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ABSTRACT 

 

Species of Alicyclobacillus are acid-tolerant and heat-resistant bacteria that cause 

spoilage of heat-treated fruit juices stored at room temperature. During the past decade, 

Alicyclobacillus spp. have become a major cause of spoilage in pasteurised fruit juices 

leading to significant economic losses world-wide. Spoilage has been reported in apple, 

pear, orange, peach, mango and white grape juice, as well as in fruit juice blends, fruit 

juice containing drinks and tomato products, such as tomato juice and canned 

tomatoes. Spoilage is characterised by a medicinal smell and guaiacol production. 

These endospore-formers have been shown to survive pasteurisation conditions of 95 

°C for 2 min, grow at temperatures between 25° and 60 °C and a pH range of 2.5 to 

6.0. Knowledge of this organism is limited, both locally and internationally and the route 

of contamination to the final product is not well established.  

In this study the fruit concentrate processing environment was investigated as a 

potential source and route of contamination for the final product. Species of 

Alicyclobacillus were isolated from orchard soil, various stages during processing and 

from fruit juice and concentrates. The isolates were identified based on morpholological, 

biochemical and physiological properties. Identification to species level was done by 

16S ribosomal RNA gene sequencing and strain differentiation by RAPD-PCR. Results 

indicate that species of A. acidoterrestris and Alicyclobacillus acidocaldarius were found 

in orchard soil and throughout the processing environment. This is the first report on the 

isolation of these species from orchard soil, vinegar flies and the fruit processing 

environment. The 16 isolates identified as A. acidoterrestris grouped into four clusters 

based on RAPD-PCR banding patterns, suggesting that they belong to at least four 

genotypic groups. Isolates from the fruit concentrate, wash water and soil located 

outside of the fruit processing plant grouped into one cluster. Concluded from these 

results, A. acidoterrestris found in the wash water and soil outside of the factory could 

act as a potential reservoir of organisms for the contamination of the final fruit 

concentrate. Thus good manufacturing practices play an essential role in controlling 

incidence of spoilage caused by these bacteria. 

Fruit juices can be treated using ultraviolet (UV-C) light with a wavelength of  

254 nm, which has a germicidal effect against micro-organisms. Alicyclobacillus 

acidoterrestris spores were inoculated into tap water, used wash water from a fruit 

processing plant and grape juice concentrate. Ultraviolet dosage levels (J L−1) of 0, 61, 

122, 183, 244, 305 and 367 were applied using a novel UV-C turbulent flow system. 
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The UV treatment method was shown to reliably achieve in excess of a 4 log10 

reduction (99.99%) per 0.5 kJ L-1 of UV-C dosage in all the liquids inoculated with  

A. acidoterrestris. The applied novel UV technology could serve as an alternative to 

thermal treatments of fruit juices for the inactivation of Alicyclobacillus spores or in the 

treatment of contaminated processing wash water.  

Finally, the thermal inactivation at 95 °C for two strains of A. acidoterrestris 

isolated from contaminated fruit juice concentrates were investigated in a 0.1% (m/v) 

peptone buffer solution (pH 7.04) and grape juice (pH 4.02, 15.5 °Brix). The thermal 

inactivation of A. acidoterrestris spores followed first-order kinetics, suggesting that as 

the microbial population is exposed to a specific high temperature, the spores 

inactivated at a constant rate. D-values determined in the buffer solution were 

calculated to be 1.92 min and 2.29 min, while in grape juice D-values were found to be 

2.25 min and 2.58 min for the two strains tested. From this study it is clear that the  

D-value is dependant on the strain tested, but also on the soluble solids of the solution 

the cells are suspended in. The results indicated that the spores of A. acidoterrestris 

isolated from South African fruit juice concentrate may survive after the pasteurisation 

treatment commonly applied during manufacturing. 
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UITTREKSEL 

 

Spesies van Alicyclobacillus is suur-tolerante en hittebestande bakterieë wat bederf 

veroorsaak in hitte-behandelde vrugtesappe wat teen kamertemperatuur gestoor word. 

Gedurende die afgelope dekade het Alicyclobacillus spp. ‘n belangrike oorsaak van 

bederf in gepasteuriseerde vrugtesappe geword en beduidende ekonomiese verliese 

wêreldwyd veroorsaak. Bederf is aangeteken in appel-, peer-, lemoen-, perske-, 

mango- en witdruiwesap, sowel as in vrugtesapversnitte, vrugtesapbevattende drankies 

en in tamatieprodukte soos tamatiesap en ingemaakte tamaties. Bederf word 

gekenmerk deur ’n medisinale reuk en guaiacol produksie. Daar is gevind dat hierdie 

endospoorvormers pasteurisasie teen 95 °C vir 2 min kan oorleef en kan groei by 

temperature tussen 25° en 60 °C en ‘n pH van 2.5 to 6.0. Plaaslik sowel as 

internasionaal is kennis van hierdie organisme beperk en die roete van kontaminasie 

van produkte is nog nie goed vasgestel nie.  

In hierdie studie is die vrugtekonsentraat-verwerkingsmilieu ondersoek as ‘n 

moontlike bron en roete van kontaminasie van die finale produk. Spesies van 

Alicyclobacillus is vanuit vrugteboordgrond, verskeie verwerkingstadia en van vrugtesap 

en vrugtesapkonsentraat geïsoleer. Die isolate is op grond van morfologiese, 

biochemiese en fisiologiese eienskappe geïdentifiseer. Identifikasie tot spesiesvlak is 

deur 16S rDNS sekwensering gedoen en stam differensiasie deur RAPD-PKR. 

Resultate het aangetoon dat A. acidoterrestris en A. acidocaldarius in vrugteboordgrond 

sowel as in alle stadia van die verwerkingsmilieu voorkom. Dit is die eerste verslag van 

die isolering van hierdie spesies uit die Suid-Afrikaanse vrugteverwerkingsmilieu, 

vrugteboordgrond en asynvlieë. Die 16 isolate, geïdentifiseer as A. acidoterrestris en in 

vier groepe geplaas op grond van hul RAPD-PKR bandpatrone, dui aan dat hulle aan 

minstens vier genotipiese groepe behoort. Isolate afkomstig van die vrugtekonsentraat, 

waswater en die grond buitekant die vrugteverwerkingsaanleg het een groep gevorm. 

Uit hierdie resultate kan afgelei word dat A. acidoterrestris, wat in die waswater en 

grond buite die aanleg voorkom, as ‘n moontlike bron van organismes vir die 

kontaminering van die finale vrugtekonsentraat kan dien. Goeie vervaardigingspraktyke 

speel dus ‘n noodsaaklike rol in die beheer van bederf veroorsaak deur hierdie 

bakterieë. 

Vrugtesappe kan behandel word met ultravioletlig (UV-C) met ‘n golflengte van 

254 nm wat ‘n dodende effek op mikro-organismes het. Kraanwater, gebruikte waswater 

van ‘n vrugtesapvervaardigingsaanleg en druiwesapkonsentraat is met  
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A. acidoterrestris spore geïnokuleer. Ultraviolet toedieningsvlakke (J L−1) van 0, 61, 122, 

183, 244, 305 en 367 is aangewend met behulp van ‘n nuwe UV-C drukvloei stelsel. 

Daar is aangetoon dat die UV-behandelingsmetode ‘n betroubare vermindering 

(99.99%) van meer as 4 log10 per 0.5 kJ L-1 van ‘n UV-C dosis gee in al die vloeistowwe 

wat geïnokuleer is met A. acidoterrestris. Die toegepaste nuwe UV-tegnologie kan 

gebruik word as ‘n alternatief tot die hittebehandeling van vrugtesap vir die deaktivering 

van Alicyclobacillus spore of in die behandeling van gekontamineerde waswater. 

Ten slotte is hitte-deaktivering teen 95 °C van twee stamme van 

A. acidoterrestris, geïsoleer uit gekontamineerde vrugtesapkonsentraat, in ‘n 0.1% (m/v) 

peptoonbufferoplossing (pH 7.04) en druiwesap (pH 4.02, 15.5 °Brix), ondersoek. Die 

hitte-deaktivering van A. acidoterrestris spore het eerste-orde kinetika gevolg, wat 

aandui dat die mikrobe-populasie teen ‘n konstante tempo afsterf, wanneer blootgestel 

aan ‘n spesifieke hoë temperatuur. Die D-waardes in die bufferoplossing is bereken as 

1.92 min en 2.29 min, terwyl daar gevind is dat die D-waardes in druiwesap 2.25 min en 

2.58 min is vir die twee betrokke stamme. Vanuit hierdie studie is dit duidelik dat die  

D-waardes afhang van die betrokke stam, maar ook van die oplosbare vaste stowwe 

van die oplossing waarin die selle opgelos is. Die resultate dui daarop dat die spore van 

A. acidoterrestris, wat geïsoleer is uit Suid-Afrikaanse vrugtesapkonsentraat, die 

pasteurisasiebehandeling wat algemeen tydens vervaardiging toegepas word, kan 

oorleef.  

Aangesien die toepassing van strenger hittebehandeling om spore van  

A. acidoterrestris te deaktiveer onaanvaarbare organoleptiese veranderinge in die 

produk tot gevolg het, word dit aanbeveel dat die risiko van bederf verminder behoort te 

word deur die gebruik van goeie vervaardigingspraktyke gedurende vrugteverwerking. 
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CHAPTER 1 

 

INTRODUCTION 

 

Fruit concentrate has traditionally been regarded as resistant to spoilage by 

deteriogenic micro-organisms due to its physical and chemical characteristics. These 

characteristics include a low pH of between 3.5 to 4.0, low water activity, high sugar 

concentration (typically around 66 °Brix), high viscosity and reduced aeration capacity 

and dissolved oxygen (Jay, 1998; Palop et al., 2000). The addition of a hot-fill and hold 

pasteurisation process as used in the fruit beverage industry, where the product is held 

at 86° to 96 °C for approximately 2 min, is also sufficient to destroy most non-spore-

forming micro-organisms (Palop et al., 2000; Chang & Kang, 2004).  

Spoilage of commercially available pasteurised fruit juice was first reported by 

Cerny et al. (1984) who found shelf-stable, aseptically packaged apple juice to have an 

off-flavour. Following this report, an increasing number of spoilage incidents arose and 

almost all of these were caused by the spore-forming, thermo-acidophilic bacteria, 

Alicyclobacillus acidoterrestris. The fruit juice industry now acknowledges  

A. acidoterrestris as a major quality control target for pasteurisation (Yamazaki et al., 

1996; Pettipher et al., 1997, Silva & Gibbs, 2004; Walker & Phillips, 2008; Bevilacque et 

al., 2008).  

Spoilage caused by this bacterium is difficult to detect visually. The spoiled juice 

appears normal, or might have a light sediment with no gas formation. Often, the only 

evidence of spoilage is apparent as a medicinal/phenolic off-flavour (Walls & Chuyate, 

1998; Jensen, 1999). The chemicals responsible for this off-odour were identified as 

guaiacol (2-methoxyphenol) and other halophenols such as 2,6-dichlorophenol (2,6-

DCP) and 2,6-dibromophenol (2,6-DBP). Guaiacol can be detected by smell in fruit 

juices at 2 ppb and was detected in orange and apple juices in the presence of around  

5 log CFU mL-1 of A. acidoterrestris cells (Gocmen et al., 2005). Spoilage caused by  

A. acidoterrestris has to date been reported in apple, pear, orange, peach, mango and 

white grape juice, with shelf-stable apple juice most frequently being spoiled 

(Borlinghaus & Engel, 1997; Chang & Kang, 2004; Walker & Phillips, 2008). More 

diverse products such as shelf-stable iced tea containing berry juice, the ingredients of 

rose hip and hibiscus teas (Duong & Jensen, 2000), a carbonated fruit drink (Pettipher, 

2000) and diced canned tomatoes (Chang & Kang, 2004) have also seen incidences of 

spoilage caused by A. acidoterrestris. A 2005 survey by European Fruit Juice 
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Association (AIJN) found that 45% of respondents had experienced spoilage problems 

by Alicyclobacillus spp. in the preceding 3 years. Of these incidents 52% were 

described as being either intermediate or major incidents. Apple concentrate was the 

most commonly contaminated product (Gerber Juice Company Ltd., 2006).  

The spores of A. acidoterrestris can survive the typical pasteurisation regimes 

applied during juice manufacturing which provides the heat-shock treatment that may 

stimulate spore germination and outgrowth (Splittstoesser et al., 1994; Eiroa et al., 

1999; Orr & Beuchat, 2000). This heat resistance was observed by Splittstoesser et al. 

(1994) who reported D-values for A. acidoterrestris spores of 23 min at 90 °C and 2.4 to 

2.8 min at 95 °C, suggesting that spores survive the typical juice pasteurisation process 

that consists of holding at 88° to 96 °C for 30 s to 2 min. The ability of  

A. acidoterrestris cells to grow at the low pH (3-3.5) typically found in fruit juice then 

results in subsequent spoilage of the juice (Splittstoesser et al., 1998; Eiora et al., 1999; 

Gouws et al., 2005).  

To date, the genus Alicyclobacillus includes 19 species of which only  

A. acidoterrestris has consistently been associated with product spoilage. Five other 

species, including A. acidiphilus, A. pomorum, A. hesperidum, A. cycloheptanicus and 

A. acidocaldarius have been implicated as potential spoilage bacteria due to their 

isolation from spoiled products and/or their ability to produce taint chemicals. Fruit juice 

contamination is thought to be the result of unwashed or poorly washed raw fruit that is 

processed, as well as contaminated water used during the production of fruit juices 

(Pontius et al., 1998; Orr & Beuchat, 2000; McIntyre et al., 1995, Groenewald et al., 

2009).  

Due to the ability of A. acidoterrestris to survive commercial pasteurisation 

regimes and the adverse effect on the organoleptic and nutritional properties of the 

juice, there is a need for an alternative to thermal pasteurisation.  

The use of ultraviolet (UV) light in food processing is one of a number of non-

thermal technologies being used as a substitute for thermal processing. UV treatment 

has one major advantage in that it does not result in adverse side-effects (such as 

nutrient and flavour loss) on fruit juice that are associated with heat treatments. In 

addition, UV treatment has been shown to be less energy-intensive and, therefore, 

more cost-effective and environmentally friendly than conventional pasteurisation 

(Kouchma, 2009).  

The aim of this study was to investigate orchard soil and the fruit concentrate 

processing environment as a potential source and route of contamination for the final 
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product. The effectiveness of UV radiation for reducing alicylobacilli counts in water and 

fruit juice concentrates, as well as the effect of temperature on two wild type strains of 

A. acidoterrestris in a buffered solution and single strength grape juice were 

investigated. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

A. BACKGROUND 

 

Fruit concentrate has traditionally been regarded as resistant to spoilage by 

deteriogenic micro-organisms due to its physical and chemical characteristics. These 

characteristics include a low pH of between 3.5 to 4.0, low water activity, high sugar 

concentration (typically around 66 °Brix), high viscosity, reduced aeration capacity and 

reduced dissolved oxygen (Jay, 1998a; Palop et al., 2000). The addition of a hot-fill and 

hold pasteurisation process as used in the fruit beverage industry, where the product is 

held at 88° to 96 °C for approximately 2 min before packaging, is also sufficient to 

destroy most non-spore-forming micro-organisms (Palop et al., 2000; Chang & Kang, 

2004).  

Microbial contamination of fruit juice concentrate can occur due to the presence 

of bacteria, mycelial fungi and yeasts. Only a restricted portion of these micro-

organisms have the ability to grow in the reconstituted juice and cause product spoilage 

(Walker & Phillips, 2008). Deteriogenic bacterial species associated with processed fruit 

juices include micro-organisms from the genera Bacillus, Clostridium, Lactobacillus, and 

Leuconostoc (Murdock & Hatcher, 1975). Streptococcus and Pediococcus species are 

found in lower frequency in processed fruit juice. These micro-organisms may promote 

the deterioration of food products by degrading their compounds (such as 

carbohydrates, proteins and vitamins) to produce undesirable odour and off-flavour, 

colouration, pH and texture changes. Spoilage by Lactobacillus and Leuconostoc 

species is due to an off-odour produced by the lactic acid bacteria (LAB) during growth 

in reconstituted juice. The chemical mainly responsible for the undesirable flavour and 

off-odour, described as similar to “acid butter or milk”, has been identified to be diacetyl. 

As LAB do not form spores and are unable to survive the commercial pasteurisation 

process, spoilage has been attributed to post-pasteurisation contamination of the fruit 

juice product (Shearer et al., 2002). 

The high thermal resistance of spores of certain bacterial species can result in 

them being viable after the high temperature treatments associated with the 

pasteurisation process. Most bacterial spores, however, will fail to germinate at a pH 
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below 4.1, limiting spoilage to a small number of organisms that are able to grow at pH 

3.8 or lower such as Bacillus coagulans and Clostridium pasteurianum (Pontius et al., 

1998). The occurrence of the B. coagulans spores have been reported in products 

based on tomato (juice or paste) and canned fruit (Thomson, 1981). This thermophile is 

capable of growth at pH 4 and causes a flat-sour type of spoilage by producing off-

flavour and souring of the product. These spores are of low heat resistance compared 

with those of the obligate thermophiles, with only the occasional report of contamination 

in low acid canned foods. Spoilage by Clostridium pasteurianum (grows at pH 3.8 to 

5.0) is a result of butyric acid type fermentation in acidic foods, such as tomato juice, 

fruits, fruit juices or in medium acidic foods such as corn, peas, and spinach with 

swelling of the container due to the production of CO2 and H2. Clostridium pasteurianum 

is rarely encountered and spores of this organism are of low heat resistance and, 

therefore, susceptible to destruction by commercial pasteurisation processes (Hsu & 

Beuchat, 1986). 

The first instance of spoilage reported to be caused by members of the genus 

Alicyclobacillus occurred in 1982 in aseptically packaged apple juice in Germany. The 

impact of these spore-forming thermo-acidophilic bacteria in fruit juices was not 

acknowledged until more than a decade later when numerous reports of  

A. acidoterrestris spoilage were reported (Walls, 1994; Yamazaki et al., 1996; Pettipher 

et al., 1997; Walls & Chuyate, 1998; Pettipher, 2000). Spoilage caused by  

A. acidoterrestris has to date been reported in apple, pear, orange, peach, mango and 

white grape juice, as well as in fruit juice blends, fruit juice containing drinks and tomato 

products, such as tomato juice and canned tomatoes (Borlinghaus & Engel, 1997; 

Chang & Kang, 2004; Gouws et al., 2005). Due to their thermo-acidophilic properties 

and their occurrence in several spoiled pasteurised products, Silva et al. (1999) 

recommend A. acidoterrestris spores as a target for pasteurisation of high acidic food 

products. The fruit juice industry now acknowledges A. acidoterrestris as a major quality 

control target for pasteurisation and for which effective control measures needs to be 

implemented to minimise spoilage (Silva & Gibbs, 2004).  

 

B. DISCOVERY AND HISTORY  

 

In 1967, well before the genus Alicyclobacillus was established, Uchino & Doi (1967) 

isolated thermo-acidophilic spore-forming bacteria from hot springs in the Tohoku 

district of Japan. Water temperatures at these hot springs can reach 75° to 80 °C, while 
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the pH is typically between 2 and 3. The isolates were provisionally classified as strains 

of B. coagulans due to a morphological resemblance and their ability to grow at 55 °C, 

but not at 37 °C. Similar organisms were isolated by Darland & Brock (1971) and De 

Rosa et al. (1971) from aqueous and terrestrial thermal acid environments in the United 

States of America and in Italy, respectively. Of the fourteen isolates isolated by Darland 

& Brock (1971) none grew at 40 °C, all at 45° to 65 °C, six at 70 °C and none at 75 °C. 

Most isolates grew at pH 2, all at pH 3 to 5, eight at pH 6 and none at a pH higher than 

6.4. Being Gram-variable spore-forming rods the isolates were placed in the genus 

Bacillus. However, the DNA composition of the isolates was approximately 62% mol 

Guanine + Cytosine (%mol G + C) compared with that of Bacillus, which is between 45 

and 50 %mol G+ C. As a result of the difference in DNA composition, as well as their 

acidophilic and strictly aerobic nature, a new species Bacillus acidocaldarius was 

proposed (Darland & Brock, 1971). Research carried out by De Rosa et al. (1971) at 

around the same date established that the membrane fatty acids of B. acidocaldarius 

comprised up to 65% 11-cyclohexylundecanoic and 13-cyclohexyltridecanoic acids with 

no unsaturated fatty acids.  

Hippchen et al. (1981) isolated thermo-acidophilic bacteria from soils that were 

neither acidic nor hot. Soil samples from neutral environments were pasteurised and 

then either streaked directly onto acidic media or subjected to an enrichment step 

before incubation at 50 °C, at a pH between 3 and 4. Isolates from the soil samples 

subjected to the enrichment step yielded bacteria with ω-cyclohexane fatty acids, 

demonstrating the existence of thermo-acidophilic bacilli similar to B. acidocaldarius in 

neutral soils. Subsequently similar bacteria were isolated in 1982 from spoiled apple 

juice produced in Germany (Cerny et al., 1984). These bacilli were able to grow at a 

temperature range of 26° to 55 °C and at pH between 2.5 and 6.0, while their spores 

showed extremely high thermal resistance (D90 of 15 min at pH 3.5). The bacteria were 

able to survive the industrial pasteurisation applied to fruit juice and germinate under the 

low pH conditions of apple juice (Cerny et al., 1984). After extensive research on the 

isolates of Hippchen et al. (1981) and Cerny et al. (1984), Deinhard et al. (1987a) 

proposed the new species Bacillus acidoterrestris. Characteristics which distinguished 

B. acidoterrestris from B. acidocaldarius were: a %mol G + C content of the DNA that is 

7% lower than B. acidocaldarius, low DNA-DNA homology between the two species as 

shown by DNA-DNA hybridisation studies, and a slightly lower optimum growth 

temperature. Differences in their use of carbon-sources were also used to separate the 
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two species with B. acidocaldarius being able to utilise erythritol, sorbitol, and xylitol 

(Cerny et al., 1984).  

Poralla & König (1983) described a third thermo-acidophilic bacillus which 

differed from B. acidocaldarius and B. acidoterrestris in that it contained mainly ω-

cycloheptane fatty acids in its membrane. This microorganism was named Bacillus 

cycloheptanicus (Deinhard et al., 1987b) and also differed from B. acidocaldarius and  

B. acidoterrestris by having an obligate nutrient requirement for methionine. A narrow 

growth temperature range of between 35° and 53 °C in comparison with the 

temperature range for B. acidocaldarius, which was approximately between 45° and 70 

°C was another distinguishing feature. Further taxonomic investigations on the 

comparative sequence analyses of the 16S ribosomal RNA (rRNA) genes of these three 

species indicated that the sequences of B. acidocaldarius and B. acidoterrestris were 

very similar (98.8%), but that of B. cycloheptanicus showed lower homology to  

B. acidocaldarius (93.2%) and B. acidoterrestris (92.7%). Comparing the levels of 

similarity between the 16S rRNA genes of these three species and Bacillus subtilis 

(84.3 – 85.3%), B. coagulans (85.0 – 85.2%) and B. stearothermophilus (86.2 – 86.8%) 

indicated that the three ω-alicyclic fatty acid containing bacteria were closely related, 

but markedly different from other Bacillus species. Based on these results, Wisotzkey et 

al. (1992) proposed that these three bacilli should be reclassified into a new genus, 

Alicyclobacillus gen. nov., in the family Bacillaceae.  

Over a decade after the first reported incidence of spoilage caused by  

A. acidoterrestris, a second report of spoilage caused by these bacteria occurred during 

two very hot European summers in 1994 and 1995 (Splittstoesser et al., 1994). Two 

strains of acidophilic bacilli were isolated from apple juice and from a hot-filled apple-

cranberry juice. The juices presented off-odour, with no gas formation and slight 

turbidity. The isolates were later identified as belonging to A. acidoterrestris 

(Splittstoesser et al., 1998). McIntyre et al. (1995) recovered acidophilic sporulated 

bacilli from juices reconstituted from concentrate and pasteurised by the hot-fill and hold 

system. Again deterioration was detected based on the presence of off-odour and 

visible growth. Prevedi et al. (1995) characterised strains of acido-thermophilic 

sporulated bacteria isolated from non-deteriorated orange juice from Italy, which 

presented similar characteristics to that of A. acidoterrestris. The following year 

Yamazaki et al. (1996) isolated strains of A. acidoterrestris from samples of deteriorated 

acidic and isotonic beverages in Japan. Webster et al. (1996), suggested after isolating 

A. acidoterrestris from non-deteriorated samples of fruit juices and canned tomato that 
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acidic foods must have their quality evaluated in relation to the presence of  

A. acidoterrestris. Wisse & Parish (1998) were the first to isolate A. acidoterrestris from 

the fruit processing environment, emphasising the vulnerability of fruit products to 

contamination by these bacteria. The high occurrence of A. acidoterrestris in fruit juice 

and its ability to survive the commercial pasteurisation process leading to spoilage led 

Silva et al. (1999) to recommend A. acidoterrestris spores as a target for pasteurisation 

of high acidic food products.  

The description of the genus Alicyclobacillus was amended in 2003 with the 

isolation of Alicyclobacillus pomorum, which did not contain the most distinctive 

characteristics of Alicyclobacillus spp., namely the presence of ω-alicyclic fatty acids 

(Goto et al., 2003). Based on 16S rRNA gene sequence, DNA re-association studies 

and the presence of ω-alicyclic fatty acids and the isoprenoid quinone menaquinone-7 

(MK-7) in their cell membrane, Sulfobacillus thermosulfidoaxians subsp. thermotolerans 

and Sulfobacillus disulfidooxidans were reclassified as Alicyclobacillus tolerans and 

Alicyclobacillus disulfidooxidans, respectively (Karavaiko et al., 2005). The genus 

Alicyclobacillus currently comprises 19 recognised species, 2 genomic species and 4 

sub-species, namely A. acidiphilus, A. acidocaldarius subsp. acidocaldarius,  

A. acidocaldarius subsp. rittmannii, A. acidoterrestris, A. contaminans,  

A. cycloheptanicus, A. disulfidooxidans, A. fastidiosus, A. herbarius, A. hesperidum 

subsp. hesperidum, A. hesperidum subsp. aigle, A. kakegawensis,  

A. macrosporangiidus, A. pohliae, A. pomorum, A. sacchari, A. sendaiensis,  

A. shizuokensis, A. tolerans; A. vulcanalis; A. ferrooxydans; Alicyclobacillus genomic 

species 1 and Alicyclobacillus genomic species 2 (Albuquerque et al., 2000; Goto et al., 

2002a,b; Bevilacque et al., 2008; Jiang et al., 2008) (Table 1).  

