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ABSTRACT 
 
 
 

The problem of variable selection in binary kernel classification is addressed in this thesis.  

Kernel methods are fairly recent additions to the statistical toolbox, having originated 

approximately two decades ago in machine learning and artificial intelligence.  These 

methods are growing in popularity and are already frequently applied in regression and 

classification problems. 

 

Variable selection is an important step in many statistical applications.  Thereby a better 

understanding of the problem being investigated is achieved, and subsequent analyses of 

the data frequently yield more accurate results if irrelevant variables have been eliminated.  

It is therefore obviously important to investigate aspects of variable selection for kernel 

methods. 

 

Chapter 2 of the thesis is an introduction to the main part presented in Chapters 3 to 6.  In 

Chapter 2 some general background material on kernel methods is firstly provided, along 

with an introduction to variable selection.  Empirical evidence is presented substantiating 

the claim that variable selection is a worthwhile enterprise in kernel classification 

problems.  Several aspects which complicate variable selection in kernel methods are 

discussed. 

 

An important property of kernel methods is that the original data are effectively 

transformed before a classification algorithm is applied to it.  The space in which the 

original data reside is called input space, while the transformed data occupy part of a 

feature space.  In Chapter 3 we investigate whether variable selection should be performed 

in input space or rather in feature space.  A new approach to selection, so-called feature-to-

input space selection, is also proposed.  This approach has the attractive property of 

combining information generated in feature space with easy interpretation in input space.  



 IV 

An empirical study reveals that effective variable selection requires utilisation of at least 

some information from feature space.   

 

Having confirmed in Chapter 3 that variable selection should preferably be done in feature 

space, the focus in Chapter 4 is on two classes of selecion criteria operating in feature 

space: criteria which are independent of the specific kernel classification algorithm and 

criteria which depend on this algorithm.  In this regard we concentrate on two kernel 

classifiers, viz. support vector machines and kernel Fisher discriminant analysis, both of 

which are described in some detail in Chapter 4.  The chapter closes with a simulation 

study showing that two of the algorithm-independent criteria are very competitive with the 

more sophisticated algorithm-dependent ones. 

 

In Chapter 5 we incorporate a specific strategy for searching through the space of variable 

subsets into our investigation.  Evidence in the literature strongly suggests that backward 

elimination is preferable to forward selection in this regard, and we therefore focus on 

recursive feature elimination.  Zero- and first-order forms of the new selection criteria 

proposed earlier in the thesis are presented for use in recursive feature elimination and their 

properties are investigated in a numerical study.  It is found that some of the simpler zero-

order criteria perform better than the more complicated first-order ones. 

 

Up to the end of Chapter 5 it is assumed that the number of variables to select is known.  

We do away with this restriction in Chapter 6 and propose a simple criterion which uses the 

data to identify this number when a support vector machine is used.  The proposed criterion 

is investigated in a simulation study and compared to cross-validation, which can also be 

used for this purpose.  We find that the proposed criterion performs well. 

 

The thesis concludes in Chapter 7 with a summary and several discussions for further 

research. 
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OPSOMMING 
 
 
 

Die veranderlike-seleksie-probleem word in hierdie proefskrif beskou.  Kernmetodes is 

ongeveer twee dekades gelede in die masjienleer- en kunsmatige intelligensie-omgewings 

voorgestel, en verteenwoordig dus redelike onlangse toevoegings tot statistiese metodes.  

Hierdie metodes is gaandeweg besig om meer gewild te raak en word dikwels toegepas in 

regressie- en klassifikasie-probleme. 

 

Veranderlike-seleksie is ’n belangrike stap in baie toepassings in statistiek.  Daardeur word 

’n beter begrip van die probleem wat ondersoek word, verkry, en wanneer irrelevante 

veranderlikes elimineer word, lei dit tot akkurater na-seleksie analises van die data.  Hieruit 

spreek die belangrikheid van die ondersoek van die aspekte van veranderlike-seleksie vir 

kernmetodes vanself. 

 

Hoofstuk 2 van die proefskrif is ’n inleiding tot die hoofgedeelte wat in Hoofstukke 3 tot 6 

gegee word.  In Hoofstuk 2 word eerstens algemene agtergrond-inligting oor kernmetodes 

gegee, saam met ’n inleiding tot veranderlike-seleksie.  Daarna bied ons empiriese 

getuienis aan wat bevestig dat veranderlike-seleksie die moeite werd is in klassifikasie-

probleme vir kernmetodes.  Verskeie aspekte wat veranderlike-seleksie in kernmetodes 

kompliseer, word ook bespreek. 

 

’n Belangrike eienskap van kernmetodes is dat die oorspronklike data effektiewelik 

transformeer word voordat ’n klassifikasie-algoritme daarop toegepas word.  Die ruimte 

waarbinne die oorspronklike data lê, word ’n insetruimte genoem, terwyl die 

getransformeerde data in ’n gedeelte van ’n kernmerkruimte bevat is.  In Hoofstuk 3 

ondersoek ons of veranderlike-seleksie in die insetruimte gedoen moet word, of eerder in 

die kernmerkruimte.  ’n Nuwe benadering tot seleksie, sogenaamde kernmerk-na-

insetruimte seleksie, word ook voorgestel.  Die aantreklike eienskap van hierdie benadering 

is dat inligting wat in die kernmerkruimte genereer word, gekombineer word met maklike 
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interpretasie in die insetruimte.  ’n Empiriese studie toon aan dat effektiewe veranderlike-

seleksie die gebruik van minstens sommige van die inligting vanuit die kernmerkruimte 

vereis. 

 

Nadat in Hoofstuk 3 bevestig is dat veranderlike-seleksie verkieslik in die kernmerkruimte 

gedoen moet word, lê die klem in Hoofstuk 4 op twee kategorieë vir seleksie-kriteria in 

laasgenoemde ruimte: kriteria wat onafhanklik is van die spesifieke kern-klassifikasie-

algoritme en kriteria wat afhang van hierdie algoritme.  In hierdie opsig konsentreer ons op 

twee klassifikasie-algoritmes, nl. ondersteuningspunt-algoritmes en Fisher se kern-

diskriminant-analise.  Beide word in redelike besonderhede in Hoofstuk 4 beskryf.  Die 

hoofstuk sluit af met ’n simulasie-studie wat aandui dat twee van die algoritme-

onafhanklike kriteria baie mededingend is met die meer gesofistikeerde algoritme-

afhanklikes. 

 

In Hoofstuk 5 inkorporeer ons ’n spesifieke strategie om deur die ruimte van veranderlike 

deelversamelings te soek.  Getuienis in die literatuur dui sterk daarop dat terugwaartse 

seleksie verkies word bo voorwaartse seleksie, daarom is dit ons fokus.  Nul- en eerste-orde 

weergawes van die nuut-voorgestelde seleksie-kriteria vroeër in die tesis word aangebied 

vir gebruik in terugwaartse seleksie, waarna hulle eienskappe in ’n numeriese studie 

ondersoek word.  Ons bevinding is dat sommige van die eenvoudiger nul-orde kriteria beter 

vaar as die meer ingewikkelde eerste-orde kriteria. 

 

Tot en met die einde van Hoofstuk 5 word aangeneem dat die aantal veranderlikes om te 

selekteer bekend is.  Ons verwyder hierdie beperking in Hoofstuk 6 en stel ’n eenvoudige 

data-afhanklike kriterium voor om die aantal veranderlikes te identifiseer binne die konteks 

van ’n ondersteuningspunt-algoritme.  Die voorgestelde kriterium word in ’n simulasie-

studie ondersoek en vergelyk met kruis-validasie, wat ook vir hierdie doel aangewend kan 

word.  Ons bevinding is dat die voorgestelde kriterium goed vaar. 

 

Ons sluit die proefskrif in Hoofstuk 7 af, met ’n opsomming en verskeie voorstelle vir 

verdere navorsing. 
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CHAPTER 1  

INTRODUCTION 
 
 
 

The field of statistics has often been enriched by contributions from other disciplines.  

Examples that spring to mind are factor analysis (largely developed in psychology), and 

kriging (in the earth sciences).  Since the early 1990s there have been numerous important 

developments in pattern analysis which are having a significant impact on several areas in 

statistics.  The focus in this thesis is on aspects of one of these developments, viz. kernel 

methods.  

 

Pattern analysis may informally be described as a collection of procedures designed to 

detect patterns in data, which has long been an important objective in various scientific 

fields.  Advances in data collection, data storage and computing capabilities are providing a 

strong impetus for continuing developments in the pattern analysis field.  This has also 

seen an extension of pattern analysis applications beyond the boundaries of traditional 

science.  Importantly, pattern analysis is not restricted to the detection of relations only in 

numerical data, and can therefore be utilised to solve a wide variety of problems.  

Examples are fraud detection and stock market analysis in the financial world, automatic 

optical character recognition and image and texture analysis in machine learning, gene 

expression array analysis in genomics, and chromatography diagnosis in chemical 

engineering. 

 

From a historical perspective, three important stages in the development of pattern analysis 

may be distinguished.  During the 1950s and 1960s, the theory and application of linear 

methods in pattern analysis were successfully established.  A prime example of a procedure 

developed during this era is the perceptron (Rosenblatt, 1959).  During this stage very little 

progress was however made in terms of developing non-linear methods.  The second stage 

in the development of pattern analysis started with the introduction of neural networks and 
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decision trees in the early 1980s.  These techniques provided non-linear answers to pattern 

analysis problems, but were largely based on heuristic arguments.  Non-linear procedures 

based on a firm theoretical foundation were still lacking.  This gap was filled in the 1990s 

with the introduction of kernel methods.  It is generally acknowledged that the first 

contribution in this regard was made by Boser et al. (1992), with their introduction of the 

support vector machine (SVM).  Extension of the idea in this seminal paper lead to the 

rapid development of several kernel techniques, for example support vector time series 

analysis, support vector density estimation and support vector analysis of variance 

(ANOVA) decomposition; kernel ridge regression and kernel partial least squares in 

regression; kernel Fisher discriminant analysis (KFDA), kernel logistic regression, import 

and relevance vector machines in classification; kernel principal component analysis in 

dimension reduction; and support vector clustering.  For an introduction to these techniques 

the reader is referred to Weston et al. (1997), Stitson et al. (1997), Mukherjee et al. (1997), 

Schölkopf et al. (1999), Mika et al. (1999), Herbrich (2002), and Schölkopf  and Smola 

(2002). 

 

In time series analysis, density estimation, ANOVA, regression, classification, dimension 

reduction and clustering, a number of standard statistical techniques have traditionally been 

available.  Compared to these techniques, kernel procedures frequently offer several 

advantages.  Firstly, in terms of prediction accuracy, kernel methods in many scenarios 

yield state-of-the-art performance.  The results of an empirical study in Louw and Steel 

(2005) for example show that KFDA (the kernel version of ordinary linear discriminant 

analysis which will be described in Chapter 5) markedly outperforms ordinary linear 

discriminant analysis in most situations.  A second advantage is that kernel methods can 

even be applied in cases where the number of variables is much larger than the number of 

data points.  In fact, this property of kernel methods has largely contributed to their 

extensive application in the analysis of gene profile data, where hundreds of thousands of 

variables are frequently studied using sample sizes smaller than a hundred (see Guyon and 

Elisseeff, 2003).  Thirdly, as pointed out in the previous paragraph, kernel techniques can 

handle data of almost any type, ranging from biosequences to image pixels and graph 

nodes – hence their wide applicability.  Finally, Shawe-Taylor and Cristianini (2004) point 
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out that kernel methods satisfy the requirements of computational efficiency (computation 

time of the algorithm scales polynomially with the number of data cases), robustness (the 

algorithm is not particularly sensitive to outliers), and statistical stability (patterns 

originating from the true source, and not spurious patterns caused by noise, are typically 

detected).   

 

Since their introduction, kernel methods have become increasingly popular, both as an area 

of research, and as powerful tools in practice.  The current vitality of research in kernel 

methods is evident from the large number of publications appearing in the literature.  Since 

kernel procedures are typically computer intensive, much of the theory on kernel methods 

was originally developed by and for researchers and practitioners who are experts in 

machine learning and computer science (cf. for example the special issue on kernel 

methods in the Journal of Machine Learning Research – Cristianini et al., 2001).  

Gradually other disciplines (including statistics) caught up, leading to for example the 

formulation of key principles in statistical learning theory.  Yet at this stage to our view 

kernel methods still present many opportunities for contributions from the statistics 

community. 

 

The general focus in this thesis will be on binary classification using kernels.  Our specific 

focus will be on variable selection in kernel classification.  Typical examples of cases 

where variable selection in kernel classification will be beneficial, are gene expression 

array analysis and fraud detection.  In gene analysis, gene expression measurements are 

used to quantify the abundance of messenger ribonucleic acid in the tissue biopsies of a 

(usually relatively small) number of persons.  In such an analysis, the primary purpose is to 

identify the genes (variables) which can be used to distinguish between healthy and ill 

individuals.  In fraud detection, a transaction is evaluated in terms of a large number of 

predetermined attributes.  Here the pattern analysis task is typically to obtain the attributes 

(variables) which distinguish best between honest and fraudulent transactions.  In gene 

expression array analyses the identification of relevant genes facilitates a better 

understanding of potential susceptibility to certain diseases, possibly leading to early 

detection and prevention.  Additionally, as will be seen in later chapters of this thesis, the 
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elimination of irrelevant genes can potentially lead to a substantial improvement in the 

accuracy of the kernel classifier predicting illness.  Improved prediction accuracy is also 

the most important benefit of a reduction in irrelevant attributes in fraud detection.  

Because of the large number of genes or transaction attributes, these examples of variable 

selection are however difficult to solve.  They are examples of modern variable selection 

application domains where data sets containing hundreds of thousands of variables are 

common, and even an initial variable filtering process typically only reduces the number of 

variables to the order of tens of thousands.  We would like to emphasise that these 

examples are representative of a large number of important applications which could 

potentially benefit from variable selection. 

 

 

1.1  NOTATION 
 

In this section we define notation that will be used throughout the remainder of the thesis.  

In line with our intended focus, consider the following generic two-group classification 

problem. We observe a binary response variable { }1,1 +−∈Y , together with classification 

variables pXXX ,,, 21 K  for 21 nnn +=  sample cases, where the first 1n  cases belong to 

group 1 (with 1+=Y ) and the remaining 2n  cases belong to group 2.  The sets jI  contain 

the indices of the cases in group j , 2,1=j .  The resulting training data set is denoted by 

( ){ }niyii ,,2,1,, K== xT .    Here ix  is a −p component column vector containing the 

values of pXXX ,,, 21 K  for case i  in the sample.  In the literature the ix  vectors are often 

referred to as training patterns; we will also use the terms training inputs, or sample cases.  

Naturally T  can be divided into two training sets corresponding to the two groups, viz. 

( ){ }, ,i i jy i I= ∈xjT , 2,1=j .  We write X  for the pn×  data matrix with thi  row equal 

to '
ix , or equivalently, with thj  column containing the n  observations on input variable 

jX  in the training sample. 
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The objective in classification is to use T  to find a real-valued function ( )xf , called a 

discriminant function, so that ( ){ }xfsign  can be used to assign a new case with observed 

values of the classification variables in the vector x  to one of the two groups.  We will 

refer to ( ){ }xfsign  as a classifier. 

 

An important quantity when studying a classifier is its generalisation error.  This is 

defined by  

 

                                                 ( ) ( )( )( )XfsignYPfErr ≠= , (1.1) 

 

where ( )Y,X  represents a new observation from the same distribution as the one 

generating the training data.  The symbol ( )ferr  will be used to denote the training error 

of ( )xf , i.e.  

 

                                                 ( ) ( )( )∑
=

≠=
n

i
iin fyIndferr

1

1 x , (1.2) 

 

where ( )AInd  denotes the indicator function of the event A . 

 

In order to address the topic of variable selection in classification, we require additional 

notation for the classifier obtained using all the available variables, as well as for the post-

selection classifier based only on a subset of selected variables.  The former will be 

denoted by ( ){ }xfsign , and the latter by ( ){ }x~fsign , where x~  represents the 

measurements on the selected subset of variables.  The size of the selected variable subset 

will be denoted by m .   

 

An important concept in kernel methods is the so-called feature transformation function, or 

feature map, which is usually denoted by Φ .  We think of the function Φ  as a non-linear 

transformation of the patterns to a so-called feature space.  The space to which the patterns 

originally belong, i.e. the input space, will be denoted by ℵ  (in our applications this will 
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be pℜ ), while the feature space is represented by ℑ .  Conceptually therefore ( )xΦ  (or 

simply φ ) is the feature vector or feature pattern (the data case in ℑ ) corresponding to the 

input pattern x  in ℵ .  The symbols ( )xΦ  and φ  will be used interchangeably.  The 

coordinates of φ  represent transformations of the original (input) variables pXXX ,,, 21 K  

induced by Φ .  They are called features and will be denoted by { }Nj j ,,2,1, K=φ .  

Therefore in this thesis Φ  is the non-linear transformation function which maps the p -

dimensional input space ℵ  to a higher dimensional feature space ℑ , viz. 
Np ℜ⊆ℑ→ℜ⊆ℵΦ : , where the dimension of ℑ , denoted by N , may be infinite. 

 

In the statistics literature the terms variable and feature are often used interchangeably.  

Note that in this thesis there is an important distinction between (input) variable selection 

and feature selection for kernel methods.  In the case of variable selection the objective is 

to select a subset from the variables pXXX ,,, 21 K , whereas in feature selection interest 

lies in selection of a subset from the features { }Nj j ,,2,1, K=φ .  We will use 

( ) ( ){ }niyii ,,2,1,, K==Φ φT , ( ) ℑ⊆Φ T , to denote the training data set embedded in 

feature space and ( ) { }nφφφ ,,, 21 K=Φ ℵT  in cases where we wish to omit the sample 

response values.  Here { }nxxx ,,, 21 K=ℵT , ℵ⊆ℵT , indicates the training set of input 

patterns.   

 

The concept of an inner product plays a central role in kernel methods.  We will use the 

notation i
i

iba∑=ba,  to represent the standard inner product between two vectors.  The 

corresponding norm will be denoted by aaa ,= .  We will write rI  for the rr ×  

identity matrix, and rsE  for the sr ×  matrix with all entries equal to 1.  The trace of an 

nn×  matrix A , i.e. ∑
=

n

i
iia

1
, will be denoted by ( )Atr . 
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1.2  OVERVIEW OF THE THESIS 
 

In Chapter 2 we firstly provide a fairly extensive introduction to kernel methods.  It is 

shown how the kernel trick may be used to implicitly perform calculations in a possibly 

infinite dimensional feature space, enabling us to fit linear discriminant functions in feature 

space which correspond to non-linear discriminant functions in input space.  We provide 

examples of different kernel functions and briefly discuss properties of the kernel to be 

used in the remainder of the thesis.  The elegant and useful structure of kernel methods, 

which also plays an important role in later chapters, is pointed out.  We conclude the 

introductory section on kernel methods by showing how they can be derived using 

regularisation theory.  The remainder of Chapter 2 contains an overview of variable 

selection, emphasising a binary classification context.  We make use of results from a 

numerical study to confirm the importance of variable selection.  We then identify general 

strategies which may be used for variable selection, and provide an overview of several 

more recent statistical procedures that inherently facilitate variable selection.  Chapter 2 

concludes with remarks regarding aspects that complicate variable selection for kernel 

methods, and possible approaches towards performing kernel variable selection. 

 

Chapters 3 and 4 present part of the contribution of this thesis, viz. a new and useful 

conceptual framework for variable selection in kernel methods.  This framework considers 

firstly the data space in which selection of input variables is performed, and secondly the 

modular nature of kernel methods.  Using this structure, selection criteria may be 

categorised according to whether they are defined in input or in feature space, and also 

whether they are specific to a particular kernel algorithm, or not.  The framework enables 

one to identify some of the fairly ad hoc selection criteria proposed in the literature as 

special cases of a general strategy.  The proposed framework therefore unifies a wide array 

of seemingly unrelated selection criteria in the literature, and also allows a logical 

development of new ideas and proposals.  It provides a structured variable selection 

methodology for kernel methods, and represents a contribution to the field. 
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Chapter 3 starts by reporting excerpts from a simulation study which was performed in 

order to establish whether selection criteria defined in input space can be used for efficient 

kernel variable selection.  We then define and motivate criteria that are defined in feature 

space, but that ultimately allow the selection of variables to be performed in input space – 

and indicate the points in favour of and against such an approach.  An empirical evaluation 

of the performance of these so-called feature-to-input space selection criteria is described 

and reported in the final section of Chapter 3. 

 

Chapters 4 and 5 focus on kernel variable selection carried out entirely in feature space.  In 

Chapter 4 we consider two classes of selection criteria defined in ℑ , viz. algorithm-

independent and algorithm-dependent criteria, and empirically evaluate their relative 

performance.  In the case of algorithm-dependent selection criteria we restrict attention to 

criteria which can be applied in the context of fitting SVMs, or performing KFDA.  The 

results of a simulation study conducted to evaluate the proposed criteria are reported and 

discussed at the end of Chapter 4.  In Chapter 5 we extend the discussion in Chapters 3 and 

4 to include a specific selection strategy, viz. a backward elimination approach.  Instead of 

using selection criteria to simply rank the input variables and then selecting the m variables 

with highest ranks, we describe and evaluate recursive feature elimination for kernel 

methods.  This approach entails stepwise elimination of variables deemed most irrelevant, 

and it has the advantage compared to naïve variable ranking of taking into account inter-

dependence amongst the input variables in terms of their effect on the response. 

 

Whereas most of the literature on kernel variable selection assumes the number of input 

variables to include in the post-selection classifier to be known, we pay specific attention to 

this aspect in Chapter 6.  We propose a criterion which can be used in SVMs for deciding 

on the number of variables to retain during selection, and evaluate the criterion when it is 

used in combination with the best performing selection criteria in Chapter 5.  We then 

investigate our criterion when it is used in combination with both a forward and backward 

selection strategy.  Our proposal is shown to perform well in most of the scenarios 

investigated.  With this we provide a comprehensive variable selection procedure that does 
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not make use of the restrictive assumption of a known value for the number of input 

variables in the post-selection classifier. 

 

We close the thesis in Chapter 7 with recommendations and a discussion of directions for 

further research. 
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CHAPTER 2  

VARIABLE SELECTION FOR KERNEL 
METHODS  

 

 
 
2.1  INTRODUCTION 
 

Variable selection is frequently the first step in the analysis of a data set.  Often the primary 

objective of a study is to determine which input variables influence the outcome of some 

response of interest.  Even in cases where variable selection is not the goal in itself, suitable 

reduction of input variables frequently leads to several additional benefits.  Especially in 

small sample cases, a reduction in the number of variables may prevent overfitting the data, 

and subsequent unstable predictions.  Also, a more parsimonious model is simpler to 

interpret and cheaper than the model containing all variables.  The relevance of variable 

selection in traditional statistical procedures is well established.  Standard references are 

Linhart and Zucchini (1986), Burnham and Anderson (2002), and Miller (2002). 

 

During the past decade it has become clear that variable selection is also important when 

kernel methods are used, as is substantiated by many contributions in this regard.  In the 

introductory paper to a special issue on kernel variable selection, Guyon and Elisseeff 

(2003) motivate the importance of variable selection in kernel methods: once again, more 

parsimonious description of the data yields simpler interpretation, potential cost savings, 

improved insight regarding the relative importance of the explanatory variables, and 

frequently also more accurate predictions. 

 

Variable selection is a notoriously difficult problem.  It entails a decision on two different 

levels: the number of variables to include (a value for the model dimension, i.e. a value for 

m ), and which subset of m  variables this should be.  The former is possibly the more 

difficult decision to make.  Two cases may therefore be distinguished.  Firstly, it may be 
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possible to assume that the model dimension is known before the selection process starts.  

For example, the very large numbers of variables in some application areas makes it 

essential that an upper bound on the model dimension be specified.  In these cases a 

selection criterion only needs to take into consideration the accuracy of ( )x~f , without 

having to guard against overfitting.  Overfitting occurs when noise variables are wrongly 

selected in an attempt to decrease ( )ferr , usually resulting in an increase in ( )fErr .  The 

second scenario arises when the value of m  is not known.  For such situations selection 

criteria typically provide for a trade-off between accuracy on the training data and 

complexity, i.e. the number of variables included.  Establishing the right balance between 

these conflicting requirements is an important but difficult problem.  Hence in the 

literature, as pointed out by Ishwaran and Rao (2005), determining the model dimension is 

sometimes not considered part of the classical variable selection problem.  Examples of 

papers dealing with estimation of m  include Breiman (1992) and Rao (1999).  In this 

thesis we start by assuming the value of m  to be known, and address the problem of 

estimating the true model dimension in the final chapter. 

 

If the value of m  is known, the variable selection problem becomes much simpler.  Ideally, 

one then needs to evaluate all possible models with m  input variables, and select the best 

one.  For this purpose an appropriate criterion to evaluate different subsets of variables (a 

variable selection criterion) is of course required.  Specifying variable selection criteria in 

different application contexts is a difficult problem.  We will pay considerable attention to 

this aspect of kernel variable selection. 

 

The number of models which need to be evaluated during variable selection is often very 

large.  Even if the value of m  is fixed, evaluating all ( )p
m  possible models of size m  may 

not be feasible.  This is even more of a problem in cases where a best model of each 

possible dimension has to be identified.  Such an approach requires evaluation of ( )∑
=

p

m

p
m

1
 

models.  Variable selection procedures therefore generally require a strategy for reducing 

all possible combinations of input variables to be evaluated to a more manageable number, 

and specification of such a strategy is an important aspect of the selection process.  Recent 
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references regarding variable selection strategies in multiple linear regression are Efron et 

al. (2004), Ishwaran (2004), and Shao and Rao (2000).  See also Ishwaran and Rao (2005), 

and references therein.   

 

It is clear from the above that there are basically three important components which need to 

be specified in a variable selection procedure.  One requires:  

 

i.  A variable selection criterion in order to rate the various combinations of input 

      variables; 

ii.  A variable selection strategy which specifies (in combination with the selection 

       criterion) which combinations of input variables should be evaluated; 

iii.  A method for determining the number of input variables to select. 

 

In this thesis we will discuss these three components in the context of selection for kernel 

classifiers.  The first component receives attention in Chapters 3 and 4, the second 

component is discussed in Chapter 5, and we propose a new method for selecting the model 

dimension in kernel methods in Chapter 6. 

 

The aim of the remainder of this chapter is to introduce important concepts in variable 

selection and in kernel methods.  The chapter is structured as follows.  In Section 2.2 we 

provide an overview of kernel methods with special consideration of the properties of 

kernel functions and the intrinsic modular structure of these techniques.  We describe the 

construction of a kernel classifier and conclude the section with a description of kernel 

methods from a regularisation perspective.  Section 2.3 is devoted to (classical) variable 

selection in binary classification.  We start by providing a historical perspective and 

introduce separatory and allocatory variable relevance.  This is followed by a presentation 

of empirical evidence supporting the need for variable selection (in classical and kernel 

application domains), and a discussion of several classical selection strategies and criteria.  

We conclude the chapter in Section 2.4 with a discussion of the particular aspects which 

complicate variable selection for kernel methods. 
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2.2  AN OVERVIEW OF KERNEL METHODS 

 
2.2.1  BASIC CONCEPTS 
 
In this section we provide an overview of kernel methods for binary classification.  Kernel 

techniques yield classification functions of the form ( ){ }xfsign , where ( )xf  is non-linear 

in the training patterns.  There are of course a number of advantages if ( )xf  is linear in x .  

A linear decision boundary is simple to interpret and requires only 1p +  parameters to be 

estimated from the training data, which reduces the likelihood of overfitting and often 

yields classifiers with good generalisation properties.  Linear methods however do not 

yield satisfactory generalisation errors in all situations: for example, linear classifiers are 

inadequate for data that are clearly not linearly separable.  A standard approach in such 

cases is to construct ( )xf  to be linear in a transformed version of x .  The transformed 

training patterns reside in a feature space ℑ , which is usually higher dimensional than the 

original input space.  A linear model is subsequently fitted in ℑ .  This strategy is also 

motivated by Cover’s Theorem (see Haykin, 1999), which essentially states that non-

linearly transforming a data set to a higher dimensional space generally renders it more 

likely to be linearly separable.  See also Kroon (2003, pp. 122-123).   

 

The following simple example from Schölkopf and Smola (2002) illustrates how data 

which are not linearly separable may easily be transformed to make it linearly separable.   

 

EXAMPLE 2.1 

 

The one-dimensional data in Figure 2.1 are clearly not linearly separable.  However, by  

transforming the data using ( ) ( )2, xxx =Φ , we obtain the two-dimensional data 

represented in Figure 2.2, where the distinct groups of data points are now linearly 

separable.   
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Figure 2.1: One-dimensional data                     Figure 2.2: Two-dimensional data after the 

                                                                             transformation using ( ) ( )2, xxx =Φ    

   

 

 

There are several issues which need to be addressed in this context.  Firstly, it is necessary 

to specify the transformation Φ .  There are many popular choices, one of which is to 

transform each x  to a set of monomials.  This leads to polynomial or spline models, which 

are popular in statistics.  Of course a decision has to be made regarding the order of the 

polynomial functions to use.  In Example 2.1 we could easily picture the one-dimensional 

inputs and see that a quadratic transformation would be sufficient.  In practice however 

things are seldom so clearcut.  The data are usually multi-dimensional and it quickly 

becomes impossible to visualise the effect of a non-linear transformation.  Even if an 

appropriate transformation Φ  is known, further problems may arise.  Calculations in a 

high-dimensional space may be expensive and in some cases even become intractable.  

Fitting a model in a high-dimensional space may also entail difficult optimisations, further 

complicating the problem.  Finally there is the danger of overfitting: using too many 

features in a too high-dimensional space may result in a low error rate on the training data 

but this may well be accompanied by poor generalisation to new cases.    

 

Conceptually a kernel method also constructs a non-linear discriminant function ( )xf  by 

fitting a linear function in a transformed higher dimensional feature space.  One of the 

attractive properties of kernel methods is however that the specific non-linear 
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transformation Φ  need not be specified explicitly.  In fact, one is not required (and mostly 

not able) to specify the transformed inputs (or feature vectors), and calculations on feature 

vectors are performed in an implicit manner by making use of the original input patterns.  

Thus calculations in feature space are effectively performed in input space, and are 

therefore typically very fast and efficient – independent of the dimension of the feature 

space.  Although explicit specification of a non-linear transformation Φ  is therefore not 

required when one uses a kernel method, we will see that this requirement is replaced by 

the need to decide on a kernel function.  In some respects this is easier than explicitly 

specifying a non-linear transformation, but inevitably there are subtleties involved which 

have to be handled carefully. 

 

Regularisation is a standard tool for guarding against overfitting (see for example Hastie et 

al., 2001, Chapter 5).  Since kernel methods can be derived by applying established 

principles in regularisation theory, this provides inherent protection against potential 

overfitting.  We will however see that successful implementation of regularisation usually 

requires specification of a regularisation (or smoothing) parameter.  If this is done 

successfully, a kernel method usually delivers state-of-the-art generalisation performance.  

Details regarding a regularisation perspective on kernel methods will be given in Section 

2.4.  In the next section we present a more intuitive discussion of the basic ideas in kernel 

methods. 

 

In summary therefore, a kernel method may be viewed in terms of two steps.  The first step 

is to replace the original input patterns in the input space ℵ  with their non-linearly 

transformed counterparts in a feature space ℑ .  The second step entails construction of a 

discriminant function which is linear in ℑ .  Requiring linearity of the discriminant function 

implies that we still benefit from the advantages of linear methods.  It must however be 

kept in mind that the kernel discriminant function thus obtained will typically be highly 

non-linear in ℵ .   
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2.2.2  KERNEL FUNCTIONS AND THE KERNEL TRICK 
 
Transformations used in kernel applications are in most cases much more complicated than 

the transformation illustrated in Example 2.1.  In fact, we will see that frequently the 

relevant transformation to feature space cannot be specified explicitly, and that it may even 

lead to an infinite-dimensional feature space.  Fortunately, we will still be able to perform 

the calculations required for constructing a classifier linear in ℑ .  This is accomplished by 

using an appropriate kernel function, which can be defined as follows. 

 

DEFINITION 2.1:  A KERNEL FUNCTION 

 
A kernel function ℜ→ℵ×ℵ:k  is a function satisfying ( ) ( ) ( )zxzx ΦΦ= ,,k  for all 

ℵ∈zx , , where Φ  maps ℵ  to an inner product feature space ℑ , i.e. ( ) ℑ∈Φ→Φ xx: . 

 
 

The theory underlying kernel methods relies on specific requirements regarding the feature 

space ℑ .  Specifically, ℑ  should be a complete separable inner product space (a Hilbert 

space).  The restriction of ℑ  to be a Hilbert space is important, and the reader is referred to 

Section 2.2.4 for more details in this regard.   

 

We see from Definition 2.1 that with a kernel function we associate a transformation 

function Φ  such that ( ) ( ) ( )zxzx ΦΦ= ,,k  for all ℵ∈zx , .  A kernel function therefore 

provides an efficient way of calculating inner products in ℑ : to find ( ) ( )zx ΦΦ , , we 

merely have to evaluate ( )zx,k .  In the literature this shortcut of substituting ( )zx,k  for 

( ) ( )zx ΦΦ ,  is generally known as the kernel trick.  See also Schölkopf and Smola (2002) 

and Kroon (2003).  Since ( )zx,k  does not require the feature vectors ( )xΦ  and ( )zΦ , but 

only the input vectors x  and z  in their original form, the kernel trick obviates the need for 

knowing the transformation function Φ  and the explicit construction of feature vectors.  A 

kernel function therefore enables us to work in a higher dimensional feature space without 

having to define or construct it explicitly, and moreover, via a kernel function we can 
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calculate inner products efficiently even in cases where Φ  yields infinite-dimensional 

features.  In theory we may think of Φ  as the transformation function embedding training 

patterns in ℑ , but in practice it is sufficient to specify an appropriate kernel function and to 

work in ℑ  without further attention to Φ .   

 

To illustrate these points we discuss a simple example taken from Shawe-Taylor and 

Cristianini (2004, p. 34), a standard textbook on kernel methods.   

 

EXAMPLE 2.2 

 

Consider the quadratic kernel function ( ) 2,, zxzx =k  defined on ℵ×ℵ , 2ℜ⊆ℵ .  It is 

easy to obtain  

 

                        ( ) == 2,, zxzxk  ( ) 2121
2
2

2
2

2
1

2
1

2
2211 2 zzxxzxzxzxzx ++=+ . 

 

Also, let ( ) [ ]21
2
2

2
1 2,, xxxx=Φ x , mapping the original input space ℵ  into a higher 

dimensional feature space 3ℜ⊆ℑ .  Since  

 

                     ( ) ( ) [ ] [ ] 2
21

2
2

2
121

2
2

2
1 ,2,,,2,,, zxzx ==ΦΦ zzzzxxxx ,  

 

we see how the kernel trick facilitates indirect and efficient calculation of the inner product 

( ) ( )zx ΦΦ , .  In this simple special case we are able to identify the features in ℑ , viz. 

2
2

2
1 , xx  and 212 xx , something which will generally be impossible.  Finally in this 

example, note that there are also other feature maps which correspond to the quadratic 

kernel, for example ( ) [ ]1221
2
2

2
1 ,,, xxxxxx=Φ x , which maps 2ℜ⊆ℵ  into 4ℜ⊆ℑ .  Hence 

we see that it is not necessarily possible to associate a unique feature map with a given 

kernel function.  
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We emphasise that the kernel trick may be used without any restrictions regarding the input 

domain ℵ , other than it being a set (see also Aronszajn, 1950).  This is an important reason 

for the wide applicability of kernel procedures.  In order to further appreciate the 

importance of the kernel trick, one must realise that any algorithm in which the inputs are 

only involved in terms of inner products in input space, can readily be kernelised, i.e. 

formulated in terms of inner products in a feature space.  It is in fact this principle which 

led to the extension of several well known statistical procedures.  Examples include kernel 

logistic regression, kernel principal component analysis, kernel discriminant analysis and 

kernel regression analysis.   

 

How does one obtain a function satisfying the requirement in Definition 2.1?  A basic point 

in this regard is to ensure that the chosen function allows inner product representations in 

some higher dimensional feature space.  Since the kernel function may be viewed as a 

generalised inner product, properties of an ordinary inner product in a vector space dictate 

the kernel to be symmetric, i.e. ( ) ( )xzzx ,, kk = . 

 

The following definitions and results provide properties of kernel functions and indicate 

ways in which these functions may be constructed.   

 

A key property of kernel functions may be formulated in terms of the so-called kernel (or 

Gram) matrix. 

 

DEFINITION 2.2:  THE KERNEL MATRIX 

 

The kernel matrix for a set of input vectors { }nxxx ,,, 21 K  is defined to be the nn×  

symmetric matrix K  with entries ( ) njikk jiij ,,2,1,,, K== xx . 

 
 

The following theorem for kernel matrices may be extended to provide a characterisation 

of kernel functions.   
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THEOREM 2.1:  Kernel matrices are positive semi-definite 

 

PROOF  

For any vector v  we have ( ) ( )jij

n

ji
iijj

n

ji
i vvkvv xxKvv ΦΦ==′

==
,∑∑

1,1,
 

                                                   ( ) ( )∑ ∑
1 1

,
n

i

n

j
jjii vv

= =
ΦΦ= xx  

                                                   ( ) 0
2

1
∑ ≥Φ=
=

n

i
iiv x , as required. 

   

 
 

Theorem 2.2 summarises the extension of Theorem 2.1 to a result that can be used to 

characterise kernel functions. 

 

THEOREM 2.2:  CHARACTERISATION OF KERNELS 

 
A function ℜ→ℵ×ℵ:k , which is either continuous or has finite domain, can be 

decomposed into a feature transformation function Φ  (into a Hilbert space ℑ ) applied to 

both its arguments, followed by the evaluation of the inner product in ℑ , i.e. k  can be 

decomposed into  
 

                                                         ( ) ( ) ( )zxzx ΦΦ= ,,k  

 

if and only if it satisfies the finitely positive semi-definite property.   
 

 
 

For a proof of Theorem 2.2, see Shawe-Taylor and Cristianini (2004, pp. 61-63).  Note that 

Theorem 2.2 provides a relatively simple method to confirm that a given function 

ℜ→ℵ×ℵ:k  is a kernel function: for any value of n  and any selection of input vectors 

nxxx ,,, 21 K , the resulting kernel matrix must be positive semi-definite. 
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Construction of new kernels is facilitated by several closure properties possessed by the 

class of kernel functions.  We provide the next theorem as a summary of these properties.  

The reader is referred to Shawe-Taylor and Cristianini (2004, p. 75) for a proof. 

 

THEOREM 2.3:  CLOSURE PROPERTIES 

 

Consider kernel functions ℜ→ℵ×ℵ:, 21 kk , pℜℵ⊆ , and ℜℜ×ℜ →:3
NNk , where N  

denotes the dimension of the feature space ℑ .  Furthermore, let f  be a real-valued 

function on ℵ , with +ℜ∈a , and B  a symmetric positive semi-definite pp ×  matrix.  

Then the function k  resulting from the following operations will also be a kernel function: 

 

i.    ( ) ( ) ( )zxzxzx ,,, 21 kkk +=  

ii.   ( ) ( )zxzx ,, 1akk =  

iii.  ( ) ( ) ( )zxzxzx ,,, 21 kkk =  

iv.  ( ) ( ) ( )zxzx ffk =,  

v.   ( ) ( ) ( )( )zxzx ΦΦ= ,, 3kk  

vi.  ( ) Bzxzx ′=,k    

 

 

A frequently used example of constructing a new kernel from an existing one is by 

normalising it.  Let k  be a kernel function with associated feature mapping Φ , then the 

normalised kernel k̂  corresponds to the normalised feature mapping ( ) ( )xx ΦΦ .  It can 

be shown that the relationship between the given kernel k  and its normalised version  k̂  is 

given by    

 

                                   ( ) ( )
( )

( )
( )

( )
( ) ( )zzxx

zx
z
z

x
xzx

,,
,,,
kk

kk =
Φ
Φ

Φ
Φ

=
)

. (2.1) 

 

Note that the Cauchy-Schwarz inequality implies that ( ) 1,ˆ1 ≤≤− zxk . 
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Appropriate specification of the kernel function is an important and difficult aspect when a 

kernel procedure is applied: understanding the effect of alternative kernel functions on the 

properties of the resulting kernel methods is hardly a trivial matter.  In some cases there 

may be very specific properties of the data which should be incorporated into specification 

of the kernel function.  Certain classes of kernel functions can be used to accommodate 

such data-specific requirements, and in many practical applications even further fine-tuning 

of the kernel function may be required. 

 

As an example, consider a binary classification problem.  Recall that an inner product 

between two vectors can be interpreted as a measure of their similarity.  Hence 

( ) ( ) ( )zxzx ΦΦ= ,,k  reflects the similarity between ( )xΦ  and ( )zΦ .  Ideally a kernel 

function should measure similarities between feature patterns in a way that is meaningful in 

the particular application.  In the context of this example we intuitively desire the measured 

similarity to be relatively large when two patterns belong to the same group, and relatively 

small otherwise.  This suggests that an appropriate kernel function should yield a kernel 

matrix with the following structure: an upper left 11 nn ×  sub-matrix with large entries, a 

similar 22 nn ×  sub-matrix in the lower right position, and all remaining entries relatively 

small.   

 

There are many contributions in the literature providing important principles for 

incorporating such application-specific a priori information into kernel functions.  

Schölkopf et al. (1996), for example, consider the construction of kernels which take into 

account prior knowledge for optical character recognition problems.  Other important 

references concerning appropriate specification of kernel functions include Amari and Wu 

(1999), Genton (2001), Cristianini et al. (2000 and 2002), and Shawe-Taylor and 

Cristianini (2004).  Methods for obtaining tailor-made kernel functions certainly enhance 

the versatility of kernel methods, but this specialised topic falls outside our scope and will 

therefore not receive further attention in the thesis. 
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There are several examples of kernel functions occurring frequently in the literature.  These 

kernels are often applied because of their good performance in many situations.  Two 

examples are the polynomial and sigmoidal kernels: 

 

• The polynomial kernel ( ) ( )dck += zxzx ,, , where d  is a natural number and 

0≥c , yields a discriminant function which is a thp  order polynomial in the data. 

 

• The sigmoidal kernel ( ) ( )catanhk -,, zxzx = , where a  and c  are positive real 

numbers, leads to a classifier with attributes similar to a three-layer neural network. 

 

A kernel function which also performs well in many contexts (see for example Schölkopf 

et al., 1997) and which has become extremely popular with practitioners is the so-called 

Gaussian kernel.  It is given by 

 

                                                    ( ) ( )2--, zxzx γexpk =  (2.2) 

 

where γ  is a so-called kernel hyperparameter which has to be specified (cf. for example 

Cristianini et al., 1998).  The Gaussian kernel function belongs to the family of radial basis 

function (RBF) kernels, which are kernels that can be written in the form 

( ) ( )( )zxzx ,, δhk = , where δ  is a metric on ℵ  and h  is a function defined on positive real 

numbers.  Usually the metric δ  is a function of the inner product, i.e. 

( ) zxzxzxzx -,--, ==δ .  In this case the resulting RBF kernel function will be 

unitary invariant.  We will restrict attention to the Gaussian kernel in this thesis.    

 

The following theorem confirms that (2.2) does in fact define a valid kernel. 
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THEOREM 2.4:  VALID KERNEL FUNCTIONS 

 
Let ℜℵ×ℵ →:1k  be an existing kernel.  Let also ( )xp  denote a polynomial with positive 

coefficients.  The following functions are valid kernels:   

 

i.   ( ) ( )( )zxzx ,, 1kpk =  

ii.  ( ) ( )( )zxzx ,, 1kexpk =  

iii. ( ) ( )2--, zxzx γexpk =  

 

PROOF 

 

i.  Part i. follows directly from operations i. to iv. in Theorem 2.3, where ( )xf  in iv. 

    assumes a constant value to provide for a constant term in the polynomial. 

ii. Polynomials with positive coefficients may be used to approximate exponential 

functions, implying that exponential functions are limits of kernels.  Since taking 

point-wise limits preserves the positive semi-definite property, the second result 

follows. 

iii.  Clearly from part ii, ( ) ( )zxzx ,~, γexpk =  with +ℜ∈~γ  will be a valid kernel.  We 

now normalise k  to obtain 

( ) ( )
( ) ( )zzxx

zx
zx

,~,~
,~

,
γγ

γ

exp exp

exp
k =
)

 

               ( )zzxxzx ,-,-,~
2

~

2

~ γγγexp=  

                                                   ( )2-- zxγexp=   

       where 2~γγ = . 
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Note also that the Gaussian kernel is an example of a translation invariant kernel: in (2.2) 

both input vectors may be translated by the same vector without causing any change in the 

Gaussian kernel function value, i.e. ( ) ( )azaxzx ++= ,, kk  for all ℵ∈a . 

 

Since for the Gaussian kernel, ( ) ( ) 1,2 ==Φ xxx k  for all ℵ∈x , all feature vectors are at 

a fixed distance from the origin, i.e. they lie on the surface of a hypersphere with radius 1.  

Furthermore, consider two feature vectors, ( )xΦ  and ( )zΦ , and denote the angle between 

these vectors by θ .  Then it follows that ( ) ( ) ( ) 1 cos ,,0 ≤=ΦΦ=≤ θzxzxk , with the 

implication that the enclosed angle between any two features will be at most 2π .  We can 

therefore choose the feature space so that the mapped values all lie in a single orthant.  This 

is illustrated informally in Figure 2.3 below. 

 

0.5

1

0.5

0

1

0.5

0

 
Figure 2.3: Using the Gaussian kernel function, all mapped values lie on the surface of a 

single orthant of a hypersphere with radius 1 
 

 

From the above figure it may seem as if the Gaussian kernel maps data into a rather 

restricted area of the feature space.  The following proposition however shows that features 

induced by the Gaussian kernel function actually occupy a space which is in some sense as 

large as possible. 
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THEOREM 2.5:  Gaussian kernel matrices have full rank 

 
Given distinct input patterns nxxx ,,, 21 K  and a hyperparameter value 0>γ , the kernel 

matrix with entries 




=

2
-- jiij expk xxγ  will have full rank.   

 
 

Provided that no two input patterns are the same, note that the features 

( ) ( ) ( )nxxx ΦΦΦ ,,, 21 K  will be linearly independent, and hence they span an n-

dimensional subspace of the induced Hilbert space.  In this sense the Gaussian kernel 

yields features which inhabit a part of the feature space which is as large as possible. 

 

As seen in Equation 2.2, application of the Gaussian kernel requires specification of a 

kernel hyperparameter value γ .  Similarly, c and d in the polynomial kernel, and a and c in 

the sigmoidal kernel are hyperparameter values that need to be specified.  This is an 

important step in the application of kernel techniques, since inappropriate specification of 

kernel hyperparameter values typically has a detrimental effect on their generalisation 

performance.  Possible approaches to specification of kernel hyperparameter values are 

given in Müller et al. (2001).  Contributions regarding the specification of γ  in the 

Gaussian kernel function include Cristianini et al. (1998), Chapelle et al. (2004), Keerthi 

(2002) and Wang et al. (2004).  Although requiring expensive computations, cross-

validation (or hold-out testing) seems thus far to be the most popular approach for 

determining kernel hyperparameter values.  In a cross-validation approach, an upper bound 

on the generalisation error is calculated on hold-out sections of the data for several 

hyperparameter values.  The hyperparameter value yielding the best performance across 

hold-out data sets is then selected.  In kernel functions with large numbers of 

hyperparameter values that need to be specified, cross-validation procedures soon become 

computationally intractable.  Since in the context of SVMs a number of upper bounds on 

the 1-fold cross-validation (or leave-one-out) error can be derived (cf. Vapnik and 

Chapelle, 2000, and Duan et al., 2001), many of the proposals regarding kernel 

hyperparameter specification in SVMs involve the calculation of (fast) approximations to 
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the SVM leave-one-out error.  These procedures are however often based on solutions to 

non-convex optimisation problems and are therefore prone to yield only locally optimum 

kernel hyperparameter values. 

 

 

2.2.3  CONSTRUCTING A KERNEL CLASSIFIER 
 
Having provided some detail regarding kernel functions, we proceed with a description of 

the actual construction of a kernel discriminant function in the context of binary 

classification.  The requirement of a linear classifier in ℑ  implies that the classifier will be 

of the form ( ){ }bsign +Φ wx ,  where ℑ∈w  and ℜ∈b  have to be determined from the 

training data.  The feature vector w  is usually obtained by solving a constrained 

optimisation problem.  It is a well known result in the theory of constrained optimisation 

that the dual formulation of such an optimisation problem is easier to deal with than the 

primal formulation (see for example Shawe-Taylor and Cristianini, 2004).  The optimal w  

typically turns out to be a linear combination of the transformed input vectors, viz. 

( )
1

n

i i
i

α
=

= Φ∑w x , where the vector of Lagrange multipliers, viz. [ ]nααα ,,, 21 K=′α  

(required to deal with the constraints), are obtained from the data.  Hence the kernel 

classifier becomes 

 

                      ( ) ( ) ( )
1 1

, ,
n n

i i i i
i i

sign b sign k bα α
= =

    Φ Φ + = +   
    

∑ ∑x x x x ,  (2.3) 

 

with x  the (new) input pattern to be classified. 

 

The specific form of the objective function which has to be optimised and the constraints 

required in determining the α -vector depend on the type of kernel classifier implemented.  

For example, the optimisation problem specifications for SVMs differ from those required 

for constructing kernel Fisher discriminant functions or kernel logistic regression functions. 
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Further details in this regard are given in Chapter 4, in particular for SVMs and kernel 

Fisher discriminant functions. 

 

Returning to Equation (2.3), we see that different kernel classifiers display two common 

characteristics:  at a first level the discriminant function depends on the training data only 

via a kernel function, and at a second level the discriminant function depends on the 

training data via weights nααα ,,, 21 K  which are typically obtained through solving an 

optimisation problem. 

 

Shawe-Taylor and Cristianini (2004) make use of shared and differentiating aspects in 

kernel methods to describe an effective framework for conceptualising these techniques.  

This framework has a modular structure, emphasising that the aspects in kernel methods 

(for example, specifying the kernel function and its hyperparameter values, and specifying 

and finding a solution to the optimisation problem) can be treated independently.  This 

independence between kernel components induces flexibility in constructing a kernel 

technique.  Any (sensible) combination of the many possibilities regarding each of the 

kernel aspects may be used, and will yield a different kernel procedure. 

 

 

2.2.4  A REGULARISATION PERSPECTIVE 
 
In the previous section we saw that (binary) classification may be viewed as a function 

estimation problem: the finite set of training data, ( ){ }niyii ,,2,1,, K== xT , where 

{ }1, 1iy ∈ − + , is used to estimate a function f  such that ( ){ }y sign f= x  can be used to 

predict class membership of newly observed cases.  In regression contexts, Y  is a 

continuous response variable, and the objective is to use T  to determine a regression 

function ( ) ( )xx |YEf =  estimating (or predicting) the response of a newly observed input 

pattern as accurately as possible.  Clearly therefore also regression may be viewed as a 

function estimation problem. 
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In any given function estimation problem, let F  denote the class of candidate functions 

from which the function f  will be obtained, i.e. F  is the class of candidate functions 

ℜ→ℵ:f .  For example, in binary classification contexts, F  represents the class of all 

possible binary discriminant functions.  In function estimation problems, Ff ∈  is often 

obtained by minimising a measure of error on the training data, e.g. ( )1

1
( ),

n

i in
i

L f y
=
∑ x .  

Here ( )( ),i iL f yx  denotes a loss function used to measure in some appropriate way the 

closeness of the estimated or predicted response ( )f x  to the true response y .  Popular 

loss functions in classification and regression will be given during the course of our 

discussion below.  Note that ( )1

1
( ),

n

i in
i

L f y
=
∑ x  is the average or mean loss in the training 

data when the estimate ( )if x  is used instead of the true response iy .  Hence this term 

reflects the performance of a candidate function only on the training patterns, and is called 

the empirical risk.  It is important to note that using the function Ff ∈  which minimises 

the empirical risk would in most cases lead to overfitting.  The result would be an f  which 

precisely follows the training data, i.e. ( ) , 1, 2, ,i if y    i n= =x K .  Such a function would 

almost certainly generalise poorly to classification of unseen cases. 

 

Another complicating factor is that F  is often a class of functions defined on a high-

dimensional space.  For example, in the variable selection application domains discussed in 

Chapter 1 the data sets often consist of relatively few observations on a large number of 

variables.  In such cases the data soon become very sparse, rendering function estimation 

an ill-posed problem.  This means that small perturbations of the data can induce large 

changes in the estimated functions.  Stated differently, the data provide too little 

information to accurately estimate f .  Irrespective of the dimension of the problem in 

input space, in kernel methods the transformed feature space ℑ  typically has a very high 

dimension.  Therefore ill-posed function estimation is a particularly relevant problem in 

this context.   
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A widely used approach for solving ill-posed function estimation problems is known as 

regularisation (see Tikhonov and Arsenin, 1977; Bertero, 1986, and Bertero et al., 1988, 

for early contributions in this regard).  Regularisation theory formalises classification and 

regression problems as so-called variational problems, viz. where one aims to find the 

function Ff ∈  which minimises a regularised risk functional.  This implies that f  is 

obtained by solving the following optimisation problem: 

 

                                     ( ) ( )( ) ( )






 Ω+=

∈
∑
=

n

i
iin fyfLfRmin

f 1

1 , λx
H

. (2.4) 

 

In (2.4), H  is typically a Hilbert space of candidate functions.  Therefore minimisation of 

the regularised risk is carried out over all possible functions contained in an appropriately 

defined Hilbert space.   

 

Effectively, regularisation restricts the complexity of the function class F .  This restriction 

is implemented via the term ( )fΩ  in (2.4), which penalises functions that are complex or 

non-smooth.  Hence regularisation purposely induces bias in estimating f : when 

comparing functions with similar empirical risk values, the simpler function will be 

favoured.  Obviously the desire for a simple function must not be taken to extremes: there 

are data sets requiring fairly complex discriminant functions.  The trade-off between 

minimisation of the empirical risk, and complexity or non-smoothness of the candidate 

functions is controlled by the regularisation or smoothing parameter 0≥λ .  In (2.4), 

appropriate specification of a value for λ  is crucial.  With 0=λ , we find ourselves back in 

the empirical risk minimisation setup.  Larger values of λ  implies stricter penalisation of 

complex functions, generally yielding simpler solutions.  For more details regarding 

specification of λ , the reader is referred to Wahba (1990). 

 

The idea behind regularisation is well illustrated in the next example which presents some 

details on ridge regression. 
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EXAMPLE 2.3 

 

Let F  represent the class of functions of the form ( ) ( ) βxxx ,== |YEf , where β  

denotes a p-dimensional vector of regression coefficients.  In addition, assume that 

εXβY += , with ( )nIε 2,~ σ0 , for a sample of n  cases.  The ordinary least squares 

(OLS) regression function is obtained by assuming a squared error loss function, i.e. 

( ) ( )2( ), - ( )i i i iL f y y f=x x , and finding Ff ∈  which minimises the empirical risk.  

Hence, in order to perform OLS we simply need to solve the following optimisation 

problem: 

 

                                  ( ) ( )( )






 −== ∑

=

n

i
niin yfLfRmin

1

211 , Xβyx
β

. (2.5) 

 

This yields the OLS regression estimate ( ) yXXXβ ′′= 1-ˆ .  It is clear that if two or more of 

the input variables are highly correlated, XX ′  will become ill-conditioned, and in extreme 

cases the inverse of XX ′  may not exist.  The result would be a poorly determined OLS 

estimate which exhibits high variance (see also Hastie et al., 2001, pp. 59-60).  This 

limitation of OLS estimates formed the initial rationale for introducing ridge regression 

into statistics (Hoerl and Kennard, 1970): to ensure non-singularity of XX ′ , a positive 

constant λ  is added to the diagonal of XX ′ .  Called the pseudo (or generalised) inverse, 

( ) 1−+′ pIXX λ  is then substituted for ( ) 1−′XX , yielding the ridge regression least squares 

estimate ( ) yXIXXβ ′+′= −1~
pλ . 

 

In applications with many correlated input variables, ridge regression generally performs 

better than OLS regression functions.  This result is not immediately evident from the 

formulation above, but becomes clear when one realises that substitution of the generalised 

inverse for ( ) 1−′XX  in β̂  yields a ridge regression least squares estimate β~  which can 

actually be shown to solve the regularised (or penalised least squares) optimisation problem 
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                                           ( ){ }ββXβyβ
β

,21 λ+−= nR min  (2.6) 

 

Note that the regularisation term ββ,λ  in (2.6) restricts the size of the estimated 

regression coefficients, thereby guarding against potential high variance. 

  
 

 

How does one go about solving the regularised optimisation problem in (2.4)?  We have 

seen that minimisation of the regularised risk should be performed over all functions in a 

Hilbert space H .  Thus (2.4) is an infinite dimensional problem, and solving it is generally 

not a trivial matter.  A surprisingly elegant solution can however be found for an important 

subclass of the problem in (2.4).  This subclass of problems is generated by positive semi-

definite kernel functions, and their solutions yield a wide spectrum of statistical techniques, 

including for example the entire family of smoothing splines (cf. Wahba, 1990).  Moreover, 

we will soon see that they also provide an alternative view on the way in which kernel 

methods can be defined. 

 

One might ask why positive semi-definite kernel functions enable us to solve the 

optimisation problem in (2.4).  Firstly, it can be shown that for a positive semi-definite 

kernel function we can define a Hilbert space H  such that it possesses the so-called 

reproducing property, i.e. such that H  will be a reproducing kernel Hilbert space (RKHS).  

Thus in kernel-induced regularisation problems the candidate functions reside in an RKHS, 

and it is the properties of an RKHS which yield a relatively simple way for obtaining a 

solution to the optimisation problem.  For more details on RKHSs, see for example Hastie 

et al. (2001, Chapter 5).  Secondly, if we consider (2.4) in an RKHS, the celebrated 

Representer Theorem of Kimeldorf and Wahba (1971) (presented in Theorem 2.6 to 

follow) implies that the optimisation problem becomes finite-dimensional. 

