyh = −2 Nms, is used in simulation since wyh = h− . 

Figure 5.4 shows the attitude, the control torques, magnetic torques and wheel 

torque delivered to the satellite.  The X and Z-axis steady state errors are less than 

0.05° , which was the design requirement.  The control torques can be observed to be 

exactly opposite in polarity to the disturbance torque in Figure 5.1. 
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Figure 5.4  Momentum bias control  

 

The magnetic torques track the control torques reasonably well in spite of the weak 

magnetic field.  The Y-axis magnetic torque is due to the coupling between the X and 

Z-axis magnetic rods.  The wheel torque delivered to the Y-axis by the momentum 

wheel is equal in magnitude but opposite in sign to the control torque.  This satisfies 

the condition in Equation (5.3). 

 

5.3.2   Momentum bias control without Yaw data 

This control algorithm is widely used because of the lesser amount of ADCS 

hardware involved (Sidi, 1997).  Since only the roll and pitch angles are measured, 

the ES is the only sensor being used. The drawback of this algorithm is the reduced 

accuracy along the yaw axis.  This does not affect communication performance, as the 
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boresight of the antenna is along the yaw axis.  The disadvantage might be reduced 

power system efficiency as the Sun rays are no more normal to the solar panels.  As 

long as accuracies are maintained within the prescribed limits along the other two 

axes, communication can be performed without any interruption.  The control torque 

equations along the X and Z-axis can be written as, 

 
( )CX PX DX

CZ CX

T k k
T aT

φ φ= − +

= −

&
 (5.39) 

 

The control torque along the X-axis is similar as in the Section 5.3.1 where as 

the Z-axis torque is proportional to the X-axis torque.  This is because in a momentum 

biased satellite, the roll and yaw errors interchange every quarter of an orbit.  In other 

words, the roll error changes to a yaw error every quarter orbit. Therefore by 

controlling the roll error, the yaw error also gets controlled accordingly.  Equation 

(5.39) can be substituted into Equation (5.21) giving, 

 
( )DX XX o wy wy PX DX

DZ ZZ o wy wy PX DX

T I h h k k

T I h h ak ak

φ ω φ ψ φ φ

ψ ω ψ φ ψ ψ

= − − + +

= − + − −

&& &&

&&& &
 (5.40) 

 

As in the previous section, the Laplace transform is performed; 

 

2

2

( ) 1 ( )
( )

( ) ( ) ( )

wyDX
PX DX o wy

XX XX XX

DZ wy PX DX o wy
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I I I

ω
φ

ω ψ

⎡ ⎤⎡ ⎤ + + − −⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ − − ⎣ ⎦−⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.41) 

 

The inverse of the Equation (5.41) is calculated as, 
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⎢ ⎥ ⎣ ⎦⎣ ⎦

 (5.42) 

where, 
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 (5.43) 
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For stability reasons it is essential to have all the coefficients of the determinant to be 

positive.  This is done by choosing wyh = h−  with, h  > 0. Therefore Equation (5.43) 

becomes, 

   

4 3

2 2

2

( )

[ ( ) ]
[  )]

[( ) )]

XX ZZ XX ZZ DX ZZ

o XX ZZ ZZ PX DX

PX o DX

o o PX

s I I s I I s k I

s h I I I k h ahk
s ahk hk

h hk

ω
ω

ω ω

Δ = +

+ + + + +

+ +

+ +

 (5.44) 

 

The proportional gain PXk  is calculated from Equation (5.34) as mentioned in section 

5.3.1.  Equations (5.44) and (5.35) are equated to determine the differential gain DXk  

and ‘a’ along with the natural frequencies 1nω  and 2nω . 

For simulation, DXT  is chosen as 1 Nmμ  from Figure 5.1, SSφ  is chosen to be 

0.05°  and ‘ h ’ as 2 Nms.  Thus PXk   is calculated as 0.0010. Both damping 

coefficients are chosen to be 0.707.  By equating Equations (5.44) and (5.35) the 

unknowns are calculated as,  

  DXk  = 2.47072, a = 0.308551, 1nω = 0.000257 rad/sec and 2nω =0.00529 rad/sec 

 

The control gains ( PXk  and DXk ) along with ‘a’ is substituted into Equation (5.39). 

Once this is done the actuator (magnetic rod) torques are generated in a similar 

manner as mentioned from Equations (5.36) to (5.38). 

 

Note: PXk  is multiplied by two when attitude is expressed in terms of quaternions and 

the wheel momentum wyh = −2 Nms is used in simulation since wyh = h− . 

     

The various control and actuator torques along with the attitude is shown in 

Figure 5.5.  The interesting observation is that the torques (control and magnetic) 

along the X-axis is larger than a normal momentum biased system, while the torques 

along the Z-axis is lesser than the normal case. This is because the X-axis control loop 

puts in extra effort to stabilise the entire system. 
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Figure 5.5  Momentum bias control (without yaw data) 

 

As expected the steady state error along the Z-axis is greater.  The error though is less 

than 0.5° .  This can be verified by using the expression, 

  DZ DX
SS

o

T aT
h

ψ
ω
−

≈  (5.45) 

 

Thus, it can be concluded that this algorithm is be used when lower accuracy levels 

are acceptable without degrading communication performance significantly and with 

the advantage of reduced ADCS hardware.  
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5.4  Reaction Thruster Control 
Active three axis control using reaction thrusters is done very rarely as it is a 

very propellant hungry control algorithm.  Since thrusters happen to be non-linear 

actuating devices they are operated in a limit-cycle mode which means that the 

satellite is allowed to drift to one end of its accuracy limit at which point a thruster 

gets fired.  The satellite is then allowed to drift to the other end of its accuracy limit 

where an equal but opposite thruster is fired.  In other words thrusters provide bang-

bang type of control.  The satellite tends to go through marginal vibrational 

disturbances which could be harmful for the deployed solar panels.  Hence this 

method is employed only in the case of emergencies where other actuators might have 

failed or when large control torques are required. 

 
Figure 5.6  LPT displacement from centre of mass 

 

Only LPTs are used in this control algorithm since fine attitude control 

requires torques of very small magnitude.  The LPTs are placed such that they provide 

reaction torques and not forces to the associated body axis.  The LPTs used to control 

the respective body axis is discussed in Table 4.1.  The arrangement of the LPTs with 
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respect to the centre of mass of the satellite is shown in Figure 5.6.  LPTs are also 

used for orbit control operations which are discussed in Chapter 7. 

 

Note: The thruster arrangement in Figure 4.3 depicts the facet on which each thruster 

is mounted while Figure 5.6 emphasises on the displacement of the LPTs from the 

centre of mass of the satellite.  The HPT is not shown because it is not used in fine 

attitude control and is not deliberately displaced from the centre of mass. 

 

The pulsing technique used is a PWPF (Pulse Width Pulse Frequency) method 

which is implemented in Sidi 1997.  However the analysis is repeated and explained 

for the convenience of the reader.  Pulsing of thrusters is done by a Schmidt trigger 

which has a dead-zone incorporated in it.  The idea behind using a dead-zone is to 

avoid unnecessary pulsing of the thrusters due to sensor noise.  Also a time constant 

network is used prior to the hysteresis block to control the thruster firing frequency.  

The most important task in this analysis is to relate the error in attitude to the on and 

off pulse periods.  Figure 5.7 shows the PWPF block diagram.  A torque is generated 

only when the Schmitt trigger is activated.  Once the trigger is activated a positive or 

negative pulse is generated thereby producing a torque.  For periods when the trigger 

is not pulsed the satellite will drift as if it was in an open loop.   
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Figure 5.7  Thruster pulsing using PWPF 

 

The proportional and differential gains used are those calculated in Section 

5.1.2.  The time behaviour of the output (V) of the time-constant network can be 

written in terms of its input (Er−T) as, 
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 ( - )V V K Er Tτ + =&  (5.46) 

 

Performing Laplace transform for a constant step command we get, 

 (0) ( - )(s)= +
1+ s s(1+ s)
V K Er TV τ
τ τ

 (5.47) 

 

The time domain solution of Equation (5.47) is, 

 - -(t)= (0)e + ( - )[1 e ]t tV V K Er Tτ τ−  (5.48) 

 

Levels at which the trigger switches on and off are ONV  and OFFV  respectively and the 

on and off pulse periods are denoted as ONt and OFFt .  The output of the Schmitt 

trigger when active is F = 1 Newton. When the trigger is activated, V(0) = ONV   which 

decreases asymptotically to K(Er-T).  The decrease is stopped when V(t) = OFFV .  

Hence Equation (5.48) can be re-written as, 

  e + ( - )[1 e ]ON ONt t
OFF ONV V K Er Tτ τ− −= −  (5.49) 

 

Equation (5.49) can be rearranged as, 

  e 1ONt OFF ON OFF

ON ON

V KEr KT V V
V KEr KT V KEr KT

τ− − + −
= = −

− + − +
 (5.50) 

 

For a small value of ONt , e 1 ( )ONt
ONtτ τ− ≈ − , which gives the approximation, 

 ON OFF
ON

ON

V V
t

V KEr KT
τ

−
≈

− +
 (5.51) 

 

A similar analysis is preformed to calculate the trigger off period.  Initially when the 

trigger is off  V(0) = OFFV  and  starts to progress to K(Er-T).  Since the trigger is off,    

T = 0 which gives (K(Er-T) = KEr).  The trigger is then switched on at V(t) = ONV .  

Substitution of these terms into Equation (5.48) gives, 

 [1 ]OFF OFFt t
ON OFFV V e KEr eτ τ− −= + −  (5.52) 
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Equation (5.52) can be rearranged as, 

 e 1OFFt ON ON OFF

OFF OFF

V KEr V V
V KEr KEr V

τ− − −
= = −

− −
 (5.53) 

 

For a small value of OFFt , 1 ( )OFFt
OFFe tτ τ− ≈ − , which gives the approximation, 

 ON OFF
OFF

OFF

V V
t

KEr V
τ

−
≈

−
 (5.54) 

 

The Equations (5.49), (5.51), (5.52) and (5.54) are better understood with help of the 

figure below. 

 
Figure 5.8  Thruster pulsing diagram 

 

The value of T = 0.1 Nm because the torque arm L = 10 cm.  These values are 

in accordance to Figure 5.6. ONV  and OFFV  were chosen to be 0.009 and 0.001 Nm 

respectively.  The reason for choosing very small values is to keep the thruster pulses 

as short as possible in order to save propellant.  The only time varying parameter in 

Equations (5.51) and (5.54) is the term Er which is the error in attitude.  The time 

constant network parameters are chosen through fine tuning.  Since the torque output 

is a very small value (0.1 Nm) in this case, a large value of  K  is required or else the 
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trigger will not switch on which will cause the error to grow to a large value.  The 

time constant τ  also plays a part in the frequency of thruster firings.  Care must be 

taken to prevent sensor noise amplification while choosing  K.  Analysis of Equations 

(5.51) and (5.54) shows that the pulse periods will be longer when  Er is large and this 

happens as soon as the reference input is applied.  Also the frequency of pulse firings 

will be higher.  As the error decreases and the attitude reaches the reference value the 

pulse periods become constant and the pulse frequency also decreases.   

This phenomenon can be clearly seen in Figure 5.9.  When the error between 

the measured attitude and reference attitude is large the thrusters are fired frequently 

but once the reference attitude is reached the pulses are a lot less frequent.  After the 

satellite has reached the reference value the presence of external disturbances will 

cause drift.  The thrusters are fired again to correct this drift.  
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Figure 5.9  Thruster attitude control for X-axis (reference of 1°  ) 

 

When the satellite is maintained in its nominal position the only factor that 

affects the attitude will be the external disturbances.  The thruster gets fired once the 

trigger is activated.  Figure 5.10 shows thruster control at nominal attitude.  It can be 

seen that the thrusters firing frequency is very low thereby minimising the propellant 
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consumption.  The exact control algorithm is applied to the Y and Z-axis with their 

respective proportional and derivative control gains. 

It is very important to have a sampling period which is shorter than the on 

pulse period or else the minimum on pulse period will be equal to the sampling period 

 

0 200 400 600 800 1000 1200 1400 1600
-0.06

-0.04

-0.02

0

0.02

time(seconds)

A
tt
itu

de
(D

eg
re

es
)

X-axis attitude

0 200 400 600 800 1000 1200 1400 1600
-0.1

-0.05

0

0.05

0.1

time(seconds)

T
or

qu
e(

N
m

)

Thruster pulses

 
Figure 5.10  Thruster attitude control for X-axis (nominal attitude) 

 

5.5  Summary 
The choice of control algorithms depends on the accuracy and speed required.  

Also the accuracy and speed is determined by the type of actuator combination used 

in the control technique.  The three axis quaternion based reaction wheel controller is 

the most preferred and commonly used controller because of the linearity and 

accuracy it provides.  Magnetic controllers perform the very important task of 

momentum dumping.  Three axis momentum biased controllers provide necessary 

back up in the event of reaction wheel failure which is highly possible for a GEO 

mission and the feature of gyroscopic stability adds to its merits.  Though the 

accuracy is lesser in this case it is still within the necessary limits required for the 

mission.  Finally three axis thruster attitude control in spite of the non-linearity 

involved finds preference when large control torques and fast control is required.  
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Chapter 6 

 

Attitude Determination 

Attitude determination (estimation) is used to convert raw sensor data to a 

form that can be used in the control algorithms.  Attitude determination is also used to 

estimate parameters which cannot be measured directly from the sensors.  The two 

estimation techniques that are discussed in this chapter are, 

• Full state (attitude plus angular rate) EKF 

• FOG bias plus attitude EKF 

It so happens that sensors might be used sparingly in order to prolong the 

sensor life during which the associated sensor data will have to be estimated.  The fact 

that the feedback control algorithms use the estimated or determined parameters 

signifies the importance of estimation techniques.  

 

6.1  Full state EKF 
The full state EKF uses sensor measurements from the magnetometer and the 

FSS/ES.  It is not possible to perform full state estimation using the magnetometer 

alone because the magnetic field is almost constant for a GEO satellite.  Attitude 

estimation with reduced accuracy ( 1± ° ) is possible on LEO satellites because of a 

constantly changing magnetic field which provides three axis information.   