 

C. CHARACTERISTICS  

 

Phylogenetically, the alicyclobacilli are members of the Clostridium-Bacillus subdivision 

of Gram-positive eubacteria, also known as the Firmicutes. The genus Alicyclobacillus 

is most closely related to the genus Bacillus and comprises thermophilic–acidophilic 

spore-forming bacteria (Table 1). The % mol G + C of the chromosomal DNA ranges 

from 48.6 to 63.0 as determined by the thermal denaturation. The value is nearer to 

62% for A. acidocaldarius and Alicyclobacillus genomic species 1, and near to 55% for 

the other species of Alicyclobacillus (Goto et al., 2007; Jiang et al., 2008; Walker & 

Phillips, 2008). The %mol G+C of A. acidoterrestris varies between 51.5 and 53.3% 
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depending on the strain, , with the type strain, A. acidoterrestris DSM 3922T , having a 

DNA %mol G+C of 51.5% (Tsuruoka et al., 2003; Bevilacque et al., 2008; Walker & 

Phillips, 2008). 

Growth factors, such as vitamins and organic sources of nitrogen, may or may 

not be required. The size of the colonies is dependant on the growth medium, reaching 

2 to 5 mm on acidified yeast starch glucose (YSG) media at optimum growth 

temperatures (Goto et al., 2007; Walker & Phillips, 2008). Depending on the growth 

media and strain, colonies can be non-pigmented, creamy white, yellow, translucent to 

opaque in colour, becoming slightly darker with age. Their sheen is slightly glossy. The 

colony morphology can differ slightly depending on strain, but in general round colonies 

are formed. Some old cultures may appear contaminated due to their heterogeneous 

morphology (Wisotskey et al., 1992; Chang & Kang, 2004; Goto et al., 2007; Bevilacque 

et al., 2008). 

Vegetative cells of the Alicyclobacillus genus are coccoids or rods, 0.3 to 0.8 µm 

wide by 1 to 4.5 µm long. These bacteria display aerobic growth, even though they can 

survive micro-aerobic conditions. A very low level of oxygen such as 0.1% dissolved 

oxygen can permit growth. When oxygen is depleted growth stops and the vegetative 

cells will sporulate (Goto et al., 2007; Jiang et al., 2008). Alicyclobacillus pohliae is, 

however, the exception to this as it is a facultative anaerobe (Bevilacque et al., 2008). 

Motility is always weak and only present under certain conditions while three species 

and one strain namely, A. disulfidooxidans, A. ferrooxydans, A. fastidiosus and A. 

acidocaldarius subsp. rittmanni appear to be strictly non-motile (Wisotskey et al., 1992; 

Walls & Chuyate, 1998; Jiang et al., 2008).  

Alicyclobacilli cells stain Gram-positive in the early stages of cultivation, and 

become Gram-negative or Gram-variable at the end of cultivation. Alicyclobacillus 

sendaiensis, however, always stains Gram-negative (Goto et al., 2006). Under 

environmental and nutritional adverse conditions spores are formed that are 

approximately 0.7 to 1 µm wide and 3 to 5 µm long. The location of these spores can be 

terminal, subterminal or central, and can be oval, ellipsoidal or round in shape 

depending on the species (Chang & Kang, 2004; Goto et al., 2006). The swelling of 

cells due to spore formation may or may not occur, depending on species and strains 

with a greater number of strains showing swelling (Goto et al., 2006; Walker & Phillips, 

2008).  

The bacteria of the genus Alicyclobacillus are strictly acidophilic and can grow
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Table 1 The isolated and described species and subspecies of the genus Alicyclobacillus  
 

Species  Source ω-cyclohexane/ 
ω-heptane fatty acids 
 

Reference 

A. acidiphilus “Off flavour” orange juice ω-Cyclohexane 
 

Matsubara et al., 2002 

A. acidocaldarius subsp. acidocaldarius Soil ω-Cyclohexane 
 

Darland & Brock 1971; Wisotzkey et al., 1992 

A. acidocaldarius subsp. rittmannii Crater of Mount Rittmann ω-Cyclohexane 
 

Nicolaus et al., 1998 

A. acidoterrestris Soil ω-Cyclohexane 
 

Deinhard et al., 1987a; Wisotzkey et al., 1992 

A. contaminans Fruit juice None 
 

Goto et al., 2007 

A. cycloheptanicus Acid soil ω-Cycloheptane 
 

Deinhard et al., 1987b; Wisotzkey et al., 1992 

A. disulfidooxidans Waste water sludge ω-Cyclohexane 
 

Dufresne et al., 1996, Karavaiko et al., 2005 

A. fastidiosus Apple juice ω-Cyclohexane 
 

Goto et al., 2007 

A. herbarius Dried hibiscus flowers ω-Cycloheptane 
 

Goto et al., 2002b 

A. hesperidum subsp hesperidum Sulpher-conaining soils ω-Cyclohexane 
 

Albuquerque et al., 2000 

A. hesperidum subsp. aigle Sulpher-conaining soils ω-Cyclohexane 
 

Goto et al., 2006 

A. kakegawensis Soil ω-Cycloheptane 
 

Goto et al., 2007 

Alicyclobacillus genomic species 2 Soil near a geyser ω-Cycloheptane 
 

Goto et al., 2002a 

Alicyclobacillus genomic species 1 Solfataric soils ω-Cycloheptane 
 

Albuquerque et al., 2000 
 

A. macrosporangiidus Soil None 
 

Goto et al., 2007 

A. pohliae Geothermal soil None 
 

Imperio et al., 2008 

A. pomorum Mixed fruit juice None 
 

Goto et al., 2003, 

A. sacchari Sugar ω-Cyclohexane 
 

Goto et al., 2007 

A. sendaiensis Soil ω-Cyclohexane 
 

Tsuruoka et al., 2003 

A. shizuokensis Soil ω-Cycloheptane 
 

Goto et al., 2007 

A. tolerans Oxidisable lead-zinc ores ω-Cyclohexane 
 

Karavaiko et al., 2005 

A. vulcanalis Geothermal pool ω-Cyclohexane 
 

Simbahan et al., 2004 

A. ferrooxydans Sulpher-conaining soils None Jiang et al., 2008 
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between pH 2 and 6.5 with A. tolerans and A. disulfidooxidans able to grow at a pH of 

below 1.5. Optimum pH for growth lies between pH 3 to 5.5 with the exception of  

A. tolerans and A. disulfidooxidans which have an optimum growth pH of between 1.5 

and 2. Alicyclobacilli are thermophillic bacteria with growth temperatures between 17° 

and 70 °C and optimum growth temperatures between 35° and 65 °C, with the 

exceptions of A. tolerans, A. disulfidooxidans and A. ferrooxydans which grow best 

under mesophilic conditions. Sugars are effectively metabolised resulting in acid 

production, but no gas is produced. The sugars that can be metabolised tend to form 

groupings according to species, although there is considerable variation within species 

(Chang & Kang, 2004; Goto et al., 2007). As in Bacillus, the major respiratory 

lipoquinone of Alicyclobacillus is meaquinone-7 (MK-7), although some strains have a 

quinone with shorter chains such as MK-3. The relative amount of these quinones 

present is dependant on the strain and the conditions of cultivation (Deinhard et al., 

1987; Goto et al., 2007). 

The genus name Alicyclobacillus refers to a distinct trait, the presence of 

aliphatic, cyclic fatty acids in the cytoplasmic membrane. These ω-alicyclic acids 

contain terminal cyclohexyl or cycloheptyl rings (Fig. 1). Members of the Alicyclobacilllus 

genus that contain predominantly ω-cyclohexane fatty acids are A. acidocaldarius 

subsp. acidocaldarius (Darland & Brock, 1971; Wisotzkey et al., 1992),  

A. acidocaldarius subsp. rittmannii (Nicolaus et al., 1998), A. acidoterrestris (Hippchen 

et al., 1981; Deinhard et al., 1987a; Wisotzkey et al., 1992; Walls & Chuyate, 1998),  

A. hespiridum (Albuquerque et al., 2000), A. acidiphilus (Matsubara et al., 2002),  

A. sendaiensis (Tsuruoka et al., 2003), A. vulcanalis (Simbahan et al., 2004),  

A. disulfdooxidans (Dufresne et al., 1996; Karavaiko et al., 2005), A. tolerans (Karavaiko 

et al., 2005), A. fastidiosus (Goto et al., 2007) and A. sacchari (Goto et al., 2007). Four 

species of Alicyclobacillus, namely A. cycloheptanicus (Deinhard et al., 1987b; 

Wisotzkey et al., 1992), A. herbarius (Goto et al., 2002b), A. kakegawensis (Goto et al., 

2007) and A. shizuokensis (Goto et al., 2007) possess predominantly ω-cycloheptane 

fatty acids. Experiments with A. acidocaldarius mutants unable to synthesize cyclohexyl 

fatty acids demonstrated the importance of these lipids for growth at temperatures 

above 50 °C and below pH 4. Alicyclobacillus acidocaldarius mutants exhibited poorer 

growth in low pH and high temperature conditions, while their sensitivity to heat shock 

and ethanol was increased compared to wild type organisms (Krischke & Poralla, 1990). 

Studies on artificial membranes by Kannenberg et al. (1984) showed that the addition of 

cyclic fatty acids lowered the transition temperature of membranes, but also had a 
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condensing effect, leading to a higher impermeability for low molecular weight 

substances up to 20 °C above the transition temperature. A greater proportion of ω-

cyclohexane fatty acids in the membrane lead to increased acyl chain density enabling 

a denser packing of the lipids in the membrane core. This increases the structural 

stabilisation of the membrane, lowers membrane fluidity and reduced permeability, 

thereby protecting the bacteria against acidic conditions and high temperatures. 

The presence of ω-cyclohexyl fatty acids are not essential in protecting 

alicylcobacilli from high temperatures and low pH. Goto et al. (2003) isolated thermo-

acidophillic bacteria from mixed fruit juice which was classified as members of 

Alicyclobacillus based on 16S rRNA and gyrB gene sequence analysis despite the lack 

of ω-cyclohexyl fatty acids in their cell membrane. This bacterium, A. pomorum, with 

four other species of Alicyclobacillus lack ω-cyclohexyl fatty acids. These are namely:  

A. contaminans (Goto et al., 2007), A. macrosporangiidus (Goto et al., 2007), A. pohliae 

(Imperio et al., 2008) and A. ferrooxydans (Jiang et al., 2008). Instead these 4 species 

of Alicyclobacillus possess iso-and anteiso-branched fatty acids (Goto et al., 2007). 

Another adaptation to extreme environments is the presence of hopanoids in the cells of 

a number of species of Alicyclobacillus (Poralla et al., 1980; Hippchen et al., 1981; 

Chang & Kang, 2004). The hopane ring is structurally similar to cholesterol and it is 

speculated that hopanes are phylogenetic precursors and structural equivalents of 

sterols (Poralla et al., 1980; Hippchen et al., 1981). Hopane glycolipids have a 

condensing effect on the membrane, decreasing the mobility of the acyl chains of the 

lipids and thereby stabilising the membrane. At low pH the condensing action hinders 

the passive diffusion of protons through the membrane, facilitating the establishment of 

an approximately neutral cytoplasmic pH (Poralla et al., 1980). In a study by Krischke & 

Poralla (1990) mutant cells containing only branched-chain fatty acids have significantly 

higher hopanoid content when compared to cells containing ω-cyclohexane fatty acids. 

The low membrane viscosity induced by the branched-chain fatty acids is thus 

compensated for by the presence of a higher concentration of hopanoids, leading to a 

more stable membrane.  

The spores of Alicyclobacillus species are more resistant in high acid conditions 

than the spores of many Bacillus species (Yamasaki et al., 1997). At a low pH, fully-

formed bacilli spores are easily demineralised, which decreases the heat resistance of 

the spores. Re-mineralisation of spores with divalent cations, such as calcium or 

manganese contributes to the stabilisation of spores against heat (Bender & Marquis,  
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Figure 1 Chemical structures of 2,6-dichlorophenol (2,6-DCP) (A) and  

2,6-dibromophenol (2,6-DBP) (B) (Jensen, 1999). 
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1985). In particular Ca2+ plays an important role in stabilising the heat resistance 

bychelating with dipicolinic acid (DPA) to form Ca-DPA which stabilises spores and 

contributes to heat resistance (Yamazaki et al., 1997). The ability of A. acidoterrestris 

spores to bind Ca2+ and Mn2+ strongly at a low pH and thereby keeping Ca-DPA levels 

constant contributes to their heat resistance (Yamazaki et al., 1997). 

The similarity of the 16S rRNA gene sequence within the genus Alicyclobacillus 

is reported to be over 92%. Within closely related species, especially belonging to the  

A. acidocaldarius group, the similarity is over 98%. Extensive research on the genotype 

of Alicyclobacillus spp. using 16S rRNA gene analysis, gyrB gene analysis, DNA-DNA 

hybridisation studies and comparison with the phenotype, suggest there is no obvious 

correlation between phenotype and genotype in the alicyclobacilli (Goto et al., 2002a, b; 

2007; 2008). Results suggest that species within the genus Alicyclobacillus are 

comprised of numerous strains with heterogeneous traits. Other bacterial genera with 

similar species composition include the LAB and the acetic acid bacteria. 

 

D.  ALICYCLOBACILLUS ACIDOTERRESTRIS  

 

Of the 19 species recognised as belonging to the genus Alicyclobacillus,  

A. acidoterrestris is the species that has the biggest impact on the food industry as it is 

widespread and has the potential to spoil food products (Sinigaglia et al., 2003; Walker 

& Phillips, 2005) (Table 2). When grown on laboratory media A. acidoterrestris forms 

distinctive, translucent, cream coloured colonies, round with flat interiors and raised 

centres that become darker and more opaque and umbonate with age (Deinhard et al., 

1987a; Walls & Chuyate, 1998; Jensen, 1999). 

Reported growth temperature ranges for A. acidoterrestris are 42° to 53 °C 

(Pontius et al., 1998; Walls & Chuyate, 1998), 26° to 50 °C (Borlinghaus & Engel, 1997) 

and 25° to 60 °C (Yamazaki et al., 1996). The optimum growth temperature is 40° to 45 

°C (Bevilacque et al., 2008). The pH growth range extends from 2.0 to 6.0, with an 

optimum of 4 to 4.5 (Bevilacque et al., 2008). Recently some strains have been isolated 

from soils that are capable of growth at a pH of between 2 and 7 (Bevilacque et al., 

2008). Germination of spores and growth has been reported in apple (pH 2.5; 11.4 

°Brix), tomato (pH 4.0; 7.0 °Brix), white grape juice (pH 2.8 to 3.4; 7.8 to 10.8 °Brix), 
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Thermal resistance 

 

Bacterial spore and vegetative cell heat resistance is measured as the decimal 

reduction time (D-value). The D-value is the time required to destroy 90% of the 

bacteria at a given temperature and is equal to the time (in minutes) required for the 

survival curve to traverse one log cycle at a given temperature (Jay, 1998b). The z-

value of an organism is the temperature that is required for the thermal destruction 

curve to move one log cycle. While the D-value gives an indication of the time needed 

at a certain temperature to kill an organism, the z-value relates the survival of an 

organism to different temperatures. The z-value enables one to calculate a thermal 

process of equivalency, if one D-value and the z-value is known. It is a valuable tool 

when attempting to alter commercial processing conditions to either decrease the time 

needed to achieve product safety and stability, or decrease the temperature to enhance 

product quality. Thus when process time is decreased, the z-value is used to determine 

the new target processing temperature. If a lower temperature is desired to improve 

product flavour, the z-value also provides the increased time needed to achieve the 

same product safety and stability (Parish, 2006). 

A wide range of D and z-values have been reported (Bahçeci & Acar, 2007) for 

the heat resistance spores of A. acidoterrestris, although the experimental conditions 

protocols varies while the taxonomy of this group is still unclear. A review of D and z-

values determined in different fruit products and buffers are presented in Tables 3 and 

4. The D90 values determined for different strains of A. acidoterrestris in apple juice (pH 

3.2-6.8, 11.4 °-12.2 °Brix), apple nectar with ascorbic acid (pH 2.95, 14.0 °Brix), apple 

nectar without ascorbic acid (pH 2.97, 14.0 °Brix), a clear apple drink, grape juice (pH 

3.3, 15.8 °Brix and pH 3.5, 16 °-30 °Brix), orange juice (pH 3.15-3.92, 9.0 °Brix), an 

orange drink, grapefruit juice (pH 3.42) and mango pulp (pH 4.0) range from 5.95 to 

23.1 min. D95-values determined in apple juice (pH 3.5-3.51, 11.4 °Brix), grape juice (pH 

3.3, 15.8 °Brix and pH 3.5, 16 ° and 30 °Brix), orange juice (pH 3.15 to 4.1, 5.3 °-9.0 

°Brix), berry juice, a fruit drink (pH 3.5, 4.8 °Brix), a fruit nectar (pH 3.5, 6.1 °Brix), 

cupuaçu extract (pH 3.6, 11.3 °Brix), grapefruit juice (pH 3.42) and mango pulp (pH 4.0) 

range from 1.0 to 8.7 min (Table 3) (Murakami et al., 1998; Pontius et al., 1998; 

Komitopoulou et al., 1999; Silva et al., 1999; Yamazaki et al., 2000; Bahçeci & Acar, 

2007; Maldonado et al., 2008). The z-values range from 6.9° to 21.27 °C in fruit 

products and from 5.9° to 10.0 °C in buffers (Table 4) (Palop et al., 2000). Differences 

between the D-values reported in literature may be attributed to differences in strains, 
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Table 2 Description of the species Alicyclobacillus acidoterrestris (adapted from 
Bevilacqua et al., 2008) 
 
 

1 
The concentration of each fatty acids is reported as percentage (w/w) on the total amount of fatty acids 

of the membrane. 
2
 For each juice pH and soluble solids (°Brix) are reported in brackets, as they could be the limiting 

factors for the germination of alicyclobacilli spores.  

General 
description 
 

Gram-positive spore-former, 
motile, rod-shaped 
(0.6–0.8 × 2.9–4.3 µm), catalase 
positive. C+G mol% is 
51.5–53.3%. 
 

Karavaiko et al., 2005 
 

Aw-soluble 
solids  
 

Growth occurred for aw values >0.984, 
with an optimal value of 0.992 
(Soluble solids, 12.5 °Brix). Soluble solids 
>18 °Brix inhibited 
spore germination; spores showed to 
retain their viability in juice 
concentrates (70 °Brix) 
 

Sinigaglia et al., 2003 
 

pH 
 

acidophilic, able to grow at pH 2.0–6.0 
(pH opt, 4.0–4.5). Strains, able to survive 
and grow 
at pH 2.0–7.0, isolated from soil 
 

Bevilacqua et al., 2006 

Temperature 
 

Topt is 40°–45 °C, within a range of 
35°–60 °C. Strains from 
soil were able to grow at 25–30 °C 
 

Bevilacqua et al., 2006 
 

NaCl 
 

Growth was observed at 5% (m/v) NaCl; 
some 
strains showed a moderate grow in Malt 
Extract broth + 7–8% (m/v) NaCl  
 

Bevilacqua et al., 2006 
 

Acid 
production 
 
 

From glucose, erythritol, ribose, D-xylose, 
D-fructose, rhamnose, inositol, 
mannitol, sorbitol, xylitol, β-gentiobiose 
 
 

Karavaiko et al., 2005 
 

Fatty acid 
composition

1
 

 

ω-cyclohexane-C17:0, 67.4%; 
ω-cyclohexane-C19:0, 24.6%; 
15:0 iso, traces; 15:0 anteiso, traces; 
16:0, 2.5%; 17:0 iso, 1.2%; 17:0 anteiso, 
4.2% (A. acidoterrestris DSM 3922) 
 

Tsuruoka et al., 2003 

Growth in 
juices

2
 

 

Germination of spores and growth could 
occur in apple (pH 2.5; 11.4 °Brix), 
tomato (pH 4.0; 7.0 °Brix), white grape 
(pH 2.8–3.4; 7.8–10.8 °Brix), 
grapefruit (pH 3.1; 10.4 °Brix), orange 
(pH 3.6; 11.4 °Brix) and pineapple juices 
(pH 3.3; 13.4 °Brix) and shelf-stable iced 
tea. Growth did not occur in red grape 
juices (pH 2.3.–3.8 ; 9.1–12.2 °Brix) and 
Cupuaçu (pH 3.6; 11.3 °Brix). 
 

Silva & Gibbs, 2001 
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sporulation temperature, nutrient composition and pH of the heating medium, water 

activity, presence or absence of divalent cations and antimicrobial compounds (Bahçeci 

& Acar, 2007). 

Temperature was the factor with the most impact on the D-value of  

A. acidoterrestris spores, followed by soluble solids and lastly pH. D-value decreased 

with increasing temperature and decreasing soluble solids and pH (Pontius et al., 1998; 

Splittstoesser et al., 1998; Silva et al., 1999; Bahçeci & Acar, 2007; Maldonado et al., 

2008). Bahçeci and Acar (2007), found that A. acidoterrestris spores followed first-order 

kinetics, suggesting that as the microbial population was heated at a specific 

temperature, the spores inactivated at a constant rate.  

Temperature also affects the role that parameters such as pH and soluble solids 

play in the overall effect on D-values. While influence of pH on D-value was observed at 

the lowest temperature studied, the magnitude of the effect was not clear at higher 

temperatures (Pontius et al., 1998; Silva et al., 1999; Komitopoulou et al., 1999; 

Bahçeci & Acar, 2007). Pontius et al. (1998) found that the D-values of A. acidoterrestris 

spores were significantly influenced by pH in the range of 2.5 to 6.9 at 91 °C, but not at 

97 °C. A similar decrease in D-values was shown when the pH was changed from 4 to 3 

in grapefruit juice by Komitopoulou et al. (1999). The effect of a lower pH on D-values 

was more apparent at 80 °C than 95 °C. The trend of a more pronounced effect of pH 

and acid on the heat resistance at lower temperatures may be explained by the greater 

spore-acid contact time at lower temperatures (Pontius et al., 1998). In contrast to the 

findings of these authors, Murakami et al. (1998) found no significant differences 

between D-values in McIlvaine buffer for A. acidoterrestris AB-1 spores at pH values 

from 3.0 to 8.0 at given temperatures between 88° and 95 °C. Palop et al. (2000) also 

found that the pH had no influence on the heat resistance of A. acidocaldarius spores 

for temperatures of 110 °C, 115 °C, 120 °C and 125 °C.  

The type of organic acid (malic, citric or tartaric acid) did not have a significant 

effect on the heat resistance of A. acidoterrestris spores at either the high or low 

temperature range. Although not found to be statistically significant at the temperatures 

tested, the type of acid had a more profound effect on the heat resistance at 91° than at 

97 °C. At lower temperatures, the inactivation rates in malic acid were higher (lower  

D-value) than in tartaric acid, while inactivation rates of citric acid were intermediate 

(Pontius et al., 1998; Silva et al., 1999). 

The D-value decreased with decreasing soluble solids, exhibiting a linear 

relationship between soluble solids and D-values (Pontius et al., 1998; Silva et al., 
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1999; Splittstoesser et al., 1998; Bahçeci & Acar, 2007; Maldonado et al., 2008). When 

increasing the soluble solids from 26.1 to 58.5 °Brix in blackcurrant concentrate the  

D91-value of A. acidoterrestris NCIMB13137 spores increased from 3.8 to 24.1 min 

(Silva et al., 1999). Splittsoesser et al. (1998) investigated the effect of soluble solids on 

D-values for A. acidoterrestris WAC spores in grape juice. D-values increased from  

11 min in 16 °Brix to 127 min in 65 °Brix at 90 °C. At 95 °C D-values increased from  

1.9 min in 16 °Brix grape juice to 12 min in 65 °Brix (Table 3).  

There are other constituents in the fruit product that greatly affect the heat 

resistance. When model systems have been developed to test the effect of soluble 

solids on A. acidoterrestris spores the predicted D-values were, in most cases, lower 

than those determined in fruit products (Silva et al., 1999; Bahçeci & Acar, 2007). 

Therefore, different components present in fruits might increase the heat resistance of 

A. acidoterrestris spores.  

Alicyclobacillus acidoterrestris shows considerable differences in heat resistance 

among strains (Murakami et al., 1998; Pontius et al., 1998; Eiora et al., 1999; Bahçeci & 

Acar, 2007). In McIlvaine buffer at pH 4 and 90 °C strain AB-1 (Murakami et al., 1998) 

showed approximately twice the heat resistance of strain DSM 2498 (Bahçeci & Acar, 

2007). In a study by Eiroa et al. (1998) A. acidoterrestris strains DSM 2498, 145, 046 

and 070 showed differing heat resistance in orange juice (pH 3.15, 9.0 °Brix). D-values 

varied from 60.8 to 94.5 min at 85 °C, 10.0 to 20.6 min at 90 °C and 2.5 to 8.7 min at 95 

°C. Of three strains identified as A. acidoterrestris (VF, WAC and IP) by Pontius et al. 

(1998), two strains, VF and WAC had similar heat resistance, while strain IP was less 

heat resistant. At pH 3.1 at 97 °C, the D-values for VF and WAC were 54.3 and  

53.2 min, respectively while the D-values for IP was 32.6 min. The difference in the  

D-values between IP and strains VF and WAC was found to correlate with their ability to 

grow at higher temperatures. Strains WAC and VF grew faster at 55 °C than strain IP. 