 

In the previous paragraph we indicated that with every positive semi-definite kernel 

function an RKHS can be associated.  In the next definition and the brief section to follow, 
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we start with a Hilbert space H  and provide the conditions required for H  to be an 

RKHS.  The conclusion in the end is that with every RKHS we can associate a unique 

positive semi-definite kernel function. 
 
 

DEFINITION 2.3:  A REPRODUCING KERNEL HILBERT SPACE 

 
Let ℵ  be a non-empty set and H  a Hilbert space of functions which map ℵ  into ℜ .  

Then H  is a reproducing kernel Hilbert space endowed with a dot product H.,.  and a 

norm HH ff f ,=  if there exists a function :k ℵ×ℵ → ℜ  with the following 

properties: 

 

i.   The reproducing property, viz.  

 

                                                      ( ) ( ) H,., xx kf f =  H∈∀ f  (2.7) 

 

     and specifically, ( ) ( ) ( )zxzx ,=,.,,. kkk H . 

 

ii.   The property that k  spans H . 

 
 
 
It can easily be shown that if the kernel function in Definition 2.3 exists, it will always be 

uniquely defined (cf. Schölkopf and Smola, 2002).  Note therefore that an RKHS implied 

by a kernel function k  will henceforth be denoted by kH .  To verify that the kernel 

function corresponding to an RKHS is a positive semi-definite function, consider  
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         ( ) ( ) ( )
, 1 , 1

, ,. , ,.
k

n n

i j i j i j i j
i j i j

k k kα α α α
= =

=∑ ∑x x x x
H

 

                                       ( ) ( )
1 1

,. , ,.

k

n n

i i j j
i j

k kα α
= =

= ∑ ∑x x
H

( )
2

1
,. 0

k

n

i i
i

kα
=

= ≥∑ x
H

. (2.8) 

 

For a clearer understanding of an RKHS, we present the following example (see Hastie et 

al., 2001, p. 144) which illustrates the explicit construction of an RKHS from a given 

positive semi-definite kernel.  The properties of an RKHS which are important to us in this 

section will also be given along the way.  

 

EXAMPLE 2.4 

 

Let 1 2, , γ γ K  and 1 2, , φ φ K  respectively denote sequences of positive numbers and 

independent functions, with ∞<∑
∞

=1

2

i
iγ , and consider the symmetric function ( )zx ,k  

defined by ( ) ( ) ( )
1

, i i i
i

k γ φ φ
∞

=
= ∑x z x z .  Now consider the Hilbert space H  consisting of 

functions of the form ( ) ( )
1

i i
i

f c φ
∞

=
= ∑x x , where the coefficients K , , 21 cc  are real 

numbers.  Also define the scalar product in H  to be  gf H,
1

i i

ii

c d
γ

∞

=
= ∑ , where 

( ) ( )
1

i i
i

f c φ
∞

=
= ∑x x  and ( ) ( )

1
i i

i
g d φ

∞

=
= ∑x x , 1 2, , d d ∈ℜK .  It follows that the squared 

norm in kH  is 

                                                 ∑
∞

=
==

1

2 ,
i i

ic
fff

kk γHH  (2.9) 

 

and we assume this to be finite. 
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Now since 

                          ( ) ( ) ( ) ( )
1 1

, ,.
k

i i i
i i

ii i

c
f k  c f

γ φ
φ

γ

∞ ∞

= =
= = =∑ ∑

x
x x xH , (2.10) 

 

k  clearly satisfies Equation (2.7).  Consequently, as seen in (2.8), k  is a positive semi-

definite kernel function.  Therefore the Hilbert space kH  is an RKHS, with k  the 

corresponding positive semi-definite reproducing kernel.  

  

 

 

Summarising: for any given RKHS we can identify a unique positive semi-definite kernel 

function, and vice versa.  In practical applications we start with a positive semi-definite 

kernel function, and perform function estimation in the associated RKHS.  However, it will 

become clear that we need not explicitly construct the associated RKHS since we can solve 

the optimisation problem given in (2.4) simply in terms of the kernel function.  We now 

return to this aspect. 

 

Performing function estimation in an RKHS involves the use of a functional measuring the 

complexity of candidate functions.  We do this in terms of ( ) 2
k

f f  Ω = H .  Substituting 

(2.9) into (2.4) we obtain 

 

                                    ( ) ( )( )






 += ∑

=∈

n

i
iinf kk

ffyLfRmin
1

21 , HH
λx  (2.11) 

                                
{ } 











+









= ∑ ∑∑

=

∞

=

∞

=∞
=

n

i j
jj

j
ijjin

c
ccyLmin

jj 1 1

2

1

1 )(,
1

γλφ x . (2.12) 

 

Even after this simplification, (2.12) remains an infinite dimensional problem: there are an 

infinite number of coefficients K , , 21 cc  which have to be determined.  Fortunately the 

Representer Theorem shows that a finite dimensional solution to (2.12) does exist.  We 

provide the version given in Schölkopf and Smola (2002). 
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THEOREM 2.6:  THE REPRESENTER THEOREM 

 

Let ℵ  be a set, and as before, use ( ), ( )i iL y f x  to denote an arbitrary loss function.  Then 

each minimiser kf H∈  of the regularised risk ( ) ( ) 2

1

1 )(,
k

ffyLfR
n

i
iin Hλ+= ∑

=
x  admits a 

representation of the form 

                                                           ( ) ( )
1

,
n

i i
i

f kα
=

= ∑x x x  (2.13) 

  

 

 
Using (2.13) we obtain 

 

                                   2 ,
k k

f  f f= HH ( ) ( )
kjij

n

ji
i kk

H
xxxx ,,,

1,
αα∑

=
=  

                                                                  ( )jij
n

ji
i k xx ,

1,
αα∑

=
= Kαα′= . (2.14) 

 

Hence the Representer Theorem guarantees an explicit form for the solution to (2.12).  

Moreover, this representation indicates that instead of having to find an infinite number of 

coefficients as in (2.12), we actually only have to find n  coefficients, viz. 1 2, , , nα α αK .  

This phenomenon whereby the infinite-dimensional optimisation problem in (2.11) or 

(2.12) reduces to a finite-dimensional optimisation problem, is referred to in the literature 

as the kernel property.  The functions ( ) ( ),, ii kh xxx =  ni  , ,2 ,1= K , are also known as 

the representers of evaluation at ix  in kH . 

 

Finally therefore we see that the kernel-induced regularised optimisation problem in (2.12) 

may also be written in matrix form as 

 

                                                 ( ) ( ){ }KααKαyα
α

′+= λ,LR min . (2.15) 
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Note that if ( )Kαy,L  is a convex function of 1 2, , , nα α αK , (2.15) will be a convex 

optimisation problem which does not suffer from local minima, and can thus be solved 

easily.   

 

Through different specifications of the convex loss function and the regularisation term, 

different regularised statistical procedures can be obtained, including several of the modern 

methods which originated in machine learning contexts.  In this section we keep the 

regularisation term fixed, i.e. we specify the regulariser to be Kαα′ , and proceed by 

providing a few examples of the various statistical techniques obtained by different 

specifications of the loss function. 

 

We start with a brief description of loss functions that are frequently applied in 

classification setups.  Perhaps the most basic loss function used in classification is the 0-1 

loss, or the misclassification loss function, where a loss of 1 is incurred for each 

misclassification.  Since the signed function value ( )xf y  will be positive if f  correctly 

classifies the input pattern x , and negative otherwise, the misclassification loss function 

can also be given in terms of ( )xfy .  That is, we may write 

( )( ) ( )( ) ( )( )iiiiii fyfyLfyL xxx -, θ== , where θ  is the Heaviside function, i.e.  

                                                            ( )
0 x if  ,1
0  xif ,
0 x if ,0

2
1

>
=
<

=xθ .   

The misclassification loss function is shown in Figure 2.4. 

 

Loss functions used in classification contexts are often specified in terms of the quantity 

( )xf y , which is frequently referred to as a classification margin.  We have seen that the 

sign of the margin indicates whether an input pattern is misclassified or not, but the same 

information could be derived from the quantity ( ){ }xf signy , which attains a value of 1 if 

f  correctly classifies the input pattern x , and -1 otherwise.   
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Figure 2.4: The misclassification loss function 
 
 

What do we gain by using the real-valued function ( )xf  in the margin instead of 

( ){ }xf sign  in ( ){ }xf signy ?  In order to see why the margin in particular is an important 

quantity in classification, note first of all that the value of ( )xf  can be regarded as a 

measure of the confidence with which f  estimates (or predicts) the binary response: a 

large positive value for ( )xf  indicates f  predicting with virtual certainty that x  belongs 

to group 1, whereas a large negative value indicates a strong belief that x  belongs to group 

2.  Conversely, small values of ( )xf  indicate uncertain classification of x .  Now consider 

the margin and note that the relative sizes of positive values of ( )xf y  provide an 

indication of how well f  predicts the group membership of x .  A large positive margin 

indicates that a prediction is far from incorrect, and is thus preferred to a small positive 

value indicating a prediction which is closer to being a misclassification.  Thus in a sense a 

large positive margin indicates a smaller margin for error.  Similarly, the relative sizes of 

negative margin values can be used as a measure of how badly f  predicts the group 

membership of x  in cases where this is done incorrectly.  A small negative margin 

signifies that the input pattern x  is nearly classified correctly, and this is therefore 

preferred to a large negative margin.  In summary, large values for ( )xf y  are preferred.   
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A second loss function which can be used in classification setups is the so-called hard 

margin loss function, viz. ( ) ( )( ) 1- ( )i i i iL y f y fθ=x x .  This loss function is similar to 

misclassification loss: it assigns either a zero penalty, or a penalty of 1, but it is stricter in 

the sense that it distinguishes between correct classifications with a margin larger than 1, 

correct classifications with a margin smaller than 1, and misclassified cases.  The latter two 

categories both incur a loss of 1.  Therefore the misclassification and hard margin loss 

functions operate differently when ( ) [ ]0,1y f ∈x .  The reason for the threshold value of 1 

for the margin will become clear in Chapter 4.  Figure 2.5 below depicts a hard margin loss 

function. 
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Figure 2.5: The hard margin loss function 

 

A slight modification to the hard margin loss function yields the soft margin loss function 

(also called the hinge loss function).  The soft margin loss is defined as 

( )( ) 1- ( )i i i iL y f y f +=x x , where aa =+  if a  is positive, and zero otherwise.  Figure 

2.6 depicts the soft margin loss function. 
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Figure 2.6: The soft margin loss function 

 
 

As is the case with hard margin loss, the soft margin loss function also penalises correct 

classifications that are made with a margin less than 1.  The soft margin loss is however 

more forgiving when ( ) [ ]1,0∈xf y .  On the other hand, for ( ) 0<xf y , the soft margin 

loss function assigns a larger penalty than the hard margin loss: as ( )xf y  decreases, the 

penalty increases linearly. 

 

Two related loss functions in classification are the exponential and the deviance (or 

logistic) loss functions, given by ( ) ( )( ) - ( )i i i iL y f exp y f=x x and  

( ) ( )( ))(1)(, iiii fy-explogfyL xx +=  respectively.  Graphical representations of these loss 

functions are given in Figure 2.7. 
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Figure 2.7: The exponential and  deviance loss functions 

 
 

From Figure 2.7 we see that both the exponential and the deviance loss functions are 

continuous approximations to the soft margin loss: as ( )xf y  decreases, the penalties 

assigned by both of these loss functions increase.  The main difference between the 

exponential and deviance loss functions is the rate at which the penalties for 

( ) [ ]0,∈ ∞−xf y  increases.  In this sense the deviance loss function more closely 

resembles the soft margin loss: for increasingly large negative margins, the penalty 

increases in an approximately linear fashion.  Conversely, application of the exponential 

loss function implies that penalties will increase exponentially with an increase in negative 

margins, which leads to very heavy penalties for badly misclassified cases.  This is a good 

idea only if these cases are true representations of the underlying populations.  However, 

when working with noisy data, or with data in which input patterns might have been 

mislabelled, large negative margins are likely to correspond to noisy or mislabelled inputs.  

In such settings assigning too heavy penalties to badly misclassified cases may yield a 

classifier that inappropriately concentrates on correctly classifying noisy or mislabelled 

inputs.  Since the deviance loss function penalises cases with large negative margins less 
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harshly, it is more robust than the exponential loss function and therefore the preferred loss 

function in noisy setups. 

 

A reasonable question at this stage is how one should decide which loss function to use, 

and what the effect of different loss function specifications on the solution of the problem 

in (2.15) will be.  Below we summarise results in Zhu and Hastie (2005) which clarify the 

statistical properties of classifiers constructed to minimise the risk ( )[ ])(xx YfLEY  when 

( )( )L y f x  is specified as either the soft margin-, exponential- or deviance loss function.  

We will see that particular loss function specifications result in well known kernel 

classifiers.  For example, the solution to the minimisation problem in (2.15) using  

( )( ) 1- ( )i i i iL y f y f +=x x  is a support vector classifier (cf. Girosi et al., 1995; Wahba, 

1998; Evgeniou et al., 2000, and Hastie et al., 2001).  Although, as we will see in Chapter 

4, the support vector classifier was not originally derived as the solution to a regularised 

optimisation problem, viewing the support vector discriminant function as the solution to a 

regularisation problem using the loss function ( )( ) 1- ( )i i i iL y f y f +=x x  provides 

additional insight into its structure.  In order to appreciate this point, note that the function 

which minimises [ ]+− )(1 xx YfEY  is 

 

                                        [ ]{ }+−= )(1arg)(
)(

* xx x
x

YfE  minf Y
f

 

                                                 ( ) 2
11 −== xYP , (2.16) 

 

indicating that it is not unreasonable to conclude that a support vector discriminant function 

will be a good estimator of the posterior probability ( ) 2
11 −= xYP . 

 

Now compare the form of the solution in (2.16) with the function which minimises 

( )[ ])(xx Yf-expEY  and ( )( )[ ])(1 xx Yf-explogEY +  in the case of the exponential and the 

deviance loss functions respectively.  In both cases we obtain 
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                                        ( )[ ]{ })(arg)(
)(

* xx x
x

fY-expE  minf Y
f

=  

                                                 ( )( )[ ]{ })(1arg
)(

xx
x

fY-explogE  min Y
f

+=  

                                                 ( ) ( ){ }xx 112
1 −=== YPYP  log . (2.17) 

 

Estimating )(* xf  in (2.17) by )(ˆ * xf , we may obtain a classifier { })(ˆ * xfsign .  Based on 

the deviance loss function, this classifier is known as a kernel logistic regression (KLR) 

function (cf. Zhu and Hastie, 2005). 

 

The form of the risk minimising functions in (2.16) and (2.17) confirms the soft margin-, 

exponential- and deviance loss functions to be appropriate in classification setups.  

Knowing what functions are being estimated by solving the regularisation problem in 

(2.15) may also aid in a decision regarding which loss function to use. 

 

Also from Expression (2.17), an important connection between the exponential and 

deviance loss functions becomes apparent: the corresponding minimising functions of 

( )[ ])(xx YfLEY  have the same form.  In addition, note that (2.17) may be rewritten so that 

we obtain 

 

                                     ( )
( )

( ) ( ) ( )xxx

x
x

*ˆ2*ˆ*ˆ

*ˆ

1

11
fff

f

eee

eYP
−− +

=
+

== , (2.18) 

 

which points to a definite advantage of kernel logistic discriminant functions compared to 

support vector classifiers.  In the former case, probabilities of group membership can easily 

be estimated.  That is, ( )
( )x

x *ˆ21

11ˆ
KLRfe

YP
−+

== , where *ˆ
KLRf  denotes the solution to 

(2.15) based on the deviance loss.  A similar result can however not be obtained for a 

support vector classifier.  Furthermore, kernel logistic regression generalises naturally to 
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kernel multi-logit regression, offering a simple way of handling more than two groups in 

classification.  Here the estimators of group probabilities will be 

 

                                             ( ) ( ) ( )∑
=

==
M

m

ff mj eejYP
1

ˆˆ **
ˆ xxx , (2.19) 

 

where M  denotes the number of groups, and 0ˆ
1

*∑
=

=
M

m
mf . 

 

Although there are ways to extend binary SVMs to classification for multiple groups, these 

procedures are intuitively less appealing compared to the natural way in which kernel 

logistic regression handles classification into more than two groups. 

 

Since support vector and kernel logistic regression discriminant functions are solutions to 

the regularised optimisation problem in (2.15), we know from Theorem 2.6 that both may 

be written in the form ( ) ( )
1

,
n

i i
i

f kα
=

= ∑x x x .  Importantly, in the case of a support vector 

discriminant function, the truncation property of the soft margin loss typically causes a 

sizeable fraction of 1 2, , , nα α αK  to be zero.  Therefore a support vector classifier will 

only depend on the training patterns with non-zero coefficient values, called support 

vectors.  Replacing the soft margin loss with the deviance loss function unfortunately 

compromises the aforementioned support vector property.  Hence in kernel logistic 

regression all of 1 2, , , nα α αK  will typically be non-zero values.  In this sense computation 

of *ˆ
KLRf  will in general be more expensive than computation of *ˆ

SVMf .  In Zhu and Hastie 

(2005) the authors propose a classification procedure (called an import vector machine) 

which can be obtained by substituting the loss function 

( ) ( )( ) )()(1)(, iiiii fy-fexplogfyL xxx −+=  in problem (2.15).  This particular form of 

the loss function is meant to induce a classifier exhibiting the positive attributes of both a 

support vector and kernel logistic regression classifier, and it succeeds: an import vector 

machine typically has few non-zero 1 2, , , nα α αK  coefficients, allows simple calculation 
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of posterior group membership probabilities, and can easily be extended to multi-group 

classification contexts. 

 

We now briefly turn attention to expression (2.6) in a regression setup, and illustrate how 

the ridge regression estimator may be obtained as the solution to the regularised 

optimisation problem in (2.15).  We have seen in Example 2.3 that the ridge regression 

estimator is the minimiser of a regularised risk functional, viz. ( ){ }ββ
β

R  min argˆ = , where  

 

                                                ( ) 21 ,nR λ= − +β y Xβ β β . (2.20) 

 

Minimising (2.20) is straightforward: differentiating ( )R β  with respect to β  and equating 

to zero yields the normal equations pλ ′ ′+ = X X I β X y  with solution 

-1
pλ ′ ′= + β X X I X y% .  Alternatively, we can rewrite the normal equations in the form 

αXβ ′= , where ( )- λ=α y Xβ .  Writing αKXβ ′= , where XXK ′= , we see that ( )R β  

in (2.20) becomes (2.15).  Note that XXK ′=  essentially implies that we are using a linear 

kernel: the thij  element of the matrix XX ′  is simply the inner product between the thi  and 

thj  rows of X .  Note also that positive semi-definiteness of the kernel follows 

immediately from the fact that  

 

                        =′′ vXXv
1 1

,
n n

i i j j
i j

v v
= =
∑ ∑x x

2
2

1
0

n

i i
i

v
=

′= = ≥∑ x X v . (2.21) 

 

We also see that 

                                   ( ) xXαβxx  f ′=,= ~ =[ ]
1

2
1 2

,
,

,

n

n

  α α α

 
 
 
 
 
  

x x
x x

x x

K
M

 (2.22) 
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which is in line with (2.13).  Finally note that implementing the solution 
1

n
i i

i
α

=
′= = ∑β X α x%  

requires determination of n  quantities, 1 2, , , nα α αK , rather than the p  quantities 

1 2, , , pβ β βK .  This is a definite advantage in cases where p becomes much larger than n , 

as is typically the case if we work in a high-dimensional feature space.  We refer to 

1 2, , , nα α αK  as the components of the dual solution, while 1 2, , , pβ β βK  is called the 

primal solution. 

 

We therefore see that the ridge regression optimisation problem presented in Example 2.3 

can also be cast within the more general framework in (2.15).  This also presents the 

possibility of formulating a generalised version of the ridge problem by replacing the linear 

kernel with an appropriate alternative. 

 

Summarising, we have seen that kernel classifiers are solutions to regularised optimisation 

problems.  This explains the ability of kernel classifiers to generalise well, despite the high-

dimensional spaces in which they are defined.  Focusing on support vector- and kernel 

logistic discriminant functions, we have also illustrated that different classes of kernel 

classifiers may be obtained through appropriate specification of the loss function.  

Although kernel classifiers were not originally motivated through a regularised risk 

minimisation approach, the underlying theory provides insight regarding the function that 

each kernel classifier class aims to estimate, and facilitates comparisons across kernel 

techniques. 

 

Having introduced the most important concepts required in training kernel classifiers, we 

now turn our attention to the important problem of variable selection in binary 

classification applications. 
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2.3 VARIABLE SELECTION IN BINARY CLASSIFICATION: 

          IMPORTANT ASPECTS 
 
The remainder of this chapter is devoted to variable selection in binary classification 

contexts.  We therefore briefly reconsider the two-group classification problem and 

notation introduced in Chapter 1, where a data set T  (consisting of n  measurements on p  

input variables) is used to estimate a classification function which can subsequently be 

used to predict the group membership of new data cases.  In many such scenarios little or 

no prior knowledge is available for a decision regarding how many and which input 

variables to observe and include in T .  A consequence of this is that the original set of 

input variables will usually include some variables which do not contribute any useful 

information.  Before estimating the classifier, a data-dependent decision regarding possible 

reduction in the initial set of input variables is therefore often required.  Potential 

advantages of such a reduction have already been discussed in Section 2.1: reducing a 

(large) set of input variables to a smaller set which contains only the important variables 

leads to more accurate classifiers, while simultaneously identifying the variables which 

separate the two groups.  Although these two advantages often go hand in hand, different 

approaches to variable selection tend to focus more sharply on one of the two.  In this 

regard, different strategies and criteria for variable selection may be described as allocatory 

(emphasising more accurate classification) or separatory (emphasising identification of the 

variables separating the groups).  This aspect is discussed in more detail in Section 2.3.1. 

 

It should also be noted that one can distinguish two levels of decision making in variable 

selection.  Firstly, a decision regarding the number of variables to retain has to be made, 

and secondly, we have to decide which variables these should be.  More detail in this 

regard will be given in Chapter 6, where we specifically address the problem of specifying 

a value for the number of input variables to retain ( )m .  Before proceeding to a detailed 

discussion of other important aspects of variable selection for classification, we provide a 

brief historical perspective on the topic.  Variable selection has for many years received 

considerable attention in the statistics literature.  Traditionally selection techniques were 

designed in the context of small to medium sized data sets (i.e. data sets usually having 
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fewer than 1000 observations on usually no more than 100 input variables).  These 

techniques often relied on assumptions regarding the underlying distribution generating the 

data.  For example, many classical selection criteria are based on the F-test for no 

additional information.  For a comprehensive overview of classical variable selection 

procedures, the reader is referred to Louw (1997) and references cited there, including 

McKay and Campbell (1982 a and b), and McLachlan (1992). 

 

Applications such as image and text analysis have traditionally been areas of expertise in 

mainly the computer and information sciences, and typically involve very large data sets.  

Large input dimensions create a strong need for variable selection.  Kernel methods belong 

to the class of procedures known to perform well in applications characterised by large 

numbers of input variables.  But even these methods benefit from an initial variable 

selection step, as is evidenced by the growing literature on variable selection for kernel 

methods, and also by an investigation regarding the importance of variable selection for 

kernel methods which is reported in Section 2.4.1. 

 

It seems as if during the last decade much of the research in kernel variable selection has 

taken place in the computer science and machine learning fields, and considerable scope 

still exists for contributions from the statistics and data mining disciplines.  In this regard, it 

should however be borne in mind that modern variable selection applications pose 

challenges not encountered in classical variable selection.  Therefore it comes as no 

surprise that approaches to variable selection for kernel methods are quite different to those 

in more traditional selection.  We will elaborate more on this point in Section 2.4.   

 

2.3.1  THE RELEVANCE OF VARIABLES 
 
In order to further discuss variable selection in classification contexts, we first require 

clarity regarding the concept of variable relevance.  Relatively few papers in the literature 

contain formal definitions of the relevance of variables.  In this section we present some 

informal definitions regarding degrees and types of variable relevance.  Several subtleties 

come into play when one considers the relevance of variables.  We indicate important 
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points to bear in mind, and provide examples illustrating some intricacies involved in 

determining the relevance of variables. 

 

In our opinion, a limitation of many papers on variable selection is their failure to 

distinguish between the different objectives commonly pursued in classification contexts.  

In some cases, the most important objective may be correct classification of new cases, i.e. 

the emphasis is placed on the predictive (allocatory) aspects of a classifier.  In other cases, 

the greater interest may lie in a clear understanding of the nature of separation between 

groups.  In such classifiers, the descriptive (separatory) aspects of the resulting decision 

functions are more important.  This distinction is made by McLachlan (1992).  Variable 

selection procedures should be clear regarding the intended purpose of selection: is the 

selection process derived to focus more sharply on improving the allocatory or separatory 

properties of a classifier?  Most variable selection proposals in the literature assume that 

the allocatory aspects of the classifier are more important.  In this way selection procedures 

often neglect the importance of classifiers explaining the separation among groups.  

McKay and Campbell (1982 a and b) and Louw (1997) share this sentiment and categorise 

variable selection criteria in discriminant analysis according to whether they primarily 

incorporate the allocatory or separatory aspect of a discriminant function.  There is 

however still much scope for variable selection procedures that concentrate more on 

enhancing the separatory properties of a classifier.  

 

A similar distinction is possible regarding the relevance of variables:  a variable may be 

helpful as far as the correct allocation of a new case to one of the groups is concerned, and 

useless regarding concise description of the separation between groups, or vice versa.  In 

other cases, a variable may be relevant in both an allocatory and separatory sense.  

Therefore allocatory relevance rates variables according to the extent to which their 

inclusion yields smaller ( )fErr , whereas the importance of variables in terms of how well 

they explain differences between groups may be referred to as separatory relevance. 

 

Regarding variable relevance in both an allocatory and separatory sense, a further 

distinction is possible.  A variable may either be considered strongly or weakly relevant in 
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allocating new cases, or in describing group separation.  John et al. (1994) provide 

informal definitions of strong and weak relevance in an allocatory sense.  Note however 

that similar definitions can also be given to further distinguish among variables which are 

relevant with regard to the separation between groups.  See also Blum and Langley (1997). 

 

DEFINITION 2.4 STRONG RELEVANCE 

 

Let { }p,,2,1 K=J  index the set of available variables pXXX ,,, 21 K .  Also, let G  

represent the superset containing all possible subsets of J , and use [ ]ΓErr  to generically 

denote the generalistion error of a model based on the variables with indices in Γ .  Now 

consider an arbitrary variable jX , J∈j , in this set, and let ( )jG +  and ( )jG −  (both G⊆ ) 

represent all possible subsets of J , with and without jX  respectively, i.e. 

( ) ( ) { }jGG jj ∪= −+ .  Variable jX  is said to be strongly relevant if ( )[ ]jGErr +  is always 

smaller than ( )[ ]jGErr − . 

 
 

From Definition 2.4 it is clear that a strongly relevant variable can never be removed 

without negatively affecting generalisation performance. 

 

DEFINITION 2.5 WEAK RELEVANCE 

 

A variable jX  is considered weakly relevant if it is not strongly relevant, and if there 

exists a subset of variables not containing jX , i.e. ( )jG −
~ , such that ( )[ ]jGErr +

~  is smaller 

than ( )[ ]jGErr −
~ . 

 
 
Therefore inclusion of a weakly relevant variable can in some cases yield higher prediction 

accuracy. 
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The main point to be made in this section concerns the importance of not considering 

variables individually when determining their relevance.  In variable selection one is 

typically interested in obtaining the subset of variables which, when used in combination 

with one another, will be the most relevant.  In the next example we will show that the 

relevance of individual variables can be much different when their use is considered in 

combination with other sets of variables.  In particular, we will indicate that a variable 

which by itself does not contribute to the separation between two groups may indeed 

provide helpful information regarding the classification of future cases. 

 

EXAMPLE 2.5 

 

Reconsider the binary classification problem as stated in Chapter 1, and let the correlation 

between observations on the pair of variables 1X  and 2X  be denoted by ρ .  Assume that 

ρ  has a fairly large positive value.  Furthermore, let variable 1X  provide relatively clear 

separation between the two groups in terms of location, but with measurements on 2X  for 

the two groups following roughly the same distribution.  Specifically, conditioning on 

group membership, let the distribution of the data cases be 

 

        1

2

5 1
1 ~ ;

5 1
X

Y N
X

ρ
ρ

      
= +       

      
 and 1

2

12.5 1
1 ~ ;

5 1
X

Y N
X

ρ
ρ

      
= −       

      
. (2.23) 

 

We present the marginal distributions of 1X  and 2X  in Figures 2.8 and 2.9 respectively.   

 

It would seem from Figure 2.9 that an observed value of 2X  cannot in any way assist us in 

allocating a data case to one of the two groups.  However, consider a new case 

( )pxxx ,,, 21 K=x  with the measurement 1x  falling in the region of overlap between the 

two groups (in Figure 2.10).  Clearly, on its own 1x  does not seem to be of much help in 

classifying the new observation, since 1x  can either be considered an exceptionally large 

value from group 1, or an exceptionally small value from group 2.   
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However, consider the observed 2X -value for a new case.  From the assumed correlation 

structure between 1X  and 2X , an above (or below) average value for 2X  may 

 

 

 

 

 

 

 

 

 

 
 

                                                                        1X                                                                        
 

Figure 2.8:  1X  provides relatively clear separation between the two groups 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

                                                                         2X  
 

Figure 2.9:  2X  provides no separation between the two groups 
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                                                                       1x                                                                       

 

Figure 2.10:  Suppose 1x  in x  falls in the region of overlap – therefore on its own 1x  is 

not useful in the classification of x  
 

 

 

  

 

 

 

 

 

 

 
 

 

                                                               2x  

 
Figure 2.11:  Here 2x  lies below the average of the 2x  values and is indicative of x  

belonging to group 2 
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                                                                       x  

 
Figure 2.12:  The new case is allocated to group 2 

 
 

be considered indicative of the 1x  value lying above (or below) the average of 1X .  Hence 

if 2x  is below the average of the 2x  values, the observed 1x  value is most likely to lie 

below the average of the 1x  values as well, implying that the new case should be allocated 

to group 2 (see Figures 2.11 and 2.12).   

 

A similar argument is valid for the case where 2x  is above the average of the 2x  values.  

In this way, knowledge of the 2x  value assists in the allocation of the new case, i.e. 

including 2X  in the classifier most probably will result in a smaller ( )fErr .  Note 

however in this example that if there were no correlation between 1X  and 2X , inclusion of 

2X  would not improve ( )fErr .  In this example variable 2X  may therefore be considered 

weakly relevant.  

 

 

From Example 2.5 we see that it is important to determine the relevance of a variable when 

it is used in combination with (ideally) the rest of the variables which will be contained in 
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the model: variables that are completely irrelevant on their own can often, when used in 

combination with another (set of) variable(s), provide important auxiliary information and 

thus be considered relevant.  If the relevance of variable 2X  in Example 2.5 were 

determined by only considering the contribution of 2X  when it is used on its own, its 

(weak) relevance (when used in combination with variable 1X ) would not have been 

revealed.  

 

We now provide two further examples from Guyon and Ellisseeff (2003) which illustrate 

that determining the relevance of input variables is not a trivial matter. 

 

EXAMPLE 2.6 

 

Let 1X  and 2X  be two independent and identically distributed variables.  In particular, let 
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where [ ]'
21' XX=X  and 








=

10
01

Σ . 

 

Since 1X  and 2X  provide exactly the same separation between the two groups, it might at 

first seem unnecessary to make use of both these variables in order to discriminate between 

the two groups.   

 

Consider however the orthogonal transformation AXU =  where  
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Hence, conditioning on group membership, the distribution of the transformed data cases 

will be  
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2~1 NY , (2.26) 

 

with [ ]'21' UU=U .  From (2.26) we see that, although the separation provided by 

21U , and the separation provided by 1X  (or 2X ) are both equal to 2, the standard 

deviation of 21U  is 21 , as opposed to the unit standard deviation of 1X . 

 

In this case much is gained by using 1U (and therefore including also variable 2X ) instead 

of only making use of variable 1X  (or vice versa).  The separation between two groups can 

be improved by adding variables that are identically and independently distributed. 

  

 

 

The following example illustrates that a significant correlation between input variables 

does also not necessarily indicate one of the highly correlated input variables to be 

irrelevant. 

 

EXAMPLE 2.7 

 

Consider variables 1X  and 2X , and suppose their marginal distributions, conditioning on 

group membership, are once again 
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but now 







=

1
1
ρ

ρ
Σ .  In this case the transformation ( ) 221 XXU +=  implies  
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                        ( )ρ++= 1;2~1 NYU  and ( )ρ+−−= 1;2~1 NYU . (2.28) 

 

Hence we see that 1X , 2X  and 2U  provide a separation in location of 2.  The standard 

deviation of the distribution of 2U  is however ( ) 21 ρ+ , a value that will be smaller 

than the standard deviation of the distributions of 1X  and 2X  if 11 <≤− ρ . 

  

 

 

2.3.2  SELECTION STRATEGIES AND CRITERIA 
 
Given that we may assume a fixed value for m , the number of variables to be selected, 

different strategies exist for identifying which m  out of p  variables this should be.  We 

proceed with a description of these strategies, once again placing emphasis on selection in 

binary classification.  The most natural strategy for variable selection is an all possible 

subsets approach.  This approach is based on an appropriate selection criterion and entails 

calculating the criterion for all ( )p
m  possible subsets and selecting the subset corresponding 

to an optimum value of the criterion.  If the criterion emphasises separation of the two 

groups, the optimum value will typically be a maximum, while in the case of an allocatory 

criterion optimisation usually corresponds to finding a minimum value.  In application 

domains for kernel methods, note however that m  may still be a very large number, 

rendering such an all possible subsets approach impossible from a computational point of 

view.  Alternative classical variable selection strategies (viz. backward elimination, forward 

selection, and stepwise algorithms) restrict the optimisation process to a much smaller 

number of variable subsets.  These selection strategies are iterative: at each step a variable 

is added to and/or eliminated from a current set of variables, until a sequentially 

constructed final subset of size m  is reached.  Whether a variable is added to and/or 

removed from a current set of variables is the aspect which differentiates the 

aforementioned selection strategies.  Before we discuss implementation of these selection 

strategies, the following additional notation is first required.   
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Let the set of indices corresponding to the entire set of initially available input variables be 

denoted by { }p,,2,1 K=J , and the corresponding full set of input variables by V .  

Furthermore, let subsets of J  be denoted generically by J  (and input variable subsets by 

V ), and the complement of J  in J  be J , i.e. JJ -J= .  Also, let the number of 

variables in a subset J  be equal to ( ) jJcard = .  Recall that in Chapter 1 we defined X  as 

the data matrix consisting of n  measurements on all variables in V .  Using the indices 

contained in a subset J  we now construct a data matrix JX
(

 with rows equal to ′
ix( , 

ni ,,2,1= K , where ix(  is a j-component ( )pj ≤0 <  column vector containing the values 

of input variables hX , Jh ∈ , for case i  in the training data. 

 

Since algorithms for backward elimination, forward selection and stepwise procedures 

usually involve several steps, note that we will write kJ  to indicate a set of input variable 

indices obtained after the thk  step of the algorithm.  Moreover, we will use the notation 

( )hkJ -  to indicate a particular subset of kJ , viz. the set kJ  without variable index h .  That 

is, ( ) khk JJ ⊂−  where kJh∈ .  We will also need notation for a specific superset of kJ , 

viz. the set kJ  after adding index h .  Let this superset be denoted by ( )hkJ + , i.e. 

( ) khk JJ ⊃+  where kJh ∉ .  We will use similar notation to refer to the corresponding 

subsets of input variables, viz. ( ) khk VV ⊃± , where kV  is the subset of input variables 

included during the thk  step of the selection algorithm.  Finally, we require notation for the 

selection criterion calculated by using only the training sample observations in JX
(

.  Hence 

during the thk  step in the selection algorithm, let kc  denote the value of the selection 

criterion based on kJX
(

.  Similarly ( )hkc -  and ( )hkc +  represent the criteria using only the 

observations in ( )hkJ -X
(

 and ( )hkJ +
X
(

 respectively.   

 

Having introduced the necessary variable subset notation, we now proceed with a 

discussion of a backward elimination strategy.  Backward elimination starts with the full 
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set of available variables, therefore J=0J .  Each step in backward selection requires the 

elimination of a variable, and subsequent updating of the current set of variables.  During 

for example the first step in the selection algorithm, one needs to determinine which of the 

variables in 0V  to eliminate.  For this purpose the effect of omitting each of the variables in 

0V  one at a time, is required, i.e. the estimated generalisation performances of the variable 

subsets ( ) ( ) ( )pVVV -02-01-0 ,,, K  have to be compared.  Hence step one in backward selection 

involves calculation of the values ( ) ( ) ( )pccc -02-01-0 ,,, L  of the selection criterion, followed 

by identification of the optimum criterion value.  Suppose the optimum criterion value is 

( )hc ˆ0 , then hX ˆ  is the variable indicated as the least relevant variable in V  and we proceed 

by eliminating hX ˆ  from 0V .  The current current set of variable indices is then updated, 

yielding ( ) { }hJJJ h
ˆ-0ˆ01 == −  and variable subsets ( ){ } JhV h 1-1 , ∈  to consider during 

the next step in the algorithm.  The above process continues until only m variables remain, 

therefore terminating after step m-pk = , and sequentially generating nested subsets 

mpVVVV -210 ⊃⊃⊃⊃ K .  With p typically very large, eliminating variables one at a time 

is still a costly procedure.  Hence it may often be necessary to remove groups of variables 

at each step, or at least during the initial stages of the process.  Letting r denote the number 

of repetitions employed in the selection, note therefore that in general r ≤ mp − , with 

equality holding if each step amounts to elimination of only a single variable.   

 

Forward selection proceeds along the same lines as backward elimination, except that at 

each step, variables may potentially be added instead of eliminated.  Also in the case of 

forward selection, more than one variable may be added at a time.  After r  steps, the 

nested subsets rVVVV ⊂⊂⊂⊂ K210  are returned.  Of course, r  will depend on m, p and 

the number of variables simultaneously entering the model during each step of the 

algorithm. 

 

Guyon and Elisseeff (2003) indicate the important aspects to consider in deciding whether 

to implement a backward elimination or a forward selection procedure.  From their 
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discussion, backward elimination seems to be the more appropriate choice in most cases.  

A disadvantage of backward elimination is that in cases of a small number of variables to 

be retained (small m), selection may take significantly longer than would be the case with 

forward selection.  Backward elimination strategies do however beat forward selection in 

more than one respect.  Firstly, incorrect inclusions in forward selection often cause the 

importance of other variables not to be detected.  Thus forward selection may yield a 

completely suboptimal subset of variables as a consequence of misleading inclusion of 

irrelevant variables early on.  Secondly, in forward selection strategies, the full set of 

available variables is never assessed.  For a small value of m  relative to the value of p , 

the forward selection process may in fact terminate far short from considering the full set 

of available variables.  In backward elimination the full set of potential variables is 

considered at the first step. 

 

Stepwise selection may be viewed as a strategy that tries to prevent wrong inclusions from 

blinding the procedure to correct inclusions later on.  It may essentially be described as a 

combination of forward selection and backward elimination: at step k , after an input 

variable (say
khX ˆ ) has been added to kV , possible elimination of each of the input variables 

in kV  is considered.  In regression contexts, forward stagewise- and forward stepwise- 

selection are forward selection strategies based on the correlation between an input variable 

and the response, as selection criterion.  A new development, which may be considered a 

more cautious (less greedy) version of forward stepwise regression, is the least angle 

regression and shrinkage (LARS) algorithm (cf. Efron et al., 2004).  Application of the 

LARS proposal has since been extended to classification setups (specifically to selection in 

support vector classifiers using a linear kernel function, cf. Keerthi, 2005) as well.  A brief 

discussion of the LARS algorithm and related selection procedures follows after the next 

paragraph regarding (classical) selection criteria. 

 

Having discussed strategies which avoid consideration of every possible variable subset, 

the remaining difficult aspect is a decision regarding which criterion to use in rating the 

various subsets.  In the context of ordinary discriminant analysis and linear regression, 
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several approaches with regards to selection criteria and their application in the various 

selection strategies above, may be found in the literature.  Important references in this 

regard include McKay and Campbell (1982 a and b), McLachlan (1992), Louw (1997) and 

George (2000).  We have earlier on referred to the useful qualification regarding selection 

criteria made by these authors, viz. that selection criteria can be broadly categorised 

according to whether they are primarily of a separatory or allocatory nature.  Examples of 

separatory criteria in classical discriminant analysis include the squared multiple 

correlation coefficient, Akaike’s Information Criterion, and Mallows’ pC  criterion.  Also 

the F-statistic was derived to test for so-called no additional information provided by a 

variable.  In classification problems where the correct allocation of future cases is the 

primary concern, selection criteria are typically simply estimators of the generalisation 

error rate.   

 

As an alternative to the above approach to variable selection (involving specification of a 

selection- criterion and strategy), several more novel proposals in the literature implicitly 

perform variable selection as part of the learning algorithm.  Examples are the non-negative 

garotte (Breiman, 1995), the lasso (Tibshirani, 1996) and the elastic net (Zou and Hastie, 

2005) – all derived in a linear regression context, but also been shown to work well in 

classification problem domains: Ghosh and Chinnaiyan (2004) apply the lasso in cancer 

classification problems, and Zou and Hastie (2005) state that ‘the elastic net penalty can be 

used in classification problems’.  With a view to our focus on binary classification, we start 

by briefly considering the lasso in regression contexts, and then switch over to its 

equivalent form for generalised linear models (as proposed by Park and Hastie, 2006).   

 

The non-negative garotte, lasso and elastic net algorithms in regression are examples of 

regularised (or shrinkage) estimation, and are thus connected to ridge regression (cf. 

Friedman et al., 2007) for a summary of these techniques.  The regularised optimisation 

problem in the lasso, for example, is: 

 

                                           ( )








+−= ∑
=

p

j
jnRmin

1

21 βλXβyβ
β

. (2.29) 
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By substituting the regulariser ∑
=

p

j
j

1
β  for ∑

=

p

j
j

1

2β  in the case of ridge regression, some of the 

regression coefficients may be shrunk to zero.  Therefore the lasso alters ridge regression to 

implement variable selection.  For small enough values of λ , the regularisation constraint 

will have no effect, and the estimated regression coefficients will be the usual least squares 

estimates.  As with ridge regression, large values of λ  induce bias in the estimation, and an 

estimate with smaller variance.  Appropriate specification of λ  often ensures a trade-off 

between the larger bias and smaller variances that result in a smaller generalisation error.  

In variable selection, smaller subsets of input variables may also yield larger bias, but 

fewer coefficients to estimate and therefore hopefully also a reduction in variance.  

Accurate estimation of the true model dimension can be thought of as being equivalent to 

correct specification of λ .  Cross validation is often considered a good tool for specifying 

λ . 

 

The optimisation problem in (2.29) is a quadratic optimisation problem that can, for any 

positive value of λ , be solved by standard numerical procedures.  It is however shown in 

Efron et al. (2004) that lasso estimates for all values of λ  can simultaneously be obtained 

via the LARS algorithm.  Osborne et al. (2000) have also devised an algorithm for 

efficiently solving (2.29). 

 

Despite first-class performances in many scenarios, Zhu and Hastie (2005) list three 

situations in which the lasso does not perform as well as one would have hoped.  The first 

of these occurs in the case of wide data sets characterised by (many) more variables than 

observations.  In this case, the lasso can select a maximum of only n  input variables.  Also, 

the lasso is undefined for λ  larger than a certain value.  The second unfavourable scenario 

involves groups of input variables for which correlations between pairs of variables are 

high.  In such situations, the lasso often selects only a single variable from the highly 

correlated group, causing the importance of the variables with which it is correlated to be 

masked.  Thirdly, in the case of np <  and highly correlated input variables, it was shown 

by Tibshirani (1996) that ridge regression outperforms the lasso. 
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The elastic net was introduced with the aim of finding a regularised estimation technique 

that ‘works as well as the lasso whenever the lasso does the best, and can fix the 

problems…’ given above (Zou and Hastie, 2005, p. 302).   

 

The regularised optimisation problem for the elastic net makes use of both the lasso and 

ridge regression regularisers: 

 

                                     ( )
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In the same way that LARS efficiently finds β  for all possible λ  values, Zou and Hastie 

(2005) developed an efficient algorithm (LARS-EN) for finding β  for all possible non-

negative values of 1λ  and 2λ .  In fact, the computational cost of determining β  for all 

possible ( )21;λλ  combinations, is shown to be the same as for a single ordinary least 

squares fit.  Since LARS and LARS-EN can be used to efficiently find the lasso and elastic 

net estimates for a sequence of λ , or 1λ  and 2λ  parameter values, they are examples of 

so-called regularisation path-following algorithms.  Once again a cross-validation scheme 

over a ( )21;λλ -grid is proposed for determining 1λ  and 2λ .   

 

In Park and Hastie (2006), LARS and LARS-EN are extended to regularisation path-

following algorithms for generalised linear models.  Recall that in generalised linear 

models, the objective function to be maximised is ( ) ( )βyβ ,l=R , where l  is the 

likelihood function with respect to the given data set.  Through the introduction of a 

complexity penalisation term of the form ∑
=

p

j
j

1
β , the usual estimation process is modified 

to a variable selection technique.  The resulting regularised optimisation problem is 
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Park and Hastie (2006) devise an algorithm for efficiently solving (2.31) for all positive 

values of the λ  regularisation parameter, and demonstrate its use in the application of both 

penalised logistic regression (Lockhorst, 1999) and the Cox proportional hazards model 

(Cox, 1972). 

 

There are statistical techniques (e.g. classification and regression trees (CART), 

multivariate adaptive regression splines (MARS) and random forests (RFs)) that are often 

considered to more naturally lend themselves to variable selection.  References relevant to 

tree methodology are Breiman et al. (1984), De’ath and Fabricius (2000), and Hastie et al. 

(2001), and MARS was popularised by Friedman (cf. Friedman, 1991).  Since some of our 

further investigations make use of RFs, we will conclude this section on selection strategies 

and criteria by briefly highlighting some important aspects with regards to the ranking of 

variables using output provided by most RF software. 

 

Many positive characteristics can be attributed to classification and regression trees.  As 

mentioned above, the relatively simple yet effective way in which variables can be ranked, 

is certainly one of the much acclaimed advantages in using CART.  Unfortunately 

however, it is well known that trees are very sensitive to randomness in the data.  Small 

perturbations in the data typically yield considerable changes in tree structures.  Different 

data sets generated from the same distribution may result in completely different rankings 

of the input variables.  Note that the same can be said of most other classical subset 

selection methods.  Regularisation (shrinkage) approaches to selection are however much 

more stable.  See Breiman (1996) for an extensive comparative study regarding instabilities 

and stabilisation of input variable selection in linear regression. 

 

Random forests (RFs) for classification and regression is a class of methods which was 

designed partly in answer to the above shortcoming of CART.  Again in our discussion we 

will assume the basic theory underlying RFs to be known (cf. for example Bauer and 

Kohavi, 1999; Breiman, 1996 and 2001; Dietterich, 1998; and Ho, 1998), and we therefore 

mainly focus on important aspects regarding the calculation of relative variable importance 

measures in RFs.  Hence briefly, random forests are ensembles of single classification or 



CHAPTER 2 
VARIABLE SELECTION FOR KERNEL METHODS 

64 

regression trees, each constructed after some form of randomness has been added to the 

originally available training data set.  The final set of predictions is obtained as the majority 

vote over the forest of trees (in classification), or the average prediction across trees (in 

regression).   

 

DEFINITION 2.6:  A RANDOM FOREST 

 
A random forest is a classifier or regression function consisting of a collection of tree 

classifiers or tree regression functions 

 

                                                    ( ){ }, , 1,2, ,= KkT k Kx θ  (2.32) 

 

where x  is an input vector and kθ  is a random vector, generated independently from 

121 ,,, θθθ K−− kk , and the { }Kkk ,,2,1, K=θ  index the individual trees. 

 

 

Breiman (2001) reports significant improvements in accuracy for RFs over CART.  

Moreover, it has already been mentioned that variable rankings may change considerably 

after even only slight perturbation of the original data set.  RFs purposely inject 

randomness and after averaging results across individual trees, obtain more reliable 

variable importance values than those reported per individual tree.   

 

There are numerous ways in which a random element may be incorporated into the growth 

of each individual tree in an RF.  We mention only a few examples.  The reader is referred 

to Breiman (1996 and 2001), Amit and Geman (1997), Dietterich (1998) and Ho (1998) for 

more details and remarks on how the different variations compare.  Firstly, one may 

randomly select a set of training sample cases which is then used to grow each individual 

tree.  A second proposal is to randomly select a split among a number of best splits.  

Thirdly, one could add a random element to the response values of the original training set.  

A fourth option is to use a random selection of the total number of available features to 

grow each tree.   
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In order to facilitate a discussion regarding variable importance in classification and 

regression random forests, the following background and notation is required.  Let 

nfff ,,, 21 K  be the set of response values to be estimated by a regression tree ensemble, 

and likewise, let 1 2, , ,K ny y y  denote the binary outcomes to be estimated by a 

classification random forest.  Now consider a classification or regression RF which 

incorporates a random element on two levels:  firstly, a bootstrap sample 

( ){ }niyii ,,2,1,, K== xtT  is selected randomly and used to grow tree tT , 1, 2, ,t K= K , 

where K  denotes the total number of trees in the forest; and secondly, at each node in an 

individual tree, a random selection of m  out of the total number of p  input variables 

( )pm < , is made.  Let RV  denote the set of randomly selected variables at a particular 

node, then at that node, a decision regarding which variable to split on is restricted to the 

m  randomly selected variables in RV .  Note that RV  at distinct nodes in the tree will 

typically differ. 

 

Each of the K  trees is trained on a different bootstrap sample of cases from the original 

training data set and yield estimated values for nfff ,,, 21 K .  Thus the process of drawing 

bootstrap samples and training individual trees on them, yields tntt fff ˆ,,ˆ,ˆ
21 K , 

1, 2, ,t K= K .  Now let iT  indicate the set of trees that was trained on a bootstrap sample 

which did not contain training data case i .  Then the random forest estimate of if  is 

( )i
Tt

tii Tcardff
i

∑
∈

= ˆ(
, ni ,,2,1 K= , where ( )iTcard  is the number of trees in iT .   

 

The performance of random forests is typically evaluated via an out-of-bag error estimate, 

viz.  

 

                                                   ( )( ) ( )∑ ∑
= ∈

−
n

i Tt
iti

t i
ff

Tcardn 1

2ˆ1 (
. (2.33) 
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It can be shown that the random forest error rate depends on the correlation between any 

two trees, and the strength of each individual tree in the forest (cf. Breiman, 2001).  Low 

correlations and individual trees with low error rate yield random forests with low error 

rates.  Specifying a lower value for m  reduces the correlation between pairs of trees, but 

increases the error rate of individual trees.  We of course need to specify a value for m  

which would lead to a favourable trade-off.  Luckily, the range of acceptable values for m  

has been found to be quite wide.  In the literature  pm ≅  yields good results in most 

cases. 

 

Quantification of the relative importance of input variables typically forms part of random 

forest software.  We used the following approach, as implemented in the software provided 

by Breiman and Cutler (2002).  Consider tree tT , and let tJ  denote the set of cases which 

were not used in training this tree.  We start by randomly permuting the entries of variable 

1X , and let the resulting training data set be denoted by 1
tT .  We then use tT  to classify the 

training patterns in 1
tT  , hence obtaining 11

2
1
1

ˆ,,ˆ,ˆ
tntt fff K , and the corresponding out-of-bag 

error estimate ( ) ( )21ˆ1
∑
∈

−
tJi

tii
t

ff
Jcard

 when the entries in variable 1X  was permuted.  This 

process of obtaining out-of-bag error estimates is repeated for variables 2X  up to pX .  

The ratio 
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 (2.34) 

 

is used to quantify the importance of variable jX .  Relatively large r -values indicate the 

more important input variables. 
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2.4.  VARIABLE SELECTION FOR KERNEL METHODS 
 

In contrast to proposals regarding feature selection, contributions with respect to input 

variable selection for kernel methods have been relatively few, and since feature selection 

and input variable selection are only equivalent when linear kernels are used, little of the 

feature selection literature is relevant in our context.  (See Chapter 1 for the distinction 

between input variable and feature selection).  Ideas in the literature on feature selection for 

kernel techniques have varied much.  A distinction often made in the machine learning 

literature on feature selection, is between so-called filter, wrapper and embedded methods 

for selection (cf. Kohavi and John, 1997; and Guyon and Elisseef, 2003).  We will say 

more on filter and wrapper selection criteria in Chapter 3.  Papers on variable filtering 

include Liu et al. (2002), Stoppiglia and Dreyfus (2003), and Niijima and Kuhara (2006).  

A category of selection procedures involves generalisation of adaptive tuning of multiple 

kernel hyperparameter values.  Adaptive shrinkage methods are examples of embedded 

methods.  Proposals regarding shrinkage for selection in SVMs are found in Grandvalet 

and Canu (2002), Weston et al. (2001 and 2003), and Chapelle et al. (2004).  An input 

variable selection approach which may also be regarded as an embedded method is the 

more recently proposed procedure by Keerthi (2005).  Closely connected to the regularised 

optimisation-based selection procedures in the previous section, application of this 

procedure is however restricted to SVMs using only linear kernel functions. 

 

 

2.4.1  THE NEED FOR VARIABLE SELECTION 
 
In this section we illustrate the advantageous effect of correctly eliminating irrelevant 

variables on the performance of both classical and kernel classification procedures.  For 

this purpose we assimilate results from simulation experiments which will be more 

thoroughly discussed in Section 3.4.1.  In this section we therefore only briefly discuss 

aspects of the simulation study needed to interpret the reported results. 

 

One of several factors considered in the simulation study was the distribution used to 

generate input variable values in the simulation data sets.  We investigated normal and 
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lognormal distributions.  Each simulation run started by generating a data set (in a binary 

classification setup) where only a portion of the initially available variables were relevant 

(in a separatory sense).  Let the subset of separating variables be denoted by SV , of 

variables not separating the two groups by SV , and let V  refer to the full set of available 

input variables.  Depending on the training sample size, there were either ten or sixty input 

variables in total.  Each of the variables in SV  contributed equally to the separation 

between groups, and we considered a correlation of either 0ρ =  or = 0.7ρ  between pairs 

of variables in SV .  Pairs of variables from SV  and SV  were either uncorrelated, or 

equicorrelated, with – in the case of normal data – a correlation of 0.9SSρ =  between them.  

In lognormal configurations, we were compelled to set 0.2SSρ =  or 0.25  (a motivation in 

this regard will be given in Appendix A.1).  Furthermore, we generated data groups to be 

separated either in terms of location, or with respect to their variance-covariance structure.  

Thus in terms of the data distribution and type of group separation, we considered four 

configurations: normal data and group separation with respect to either location (denoted 

NL cases), or spread (denoted NS cases); and lognormal data with group separation in terms 

of location (LL cases), or spread (LS cases).  We also varied the training sample sizes.  

Small and wide samples consisted of 15 cases in each group; mixed samples had 25 cases 

in the first group, and 75 cases in the second; and large samples consisted of 100 cases in 

each group. 

 

We divided the data into a training and test set, and applied LDA and KFDA and fitted an 

SVM on the training set using measurements on 

 

i. the total number of available variables (in V ) 

ii. only the fraction of relevant variables (in SV ) 

 

Note here that the percentage of relevant variables referred to in ii. where either 1.0=π  or 

4.0=π .  The linear and kernel Fisher discriminant functions, as well as the support vector 

classifier obtained in i. and ii. were then evaluated on the test sample.  For each of the 

classifiers considered, the classification test error rate obtained in ii., relative to the 
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classification test error rate in i. was used to measure the effect of irrelevant variables on 

classification performance.  Denote the test error in i. by ( )VErr  and the test error in ii. by 

( )SVErr .  The effect of the irrelevant variables (henceforth called irrelevance effect) was 

quantified in terms of ( ) ( )SVErrErrirr V= .  Hence an irrelevance effect value greater 

than one indicates the omission of irrelevant variables to yield an improved classification 

performance.  In turn, irrelevance effect values close to 0 indicate the elimination of 

irrelevant variables to have a negative effect on classification accuracy and would be 

indicative of situations where seemingly irrelevant variables are actually weakly relevant. 

 

Thus each simulation run yielded an irrelevance effect value for LDA, KFDA and the fitted 

SVM.  An average of the irrelevance effect values for each classifier was calculated over 

1000 simulation runs.   

 

The obtained irrelevance values are reported for normal data and = 0.1π  in Table 2.1; and 

for normal data and = 0.4π  in Table 2.2.  Similarly, irrelevance effect values for 

lognormal data and = 0.1π  are given in Table 2.3, followed by the results for lognormal 

data and = 0.4π  in Table 2.4.  The type of distribution and group separation, sample sizes 

and various correlation values considered, are indicated across rows.  Configurations that 

could not be handled by LDA are indicated by a *-symbol. 

 

From the vast majority of configurations in Tables 2.1-2.4, the improvement in the 

performance of LDA, KFDA and SVMs after omitting the variables in SV , is evident.  (We 

highlighted irrelevance values greater than 2.)  Note especially the considerable 

improvement in generalisation accuracy realised in wide samples: irrelevance (irr) values 

as high as 29 and 45 were observed in NS, 4.0=π  configurations  (Table 2.2).  Fewer of 

the NL configurations benefit from the omission of variables in SV : compare 82% of the 

NL configurations that showed improvements in accuracy with 89% in the NS case, and 

95% in both the LL and LS cases. 
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In agreement with our discussion in Example 2.5, we see that in some of the cases where 

pairs of relevant and irrelevant variables were highly correlated, the model fitted to the full 

set of available variables outperformed the one fitted to only the subset of truly relevant 

variables.  (We underlined all irrelevance values between 0 and 1.)  In these cases, the 

variables in SV  therefore actually turned out to be weakly relevant.  Note that the highest 

incidence (30%) of weakly relevant variables occurred in the NL, 4.0=π  configurations 

(Table 2.2), and the lowest (only 0.2%) in LL, 1.0=π . 