Full state estimation can be done over an entire orbit by using a magnetometer 

along with an ES.  This is not possible while using a magnetometer and a FSS as there 

are no FSS measurements during eclipse.  Another possible option would be to use 

the magnetometer/FSS combination during the non-eclipse period and to switch over 

to the magnetometer/ES combination during eclipse.  If a single FSS is being used on 

board, the FSS can be used only while the Sun is in the FOV of the sensor. Thus it can 

be said that the magnetometer/ES combination is the most ideal sensor combination 

for full state estimation.  A similar EKF is discussed in Steyn (1995) which includes 

an estimate of a constant aerodynamic disturbance torque.  The torque is neglected in 

this case for reasons discussed in Section 3.6.1. 
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The state vector (7 elements) to be estimated includes the inertial angular rates 

and the attitude in terms of the quaternions.  The full state vector can be represented 

as, 

 
I
B⎡ ⎤

⎢ ⎥
⎣ ⎦

ω
x =

q
 (6.1) 

 

System Model: 

The reason for using an EKF is because of the non-linearity in the satellite 

dynamics and kinematics.  Non-linearity in the dynamics and kinematics can be seen 

in Equations (2.8) and (2.9) respectively.  The time-varying non-linear state vector is 

represented as, 

 t t t tx( ) = f{x( ), } + s( )&  (6.2) 

where, 

 t N ts( ) = {0,Q( )}  (6.3) 

s(t) is the Gaussian system noise with zero mean and a covariance matrix Q.  The 

system noise is dependant on the characteristics of the plant. 

 

The state perturbation is the difference between the real state and the estimated state 

and is denoted as, 

 ˆt t t−δx( ) = x( ) x( )  (6.4) 

 

The first order Taylor series expansion of the non-linear function in Equation (6.2) is, 

 
ˆ

ˆt t t t t∂
≈ +

∂ x=x

ff{x( ), } f{x( ), } δx( )
x

 (6.5) 

 

where we define, 

 
ˆ

ˆ t t ∂
=
∂ x=x

fF{x( ), }
x

 

 

Differentiating Equation (6.4) we get, 

 ˆt t t−δx( ) = x( ) x( )&& &  (6.6) 

 

By substituting Equation (6.2) in Equation (6.6) it can be seen that, 
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 ˆt t t t t= −δx( ) f{x( ), } + s( ) x( )&&  (6.7) 

 

Eventually substituting Equation (6.5) in Equation (6.7) we reach the relation, 

 ˆ ˆ ˆt t t t t t t t−δx( ) = f{x( ), }  + F{x( ), }δx( ) + s( )  x( )&&  (6.8) 

where, ˆ ˆt t tx( ) = f{x( ), }& . 

 

Therefore the linearised state perturbation equation can be expressed as, 

 ˆt t t t tδx( ) = F{x( ), }δx( ) + s( )&  (6.9) 

 

The continuous state perturbation model needs to be a discretised so as to enable 

onboard implementation which uses a discrete EKF.  The linearised discrete state 

perturbation is expressed as, 

 1 ˆexpk k k kk k st t T+ = =δx δx δx[F{x( ), } ] Φ  (6.10) 

 

where, 

ˆexpk k k st t T= [F{x( ), } ]Φ  for a short sampling interval sT . 

 

kΦ can be approximated using a first order Taylor series expansion which is, 

 ˆk k k st t T≈ I + [F{x( ), } ]Φ  (6.11) 

A second (or higher) order Taylor series was avoided because it does not make any 

significant difference which improves the performance of the filter.   

 

6.1.1  Computation of State (System) matrix F 

The linearised perturbation state matrix ˆ k kt tF{x( ), }  is obtained by partially 

differentiating the dynamics (Equation (2.8)) and kinematics (Equation (2.9)) with 

respect to the state vector (Equation (6.1)). 

 

ˆ k kt tF{x( ), }  is expressed in the matrix form as,  

 ˆ

I I
B B
I
B

k k

I
B

t t

⎡ ⎤∂ ∂
⎢ ⎥∂∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥∂∂⎣ ⎦

ω ω
qω

F{x( ), } =
q q

qω

& &

& &
 (6.12) 
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The term 
I
B
I
B

∂
∂
ω
ω
&

 is obtained by partially differentiating each element of Equation 

(A.11) by the inertial body rates and is calculated as,   

 

ˆ ( )ˆ ( )
0

ˆ ˆ( ) ( )
0

ˆ ( ) ˆ ( )
0

iy YY ZZ wyiz YY ZZ wz

XX XX
I

iz ZZ XX wz ix ZZ XX wxB
I

YY YYB

iy XX YY wy ix XX YY wx

ZZ ZZ

I I hI I h
I I

I I h I I h
I I

I I h I I h
I I

ωω

ω ω

ω ω

⎡ ⎤− +− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − −∂

= ⎢ ⎥
∂ ⎢ ⎥

⎢ ⎥− − − +⎢ ⎥
⎢ ⎥⎣ ⎦

ω
ω
&

 (6.13) 

 
I
B∂

∂
ω
q
&

 is calculated by partially differentiating Equation (A.11) by each quaternion 

component.  This happens to be a [3 x 4] zero matrix because the dynamic equations 

does not contain any term that is expressed in terms of the quaternion. 

 [ ]
I
B∂
=

∂ 3×4
ω

0
q
&

 (6.14) 

 

From Equation (2.11) we can see that, 

 O I
B B= − oω ω Aω  (6.15)  

where, 

 
0

0
oω

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

oω  for a GEO satellite. 

Since, O
Boω ω  and I

Bω  during attitude manoeuvres for a GEO satellite we can make 

the assumption that O I
B B≈ω ω  for the following two equations.   

 

I
B

∂
∂

q
ω
&

 is calculated  by partially differentiating Equation (2.9) with respect to the 

inertial body rates and gets expressed as, 

 

4 3 2

3 4 1

2 1 4

1 2 3

ˆ ˆ ˆ
ˆ ˆ ˆ1
ˆ ˆ ˆ2
ˆ ˆ ˆ

I
B

q q q
q q q
q q q
q q q

−⎡ ⎤
⎢ ⎥−∂ ⎢ ⎥=
⎢ ⎥−∂
⎢ ⎥
− − −⎣ ⎦

q
ω
&

 (6.16) 
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Finally ∂
∂
q
q
&

 is obtained by partially differentiating Equation (2.9) with respect to 

individual quaternion components. 

 

ˆ ˆ ˆ0
ˆ ˆ ˆ01
ˆ ˆ ˆ02
ˆ ˆ ˆ 0

oz oy ox

oz ox oy

oy ox oz

ox oy oz

ω ω ω

ω ω ω

ω ω ω

ω ω ω

−⎡ ⎤
⎢ ⎥−∂ ⎢ ⎥
⎢ ⎥−∂ ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

q =
q
&

  (6.17) 

 

The terms (6.13) to (6.17) are substituted into Equation (6.12) and then 

discretised using Equation (6.11).  It can be seen that ˆ k kt tF{x( ), }  is a [7 x 7] matrix, 

which makes kΦ  a [7 x 7] matrix as well. 

 

Measurement Model: 

The discrete non-linear measurement model of the EKF is generally expressed 

as, 

 ( ),k k k k kt t= +y h {x } m  (6.18) 

where, 

 { , }k kN=m 0 R  (6.19) 

km is the Gaussian measurement noise with zero mean and a covariance matrix R.  

The measurement noise is dependent on the sensor characteristics. 

 

The first order Taylor series expansion for the non-linear function in Equation (6.18) 

is given as, 

 
ˆ

ˆ( ), ( ),k k k k k k kt t t t ∂
≈ +

∂ x=x

hh {x } h {x } δx
x

 (6.20) 

where we define, 

 
ˆ

ˆ( )k k
∂

=
∂ x=x

hH x
x

 

 

The innovation (error) term is difference between the real output and the estimated 

output which is expressed as, 

 ˆk k k= −e y y  (6.21) 
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By substituting Equation (6.20) into Equation (6.18) we get, 

 ˆ ˆ( ), ( )k k k k k k k kt t= + +y h {x } H x δx m  (6.22) 

 

Finally by substituting Equation (6.22) into Equation (6.21) it can be seen that, 

 ˆ ˆ ˆ( ), ( )k k k k k k k k kt t= + + −e h {x } H x δx m y  (6.23) 

where, ˆ ˆ ( ),k k k kt t=y h {x } . 

 

Therefore the linearised innovation model is, 

 ˆ( )k k k k k= +e H x δx m  (6.24) 

 

6.1.2  Computation of Output (Measurement) matrix H 

The computation of the output matrix for a model which includes a constant 

aerodynamic torque is performed in Steyn (1995) and Engelbrecht (1999).  However, 

since the torque is not included in this case the output matrix will be slightly simpler 

and different.  The innovation vector is considered as the vector difference between a 

measured normalised vector measv  in body coordinates and a modelled normalised 

vector ˆ bodyv  in body coordinates.  The ˆ bodyv  vector is obtained by transforming the 

modelled vector orbv  in orbit coordinates to body coordinates using the estimated 

DCM matrix kA(q ) . 

 

In an ideal world we would have a situation where there are no errors in measurement 

and modelling. Then, 

 , ,
ideal ideal
meas k k orb k=v A(q ) v  (6.25) 

 

But unfortunately in the real world we have errors that occur due to improper 

measurement and modelling where the transformation is done using the estimated 

quaternions.  Equation (6.25) thus becomes, 

 , , , ,ˆ ( )meas k meas k k k orb k orb k− −v m = [A(q + δq )] v m  (6.26) 

where, ,meas km  and ,orb km  are the measurement and modelling errors respectively.  

Before proceeding further it is essential to mention that the innovation can also be 

represented as,  
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 , ,ˆk meas k k orb k= −e v A(q )v  (6.27) 

 

A first order Taylor series expansion for the DCM in Equation (6.26) is, 

 
4

,
1 ,

ˆ
ˆ ˆ δ

δ
k

k k k i k
i i k

q
q=

≈ + ∑ δA(q )
A(q + δq )  A(q )  (6.28) 

 

Substituting Equation (6.28) into Equation (6.26) we get, 

 
4

, , , , ,
1 ,

ˆ
ˆ( ) δ ( )

δ
k

meas k meas k k i k orb k orb k
i i k

q
q=

⎡ ⎤
− = + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ δA(q )

v m A q v m  (6.29) 

 

By ignoring the small higher order noise terms and with the assumption that 

, ,ˆ( )k meas k k orb k≈ −m m A q m  , Equation (6.29) gets modified to  

 
4

, , , ,
1 ,

ˆ
ˆ( ) δ

δ
k

meas k k orb k i k orb k k
i i k

q
q=

⎡ ⎤
− = +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ δA(q )

v A q v v m  (6.30) 

 

By comparing Equations (6.27) and (6.30) it can be seen that, 

 
4

, ,
1 ,

ˆ
δ

δ
k

k i k orb k k
i i k

q
q=

⎡ ⎤
= +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ δA(q )

e v m  (6.31) 

     

4

,
1 ,

1 2 3 4

3x3 1 2 3 4

ˆ
δ

k
orb k k k

i i k

k k

k k

q=

⎡ ⎤
= +⎢ ⎥
⎢ ⎥⎣ ⎦

= +

= +

∑ δA(q )
v δq m

[h h h h ]δq m
[0 h h h h ]δx m

 

                                            ,ˆ( )k k k orb k k k= +e [H q v ]δx m  (6.32) 

 

Comparison of Equations (6.24) and (6.32) shows that the output matrix H to be, 

 , 3x3 1 2 3 4ˆˆ( ) ( )k k k k orb k= =H x H q v [0 h h h h ]  (6.33) 

where, 

 ,
,

ˆ
, 1, 2,3,4

δ
k

i orb k
i k

i
q

= =
δA(q )

h v  (6.34) 

 

Equation (6.34) is obtained by partially differentiating the estimated DCM by each 

quaternion component and is determined to be, 
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1, 2, 3, 2, 1, 4,

1 2, 1, 4, , 2 1, 2, 3, ,
1, 2,

3, 4, 1, 4, 3, 2,

3, 4, 1,

3 4
3,

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ2 ; ˆ ˆ ˆ2

δ δ
ˆ ˆ ˆ ˆ ˆ ˆ
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ˆ
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k k k k k k
k k

k k k orb k k k k orb k
k k

k k k k k k

k k k
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q q
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k k k

k
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q q q
q q q q q

q
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⎢ ⎥ ⎢ ⎥

− = = −⎢ ⎥ ⎢ ⎥
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v h v

 

 

EKF Algorithm: 

The EKF algorithm is discussed in Steyn (1995) as well as Engelbrecht 

(1999).  It is repeated in order to preserve continuity in literature. First and foremost 

the perturbation covariance matrix is defined as, 
T

k k kE=P {δx .δx }  

which is the expectation of the state perturbation vector multiplied by its transpose.  

 

The steps involved in the computation of the EKF algorithm are as follows: 

Between Measurements: 

1) Propagate the dynamic (Equation (2.8)) and kinematic (Equation (2.9)) equations 

of motion using numerical integration. 

 
1

1/ / /ˆ ˆ ˆ ,
k

k k k k k kk
k dt

+

+ = + ∫x x f(x )  (6.35) 

 

2) Compute the linearised perturbation state matrix, 1ˆ k+1 kt t +F{x( ), } . 

 
1 /

1
ˆ

ˆ
k k

k+1 kt t
+

+

∂
=
∂ x=x

fF{x( ), }
x

 (6.36) 

 

3) Obtain the discrete system matrix, 1/k k+Φ . 

 1/ 1/ 1ˆk k k k k st t T+ + +≈ I + [F{x( ), } ]Φ  (6.37) 

 

4) Propagate the perturbation covariance matrix, 1/k k+P . 

 1/ 1/1/ /
T

k k k kk k k k+ ++ = +P P QΦ Φ  (6.38) 
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Across Measurements: 

1) Compute the Kalman filter gain, 1k+K  using the discrete output matrix 1/k k+H  from 

Equation (6.33) 

 1
1 1/ 1/ 1/ 1/ 1/[ ]T T

k k k k k k k k k k k
−

+ + + + + += +K P H H P H R  (6.39) 

 

2) Calculate the innovation vector, 1k+e . 

 1 , 1 1/ , 1ˆk meas k k k orb k+ + + += −e v A(q )v  (6.40) 

 

3)  Update the state vector using the innovation. 

 1/ 1 1/ 1 1ˆ ˆk k k k k k+ + + + += +x x K e  (6.41) 

 

The quaternion elements of the updated state vector are normalised to preserve the 

quaternion constraint by, 

1/ 1
, 1/

1/ 1

ˆ
ˆ

ˆ
k k

norm k k
k k

+ +
+

+ +

=
q

q
q

 

 

4)  Recompute the discrete output matrix, 1/ 1k k+ +H using the updated state, 1/ 1ˆ k k+ +x . 

 
1 / 1

1/ 1
ˆ k k

k k
+ +

+ +

∂
=
∂ x=x

hH
x

 (6.42) 

 

5) Update the perturbation covariance matrix. 