This relationship between tolerance to higher growth temperatures and greater heat 

resistance has been reported for several Bacillus species (Warth, 1978; Pontius et al., 

1998). The heat resistance of A. acidoterrestris spores is much higher than that found 

for spores of most Bacillus species (Silva & Gibbs, 2004). Results indicated that the 

spores of all A. acidoterrestris strains generally survive in fruit juices and nectars after 

the commercial pasteurisation treatment commonly applied in the food industry to 

render the product commercially sterile (Splittstoesser et al., 1994; Splittstoesser et al.,  
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Table 3 Thermal inactivation kinetic parameters of Alicyclobacillus acidoterrestris 
spores in different heating media 
 
Heating 
medium 

Strain pH Soluble 
solids 
(˚Brix) 

a
T (˚C) D-value z-value Reference 

Apple juice 
b
nr  3.2 nr 90 15 nr Cerny et al., 1984 

 VF 3.5 11.4 
85 
90 
95 

56 
23 
2.8 
 

7.7 
Splittstoesser et al., 
1994 

 
Z CRA 
7182 

3.5 nr 

80 
90 
95 
 

41.15  
7.38 
2.3 
 

12.2 
Komitopoulou et al., 
1999 

 DSM2498 3.68 12.2 

90 
93 
96 
100 

11.1 
4.2 
2.1 
0.7 
 

8.5 Bahçeci & Acar, 2007 

Apple nectar 
without ascorbic 
acid 

DSM2498 2.97 14.0 

90 
93 
96 
100 

11.1 
4.2 
2.1 
0.7 
 

8.5 Bahçeci & Acar, 2007 

Apple nectar 
with ascorbic 
acid (250 mg/L) 

DSM2498 2.95 14.0 

90 
93 
96 
100 

14.4 
6.7 
3.3 
1.2 

9.2 Bahçeci & Acar, 2007 

Clear apple 
drink 

AB-5 nr nr 90 20.8 nr Yamazaki et al., 2000 

Berry juice nr nr nr 

81.8 
91.1 
95 

11.0 
3.8 
1.0 

7.2 McIntyre et al., 1995 

CupuaÇu extract 
NCIMB 
13137 

3.6 11.3 

85 
91 
95 
97 
 

17.5 
5.35 
2.82 
0.57 
 

9.0 Silva et al., 1999 

Concord grape 
juice 

WAC 3.5 
16 
 

85 
90 
95 
 

53 
11 
1.9 
 

6.9 
 

Splittstoesser et al., 
1998 
 

 WAC 3.5 
30 
 

85 
90 
95 
 

76 
18 
2.3 
 

6.6 
 

Splittstoesser et al., 
1998 
 

 WAC 3.5 65 
85 
90 
95 

276 
127 
12 

7.4 
Splittstoesser et al., 
1998 
 

Grape juice WAC 3.3 15.8 
85 
90 
95 

57 
16 
2.4   

7.2 
Splittstoesser et al., 
1994 

Light 
blackcurrant 
concentrate 

NCIMB 
13137 

2.5 26.1 91 3.84 nr Silva et al., 1999 

Blackcurrant 
concentrate 

NCIMB 
13137 

2.5 58.5 91 24.1 nr Silva et al., 1999 
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Table 3 Continued 
 
Heating medium Strain pH SS 

(˚Brix) 

a
T (˚C) D-value z-

value(˚C) 
Reference 

Orange juice 
b
nr 4.1 5.3 

95 
 

5.3 9.5 Baumgart et al., 1997 

 
Z CRA 
7182 

3.9 nr 

80 
90 
95 
 

54.3 
10.3 
3.59 
 

12.9 
Komitopoulou et al., 
1999 

 46 3.15 9 

85 
90 
95 
 

60.8 
10.0 
2.5 
 

7.2 Eiora et al., 1999 

 70   

85 
90 
95 
 

67.3 
15.6 
8.7 
 

11.3 Eiora et al., 1999 

 145   

85 
90 
95 
 

94.5 
20.6 
3.8 
 

7.2 Eiora et al., 1999 

 
DSM 
2498 

  

85 
90 
95 
 

50.0 
16.9 
2.7 
 

7.9 Eiora et al., 1999 

 
NCIMB 
13137 

3.5 11.7 
85 
91 
 

65.6 
11.9 
 

7.8 Silva et al., 1999 

Orange drink AB-5 nr nr 90 23.1 nr Yamazaki et al., 2000 
        
Fruit drink nr 3.5 4.8 95 5.2 10.8 Baumgart et al., 1997 
        
Fruit nectar nr 3.5 6.1 95 5.1 9.6 Baumgart et al., 1997 
        

Grapefruit juice 
Z CRA 
7182 

3.42 nr 
80 
90 
95 

37.87 
5.95 
1.85 

11.6 
Komitopoulou et al., 
1999 

Mango pulp DSM2498 4.0 nr 

80 
85 
90 
95 
 

40 
25 
11.66 
8.33 
 

21.27 
 

De Carvalho et al., 
2008 

Non-clarified 
lemon juice 

nr 
 

2.28 
 

68 
 

82 
86 
92 
95 
 

15.50 
14.54 
8.81 
8.55 
 

nr 
Maldonado et al., 2008 
 

Non-clarified 
lemon juice 
concentrate 

nr 
 

2.80 
 

68 
 

82 
86 
92 
95 
 

50.50 
31.67 
39.30 
22.02 
 

nr Maldonado et al., 2008 

 
nr 
 

3.5 
68 
 

82 
86 
92 
95 
 

38.00 
95.15 
59.50 
17.22 
 

nr Maldonado et al., 2008 

 
nr 
 

4.00 68 

82 
86 
92 
95 

27.48 
58.15 
85.29 
23.33 

nr Maldonado et al., 2008 

Non-clarified 
lemon juice 

 
nr 

2.45 
 

50 
 

82 
86 
92 
95 
 

15.50 
14.54 
8.81 
8.56 
 

nr Maldonado et al., 2008 
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Table 3 Continued 2 
 
Heating medium Strain pH SS 

(˚Brix) 

a
T (˚C) D-value z-

value(˚C) 
Reference 

Non-clarified 
lemon juice 

 
b
nr 

2.45 
 

9.8 
 

82 
86 
92 
95 
 

16.72 
11.32 
10.58 
9.98 
 

nr Maldonado et al., 2008 

 
 

2.45 
 

6.2 
 

82 
95 
 

17.82 
9.44 

nr Maldonado et al., 2008 

Clarified lemon 
juice  

nr 
 

2.28 
 

50 
 

82 
86 
92 
95 
 

17.36 
18.06 
7.60 
6.2 

 
nr 

Maldonado et al., 2008 

 
nr 
 

2.80 
 

50 
 

82 
86 
92 
95 
 

25.81 
22.01 
15.35 
11.32 
 

 
nr 

Maldonado et al., 2008 

 

nr 
 

3.50 
 

50 
 

82 
86 
92 
95 
 

33.66 
69.95 
16.87 
12.63 

nr Maldonado et al., 2008 

 

nr 

4.00 
50 
 

82 
86 
92 
95 
 

21.95 
35.16 
23.19 
9.72 

nr Maldonado et al., 2008 

 

nr 

3.50 
 

9.8 
 

82 
86 
92 
95 
 

11.23 
10.54 
9.47 
8.55 

nr Maldonado et al., 2008 

 
nr 

3.50 
 

6.2 
 

82 
95 
 

13.21 
9.38 
 

nr Maldonado et al., 2008 

 
VF 
 

2.8 
 

nr 
94 
 

12.3 
nr 
 

Pontius et al., 1998 
Buffers 
representing a 
model fruit juice 
system acidified 
with: 
Malic acid 
 

VF 
 

3.1 
 

nr 
91 
97 
 

31.3 
7.9 
 

10.0 
 

 

 
VF 
 

3.4 
 

nr 

88 
94 
100 
 

81.2  
16.6  
0.8  
 

5.9 
 

 

 
VF 
 

3.7 
 

nr 
91 
97 
 

54.3 
8.8  
 

7.7 
 

 

 
VF 
 

4.0 
 

nr 
 

94 
 

20.7 
 

nr 
 

 

Citric acid 
 

VF 
 

3.1 
 

nr 
 

91 
97 
 

46.1 
8.2 
 

8.5 
 

Pontius et al., 1998 

 
VF 
 

3.7 
 

nr 
 

91 
97 
 

57.9  
10.8  
 

8.2 
 

 

Tartaric acid 
VF 
 

3.1 
 

nr 
 

91 
97 
 

49.1 
8.4 
 

7.8 
 

 

 
VF 
 

3.7 
 

nr 
 

91 
97 

69.5 
10.0  

7.1  
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Table 3 Continued 3 
 

 

Heating medium Strain pH SS 
(˚Brix) 

a
T (˚C) D-value z-

value(˚C) 
Reference 

Buffers 
representing a 
model fruit juice 
system acidified 
with: 
Malic acid 

WAC 
 
 
WAC 

3.1 
 
 
3.7 

b
nr 

 
 
nr 

91 
97 
 
91 
97 
 
 

40.5 
8.0 
 
53.2 
9.0 

8.5 
 
7.7 
 
 

Pontius et al., 1998 

Buffers 
representing a 
model fruit juice 
system acidified 
with: 
Malic acid 

IP 
 
 
IP 

3.1 
 
 
3.7 

nr 
 
 
nr 
 

91 
97 
 
91 
97 
 

20.3 
3.6 
 
32.6 
3.8 

8.0 
 
 
6.5 

 
Pontius et al., 1998 

        

Citrate buffer: 
20 mM 
 
100 mM 

 
AB-1 
 
AB-1 

 
6.0 
 
6.0 

 
nr 
 
nr 

 
90 
 
90 

 
13.6 
 
14.4 

 
nr 
 
nr 

Murakami et al., 1998 

        
Phosphate buffer: 
20 mM 
 
100 mM 

 
AB-1 
 
AB-1 

 
6.0 
 
6.0 

 
nr 
 
nr 

 
90 
 
90 

 
12.9 
 
12.3 

 
nr 
 
nr 

Murakami et al., 1998 

McIlvaine buffer 
AB-1 
 

3.0 
nr 
 

88 
90 
92 
95 
 

24.1 
14.8 
6.2 
2.7 

nr 
 

Murakami et al., 1998 

 
AB-1 
 

4.0 
 

nr 

88 
90 
92 
95 
 

25.9 
16.1 
6.1 
2.8 
 

nr  

 
AB-1 
 

5.0 nr 

88 
90 
92 
95 
 

29.1 
16.6 
7.1 
2.7 
 

nr  

 
AB-1 
 

6.0 nr 

88 
90 
92 
95 
 

25.9 
16.8 
6.8 
2.3 
 

nr  

 
AB-1 
 

7.0 nr 

88 
90 
92 
95 
 

24.7 
15.7 
6.7 
2.2 
 

nr  

 
AB-1 
 

8.0 nr 

88 
90 
92 
95 
 

25.7 
16.1 
5.7 
2.3 

nr  

McIlvaine citrate- 
phosphate buffer 

DSM2498 3.0 nr 

90 
93 
96 
100 
 

6.0 
2.8 
1.1 
0.4 
 

8.2 
 

Bahçeci & Acar, 2007 

 DSM2498 3.5 nr 

90 
93 
96 
100 
 

6.5 
3.2 
1.3 
0.4 
 

8.4 
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Table 3 Continued 4 
 

 
 
Table 4 Thermal inactivation kinetic parameters of Alicyclobacillus acidocaldarius 
spores in different heating media 
 
Heating medium Strain pH Soluble 

solids 
(˚Brix) 

a
T (˚C) D-value z-value Reference 

McIlvaine buffer 

 
STCC 
5137 
STCC 
5137 
 

7 
 
4 

b
nr 

 
 
 
nr 

110 
115 
120 
125 
110 
115 
120 
125 

2.6 
0.54 
0.097 
0.014 
2.6 
0.99 
0.11 
0.035 

6.7 
 
7.5 

Palop et al., 2000 
 
 
 
 
Palop et al., 2000 
 
 
 

Distilled water 
STCC 
5137 

nr nr 

110 
115 
120 
125 

3.7 
0.48 
0.11 
0.024 

6.7 Palop et al., 2000 

Orange juice 
STCC 
5137 

nr nr 

110 
115 
120 
125 

3.9 
0.61 
0.087 
0.027 

6.8 Palop et al., 2000 

a
T = temperature 

b
nr = not reported 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heating medium Strain pH SS 
(˚Brix) 

a
T (˚C) D-value z-

value(˚C) 
Reference 

McIlvaine citrate- 
phosphate buffer 

 
DSM2498 

4.0 
b
nr 

90 
93 
96 
100 
 

7.3 
3.8 
1.7 
0.5 

8.5 Bahçeci & Acar, 2007 

Bam broth DSM2492 3.0 nr 50 18.86 8.5 Alpas et al., 2003 
a
T = temperature 

b
nr = not reported 
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1998; Eiora et al., 1999; Komitopoulou et al., 1999; Silva et al., 1999; Yamazaki et al., 

2000; Bahçeci & Acar, 2007; De Carvalho et al., 2008).  

 

Food spoilage 

 

Alicyclobacillus acidoterrestris is now recognised by the beverage industry as the most 

important target species in the genus Alicyclobacillus, as it is routinely isolated from 

spoilt fruit beverages and is responsible for the production of the taint compound 

guaiacol. Alicyclobacillus acidiphilus, A. herbarius, and A. hesperidum subsp. aigle also 

produce guaiacol, but are infrequently isolated and are rarely associated with spoilage 

(Bevilacque et al., 2008; Goto et al., 2006). The spores of A. acidoterrestris can survive 

the typical pasteurisation regimes applied during juice manufacturing. This 

pasteurisation process during manufacturing provides the heat-shock treatment that 

may stimulate spore germination and outgrowth. In single strength juice these bacteria 

find a favorable environment for germination and growth, that under certain conditions 

can lead to product deterioration (Jensen, 1999; Chang & Kang, 2004). 

Spoilage caused by A. acidoterrestris has to date been reported in apple, pear, 

orange, peach, mango and white grape juice, with shelf-stable apple juice most 

frequently being spoiled (Borlinghaus & Engel, 1997; Chang & Kang, 2004; Walker & 

Phillips, 2008). More diverse products such as shelf-stable iced tea containing berry 

juice, the ingredients of rose hip and hibiscus teas (Duong & Jensen, 2000), a 

carbonated fruit drink (Pettipher, 2000) and diced canned tomatoes (Chang & Kang, 

2004) have also seen incidences of spoilage caused by A. acidoterrestris. A survey by 

the National Food Processors Association (NFPA) in the USA in 1998 reported that just 

over half of the manufacturers who responded to the survey (35% of the 60% who 

responded) reported incidence of spoilage of juice products by thermo-acidophilic 

bacteria suspected to be A. acidoterrestris (Walls & Chuyate, 1998).  

Spoilage seemed to occur in the warmer seasons when large volumes of hot-

filled products were allowed to cool naturally, suggesting that slow cooling of hot-filled 

products may allow bacterial growth (Pinhattiet et al., 1997). Over the last decade more 

varied products have been found to be susceptible to contamination and spoilage by  

A. acidoterrestris, while newer and better isolation techniques have led to an increase in 

the number of reported spoilage incidents (Walker & Phillips, 2008). It is important to 

note that incidence of A. acidoterrestris in fruit juice is not directly associated with 

deterioration. Detection of A. acidoterrestris in non-deteriorated fruit juices (Previdi et 
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al., 1997; Cerny et al., 1999; Bahçeci et al., 2005; Walker & Phillips, 2008) suggests 

deterioration to be incidental, requiring adequate conditions for its development. 

The visual detection of spoilage of fruit juice products by A. acidoterrestris is 

difficult as the organism does not produce gas during growth. The spoiled juice appears 

normal with little or no change in pH. Occasionally, turbidity and/or white sediment may 

form at the bottom of the container. Members of the Alicyclobacillus genus causes some 

clarified fruit juices to have a light sediment, cloudiness or haze. However, the main 

spoilage characteristic is an off-flavour or odour caused by guaiacol (2-methoxyphenol) 

(Yamazaki et al., 1996; Borlinghaus & Engel, 1997; Walls & Chuyate, 1998; Jensen, 

1999). This odour has been described as medicinal, sweet, chemical and “medical 

office” like (Siegmund & Pöllinger-Zierler, 2007). Other taint chemicals, such as the 

halophenols, 2,6-dichlorophenol (2,6-DCP) (Fig. 1A) and 2,6-dibromophenol (2,6-DBP) 

(Fig. 1B) can also be produced in fruit juice by A. acidoterrestris (Yamazaki et al., 1996; 

Komitopoulou et al., 1999; Jensen & Whitfield, 2003). These phenolic compounds are 

well known within the food industry to instill ‘disinfectant’-like taints in food. The odour of 

the taint has also been described as smoky and pungent (Siegmund & Pöllinger-Zierler, 

2007). Although A. acidoterrestris has been implicated in the production of these taints, 

it is important to note that trace quantities of these halophenols can also easily be 

formed in the presence of some sanitisers (Saxby, 1996).  

Guaiacol is produced via the degradation of vanillic acid by A. acidoterrestris 

(Fig. 2) (Jensen, 2000). Vanillic acid can be present in fruit juices because of 

contamination, but is also naturally derived from the plant polymer lignin. The synthetic 

pathway for the production of guaiacol from ferulic acid is presented in Fig. 2. Ferulic 

acid, a major component of lignin, is converted to vanillin or 4-vinyl-guaiacol by 

decarboxylation. 4-vinyl-guaiacol is then oxidised to vanillin, which is then further 

oxidised to vanillic acid. After a final decarboxylation step, the vanillic acid is converted 

to the taint chemical guaiacol (Pometto et al., 1981; Huang et al., 1993). Another 

precursor for the formation of guaiacol is which is found in apple juice at a concentration 

of approximately 4.1 µL.mL-1 and in orange juice at higher a concentration of up to  

13.5 µL.mL-1 (Chang & Kang, 2004). 

The best estimate threshold (BET) for recognition of guaiacol in fruit juice was 

found to be approximately 2 parts per billion (ppb) (Pettipher et al., 1997; Orr et al., 

2000). This equates to the presence of about 5 log CFU mL-1 of A. acidoterrestris cells 

in orange or apple juices (Borlingghaus & Engel, 1997; Brown, 2000). Guaiacol 

production by A. acidoterrestris depends on the concentration of the organism present, 
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the type of strain present, the storage temperature, the oxygen concentration in the fruit 

beverage product, the use of heat shock which encourages germination of the spores, 

and finally the concentration of precursors to guaiacol, such as vanillin in the fruit juice 

(Pettipher et al., 1997; Chang & Kang, 2004, Bahçeci et al., 2005; Goto et al., 2008).  

Spoilage can occur even if low numbers of A. acidoterrestris are initially present 

in fruit juice as it is during growth of the vegetative cell that guaiacol is produced. The 

concentration of A. acidoterrestris cells and spores does not necessary correlate with 

guaiacol levels in spoilt fruit juice. In a study by Orr et al. (2000), the number of  

A. acidoterrestris cells and spores remained constant in inoculated apple juice stored 

over 61 d at either 21° or 37 °C. However, levels of guaiacol varied over this period of 

time. In contrast, Goto et al. (2007) reported that production of guaiacol follows the 

growth curve, gradually accumulating and is ultimately degraded. 

Evidence on the influence oxygen levels in the growth media has on the growth 

and rate of guaiacol production of A. acidoterrestris remains contradictory. Jensen & 

Whitfield (2003) noted that taint was produced more quickly in containers with a large 

headspace, while Walker and Philips (2005) observed increased growth rates of  

A. acidoterrestris in containers with 25% (v/v) headspace as opposed to those with no 

headspace. However, Cerny et al. (1999) found that the presence or absence of a 

headspace in the packaging system did not significantly influence the growth of  

A. acidoterrestris DSM 2498. In a study by Siegmund and Pöllinger-Zierler (2007) both 

taint compounds guaiacol and 2,6-DPB were produced in greater amounts by  

A. acidoterrestris DSM 2498 when oxygen was in limited supply even though the growth 

rate was slower.  

All strains of A. acidoterrestris that have been tested for the ability to produce 

taint compounds have been able to produce guaiacol and either/both 2,6-DPB and 2,6-

DCP, dependent on the strain (Gocmen et al., 2005; Goto et al., 2007; Goto et al., 

2008). A study by Goto et al. (2007) on Alicyclobacillus strains showed a great 

variability in their guaiacol production. Strains were inoculated into YSG liquid media 

containing 1 ppm vanillin and cultured at optimum temperature for 72 h. After cultivation, 

guaiacol concentration in the culture broth was analysed by GC-MS. Alicyclobacillus 

acidoterrestris B2065 produced the least guaiacol (40 ppb), while strain DSM 3924 was 

capable of producing the most (500 ppb). The type strain ATCC 49025T produced 218 

ppb of guaiacol. Studies using GC-olfactory and GC-MS on two strains of 

Alicyclobacillus UFL-CA8 and UFL-CA11, presumptively identified as A. acidoterrestris 

showed them to be capable of larger guaiacol production than A. acidoterrestris ATCC 
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49025T (Gocmen et al., 2005). UFL-CA8 and UFL-CA11 were isolated from juice 

containing drinks that developed a medicinal off-aroma within 2 week storage at room 

temperature (Gocmen et al., 2005). Research carried out on 36 A. acidoterrestris strains 

isolated from fruit orchard soils throughout Japan also showed variability in their ability 

to produce guaiacol. The majority of strains, including A. acidoterrestris ATCC 49025T, 

produced more than 20 ppm of guaiacol following the 10 h incubation period in Va-YSG 

media. However, one strain 122-1 was capable of about 40 ppm of guaiacol within 5 h, 

while strain 31-1 scarcely produced any guaiacol within 24 h. After 48 h similar levels of 

guaiacol were produced by all isolated strains (Goto et al., 2008). In the same study the 

16S rRNA gene-based phylogenetic relatedness between the strains of  

A. acidoterrestris, A. acidophilus, A. hesperidum subsp. aigle and A. contaminans all 

isolated from Japanese fruit orchard soil were compared. It was found that the guaiacol 

production is conserved among certain Alicyclobacillus species, but no correlation was 

observed between levels of guaiacol production and 16S rRNA gene-based 

phylogenetic relatedness (Goto et al., 2008).  

Temperature also has an effect on taint formation. Guaiacol was detected more 

quickly at 37 °C, compared to 21 °C in inoculated apple juice. This suggests that 

guaiacol formation is limited at room temperatures (20–25 °C) at which A. 

acidoterrestris grow poorly (Orr et al., 2000; Bahçeci et al., 2005). Bahçeci et al. (2005) 

also found that the amount of guaiacol formed in apple juice was dependant on the 

initial concentration of vanillin present in the apple juice. In apple juice samples 

inoculated with 10 mg.L-1 of vanillin and around 1 x 105 CFU mL-1 of A. acidoterrestris 

spores, vanillin was totally consumed within 24 h. The concentration of guaiacol 

exceeded 8 mg.L-1 and remained relatively stable at the end of incubation. In controls 

lacking vanillin, no detectable amount of guaiacol was formed despite growth of A. 

acidoterrestris in the apple juice. Heat shock treatments which lead to the activation and 

growth of spores, affect the production of guaiacol as it is dependant on active 

vegetative cells being present in fruit juice (Splittstoesser et al., 1998; Jensen, 2000; 

Chang & Kang, 2004). Walls and Chuyate (2000) found that a heatshock treatment of 

80 °C for 10 min resulted in the highest guaiacol concentration. 

As awareness arose of A. acidoterrestris as a potential spoilage organism, 

concerns were raised regarding its pathogenicity. Fortunately, there is no evidence that 

A. acidoterrestris pose a human health risk. Neither the organism nor its metabolites 

have been associated with any form of ill health and A. acidoterrestris is considered a 

non-pathogen (Borlinghaus & Engel, 1997). When mice were injected with alicylcobacilli 
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spores or guinea pigs fed inoculated fruit juices containing 5 x 106 CFU mL-1  

A. acidoterrestris, none exhibited any illness symptoms and no animal died (Walls & 

Chuyate, 2000). The risk of secondary growth of other pathogens such as Clostridium 

botulinum is also not of concern, as growth of A. acidoterrestris in fruit juice does not 

affect its pH (Brown, 2000). Juice spoilage by Alicyclobacillus spp. has a major 

economical impact on the fruit juice industry, but there is no health risk involved in 

consuming fruit juice containing this bacterium or its spores (Borlinghaus & Engel, 1997; 

Walls & Chuyate, 2000). 

 

E.  CONTROL METHODS FOR ALICYCLOBACILLUS ACIDOTERRESTRIS 

 

Pasteurisation treatments on fruit juice are used to kill potential pathogens and increase 

shelf life. The U.S. Food and Drug Administration requires all fruit juice sold in the 

United States to be either pasteurised or subjected to an equivalent process to achieve 

a mandated 5-log pathogen reduction in the juice (US FDA, 2000). Flash pasteurisation 

is most commonly used, a method of high temperature short time processing which 

employs rapid heating and cooling steps. Typically fruit juice is heated to around 88° to 

96 °C for 30 s to 2 min and then rapidly cooled (Choi & Nielsen, 2005). The problem  

A. acidoterrestris pose to the fruit juice industry is the ability of its spores to survive 

thermal pasteurisation and hot-fill hold processes (Splittstoesser et al., 1994; Eiroa et 

al., 1999; Orr & Beuchat, 2000). In fact, pasteurisation serves as a heat treatment that 

stimulates the germination of the spores. Excessive heat treatments are not feasible 

due to changes in the organoleptic and nutritional properties of the juice, resulting in 

non-enzymatic browning and losses of vitamins and flavour compounds (Lado & 

Yousef, 2002; Rivas et al., 2006). New techniques have been proposed in order to 

reduce the loss of sensorial and nutritional quality due to a thermal treatment. 