 

The KFDA NS results for mixed samples in Table 2.1 require some explanation: all the 

irrelevance values equal 1.  This would seem to suggest that in these cases excluding the 

irrelevant variables has no effect on the error rate.  Closer inspection of the simulation 

results, however, shows that these irrelevance values are obtained because we found that 

for both ( )VErr  and ( )SVErr  the smallest error rate obtainable by varying the cost 

parameter over the values which we considered, equalled 0.25.  A more refined search in 

terms of specification of the cost parameter would seem to be necessary in these cases.  

Similar remarks are applicable to the results in Table 2.3 and to several tables appearing in 

later chapters. 

 

For a comparison of the generally positive effect of eliminating irrelevant variables among 

classification techniques, first consider the case of normally distributed data (reported in 

Tables 2.1 and 2.2).  Here smaller test errors after elimination of irrelevant variables are 

typically less prominent in the case of LDA.  When the two groups are separated with 

respect to location and = 0.1π , the number of configurations in which SVMs benefit more 

than KFDA from eliminating variables in SV  is more or less equal to the number of 

configurations where the converse is true.  Hence SVMs and KFDA seem to benefit to the 

same extent from eliminating variables in SV .  When the groups are however separated 

with respect to spread (and = 0.1π ), KFDA seems to benefit slightly more: in 13 out of 16 

configurations the KFDA irr values are larger than the irr values obtained for SVMs, albeit 

by not that large a margin. 
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Table 2.1 : Ratios of test errors: =π 0.1, normal training data 
 

 NORMAL 

LOCATION (NL) 

NORMAL 

SPREAD (NS) 

 Sρ  SSρ  SVM KFDA LDA SVM KFDA LDA 

SMALL 0 0 2.754 1.307 1.263 1.562 1.593 1.071 

0.7 0 2.754 1.307 1.263 1.575 1.591 1.073 

0 0.9 1.224 1.310 1.131 1.561 1.598 1.073 

 

0.7 0.9 1.229 1.303 1.128 1.571 1.602 1.071 

MIXED 0 0 2.662 1.083 1.150 0.997 1.000 1.362 

0.7 0 2.677 1.088 1.158 0.996 1.000 1.362 

0 0.9 1.255 1.088 1.029 1.303 1.000 1.358 

 

0.7 0.9 1.255 1.088 1.029 1.312 1.000 1.362 

LARGE 0 0 1.784 1.091 1.062 1.533 1.561 1.029 

0.7 0 1.800 1.091 1.058 1.533 1.565 1.029 

0 0.9 1.048 1.052 0.909 1.502 1.565 1.027 

 

0.7 0.9 1.047 1.055 0.909 1.498 1.561 1.031 

WIDE 0 0 1.862 2.320 * 3.375 4.767 * 

0.7 0 0.871 1.192 * 2.263 2.119 * 

0 0.9 0.752 2.820 * 1.445 3.034 * 

 

0.7 0.9 0.953 1.531 * 0.805 0.870 * 

 

 

For both types of group separation and = 0.4π  (Table 2.2), again KFDA profits more from 

the omission of variables in SV  than SVMs (10 out of 16 data setups yield larger KFDA irr 

values compared to the irr values obtained for SVMs in both the NS and NL 

configurations). 
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Table 2.2 : Ratios of test errors: =π 0.4, normal training data 

 

 NORMAL 

LOCATION (NL) 

NORMAL 

SPREAD (NS) 

 Sρ  SSρ  SVM KFDA LDA SVM KFDA LDA 

SMALL 0 0 1.258 1.311 1.271 1.947 2.485 1.129 

0.7 0 1.110 1.108 1.145 1.764 1.740 1.129 

0 0.9 0.445 1.246 0.000 1.932 2.495 1.124 

 

0.7 0.9 1.052 1.101 1.025 1.729 1.709 1.126 

MIXED 0 0 1.201 1.231 1.099 2.250 2.477 1.189 

0.7 0 1.265 1.055 1.088 2.422 1.472 1.920 

0 0.9 0.146 1.178 0.000 2.151 2.465 1.197 

 

0.7 0.9 1.106 1.014 0.967 2.358 1.433 1.191 

LARGE 0 0 1.099 1.056 1.043 0.607 2.056 1.058 

0.7 0 1.061 1.017 1.038 1.764 1.740 1.129 

0 0.9 0.018 0.494 0.000 1.921 2.094 1.056 

 

0.7 0.9 0.952 0.941 0.897 2.319 1.646 1.056 

WIDE 0 0 1.316 3.167 * 14.33 45.00 * 

0.7 0 0.997 1.017 * 1.654 1.922 * 

0 0.9 1.684 8.833 * 18.80 29.33 * 

 

0.7 0.9 0.922 1.108 * 1.041 1.449 * 

 

 

Also note that we observe an interaction effect with regard to irr values, depending on the 

percentage of irrelevant input variables, and the type of group separation.  SVMs, KFDA 

and LDA generally benefit more after eliminating variables in SV  when = 0.4π  instead of 

0.1 and when groups are separated with respect to their variance-covariance structure, and 

less when = 0.4π  instead of 0.1 and when groups are separated in terms of location.  

(Compare for example = 2.754irr  for an SVM in an NL, = 0.1π  scenario in Table 2.1 

with = 1.258irr  for an SVM in an NL, = 0.4π  scenario in Table 2.2; and = 1.562irr  for 

an SVM in an NS, = 0.1π  setup in Table 2.1 with = 1.947irr  for an SVM in an NS, 

= 0.4π  configuration in Table 2.2.) 
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We now turn our attention to results on the set of configurations when the data followed a 

lognormal distribution (reported in Tables 2.3 and 2.4).  First note that we mostly observe 

greater improvements in classification error after omitting irrelevant variables here than 

when the data were normally distributed.  Secondly, LDA once again benefits far less from 

the elimination of all irrelevant variables.  If once again one compares the positive impact 

of an accurate reduction of the full set of available variables on the accuracies of KFDA 

and SVMs, one finds that when the two groups are separated with respect to location and 

= 0.1π , KFDA benefit more from the elimination of irrelevant variables than SVMs.  (The 

improvement in accuracy is greater for KFDA compared to SVMs in 15 out of 16 

configurations).  We however observe the opposite when the groups are separated with 

respect to their variance-covariance structure.  Here we observe greater improvements in 

the classification accuracy of SVMs in 11 out of 16 configurations. 

 

In the case of group separation with respect to location and 4.0=π , SVMs benefit much 

more (4 out of 12 SVM irr values are larger than KFDA irr values).  The same can be said 

in the LS case: here SVMs profit more in 2 out of 12 configurations). 

 

Much of the interaction effect between the percentage of irrelevant input variables and the 

type of group separation reported in the normal case, is also observed in the lognormal data 

setup.  The LL configuration is an exception in this regard. 

 

In summary, the above simulation results indicate that successful variable selection 

frequently yields significant improvement in the accuracy of both more traditional 

classifiers (for example LDA) and kernel classifiers (for example SVMs and KFDA).  

Variable selection was shown to be less important in NL configurations, and can perhaps in 

that sense be regarded as a less important data setup to consider in subsequent simulation 

investigations regarding variable selection prior to kernel analyses. 
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Table 2.3 : Ratios of test errors: =π 0.1, lognormal training data 
 

 
 LOGNORMAL  

LOCATION (LL) 

LOGNORMAL  

SPREAD (LS) 

 Sρ  SSρ  SVM KFDA LDA SVM KFDA LDA 

SMALL 0 0 1.246 2.355 1.519 2.095 1.782 1.080 

0.7 0 1.249 2.310 1.519 2.100 1.788 1.087 

0 0.2 2.041 2.369 1.033 1.943 1.794 1.031 

 

0.7 0.2 2.041 2.347 1.033 2.162 1.797 1.040 

MIXED 0 0 1.336 2.050 2.044 1.491 1.000 1.247 

0.7 0 1.332 2.071 2.044 1.500 1.000 1.247 

0 0.2 1.862 2.071 1.756 1.320 1.000 1.237 

 

0.7 0.2 1.875 2.020 1.778 1.327 1.000 1.232 

LARGE 0 0 1.117 1.885 1.129 2.034 2.053 1.023 

 0.7 0 1.117 1.885 1.124 2.034 2.053 1.021 

 0 0.2 1.276 1.549 0.686 1.750 2.005 1.002 

 0.7 0.2 1.735 1.995 1.004 1.750 1.995 1.004 

WIDE 0 0 4.306 5.877 * 3.351 2.280 * 

 0.7 0 2.680 2.640 * 2.584 2.067 * 

 0 0.2 1.174 3.172 * 1.729 1.960 * 

 0.7 0.2 1.374 1.894 * 1.936 1.869 * 

 

 

In the configurations considered, the need for variable selection was generally much more 

significant in the case of SVMs and KFDA, than for LDA.  It is not easy to say whether 

variable selection is more important for SVMs than for KFDA.  Putting the NL data setups 

aside, it seems as if SVMs benefit more, viz. in the LL, 1.0=π , and LS, 1.0=π  and 

4.0=π  cases.  Taking the NL configurations into consideration, a comparison of the 

importance of variable selection in SVMs and KFDA is however much less conclusive. 
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Table 2.4 : Ratios of test errors: =π 0.4, lognormal training data 
 

 
 LOGNORMAL  

LOCATION (LL) 

LOGNORMAL  

SPREAD (LS) 

 Sρ  SSρ  SVM KFDA LDA SVM KFDA LDA 

SMALL 0 0 2.013 2.012 1.586 2.133 1.968 1.164 

0.7 0 1.727 1.659 1.339 1.932 1.785 1.203  

0.7 0.25 1.146 1.359 0.772 1.702 1.918 1.103 

MIXED 0 0 1.738 1.459 1.614 2.420 1.209 1.125 

0.7 0 1.457 1.275 1.873 2.598 1.064 1.123  

0.7 0.25 0.986 1.099 1.457 1.927 1.093 1.069 

LARGE 0 0 2.333 1.662 1.161 2.145 2.537 1.056 

0.7 0 1.805 1.305 1.061 2.419 1.522 1.071  

0.7 0.25 1.111 1.009 0.538 1.968 1.475 1.021 

WIDE 0 0 4.286 3.921 * 4.544 3.683 * 

0.7 0 1.690 1.775 * 2.199 2.156 *  

0.7 0.25 1.102 1.244 * 1.727 1.576 * 

 

 

2.4.2  COMPLICATING FACTORS AND POSSIBLE APPROACHES 
 
Variable selection for kernel methods is in many respects a more complex problem than for 

standard statistical analyses.  In this section we point out several of the factors which 

complicate the selection process when kernel techniques are used, and broadly discuss 

possible approaches towards overcoming these difficulties. 

 

A first difficulty is that most classical selection approaches are based on one or more 

assumptions which are typically not made in kernel methods.  Here for example we have in 

mind the assumption of a normal distribution for the input data.  In many applications of 

kernel methods such a strong assumption is invalid.  Whereas the assumption of normal 

data considerably simplifies a decision regarding the value of m in classical approaches, 

this is not possible in the case of kernel methods.  Note that we will investigate a proposal 

for a data-dependent decision regarding m in Chapter 6 of the thesis. 
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A second complicating factor comes into play when patterns in the data are non-linear.  In 

such cases non-linear kernels are needed, resulting in the end in kernel solutions which are 

not (weighted) sums over input variables (or even over transformed input variables) as we 

would like, i.e. ( ) bf j

p

j
j += ∑

=
xx

1
β  or ( ) ( ) bf j

p

j
j +Φ= ∑

=
xx

1
β , but sums over features, viz. 

 

                                          ( ) ( ) bf +Φ= xwx , bw
N

j
jj += ∑

=1
φ ,  (2.34) 

 

In a classifier written in the form bj

p

j
j +∑

=
x

1
β  or ( ) bj

p

j
j +Φ∑

=
x

1
β , where pxxx ,,, 21 K  are 

the components of the new case to be classified, we may directly interpret jβ  as an 

indicator of the relative importance of the thj  variable (provided the data have been 

appropriately scaled).  In Expression (2.26) the jw , Nj ,,2,1 K=  however indicate the 

relative importance of the thj  feature (which does not correspond to the thj  variable 

transformed to ℑ ).  Hence the jw  can be used to guide feature selection, but do not 

provide information regarding the relative importance of the original variables in ℵ .  

Therefore, since a kernel classification function is only of the form ( ) bf j

p

j
j += ∑

=
xx

1
β  

when a linear kernel is used, we see that the use of a non-linear kernel inevitably obscures 

the contribution of each of the input variables to the kernel solution. 

 

In order to further illustrate the point above, recall that in Section 2.2.3 it was shown that a 

kernel classification function can be written in the form 

 

                                         ( ) ( ) bf +Φ= xwx ,  ( ) bk i

n

i
i += ∑

=
xx

1
α  (2.35) 
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where the N -vector ( ) ∑∑
==

=Φ=
n

i
iii

n

i
i

11
φxw αα  is a linear combination over data cases in 

ℑ .  This stands in contrast to more traditional classifiers, which are usually expressed as 

(linear) combinations over the input variables.  Hence the dilemma when attempting 

variable selection in a kernel analysis again becomes apparent: iα  reflects the relative 

importance of the thi  data case in the kernel classifier, rendering w  (or its associated 

( )xf ) not directly suitable as a basis for variable selection. 

 

It is possible to handle the above problem by progressively taking the transformation to 

feature space into account.  In our opinion, there are three approaches in this regard.  The 

most naïve approach is to simply ignore the transformation.  Here one assumes the 

influence of individual predictors in input and feature space to be approximately the same, 

and one performs variable selection by simply using classical selection criteria in input 

space.  A second approach is to perform the calculation of selection criteria in feature 

space, and then to find a connection between the N  coordinates of the criterion in ℑ , and 

the p  coordinates of the criterion in ℵ .  Once the selection criterion has been embedded 

back into ℵ , it is of course possible to continue the selection process in input space.  In this 

way part of the selection process is carried out in feature space, and part of it in input 

space.  A third possibility is to calculate selection criteria and carry out the selection 

process in feature space.  This however promises to be a computationally more expensive 

approach.  Note that the first and second approaches (selection in input space) will be 

investigated in Chapter 3, followed by a discussion of the third approach (selection in 

feature space) in Chapter 4 to 6. 

 

In the second and third approaches to variable selection for kernel methods, one is 

compelled to at least at some stage work in feature space.  This however confronts us with 

a third problem: working in feature space is typically difficult.  As we have seen before, we 

are restricted to the calculation of inner products via the kernel trick.  Hence any selection 

criterion which we would like to propose in feature space has to depend on the data only 

via inner products between features.  Although this may seem very restrictive, we will see 
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in Chapters 4 and 5 that there are still several informative ways of utilising the kernel 

function to summarise the clustering of the two groups of input data points in feature space.   

 

As pointed out earlier, any kernel method has to use the information provided by the data 

via entries in the kernel matrix.  Therefore the kernel matrix K  plays a central role when 

one attempts selection in ℑ .  We will see in Section 4.6, that several selection criteria may 

be defined explicitly in terms of the structure of K .  Since different kernel classification 

procedures arise because of different algorithms used to construct the linear classifiers, it 

follows that a selection criterion based only on K  will ipso facto be applicable to any 

kernel method.  We can however also take the specific algorithm into account when 

proposing a selection criterion.  This then leads to selection criteria only applicable in 

SVMs, or only in KFDA, as the case may be.  These criteria, although not explicitly based 

on the structure of K , also utilise entries in the kernel matrix.  We will give further 

attention to such possibilities in Section 4.7. 

 

The need to specify values for the hyperparameters used in a kernel method further 

complicates variable selection.  We will treat these quantities largely as nuisance factors, 

i.e. we will not undertake a detailed study of the possible interaction between different sets 

of variables and hyperparameter values. 

 

We have stated in the introduction to this chapter that in Chapters 3 to 5 the true model 

dimension (true value of m ) is assumed to be known.  In classical applications this usually 

leads to a substantial simplification.  For example, in least squares multiple regression 

analysis, if the value of m  is fixed, almost all selection criteria (including amongst others 

AIC , BIC  and pC ) will identify the same subset of variables.  The reason for this is that 

all these criteria measure accuracy in the same way, viz. in terms of the sum of squared 

residuals, and differ only with respect to the manner in which accuracy is traded off against 

complexity.  In kernel methods, assuming the value of m  known does not nearly lead to 

the same degree of simplification.  To explain this subtle point, suppose we have a fixed 

value of m  and taking our cue from multiple regression analysis, we try to select variables 

by minimising ( )ferr .  This will almost certainly lead to overfitting, since even with a 
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fixed value for m , the feature transformation which characterises kernel methods implies 

that we will be optimising over a very large class of discriminant functions.  Consequently, 

even the apparently simple case of a known value of m  poses formidable challenges 

regarding specification of an appropriate selection criterion.   

 

Although the different strategies discussed earlier in this chapter can also be applied in 

variable selection for kernel methods, our task is often complicated by the size of the data 

sets under investigation.  Applying a one-variable-at-a-time forward selection or backward 

elimination approach to a data set containing thousands of variables is infeasible.  As will 

be seen in Chapter 5, the traditional strategies can be suitably modified to make them 

practicable. 

 

 

2.5  SUMMARY 
 

In this chapter we provided an introduction to variable selection for kernel methods, with 

application to binary classification problems.  This was done in two parts.  We started by 

discussing the various components required to construct a kernel classifier, indicating that 

kernel procedures are regularised techniques.  We then introduced the variable selection 

problem, and briefly discussed some of the more recent selection approaches based on 

regularised estimation.  Since kernel procedures implement regularised estimation, 

selection procedures that are generalised estimation algorithms can be extended to selection 

in (special cases of) kernel techniques as well.  Application of such an approach, as devised 

by Keerthi (2005), is unfortunately limited to a subset of kernel procedures.  There are also 

several properties of kernel techniques which further complicate input variable selection.  

We concluded the chapter with a discussion of such characteristics, and provided some 

pointers regarding possible approaches to be followed in the remaining thesis chapters. 
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CHAPTER 3  

 KERNEL VARIABLE SELECTION IN  
INPUT SPACE 

 

 
 

3.1  INTRODUCTION 
 

The focus in this and the following two chapters is primarily on defining criteria for 

variable selection in kernel classifiers.  Recall that in Chapter 2 mention was made of 

different classes of selection procedures depending on the nature of the selection criterion, 

viz. a filter- or wrapper selection criterion. 

 

Filter criteria may essentially be viewed as pre-processors, independent of the choice of 

predictor (cf. Kira and Rendell, 1992, and Guyon and Elisseeff, 2003).  A simple example 

of a filter criterion is the correlation coefficient between the response and each variable.  

There are in fact many proposals toward the derivation of selection criteria based on 

correlation coefficients.  (See for example Hall, 1998).  Filter criteria may be calculated to 

rank the relevance of individual input variables or subsets of variables in predicting the 

response.  Depending on whether the rankings refer to a single variable or a particular 

variable subset, the corresponding filter criterion is referred to as either univariate or 

multivariate. 

 

Wrapper criteria are determined by choices regarding the predictor to be used.  In kernel 

methods wrapper criteria may be calculated in one of three ways.  The first possibility only 

requires a decision to be made regarding the kernel function and its hyperparameter values; 

the wrapper criterion in kernel selection is therefore based on the kernel matrix only.  We 

view such criteria as semi-wrappers.  Therefore semi-wrapper selection criteria are derived 

with any kernel method in mind.  The second type of wrapper criterion additionally 

depends on the values of the estimated parameters appearing in the predictor.  In the 
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context of kernel techniques, such selection criteria may only be applied in context of the 

specific class of kernel methods for which they are intended and they additionally require 

the specific kernel method to be trained.  A third alternative is to use as selection criterion 

the estimated generalisation error when the appropriate predictor is applied.  One of the 

first such wrapper feature selection proposals was by Kohavi and John (1997), viz. to 

simply use the cross-validation errors calculated for each variable subset to obtain a 

ranking of variable subsets.  Finally, note that both semi-wrapper and wrapper selection 

criteria may be univariate or multivariate as is the case with filter criteria. 

 

To illuminate the different types of wrapper criteria, consider any kernel predictor.  

Suppose we decide to use a Gaussian kernel function with a specified value for the kernel 

hyperparameter γ .  A semi-wrapper criterion will now only use the information contained 

in the kernel matrix, i.e. it depends only on the similarities between the data points as 

measured in feature space via the kernel function.  Note that the variables selected using 

such a criterion will therefore remain the same, irrespective of the specific type of kernel 

predictor to be used.  Application of the second type of wrapper criterion entails extraction 

of additional information from the data.  We now for example have to decide that a support 

vector classifier will be fitted to the data and at each stage of the selection process the 

selection criterion may depend on entries in the kernel matrix, the coefficients 

nααα ,,, 21 K  and the intercept b.  If instead of a support vector classifier we decide on 

using KFDA, the selection criterion may once again depend on the quantities listed above 

and the resulting set of selected variables need obviously not be the same.  Note in this 

regard also that in the case of an SVM some of the coefficients nααα ,,, 21 K  will typically 

be zero and may therefore be described as not having an effect on the selection.  Generally, 

when in the literature reference is made to wrapper criteria the above dependence on the 

type of predictor used as well as on the parameter estimates is implied.  In order to speedup 

the selection process, parameter values are often not re-estimated for different variable 

subsets.  Although parameter estimates may thus be kept fixed irrespective of the variable 

subset evaluated, the above selection techniques are still considered wrappers as opposed to 

semi-wrappers since the post-selection feature subset is potentially different depending on 

the type of predictor used.   
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In summary, semi-wrapper selection criteria are more cost effective than wrapper criteria 

and take the new higher dimensional configuration of data points into account in 

performing feature selection for kernel methods.  Wrapper selection criteria rely more 

heavily on the specific class of kernel method in deciding on the relevant variables and are 

mostly also more costly.  Filter criteria base selection solely on attributes of the data and 

are usually very fast to compute.  In the remainder of the thesis, we will also refer to filter- 

and semi-wrapper criteria as algorithm-independent criteria, while wrapper criteria will be 

called algorithm-dependent criteria.  Algorithm-independent and algorithm-dependent 

variable selection for kernel classifiers will be discussed in Chapter 4. 

 

This chapter may be regarded as an introduction to Chapter 4 in the sense that it first 

considers a more basic question before attempting to define selection criteria for kernel 

methods, viz. in which space, input- or feature space, should a kernel variable selection 

criterion be defined?  Whereas filter criteria operate in input space, and semi-wrapper and 

wrapper criteria are defined in feature space, we consider a new approach to variable 

selection for kernel methods: define the selection criterion in ℑ , and then complete the 

variable selection process in ℵ . 

 

In the following section we illustrate that selection in ℵ  may be sufficient in some data 

scenarios, but inadequate in others.  In Section 3.3 we then propose the new variable 

selection approach, which is evaluated in the Monte Carlo simulation study described in 

Section 3.4.  A summary of the chapter is given in Section 3.5. 

 

 

3.2  NAÏVE SELECTION IN INPUT SPACE 
 

In the final section of Chapter 2 we introduced three approaches towards variable selection 

for kernel methods.  One of these approaches is based on the assumption that the influence 

of individual predictors in input and feature space remains approximately the same, and 

involves selection via the use of classical selection criteria in input space.  The above 

assumption is of course valid in the case of a linear kernel function, but much less likely to 
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hold in the case of a non-linear relation between input- and feature space.  Therefore in 

some cases selection in input space might turn out to be sufficient, but in general the 

influence of input variables may change considerably from input to feature space, causing 

selection in feature space to yield better results than classical selection.  The following 

example illustrates exactly this: in an NL scenario in which LDA can be expected to 

perform well, classical selection outperforms selection in feature space.  However in NS, 

LL, and LS data configurations which are less ideal setups for LDA, the results of selection 

in feature space are superior.   

 

EXAMPLE 3.1  Naïve selection in input and feature space: correlations and alignments 

 

The following excerpt from the results of a simulation experiment are now presented in 

order to compare the post-selection properties of (binary) classifiers after selection in input 

space, with those of classifiers following selection in feature space.  Both selection 

approaches were quite naïve: we used ordinary Pearson correlation coefficients to perform 

selection in input space, and analogous to this, for selection in feature space we used 

alignments (see Section 3.6 in Chapter 4 for a definition and more details).  The full set of 

configurations considered is given in Section 3.4.  We only report on the subset of these 

configurations which was described in Section 2.4.1.  The perspective from which we look 

at the simulation described there now changes: instead of reporting the effect of correctly 

eliminating irrelevant input variables, we now want to compare the effect of eliminating 

input variables using naïve selection procedures in input space, with the effect when naïve 

selection is carried out in feature space.  Hence once again data sets were generated so that 

differences in location or spread were contributed only by a smaller (size m ) set of 

relevant input variables (in SV ).   

 

Each simulation repetition started with newly generated training and test data sets, both 

consisting of measurements on all variables contained in V .  To perform selection in input 

space, we calculated absolute values of the correlation coefficients between the response 

and each of the variables contained in V , and assuming m  as specified in the simulation 

setup to be known, selected the m  most highly correlated variables.  Let the selected subset 
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of variables be denoted by ℵV .  To perform selection in feature space we calculated 

absolute values of the alignment between the response and each of the variables in V , and 

once again selected the m  variables corresponding to the largest alignments.  The resulting 

subset of variables will be denoted by ℑV .  In this section we only report the results 

obtained for the case 0.4m p = . 

 

After selection, we fitted an SVM and performed LDA and KFDA on the training data 

using the variables contained in V , SV , ℵV  and ℑV  respectively.  Hence in total there 

were twelve combinations of procedures and variable (sub)-sets to evaluate at each data 

configuration.  For each of the twelve combinations we recorded an average test error and 

percentage of misclassifications obtained on the test data.  We will refer to the average test 

errors based on V , SV , ℵV  and ℑV  as the average no selection-, oracle- and input- and 

feature space selection errors respectively.  Tables 3.1 a and b, 3.2 a and b, and 3.3 to 3.5 

contain these test errors for LDA, KFDA and SVMs, in scenarios NL, NS, LL, and LS.  

Note however that in the large p , small n  setups, a linear discriminant function cannot be 

obtained: the covariance matrix of the ijx  observations, 1,2, ,i n= K ; 1, 2, ,j p= K ; p n> , 

is singular, rendering the use of LDA inappropriate in such cases.  This is indicated by *-

symbols in the last four rows of the LDA columns in each table. 

 

In Tables 3.1 a and 3.2 a we report on normal data where irrelevant and relevant input 

variables were generated independently ( 0=SSρ ), whereas Tables 3.1 b and 3.2 b 

summarise the results obtained when relevant and irrelevant input variables were highly 

correlated.  In each table the different configurations in terms of the correlation between 

pairs of variables in SV  are indicated across columns.  The various types of errors are 

presented row-wise – in groups of four – with the first, second and third group of rows 

referring to small, mixed, large ( >n p ) and wide ( >p n ) sample sizes.  We used 1000 

simulation repetitions throughout.  Standard errors of the average test errors are given in 

brackets. 
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Importantly, note that the SVM, KFDA and LDA test errors were calculated for a series of 

values for the SVM and KFDA cost parameter.  In all cases we trained an SVM and 

performed KFDA using an RBF kernel function, and kept the kernel hyperparameter 

1 pγ =  throughout.  A motivation for this particular choice will be given in Section 3.4.4. 

 

For each kernel technique we report only the smallest test error achieved across cost 

parameter values.  Therefore it cannot be argued that the performance of any of the 

techniques was at an unfair disadvantage due to misspecification of the cost parameter 

value.  This allows one to compare the performances of the various techniques.  In this 

regard, the following can be noted.  As expected, LDA performs relatively well in NL (in 

Tables 3.1 a and b) and in LL (in Tables 3.3 and 3.5) data scenarios.  Compare for example 

LDA test error rates for mixed samples and 0=Sρ  in the NL configuration in Table 3.1 a, 

viz. .156, .142, .143, and .155, with SVM test errors observed in the same setup, viz. .173, 

.144, .145 and .157.  Also, when 0=Sρ  in the NL configuration reported in Table 3.1 b, 

LDA based on the full set of available input variables correctly classifies all test sample 

cases.  Although generally in LL scenarios LDA performs worse than SVMs, we observe 

smaller LDA test errors than KFDA in most configurations.  For example, LDA test error 

rates for mixed samples and 0=Sρ  in the LL configuration in Table 3.3 were .071, .044, 

.046 and .044.  The corresponding KFDA test errors were .089, .061, .063 and .061.  

However, as soon as the data are not separated with respect to location, but with respect to 

spread, the classification performance of LDA is no longer adequate: for example, the 

minimum LDA test error observed for all the large NS data sets is .466 (see Tables 3.2 a 

and b), whereas for large LS data sets it is .437 (see Tables 3.4 and 3.5). 
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Table 3.1 a: Average test errors for the NL case ( 4.0=π , 0=SSρ ) 

SMALL SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )Err V  .249 (.001) .352 (.001) .240 (.001) .329 (.001) .239 (.001) .371 (.001) 

( )SVErr  .198 (.001) .317 (.001) .183 (.001) .297 (.001) .188 (.001) .324 (.001) 

( )ℵVErr  .219(.001) .324 (.001) .207 (.001) .304 (.001) .210 (.001) .329 (.001) 

( )ℑVErr  .236 (.002) .330 (.001) .224 (.001) .311 (.001) .222 (.001) .329 (.001) 

MIXED SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .173 (.001) .286 (.002) .165 (.001) .232 (.000) .156 (.000) .260 (.001) 

( )SVErr  .144 (.000) .226 (.001) .134 (.000) .220 (.000) .142 (.000) .239 (.001) 

( )ℵVErr  .145 (.001) .226 (.001) .136 (.000) .220 (.000) .143 (.000) .240 (.000) 

( )ℑVErr  .157 (.001) .229 (.001) .148 (.001) .221 (.000) .155 (.001) .240 (.000) 

LARGE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .188 (.000) .312 (.000) .171 (.000) .291 (.000) .170 (.000) .302 (.000) 

( )SVErr  .171 (.000) .294 (.000) .162 (.000) .286 (.000) .163 (.000) .291 (.000) 

( )ℵVErr  .171 (.000) .294 (.000) .162 (.000) .286 (.000) .163 (.000) .291 (.000) 

( )ℑVErr  .171 (.000) .294 (.000) .162 (.000) .286 (.000) .163 (.000) .291 (.000) 

WIDE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .025 (.000) .308 (.001) .038 (.001) .292 (.001) * * 

( )SVErr  .019 (.000) .309 (.002) .012 (.000) .287 (.001) * * 

( )ℵVErr  .032 (.001) .311 (.001) .023 (.000) .286 (.001) * * 

( )ℑVErr  .040 (.001) .313 (.002) .030 (.000) .286 (.001) * * 
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Table 3.1 b: Average test errors for the NL case continued ( 4.0=π , 9.0=SSρ ) 

SMALL SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )Err V  .089 (.001) .333 (.001) .228 (.001) .326 (.001) .000 (.000) .331 (.001) 

( )SVErr  .200 (.001) .316 (.001) .183 (.001) .296 (.001) .187 (.001) .323 (.001) 

( )ℵVErr  .216 (.001) .322 (.001) .201 (.001) .302 (.001) .200 (.001) .325 (.001) 

( )ℑVErr  .225 (.001) .325 (.001) .218 (.001) .310 (.001) .207 (.001) .324 (.001) 

MIXED SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .021 (.000) .253 (.001) .159 (.000) .223 (.000) .000 (.000) .231 (.001) 

( )SVErr  .144 (.000) .226 (.001) .135 (.000) .220 (.000) .143 (.000) .239 (.000) 

( )ℵVErr  .145 (.000) .226 (.001) .136 (.000) .220 (.000) .143 (.000) .240 (.000) 

( )ℑVErr  .153 (.001) .227 (.001) .146 (.001) .220 (.000) .150 (.000) .239 (.000) 

LARGE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .003 (.000) .279 (.001) .080 (.001) .269 (.000) .000 (.000) .262 (.000) 

( )SVErr  .171 (.000) .295 (.000) .162 (.000) .286 (.000) .163 (.000) .292 (.000) 

( )ℵVErr  .171 (.000) .295 (.000) .162 (.000) .286 (.000) .163 (.000) .292 (.000) 

( )ℑVErr  .171 (.000) .295 (.000) .162 (.000) .286 (.000) .163 (.000) .292 (.000) 

WIDE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .032 (.001) .285 (.001) .106 (.003) .318 (.001) * * 

( )SVErr  .019 (.000) .309 (.001) .012 (.000) .287 (.001) * * 

( )ℵVErr  .018 (.001) .308 (.001) .021 (.002) .290 (.001) * * 

( )ℑVErr  .022 (.001) .310 (.001) .032 (.002) .298 (.001) * * 
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Table 3.2 a: Average test errors for the NS case ( 4.0=π , 0=SSρ ) 

SMALL SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .259 (.001) .321 (.001) .256 (.001) .308 (.001) .482 (.001) .483 (.001) 

( )SVErr  .119 (.001) .182 (.001) .103 (.001) .177 (.001) .427 (.001) .428 (.001) 

( )ℵVErr  .348 (.003) .363 (.003) .341 (.003) .367 (.003) .479 (.001) .486 (.001) 

( )ℑVErr  .177 (.002) .223 (.002) .160 (.002) .222 (.002) .449 (.001) .447 (.001) 

MIXED SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .207 (.001) .264 (.001) .213 (.000) .237 (.000) .359 (.001) .360 (.001) 

( )SVErr  .092 (.000) .109 (.001) .086 (.000) .161 (.001) .302 (.002) .302 (.002) 

( )ℵVErr  .307 (.002) .320 (.002) .250 (.000) .250 (.000) .337 (.001) .329 (.001) 

( )ℑVErr  .367 (.002) .366 (.002) .250 (.000) .250 (.000) .299 (.001) .302 (.001) 

LARGE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .156 (.001) .321 (.001) .220 (.000) .308 (.001) .493 (.000) .483 (.001) 

( )SVErr  .257 (.000) .182 .001) .107 (.000) .177 (.001) .466 (.001) .428 (.001) 

( )ℵVErr  .475 (.002) .363 (.003) .305 (.003) .367 (.003) .492 (.000) .486 (.001) 

( )ℑVErr  .257 (.000) .223 (.002) .107 (.000) .222 (.002) .466 (.001) .447 (.001) 

WIDE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .086 (.001) .253 (.001) .135 (.001) .223 (.001) * * 

( )SVErr  .006 (.000) .153 (.001) .003 (.000) .116 (.002) * * 

( )ℵVErr  .298 (.002) .356 (.002) .166 (.003) .273 (.003) * * 

( )ℑVErr  .046 (.001) .201 (.001) .014 (.000) .145 (.002) * * 
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Table 3.2 b: Average test errors for the NS case continued ( 4.0=π , 9.0=SSρ ) 

SMALL SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )Err V  .255 (.001) .315 (.001) .257 (.001) .306 (.001) .480 (.001) .483 (.001) 

( )SVErr  .118 (.001) .180 (.001) .103 (.001) .179 (.001) .427 (.001) .429 (.001). 

( )ℵVErr  .338 (.003) .360 (.003) .344 (.003) .368 (.003) .479 (.001) .485 (.001) 

( )ℑVErr  .174 (.002) .218 (.002) .158 (.002) .222 (.002) .448 (.001) .450 (.001) 

MIXED SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .200 (.001) .256 (.001) .212 (.000) .235 (.000) .359 (.001) .361 (.001) 

( )SVErr  .092 (.000) .110 (.001) .086 (.000) .164 (.001) .300 (.002) .303 (.002) 

( )ℵVErr  .305 (.002) .317 (.003) .250 (.000) .250 (.000) .335 (.001) .329 (.001) 

( )ℑVErr  .365 (.002) .364 (.002) .250 (.000) .250 (.000) .303 (.001) .302 (.001) 

LARGE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .145 (.001) .210 (.001) .222 (.000) .270 (.000) .492 (.000) .492 (.000) 

( )SVErr  .076 (.000) .088 (.000) .106 (.000) .164 (.000) .466 (.001) .466 (.001) 

( )ℵVErr  .244 (.003) .258 (.003) .298 (.003) .327 (.003) .492 (.000) .493 (.000) 

( )ℑVErr  .076 (.000) .088 (.000) .106 (.000) .164 (.000) .466 (.001) .466 (.001) 

WIDE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .094 (.001) .151 (.001) .088 (.003) .171 (.002) * * 

( )SVErr  .005 (.000) .145 (.001) .003 (.000) .118 (.002) * * 

( )ℵVErr  .185 (.003) .260 (.002) .193 (.005) .282 (.003) * * 

( )ℑVErr  .169 (.002) .191 (.001) .183 (.003) .173 (.002) * * 
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Table 3.3: Average test errors for the LL case ( 4.0=π , 0=SSρ ) 

SMALL SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .157 (.001) .221 (.002) .173 (.001) .219 (.002) .157 (.001) .253 (.002) 

( )SVErr  .078 (.001) .128 (.001) .086 (.000) .132 (.001) .099 (.001) .189 (.002) 

( )ℵVErr  .095 (.001) .147 (.002) .104 (.001) .149 (.002) .109 (.001) .203 (.003) 

( )ℑVErr  .080 (.001) .131 (.001) .087 (.001) .135 (.001) .100 (.001) .192 (.002) 

MIXED SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .073 (.001) .102 (.001) .089 (.000) .102 (.001) .071 (.001) .133 (.001) 

( )SVErr  .042 (.000) .070 (.000) .061 (.000) .080 (.000) .044 (.000) .071 (.001) 

( )ℵVErr  .044 (.000) .071 (.000) .063 (.000) .082 (.001) .046 (.000) .076 (.001) 

( )ℑVErr  .043 (.000) .070 (.000) .061 (.000) .080 (.001) .044 (.000) .071 (.001) 

LARGE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .077 (.000) .148 (.001) .108 (.000) .154 (.001) .101 (.000) .210 (.001) 

( )SVErr  .033 (.000) .082 (.000) .065 (.000) .118 (.000) .087 (.000) .198 (.001) 

( )ℵVErr  .033 (.000) .082 (.000) .065 (.000) .118 (.000) .087 (.000) .198 (.001) 

( )ℑVErr  .033 (.000) .082 (.000) .065 (.000) .118 (.000) .087 (.000) .198 (.001) 

 WIDE SAMPLES 

 SVM KFDA LDA 

 = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .090 (.001) .218 (.001) .149 (.003) .229 (.002) * * 

( )SVErr  .021 (.000) .129 (.001) .038 (.001) .129 (.001) * * 

( )ℵVErr  .032 (.001) .149 (.001) .046 (.001) .146 (.002) * * 

( )ℑVErr  .023 (.000) .134 (.001) .042 (.001) .132 (.001) * * 
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Table 3.4: Average test errors for the LS case ( 4.0=π , 0=SSρ ) 

SMALL SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )Err V  .273 (.002) .313 (.002) .307 (.002) .332 (.002) .439 (.002) .433 (.002) 

( )SVErr  .128 (.001) .162 (.001) .156 (.002) .186 (.002) .377 (.002) .360 (.003) 

( )ℵVErr  .296 (.003) .316 (.004) .330 (.003) .365 (.004) .427 (.002) .446 (.002) 

( )ℑVErr  .157 (.002) .189 (.002) .182 (.002) .220 (.003) .398 (.002) .388 (.003) 

MIXED SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .196 (.001) .252 (.001) .237 (.001) .248 (.000) .342 (.001) .339 (.001) 

( )SVErr  .081 (.001) .097 (.001) .196 (.002) .233 (.001) .304 (.001) .302 (.001) 

( )ℵVErr  .276 (.003) .290 (.003) .250 (.000) .250 (.000) .319 (.001) .306 (.001) 

( )ℑVErr  .290 (.002) .309 (.003) .250 (.000) .250 (.000) .312 (.001) .300 (.001) 

LARGE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .163 (.001) .225 (.001) .340 (.001) .271 (.000) .473 (.001) .468 (.001) 

( )SVErr  .076 (.000) .093 (.000) .134 (.001) .178 (.000) .448 (.001) .437 (.001) 

( )ℵVErr  .203 (.003) .238 (.004) .293 (.003) .318 (.003) .470 (.001) .477 (.002) 

( )ℑVErr  .072 (.000) .093 (.000) .135 (.001) .179 (.001) .449 (.001) .438 (.001) 

WIDE SAMPLES 

SVM KFDA LDA 

 

= 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  = 0Sρ  = 0.7Sρ  

( )VErr  .259 (.001) .332 (.002) .302 (.001) .345 (.002) * * 

( )SVErr  .057 (.000) .151 (.002) .082 (.001) .160 (.002) * * 

( )ℵVErr  .270 (.002) .352 (.003) .269 (.003) .344 (.005) * * 

( )ℑVErr  .102 (.001) .213 (.002) .132 (.001) .200 (.003) * * 
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Table 3.5: Average test errors for the LL and LS cases ( 4.0=π , 7.0=Sρ , 25.0=SSρ ) 

SMALL SAMPLES 
 

SVM KFDA LDA 

= 0.7Sρ  LL LS LL LS LL LS 

( )Err V  .148 (.001) .278 (.002) .178 (.002) .322 (.003) .142 (.002) .396 (.003) 

( )SVErr  .129 (.001) .161 (.002) .131 (.001) .184 (.002) .184 (.003) .359 (.004) 

( )ℵVErr  .139 (.002) .299 (.005) .143 (.002) .358 (.005) .186 (.003) .444 (.003) 

( )ℑVErr  .130 (.001) .187 (.003) .133 (.001) .218 (.004) .185 (.003) .386 (.004) 

MIXED SAMPLES 
 

SVM KFDA LDA 

= 0.7Sρ  LL LS LL LS LL LS 

( )VErr  .069 (.000) .212 (.001) .089 (.001) .249 (.001) .102 (.001) .328 (.001) 

( )SVErr  .069 (.000) .096 (.001) .081 (.001) .233 (.001) .070 (.001) .300 (.002) 

( )ℵVErr  .070 (.001) .267 (.004) .082 (.001) .250 (.000) .074 (.001) .303 (.001) 

( )ℑVErr  .069 (.001) .304 (.004) .081 (.001) .250 (.000) .071 (.001) .296 (.001) 

LARGE SAMPLES 
 

SVM KFDA LDA 

= 0.7Sρ  LL LS LL LS LL LS 

( )VErr  .089 (.000) .182 (.001) .118 (.001) .264 (.002) .107 (.001) .446 (.003) 

( )SVErr  .082 (.001) .092 (.001) .117 (.000) .179 (.001) .199 (.002) .437 (.002) 

( )ℵVErr  .083 (.001) .220 (.005) .117 (.000) .308 (.005) .199 (.002) .473 (.003) 

( )ℑVErr  .082 (.001) .092 (.001) .117 (.000) .180 (.001) .199 (.002) .437 (.002) 

WIDE SAMPLES 
 

SVM KFDA LDA 

= 0.7Sρ  LL LS LL LS LL LS 

( )VErr  .141 (.001) .278 (.002) .158 (.001) .249 (.003) * * 

( )SVErr  .128 (.001) .161 (.001) .127 (.001) .158 (.002) * * 

( )ℵVErr  .134 (.001) .302 (.005) .134 (.002) .300 (.006) * * 

( )ℑVErr  .129 (.001) .187 (.003) .127 (.001) .174 (.003) * * 
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Interestingly, KFDA outperforms SVMs in the case of normal data (in the NL and NS 

scenarios), while SVMs yield lower error rates than KFDA when the data are lognormally 

distributed (in the LL and LS scenarios).  The above observations are summarised in Table 

3.6 below.  First (or tied first) positions are indicated by 1, second (or tied second) 

positions are indicated by 2, and worst performances are indicated by 3. 

 

Table 3.6: Relative performances of LDA, KFDA and SVMs 

 

 NL NS LL LS 

LDA 1 3 2 3 

KFDA 1 1 2 2 

SVMs 2 2 1 1 

 

 

The set of results reported in Table 3.1 b were obtained for NL data when the variables in 

V  and SV  were highly correlated ( = 0.9SSρ  in all cases).  As was also seen in Chapter 2, 

Section 3.4.1, Table 3.1 b clearly reflects that whenever pairs of relevant (those in SV ) and 

(seemingly) irrelevant variables (those in SV ) are highly correlated, classification 

performance may improve with the inclusion of seemingly irrelevant (hence called weakly 

relevant) input variables: use of the full set of available input variables is preferred to use 

of the reduced set of truly relevant variables in 10 out of the 24 data configurations.  Table 

3.2 b contains the simulation test errors obtained when 9.0=SSρ  for NS data.  Since for 

lognormally distributed data we were compelled to only investigate scenarios in which 

7.0=Sρ  (and not 0=Sρ ) whenever we wanted to set 0>SSρ  (and then we had to use 

25.0=SSρ  when 4.0=π ), the compound set of results obtained for LL and LS data 

scenarios and the correlated case is given in Table 3.5 (A motivation for these particular 

configurations will be given in Appendix A.1).  In both Tables 3.2 b and 3.5 we see that 

correct reduction of V  to SV  proved beneficial in all configurations under consideration – 
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once again bearing evidence to the importance of correct elimination of irrelevant input 

variables. 

 

We now compare the performance of naïve selection in input space via correlations, with 

that of naïve selection in feature space using alignments.  Consider first the NL case where 

0=SSρ  (in Table 3.1 a).  Here both selection approaches succeed in improving the 

average no selection misclassification rate, with selection in input space being generally 

more efficient.  Selection in input and feature space does however perform more or less the 

same in tall and wide training samples.  Consider next the NL case where 9.0=SSρ  (in 

Table 3.1 b).  We have already seen that, due to the high correlation between relevant and 

irrelevant input variables, in this scenario classifiers based on the correct set of input 

variables fare worse than the no selection classifier.  Hence in this particular configuration, 

in terms of a possible improvement in classification accuracy, variable selection does not 

seem to be a good idea. 

 

Next consider the results reported for NS data (in Table 3.2 a).  In all cases, selection in 

input space yielded worse results than in the case of no selection.  Selection in feature 

space consistently outperformed selection in input space, yielding in the case of large 

samples error rates equal to the error rates obtained when the separating variables are 

known.  This is also in line with the results pertaining to 9.0=SSρ  configurations reported 

in Table 3.2 b. 

 

In the LL data scenario (in Table 3.3 and part of Table 3.5), the post-selection errors based 

on calculating alignments in ℑ  are typically smaller than those based on correlations in ℵ .  

Compare for example the SVM, KFDA and LDA test errors obtained for small and wide 

training sample sizes.  A similar pattern is even more evident in the LS data configurations 

(in Table 3.4 and part of Table 3.5). 
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Finally in this section, we comment on the percentage of times that each variable was 

selected.  Since similar selection percentages were obtained for the various training sample 

sizes considered, we restrict attention to small training data sets.  With regards to the 

correlation structure, we also only consider configurations where 7.0=Sρ  and 0=SSρ  or 

0.9.  The selection percentages pertaining to NL-LS data scenarios are depicted in Figures 

3.1 to 3.4. 
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Figure 3.1:  Selection percentages obtained in the NL case 
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Figure 3.2:  Selection percentages obtained in the NS case 
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Figure 3.3:  Selection percentages obtained in the LL case 
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Figure 3.4:  Selection percentages obtained in the LS case 

 

 

In Figures 3.1 and 3.3 it is clear that in the NL and LL data setups correlation coefficients in 

ℵ  and alignments in ℑ  does approximately equally well in selecting the separating 

variables.  In the NS and LS cases reported in Figures 3.2 and 3.4 however, selection in ℵ  

performs terribly, while selection in ℑ  once again accurately identifies the relevant 

variable subset.  

   

 

 

Of course correlation coefficients and alignments are very simple selection criteria.  In the 

remainder of the chapter we propose and evaluate the use of other selection criteria defined 

in ℵ  and ℑ . 
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3.3  KERNEL VARIABLE SELECTION: FEATURE-TO-INPUT SPACE 
 

We saw in the previous section that variable selection is a worthwhile enterprise when 

kernel methods are used.  In the NL case the simple use of traditional selection criteria in 

input space, without taking into account properties of the kernel method to be used, yielded 

adequate results.  More generally however, we saw that the post-selection performance of 

kernel methods could be enhanced by incorporating algorithm-specific information in the 

selection procedure.  Simply making use of the fact that the final classification of cases will 

take place in feature space, and therefore using correlations or alignments in ℑ  rather than 

ordinary correlations in ℵ , lead to significant reductions in the observed test errors.   

 

Notwithstanding the relatively poor performance of naïve selection in input space, 

conceptually there are reasons why one would prefer selection to take place in input space 

rather than in feature space.  In terms of simplicity and interpretability the ideal would be 

to associate a single coefficient with each input variable, and base selection on the absolute 

sizes of these variable coefficients, as is for example frequently done in a multiple linear 

regression model.  Although this ideal seems unattainable, we will see in this section that 

there are several approaches towards variable selection in input space using information 

from feature space.  More specifically, we propose and evaluate variable selection 

approaches implemented in input space but taking into account the fact that kernel methods 

operate in feature space.  This so-called feature-to-input space approach may thus be 

viewed as an intermediate approach bridging the gap between naïve selection approaches in 

input space, and more sophisticated selection procedures performed entirely in feature 

space. 

 

Consider therefore the p -dimensional input vectors nxxx ,,, 21 K , belonging to an input 

space ℵ , and consisting of jn  observations from group j , 2,1=j .  The transformed 

input vectors, nφφφ ,,, 21
K  where ( )ii xφ Φ= , ni ,,2,1 K= , belong to a (possibly infinite 

dimensional) feature space ℑ .  Variable selection in ℑ  is considerably more difficult than 

selection in ℵ  mainly because calculations in ℑ  are restricted to evaluation of inner 

products between elements of ℑ .  The quantities in feature space which are amenable to 
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manipulation are linear combinations of the elements in ℑ , in particular linear 

combinations of the form  

 

                                                          ( ) i

n

i
iφαξξ ∑

=
=≡

1
α  (3.1) 

 

where nααα ,,, 21 K  are known scalars.  Our discussion focuses on the Gaussian kernel.  

For this kernel,  

 

                                               ( ) 1,,2 === iiiii k xxφφφ , (3.2) 

 

for ni ,,2,1 K= , i.e. the observed data vectors in ℑ  are all of length 1.  From (3.1) we see 

that  

 

                                             Kααξξξ ′=== ∑ ∑
= =

ij

n

i

n

j
ji k

1 1

2 , αα  (3.3) 

 

and this clearly need not equal 1.  It will prove useful in the following discussion to have 

12 =ξ .  This can be guaranteed by restricting nααα ,,, 21 K  to satisfy 

 

                                                                      1=′Kαα  (3.4) 

 

and we implement this restriction without loss of generality throughout the remainder of 

our discussion. 

 

The important role played by quantities such as (3.1) in kernel classification is confirmed 

by the following observation.  A binary kernel classifier is of the form 

 

                                                      ( )








+∑
=

n

i
ii bksign

1
, xxα , (3.5) 
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where b  represents an intercept and x  the p -vector corresponding to a new case which 

has to be classified.  We see that (3.5) equals 

 

                                                       ( ){ }bsign +Φ ξx ,  (3.6) 

 

for some ξ  as in (3.1).  Hence, we can easily associate a kernel classifier with every ξ , 

and vice versa.  The quality of such a classifier will of course largely depend on the manner 

in which nααα ,,, 21 K  are determined or specified.   

 

We require the following further notation in our discussion.  Let 

 

                                               ( ) ( ) ( )xxξxx ,,
1

i

n

i
ikf ∑

=
=Φ= α . (3.7) 

 

If we add an intercept to ( )xf  we obtain a quantity which can be used to assign x  to one 

of the two groups.  Also, we write 

 

                                          ( ) ( )ji

n

i
ijj kff xxx ,

1
∑
=

== α , nj ,,2,1 K= , (3.8) 

 

i.e. jf  is the value of f  evaluated at the thj  input data vector.  Finally, 

[ ]'
21 ,,, nfff K=f  denotes the vector with nfff ,,, 21 K  as components.  Combined 

once again with an intercept, the quantities nfff ,,, 21 K  are used to classify the training 

data cases based on the kernel classifier associated with ( )xf . 

 

Three proposals for feature-to-input space selection are discussed below.  The first and 

simplest of these is based on the idea of approximating ( )xf  in (3.7) with an expression of 

the form j

p

j
j x∑

=1
β , where now we may directly interpret jβ  as an indicator of the relative 
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importance of the thj  variable (provided the data have been appropriately scaled).  The 

second proposal is based on the concept of a pre-image: the pre-image of a vector ℑ∈ξ  is 

defined to be a vector ℵ∈x  such that ( ) ξx =Φ .  We will see that not all vectors ℑ∈ξ  

have pre-images, and in such cases we are compelled to work in terms of approximations to 

the pre-image.  The third proposal considers the quantities nfff ,,, 21 K  and tries to 

identify the input variables which in some sense best explain the observed variation in 

these values. 

 

 

3.3.1  RE-EXPRESSING THE DISCRIMINANT FUNCTION 
 

Consider ( ) ( )xxx ,
1

i

n

i
ikf ∑

=
= α , where the scalars nααα ,,, 21 K  have been determined by 

application of a kernel algorithm.  With b  denoting an intercept, ( ){ }bfsign +x  is a kernel 

classifier.  For some kernel functions it is possible to approximate ( )xf  by an expression 

of the form )(
1

j

p

j
j xh∑

=
β , for scalars pβββ ,,, 21 K depending on the input data and the 

values of nααα ,,, 21 K , and some function (.)h .  The somewhat naïve idea behind such a 

re-expression is to interpret jβ  as an indicator of the relative importance of the thj  

variable.  Consider for example the kernel discriminant function when a quadratic kernel 

function is used.  Ignoring the intercept term in the kernel discriminant function we have 

  

                                ( ) ( )i

n

i
ikf xxx ,

1
∑

=

= α  

                                        2

1
, i

n

i
i xx∑

=

= α  

                                        
2

11








= ∑∑

==
j

p

j
ij

n

i
i xxα  
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2 αα . (3.9) 

 

From this it would seem that we could use ∑
=

n

i
iji x

1

2α  as an indication of the importance of 

variable jx .  In the case of a kernel classifier based on the Gaussian kernel function we can 

use a first-order Taylor expansion as follows: 

 

                         ( )
2

1
ief

n

i
i

xxx −−

=
∑= γα  

                                  { }K−−+−−= ∑
=

21 422

1
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n

i
i xxxx γγα  
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ij
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ij

p

j

n

i
ij

n

i
i xxxx

1

2

11 11 1

2

1
2 αγαγαγα . (3.10) 

 

From this it would seem that the quantity ∑
=

n

j
iji x

1
α  should provide an indication of the 

importance of variable jx . 

 

 

3.3.2  PRE-IMAGE APPROXIMATIONS IN INPUT SPACE 
 

It has already been stated several times that application of a kernel method entails non-

linear transformation of input data nxxx ,,, 21 K  to feature vectors nφφφ ,,, 21
K  using a 

feature mapping ℑ→ℵΦ : .  The kernel trick is then used to compute inner products in the 

feature space ℑ .  In many applications, for example kernel classification, this approach is 



CHAPTER 3 
KERNEL VARIABLE SELECTION IN INPUT SPACE 

103 

sufficient and there is no need for a closer examination of quantities in ℑ .  Variable 

selection, however, seems to be an example of a problem where it would be useful to 

examine certain vectors in ℑ  more closely.  This is often a formidable problem, especially 

since ℑ  may be infinite dimensional.  The concept of the pre-image in ℵ  of a vector in ℑ  

seems to be worth investigating in this regard.  

 

Consider therefore a linear expansion ( ) i

n

i
iφαξξ ∑

=
=≡

1
α  in ℑ , where ( )ii xφ Φ= , 

ni ,,2,1 K= , with nxxx ,,, 21 K , belonging to an input space ℵ .  The pre-image of ξ  is a 

vector ( ) ℵ∈≡ ξzz  such that ( ) ξz =Φ .  Schölkopf and Smola (2002, p. 544) provides the 

following result which can be used to calculate this pre-image if it exists. 

 

 

LEMMA 3.1: COMPUTING THE PRE-IMAGE OF A LINEAR 

                                COMBINATION 

 

Consider ( )i
n

i
i xξ Φ∑=

=1
α .  If there exists a vector ℵ∈z  such that ( ) ξz =Φ , and an 

invertible function (.)kf , depending on the kernel function, such that ( ) ( )wuwu ,, kfk = , 

then we can compute the pre-image from 

 

                                              ( )∑ 







∑=

= =

−
p

j
j

n

i
jiik kf

1 1

1 , eexz α , (3.11) 

 

where { }n ee ,,1 K  is any orthonormal basis of ℵ . 

 

 
 
 
This is obviously a useful result for computing a pre-image if it exists.  Unfortunately, in 

many cases a pre-image for quantities ( )i

n

i
i xξ Φ= ∑

=1
α  does not exist.  In fact, for the 
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Gaussian kernel which we focus on, Schölkopf and Smola (2002, pp. 545-546) argue that 

the pre-image of ξ  will only exist in trivial cases consisting of a single term.  We are 

therefore forced into considering the somewhat less satisfactory option of finding an 

approximate pre-image for a given linear combination ξ .  The vector ℵ∈z~  is called an 

approximate pre-image of ξ  if  

 

                                                    ( ) ( ) 2~~ zξz Φ−=ρ  (3.12) 

 

is small.  As pointed out by Schölkopf and Smola (2002, p. 546), the meaning of small in 

this definition will depend on the particular application.  How can an approximate pre-

image be calculated?  We describe an approach discussed by Schölkopf and Smola (2002, 

pp. 547-548).  Consider the slightly more general problem of finding ℵ∈z~  such that 

( )z~Φβ  provides a good approximation to ( )i

n

i
i xξ Φ= ∑

=1
α .  For 1=β  this is exactly the 

pre-image problem.  Allowing 1≠β  makes sense since the length of z~  is not crucial.  A 

simple geometric argument (illustrated in Figure 3.3) confirms that this is equivalent to 

finding z~  which minimises the distance between ξ  and its orthogonal projection onto 

( )( )zΦspan , i.e. 