 1/ 1 1 1/ 1 1/ 1 1/ 1 1 1[ ] [ ]T T
k k k k k k k k k k k k+ + + + + + + + + + += − − +P I K H P I K H K RK  (6.43) 
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6.1.3  Results 

 Figure 6.1 shows the performance of the full state EKF.  The EKF was 

disabled initially when the simulation is performed.  The filter was then enabled at 

0.25 orbit period at which point the estimates start to track the real attitude.  The result 

shows that the estimates track the actual attitude within the required accuracy levels 

(Section 2.1).  The time taken by the estimates to converge to the actual attitude is less 

than 45 minutes (0.03 orbit) which is satisfactory. 
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Figure 6.1  Actual attitude versus estimated attitude 

 

The IGRF modelling errors were extrapolated from Table 5.1 in Wertz (1978) and 

assumed to have a maximum value of 1 nTesla.  A uniform distributed noise of 1 

nTesla was added to each axis of the modelled IGRF vector to get the measurements.  

The ES measurement angles were obtained by adding uniform distributed noise of  

the range 0.025− °  to  0.025°  (RMS error of approximately 0.018° ).  The FSS 

measurement angles were added with uniform distributed noise of the range     

0.05− °  to 0.05°  (RMS error of approximately 0.035° ).  The RMS error in the 

estimated attitude and angular rates is shown in Figure 6.2.  The average RMS error 
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was calculated to be less than 0.04°  while the error in the angular rate estimates is 
42.146 10−×  deg/sec. 
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Figure 6.2  RMS error in attitude and body rates 

 

6.2  FOG bias plus attitude estimator 

 This estimator uses angular rate measurements from the FOGs.  The idea 

behind the estimator was obtained from Lefferts et.al. (1982). The sensor 

combinations used here are similar to that discussed in Section 6.1 except that FOGs 

are also used.  Since the angular rate measurements are directly obtained from the 

FOGs, the attitude estimate is expected to be more accurate.  This estimator is used 

whenever manoeuvres are performed on the satellite where estimates of the angular 

rates are not sufficient.  The state vector to be estimated is represented as, 

 ⎡ ⎤
⎢ ⎥
⎣ ⎦

q
x =

b
 (6.44) 

where, q = quaternion attitude 

 b = bias vector  
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 The quaternion vector q is calculated using quaternion multiplication between 

the perturbation quaternion and the estimated quaternion and is expressed as 

(Markley, 2004), 

 ˆ⊗q = δq q  (6.45) 

 where, 

 δq   =  perturbation quaternion 

    q̂  =  estimated quaternion 

 

The perturbation quaternion is represented as, 

 
4qδ

⎡ ⎤
⎢ ⎥
⎣ ⎦

vecδq
δq =  (6.46) 

where 4 1qδ = − vecδq . 

 

Thus the quaternion vector q according to the special quaternion multiplication 

convention (Appendix B), can be shown to be, 

 

4 3 2 1 1

3 4 1 2 2

32 1 4 34

41 2 3 4

ˆ
ˆ

ˆ
ˆ
ˆ

q q q q q
q q q q q

qq q q qq
qq q q q

δ δ δ δ
δ δ δ δ
δ δ δ δδ
δ δ δ δ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎡ ⎤ ⎢ ⎥ ⎢ ⎥⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥ ⎢ ⎥
− − − ⎣ ⎦⎣ ⎦

vecδq
q = q =  (6.47) 

 

Since the perturbation vector is a vector which contains just three unknowns (the 

fourth term is a function of the first three terms) the state perturbation vector can be 

represented as, 

 
⎡ ⎤
⎢ ⎥Δ⎣ ⎦

vecδq
δx =

b
 (6.48) 

 

The system model is similar to that discussed in Section 6.1 as it is a general model 

for any EKF.  It is important to note that the method used in Equation (6.47) often 

leads to this particular EKF being called the MEKF (Multiplicative Extended Kalman 

Filter).  This terminology can be found in Markley (2004).  
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6.2.1  Computation of State  matrix F 

 The F matrix computation is based on the discussions in Lefferts et.al. (1982) 

and Bijker (2006).  The derivation begins from the differentiation of Equation (6.45) 

which is, 

 ˆ ˆ⊗ ⊗q = δq q + δq q&& &  (6.49) 

 

The kinematics (Equation (2.10)) of the satellite can also be represented as, 

 1
2

⊗q = ω q&  (6.50) 

where, ω  has the same components as O
Bω  . 

 

Substituting Equation (6.50) into Equation (6.49) we get the relation, 

 1 1ˆ ˆ ˆ
2 2

⎡ ⎤⊗ ⊗ + ⊗ ⊗⎢ ⎥⎣ ⎦
ω q = δq q δq ω q&  (6.51)  

 

Rearranging the above equation gives, 

 1 1ˆ ˆ ˆ
2 2

⎡ ⎤⊗ = ⊗ − ⊗ ⊗⎢ ⎥⎣ ⎦
δq q ω q δq ω q&  (6.52) 

 

which is then multiplied by 1ˆ −q  to give, 

 [ ]1 ˆ
2

⊗ − ⊗δq = ω δq δq ω&  (6.53) 

 

The measurements of the FOGs are in described in Equation (4.1).  The perturbation 

in the ‘δω ’ can be represented as, 

 

o o 1

1

ˆ ˆˆ ω ( ω )
0 0 0

0

I I
B B

⎡ ⎤−⎡ ⎤ ⎡ ⎤ + + − + +
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−Δ −⎡ ⎤

≈ ⎢ ⎥
⎣ ⎦

δω ω ω (ω A b) ω A b + η

b η
 (6.54) 

where, o o
ˆω ω 0−A A  for a GEO orbit. 
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Equation (6.53) can be written as, 

 
[ ]

[ ] [ ]

1 ˆ ˆ( )
2
1 1ˆ ˆ( )
2 2

⊗ − ⊗

= ⊗ − ⊗ + ⊗

δq = ω + δω δq δq ω

ω δq δq ω δω δq

&

 (6.55) 

 

From Lefferts et.al. (1982), 

 [ ]
ˆ1 ˆ ˆ( )

02
− ×⎡ ⎤

⊗ − ⊗ = ⎢ ⎥
⎣ ⎦

ω δq
ω δq δq ω  (6.56) 

 

Substituting Equations (6.54) and (6.56) into Equation (6.55) we get, 

 1ˆ 1
0 02

⎡ ⎤−Δ −− × ⎡ ⎤⎡ ⎤
+ ⊗⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

b ηω δq
δq = δq&  (6.57) 

 

We ignore the last row of Equation (6.57) since only the vector part of the 

perturbation vector is required. The higher order terms are also ignored which leaves 

us with, 

 1
1ˆ ( )
2

= − × − Δvec vecδq ω δq b +η&  (6.58) 

 

The above equation can be represented in terms of the complete state vector as, 

ˆ ˆk k k kt t t tδx = F{x( ), }δx + G{x( ), }s&  

where,  [ ]1 2
Ts = η η  and 2η = FOG bias noise (modelled asb& ). 

 

The ˆ k kt tF{x( ), }  and ˆ k kt tG{x( ), }  matrices can now be represented as, 

3 3 3 3

3 3 3 3

1ˆ [ ]
ˆ 2

[ ] [ ]
k kt t × ×

× ×

⎡ ⎤× −⎢ ⎥
⎢ ⎥
⎣ ⎦

[ω ] I
F{x( ), } =

0 0
   and 3 3 3 3

3 3 3 3

1 [ ] [ ]
ˆ 2

[ ] [ ]
k kt t × ×

× ×

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎣ ⎦

I 0
G{x( ), } =

0 I
  

 

 Only the ˆ k kt tF{x( ), }  matrix is required to compute the discrete matrix ‘ kΦ ’ 

using Equation (6.11).  The ˆ k kt tG{x( ), }  matrix does not get used anywhere in the 

EKF propagation or update. 
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6.2.2  Computation of Output  matrix H 

 The innovation vector has been computed using a method similar to the one 

discussed in Steyn (1995) which is based on Psiaki et.al (1990).  The innovation 

matrix is calculated as the cross product between the normalised measurement vector 

measv  and the normalised body vector ˆ bodyv .  The reason for using a cross-product 

innovation is to have rapid convergence of the EKF when the initial attitude is some 

arbitrary large value.  An innovation vector which is based on the difference between 

the measurement vector and body vector is discussed in Bijker (2006), was also found 

to perform satisfactorily.  

  , , , ,ˆˆ ( )k meas k body k meas k k orb k= × = ×e v v v A q v  (6.59) 

We know that,  

 , ,( )meas k k orb k=v A q v  (6.60) 

and because ˆ ˆ( ) ( ) ( ) ( )k k k k= ⊗ =A q A δq q A δq A q  (from Equation (6.45)), Equation 

(6.60)  with the addition of measurement and modelling noise becomes, 

 , , , ,ˆ( ( )meas k meas k k k orb k orb k− −v m = A δq ) A(q ) v m  (6.61) 

 

Since , ,ˆbody k k orb k=v A(q ) v  , Equation (6.61) becomes, 

 , ,(meas k k body k k= +v A δq )v m%  (6.62) 

where, , ,ˆk meas k k orb k= −m m A(q )m% . 

 

( kA δq )  can be approximated (from Equation 2.4) for very small values of vecδq  as, 

 
3 2

3 1

2 1

1 2 2
( 2 1 2

2 2 1
k

q q
q q
q q

δ δ
δ δ
δ δ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

A δq ) =  (6.63) 

 

The innovation equation can now be written as, 

 , , ,ˆ ˆ ˆ(k k body k body k k body k= × ×e A δq )v v + m v%  (6.64) 

 

Substituting Equation (6.63) into Equation (6.62) and performing the vector 

multiplication gives, 
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2 2
, , , , , ,

2 2
, , , , , ,

2 2
, , , , , ,

,

, 3 3

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ

ˆ( )

ˆ( )

by k bz k by k bx k bz k bx k

k by k bx k bx k bz k by k bz k k k

bz k bx k by k bz k bx k by k

k body k k k

k body k k k

v v v v v v

v v v v v v

v v v v v v

×

⎡ ⎤+ − −
⎢ ⎥

= − + − +⎢ ⎥
⎢ ⎥
− − +⎢ ⎥⎣ ⎦

= +

⎡ ⎤= +⎣ ⎦

e δq m

H v δq m

H v 0 δx m

%

%

 (6.65) 

where, ,ˆk k body k= ×m m v% . 

 

EKF Algorithm: 

 The EKF algorithm for the FOG bias and attitude estimator is similar to the 

algorithm presented in Section 6.1 except for a few differences, which will be 

mentioned below. 

Between Measurements: 

1)  Only the non-linear kinematic equations are propagated because the angular rate 

measurements are directly obtained from the FOGs.  The angular rates in both body 

and inertial coordinates are obtained to perform the kinematic propagation which is 

given as, 

 , ,

, , / ,

ˆˆ

ˆ ˆ ˆ

I I
B k fog k k

O I
B k B k k k k

= −

= − o

ω ω b

ω ω [A(q )]ω
 (6.66) 

Steps 2) to 4) are similar to the EKF algorithm mentioned in Section 6.1. 

 

Across Measurements: 

1) The Kalman filter gain 1k+K  is computed in a similar manner as in the previous 

algorithm.   

 

2.  a)  Calculate the innovation vector, 1k+e . 

 1 , 1 1/ , 1ˆ( )k meas k k k orb k+ + + +×e = v A q v  (6.67) 

 

2.  b)  Obtain the perturbation update.  

 1 1 1k k k+ + +δx = [K ]e  (6.68) 

in which, 
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 1 , 1 1k q k k+ + +=vec,δq [K ]e   and  
1

1
11

k

k
k

+

+
+

⎡ ⎤
⎢ ⎥=
⎢ ⎥−⎣ ⎦

vec,

vec,

δq
δq

δq
 

 

3) Update the state vector using the innovation. 

 1/ 1 1 1/

1 , 1 1

ˆ ˆ
ˆ ˆ

k k k k k

k k b k k

+ + + +

+ + +

= ⊗

= +

q δq q

b b [K ]e
 (6.69) 

Steps 4) and 5) are similar to the EKF algorithm in Section 6.1 

 

 

6.2.3  Results 

 The attitude states will not be shown because an examination of the attitude 

RMS error is sufficient to analyse attitude state performance.  The graphs in Figure 

6.3 shows the RMS error associated with the attitude estimate and the FOG bias 

estimates.   
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Figure 6.3  RMS error in attitude and bias estimates 

 

 The sensors that were used in this simulation included the magnetometer along 

with the ES.  All noise specifications for the sensors are similar to that mentioned in 
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Section 6.1.3.  The FOGs were assumed to have a measurement noise standard 

deviation ( FOGσ ) of  41 10−×  deg/sec and a bias noise standard deviation that is 0.01 

times the measurement noise standard deviation.  The RMS error in attitude was 

around 0.02°  while the bias error was determined to be 53 10−×  deg/sec.  As expected 

the RMS error in attitude is smaller than a full state EKF.  This is because the body 

rate measurements are directly available in this case whereas body rates were 

estimated in a full state EKF.   

 The bias estimates and the actual estimates are shown in Figure 6.4.  As 

expected the estimated bias components follow the actual bias components of the 

FOGs.  Once the bias components are estimated they are subtracted from the FOG 

measurements thereby cancelling out the effects of the actual bias components.  The 

actual and estimated bias components which are shown in Figure 6.4 have been 

converted from rad/sec to deg/sec and then plotted.  The same applies to the bias RMS 

error in Figure 6.3. 
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Figure 6.4  Actual bias versus estimated bias 
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6.3  Vector computation from Sensors 
Magnetometer vector pair:  

The measured magnetic measurements are obtained from a magnetometer in reality.  

In this case the measured magnetic measurements are obtained from Equation C.14 to 

which a random noise signal is added (Section 4.2).  The measured vector is then 

normalised to obtain the measured innovation vector (which is a unit vector).   

 ,
k

meas k
k

=
B
VEC,
B
VEC,

B
v

B
 (6.70) 

 

The modelled magnetic vector is obtained from the IGRF model mentioned in 

Appendix C (Equation C.13).  This vector is then normalised to give the modelled 

innovation vector. 

 ,
k

orb k
k

=
O
VEC,
O
VEC,

B
v

B
 (6.71) 

N.B. The ‘k’ subscript on the modelled and measured sensor vectors indicates the 

vectors during the sample instant when sensor measurements are available. 

 

 
Figure 6.5  FSS and ES placement 

 

 

Earth Sensor vector pair: 

 The ES (Section 4.2.2) gives the output directly in the roll and pitch angles.  

These angles need to be converted to unit vectors in body coordinates before they can 
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be used as a measured innovation vector.  The modelled vector of the Earth or the 

nadir vector is O
VECE  (Section 3.5) and the components of O

VECE  are represented as, 

 [ ] [0 0 1]o o o T T
x y zE E E= =O

VECE  (6.72) 

 

Using this data the ES output can be converted to the body coordinates.  Before 

proceeding further it would be helpful to describe the notation for the nadir vector in 

body coordinates. 