 

Nisin and other bacteriocins 

 

Bacteriocins are small peptides that show bactericidal activity against certain bacteria 

(Yamazaki et al., 2000). They are potent antimicrobial substances that are produced by 

a large and diverse number of bacterial species. Most food grade bacteriocins are 

produced by lactic acid bacteria and bacteriocins used in the food industry include nisin, 

enterocin and bovacin (Kim, 1993). Nisin is the most widely used of the bacteriocins. It 

is produced by fermentation of a modified milk medium by strains of Lactococcus lactis  
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Figure 2 Simplified schematic representation of the formation of guaiacol from ferulic 

acid as the precursor present in food products (Chang & Kang 2004). 
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subsp. lactis. It has been demonstrated that nisin exhibits a wide range of 

inhibitoryeffects against Gram-positive spore-formers and pathogens, while it shows 

little or no inhibitory effects against Gram-negative bacteria or fungi (Stevens et al., 

1991). Nisin functions by interacting with the phospholipids in the cytoplasmic 

membrane of bacteria, thus disrupting membrane function. It also prevents the 

outgrowth of spores by inhibiting the swelling process of germination. Nisin is most 

stable at pH 3 and maintains more than 70% antibacterial activity at pH 4 when 

autoclaved at 115 °C (Davies et al., 1998). The safety and efficacy of nisin as a food 

preservative have resulted in its widespread use (Hansen, 1994).  

Komitopoulou et al. (1999) reported that nisin could effectively be used for the 

control of A. acidoterrestris in fruit juices and fruit juice containing products. In this study 

the sensitivity of A. acidoterrestris to nisin was determined in three fruit juices (apple, 

orange and grapefruit) at 25° and 44 °C. At 25 °C, 5 international units (IU.mL-1) of nisin 

were able to prevent outgrowth of A. acidoterrestris spores in all thee fruit juices tested. 

At 44 °C the same level of inhibition of spores was seen in grapefruit juice, but 100 

IU.mL-1 of nisin were the minimum inhibitory concentration (MIC) required in apple and 

orange juice. Vegetative cell were less sensitive to nisin but when a mixed inoculum of 

spores and vegetative cells was incubated at 44 °C, 100 IU.mL-1 was sufficient to 

prevent growth in all three juices. The addition of 50 IU.mL-1 nisin to apple juice 

increased the heat sensitivity of the spores at temperatures of 80°, 90° and 95 °C, with 

the greatest reduction in D-value of around 40% at 80 °C. 

In a similar study by Yamasaki et al. (2000), the MIC of nisin on seven strains of 

A. acidoterrestris at a pH of 3.4 and 4.2 on modified yeast peptone glucose agar 

(mYPGA) plates was investigated. The sensitivity of A. acidoterrestris to nisin varied 

among the strains tested. At pH 3.4 and 4.2 the MIC values for the vegetative cells 

among the strains was 1.56 to 25 IU.mL-1 and 25 to 100 IU.mL-1, respectively. In 

contrast, the spores were more sensitive to nisin than the vegetative cells, and the 

inhibitory levels of nisin for the spores among the strains were <0.78 to 12.5 IU.mL-1 and 

25 to100 IU.mL-1 at pH 3.4 and 4.2, respectively. The most resistant strain, A. 

acidoterrestris AB-5 required 12.5 and 100 IU.mL-1 for the inhibition of spore outgrowth 

at pH 3.4 and 4.2, respectively. The greater effectiveness of nisin at low concentrations 

(50 – 100 IU.mL-1) on spores compared to cells suggests that nisin acts at the stage of 

pre-germinant swelling and its effect was sporostatic rather than sporicidal (Yamazaki et 

al., 2000). 



 

 

33 

When A. acidoterrestris AB-5 was added to orange and mixed fruit drinks no 

outgrowth occurred in the presence of 25 and 50 IU.mL-1 nisin, respectively after 12 

days storage. The addition of 200 IU.mL-1 or 5 ppm active nisin to clear apple juice or 

orange drink reduced the thermal resistance of A. acidoterrestris AB-5 spores by 71% 

and 76%, respectively. The decrease in heat resistance of the bacterial spores showed 

a linear relationship with increasing nisin concentration in both acidic drinks. The MIC 

for A. acidoterrestris AB-5 spores at 40 °C was 25 IU.mL-1 nisin for orange drink and 50 

IU.mL-1 nisin for mixed fruit drinks. However 600 IU.mL-1 nisin was unable to inhibit 

growth in a clear apple drink (Yamazaki et al., 2000). This inhibitory action which 

decreased the effectiveness of nisin in the clear apple drink, may be due to the binding 

of nisin to some apple particles, although nisin would also be absorbed onto some 

particles in orange or mixed fruit drinks. As nisin is heat stable the beneficial effects of 

its inclusion prior to pasteurisation would be twofold: to enhance the effect of the heat 

process, and residual nisin would prevent outgrowth of surviving spores.  

Other bacteriocins such enterocin AS-48, extracted from Enterococcus faecalis 

A-48-32 (Grande et al., 2005), warnericin, purified from Staphylococcus warneri 

(Minakawa et al., 2005) and bovacin HC5, from Streptococcus bovis (Carvalho et al., 

2008) have shown antimicrobial activity against strains of A. acidoterrestris. Enterocin 

AS-48 was active against A. acidocaldarius CECT 4328 and three strains of  

A. acidoterrestris (LMG 16906, DSM 2498 and DSM 3922). At a concentration of  

2.5 µg mL-1 and at 37 °C, enterocin AS-48 was able to reduce vegetative cells of A. 

acidoterrestris LMG 16906 and DSM 2498 to below the detection limit after 24 h of 

incubation in Alicyclobacillus acidocaldarius medium (AAM). The same results were 

observed when strain DSM 2498 was inoculated in freshly made orange (pH 3.86) and 

apple (pH 3.55) juices containing 2.5 µg mL-1 enterocin AS-48. Vegetative cells and 

spores of strain DSM 2498 were also inoculated into five commercial fruit juices 

(orange, apple, pineapple, peach and grapefruit) containing 2.5 µg mL-1 enterocin AS-48 

and incubated at 37 °C, 15 °C and 4 °C. No viable cells were observed 15 min after 

inoculation and growth was inhibited for up to 90 days in orange and pineapple juices 

and up to 60 days in apple, peach and grapefruit juices at 37 °C. At 15 °C and 4 °C no 

viable cells were detected for the whole incubation period in all the fruit juices. Electron 

microscopy examination of A. acidoterrestris DSM 2498 cells and spores treated with 

enterocin AS-48 revealed cell wall damage, leakage of cytoplasmic contents and cell 

disorganization as well as spore degradation (Grande et al., 2005). 

In a study by Carvalho et al. (2008) the antimicrobial activity of bovicin HC5 



 

 

34 

against A. acidoterrestris DSM 2498 was investigated. Concentrations of 40 to 160 AU 

mL-1 bovicin HC5 was able to completely inhibit growth in AAM broth (pH 4.0) at 40 °C 

for as long as 15 days. A bactericidal and sporicidal effect was observed when mango 

pulp (pH, 4.0-7.0) inoculated with A. acidoterrestris DSM 2498 cells or spores at a level 

of 105-106 CFU mL-1 was treated with 80 to 100 AU mL-1 bovicin HC5. The minimum 

inhibitory concentration (MIC) of bovicin HC5 was determined to be 5 and 2.5 AU mL-1 

for vegetative cells and spores, respectively. The D-values of A. acidoterrestris DSM 

2498 spores in mango pulp (pH 4.0) decreased between 77 and 95% at 80° to 95 °C 

when bovicin was added at a concentration of 80 AU mL-1. The z-value decreased by 

48.7% (Carvalho et al., 2008). The commercial use of enterocin AS-48 and bovicin HC5 

is, however, limited due to the cost of extraction and purification. 

 

F. ULTRAVIOLET RADIATION 

 

The use of ultraviolet (UV) light in food processing is one of a number of non-thermal 

technologies being used as a substitute for thermal processing. Other non-thermal 

processing technologies include pulsed electric fields, high-pressure processing and 

ultrasound. These substitute technologies can be used to process food products so that 

they do not contain spoilage or pathogenic micro-organisms and enzymes that may 

decrease the nutritional and sensory characteristics of foods (Butz & Tauscher, 2002; 

Koutchma, 2009). The advantages associated with UV-C radiation used as a non-

thermal method is that no known toxic or significant non-toxic by-products are formed 

during the treatment, certain organic contaminants can be removed and the treatment 

requires very little energy when compared to thermal pasteurisation. Fruit juices that 

undergo thermal pasteurisation or sterilisation tend to change colour and lose some of 

its aroma and vitamins during the process of heating (Choi & Nielsen, 2005). This is 

unlike juices that are treated with UV radiation, which tend to maintain their aroma and 

colour (Tran & Farid, 2004). The U.S. Food and Drug Administration has allowed UV-C 

radiation to be used as an alternative to pasteurisation for the elimination of pathogens 

from fruit juices (US FDA, 2000). 

UV wavelengths of between 220 and 300 nm are considered germicidal against 

micro-organisms that include bacteria, viruses, protozoa, moulds, yeasts, and algae 

(Sizer & Balasubramaniam, 1999; Bintsis et al., 2000). Fungi are more resistant to UV 

penetration than bacteria due to the lower proportion of thymine and cytosine bases in 
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their DNA. Their thicker cell wall may also present a greater resistance to UV light (Tran 

& Farid, 2004).  

The highest germicidal effect is obtained between 250 and 270 nm, decreasing 

as the wavelength is increased, and above 300 nm the germicidal effect is annulled. 

Therefore, a wavelength of 254 nm (UV-C, generated by low pressure mercury lamps) 

is used for disinfection of surfaces, water and some liquid food products such as fruit 

juice (Guerrero-Beltrán & Barbosa-Cánovas, 2004). 

When UV light is applied to organisms, the DNA absorbs photons of UV light 

generating cyclobutane-type dimers between adjacent pyrimidines, primarily thymines 

but also between cytosine and thymine. These pyrimidine dimers fuse the double-

stranded DNA molecule, thereby disrupting cell function (Giese & Darby, 2000). The 

formation of these cyclobutyl pyrimidine dimers results in DNA transcription and 

replication being blocked, which inhibits cellular functions and leads to cell death. The 

amount of dimers formed is directly proportional to the amount of UV-C absorbed. The 

radiation may also cause DNA mutations in the injured organism (Giese & Darby, 2000). 

Spores are significantly more resistant than are their corresponding vegetative 

cells to 254 nm UV-C radiation (Nicholson et al., 2000). To date, the best understood 

spore resistance mechanism involves the resistance of Bacillus subtilis spores to  

254 nm UV-C. Bacillus subtilis spores are approximately 10 to 20 times more resistant 

to UV-C than vegetative B. subtilis cells (Slieman & Nicholson, 2000). The UV-C 

resistance of spores is due to two interrelating mechanisms. Firstly, DNA in spores 

irradiated with UV-C radiation accumulates the unique thymine dimer, 5-thyminyl-5,6-

dihydrothymine, which is known as spore photoproduct. Secondly, spores possess at 

least two major DNA repair pathways for accurate repair of spore photoproduct during 

spore germination.  

This is the general nucleotide excision repair system (encoded by genes 

designated uvr) and photoreactivation. Nucleotide excision repair, often referred to as 

dark repair, is widely distributed and conserved through evolution. This repair process 

involves the action of more than a dozen proteins that coordinate the removal of DNA 

damage (Zimmer & Slawson, 2002). Aside from dark repair, many organisms repair 

damage through a process called photoreactivation which uses a single enzyme called 

spore photoproduct lyase (encoded in part by the splB gene) to reverse UV-induced 

damage to DNA. Photoreactivation is a light-dependent process that requires specific 

wavelengths of light ranging from 300 to 500 nm to complete the repair process 

(Slieman & Nicholson, 2000). 
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In food processing, UV disinfection of water has been used in brewing (McCarty 

& Scanion, 1993), soft drink processing (Gibbs, 2000), and in the cheese-making 

processes (Honer, 1988). UV has also been used in sterilising sugar syrup (Stother, 

1999). However, the use of UV for disinfection of liquid food, such as juices has not 

been widely studied, while different legislation in different countries will only allow 

certain products to be treated. In Germany UV-C radiation is only allowed to treat the 

surfaces of fruit and vegetables, water and hard cheese (Guerrero-Beltrán & Barbosa-

Cánovas, 2004; Koutchma et al., 2004; Koutchma et al., 2007).  

The efficacy of the microbial reduction in fruit juices by UV-C light at 254 nm 

depends on a number of factors. These include the type of organisms (including strains 

present in the liquid), the specific stage of microbial growth, the growth media used, the 

inoculum level, the % UV transmittance of the liquid (opaqueness), fluid dynamic 

parameters and suspended particles in the liquid. It is known that the penetration depth 

of UV-C light through the surface of liquids is very short, with the exception of clear 

water (Shama, 1999). The penetration of UV light into juices is about 1 mm for 

absorption of 90% of the light (Sizer & Balasubramaniam, 1999). The penetration effect 

of UV-C radiation depends on the type of liquid, its UV-C absorptivity, soluble solids and 

suspended matter in the liquid. 

If the organism is suspended in rich growth media, such as peptones and sera, a 

shielding effect occurs. Rich media may also lead to an increase in ribosomes present 

within the cell and this also shields the DNA from UV light (Tran & Farid, 2004). Greater 

amounts of suspended particles lower the intensity of penetration of the UV-C light in 

the liquid. Particles can absorb, scatter and block UV light due to aggregation of 

bacteria to the surface of the particles (Christenen & Linden, 2001). This phenomenon 

is well documented for unfiltered water, however, the effect is not well documented for 

UV processing of juices (Shama 1999; Bintsis et al., 2000). The low UV transmittance 

due to high suspended and soluble solids necessitates a turbulent flow during liquid 

food processing and this is a legal requirement by the Food and Drug Administration 

(US FDA, 2000; Keyser et al., 2007).  

The growth phase and stage at which the organisms is at prior to UV treatment is 

also important, as cells in the exponential phase are more susceptible to treatment than 

cells in the stationary phase which tend be more resistant (Tran & Farid, 2004; 

Gruetzmacher & Bradley Jnr, 1999). Finally, the efficacy of the treatment is also greatly 

dependant on temperature. Dimer formation between adjacent thymine nucleotides in 

single-stranded DNA is increased at temperatures below 25 °C. At low temperatures, 
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the natural state of single stranded DNA is a stacked structure that positively increases 

dimerisation. At higher temperatures, a slightly higher UV dose is required for the same 

effect (Severin et al., 1983). 

Because of the extensive variety of organisms, including strains, the dose levels 

required for disinfection can vary according to the final requirement for each food 

product. In order to obtain a microbiologically safe food product all parts of the fluid 

should be exposed to a minimum 400 J.m-2 of UV light at 254 nm to ensure an adequate 

reduction of 5 log cycles of a surrogated micro-organism (Hoyer et al., 1998).  

The effect that UV radiation has on the organoleptic properties of fruit juices, 

particularly on orange juices has been studied in recent years. The process of 

conventional pasteurisation significantly inactivates pectin methylesterase. This enzyme 

de-esterifies pectin preventing the orange juice from becoming cloudy. UV treatment of 

juices is usually performed at about 25 °C, and UV light has no effect on the activity of 

the pectin methylesterase enzyme. Therefore, UV treated juices have a tendency to 

become cloudy. Vitamin C degradation was also observed in orange juice that were UV 

treated and this reduction was in the same order as the degradation of vitamin C in 

thermally treated fruit juice. The reason for this remains unclear (Tran & Farid, 2004). 

The use of UV radiation also has the advantage over thermal pasteurisation that 

no expensive equipment is required and the maintenance and running costs of a UV 

light system is far less than that for a pasteurisation system. The UV light system also 

provides ease of operation as the UV dosage is dependant on flow rate which can be 

adjusted according to the manufacturers requirements in terms of the volumes or the 

amount of product treated. UV light does not only have to be used to treat the product, 

but may also be used to disinfect the water in cleaning the processing equipment, which 

may be a key factor in eliminating process contamination.  

 

G CONCLUSIONS 

 

Incidents of spoilage by A. acidoterrestris of a variety of pasteurised fruit juices and fruit 

juice products have increased notably in recent years (Yamazaki et al., 1996; Pettipher 

et al., 1997; Silva & Gibbs, 2004; Walker & Phillips, 2008; Bevilacque et al., 2008). Due 

to their thermo-acidophilic properties and their occurrence in several spoiled 

pasteurised products, A. acidoterrestris spores has been recommend as a target 

organism for pasteurisation of high acidic food products (Silva et al., 1999). Currently 

the source and route of contamination of the fruit juice remains unclear. However as 
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members of the genus Alicyclobacillus are soil-borne organisms, it is thought that 

contaminated fresh fruit introduced during processing without proper cleaning leads to 

contamination and subsequent spoilage (McIntyre et al., 1995; Pontius et al., 1998; 

Splittstoesser et al., 1998; Orr & Beuchat, 2000). For the development of prevention 

strategies of contamination the source and route of contamination needs to be clearly 

established. 

The ability of A. acidoterrestris spores to survive thermal pasteurisation and hot-

fill and hold processes used during fruit processing and fruit juice production 

necessitates the development of alternative processing techniques to pasteurisation 

(Splittstoesser et al., 1994; Eiroa et al., 1999; Orr & Beuchat, 2000). The use of UV light 

as a germicidal medium is one such promising technology. Advantages associated with 

UV-C radiation used as a non-thermal method is that no known toxic or significant non-

toxic by-products are formed during the treatment, certain organic contaminants can be 

removed and the treatment requires very little energy when compared to thermal 

pasteurisation. However, the use of UV for the disinfection of liquid foods, such as 

juices has not been widely studied and its efficacy against spores of A. acidoterrestris is 

unknown. Another drawback is that UV-C radiation has little effects on enzymes which 

can cause juice clarification or browning and thus a combination of treatments to 

inactivate the enzymes may be necessary (Guerrero-Beltrán & Barbosa-Cánovas, 

2004). 

 

REFERENCES 

 

Albuquerque, L., Rainey, F.A., Chung, A.P., Sunna, A., Nobre, M.F., Grote, R., 

Antranikian, G. & da Costa, M.S. (2000). Alicyclobacillus hesperidum sp. nov. 

and a related genomic species from solfataric soils of São Miguel in the Azores. 

International Journal of Systematic and Evolutionary Microbiology, 50, 451-457.  

Bahçeci, K.S., Gokmen, V. & Acar, J. (2005). Formation of guaiacol from vanillin by 

Alicyclobacillus acidoterrestris in apple juice: a model study. European Food 

Research and Technology, 220, 196–199. 

Baumgart, J., Husemann, M. & Schmidt, C. (1997). Alicyclobacillus acidoterrestris: 

occurrence, significance and detection in beverages and beverage base. 

Flussiges Obst, 64, 178.  

Bender, G.R. & Marquis, R.E. (1985). Spore heat resistance and specific mineralization. 

Applied and Environmental Microbiology, 50 (6), 1414-1421. 



 

 

39 

 

Bevilacqua, A., Corbo, M.R., D’Amato, D., Campaniello, D. & Sinigaglia, M. (2006). 

Caratterizzazione fenotipica di ceppi di Alicyclobacillus spp. isolati da suolo. In: 

Ricerche e Innovazioni nell’Industria Alimentare. Vol VII. Proceedings of 6th 

Italian Conference on Food Science and Technology, (edited by S. Porretta). Pp. 

1201-1205. Cernobbio, CO, September 19–20, 2005, Pinerolo, TO: Chiriotti 

Editori 

Bevilacqua, A., Sinigaglia, M. & Corbo, M.R. (2008). Alicyclobacillus acidoterrestris: 

New methods for inhibiting spore germination. International Journal of Food 

Microbiology, 125, 103-110. 

Bintsis, T., Litopoulou-Tzanetaki, E. & Robinson, R. (2000). Existing and potential 

applications of ultraviolet light in the food industry-A critical review. Journal of the 

Science of Food and Agriculture, 80, 637-645. 

Borlinghaus, A. & Engel, R. (1997). Alicyclobacillus incidence in commercial apple juice 

concentrate (AJC) supplies-method development and validation. Fruit 

Processing, 7, 262-266. 

Brown, K.L. (2000). Control of bacterial spores. British Medical Bulletin, 56, 158-171. 

Butz P. & Tauscher, B. (2002). Emerging technologies: Chemical aspects, Food 

Research International 35, 279-284. 

Cerny, G., Duong, H-A., Hennlich, W. & Miller, S. (1999). Alicyclobacillus acidoterrestris: 

influence of oxygen content on growth in fruit juices. Food Australia, 52, 289. 

Cerny, G., Hennlich, W. & Poralla, K. (1984). Fruchtsaftverderb durch Bacillen: 

Isolierung und Charakterisierung des Verderbserrengers. Zeitschrift fuer 

Lebensmittel-Untersuchung und -Forschung, 179, 224-227. 

Chang, S. & Kang, D. (2004). Alicyclobacillus spp. in the fruit juice industry: history, 

characteristics and current isolation/detection procedures. Critical Reviews in 

Microbiology, 30, 55-74. 

Choi, L H. & Nielsen, S.S. (2005) The effect of thermal and non-thermal processing 

methods on apple cider quality and consumer acceptability. Journal of Food 

Quality 28, 13-29. 

Christenen, J. & Linden, K. (June 2001). Ultraviolet disinfection of unfiltered drinking 

water: particle impacts. Conference proceedings of first international congress on 

UV technologies. Pp. 14-16. Washington, DC: IUVA. 

Darland, G. & Brock, T.D. (1971). Bacillus acidocaldarius sp. nov., an acidophilic 

thermophilic spore-forming bacterium. Journal of Genetic Microbiology, 67, 9-15. 



 

 

40 

 

Davies, E A., Bevis, H.E., Potter, R., Harris, J., Williams, G.C. & Delves-Broughton, J. 

(1998). The effect of pH on the stability of nisin solution during autoclaving. 

Letters in Applied Microbiolology, 27, 186-187. 

De Carvalho A.A.T., Vanetti M.C.D. & Mantovani H.C. (2008). Bovicin HC5 reduces 

thermal resistance of Alicyclobacillus acidoterrestris in acidic mango pulp. 

Journal of Applied Microbiology, 104, 1685-1691. 

De Rosa, M., Gambacorta, A. & Minale, L. (1971). Cyclohexane fatty acids from a 

thermophilic bacterium. Chemical Communications, 1334.  

Deinhard, G., Blanz, P., Poralla, K. & Altan, E. (1987a). Bacillus acidoterrestris sp. nov., 

a new thermo tolerant acidophile isolated from different soils. Systematic and 

Applied Microbiology, 10, 47-53. 

Deinhard, G., Saar, J., Krischke, W. & Poralla, K. (1987b) Bacillus cycloheptanicus sp. 

nov., a new thermoacidophile containing x-cycloheptane fatty acids. Systematic 

and Applied Microbiology, 10, 68-73. 

Dufresne, S., Bousquet, J., Bossinot, M. & Guay, R. (1996). Sulfobacillus 

disulfidooxidans sp.nov., a new acidophilic, disulphide- oxidising, gram-positive, 

spore forming bacterium. International Journal of Systematic Bacteriology, 46, 

1056-1064. 

Duong, H.A. & Jensen, N. (2000). Spoilage of iced tea by Alicyclobacillus. Food 

Australia, 52, 292. 

Eiora, M.N., Junqueira, V.C. & Schmidt, F.L. (1999). Alicyclobacillus in orange juice: 

occurrence and heat resistance of spores. Journal of Food Protection, 62, 883-

886. 

Gibbs, C. (2000). UV disinfection. Soft Drinks International, 32-34. 

Giese, N. & Darby, J. (2000). Sensitivity of microorganisms to different wavelengths of 

UV light: implications on modeling of medium pressure UV systems. Water 

Research, 34, 4007-4013. 

Gocmen, D., Elston, A., Williams, T., Parish, M. & Rouseff, R.L. (2005). Identification of 

medicinal off-flavours generated by Alicyclobacillus species in orange juice using 

GC-olfactory and GC-MS. Letters in Applied Microbiology, 40, 172-177. 

Goto, A. Nishibori, Y., Wasada, K., Furuhata, M., Fukuyama, M. & Hara, Y. (2008) 

Identification of thermo-acidophilic bacteria isolated from the soil of several 

Japanese fruit orchards. Letters in Applied Microbiology, 46 289-294. 

 



 

 

41 

Goto, K., Matsubara, H., Mochida, K., Matsumura, T., Hara, Y., Niwa, M. & Yamasato, 

K. (2002b). Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-

cycloheptane fatty acids, isolated from herbal tea. International Journal of 

Systematic and Evolutionary Microbiology, 52, 109-113. 

Goto, K., Mochida, K., Kato, K., Asahara, M., Fujita, R., An, S.Y., Kasai, H. & Yokota, A. 

(2007) Proposal of six novel moderately-thermophilic, acidophilic, endospore-

forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus 

fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus 

macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov., and 

Alicyclobacillus shizuokensis sp. International Journal of Systematic and 

Evolutionary Microbiology, 57, 1276-1285. 

Goto, K., Mochida, K., Kato, Y., Asahara, M., Ozawa, C., Kasai, H. & Yokota, A. (2006). 

Diversity of Alicyclobacillus isolated from fruit juices and their raw materials, and 

emended description of Alicyclobacillus acidocaldarius. Microbiology Culture 

Collection, 22, 1-14. 

Goto, K., Moshida, K., Asahara, M., Suzuki, M., Kasai, H. & Yokota, A. (2003). 

Alicyclobacillus pomorum sp. nov., a novel thermo-acidophillic, endospore-

forming bacterium that does not possess omega-alicyclic fatty acids, and 

emended description of the genus Alicyclobacillus. International Journal of 

Systematic and Evolutionary Microbiology, 53, 1537-1544. 

Goto, K., Tanimoto, Y., Tamura, T., Mochida, K., Arai, D., Asahara, M., Suzuki, M., 

Tanaka, H. & Inagaki, K. (2002a). Identification of thermo-acidophilic bacteria 

and a new Alicyclobacillus genomic species isolated from acidic environments in 

Japan. Extremophiles, 6, 333-340. 

Gouws, P.A., Gie, L., Pretorius, A. & Dhansay, N. (2005). Isolation and identification of 

Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate. 

International Journal of Food Science and Technology, 40, 789-792. 

Grande, M.J., Lucas, R., Abriouel, H., Ben Omar, N., Maqueda, M., Martínez-Bueno, 

M., Martínez-Cañamero, M., Valdivia, E. & Gálvez, A. (2005). Control of 

Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. International 

Journal of Food Microbiology, 104 289-297. 