 

                                  
( )

( ) ( ) ( )
2

,
,

ξz
zz

zξ
−Φ

ΦΦ
Φ ( )

( ) ( )zz
zξ

ξ
ΦΦ

Φ
−=

,
, 2

2 . (3.13) 

 

Our problem is therefore to find z~  to maximise 
( )

( ) ( )zz
zξ
ΦΦ

Φ
,

, 2

.  For the Gaussian kernel this 

simplifies to finding z~  to maximise  

 

                        ( ) ( ) [ ] 2

1

2
2

1

2 ,, 





 −−=






=Φ ∑∑

==

n

i
ii

n

i
ii expk zxzxzξ γαα . (3.14) 
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                                                                                      ( )pℜΦ  

                                                 ξ  

                                                             ( )( )ξz~Φ  

 

 

 

 

 

 

Figure 3.3:  We try to find z%  which minimises the distance between ξ   and its orthogonal 

projection onto ( )( )zΦspan  

 

In our numerical study we used standard unconstrained optimisation software to find z~ .  

The corresponding optimal value of β  can then be computed from 

 

                                                
( )

( ) ( ) ( )zξ
zz

zξ ~,~,~
~,~

Φ=
ΦΦ

Φ
=β . (3.15) 

 

How can the concept of (approximate) pre-images be utilised for variable selection?  We 

investigated various possibilities empirically and found the following two options to be 

most promising.  Since our focus is on binary classification, it seems a sensible idea to 

select those variables maximising some measure of the difference between the groups of 

data points corresponding to the two populations.  Consider in this regard therefore the 

respective group means in ℑ , viz.  

 

                                                   ( )∑
∈

Φ=
jIi

i
j

j n
xΦ 1 , 2,1=j . (3.16) 
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The two pre-images corresponding to these feature space mean vectors, namely ( )1
~ Φz  and 

( )2
~ Φz  respectively, can be computed as explained above.  Our first proposal for variable 

selection based on pre-images is to select the variables corresponding to the largest 

absolute components of the difference vector ( ) ( )21
~~ ΦzΦzδ −= , which is equivalent to 

selecting the variables maximising the quantity ( ) ( ) 2
21

~~ ΦzΦz − .  This proposal is based 

on the assumption that variables which maximally separate the two groups in terms of the 

pre-images in ℵ  of their mean vectors in feature space, will also be the appropriate 

variables for separating the groups in feature space.  Note that this proposal is independent 

of the specific kernel classifier being used.  This variable selection proposal is investigated 

further in the simulation study discussed later, and we refer to it as a feature-to-input space 

proposal based on mean vectors, abbreviated to ( )MFI . 

 

It is also possible to propose a variable selection criterion based on pre-images and using 

information derived from the specific kernel classifier.  Consider in this regard the kernel 

classifier weight vector ( )∑
=

Φ=
n

i
ii

1
xw α , where the scalars nααα ,,, 21 K  are determined 

from the training data according to some kernel algorithm.  We can write this weight vector 

as 

 

                                    ( ) ( )∑∑
∈∈

Φ+Φ=+=
21

21
Ii

ii
Ii

ii xxwww αα . (3.17) 

 

In line with our first proposal we now consider the vector ( ) ( )21
~~ wzwzδ −=  and propose 

to select the variables corresponding to the largest absolute components of this vector.  

Here, ( )1
~ wz  and ( )2

~ wz  are once again the pre-images of 1w  and 2w  respectively.  This 

proposal, called feature-to-input space variable selection based on the weight vector and 

abbreviated to ( )WFI , is also investigated more thoroughly in the later simulation study. 
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3.3.3 SELECTING VARIABLES TO EXPLAIN THE VARIATION IN 

          nfff ,,, 21 K  

 

In this section we discuss the possibility of selecting input variables to explain the observed 

variation in the values nfff ,,, 21 K , where ( )ji

n

i
ij kf xx ,

1
∑
=

= α , nj ,,2,1 K= .  Note that 

{ }bfsign j + , with b  an intercept, is used to assign case j  in the training data to one of the 

two groups. 

 

A first possibility in this regard is to use multiple linear regression analysis.  Note first of 

all that jjf kα,= , where jk  is the thj  column of the kernel matrix K .  Consequently, 

if we write [ ]nkkkK K21= , we have 

 

                                                        KααKf =′=



















=

nf

f
f

M
2

1

 (3.18) 

 

(since the kernel matrix is symmetric).  Suppose our objective is to approximate 

nfff ,,, 21 K  as well as possible by using a function of the form ( ) ∑
=

=
p

k
kk xg

1
βx , with 

pβββ ,,, 21
K  constants which have to be determined.  Applying this function to 

nxxx ,,, 21 K  gives the values  

 

                                     ( ) j

p

k
jkkjj xgg xβx ,

1
=== ∑

=
β , nj ,,2,1 K= , (3.19) 

 

where [ ] '
21 ,,, pβββ K=β  and ''

2
'
1 ,,, nxxx K  are the rows of the data matrix X .  We can 

therefore write  
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                                                        Xβg =



















=

ng

g
g

M
2

1

. (3.20) 

 

We would now like to determine pβββ ,,, 21 K  to minimise the discrepancy between the 

values in f  and g .  If we measure discrepancy in a least squares sense, we look for 

pβββ ,,, 21 K  to minimise 

                                                           ∑ ∑
= =









−

n

i

p

j
ijji xf

1

2

1
β . (3.21) 

 

This is an ordinary least squares optimisation problem, with solution 

 

                            [ ] ( ) ( ) KαXXXfXXXβ ′′=′′=≡ −− 11
21

'ˆ,,ˆ,ˆˆ
pβββ K . (3.22) 

 

It follows that [ ] βXg ˆˆ,,ˆ,ˆˆ '
21

=≡
n

ggg K , and the accuracy of the least squares 

approximation is reflected in the value of the residual sum of squares,  

 

                                           ( ) ( )∑
=

−=−=
n

i
ii gferr

1

22ˆ gfβ . (3.23) 

 

There is probably little reason to believe that this approximation will be accurate.  

However, the motivation for investigating β̂  is different: we hope that the relative 

importance of the input variables will be reflected in the relative sizes of pβββ ˆ,,ˆ,ˆ 21 K .  

The following heuristic argument lends support to this hope. 

 

Consider the special case of a linear kernel function, i.e. ( ) jijik xxxx ,, = .  In this case 

the kernel matrix becomes XXK ′=  and (3.22) simplifies to  
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                                             αXβ ′=ˆ , i.e. ∑
=

=
n

i
ijij x

1

ˆ αβ , pj ,,2,1 K= . (3.24) 

 

Now suppose input variable 1X  separates the two groups well.  Since we work with our 

data in centred form, this implies that 1ix  will be (relatively) large positive for 

{ }1,,2,1 ni K∈  and (relatively) large negative for { }2,,2,1 ni K∈  (or, vice versa).  In 

addition, for any reasonable kernel classifier the (signed) α -coefficients corresponding to 

the 1Y = +  group (the first 1n  data cases) will differ in sign from the α -coefficients 

corresponding to the 1Y = −  group (the remaining 2n  data cases).  This implies that 1β̂  

will have a relatively large absolute value, thereby reflecting the importance of variable 

1X . 

 

Variable selection based on multiple linear regression analysis of nfff ,,, 21 K  is 

investigated further in the simulation study discussed later, and we refer to it as feature-to-

input space least squares selection, abbreviated to ( )LSFI . 

 

The above approach may be viewed from a broader perspective.  Apart from an intercept, 

the values nfff ,,, 21 K  contain all the relevant information for classifying the training data 

cases.  Naturally these values exhibit a certain degree of variation.  It seems a reasonable 

strategy to select the input variables which in some sense best explain this variation.  Such 

a strategy can be implemented in a variety of ways, of which multiple linear regression 

analysis as described above is a first possibility.  More generally, at a first level a 

distinction can be made between a regression and a classification approach to analysing the 

information provided by nfff ,,, 21 K .  In the regression approach we view nfff ,,, 21 K  as 

the values of a response variable and wish to identify the subset of input variables best 

explaining the variation in nfff ,,, 21 K .  In the classification approach, there are two 

options: we can either use ( )ii fsigny =ˆ  or iy , ni ,,2,1 K= , as training data labels.  Once 

again we seek the subset of input variables best explaining the variation in ˆiy  or iy , 
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ni ,,2,1 K= .  At a second level, we have to decide whether to proceed parametrically or 

non-parametrically when modelling the variation in the response values.  A parametric 

approach seems to be the less desirable option.  Firstly, it makes rigid assumptions, which 

may be too restrictive, and secondly, it is difficult to surmise which parametric form to use.  

A non-parametric approach does not suffer from these disadvantages.  Since classification 

and regression trees as well as random forests offer a natural way to quantify the 

importance of input variables, we propose their use in this regard. 

 

The above remarks are summarised in Table 3.7.  We propose linear discriminant analysis 

and multiple linear regression analysis as examples of parametric classification and 

regression techniques, although it must be noted that any other parametric classification or 

regression procedure may also be used. 

 

Table 3.7: Possible approaches toward modelling the variation in response values 

 CLASSIFICATION REGRESSION 

PARAMETRIC Linear discriminant analysis 
Multiple linear regression 

analysis 

NON-PARAMETRIC 
Classification trees or 

random forests 

Regression trees or random 

forests 

 
 
In an initial simulation study regression random forests were found to perform quite well as 

a variable selection strategy based on explaining the variation in nfff ,,, 21 K .  We 

therefore provide a more detailed discussion of random forests and the way in which they 

measure variable importance.  A random forest consists of an ensemble of classification or 

regression trees (regression trees in our application) grown on bootstrap samples of the 

original training data and featuring random selections of input variables to determine the 

split at a particular node.  More specifically, consider bootstrap samples 

( ) ( )( ){ }nibyb iib ,,2,1,, K== xT , drawn with replacement from the training data 

( ){ }niyii ,,2,1,, K== xT , Bb ,,2,1 K= .  The tree grown on bT  is denoted by bT , and 
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if this tree is applied to the original training data we obtain fitted values 
bnbb

fff ˆ,,ˆ,ˆ
21

K .  

Of course, some of the original data points will not be present in bootstrap sample b .  Let 

( )iT  represent the subset of trees from BTTT ,,, 21 K  that were trained on bootstrap samples 

not containing case nii ,,2,1, K= .  Then the random forest fitted value for case i  is 

defined to be 

 

                                                ( ) ( )i
Tb

bii TcardfRFf
i

∑
∈

= ˆˆ , (3.25) 

 

where ( )iTcard  is the number of trees in ( )iT .  Clearly, 
bi

f̂ , iTb ∈ , is an estimate of if  

based on a tree constructed from data which did not contain case i .  In this sense it is to be 

expected that the squared error ( )2ˆ
bii ff −  will provide a more realistic indication of the 

accuracy with which if  can be estimated than a squared error based on an estimate of if  

calculated from data containing case i .  Quantities such as 
bi

f̂  are called out-of-bag, 

calculated for data cases not included in the sample from which the tree bT  was 

constructed.  The performance of a random forest can be evaluated in terms of the out-of-

bag estimates, viz. ( )[ ]2

1

1 ˆ∑
=

−
n

i
iin RFff  .   

 

It is important to note that a random form of variable selection takes place when tree bT  in 

a random forest is grown.  At each node in bT  a subset dS  of pd <  input variables is 

randomly selected from the total set of p  available input variables.  At that specific node 

the variable on which to split is then determined in the usual tree-growing fashion from the 

variables in dS .  Naturally the set dS  will typically differ from node to node.  It is of 

course necessary to specify a value for d .  In this regard it has been shown that the random 

forest error rate depends on the correlation between any two trees, as well as the strength of 

each individual tree in the forest (cf. Breiman, 2001).  Small correlations between trees, 

combined with individual trees with low error rates, yield random forests with low error 
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rates.  Now specifying a small value for d  reduces the correlation between pairs of trees, 

but tends to increase the error rate of individual trees.  We therefore need to specify a value 

for d  which leads to a favourable trade-off between these two conflicting requirements.  

Fortunately the range of d-values leading to good random forest error rates has been found 

to be quite large.  A recommendation which is frequently implemented in practice is to use 

3pd = . 

 

Of particular interest to us is quantification of the relative importance of the input variables 

in a random forest.  The following approach, implemented in the software provided by 

Breiman and Cutler (http://stat-www.berkeley.edu/users/breiman/RandomForests/), was 

implemented in our simulation study.  Suppose we wish to quantify the importance of 

variable pjX j ,,2,1, K= .  Consider tree bT  and let bJ  denote the set of cases which 

were not used in training this tree.  We randomly permute the values of variable jX  for all 

the data cases in bJ .  Using the jX - permuted out-of-bag training patterns corresponding 

to bJ  we calculate estimates for all the if - values in bJ .  If this is done for all B  trees, we 

can calculate out-of-bag random forest estimates ( )RFf j
i

)(ˆ , ni ,,2,1 K= .  A measure of 

the importance of variable jX  is then obtained by calculating the relative increase in out-

of-bag error caused by permutation of the jX -values, i.e. the measure of variable 

importance for variable jX  is 

 

                                        ( )( )[ ] ( )[ ]2

1

2

1

ˆˆ ∑∑
==

−−
n

i
ii

n

i

j
ii RFffRFff . (3.26) 

 

Large values of this measure would be an indication that jX  is an important input 

variable. 

 

At this stage one might rightfully ask which of the above pre-image, regression and 

classification approaches should be used.  Such a recommendation can only be made once 

the properties of kernel methods constructed from the selected input variables, yielded by 

http://stat-www.berkeley.edu/users/breiman/RandomForests/
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each selection approach, have been evaluated.  Two properties are especially important in 

this regard.  Firstly, in terms of the generalisation error of the classifier based on the 

selected variables, we would naturally like our procedure to be able to classify new cases 

accurately.  Secondly, the probability with which a given selection procedure includes an 

input variable into the set of selected variables should be considered.  Here one would hope 

that variables which contribute to separation between the groups will be selected with high 

probability while pure noise variables would appear fairly rarely amongst the selected 

variables.  The complicated dependence on the data implied by a selection procedure, 

combined with the complex form of (some of) the selection criteria, make it impossible to 

investigate these post-selection classification properties of kernel methods analytically.  

Investigating the relative merits of the different selection procedures therefore necessitates 

one to conduct a simulation study. 

 

In the remainder of this chapter we describe a fairly extensive simulation study for 

evaluating the different variable selection proposals based on pre-images and regression 

and classification analyses of nfff ,,, 21 K , as described above.  Details regarding the 

experimental design, the steps entailed by each simulation repetition, and the generation of 

training and test data sets are provided in Sections 3.4.1 to 3.4.3.  In Section 3.4.4 we 

comment on the problem of specifying values for the hyperparameters in a kernel classifier, 

and in Section 3.4.5 we summarise the specific procedures which were investigated.  

Results of the study are discussed in Section 3.4.6. 
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3.4  MONTE CARLO SIMULATION STUDY 
 

3.4.1  EXPERIMENTAL DESIGN 
 

Naturally there are many factors influencing the post-selection properties of kernel 

classifiers, making it virtually impossible to conduct an exhaustive investigation in this 

regard.  In our simulation studies we attempted to investigate the influence of the most 

important of these factors, which we now proceed to describe. 

 

i. The underlying distribution from which the input variables arise.  Two cases 

were considered: a multivariate normal, and a multivariate lognormal 

distribution.  These distributions were selected as representative of symmetric 

and asymmetric distributions respectively. 

 

ii. The manner in which the two groups differ.  Firstly, we looked at situations 

where the groups differ with respect to location, and then only for a subset of m  

of the available input variables (see v below).  We will refer to this subset of 

variables as the set of separating or relevant input variables, whose indices are 

contained in V⊂SV , with ( ) mVcard S = .  The set of input variables which do 

not contribute to differences between the two groups will be denoted by 
S

V  

(with ( ) mpVcard S −= ).  Secondly, situations were investigated where the two 

groups differ only with respect to spread (variance-covariance structure) – once 

again only for the variables contained in a subset SV  of the set of available input 

variables. 

 

iii. The dimension of the problem, i.e. the total number p  of input variables in V , 

which was 10 in cases where p n<  and 60 whenever p n> . 

 

iv. We varied the training sample size, investigating three cases.  Firstly, small 

equal group sample sizes, viz. 1521 == nn ; secondly, relatively large equal 



CHAPTER 3 
KERNEL VARIABLE SELECTION IN INPUT SPACE 

115 

group sample sizes, viz. 10021 == nn .  Thirdly, to provide for scenarios where 

the prevalence of positive cases and negative cases differs (as is often the case), 

mixed sample sizes, viz. 75;25 21 == nn .  Combining these different sample 

sizes with the different values of p  specified in iii, gives us the following cases 

which were investigated: 1521 == nn  and 10=p  (referred to as small samples 

in the further discussion), 75;25 21 == nn  and 10=p  (referred to as mixed 

samples in the further discussion), and 10021 == nn  combined with 10=p  

(referred to as large samples in the further discussion).  In addition we also 

investigated the scenario 1521 == nn  and 60=p , referred to as wide samples 

in the further discussion, since the standard ‘data case’ by ‘variables’ input 

matrix has a ‘wide’ appearance for such data sets.  Note that we can also 

describe these scenarios in terms of the ratio of total sample size n  to the 

number of input variables p .  This gives pn - values of 3, 10, 20 and 0.5 for 

the scenarios described above. 

 

v. The fraction of relevant input variables contributing towards separation between 

the two groups, i.e. pm=π .  We used two fractions: 0.1 (thus, 1 out of 10, and 

6 out of 60), and 0.4 (thus, 4 out of 10, and 24 out of 60). 

 

vi. Finally, we varied the dependence amongst the input variables as reflected in 

their correlation coefficients.  Consider two distinct input variables, jX  and 

kX .  If kj XX , SV∈ , we denote the correlation between jX  and kX  by Sρ , 

and we assume that all such pairs exhibit this correlation.  If kj XX , SV∈ , we 

use the symbol Sρ  for the common correlation between all such pairs, and if 

jX SV∈ , kX SV∈ , the common correlation coefficient is denoted by SSρ .  For 

normal input data we consistently assumed that all irrelevant variables were 

independent, i.e. we used 0=Sρ  throughout.  For the relevant variables we 

used 0=Sρ  and 7.0=Sρ , combining this with two values for the correlation 
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between relevant and irrelevant variables, viz. 0=SSρ  and 9.0=SSρ .  For 

lognormal input data we also fixed 0=Sρ  and investigated the following 

cases: for 1.0=π , we combined each of 0=Sρ  and 7.0=Sρ  with each of 

0=SSρ  and 2.0=SSρ ; for 4.0=π , we combined 0=Sρ  and 7.0=Sρ  with 

0=SSρ , and 7.0=Sρ  with 25.0=SSρ .  See Appendix A.1, for a detailed 

motivation. 

 

 

We require notation to describe the cases arising from combination of the factors described 

above at their different levels.  Firstly, we write NL to denote cases where the training data 

were generated from two normal distributions differing with respect to location, NS for the 

cases where the two normal distributions differed with respect to spread, and LL and LS for 

the corresponding lognormal distribution cases.  For the NL scenarios, Table 3.8 

summarises the 32 different configurations that were investigated.  In this table, 1ρ  denotes 

the cases where 0,0 == SSS ρρ ; 2ρ  the cases where 0,7.0 == SSS ρρ ; 3ρ  the cases 

where 9.0,0 == SSS ρρ ; and 4ρ  the cases where 9.0,7.0 == SSS ρρ .  As noted 

above, we used 0=Sρ  throughout.  In later tables we refer to NL1-NL4, NL17-NL20 

collectively as small sample cases, to NL5-NL8, NL21-NL24 collectively as mixed sample 

cases, to NL9-NL12, NL25-NL28 collectively as large sample cases, and to NL13-NL16, 

NL29-NL32 collectively as wide sample cases.  Similar notation and conventions are used 

for the NS scenarios, with the obvious replacement of NL by NS, thereby giving rise to 

cases NS1 to NS32.  
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Table 3.8: Notation for NL (normal location differences) cases 

SAMPLE SIZE  

1521 == nn  75,25 21 == nn  10021 == nn  

1.0=π  NL1 NL5 NL9 
1ρ  

4.0=π  NL2 NL6 NL10 

1.0=π  NL3 NL7 NL11 
2ρ  

4.0=π  NL4 NL8 NL12 

1.0=π  NL17 NL21 NL25 
3ρ  

4.0=π  NL18 NL22 NL26 

1.0=π  NL19 NL23 NL27 

 

 

 

 

10=p  

4ρ  
4.0=π  NL20 NL24 NL28 

1.0=π  NL13   
1ρ  

4.0=π  NL14   

1.0=π  NL15   
2ρ  

4.0=π  NL16   

1.0=π  NL29   
3ρ  

4.0=π  NL30   

1.0=π  NL31   

 

 

 

 

60=p  

4ρ  
4.0=π  NL32   

 

 

For lognormal input data with location differences between the two groups, Table 3.9 

provides a similar summary of the different configurations which were investigated.  In this 

table, 1ρ  denotes the cases where 0,0 == SSS ρρ ; 2ρ  the cases where 0,7.0 == SSS ρρ ; 

3ρ  the cases where 2.0,0 == SSS ρρ ; 4ρ  the cases where 2.0,7.0 == SSS ρρ ; and 5ρ  

the cases where 25.0,7.0 == SSS ρρ .  Once again we used 0=Sρ  throughout.   
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Table 3.9: Notation for LL (lognormal location differences) cases 

SAMPLE SIZE  

1521 == nn  75,25 21 == nn  10021 == nn  

1.0=π  LL1 LL5 LL9 
1ρ  

4.0=π  LL2 LL6 LL10 

1.0=π  LL3 LL7 LL11 
2ρ  

4.0=π  LL4 LL8 LL12 

3ρ  1.0=π  LL17 LL20 LL23 

4ρ  1.0=π  LL18 LL21 LL24 

 

 

 

 

10=p  

5ρ  4.0=π  LL19 LL22 LL25 

1.0=π  LL13   
1ρ  

4.0=π  LL14   

1.0=π  LL15   
2ρ  

4.0=π  LL16   

3ρ  1.0=π  LL26   

4ρ  1.0=π  LL27   

 

 

 

 

60=p  

5ρ  4.0=π  LL28   

 

 

In later tables we refer to LL1-LL4, LL17-LL19 collectively as small sample cases, to LL5-

LL8, LL20-LL22 collectively as mixed sample cases, to LL9-LL12, LL23-LL25 collectively 

as large sample cases, and to LL13-LL16, LL26-LL28 collectively as wide sample cases.  

Similar notation and conventions are used for the LS scenarios, with the obvious 

replacement of LL by LS, thereby giving rise to cases LS1 to LS28. 
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3.4.2  STEPS IN EACH SIMULATION REPETITION 
 

For each of the configurations described in the previous section we performed 1000  Monte 

Carlo repetitions, each repetition entailing generation of a new training data set according 

to the specifications of the case.  Now consider any given relevant selection procedure.  

This procedure was applied to the training data, thereby obtaining a selected subset of m  

variables.  After mc  Monte Carlo repetitions we therefore ended up with mc  (potentially) 

different sets of input variables identified by this particular selection technique.  For each 

selection technique we are interested in two measures of its performance:  

 

i.  The probability with which an input variable is selected; 

ii.  The generalisation error if the particular selection technique is applied.   

 

The probability with which a given procedure selects variable jX  for inclusion in the 

model is estimated by  

 

                                  ( ) ∑
=

==
mc

k
kjj

I
mc

selectedisXvariablePp
1

1ˆˆ , (3.27) 

 

where mc is the number of Monte Carlo simulation repetitions, and kI  is the indicator of 

the event that variable jX  is selected for inclusion at Monte Carlo repetition k .  For 

estimating the generalisation error of a given selection technique, we have to use test data 

cases which are independent of the training data.  Hence, as part of every Monte Carlo 

repetition we also generated a new test data set according to the specifications for the 

training data.  The number of cases in the test data set was 2000 throughout, with the 

percentages corresponding to the two groups the same as in the training data.  These test 

data cases were classified using the relevant kernel classifier based only on the input 

variables selected from the corresponding training data set.  The misclassification error rate 

was calculated as the proportion of incorrectly classified test cases, and we used the 

average over the 1000 Monte Carlo repetitions of these misclassification error rates as an 

estimate of the generalisation error associated with the given selection proposal.  
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3.4.3  GENERATING THE TRAINING AND TEST DATA 
 

For a more detailed description of the way in which the NL, NS, LL and LS data sets were 

generated, consider the p - component mean vector jμ  and the pp ×  variance-covariance 

matrix jΣ  of the multivariate distribution for group 2,1, =jj .  Partition these vectors 

and matrices as follows: 

  

                                        jμ











=

jS

jS

μ
μ

,  and  jΣ 







=

SSS

SSjS

ΣΣ
ΣΣ

, (3.28) 

 

where the quantities indexed by the subscript S  correspond to the m  relevant input 

variables in SV , and the quantities indexed by S  correspond to the mp −  irrelevant input 

variables in SV .  Note therefore that SSΣ  contains the covariances between pairs of 

relevant and irrelevant variables. 

 

The following further notation is also required.  We assumed the same variance for all 

relevant variables and we denote this value for group j  by 2

jSσ , 2,1=j .  Similarly, the 

same variance was used for all irrelevant variables and for group j  this value is denoted by 
2

jS
σ , 2,1=j .  In group j  we therefore have ( )kXvar 2

jSσ=  for all kX SV∈ , and 

( )kXvar 2

jS
σ=  for all kX

S
V∈ .  Similarly, for 2,1=j , we write 

jS
τ ( )ki XXcovar ,=  for 

all ki XX , kiVS ≠∈ , , and 
jS

τ ( )ki XXcovar ,=  for all ki XX , kiV
S

≠∈ , .  Finally, let 

the common covariance in group j  between any pair of relevant and irrelevant variables, 

viz. ( )ki XXcovar , , iX SV∈ , kX SV∈ , be denoted by 
jSS

τ , 2,1=j . 

 

We are now ready to describe the parameter settings for the different scenarios which were 

investigated.  In all cases where the two groups differed with respect to location, i.e. all the 

NL and LL cases, we used [ ] '''
1

,00=μ  and [ ] '''
2

,01=μ .  This implies that the mean 
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vectors corresponding to the irrelevant variables were identical for both groups, while the 

relevant variables each had an expected value of 0 in the first group, and an expected value 

of 1 in the second group.  In these cases the two groups had identical variance-covariance 

matrices and we set 12 =
jSσ  and 202 =

jS
σ  for 2,1=j .  This implies that we had 

SSS
ρττ ==

21
, SSS

ρττ 20
21

==  and SSSSSS
ρττ 20

21
== , with Sρ , Sρ  and SSρ  as 

discussed in Section 3.4.1. 

 

In data scenarios where the two groups differed with respect to their variance-covariance 

structure, i.e. the NS and the LS cases, we set 0==
21
μμ , and generated differences 

between the two groups by assuming larger variation for the relevant variables in cases 

belonging to the second group, than for cases belonging to the first group.  More 

specifically, we set 12

1
=Sσ  and 102

2
=Sσ , while keeping 202 =

jS
σ  for 2,1=j .  In these 

cases we therefore had SS
ρτ =

1
, SS

ρτ 10
2

= , SSS
ρττ 20

21
== , SSSS

ρτ 20
1

=  and 

SSSS
ρτ 200

2
= , with Sρ , Sρ  and SSρ  once again as discussed in Section 3.4.1. 

 

Note finally that the Johnson translation system (Johnson, 1986) was used to generate 

lognormal data (cf. also Louw, 1997, and Section A.1 in this thesis). 

 

 

3.4.4  HYPERPARAMETER SPECIFICATION 
 

We saw in Chapter 2 that application of a kernel classifier requires specification of values 

for two types of parameters, viz. parameters used in the kernel function ( γ  in the Gaussian 

kernel), and a regularisation parameter ( λ ).  Viewed in different frameworks, kernel 

procedures typically involve solving constrained optimisation problems which contain a 

penalisation term.  Different formulations of these optimisation problems use either λ  or, 

in the place of λ , a so-called cost parameter value (C), with λ  inversely proportional to C. 
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In this section we briefly discuss the problem of appropriately specifying values for C  and 

γ .  We start by exploring the influence of different specifications of C  and γ  on the 

accuracy of kernel classifiers, and end the section with a few pointers to the relevant 

literature with regard to hyperparameter specification. 

 

We investigated the effect of hyperparameter values in kernel analyses via a numerical 

study.  We were particularly interested in knowing whether the influence of 

hyperparameter specification differs for kernel procedures based on different subsets of 

variables.  For this purpose we made use of the experimental design described in Sections 

3.4.1 and 3.4.3.  Each simulation repetition involved the following two steps.  We 

generated a training sample according to the data scenario under consideration, and used it 

to train an SVM and perform KFDA using 

 

i. the total number of available variables (in V ) 

ii. only the fraction of relevant variables (in SV ). 

 

We then generated a test data set according to the same data configuration, and calculated 

the test error achieved by each of the four classifiers.  We repeated this process using C and 

γ  which we varied over a grid, from ( )55 10;10 −− == γC  to ( )33 10;10 == γC .  We used 

1000 Monte Carlo repetitions, and for each classifier calculated average test errors over the 

1000 repetitions.   

 

Generally similar patterns were found for the different data scenarios considered.  As an 

example, surface plots for the test errors obtained in the NL data, viz. NL18, is presented 

below. 
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          a   SVMs based on V                                  b  SVMs based on SV  

 
          c  KFDA based on V                                  d  KFDA based on SV  

 

                    Figure 3.4:  Surface plots of average test errors in NL18 data 

 

 

Two observations are important in Figure 3.4.  Firstly, in kernel analyses the use of 

different subsets of variables have a significant impact on the effect of the specification of 

hyperparameter values.  Secondly, the effect of hyperparameters changes when different 

kernel procedures are used.  In the NL18 data configuration, for example, it seems as if the 

region of unsuitable hyperparameter specifications is somewhat smaller when SVMs or 

KFDA is based on SV  instead of on V .  Surface plots of the errors in SVMs are also quite 

different from those obtained for KFDA. 
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Many contributions in the literature focus on the problem of optimising hyperparameter 

values in kernel analyses.  Cross-validation is often used, although it is computationally 

expensive.  This may become problematic in cases where a large number of 

hyperparameters have to be specified. 

 

Many authors investigate specification of multiple hyperparameter values.  References in 

this regard include Amari and Wu (1999), Chapelle et al. (2004), Duan et al. (2001), 

Grandvalet and Canu (2002), Keerthi (2002), and Keerthi and Lin (2003).  Of particular 

interest is the paper by Hastie et al. (2004), in which it is shown that the regularised 

optimisation problem for SVMs (refer to Chapter 2) can be solved simultaneously for all 

values of the regularisation parameter λ .  It should also be noted that some of the ideas in 

the above papers have been extended to variable selection: input variables with relatively 

small associated kernel hyperparameter values are considered unimportant and are 

therefore discarded from the model.   

 

In the numerical investigations presented in the thesis, our concern with regard to the 

specification of hyperparameters was that it should not influence our recommendations 

regarding which selection procedures perform better. 

 

The way in which we specified γ  was based on the results of an empirical study in Steel 

and Louw (2004), which strongly suggest using the reciprocal of the number of variables in 

the model.  In this chapter, as well as in Chapters 4 and 5, our aim is to rank different 

variable subsets of the same size (m).  Allowing kernel analyses based on V  to be 

favoured, we therefore specified p1=γ .  According to the proposal by Steel and Louw 

(2004) this will not be the best choice for any of the post-selection models (a better 

specification would have been m1=γ ).  Since we are only interested in the relative 

performance of selection procedures, we do not consider this to be a drawback.  The 

p1=γ  specification places models based on V  at an advantage.  Hence the error of a 

selection procedure X relative to the no selection error (i.e. ( ) ( )VErrXErr ) can be 

regarded as a conservative estimate of improvements in accuracy gained via the use of X. 
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In numerical evaluations presented in the remainder of this chapter, we varied the cost 

parameter between 410−  and 410 .  The values for C that were used in Chapters 4 to 6 are 

given in the sections where the Monte Carlo simulation studies are described. 

 

 

3.4.5  THE VARIABLE SELECTION PROCEDURES 
 

Several variable selection proposals were introduced in Section 3.3.  All of these proposals 

were evaluated empirically in a simulation study along the lines described in Sections 3.4.1 

to 3.4.3.  It became evident, however, that not all of the proposed approaches are 

worthwhile.  Consequently the results presented and discussed in Section 3.4.6 are only for 

the following selection procedures. 

 

- Feature-to-input space pre-image approximations of the group mean vectors.  We 

abbreviate this to FI(M) – see the discussion in Section 3.3.2. 

- Feature-to-input space pre-image approximation of the kernel classifier weight 

vector.  We abbreviate this to FI(W) – see once again the discussion in Section 

3.3.2. 

- Using least squares multiple linear regression analysis to explain the variation in the 

values nfff ,,, 21 K , where ( )ji

n

i
ij kf xx ,

1
∑
=

= α , nj ,,2,1 K= .  We abbreviate this 

to FI(LS) – see the discussion in Section 3.3.3. 

- Using regression random forests to explain the variation in the values 

nfff ,,, 21 K .  We abbreviate this to FI(RF) – see once again the discussion in 

Section 3.3.3. 

- Using alignments to perform selection in feature space.  Since the selection in this 

case is performed entirely in feature space, we abbreviate this to F(A). 

 

The selection strategies discussed in Sections 3.4.1 to 3.4.3 that are excluded from the 

simulation study include the strategies based on re-expressing the kernel function 
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(discussed in Section 3.3.1), and several of the approaches for explaining the variation in 

nfff ,,, 21 K  discussed in Section 3.3.3. 

 

 

3.4.6  RESULTS AND CONCLUSIONS 
 

In this section we present and briefly discuss the results of the simulation study described 

above.  We focus on two aspects: the post-selection classification accuracy of SVMs after 

using the variable selection procedures in Section 3.4.5, and the probabilities with which 

each of the variables was selected. 

 

Consider first the post-selection classification accuracy of the selection procedures 

considered.  For easier comparison of the procedures, we calculated the size of the average 

test error obtained for a procedure X relative to that of the SVM based only on the relevant 

subset of variables, i.e. ( ) ( )SVErrXErr .  We will refer to these relative errors as selection 

values.  The obtained selection values are reported in two parts.  Firstly, in Tables 3.10-

3.13, we report all values pertaining to the first 16 configurations for each data scenario 

(i.e. the configurations where 0=SSρ , viz. NL1-NL16, NS1-16NS16, LL1-LL16, and LS1-

LS16).  Secondly, the selection values for the configurations where 0>SSρ , (viz. NL17-

NL32, NS17-NS32, LL17-LL28, and LS1-LS28), are given in Tables 3.14-3.17. 

 

The selection values in Tables 3.10-3.13 reveal that it is difficult to make an overall 

recommendation regarding the best performing variable selection procedures: the relative 

performances of the procedures seem to depend on the data scenario (NL, NS, LL or LS), as 

well as on the sample size. 
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Table 3.10: Selection values for NL data 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

NL1 0.0  0.0  0.1  1.19 1.16 1.17 1.16 1.16 
 

NL2 0.0  0.0  0.4  1.19 1.15 1.18 1.23 1.16 
 

NL3 0.7  0.0  0.1  1.20 1.15 1.16 1.15 1.16 
 

NL4 0.7  0.0  0.4  1.04 1.03 1.07 1.09 1.05 
 

MIXED SAMPLES 
 

NL5 0.0  0.0  0.1  1.03 1.00 1.02 1.00 1.01 
 

NL6 0.0  0.0  0.4  1.09 1.02 1.06 1.05 1.03 
 

NL7 0.7  0.0  0.1  1.03 1.00 1.02 1.00 1.01 
 

NL8 0.7  0.0  0.4  1.01 1.00 1.04 1.05 1.02 
 

LARGE SAMPLES 
 

NL9 0.0  0.0  0.1  1.00 1.00 1.00 1.00 1.00 
 

NL10 0.0  0.0  0.4  1.00 1.00 1.00 1.00 1.00 
 

NL11 0.7  0.0  0.1  1.00 1.00 1.00 1.00 1.00 
 

NL12 0.7  0.0  0.4  1.00 1.00 1.02 1.03 1.01 
 

WIDE SAMPLES 
 

NL13 0.0  0.0  0.1  1.75 1.55 1.57 2.44 3.51 
 

NL14 0.0  0.0  0.4  2.11 1.74 1.74 1.74 25.4 
 

NL15 0.7  0.0  0.1  1.08 1.05 1.09 1.05 1.55 
 

NL16 0.7  0.0  0.4  1.01 1.01 1.03 1.00 1.58 

 

 

The NL scenario (in Table 3.10) leads us to somewhat different conclusions than in the case 

of NS, LL and LS data.  Therefore first consider this setup.  In small sample cases, the 

selection procedures perform very similar – still FI(M) seems to perform the best, yielding 

slightly smaller average test errors than those obtained for FI(RF).  In mixed and large 
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samples the selection values corresponding to the different selection procedures all lie very 

close to 1, indicating that practically all the selection procedures consistently identify the 

correct variables.  This shows that the selection criteria perform well, especially in large 

samples.  The FI(M) and FI(W) criteria perform relatively well in wide sample cases, 

followed by F(A); whereas FI(RF) performs rather poorly. 

 

The relatively high selection values obtained for FI(RF) in wide NL samples lead us to also 

closely consider the FI(RF)-selection values obtained for NS, LL and LS data.  In this 

regard, we see that FI(RF) performs poorly only in wide samples from a normal 

distribution.  The NL14 and NS14 configurations are by far the most problematic: compare 

for example the FI(RF) selection value of 25.4 to the value of 1.74 achieved by FI(M) in 

NL14, and similarly, 83.17 with 48.33 in NS14.  The performance of FI(RF) is affected less 

in NL data. 

 

We now consider the NS, LL and LS data setups (in Tables 3.11 to 3.13 respectively).  Here 

F(A) and FI(RF) definitely stand out, consistently yielding the lowest selection values, and 

doing so by a relatively large margin.  The relative performance of F(A) and FI(RF) 

changes when the different data scenarios and sample sizes are considered.  In small NS 

and LL samples, F(A) outperforms FI(RF), whereas in mixed NS, LL and LS data the 

reverse is true.  Once again in wide NS, LL and LS data, F(A) performs best.  In large 

samples it is not clear which of the two procedures should be favoured. 

 

Concerning the performance of the remaining selection procedures, we again see that in 

data sets with different sizes, the relative performance of FI(M), FI(W) and FI(LS) vary.  

We have seen that in small NL data, FI(M) performs best.  In mixed NS, LL and LS data, 

FI(W) is favoured after FI(RF) and F(A), whereas in wide NS and LS samples, FI(LS) 

comes in third. 

 

Turning our attention to the configurations where 0>SSρ  (in Tables 3.14-3.17), we see 

that in essence, our conclusions and recommendations in the case of 0=SSρ  also hold for 
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these data setups.  We therefore only indicate instances where the remarks in the previous 

 

Table 3.11: Selection values for NS data 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

NS1 0.0  0.0  0.1  1.19 1.64 1.63 1.64 1.26 
 

NS2 0.0  0.0  0.4  1.44 2.82 2.58 2.87 1.63 
 

NS3 0.7  0.0  0.1  1.18 1.66 1.65 1.67 1.26 
 

NS4 0.7  0.0  0.4  1.23 1.89 1.84 1.78 1.37 
 

MIXED SAMPLES 
 

NS5 0.0  0.0  0.1  1.06 1.04 1.04 1.05 1.04 
 

NS6 0.0  0.0  0.4  3.98 3.34 2.66 2.91 1.05 
 

NS7 0.7  0.0  0.1  1.06 1.04 1.04 1.04 1.04 
 

NS8 0.7  0.0  0.4  3.35 2.81 2.28 2.29 1.07 
 

LARGE SAMPLES 
 

NS9 0.0  0.0  0.1  1.00 1.83 1.82 1.72 1.00 
 

NS10 0.0  0.0  0.4  1.00 3.11 2.34 2.83 1.00 
 

NS11 0.7  0.0  0.1  1.00 1.84 1.80 1.72 1.00 
 

NS12 0.7  0.0  0.4  1.00 2.88 2.18 2.17 1.00 
 

WIDE SAMPLES 
 

NS13 0.0  0.0  0.1  2.02 3.73 3.74 3.26 3.96 
 

NS14 0.0  0.0  0.4  7.67 48.33 45.67 5.50 83.2 
 

NS15 0.7  0.0  0.1  1.50 2.38 2.44 1.80 2.51 
 

NS16 0.7  0.0  0.4  1.31 2.19 2.38 1.19 3.26 

 

 

paragraphs cannot be extended to 0>SSρ  data setups, and further comment on some 

aspects that we feel is important to emphasise.  Firstly, in the small sample NL setup, we 
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see that FI(M) is no longer the best performer, and that the FI(LS) procedure should 

 

Table 3.12: Selection values for LL data 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

LL1 0.0  0.0  0.1  1.05 1.42 1.33 1.70 1.07 
 

LL2 0.0  0.0  0.4  1.03 1.15 1.15 1.71 1.01 
 

LL3 0.7  0.0  0.1  1.06 1.32 1.32 1.73 1.09 
 

LL4 0.7  0.0  0.4  1.02 1.09 1.10 1.28 1.05 
 

MIXED SAMPLES 
 

LL5 0.0  0.0  0.1  1.00 1.05 1.05 1.08 1.00 
 

LL6 0.0  0.0  0.4  1.02 1.02 1.07 1.17 1.00 
 

LL7 0.7  0.0  0.1  1.02 1.05 1.03 1.12 1.00 
 

LL8 0.7  0.0  0.4  1.00 1.00 1.00 1.16 1.00 
 

LARGE SAMPLES 
 

LL9 0.0  0.0  0.1  1.00 1.03 1.02 1.03 1.01 
 

LL10 0.0  0.0  0.4  1.00 1.06 1.06 1.00 1.00 
 

LL11 0.7  0.0  0.1  1.00 1.04 1.03 1.03 1.01 
 

LL12 0.7  0.0  0.4  1.00 1.02 1.30 1.21 1.00 
 

WIDE SAMPLES 
 

LL13 0.0  0.0  0.1  1.10 1.56 1.67 3.61 1.05 
 

LL14 0.0  0.0  0.4  1.10 1.48 1.48 1.48 1.48 
 

LL15 0.7  0.0  0.1  1.07 1.36 1.36 1.37 1.11 
 

LL16 0.7  0.0  0.4  1.04 1.13 1.06 1.06 1.22 

 

 

rather be used.  In wide NL data sets, where formerly FI(W) came second to FI(M), FI(W) 

now performs best, followed by FI(LS).  Secondly, as was seen in the 0=SSρ  data setups, 
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the use of FI(RF) can also in the case of 0>SSρ  not be recommended for wide NL and NS 

 

 Table 3.13: Selection values for LS data 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

LS1 0.0  0.0  0.1  1.24 1.97 1.92 2.16 1.12 
 

LS2 0.0  0.0  0.4  1.23 1.88 1.74 2.24 1.13 
 

LS3 0.7  0.0  0.1  1.26 1.98 1.92 2.14 1.15 
 

LS4 0.7  0.0  0.4  1.17 1.55 1.65 1.53 1.16 
 

MIXED SAMPLES 
 

LS5 0.0  0.0  0.1  1.21 1.17 1.13 1.15 1.00 
 

LS6 0.0  0.0  0.4  3.58 2.28 1.84 2.56 1.02 
 

LS7 0.7  0.0  0.1  1.21 1.17 1.14 1.15 1.01 
 

LS8 0.7  0.0  0.4  3.19 1.65 2.04 2.03 1.10 
 

LARGE SAMPLES 
 

LS9 0.0  0.0  0.1  1.01 1.66 1.12 2.02 1.00 
 

LS10 0.0  0.0  0.4  0.95 1.33 1.07 2.03 0.95 
 

LS11 0.7  0.0  0.1  1.01 1.65 1.12 2.12 1.00 
 

LS12 0.7  0.0  0.4  1.00 1.12 1.52 1.59 1.00 
 

WIDE SAMPLES 
 

LS13 0.0  0.0  0.1  1.51 2.98 2.95 2.83 1.41 
 

LS14 0.0  0.0  0.4  1.79 4.39 4.30 1.93 1.98 
 

LS15 0.7  0.0  0.1  1.42 2.34 2.42 1.67 1.43 
 

LS16 0.7  0.0  0.4  1.41 1.97 2.14 1.23 1.78 
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Samples.  For example, the NL14 selection value for FI(RF) is 25.89, compared to a value 

of 1.42 in the case of FI(M).  Thirdly, in the NS, LL and LS scenarios once again F(A) and 

FI(RF) dominate. 

Table 3.14: Selection values for NL data 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

NL17 0.0  9.0  0.1  1.2 1.15 1.16 1.08 1.16 
 

NL18 0.0  9.0  0.4  1.13 1.11 1.07 1.04 1.13 
 

NL19 0.7  9.0  0.1  1.19 1.15 1.15 1.08 1.16 
 

NL20 0.7  9.0  0.4  1.03 1.03 1.04 1.04 1.03 
 

MIXED SAMPLES 
 

NL21 0.0  9.0  0.1  1.04 1.00 1.01 1.00 1.01 
 

NL22 0.0  9.0  0.4  1.06 1.01 1.02 1.01 1.03 
 

NL23 0.7  9.0  0.1  1.04 1.01 1.01 1.00 1.01 
 

N24 0.7  9.0  0.4  1.00 1.00 1.02 1.02 1.00 
 

LARGE SAMPLES 
 

NL25 0.0  9.0  0.1  1.00 1.00 1.00 1.00 1.00 
 

NL26 0.0  9.0  0.4  1.00 1.00 1.01 1.00 1.01 
 

NL27 0.7  9.0  0.1  1.00 1.00 1.00 1.00 1.00 
 

NL28 0.7  9.0  0.4  1.00 1.00 1.00 1.00 1.00 
 

WIDE SAMPLES 
 

NL29 0.0  9.0  0.1  1.18 1.28 1.05 1.21 3.53 
 

NL30 0.0  9.0  0.4  1.16 1.42 0.11 0.05 25.89 
 

NL31 0.7  9.0  0.1  1.07 1.09 1.07 1.07 1.64 
 

NL32 0.7  9.0  0.4  1.00 1.01 0.87 0.97 1.59 
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Our conclusions with regard to the relative performances of F(A) and FI(RF) in small, 

mixed and large samples when 0=SSρ  carry directly over to cases where 0>SSρ .  In 

wide samples, however, a distinction between the two procedures is not that clear, except 

in LL data, where F(A) performs best. 

 

Table 3.15: Selection values for NS data (continued) 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

NS17 0.0  9.0  0.1  1.2 1.66 1.64 1.67 1.27 
 

NS18 0.0  9.0  0.4  1.47 2.81 2.58 2.83 1.65 
 

NS19 0.7  9.0  0.1  1.19 1.67 1.64 1.66 1.26 
 

NS20 0.7  9.0  0.4  1.21 1.91 1.85 1.77 1.36 
 

MIXED SAMPLES 
 

NS21 0.0  9.0  0.1  1.06 1.04 1.04 1.04 1.04 
 

NS22 0.0  9.0  0.4  3.97 3.27 2.57 2.85 1.05 
 

NS23 0.7  9.0  0.1  1.07 1.05 1.04 1.05 1.04 
 

NS24 0.7  9.0  0.4  3.31 2.83 2.22 2.23 1.25 
 

LARGE SAMPLES 
 

NS25 0.0  9.0  0.1  1.00 1.83 1.80 1.70 1.00 
 

NS26 0.0  9.0  0.4  1.00 3.13 2.29 2.76 1.00 
 

NS27 0.7  9.0  0.1  1.00 1.82 1.79 1.70 1.00 
 

NS28 0.7  9.0  0.4  1.00 2.78 2.13 2.16 1.00 
 

WIDE SAMPLES 
 

NS29 0.0  9.0  0.1  1.74 2.22 2.26 1.90 3.93 
 

NS30 0.0  9.0  0.4  33.8 40.8 17.8 15.0 56.4 
 

NS31 0.7  9.0  0.1  1.31 1.66 2.17 1.56 0.94 
 

NS32 0.7  9.0  0.4  1.32 1.73 1.91 1.23 1.69 
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Table 3.16: Selection values for LL data (continued) 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

LL17 0.0  20.0  0.1  1.03 1.36 1.14 1.26 1.10 
 

LL18 0.7  20.0  0.1  1.03 1.31 1.17 1.23 1.08 
 

LL19 0.7  25.0  0.4  1.01 1.04 1.08 1.15 1.05 
 

MIXED SAMPLES 
 

LL20 0.0  20.0  0.1  1.00 1.00 1.00 0.96 0.94 
 

LL21 0.7  20.0  0.1  1.02 1.06 1.05 1.03 1.00 
 

LL22 0.7  25.0  0.4  1.00 1.03 1.03 1.18 1.06 
 

LARGE SAMPLES 
 

LL23 0.0  20.0  0.1  1.00 1.01 1.00 1.04 1.04 
 

LL24 0.7  20.0  0.1  1.00 1.03 1.02 1.04 1.01 
 

LL25 0.7  25.0  0.4  1.00 1.07 1.40 1.43 1.01 
 

WIDE SAMPLES 
 

LL26 0.0  20.0  0.1  1.00 1.19 1.10 1.10 1.00 
 

LL27 0.7  20.0  0.1  1.02 1.19 1.20 1.19 1.10 
 

LL28 0.7  25.0  0.4  1.01 1.12 1.02 0.98 1.10 

 

 

Consider now the selection percentages with which each of the input variables was 

selected.  In Figure 3.5 we present the percentages obtained for F(A), FI(RF) and FI(M) in 

the second configuration of each data scenario. 
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Table 3.17: Selection values for LS data (continued) 
 

SMALL SAMPLES 

 Sρ  SSρ  π  F(A) FI(M) FI(W) FI(LS) FI(RF) 
 

LS17 0.0  20.0  0.1  1.28 1.95 1.58 1.95 1.07 
 

LS18 0.7  20.0  0.1  1.27 1.88 1.50 1.92 1.12 
 

LS19 0.7  25.0  0.4  1.16 1.42 1.50 1.50 1.16 
 

MIXED SAMPLES 
 

LS20 0.0  20.0  0.1  1.21 1.13 1.03 1.15 1.00 
 

LS21 0.7  20.0  0.1  1.20 1.14 1.11 1.15 1.00 
 

LS22 0.7  25.0  0.4  3.17 1.43 1.94 2.01 1.08 
 

LARGE SAMPLES 
 

LS23 0.0  20.0  0.1  0.99 1.25 1.02 2.02 0.99 
 

LS24 0.7  20.0  0.1  1.01 1.26 1.01 2.12 1.00 
 

LS25 0.7  25.0  0.4  1.00 1.05 1.62 1.62 1.00 
 

WIDE SAMPLES 
 

LS26 0.0  20.0  0.1  1.07 1.41 1.16 1.34 1.08 
 

LS27 0.7  20.0  0.1  1.15 1.71 1.58 1.51 1.21 
 

LS28 0.7  25.0  0.4  1.16 1.43 1.51 1.48 1.14 
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Figure 3.5:  Selection percentages for the F(A), FI(RF) and FI(M) procedures 

 

 

Figure 3.5 substantiates our findings based on selection values.  In the small sample NL 

setup, FI(M) performs relatively well, whereas in NS, LL and LS scenarios, the use of 

FI(RF) and FI(A) is preferred. 
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3.5  SUMMARY 
 

The basic question addressed in this chapter concerned the space in which selection should 

be performed.  We found that although selection in input space is sufficient for NL data, 

this is definitely not the case for the other data configurations.  It is therefore necessary to 

utilise information arising from feature space in the selection process. 

 

In this regard we proposed a new approach: so-called feature-to-input space selection.  The 

basic idea underlying this approach is to combine the information obtained from feature 

space computations with the easy interpretation in input space.  On a technical level 

implementation of such an approach requires calculation of pre-images of quantities in 

feature space.  We discussed this aspect in some detail.  This led to the definition of several 

new FI selection criteria.  From another angle we also investigated the possibility of 

selecting variables in input space which best explain the variation in the discriminant 

function values obtained by applying the kernel algorithm to the input patterns. 

 

The results of an empirical study investigating the properties of the new selection 

procedures were reported and discussed.  Although no clear winner emerged in all cases, 

the following general conclusions can be made.  One of the FI criteria, viz. FI(RF), 

performed very well, with the exception of wide normal data sets.  This suggests that the 

new FI approach is promising, deserving of further exploration.  As expected, the 

alignment, being the only criterion computed entirely in feature space, also did well.  The 

other three criteria performed very similar. 
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CHAPTER 4  

 ALGORITHM-INDEPENDENT AND 
ALGORITHM-DEPENDENT SELECTION IN 

FEATURE SPACE 
 
 
 

4.1  INTRODUCTION 
 

Different approaches towards variable selection for kernel methods were introduced in 

Chapter 3.  We saw that selection could be performed in input space, using for example a 

naïve criterion such as the correlations between the response and the input variables; in 

feature space, using a criterion such as the alignment, or based on feature-to-input space 

criteria such as pre-images.  The empirical study discussed in Chapter 3 showed that the 

merits of these different approaches depend on the distribution generating the training 

patterns and the nature of the separation between the groups.  For example, for data from 

normal populations differing with respect to location, it may well be sufficient to restrict 

attention to selection strategies in input space.  This changes, however, when we are faced 

with NS, LL or LS data setups, when selection in feature space or selection using feature-to-

input space concepts seems to be preferable. 

 

In this chapter we therefore present a more thorough discussion of variable selection based 

on feature space criteria.  We start by providing some details regarding the two kernel 

classification procedures which play a role in the remainder of the thesis: the support vector 

machine (SVM) in Section 4.2 and kernel Fisher discriminant analysis (KFDA) in Section 

4.3.  In Section 4.4 we make a distinction between criteria which may be applied in any 

kernel classification problem (so-called algorithm-independent criteria), and criteria which 

depend on output from the specific kernel algorithm and which are therefore only 

applicable in cases where this algorithm is employed.  The important role played by the 

kernel matrix will become clear during this discussion.  Section 4.5 is devoted to a fairly 
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brief discussion of feature space geometry.  This enables us to define several variable 

selection criteria which are suitable for application in any kernel classification context.  We 

define these criteria in Section 4.6.1, and we report and discuss the results of a simulation 

study investigating the properties of the criteria in Section 4.6.2.  Section 4.7 is devoted to 

the class of algorithm-dependent selection criteria.  Definitions of such criteria are given in 

Section 4.7.1, followed by numerical evaluations of their properties and performance in 

Section 4.7.2.  Section 4.8 contains a summary of the chapter. 

 

 

4.2  SUPPORT VECTOR MACHINES 
 

The introduction of support vector machines in a paper delivered at the 1992 Annual 

Workshop on Computational Learning Theory is widely acknowledged as one of the first 

contributions to kernel procedures (cf. Boser et al., 1992).  Interestingly, the mathematics 

which underlies SVM algorithms had already been available since the early 1960s.  It took 

however approximately three decades to bring together all the required mathematical 

results to produce an SVM methodology which could be applied to real-world problems.  

This is perhaps understandable, since the SVM requires synthesis of concepts from a wide 

range of fields: from generalisation theory, regularisation and the control of algorithm 

complexity, to functional analysis, reproducing kernel Hilbert spaces and optimisation 

theory.  An algorithm which is equivalent to that of SVMs, but which is restricted to fitting 

hyperplanes in input space, was in fact introduced by Vapnik and Lerner (1963).  Other 

important early contributions include Cover (1965), Duda and Hart (1973), and Anlauf and 

Biehl (1989).  Aronszajn (1950) provided an early discussion of the use of kernel functions, 

while Aizerman et al. (1964) contributed interpretational insight to the use of kernel 

functions, viz. that they provide a way of calculating inner products in a feature space.  

Cristianini and Shawe-Taylor (2000) is the first comprehensive introduction to SVMs.  At 

this time research on SVMs had reached a maturity which made many view SVMs as a 

subfield of machine learning and statistics in its own right.  Currently, SVMs are still a fast 

developing area of research, and have also become popular as a powerful tool in practice. 
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The SVM for classification may be explained and viewed from several different 

perspectives.  For example, an SVM discriminant function is usually written as 

( ) ( )∑
=

+=
n

i
iii bkyf

1
, xxx α , where nyyy ,,,

21
K  are the class labels of the training patterns, 

but we can of course incorporate the labels into the α -parameters, thereby obtaining 
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, xxx α , (4.1) 

 

which is the general form of kernel discriminant functions given in Section 2.2.3.  Hence 

the first perspective of support vector classifiers is that they belong to a more general class 

of procedures having the form in (4.1), with a specific algorithm for determining values for 

the parameters from the training data. 

 

Another quite different perspective is provided by regularisation theory.  In Section 2.2.4 

we saw that different kernel methods may be viewed as solutions to different regularisation 

problems of the form 

 

                                  ( ) ( )( ) ( )
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where L  is a loss function and ( )fΩ  denotes the regularisation penalty applied to a 

function f .  If we take L  to be the soft margin loss function (see Figure 2.6) and use an 

2L  penalty functional, the SVM is obtained as the solution to the optimisation problem in 

(4.2) (see also Hastie et al., 2001, p. 380).  From this perspective one would tend to 

conclude that the SVM effectively avoids the danger of overfitting training data in high 

dimensional spaces.  Such a conclusion is however based on the assumption that the 

regularisation parameter λ  is specified ‘optimally’.  (For a thorough discussion of SVMs 

in a regularisation framework, the reader is referred to the paper by Evgeniou et al., 2000). 
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Although the regularisation perspective on SVMs is very useful, the original SVM proposal 

was from an entirely different point of view.  In the next three sections we explain the 

original motivation for SVMs.  We start in Section 4.2.1 by considering the case where the 

training patterns corresponding to the two groups are linearly separable when viewed in 

input space ℵ .  It will become clear in this section that the SVM is based on a simple and 

intuitively acceptable argument for finding a separating hyperplane.  The basic idea of a 

separating hyperplane is extended in Section 4.2.2 to the scenario where the training 

patterns are not linearly separable in input space, but in fact only in a feature space 

corresponding to some non-linear transformation Φ .  In this section the use of a kernel 

function elegantly solves the problem of computing inner products in a feature space.  The 

most general case is discussed in Section 4.2.3: the training patterns from the two groups 

are now no longer linearly separable even in feature space. 