 [ ]b b b T
x y zE E E=B

VECE  (6.73) 

 

The stepwise procedure of calculating the nadir vector in body coordinates is given: 

   

1)  Since the boresight of the ES is placed along the Z body axis, the Z component of 

the nadir vector in body coordinates can be calculated using the estimated DCM as, 

 31 32 33
ˆ ˆ ˆ ˆˆ [ ]b o o o

z x y zE E A E A E A A= + + = O
VECE  (6.74) 

 

2)  When ES measurement angles are available, the nadir vector components in the X 

and Y body coordinates are calculated as, 

ˆtan( )
ˆtan( )

b b
xk z

b b
yk z

E Pitch E

E Roll E

=

=
 

along with ˆb b
zk zE E= . 

 Pitch and Roll are the ES measurement angles along the X-body and Y-body 

axis respectively (Figure 6.5). 

Therefore the measured nadir vector in body coordinates is, 

 [ ]b b b T
k xk yk zkE E E=B

VEC,E  (6.75) 

 

The measured innovation vector from the ES is then calculated as, 

 ,
k

meas k
k

=
B
VEC,
B
VEC,

E
v

E
 (6.76) 

while the modelled innovation vector for the ES output is calculated as, 

 ,
k

orb k
k

=
O
VEC,
O
VEC,

E
v

E
 (6.77) 
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Fine Sun Sensor vector pair: 

 The conversion of the FSS (Section 4.3.3) outputs from azimuth and elevation 

angles to unit vectors in body coordinates are done in a similar fashion as that was 

done for the ES.  The difference occurs when the FSS is placed in a sensor frame 

rather than the normal body coordinates. 

 Figure 6.5 FSS is not placed in the body coordinates and has its boresight 

opposite to the Z body axis, the sensor measurements need to be transformed to body 

coordinates before being used by the EKF.  A vector in the body coordinates can be 

transformed to the sensor coordinates using a transformation matrix [D].   This matrix 

can be formed using an Euler rotation sequence.  The components of this matrix do 

not change because the displacement of the sensor coordinates from the body frame is 

fixed.  The relation between the two coordinates can be given as, 

 S B
VEC VECS = [D]S  (6.78) 

where, 

 [ ]b b b T
x y zS S S=B

VECS  = components of Sun vector in body coordinates 

 [ ]s s s T
x y zS S S=S

VECS  = components of Sun vector in sensor coordinates 

 Since the FSS vector is obtained in sensor coordinates, the FSS vector in body 

coordinates is calculated using the inverse of the matrix [D] which is expressed as, 

 1−B S
VEC VECS = [D] S  (6.79) 

 

 The step wise calculation of the Sun vector in body coordinates is give next: 

1)  Convert the FSS output angles to a unit vector in the sensor coordinates.  The Z-

component of the Sun vector in the sensor coordinates is expressed as, 

 31 32 33[ ]s b b b
z x y zS S D S D S D= + +  (6.80) 

where, B
VECS  is obtained from ˆ=B O

VEC VECS A(q)S  

 O
VECS  is calculated in Section 3.3 and is represented as, 

 [ ]o o o T
x y zS S S=O

VECS = components of Sun vector in orbit coordinates 

 

2)  The components of the Sun vector in the X and Y sensor coordinates is calculated 

as, 
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tan( )

tan( )

s s
xk z

s s
yk z

S Azi S

S Ele S

=

=
 

along with s s
zk zS S= . 

 Ele and Azi are the FSS measurement angles along the X-body and Y-body 

axis respectively (Figure 6.5). 

 

Therefore the measured Sun vector in sensor coordinates is, 

 [ ]s s s T
k xk yk zkS S S=S

VEC,S  (6.81) 

 

3)  Using the above equation and Equation (6.79) the Sun vector in body coordinates 

is calculated as, 

 1
k k

−B S
VEC, VEC,S = [D] S  (6.82) 

 

We are now in a position where we can calculate the innovation pair vectors.  The 

measured innovation vector from the FSS is given as, 

 ,
k

meas k
k

=
B
VEC,
B
VEC,

S
v

S
 (6.83) 

while the modelled innovation vector is, 

 ,
k

orb k
k

=
O
VEC,
O
VEC,

S
v

S
 (6.84) 

 

6.4  Propagation of states by numerical integration 
 The numerical integration technique constitutes an integral part of the EKF 

propagation section.   The most common technique used for spacecrafts is the R-stage 

Runge-Kutta method (Wertz, 1978 and Pocha, 1987).  Steyn (1995) has discussed a 

technique called Hodgart’s single step method which is suited for satellites spinning 

around the Z-body axis.  However a modified Euler integration technique was deemed 

to be sufficient in this case due to the near stationary dynamic characteristics of a 

GEO satellite.  The modified Euler method is a two stage, 2nd order, single step 

method. The state propagation methods employed in the two EKFs discussed earlier 
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differ slightly in nature and will therefore be discussed separately.  The sampling 

period used to implement the EKFs was chosen to be sT  = 1 second. 

 

State Propagation for a Full State EKF: 

1)  Calculate current angular acceleration along each body axis. 

 

i , / , / i , / , /
,

iz, / , / , / i , /
,

, / , / , /
,

ˆ ˆ ˆ ˆ[ ]

ˆ ˆ ˆ ˆ[ ]

ˆ ˆ ˆ ˆ[ ]

MX TX YY ZZ y k k iz k k y k k wz iz k k wy wx
ix k

XX

MY TY ZZ XX k k ix k k iz k k wx x k k wz wy
iy k

YY

MZ TZ XX YY ix k k iy k k ix k k wy i
iz k

T T I I h h h
I

T T I I h h h
I

T T I I h

ω ω ω ω
ω

ω ω ω ω
ω

ω ω ω ω
ω

+ + − − + −
=

+ + − − + −
=

+ + − − +
=

&
&

&
&

& , /y k k wx wz

ZZ

h h
I

− &

 (6.85) 

 

2)  Calculate the angular rate increment. 

 
, , , 1

, , , 1

, , , 1

0.5 (3 )
0.5 (3 )

0.5 (3 )

ix k s ix k ix k

iy k s iy k iy k

iz k s iz k iz k

T
T

T

ω ω ω

ω ω ω

ω ω ω

−

−

−

Δ = −

Δ = −

Δ = −

& &

& &

& &

 (6.86)  

  

3)  Propagate angular rate increments. 

 
, 1/ , / ,

, 1/ , / ,

, 1/ , / ,

ˆ ˆ
ˆ ˆ

ˆ ˆ

ix k k ix k k ix k

iy k k iy k k iy k

iz k k iz k k iz k

ω ω ω

ω ω ω

ω ω ω

+

+

+

= + Δ

= + Δ

= + Δ

 (6.87) 

 

4)  Obtain the orbit referenced angular rates. 
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A

A

A
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= +

 (6.88) 

 

5)  Once the angular rates in orbit coordinates have been obtained, we can propagate 

the kinematic quaternion equations.  The equations used to propagate the kinematics 

are given as (Wertz, 1978 p.565) 
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where, 

 2 2 2
, 1/ , 1/ , 1/ˆ ˆ ˆk ox k k oy k k oz k kω ω ω ω+ + += + +  and kΩ is similar to Equation (2.10). 

 

 

State Propagation for the FOG bias and attitude EKF: 

 Since the angular rate measurements are directly obtained from the FOGs the 

need to determine and propagate angular rate measurements are eliminated.  

 

1)  The angular rates are obtained using the FOG measurements and bias estimates. 
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 (6.90) 

 

Steps 2) and 3) are similar to steps 4) and 5) in the full state EKF.   

 

 

6.5  Practical Considerations 

 The selection of the perturbation state covariance matrix kP  and the system 

and measurement noise covariance matrices Q and R requires some attention.  The 

kP  matrix has non-zero positive elements only along the diagonal.  The initial value 

of the kP  matrix denoted as oP  was chosen to be three orders of magnitude larger 

than the system covariance matrix Q (Steyn, 1995).  Simulations were done to 

observe the convergence of  P(k) to the steady-state values.  In-spite of fine tuning the 

oP  values to minimise the convergence time, the overall performance of the EKFs did 

not change much.  This was due to the non-linear characteristics of the system. 

  According to Psiaki (1990) values of Q and R determines the trade off 

between the tracking of disturbance noise induced state variations and the filtering of 

measurement noise.  This can be explained by the fact that a low value of R indicates 
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a low covariance on the sensor measurements which gives the filter the impression 

that the measurements contain very little noise.  In reality we might have a noisy 

sensor and this could cause filter divergence.  The same explanation applies for the Q 

matrix and the characteristics of the system.  Therefore it is essential to obtain a 

certain amount of balance between the two.   

 The R matrix value can be obtained from the sensor accuracy characteristics in 

the data sheets which usually only tend to be an approximation.  As an example the 

calculation of the variance of the ES will be discussed.  The data sheet in Section F.1 

gives the 3 ESσ  accuracy of the ES to be 0.025° .  The variance ( 2
ESσ ) can then be 

calculated to be 56.94 10−× .  This value can then be fine tuned to optimise the 

performance. 

 

6.5.1  Q matrix for full state estimator 

 The system noise covariance matrix Q was calculated according to the 

discussion in Steyn (2004) and can be described as, 

 

1 [ ]
2

1 1[ ] ]
2 3

T

T

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w w

w w

S S X
Q

XS [XS X
 (6.91) 

where, 

 X = I
B

∂
∂

q
ω
&

(as described in Equation (6.16)) 

 2
3 3[ ]wboσ ×=wS I  

 2
wboσ is the angular rate noise variance and is assumed to be equal for all three 

axes.  The terms off the diagonal describes the coupling covariance between the 

attitude and the angular rates.  The standard deviation wboσ  was chosen to be 

73.15 10−× rad after few trials.  A good starting point is to choose a value close two 

orders of magnitude lesser than oω . 

 

 6.5.2  Q matrix for FOG bias estimator 

 The values of the Q matrix for the FOG bias estimator was also chosen from 

Steyn (2004) and is described as, 
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 (6.92) 

where, 

 
2
1

3 3[ ]
4
ησ

×I  is the FOG measurement covariance ( 1 FOGησ σ= ) 

 2
2 3 3[ ]ησ ×I  is the FOG bias covariance  ( 2 10.01η ησ σ= ) 

The standard deviation ‘ FOGσ ’ value has been discussed in Section 6.2.3.  However 

while using the covariance values in the covariance matrix care must be taken to 

convert (deg/sec) to (rad/sec). 
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Chapter 7 

 

Orbit Control  
This chapter explains the factors that cause drifts along the East-west 

(longitudinal) and North-south (latitudinal) direction of the spacecraft.  The 

techniques employed in correcting these drifts are called station-keeping manoeuvres. 

These manoeuvres are performed by thrusters which when fired generate an effective 

thrust vector along the centre of mass of the satellite.  

It is impossible to fire a thruster along the exact centre of mass because of the 

practical inaccuracies while mounting a thruster. The misalignment of the thrust 

vector from the centre of mass of the satellite is termed as thruster misalignment.  

Thruster misalignment can also occur if the centre of mass varies as a result of 

propellant consumption.  The torques generated due to the thruster misalignment 

tends to destabilise the satellite.  Therefore it becomes essential to control the attitude 

of the satellite while performing orbit control. 

The amount of propellant required to perform station-keeping over a 10 year 

period (lifetime of the GEO satellite considered) is also calculated. 

 

7.1  North-South Station Keeping (NSSK)   
Station-keeping in the North-south direction is done by controlling the 

inclination of the satellite orbit.  Failure to do so will lead to a figure ‘8’ type of 

oscillation of the satellite around the nominal longitude.  The actual orbital inclination 

will be half the oscillation’s peak to peak amplitude.  Figure 1.1 (chapter 1) shows 

satellite ‘B’ located at 120°W longitude oscillating between 30°N and 30°S latitude,  

the inclination of the orbit being 30° .  This is an apparent motion to an observer on 

the Earth’s surface (Wertz and Larson, 1999).  The oscillation occurs once a day and 

makes satellite tracking complicated.  Also, this type of oscillation is not at all 

acceptable on communication satellites where the footprint of the satellite has to cover 

a particular geographical area continuously.   
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7.1.1  Causes of North-south drift  

The primary reason for the drift in orbital inclination is the gravitational 

attraction of the Sun and the Moon on the satellite.  The gravitational forces depend 

very much on how the orbit is oriented.  From Pocha (1987) it can be seen that if the 

orbit pole (normal to the orbit plane) is oriented towards the vernal equinox, the 

inclination drift gradually starts to build up.  This can be described also in terms of the 

RAAN (Right Ascension of Ascending Node-Ω ).  The RAAN is the angle between 

Vernal equinox and the ascending node of the satellite.  The ascending node in turn is 

the point where the satellite crosses the equator from the southern hemisphere to the 

northern hemisphere.  When the RAAN is between 0° and180° , the orbit pole will be 

inclined towards the vernal equinox.   

 
Figure 7.1  Orbit pole drift (From Pocha, 1987, p 35) 

 

By changing the RAAN to a value between 180°  and 360°  the orbit pole gets 

oriented to the side of the North Pole away from the vernal equinox.  After this the 

orbit pole drifts back gradually towards the vernal equinox via the North Pole, thereby 

decreasing the inclination.  Once the orbit pole has passed the North Pole, the 

inclination starts to increase again and the RAAN changes to an angle between 
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0° and180° .  Berlin (1988) tells us that the drift rate of the inclination vector can be 

described as, 

 

 2 2d (deg/year)
d

i u v
t
= +   (7.1) 

where, 

              0.1314sin mu = − Ω   (deg/year) 

              0.8541 0.09855cos mv = + Ω   (deg/year) 

           12.111 0.052954 (deg)m tΩ = −   

 

mΩ  is the RAAN of the Moon  which has a period of 18.6 years.  With these data the 

drift rate ( d di t ) can be calculated to be between 0.756 and 0.952 / year° .  The 

inclination vector can be represented in terms of the inclination and RAAN angles, in 

the inertial coordinates (by comparing Figures 2.2 and 7.1) as, 

 [sin cos sin sin cos ]Ti i i= Ω Ωi  (7.2) 

This representation will be helpful in future analysis. 