Gruetzmacher, T.J. & Bradley, R.L. (1999). Identification and control of processing 

variables that affect the quality and safety of fluid milk. Journal of Food 

Protection, 62, 625-631. 



 

 

42 

Guerrero-Beltrán, J.A., & Barbosa-Cánovas, G.V. (2004). Review: Advantages and 

limitations on processing foods by UV light. Food Science and Technology 

International, 10, 137-148. 

Hansen, J.N. (1994). Nisin as a model food preservative, Critical Reviews in Food 

Science and Nutrition, 34, 69-93.  

Hippchen, B., Röll, A. & Porralla, K. (1981). Occurrence in soil of thermo-acidophilic 

bacilli possessing ω-cyclohexane fatty acids and hopanoids. Archives of 

Microbiology, 129, 53-55. 

Honer, C. (1988). A new look at ultraviolet. Dairy Foods, 89, 76-80. 

Hoyer, O. (1998). Testing performance and monitoring of UV systems for drinking water 

disinfection. Water Supply, 16, 424-429. 

Hsu, E.J. & Beuchat, L.R. (1986). Factors affecting microflora in fruit juice In: 

Commercial Fruit Processing, (edited by J.G. Woodroof,. & B.S. Luh). Pp. 149-

154. Avi Publishing Company. 

Huang, Z., Dostal, L. & Rosazza, J.P.N. (1993). Mechanisms of ferulic acid conversions 

to vanillic acid and guaiacol by Rhodotorula rubra. The Journal of Biological 

Chemistry, 268, 23954-23958. 

Imperio, T., Viti, C. & Marri, L. (2008). Alicyclobacillus pohliae sp. nov., athermophilic, 

endospore-forming bacterium isolated from geothermal soil of the North–West 

slope of Mount Melbourne (Antarctica). International Journal of Systematic and 

Evolutionary Microbiology, 58, 221-225. 

Jay, J.M. (1998a). Intrinsic and extrinsic parameters of foods that affect microbial 

growth. In: Modern Food Microbiology, 5th ed. Pp. 38-44. New York: Chapman & 

Hall. 

Jay, J.M. (1998b). High-temperature food preservation and characteristics of 

thermophilic microorganisms. In: Modern Food Microbiology, 5th ed. Pp. 354-

355. New York: Chapman & Hall. 

Jensen, N. & Whitfield, F.B. (2003). Role of Alicyclobacillus acidoterrestris in the 

development of a disinfectant taint in shelf-stable fruit juice. Letters in Applied 

Microbiology, 36, 9.  

Jensen, N. (1999). Alicyclobacillus – a new challenge for the food industry. Food 

Australia, 51, 33-36. 

Jensen, N. (2000). Alicyclobacillus in Australia. Food Australia, 52, 282. 

Kannenberg, E., Blume, E. & Poralla, K. (1984). Properties of ω-cyclohexane fatty acids 

in membranes. FEBS Letters, 172, 331-334. 



 

 

43 

Karavaiko, G.I., Bogdanova, T.I., Tourova, T.P., Kondrat’eva, T.F., Tsaplina, I.A., 

Egorova, M.A., Krasil’nikova, E.N. & Zakharchuk, L.M. (2005). Reclassification of 

‘Sulfobacillus thermosulfidooxidans subsp. thermotolerans’ strain K1 as 

Alicyclobacillus tolrans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 

1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description 

of the genus Alicyclobacillus. International Journal of Systematic and 

Evolutionary Microbiology, 55, 941-947. 

Keyser, M., Műller, I.A., Cilliers, F.P., Nel, W. & Gouws, P.A. (2008). Ultraviolet radiation 

as a non-thermal treatment for the inactivation of microorganisms in fruit juice. 

Innovative Food Science and Emerging Technologies, 9, 348-354. 

Kim W.J. (1993). Bacteriocins of lactic acid bacteria: their potential as food 

biopreservatives. Food Reviews International, 9, 299-313. 

Komitopoulou, E., Boziaris, I.S., Davies, E.A., Delves-Broughton, J. & Adams, M.R. 

(1999). Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. 

International Journal of Food Science and Technology, 34, 81-85. 

Koutchma, T. (2009). Advances in ultraviolet lLight technology for non-thermal 

processing of liquid foods. Food Bioprocess Technology, 2, 138-155. 

Koutchma, T., Kellers S., Chirtel S. & Parisi B. (2004). Ultraviolet disinfection of juice 

products in laminar and turbulent flow reactors. Innovative Food Science and 

Emerging Technologies, 5, 179-189 

Koutchma, T., Parisi, B. & Patazca, E. (2007). Validation of UV coiled tube reactor for 

fresh juices. Journal of Environmental Engineering and Science, 6, 319-328. 

Krischke, W. & Poralla, K. (1990). Properties of Bacillus acidocaldarius mutants 

deficient in ω-cyclohexane fatty acid biosynthesis. Archives of Microbiology, 153, 

463-469. 

Lado, B.H. & Yousef, A.E. (2002). Alternative food-preservation technologies: efficacy 

and mechanisms. Microbes and Infection 4, 433-440. 

Maldonado, M.C., Belfiore, C. & Navarro, A.R. (2008). Temperature, soluble solids and 

pH effects on Alicyclobacillus acidoterrestris viability in lemon juice concentrate. 

Journal of Industrial Microbiology and Biotechnology, 35, 141-144. 

Matsubara, H., Goto, K., Matsumura, T., Mochida, K., Iwaki, M., Niwa, M. & Yamasato, 

K. (2002). Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic omega-

alicyclic fatty acid-containing bacterium isolated from acidic beverages. 

International Journal of Systematic and Evolutionary Microbiology, 52, 1681-

1685. 



 

 

44 

McIntyre, S., Ikawa, J.Y., Parkinson, N., Haglund, J. & Lee, J. (1995). Characterization 

of an acidophilic Bacillus strain isolated from shelf-stable juices. Journal of Food 

Protection, 58, 319-321. 

Minakawa, M., Kawai, Y., Inoue, N. & Yamazaki, K. (2005). Purification and 

characterization of wanericin RB4, anti-Alicyclobacillus bacteriocin, produced by 

Staphylococcus warneri RB4. Current Microbiology, 51, 2-26. 

Murakami, M., Tedzuka, H. & Yamazaki, K. (1998). Thermal resistance of 

Alicyclobacillus acidoterrestris spores in different buffers and pH. Food 

Microbiology, 15, 577. 

Murdock, D.I. & Hatcher, W.S. (1975). Growth of microrganisms in chilled orange juice. 

Journal of Milk Food Technology 38: 393-396. 

Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. & Setlow, P. (2000). 

Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial 

environments. Current Molecular Biology Reviews 64, 548-572. 

Nicolaus, B., Improta, R., Manca, M.C., Lama, L., Esposito, E. & Gambacorta, A. 

(1998). Alicyclobacillus from an unexplored geothermal soil in Antarctica: Mount 

Rittmann. Polar Biology, 19, 133-141.  

Oita, S. & Kohyama, N. (2002). Antibacterial effect of grape polyphenols against 

thermoacidophilic bacteria Alicyclobacillus acidoterrestris. Journal of the 

Japanese Society for Food Science and Technology, 49, 555-558. 

Orr, R.V. & Beuchat, L.R. (2000). Efficiency of disinfectants in killing spores of 

Alicyclobacillus acidoterrestris and performance of media for supporting colony 

development by survivors. Journal of Food Protection, 63, 1117-1122. 

Orr, R.V., Beuchat, L.R., Shewfelt, R.L., Huang, C.J. & Tefera, S. (2000). Detection of 

guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory 

and chromatographic analyses and comparison with spore and vegetative cell 

populations. Journal of Food Protection, 63, 1517-1522. 

Palop, A., Alvarez, I., Razo, J. & Condon, S. (2000). Heat resistance of Alicyclobacillus 

acidocaldarius in water, various buffers and orange juice. Journal of Food 

Protection, 61, 1377-1380. 

Parish M.E. (2006). Spoilage of juices and beverages by Alicyclobacillus spp. In: 

Microbiology of Fruits and Vegetables, (edited by G.M. Sapers, J.R. Gorny & 

A.E. Yousef). Pp159-183. Boca Raton, Florida: Taylor and Francis Group. 

 



 

 

45 

Pettipher, G.L., Osmundsen, M.E. & Murphy J.M. (1997). Methods for the detection, 

enumeration and identification of Alicyclobacillus acidoterrestris and investigation 

of growth and production of taint in fruit juice-containing drinks. Letters in Applied 

Microbiology, 24, 185-189. 

Pettipher, G.L. (2000). Alicyclobacillus spp., their detection and control in fruit juice. Soft 

Drinks International, 31-32. 

Pinhatti, M.E.M.C., Variane, S., Eguchi, S.Y. & Manfio, G.P. (1997). Detection of 

acidothermophilic Bacilli in industrialised fruit juices. Fruit Processing, 7, 185-

189. 

Pometto, A.L., Sutherland, J.B. & Crawford, D.L. (1981). Streptomyces setonii: 

catabolism of vanillic acid via guaiacol and catechol. Canadian Journal of 

Microbiology, 27, 636-638. 

Pontius, A.J., Rushing, J.E. & Foegeding, P.M. (1998). Heat resistance of 

Alicyclobacillus acidoterrestris spores as affected by various pH values and 

organic acids. Journal of Food Protection, 61, 41-46. 

Poralla, K. & König, W.A. (1983). The occurrence of ω-cycloheptane fatty acids in a 

thermo-acidophilic bacillus. FEMS Microbiology Letters, 16, 303-306. 

Poralla, K., Kannenberg, E. & Blume, A. (1980). A glycolipid containing hopane isolated 

from the acidophilic, thermophilic Bacillus acidocaldarius, has a cholesterol-like 

function in membranes. FEBS Letters, 113, 107-110. 

Previdi, M.P., Quintavalla, S., Lusardi, C. & Vicini, E. (1997). Heat resistance of 

Alicyclobacillus spores in fruit juices. Industrial Conserve, 72, 353-358. 

Rivas, A., Rodrigo, D., Martínez, A., Barbosa-Cánovas, G.V. & Rodrigo, M. (2006). 

Effect of PEF and heat pasteurization on the physical–chemical characteristics of 

blended orange and carrot-juice. LWT Food Science and Technology, 39, 1163-

1170. 

Saxby, M.J. (1996). A survey of chemicals causing taints and offflavours in foods. In: 

Food Taints and Off-Flavours, (edited by M.J. Saxby), 2nd edn. Pp. 41–71. 

London: Blackie Academic and Professional. 

Severin, B.F., Suldan, M.T. & Engelbrecht, R.S. (1983). Effects of temperature on 

ultraviolet light disinfection. Environmental Science and Technology, 17, 717-

721. 

Shama, G. (1999). Ultraviolet light. In: Encyclopedia of Food Microbiology, (edited by 

R.K. Robinson, C. Batt & P. Patel). Pp. 2208-2214. London: Academic Press. 

 



 

 

46 

Shearer, A.E.H., Mazzotta, A.S., Chuyate, R. & Combas, D.E. (2002). Heat resistance 

of juice spoilage microorganisms. Journal of Food Protection 65, 1271-1275. 

Siegmund, B. & Pöllinger-Zierler, B. (2007). Growth behavior of off-flavor-forming 

microorganisms in apple juice. Journal of agricultural and Food Chemistry, 55, 

6692-6699. 

Silva, F.V.M. & Gibbs, P. (2001). Alicyclobacillus acidoterrestris spores in fruit products 

and design of pasteurization processes. Trends in Food Science & Technology, 

12, 68-74.  

Silva, F.V.M. & Gibbs, P. (2004). Target selection in designing pasteurization processes 

for shelf-stable high-acid fruit products. Critical Reviews in Food Science and 

Nutrition, 44, 353-360. 

Silva, F.V.M., Gibbs, P., Vieira, M.C. & Silva, C.L.M. (1999). Thermal inactivation of 

Alicyclobacillus acidoterrestris spores under different temperature, soluble solids 

and pH conditions for the design of fruit processes. International Journal of Food 

Microbiology, 51, 95-103. 

Simbahan, J., Drijber, R. & Blum, P. (2004). Alicyclobacillus vulcanalis sp. nov., a 

thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, 

USA. International Journal of Systematic and Evolutionary Microbiology, 54, 

1703-1707.  

Sinigaglia, M., Corbo, M.R., Altieri, C., Campaniello, D., D'Amato, D. & Bevilacqua, A. 

(2003). Combined effects of temperature, water activity and pH on 

Alicyclobacillus acidoterrestris spores. Journal of Food Protection, 66, 2216–

2221. 

Sizer, C.E. & Balasubramaniam, V.M. (1999). New intervention processes for minimally 

processed juices. Food Technology, 53, 64-67. 

Slieman, T.A. & Nicholson, W.L. (2000). Artificial and solar UV radiation induces strand 

breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Applied 

and Environmental Microbioliogy, 66: 199-205.  

Splittstoesser, D.F. Churey, J.J. & Lee, C.Y. (1994). Growth characteristics of aciduric 

sporeforming bacilli isolated from fruit juices. Journal of Food Protection, 57, 

1080-1083. 

Splittstoesser, D.F., Lee, C.Y. & Churey, J.J. (1998). Control of Alicyclobacillus in the 

juice industry. Dairy, Food and Environmental Sanitation, 18, 585-587.  

 



 

 

47 

Stevens, K.A., Sheldon, B.W., Klapes, N.A. & Klaenhammer,T.R. (1991) Nisin treatment 

for inactivation of Salmonella species and other Gram- negative bacteria. Applied 

and Environmental Microbiology 57, 3613-3615. 

Stother, B. (1999). UV disinfection in liquid sugar. International Sugar Journal, 101, 361-

363.  

Thompson, P.J. (1981). Thermophilic organisms involved in food spoilage: aciduric flat-

sour sporeforming aerobes Journal of Food Protection, 44,154-156. 

Tran, M.T.T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food 

Science & Emerging Technologies, 5, 495-502. 

Tsuruoka, N., Isono, Y., Shida, O., Hemmi, H., Nakayama, T. & Nishino, T. (2003). 

Alicyclobacillus sendaiensis sp. nov., a novel acidophilic slightly thermophilic 

species isolated from soil in Sendai, Japan. International Journal of Systematic 

and Evolutionary Microbiology, 53, 1081-1084. 

Uchino, F. & Doi, S. (1967). Acido-thermophillic bacteria from thermal waters. 

Agricultural Biology and Chemistry, 31, 817-822. 

US FDA, (2000). 21 CFR Part 179. Irradiation in the production, processing and 

handling of food. Federal Registration, 65, 71056 –71058. 

Walker, M. & Phillips, C.A. (2005). The effect of intermittent shaking, headspace and 

temperature on the growth of Alicyclobacillus acidoterrestris in stored apple juice. 

International Journal of Food Science and Technology, 40, 557-562. 

Walker, M. & Phillips, C.A. (2008). Alicyclobacillus acidoterrestris: an increasing threat 

to the fruit juice industry? International Journal of Food Science and Technology 

2008, 43, 250–260. 

Walls, I. & Chuyate, R. (1998). Alicyclobacillus – Historical perspective and preliminary 

characterization study. Dairy, Food and Environmental Sanitation, 18, 499-503. 

Walls, I. & Chuyate, R. (2000). Isolation of Alicyclobacillus acidoterrestris from fruit 

juices. Journal of AOAC International, 83, 1115-1120. 

Walls, I. (1994). Sporeformers that can grow in acid and acidified foods, Report of 

scientific and technical regulatory activities, NFPA, Washington, D. C. 

Warth, A.D. (1978). Molecular structure of the bacterial spore. Advance Microbial 

Physiology, 17:1–45.  

Webster, J.A., Walls, I., McDowell, C.I. & Hubner, R.J. (1996). Use of normalised 

ribotyping to describe acidophilic sporeformers isolated from fruits and fruit 

juices. Abstracts of the General Meeting of the American Society for 

Microbiology, New Orleans, USA, 19–23 May, 1996, Vol. 96, p. 378. 



 

 

48 

Wisotzkey, J.D., Jurtshuk, P., Fox, G.E., Deinhart, G. & Poralla, K. (1992). Comparative 

sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus 

acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new 

genus, Alicyclobacillus gen., nov. International Journal of Systematic 

Bacteriology, 42, 263-269.  

Wisse, C.A. & Parish, M.E. (1998). Isolation and enumeration of spore-forming, thermo-

acidophilic, rod-shaped bacteria from citrus processing environments. Dairy, 

Food and Environmental Sanitation, 18, 504-509.  

Yamazaki, K., Kawai, N., Inoue, N. & Shinano, H. (1997). Influence of sporulation 

medium and divalent ions on the heat resistance of Alicyclobacillus 

acidoterrestris spores. Letters in Applied Microbiology, 25, 153-156. 

Yamazaki, K., Murakami, M., Kawai, Y., Inoue, N. & Matsuda, T. (2000). Use of nisin for 

inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Food Microbiology, 

17, 315-320.  

Yamazaki, K., Teduka, H. & Shinano H. (1996). Isolation and identification of 

Alicyclobacillus acidoterrestris from acidic beverages. Bioscience, Biotechnology 

and Biochemistry, 60, 543-545. 

Ying Jiang, C., Liu, Y., Liu, Y.Y., You, X.Y., Guo, X. & Liu, S.J. (2008). Alicyclobacillus 

ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil 

International Journal of Systematic and Evolutionary Microbiology, 58, 2898-

2903. 

Zimmer, J L. & Slawson, R.M. (2002). Potential repair of Escherichia coli DNA following 

exposure to UV radiation from both medium and low-pressure UV sources used 

in drinking water treatment. Applied and Environmental Microbiology , 68, 3293-

3299. 



 

 

49 

CHAPTER 3 

 

ISOLATION AND IDENTIFICATION OF SPECIES OF ALICYCLOBACILLUS 

FROM ORCHARD SOIL IN THE WESTERN CAPE, SOUTH AFRICA 

 

Abstract 

 

Alicyclobacilli were isolated from orchard soil collected from an apple and pear farm in 

Elgin, Western Cape, South Africa. Morphological, biochemical and physiological 

characteristics of the isolates were used to presumptively classify them as belonging to 

the genus Alicyclobacillus. Strains were identified to species level by polymerase chain 

reaction (PCR) with genus-specific primers, and 16S ribosomal RNA (rRNA) gene 

sequencing. To our knowledge this is the first report on the isolation of Alicyclobacillus 

acidoterrestris and Alicyclobacillus acidocaldarius from orchard soil. The presences of 

these organisms in the soil suggest a possible source of contamination for the final fruit 

juice, concentrate or pulp. 

 

Introduction 

 

The alicyclobacilli are thermo-acidophilic, Gram-positive, rod-shaped, spore-forming, 

aerobic micro-organisms that possess ω-alicyclic fatty acids (ω-cyclohexane or ω-

cycloheptane) as the major components of the cellular membrane (Wisotskey et al., 

1992; Walls & Chuyate, 1998). Species of Alicyclobacillus have been isolated from a 

range of habitats and substrates, such as organic compost, manure, fruit, and heat-

processed foods (Deinhard et al. 1987; Yamazaki et al. 1996; Pettipher et al. 1997; 

Albuquerque et al. 2000; Jensen 2000; Walls & Chuyate, 2000; Goto et al., 2002; 

Matsubara et al., 2002). At present there are 19 recognized species of Alicyclobacillus 

of which three species have been isolated from spoilt juice products, namely 

Alicyclobacillus acidoterrestris, Alicyclobacillus acidocaldarius and Alicyclobacillus 

pomorum (Goto et al., 2003; Jensen & Whitfield, 2003; Gouws et al., 2005). 

Alicyclobacillus spores are heat resistant and pasteurization does not inactivate the 

spores (Splittstoesser et al., 1994; Eiroa et al., 1999; Orr & Beuchat, 2000). This heat  
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resistance was observed by Splittstoesser et al. (1994) who reported D values for  

A. acidoterrestris of 23 min at 90 °C and 2.4 to 2.8 min at 95 °C, suggesting that spores 

survive the typical juice pasteurization process that consists of holding at 86° to 96 °C 

for 2 min. In fact pasteurization serves as a heat treatment that stimulates germination 

of the spores, leading to growth. The ability of A. acidoterrestris to grow at a pH range of 

2.5 to 6 (Yamazaki et al., 1996) and to survive the typical juice pasteurization process 

has caused concern in the fruit juice industry (Splittstoesser et al., 1998; Eiora et al., 

1999; Gouws et al., 2005). 

Spoilage caused by this micro-organism is visually difficult to detect. The spoiled 

juice appears normal or might have light sediment. No gas is produced. Often, the only 

evidence of spoilage is a medicinal/phenolic off-flavour (Walls & Chuyate, 1998; 

Jensen, 1999; Jensen, 2000). Fruit juice contamination results from unwashed or poorly 

washed raw fruit that is processed, as well as contaminated water used during the 

production of fruit juices (Pontius et al., 1998; Orr & Beuchat, 2000; McIntyre et al., 

1995). Our interest in the presence of species of Alicyclobacillus in orchard soil is to 

investigate a potential source of contamination of the final fruit juice concentrate. In this 

study, strains of Alicyclobacillus were isolated from orchard soil of an apple and pear 

farm and identified to species level based on genus-specific PCR and rRNA gene 

sequence analyses. 

 

Materials and methods 

 

Collection of samples 

 

Top soil was collected from 12 random sites in apple and pear orchards on a farm in the 

Elgin region of the Western Cape, South Africa. The soil samples were sieved through a 

2.0 mm width mesh to remove stones and plant debris. A Soil: water ratio of 1:1 was 

used for the determination of soil pH. Approximately 10 g of soil was placed in sterile  

50 mL centrifuge tubes and re-suspended in 30 mL sterile peptone water. After soil 

particles were allowed to sediment, the supernatants were heat treated at 80˚C for  

10 min (Walls & Chuyate, 2000) and diluted in sterile distilled water. Dilution series of 

10-1 to 10-6 were prepared in triplicate on potato dextrose agar (PDA) (Biolab, Biolab 

Diagnostics, Midrand, SA), orange serum agar (OSA) (Oxoid, Basingstoke, Hampshire, 

England), YSG (yeast extract starch glucose) agar (Uchino & Doi, 1967) and YSG agar, 

supplemented with 20% (v/v) sterile apple juice. All media contained 100 µg mL-1 
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Delvocid (GistBrocades, Delf, Netherlands) to inhibit the growth of yeast and fungi. 

Tartaric acid (1N) was used after autoclaving to adjust all media to a final pH of 4. One 

of three plates was incubated at 55oC while the remaining two sets of plates were 

incubated at 45oC. Plates were incubated aerobically and examined for growth after 72, 

96 and 120 h. 

 

Preliminary identification of alicyclobacilli 

 

Colonies were randomLy selected from plates containing between 20 and 300 colonies 

and re-streaked on corresponding media to obtain pure cultures. All cultures were 

stored at -80oC in YSG broth adjusted to a pH of 4 with 1 N tartaric acid, supplemented 

with sterile glycerol (30%, v/v, final concentration). Gram reaction, oxidase and catalase 

activity were determined according to the methods described by Harrigan and McCance 

(1976). Gram-positive, oxidase positive, and catalase positive rods were selected for 

further examination. 

 

Carbohydrate fermentations 

 

Carbohydrate fermentation reactions were recorded by using the API 50 CHB system 

(BioMerieux, Marcy L’Etoile, France) according to the manufacturer’s instructions. 

Incubation of all API strips was at 45 oC, and results were recorded after 4 and 5 days. 

 

Genus-specific PCR amplification 

 

Isolates were grown in YSG broth adjusted to pH 4 for 4 days. Their genomic DNA was 

isolated using the Wizard Genomic DNA Purification Kit (Promega, Madison, Wisconsin) 

according to the manufacturer’s instructions. The DNA was amplified with primers 

CC16S-F (CGTAGTTCGGATTGCAGGG) and CC16S-R (GTGTTGCCGACTCTCGTG) 

(Conner et al., 2004). PCR reactions were performed in a total volume of 25 µL 

containing 0.6 µM of each of the primers, 1.25 U Taq DNA polymerase (Promega, 

Madison, Wisconsin), 1 x PCR reaction buffer containing MgCl2, 1 µL of 99% (v/v) 

dimethyl sulphoxide (DMSO), 0.4 mM deoxyribonucleoside triphosphate (dNTPs) and  

2 µL of the extracted DNA. PCR reactions were performed in the Eppendorf 

Mastercycler Personal. An initial 3 min denaturation at 95ºC was followed by 35 cycles 

of denaturation at 94ºC for 30 s, annealing at 55ºC for 30 s and elongation at 72ºC for  



 

 

52 

30 s, and a final 2 min chain elongation at 72ºC. A. acidocaldarius PMO1 and  

A. acidoterrestris SAO1 (Gouws et al., 2005) were used as reference strains. 

 

DNA Sequencing 

 

The genomic DNA of isolates were amplified with primers F8 (5’-CAG GCA TCC AGA 

CTT TGA TYM TGG CTC AG-3’) and R1512 (5’-GTG AAG CTT ACG GYT AGC TTG 

TTA CGA CTT-3’), as used by Felske et al. (1997). PCR was according to the method 

described by Garbers et al. (2004). The amplified fragments of approximately 1.5kb in 

size were purified using the High Pure PCR Purification Kit (Roche Diagnostics, 

Mannheim, Germany), according to the manufacturer’s instructions. The fragments 

were sequenced using the ABI PRISM 377 DNA Sequencer (Perkin Elmer) at the DNA 

Sequencing Facility, Stellenbosch University and compared to sequences in GenBank 

using the BLAST search option. 

 

Results and discussion 

 

The soil pH ranged from 5.91 to 6.71 (Table 1), which is typical of orchard soil. YSG 

plates incubated at 45oC contained the highest amount of microbial cells. From a total of 

28 isolates, 5 were selected based on Gram reaction, morphology and catalase activity. 

All isolates were Gram-positive, rod shaped, oxidase and catalase positive. 