 

The concept of a hyperplane plays an important role when discussing SVMs.  A hyperplane 

or affine set is an extension of the concept of a line to higher dimensional spaces.  

Hyperplanes can be defined in input or in feature space.  In input space a hyperplane 

( )bL ,wℵ  is the set ( )bL ,wℵ { }0,: =+ℜ∈= bp xwx .  A similar definition holds in 

feature space, with a hyperplane ( )bL ,wℑ  now defined to be the set 

( )bL ,wℑ { }0,: =+ℜ∈= bN zwz .  The reader is referred to Appendix B for a more 

detailed discussion of hyperplanes and their properties. 

 

 

4.2.1  THE TRAINING DATA ARE LINEARLY SEPARABLE IN INPUT  

           SPACE 
 

Reconsider the binary classification problem described in Chapter 1.  We observe training 

data ( ){ }niyii ,,2,1,, K== xT  on a response variable { }1,1 +−∈Y  and p  classification 

variables pXXX ,,, 21 K  for 21 nnn +=  sample cases.  Our objective is to use T  to find a 

discriminant function ( )xf  so that the classifier ( ){ }xfsign  can be used to assign a new 
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case with observed values of the classification variables in the vector x  to one of the two 

groups.  In this section we assume that the training patterns are linearly separable in input 

space, i.e. that there is at least one hyperplane ( )bL ,wℵ  which perfectly separates the two 

groups of training patterns.  Intuitively this means that all the input patterns to the ‘left’ of 

( )bL ,wℵ  will belong to one of the groups and all the patterns to the ‘right’ will belong to 

the second group.  Of course, in such scenarios there will typically be many separating 

hyperplanes for the training data, and this is illustrated in Figure 4.1 for the two-

dimensional case.  The question to be answered in such cases is: which one of the many 

separating hyperplanes should we use?  We now describe the answer to this question 

provided by the SVM. 

-4 -2 0 2 4

-4
-2

0
2

4

X1

X
2

 
Figure 4.1:  Many separating linear functions in two dimensions 

 

 

It is clear that for every separating hyperplane ( )bL ,wℵ  we have ( ) ,0, >+ by ii xw  

1,2, ,i n= K .  By appropriate rescaling of the hyperplane parameters w  and b  we can 

therefore find w  and b  such that ( ) ,1, ≥+ by ii xw 1,2, ,i n= K , with equality for at least 

one value of i .  This shows that we can restrict attention to hyperplanes for which 
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                                         { } 1,,2,1,, ==+ nibmin i Kxw . (4.3) 

 

A hyperplane ( )bL ,wℵ  satisfying (4.3) is called a canonical hyperplane for the training 

patterns nxxx ,,, 21 K .  Note that if ( )bL ,wℵ  is a canonical hyperplane for nxxx ,,, 21 K , 

then ( )bL −−ℵ ,w  will also be canonical.  Since the unsigned distance from a point pℜ∈x  

to a hyperplane ( )bL ,wℵ  is given by  

 

                                                   ( ) wxwxw bd b += ,, , (4.4) 

 

it follows from (4.3) that the (unsigned) distance from a canonical hyperplane ( )bL ,wℵ  to 

the point closest to the hyperplane is simply w1 . 

 

Consideration of the distances between training patterns and a hyperplane leads to the 

concept of the margin of a data set with respect to a hyperplane.  The geometric margin of 

a point pℜ∈x  with respect to a hyperplane ( )bL ,wℵ  is simply ( )xw bd , , while the 

geometric margin of the training patterns nxxx ,,, 21 K  with respect to this hyperplane is 

defined to be ( ){ }nid min ib ,,2,1,, K=xw .  The geometric margin of nxxx ,,, 21 K  with 

respect to a canonical hyperplane ( )bL ,wℵ  is therefore w1 .  (For more details on 

margins the reader is referred to Appendix B).  In the discussion below we will simply 

refer to the margin, meaning the geometric margin of nxxx ,,, 21 K  with respect to a 

specified hyperplane, and we will denote this quantity by g .  Figure 4.2 illustrates the 

geometric margin of a canonical hyperplane. 

 

The SVM separating hyperplane for a linearly separable set of training patterns 

nxxx ,,, 21 K  is now defined to be the hyperplane with maximum margin.  There are 

several arguments which can be presented to support the sensibility of such an approach.  

Consider first the following motivation, based on Schölkopf and Smola, 2002, pp. 192-193.  
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Figure 4.2: The geometric margin of a canonical separating hyperplane 

 

 

It is reasonable to assume that the test and training patterns are generated by the same 

underlying distribution.  More specifically, imagine the test data to be generated according 

to some distribution in circular regions around each of the training patterns.  We would 

obviously like to classify as many as possible of the test data cases correctly.  For test data 

cases to be classified correctly the circular region around a training pattern into which these 

test cases fall has to be on the same side of the separating hyperplane as the training pattern 

itself.  The probability of this occurring is increased by maximising the margin of the 

training patterns with respect to the hyperplane.  Figure 4.2 illustrates this argument.  

Suppose the nearest training case to a hyperplane ( )bL ,wℵ  is ix~ , with corresponding 

training label 1~ +=iy .  Now consider an unseen pattern *
ix  with 1* +=iy .  Clearly, a 

larger distance between ( )bL ,wℵ  and i%x  leaves more room for *
ix  to lie between ( )bL ,wℵ  

and i%x  and still be classified correctly.  In Figure 4.3 the star indicates the unseen input 

pattern which would not have been classified correctly were the margin any smaller. 
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Figure 4.3: Maximising the geometric margin 

 

 

A second more technical argument supporting maximisation of the margin is based on 

expressions providing upper bounds for the generalisation error of a separating hyperplane.  

The reader is referred to Schölkopf and Smola (2002, p. 194) for an example of such a 

bound.  In essence these bounds, which hold with some prescribed probability calculated 

with respect to the distribution generating the data, are of the form ( )( ) ( )ghbLErr ≤ℵ ,w , 

where ( )( )bLErr ,wℵ  is the generalisation error of the hyperplane classifier ( )bL ,wℵ , and 

( )gh  is a decreasing function of the margin g .  Hence, increasing the margin will decrease 

the bound ( )gh , implying that we obtain a classifier with better generalisation error 

behaviour and thereby supporting maximisation of the margin. 

 

The above discussion explains why the SVM is frequently referred to as a maximum 

margin classifier.  Another term frequently used for the hyperplane having maximum 

margin is the optimal separating hyperplane (OSH).  We see that for the simple case where 

the training patterns are linearly separable in input space the SVM is equivalent to the OSH 

classifier.   
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Having described and motivated the concept underlying the SVM, we now focus on the 

technical problem of actually finding the OSH, assuming that it exists.  Since the margin of 

nxxx ,,, 21 K  with respect to a canonical hyperplane ( )bL ,wℵ  is simply w1 , we can 

formulate the following optimisation problem. 

 

PROBLEM 4.1 

 

Consider a linearly separable training data set T .  Find the hyperplane ( )bL ~,~wℵ  which 

solves the optimisation problem 

 

                         { }2
2
1

,
w

w b
min  subject to ( ) ,1, ≥+ by ii xw 1,2, ,i n= K . (4.5) 

 

 

 

The hyperplane ( )bL ~,~wℵ  solving Problem 4.1 will be the OSH.  Note that we consider 

22w  rather than w  merely for mathematical convenience.  Since the quantity to be 

minimised in Problem 4.1 is quadratic, and since minimisation takes place under linear 

constraints, we see that this problem is a convex quadratic optimisation problem having a 

global minimiser.  This is a particularly attractive property of the SVM: we obtain the SVM 

as the unique solution to an optimisation problem, without having to worry about the 

possibility of getting stuck at a local minimum.  In order to solve Problem 4.1 we import a 

Lagrange multiplier for each restriction.  This enables us to write down an expression for 

the primal Lagrangian of the problem: 

 

                                   ( ) ( )[ ]∑
=

−+−=
n

i
iii bybL

1

2
2
1 1,,, xwwαw α , (4.6) 

 

where nααα ,,, 21 K  are the non-negative Lagrange multipliers.  The Lagrangian in (4.6) 

has to be minimised with respect to w  and b , and maximised with respect to 
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nααα ,,, 21 K .  In optimisation theory it is well known (see for example Rockafellar, 1970) 

that it is easier to solve the so-called dual Lagrangian formulation of Problem 4.1, which is 

obtained by differentiating ( )αw ,,bL  with respect to w  and b , setting the derivatives 

equal to zero and substituting the resulting equations back into the primal Lagrangian, 

( )αw ,,bL .  In our case the resulting equations are 

 

                                             ( ) 0=−=
∂

∂
∑
=

i

n

i
iiybL xw

w
αw

1

,, α , and (4.7) 

                                             ( ) 0,,
1

==
∂

∂
∑
=

n

i
iiy

b
bL ααw . (4.8) 

 

Substituting i

n

i
iiy xw ∑

=
=

1
α  and 0

1
=∑

=

n

i
iiy α  back into the primal Lagrangian in (4.6) yields 

the dual form of the optimisation problem: 

 

PROBLEM 4.2 

 

              ( )








+−= ∑∑∑
===

n

i
i

n

ji
jijiji

n

ji
jijiji yyyyWmax
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               subject to 0
1

=∑
=

n

i
iiy α  and 0≥iα , ni ,,2,1 K= . 

 

 

 

This is a quadratic programming problem and it can be solved by using standard software.  

Denote the maximising α  by α~ , then the optimal weight vector %w  can easily be obtained 

from (4.7), viz. i
n

i
iiy xw ∑=

=1

~~ α .  This provides us with a computable expression for the 

weight vector of the OSH. 
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There are various ways of determining a value for the intercept b~  of the maximum margin 

classifier.  The most commonly used method is based on the so-called Karush-Kuhn-

Tucker (KKT) optimality conditions, viz. 

 

                                        ( )[ ] 01, =−+ by iii xwα ,  1,2, ,i n= K . (4.10) 

 

It follows from the theory of quadratic programming that the KKT conditions are satisfied 

at the optimal solution.  This implies that whenever 0~ >iα , ( ) 1
~

,~ =+ by ii xw  from which 

it follows that iiyb xw,~~
−=  (since in a dichotomous classification setup 1±=iy ).  For 

the sake of increased numerical stability it is common practice to average iiyb xw,~~
−=  

over all training patterns for which 0~ >iα .  In situations where the two classes overlap, 

and especially also in cases where the sample number of observations from the two classes 

are unbalanced, contributions in the literature have shown that the above method for 

determining b%  can be improved to yield smaller generalisation errors.  Alternatively, one 

could use the value b%  causing ( )ferr  to be a minimum. 

 

How do we use the OSH for classification of new cases?  The OSH is the set 

( )bL ~,~wℵ { }0
~

,~: =+ℜ∈= bp xwx , and this defines the decision boundary between the 

two groups.  We classify a new case with training pattern x  into one of the two groups by 

using the classifier 

 

                                        ( ){ }








+= ∑
=

n

i
iii bysignfsign

1

~,~ xxx α . (4.11) 

 

Note that in terms of the training patterns computation of (4.11) only entails evaluation of 

an inner product.  The classifier in (4.11) is the simplest example of a support vector 

classifier: because the discriminant function ∑
=

+
n

i
iii by

1

~,~ xxα  is a linear function of x , it 

is also known as a linear support vector classifier. 
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Before moving on to a discussion of the case where the two groups are linearly separable 

only in feature space, note from (4.7) that the weight vector of the OSH is a linear function 

of the training patterns, ix , 1,2, ,i n= K .  We also see from (4.8) that the sum of the 

Lagrange coefficients iα  corresponding to group 1 is equal to the sum of these quantities 

corresponding to group 2.  Perhaps most importantly, Equation (4.10) shows that 0iα >%  

only if ( ) 1
~

,~ =+ by ii xw .  That is, only the training patterns closest to the hyperplane 

(realising the minimum canonical margin value of 1) can have non-zero Lagrange 

multipliers.  These training patterns, referred to as support vectors or support points, 

typically form a fairly small fraction of the total number of input patterns in the training 

data.  It follows that we can calculate the OSH weight vector from i
n

i
iiy xw ∑=

=1

~~ α  by 

summing only over the (relatively small number of) support vectors – the support vectors 

contain all the information required to compute w~ .  This sparseness property of SVMs 

contributes to their popularity: once having trained an SVM, it is often quite fast to use. 

 

 

4.2.2 THE TRAINING DATA ARE LINEARLY SEPARABLE IN  

           FEATURE SPACE 
 

In this section we extend the formulation of a linear support vector classifier to the case 

where the training patterns from the two groups are not linearly separable in input space, 

i.e. the case where the support vector classifier turns out to be a non-linear decision 

function in input space.  This is the context in which the use of the kernel trick (Aronszajn, 

1950) was originally modernised, and consequently also the context in which SVMs were 

proposed by Boser et al. (1992).  Recall from Chapter 2 that any algorithm in which the 

training patterns appear only in the form of inner products can easily be extended to an 

algorithm which is linear in feature space, and typically non-linear in input space, by 

substituting a kernel function for the inner product.  Such a modification of the linear 

support vector classifier in (4.11) is straightforward: we simply replace the inner product 
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xx ,i  by an appropriate kernel function ( ).,.k  evaluated on the pair ( )xx ,i .  This yields 

the general form of the support vector classifier, viz. 

 

                                        ( ){ } ( )
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iii bkysignfsign
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~,~ xxx α . (4.12) 

 

This support vector classifier corresponds to the hyperplane which we obtain by solving the 

following optimisation problem.   

 

PROBLEM 4.3 
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              subject to 0
1

=∑
=

n

i
iiy α  and 0≥iα , ni ,,2,1 K= . 

 

 

Implicit to the above formulation is the concept of transforming the training patterns 

originally observed in an input space ℵ  to a higher dimensional feature space ℑ , and then 

finding an optimal separating hyperplane in ℑ .  The final classifier (4.12) is therefore a 

linear function in ℑ , but typically highly non-linear in ℵ .   

 

The weight vector of the separating hyperplane in ℑ  has the same form as in the linear 

case – the original input patterns are merely replaced by their feature space counterparts, 

i.e. we have ( )i
n

i
iiy xw Φ∑=

=1

~~ α , where Φ  introduces the non-linearity of w~  with respect to 

the observed input patterns.  As pointed out in Chapter 2, ( )ixΦ  is usually unobtainable, 

since for example the associated feature space ℑ  may have infinite dimension, or Φ  may 
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be unknown or difficult to determine.  Fortunately this does not prevent us from computing 

the resulting support vector classifier.  For a new case with training pattern x  we have 

 

                                          ( ){ } ( ){ }bsignfsign ~
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Note that the intercept b~  is calculated as in the previous section; we only replace the inner 

product by a kernel function. 

 

 

4.2.3  HANDLING NOISY DATA 
 

The previous two sections were devoted to a discussion of the support vector classifier 

when the training patterns are linearly separable: in Section 4.2.1 we assumed the patterns 

to be linearly separable in input space, and in Section 4.2.2, in feature space.  In practice 

we frequently encounter scenarios where the training patterns are not linearly separable 

even in feature space.  Moreover, if one cannot assume the data to be free of noise, care 

should be taken against possible overfit if a support vector classifier with a very small 

training error is used.  In such cases we have to accommodate training patterns falling on 

the ‘wrong’ side of the hyperplane decision boundary.  Vapnik and Cortes (1995) presented 

an algorithm for fitting hyperplanes in such situations.  The method introduces a vector 

[ ]′= nξξξ ,,, 21 Kξ  to the optimisation problems discussed thus far, enabling us to allow for 

training patterns to violate the optimisation constraints ( ) ,1, ≥+ by ii xw 1,2, ,i n= K .  In 

fact, the constraints are relaxed to 

 

                                            ( ) ,1, iii by ξ−≥+xw 1,2, ,i n= K , (4.15) 
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where nξξξ ,,, 21 K  are called slack variables and we assume 0≥iξ .  The slack variable 

iξ  measures the degree to which training input pattern ( )ixΦ  violates the former 

optimisation constraint, i.e. the extent to which ( )ixΦ  falls on the ‘wrong’ side of the 

hyperplane decision boundary in feature space.  Since we would obviously not like to have 

transgressions which are too large, we have to incorporate the iξ  into the objective 

function as well.  This can be done in different ways, a common approach being to modify 

the objective function in Problem 4.1 to 
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n

i
ib

hCmin
1

2
2
1

,
ξw

w
.  In this expression C  is 

a non-negative cost parameter, controlling the trade-off between maximising the margin 

and minimising the penalty associated with training patterns on the wrong side of the 

decision boundary.  Also, h(.) is a monotonically increasing function on +ℜ .  Very often 

we take ( ) xxh = , so that the basic optimisation problem which has to be solved can be 

formulated as follows. 

 

PROBLEM 4.4 
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ib

Cmin
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2
1

,
ξw

w
   

              subject to ( ) iii by ξ−≥+ 1, xw , 0≥iξ , 1,2, ,i n= K . 

  
 

It is possible to show that the solution to Problem 4.4 is once again of the form 

i

n

i
iiy xw ∑

=
=

1

~~ α , with only a subset of nααα ~,,~,~
21 K  being positive.  In fact, the positive iα~  

correspond to the data cases where the constraint ( ) iii by ξ−≥+ 1,~ xw  is exactly met, 

and these points are once again called support vectors.  It can also be shown that we can 

find nααα ~,,~,~
21 K  by solving the following quadratic optimisation problem. 
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PROBLEM 4.5 
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               subject to 0
1

=∑
=

n

i
iiy α  and Ci ≤≤ α0 , ni ,,2,1 K= . 

 

 

It is interesting to observe that the dual objective function in Problem 4.5 is exactly the 

same as that in Problem 4.3, Equation (4.13).  The only difference between Problem 4.3 

and Problem 4.5 is a change in the restriction placed on the iα ’s: the restriction 0≥iα  in 

Problem 4.3 is replaced by the restriction Ci ≤≤ α0 , ni ,,2,1 K= , in Problem 4.5.  

Determining a value for the intercept is also analogous to the previous cases: a commonly 

used option is to determine b~  as the average of ( )∑−=
=

n

i
jiiij kyyb

1
, xxα  over all cases 

satisfying Cj << α0 . 

 

Specification of the cost parameter, C , is an important aspect.  If C  is too large, it leads to 

a decision boundary which follows the training data too closely, allowing too few training 

errors, and possibly yielding an overfit of the training data.  Specifying the value of C  too 

small implies that the term 22w  in the objective function is dominant, which can easily 

lead to underfitting. 
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4.3  KERNEL FISHER DISCRIMINANT ANALYSIS 
 

In this section we turn attention to a second procedure for classification in feature space, 

viz. kernel Fisher discriminant analysis.  KFDA was first proposed in Mika et al. (1999) as 

a direct generalisation of Fisher’s well known linear discriminant analysis.  As such it 

seems that from a statistical perspective KFDA is an intuitively simpler technique than 

support vector machines.  Although perhaps less well known than support vector machines, 

the performance in terms of generalisation error of KFDA compares well to that of SVMs 

(cf. Mika et al., 1999).  An advantage offered by KFDA compared to SVMs is that the 

former provides a natural option for calculating posterior probabilities of group 

membership (cf. Schölkopf and Smola, 2002, p. 464). 

 

Since KFDA is a kernel classification procedure, kernel Fisher discriminant functions 

exhibit all the characteristics of this class of discriminant functions.  In particular, the 

discriminant function in KFDA is linear in feature space, but typically highly non-linear in 

input space.  As we will see, KFDA basically entails the well known transformation of 

training patterns ℵ∈ix  to a feature space ℑ , followed by application of linear 

discriminant analysis in ℑ .   

 

We start our discussion of KFDA in Section 4.3.1 with a brief revision of LDA.  We then 

show in Section 4.3.2 how the LDA algorithm can be generalised to feature space to obtain 

the kernel Fisher discriminant function.  Several further aspects of KFDA are also 

discussed in this section.  Parts of our discussion are based on Louw and Steel (2006). 

 

 

4.3.1  LINEAR DISCRIMINANT ANALYSIS 
 

Linear discriminant analysis is one of the best known and most frequently used statistical 

procedures for solving classification problems, being especially successful in cases where 

the training patterns arise from (approximate) normal distributions.  In such scenarios it can 

for example be derived by applying Bayes’ theorem, provided we also assume equal 
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variance-covariance matrices in the two groups.  Another possibility for deriving the LDA 

classifier is to seek the direction which corresponds to the linear projection providing the 

best possible separation between the two groups.  Group separation is measured in terms of 

two aspects: firstly, in terms of the distances between the two projected group means (this 

should be as large as possible), and secondly, in terms of the variance of the data within a 

specific group (which should be as small as possible).  From this perspective the linear 

discriminant function is defined to be { }xu,~
0 +usign , where u~  maximises the ratio 

 

                                                  ( ) ,
,

J
′

= =
′

Bu uu Buu
u Wu Wu u

.  (4.16) 

 

In (4.16), ( )( )′−−= 2121 xxxxB  is the between group scatter matrix, while W  is the 

pooled sample covariance matrix for the two groups defined by the expression 
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ii
Ii

iinn xxxxxxxxW , with 1x  and 2x  the 

respective group sample mean vectors.  The quantity ( )uJ  in (4.16) is often referred to as 

the Rayleigh quotient.  Note also that W  is typically assumed to be a non-singular matrix. 

 

How do we find u~  maximising the ratio in (4.16)?  A well known extension of the 

Cauchy-Schwarz inequality implies that u~  is proportional to ( )21
1 xxW −− , i.e. 

( )21
1~ xxWu −= −c  for some constant c .  Taking this constant equal to 1 we find that 

( )21
1~ xxWu −= − .  The intercept traditionally used in LDA is given by 

( ) ( )211
1

12
1

22
1

0 log nnu +′−′= −− xWxxWx , and the LDA rule to classify a new case with 

training pattern x  therefore becomes 
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Obviously the linear classifier in (4.17) will not be adequate in all cases.  Several attempts 

have therefore been made to broaden the applicability of LDA, leading to extensions of the 

basic technique such as quadratic discriminant analysis (QDA), flexible discriminant 

analysis, penalised discriminant analysis, and regularised discriminant analysis.  A 

quadratic discriminant function is obtained when the assumption of equal variance-

covariance matrices for the two groups is relaxed.  This leads to a significant increase in 

the number of parameters which have to be estimated: whereas LDA in a binary 

classification problem requires estimation of 1p +  parameters, quadratic discriminant 

analysis requires ( )3 2 1p p + +  parameters.  For large values of p  this represents a 

substantial increase, which may lead to worse than expected classification performance in 

the quadratic case.  In an attempt to gain the advantages offered by the greater flexibility of 

quadratic discriminant analysis while retaining at least some of the simplicity of LDA, 

Friedman (1989) proposed an approach known as regularised discriminant analysis.  For a 

discussion of this and other generalisations of LDA, the interested reader is referred to 

Hastie et al., 2001. 

 

LDA and QDA perform well in many practical applications.  As stated in Hastie et al. 

(2001), the reason for this is unlikely to be that the assumptions of equal variance-

covariance matrices (in the linear case) and multivariate normal distributions (in the linear 

and the quadratic cases) hold.  A more likely explanation is to be found in the relative 

simplicity of these procedures, requiring relatively few parameters to be estimated 

(especially in the linear case).  Sometimes this is all that can reasonably be achieved on 

small data sets. 

  

There are however many examples of data sets where more complex non-linear functions 

are required to provide adequate separation between cases belonging to different groups.  

In order to provide techniques for such scenarios without having to relinquish the positive 

attributes of a linear classifier, Mika (2002) extends LDA to a classification technique 

operating linearly in feature space, called kernel Fisher discriminant analysis, which we 

now discuss. 
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4.3.2  THE KERNEL FISHER DISCRIMINANT FUNCTION 
 

It was indicated in Chapter 2 that the kernel Fisher discriminant function is of the form 

( ) ( ) ( )
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n
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11
,, xxxx αα , where nααα ,,, 21 K  and b  are 

determined from the training data by applying the KFDA algorithm.  In this section we 

provide more detail on this process. 

 

Since KFDA is a direct extension to feature space of LDA, the KFDA algorithm requires 

one to maximise a Rayleigh quotient in ℑ .  Hence, let ( )( )′−−= 2121Φ ΦΦΦΦB  denote 

the between group scatter matrix in feature space, and similarly, let ( ) Φ21 2 W−+ nn  

( )( ) ( )( )∑∑
∈∈

′−−+′−−=
21

2211
Ii

ii
Ii

ii ΦΦΦΦ ϕϕϕϕ  denote the within group scatter matrix in 

ℑ .  In the KFDA algorithm one needs to solve the following optimisation problem: 
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In principle, if we could assume ΦW  to be non-singular we could, similar to the LDA 

solution ( )1
1 2

−= −u W x x% , find ( )21
1~ ΦΦWv −= −

Φ  in feature space and construct the 

linear discriminant rule 

 

                                                               { }0 ,sign v + v φ% . (4.19) 

 

However, in many cases ΦB  and ΦW  have infinite dimension and are therefore not directly 

obtainable.  Solving the optimisation problem in (4.18) is therefore impracticable, and we 

require an alternative formulation. 
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For this purpose, consider the linear space D  spanned by nφφφ ,,, 21 K , and an arbitrary 

vector in feature space, denoted in this section by z .  Now z  can be decomposed into 

21 zzz += , with D∈1z  and ⊥∈D2z , and where ⊥D  denotes the orthogonal 

complement of D , so that ,Az z 11 , zAz=  for any symmetric matrix A  whose rows (or 

columns) belong to D .  Since it can be shown that the rows of both ΦB  and ΦW  belong to 

D , we can write zzB ,Φ 11Φ , zzB=  and zzW ,Φ 11Φ , zzW=  for any z  in ℑ .  

Substituting these expressions into (4.18), we see that our optimisation problem is 

equivalent to maximising ( )
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sufficient to restrict attention to vectors z  belonging to D , i.e. vectors which can be 

written in the form ( )∑∑
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11
xφz αα  for given scalars nααα ,,, 21 K .  Defining the 

n  elements of jm  by ( )∑
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n 1
,1 xx , 1, 2j = , if we let α  be the vector containing 

nααα ,,, 21 K , we may therefore write 
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If we now define ( )( )′−−= 2121 mmmmM , it readily follows that the numerator of ( )J v  

in (4.18) is given by zBz Φ′ = Μαα′ .  One can also obtain the denominator of (4.18) in a 

tractable form.  Define an 1nn ×  kernel matrix 1K  for class 1 to be the matrix with 

elements ( )jik xx ,  1,,2,1;,,2,1 nj ni KK == , and write 
1n1  for the 11 nn ×  matrix with all 

elements equal to 1/1 n .  Define 2K  and 
2n1  similarly.  If we now set 

( ) jn
j

j j
K1IKN ′−= ∑

=

2

1
, it follows that the denominator of ( )J v  in (4.18) can be written as 

ΦzW z = Ναα′ .  We conclude that maximising (4.18) is equivalent to maximising the ratio  
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While solving (4.18) will generally be impossible (because maximisation has to be carried 

out over possibly infinite dimensional vectors z  in feature space), maximisation of (4.20) 

is in this regard simple, since it only involves vectors nℜ∈α .  Now suppose α~  maximises 

(4.20), and let ( )∑
=

Φ=
n

i
ii

1

~~ xz α .  Since ( ) ( ) ( )xxxxφz ,~,~,
11

i

n

i
i

n

i
ii k∑∑

==
=ΦΦ= αα , the 

KFDA classification rule in feature space becomes 

 

                                      { } ( )






 +=+ ∑

=
xxzu ,~~

,~
1

i

n

i
ikbsignbsign α , (4.21) 

 

which is a practically useful result once the coefficients nααα ~,,~,~
21 K  and the intercept b~  

have been determined.  We will refer to (4.21) as the KFDA classification rule.  Note how 

application of the kernel trick once again obviates explicit specification or use of the 

feature mapping Φ . 

 
The above approach does however leave us with one problem: the matrix N  is singular 

and consequently we cannot find the maximising α~  by simply calculating 

( )21
1~ mmNα −= − .  Mika et al. (1999) propose and motivate the use of regularisation to 

overcome this difficulty.  In the present context regularisation entails replacing N  by a 

matrix INN λλ += , for some (small) positive scalar λ .  This yields a solution 

( )21
1~ mmNα −= −

λ , depending on λ , which can be used in (4.21). 

 

The intercept b~  in (4.21) can be specified in different ways.  Müller et al. (2001) mention 

the mean of the average projections of the two groups.  A popular choice is 

( ) ( )211
1

12
1

22
1 log~ nnb +′−′= −− mNmmNm λλ , which shows a clear similarity to the 

intercept used in LDA. 
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There are also other approaches which may be used to derive the KFDA classification rule.  

Mika et al. (2001) show how this can be done by solving a convex quadratic optimisation 

problem, while Van Gestel et al. (2002) exploit a link between least squares support vector 

machines and LDA in feature space.  Finally, Shawe-Taylor and Cristianini (2004) present 

an argument which enables one to find the KFDA classification function by solving a ridge 

like problem in feature space.  In our empirical work we used the approach which was 

presented above, based on regularising the matrix N . 

 

 

4.4 ALGORITHM-INDEPENDENT VERSUS ALGORITHM-DEPEN- 

        DENT SELECTION 

 

In this section we discuss the difference between variable selection criteria which may be 

applied in any kernel classification problem (so-called algorithm-independent criteria), and 

those that depend on the output of a specific kernel classification algorithm and which are 

therefore only applicable when this specific algorithm is used (so-called algorithm-

dependent criteria).  The following definition is relevant in this regard. 

 

DEFINITION 4.1:  ALGORITHM-INDEPENDENT AND -DEPENDENT CRITERIA 

 
An input variable selection criterion which can be used for any kernel classifier, for 

example the SVM as well as the kernel Fisher discriminant classifier, is called algorithm-

independent, while a criterion which depends on the output from a specific kernel 

classification algorithm is called algorithm-dependent. 

 
 

This distinction is now discussed in greater detail.  We saw in Chapter 2, and again in the 

discussion of the SVM in Section 4.2 and KFDA in Section 4.3, that the general form of a 

kernel classifier is given by 
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                                         ( ) ( ) ( )∑
=

+=+Φ=
n

i
ii bkbf

1
,, xxxwx α , (4.22) 

 

where ( )∑
=

ℑ∈Φ=
n

i
ii

1
xw α , and where nααα ,,, 21 K  and b  are output from the particular 

kernel learning algorithm.  Although different kernel classifiers are based on different 

algorithms to calculate nααα ,,, 21 K  and b , all of these algorithms use the information 

provided by the training patterns via the output from a kernel function.  We can therefore 

view an algorithm-independent criterion as a criterion which depends only on the 

information provided by the kernel function applied to all pairs of training patterns, 

together with the training labels.  For an algorithm-dependent criterion there is additional 

dependence on the coefficients nααα ,,, 21 K .  Also, in selection based on an algorithm-

specific criterion the kernel algorithm used in derivation of the criterion and the post-

selection algorithm should be the same.  In contrast, algorithm independent criteria may be 

applied as part of the pre-processing step to any kernel analysis. 

 

It should be clear that the kernel matrix plays an important role in both algorithm-

independent and algorithm-dependent criteria.  The kernel matrix K  is the n n×  

symmetric matrix with entries ( )jiij kk xx ,= , nji ,,2,1, K= .  An algorithm-independent 

selection criterion uses properties of K  and patterns in its entries to select a subset of the 

available input variables.  For example, if we keep in mind that ijk  may be viewed as a 

measure of the similarity between training patterns ix  and jx , it seems reasonable to 

postulate the following ‘ideal’ structure for K : in the top-left 11 nn ×  sub-matrix, as well as 

the bottom-right 22 nn ×  sub-matrix, we would like to observe entries reflecting a high 

degree of similarity between training patterns, while in the two off-diagonal sub-matrices a 

high degree of dissimilarity should ideally be reflected.  Such considerations imply that we 

can perform variable selection to end up with a matrix K  which is in some sense as ‘close 

as possible’ to this ‘ideal’ structure.  In our further discussions we will use the notation IK  

to denote a kernel matrix exhibiting such an ‘ideal’ structure. 
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Another aspect regarding use of K  in variable selection is that K  obviously has to be re-

computed every time a new set of input variables is considered.  In this respect using the 

Gaussian kernel offers somewhat of a computational advantage.  We require some notation.  

Let jK  be the kernel matrix based on variable jX  only, pj ,,2,1 K= , i.e. jK  has 

elements ( ){ } pjnkixx-exp kjji ,,2,1;,,2,1,, KK ==−γ .  Then the kernel matrix 

corresponding to a subset variable subset V  with indices in { }pJ ,,2,1 K=⊂ J  can be 

formed by element-wise multiplication of the elements of the kernel matrices Jjj ∈,K .  

Having once computed and stored the single variable kernel matrices pKKK ,,, 21 K  we 

are therefore able to subsequently compute the kernel matrix corresponding to any subset 

of variables without the need for re-computing exponentials. 

 

Finally, an exhaustive all possible subsets approach to variable selection requires a kernel 

matrix to be computed for every possible subset of variables.  Even using the 

computational savings for the Gaussian kernel referred to in the previous paragraph, this is 

a daunting computational problem except in cases where p  is very small.  It is therefore no 

surprise that stepwise variable selection approaches are popular options in practical 

applications.  An important example of a stepwise elimination approach, viz. recursive 

feature elimination, is discussed in Chapter 5. 

 

 

4.5  FEATURE SPACE GEOMETRY 
 

In this section we examine data properties and operations in feature space more closely.  

We start in Section 4.5.1 with several results pertaining to individual points in ℑ .  This is 

followed in Section 4.5.2 with results applicable to sets of feature vectors and linear 

combinations in feature space.  We consistently emphasise the form of the results when a 

Gaussian kernel function is used. 
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4.5.1  INDIVIDUAL POINTS 
 
Consider a typical feature vector denoted by ( )xΦ  or ( )zΦ , ℵ∈zx, , or simply by φ .  The 

following result summarises some useful operations on one (or between two) feature 

vector(s). 

 

RESULT 4.1 

 
 

i. Inner products 
 

It has already been pointed out that ( ) ( ) ( )zxzx ΦΦ= ,,k .  In the case of the Gaussian 

kernel this is also the cosine of the angle between ( )xΦ  and ( )zΦ  (since 

( ) ( ) 1, ==Φ xxx k  – see point ii. below).  Thus, when one uses a Gaussian kernel, inner 

products in feature space will always lie in the interval [ ]1,0 .  Also, ( )zx,k  is large when 

the enclosed angle between x  and z  is small.  Clearly we may view ( )zx,k  as a measure 

of similarity between the training patterns x  and z . 

 

ii. Norms 
 

The norm of a feature vector ( )xΦ  is ( ) ( ) ( ) ( )xxxxx ,, k=ΦΦ=Φ .  For the 

Gaussian kernel function the feature vectors will have unit norm, i.e. ( ) ( ) 1, ==Φ xxx k .  

Hence, as also shown in Section 2.2.2, when one uses a Gaussian kernel all feature vectors 

lie on the surface of a hypersphere with radius 1, which implies that the enclosed angle 

between any two features will be at most 2π .  Therefore we can view input patterns 

mapped to a feature space via use of a Gaussian kernel to all lie in a single orthant of a 

hypersphere with radius 1 in ℑ .  This was illustrated in Figure 2.3. 

 

iii. Distances 
 

The Euclidian distance between feature vectors ( )xΦ  and ( )zΦ  is  
 

( ) ( ) ( ) ( ) ( ) ( )zxzxzx Φ−ΦΦ−Φ=Φ−Φ ,2  
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                                                              ( ) ( ) ( ) ( ) ( ) ( )zzzxxx ΦΦ+ΦΦ−ΦΦ= ,,2,  

                                                              ( ) ( ) ( )zzzxxx ,,2, kkk +−= . (4.23) 

 

This reduces to ( )[ ]zx,12 k−  when using a Gaussian kernel function.  In this case we know 

that with ( ) ( ) 02 ≅Φ−Φ zx , ( ) 1, ≅zxk , whereas with ( ) ( ) ∞≅Φ−Φ 2zx , ( ) 0, ≅zxk .  

Hence, when the feature space is induced via use of a Gaussian kernel, the Euclidian 

distance between any two feature vectors will be confined to the interval [ ]1,0 .   

  

 
 

4.5.2 SETS OF POINTS 
 

We now proceed with several definitions and results summarising properties of and 

operations on a set of two or more feature vectors (for example, the feature vectors 

corresponding to a data group in classification or clustering).  We will use the notation 

{ }nF φφφ ,,, 21 K=  to represent such a set. 

 

DEFINITION 4.2: THE CENTRE OF MASS 

 

Define the centre of mass (sample mean vector, or centroid) of a set of points in feature 

space as ∑
=

=
n

i
in

1

1 φΦ .  Also, let ∑
∈

=
jIi

ijnj φΦ 1  represent the centre of mass of the feature 

vectors belonging to data group j .   

 

 

 

Note that Φ  may be a vector such that no pattern in ℵ  will yield Φ  after being 

transformed to ℑ , i.e. there does not necessarily exist an input pattern ℵ∈x  such that 

( )Φ =x Φ .   
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The following proposition clarifies the interpretation of the centre of mass in feature space. 

 

PROPOSITION 4.1  

 
 

The centre of mass of a set of feature vectors ( )Φ  is the solution to the optimisation 

problem 

                                                   








−∑
=

n

i
inmin

1

21 μφ
μ

. (4.24) 

 

 
 

The above proposition can easily be verified by keeping in mind that ( ) 0
1

=−∑
=

n

i
i Φφ . 

 

Despite the inaccessibility of the coordinates of ∈ ℑΦ , the norm of the centre of mass can 

easily be calculated. 

 

RESULT 4.2 

 

Consider a set of feature vectors { }nF φφφ ,,, 21 K=  with Φ  the centre of mass. 

i. Norms 
 

Calculation of the norm of Φ  is straightforward: 

 

1 1

1 1, ,
n n

i j
i jn n= =

= = ∑ ∑Φ Φ Φ φ φ  

                                                                  
, 1

1 ,
n

i j
i jn =

= ∑ φ φ  

                                                                  ∑
=

=
n

ji
ijk

n 1,

1 . (4.25) 
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ii. Distances 
 

The mean sample Euclidian distance from feature vectors in F  to Φ  is 

 

( ) ( )2

1 1

1 1n n

i i i
i in n= =

′
− = − −∑ ∑φ Φ φ Φ φ Φ  

                                                                 ( )∑ ∑ −=
= =

N

j

n

i
jijφ

n 1 1

21
Tφ  

                                                                 ∑∑∑
===

−+=
n

ji
ij

n

ji
ij

n

i
ii k

n
k

n
k

n 1,
2

1,
2

1

211  

                                                                 ∑∑
==

−=
n

ji
ij

n

i
ii k

n
k

n 1,
2

1

11 . (4.26) 

 

The Euclidian distance between two mean vectors in feature space is 
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Of course, when one uses a Gaussian kernel function, the mean sample distance in (4.26) 

reduces to ∑
=

−
n

ji
ijk

n 1,
2

11 . 
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4.6  ALGORITHM-INDEPENDENT SELECTION 
 
4.6.1  SELECTION CRITERIA 
 
THE ALIGNMENT 
 
Reconsider the so-called ‘ideal’ kernel matrix, IK , in binary classification.  It seems 

natural to propose selecting the subset of input variables yielding a kernel matrix with the 

‘closest’ agreement to the structure in IK .  How can one measure the agreement of 

matrices jK , J⊂∈ Jj , with IK ?  Cristianini et al. (2002) define a measure of 

agreement between kernel matrices 1K  and 2K  as  

 

                                      ( )
FF

FA
2211

21
21

,,

,
,

KKKK

KK
KK = , (4.28) 

 

where ( )ABBA trba
ji

ijijF == ∑
,

,  is the so-called Frobenius inner product between 

matrices A  and B .  In (4.28) the resemblance of the alignment with a correlation 

coefficient is evident: if the elements of 1K  and 2K  are stacked into 2n -dimensional 

vectors 1k  and 2k , the alignment can be viewed as the cosine of the angle between 1k  and 

2k .  Hence it follows that ( ) 1,1 21 ≤≤− KKA .  The alignment was initially introduced in 

the context of finding the ‘optimal’ hyperparameter values in kernel analyses.  In this 

context, kernel matrices corresponding to alternative hyperparameter values are measured 

against yyK ′=I , where 

 

                                              













−−−+++=′

43421 K43421 K
terms nterms n 21

1,,1,1,1,,1,1y , (4.29) 

 

and a hyperparameter specification yielding a kernel matrix closer to yyK ′=I  is 

considered to be the more ‘optimal’ specification.   
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Hence IK  (as proposed in the paper by Cristianini et al., 2002) contains an 11 nn ×  sub-

matrix of 1’s in the top left position, a similar 22 nn ×  sub-matrix in the bottom right 

position, all other elements equal to -1, thereby clearly reflecting ‘perfect similarity’ 

between cases belonging to the same group, and ‘perfect dissimilarity’ between cases 

belonging to opposite groups. 

 

Returning to the variable selection problem, it seems reasonable to propose the use of 

( )IA KK ,  to measure the agreement of the structure in kernel matrices (based on different 

subsets of input variables) with the structure in yyK ′=I .  That is, we propose using 

 

                                ( ) ( )
FF

F
I AA

yyyyKK

yyK
yyKKK

′′

′
=′=

,,

,
,, , (4.30) 

 

which simplifies to 

 

                        
( ) ( ) ( )

( )∑ ∑

∑ ∑ ∑ ∑∑ ∑

= =

∈ ∈ ∈ ∈∈ ∈
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=
n

i

n

j
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Ii Ij Ii Ij
ji

Ii Ij
jiji

kn

kkk
A

1 1

2,

,2,,
1 1 1 22 2

xx

xxxxxx
 (4.31) 

 

to rate the different variable subsets of a given size, and then to select the subset of input 

variables corresponding to the highest value for the alignment criterion (A) above. 

 

In our evaluation of the alignment criterion later on, we make use of the Gaussian kernel 

function to obtain the kernel matrices corresponding to the variable subsets considered.  Of 

course, using the Gaussian kernel function, ‘perfect similarity’ between input patterns 

belonging to the same class is reflected by 1’s in the 11 nn ×  and 22 nn ×  sub-matrices of 

K , and ‘perfect dissimilarity’ is reflected by all the remaining entries being equal to 0.  

One might now ask whether yyK ′=I  should not be redefined: should we not rather make 
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use of 













=′

43421 K321K

terms nterms n 21

0,,0,0,1,,1,1y  in (4.30)?  If we decide on the latter definition of IK , note 

that (4.31) would simply become 
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. (4.32) 

 

In a binary classification setup, one expects the ( )∑ ∑
∈ ∈1 2

,
Ii Ij

jik xx -term to provide valuable 

information regarding how well the two groups can be separated, and therefore we believe 

that the form of the criterion in (4.31) should be preferred to the one in (4.32).  If one uses 

the Gaussian kernel function to calculate K , a problem however arises with the criterion in 

(4.31):  a kernel matrix reflecting ‘perfect’ separation between the two groups will have 0’s 

instead of -1’s in its 21 nn ×  sub-matrix.  In order to ensure comparability of K  with 

yyK ′=I , we therefore suggest making use of the following translation of the Gaussian 

kernel function: 

 

                                                  ( ) ( ) 1,2,
~

−= jiji kk xxxx  

                                                                  12
2

−




 −−= jiexp xxγ . (4.33) 

 

Based firstly on the use of (4.33) instead of the usual Gaussian kernel function (in (2.2)) to 

calculate the kernel matrices (pertaining to each variable subset under consideration), and 

secondly, on using the alignment criterion (in (4.31)) to decide between input variable 

subsets of a fixed size, an alternative selection procedure therefore arises.  We will refer to 

this proposal as the translated alignment (or the AT) procedure in subsequent sections. 
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THE SUM OF GROUP SIMILARITIES 
 
Often in a two-group classification problem it is more important to discern significant 

differences between cases belonging to opposite groups than establishing similarities 

among sample cases in the same group.  Arguing that perhaps the first two terms (which 

accumulate similarities between cases in the same group) in the numerator of the alignment 

may overshadow the third term (which quantifies the correspondence between input 

patterns from distinct groups), a possible criterion for selecting input variables may 

therefore simply be the sum of the kernel matrix entries in the 1 2n n×  submatrix, viz. 

∑ ∑
∈ ∈

=
1 2Ii Ij

ijkSS . 

 

If the two groups are well separated, similarities between pairs of input patterns observed 

for sample cases belonging to opposite groups should be small.  Therefore, using SS, our 

selection strategy is to select the subset of variables which minimises the sum of 

similarities contained in the 21 nn ×  submatrix of the kernel matrix.  If the Gaussian kernel 

function is used, note that 210 nnSS ≤≤ .  Naturally one could also consider using the 

translated Gaussian kernel function in (4.33).  In this case, 2121 nnSSnn ≤≤− .   

 

 

THE DIFFERENCE IN GROUP MEANS 
 
When the two groups are separated mainly with respect to their mean vectors (in ℑ ), a 

logical choice for a selection criterion is the distance between the respective group means, 

where the means are calculated in feature space.  Hence we propose selecting the subset of 

variables which maximises the length of the difference vector 1 2−Φ Φ  in ℑ .  A possible 

selection criterion is therefore 
2

21 ΦΦ −=M , and we propose selection of the variable 

subset which yields a maximum value for M.  Recall that in general the coordinates of 

ℑ∈jΦ , 2,1=j , cannot be obtained.  Fortunately, we have seen in (4.27) that a value for 

M can be calculated via use of a kernel function. 
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THE VARIANCE RATIO 
 
Wang et al. (2004) propose the following criterion for determining a value for the 

hyperparameter γ  in the Gaussian kernel function: 

 

                                                       ( ) 2
11

2
2

2
1

ΦΦ −

+
=

ssVA γ . (4.34) 

 

In this expression, ∑
∈

=
jIi

ijnj φΦ 1  and ∑
∈

−=
jIi

jijs
22 Φφ , 1, 2j = .  Note that ( )γVA  can 

easily be calculated: the denominator is given in (4.27), and the terms in the numerator are 

 

                             ( )∑ ∑∑
∈ ∈∈

−=−=
j jj Ii Ih

ihj
Ii

jij kns xxΦφ ,
22 , 2,1=j . (4.35) 

 

The numerator in ( )γVA  may be interpreted as a measure of the total within-group sample 

variation in feature space.  Similarly, the denominator is a measure of the between-group 

variation, once again in feature space.  Given these interpretations of the numerator and 

denominator, we will refer to ( )γVA  as a variation ratio criterion. 

 

The variation ratio resembles the reciprocal of the Rayleigh quotient in feature space (given 

in Section 4.3.2), which is maximised to determine the KFD classifier.  In KFDA we work 

with measures of this variation after projecting the feature vectors onto a line in feature 

space, and our purpose is to find the classification rule maximising the between-to-within 

group variation measured along the projection line.  The variation ratio criterion also 

considers between- and within-group variation after projecting the points in feature space 

onto some line.  In order to see this, consider the average (centre) of the projections of all 

group j  cases in ℑ onto a line spanned by u  in ℑ , viz.  
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The line connecting the post-projection centres jP Φu , 1, 2j = , has length 
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Substituting 1 2= −u Φ Φ  in (4.37), the length of the line connecting the post-projection 

centres jP ΦΦΦ 21− , 1, 2j = , turns out to be 
2

21 ΦΦ − , the denominator in the variation 

ratio.  Hence, if we project all data cases in ℑ  onto the line connecting the group centres in 

feature space, i.e. onto 1 2−Φ Φ , the length of the line connecting the post-projection group 

centres in ℑ  is exactly the length of the line connecting the original group centres in ℑ .  

Although the denominator in the variation ratio seems to simply measure between-group 

variation in ℑ , it can therefore also be interpreted as a measure of between group variation 

after projecting all sample points onto 1 2−Φ Φ .  From the above observation, the similarity 

of the denominator in ( )γVA  and the numerator in the Rayleigh quotient becomes more 

apparent. 

 

From a classification perspective, a small value for the variation ratio is desirable and 

Wang et al. (2004) consequently propose determining γ  to minimise ( )γVA .  It seems 
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natural to consider using the variation ratio as a criterion in variable selection: for a given 

variable subset size m , select those variables minimising this criterion.  In a selection setup 

it seems reasonable to keep γ  fixed, since we are not primarily interested in the variation 

ratio as a function of γ , but in obtaining relative ranks for the variable subsets of equal 

size.  We propose using 1 pγ =  in ( )γVA .  Since we will be using ( )γVA  as selection 

criterion and not to determine a value for γ , we will suppress its dependence on γ  and 

simply denote it by VA . 

 

 

4.6.2  MONTE CARLO SIMULATION STUDY 
 
We now describe an empirical study which was conducted to evaluate the relative 

performance of the algorithm-independent selection criteria in the previous section (A, AT, 

M, SS and VA), and follow this with a presentation and brief discussion of the results that 

were obtained. 

 

In essence we made use of the same simulation configurations as described in Section 3.4.  

Recall that the post-selection simulation results presented in Chapter 3 indicated NL 

configurations to be more suited for selection in input space.  Therefore note that all NL 

configurations were omitted in the simulation study discussed in this section, and will also 

not be investigated in any of the simulation studies described in the remainder of the thesis.  

We also only generated data sets where the relevant and irrelevant subsets of input 

variables were uncorrelated (i.e. where 0=SSρ ).  The resulting experimental design 

amounted to 16 configurations per data scenario, viz. the NS, LL and LS setups.  In this 

section, note that we make use of the following numbering of data configurations:  a ‘1’ 

refers to 0=Sρ , 1.0=π  cases; a ‘2’ refers to 0=Sρ , 4.0=π  cases; we use a ‘3’ to 

denote all 7.0=Sρ , 1.0=π  cases; and a ‘4’ is used in cases where 7.0=Sρ  and 4.0=π . 

 

Each simulation repetition was structured as follows.  Consider any selection criterion.  We 

firstly generated a training sample according to the data scenario under consideration, and 
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used the training sample values on each of the input variables pXXX ,,, 21 K  to obtain a 

value for the criterion.  Depending on the selection criterion considered, we used the m  

smallest (or largest) absolute values of a selection criterion to indicate the m  input 

variables to select, and kept record of the number of times each input variable was selected.  

We then generated a test sample, and calculated the test error after performing KFDA or 

after fitting an SVM based on the selected subset of input variables only.  We calculated 

the average of the selection frequencies and test errors over the simulation repetitions (we 

made use of 500 repetitions throughout), and repeated the process for all selection criteria. 

 

Note that we treated specification of the kernel hyperparameter and the cost 

hyperparameter (in this case we used 5 3 1 1 3 510 ,10 ,10 ,10 ,10 ,10C − − −= ) in the same manner 

as in the simulation studies carried out in Chapters 2 and 3.  The average test errors 

reported are the minimum average test errors obtained over the various C-values.  The 

value of the kernel hyperparameter was once again specified as 1 pγ =  throughout.   

 

The average test errors are reported in a set of six tables.  The first pair of tables (Tables 

4.1 and 4.2 below) report NS average test errors, the second pair of tables correspond to the 

LL data scenarios, and the third pair summarise the LS results.  Furthermore, the first table 

of each pair reports the average KFDA test errors, while the second table of each pair 

summarises SVM generalisation performances.  As was the case in Chapters 2 and 3, note 

that we included rows which report on the average KFDA and SVM test errors when no 

selection is performed (in the ( )VErr -rows), as well as the average KFDA and SVM errors 

when only the set of relevant input variables are used (in the ( )SVErr -rows).  Standard 

errors ranged between 0.000 and 0.007. 

 

Since our conclusions based on the NS scenario were representative of the conclusions 

emanating in the LL and LS scenarios, note that we only present Tables 4.1 and 4.2 below.  

The four remaining tables are given in Appendix A.2.1. 
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Table 4.1: Average test errors in the NS case 

KFDA 

 ( )VErr  ( )SVErr  ( )VAErr  ( )MErr  ( )SSErr  ( )AErr  ( )ATErr  

NS1 SMALL .454 .282 .407 .414 .461 .345 .336 

MIXED .250 .250 .250 .250 .250 .250 .250 

LARGE .379 .258 .259 .259 .436 .258 .258 

 WIDE .410 .085 .462 .463 .468 .207 .194 

NS2 SMALL .225 .102 .188 .193 .291 .154 .149 

MIXED .199 .086 .130 .132 .250 .250 .250 

LARGE .204 .110 .110 .110 .243 .110 .110 

 WIDE .129 .003 .123 .125 .160 .014 .012 

NS3 SMALL .455 .282 .410 .417 .465 .340 .332 

MIXED .250 .250 .250 .250 .250 .250 .250 

LARGE .379 .259 .259 .259 .427 .259 .259 
 WIDE .425 .138 .466 .467 .472 .281 .274 

NS4 SMALL .309 .153 .221 .227 .313 .197 .191 

MIXED .250 .250 .250 .250 .250 .250 .250 

LARGE .135 .083 .083 .083 .218 .083 .083 

 WIDE .223 .019 .237 .238 .266 .110 .101 

 

 

Firstly, we note that in mixed samples, the KFDA errors pertaining to the NS1, NS3 and 

NS4 cases, as well as the LS1, LS3 and LS4 cases, were consistently 0.25 – see the 

discussion on page 70.  Secondly, we see that the AT criterion generally was the best 

performer, with the A criterion in second place, followed by the VA-, and M criteria.  The 

SS criterion performed rather poorly throughout.  Relative to differences between the post-

selection errors when AT and A were used, as well as between the errors obtained in the 

case of VA and M, note that we typically observe a larger margin between errors using A 

and VA. 
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Table 4.2: Average test errors in the NS case (continued) 

SVM 

 ( )VErr  ( )SVErr  ( )VAErr  ( )MErr  ( )SSErr  ( )AErr  ( )ATErr  

NS1 SMALL .455 .290 .408 .412 .462 .345 .336 

MIXED .332 .254 .259 .266 .267 .266 .260 

LARGE .396 .258 .258 .258 .426 .258 .258 

 WIDE .430 .123 .463 .464 .468 .251 .240 

NS2 SMALL .259 .129 .189 .194 .297 .203 .169 

MIXED .206 .091 .127 .129 .365 .366 .365 

LARGE .227 .090 .090 .090 .231 .090 .090 

 WIDE .086 .005 .246 .248 .287 .049 .043 

NS3 SMALL .450 .291 .408 .415 .464 .346 .339 

MIXED .334 .254 .259 .260 .268 .267 .266 

LARGE .397 .257 .257 .257 .429 .257 .257 
 WIDE .430 .187 .470 .471 .476 .295 .285 

NS4 SMALL .320 .180 .250 .255 .326 .227 .222 

MIXED .265 .116 .144 .146 .363 .366 .367 

LARGE .163 .077 .077 .077 .217 .077 .077 

 WIDE .250 .151 .321 .322 .341 .198 .194 

 

 

The above conclusions hold irrespective of whether SVMs were trained, or KFDA were 

performed.  Differences between the post-selection average errors were somewhat less 

prominent in the LL data scenarios.  There AT and A perform very similarly, with the AT 

criterion doing only slightly better in wide sample cases.  The VA criterion generally 

outperformed M, especially in small sample cases.  A clear distinction between VA and M 

was however not possible for mixed, large and wide samples.  In the LS data setups, once 

again the AT criterion emerged as the overall winner.  As was the case with NS and LL 

data, VA consistently outperformed M, except in wide samples, where the opposite was 

found. 
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4.7  ALGORITHM-DEPENDENT SELECTION 
 

In this section, we consider algorithm-dependent selection criteria.  In addition to entries in 

the kernel matrix, algorithm-dependent criteria are allowed to also depend on the 

nααα ,,,
21 K  values obtained as output from the kernel algorithm.  This allowance of 

course causes algorithm-dependent criteria to be computationally much more expensive.  

We start by considering a criterion for selection in SVMs, and then focus on selection in 

KFDA. 

 

4.7.1  SELECTION CRITERIA 
 
THE SQUARED NORM OF THE SVM WEIGHT VECTOR 
 

Consider an SVM discriminant function, ( ) ( ) bf +Φ= xwx , , where the weight vector w  

is given by ( )∑
=

Φ=
n

i
iii y

1
xw α , with nααα ,,,

21 K  of course output from the SVM 

algorithm.  It follows that the squared norm of the SVM weight vector is 

( )∑ ∑
= =

=
n

i

n

j
jijiji kyy

1 1

2 , xxw αα , with k  the kernel function.  Since 2w  plays such an 

intrinsic part in the SVM methodology, we consider the use of 2w  as selection criterion 

for SVMs: firstly, can 2w  be regarded as an appropriate selection criterion, and secondly, 

if so, how should 2w  be used? 

 

One tends to think that amongst variable subsets with the same size, if one performs 

variable selection based on 2w , the variable subset of choice should be the subset leading 

to a minimum value for 2w ; after all, the idea underlying training of an SVM is to 

maximise the margin, which is inversely proportional to 2w .  This point of view turns out 

to be wrong.  Substantial empirical evidence convinced us that the proper way of using 
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2w  as criterion in selection for SVMs, is to select the subset of variables which maximise 

the value of 2w .  The following heuristic argument may provide more insight.  Consider  

 

( )
2

1 1

2 ,∑ ∑
= =

=
n

i

n

j
jijiji kyy xxw αα  

        ( ) ( ) ( )
2

,,, 212211

,2,, ∑∑∑
∈∈∈∈∈∈

−+=
IjIi

jiji
IjIi

jiji
IjIi

jiji kkk xxxxxx αααααα . (4.38) 

 

This expression follows easily if we keep in mind that 1i jy y =  when sample cases i  and 

j  belong to the same group, and 1i jy y = −  otherwise.  Since the iα ’s and the Gaussian 

kernel function values are non-negative, it follows that each of the three terms in (4.38) 

will also be non-negative.  Suppose we compute (4.38) for a subset of variables which 

separate the two groups well.  Then the cross-group term in (4.38) will tend to be small, 

since entities from groups which are well separated will look markedly different and 

therefore ( )jik xx ,  will be close to zero if i  and j  correspond to cases from different 

groups.  This should result in a larger value of (4.38) than the value obtained for a subset of 

variables which do not separate the two groups well.  Note that this does not contradict the 

practice of computing nααα ,,,
21 K  for an SVM by maximising the margin, and therefore 

minimising 2w .  One should bear in mind that when we compute nααα ,,,
21 K , we do so 

for a fixed set of input variables, i.e. for fixed values of ( )jik xx , .  This is completely 

different from the situation in variable selection. 