 

7.1.2  Corrections of North-south drift     

The frequency of the NSSK manoeuvres depends on the size of inclination 

window permitted for the satellite.  The maximum drift limit allowed for a 

communication satellite is usually 0.1± ° .  As mentioned earlier a drift in the 

inclination vector translates to a drift of   ‘i’ and  ‘Ω ’.  Maintaining the inclination 

vector around 0°  inclination is a very fuel hungry process.  To avoid this, the satellite 

is usually allowed to drift to one end of the permitted window and then pushed back 

to the other end so as to minimise the number of corrections.  The two inclination 

vectors (before and after inclination correction) can be represented in the vector form 

as, 

 1 1 1 1 1 1

2 2 2 2 2 2

[sin cos sin sin cos ]

[sin cos sin sin cos ]

T

T

i i i

i i i

= Ω Ω

= Ω Ω

i

i
 

where, 

1 1,i Ω  = inclination and RAAN angle of the inclination vector before orbit correction  

2 2,i Ω  = inclination and RAAN angle of the inclination vector after orbit correction 
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The orbital plane change between the two vectors is calculated as, 

 1 2cosθ = i . i  (7.3) 

 

The two inclination angles 1 2andi i  will be equal.  This can be illustrated 

better with an example.  The communication satellite is allowed to drift to one end of 

the inclination window where the inclination vector 1i  has an inclination of 1i , 0.1° .  

At this point the RAAN angle is changed in order to shift the orbit pole away from the 

vernal equinox.  The inclination vector now gets shifted to the other end of the 

inclination window.  This new inclination vector 2i  also tends to have an inclination 

of 0.1° .  Even though the inclination angles of the two vectors 1i  and 2i  are the same 

their directions are different, which justifies the representation of inclination in terms 

of vectors.   

Thus, 

          1 2 0.1i i i= = = °  . 

 

Equation (7.3) with the above relation gets simplified to, 

 2 2
2 1cos sin cos( ) cosi iθ = Ω −Ω +  (7.4) 

 

The amount of propellant required to bring about a plane change of ‘θ ’ is given as,   

 2 22 (1 cosθ)V VΔ = −  (7.5) 

where, 

                    VΔ = change in velocity required to perform the manoeuvre 

                       V = nominal velocity of a GEO satellite = 3075 m/s 

 

The average drift rate of the inclination vector can be assumed to be 0.8 / year°  or 

0.067 /month° .  A communication satellite with 0.2°  ( 0.1± ° ) window will require a 

NSSK manoeuvre once in 3 months (4 manoeuvres/year).   

 

The satellite is assumed to have an initial RAAN of 1 90Ω = ° .  The aim is to reorient 

the inclination vector or the orbit pole so that the satellite has a RAAN of 2 270Ω = ° .  

Therefore, 2 1 180ΔΩ = Ω −Ω = ° .  With this data, the plane change required (θ ) can 
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be calculated from Equation (7.4) which in turn is substituted into Equation (7.5).   

VΔ  is thus calculated to be 10.73 m/s.  The amount of propellant required can be 

calculated from the rocket equation which is given as 

 = ln i
sp

f

m
V gI

m
⎛ ⎞

Δ ⎜ ⎟⎜ ⎟
⎝ ⎠

 (7.6) 

where, 

 VΔ = change in velocity required to perform the manoeuvre 

     g = Earth’s gravitational acceleration 

   spI = specific impulse of propellant used 

   im = mass of satellite before the manoeuvre (initial mass) 

  fm = mass of satellite after the manoeuvre (final mass) 

The final mass can also be written as f im m m= − Δ , where mΔ  is the mass of the 

propellant used. Equation (7.6) can be rearranged as, 

 1 expi
sp

Vm m
gI

⎧ ⎫⎛ ⎞−Δ⎪ ⎪Δ = − ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (7.7) 

The propellant considered is Hydrazine ( 2 4N H ) which has an spI  of 290 

seconds.  Initial mass of satellite is considered to be 500kg (section 2.1). mΔ  is thus 

calculated to be 1.87 kg.  The amount of propellant required for a year would 

approximately be 7.52 kg (for four manoeuvres).  Care must be taken while 

computing the propellant mass because the initial mass keeps decreasing according to 

amount of propellant consumed.  A worst case approximation of the amount of 

propellant required to perform NSSK over a 10 year period would be around 75 kg. 

 

The thrust impulse of a NSSK thruster firing can be calculated using the formula, 

 
0

=
t

spF I g mΔ∫  (7.8) 

 F∫ is calculated to be approximately 5350 Ns (Newton-second)  which can be 

interpreted as 20 Newton thrust which lasts for 267.5 seconds.  Mathematically it is 

also possible to fire a 2 Newton thrust for 2675 seconds to give an equivalent thrust 

impulse.  Practically, long duration thruster firings are avoided but decreasing the 

thrust duration comes at a cost of higher thrust levels.  Large thrust levels can only be 
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achieved by increasing the size of the thruster which leads to an increase in mass of 

the entire system.  Therefore choosing the thrust level of the thruster is a trade-off 

depending on the type of manoeuvre and its impact on the weight of the entire system.  

Hence it can be concluded that NSSK requires a high power thruster and a 10 Newton 

thruster fired for 535 seconds provides a good trade-off. 

 

7.1.3  NSSK Thruster Placement 

The thruster used for NSSK is a high power thruster as shown in Figure 4.3.  

The idea behind using a single thruster for NSSK is because the drift of the orbit pole 

tends to shift the latitude upwards and not downwards.  The correcting thrust should 

therefore push the satellite downwards which justifies the placement of the HPT on 

the upper facet of the satellite. 

 

7.2  East-West Station Keeping (EWSK)    
The idea behind EWSK is to maintain the longitude of the satellite around an 

allotted longitude position.  The longitude window permitted for communication 

satellites are generally 0.1± ° .  A 0.1°  tolerance at GEO altitude translates to a 

distance of approximately 75km in the GEO sphere.  The total width of the window 

is 0.2° .  These stringent specifications are necessary in order to avoid signal 

interference with neighbouring satellites.   

 

7.2.1  Causes of East-west drift  

The drift in longitude of the satellite is mainly caused by the non-uniform 

gravitational field of the Earth which is a result of the non-homogenous distribution of 

the mass on Earth.  Since the Earth’s gravity varies slightly with latitude and 

longitude, the satellite experiences gravity gradients at different points above Earth.  

These gradients give rise to accelerations and decelerations depending on the sub-

satellite position.  According to Berlin (1988) a simplified representation of the East-

west (longitudinal) acceleration on a GEO satellite along the equator is, 

  
2

2
2

d sin(150 2 ) (deg/ day )
d

L L C L
t

= = ° −&&  (7.9) 

 

where, 
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  L = nominal longitude of satellite 

   { } 416.9 2.9 sin( 35 ) 10C L −= + − ° ×  

A detailed analysis of the gravitational perturbation is provided in Maral and 

Bousquet (1986).   

 

As Equation (7.9) suggests there will be four points on the equator where the 

longitudinal drift of the satellite will become zero.  This is graphically shown in 

Figure 7.2.  The points where Equation (7.9) becomes zero is when L takes the values 

15− ° , 105− ° , 75°  and 165° .   The negative values of L constitute longitudes to the 

west of the Greenwich meridian while the positive values are to the east.  Thus,  

L&&= 0   when   L = 15 W, 105 W, 75 E and 165 E° ° ° °  

A satellite which is stationed at any of these four points will not move, whereas it will 

accelerate east or west for any other longitude. 

 

 
Figure 7.2  Longitudinal acceleration of a GEO satellite depending on its longitude 

 

Points A (105 W° ) and C ( 75 E° ) (Figure 7.2) are called stable points whereas B 

(15 W° ) and D (165 E° ) are unstable points.  The reason for such a terminology is 
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because of the fact that a satellite approaching point A or C will have a longitudinal 

acceleration which increases at a very slow rate.  Once these points are passed the 

acceleration becomes negative (deceleration).  If any further external torques such as 

luni-solar torques act on the satellite it will just oscillate around those points.  Points 

B and D are called unstable points because, the presence of any external torques will 

cause the satellite to drift away from the point (B or D) towards the nearest stable 

points.  Therefore a satellite placed at B or D will continue to stay there only if it is 

left unperturbed which is hardly a real world scenario.  In the real world however, the 

stable points are located at 104 W°  and 74 E ° , while the unstable points are at 12 W°  

and 162 E°  (Berlin 1988). 

 

7.2.2  Corrections of East-west drift  

As Figure 7.2 suggests a satellite placed in between the stable and unstable 

points will undergo maximum drift and will require larger amounts of propellant to 

perform EWSK.  Also the frequency of the EWSK manoeuvres will be larger.   

The strategy involved is similar to the one employed in NSSK.  The satellite is 

allowed to drift to one end of the longitude window, at which the EWSK manoeuvre 

is performed.  The thrust impulse is given in the direction opposite to the drift so that 

the satellite reaches the other end of the longitude window.  The longitudinal drift for 

a GEO satellite can be calculated using Equation(7.9).  The nominal longitude of the 

satellite is chosen as 19.5°East (section 3.1).  Longitudinal drift acceleration is 

calculated as, 
-3= 1.5054 10L ×&& 2(deg/ day )   where 31.6125 10C −= × . 

 LΔ is the half-width of the drift window, which in this case is 0.1° . 

 

The required change in velocity of the satellite is calculated as, 

 11.36 ( / )V L L m sΔ = Δ&&  (7.10) 

 

VΔ for a single EWSK manoeuvre happens to be 0.139m/s.  Propellant mass required 

for a single manoeuvre can be calculated from Equation (7.7) as 0.0245 kg.  The 

period the satellite takes to travel from one end of the longitude window to the other 

end is given as, 

  4 / (days)L Lτ = Δ &&  (7.11) 
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The satellite takes 32.6 days to transverse form one end to the other end of the 

inclination window.  Using this data the amount of propellant required to perform 

EWSK over a year is calculated as, 

 360
year manoeuvre

m m
τ

Δ Δ °
= ×  (7.12) 

 

Annual propellant consumption for EWSK is calculated to be 0.2705 kg.  It can be 

observed that the annual propellant consumption for EWSK is much less than the 

propellant consumption during a single NSSK manoeuvre.  The 10 year fuel budget 

for EWSK can be linearly approximated to be 2.705 kg.   

As mentioned earlier the initial mass (Equation (7.7)) decreases after every 

manoeuvre but when the amount of propellant consumed is very small the initial mass 

difference does not make a huge difference to overall fuel budget calculation.  The 

above performed analysis clearly shows that EWSK consumes far less fuel compared 

to NSSK.  

The thrust impulse required for a EWSK manoeuvre is calculated using 

Equation (7.8).  F∫  is calculated to be 69.7 Ns which translates to a 2 Newton thrust 

(combined thrust capability of two 1 Newton LPT’s) being fired for approximately 35 

seconds.  Thus it is sufficient and possible to use LPT’s to perform EWSK.  

 

7.2.3  EWSK Thruster Placement 

The placement of EWSK thrusters is highly dependent on the drift direction of 

the satellite. In the case where a satellite is placed at a nominal longitude of 

19.5°East, it tends to drift towards the nearest stable point C (Figure 7.2) which 

means the drift is towards the East.  Hence the thrusters must be placed such that the 

thrust takes the satellite westwards.  For a GEO satellite a thruster can generate a west 

drift only if it is placed on the facet in the velocity direction (+ BX facet).  As shown in 

Figure 4.3 and Table 4.1 the thrusters used for EWSK are also used for fine attitude 

control. Since these thrusters are placed away form the centre of mass, firing any one 

of them alone will generate a parasitic torque.  Therefore two LPTs have to be fired 

simultaneously for the exact required duration.  Firing LPTs (5 and 6) or (3 and 4) 

generates the same effect thereby providing the required redundancy. 
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7.3  Attitude control while Station-keeping 
It is practically impossible to mount a thruster through the exact centre of 

mass.  Also as the propellant gets used, the centre of mass of the satellite tends to 

change.  Due to these reasons firing of station-keeping thrusters leads to torques 

which can destabilise the attitude thereby affecting communication.  Therefore it is 

mandatory that additional attitude control needs to be performed while station-

keeping. 

 

7.3.1 Attitude control while NSSK 

The 10N HPT, if misaligned from the centre of mass by 1 cm, upon firing will 

generate a torque of 0.1 Nm.  Considering the misalignment to be along the + BZ  facet 

and since the thrust vector is along the + BY  axis (Figure 4.3), the generated 

misalignment torque can be calculated in the vector form as, 

= [0.0  0.0  0.01]  m   [0.0 10.0  0.0]  N

                   = [ 0.1  0.0  0.0]  Nm

T T

T

×

−
misT =r x F

 

 

In order to cancel out the misalignment torque an equal but opposite torque 

needs to be generated which is called the compensating torque.  This can be done by 

firing LPT 2 in Figure 5.6 for the same amount of time that the HPT is fired.  The 

thrust vector from LPT 2 is in the direction of the + BZ  facet and since the 

displacement of   LPT 2 is along the + BY  axis, the compensating torque is calculated 

to be, 

[0.0  0.10  0.0]  m  [0.0  0.0  1.0]  N

                    = [0.1  0.0  0.0]  Nm

T T

T

×compT =r xF =
 

 

Thus an equivalent but opposite torque is generated to counteract the misalignment 

torque.  Figure 7.3 shows the attitude of the satellite with and without disturbance 

compensation. Figure 7.3(a) shows the disturbance along the X-axis when no 

compensation is done.  The thruster is fired at time instant 200 seconds for 535 

seconds (duration of NSSK manoeuvre).  Once the thruster is switched off the 

satellite’s attitude is stabilised by the feedback controllers.  
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Figure 7.3  Effect of compensation torque on satellite attitude during NSSK 

 

As expected the attitude disturbances in Figure 7.3(b) is due to the solar radiation 

torque shown in Figure 5.1. 

The drawback of this process is the additional propellant being expelled while 

performing the compensations. The amount of propellant required to perform 

compensation can be determined from the firing duration of LPT 2.  Since LPT 2 has 

a 1 Newton thrust being fired for 535 seconds, the thrust impulse will be 535 Nsec. 

Using Equation (7.8) the amount of propellant consumed is calculated to be 0.188 kg.  

If four compensation firings are done in a year over a 10 year period it would require 

an additional 7.52 kg of propellant.  Normal reaction wheel feedback controllers are 

used simultaneously to provide fine attitude control. 

It is also possible to provide a compensating torque using reaction wheels 

depending on the wheel’s maximum momentum level.  Since a large torque is 

required for a long period (0.1 Newton for 535 seconds) to perform NSSK 

misalignment compensation, the maximum momentum required will be 53.5 Nms. 