Carbohydrate fermentation reactions recorded for 4 out of the 5 isolates corresponded 

most closely to that of the type strain of A. acidoterrestris (Table 2). Variations in the 

fermentation of D-raffinose, starch, trehalose, D-turanose and xylitol were recorded 

(Table 2). Similar results have been reported for other strains of A. acidoterrestris 

(Chang & Kang, 2001; Silva & Gibbs, 2001; Goto et al., 2001). None of the strains 

fermented ribose and aditinol, which is characteristic for the type strain of  

A. acidoterrestris ATCC 49025T (Goto et al., 2001).  

DNA amplification with genus-specific primers on all four isolates produced a 

134-bp fragment (data not shown), which was identical in size to that reported for  

A. acidoterrestris ATCC 49025T, A. cycloheptanicus ATCC 49029 and A. acidocaldarius 

ATCC 43030 (Conner et al., 2004). Sequencing of the 16S rRNA gene amplicons for 

the 5 isolates of Alicyclobacillus and comparison with nucleotide sequences in 

GenBank, revealed DNA homology between 96.8% and 98.7.0% to A. acidoterrestris 
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Table 1 Origin of isolates 
 

Isolate Location Soil Type Soil pH 

ESO6 Granny Smith orchard Sandy Clay Loam 6.69 

ESO7 Golden Delicious orchard Sandy Clay Loam 6.50 

ESO14 Forelle orchard Sandy Clay Loam 6.66 

ESO12 Fuji orchard Sandy Clay Loam 6.71 

ESO3 Packham’s Triump orchard Clay Loam 5.91 

 

 

Table 2 Differential carbohydrate fermentation reactions of Alicyclobacillus isolates 
collected from orchard soil in the Western Cape, South Africa 
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A.acidoterrestris 
ATCC 49025Ta 

+ + + + - + - + + + + + - + - - - + + + +  

ESO6 + + - - - + + d + + + + - + + + - + + d +  

ESO7 + + - - - + + d + + + + - + + d - d + d +  

ESO12 + + - - - + - d + + + + - + - - - - + + +  

ESO14 + + - - - + - d + + + + - + - - - - + - +  

A.acidocaldarius 
ATCC 27009Ta 

+ - + - + + - - - - - - + - + - + - - + +  

ESO3 + - - - + - - - - - d + + + d - - - + + -  

+, positive reaction; -, negative reaction; d, variable reaction. All strains fermented: aesculin, L-arabinose, 

arbutin, cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose mannitol, D-mannose, α-methyl-

D-glucoside, sucrose, trehalose and D-xylose. None of the strains fermented: N-acetyl-glucosamine, D-

arabinose, L-arabitol, dulcitol, D-fucose, L-fucose, Gluconate, inulin, 2-keto-gluconate, 5-keto-gluconate, 

β-methyl-xyloside, D-tagatose, D-xylose and L-xylose 
a 
Data from Goto et al. (2001). 
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ATCC 49025T (Table 3). Differences in DNA sequence data suggested that the strains 

of A. acidoterrestris, isolated from orchard soil do not represent a homogeneous 

collection. 

The carbohydrate fermentation pattern of isolate ESO3 corresponded most 

closely to A. acidocaldarius ATCC 2700T (Table 2). Erythritol was unable to be 

assimilated, which is a characteristic of A. acidocaldarius (Goto et al., 2001). PCR with 

genus-specific primers yielded a DNA fragment of 134 bp (data not shown); indicating 

isolate ESO 3 belonged to the genus Alicyclobacillus (Conner et al., 2004). Sequence 

analysis of isolate ESO3 revealed 98.6% homology to the 16S rDNA of A. 

acidocaldarius ATCC 2700T (Table 3). Isolate ESO 3 is thus regarded as a member of 

A. acidocaldarius. 

To our knowledge, this is the first report on the isolation of A. acidoterrestris and 

A. acidocaldarius from orchard soil. Soil adhering to fruit bins, machinery and on fruit 

that was picked off the ground during harvest can greatly complicate subsequent 

cleaning operations in the processing plant. The presence of known spoilage causing 

species of Alicyclobacillus in orchard soil suggests a potential source of contamination 

for the final fruit juice, concentrate or pulp. Further research is needed to establish the 

role played by these specific strains in the spoilage of fruit juice. 
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Table 3 Percentage similarity of isolates from orchard soil to species in the NCBI 

nucleotide sequence database, based on partial 16S rDNA sequence analysis 

 

Isolate 
No of 

nucleotides 
% similarity 

Nearest phylogenetic neighbour 
(GenBank accession number) 

ESO6 833 98.7% Alicyclobacillus acidoterrestris (AY686617.1) 

ESO7 840 98.1% Alicyclobacillus acidoterrestris (AY686617.1) 

ESO14 857 97.0% Alicyclobacillus acidoterrestris (AJ133631.1) 

ESO12 845 96.8% Alicyclobacillus acidoterrestris (ABO42058.1) 

ESO3 823 98.6% Alicyclobacillus acidocaldarius (ABO59665.1) 
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CHAPTER 4 

 

ISOLATION, IDENTIFICATION AND TYPIFICATION OF 

ALICYCLOBACILLUS ACIDOTERRESTRIS AND ALICYCLOBACILLUS 

ACIDOCALDARIUS STRAINS FROM ORCHARD SOIL AND THE FRUIT 

PROCESSING ENVIRONMENT IN SOUTH AFRICA 

 

Abstract 

 

Alicyclobacillus acidoterrestris and A. acidocaldarius are thermo-acidophilic, non-

pathogenic, spore-forming bacteria that can survive the typical heat processing of fruit 

juices and concentrates. Bacterial endospores then germinate, grow and cause 

spoilage of acid food products. Species of Alicyclobacillus were isolated from orchard 

soil and a fruit concentrate production factory in South Africa. Preliminary identification 

of the isolates was based on morphological, biochemical and physiological properties. 

Identification at species level was done by PCR amplification using genus-specific 

primers and 16S ribosomal RNA (rRNA) gene sequencing. The majority of isolates 

belonged to the species A. acidoterrestris, but A. acidocaldarius was also isolated and 

identified. As far as we could determine, this is the first report of the isolation of  

A. acidoterrestris from wash water and soil outside a fruit processing plant, as well as 

the isolation of A. acidocaldarius from vinegar flies. The genotypic relatedness between 

strains of A. acidoterrestris and between strains of A. acidocaldarius was determined by 

RAPD-PCR. Sixteen isolates identified as A. acidoterrestris grouped into four clusters 

based on RAPD-PCR banding patterns, suggesting that they belong to at least four 

genotypic groups. Three isolates identified as A. acidocaldarius gave three unique 

banding patterns.  

 

Introduction 

 

The genus Alicyclobacillus consists of a group of thermo-acidophilic, strictly aerobic, 

heterotrophic, endospore-forming bacteria (Wisotskey et al., 1992; Walls & Chuyate, 

1998). Initially, these bacteria were members of the genus Bacillus, however, in 1992 
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they were allocated to a new genus, Alicyclobacillus based on 16S ribosomal RNA 

(rRNA) gene comparative sequence analysis and the presence of unusual ω-alicyclic 

fatty acids in their cell membrane (Wizotskey et al., 1992). They were first isolated by 

Darland and Brock (1971) from various acidic thermal environments in the United 

States. Subsequently similar acidophilic spore-formers were isolated from other 

environmental sources, including garden soil, organic compost, and fruit and heat-

processed foods (Deinhard et al., 1987; Yamazaki et al., 1996; Pettipher et al., 1997; 

Albuquerque et al., 2000; Jensen, 2000; Walls & Chuyate, 2000; Goto et al., 2002; 

Matsubara et al., 2002). Of the currently nineteen recognised species of 

Alicyclobacillus, three have been isolated from spoilt fruit and vegetable juice products, 

namely Alicyclobacillus acidoterrestris, Alicyclobacillus acidocaldarius and 

Alicyclobacillus pomorum (Goto et al., 2003; Jensen & Whitfield, 2003; Gouws et al., 

2005). 

Alicyclobacillus spp. survive thermal acidic conditions in the form of endospores 

and it is these highly heat resistant spores that can survive the typical pasteurisation 

regimes applied during juice manufacturing. In single strength juice these micro-

organisms find a favorable environment for germination and growth that, under certain 

conditions, can lead to product deterioration (Chang & Kang, 2004). The first instance of 

spoilage reported to be caused by members of the genus Alicyclobacillus occurred in 

1984 in aseptically packaged apple juice in Germany. The impact of these bacteria in 

fruit juices was not acknowledged until more than a decade later when numerous 

reports of A. acidoterrestris spoilage were reported (Walls, 1994; Yamazaki et al., 

1996a; Pettipher et al., 1997; Walls & Chuyate, 1998; Pettipher & Osmundson, 2000). 

Spoilage caused by Alicyclobacillus has to date been reported in apple, pear, orange, 

peach, mango and white grape juice, as well as in fruit juice blends, fruit juice containing 

drinks and tomato products, such as tomato juice and canned tomatoes (Borlinghaus & 

Engel, 1997; Chang & Kang, 2004; Gouws et al., 2005). 

Spoilage of fruit juice products by A. acidoterrestris is difficult to detect. It causes 

some clarified fruit juices to have a light sediment, cloudiness or haze. However, the 

main spoilage characteristic is a medicinal or phenolic off-flavour or odour, caused by 

guaiacol (Yamazaki et al., 1996), 2,6-dibromophenol (Borlinghaus & Engel, 1997) or 

2,6-dichlorophenol (Jensen & Whitfield, 2003).  

Since members of the genus Alicyclobacillus are soil-borne organisms, it is 

thought that the source of contamination of the fruit juice is from the harvested, 

contaminated fresh fruit, which is introduced during processing without proper cleaning 
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(McIntyre et al., 1995; Pontius et al., 1998; Orr & Beuchat, 2000). Our interest in the 

presence of species of Alicyclobacillus in the fruit concentrate production environment is 

to investigate a potential source of contamination of the final product. In this study 

species of Alicyclobacillus were isolated from orchard soil, the factory environment and 

the fruit concentrate. The orchard soil was from orchards supplying the fruit concentrate 

manufacturing facility with fruit. The isolates were identified to species level based on 

16S rRNA gene sequence analyses and typified using RAPD-PCR.  

 

Materials and methods 

 

Sampling sites 

 

Samples were collected from a Hazard Analysis Critical Control Point (HACCP) 

accredited fruit processing facility in the Western Cape region of South Africa. This 

facility processes pear, peach, apricot and apples into fruit concentrate. A simplified and 

generalised representation of fruit puree manufacturing at this plant is shown in Fig. 1. 

Samples were taken from: 1) orchard soil and soil on the fruit processing premises; 2) 

fruit crates; 3) fruit prior to processing; 4) vinegar flies; 5) wash water; 6) water from the 

flume; 7) pulp/puree; 8) evaporator; 9) factory dust/debris; and 10) final product.  

Topsoil was collected from under and around the trees of 4 different pear orchards 

which supply the factory with fruit. Orchards were located in Montaque and Barrydale in 

the Western Cape, South Africa. Topsoil was also collected from 4 areas in the 

immediate vicinity of the fruit processing factory. Composite samples of soil and plant 

debris were collected from the bottom of 6 different plastic crates used to transport fruit 

to the factory. The surfaces of pears stored in the processing plant prior to processing 

were sampled. Vinegar flies, identified as Drosophila simulans Stuvervant, were 

collected from inside the fruit storage area of the manufacturing plant. Vinegar flies were 

collected by passing a sterile bag through swarming flies. Water samples were collected 

from the bottom of the wash water reservoir, which stores recycled water after the fruit 

are washed prior to mashing. Pear skin from the press was sampled and fresh pear 

puree before concentration was sampled. Water was also taken from the evaporator 

inlet, which consists of condensed water produced during the process of concentration 

of the juice. Debris consisting of fruit material and dust were collected from 4 different 

sites inside the factory. The final product, pasteurised pear concentrate at 32 °Brix, was 

sampled. All samples, except for the orchard soil, were collected on the  
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Figure 1 Fruit puree production 
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same day, stored in sterile sampling bags and processed within 12 to 24 h from the time 

of sampling. Orchard soil samples were collected and processed one week earlier. 

 

Isolation 

 

Approximately 20 g of top soil, debris or pear pulp were placed in sterile 50 mL 

centrifuge tubes. Samples were re-suspended in 30 mL sterile 1.5% (m/v) NaCl solution 

on a vortex for 3 min at 25 °C. Large particles were then allowed to settle. Around 1 kg 

of fresh fruit was washed with 100 mL sterile 1.5% (m/v) NaCl solution by thumbling the 

sample material for 5 min. Around 150 vinegar flies were placed in a sterile 50 mL 

centrifuge tube with 2 mL sterile 1.5% (m/v) NaCl solution and glass beads 

(approximately 2 mm in diameter). The flies were homogenised for 3 min at 25 °C on a 

vortex.  

Samples were given a heat treatment at 80˚C for 10 min to promote the 

germination of any alicyclobacilli spores and the elimination of vegetative cells (Walls & 

Chuyate, 2000). After the heat treatment aliquots of 1 mL of all samples were added to 

10 mL Yeast Starch Glucose (YSG) broth prepared according to the according to the 

formula described by Matsubara et al., (2002). The YSG broth was adjusted to a final 

pH of 4 using 1N tartaric acid and contained 100 µg mL-1 Delvocid (GistBrocades, Delf, 

Netherlands) to inhibit the growth of yeast and fungi. These were incubated at 45oC for 

24 h as an enrichment step. Dilution series of 10-1 to 10-6 were prepared in sterile 

distilled water and incorporated in triplicate by pour plating, into potato dextrose agar 

(PDA) (Chang & Kang, 2004) (Biolab Diagnostics, Midrand, South Africa), orange 

serum agar (OSA) (Chang & Kang, 2004) (Oxoid, Basingstoke, Hampshire, England), 

YSG agar (Matsubara et al., 2002) and YSG agar supplemented with 20% (v/v) sterile 

filtered apple juice. All media contained 100 µg mL-1 Delvocid (GistBrocades). Tartaric 

acid (1N) was used to adjust all media after autoclaving to a final pH of 4. Plates were 

aerobically incubated at 55o, 45o and 40oC and examined for growth after 72, 96 and 

120 h.  

 

Preliminary identification  

 

Colonies were randomLy selected from plates containing between 20 and 300 colonies 

and re-streaked on corresponding media to obtain pure isolates. All isolates were stored 

at -80oC in YSG broth (pH 4), supplemented with 30% (v/v) sterile glycerol. 
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Spore-formation was determined using phase-contrast microscopy, while Gram-reaction 

and oxidase and catalase activity were determined according to the methods described 

by Harrigan & McCance (1976). Gram-positive, oxidase-negative, catalase-positive and 

spore-forming rods were selected for further examination. 

 

Genotypic methods 

 

Isolates were grown for 4 d at 45oC in YSG broth adjusted to pH 4. Their genomic DNA 

was isolated using the Wizard Genomic DNA Purification Kit (Promega, Madison, 

Wisconsin) according to the manufacturer’s instructions. For initial screening of the 

isolates their DNA was amplified using the primers CC16S-F 

(CGTAGTTCGGATTGCAGGG) and CC16S-R (GTGTTGCCGACTCTCGTG) (Conner 

et al., 2004). This primer set amplified a 134 bp segment between bases 1254 and 1388 

of the 16S rRNA gene. 

PCR reactions were performed in a total volume of 25 µL containing 50 pmol of 

each  primer, 1.25 U Taq DNA polymerase (Supertherm, supplied by Southern Cross 

Biotechnologies, Cape Town, South Africa), 1 x PCR reaction buffer containing  

2.5 mM MgCl2, 1 µL of 99% (v/v) dimethyl sulphoxide (DMSO) (Merck),  

0.4 mM deoxyribonucleoside triphosphate (dNTPs) (AB gene, supplied by Southern 

Cross Biotechnologies) and 2 µL of the extracted DNA. Thermal cycling for this PCR 

and all subsequent PCR reactions were done in an Eppendorf Mastercycler Personal 

(Eppendorf, Germany). An initial 3 min denaturation at 95ºC was followed by 35 cycles 

of denaturation at 94ºC for 30 s, annealing at 55ºC for 30 s and elongation at 72ºC for 

30 s, and a final 2 min chain elongation at 72ºC. A. acidocaldarius DSM 446T and  

A. acidoterrestris DSM 3922T obtained from the Deutsche SammLung von 

Mikroorganismen und Zellkulturen GmbH (German Collection of Microorganisms and 

Cell Cultures) were included in each reaction as positive controls. Double distilled water 

instead of extracted DNA was used as a negative control. 

Isolates with PCR fragments identical in size to the expected amplification 

products for the genus Alicyclobacillus were selected and their genomic DNA amplified 

using the primers 8f (5’-CAG GGA TCC AGA CTT TGA TYM TGG CTC AG-3’) and 

1512r (5’-GTG AAG CTT ACG GYT AGC TTG TTA CGA CTT-3’) (Felske et al., 1997). 

These primers amplify a 1.5 kilobase pair (kb) region of the 16S rRNA gene. The PCR 

reactions were performed in a total reaction volume of 25 µl containing 0.5 µM of each 

of the primers, 1 U Taq DNA polymerase (Supertherm), 1 × reaction buffer (Southern 
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Cross), 1 µL 99% (v/v) dimethyl sulphoxide (DMSO) (Merck), 0.5 mM dNTPs (Southern 

Cross) and 1 µl of the isolated DNA. All the PCR amplifications were initiated at 92˚C for 

3 min. The samples were heated to 92˚C for 30 s for denaturation, followed by 

annealing at 54˚C for 30 s, while primer extension was performed at 72˚C for 1 min. 

These three steps were repeated for 35 cycles. A final elongation step at 72˚C for 7 min 

was included and the samples were cooled to 4˚C (Felske et al., 1997).  

The amplified fragments were purified using the High Pure PCR Purification Kit 

(Roche Diagnostics GmbH, Mannheim, Germany), according to the manufacturer’s 

instructions. The fragments were sequenced using the ABI 3130XL Genetic Analyzer 

(Applied Biosystems, Foster City, USA) at the DNA Sequencing Facility, Stellenbosch 

University and compared to sequences in GenBank using the BLAST search option. 

Genomic DNA from all the isolates was amplified with RAPD primers BA-10 (5′-

AACGCGCAAC-3′) and F-64 (5′-GCCGCGCCAGTA-3′) from Operon Technologies 

(Alameda, California, United States) (Yamazaki et al., 1996). PCR reactions were 

performed in 25 µl volume reactions containing 1.5 ng of template DNA, 1 mM primer, 

0.2 mM dNTPs (Southern Cross Biotechnologies), 2 mM MgCl2, 2 U Taq DNA 

polymerase (Super-Therm), and 1 × reaction buffer supplied with the enzyme. 

Amplification products were separated on a 1.5% (m/v) agarose gel (Whitehead 

Scientific). A DNA molecular mass marker, O’Generuler™ DNA Ladder Mix (Fermentas, 

Maryland, United States) was used as a standard. Alicylcobacillus acidocaldarius DSM 

446T and A. acidoterrestris DSM 3922T were used as reference strains.  

 

Carbohydrate fermentations  

 

Isolates showing different RAPD-PCR banding patterns were selected for carbohydrate 

fermentation testing. Carbohydrate fermentation reactions were recorded by using the 

API 50 CHB system (BioMerieux, Marcy L’Etoile, France) according to the 

manufacturer’s instructions. Incubation of all API strips was at 45oC, and results were 

recorded after 4 and 5 d. 

 

pH determinations 

 

Five grams of pulverized dry soil samples were mixed with distilled water in a soil: water 

ratio of 1:1 until the soil and water were in equilibrium. Suspended soil particles were 

allowed to settle and the pH was read using a pH meter by placing the electrodes in the 
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slurry, swirling gently and reading the pH immediately. The pH of the flume and wash 

water was measured by placing the electrodes directly in the water and reading the pH 

immediately. 

 

Results and discussion 

 

A diverse range of samples from the environment and processing plant were tested in 

order to provide comprehensive data on the occurrence of species of Alicyclobacillus at 

different stages of fruit processing. YSG plates incubated at 45 °C contained the highest 

amount of colony forming units compared to plates incubated at 55 °C and 40 °C and 

contained a higher amount of microbial cells than OSA and PDA plates. Nineteen 

spore-forming, Gram positive, oxidase-negative and catalase-positive rods were 

selected for further investigation. After DNA amplification with genus-specific primers all 

nineteen isolates produced a 134-bp fragment (data not shown), which was identical in 

size to that reported for A. acidoterrestris DSM 3922T, A. cycloheptanicus ATCC 49029 

and A. acidocaldarius ATCC 43030 (Connor et al., 2005). Species of Alicyclobacillus 

were isolated from orchard soil from Barrydale, soil on the fruit processing premises, 

vinegar flies, wash water, flume water, pear skin from the press, debris from the factory 

floor, water from the evaporator inlet and the pear concentrate (Table 1). No 

Alicyclobacillus spp. were isolated from fruit surfaces and debris collected from inside 

the crates used to transport the fruit to the processing facility. 

Between 778 and 1119 bases were sequenced for all isolates (Table 1). 

Sequencing of the 16S rRNA gene amplicons for the 19 isolates identified them as 

members of the genus Alicyclobacillus and comparison with nucleotide sequences in 

GenBank, revealed DNA homology between 98.5% and 99.4% to strains of  

A. acidoterrestris for 16 of the isolates (Table 1). The other three isolates yielded 

amplicons 98.9% to 99.0% homologous to the 16S rRNA gene of a strain of  

A. acidocaldarius (Table 1).  

Carbohydrate fermentation reactions recorded for the 8 isolates identified as 

belonging to the species A. acidoterrestris by the use of DNA sequence analysis 

corresponded most closely to that of the type strain of A. acidoterrestris (Table 2). 

Variations in the fermentation of trehalose, D-turanose and xylitol were recorded (Table 

1). Similar results have been reported for other strains of A. acidoterrestris (Chang & 

Kang, 2001; Silva & Gibbs, 2001; Goto et al., 2001). None of the strains fermented  
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Table 1 Percentage similarity of isolates to species in the NCBI nucleotide sequence database, based on partial 16S rRNA gene 

sequence analysis.   

Isolate Source 
Nearest phylogenetic neighbour 
(GenBank accession number) 

No of nucleotides 
sequenced 

% similarity 
RAPD-PCR 
Clusters 

FB-26 Soil outside factory A. acidoterrestris (AB042058.1) 1035 99.2% I 

FB-14 Wash water A. acidoterrestris (AB059676.1) 925 99.3% II 

FB-15 Wash water A. acidoterrestris (AB059676.1) 816 99.2% II 

FB-17 Wash water A. acidoterrestris (AB059676.1) 805 99.2% II 

FB-38 Water from flume A. acidoterrestris (AB059675.1) 788 98.7% III 

FB-39 Water from flume A. acidoterrestris (AB059675.1) 958 98.5% III 

FB-21 Pear skin from press A. acidoterrestris (AJ133631.1) 820 98.5% IV 

FB-22 Pear skin from press A. acidoterrestris (AJ133631.1) 802 98.6% IV 

FB-35 Water from evaporator inlet A. acidoterrestris (AJ133631.1) 963 98.9% IV 

FB-32 Water from evaporator inlet A. acidoterrestris (AJ133631.1) 778 98.8% IV 

FB-41 Debris from factory floor A. acidoterrestris (AB059675.1) 795 98.7% III 

FB-2 Pear concentrate A. acidoterrestris (AB042058.1) 784 99.2% I 

FB-5 Pear concentrate A. acidoterrestris (AB042058.1) 848 99.4% I 

FB-7 Pear concentrate A. acidoterrestris (AB059676.1) 874 99.3% II 

FB-11A Pear concentrate A. acidoterrestris  (AB042058.1) 1119 99.3% I 

FB-13 Pear concentrate A. acidoterrestris (AB059676.1) 1102 99.1% II 

FB-28 Orchard soil  from Barrydale A. acidocaldarius (AB042056.1) 1119 99.0%  

FB-19 Vinegar flies  A. acidocaldarius (AB042056.1) 1057 98.9%  

FB-1 Pre-pasteurized pear puree A. acidocaldarius (AB042056.1) 821 98.9%  



 

 

68 

 

 

 

 
Table 2 Differential carbohydrate fermentation reactions of Alicyclobacillus spp. 
collected from the fruit processing environment in the Western Cape, South Africa 
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(RAPD group) 
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A.acidoterrestris 

DSM 3922Ta 
+ + + + - + - + + + + + - + - - - + + + +   

  

FB-2(I) + + - - - + + d + + + + - + + - - - + d +     

FB-11A(I) + + - - - + - d + + + + - + + - - - + d +     

FB-14(II) + + - - - + - d + + + + - + + - - + + d +     

FB-15(II) + + - - - + - d + + + + - + + - - + + d +     

FB-38(III) + + - - - + - d + + + + - + + d - d + d +     

FB-39(III) + + - - - + - d + + + + - + - - - - + + +     

FB-21(IV) + + + - - + - d + + + + - + - - - - + + +     

FB-32(IV) + + - - - + - d + + + + - + - - - - + + +     

A.acidocaldarius 

DSM 446Ta 
+ - + - + + - - - - - - + - + + + - - + +   

  

FB-1 - - - - + - - - - - d + + + d + - - + + -     

FB-28 - - - - - - - - - - d + + + d + - - - + -     

FB-19 - - - - + - - - - - d + + + d + - - - + -     

+, positive reaction; -, negative reaction; d, variable reaction. All strains fermented: aesculin, L-

arabinose, arbutin, cellobiose, D-fructose, D-galactose, D-glucose, lactose, maltose, mannitol, 

D-mannose, α-methyl-D-glucoside, sucrose, trehalose and D-xylose. None of the strains 

fermented: N-acetyl-glucosamine, D-arabinose, L-arabitol, dulcitol, D-fucose, L-fucose, 

gluconate, inulin, 2-keto-gluconate, 5-keto-gluconate, β-methyl-xyloside, D-tagatose, D-xylose 

and L-xylose. 

a Data from Goto et al. (2003). 
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ribose and adonitol, which is characteristic for the type strain of A. acidoterrestris DSM 

3922T (Goto et al., 2001).  

The carbohydrate fermentation pattern of isolates FB-1, FB-28 and FB-19 

corresponded most closely to that of A. acidocaldarius DSM 446T (Table 2). These 

three isolates were previously classified as strains of A. acidocaldarius according to 

DNA sequence analysis. For all strains erythritol was unable to be assimilated, which is 

a characteristic of A. acidocaldarius (Goto et al., 2001). 