 

With the aim of empirically verifying the above conclusion, we conducted a very limited 

simulation experiment.  We used the same data structure as in the NS, LL and LS data 

scenarios described in Chapter 3, and fixed the number of relevant input variables at 1m =  

(out of 5p = ).  Regarding the correlation between pairs of input variables, we set 0=Sρ  

or 0.7.  The correlation between pairs of relevant and irrelevant variables was 0=SSρ  

throughout.  In cases where the two groups were separated with respect to location, we 
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investigated one extra scenario: in addition to a difference in group means ( )Δμμ =− 1121  

equal to 1, we also set 3=Δ .  When differences between the two groups were obtained via 

different variance-covariance structures, we used 12
1 =s  and 1002

2 =s  in addition to 12
1 =s  

and 102
2 =s . 

 

Note that the experiment did not involve any selection steps: we simply trained five SVMs 

(each making use of the Gaussian kernel), based on the single input variables 

1 2 5, , ,X X XK .  For each of the five support vector classifiers, i.e. ( )1XSVM , ( )2XSVM , 

K , ( )5XSVM , we then calculated an average 2w -value and, based on 2000 test cases, an 

average test error over 1000 simulation repetitions.  The experiment was repeated using 

different cost parameter values, viz. C =  0.01, 0.1, 1, 10, 100 and 1000, and for both small 

( 1521 == nn ) and large ( 10021 == nn ) sample sizes. 

 

The results are summarised in Tables 4.3-4.5, for the NS, LL and LS data scenarios 

respectively.  Each cell contains two rows.  The entry in the first row of each cell is the 

average value of 2w , and the figure in the second row is the corresponding test error 

value.  Note that we do not report the average test errors at each of the six cost parameter 

values considered, but only at the C-value where a minimum average test error was 

obtained.  For each configuration (in the table columns) we indicate the largest average 
2w -value in bold face. 

 



CHAPTER 4 
KERNEL VARIABLE SELECTION IN FEATURE SPACE 

180 

Table 4.3: Average 2w  values and minimum average test errors for NS data 
 

SMALL SAMPLES 

VARIABLE 
0=Sρ , 

1=Δ  

7.0=Sρ , 

1=Δ  

0=Sρ , 

3=Δ  

7.0=Sρ , 

3=Δ  

1X  
0.0845 

.2904 

0.01658 

.2885 

2.4876 

.1330 

0.7184 

.1334 

2X  
0.0252 

.5001 

0.0211 

.4999 

1.3631 

.4994 

0.4853 

.5000 

3X  
0.0156 

.4997 

0.0089 

.4998 

2.2004 

.4999 

2.8824 

.5003 

4X  
0.1662 

.5003 

0.0256 

.5002 

1.7159 

.5004 

1.4332 

.5001 

5X  
0.1462 

.5001 

0.0176 

.5002 

0.3199 

.5001 

0.5859 

.4998 

 

LARGE SAMPLES 

VARIABLE 
0=Sρ , 

1=Δ  

7.0=Sρ , 

1=Δ  

0=Sρ , 

3=Δ  

7.0=Sρ , 

3=Δ  

1X  
.0413 

.2570 

.0490 

.2572 

.8939 

.1069 

.9536 

.1072 

2X  
.0151 

.4998 

.0089 

.4995 

.0477 

.4995 

1.5409 

.4994 

3X  
.0267 

.5005 

.0118 

.4999 

.0409 

.5003 

5.2769 

.4999 

4X  
.0097 

.5005 

.0098 

.4999 

.4827 

.5003 

.1451 

.5003 

5X  
.0152 

.4998 

.0046 

.5002 

.0914 

.4997 

.1851 

.5007 
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Table 4.4: Average 2w -values and minimum average test errors for LL data 
 

SMALL SAMPLES 

VARIABLE 
0=Sρ , 

1=Δ  

7.0=Sρ , 

1=Δ  

0=Sρ , 

3=Δ  

7.0=Sρ , 

3=Δ  

1X  
.000003 

.1237 

.000303 

.1235 

.000020 

.02624 

.002007 

.02602 

2X  
.000000 

.4995 

.000200 

.4998 

.000001 

.4999 

.000046 

.4497 

3X  
.000001 

.5002 

.000016 

.5003 

.000000 

.5010 

.000024 

.5000 

4X  
000001 

.5005 

.000100 

.5000 

.000000 

.5001 

.000047 

.4998 

5X  
.000000 

.4998 

.000206 

.4995 

.000001 

.4998 

.000048 

.0260 

 

LARGE SAMPLES 

VARIABLE 
0=Sρ , 

1=Δ  

7.0=Sρ , 

1=Δ  

0=Sρ , 

3=Δ  

7.0=Sρ , 

3=Δ  

1X  
.0003 

.1137 

.000001 

.1144 

.1408 

.0218 

.0103 

.02213 

2X  
.0000 

.5000 

.000000 

.4999 

.0580 

.5004 

.0038 

.4998 

3X  
.0000 

.4996 

.000000 

.5005 

.1553 

.4999 

.0062 

.5005 

4X  
.0000 

.4999 

.000000 

.5001 

.1010 

.4999 

.0035 

.5001 

5X  
.0000 

.5000 

.000000 

.4996 

.1810 

.4999 

.0070 

.4493 
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Table 4.5: Average 2w -values and minimum average test errors for LS data 

 

SMALL SAMPLES 

VARIABLE 
0=Sρ , 

1=Δ  

7.0=Sρ , 

1=Δ  

0=Sρ , 

3=Δ  

7.0=Sρ , 

3=Δ  

1X  
.0472 

.2135 

.1503 

.2119 

.2331 

.1100 

4.7804 

.1108 

2X  
.2078 

.4994 

.0603 

.5002 

.1602 

.5005 

1.3880 

.5002 

3X  
.2298 

.5001 

.02819 

.4999 

.1085 

.5001 

.1817 

.4997 

4X  
.1329 

.5000 

.1735 

.4996 

.2458 

.4999 

.1518 

.4992 

5X  
.0711 

.4002 

.0401 

.5003 

.01619 

.4998 

.1002 

.5002 

 

LARGE SAMPLES 

VARIABLE 
0=Sρ , 

1=Δ  

7.0=Sρ , 

1=Δ  

0=Sρ , 

3=Δ  

7.0=Sρ , 

3=Δ  

1X  
.8006 

.1805 

.2489 

.1800 

1.7244 

.0825 

7.7024 

.0830 

2X  
.1783 

.5004 

.0093 

.5002 

.6405 

.5000 

.6188 

.5002 

3X  
.2281 

.5001 

.02202 

.5004 

.4727 

.4998 

.4940 

.5002 

4X  
.1481 

.5002 

.0240 

.4998 

.6134 

.5001 

.3220 

.4999 

5X  
.2342 

.4999 

.0141 

.4992 

.0433 

.4999 

3.8326 

.4997 
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As in the numerical experiments reported in previous chapters, first note the significant 

improvement in the minimum (over C-values) average test error when the support vector 

classifier uses only the separating input variable ( )1X , rather than any other single variable.   

 

What can be said about suitability of the idea to select the set of input variables maximising 
2w ?  Consider first the small sample results, summarised in the first parts of Tables 4.3 to 

4.5.  Here the LL data sets do indeed yield maximum values of 2w  for the SVM based on 

1X , which is also the SVM having the smallest test error.  In these cases it seems that 

using a selection procedure based on maximising 2w  should work well.  The results for 

the small sample NS and LS data scenarios are not as promising.  In the four small sample 

NS cases, 2w  is a maximum for ( )1XSVM  only once, with a similar result for the four 

small sample LS cases.  The large sample results (presented in the lower parts of Tables 4.3 

to 4.5) are decidedly more promising.  For each of NS, LL and LS we find 2w  to be a 

maximum for ( )1XSVM  in three out of the four scenarios investigated.  Overall it seems 

that selecting variables to maximise 2w  may indeed be a worthwhile proposal.  Note that 

in our further discussions we will denote the 2w  criterion by N. 

 

THE RAYLEIGH QUOTIENT 
 
In this section we turn attention to selection for KFDA.  Considering algorithm-dependent 

selection, we now ask whether it is possible to propose a quantity for selection which, in 

addition to kernel matrix entries, also make use of the nααα ,,,
21 K  output from the KFDA 

algorithm.  We follow our reasoning in proposing the N criterion for SVMs, and focus our 

attention on the key aspect in KFDA methodology. 

 

The objective of KFDA in binary classification is to find the direction in feature space 

corresponding to the projection providing the best possible separation between the two 

groups.  Separation is measured in terms of the ratio between the distance between the two 
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projected group means in ℑ , and the variance of the projected data in ℑ  within a specific 

group.  We have seen in Section 4.3.2 that the KFDA objective is realised via maximisation 

of the Rayleigh quotient (given in (4.20)).  The Rayleigh quotient is the criterion on which 

the KFDA algorithm is founded, and since its value depends on the KFDA α -coefficients, 

we propose using it to rate variable subsets of the same size: variable subsets corresponding 

to large values for the Rayleigh quotient are preferred. 

 

Note that the Rayleigh quotient bears strong resemblance to the inverse of the variation 

ratio criterion in Section 4.6.1.  A distinction between these two criteria is of course that, 

through additional dependence of the Rayleigh quotient on the KFDA nααα ,,,
21 K  

output, the latter is computation-wise a much more expensive criterion. 

 

 

4.7.2  MONTE CARLO SIMULATION STUDY 
 

We compared the performances of the algorithm-dependent selection criteria that were 

proposed in the previous section, viz. the Rayleigh coefficient (R) in KFDA, and the norm 

of the weight vector in SVMs (N) by conducting a Monte Carlo simulation study.  In our 

numerical evaluation we made use of the same experimental design and simulation 

configurations as those described in Section 4.6.2.   

 

The obtained average test errors are presented in Tables 4.6-4.8 below.  Each table contains 

KFDA test errors in the first three columns, followed by SVM test errors in columns 5 to 7.  

We once again report the no selection and the oracle average test errors (denoted as before 

by ( )VErr  and ( )SVErr  respectively); and in the case of KFDA, the post-selection error 

based on R (denoted by ( )RErr ); or in the case of SVMs, the average error rate obtained 

after performing selection based on the N criterion (in the ( )NErr  column). 
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Table 4.6: Average test errors in the NS case 

KFDA SVM 

 ( )VErr  ( )SVErr  ( )RErr  sel ( )VErr  ( )SVErr  ( )NErr  sel 

NS1 SMALL .454 .282 .326 1.16 .455 .290 .328 1.13 

MIXED .250 .250 .250 1.00 .332 .254 .254 1.00 

LARGE .379 .250 .258 1.03 .396 .258 .258 1.00 

 WIDE .410 .085 .204 2.40 .430 .123 .255 2.07 

NS2 SMALL .255 .102 .138 1.35 .259 .129 .175 1.36 

MIXED .199 .086 .092 1.07 .206 .091 .096 1.05 

LARGE .204 .110 .110 1.00 .227 .090 .090 1.00 

 WIDE .129 .003 .009 3.00 .086 .005 .039 7.80 

NS3 SMALL .455 .282 .324 1.15 .450 .291 .332 1.14 

MIXED .250 .250 .250 1.00 .334 .254 .254 1.00 

LARGE .379 .259 .259 1.00 .397 .257 .257 1.00 

 WIDE .425 .138 .278 2.01 .430 .187 .295 1.58 

NS4 SMALL .309 .153 .180 1.18 .320 .180 .209 1.16 

MIXED .250 .250 .250 1.00 .265 .116 .120 1.03 

LARGE .135 .083 .083 1.00 .163 .077 .077 1.00 

 WIDE .223 .019 .097 5.11 .250 .151 .185 1.23 

 

 

The selection (sel) column for KFDA contains the values ( ) ( )SVErrRErr , whereas for 

SVMs, the selection column represents ( ) ( )SVErrNErr .  Since the ( )SVErr -values 

portray the scenario where we did know which of the m variables were relevant, they 

represent the best one could possibly do.  Hence the values in the selection columns should 

be larger than 1.  Of course smaller sel-values (i.e. values closer to 1) indicate higher post-

selection classification accuracy.  Care should again be taken when interpreting the mixed 

sample results – see the discussion on page 70. 
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Table 4.7: Average test errors in the LL case 

KFDA SVM 

 ( )VErr  ( )SVErr  ( )RErr  Sel ( )VErr  ( )SVErr  ( )NErr  sel 

LL1 SMALL .337 .135 .137 1.01 .331 .122 .124 1.02 

MIXED .165 .079 .079 1.00 .171 .064 .064 1.00 

LARGE .215 .122 .122 1.00 .232 .115 .115 1.00 

 WIDE .301 .058 .069 1.19 .265 .068 .071 1.04 

LL2 SMALL .166 .078 .078 1.00 .157 .084 .084 1.00 

MIXED .078 .042 .042 1.00 .071 .045 .046 1.02 

LARGE .072 .032 .032 1.00 .077 .033 .034 1.03 

 WIDE .122 .039 .049 1.26 .089 .020 .022 1.10 

LL3 SMALL .330 .137 .139 1.01 .334 .121 .124 1.02 

MIXED .160 .079 .079 1.00 .171 .064 .064 1.00 

LARGE .213 .121 .121 1.00 .229 .113 .113 1.00 

 WIDE .352 .117 .127 1.09 .324 .122 .190 1.56 

LL4 SMALL .219 .124 .125 1.01 .216 .127 .127 1.00 

MIXED .100 .079 .079 1.00 .100 .068 .069 1.01 

LARGE .151 .084 .084 1.00 .143 .084 .085 1.01 

 WIDE .228 .099 .107 1.08 .218 .128 .133 1.04 

 

 

Comparing the selection values obtained for the R criterion for KFDA with those of the N 

criterion for SVMs, we see that in the NS and LL data scenarios, selection using the N 

criterion is mostly preferred to selection using the R criterion.  Two exceptions occur: in 

the NS2 and the LL3 wide sample cases the R criterion outperforms the N criterion.  In the 

NS2 case selection using the R criterion yields significantly smaller average test errors than 

selection using the N criterion: compare a selection value of 3 in the case of R with a value 

of 7.8 in the case of N.  Finally, in the LS data setups, note that we generally observe the 

opposite: there the R criterion outperforms the N criterion, with a single exception 

occurring in the LS4 wide sample case. 
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Table 4.8: Average test errors in the LS case 

KFDA SVM 

 ( )VErr  ( )SVErr  ( )RErr  sel ( )VErr  ( )SVErr  ( )NErr  sel 

LS1 SMALL .438 .225 .248 1.10 .441 .213 .368 1.73 

MIXED .250 .250 .250 1.00 .335 .227 .242 1.07 

LARGE .360 .201 .202 1.00 .361 .180 .194 1.08 

 WIDE .449 .119 .200 1.68 .449 .136 .332 2.44 

LS2 SMALL .262 .126 .138 1.10 .269 .125 .158 1.26 

MIXED .193 .096 .099 1.03 .195 .086 .245 2.85 

LARGE .154 .085 .085 1.00 .163 .076 .078 1.03 

 WIDE .279 .054 .106 1.96 .260 .062 .128 2.06 

LS3 SMALL .442 .223 .244 1.09 .442 .208 .266 1.28 

MIXED .250 .250 .250 1.00 .333 .224 .245 1.09 

LARGE .360 .201 .202 1.00 .361 .179 .193 1.08 

 WIDE .457 .141 .263 1.87 .449 .174 .356 2.05 

LS4 SMALL .323 .149 .158 1.06 .315 .166 .223 1.34 

MIXED .243 .129 .135 1.05 .251 .095 .146 1.54 

LARGE .206 .126 .126 1.00 .221 .092 .095 1.03 

 WIDE .342 .082 .196 2.39 .327 .168 .250 1.49 

 

 

Up to this point, the results of our numerical evaluation has lead us to conclude that, of the 

algorithm-independent selection criteria, the AT criterion generally is the selection criterion 

of choice, followed by the A criterion, and then by VA.  Amongst the algorithm-dependent 

criteria, we concluded that typically in NS and LL data setups, the N criterion for SVMs 

performs best, but that in LS scenarios, use of the R criterion for KFDA should be 

recommended. 
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The remaining question is whether the extra computational burden required to calculate the 

algorithm-dependent criteria is justified: do the algorithm-dependent criteria tend to select 

better variable subsets? 

 

In order to facilitate a recommendation regarding a choice between algorithm-independent 

and -dependent selection criteria, we calculated the selection values corresponding to best-

perfoming algorithm-independent criteria (i.e. AT, A and VA), and report these values, 

along with the N and R selection values (provided earlier on) in Tables 4.9-4.11.  Care 

should once again be taken when interpreting the mixed sample results – refer to the 

discussion on page 70. 

 

Table 4.9:  Selection values for algorithm-dependent and –independent criteria in NS data 

KFDA SVM 

 AT A VA R AT A VA N 

NS1 SMALL 1.19 1.22 1.44 1.16 1.16 1.19 1.41 1.13 

MIXED 1.00 1.00 1.00 1.00 1.02 1.05 1.02 1.00 

LARGE 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 

 WIDE 2.28 2.44 5.44 2.40 1.95 2.04 3.76 2.07 

NS2 SMALL 1.46 1.51 1.84 1.35 1.31 1.57 1.47 1.36 

MIXED 2.91 2.91 1.51 1.07 4.01 4.02 1.40 1.05 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 WIDE 4.00 4.67 41.0 3.00 8.60 9.8 49.2 7.80 

NS3 SMALL 1.18 1.21 1.45 1.15 1.16 1.19 1.40 1.14 

MIXED 1.00 1.00 1.00 1.00 1.05 1.05 1.02 1.00 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 WIDE 1.99 2.04 3.38 2.01 1.52 1.58 2.51 1.58 

NS4 SMALL 1.25 1.29 1.44 1.18 1.23 1.26 1.39 1.16 

MIXED 1.00 1.00 1.00 1.00 3.16 3.16 1.24 1.03 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 WIDE 5.32 5.79 12.5 5.11 1.28 1.31 2.13 1.23 
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Table 4.10:  Selection values for algorithm-dependent and –independent criteria in LL data 

KFDA SVM 

 AT A VA R AT A VA N 

LL1 SMALL 1.03 1.03 1.15 1.01 1.03 1.03 1.14 1.02 

MIXED 1.01 1.01 1.00 1.00 1.02 1.00 1.00 1.00 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 WIDE 1.10 1.14 1.52 1.19 0.96 0.97 1.34 1.04 

LL2 SMALL 1.01 1.01 1.06 1.00 1.01 1.02 1.06 1.00 

MIXED 1.00 1.00 1.00 1.00 0.93 0.93 0.93 1.02 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 

 WIDE 1.08 1.10 1.15 1.26 1.10 1.15 1.50 1.10 

LL3 SMALL 1.01 1.02 1.12 1.01 1.03 1.04 1.17 1.02 

MIXED 1.01 1.00 1.00 1.00 1.05 1.00 1.02 1.00 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 WIDE 1.06 1.09 1.40 1.09 1.07 1.07 1.33 1.56 

LL4 SMALL 1.01 1.01 1.03 1.01 1.02 1.02 1.06 1.00 

MIXED 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.01 

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 

 WIDE 1.07 1.09 1.33 1.08 1.03 1.03 1.13 1.04 

 

 

We see that the pattern in all three tables is more or less the same.  In KFDA the algorithm-

dependent R criterion does very well.  It is only in wide samples that the algorithm-

independent AT criterion performs better, in many cases only slightly so.  The same 

conclusion is largely applicable to the N criterion for SVMs, except in LS data, where the 

AT criterion more or less dominates N.  Overall it is evident that the additional effort 

required to compute the algorithm-dependent criteria offers a substantial improvement in 

post-selection classification accuracy. 
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Table 4.11:  Selection values for algorithm-dependent and –independent criteria in LS data 

KFDA SVM 

 AT A VA R AT A VA N 

LS1 SMALL 1.20 1.22 1.63 1.10 0.70 0.72 1.73 1.73 

MIXED 1.00 1.00 1.00 1.00 1.10 1.10 1.07 1.07 

LARGE 1.00 1.00 1.03 1.00 1.01 1.01 1.04 1.08 

 WIDE 1.50 1.55 3.24 1.68 1.38 1.43 2.88 2.44 

LS2 SMALL 1.18 1.20 1.44 1.10 1.20 1.22 1.48 1.26 

MIXED 2.60 2.60 1.45 1.03 2.26 3.43 1.45 2.85 

LARGE 1.00 1.00 1.01 1.00 1.00 1.00 1.03 1.03 

 WIDE 1.72 1.83 3.98 1.96 1.56 1.63 3.82 2.06 

LS3 SMALL 1.21 1.25 1.68 1.09 1.25 1.28 1.75 1.28 

MIXED 1.00 1.00 1.00 1.00 1.19 1.20 1.11 1.09 

LARGE 1.00 1.00 1.04 1.00 1.01 1.01 1.04 1.08 

 WIDE 1.67 1.72 2.99 1.87 1.39 1.43 2.43 2.05 

LS4 SMALL 1.15 1.17 1.38 1.06 1.14 1.16 1.29 1.34 

MIXED 1.94 1.94 1.37 1.05 3.24 3.25 1.51 1.54 

LARGE 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.03 

 WIDE 2.10 2.18 3.82 2.39 1.22 1.24 1.88 1.49 
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4.8  SUMMARY 
 

It was found in Chapter 3 that at least some feature space information should be used in the 

variable selection process.  In this chapter we therefore studied selection in feature space, 

focusing on different types of feature space information.  This led to two classes of 

selection criteria, viz. algorithm-independent and algorithm-dependent criteria.  Criteria in 

the first category only uses feature space information which is independent of the specific 

kernel algorithm being applied, whilst criteria in the second category also employ 

information derived from this algorithm. 

 

This chapter started with a section in which a detailed description of SVMs and KFDA was 

provided.  Several algorithm-independent criteria were then defined, and compared in an 

empirical study.  The results indicated that the AT and A criteria performed best, followed 

by VA.  Two algorithm-dependent criteria were also defined, and their properties studied 

empirically.  No general preference for one of the two criteria was found.  Finally, we 

compared the algorithm-independent and -dependent criteria.  Although the algorithm-

dependent criteria generally performed best, the AT and A criteria were still very much 

competitive, especially in wide samples.  Given their computational simplicity, these two 

criteria are recommendable, especially when p is large. 
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CHAPTER 5  

 BACKWARD ELIMINATION FOR KERNEL 
CLASSIFIERS 

 

 
 

5.1  INTRODUCTION 
 

In order to address the variable selection problem in its entirety, three questions need to be 

answered, viz. which selection criterion to use, how to reduce the number of all possible 

variable subsets in an efficient manner to a manageable number, and how many input 

variables to include in the final model.  Thus far in the thesis we have focused on the first 

aspect.  We investigated the performance of several selection criteria when a filter 

approach is used: after quantifying the individual contribution of each input variable to the 

selection criterion under consideration, we simply selected the fixed number of variables 

corresponding to the optimum value of the selection criterion.  In this approach the relative 

importance of each input variable is measured without any consideration of the other input 

variables.  Generally this is a serious drawback.  Depending on which of the other variables 

have already been selected or eliminated from the model, relationships among input 

variables may influence the relevance of variables.  In this chapter we therefore evaluate 

the performance of selection criteria when they are used in combination with a selection 

strategy.  The strategy investigated in this chapter is backward elimination. 

 

In the literature backward elimination of input variables in the context of kernel techniques 

is known as recursive feature elimination (RFE).  There are several reasons why this 

strategy is frequently preferred to forward selection.  If p  is large a forward strategy may 

terminate before the model containing all the variables, or models containing a large 

number of variables, is considered.  This is generally undesirable, especially in situations 

where it is reasonable to expect a large percentage of input variables to be selected.  The 

disadvantages of a forward selection strategy are also pointed out in a review paper on 
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variable selection by Guyon and Elisseeff (2003).  They argue that ‘weaker subsets are 

found by forward selection because the importance of variables is not assessed in the 

context of variables not included yet’ and illustrate this by means of an example.  Finally, 

we will present empirical evidence in Chapter 6 supporting the preference for backward 

elimination to forward selection. 

 

An outline of the remainder of the chapter is as follows.  In Section 5.2 we present a review 

of the literature on RFE.  Section 5.3 introduces the use of several selection criteria in 

backward elimination, which is then evaluated in a fairly extensive Monte Carlo simulation 

study described in Section 5.4.  The results of this simulation study are discussed in Section 

5.5, followed by a summary of the chapter in Section 5.6. 

 

 

5.2  LITERATURE REVIEW 
 

In the literature on kernel variable selection, RFE was initially studied as an input variable 

selection strategy for SVMs in the context of binary classification problems in micro-array 

analyses (Guyon et al., 2002).  RFE is an iterative backward elimination strategy: starting 

with the classifier using the comprehensive set of p  input variables, each step in the RFE-

algorithm involves elimination of one (or more) input variables.  Elimination of variables 

continues until only m  variables remain.  Importantly, note that the original RFE-

algorithm assumes m p<  to be known. 

 

The paper by Guyon et al. (2002) played an important role in introducing RFE and we 

therefore discuss this paper in some detail.  Application of RFE requires specification of an 

appropriate criterion for identifying the variable(s) to be discarded at a given step of the 

algorithm.  Guyon et al. (2002) initially propose use of the squared coefficients of the 

weight vector obtained after training a linear support vector classifier for this purpose.  To 

explain their idea, let the observations on the input variables remaining after step 1d −  be 

denoted by ni
id

,,2,1,
,1

K
( =

−
x .  Then step d  in the algorithm requires one to train a 

linear SVM, yielding a discriminant function 
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                                                    ( ) xwx ,dd bf += , (5.1) 

 

where ∑=
= −

n

i idiid y
1 ,1

xw (α  and 1 2, , , nα α αK  are the usual SVM outputs.  Because a linear 

kernel function is used, dw  is a vector in pℜ , and its thj  coefficient can therefore be 

interpreted as a measure of the importance of the thj  input variable.  Hence Guyon et al. 

(2002) propose that in each step of the RFE-algorithm, variable with the smallest 2
d

w -value 

should be discarded.  This strategy has been shown to work well if the final SVM only 

makes use of a linear kernel function and is therefore restricted to operate in input space.  

However, in Chapter 3 it was found that, with exception of NL data sets, selection in input 

space performed rather poorly.  Since the strength of SVMs mostly lies in their use of non-

linear kernels and a classification function defined in feature space, we expect the 

performance of SVM-RFE based on { }pjw dj ,,2,1,2 K=  in input space to be suboptimal in 

most cases. 

 

When a non-linear kernel function is used, the SVM classifier is non-linear in input space, 

and then SVM-RFE should arguably also be based on non-linear relations in ℵ .  In their 

follow-up proposal regarding RFE selection criteria, Guyon et al. (2002) therefore make 

use of the weight vector coefficients of a non-linear support vector classifier.  That is, 

elimination of input variables at the thd  step in SVM-RFE is based on dw  in the non-

linear SVM discriminant function 

 

                                                  ( ) ( )xwx Φ+= ,dd bf ,  (5.2) 

 

where ( )∑ Φ=
=

−

n

i idiid y
1 ,1xw (α  is now an N -dimensional vector in ℑ .  Importantly, note 

that the individual elements in dw  are associated with the N  individual features in ℑ .  If 

a non-linear kernel function is used, the features are usually intricate functions of the 

original input variables.  In cases where the kernel function does not imply an infinite value 
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of N , the elements in dw  can then be used for feature selection.  However, since no single 

element in dw  can be used to quantify the importance of the role played by any individual 

input variable in the kernel classifier, the vector dw  cannot be used directly as a criterion 

for input variable selection. 

 

It is however not unreasonable to assume that the SVM weight vector can be used for 

variable selection in RFE even when a non-linear kernel function is employed.  Consider 

therefore once again step d and suppose 
2v

d
−w  denotes the squared norm of dw  if variable 

vX  is omitted at this step.  Guyon et al. (2002) suggest using 

 

                                                
222 v

ddvW −−=∆ ww   (5.3) 

 

as a criterion for identifying the variable which should be omitted.  This is simply the 

absolute change in the value of 2
dw  upon omission of variable vX , and the proposal is to 

remove the variable minimising (5.3).  The variable identified for omission at step d is 

therefore the variable whose exclusion has the smallest effect on 2
dw .  In this sense, 

2
vW∆  may be regarded as a so-called sensitivity selection criterion (cf. Rakotomamonjy, 

2003).   

 

It is necessary to refer to an approximation frequently employed in RFE to reduce the 

amount of computations in cases where p  is large.  Consider step d of the algorithm and 

assume that only one variable is discarded at each step.  Then at the start of step d there are 

1+− dp  variables remaining in the model.  Application of (5.3) as selection criterion 

would therefore entail fitting 1+− dp  different SVMs, one corresponding to each of the 

remaining variables being omitted.  In order to reduce the amount of computations required 

for implementation of this strategy, Guyon et al. (2002) propose the following 

approximation: assume that the SVM coefficients based on the reduced model obtained by 
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omitting a variable are identical to those based on the current full model.  This assumption 

obviates re-calculation of 1 2, , , nα α αK  after omission of each of the 1+− dp  candidate 

variables; we simply use 1 2, , , nα α αK  computed after completion of step 1−d  and only 

re-calculate the entries in the kernel matrix after omitting each of the candidate variables in 

turn. 

 

Guyon et al. (2002) evaluated SVM-RFE using gene expression data sets (the colon cancer 

data set, cf. Alon et al., 1999, and the leukaemia data set, cf. Golub et al., 1999).  In both 

data examples pre-processing of the data features prominently.  Standardisation of each 

input variable (i.e. subtracting the mean and dividing by the standard deviation of the 

variable) is consistently carried out.  Guyon et al. (2002) also recommend standardisation 

of sample cases across variables.  This of course only makes sense when the input variables 

are measured on the same scale, as is the case in micro-array data.  The authors also use 

logarithmic transformations and apply a squashing function to reduce the effect of possible 

outliers. 

 

Given that RFE is a numerically expensive procedure, a question may be raised as to 

whether it is worthwhile compared to simpler and computationally cheaper alternatives.  

Guyon et al. (2002) address this issue and point out that a full implementation of RFE 

consistently outperforms more naïve and cheaper alternatives, such as for example input 

variable ranking based on only a first RFE iteration.  This is a consequence of the fact that 

RFE investigates the relevance of subsets of input variables simultaneously, thereby taking 

their joint effect into account.  A procedure based on identifying a subset of input variables 

from their individual rankings may easily end up recommending highly correlated 

variables, many of which may in fact be superfluous.  As a result, other useful variables 

may in the process be discarded.  Moreover, there are further ways to speedup the RFE 

procedure.  A very simple strategy, implemented by Guyon et al. (2002), is to remove half 

of the remaining input variables at each step during the first stages of the algorithm.  As 

soon as approximately 100 variables remain, a single variable is then eliminated at each 

RFE step until the desired m  variables is reached.  Alternatively, one can make use of the 
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strategy presented in Furlanello et al. (2003), viz. entropy-based RFE, a faster version of 

the original RFE algorithm. 

 

Prior to the introduction of SVM-RFE, gene selection in cancer classification problems was 

typically carried out using techniques related to calculating ordinary Pearson correlations 

(cf. for example Golub et al., 1999).  In Guyon et al. (2002) SVM-RFE is compared with 

such correlation methods as well as with a naïve ranking method.  The authors only make 

use of { }pjw dj ,,2,1,2 K=  as selection criteria (since they argue this to be a sensible choice 

considering the data sets at hand), and find that SVM-RFE generally outperforms selection 

based on the correlation- and naïve ranking techniques. 

 

We now discuss contributions in the literature that are connected to the Guyon et al. (2002) 

paper, firstly considering contributions which propose and evaluate relatively small 

modifications to the original SVM-RFE algorithm, specifically the use of other selection 

criteria.  More sophisticated criteria may yield post-selection SVMs with better properties, 

and more general criteria can widen the scope of RFE.  We also discuss papers which make 

more comprehensive and fundamental changes, regarding for example the selection search 

strategy used, or core assumptions underlying the basic RFE algorithm. 

 

An important contribution regarding the use of alternative selection criteria in SVM-RFE is 

the paper by Rakotomamonjy (2003).  In this paper various selection criteria for RFE are 

proposed, such as 2w , and criteria based on generalisation error bounds (for example the 

radius/margin bound and the span estimate).  For each of the criteria two methods of 

determining the variable which should be eliminated at each step are investigated: a zero-

order method which eliminates the variable whose omission optimises the criterion, as well 

as a first-order method, which optimises the first derivative of the criterion.  

Rakotomamonjy (2003) points out that the zero-order method based on optimising 2w  is 

equivalent to the RFE method suggested for non-linear SVMs by Guyon et al. (2002).  He 

investigates RFE using the various criteria on two simulated data sets, as well as on four 

real-world data sets.  An SVM based on variables selected by means of correlation methods 
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is also evaluated in the study.  In general, the error rates of the SVM classifiers based on 

the selected subsets are lower (in some cases markedly so) than the error rates of the SVM 

classifier using all the input variables.  Although there is no single criterion which 

consistently yields a classifier with the lowest error rate, the zero and first order criteria 

based on 2w  generally perform well. 

 

It should be noted that prior to the Rakotomamonjy (2003) paper, work on selection criteria 

derived from (SVM) generalisation error bounds had already been reported.  A first 

example is the paper by Weston et al. (2001), where the authors make use of scaling factors 

and the radius-margin bound on the SVM generalisation error in combination with a 

gradient descent algorithm for variable selection.  A second example is found in Weston et 

al. (2003).  In this paper the number of non-zero elements in the SVM weight vector is 

used as selection criterion.  Denote this so-called zero-norm selection criterion by 

{ }0 0i icard w w= ≠w .  The zero-norm criterion is minimised over input variable subsets, 

and the subset for which 0w  is a minimum is selected.  This is not an easy minimisation 

problem to solve.  Bradley et al. (1998) and Bradley and Mangasarian (1998) developed a 

method for this purpose.  Weston et al. (2003) also developed a minimisation procedure 

( 2l -AROM) which they then compared with the method of Bradley et al. (1998) and 

Bradley and Mangasarian (1998).  The method by Bradley and Mangasarian (1998) solves 

an approximation to the above minimisation problem, and is referred to as FSV selection.  

In addition, 2l -AROM and FSV are compared to SVM-RFE (Guyon et al., 2002), the 

gradient descent method minimising the radius-margin bound (Weston et al., 2001), and 

naïve ranking using correlation coefficients.  Summarising their findings, Weston et al. 

(2003) conclude that only SVM-RFE and the gradient descent method minimising the 

radius-margin bound are acceptable for variable selection when groups are not necessarily 

linearly separable. 

 

In Louw and Steel (2006) RFE is extended to KFDA (KFDA-RFE).  The authors consider 

the use of the alignment and of the Rayleigh coefficient as selection criteria in an RFE 

scheme, and then evaluate KFDA-RFE using simulated data and two benchmark data sets 
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(the heart disease and breast cancer data sets in Rätsch et al., 2001).  In their conclusion it 

is stated that ‘using either the Rayleigh coefficient or the alignment as selection criterion in 

KFDA-RFE, in the vast majority of cases leads to more parsimonious models with higher 

classification accuracy than using the model based on all the input variables’. 

 

Regarding changes related to the RFE search strategy, one may choose to allow re-entrance 

of input variables eliminated during previous steps of the algorithm.  One can for example 

adjust the original SVM-RFE algorithm to no longer implement a backward elimination 

strategy, but rather forward or stepwise selection.  Fujarewicz and Wiench (2003), for 

example, compared the performance of a recursive forward selection or replacement 

strategy (RFR) with ordinary RFE in real life classification contexts.  A choice between 

RFE and RFR was however not that apparent and seemed to depend on the sizes of the 

gene subsets under consideration.  RFE appeared to outperform RFR when gene subsets 

were large. 

 

Recall that the originally proposed SVM-RFE assumes a known value for the optimal 

number of input variables to retain.  Furlanello et al. (2003) treat the more realistic scenario 

of an unknown optimal dimension for the final classifier in an RFE context. 

 

Finally in this section, note that there are several papers in the literature illustrating the 

successful application of RFE.  See for example Aliferis et al. (2003), Brown et al. (2000), 

Furey et al. (2000), Komura et al. (2004), Notterman et al. (2001), and Schummer et al. 

(1999).  Many researchers also comment on the good performance of RFE in many 

contexts (cf. Krishnapuram et al., 2004, Ambroise et al., 2002, and Li et al., 2002) and 

subsequently use RFE to benchmark new proposals.  Comprehensive discussions of SVM-

RFE may also be found in several textbooks, for example McLachlan et al. (2004) and 

Chen et al. (2004).  An interesting application of RFE in penalised logistic regression is 

given in Zhu and Hastie (2004). 
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5.3  SELECTION CRITERIA IN BACKWARD ELIMINATION 
 

In this section we discuss several selection criteria that can be used in a backward 

elimination strategy.  During each step we seek to quantify sensitivity of a criterion to 

elimination of the individual input variables in the model at that stage.  For this purpose we 

follow Rakotomamonjy (2003) and optimise values of a criterion in one of two ways: in a 

so-called zero-order approach we optimise values of the criterion itself, while in a first-

order approach we optimise values of the derivative of the criterion with respect to input 

variables in the model. 

 

Section 5.3.1 is devoted to a discussion of 2w  as a zero-order selection criterion, while in 

Section 5.3.2 we discuss this quantity as a first-order criterion.  During the discussion in 

Section 5.3.2 we introduce results that are used later on to derive first-order versions of 

other criteria.  In Section 5.3.3 we introduce several further selection criteria for RFE: the 

Rayleigh coefficient which is applicable in KFDA, and algorithm-independent criteria, viz. 

the alignment (A), the sum of the similarites between pairs of inputs belonging to opposite 

groups (SS), the variation ratio (VA), and differences between the two group means in 

feature space (G).  These algorithm-independent criteria have the advantage that the post-

selection classifier may be any kernel classifier.  For all the criteria in Section 5.3.3 we 

discuss both the zero- and the first-order form. 

 

5.3.1  THE SQUARED NORM OF THE SVM WEIGHT VECTOR: ZERO- 

          ORDER FORM 
 

Consider an SVM discriminant function, ( ) ( ) bf +Φ= xwx , , where the weight vector w  

is given by ( )∑
=

Φ=
n

i
iii y

1
xw α , with nααα ,,,

21 K  output from the SVM algorithm.  It 

follows that ( )∑ ∑
= =

=
n

i

n

j
jijiji kyy

1 1

2 , xxw αα , with k  the kernel function.  How can we use 

2w  as RFE-criterion?  We answer this question first from a zero-order perspective, 
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dealing with the first-order version in Section 5.3.2.  Consider therefore an RFE strategy 

where at each step we optimise 2w  with respect to omission of every individual variable 

which is still in the model.  Recall that in Section 4.7.1, it was indicated that by ‘optimise’ 

in this context it is meant that one should proceed in an RFE strategy by sequentially 

omitting variables to maximise 2w .  Empirical evidence lead to the conclusion that RFE 

based on maximising 2w  may indeed be a worthwhile proposal. 

 

 

5.3.2  THE SQUARED NORM OF THE SVM WEIGHT VECTOR: FIRST- 

          ORDER FORM 
 
In this section we describe a way in which the first-order version of  2w  can be used as 

selection criterion in an RFE scheme.  Much of the discussion is based on contributions in 

the important papers by Rakotomamonjy (2002 and 2003) and Chapelle et al. (2004).  The 

results introduced in this section are also used in Section 5.3.3 when we derive the first-

order versions of several other selection criteria. 

 
 
The basic idea underlying the use of a first-order selection criterion in RFE is to discard 

variables with respect to which the criterion is relatively insensitive.  This broadly implies 

that we have to consider the derivative of the criterion with respect to each of the variables 

(still) in the model, and eliminate the variable corresponding to the smallest absolute 

derivative.  If we wish to implement this idea, it is necessary to have computable 

expressions for the relevant derivatives.  We proceed with a discussion of how expressions 

for these derivatives can be found in the case of 2w . 

 

Consider therefore ( )∑ ∑
= =

=
n

i

n

j
jijiji kyy

1 1

2 ,~~ xxw αα  and suppose we wish to differentiate 

this quantity with respect to variable lX .  In this we have to keep in mind that both ix  and 
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jx  contain an observation on lX , and that in finding nααα ~,,~,~
21 K  we optimised over 

quantities depending on lX .  We require modification of our notation: thus far we have 

indicated an observation on the thl  input variable by lx .  In keeping with the notation used 

in the literature, in this section we will however associate a new interpretation with lx , and 

therefore now use lv  to represent a measurement on variable lX .  According to 

Rakotomamonjy (2002) two approaches are possible: 

 

i.   we can differentiate directly with respect to lX , using the results provided below, or 

ii. we can introduce a so-called scale factor for each variable and then perform the 

     differentiation with respect to the relevant scale factor. 

 

We discuss both these approaches, starting with i. 

 

The following theoretical result is required. 

 

LEMMA 5.1: THE DERIVATIVE OF A QUADRATIC OPTIMISATION 

                            OBJECTIVE FUNCTION AT ITS OPTIMISING ARGUMENT 

 
 

Let θv  be an 1×n  vector, and θP  an nn×  matrix, and suppose θP  is smoothly dependent 

on θ .  Consider the following optimisation problem: 

 

                                                       { }αPαvα
α

θθ ′−′
∈ 2

1 max
F

  (5.4) 

 

conditional on { }0αbαα ≥== ;: ' cF . 

 

If α~  is the vector where the maximum in (5.4) is attained, we may differentiate the 

objective function with respect to θ  as if α~  does not depend on θ .  Therefore, we may 

write 
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{ }

αPαvα
αPαvα ~~~

2
12

1

θθθ
θθθθ

∂
∂′−

∂
∂′=

∂

′−′∂
. (5.5) 

  

 
 
Clearly the SVM quadratic optimisation problem can be written as in (5.4): setting θ =v 1  

and y
θ θ=P K  with { }y

i j ijij
y y kθ =K , =b y , 0c =  and ixθ = , we obtain 

 

                                                      { }αKα1α
α

y

F
 max θ′−′

∈ 2
1 . (5.6) 

 

Note that (5.6) is identical to (4.13) in Problem 4.3, i.e. we get the dual optimisation 

problem for the SVM.  According to Chapelle et al. (2004) it can be shown that 

αKα1αw y
θ′−′= 2

12
2
1  (cf. also Vapnik, 1998).  We can therefore apply (5.5) to obtain  
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( )

l

kj
k

j k
jkj x

k
yy

∂

∂
−= ∑ ∑

xx ,~~ αα , (5.7) 

 

as given in Rakotomamonjy (2003, p. 12) and Chapelle et al. (2004, p. 16).  At this point 

the reader should note that it is also possible to arrive at the same result without the use of 

Lemma 5.1.  Such an alternative approach may be found in Chapelle et al. (2004, p. 17).  
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The term ( ) lkj xk ∂∂ xx ,  and the meaning of lx  is explained in the appendix of 

Rakotomamonjy (2002).  We follow the author by re-defining the bivariate kernel function 

ℜ→ℜ×ℜ ppk :  using ℜ→ℜ pk 2:ˆ .  That is, we write  

 

 

                   ( ) [ ] [ ] 




 ′′= kpkkjpjjkj xxxxxxkk ,,,,,,,, 2121 KKxx  

                                   ( )plppppl xxxxxxxxk 22121 ,,,,,,,,,,ˆ KKKK +++=  

                                   ( )xk̂= . (5.8) 

 

Importantly, note the distinction between 1: ×pv  and 12: ×px  in this section.  Here lv  

refers to the thl  of the p  original input variables which occur in both arguments (or input 

patterns) in the original kernel function ( )k .  The symbols lx  and plx +  however are two 

observations (belonging to two different input patterns) of the thl  of the p  input variables.  

That is, lx  and plx +  are two distinct observations of variable lX . 

 

The following definition is from the theory of differentiation of multivariate functions. 

 

DEFINITION 5.1:  DIFFERENTIABILITY OF A MULTIVARIATE FUNCTION 

 
 

A function ℜ→ℜ pf 2:  is differentiable at a point p2ℜ∈a  if  

 

                                            ( ) ( ) ( ) ( ) ( )hhaha a ofdff ++=+  (5.9) 

 

where ( ) 0→ho  as 0h →×12: p .  In (5.9), ℜ→ℜ pfd 2:a , i.e. fda  is a function from 

p2ℜ  to ℜ .  
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We can now also define the gradient of a multivariate function ℜ→ℜ pf 2: .   

 
 
DEFINITION 5.2: THE GRADIENT OF A MULTIVARIATE FUNCTION 

 
 

The gradient of ℜ→ℜ pf 2:  in a point p2ℜ∈a  is the 2 p-vector fa∇  with thi  element 

the partial derivative of f  with respect to ix  in the point a , i.e.  

( )ifa∇  ( ) axx
=∂

∂
= ||f

xi
, also denoted by ( )afDi  ( ) axx

=∂
∂

= ||f
xi

. 

 
 

There is a relation between fa∇  and the function fda  in (5.9), viz. 

( )( ) =ha fd =∇ ha ,f ( )∑
= =∂

∂p

i i
i f

x
h

2

1 || axx .  Note also that we can write 

fa∇ ( )∑
=

=
p

i
ii fD

2

1
ea , where { }p221 ,,, eee K  is the well known canonical basis in p2ℜ . 

 

 

We now consider our application where f  is a bivariate function of two −p component 

vectors, i.e. ℜ→ℜ×ℜ ppf :  with value ( )kjf xx ,  when applied to the pair ( )kj xx ,  of 

input patterns.  As explained earlier we can also view such a function as a real-valued 

function defined on p2ℜ . 

 

DEFINITION 5.3: THE GRADIENT OF A MULTIVARIATE FUNCTION 

                                   WITH RESPECT TO AN INPUT VARIABLE 

 
 

The gradient of ℜ→ℜ pf 2:  with respect to variable iv  at a point p2ℜ∈a  is the 

−p2 component vector  
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                               fiv
a∇   ( ) ( ) ip

ip
i

i
 ||f

x
 ||f

x +
+

=∂
∂

+=∂
∂

= eaxxeaxx . (5.10) 

 

 
 
 
It is clear from (5.10) that  

 

                                      
2

fiv
a∇ ( ) ( )aa fDfD ipi

22
++= .   (5.11) 

 

We would now like to apply these results to the case where the function f  is 2w , the 

squared norm of the SVM weight vector.  This requires differentiation of the kernel 

function.  Consider therefore the kernel function evaluated at the pair ( )kj xx , , where jx  

and kx  are two input patterns.  The point 12: ×pa  above is taken to be the vector 

[ ]'
''
kj xx .  Now ( ) ( ) ( )kjkljlkj

l
kxxk

x
xxxx ,2, −−=

∂
∂ γ , with a similar expression for 

( )kj
lp

k
x

xx ,
+∂

∂ .  It follows from (5.7) and (5.11) that the first-order 2w  sensitivity 

selection criterion based on direct differentiation with respect to variable lv  and using the 

Gaussian kernel to quantify similarities between input patterns, is 

 

                   ( ) =lJ =∇
22waiv   ( ) ( )

2

,~~2 







−∑∑

j k
kjkljlkjkj kxxyy xxααγ  (5.12) 

 

(cf. also Rakotomamonjy, 2002, p.11). 

 

Now consider the second approach for deriving a first-order version of 2w  as selection 

criterion.  This approach makes use of differentiation with respect to virtual scaling factors 

(cf. Rakotomamonjy, 2003).  Let [ ] '
21 ,,,1: psssp K=×s  be a vector of virtual scaling 

factors, with one scaling factor for each of the variables.  We consider the kernel function 
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in the form ( ) ( )kjkj kk xsxsxx ⋅⋅= ,, , where xs ⋅  denotes the component-wise vector 

product, i.e. [ ] '
2211 ,,, pp xsxsxs K=⋅ xs .  This view of the kernel function is valid since 

we later put 1s = , the −p component vector with 1 in every position. 

 

Consider once again ( )αKα1αw y
θ′−′= 2

12 2 , where the elements of the nn×  matrix y
θK  

are now viewed as { } ( )jijiij
y kyy xsxsK ⋅⋅= ,θ .  If we now differentiate 2w  with respect 

to the thl  scaling factor ls , we obtain   

 

                         =
∂

∂
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l ss
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Now,  
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,

2
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γ

γ
   

 

and if we put 1s = , this simplifies to   

                           

                           ( ) ( ) ( )kjkljllkj
l

kxxsk
s

xsxs
1s

xsxs ⋅⋅−−=
=

⋅⋅
∂
∂ ,2||, 2γ . 

 

The scaling factor version of the first-order 2w  criterion is now defined to be  

 

                 ( ) =lJ =
=∂

∂
1s

w ||
2

ls
  ( ) ( )∑ ∑ −−

j k
kjkljlkjkj kxxyy xx ,~~2 2ααγ   (5.14) 
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In Rakotomamonjy (2002) the sensitivity criterion in (5.14) mostly outperformed the 

criterion in (5.12).  Hence the only selection criteria investigated in Rakotomamonjy (2003) 

are derivatives calculated with respect to scale parameters.  In light of this we will also 

restrict attention to criteria found through differentiation with respect to scale factors. 

 

 

5.3.3 FURTHER SENSITIVITY SELECTION CRITERIA 
 

Following a backward elimination strategy, Rakotomamonjy (2003) investigates the use of 

quantities based on the radius-margin and span bounds on the SVM generalisation error as 

sensitivity selection criteria.  These criteria can however only be used in the context of 

SVMs, and they were found by Rakotomamonjy (2003) to perform worse than 2w .  In 

this section we therefore discuss several other criteria which can be used for selection prior 

to the application of any type of kernel classifier. 

 

Any of the algorithm-independent criteria in Chapter 4 (viz. A, G, SS or VA) can be used in 

an RFE scheme of selection.  In most cases, finding derivatives of these criteria is much 

simpler than obtaining the gradient vector with respect to the squared norm of the SVM 

weight vector.  Note that in this section we also discuss use of the Rayleigh quotient as 

sensitivity selection criterion within the context of KFDA.  Importantly, note that for all the 

criteria we assume the use of a Gaussian kernel function.  That is, we always assume 

 

                       ( )






 =





== nji-expkk jijiij ,,2,1,-,

2
K  xxxx γ ,                          (5.15) 

 

leading to 
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It is of course also possible to find the first order forms of selection criteria when other 

kernel functions are used. 

 

Since G and SS are the simplest selection criteria, we start by finding their first order forms. 

 
 
THE SUM OF SIMILARITIES 
 
In Chapter 4 the sum of similarities criterion was defined as the sum of the entries in the 

21 nn ×  sub-matrix of K , i.e. ∑
∈∈

=
21 , IjIi

ijkSS .  In order to measure the sensitivity of SS 

with respect to input variable kX , we simply require 

 

                                               ( )∑
∈∈

−−=
∂
∂

21 ,

22
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SS γ .                                    (5.17) 

 
 
THE DIFFERENCE BETWEEN GROUP MEANS 
 
We showed in Chapter 4 that the squared difference between the two group means in 

feature space can easily be calculated using entries in the empirical kernel matrix.  Let the 

difference in group means be denoted by G , i.e. 

 

                   ∑∑∑
∈∈∈∈∈∈

−+=
212211 ,

21
,

2
2

,

2
1 2

IjIi
ij

IjIi
ij

IjIi
ij nnknknkG .                              (5.18) 

 

The first order form of the selection criterion calculated with respect to variable kX  is 
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                                                  ( )
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∈∈ 21 ,
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22

IjIi
ijjkik nnkxx .                                     (5.19) 

 

Note that both Expressions (5.18) and (5.20) will feature in the derivation of the first-order 

form of the alignment, of the Rayleigh quotient and also of the variation ratio. 

 
 
THE ALIGNMENT 
 
Consider the alignment selection criterion, viz.  
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Let the numerator and denominator of (5.21) be denoted by NA  and DA  respectively, i.e. 

let DN AAA = .  Hence we require 
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where 
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Substituting the derivatives in (5.23) and (5.24) into (5.22), the first-order form of the 

alignment criterion can now easily be obtained.  We write the criterion in its unsimplified 

form, viz. 
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                                                                                                                                         (5.24) 

 

 

THE RAYLEIGH QUOTIENT 
 
For simpler derivation of a sensitivity selection criterion based on the Rayleigh quotient, 

consider [ ] [ ]NααMαα ′−′= loglogR log , where as before, 

 

                                                 ( )( )′−−= 2121 ΦΦΦΦM                                               (5.25) 

 

and 

 

                                  22221111 21
K1KKKK1KKKN nn −′+−′= ,                              (5.26) 

 

with 
jn1  an jj nn ×  matrix with common element jn1 , and jK  an jnn ×  submatrix of 

K ; 2,1=j .  That is, [ ]21 | ΚΚK = .  In order to measure the sensitivity of R log  with 

respect to the thk  input variable, we require 
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Substituting the above two expressions into (5.28) yields the first-order form of the 

selection criterion based on the KFDA Rayleigh quotient. 
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THE VARIATION RATIO 
 
Very similar to the alignment, the first order form of the variation ratio selection criterion 

can be derived as follows.  We denote the numerator of the variation ratio by NR , and the 

denominator by DR , i.e. 2
2

2
1 ssRN +=  and 

2
21 ΦΦ −=DR .  Hence, 
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A formula for calculating the terms in NR  was given in Chapter 4.  Using this we have 
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Also in Chapter 4 we saw that DR  can easily be obtained using entries in the empirical 

kernel matrix, viz. 
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The following derivatives are now easily obtained: 
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5.4  MONTE CARLO SIMULATION STUDY 
 

When applied in an RFE selection strategy, the performances of selection criteria discussed 

in the previous section may differ from their one-step selection performances in Chapter 4.  

In the next section we therefore report on a fairly extensive Monte Carlo simulation study 

that was carried out in order to study the performance of the proposed variable selection 

criteria when they are used in combination with a backward elimination strategy. 

 

We used the same parameter configurations and data generating strategy as discussed in 

Section 4.6.2.  These differ from the setup in Section 3.4.1, in that we omitted all NL data 

sets, and always generated the relevant and irrelevant subsets of input variables to be 

uncorrelated (i.e. we se 0=SSρ  throughout).  The various levels for the correlation 

(amongst the relevant set of input variables), the number of relevant variables, and the 

training and test sample sizes amounted to 16 configurations to consider per data scenario 

(viz. the LL, LS and NS setups), and thus 48 configurations in total – each requiring its own 

simulation program.  The output of each program were the average post-selection test 

errors (with their standard errors), and per input variable and selection criterion, the 

percentage of times that the particular variable was selected.  The averages and percentages 

were calculated across 500 Monte Carlo simulation repetitions. 

 

To obtain the output described in the previous paragraph, we performed the following 

actions in each simulation repetition.  We started by generating a training and test data set 

using the comprehensive set of available input variables in V .  Now consider a given 

selection criterion.  We applied this criterion to the training data, and identified a variable 

to discard.  This process was continued until the predetermined number m  of input 

variables remained.  For each of these variables a selection frequency counter was 

increased.  Finally, the relevant kernel classifier (KFDA and SVMs in the case of 

algorithm-independent criteria, and only the appropriate one of the two for the algorithm-

dependent criteria) based on the identified variables was trained and used to classify the 

test data cases, thereby yielding a test error value.  Averaging these results over the 500 
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repetitions yielded estimates of the probability of selecting the different variables, and the 

error rate associated with each criterion. 

 

5.5  RESULTS AND CONCLUSIONS 
 

The average test errors obtained in the LL, LS and NS data scenarios are given in Tables 

A.5 to A.28 in Appendix A.2.2.  Standard errors ranged between 0.000 and 0.008, and were 

omitted from the tables.  Four tables are reported for each data scenario: one corresponding 

to each of the sample sizes considered.  Furthermore, each table is divided into four 

segments, thus providing for the different correlation structures and number of relevant 

input variables considered.  The four sets of average test errors in each table correspond to 

the following configurations: 

 

Table 5.1:  Correlation structures and number of relevant variables considered 
 

SMALL, MIXED and LARGE SAMPLES WIDE SAMPLES 
 

    i.  0=Sρ , 1=m  (out of )10=p  

    ii.  0=Sρ , 4=m  (out of )10=p  

    iii.  7.0=Sρ , 1=m  (out of )10=p  

    iv.  7.0=Sρ , 4=m  (out of )10=p  

 

    i.  0=Sρ , 6=m  (out of )60=p  

    ii.  0=Sρ , 24=m  (out of )60=p  

    iii.  7.0=Sρ , 6=m  (out of )60=p  

    iv.  7.0=Sρ , 24=m  (out of )60=p  

 

 

In turn, each of the four table segments consists of three rows.  In the first row of each 

segment the average test errors pertaining to the classifier using the full set of available 

input variables appear in the FULL column, the test errors based on the classifier using 

only the subset of relevant variables appear in the oracle (ORA) column, and the average 

test errors that were obtained for the respective post-RFE selection classifiers are given in 

the remaining columns.  These columns are indicated as follows: The algorithm-

independent RFE selection criteria (viz. the alignment, the sum of dissimilarities, the 

difference in group means and the variation ratio) are respectively denoted by A, G, SS or 

VA.  The notation is additionally augmented with a zero or one, depending on whether the 
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zero- or first order form of the criterion was used.  For example, A0 refers to the zero-order 

alignment, while the first-order alignment is denoted by A1.  Note also that in the case of 

the alignment criterion further distinction has to be made between the ordinary zero- and 

first order forms (A0 and A1) and their respective translated versions (A0T and A1T).  The 

two sets of algorithm-dependent RFE selection criteria (viz. the norm of the SVM weight 

vector and the KFDA Rayleigh coefficient) are denoted by N and R respectively.  Once 

again a zero or one is added to the notation in order to differentiate between zero- and first 

order criteria.  Values in the second row of each table segment depict the size of the 

average post-selection errors relative to the average error achieved by the oracle.  For 

example, in the first segment of Table A.5 we see that the zero-order Rayleigh criterion 

(R0) yields a post-selection average KFDA test error of 0.145, compared to an oracle 

average test error of 0.134.  Relative to the oracle, the R0 error is therefore 

082.1134.0145.0 = , indicating that selection based on the R0 criterion yields an average 

error which is 8.2% higher than the best one can possibly do.  Rankings of the 

performances of the post-selection classifiers are based on the above relative errors, and are 

given in the third row (with a 1 indicating the next best performance after that of the 

oracle).  For example, in the first segment of Table A.5, the ranking of R0 indicates RFE 

selection using the R0 criterion to be the best performer, followed by selection based on 

A1T, and then by selection using the V0 criterion. 