This momentum level cannot be achieved by the wheel being used in this simulation 

study which has a momentum saturation of 4 Nms.  The compensation using reaction 

wheels will be discussed in the next section. 
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7.3.2 Attitude control while EWSK 

The first step is so to determine the misalignment torque generated while 

performing EWSK.  As mentioned in section 7.1.3 either LPTs 5 and 6 or LPTs 3 and 

4 are used to perform EWSK.  It so happens that the combined thrust vector could be 

off-centred from the centre of mass thereby generating the misalignment torque.  It 

can be seen from Figure 4.3 and Figure 5.6 and Section 7.2.2 that firing the 

combination of LPTs used for EWSK generates a 2 Newton thrust vector along the 

BX−  facet.  For a misalignment of 1 cm along the + BY  and + BZ  axes the 

misalignment torque is, 

 
= [0.0  0.01  0.01]  m   [ 2.0  0.0  0.0]  N

                  = [0.0 0.02  0.02]  Nm

T T

T

× −

−
misT =r x F

 

 

The next step would be to see if this torque can be compensated using the 

reaction wheels.  A 0.02 Nm torque for a period of 35 seconds (duration of EWSK 

manoeuvre) leads to a maximum angular momentum requirement of 0.70 Nms which 

can be easily achieved by the reaction wheels used in the satellite.  This means that 

the momentum wheel has to supply a wheel torque of 0.02 Nm for 35 seconds by 

linearly increasing its angular momentum from 0 to 0.70 Nms in 35 seconds.  Increase 

in angular momentum is achieved by increasing the angular velocity of the wheel 

(integral of Equation (5.1)).  The increase in angular velocity is dependent on the 

wheel inertia. 

The required compensation torque thus happens to be 

[0.0  0.02  0.02]T= −compT Nm.  Therefore the Y and Z wheels are used to generate 

the required compensating torques.  The momentum vector of the reaction wheels and 

the wheel torques are shown in Figure 7.4.   

The EWSK thrusters are fired at the time instant 250 seconds for a duration of 

35 seconds. Simultaneously the Y and Z wheel momentums are increased linearly so 

that it reaches 0.7 Nms within 35 seconds.  This increase in wheel momentum 

generates the required torques for the needed duration.  Even though the wheel 

torques have an opposite direction to the required compensation torque, the torques 

applied to the satellite are opposite in direction to the wheel torques.  This is better 

stated by the relation (from Equation (5.3)), 

− =wheel control compT = T T  
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Figure 7.4  Wheel momentum Vs wheel torques during EWSK compensation 

 

 The overshoot in the wheel torque is due to the dynamics of the wheel speed 

controllers.  The momentum build-up on the wheels are dumped using magnetic rods, 

once the momentum levels reach 0.7 Nms. 
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Figure 7.5  Effect of compensation torque on satellite attitude during EWSK 
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 The dumping effect cannot be seen in Figure 7.4 because magnetic momentum 

dumping is a slow process (Section 5.2) and it takes almost 2 orbit periods to 

completely dump the momentum.  The attitude of the satellite with and without 

disturbance compensation is shown in Figure 7.5.  The larger disturbance along the Y-

axis in Figure 7.5(b) is due to the lower moment of inertia along the Y-axis.  In spite 

of this the attitude is well within the required accuracy limit. 

 

7.4 Summary 
Factors which caused the satellite to drift from its nominal assigned position 

need was compensated using thrusters. The drift of the satellite also depends on where 

the satellite is stationed.  NSSK consumes more propellant as compared to EWSK. 

Open loop control techniques were performed to cancel out the torques generated due 

to thruster misalignments.  This is essential to keep the satellite within the required 

accuracy limits. 
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Chapter 8 
 

Conclusion 
 

8.1  Summary 
 Different control algorithms were presented in Chapter 5 which performs all 

the basic control functions for a GEO satellite in mission mode.  Three axis control 

techniques which employed reaction wheels exclusively, were found to provide 

accuracies close to 0.005° .  A trade-off analysis between the controller specifications 

and the actuator capability was performed and the best solution was implemented.  

Momentum dumping using magnetic torque rods was performed to control the 

excessive momentum build-up.  It was seen that the momentum levels on the X and Z 

axis wheels could be dumped to less than 0.1 Nms from an initial value of 0.4 Nms, 

within 1.5 orbits using torque rods of 75 2Am .  This was found to be extremely 

satisfactory considering the weak and near constant magnetic field of the Earth at 

GEO altitude.  Momentum bias control was performed to evaluate the performance of 

the ADCS using only an Earth sensor.  Even though the accuracy was less than a 

reaction wheel control system, it was well within the requirements.  Finally a reaction 

thruster control system was implemented and analysed.  The aim of this control 

system is to provide three axis control during station-keeping.   

  

 Attitude determination was performed in Chapter 6 to estimate attitude and 

body angular rates from sensor data.  Two separate EKFs were discussed, each 

performing a specific task.  The first EKF estimates quaternion attitude along with the 

body angular rates.  The second EKF which is also called the MEKF, makes use of 

FOG measurements thereby eliminating the need to estimate the angular rates.  

However, the MEKF estimates the bias vector on the FOGs along with the quaternion 

attitude.  From simulations it was seen that the RMS error of the estimated attitude 

( 0.04° ) using the first EKF was at least twice as compared to the error of the MEKF.  

The filters were also tested with initial attitude values and found to have a 

convergence time of less than 45 minutes for the estimated attitude.  
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An analytical station-keeping study was performed in Chapter 7.  The 

frequency of station-keeping manoeuvres in both the East-west and North-south plane 

was calculated for a satellite with sub-satellite point similar to Astra 1B.  It was found 

that to perform NSSK and EWSK for ten years, approximately 75 kg and 2.7 kg of 

propellant was required respectively.  Finally attitude compensation to overcome 

thruster misalignment during NSSK required an additional 7.52 kg of propellant.  

However attitude compensation during EWSK was performed using reaction wheels 

and torque rods thereby avoiding propellant expenditure. 

 

8.2  Recommendations 

 There are several possible ways in which the evaluation of the overall 

performance of the GEO satellite AODCS system can be improved. A simple but 

important method is to model the sensors more accurately.  A star tracker can be 

included into the sensor system to improve the accuracy of the overall system.  Also 

the GEO satellite AODCS can be equipped with additional control algorithms to 

enhance the performance.  One possible method is to implement a tetrahedral reaction 

wheel configuration which provides redundancy as well as control to all three axes 

using all four wheels.  Another possible technique is to use two skewed momentum 

wheels to perform momentum bias control which provides three axis control (Sidi, 

1997) thereby eliminating the need to use additional actuators like magnetic torque 

rods. 

 Momentum dumping can be performed using thrusters in order to minimise 

the momentum dumping time.  However, since this method comes at the cost of 

additional propellant consumption, care must be taken to analyse the amount of 

propellant left to perform station-keeping operations.  If the GEO satellite happens to 

have a payload which needs to be reoriented frequently, time optimal controllers can 

be used to minimise the manoeuvre time.   

 Finally, the air bearing table in the ESL at Stellenbosch University or any 

similar facility can be used to analyse thruster misalignment and implement feed 

forward compensation during station-keeping, along a single axis. 
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Appendix A 
 

Transformation Matrix and Momentum Biased Dynamics 
 

A.1  Inertial to Orbit Coordinates Transformation matrix 
The relation between the two coordinate systems is shown in Figure 2.4.  The 

relations in the figure are better understood when described in an equational manner.  

To begin with it is most logical to describe the position ( pos
uuuv

) and velocity ( vel
uuuv

) unit 

vector components of the satellite in the inertial coordinates.  The ‘ pos
uuuv

’ and ‘ vel
uuuv

’ 

vectors are obtained from the SDP4 orbit propagator or any other propagation model. 

 

The ‘ pos
uuuv

’ and ‘ vel
uuuv

’ unit vectors in inertial coordinates are represented as, 

 I I I

I I I

pos x y z

vel x y z
x y z

x y z

P P P

V V V

= + +

= + +

uuuv v v v

uuuv v v v  (A.1) 

where, 

 [ , , ]x y zP P P  = components of unit position vector of satellite in inertial 

coordinates 

          [ , , ]x y zV V V  = components of unit velocity vector of satellite in inertial 

coordinates 

           I I I[x , y , z ]v v v  = unit vectors in inertial coordinates 

 

From Figure 2.4 one can deduce the following relations, 

 
O

O

O O O

z pos

y vel pos
x = y z

= −

= ×
×

uuuvv

uuuv uuuvv

v v v
 (A.2) 

where, 

 O O O[x , y , z ]v v v  = unit vectors in the orbit coordinates 

 With these relations the directions of the orbit unit vectors can be expressed in 

terms of the ‘ pos
uuuv

’ and ‘ vel
uuuv

’ unit vectors. 
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Each orbit unit vector can be individually expressed as,  

                          O I I Iz ( x y z )x y zP P P= − + +v v v v  (A.3) 

 

 

O

I I I I I I

I I I

I I I

y vel pos
( x y z ) ( x y z )

( )x ( )y ( )z

x y z

x y z x y z

y z z y z x x z x y y x

x y z

V V V P P P

V P V P V P V P V P V P

W W W

= ×

= + + × + +

= − + − + −

= + +

uuuv uuuvv

v v v v v v

v v v

v v v

 (A.4) 

 

    

O O O

I I I I I I

I I I

I I I

x y z
( x y z ) ( x y z )

( )x ( )y ( )z

x y z

x y z x y z

z y y z x z z x y x x y

x y z

W W W P P P

W P W P W P W P W P W P

A A A

= ×

= + + × − − −

= − + − + −

= + +

v v v

v v v v v v

v v v

v v v

 (A.5) 

 

Equations (A.3), (A.4) and (A.5) can now be expressed in the matrix form as, 

 O O O I I I[x y z ] [ ][x y z ]T T= Tv v v v v v  (A.6) 

where, 

 [ ]
x y z

x y z

x y z

A A A

W W W

P P P

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦

T  (A.7) 

 

Substituting Equation (A.7) into (A.6) we get,  

 
O I

O I

IO

x x
y y

zz

x y z

x y z

x y z

A A A

W W W

P P P

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦⎣ ⎦ ⎣ ⎦

v v

v v

vv
 (A.8) 

 

Thus it can be seen that a vector which is expressed in terms of the unit vector 

in the inertial coordinates can be transformed to a unit vector expressed in the orbit 

coordinates. 
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A.2  Analysis of a Momentum Biased Satellite 
The momentum biased satellite which is discussed in Section 5.3 makes use of 

Equation (5.21) which is the dynamic equation of motion for a momentum biased 

satellite.  

 

A.2.1  Dynamic Equations of a Momentum Biased Satellite 

The equations of motion for a momentum biased satellite are derived from the 

general dynamic equation of motion mentioned in Equation (2.8) which can also be 

rewritten  as, 

 I I I
B B B− × −I D C w wI ω = T + T ω (Iω + h ) h&&  (A.9) 

where, 

              =C M TT T + T   (A.10) 

 

Equation (A.9) can be written in terms of the components of the inertial body angular 

rates as, 

 

i i

iz i

[ ]

[ ]

[ ]

DX CX YY ZZ y iz y wz iz wy wx
ix

XX

DY CY ZZ XX ix iz wx x wz wy
iy

YY

DZ CZ XX YY ix iy ix wy iy wx wz
iz

ZZ

T T I I h h h
I

T T I I h h h
I

T T I I h h h
I

ω ω ω ω
ω

ω ω ω ω
ω

ω ω ω ω
ω

+ + − − + −
=

+ + − − + −
=

+ + − − + −
=

&
&

&
&

&
&

 (A.11) 

 

Since the momentum biased satellite has only the Y-wheel in it, terms wxh  and wzh  

become zero. Equation (A.11) gets modified to, 

 

i

iz

[ ]

[ ]

[ ]

DX CX YY ZZ y iz iz wy
ix

XX

DY CY ZZ XX ix wy
iy

YY

DZ CZ XX YY ix iy ix wy
iz

ZZ

T T I I h
I

T T I I h
I

T T I I h
I

ω ω ω
ω

ω ω
ω

ω ω ω
ω

+ + − +
=

+ + − −
=

+ + − −
=

&

&
&

&

 (A.12) 

Before proceeding further it is important to state a few assumptions that are 

required in the derivation.  Equation (2.11) can be rearranged as, 
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0

0

I O
B B oω

⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

ω ω A  (A.13) 

where, ( )o otω ω=% for a GEO satellite. 

 

The DCM matrix [A] in Equation (2.1) for small Euler angles becomes, 

 
1

1
1

ψ θ
ψ φ
θ φ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

A  (A.14) 

 

Therefore Equation (A.13) becomes, 

 
o

I O
B B o

o

ψω
ω

φω

−⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥⎣ ⎦

ω ω  (A.15) 

[ ] [ ]O T T
B ox oy ozω ω ω φ θ ψ= =ω & & & for small angles.   

 

Equation (A.15) gets rewritten as, 

 
o

I
B o

o

φ ψω

θ ω
ψ φω

⎡ ⎤−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥+⎣ ⎦

ω

&

&

&

 (A.16) 

 

Finally, by differentiating Equation (A.16) we get, 

 
oix

I
B iy

oiz

φ ψωω
ω θ

ψ φωω

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥

= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

ω

&& &&

&&& &

&&&&

 (A.17) 

 

The dynamic equations can be derived now.  Equation (A.12) can be rewritten 

with the help of Equations (A.16) and (A.17) as, 

 ( ) [ ]( )( ) ( )XX o DX CX YY ZZ o o o wyI T T I I hφ ψω θ ω ψ φω ψ φω− = + + − − + + +&& && & &  (A.18) 

 ( ) [ ]( )( )YY DY CY ZZ XX o o wyI T T I I hθ ψ φω φ ψω= + + − + − − &&& &&  (A.19) 

 ( ) [ ]( )( ) ( )ZZ o DZ CZ XX YY o o o wyI T T I I hψ φω φ ψω θ ω φ ψω+ = + + − − − − −& & & &&&  (A.20) 
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The analysis of Equations (A.18) and (A.20) are similar therefore only one of them 

will be analysed here. In Equation (A.18) the terms which include ‘ oω ’ and those 

which include the inertia difference ‘ YY ZZI I− ’ are ignored because they happen to be 

much lesser than the terms which include the wheel momentum ‘ wyh ’.  This is 

because oω  57.3 10−≈ ×  rad/sec for a GEO satellite.  Equation (A.18) becomes, 

 ( )DX CX XX wy wy oT T I h hφ ψ φω+ = − −&& &  (A.21) 

Similarly Equation (A.20) becomes, 

 ( )DZ CZ ZZ wy wy oT T I h hψ φ ψω+ = + −&&&  (A.22) 

 

Equation (A.19) is different in the sense that it contains a wheel torque along this axis 

and gets simplified to, 

 ( )DY CY YY wyT T I hθ+ = + &&&  (A.23) 

 

It can be seen that when Equations (A.21), (A.22) and (A.23) are combined they form 

the components of Equation (5.21) which is the dynamic equation for a momentum 

biased GEO satellite. 

 

A.2.2  Derivation of Steady state Equations  

 This section derives the steady state equations (Equations (5.31) and (5.32)) 

from Equation (5.28).  Equation (5.28) can be expanded to give the following 

equations. 