Confirmation of genotypic diversity was provided by RAPD-PCR, which grouped 

the 16 isolates identified as A. acidoterrestris into 4 genotypically well-separated 

clusters. The profiles generated by RAPD-PCR with the two primers were composed of 

three to eight bands for both primers (Fig. 2). All isolates, as well as the type strains for 

A. acidoterrestris and A. acidocaldarius showed amplification with the primers used. The 

RAPD-PCR profiles of all strains differed from that of the type strain of  

A. acidoterrestris, which did not group in any of the four RAPD-PCR clusters (Fig. 2). 

Isolates in clusters I were isolated from pear concentrate and soil outside of the factory. 

The identical banding patterns obtained for the isolates indicate that soil in the vicinity of 

the factory, which could be carried into the processing facility by employees or through 

windborne action, is a potential source of contamination for the final fruit juice, 

concentrate or pulp. The factory soil had a pH of 6.67 which was similar to that of the 

orchard soil from Barrydale which had a pH of 6.52. These results confirm the ability of 

cells A. acidoterrestris and A. acidocaldarius or at least spores of these species to 

survive in soil which are slightly acidic to neutral (Groenewald et al., 2008). Isolates in 

cluster II were isolated from pear concentrate and wash water. The pH of the wash 

water was 5.84. Wash water could also act as a potential reservoir of A. acidoterrestris 

which results in the contamination of the final product. Wash water is used during the 

production of fruit to wash the fruit, removing dust, soil and any foreign objects from the 

fruit immediately prior to the pulping of the fruit. This water is conserved by recycling it 

during the manufacturing process (Fig. 1). The presence of strains of A. acidoterrestris 

displaying identical banding patterns isolated from the factory environment before 

pasteurisation and in the pear concentrate confirms the ability of strains of  

A. acidoterrestris to survive the commercial pasteurisation process.  

Cluster III contained two strains from flume water and one strain isolated from 

debris found on the factory floor. Flume water had a pH of 5.91. During the movement 

of fruit along the flume, water is spilled onto the floor of the processing plant leading to  
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Figure 2 DNA fragments obtained after RAPD-PCR of the genomic DNA of isolates identified as A. acidoterrestris and A. 

acidocaldarius. Isolates identified as A. acidoterrestris are in groups labelled I, II, III and IV, while isolates FB1, FB28 and FB19 

were identified as A. acidocaldarius by 16S RNA gene sequence analysis. Lanes 1 and 23 consist of the DNA molecular mass 

marker O’Generuler™ DNA Ladder Mix. Lane 2: A. acidoterrestris DSM 3922
T
; Lane 19: Alicylcobacillus acidocaldarius DSM 446

T
. 

A: Primer BA-10 (5′-AACGCGCAAC-3′); B: Primer F-64 (5′-GCCGCGCCAGTA-3′)
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possible contamination of the floor surface area. Water from the evaporator inlet and 

and pear skin from the press provided isolates that grouped into genetically distinct 

cluster IV (Fig. 2). Inside the evaporator, vacuum and heat are used to remove excess 

water in order to obtain a base concentrate of 32 °Brix.  

Isolates FB1, FB28 and FB19 identified as A. acidocaldarius by DNA sequence 

analysis gave unique RAPD banding patterns, suggesting they do not represent a 

homogeneous collection, despite their almost identical 16S rRNA sequence homologies 

(Table 1). Furthermore, the RAPD-PCR profiles of these strains differed from that of the 

type strain A. acidocaldarius (Fig. 2). Alicyclobacillus acidocaldarius does not produce 

the taint chemical guaiacol; however, its isolation from spoilt fruit juice suggests a 

possible role in the spoilage of fruit juice (Gouws et al., 2005). 

 

Conclusions 

 

As far as we are aware this is the first report on the isolation of A. acidoterrestris from 

wash water, water from the evaporator inlet, soil outside of fruit concentrate factory and 

flume water. Strains of A. acidocaldarius were isolated from pre-pasteurised pear puree, 

orchard soil and for the first time to our knowledge, from vinegar flies. Further research 

is needed to establish the role played by these specific strains of  

A. acidoterrestris and A. acidocaldarius in the spoilage of fruit juice. The widespread 

occurrence of strains of A. acidoterrestris in the fruit concentrate manufacturing 

environment suggests that good manufacturing practices play an essential role in 

controlling instances of spoilage caused by these bacteria. 
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CHAPTER 5 

 

THE USE OF ULTRAVIOLET RADIATION AS A NON-THERMAL 

TREATMENT FOR THE INACTIVATION OF ALICYCLOBACILLUS 

ACIDOTERRESTRIS SPORES IN WATER, WASH WATER FROM A FRUIT 

PROCESSING PLANT AND GRAPE JUICE CONCENTRATE 

 

Abstract 

 

Alicyclobacillus acidoterrestris is a non-pathogenic, spore-forming bacterium that can 

survive the commercial pasteurisation processes commonly used during fruit juice 

production. Surviving bacterial endospores germinate, grow and cause spoilage of high 

acid food products. Fruit juices can be treated using ultraviolet (UV-C) with a 

wavelength of 254 nm, which has a germicidal effect against micro-organisms. In this 

study A. acidoterrestris was inoculated into water, used wash water from a fruit 

processing plant and grape juice concentrate. Ultraviolet dosage levels (J L−1) of 0, 61, 

122, 183, 244, 305 and 367 were applied using a novel UV-C turbulent flow system. 

The UV treatment method was shown to reliably achieve in excess of a 4 log10 

reduction (99.99%) per 0.5 kJ L-1 of UV-C dosage in all the liquids inoculated with  

A. acidoterrestris. The applied novel UV technology could serve as an alternative to 

thermal treatments of fruit juices for the inactivation of Alicyclobacillus spores or in the 

treatment of contaminated processing wash water.  

 

Introduction 

 

Alicyclobacillus acidoterrestris is a Gram-positive, thermo-acidophilic, non-pathogenic, 

spore-forming bacterium that has been isolated and identified in spoiled commercial 

pasteurised fruit juices (Wisotskey et al., 1992; Walls & Chuyate, 1998; Silva & Gibbs, 

2001). This bacterium was firstly isolated by Hippchen et al. (1981) from a variety of 

different soils such as garden soil, oak wood soil, woodland soil and in moor lands. 

Alicyclobacillus acidoterrestris has subsequently been found in a range of habitats and 

substrates, including organic composting, manure, crop fields, orchards, heat-

processed foods such as fruit juice concentrate, and the fruit juice concentrate 

processing environment (Deinhard et al., 1987; Yamazaki et al. 1996; Pettipher et al., 
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1997; Albuquerque et al., 2000; Walls & Chuyate, 2000; Goto et al., 2002; Matsubara et 

al., 2002; Groenewald et al., 2008, 2009). 

The threat that A. acidoterrestris pose to the fruit juice industry is the ability of its 

spores to survive thermal pasteurisation and hot-fill and hold pasteurisation processes 

used during fruit processing and fruit juice production (Splittstoesser et al., 1994; Eiroa 

et al., 1999; Orr & Beuchat, 2000). This heat resistance was observed by Splittstoesser 

et al. (1994) who reported D-values for A. acidoterrestris spores of 23 min at 90 °C and 

2.4 to 2.8 min at 95 °C, suggesting that spores survive the juice pasteurisation process 

of 88° to 96 °C for 30 s to 2 min. In fact, pasteurisation serves as a heat treatment that 

stimulates germination of the spores. The resulting growth of A. acidoterrestris at the 

low pH (3-3.5) typically found in fruit juice may lead to spoilage (Splittstoesser et al., 

1998; Eiora et al., 1999; Gouws et al., 2005). 

Spoilage caused by A. acidoterrestris has to date been reported in apple, pear, 

orange, peach, mango and white grape juice, as well as in fruit juice blends, fruit juice 

containing drinks and tomato products, such as tomato juice and canned tomatoes 

(Borlinghaus & Engel, 1997; Chang & Kang, 2004). Spoilage caused by this bacterium 

is difficult to detect visually. The spoiled juice appears normal, or might have a light 

sediment with no gas formation. Often, the only evidence of spoilage is apparent as a 

medicinal/phenolic off-flavour (Walls & Chuyate, 1998; Jensen, 1999). The chemicals 

responsible for this off-odour was identified as guaiacol (2-methoxyphenol) and other 

halophenols such as 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). 

Guaiacol can be detected by smell in fruit juices at 2 ppb and was detected in orange 

and apple juices in the presence of around 5 log CFU mL-1 of A. acidoterrestris cells 

(Gocmen et al., 2005). 

Fruit juice contamination results from unwashed or poorly washed raw fruit that is 

processed, as well as contaminated water used during the production of fruit juices 

(Pontius et al., 1998; Orr & Beuchat, 2000; McIntyre et al., 1995; Groenewald et al., 

2009). Due to their thermo-acidophilic properties and their occurrence in several spoiled 

pasteurised products, Silva et al. (1999) recommended A. acidoterrestris spores as the 

target microbe for the pasteurisation of high acidic food products. Subsequently, the fruit 

juice industry acknowledges A. acidoterrestris as an important target micro-organism 

that must be managed by an effective quality control program during the production of 

fruit juices and fruit juice concentrates.  

Ultraviolet (UV) light is one of a number of non-thermal technologies currently 

being used in food processing, together with pulsed electric fields, high-pressure 
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processing and ultrasound. These alternative technologies can deliver food products 

that do not contain spoilage or pathogenic micro-organisms and enzymes that may 

decrease the nutritional and sensory characteristics of foods (Butz & Tauscher, 2002). 

UV wavelengths of between 220 and 300 nm are considered germicidal against 

micro-organisms such as bacteria, viruses, protozoa, fungi and algae (Sizer & 

Balasubramaniam, 1999; Bintsis et al., 2000). The highest germicidal effect is obtained 

between 250 and 270 nm, decreasing as the wavelength is increased. Above 300 nm 

the germicidal effect of UV light is annulled. Therefore, a wavelength of 254 nm is used 

for disinfection of surfaces, water and some food products (Guerrero-Beltrán & 

Barbosa-Cánovas, 2004). 

Liquids such as water and fruit juices have been successfully treated with UV 

light to reduce bacterial counts (Guerrero-Beltrán & Barbosa-Cánovas, 2004; Keyser et 

al., 2008). The efficacy of the microbial reduction in fruit juices by UV-C light at 254 nm 

depends on a number of factors. These include the organisms (including different 

strains) present in the liquid, the contamination level, the % UV transmittance of the 

liquid (opaqueness) and suspended particles in the liquid. It is known that the 

penetration depth of UV-C light through the surface of liquids is very short, with the 

exception of clear water (Shama, 1999). The penetration of UV light into juices is about 

1 mm for absorption of 90% of the light (Sizer & Balasubramaniam, 1999). Greater 

amounts of soluble and insoluble solids lower the intensity of penetration of the UV-C 

light (Shama, 1999; Bintsis et al., 2000). For these reasons a turbulent flow during liquid 

food processing is recommended and is a legal requirement by the USA Food and Drug 

Administration (US FDA, 2001; Keyser et al., 2008). The objective of this study was to 

determine the reduction of A. acidoterrestris spores inoculated in water, fruit 

concentrate factory wash water and 80 °Brix grape juice concentrate using a novel UV 

treatment system.  

 

Materials and methods 

 

Novel pilot-scale UV system 

 

The UV reactor system was designed and manufactured by SurePure, Milnerton, South 

Africa. The UV reactor (Fig. 1) consists of NW100 stainless steel inlet and outlet 

chambers with a stainless steel corrugated spiral tube between the chambers. Inside  
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Figure 1 Schematic representation of the novel pilot-scale UV treatment system 

containing one UV-C lamp. 
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the spiral tube is a low pressure mercury UV lamp (30 UV-C Watt, 90% 254 nm and 

90% emittance) which is protected by a quartz sleeve. The liquid flows between the 

corrugated spiral tube and the quartz sleeve. The tangential inlet of the reactor creates 

a high velocity and turbulence in the inlet chamber which helps to prevent clumping of 

micro-organisms and assists in the efficiency of UV radiation by increasing the exposure 

of the liquid to the light. From the inlet chamber the liquid is forced into the actual 

reactor, the space between the quartz sleeve and the corrugated spiral tubing. The 

corrugation of the tubing creates very high turbulence which is then carried with the 

spiral over the length of the reactor chamber. At flow rates (Fr) above 2800 L h-1 the 

Reynolds value is calculated to be more than 4000, indicating turbulent flow patterns. 

The UV reactor operates at a flow rate capacity of between 3800 and 4200 L h-1. 

The time needed for a UV treatment depends on the quantity of product to be 

treated and the flow rate of the product feed. The design of the pilot-scale batch system 

(Fig. 1) used consists of only one UV lamp. This unit was used for the treatment of 20 L 

batches of liquid which was circulated at a flow rate of 4000 L h−1. The time for the liquid 

to pass through the system once was 18 s, therefore, delivering a UV-C dose of  

22.97 J L−1 to the liquid being treated after one passage. The contact time or retention 

time was determined theoretically, assuming that the system was in steady state 

operation with uniform product and product flow, and that the liquid was non-

expandable and non-volatile. 

 

Cleaning of the units 

 

The pilot-scale unit was cleaned after every treatment using standard ‘Cleaning In 

Place’ (CIP) processes. The equipment was rinsed with warm water (50 °C) for 10 min, 

where after a 1.0% alkaline solution was circulated for 30 min at 75 °C, followed by a 

warm water rinse at 50 °C for 5 min. Finally, a 0.5% Perasan solution (Divosan System, 

Johnson Diversey, South Africa) was circulated for 10 min before a final rinse with cold 

water.  

 

Dosage measurement 

 

UV light was used initially to disinfect surfaces, therefore the irradiance is generally 

expressed as watts per square centimetre (W cm−2), whilst the radiant exposure 

(dosage) is expressed as watts per second per square centimeter (W s cm−2) or joules 
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per square centimeter (J.cm−2) and characterises the energy delivered per surface area 

of the treatment device (Matak et al., 2005). UV dosage (D) is, therefore, determined as 

time (T) multiplied by irradiance (I). As the UV-C energy penetrates into the medium, 

therefore working with volume rather than area, Keyser et al. (2007) proposed an 

alternative method to characterize UV as dosage per volume of liquid. For liquids, the 

UV dosage was expressed as J L−1. A comparison between UV-C dosage as J L−1 and 

W.cm−2 was then determined (Table 1) by calculating the dose per area as well as the 

dose per volume, together with time of UV-C exposure. 

 

UV dosage per area 

 

The length of the quartz sleeve used was 0.860 m, with an outer surface area (As) of 

661.93 cm2. The area between the quartz sleeve and corrugated spiral tubing is termed 

the annulus and the volume thereof was determined as being 0.675 L or 0.00068 m3. 

The effective area (As) of UV-C is at a distance of 5 mm for the as the lamp is 5 mm 

away from the outer surface of the sleeve. According to the manufacturers, the energy 

transmission rate (total UV-C output) to the constant surface of the quartz sleeve (As = 

661.93 cm2) from the UV lamp is 25.5W (watts) UV-C. Ignoring the volume of the 

annulus and disregarding the type of product in the annulus the following calculations is 

based on the effective As of the quartz sleeve alone. The following calculations are 

based on the As of the quartz sleeve alone, not taking into account the volume of the 

annulus and the type of liquid treated. The intensity (I) per reactor can be calculated as 

follow: 

 

The retention time (T) of the product per reactor can be calculated as follow: 

 

Retention time (T) = Volume of the reactor (L) / Flow rate L h-1 

= 0:675 l/4 000 L h-1 

= 0:675 l/1:111 L s-1 

= 0:608 s 

 

Thus, at a flow rate (Fr) of 4000 L h−1 the product retention time (T) is 0.608 s per 

reactor, therefore the UV dosage (D) per surface area for one reactor with continuous 

flow is calculated as follows: 
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Table 1 The log10 microbial reduction of A. acidoterrestris (CFU mL-1) (average value 

calculated from 4 repetitions) at a starting concentration of around 5 x 105 CFU mL-1 in 

inoculated tap water, used wash water from a fruit processing plant and 80 °Brix grape 

juice concentrate after UV (J L−1) treatment 

 
Treated 
medium 

Log10 A. acidoterrestris reduction 

   
 

Applied UV dosages 
  

 0 61 122 183 244 305 367 

Inoculated tap 
water 
 

0.00 
1.04 
(0.89-1.28) 

2.15 
(1.96-2.31) 

3.15 
(2.96-3.29) 

4.32 
(4.06-4.29) 

5.13 
(4.99-5.23) 

5.13 
(4.99-5.23) 

Inoculated used 
wash water 
 

0.00 
0.925 
(0.43-1.13) 

1.84 
(1.43-2.21) 

2.83 
(2.59-3.03) 

3.65 
(3.49-3.95) 

4.49 
(4.29-4.91) 

5.19 
(5.11-5.27) 

Inoculated 80  
°Brix grape juice 
concentrate 

0.00 
0.76 
(0.60-0.85) 

1.85 
(1.51-2.14) 

2.59 
(2.55-2.66) 

3.59 
(3.43-3.71) 

3.97 
(3.73-4.24) 

4.61 
(4.56-4.64) 

 
The values given are averages (n = 4); values in parentheses are the minimum and maximum values of 
four samples. 
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Dosage = Intensity (I) × Time (T) 

= 38:50 Mw cm-2 × 0:608 s 

= 23:408 mW s cm-2 

= 23:408 mJ cm-2 

 

UV dosage per volume 

 

At a flow rate (Fr) of 4000 L h−1 the product retention time (T) is 0.608 s per reactor (as 

calculated in paragraph 2.3.1), therefore the UV dosage per L of liquid treated for one 

reactor with continuous flow is calculated as follows: 

 

Dosage  = Total UV-C output per unit (W) / Flow rate (L s-1) 

= 25.50 W / 1.11 L s-1 

= 25.50 J.s-1 / 1.11 L s-1 

= 22:972 J L−1 

 

Growth of Alicyclobacillus acidoterrestris  

 

Alicyclobacillus acidoterrestris K47 (Witthuhn et al., 2007), a strain isolated from spoilt 

grape juice, was grown in 2 L yeast starch glucose (YSG) (Matsubara et al., 2002) broth 

adjusted with tartaric acid (1N) (Saarchem, Krugersdorp, South Africa) to a final pH of 4 

and incubated at 45 °C for 5 d. This culture was then heat treated at 80˚C for 10 min to 

promote the germination of any alicyclobacilli spores and eliminate vegetative cells 

(Walls & Chuyate, 2000) before being used as an inoculum. Alicyclobacillus 

acidoterrestris were inoculated by the addition of the whole pellet into either water, used 

wash water from a fruit processing plant or 80 °Brix grape juice concentrate. A final 

concentration of approximately 5 x 105 CFU mL-1, as determined by sampling at time 0, 

was obtained. 

 

UV-C processing of wash water and water 

 

Used wash water was obtained from a Hazard Analysis Critical Control Point (HACCP) 

accredited fruit processing facility in the Western Cape region of South Africa and kept 

at 22 °C. The wash water, containing foliage and dust, was used to wash off fruit debris 

and dust before processing and was recycled several times. Wash water and the tap 
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water were inoculated with around 5 log CFU mL-1 A. acidoterrestris K47 and processed 

in a similar way to grape concentrate except that these liquids were processed at 22 °C. 

All the UV-C treatments were done in quadruplicate.  

 

UV-C processing of 80 °Brix grape juice concentrate 

 

Grape juice 80 °Brix concentration was received from a concentrate manufacturer in the 

Western Cape, South Africa and kept at 4 – 8 °C. A sample volume of 20 L 80 °Brix 

grape juice concentrate was inoculated with A. acidoterrestris K47 as previously 

described and placed into the holding tank of the pilot UV treatment unit. To achieve a 

flow rate of 4000 L h-1 in the unit a speed controlled sanitary Prolac centrifugal pump 

(Inoxpa, Brackenfell, South Africa) was used. The concentrate was treated at 4 – 8 °C, 

and due to the short contact time, no heat transfer from the lamps to the concentrate 

was recorded after processing. Samples were subjected to UV dosages of 0, 61, 122, 

183, 244, 305 and 367 J L−1. After each dosage, a 50 mL sample was taken aseptically 

using an in-line sampler. The concentrate was extracted from the flow stream without 

halting the process in order to avoid excessive UV-C exposure of the grape juice 

concentrate. Microbiological analyses were performed on each 50 mL sample within 24 

h. All the UV-C treatments were done in quadruplicate. 

 

pH determinations  

 

Suspended particles in the wash water were allowed to settle and the pH was measured 

using a HI 221 pH meter (Hanna Instruments, Bedfordshire, United Kingdom). 

 

Microbiological analysis 

 

A 100 µL sample of concentrate, tap water or wash water was aseptically transferred to 

900 µL sterile distilled water and mixed thoroughly. Serial dilutions of the samples were 

then prepared (10−1–10−6) and 100 µL of each of the different sample dilutions were 

plated in triplicate onto YSG agar. Tartaric acid (1N) (Saarchem) was used to adjust the 

YSG agar after autoclaving to a final pH of 4. Plates were incubated aerobically at 45 °C 

and examined for growth after 96 h. The results obtained were expressed as colony 

forming units per milliliter (CFU mL-1). 
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Statistical analysis 

 

All statistical analyses were performed using Statistica™ 7.1 (StatSoft, Inc., 2006). A 

two way cross classification of the log CFU mL-1 on UV-C dosage and treated medium 

was carried out. Since these interaction was highly significant (F12,63 = 5.31) with a P-

value of 0.000004, the interactions between the treated media (water, wash water and 

grape juice concentrate) and UV-C dosage were investigated. As the residuals were not 

normally distributed, a Bootstrap multiple comparison was performed on the 

interactions.  

 

Results and discussion 

 

UV radiation was successfully applied to reduce A. acidoterrestris spores inoculated into 

tap water, used wash water from a fruit concentrate manufacturing facility and 80 ˚Brix 

grape juice concentrate (Table 1). In water inoculated with A. acidoterrestris spores a 

5.3 log10
 reduction of the alicyclobacilli was achieved after a UV dosage of only  

305 J L−1, resulting in no viable spores (Fig. 2). The UV treatment method was shown to 

be capable of reliably achieving in excess of a 4 log10 reduction (99.99%) after  

500 J L−1of applied UV-C dosage in A. acidoterrestris inoculated in used fruit juice 

concentrate factory wash water (Fig. 2).  

Alicyclobacillus acidoterrestris has been previously isolated from wash water in a 

factory processing fruit (Groenewald et al., 2008). This wash water can act as a 

potential reservoir of A. acidoterrestris, resulting in the contamination of the fruit 

concentrate or juice product. Wash water is used during the production to wash the fruit, 

removing dust, soil and any foreign objects from the fruit immediately prior to pulping. 

This water is conserved by recycling it during the manufacturing process, thus fruit can 

be potentially re-inoculated with A. acidoterrestris spores. The wash water, which had a 

pH of 3.98, can be subjected to UV treatment to decrease the contamination of the fruit 

by A. acidoterrestris during processing. 

Figure 2 represents the log reduction of A. acidoterrestris spores in 80 °Brix 

grape juice concentrate after UV treatment. It can be observed that a total inactivation of 

spores was obtained after 367.2 J L−1 was applied. This equates to around a 4.61 log10 

reduction in spores. The grape juice concentrate used had a pH of 2.8 and was a clear 

liquid without any suspended solids, making it easier for the UV light to penetrate than 

for an opaque liquid. Koutchma et al. (2004) identified the factor that consistently affect 



 

 

85 

the efficacy of UV light inactivation in juice was absorbance, while factors unique to 

juice, such as °Brix and pH did not exhibit a profound effect on the efficacy of the 

treatment. Although grape juice concentrate itself is not susceptible to spoilage due to 

its high sugar content (Chang & Kang, 2004), its contamination with A. acidoterrestris 

spores can lead to spoilage when the concentrate is diluted to single strength fruit juice 

and A. acidoterrestris spores find a favourable environment for growth. It has, therefore, 

been suggested that A. acidoterrestris becomes the target spoilage organism for 

effective pasteurisation and that the processes must be designed to eliminate the 

spores (Silva & Gibbs, 2001). However, the high thermal resistance of these spores 

would necessitate pasteurisation at elevated temperatures resulting in unacceptable 

changes in the organoleptic and nutritional characteristics of the treated fruit 

concentrate or juice.  

The UV inactivation curves for A. acidoterrestris showed mainly linear regression 

with only a slight tailing effect in all three treated liquids (Fig. 2). The sigmoidal shape of 

the curve with a shoulder and tailing is described as typical for UV light inactivation of 

micro-organisms (Koutchma et al., 2004; Hoyer, 1998). The shoulder is attributed to the 

requirement for more than one UV light hit to kill a micro-organism. Tailing has been 

attributed to either variability in the UV light sensitivity of the targeted population, 

inculding variabilty of UV resistance genes turned on, non-uniform processing 

conditions due to laminar type of flow and shading effects owing to insufficient exposure 

to UV light in solutions of lower transmittance (Hoyer, 1998). In this study the linear 

regression observed might be as a result of a single strain of A. acidoterrestris being 

used and also suggests that the novel UV treatment system reached sufficient turbulent 

flow inside the reactor to ensure an even UV exposure. It is important to note that the 

current USA FDA regulations on the use of UV light for fresh juice stipulate the use of a 

turbulent flow system (US FDA, 2001).  

A bootstrap multiple comparison between UV-C dosage and media (tap water, 

wash water and grape juice concentrate) found significant differences at applied UV-C 

dosages of 244 and 305 J L−1. At an applied UV-C dosage of 244 J L−1 on wash water, 

surviving spores (1.54 log CFU mL-1) was significantly higher than a similar treatment 

on tap water (0.81 log CFU mL-1) and 80 °Brix grape juice concentrate (1.02 log CFU 

mL-1) with P = 0.0035. At an applied UV-C dosage of 305 J L−1, surviving spores (log 

CFU mL-1) in tap water was significantly lower (0.01) than for a similar treatment on 

wash water (0.70) and 80 °Brix grape juice concentrate (0.64) (Table 1). The greater  
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Figure 2 The log10 reduction of A. acidoterrestris K47 spores ) at a starting 

concentration of approximately 5 x 105 CFU mL-1  in 80 °Brix grape juice concentrate, 

used fruit concentrate factory wash water and tap water. (Each data point represents 

quadruplicate values. The standard deviation was used as the error-bar. 
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UV-C absorptivity of the used wash water and grape juice concentrate is due to the 

presence of suspended matter and soluble solids respectively in the liquids. 