 

In Appendix A, we first report the results obtained for the LL data sets (in Tables A.5-

A.12), followed by the output obtained in the LS (in Tables A.13-A.20) and the NS case (in 

Tables A.21-A.28).  Tables A.5-A.8, A.13-A.16 and A.21-A.24 report KFDA errors, 

whereas Tables A.9-A12, A.17-A20 and A.25-A.28 contain the average test errors when 

the post-selection classifiers evaluated were SVMs. 

 

With exception of sets of results pertaining to large sample sizes, we see that the relative 

performance of the RFE selection criteria tend to vary much across the various correlation 

structures and number of relevant input variables considered.  We therefore further 

summarise the small, mixed and wide sample results in Tables A.5-A.28 by averaging rows 

1 and 2 over the four segments in each table (i.e. over the four levels of correlation 
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structures and the number of relevant variables).  In each table we also average the relative 

errors in the second row of each segment, and based on the obtained average relative risks, 

obtain new relative rankings for the selection criteria.  For each data scenario and sample 

size, the summary tables are provided below.  The first and second rows in each summary 

table contains average errors and average relative errors across correlation structures and 

values of m .  Newly determined relative ranks based on the average relative errors (across 

correlation structures and m -value)s are given in the third row.  Note that our conclusions 

regarding the performances of RFE selection criteria will largely be based upon these 

relative rankings. 

 

We first provide the set of summary tables pertaining to the NS data scenario (refer to 

Tables 5.2-5.7).  These are given in pairs: each first table reports KFDA test errors, and 

each second table contains SVM test errors.  The first pair of tables corresponds to the 

small sample case, whereas the second and third pairs of tables contain test errors obtained 

in the case of mixed and wide sample sizes, respectively.  The same structure is followed in 

reporting the sets of summary tables corresponding to the LL and LS data scenarios (in 

Tables 5.8-5.13 and Tables 5.14-5.19 respectively). 

 

Considering the results reported in Tables 5.2-5.19, we first ask whether it is possible to 

infer whether algorithm-independent or algorithm-dependent selection criteria are 

preferred.  A clear pronouncement is possible for NS data, where the R criterion does 

exceptionally well for KFDA, although the N criterion for SVMs generally performs worse 

than most of the algorithm-independent criteria.  For LL and LS data the algorithm-

dependent criteria are seldom best, finishing mostly in the middle of the rankings.  Note 

that one cannot conclude that the R criterion generally outperforms the N criterion.  In fact, 

for lognormal data the N criterion is better. 
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Table 5.2:  Average small sample NS KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.185 

2 

1.181 

1 

1.426 

9 

1.290 

4 

1.365 

7 

1.266 

3 

1.301 

5 

1.9 

10 

1.317 

6 

2.698 

12 

2.110 

11 

1.421 

8 

 
Table 5.3:  Average small sample NS SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.316 

7 

1.361 

9 

1.356 

8 

1.234 

2 

1.296 

4 

1.207 

1 

1.263 

3 

1.707 

10 

1.305 

6 

2.353 

12 

1.873 

11 

1.302 

5 

 

 

Table 5.4:  Average mixed sample NS KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.111 

5 

1.006 

1 

1.739 

8 

1.046 

4 

1.848 

12 

1.282 

6 

1.011 

2 

1.739 

9 

1.025 

3 

1.739 

10 

1.739 

11 

1.505 

7 

 
Table 5.5:  Average mixed sample NS SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.106 

4 

1.187 

5 

2.265 

10 

1.043 

3 

2.273 

11 

1.276 

6 

1.021 

1 

2.161 

8 

1.031 

2 

2.277 

12 

2.258 

9 

1.524 

7 

 

 

Table 5.6:  Average wide sample NS KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.944 

1 

2.079 

2 

2.292 

8 

2.171 

5 

2.260 

7 

2.147 

4 

2.128 

3 

2.714 

9 

2.221 

6 

3.889 

12 

3.031 

11 

2.805 

10 

 
Table 5.7:  Average wide sample NS SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

2.150 

1 

3.672 

9 

2.901 

8 

2.746 

7 

2.381 

5 

2.235 

3 

2.373 

4 

5.410 

10 

2.579 

6 

2.64 

12 

3.95 

11 

2.190 

2 

 



CHAPTER 5 
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS 

219 

Table 5.8: Average small sample LL KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.224 

6 

2.253 

10 

1.207 

5 

1.168 

2 

1.205 

4 

1.168 

2 

1.155 

1 

1.839 

8 

1.171 

3 

2.328 

11 

1.532 

7 

2.147 

9 

 
Table 5.9: Average small sample LL SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.197 

5 

1.221 

8 

1.208 

7 

1.165 

3 

1.204 

6 

1.144 

1 

1.162 

2 

1.930 

10 

1.183 

4 

2.433 

12 

1.559 

9 

2.257 

11 

 

 

Table 5.10: Average mixed sample LL KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.110 

3 

1.724 

12 

1.322 

9 

1.299 

8 

1.151 

4 

1.285 

7 

1.012 

2 

1.696 

11 

1.010 

1 

1.239 

5 

1.519 

10 

1.255 

6 

 
Table 5.11: Average mixed sample LL SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.030 

3 

1.046 

4 

1.402 

10 

1.347 

9 

1.189 

5 

1.295 

7 

1.012 

2 

1.897 

12 

1.011 

1 

1.294 

6 

1.653 

11 

1.325 

8 

 

 

Table 5.12: Average wide sample LL KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

2.068 

8 

3.416 

12 

1.633 

5 

1.550 

4 

1.788 

6 

1.542 

3 

1.4 

1 

3.126 

10 

1.534 

2 

3.371 

11 

1.882 

7 

3.092 

9 

 
Table 5.13: Average wide sample LL SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.591 

6 

1.749 

9 

1.505 

3 

1.439 

1 

1.650 

7 

1.549 

5 

1.461 

2 

2.888 

10 

1.528 

4 

3.307 

11 

1.692 

8 

3.428 

12 
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Table 5.14:  Average small sample LS KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.500 

5 

1.502 

6 

1.583 

8 

1.384 

2 

1.485 

4 

1.300 

1 

1.484 

3 

1.915 

10 

1.532 

7 

2.295 

12 

1.922 

11 

1.808 

9 

 
Table 5.15:  Average small sample LS SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.351 

5 

1.263 

3 

1.532 

8 

1.262 

2 

1.386 

6 

1.210 

1 

1.416 

7 

1.746 

11 

1.346 

4 

2.098 

12 

1.696 

10 

1.601 

9 

 

 

Table 5:16:  Average mixed sample LS KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.393 

5 

1.066 

2 

1.632 

8 

1.359 

4 

1.632 

9 

1.465 

6 

1.056 

1 

1.619 

7 

1.111 

3 

1.632 

10 

1.632 

11 

1.632 

12 

 
Table 5:17:  Average mixed sample LS KFDA relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.199 

3 

1.334 

4 

2.380 

11 

1.491 

5 

2.288 

9 

1.699 

6 

1.108 

1 

2.015 

8 

1.181 

2 

2.442 

12 

2.369 

10 

1.945 

7 

 

 

Table 5.18:  Average wide sample LS KFDA relative- test errors and ranks 

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

3.347 

7 

2.344 

1 

2.915 

6 

2.761 

4 

4.648 

11 

2.772 

5 

2.523 

2 

3.604 

8 

2.760 

3 

5.040 

12 

4.013 

10 

3.634 

9 

 
Table 5.19:  Average wide sample LS SVM relative- test errors and ranks 

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

1.944 

1 

2.079 

2 

2.292 

8 

2.171 

5 

2.260 

7 

2.147 

4 

2.128 

3 

2.714 

9 

2.221 

6 

3.889 

12 

3.031 

11 

2.805 

10 
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We now consider the relative performance of the criteria in the different sample size 

scenarios.  In the small sample cases the A1T and V0 criteria perform very well: in all of 

these cases, except the NS KFDA results, one of these two criteria does best.  Overall, the 

best performing criteria in mixed samples are V0 and G0: with exception of a single case, 

one of these two criteria always performs best.  The relative performances are slightly more 

erratic in wide samples.  Now the algorithm-dependent criteria perform very well in the NS 

and LS scenarios, while the V0 and A1 criteria also do well, especially in the LL data setup. 

 

Regarding a choice between use of the zero- or first-order forms of the selection criteria, 

we consider only those that perform well.  For the G, N and V criteria the zero-order forms 

are better, but for the A criterion, the first-order version performs best.  A general 

conclusion cannot be made for the R criterion, except for LL data, where R0 dominates.  It 

is interesting to observe that the greater complexity of the first-order versions does not 

generally yield superior results, and we are led to recommend use of the zero-order criteria. 

 

 

5.6  SUMMARY 
 

In this chapter we once again considered selection in feature space, but now combined with 

a specific selection strategy, viz. backward elimination.  We started with a review of 

recursive feature elimination, as it is generally known in the literature.  This was followed 

by a description of selection criteria for RFE.  Following the precedent set in a standard 

paper in this area, we defined zero-order and first-order versions of each criterion.  Several 

conclusions followed from the empirical study.  Regarding a comparison of the algorithm-

independent and -dependent criteria, we found that in NS data the R criterion was clearly 

best in KFDA, but not so the N criterion in SVMs.  Interestingly, in LL and LS data, the 

algorithm-dependent criteria were outperformed by the algorithm-independent ones.  

Training sample size had a significant influence on the relative performances of the 

different criteria.  Overall the alignment and variation ratio seem recommendable.  The 

zero- and first-order versions of the different criteria were also compared.  Generally, the 

benefit from the greater complexity of the first-order criteria was doubtful. 
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CHAPTER 6  

 VARIABLE SELECTION  
FOR SUPPORT VECTOR MACHINES:  

A TWO-STAGE APPROACH 
 
 
 

6.1  INTRODUCTION 
 

Up to this point in the thesis we have emphasised the importance of variable selection 

when kernel methods are used, and assuming the number of variables to include to be 

known, investigated the use of several selection criteria in combination with a backward 

elimination strategy.  In this chapter we address the important problem of using the data to 

decide on the number of variables to include in the final model.  As before, the number of 

relevant variables in a given scenario will be denoted by m , i.e. in simulation studies we 

generate data in such a way that the two groups differ from one another with respect to m  

of the p  input variables.  We can view the decision on the number of variables to use as 

one of estimating the value of m .  Attention is restricted to input variable selection for 

SVMs in binary classification.  Combining our proposal for estimating m  with a strategy 

that can be used to search through the available models, we arrive at a complete proposal 

for input variable selection. 

 

The chapter is structured as follows.  In Section 6.2 we review the literature related to the 

work presented in this chapter.  Section 6.3 contains an illustration of the importance of 

accurate estimation of m , as well as a discussion of our proposal in this regard.  In Section 

6.4 we start with an evaluation of our proposal: we report the results of a simulation 

investigation where we studied the behaviour of the criterion which we propose for 

deciding on a value of m  as a function of the number of variables included in a model.  At 

each model dimension we purposely consider the model containing the best (relevant) 
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variables, possibly combined with one or more irrelevant variables.  The idea behind this is 

to see whether the proposed criterion reaches an ‘optimal’ value at the correct model 

dimension.  We empirically investigate various aspects of the performance of the proposed 

criterion when it is combined with other previously discussed criteria, as well as with a 

strategy for moving through the space of different variable subsets.  The chapter concludes 

with a summary in Section 6.7. 

 

 

6.2  RELATED LITERATURE 
 

Data-dependent specification of the number of variables to include is an important aspect 

of kernel variable selection which has thus far not received much attention in the literature:  

presupposing a fixed value for this number has somehow become common practice in most 

contributions to kernel variable selection.  Generally in applications the value of m  is of 

course unknown and has to be determined from the data.  In this section we first provide 

pointers to some papers on data-dependent specification of the model dimension in 

classical statistical procedures, and then we refer to a current approach which entails 

automatic determination of a value for m  when kernel techniques are used. 

 

Important contributions to selecting the model dimension in the context of traditional 

statistical procedures (based on maximum likelihood principles) are Akaike (1970) and 

Schwarz (1978).  In a more general framework Breiman (1992) and Rao (1999) propose 

use of the bootstrap (cf. Efron, 1979 and 1982).  The number of input variables to include 

in CART is determined through pruning which is typically based on cross-validation (cf. 

Geisser, 1975, and Stone, 1977).  Bunke and Droge (1984) compare the bootstrap with 

cross-validation for deciding on a model dimension in linear regression problems.  Other 

references regarding a choice between statistical models of varying complexity may be 

found in Rao (1999). 

 

Cross-validation is currently the predominant way of determining the dimension of post-

selection kernel models.  The computational expense of cross-validation however often 
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renders it an unattractive option, especially in applications where p  is large.  Speedup 

cross-validation algorithms for least squares SVMs and kernel ridge regression are 

discussed in Senjian et al. (2007). 

 

In some approaches to the variable selection problem, the value of m  is automatically 

estimated from the data.  If selection is performed through the use of regularised 

optimisation (briefly described in Chapter 2), also called soft selection (cf. for example 

Chapelle et al., 2004), a coefficient (or scaling factor) is associated with each input 

variable.  The selection algorithm returns the estimated coefficient associated with each 

variable, where some of the estimated values may be zero.  The number of non-zero scaling 

factors is taken as the number of variables to select.  For more details regarding soft 

selection, the reader may consult references provided in Chapter 2 and also the paper by 

Chapelle et al. (2004). 

 

 

6.3  A PROPOSAL FOR DECIDING ON THE MODEL DIMENSION 
 

This section consists of two parts: in the first part we provide an illustration of the 

importance of determining the number of input variables to be used in an SVM.  We then 

proceed with a discussion of a method which can be used for this purpose.  The following 

notation will be used: as indicated earlier, m  will denote the number of relevant variables; 

an estimate of m  will be denoted by m̂ , i.e. this will represent the number of variables 

which we propose to include in the model; and finally, k  will be used as an index for the 

different possible model dimensions. 

 

Figure 6.1 displays boxplots of the test errors obtained after training SVMs on subsets of 

variables of different sizes.  The sizes of the subsets are indicated on the x-axis.  We 

considered a binary classification setup, and all training cases (which consisted of 

measurements on 5=p  input variables) were generated so that differences between the 

two groups were caused only by a subset of 3=m  relevant input variables.  In the figure 

the boxplot at 1=k  depicts the test error values obtained from SVMs based on only one of 
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the three relevant variables, the boxplot at 2=k  corresponds to SVMs based on two 

relevant input variables, and so on, up to 5=k , where of course two irrelevant variables 

are also included.  We used NS and LS data with 0=Sρ  and 0.7, and 0=SSρ  or 0.9 in the 

normal case, and 0=Sρ  and 0.7, and 0=SSρ  or 0.2 in the lognormal case.  Regarding the 

cost parameter, we used a series of values, viz. 001.0=C , 0.01, 0.1, 1, 10, 100 and 1000, 

and we report the best results obtained.  Figure 6.1 summarises the results for NS data with 

0=Sρ  and 0=SSρ .  Figures for the other cases which were investigated convey the same 

message and are therefore not shown.  The full set of average test errors for the different 

parameter configurations are summarised per data configuration in Tables 6.1 and 6.2. 

1 2 3 4 5

0.
10

0.
15

0.
20

0.
25

k

TE
S

T
 E

R
R

O
R

 
Figure 6.1:  Boxplots of test errors at different model dimensions 

 

 

Clearly in Figure 6.1, if we assume that it is possible to consistently identify the best subset 

per dimension correctly, then the SVM test errors based on the correct model dimension 

( 3=m  in the above scenario) is significantly smaller and have smaller variation than the 

errors at other values of k . 
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Table 6.1:  Average SVM test errors at different model dimensions in the NS case 
 

  k 
Sρ  SSρ  1 2 3 4 5 

0.0 0.0 .258 .166 .120 .151 .175 
0.0 0.9 .258 .166 .120 .149 .171 
0.7 0 .258 .182 .145 .181 .210 
0.7 0.9 .253 .182 .145 .178 .206 

 
 

Table 6.2:  Average SVM test errors at different model dimensions in the LS case 
 

  k 
Sρ  SSρ  1 2 3 4 5 

0.0 0.0 .184 .118 .093 .127 .157 
0.0 0.2 .182 .115 .092 .120 .143 
0.7 0 .184 .145 .129 .163 .193 
0.7 0.2 .184 .145 .130 .160 .186 

 
 
 
From Figure 6.1 and the average test errors reported at the different model dimensions in 

Tables 6.1 and 6.2, the importance of correctly determining the SVM model dimension (if 

one is given the best variable subset of each dimension), is evident.  In the above scenarios 

the SVM misclassification rate can be significantly improved if instead of 2=k  or 4 one 

uses the correct number of input variables, viz. 3== mk . 

 

We now proceed with a discussion of our proposal for a data-dependent decision regarding 

the value of m .  In the end this forms part of a two-stage approach for selecting a subset of 

{ }pXXX ,,, 21 K  to construct an SVM classifier.  Initially, p  subsets are identified as 

candidates for final selection: a subset 1V  consisting of the single variable deemed best in 

some sense, a subset 2V  consisting of the best two variables, and so on up to 

{ }pp XXXV ,,, 21 K= .  As seen in previous chapters, two aspects arise here: firstly, a 

criterion has to be specified to decide on an optimal subset of a given size, and secondly, 

one has to decide on the method which will be used to search through the different subsets 

of variables.  We call the criterion in terms of which the optimal subsets of different 

dimensions are defined the inner (selection) criterion, and we discuss two possibilities in 
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this regard further on in this section.  For a given inner criterion, forward selection, 

backward elimination, or an all possible subsets approach may be considered for scanning 

the subsets of variables.  We know that the all possible subsets approach is only feasible for 

moderately large values of p , say 40<p .  For larger values of p , the number of subsets 

of a given dimension which have to be examined becomes prohibitively large, and a choice 

has to be made between a forward selection and backward elimination approach.  Several 

authors prefer the backward elimination approach, arguing that an unwise decision during 

the early stages of a forward selection approach may lead to good models of higher 

dimensions not being considered at all.  In the empirical evaluation later on we will see that 

also in our proposed selection approach, backward elimination is generally to be preferred 

to forward selection.  In any case, an important requirement for the inner criterion is that 

we should be able to calculate this criterion quickly. 

 

During the second stage of variable selection a so-called outer (selection) criterion has to 

be used to choose one of the previously identified subsets pVVV ,,, 21 K .  At this stage fast 

computation of the criterion becomes less important, since only p  candidate subsets 

remain.  However, an important requirement for the outer criterion is that it should not be a 

monotone function of the number of variables in the subsets under consideration.  This 

requirement is essential to prevent the criterion from simply selecting the best 1-variable 

subset, or the set containing all the input variables. 

 

What recommendations can be made regarding the inner and outer criterion for use in 

SVMs?  As seen in Chapter 5, different (inner) selection criteria have been proposed in the 

literature, including 2w  and criteria based on generalisation error bounds (for example, 

the radius-margin bound and the span estimate).  Since training an SVM is computationally 

fairly expensive, the inner criterion should preferably not be based on quantities which 

depend on a trained SVM.  To be more specific in this regard, we recommend that the inner 

criterion should only be a function of the kernel matrix.  Of the algorithm-independent (and 

thus more quickly computable) selection criteria discussed in Chapter 4, the zero-order 

forms of the alignment (see Cristianini et al., 2002) and also of the variation ratio (see 
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Wang et al., 2004) performed well, and we will evaluate our proposal using these two inner 

criteria. 

 

Regarding the outer criterion, we stated in Section 6.2 that one possibility would be to use 

cross-validation estimates of the error rates of the SVM classifiers constructed from 

pVVV ,,, 21 K  to select one of these subsets.  Since cross-validation is infeasible for data 

sets with a large number of input variables, we consider using an alternative outer criterion.  

A well known upper bound on the (leave-one-out) generalisation performance of SVMs is 

based on the number of support vectors (see Schölkopf and Smola, 2002, p. 198, as well as 

Vapnik and Chapelle, 2000, and Chapelle et al., 2004, for more detail on various bounds on 

the generalisation errors of SVMs).  The following theorem summarises this bound. 

 

 

THEOREM 6.1 

 
The expectation of the number of support vectors obtained during training on a training 

data set of size n , divided by n , is an upper bound on the expected probability of test error 

of the SVM trained on training data sets of size 1−n . 

  
 

Based on the above theorem, we propose using the number of support vectors ( NSV ) as an 

outer selection criterion.  We therefore propose estimation of m  by m̂ , where m̂  

minimises the NSV  criterion, i.e. 

 

                                                       ( ){ }k
pk

VNSVminargm
,,2,1

ˆ
K=

= , (6.1) 

 

where ( )kVNSV  is the number of support vectors (the number of positive SVM α -

coefficients) of the SVM based on the variables in kV .  Note that this proposal is based on 

the fact that the bound in Theorem 6.1 is a monotone non-decreasing function of the 

number of support vectors. 
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The only aspect remaining is to specify a selection strategy.  As pointed out before, in the 

literature on variable selection for SVMs a backward elimination approach is preferred to 

forward selection and an all possible subsets approach.  In the simulation experiments 

described in later sections we will compare these different strategies and see that backward 

elimination is indeed to be preferred in our proposed approach as well. 

 

 

6.4  PRELIMINARY EVALUATION 
 

The aim of this section is to report a limited initial evaluation of the use of the NSV  outer 

criterion introduced in Section 6.3, independently of the use of an inner criterion.  Hence in 

this section we assume that the NSV  criterion is given the nested sequence of best variable 

subsets corresponding to all possible model dimensions, viz. pVVV ⊂⊂⊂ K21 .  If the 

NSV  criterion does not perform well in this simplified scenario, evaluation of its 

performance in combination with an inner criterion will of course be pointless. 

 

In our preliminary study we restricted attention to large (i.e. 10021 == nn ) NS and LS data 

sets.  We simulated 500 binary classification training and test data sets, and in each 

generated differences between the two groups to be caused by 3=m  out of a total of 

5=p  input variables.  We considered all four correlation configurations described in 

Chapter 3 and used 102
2 =s  throughout.  In total we therefore had eight simulation setups 

to evaluate.  During each simulation repetition we trained a support vector classifier using 

the best variable subset per possible model dimension ( 5,,2,1 K=k ), and calculated the 

corresponding NSV  criterion values and test errors for each of the five trained SVMs.  In 

training the SVMs for each model dimension we used k1=γ .  These steps were repeated 

for each simulated data set, at cost parameter values 100,10,1,1.0,01.0,001.0      =C  and 

1000 .  For each model dimension and cost parameter value we then calculated an average 

NSV  value, and an average test error.  This yielded 5678 =×  sets of 5=p  average NSV  

and test error figures. 
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Since the results for different data configurations were very similar, we summarise only a 

sample of average NSV and test error values: the figures obtained for each model 

dimension and each value of C , with 0=Sρ  and 0=SSρ  in NS and LS data sets are given 

in Tables 6.3 and 6.4 respectively.  The NSV values appear in the first row of each cell, and 

the test errors follow in the second row.  We indicate minimum values of the NSV criterion 

and of the test errors in bold face. 

 

 

Table 6.3:  Average NSV  values and test errors for 0=Sρ  and 0=SSρ  in the NS case 
 

 k  

C 1 2 3 4 5 

.001 
200.00 

.257 

200.00 

.161 

200.00 

.107 

200.00 

.152 

200.00 

.182 

.01 
199.99 

.258 

200.00 

.161 

200.00 

.106 

200.00 

.152 

200.00 

.182 

.1 
153.34 

.258 

141.25 

.161 

134.10 

.106 

161.83 

.134 

179.08 

.167 

1 
119.32 

.257 

87.27 

.163 

71.70 

.110 

87.12 

.118 

102.26 

.130 

10 
110.13 

.258 

75.22 

.167 

55.76 

.118 

62.89 

.131 

71.86 

.149 

100 
106.78 

.259 

71.33 

.171 

52.37 

.134 

58.01 

.164 

64.78 

.193 

1000 
106.87 

.259 

68.36 

.178 

50.22 

.158 

56.78 

.207 

62.33 

.221 
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Table 6.4:  Average NSV  values and test errors for 0=Sρ  and 0=SSρ  in the LS case 
 

 k  

C 1 2 3 4 5 

.001 
199.85 

.183 

200.00 

.129 

200.00 

.104 

200.00 

.154 

200.00 

.192 

.01 
199.92 

.182 

200.00 

.129 

200.00 

.104 

200.00 

.156 

200.00 

.195 

.1 
163.23 

.180 

161.76 

.123 

162.32 

.101 

179.86 

.146 

189.79 

.187 

1 
113.45 

.181 

91.33 

.114 

83.83 

.091 

102.29 

.110 

117.63 

.130 

10 
97.39 

.186 

64.174 

.111 

53.48 

.081 

64.82 

.098 

75.44 

.115 

100 
90.54 

.188 

51.60 

.107 

38.90 

.079 

48.02 

.103 

56.94 

.128 

1000 
86.86 

.191 

44.08 

.108 

32.40 

.088 

41.08 

.120 

49.49 

.149 

 

 

The results of this initial evaluation of the NSV  criterion were encouraging: in only a 

small percentage of all 56 cases the minimum average NSV  value occurred at an 

‘incorrect’ value of k  (i.e. in this setup at model dimension 3=≠ mk ).  Therefore, 

assuming that the inner criterion always correctly identifies the best subset per dimension, 

using the NSV  criterion to determine the number of separating input variables would have 

yielded the incorrect number relatively rarely.  It should also be noted though that in 12 out 

of 56 instances an inappropriate value of C  (mostly 001.0=C  or 0.01) caused the number 

of support vectors to be large and equal at all values of k , rendering a decision based on 

the NSV  criterion regarding the number of variables to use impracticable.  Still, in the 

evaluated setups it seems as if NSV-based specification of the number of variables to use is 

not overly sensitive to potential misspecification of C .  In Tables 6.3 and 6.4 for example, 

the NSV  criterion correctly identifies m  at 100,10,1   =C  and 1000. 
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The average NSV values and SVM test errors (as percentages) for 7.0=Sρ  and 0=SSρ  in 

the NS and LS scenarios are displayed in Figures 6.2 and 6.3 respectively, plotted 
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Figure 6.2:  The average number of support vectors, and the average test error (as a 

                       percentage), when 7.0=Sρ  and 0=SSρ  in the NS case 
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Figure 6.3:  The average number of support vectors, and the average test error (as a 

                       percentage) when 7.0=Sρ  and 0=SSρ  in the LS case 
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against the different values of k .  Results corresponding to other correlation structures 

were similar. 

 

In both figures it is clear that the average test errors decrease from 1=k , reach a minimum 

at 3=k , and steadily increase at 4=k  and 5.  The same pattern also holds for the NSV  

criterion, and we see that in these scenarios, a decision on the number of input variables to 

include, if it is based on minimising the number of support vectors, would yield the correct 

number ( 3=m  in this setup) in all cases. 

 

 

6.5  MONTE CARLO SIMULATION STUDY 
 

The promising results in Section 6.4 encouraged us to evaluate the performance of the 

selection strategy proposed in Section 6.3 via a more extensive Monte Carlo simulation 

study.  In essence we made use of the experimental design described in Chapter 3, but in 

some cases we considered different factor levels.  We now discuss these modifications.  

Firstly, since we saw in previous chapters that little benefit is gained by using SVMs in NL 

cases, we only evaluated our dimension selection procedure using NS, LL and LS data sets.  

Also, the total number of available variables (in V ) was taken as either 5=p  or 50=p .  

In data sets where p  equalled 5, we generated observations from the two groups to differ  

with respect to 3=m  input variables.  When 50=p , we used 10=m .  Depending on the 

value of p  the proportion of relevant input variables was therefore either 2.0=π  (when 

50=p ) or 6.0=π  (when 5=p ).  A second modification was with respect to the sample 

sizes considered.  In parts of the study where we compared the various inner criteria and 

selection strategies, we restricted attention to small (i.e. 1521 == nn ) and large (i.e. 

10021 == nn ) data sets, whereas in cases where we considered the use of the NSV  

criterion versus cross-validation as outer criterion, we also included mixed samples (where 

501 =n  and 1502 =n ).  Thirdly, in NS and LS configurations we restricted attention to 

only a single value for the variance of the second group, viz. 102
2 =s  (as opposed to 
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102
2 =s  and 1002

2 =s  in Chapter 3).  Regarding hyperparameter specifications, we 

followed a recommendation by Schölkopf and Smola (2002), and consistently used a cost 

parameter value of 10nC = .  Note that more details with regard to specification of γ  will 

be given as we proceed with the discussion.  We used 1000 Monte Carlo simulation 

repetitions throughout, and for each model dimension we report the average test error 

(based on test data sets consisting of 2000 cases) and the fraction of times that each of the 

input variables was selected. 

 

Recall that the first step during each simulation repetition involves computation of the 

zero-order versions of the alignment and the variation ratio as inner criteria on the training 

data, in order to identify pVVV ⊂⊂⊂ K21 .  We used p1=γ  to calculate these inner 

criteria.  Let the nested subsets of input variables obtained after using the alignment and the 

variation ratio be denoted by ( ) ( ) ( )pAVAVAV ⊂⊂⊂ K21  and 

( ) ( ) ( )pRVRVRV ⊂⊂⊂ K21  respectively.  The second step in our approach requires 

application of an outer selection criterion.  After calculating the outer criterion for the best 

variable subsets of sizes pk ,,2,1 K= , we then have to select the number of variables 

corresponding to the optimal outer criterion value.  In our proposal we use the NSV  as 

outer selection criterion.  Therefore, during the second step in each simulation repetition 

we (potentially) needed to train p2  SVMs, based on two (potentially) different variable 

subsets of sizes pk ,,2,1 K=  as identified by the alignment and the variation ratio as inner 

criteria.  Here we specified k1=γ .  We then calculated the NSV  values corresponding to 

these p2  SVMs.  Let the NSV  values for selection using the alignment and the variation 

ratio be denoted by ( ) ( ) ( )pANSVANSVANSV ,,, 21 K  and 

( ) ( ) ( )pRNSVRNSVRNSV ,,, 21 K  respectively.  A value for m  using the alignment as 

inner selection criterion was then obtained as 

 

                                                    ( ){ }k
pk

A ANSVmin argm
,,2,1

ˆ
K=

= .  (6.2) 

 



CHAPTER 6 
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH 

236 

Similarly, using the variation ratio as inner criterion we identified the number of variables 

to include in the final model as 

 

                                                   ( ){ }k
pk

R RNSVmin argm
,,2,1

ˆ
K=

= . (6.3) 

 

Finally then in this section, note that Am̂  and Rm̂  respectively indicate the number of input 

variables to select as identified by the NSV  outer criterion, after using the alignment and 

the variation ratio as inner criteria.  Since prior to determining Am̂  and Rm̂  we reduced the 

sets of variables to consider to only the best variable subsets of each dimension, note that 

Am̂  and Rm̂  also index the variable subset selected using the alignment and the NSV  

outer criterion, and the variation ratio and the NSV  criterion, in that order.   

 

The final step in each simulation repetition involved separate calculation of several 

quantities when using both the alignment and the variation ratio for selection.  We report 

averages of these quantities over the 1000 simulation repetitions.  The quantities are: 

 

i. Test errors of the post-selection SVM, which we will refer to as the alignment NSV 

and variation ratio NSV test errors. 

ii. SVM test errors based on subsets containing only the correct number of input 

variables, which we will call correct dimension test errors (denoted by CDIM in the 

tables). 

iii. The number of times that each of pXXX ,,, 21 K  was selected. 

iv. The number of times that each of the possible model dimensions, i.e. pk ,,2,1 K= , 

was selected. 

v. SVM test errors based on the subset of relevant input variables.  We will refer to 

these errors as oracle test errors (denoted by ORA in the tables), since they 

represent a gold standard against which the performance of proposed procedures 

can be measured. 

vi. SVM test errors based on all available input variables, i.e. the so-called no selection 

test errors (denoted by NO in the tables). 
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6.6  RESULTS AND CONCLUSIONS 
 

The results obtained from the Monte Carlo simulation study described in Section 6.5 are 

summarised in this section. 

 

Consider first the relative performance of the two selection strategies, i.e. backward 

elimination and forward selection.  For this purpose we compare corresponding entries in 

Tables 6.5 and 6.6 below.  Note that the first entry in each cell of the CDIM and NSV 

columns in these (and later similar) tables corresponds to the alignment as inner criterion, 

while the second entry corresponds to the variation ratio as inner criterion.  We generally 

observe smaller average test errors in backward elimination.  This is particularly evident in 

small sample cases, although we also observe relatively large improvements in 

classification accuracy if backward elimination is used in large LS samples.  The more 

pronounced differences between the performances of backward and forward selection are 

summarised in Tables 6.7 and 6.8. 
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Table 6.5:  Average test errors in forward selection 
 

 SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

NS1 5  0.0  .039 .045 
.042 

.066 

.064 
.122 .016 .016 

.016 
.016 
.016 

.047 

NS2 5  7.0  .041 .048 
.043 

.065 

.064 
.125 .015 .015 

.015 
.016 
.016 

.047 

NS3 50  0.0  .008 .168 
.143 

.252 

.231 
.259 .002 .003 

.003 
.012 
.011 

.158 

NS4 50  7.0  .009 .152 
.127 

.238 

.213 
.259 .003 .004 

.004 
.013 
.013 

.158 

 
 SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

LL1 5  0.0  .088 .095 
.096 

.121 

.122 
.133 .041 .041 

.041 
.046 
.046 

.066 

LL2 5  7.0  .133 .140 
.134 

.139 

.137 
.187 .087 .087 

.087 
.090 
.090 

.121 

LL3 50  0.0  .067 .159 
.156 

.115 

.115 
.178 .028 .028 

.029 
.047 
.046 

.072 

LL4 50  7.0  .130 .184 
.147 

.143 

.141 
.273 .084 .084 

.084 
.086 
.086 

.204 

 
 SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

LS1 5  0.0  .133 .158 
.152 

.179 

.178 
.210 .079 .080 

.079 
.082 
.082 

.117 

LS2 5  7.0  .161 .197 
.177 

.203 

.200 
.255 .105 .106 

.105 
.109 
.108 

.151 

LS3 50  0.0  .089 .311 
.301 

.262 

.261 
.384 .054 .077 

.073 
.078 
.077 

.295 

LS4 50  7.0  .133 .367 
.342 

.362 

.346 
.405 .066 .165 

.137 
.148 
.141 

.340 
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Table 6.6:  Average test errors in backward elimination 
 

 SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

NS1 5  0.0  .039 .043 
.039 

.062 

.060 
.121 .015 .015 

.015 
.016 
.016 

.048 

NS2 5  7.0  .042 .046 
.042 

.066 

.063 
.122 .015 .015 

.015 
.016 
.016 

.047 

NS3 50  0.0  .008 .040 
.021 

.128 

.088 
.259 .002 .002 

.002 
.011 
.010 

.158 

NS4 50  7.0  .009 .041 
.023 

.128 

.091 
.259 .004 .004 

.004 
.012 
.012 

.158 

 
 SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

LL1 5  0.0  .088 .095 
.097 

.118 

.119 
.134 .041 .041 

.041 
.045 
.045 

.066 

LL2 5  7.0  .133 .143 
.136 

.138 

.137 
.188 .087 .087 

.087 
.090 
.090 

.121 

LL3 50  0.0  .067 .100 
.098 

.115 

.115 
.178 .029 .029 

.029 
.046 
.045 

.073 

LL4 50  7.0  .129 .184 
.146 

.142 

.139 
.277 .084 .086 

.085 
.085 
.084  

 
 SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

LS1 5  0.0  .132 .156 
.153 

.177 

.177 
.207 .079 .079 

.079 
.082 
.082 

.116 

LS2 5  7.0  .162 .203 
.175 

.205 

.195 
.257 .106 .106 

.106 
.110 
.109 

.151 

LS3 50  0.0  .087 .239 
.227 

.234 

.225 
.381 .054 .067 

.063 
.066 
.065 

.294 

LS4 50  7.0  .132 .314 
.260 

.304 

.263 
.404 .066 .119 

.071 
.093 
.076 

.339 
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Table 6.7:  Average test errors for backward and forward selection in small samples when 

50=p  

 BACKWARD FORWARD 

 Sρ  CDIM NSV CDIM NSV 

NS3 0.0  .040 
.021 

.128 

.088 
.168 
.143 

.252 

.231 
NS4 7.0  .041 

.023 
.128 
.091 

.152 

.127 
.238 
.213 

LS3 0.0  .239 
.227 

.234 

.225 
.311 
.301 

.262 

.261 
LS4 7.0  .314 

.260 
.304 
.263 

.367 

.342 
.362 
.346 

 
 

Table 6.8:  Average test errors for backward and forward selection in large samples  

when 50=p  

 BACKWARD FORWARD 

 Sρ  CDIM NSV CDIM NSV 

LS3 0.0  .067 
.063 

.066 

.065 
.077 
.073 

.078 

.077 
LS4 7.0  .119 

.071 
.093 
.076 

.165 

.137 
.148 
.141 

 

 

It is clear that backward elimination is preferable to forward selection.  The question may 

now be asked whether one should consider using an all possible subsets approach.  We 

compared backward elimination and an all possible subsets approach in a limited 

simulation study ( 5=p ), and found the two strategies to perform largely the same (see 

Table 6.9 for the test errors using an all possible subsets approach, and Table 6.10 for 

easier comparison of the three selection strategies).  Since an all possible subsets approach 

is impracticable for large values of p , we recommend the use of a backward elimination 

strategy.  Most of the results reported and discussed further on in this section were obtained 

using backward elimination. 
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Table 6.9:  Average test errors in all possible subsets selection when 5=p  
 

 SMALL SAMPLES LARGE SAMPLES 

 Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

NS1 0.0  .034 .043 
.039 

.064 

.063 
.121 .016 .016 

.016 
.016 
.016 

.047 

NS2 7.0  .041 .044 
.041 

.064 

.062 
.123 .015 .015 

.015 
.016 
.016 

.047 

 
 SMALL SAMPLES LARGE SAMPLES 

 Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

LL1 0.0  .090 .094 
.097 

.122 

.123 
.132 .041 .041 

.041 
.045 
.045 

.065 

LL2 7.0  .134 .141 
.135 

.140 

.138 
.187 .087 .087 

.087 
.089 
.089 

.120 

 
 SMALL SAMPLES LARGE SAMPLES 

 Sρ  ORA CDIM NSV NO ORA CDIM NSV NO 

LS1 0.0  .131 .157 
.151 

.176 

.177 
.205 .079 .080 

.079 
.082 
.082 

.119 

LS2 7.0  .161 .197 
.172 

.202 

.194 
.251 .106 .107 

.106 
.110 
.109 

.152 

 
 
 
Consider next the quality of the proposed inner criteria.  Given the superiority of backward 

elimination, we focus on the results in Table 6.6, and compare corresponding entries in the 

ORA and CDIM columns.  These are summarised in Table 6.11.  Recall that the figures in 

the CDIM columns are average test errors of models of the correct dimension identified by 

the alignment and the variation ratio inner criterion.  The extent to which these test errors 

exceed the corresponding oracle test errors reflects failure of the inner criteria to identify 

the variables separating the two groups correctly.   
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Table 6.10:  Average test errors in forward selection, backward elimination and 

 an all possible subsets approach 
 

   FORWARD BACKWARD ALL POSSIBLE 
   SMALL LARGE SMALL LARGE SMALL LARGE 
 p  Sρ  CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV 

NS1 5  0.0  .045 
.042 

.066 

.064 
.016 
.016 

.016 

.016 
.043 
.039 

.062 

.060 
.015 
.015 

.016 

.016 
.043 
.039 

.064 

.063 
.016 
.016 

.016 

.016 
NS2 5  7.0  .048 

.043 
.065 
.064 

.015 

.015 
.016 
.016 

.046 

.042 
.066 
.063 

.015 

.015 
.016 
.016 

.044 

.041 
.064 
.062 

.015 

.015 
.016 
.016 

 
   FORWARD BACKWARD ALL POSSIBLE 
   SMALL LARGE SMALL LARGE SMALL LARGE 
 p  Sρ  CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV 

LL1 5  0.0  .095 
.096 

.121 

.122 
.041 
.041 

.046 

.046 
.095 
.097 

.118 

.119 
.041 
.041 

.045 

.045 
.094 
.097 

.122 

.123 
.041 
.041 

.045 

.045 
LL2 5  7.0  .140 

.134 
.139 
.137 

.087 

.087 
.090 
.090 

.143 

.136 
.138 
.137 

.087 

.087 
.090 
.090 

.141 

.135 
.140 
.138 

.087 

.087 
.089 
.089 

 

   FORWARD BACKWARD ALL POSSIBLE 
   SMALL LARGE SMALL LARGE SMALL LARGE 
 p  Sρ  CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV 

LS1 5  0.0  .158 
.152 

.179 

.178 
.080 
.079 

.082 

.082 
.156 
.153 

.177 

.177 
.079 
.079 

.082 

.082 
.157 
.151 

.176 

.177 
.080 
.079 

.082 

.082 
LS2 5  7.0  .197 

.177 
.203 
.200 

.106 

.105 
.109 
.108 

.203 

.175 
.205 
.195 

.106 

.106 
.110 
.109 

.197 

.172 
.202 
.194 

.107 

.106 
.110 
.109 
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Table 6.11:  Average test errors in backward elimination 
 

   SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM ORA CDIM 

NS1 5  0.0  .039 .043 
.039 .015 .015 

.015 
NS2 5  7.0  .042 .046 

.042 .015 .015 
.015 

NS3 50  0.0  .008 .040 
.021 .002 .002 

.002 
NS4 50  7.0  .009 .041 

.023 .004 .004 
.004 

 

   SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM ORA CDIM 

LL1 5  0.0  .088 .095 
.097 .041 .041 

.041 
LL2 5  7.0  .133 .143 

.136 .087 .087 
.087 

LL3 50  0.0  .067 .100 
.098 .029 .029 

.029 
LL4 50  7.0  .129 .184 

.146 .084 .086 
.085 

 

   SMALL SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM ORA CDIM 

LS1 5  0.0  .132 .156 
.153 .079 .079 

.079 
LS2 5  7.0  .162 .203 

.175 .106 .106 
.106 

LS3 50  0.0  .087 .239 
.227 .054 .067 

.063 
LS4 50  7.0  .132 .314 

.260 .066 .119 
.071 

 
 
In Table 6.11 we see that for a small number of input variables our inner criteria perform 

well, especially so in large sample cases.  As expected the performance deteriorates with an 

increase in the number of variables, especially in small samples.  The worst cases in this 

regard are NS3 and NS4, as well as LS3 and LS4.  Note that the average test errors when the 
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alignment was used as inner criterion are given in the first row of each cell, and test errors 

pertaining to selection based on variation ratios follow in the second row.  Comparing the 

performance of the two proposed inner criteria, we see that the variation ratio mostly 

outperforms the alignment, especially in small sample cases.  In light of the above results 

our conclusion at this stage is that the proposed variable selection strategy performs well 

when it is based on backward elimination using the variation ratio as inner selection 

criterion. 

 

We now move on to a discussion of the performance of the outer criteria.  Results appear in 

Table 6.12.  Note that only results based on the variation ratio as inner criterion combined 

with backward elimination are reported.  Table 6.12 also contains a further column 

(denoted by CV) and representing test errors if cross-validation is used to estimate the value 

of m .  Consider the correct dimension test errors and the test errors in the NSV  and CV 

columns.  Bear in mind that when we apply an outer criterion such as NSV or CV, we use 

the data to select a model dimension.  This introduces an extra element of uncertainty and 

one would thus expect the outer criterion error rates to exceed corresponding correct 

dimension values.  If an outer criterion selected the correct model dimension with 

probability 1, the resulting average test errors would be identical to those in the CDIM 

column.  Therefore any difference between entries in the CDIM and an outer criterion 

column reflects failure of the outer criterion to determine the model dimension correctly in 

all cases.  Interestingly, this is not always undesirable.  In some cases we actually found 

that the NSV test error is smaller than the corresponding CDIM test error.  This can only be 

the result of the NSV criterion fortuitously identifying a lower model dimension in cases 

where a sizable proportion of the variables selected by the inner criterion is useless.  In 

general the outer criteria test errors summarised in Table 6.12 are not far above the CDIM 

values, except in the NS3 and NS4 cases.   
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Table 6.12:  Average test errors for outer criteria in backward elimination 
 

 SMALL SAMPLES MIXED SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV CV NO ORA CDIM NSV CV NO ORA CDIM NSV CV NO 

NS1 5  0.0  .039 .039 .060 .065 .121 .017 .017 .017 .019 .052 .017 .017 .017 .019 .052 
NS2 5  7.0  .042 .042 .063 .067 .122 .017 .017 .018 .021 .052 .017 .017 .018 .021 .052 
NS3 50  0.0  .008 .021 .088 .057 .259 .004 .004 .009 .009 .198 .004 .004 .009 .009 .198 
NS4 50  7.0  .009 .023 .091 .063 .259 .005 .005 .011 .011 .197 .005 .005 .011 .011 .197 

 

 SMALL SAMPLES MIXED SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV CV NO ORA CDIM NSV CV NO ORA CDIM NSV CV NO 

LL1 5  0.0  .088 .097 .119 .111 .134 .034 .034 .038 .037 .055 .034 .034 .038 .037 .055 
LL2 5  7.0  .133 .136 .137 .137 .188 .071 .071 .065 .064 .100 .071 .071 .065 .064 .100 
LL3 50  0.0  .067 .098 .115 .104 .178 .0002 .024 .039 .028 .062 .0002 .024 .039 .028 .062 
LL4 50  7.0  .129 .146 .139 .167 .277 .0004 .079 .068 .067 .115 .0004 .079 .068 .067 .115 

 

 SMALL SAMPLES MIXED SAMPLES LARGE SAMPLES 

 p  Sρ  ORA CDIM NSV CV NO ORA CDIM NSV CV NO ORA CDIM NSV CV NO 

LS1 5  0.0  .132 .153 .177 .167 .207 .081 .082 .083 .087 .116 .081 .082 .083 .087 .116 
LS2 5  7.0  .162 .175 .195 .187 .257 .102 .102 .106 .107 .166 .102 .102 .106 .107 .166 
LS3 50  0.0  .087 .227 .225 .235 .381 .042 .064 .064 .066 .261 .042 .064 .064 .066 .261 
LS4 50  7.0  .132 .260 .263 .275 .404 .055 .087 .084 .084 .290 .055 .087 .084 .084 .290 
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We see that it is impossible to express a general preference for either of the two outer 

criteria based only on test errors: in some cases the NSV criterion performs better, but in 

other cases CV is preferred.  It does however seem that the difference between the two 

criteria is larger in cases where the NSV criterion performs better. 

 

In addition to the post-selection error rate we also estimated the probabilities with which 

each of the two outer criteria identified different final model dimensions.  A selection of 

the results is presented in Figures 6.4 and 6.5.  The small sample results in the first row of 

these figures are for the uncorrelated NS, LL and LS cases respectively, while the second 

and third rows contain the corresponding mixed and large sample results.  Note that similar 

results were obtained for the correlated case (i.e. when 7.0=Sρ ).  Scenarios where we had 

5=p  and 3=m  relevant variables are displayed in Figure 6.4, and cases where 50=p  

and 10=m  are given in Figure 6.5. 

 

The ideal outer criterion would identify a model dimension of three with probability 1.  If 

an outer criterion decides on a lower final model dimension, this amounts to underfitting, 

whilst overfitting occurs when the identified model dimension exceeds the correct model 

dimension. 

 

In order to avoid too many categories in Figure 6.5 we grouped together the selection 

percentages for model dimensions ,3,2,1   =k  and 4 into a so-called severe underfitting 

(SU) category, selection percentages for 9,,6,5    K=k  into an underfitting (U) category, for 

15,,11   K=k  into an overfitting (O) category, and for 50,,17,16    K=k  into a severe 

overfitting (SO) category.  The percentage of times that the correct number of input 

variables was selected is labelled C. 
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Figure 6.4:  Selection percentages for the NSV outer criterion compared to those 

                         obtained  for cross-validation when 5=p  
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Figure 6.5:  Selection percentages for the NSV outer criterion compared to those 

                         obtained  for cross-validation when 50=p  

 



CHAPTER 6 
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH 
 

249 

Some general trends are evident from Figure 6.4.  For small samples CV appears to identify 

the correct model dimension with somewhat higher probability than the NSV criterion.  The 

reverse is true for large samples.  Also, for small samples the NSV criterion tends to 

underfit, whilst CV shows some overfitting and therefore definitely includes irrelevant 

variables in some cases.  Both criteria perform very well in the large sample, scale 

difference situations, especially so the NSV criterion. 

 

For both outer criteria the scenarios reported in Figure 6.5, with their large number of input 

variables, proved to be much more difficult to handle.  Even for large samples the selection 

percentages at the correct model dimension are relatively small.  We again see that the NSV 

criterion is prone to underfitting, whereas cross-validation tends to overfit.  Whether 

underfitting is more acceptable than overfitting, or vice versa, depends on the main variable 

selection objective: improving the accuracy of the model, or easier interpretation.  In the 

latter case a simpler model is probably to be preferred, in which case we would prefer the 

NSV criterion.  However, including seemingly irrelevant variables may sometimes improve 

the accuracy of a classifier, and if this is of primary interest one would prefer CV to NSV, 

given the tendency of the former criterion to overfit rather than underfit.  Although it is 

difficult to make a firm recommendation regarding the outer criterion, we have a slight 

preference for NSV.  This is based on the better performance of NSV in small p  scenarios 

and the fact that cross-validation is computationally expensive when p  is large. 
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6.7  SUMMARY 
 

In this chapter we addressed an important aspect of variable selection for kernel classifiers, 

viz. how to make a data-dependent decision regarding the number of input variables to 

include.  In our opinion, this is a problem to which a satisfactory solution has not yet been 

proposed in the literature.  We restricted attention to support vector classifiers, and based 

on an upper bound on the expected probability of test error which can be given in terms of 

the expected number of support vectors, proposed using the number of support vectors to 

decide on the post-selection dimension. 

 

The NSV criterion performed very well when we assumed the best variable subsets of each 

dimension to be known.  We therefore proceeded with a numerical evaluation of the 

performance of the NSV criterion when the optimal variable subsets of each size had to be 

determined in a data-dependent manner.  In this regard, we made use of the selection 

criteria which performed well in the previous chapters, viz. the zero-order versions of the 

alignment and the variation ratio criteria.  With regard to ways of searching through the 

variable subsets, we compared a backward elimination strategy with a forward selection 

approach. 

 

Overall it also seemed that the complete variable selection approach which we proposed 

(i.e., a backward elimination strategy with variation ratio as inner criterion and the number 

of support vectors or cross-validation as outer criterion) performed quite well in terms of 

generalisation error and the probability of identifying the correct model dimension.  Based 

on the simulation study results there can be little doubt that backward elimination is 

superior to forward selection, and that the variation ratio is superior to the alignment 

criterion.  No firm recommendation can however be made regarding an outer criterion, 

although the number of support vectors criterion is simpler and maybe slightly better than 

cross-validation. 
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CHAPTER 7  

 SUMMARY AND DIRECTIONS FOR 
FURTHER RESEARCH 

 
 
 

In this thesis the problem of (input) variable selection for kernel classification methods was 

investigated, with particular emphasis being placed on support vector machines and, to a 

lesser extent, kernel Fisher discriminant analysis.  This chapter is devoted to a summary of 

the main findings emanating from the research and an indication of directions for further 

research. 

 

It is clear from the empirical results reported in the thesis that it is worthwhile to perform 

variable selection when a kernel classifier is applied.  Two purposes are thereby served: the 

kernel classifier based on the selected variables frequently classifies new cases more 

accurately than the classifier based on all the variables, and we obtain an indication of the 

input variables which are important in describing the response.  The relevance of the 

variable selection problem for kernel classifiers is enhanced by the fact that kernel 

classification is often performed in cases where the number of variables exceeds the 

number of data points (so-called wide data sets).  An important example is provided by data 

sets encountered in micro-array analyses.  The work reported in this thesis is therefore a 

contribution to solving a highly relevant problem. 

 

A point which has also been emphasised repeatedly in the thesis is that there are several 

factors which complicate variable selection for kernel classifiers.  The first and probably 

most important complicating factor is the (implicit) feature mapping which underlies kernel 

methods.  A direct result of this transformation is that a kernel discriminant function is 

typically of the form ( ) ( )∑
=

+=
n

i
ii bkf

1
, xxx α , i.e. we obtain an expression in which a 

weight iα  is naturally associated with the thi  data point.  This contrasts with, for example, 
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a procedure such as ordinary discriminant analysis where an expression which is a linear 

combination of the variables is obtained.  It is clearly much more straightforward to 

propose variable selection for procedures falling into the latter category than for those 

where the discriminant function is a sum of terms associated with the individual data 

points. 

 

In an attempt to deal with this complicating factor we investigated in Chapter 3 the merit of 

selection in different spaces: selection performed in input space (thereby effectively 

ignoring the feature transformation), in feature space (thereby explicitly taking the 

transformation to feature space into account), and so-called feature-to-input space selection 

(an attempt to combine information generated in feature space with the easier interpretation 

afforded by working in input space).  In this last context we introduced and applied the idea 

of using the pre-images in input space of suitable quantities in feature space for variable 

selection.  Although we found that input space selection performed well in certain data 

configurations (notably the case where the data distribution in the two groups was normal 

with a separation between the groups in terms of location), it turned out that selection 

making use of feature space information generally performed better. 

 

Going hand in hand with the concept of transforming data from input to feature space is 

specification of a kernel function to compute inner products in feature space.  This also 

complicates the selection process: we have to decide on the form of the kernel function and 

we have to specify, or determine from the data, values for its hyperparameters.  In our 

investigation we restricted the discussion to the frequently used Gaussian kernel function, 

and we implemented a simple recommendation for obtaining a value for its 

hyperparameter, viz. =γ the reciprocal of the number of variables being considered.  This 

brings us to a direction for further research: how do different kernel functions compare in 

terms of the ease and the success with which we can perform variable selection?  Is it 

possible to construct a kernel function specifically with variable selection in mind?  And 

finally, what options, apart from the obvious but numerically intensive possibility of cross-

validation, are available for determining hyperparameter values while performing variable 

selection? 
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Focusing on feature space selection in Chapter 4, we introduced a distinction between 

algorithm-independent and algorithm-dependent selection criteria.  The former are criteria 

depending only on the empirical kernel matrix and can therefore be applied in any kernel 

procedure based on this matrix.  Algorithm-dependent criteria use information which is 

derived from a specific kernel classification algorithm and as such these criteria can only 

be applied when this specific algorithm is employed.  The results of an empirical study are 

presented and discussed in Chapter 4, and we see that two of the algorithm-independent 

criteria are very competitive compared to the more sophisticated algorithm-dependent 

criteria.  Further research may therefore also include consideration of alternative algorithm-

independent selection criteria. 

 

Another aspect of variable selection which was investigated concerns the strategy used to 

search through the available models.  Since an all possible subsets approach is infeasible 

when the number of input variables p  becomes large, different stepwise procedures were 

investigated.  Empirical evidence and results reported in the literature suggest that in this 

context backward elimination is superior to forward selection.  We therefore presented a 

fairly extensive discussion of recursive feature elimination in Chapter 5, and found this to 

be an acceptable selection approach, especially in large p  scenarios.  Zero- and first-order 

forms of the new selection criteria proposed earlier in the thesis were presented for use in 

recursive feature eliminationand their properties investigated in a numerical study.  It was 

found that some of the simpler zero-order criteria performed better than the more 

complicated first-order ones, making further investigation regarding the use of alternative 

zero-order criteria seem promising. 

 

In Chapter 6 the focus fell on using the data to motivate a decision regarding the number of 

variables to select.  We restricted attention to support vector machines, and proposed a new 

criterion, namely the number of support vectors, for this purpose.  A complete strategy for 

solving the variable selection problem was obtained by combining this criterion with a 

backward elimination approach for searching through the space of variable subsets, and 

with the alignment and variation ratio for identifying the best subset of a given dimension.  

The alignment and variation ratio were used because of their good performance in earlier 
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chapters.  Overall it seemed that the resulting complete variable selection approach (i.e., a 

backward elimination strategy with variation ratio as inner criterion and the number of 

support vectors or cross-validation as outer criterion) performed quite well.  Given that no 

complete solution to the variable selection problem for SVMs is available, we feel that this 

is an important contribution.  It was shown in Chapter 6 that use of the number of support 

vectors is motivated by it being an important quantity in a well known upper bound on the 

generalisation performance of SVMs.  Many alternative forms of such upper bounds can be 

found in the literature, and in these upper bounds, other quantities play an important role.  

Therefore it may prove worthwhile to investigate the use of such alternative quantities for a 

decision regarding the number of variables to select. 

 

Other directions for further research are finding efficient ways to integrate variable 

selection and the specification of hyperparameter values, and also, to estimate the 

generalisation ability of a post-selection kernel classifier.  Solutions to both of the above 

problems will undoubtedly prove very useful, but lie outside the scope of this thesis. 
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APPENDIX A  

SIMULATION STUDY DISTRIBUTIONS 
AND COMPREHENSIVE RESULTS 

 
 
 
There are two sections in this appendix.  In Section A.1 we describe the procedure which 

was used in the empirical work to generate correlated random variables with lognormal 

marginal distributions.  Section A.2 contains tables which provide a comprehensive 

summary of the empirical study results discussed in Chapters 4 and 5. 