 

 

2 ( )( )1 ( )
( )

( ) ( )

wy DZDX
PZ DZ o wy

XX ZZZZ XX

sh T sT s
s k sk h

I II I
s

s s

ω
φ

⎛ ⎞⎡ ⎤
×+ + − × ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠= +
Δ Δ

 (A.24) 

  

 

2( ) ( )1 ( )
( )

( ) ( )

wy DX DZ
PX DX o wy

ZZ XX XX ZZ

sh T s T s
s k sk h

I I I I
s

s s

ω
ψ

⎛ ⎞ ⎡ ⎤
− × + + − ×⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦= +

Δ Δ
 (A.25) 

 

where, ( )sΔ  is same as Equation (5.30). 
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From the final value theorem we know that, 

 
0 0

lim ( ) and lim ( )SS SSs s
s s s sφ φ ψ ψ

→ →
= =  (A.26) 

Also, 

 ( ) and ( )DX DZ
DX DZ

T T
T s T s

s s
= =  (A.27) 

 

Substituting Equations (A.24) and (A.25) along with (A.27) into Equation (A.26) we 

get, 

 

3 2

0

( )

lim
( )

ZZ PZ DZ o wy wy DZDX

XX ZZ XX ZZ
SS s

I s s k sk h s h TT
I I s sI I

s

ω

φ
→

⎡ ⎤ ⎡ ⎤+ + −
+⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
Δ

 (A.28) 

 

 

2 3

0

( )

lim
( )

wy DX ZZ PX DX o wy DZ

XX ZZ XX ZZ
SS s

s h T I s s k sk h T
sI I I I s

s

ω

ψ
→

⎡ ⎤ ⎡ ⎤− + + −
+ ×⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=
Δ

 (A.29) 

 

 

By applying the limits to ( )sΔ  also and by performing the necessary simplification, 

Equations (A.28) and (A.29) become, 

2

( )
( ) ( )

PZ o DX
SS

PX PZ o o PX PZ

k h T
k k h h k k

ω
φ

ω ω
+

=
+ +

 

2

( )
( ) ( )

PX o DZ
SS

PX PZ o o PX PZ

k h T
k k h h k k

ω
ψ

ω ω
+

=
+ +

 

 

which are the steady state Equations (5.31) and (5.32). 
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Attitude Definitions and Quaternion Operations  
 

B.1  DCM Computation 
In Figure 2.7, it has been shown that the combination of three successive rotations 

leads to the DCM matrix which is expressed in terms of the Euler angles.  For an 

Euler 2-1-3 rotation the first rotation which is along the pitch axis is represented as 

(cos(angle) = cangle and sin(angle) = sangle), 

 

 

'
O

'
O

'
O

X X0
Y 0 1 0 Y

0 ZZ

c s

s c

θ θ

θ θ

⎡ ⎤ − ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (B.1) 

 

The next rotation which is along the roll axis is expressed as, 

 

'' '

'' '

'' '

X X1 0 0
Y 0 Y

0Z Z
c s
s c
φ φ
φ φ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

 (B.2) 

 

And finally the yaw rotation is represented as, 

 

''' ''
B

''' ''
B

''' ''
B

X XX 0
Y Y 0 Y

0 0 1Z Z Z

c s
s c
ψ ψ
ψ ψ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (B.3) 

 

By combining the three rotations, a vector in the orbit coordinates can be transformed 

to the body coordinates.  

 
OB

B O

B O

XX 0 1 0 0 0
Y 0 0 0 1 0 Y

0 0 1 0 0Z Z

c s c s
s c c s

s c s c

ψ ψ θ θ
ψ ψ φ φ

φ φ θ θ

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (B.4) 

 

Performing the matrix multiplications in the correct order (left to right) on the left 

hand side of Equation (B.4) we obtain the DCM matrix as shown in Equation (2.1). 
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Equation (2.6) which calculates the Euler angles from the DCM matrix is repeated 

here for simplicity. 

32 31 33 12 22(Roll) asin( ), (Pitch) atan2( ), (Yaw) atan2( )a a a a aφ θ ψ= − = =  

It is possible that we could encounter discontinuities in Pitch and Yaw angles when 

terms 33a  and 22a  are zero. 

 

 However the exists an alternative representation which makes use of a single 

rotation (Φ ) along an axis called the Euler axis of rotation which is defined by the 

Euler axis vector (e) where, 

  [ ]T
x y ze e e=e . (Similar to description on Page.14) 

 Φ = rotation angle around Euler axis 

 

An analysis of Equations (B.1),(B.2) and (B.3) shows that the trace of the matrices are 

equal and is shown to be, 

 trace[ ] [1 2cos ]Φ = + ΦA  (B.5) 

 

The attitude matrix in terms of the Euler axis and Euler angle which satisfies the 

condition in Equation (B.5) can be expressed as, 

 [ ] cos( ) [1 cos( )] sin( )[ ]T
Φ = Φ + − Φ − ΦA I ee E  (B.6) 

where, 

 

0

[ ] 0
0

z y

z x

y x

e e

e e
e e

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

E  

 

Equation (B.6) thus becomes, 

 

2

2

2

(1 ) (1 ) (1 )

[ ] (1 ) (1 ) (1 )

(1 ) (1 ) (1 )

x x y z x z y

x y z y y z x

x z y y z x z

c e c e e c e s e e c e s

e e c e s c e c e e c e s

e e c e s e e c e s c e c
Φ

⎡ ⎤Φ + − Φ − Φ + Φ − Φ − Φ
⎢ ⎥

= − Φ − Φ Φ + − Φ − Φ + Φ⎢ ⎥
⎢ ⎥

− Φ + Φ − Φ − Φ Φ + − Φ⎢ ⎥⎣ ⎦

A (B.7) 
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Equation (B.7) is another representation of the DCM matrix.  The Euler axis vector 

components and the Euler angle can be calculated from the DCM matrix in the 

following manner: 

 1 1cos (trace[ ] 1)
2

−
Φ

⎡ ⎤Φ = −⎢ ⎥⎣ ⎦
A  (B.8) 

and  

 
23 32

31 13

12 21

[ ] /[2sin( )]
[ ] /[2sin( )]

[ ] /[2sin( )]

x

y

z

e a a
e a a

e a a

= − Φ

= − Φ

= − Φ

 (B.9) 

 

However we tend to have discontinuities while calculating the Euler axis components 

when sin(Φ ) = 0.   Another possible representation of the DCM is in terms of the 

Euler symmetric parameters called the quaternions which are discussed as in Equation 

(2.2).  The quaternion DCM is derived by equating the relations from Equation 2.2 

into Equation (B.7) and can be represented as, 

  2 2
4 4[ ( )] ( ) 2 2 [ ]Tq q= − + −A q q I qq Q  (B.10) 

where, 

 
3 2

3 1

2 1

0
[ ] 0

0

q q
q q
q q

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Q  

 

Equation (B.10) on expansion gives us the DCM in Equation (2.4).  The popularity of 

the quaternion DCM arises from the fact that it does not have any trigonometric terms 

which could lead to discontinuities.  

 

Equation (2.5) calculates the individual quaternion elements when 4q  is the largest.  

The alternative calculations using the largest corresponding pivot elements are, 

 

 

0.5
1 11 22 33

2 12 21 3 13 31 4 23 32
1 1 1

0.5[1 ] ,
0.25 0.25 0.25[ ], [ ], [ ]

q a a a

q a a q a a q a a
q q q

= + − −

= + = + = +
 (B.11) 

 



Appendix B 

 

119

 
 

 

0.5
2 11 22 33

1 12 21 3 23 32 4 31 13
3 2 2

0.5[1 ] ,
0.25 0.25 0.25[ ], [ ], [ ]

q a a a

q a a q a a q a a
q q q

= − + −

= + = + = −
 (B.12) 

 

 

0.5
3 11 22 33

1 13 31 2 23 32 4 12 21
3 3 3

0.5[1 ] ,
0.25 0.25 0.25[ ], [ ], [ ]

q a a a

q a a q a a q a a
q q q

= − − +

= + = + = +
 (B.13) 

 

B.2  Calculation of Attitude rates  
A very important aspect that needs to be discussed is the attitude rate 

calculation of the satellite.  Here we will look at the different possible ways of 

calculating the attitude rates from the body angular rates of the satellite.  Sidi (1997, 

p102) has a discussion along the same lines for an Euler 3-2-1 rotation sequence. 

 

 The first method is to calculate the attitude rate using the Euler angle DCM 

matrix.  Depending on the type of rotation used in the DCM the body angular rates 

can be related to the attitude rates.  Since we use an Euler 2-1-3 rotation the pitch rate 

is multiplied by the complete DCM and is shown to be, 

 
00

00
oy

c c s s s s c c s s s c
s c c s s c c s s c s c

c s s c c

ψ θ ψ φ θ ψ φ ψ θ ψ φ θ
ω ψ θ ψ φ θ ψ φ ψ θ ψ φ θ θ

φ θ φ φ θ

⎡ ⎤⎡ ⎤ + − +⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − + + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

&  (B.14) 

 

Next the roll rate is multiplied by the product of the [3x3] matrices in Equations (B.3) 

and (B.2) (product of yaw and roll rotation). 

 0 0
0 0 0

ox c s c s s
s c c c s

s c

ω ψ ψ φ ψ φ φ
ψ ψ φ ψ φ

φ φ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

&

 (B.15) 

 

And finally yaw rate is multiplied by the yaw rotation matrix. 

 
0 0 0
0 0 0

0 0 1oz

c s
s c
ψ ψ
ψ ψ

ω ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦&

 (B.16) 
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Adding Equations (B.14), (B.15) and (B.16) after performing the respective matrix 

multiplications give us, 

 
0
0

0 1

ox

oy

oz

c s c
s c c

s

φω ψ ψ φ
ω ψ ψ φ θ

φ ψω

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

&

&

&

 (B.17) 

 

Now the attitude rates can be obtained from the body angular rates using the inverse 

of Equation (B.17). 

 
cos cos sin cos 0

1 sin cos 0
cos

sin sin cos sin cos

ox

oy

oz

φ ωψ φ ψ φ
θ ψ ψ ω

φ
ψ ψ φ ψ φ φ ω

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&

&

 (B.18) 

 

Equation (B.18) can be rewritten as, 

 
cos sin 0

sin sec cos sec 0
sin tan cos tan 1

ox

oy

oz

φ ωψ ψ
θ ψ φ ψ φ ω
ψ ψ φ ψ φ ω

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&

&

 (B.19) 

which tends to have singularities when φ  = 90°  because of the presence of ‘tan’ and 

‘sec’ functions. 

 

The calculation of the attitude rates in terms of the Euler angle and Euler axis 

components are, 

 1 cot
2 2

T O
B

O
B

Φ =

Φ⎡ ⎤= −⎢ ⎥⎣ ⎦

e ω

e E EE ω

&

&
 (B.20) 

 

However we tend to have singularities whenΦ  = 0°  or 360° . 

 

Equation (B.20) can be manipulated using Euler symmetric parameter representation 

which helps in representing the attitude rates in terms of the quaternions as, 

 41
2

O
BT

q
q

+⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Q I
ω

q
&  (B.21) 
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Since this representation does not have any trigonometric functions, it does not suffer 

from any singularities.  Equation (B.21) on expansion gives the kinematic equations 

which are described in Equation (2.9). 

 

B.3  Quaternion Operations 
 

B.3.1  Quaternion Division 

 Quaternion division is used to subtract two quaternions from each other.  The 

reason for using quaternion division rather than subtraction is to prevent the scalar 

part of the difference quaternion approaching zero.   

 

Quaternion division can be represented as, 

 Θdiv cq = q q  (B.22) 

where, 

 1 2 3 4i j kq q q q= + + +q  

 1 2 3 4i j kc c c cq q q q= + + +cq  

 

Equation (B.22) then gets expressed as, 

 
4 4 4 4

4 4

4 4

( )

( )
c c

c

c

q q q q

q q
q q

= + − + ×

− + ×⎡ ⎤
= ⎢ ⎥
⎣ ⎦

div vec c,vec vec c,vec vec c,vec

vec c,vec vec c,vec

vec c,vec

q + q .q q q q q

q q q q
+ q .q

 (B.23) 

 

B.3.2  Quaternion multiplication 

The normal (historical) method of quaternion multiplication is performed in 

the following manner:   

 

 4 4 4 4

4 4

4 4

( )

( )
c c

c

c

q q q q

q q
q q

⊗
= − + + + ×

+ + ×⎡ ⎤
= ⎢ ⎥−⎣ ⎦

mul c

vec c,vec vec c,vec vec c,vec

vec c,vec vec c,vec

vec c,vec

q = q q
 q .q q q q q

q q q q
 q .q

 (B.24) 
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However a unique quaternion multiplication is performed to satisfy the condition 

mentioned in Equation 6.59.  To validate this further, if a matrix A[ mulq ] is expressed 

as A[ ⊗ cq q ] then according to Markley (2003) and Lefferts et.al. (1982), 

A[q ]A[ cq ] = A[ ⊗ cq q ] 

 

This is possible only if, 

 4 4 4 4

4 4

4 4

( )

( )
c c

c

c

q q q q

q q
q q

⊗
= − + + − ×

+ − ×⎡ ⎤
⎢ ⎥−⎣ ⎦

mul c

vec c,vec vec c,vec vec c,vec

vec c,vec vec c,vec

vec c,vec

q = q q
 q .q q q q q

q q q q
=

 q .q

 (B.25) 
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APPENDIX C 
 

10th Order IGRF model 
The contents of this appendix are based on the contents in Appendix A of 

Steyn (1995) which discusses an 8th order IGRF model.  The mathematical theory is 

discussed in Wertz (1986) as well.  For regions on the surface of the Earth and above 

which are free from external magnetic effects, the main magnetic field due to Earth is 

the negative gradient of a scalar potential and is represented as, 

 V= −∇B  (C.1) 

 

The scalar potential V is represented as,  

 
1

1 0
( , , ) ( cos sin ) ( )

nk n
m m m
n n n

n m

aV r a g m h m P
r

θ φ φ φ θ
+

= =

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑ ∑  (C.2) 

where, 

  a  =  equatorial radius of Earth (6371.2 km) 

             g and h   =  gaussian coefficients   

            P  =  legendre functions (Schmidt semi-normalised) 

  r  =  geocentric distance 

           θ   =  co-elevation (south positive) 

           φ   =  East longitude from Greenwhich 

 

The Legendre functions are solved recursively to reduce the computation time 

required for the model which includes converting the Legendre functions from 

Schmidt to Gauss normalisation.  This can be done by using the relation, 

 ,
,

n m m
n m nP S P=  (C.3) 

 