Optimisation of the parameters is essential to ensure the maximum reduction of 

the microbial load of different fruit juices and concentrates without affecting the taste of 

the product. These parameters include the magnitude of turbidity, UV light transmittance 

through the media in the reactor, flow pattern and flow rate. Based on the results from 

this study, it can be recommended that the use of the novel UV treatment system is a 

promising way to control contamination of juice concentrate by species of 

Alicyclobacillus. However additional research needs to be done to further evaluate the 

effect of UV on the organoleptic and nutritional characteristics of the concentrate and 

subsequent single strength juice produced from the treated concentrate. 
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CHAPTER 6 

 

THERMAL INACTIVATION OF ALICYCLOBACILLUS ACIDOTERRESTRIS 

SPORES ISOLATED FROM A FRUIT PROCESSING PLANT AND GRAPE 

JUICE CONCENTRATE IN SOUTH AFRICA 

 

Abstract 

 

Alicyclobacillus acidoterrestris is a non-pathogenic, spore-forming bacterium that can 

survive the commercial pasteurisation processes commonly applied to fruit juices and 

concentrates. Surviving bacterial endospores then germinate, grow and can under 

certain conditions cause spoilage of high acid food products. In this study, thermal 

inactivation at 95 °C for two strains of A. acidoterrestris isolated from contaminated fruit 

juice concentrates were investigated in a 0.1% (m/v) peptone buffer solution (pH 7.04) 

and grape juice (pH 4.02, 15.5 °Brix). The thermal inactivation of A. acidoterrestris 

spores followed first-order kinetics, suggesting that as the microbial population is 

exposed to a specific high temperature, the spores inactivated at a constant rate.  

D-values determined in the buffer solution were calculated to be 1.92 min and 2.29 min, 

while in grape juice D-values were found to be 2.25 min and 2.58 min for the two strains 

tested. From this study it is clear that the D-value is dependant on the strain tested, but 

also on the soluble solids of the solution the cells are suspended in. The soluble solids, 

therefore play a role in protecting the bacterial spores. The results indicated that the 

spores of A. acidoterrestris isolated from South African fruit juice concentrate may 

survive after the pasteurisation treatment commonly applied during manufacturing. 

Since the implementation of a more severe heat process required to inactivate spores of 

A. acidoterrestris will produce unacceptable organoleptic changes in the product, it is 

recommended the risk of spoilage should be minimised through the use of good 

manufacturing practices during fruit processing and the implementation of HACCP 

procedures, substituting Food Safety Hazards, normally associated with HACCP 

studies, with the risk of spoilage by A. acidoterrestris in the final product. 
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Introduction 

 

Fruit concentrate has traditionally been regarded as resistant to spoilage by 

deteriogenic micro-organisms due its physical and chemical characteristics. These 

characteristics include a low pH of between 3.5 to 4.0, low water activity, high sugar 

concentration (typically around 66 °Brix), and reduced aeration capacity and dissolved 

oxygen (Palop et al., 2000). The addition of a hot-fill and hold pasteurisation process as 

used in the fruit beverage industry, where the product is held at 86° to 95 °C for 

approximately 2 min, is also sufficient to destroy most non-spore forming micro-

organisms (Palop et al., 2000; Chang & Kang, 2004).  

Spoilage of commercially available pasteurised fruit juice was first reported by 

Cerny et al. (1984) who found shelf-stable, aseptically packaged apple juice to have an 

off-flavour. Following this report, an increasing number of spoilage incidents arose and 

almost all of these were caused by the spore-forming, thermo-acidophilic bacteria 

Alicyclobacillus acidoterrestris. Spoilage has been to date reported in apple, pear, 

orange, peach, mango and white grape juice, with shelf-stable apple juice most 

frequently being spoiled (Borlinghaus & Engel, 1997; Chang & Kang, 2004; Walker & 

Phillips, 2008). More diverse products such as shelf-stable iced tea containing berry 

juice, the ingredients of rose hip and hibiscus teas (Duong & Jensen, 2000), a 

carbonated fruit drink (Pettipher, 2000) and diced canned tomatoes (Chang & Kang, 

2004) have also seen incidences of spoilage caused by A. acidoterrestris. The fruit juice 

industry now acknowledges A. acidoterrestris as a major quality control target for 

pasteurisation (Yamazaki et al., 1996; Pettipher et al., 1997; Silva & Gibbs, 2004; 

Walker & Phillips, 2008; Bevilacque et al., 2008).  

Spoilage caused by this bacterium is difficult to detect visually. The spoiled juice 

appears normal, or might have light sediment with no gas formation. Often, the only 

evidence of spoilage is apparent as a medicinal or phenolic off-flavour (Walls & 

Chuyate, 1998; Jensen, 1999). The chemicals responsible for this off-odour were 

identified as guaiacol (2-methoxyphenol) and other halophenols such as 2,6-

dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). Guaiacol can be detected 

by smell in fruit juices at 2 ppb and was detected in orange and apple juices in the 

presence of around 5 log CFU mL-1 of A. acidoterrestris cells (Gocmen et al., 2005). 

A wide range of D-values have been reported by researchers for the heat 

resistance of A. acidoterrestris spores, as the experimental conditions and protocols 

vary and the taxonomy of this group is still unclear. A review of D-values determined in 
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different fruit products and McIlvaine buffer are presented in Table 1. The D95 °C ranged 

from 0.1 to 9.98 min, suggesting that spores survive the typical juice pasteurisation 

process applied during fruit juice and concentrate production and in fact provide a heat-

shock treatment that may stimulate spore germination and outgrowth (Splittstoesser et 

al., 1994; Eiroa et al., 1999; Orr & Beuchat, 2000). Differences between the D-values 

reported in literature may be attributed to differences in strains, sporulation temperature, 

nutrient composition and pH of the heating medium, water activity, presence or absence 

of divalent cations and antimicrobial compounds (Bahçeci & Acar, 2007). Fruit juice 

contamination results from unwashed or poorly washed raw fruit that is processed, as 

well as contaminated water used during the production of fruit juices (Pontius et al., 

1998; Orr & Beuchat, 2000; McIntyre et al., 1995; Groenewald et al., 2009).  

The objective of this research was to determine the D-values in buffered water 

and single strength grape juice of spores A. acidoterrestris strains isolated from a South 

African fruit concentrate processing environment. Strains were tested at 95 °C, which is 

in the region of the highest temperature used during flash pasteurisation, to determine 

their ability to survive commercial pasteurisation regimes. 

Materials and methods 

 

Bacterial strains  

 

Alicyclobacillus acidoterrestris K47 (Witthuhn et al., 2007), a strain isolated from grape 

juice concentrate and Alicyclobacillus acidoterrestris FB2 (Groenewald et al., 2009) 

isolated from pear juice concentrate were used in this study. Potato dextrose agar 

(PDA) (Biolab, Biolab Diagnostics, Midrand, SA) adjusted with tartaric acid (1N) 

(Saarchem, Krugersdorp, South Africa) after autoclaving to a final pH of 4 was used as 

a culture medium (Witthuhn et al., 2007). 

 

Alicyclobacillus acidoterrestris spore suspension 

 

Spores were produced on PDA (Biolab) incubated at 45 °C for 5 – 7 days until 

approximately 70% of cells sporulated, as determined by microscopic examination. 

Spores were removed by gently agitating each plate using a glass spreader after adding 

5 mL of sterile distilled water. The spore suspension was centrifuged at 5 000 x g  
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Table 1 Previously reported values of thermal inactivation parameters of A. 

acidoterrestris spores 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heating 
medium 

Strain pH Soluble 
solids 
(˚Brix) 

Temperature 
(˚C) 

D-value Reference 

 
Concord 
grape juice 

 
WAC 

 
3.5 

 
16 

 

 
85 
90 
95 

 

53 
11 
1.9 
 

Splittstoesser et 
al., 1998 
 

Grape juice WAC 3.3 15.8 85 
90 
95 

57 
16 
2.4   

Splittstoesser et 
al., 1994 

 
Non-clarified 
lemon juice 

 
nr 

2.45 
 

9.8 
 

 
82 
86 
92 
95 

 

 
16.72 
11.32 
10.58 
9.98 

 

 
 
Maldonado et al., 
2008 

Berry juice nr nr nr 

81.8 
91.1 
95 

11.0 
3.8 
1.0 

 
McIntyre et al., 
1995 

McIlvaine 
buffer 

AB-1 
 

7.0 nr 

88 
90 
92 
95 
 

24.7 
15.7 
6.7 
2.2 
 

 
Murakami et al., 
1998 

b
nr = not reported     
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(Beckman Coulter TJ-25 Centrifuge, Beckman Coulter Inc., USA) for 15 min after which 

the supernatant was discarded and the pellet was resuspended. Spores were cleaned 

by washing of the pellets with sterile distilled water, followed by centrifugation and this 

was repeated five times. Pellets were then resuspended in sterile saline solution (SSS) 

(0.85% (m/v) NaCl (Merck, Halfway House, Gauteng, SA). The spore suspension was 

heated at 80 °C for 10 min to eliminate vegetative cells and stored at 4 °C. 

 

Thermal inactivation and enumeration  

 

A Colworth House submerged-coil heating apparatus (Protrol Limited, Surrey, United 

Kingdom) was used for the investigation of the thermal inactivation of A. acidoterrestris 

spores. The apparatus has a narrow bore stainless steel coil (9.5 mL total volume, 

3.175 mm outer diameter, 0.5 mm thickness), fully submerged in a thermostatically 

controlled water bath and a automatic sampler with the sampling frequency controlled 

by a DOS based computer program (Fig. 1). The time for the sample to reach the water 

bath temperature was 1 s. Cleaning was performed by first injecting industrial alcohol 

followed by sterile water. The water bath was set at a temperature of 95 °C and ten 

sampling times at 1 min intervals were programmed, for up to 9 min heating time in 

total. A temperature of 95 °C was chosen as being representative of the highest 

temperature used in commercial pasteurisation regimes. Ten mL of either inoculated 

0.1% (m/v) peptone (Biolab) buffer solution (pH 7.04) or 15.5 °Brix single strength grape 

juice (pH 4.02) (made by the dilution of 80 °Brix grape concentrate with distilled water) 

were injected into the submerged coil, followed by immediate initiation of the timing 

sequence. The remaining peptone buffer solution (Biolab) or grape juice were used for 

the time zero determination of the viable spore count. Times were selected in order to 

cover spore inactivation until approximately 102 CFU mL-1 of A. acidoterrestris spores 

remained. For each sampling time, 500 µL of the heated spores were collected and 

promptly cooled by dilution with 5 mL SSS at room temperature. The samples were left 

at ambient temperature for approximately 4 h to allow further cooling and recovery of 

the heat-shocked spores.  

Serial dilutions of the samples were then prepared (10−1 – 10−6) and 100 µL of 

each of the different sample dilutions were plated in triplicate onto PDA (Biolab) (pH 4). 

Plates were incubated aerobically at 45 °C and examined for growth after 96 h. The 

results obtained were expressed as colony forming units per milliliter (CFU mL-1). 
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Figure 1 Submerged coil heating apparatus (Protrol Limited, Surrey, United Kingdom). Plan (A) and side view (B) of water bath, coil and 

sampling device. The electronic system for sampling frequency control and solenoid valve switching is not shown.  
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The efficacy of thermal treatments in terms of eliminating A. acidoterrestris spore 

was measured by their decimal reduction time (D) which, for this study, was defined as 

the time (min) of a given treatment for the number of survivors to be reduced by one log 

cycle. In this study, the D-value at 95 °C was abbreviated as D95. D-values were 

calculated from the slope of the regression line when time (x-axis) was plotted against 

cell counts (CFU mL-1) (y-axis). Experiments were performed in triplicate.  

 

Results and discussion 

 

A linear-log relation was observed between the endospore concentration and time (Figs. 

2 and 3) suggesting that as the microbial population was heated at a specific 

temperature, the spores inactivated at a constant rate. A similar first-order kinetic 

relationship was observed by other authors (Pontius et al., 1998; Silva et al., 1999). In 

this study D95-values were calculated to be 1.92 min and 2.29 min for A. acidoterrestris 

strains K47 and FB2, respectively in a 0.1% (m/v) peptone buffer solution (Biolab)  

(pH 7) (Fig. 2), and 2.25 min and 2.58 min in grape juice (pH 4.05, 15.5 °Brix) (Fig. 3)  

Splittstoeser et al. (1999) reported similar D95-values in Concord grape juice (pH 

3.5, 16 °Brix) for A. acidoterrestris strain WAC spores of 1.9 min and a value of 2.4 min 

for the same strain in grape juice (pH 3.3, 15.8 °Brix). However, D-values amongs 

strains of A. acidoterrestris varied greatly when tested in different fruit juices with similar 

levels of acidity and concentration of dissolved sugars. Maldonado et al., (2008), 

reported D95-values in non clarified lemon juice (pH 2.45, 9.8 °Brix) of 9.98 min, while 

McIntyre et al. (1995) found A. acidoterrestris spores to have a D95-value of only 1.0 min 

in berry juice. These differences could be explained due to differing compositions of fruit 

products, including soluble solids, which might increase the heat resistance of spores 

(Maldonado et al., 2008). 

Heat resistance between strains of A. acidoterrestris also varies greatly 

(Murakami et al., 1998; Pontius et al., 1998; Eiora et al., 1999; Bahçeci & Acar, 2007). 

Confirmation of strain differences is provided in this study with A. acidoterrestris FB2 

showing more thermal resistance than A. acidoterrestris K47 in a peptone buffer 

solution (Biolab), as well as grape juice (D95-values of 1.92 min and 2.29 min and 2.25 

min and 2.58 min, respectively). The steeper slope of the regression line for the 6 x 105 

CFU mL-1 A. acidoterrestris inoculum in peptone buffer solution (Biolab) (Fig. 2) as 

opposed to the grape juice, and the subsequent lower D95-values of 1.92 and 2.29 min  
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Figure 2 Impact of temperature at 95 °C on A. acidoterrestris strains K47 and FB2 at a 

starting concentration of 6 x 105 CFU mL-1 in a peptone buffer solution (Each data point 

represents triplicate values. The standard deviation was used as the error-bar). 
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Figure 3 Impact of temperature at 95 °C on A. acidoterrestris strains K47 and FB2 at a 

starting concentration of 6 x 105 CFU mL-1 in a 15.5 °Brix single strength grape juice 

(pH 4.02) (Each data point represents triplicate values. The standard deviation was 

used as the error-bar). 
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for A. acidoterrestris K47 and FB2, respectively can be ascribed to the lower pH and 

higher percentage of soluble solids (°Brix) in the grape juice. 

 

Conclusion 

 

Results from this study indicated that the spores of A. acidoterrestris may survive in fruit 

juices after pasteurisation treatment commonly applied in the food industry, at least 

under the conditions described in the current study. Since the implementation of a more 

severe heat process required to inactivate spores of A. acidoterrestris will also produce 

unacceptable organoleptical changes in the product, and the fact that no species of 

Alicyclobacillus have shown any pathogenic potential, it would serve little purpose to set 

pasteurisation temperatures to target A. acidoterrestris. It is important to note that 

incidence of A. acidoterrestris in fruit juice is not directly associated with deterioration. 

Detection of A. acidoterrestris in non-deteriorated fruit juices (Previdi et al., 1997; Cerny 

et al., 1999; Bahçeci et al., 2005; Walker & Phillips, 2008) suggests deterioration to be 

incidental, requiring adequate conditions for its development. The susceptibility of fruit 

juice to spoilage is dependant on initial levels of contamination and the conditions of 

storage of the fruit juice. Manufacturers of fruit juice concentrate should minimised the 

risk of spoilage by A. acidoterrestris through the use of good manufacturing practices 

during fruit processing and the implementation of HACCP procedures, substituting Food 

Safety Hazards, normally associated with HACCP studies, with the risk of spoilage by 

A. acidoterrestris in the final product. Storage of pasteurised fruit products below 20 °C 

would also prevent spoilage since the growth of this bacterium is suppressed at these 

temperatures. 
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CHAPTER 7 

 

GENERAL DISCUSSION AND CONCLUSIONS 

 

Since 1994 the numbers of incidences of spoilage by A. acidoterrestris of fruit juices 

and fruit juice product have been on the increase (Komitopoulou et al., 1999; Walker & 

Phillips, 2008). Spoilage by alicylobacili has become regarded as an industry-wide 

problem that requires solutions to be found and effective control measures developed 

and implemented (Duong & Jensen, 2000). As members of the genus Alicyclobacillus 

are soil-borne organisms, it is thought that the source of contamination of the fruit juice 

is from the harvested, contaminated fresh fruit, which is introduced during processing 

without proper cleaning (Pontius et al., 1998; Orr & Beuchat, 2000). However, the exact 

route of contamination of the final product remains unclear and, therefore, strategies to 

combat contamination cannot be fully developed. 

In this study alicylcobacilli were isolated from a diverse range of samples from 

the environment and fruit processing plant in order to provide comprehensive data on 

the occurrence of species of Alicyclobacillus at different stages of fruit processing. 

Species of Alicyclobacillus were isolated from orchard soil, soil on the fruit processing 

premises, vinegar flies, wash water, flume water, pear skin from the press, debris from 

the factory floor, water from the evaporator inlet and the pear concentrate. As far as we 

are aware this is the first report on the isolation of A. acidoterrestris from orchard soil, 

wash water, water from the evaporator inlet, soil outside a fruit concentrate factory and 

flume water. Strains of A. acidocaldarius were isolated from pre-pasteurised pear puree, 

orchard soil and for the first time to our knowledge, from vinegar flies. Results from this 

study indicate that species of A. acidoterrestris and A. acidocaldarius are found in 

orchard soil and throughout the processing environment. 

The isolates identified as A. acidoterrestris grouped into four clusters based on 

RAPD-PCR band pattern, suggesting that they belong to at least four genotypic groups. 

The identical banding patterns obtained for the isolates in each respective cluster 

suggests that they are descendants from the same strain and, therefore, could indicate 

potential cross contamination between the sources of isolation within isolates 

represented by the same cluster. Wash water and soil outside the factory can act as a 

reservoir of A. acidoterrestris leading to the contamination of the final fruit concentrate 

product. It is, therefore, recommended to treat fruit during processing and wash water to 

reduce the microbial load of these important spoilage bacteria. The widespread 
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occurrence of strains of A. acidoterrestris in the fruit concentrate manufacturing 

environment suggests that good manufacturing practices play an essential role in 

controlling instances of spoilage caused by these bacteria. 

Consumers are increasingly demanding minimally processed foods that are 

fresher, more natural (Kouchma, 2009) and with a better nutritional content and higher 

overall quality. The use of ultraviolet (UV) light in food processing is one of a number of 

non-thermal technologies being studied as a possible substitute for thermal processing. 

UV radiation was successfully applied using a novel pilot-scale UV system to reduce  

A. acidoterrestris spores inoculated into tap water, used wash water from a fruit 

concentrate manufacturing facility and 80 ˚Brix grape juice concentrate. In water 

inoculated with A. acidoterrestris spores a 5.3 log10
 reduction of alicyclobacilli spores 

was achieved after a UV dosage of only 305 J L−1, resulting in no viable spores. The UV 

treatment method was shown to be capable of reliably achieving in excess of a 4 log10 

reduction (99.99%) per 0.5 kJ L-1 of UV-C dosage in A. acidoterrestris spores inoculated 

in used fruit juice concentrate factory wash water. For total deactivation of  

A. acidoterrestris spores in 80 °Brix grape juice concentrate, 367.2 J L−1 was needed, 

which equates to around a 4.61 log10 reduction in spores. 

The UV inactivation curves for A. acidoterrestris showed mainly linear regression 

with only a slight tailing effect in all three treated liquids. This suggests that the spores 

and cells inactivated at a fairly constant rate in relation to the UV dosage received. The 

sigmoidal shape of the curve with an initial lag and tailing is described as typical for UV 

light inactivation of micro-organisms (Hoyer, 1998; Koutchma et al., 2004). In this study 

the linear regression observed might be as a result of a single strain of A. acidoterrestris 

being used and also suggests that the novel UV treatment system reached sufficient 

turbulent flow inside the reactor to ensure an even UV exposure. It is important to note 

that the current USA FDA regulations on the use of UV light for fresh juice stipulate the 

use of a turbulent flow system (US FDA, 2001). The greater UV-C absorptivity of the 

used wash water and grape juice concentrate is due to the presence of suspended 

matter and soluble solids in the liquids. Optimisation of the parameters is essential to 

ensure the maximum reduction of the microbial load of different fruit juices and 

concentrates without affecting the taste of the product. These parameters include the 

magnitude of turbidity, UV light transmittance through the media in the reactor, flow 

pattern and flow rate. Based on the results from this study, it can be recommended that 

the use of the novel UV treatment system is a promising way to control contamination of 

juice concentrate by species of Alicyclobacillus. In addition, UV radiation has been 
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shown to be less energy-intensive, more cost-effective and environmentally friendly 

than conventional pasteurisation (Kouchma, 2009). However, additional research needs 

to be done to further evaluate the effect of UV on the organoleptic and nutritional 

characteristics of the concentrate and subsequent single strength juice produced from 

the treated concentrate. The effects of the different treatments on the organoleptic and 

nutritional characteristics of the fruit juice and concentrate, the real shelf life of the 

product, and the exact mode of action of some compounds or treatments against  

A. acidoterrestris needs to be established. An alternate use is to treat wash water with 

UV radiation prior to the washing of the fruit, as wash water can act as a reservoir of  

A. acidoterrestris leading to contamination of the final product. 

A wide range of D-values have been reported by researchers for the heat 

resistance of A. acidoterrestris spores, as the experimental conditions and protocols 

vary and the taxonomy of this group is still unclear. In this study, thermal inactivation at 

95 °C for two strains of A. acidoterrestris isolated from contaminated fruit juice 

concentrates were investigated in a 0.1% (m/v) peptone buffer solution (pH 7.04) and 

grape juice (pH 4.02, 15.5 °Brix). The thermal inactivation of A. acidoterrestris spores 

followed first-order kinetics, suggesting that as the microbial population is exposed to a 

specific high temperature, the spores inactivated at a constant rate. D-values 

determined in the buffer solution were calculated to be 1.92 min and 2.29 min, while in 

grape juice D-values were found to be 2.25 min and 2.58 min for the two strains tested. 

From this study it is clear that the D-value is dependant on the strain, but also on the 

soluble solids of the solution the cells are suspended in. The soluble solids play a role in 

protecting the bacterial spores. The results indicated that the spores of A. acidoterrestris 

isolated from South African fruit juice concentrate may survive after the pasteurisation 

treatment commonly applied during manufacturing. 

 

Concluding remarks 

 

Alicyclobacillus acidoterrestris, or at least the spores of this species, appears to be 

endemic to the fruit processing environment. The susceptibility of fruit juice to spoilage 

is dependant on initial levels of contamination and the conditions of storage of the fruit 

juice, rather than the presence or absence of A. acidoterrestris (Bahçeci et al., 2005; 

Walker & Phillips, 2008). The creation of a sterile environment in a fruit processing plant 

to prevent contamination of the final product is not practical. Moreover, A. acidoterrestris 

spores can survive the commercial thermal treatments applied during manufacturing 
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and the implementation of a more severe heat process required to inactivate spores of 

A. acidoterrestris will produce unacceptable organoleptic changes in the product. 

Manufacturers of fruit juice concentrate should minimised the quantity of  

A. acidoterrestris spores in the final product and thus the risk of spoilage through the 

use of good manufacturing practices during fruit processing. Particular attention should 

be paid to water used during the processing of fruit in the plant. A standardised 

quantitative method of detection of A. acidoterrestris spores needs to be developed 

coupled with research on fruit juice to establish the levels of contamination by  

A. acidoterrestris needed in fruit juice for the probability of spoilage to occur. 

 

References 

 

Bahçeci, K.S., Gokmen, V. & Acar, J. (2005). Formation of guaiacol from vanillin by 

Alicyclobacillus acidoterrestris in apple juice: a model study. European Food 

Research and Technology, 220, 196-199. 

Duong, H.A. & Jensen, N. (2000). Spoilage of iced tea by Alicyclobacillus. Food 

Australia, 52, 292. 

Hoyer, O. (1998). Testing performance and monitoring of UV systems for drinking water 

disinfection. Water Supply, 16, 424-429. 

Komitopoulou, E., Boziaris, I.S., Davies, E.A., Delves-Broughton, J. & Adams, M.R. 

(1999). Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. 

International Journal of Food Science and Technology, 34, 81-85. 

Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal 

processing of liquid foods. Food Bioprocess Technology, 2, 138-155. 

Koutchma T., Kellers S., Chirtel S. & Parisi B. (2004). Ultraviolet disinfection of juice 

products in laminar and turbulent flow reactors. Innovative Food Science and 

Emerging Technologies, 5, 179-189. 

Orr, R.V. & Beuchat, L.R. (2000). Efficiency of disinfectants in killing spores of 

Alicyclobacillus acidoterrestris and performance of media for supporting colony 

development by survivors. Journal of Food Protection, 63, 1117-1122. 

Pontius, A.J., Rushing, J.E. & Foegeding, P.M. (1998). Heat resistance of 

Alicyclobacillus acidoterrestris spores as affected by various pH values and 

organic acids. Journal of Food Protection, 61, 41-46. 

US FDA, (2000). 21 CFR Part 179. Irradiation in the production, processing and 

handling of food. Federal Registration, 65, 71056-71058. 



 

 

108 

Walker, M. & Phillips, C.A. (2008). Original article Alicyclobacillus acidoterrestris: an 

increasing threat to the fruit juice industry? International Journal of Food Science 

and Technology, 43, 250-260. 

 


	Declaration
	Abstract
	Uittreksel
	Contents
	Acknowledgements
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