However since the Legendre functions have trigonometric functions associated (will 

be shown subsequently), it is more suitable to associate the normalisation factor with 

the Gaussian coefficients.  This is represented as (refer Table C.1), 

 , ,
, ,&n m m n m m

n m n n n ng S g h S h= =  (C.4) 

 



Appendix C 

 

124

 
 

The normalisation factor ,n mS  is calculated using mathematical induction in the 

following manner; 

 

0,0

,0 1,0

1

, , 1

1

2 1 1

( 1)( 1)
1

n n

m
n m n m

S

nS S n
n

n m
S S m

n m
δ

−

−

=

−⎡ ⎤= ≥⎢ ⎥⎣ ⎦

− + +
= ≥

+

 (C.5) 

 

The Gauss normalised Legendre functions are calculated recursively by using the 

relations, 

 

0,0

, 1, 1

, 1, , 2,

1
sin
cos

n m n n

n m n m n m n m

P
P P
P P K P

θ

θ

− −

− −

=

=
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 (C.6) 

where, 

 

2 2
,

,

( 1) 1
(2 1)(2 3)
0 1

n m

n m

n mK n
n n

K n

− −
= >

− −

= =

 (C.7) 

 

The presence of the gradient in Equation(C.1) will require partial derivatives of ,n mP , 

which is determined recursively as, 

 

0,0

, 1, 1
1, 1

, 1, 2,
1, ,

0

(sin ) (cos )
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− −
− −
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−

∂
=

∂
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= +
∂ ∂
∂ ∂ ∂

= − −
∂ ∂ ∂

 (C.8) 

  

It is also important to mention a set of trigonometric functions which are required for 

future calculations.  

 
cos cos(( 1) )cos sin(( 1) )sin
sin sin(( 1) ) cos cos(( 1) )sin

m m m
m m m
φ φ φ φ φ
φ φ φ φ φ
= − − −
= − + −

 (C.9) 
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By using the Gauss normalised coefficients (Equation(C.4)) and the partial derivative 

functions (Equation(C.8)) the components of the IGRF vector in the local tangent 

coordinates are determined to be, 
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− ∂ − ⎛ ⎞= = − +⎜ ⎟∂ ⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

 (C.10) 

where, 

 rB  =  radial component of field (Outward positive) 

 Bθ  =  co-elevation component of field (South positive) 

 Bφ  =  azimuthal component of field (East positive) 

 

The IGRF field vector in the local tangent coordinates is then converted to the 

Geocentric Inertial coordinates in the following manner (Engelbrecht 1999); 

 
cosδ cos sin δ cos sin
cosδsin sin δsin cos

sin δ cosδ 0

ix r

iy

iz

B B
B B

BB
θ

φ

⎡ ⎤ ⎡ ⎤Ω Ω − Ω⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = Ω Ω − Ω⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

I
VECB  (C.11) 

where, 

 [ ]T
ix iy izB B B  =  geomagnetic field vector in Inertial coordinates 

         δ  =  declination angle 

        Ω  =  right ascension angle  

 

The declination angle δ  and the RAAN angle Ω  (Section 7.1.1) are calculated 

from the co-elevation angle, θ , and the East longitude from Greenwhich, φ , 

respectively. 

 
δ = 90

G

θ
φ
° −

Ω = + Ω
 (C.12) 

where, 

 GΩ  = RAAN of Greenwhich meridian 
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Once this has been done the next step is to convert the geomagnetic field 

vector from the inertial coordinates to the orbit coordinates using the transformation 

matrix [T] (Equation (A.8)) which is denoted in the vector form as, 

 O
VECB  = [T] I

VECB   (C.13) 

where, 

 [ ]T
ox oy ozB B B=O

VECB = geomagnetic field vector in orbit coordinates  

 

Finally the geomagnetic field vector in the orbit coordinates are converted into the 

body coordinates using the DCM matrix (Equation (2.4)). The vector representation 

is, 

 B
VECB  = [A(q)] O

VECB   (C.14) 

where, 

 [ ]T
Z Y ZB B B=B

VECB = geomagnetic field vector in body coordinates 

 

N.B:  The geomagnetic field vector (B) discussed on Page 44 is an alternative notation 

used to represent B
VECB . 
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Table C.1   10th order IGRF Gaussian coefficients for the EPOCH 2005-2010 

N m g 

(nT) 

h 

(nT) 

dg/dt 

(nT/yr)

dh/dt 

(nT/yr)

N m g 

(nT)

h 

(nT) 

dg/dt 

(nT/yr)

dh/dt 

(nT/yr)
1 0 -29557 ---- 8.8 ---- 7 6 13 -64 -0.5 -0.3 
1 1 -1672 5080 10.8 -21.3 7 7 1.0 -3.0 0.9 0.3 
2 0 -3511 ---- -15.0 ---- 8 0 1247 ---- -0.2 ---- 
2 1 5278 -4495 -6.9 -23.3 8 1 516 751 0.2 -0.2 
2 2 1435 -448 -1.0 -14.0 8 2 -639 -1178 -0.2 0.2 
3 0 3340 ---- -0.3 ---- 8 3 -282 402 0.2 0.2 
3 1 -7059 -614 -3.1 5.4 8 4 -481 -529 -0.2 0.4 
3 2 2414 522 -0.9 -6.5 8 5 148 239 0.2 0.2 
3 3 533 -415 -6.8 -2.0 8 6 65 53 0.5 -0.3 
4 0 4024 ---- -2.5 ---- 8 7 -29 -32 -0.7 0.5 
4 1 4417 1557 2.8 2.0 8 8 -3.0 -0.1 0.5 0.4 
4 2 828 -884 -7.1 1.8 9 0 532 ---- 0.0 ---- 
4 3 -794 305 5.9 5.6 9 1 1249 -2561 0.0 0.0 
4 4 74 -225 -3.2 0.0 9 2 391 1402 0.0 0.0 
5 0 -1792 ---- -2.6 ---- 9 3 -581 1054 0.0 0.0 
5 1 3603 434 0.4 0.1 9 4 282 -378 0.0 0.0 
5 2 1605 1382 -3.0 1.8 9 5 -364 -273 0.0 0.0 
5 3 -643 -579 -1.2 2.0 9 6 -23 141 0.0 0.0 
5 4 -373 -43 0.2 4.5 9 7 66 22 0.0 0.0 
5 5 -10 73 -0.6 -1.0 9 8 -17 -20 0.0 0.0 
6 0 1053 ---- -0.8 ---- 9 9 -5.6 3.6 0.0 0.0 
6 1 1316 -382 0.2 -0.4 10 0 -397 ---- 0.0 ---- 
6 2 1145 817 -0.2 -1.9 10 1 -1533 584 0.0 0.0 
6 3 -1505 635 2.1 -0.4 10 2 337 42 0.0 0.0 
6 4 -82 -346 -2.1 -0.4 10 3 -413 727 0.0 0.0 
6 5 34 0.0 -0.4 -0.2 10 4 -12 549 0.0 0.0 
6 6 -58 34 1.3 0.9 10 5 222 -481 0.0 0.0 
7 0 2140 ---- -0.4 ---- 10 6 12 -41 0.0 0.0 
7 1 -2639 -2178 0.0 0.8 10 7 42 -68 0.0 0.0 
7 2 -41 -652 -0.2 0.4 10 8 32 -7.0 0.0 0.0 
7 3 791 141 1.1 0.1 10 9 -0.3 -6.1 0.0 0.0 
7 4 152 314 0.6 0.2 10 10 -1.3 -4.7 0.0 0.0 
7 5 58 67 0.4 -0.9 --- --- ---- ---- ---- ---- 
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Two Line Element Set 
 The two line element (TLE) set is a format which describes the Keplerian 

orbital elements of the satellite along with certain other parameters.  The TLE is 

generated by the by NORAD using doppler techniques.  NORAD updates the TLE’s 

periodically.   

 

The general representation of the TLE is as shown. 
AAAAAAAAAAAAAAAAAAAAAAAA 
1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN 
2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN 
 
A: Denotes an alphabet 

N: Denotes a number 

U: Indicates unclassified 

+,.,-: Denotes a plus, decimal and minus sign respectively 

 

 Line 0 is a twenty four character name which is the standard followed for the 

NORAD satellite catalogue.  Lines 1 and 2 are the standard two line orbital element 

set.   

 

TLE Description 
 Discussing the TLE set with the help of an example is the easiest way to gain 

insight about the format. 
   
ASTRA 1B 
1 21139U 91015A   05188.08874751  .00000000  00000-0  00000-0 0  2733 
2 21139   0.0228 270.5862 0003261 157.3962 268.5399  1.00273342 40913 
 

The TLE of Astra 1B which is used in the study is shown here.  It can be seen that 

each line contains 69 columns including the spaces in between adjacent numbers.  A 

description of each column in each row is done in Table D.1 and Table D.2 with Astra 

1B as the example. 
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Table D.1  Description of the first line in the TLE 

Field Column Description Value for Astra 1B

1.1 01 Line number  1 

1.2 03-07 Satellite number 21139 

1.3 08 Classification U 

1.4 10-11 International Designator (Last two digits 

of launch year) 

91 

1.5 12-14 International Designator (Launch number 

of the year) 

015 

1.6 15-17 International Designator (Piece of Launch) A 

1.7 19-20 Epoch Year (Last two digits of the year) 05 

1.8 21-32 Epoch (Day and fractional part of the year) 188.08874751 

1.9 34-43 First time derivative of mean motion/2 .00000000 

1.10 45-52 Second time derivative of mean motion/6 

(decimal point assumed) 

00000-0 

1.11 54-61 BStar drag term (decimal point assumed) 00000-0 

1.12 63 Ephemeris type 0 

1.13 65-68 Element number 273 

1.14 69 Checksum (Modulo 10) (Letters, blanks, 

periods,  plus signs = 0; minus signs = 1) 

3 

 

Fields 1.1 to 1.8 are self-explanatory.  Fields 1.9 and 1.10 describes how the 

mean motion changes with respect to time.  As expected for a GEO satellite these 

values are zero for Astra 1B.  These terms are not important in the sense that they are 

not used in the orbit propagation model.  The field 1.11 indicates the drag term 

involved for the satellite which is zero as expected.  The representation in fields 1.10 

and 1.11 requires some explanation.  For example, the value -12345-6 corresponds to 

-0.12345 × 10-6.  Each of these two fields can be blank, corresponding to a value of 

zero.  Field 1.12 is an internal parameter used by NORAD which is displayed as zero 

for public use.  Field 1.13 denotes the number of element sets that have been 

generated so far for the body in consideration (in this case Astra 1B).  Field 1.14 will 

be discussed later on. 
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Table D.2  Description of the second line in the TLE 

Field Column Description Value for Astra 1B 

2.1 01 Line number 2 

2.2 03-07 Satellite number 21139 

2.3 09-16 Inclination 0.0228 

2.4 18-25 RAAN 270.5862 

2.5 27-33 Eccentricity (decimal point assumed ) 0003261 

2.6 35-42 Argument of Perigee 157.3962 

2.7 44-51 Mean anomaly 268.5399 

2.8 53-63 Mean motion 1.00273342 

2.9 64-68 Revolution number at epoch 4091 

2.10 69 Checksum (Modulo 10) 3 

 

Fields 2.3 to 2.7 except for 2.5 is expressed in degrees.  Field 2.8, which is the 

mean motion of the satellite, is expressed in revolution/day.  Field 2.9 gives the 

number of revolutions done by the satellite with respect to the ascending node, since 

launch.  Field 2.10 and 1.14 are the same.  It is a robust error checking method where 

all the numbers are added along with minus signs which are assigned the value 1.  The 

last digit of the sum happens to be the checksum.   

The fields that are important and get used in the orbit propagator model are 

Fields 2.3 to 2.8 along with Fields 1.4 and 1.5.  The rest of the fields are just academic 

from a propagation point of view.  A more detailed description of the TLE set can be 

found on the webpage, http://celestrak.com/columns/v04n03/index.asp#FAQ01.   

 

 

 

 

 

http://celestrak.com/columns/v04n03/index.asp#FAQ01
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Moment of Inertia Calculations 
Moment of inertia is an important parameter in a spacecraft.  Moment of 

inertia’s varies with time due to propellant consumption mainly.  Here we will 

calculate inertias before and after the solar panels have been deployed. 

 

E.1  Inertias with Non-Deployed Appendages 
The mass of the satellite in orbit at the BOL is as mentioned in section 

2.1.This is the mass inclusive of the appendages (solar panels and antenna, both non-

deployed), hardware and propellant.  The satellite in this state will just be a box as 

shown. 

                                             

 
Fig E.1 Satellite with non-deployed appendages 

  

 2 2 2 2 2500[ ] [1.5 1.2 ] 153
12 12Xo
mI y z kgm= + = + =  (E.1) 

 2 2 2 2 2500[ ] [1.2 1.0 ] 101
12 12Y o
mI z x kgm= + = + =  (E.2) 

 2 2 2 2 2500[ ] [1.0 1.5 ] 135
12 12Z o
mI x y kgm= + = + =  (E.3) 

where m is the mass of the satellite. 
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E.2  Inertias with Deployed Appendages 
Once the satellite has acquired references like the Sun and Earth, solar panels 

and antenna is deployed.  The moment of inertia calculated along each axis is used in 

the control algorithms.  The moment of inertia contributions of the satellite antenna 

can be ignored because of its low mass contributions.  The configuration of the 

satellite is as shown below.  The individual solar panel mass would be around 10kg. 

 

 
 

 

                                    Fig E.2 Satellite with Deployed Appendages 
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               The parallel axis theorem can be used for calculating the moment of inertia 

along the X and Z axes.  

 / /
2( )

12
p

X Z

m
I I panel length= =  (E.4) 

and, 

 2
' ( )

12
p

Y

m
I panel width=  (E.5) 

where pm = mass of solar panels = 10kg 

 / /X Z
I I= is calculated to be 3.33 2kgm  whereas 'YI is 0.833 2kgm . 

 

With these values the inertia of satellite due to the panels can calculated. 

 /
2

' 2( )XX pX
I I m d= +  (E.6) 

 /
2

' 2( )ZZ pZ
I I m d= +  (E.7) 

 ' '2( )YY YI I=  (E.8) 

where d = distance between centre of panel to centre of satellite = 2.75m 

 ' 'XX ZZI I=  = 160 2kgm  whereas 'YYI  is 21.66kgm  

 

Now we are able to calculate the total moment of inertia’s along each axis. 

 

2
'

2
'

2
'

313kgm

295kgm

102.66 kgm

XX Xo XX

ZZ Zo ZZ

YY Yo YY

I I I

I I I

I I I

= + =

= + =

= + =

 (E.9) 
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Sensors 
 

F.1  Earth Sensor 
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F.2  Fine Sun Sensor 
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