 
 
A.1 GENERATING MULTIVARIATE DATA WITH LOGNORMAL 

         MARGINAL DISTRIBUTIONS 
 
In simulation experiments conducted in the course of the thesis, we used different 

correlation structures between pairs of input variables in the normal and lognormal data 

scenarios.  In this section some points to consider when generating lognormal data are 

discussed, and a motivation is given for using different sets of correlation values for the 

normal and lognormal data setups in our simulation design.  In Section A.1.1 we start with 

a series of results from matrix algebra required to understand the technical difficulties one 

might run into when generating multivariate lognormal data.  Since we need to specify 

correlations between input variables which yield a positive-definite covariance matrix, 

results required to ensure positive-definiteness of a (covariance) matrix are given in Section 

A.1.2.  Using the results in Sections A.1.1 and A.1.2, a motivation for the correlation 

structure used in generating lognormal data, is given in Section A.1.3. 
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A.1.1  RESULTS FROM MATRIX ALGEBRA 
 
The following results are required in Section A.1.2. 

 

RESULT A.1.1: THE DETERMINANT OF AN EQUI-CORRELATION  

                                  MATRIX 
                                    (See Mardia and Kent, 1988, p. 461) 

 

Consider the equi-correlation matrix 

 

                                                         ( )
pp

p
pp ××

+−= EIA ρρ1 . (A.1) 

Then  
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−
−

=
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−
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ρ 111
11  , (A.2) 

 

and 

 

                                                   ( ) ( )( )11 1 1p pρ ρ−= − + −A  . (A.3) 

 

 

 

RESULT A.1.2: THE INVERSE OF A MATRIX UNDER SPECIAL 

                                 CONDITIONS (See Morrison, 1976, pp. 69-70) 

 

Consider the p p×  matrix 
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The inverse of this matrix has common diagonal element  
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and common off-diagonal element 
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RESULT A.1.3: THE DETERMINANT OF A MATRIX UNDER SPECIAL 

                             CONDITIONS 

 

Consider again the matrix K  in Result A.1.2.  Since 
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it follows from Result A.1.1 that 
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A.1.2  NON-SINGULARITY (POSITIVE DEFINITENESS) OF A GIVEN 

           MATRIX 
 
We consider a p p×  matrix 
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Σ Σ
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We assume that Σ  is symmetric and we would like to determine conditions which 

guarantee that Σ  is positive definite, i.e. conditions under which 0>Σ . 

 

The following notation is used regarding the submatrices of Σ : 
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                                           and 12 1 2 21:

c c c
c c c

p p

c c c
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. (A.12) 

 

It is known that  

 

                                                     1
11 22 21 11 12. −= −Σ Σ Σ Σ Σ Σ , (A.13) 

 

and from Result A.1.1. we may write 

 

                                                  ( ) ( )( )1 1
11 11 1 1pa p a−= − + −Σ  . (A.14) 

 

We now require 1
22 21 11 12

−−Σ Σ Σ Σ .  From Result A.1.2 we know that 1
11
−Σ  is a matrix with 

common diagonal element 
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and common off-diagonal element 
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We therefore have  
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which yields  
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Hence 12
1

222122 ΣΣΣΣ −−  will be a matrix with common diagonal element 

( )( )2 2
1 1 1t p c r p sσ= − + −  and common off-diagonal element ( )( )2

1 1 1u b p c r p s= − + − . 

We are now in a position to use Result A.1.3 to write down 1
22 21 11 12

−−Σ Σ Σ Σ .  It follows 

that  
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Combining all the above results we find 
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Our problem now is to determine the conditions under which the above expression is 

positive.  We first of all require 11Σ  to be positive-definite, since 11Σ  is the covariance 

matrix of the first 1p  random variables.  Hence we require 
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Our first requirement is therefore that 
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and this guarantees that 11 0>Σ .  We now also require 1
22 21 11 12 0−− >Σ Σ Σ Σ .  Hence 

consider 
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Therefore    1
22 21 11 12 0−− >Σ Σ Σ Σ     ⇔      t u>  and ( )2 1 0t p u+ − > , or 

                                                                      t u<  and ( )2 1 0t p u+ − < . 

 

From the earlier expressions for r  and s  it follows that 
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and this is a positive quantity since we require 
1

1
1

a
p

> −
−

 for 11Σ  to be positive. 
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Also, since ( )( )2 2
1 1 1t p c r p sσ= − + −  and ( )( )2

1 1 1u b p c r p s= − + − , it now follows that  
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, so that it can easily be seen that  
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                                 ( )2 1 0t p u+ − <           or           ( )2 1 0t p u+ − >  

                  ⇔       
( ) ( ) ( )

2 2
2 1 1

2
1 1

1 0
1 1 1 1

p c p cp b
p a p a

σ
 

− + − − <  + − + − 
   

                        or  ( ) ( ) ( ) 0
11

1
11 1

2
1

2
1

2
12 >











−+
−−+

−+
−

ap
cpbp

ap
cp

σ  

                 ⇔     ( ) ( )
2

2 1 2
2

1
0

1 1
p p cb p b

p a
σ − + − <

+ −
        

                       or  ( ) ( ) 0
11 1

2
21

2
2 >

−+
−+−

ap
cppbpbσ  . 

 

Hence, our second requirement, which guarantees that 1
22 21 11 12 0−− >Σ Σ Σ Σ , is 

 

                                  2 bσ >  and ( ) ( )
2

2 1 2
2

1
0

1 1
p p cb p b

p a
σ − + − >

+ −
 , (A.19) 
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                             or 2 bσ <  and ( ) ( )
2

2 1 2
2

1
0

1 1
p p cb p b

p a
σ − + − <

+ −
. (A.20) 

 

Therefore, if one specifies a (covariance) matrix (A.9) to have a structure as given in 

(A.10) to (A.12), positive definiteness of the matrix is guaranteed if (A.17) and (A.19) or 

(A.20) hold. 

 

A.1.3  OUR APPLICATION 
 

The Johnson translation system for generating multivariate data with lognormal marginal 

distributions (Johnson, 1987) starts with normally distributed random variables 

1 2, , , pZ Z ZK , i.e.  

 

               ( )2~ 0,j jZ N σ , 1, 2, ,j p= K , where ( ) kjZZcovar jkkj ≠= ,, σ . (A.21) 

 

The standard normal random variables 1 2, , , pZ Z ZK  are then transformed to lognormally 

distributed random variables 1 2, , , pX X XK , via 

 

                                                   jZ
j j jX eλ ξ= +   , 1, 2, ,j p= K  . (A.22) 

 

This implies 

 

 

               i.     ( ) ( ) 2 2j jZ
j j j j jE X E e eσλ ξ λ ξ= + = +  

               ii.   ( ) 2 22 22 2 22j j
j j j j jE X e eσ σλ λ ξ ξ= + + , and 

               iii.   ( ) ( )2 2 2 22 2 2 2j k jk j k
j k j k j k k j j kE X X e e eσ σ σ σ σλ λ λ ξ λ ξ ξ ξ

+ +
= + + +  . 
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Hence also 

 

               iv.   ( ) 




 −=−= 1

2222 2222 jjjj eeeeXvar jjjj
σσσσ λλλ , and 

               v.   ( ) ( ) ( ) 222 2222
, kjjkkj eeXXcovar kjkjkj

σσσσσ λλλλ +++ −=  . 

 

We now require jλ , jξ  and jkσ ,  , 1, 2, , ;j k p= K  j k≠ , such that the following 

requirements are satisfied: 

 

                           ( )j jE X µ= ;  ( ) 2
jj sXvar = ;  and  ( ) jkkj XXcorr ρ=, . (A.23) 

 

Now, 

 

                          ( ) 2
jj sXvar =  ⇒   

2 22 21j j
j je e sσ σλ  − = 

 
   

                                                 ⇒   
2 2

1j j

j
j

s

e eσ σ
λ =

 − 
 

, 1, 2, ,j p= K  . (A.24) 

Also,   

 

                         ( )j jE X µ=  ⇒   
2 2j

j j jeσλ ξ µ+ =    

                                             ⇒   







 −

−=
1

22

2 2

jj

j

ee

esj
jj

σσ

σ

µξ , 1, 2, ,j p= K . (A.25) 

 

Finally, 
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               ( ) jkkj XXcorr ρ=,  ⇒  
( ) ( )

( ) ( )

2 2

2 2 2 2

2

2

1

1 1

j k jk

j k j k

j k
jk

j k

e e

e e e

σ σ σ

σ σ σ σ

λ λ
ρ

λ λ

+

+

−
=

 − − 
 

  

 

                                                 ⇒   ( )2 2
log 1 1 1j k

jk jk e eσ σσ ρ
  = + − −  

  
   

 

                                                                                             , 1, 2, , ;j k p= K  j k≠ . (A.26) 

 

 

Use of the Johnson translation system for generating correlated lognormal data first 

requires specification of pjj ,,2,1,2 K=σ , and jkρ , , 1, 2, , ;j k p= K  j k≠  (in A.26).  

These specifications then imply the values for jξ , jλ  and jkσ , , 1, 2, , ;j k p= K  j k≠ , 

such that (A.23) will hold.  In this section it was shown that care must however be taken 

when specifying pjj ,,2,1,2 K=σ , and jkρ , , 1, 2, , ;j k p= K  j k≠ , so that use of the 

Johnson translation system does not imply jkσ  values rendering the covariance matrix for 

the initial normal input variables a singular matrix.  Via Johnson translations, generating 

lognormal data with a particular structure first requires normal data with a specific 

structure.  In Section 3.4.1, since lognormal data with  0=Sρ  or 0.7, and 9.0=SSρ  

implied the use of normal data with a singular covariance matrix, we were forced to use 

2.0=SSρ  or 25.0=SSρ  instead. 
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A.2  COMPREHENSIVE SIMULATION STUDY RESULTS 
 

A.2.1  KERNEL VARIABLE SELECTION IN FEATURE SPACE 
 
In this section we present the remaining set of results of the Monte Carlo simulation study 

described in Chapter 4, where we studied the relative performance of selection criteria 

defined in feature space. 

 

 

Table A.1: Average test errors in the LL case  

KFDA 

 ( )VErr  ( )SVErr  ( )VAErr  ( )MErr  ( )SSErr  ( )AErr  ( )ATErr  

LL1 SMALL .337 .135 .155 .159 .219 .139 .139 

MIXED .165 .079 .079 .080 .127 .080 .080 

LARGE .215 .122 .122 .122 .183 .122 .122 
 WIDE .301 .058 .088 .089 .095 .066 .064 

LL2 SMALL .166 .078 .083 .085 .103 .079 .079 

MIXED .078 .042 .042 .042 .056 .042 .042 

LARGE .072 .032 .032 .041 .035 .032 .032 

 WIDE .122 .039 .045 .045 .050 .043 .042 

LL3 SMALL .330 .137 .154 .157 .214 .140 .139 

MIXED .160 .079 .079 .079 .127 .079 .080 

LARGE .213 .121 .121 .121 .179 .121 .121 
 WIDE .352 .117 .164 .164 .169 .127 .124 

LL4 SMALL .219 .124 .128 .129 .151 .125 .125 

MIXED .100 .079 .079 .079 .092 .079 .079 

LARGE .151 .084 .084 .084 .092 .084 .084 
 WIDE .228 .099 .132 .132 .143 .108 .106 
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Table A.2: Average test errors in the LL case (continued) 

SVM 

 ( )VErr  ( )SVErr  ( )VAErr  ( )MErr  ( )SSErr  ( )AErr  ( )ATErr  

LL1 SMALL .331 .122 .139 .145 .208 .126 .126 

MIXED .171 .064 .064 .065 .116 .064 .065 

LARGE .232 .115 .115 .115 .176 .115 .115 

 WIDE .265 .068 .091 .092 .099 .066 .065 

LL2 SMALL .157 .084 .089 .090 .108 .086 .085 

MIXED .071 .045 .042 .043 .057 .042 .042 

LARGE .077 .033 .033 .033 .043 .033 .033 

 WIDE .089 .020 .030 .030 .032 .023 .022 

LL3 SMALL .334 .121 .141 .144 .203 .126 .125 

MIXED .171 .064 .065 .065 .114 .064 .067 

LARGE .229 .113 .113 .113 .174 .113 .113 
 WIDE .324 .122 .162 .164 .170 .131 .130 

LL4 SMALL .216 .127 .134 .135 .156 .130 .129 

MIXED .100 .068 .068 .069 .078 .069 .069 

LARGE .143 .084 .084 .084 .098 .084 .084 

 WIDE .218 .128 .144 .145 .150 .132 .132 

 

 



APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS 
 

284 

Table A.3: Average test errors in the LS case  

KFDA 

 ( )VErr  ( )SVErr  ( )VAErr  ( )MErr  ( )SSErr  ( )AErr  ( )ATErr  

LS1 SMALL .438 .225 .367 .369 .407 .275 .269 

 MIXED .250 .250 .250 .250 .250 .250 .250 

 LARGE .360 .201 .207 .219 .451 .202 .201 

 WIDE .499 .119 .385 .384 .377 .185 .179 

LS2 SMALL .262 .126 .181 .182 .239 .151 .149 

 MIXED .193 .096 .139 .145 .250 .250 .250 

 LARGE .154 .085 .086 .089 .214 .085 .085 

 WIDE .279 .054 .215 .215 .233 .099 .093 

LS3 SMALL .442 .223 .375 .378 .421 .278 .270 

 MIXED .250 .250 .250 .250 .250 .250 .250 

 LARGE .360 .201 .210 .223 .448 .201 .201 

 WIDE .457 .141 .421 .420 .413 .243 .236 

LS4 SMALL .323 .149 .205 .209 .276 .175 .171 

 MIXED .243 .129 .177 .182 .250 .250 .250 

 LARGE .206 .126 .127 .130 .250 .126 .126 

 WIDE .342 .082 .313 .313 .317 .179 .172 
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Table A.4: Average test errors in the LS case (continued) 

SVM 

 ( )VErr  ( )SVErr  ( )VAErr  ( )MErr  ( )SSErr  ( )AErr  ( )ATErr  

LS1 SMALL .441 .213 .368 .375 .414 .153 .150 

 MIXED .335 .227 .242 .250 .250 .250 .250 

 LARGE .361 .180 .187 .203 .444 .181 .181 

 WIDE .449 .136 .391 .388 .385 .194 .188 

LS2 SMALL .269 .125 .185 .186 .252 .153 .150 

 MIXED .195 .086 .125 .130 .330 .295 .194 

 LARGE .163 .076 .078 .081 .199 .076 .076 

 WIDE .260 .062 .237 .236 .236 .101 .097 

LS3 SMALL .442 .208 .364 .375 .418 .267 .259 

 MIXED .333 .224 .249 .248 .265 .268 .266 

 LARGE .361 .179 .187 .201 .448 .181 .181 

 WIDE .449 .174 .423 .423 .420 .248 .241 

LS4 SMALL .315 .166 .214 .222 .294 .193 .189 

 MIXED .251 .095 .143 .147 .335 .309 .308 

 LARGE .221 .092 .093 .096 .239 .092 .092 

 WIDE .327 .168 .316 .316 .317 .209 .205 

 

 

A.2.2  BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS 
 

In this section we present the full set of results that was obtained in the Monte Carlo 

simulation study in Chapter 5, where the performances of RFE selection criteria were 

evaluated.  The average KFDA test errors for the NS case and small, mixed, large and wide 

sample sizes are given first, followed by the average SVM test errors corresponding to the 

same cases.  Results pertaining to the LL and LS data scenarios are given in similar order.  

Conclusions drawn from Tables A.5-A.28 (given below) are discussed in Chapter 5. 
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Table A.5:  Average KFDA test errors for the NS case and small samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.455 

 

.285 

 

.343 

1.204 

3 

.348 

1.221 

4 

.414 

1.453 

9 

.355 

1.246 

5 

.377 

1.323 

6 

.340 

1.193 

1 

.405 

1.421 

7 

.487 

1.709 

11 

.411 

1.442 

8 

.498 

1.747 

12 

.461 

1.618 

10 

.341 

1.196 

2 

.255 

 

.104 

 

.110 

1.058 

1 

.117 

1.125 

3 

.141 

1.356 

7 

.132 

1.269 

5 

.135 

1.298 

6 

.132 

1.269 

5 

.122 

1.173 

4 

.208 

2.000 

9 

.128 

1.085 

2 

.450 

4.327 

11 

.281 

2.702 

10 

.171 

1.644 

8 

.453 

 

.281 

 

.343 

1.221 

3 

.332 

1.181 

1 

.416 

1.480 

9 

.364 

1.295 

5 

.384 

1.367 

6 

.345 

1.228 

4 

.408 

1.452 

7 

.489 

1.740 

11 

.412 

1.466 

8 

.499 

1.776 

12 

.461 

1.641 

10 

.341 

1.214 

2 

.306 

 

.152 

 

.191 

1.257 

4 

.182 

1.197 

2 

.215 

1.414 

8 

.205 

1.349 

6 

.224 

1.474 

9 

.209 

1.375 

7 

.176 

1.158 

1 

.327 

2.151 

3 

.194 

1.276 

5 

.447 

2.941 

12 

.377 

2.480 

11 

.248 

1.632 

10 

 

 

Table A.6:  Average KFDA test errors for the NS case and mixed samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.250 

 

.250 

 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.201 

 

.086 

 

.089 

1.035 

3 

.086 

1.000 

1 

.250 

2.907 

6 

.087 

1.012 

2 

.250 

2.907 

6 

.140 

1.628 

4 

.087 

1.012 

2 

.250 

2.907 

6 

.089 

1.035 

3 

.250 

2.907 

6 

.250 

2.907 

6 

.180 

2.093 

5 

.250 

 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.237 

 

.122 

 

.172 

1.410 

5 

.125 

1.025 

1 

.250 

2.049 

8 

.143 

1.172 

4 

.303 

2.484 

9 

.183 

1.500 

6 

.126 

1.033 

2 

.250 

2.049 

8 

.130 

1.066 

3 

.250 

2.049 

8 

.250 

2.049 

8 

.235 

1.926 

7 
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Table A.7:  Average KFDA test errors for the NS case and large samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.379 

 

.257 

 

.259 

1.008 

3 

.272 

1.058 

4 

.258 

1.004 

2 

.257 

1.000 

1 

.257 

1.000 

1 

.257 

1.000 

1 

.257 

1.000 

1 

.498 

1.938 

6 

.257 

1.000 

1 

.257 

1.000 

1 

.442 

1.720 

5 

.257 

1.000 

1 

.136 

 

.084 

 

.084 

1.000 

1 

.109 

1.298 

3 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.109 

1.298 

3 

.084 

1.000 

1 

.084 

2.429 

4 

.204 

1.012 

2 

.085 

1.012 

2 

.379 

 

.258 

 

.259 

1.004 

2 

.273 

1.058 

3 

.259 

1.004 

2 

.258 

1.000 

1 

.258 

1.000 

1 

.258 

1.000 

1 

.258 

1.000 

1 

.499 

1.934 

4 

.259 

1.004 

2 

.258 

1.000 

1 

.435 

1.686 

4 

.259 

1.004 

2 

.205 

 

.111 

 

.133 

1.198 

4 

.123 

1.108 

2 

.111 

1.000 

1 

.111 

1.000 

1 

.111 

1.000 

1 

.111 

1.000 

1 

.111 

1.000 

1 

.291 

2.622 

5 

.111 

1.000 

1 

.111 

1.000 

1 

.327 

2.946 

6 

.131 

1.180 

3 

 

 

Table A.8:  Average KFDA test errors for the NS case and wide samples 
FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.410 

 

.087 

 

.106 

1.218 

1 

.199 

2.287 

3 

.438 

5.034 

9 

.414 

4.759 

6 

.326 

3.747 

5 

.268 

3.080 

4 

.421 

4.839 

7 

.485 

5.575 

11 

.432 

4.966 

8 

.496 

5.701 

12 

.467 

5.368 

10 

.158 

1.816 

2 

.130 

 

.003 

 

.004 

1.333 

1 

.004 

1.333 

1 

.007 

2.333 

4 

.007 

2.333 

4 

.006 

2.000 

3 

.006 

2.000 

3 

.005 

1.667 

2 

.022 

7.333 

6 

.006 

2.000 

3 

.452 

150.7 

8 

.135 

45.00 

7 

.009 

3.000 

5 

.427 

 

.142 

 

.222 

1.563 

1 

.226 

1.592 

2 

.448 

3.155 

9 

.427 

3.007 

7 

.375 

2.641 

5 

.342 

2.408 

4 

.402 

2.831 

6 

.492 

3.465 

11 

.433 

3.049 

8 

.498 

3.507 

12 

.482 

3.394 

10 

.268 

1.887 

3 

.222 

 

.019 

 

.136 

7.158 

4 

.038 

2.000 

1 

.146 

7.684 

6 

.139 

7.316 

5 

.164 

8.632 

8 

.160 

8.421 

7 

.054 

2.842 

2 

.308 

16.21 

10 

.098 

5.158 

3 

.475 

25.00 

12 

.397 

20.89 

11 

.159 

8.368 

9 
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Table A.9:  Average SVM test errors for the NS case and small samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.453 

 

.294 

 

.381 

1.296 

5 

.365 

1.241 

3 

.416 

1.415 

8 

.358 

1.218 

2 

.379 

1.289 

4 

.343 

1.167 

1 

.407 

1.384 

6 

.488 

1.660 

10 

.413 

1.405 

7 

.499 

1.697 

11 

.462 

1.571 

9 

.343 

1.167 

1 

.260 

 

.128 

 

.162 

1.266 

5 

.187 

1.461 

7 

.162 

1.266 

5 

.155 

1.211 

3 

.157 

1.227 

4 

.153 

1.195 

2 

.147 

1.148 

1 

.215 

1.680 

8 

.153 

1.195 

2 

.454 

3.547 

10 

.287 

2.242 

9 

.184 

1.438 

6 

.451 

 

.293 

 

.383 

1.307 

5 

.365 

1.246 

3 

.418 

1.427 

9 

.368 

1.256 

4 

.388 

1.324 

6 

.349 

1.191 

2 

.411 

1.403 

7 

.489 

1.669 

11 

.415 

1.416 

8 

.498 

1.700 

12 

.461 

1.573 

10 

.345 

1.177 

1 

.320 

 

.183 

 

.255 

1.393 

6 

.274 

1.497 

9 

.241 

1.317 

5 

.229 

1.251 

3 

.246 

1.344 

7 

.233 

1.273 

4 

.204 

1.115 

1 

.333 

1.820 

10 

.220 

1.202 

2 

.452 

2.470 

12 

.385 

2.104 

11 

.261 

1.426 

8 

 

 

Table A.10:  Average SVM test errors for the NS case and mixed samples 
FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.332 

 

.253 

 

.261 

1.032 

5 

.259 

1.024 

4 

.268 

1.059 

8 

.253 

1.000 

1 

.268 

1.059 

8 

.253 

1.000 

1 

.258 

1.020 

3 

.266 

1.051 

7 

.259 

1.024 

4 

.265 

1.047 

6 

.268 

1.059 

9 

.256 

1.012 

2 

.209 

 

.096 

 

.100 

1.042 

4 

.103 

1.073 

5 

.367 

3.823 

10 

.097 

1.010 

1 

.369 

3.844 

11 

.152 

1.583 

6 

.098 

1.021 

2 

.332 

3.458 

8 

.099 

1.031 

3 

.371 

3.865 

12 

.366 

3.813 

9 

.190 

1.979 

7 

.332 

 

.253 

 

.262 

1.036 

3 

.260 

1.028 

2 

.268 

1.059 

6 

.253 

1.000 

1 

.268 

1.059 

6 

.253 

1.000 

1 

.260 

1.028 

2 

.265 

1.047 

5 

.260 

1.028 

2 

.264 

1.043 

4 

.268 

1.059 

6 

.256 

1.012 

1 

.264 

 

.117 

 

.154 

1.316 

4 

.190 

1.624 

6 

.365 

3.12 

10 

.136 

1.162 

3 

.366 

3.128 

11 

.178 

1.521 

5 

.119 

1.017 

1 

.361 

3.085 

8 

.122 

1.043 

2 

.369 

3.154 

12 

.363 

3.103 

9 

.245 

2.094 

7 
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Table A.11:  Average SVM test errors for the NS case and large samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.397 

 

.257 

 

.262 

1.019 

2 

.257 

1.000 

1 

.257 

1.000 

1 

.257 

1.000 

1 

.257 

1.000 

1 

.257 

1.000 

1 

.257 

1.000 

1 

.499 

1.942 

4 

.257 

1.000 

1 

.257 

1.000 

1 

.442 

1.720 

3 

.257 

1.000 

1 

.163 

 

.076 

 

.076 

1.000 

1 

.082 

1.079 

3 

.076 

1.000 

1 

.076 

1.000 

1 

.076 

1.000 

1 

.076 

1.000 

1 

.076 

1.000 

1 

.102 

1.342 

4 

.076 

1.000 

1 

.076 

1.000 

1 

.195 

2.566 

5 

.077 

1.013 

2 

.398 

 

.258 

 

.261 

1.012 

2 

.258 

1.000 

1 

.258 

1.000 

1 

.258 

1.000 

1 

.258 

1.000 

1 

.258 

1.000 

1 

.258 

1.000 

1 

.499 

1.934 

4 

.258 

1.000 

1 

.258 

1.000 

1 

.434 

1.682 

3 

.258 

1.000 

1 

.227 

 

.091 

 

.091 

1.000 

1 

.093 

1.022 

2 

.091 

1.000 

1 

.091 

1.000 

1 

.091 

1.000 

1 

.091 

1.000 

1 

.091 

1.000 

1 

.283 

3.11 

4 

.091 

1.000 

1 

.091 

1.000 

1 

.323 

3.545 

5 

.116 

1.275 

3 

 

 

Table A.12:  Average SVM test errors for the NS case and wide samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.433 

 

.129 

 

.267 

2.070 

3 

.265 

2.054 

2 

.451 

3.496 

9 

.431 

3.341 

6 

.369 

2.860 

5 

.319 

2.473 

4 

.440 

3.411 

7 

.485 

3.76 

11 

.447 

3.465 

8 

.497 

3.853 

12 

.470 

3.643 

10 

.206 

1.597 

1 

.085 

 

.006 

 

.019 

3.167 

3 

.054 

9 

6 

.025 

4.167 

5 

.023 

3.833 

4 

.018 

3.000 

2 

.018 

3.000 

2 

.016 

2.667 

1 

.077 

12.83 

7 

.019 

3.167 

3 

.485 

80.83 

9 

.280 

46.67 

8 

.025 

1.013 

2 

.430 

 

.179 

 

.363 

2.028 

3 

.356 

1.989 

2 

.454 

2.536 

9 

.435 

2.430 

7 

.396 

2.212 

5 

.364 

2.034 

4 

.415 

2.318 

6 

.492 

2.749 

11 

.440 

2.458 

8 

.499 

2.788 

12 

.483 

2.698 

10 

.288 

1.609 

1 

.252 

 

.155 

 

.207 

1.335 

3 

.255 

1.645 

9 

.218 

1.406 

6 

.214 

1.381 

4 

.225 

1.452 

8 

.222 

1.432 

7 

.170 

1.097 

1 

.356 

2.297 

10 

.190 

1.226 

2 

.480 

3.097 

12 

.432 

2.787 

11 

.215 

1.387 

5 
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Table A.13:  Average KFDA test errors for the LL case and small samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.332 

 

 

.134 

 

.145 

1.082 

1 

.396 

2.955 

12 

.168 

1.254 

7 

.166 

1.239 

6 

.164 

1.224 

4 

.151 

1.127 

2 

.163 

1.216 

3 

.322 

2.403 

9 

.165 

1.231 

5 

.376 

2.806 

11 

.223 

1.664 

8 

.359 

2.679 

10 

.165 

 

 

.076 

 

 

.105 

1.382 

8 

.138 

1.816 

10 

.088 

1.158 

4 

.085 

1.118 

1 

.090 

1.184 

5 

.097 

1.276 

6 

.087 

1.145 

3 

.097 

1.276 

6 

.086 

1.132 

2 

.153 

2.013 

11 

.103 

1.335 

7 

.128 

1.684 

9 

.331 

 

 

.134 

 

 

.150 

1.119 

2 

.387 

2.888 

12 

.163 

1.216 

6 

.158 

1.179 

5 

.162 

1.209 

4 

.146 

1.09 

1 

.161 

1.201 

3 

.309 

2.306 

9 

.166 

1.239 

7 

.375 

2.799 

11 

.207 

1.545 

8 

.348 

2.60 

10 

.215 

 

 

.124 

 

 

.163 

1.315 

6 

.168 

1.355 

7 

.149 

1.202 

5 

.141 

1.137 

3 

.149 

1.202 

5 

.146 

1.177 

4 

.131 

1.056 

1 

.170 

1.371 

8 

.134 

1.081 

2 

.210 

1.694 

11 

.194 

1.565 

9 

.202 

1.629 

10 

 

 

Table A.14:  Average KFDA test errors for the LL case and mixed samples 
FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.164 

 

 

.078 

 

 

.078 

1 

1 

.176 

2.256 

10 

.117 

1.5 

6 

.105 

1.346 

4 

.092 

1.179 

8 

.094 

1.205 

3 

.078 

1 

1 

.174 

2.231 

9 

.079 

1.013 

2 

.105 

1.346 

4 

.134 

1.718 

7 

.108 

1.385 

5 

.079 

 

 

.042 

 

 

.059 

1.405 

9 

.053 

1.262 

6 

.050 

1.19 

5 

.058 

1.381 

7 

.047 

1.119 

4 

.068 

1.619 

8 

.044 

1.048 

2 

.050 

1.19 

5 

.042 

1 

1 

.050 

1.19 

5 

.058 

1.381 

6 

.049 

1.167 

3 

.162 

 

 

.078 

 

.078 

1 

1 

.174 

2.231 

10 

.117 

1.5 

7 

.105 

1.346 

5 

.097 

1.244 

4 

.089 

1.141 

3 

.078 

1 

1 

.170 

2.179 

9 

.080 

1.026 

2 

.105 

1.346 

5 

.132 

1.692 

8 

.107 

1.372 

6 

.101 

 

 

.081 

 

 

.084 

.084 

1.037 

.093 

1.148 

7 

.089 

1.099 

5 

.091 

1.123 

6 

.086 

1.062 

4 

.095 

1.173 

8 

.081 

1 

1 

.096 

1.185 

9 

.081 

1 

1 

.087 

1.074 

3 

.104 

1.284 

10 

.089 

1.099 

5 
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Table A.15:  Average KFDA test errors for the LL case and large samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.215 

 

 

.121 

 

 

.121 

1.000 

1 

.367 

3.033 

5 

.121 

1.000 

1 

.121 

1.000 

1 

.121 

1.000 

1 

.121 

1.000 

1 

.121 

1.000 

1 

.317 

2.620 

4 

.121 

1.000 

1 

.499 

4.124 

6 

.186 

1.537 

2 

.213 

1.760 

3 

.075 

 

 

.033 

 

 

.040 

1.212 

3 

.057 

1.727 

5 

.033 

1.000 

1 

.033 

1.000 

1 

.033 

1.000 

1 

.033 

1.000 

1 

.033 

1.000 

1 

.039 

1.182 

2 

.033 

1.000 

1 

.033 

1.000 

1 

.043 

1.303 

4 

.043 

1.303 

4 

.212 

 

 

.121 

 

 

.121 

1 

1 

.369 

3.050 

5 

.121 

1.000 

1 

.121 

1.000 

1 

.121 

1.000 

1 

.121 

1.000 

1 

.121 

1.000 

1 

.309 

2.554 

4 

.121 

1.000 

1 

.500 

4.132 

6 

.193 

1.595 

2 

.225 

1.860 

3 

.152 

 

 

.084 

 

 

.121 

1.440 

5 

.085 

1.012 

2 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.105 

1.250 

3 

.084 

1.000 

1 

.084 

1.000 

1 

.121 

1.441 

5 

.108 

1.286 

4 

 

 

Table A.16:  Average KFDA test errors for the LL case and wide samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.300 

 

 

.059 

 

.139 

2.356 

6 

.292 

4.949 

8 

.091 

1.542 

2 

.091 

1.542 

2 

.097 

1.644 

5 

.092 

1.559 

3 

.090 

1.525 

1 

.285 

4.831 

5 

.092 

1.559 

3 

.312 

5.288 

9 

.095 

1.610 

4 

.229 

3.881 

7 

.126 

 

 

.038 

 

 

.057 

1.500 

3 

.157 

4.132 

11 

.064 

1.684 

6 

.056 

1.474 

2 

.072 

1.895 

8 

.049 

1.289 

1 

.062 

1.632 

5 

.067 

1.763 

7 

.064 

1.684 

6 

.097 

2.553 

10 

.061 

1.605 

4 

.095 

2.500 

9 

.349 

 

 

.115 

 

 

.253 

2.200 

8 

.321 

2.791 

9 

.175 

1.522 

4 

.168 

1.461 

2 

.195 

1.696 

6 

.179 

1.557 

5 

.147 

1.278 

1 

.425 

3.696 

12 

.169 

1.470 

3 

.361 

3.139 

11 

.216 

1.878 

7 

.334 

2.904 

10 

.229 

 

 

.097 

 

 

.215 

2.216 

8 

.174 

1.794 

6 

.173 

1.784 

5 

.167 

1.722 

3 

.186 

1.918 

7 

.171 

1.763 

4 

.113 

1.165 

2 

.215 

2.216 

8 

.138 

1.423 

1 

.243 

2.505 

10 

.236 

2.433 

9 

.299 

3.082 

11 
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Table A.17:  Average SVM test errors for the LL case and small samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.335 

 

.121 

 

.150 

1.24 

2 

.150 

1.24 

2 

.157 

1.298 

6 

.154 

1.273 

5 

.152 

1.256 

3 

.138 

1.140 

1 

.152 

1.256 

3 

.317 

2.620 

4 

.154 

1.273 

5 

.373 

3.083 

9 

.215 

1.777 

7 

.357 

2.950 

8 

.157 

 

.081 

 

.096 

1.185 

5 

.105 

1.296 

8 

.092 

1.136 

3 

.089 

1.099 

1 

.094 

1.160 

4 

.102 

1.259 

7 

.092 

1.136 

3 

.101 

1.247 

6 

.090 

1.111 

2 

.159 

1.963 

11 

.106 

1.309 

9 

.133 

1.642 

10 

.337 

 

.121 

 

.155 

1.281 

7 

.144 

1.19 

2 

.152 

1.256 

6 

.146 

1.207 

3 

.151 

1.248 

5 

.133 

1.099 

1 

.150 

1.240 

4 

.305 

2.521 

9 

.155 

1.281 

7 

.372 

3.074 

11 

.199 

1.645 

8 

.346 

2.86 

10 

.217 

 

.132 

 

.143 

1.083 

4 

.153 

1.159 

7 

.151 

1.144 

5 

.143 

1.083 

4 

.152 

1.152 

6 

.142 

1.076 

3 

.134 

1.015 

1 

.176 

1.333 

8 

.141 

1.068 

2 

.213 

1.614 

11 

.199 

1.508 

9 

.208 

1.576 

10 

 

 

Table A.18:  Average SVM test errors for the LL case and mixed samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.174 

 

.064 

 

.064 

1.000 

1 

.064 

1.000 

1 

.105 

1.641 

6 

.093 

1.453 

4 

.078 

1.219 

2 

.081 

1.266 

3 

.064 

1.000 

1 

.170 

2.656 

8 

.064 

1.000 

1 

.093 

1.453 

4 

.123 

1.922 

7 

.097 

1.516 

5 

.072 

 

.042 

 

.047 

1.190 

4 

.046 

1.095 

3 

.050 

1.190 

6 

.057 

1.357 

3 

.048 

1.143 

5 

.066 

1.571 

9 

.044 

1.048 

2 

.050 

1.190 

6 

.042 

1.000 

1 

.050 

1.190 

6 

.059 

1.405 

8 

.050 

1.190 

6 

.175 

 

.065 

 

.065 

1.000 

1 

.065 

1.000 

1 

.107 

1.646 

8 

.095 

1.462 

6 

.085 

1.308 

4 

.078 

1.200 

3 

.065 

1.000 

1 

0.166 

2.554 

10 

.067 

1.031 

2 

.094 

1.446 

5 

.124 

1.908 

9 

.098 

0.508 

7 

.100 

 

.069 

 

.069 

1.000 

1 

.075  

1.087 

3 

.078 

1.130 

4 

.077 

1.116 

6 

.075 

1.087 

3 

.079 

1.145 

5 

.069 

1.00 

1 

.082 

1.188 

7 

.070 

1.014 

2 

.075 

1.087 

3 

.095 

1.377 

8 

.075 

1.087 

3 
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Table A.19:  Average SVM test errors for the LL case and large samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.233 

 

.114 

 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.314 

2.754 

4 

.114 

1.000 

1 

.499 

4.377 

5 

.181 

1.588 

2 

.208 

1.825 

3 

.079 

 

.033 

 

.034 

1.030 

2 

.034 

1.030 

2 

.034 

1.030 

2 

.033 

1.000 

1 

.033 

1.000 

1 

.033 

1.000 

1 

.033 

1.000 

1 

.039 

1.182 

3 

.033 

1.000 

1 

.033 

1.000 

1 

.043 

1.303 

4 

.043 

1.303 

4 

.229 

 

.114 

 

 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.114 

1.000 

1 

.306 

2.684 

4 

.114 

1.000 

1 

.500 

4.386 

5 

.187 

1.640 

2 

.220 

1.930 

3 

.145 

 

.084 

 

.090 

1.071 

2 

.091 

1.083 

3 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.084 

1.000 

1 

.109 

1.298 

4 

.084 

1.000 

1 

.084 

1.000 

1 

.125 

1.488 

6 

.113 

1.345 

5 

 

 

Table A.20:  Average SVM test errors for the LL case and wide samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.269 

 

.060 

 

.111 

1.850 

9 

.104 

1.733 

8 

.094 

1.567 

2 

.093 

1.550 

1 

.102 

1.700 

7 

.095 

1.583 

3 

.097 

1.617 

5 

.292 

4.867 

11 

.096 

1.600 

4 

.298 

4.967 

12 

.099 

1.650 

6 

.241 

4.017 

10 

.092 

 

.021 

 

.042 

2.000 

6 

.057 

2.714 

7 

.037 

1.762 

2 

.033 

1.571 

1 

.042 

2.000 

6 

.040 

1.905 

4 

.041 

1.952 

5 

.037 

1.762 

2 

.042 

2.000 

6 

.079 

3.762 

8 

.038 

1.810 

3 

.105 

5.000 

9 

.348 

 

.123 

 

.169 

1.374 

3 

.166 

1.350 

2 

.174 

1.415 

5 

.170 

1.382 

4 

.192 

1.561 

7 

.177 

1.439 

6 

.150 

1.220 

1 

.424 

3.447 

11 

.169 

1.374 

3 

.348 

2.829 

10 

.212 

1.724 

8 

.344 

2.797 

9 

.219 

 

.130 

 

.148 

 

.156 

1.200 

3 

.166 

1.277 

6 

.163 

1.254 

4 

.174 

1.338 

7 

.165 

1.269 

5 

.137 

1.054 

1 

.192 

1.477 

8 

.148 

1.138 

2 

.217 

1.669 

10 

.206 

1.585 

9 

.247 

1.900 

11 
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Table A.21:  Average KFDA test errors for the LS case and small samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.438 

 

.221 

 

.303 

1.371 

2 

.360 

1.629 

5 

.380 

1.719 

8 

.321 

1.452 

3 

.340 

1.538 

4 

.291 

1.317 

1 

.374 

1.692 

6 

.446 

2.018 

11 

.377 

.706 

7 

.479 

2.167 

12 

.411 

1.860 

9 

.412 

1.864 

10 

.266 

 

.129 

 

.211 

1.636 

7 

.182 

1.411 

4 

.185 

1.434 

6 

.174 

1.349 

2 

.183 

1.419 

5 

.168 

1.302 

1 

.182 

1.411 

4 

.232 

1.798 

8 

.181 

1.403 

3 

.339 

2.628 

11 

.247 

1.915 

10 

.234 

1.814 

9 

.437 

 

.223 

 

.298 

1.336 

2 

.371 

1.664 

5 

.378 

1.695 

7 

.316 

1.417 

3 

.344 

1.543 

4 

.294 

1.318 

1 

.376 

1.686 

6 

.435 

1.951 

10 

.376 

1.686 

6 

.481 

2.157 

11 

.410 

1.839 

9 

.402 

1.803 

8 

.308 

 

.157 

 

.260 

1.656 

8 

.205 

1.306 

3 

.233 

1.484 

7 

.207 

1.318 

4 

.226 

1.439 

6 

.198 

1.261 

2 

.180 

1.146 

1 

.297 

1.892 

10 

.209 

1.331 

5 

.350 

2.229 

12 

.326 

2.076 

111 

.275 

1.752 

9 

 

 

Table A.22:  Average KFDA test errors for the LS case and mixed samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.250 

 

.250 

 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.194 

 

.096 

 

.165 

1.719 

3 

.114 

1.188 

2 

.250 

2.604 

8 

.152 

1.583 

5 

.250 

2.604 

8 

.186 

1.938 

6 

.111 

1.156 

1 

.245 

2.552 

7 

.115 

1.198 

4 

.250 

2.604 

8 

.250 

2.604 

8 

.250 

2.604 

8 

.250 

 

.250 

 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.250 

1.000 

1 

.242 

 

.130 

 

.241 

1.854 

4 

.140 

1.077 

2 

.250 

1.923 

5 

.241 

1.854 

4 

.250 

1.923 

5 

.250 

1.923 

5 

.139 

1.069 

1 

.250 

1.923 

5 

.162 

1.246 

3 

.250 

1.923 

5 

.250 

1.923 

5 

.250 

1.923 

5 
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Table A.23:  Average KFDA test errors for the LS case and large samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.358 

 

.200 

 

.203 

1.015 

2 

.301 

1.505 

6 

.222 

1.110 

5 

.203 

1.015 

2 

.213 

1.065 

3 

.202 

1.010 

1 

.215 

1.075 

4 

.474 

2.370 

9 

.220 

1.100 

5 

.499 

2.495 

10 

.453 

2.265 

8 

.378 

1.890 

7 

.155 

 

.085 

 

.123 

1.447 

5 

.100 

1.176 

4 

.088 

1.035 

3 

.086 

1.012 

2 

.086 

1.012 

2 

.086 

1.012 

2 

.085 

1.000 

1 

.201 

2.365 

7 

.086 

1.012 

2 

.085 

1.000 

1 

.213 

2.506 

8 

.146 

1.718 

6 

.361 

 

.202 

 

.205 

1.015 

4 

.300 

1.485 

7 

.237 

1.173 

8 

.208 

.990 

1 

.218 

1.079 

5 

.204 

1.010 

2 

.219 

1.084 

3 

.476 

2.356 

11 

.234 

1.158 

6 

.500 

2.475 

12 

.453 

2.243 

10 

.376 

1.861 

9 

.208 

 

.127 

 

.180 

1.417 

4 

.127 

1.000 

1 

.131 

1.031 

3 

.128 

1.008 

2 

.128 

1.008 

2 

.127 

1.000 

1 

.127 

1.000 

1 

.257 

2.024 

6 

.128 

1.008 

2 

.127 

1.000 

1 

.274 

2.157 

7 

.207 

1.630 

5 

 

 

Table A.24:  Average KFDA test errors for the LS case and wide samples 

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.449 

 

.120 

 

.371 

1.015 

2 

.304 

1.505 

6 

.358 

1.110 

5 

.328 

1.015 

2 

.334 

1.065 

3 

.291 

1.010 

1 

.354 

1.075 

 

.421 

2.370 

9 

.356 

1.100 

5 

.471 

2.495 

10 

.382 

2.265 

8 

.384 

1.890 

7 

.282 

 

.054 

 

.194 

3.593 

8 

.146 

2.704 

6 

.135 

2.500 

4 

.130 

2.407 

3 

.141 

2.611 

5 

.146 

2.704 

6 

.126 

2.333 

1 

.164 

3.037 

7 

.129 

2.389 

2 

.402 

7.444 

11 

.248 

4.593 

10 

.224 

4.148 

9 

.455 

 

.143 

 

.419 

2.930 

8 

.324 

2.266 

1 

.398 

2.783 

6 

.370 

2.578 

3 

.385 

2.692 

7 

.347 

2.427 

2 

.371 

2.594 

4 

.456 

3.189 

11 

.395 

2.762 

5 

.475 

3.322 

12 

.436 

3.049 

10 

.423 

2.958 

9 

.342 

 

.079 

 

.298 

3.772 

7 

.148 

1.873 

1 

.268 

3.392 

5 

.262 

3.316 

4 

.283 

10.51 

12 

.279 

3.532 

6 

.175 

2.215 

2 

.370 

4.684 

9 

.231 

2.924 

3 

.432 

5.468 

11 

.413 

5.228 

10 

.334 

4.228 

8 
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Table A.25:  Average SVM test errors for the LS case and small samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.438 

 

.212 

 

.277 

1.307 

2 

.266 

1.255 

1 

.377 

1.778 

8 

.317 

1.495 

4 

.337 

1.590 

5 

.288 

1.358 

3 

.371 

1.750 

6 

.446 

2.104 

11 

.375 

1.769 

7 

.478 

2.255 

12 

.412 

1.943 

10 

.408 

1.925 

9 

.277 

 

.129 

 

.173 

1.341 

2 

.175 

1.357 

3 

.187 

1.450 

7 

.177 

1.372 

4 

.184 

1.426 

6 

.170 

1.318 

1 

.184 

1.426 

6 

.241 

1.868 

9 

.183 

1.419 

5 

.346 

2.682 

11 

.254 

1.969 

10 

.233 

1.806 

8 

.438 

 

.212 

 

.287 

1.354 

2 

.271 

1.278 

1 

.375 

1.769 

8 

.313 

1.476 

4 

.340 

1.604 

5 

.290 

1.368 

3 

.372 

1.755 

6 

.435 

2.052 

11 

.373 

1.759 

7 

.480 

2.264 

12 

.408 

1.925 

10 

.399 

1.882 

9 

.315 

 

.164 

 

.230 

1.402 

5 

.239 

1.457 

7 

.245 

1.494 

8 

.223 

1.360 

3 

.238 

1.451 

6 

.213 

1.299 

2 

.196 

1.195 

1 

.305 

1.860 

10 

.224 

1.366 

4 

.356 

2.171 

12 

.333 

2.030 

11 

.283 

1.726 

9 

 

 

Table A.26:  Average SVM test errors for the LS case and mixed samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.336 

 

.223 

 

.243 

1.090 

4 

.241 

1.081 

3 

.268 

1.202 

10 

.241 

1.081 

2 

.268 

1.202 

10 

.246 

1.103 

1 

.246 

1.103 

1 

.261 

1.170 

7 

.248 

1.112 

5 

.262 

1.175 

8 

.266 

1.193 

9 

.256 

1.148 

6 

.197 

 

.090 

 

.107 

1.189 

3 

.126 

1.400 

4 

.337 

3.744 

10 

.140 

1.556 

5 

.337 

3.744 

10 

.175 

1.944 

6 

.101 

1.122 

1 

.246 

2.733 

8 

.105 

1.167 

2 

.348 

3.867 

11 

.325 

3.611 

9 

.233 

2.589 

7 

.335 

 

.225 

 

.246 

1.093 

2 

.248 

1.102 

4 

.268 

1.191 

10 

.241 

1.071 

1 

.269 

1.196 

11 

.247 

1.098 

3 

.251 

1.116 

5 

.260 

1.156 

7 

.251 

1.116 

5 

.263 

1.169 

8 

.267 

1.187 

9 

.256 

1.138 

6 

.252 

 

.097 

 

.138 

1.423 

3 

.170 

1.753 

4 

.328 

3.381 

10 

.219 

2.258 

5 

.292 

3.010 

9 

.257 

2.649 

6 

.106 

1.093 

1 

.291 

3.000 

8 

.129 

1.330 

2 

.345 

3.557 

12 

.338 

3.485 

11 

.282 

2.907 

7 
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Table A.27:  Average SVM test errors for the LS case and large samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.362 

 

.182 

 

.184 

1.011 

1 

.185 

1.016 

2 

.206 

1.132 

6 

.185 

1.016 

2 

.196 

1.077 

3 

.184 

1.011 

1 

.198 

1.088 

4 

.473 

2.599 

9 

.204 

1.121 

5 

.499 

2.742 

10 

.450 

2.473 

8 

.371 

2.038 

7 

.164 

 

.076 

 

.076 

1.000 

1 

.076 

1.000 

1 

.078 

1.026 

3 

.077 

1.013 

2 

.077 

1.013 

2 

.077 

1.013 

2 

.076 

1.000 

1 

.190 

2.500 

5 

.077 

1.013 

2 

.076 

1.000 

1 

.204 

2.684 

6 

.136 

1.789 

4 

.362 

 

.181 

 

.185 

1.022 

5 

.184 

1.017 

4 

.219 

1.210 

8 

.188 

1.039 

6 

.198 

1.094 

2 

.183 

1.011 

1 

.199 

1.099 

3 

.475 

2.624 

11 

.216 

1.193 

7 

.499 

2.757 

12 

.450 

2.486 

10 

.368 

2.033 

9 

.226 

 

.093 

 

.100 

1.075 

5 

.111 

1.194 

6 

.098 

1.054 

4 

.094 

1.011 

2 

.095 

1.022 

3 

.093 

1.000 

1 

.093 

1.000 

1 

.252 

2.710 

8 

.094 

1.011 

2 

.093 

1.000 

1 

.284 

3.054 

9 

.196 

2.108 

7 

 

 

Table A.28:  Average SVM test errors for the LS case and wide samples 

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1 

.447 

 

.136 

 

.265 

1.949 

2 

.263 

1.934 

1 

.365 

2.684 

8 

.338 

2.485 

4 

.339 

2.493 

5 

.300 

2.206 

3 

.363 

2.669 

9 

.425 

3.125 

11 

.361 

2.654 

6 

.472 

3.471 

12 

.396 

2.912 

10 

.364 

2.676 

7 

.261 

 

.063 

 

.133 

2.111 

1 

.165 

2.619 

8 

.153 

2.429 

5 

.146 

2.317 

2 

.158 

2.508 

7 

.162 

2.571 

6 

.147 

2.333 

3 

.172 

2.730 

9 

.149 

2.365 

4 

.416 

6.603 

11 

.256 

4.063 

10 

.256 

4.063 

10 

.450 

 

.174 

 

.333 

1.914 

2 

.328 

1.885 

1 

.393 

2.259 

8 

.368 

2.115 

5 

.378 

2.172 

6 

.345 

1.983 

3 

.367 

2.109 

4 

.459 

2.638 

11 

.391 

2.247 

7 

.476 

2.736 

12 

.438 

2.517 

10 

.405 

2.328 

9 

.334 

 

.157 

 

.283 

1.803 

5 

.295 

1.879 

8 

.282 

1.796 

4 

.277 

1.764 

3 

.293 

1.866 

7 

.287 

1.828 

6 

.220 

1.401 

1 

.371 

2.363 

10 

.254 

1.618 

2 

.431 

2.745 

12 

.413 

2.631 

11 

.338 

2.153 

9 
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APPENDIX B  

SOME MATHEMATICAL RESULTS  
 

 
 

In this appendix, definitions and results required in the introduction to SVMs in Section 5.2 

are given.  We start with the definition of a hyperplane in pℜ , followed by a brief 

description of the way in which a vector lying in the hyperplane may be obtained.  A result 

for the distance from an arbitrary point to a hyperplane, and thus also for its functional and 

geometric margins, is given.  We then provide the definition of a hyperplane in canonical 

form. 

 

Consider the following definition of a hyperplane in pℜ .   

 

DEFINITION B.1:  A HYPERPLANE IN pℜ  

 

A hyperplane in pℜ  is defined as the affine set ( )bL ,w  of all p-vectors x  satisfying 

 

                                                     ( ) 0, =+= bf xwx , (B.1) 

 

where pℜ∈w  is a given vector and b  is a given scalar.  Hence  

 

                                           ( )bL ,w { }0,: =+ℜ∈= bp xwx . (B.2) 

 

 

 

Note that for the case 0=b  in equations (B.1) and (B.2),  ( )0,wL { }0,: =ℜ∈= xwx p  

consists of all vectors in pℜ  which are orthogonal to w .  This will be a ( )1−p -
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dimensional subspace in pℜ .  Let this subspace be denoted by W .  Starting with w , and 

performing Gram-Schmidt orthogonalisation, an orthogonal basis (say 121 ,,, −puuu K ) can 

be found for W . 

 

Now consider the case where 0≠b .  Let x  be a typical vector in W , i.e. 0, =xw .  Also, 

let bx  be a vector such that bb −=xw, .  Put bxxz += , then 

bb −=+= xwxwzw ,,, , i.e. 0, =+ bzw , and we can conclude that any vector z  of 

the form bxxz += , W∈x , bb −=xw, , will belong to the hyperplane ( )bL ,w .  

Moreover, we can assume without loss of generality that Wb ⊥x , since 

b
W

b
W

bWb PPP xwxxwxw ⊥⊥ =



 += ,,, .   

 

In general therefore consider a vector ( )bL ,wz ∈ , i.e. 0, =+ bzw .  Any such vector can 

be obtained in two steps:  First, find a vector W∈x , where W  is the subspace with 

W⊥w .  Second, find a vector ⊥∈Wbx  such that bb −=xw, .  Now put bxxz += .  

Note that we can put zx WP= . 

 
 

DEFINITION B.2: PROJECTION OF AN ARBITRARY POINT ONTO A 

                                    HYPERPLANE IN pℜ  

 

The projection of an arbitrary point pℜ∈q  onto a hyperplane L  is defined as 

 

                                                        bWL PP xqq += . (B.3) 
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Note that ( )bLPL ,wq ∈ , since bPL −=qw, .  Also, ( ) qqzq
z LL

P−=−
∈

min .  This follows 

since ( ) xxqxxqzq −−=−−=− bb  is a minimum over W∈x  if 

( ) xxqx WbW PP =−= .  The ( )bL ,wz ∈  minimising zq −  is therefore given by 

xxxz LbW PP =+= .  Note therefore that ( ) bWLL
PP xxxxzq

q
−=−=− ⊥∈

min  (since 

⊥∈Wbx ).   

 

We are now in a position to define the distance between an arbitrary vector pℜ∈q  and the 

hyperplane ( )bL ,w  (cf. also Hastie et al., 2001, p. 106). 

 

DEFINITION B.3:  DISTANCE FROM AN ARBITRARY POINT TO A 

                                       HYPERPLANE IN pℜ  

 

The distance between an arbitrary point pℜ∈q  and a hyperplane L  is 

 

                                                 ( ) bWL
P xxzq

q
−=− ⊥

∈
min . (B.4) 

  

 
 
Note that ⊥W  is a one-dimensional space, spanned for example by w .  Hence 

( ) wwwxwx aP
W

==⊥
2, , where of course 2, wxw=a .   

 

We now find that  

                                             
2

bW
P xq −⊥ = bb aa xwxw −− ,  

                                                                   = 222 2 bbaa xxww +′−  
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                                                                   = 2
22

2 ,2,
b

b
x

w

wq

w

wq
++ . (B.5) 

 

Since ⊥∈Wbx , we also have  

 

                                         w
w

w
xx 2

,b
bWb

x
P == ⊥ = w

w 2
b−  (B.6) 

and                                           2

2
2

4

2
2

w
w

w
x bb

b == . (B.7) 

 

Therefore 
2

bW
P xq −⊥ = ( )2

2 ,1 b+wq
w

, and the distance from q  to L  simplifies to  

 

                                           ( )L,qδ = bW
P xq −⊥ = ( )b+wq

w
,1  (B.8) 

 

Note that in the literature ( )ℵLi ,xδ  is frequently referred to as the geometric margin of the 

thi  input pattern with respect to ℵL .  Note also that the minimum value of (B.8) over all 

training patterns ix , ni ,,2,1 K= , is referred to as the geometric margin of the hyperplane.   

 

DEFINITION B.4:  THE GEOMETRIC MARGIN OF A HYPERPLANE IN pℜ  

                                     WITH RESPECT TO AN ARBITRARY POINT 
 
 

The geometric margin of a data case ( )ii y,x  with respect to a hyperplane ( )bL ,wℵ  is 

 

                                                       ( )bii += xw
w

,1δ . (B.9) 
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DEFINITION B.5:  THE GEOMETRIC MARGIN OF A HYPERPLANE IN 

                                   pℜ  WITH RESPECT TO A TRAINING SET 

 

The geometric margin of a hyperplane ( )bL ,wℵ  with respect to a training set is 

 

                                           ( )












=+= nibmin i ,,2,1,,1
Kxw

w
δ . (B.10) 

 

 
 
DEFINITION B.6:  THE FUNCTIONAL MARGIN OF A HYPERPLANE IN 

                                    pℜ  WITH RESPECT TO AN ARBITRARY POINT 
 
 

The (functional) margin of a a hyperplane ( )bL ,wℵ  with respect to a data case ( )ii y,x  is 

defined to be 

 

                                                         ( )by iii += xw,η . (B.11) 

 

 

 

In a two-group classification setup, note that 0>iη  in (B.11) implies correct classification 

of the case ( )ii y,x .  From (B.9), the relation between the (functional) margin of an 

arbitrary data case ( )ii y,x  with respect to ℵL  and the distance from input ix  to ℵL  is 

clear: 

 

                                                       ( ) 







=ℵ

i

i
i y

L
η

δ
w

x 1, . (B.12) 
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Of course in a binary classification setup, assuming correct classification of the case 

( )ii y,x , (B.12) simplifies to  

                                                                ( )
w

x i
i L η

δ =ℵ, . (B.13) 

 

DEFINITION B.7:  THE FUNCTIONAL MARGIN OF A HYPERPLANE IN 

                                    pℜ   

 

The functional margin of a hyperplane ( )bL ,wℵ  is defined as the minimum of its functional 

margin with respect to each point in the training data set, viz. 

 

                                                ( ){ }nibymin ii ,,2,1,, K=+= xwη  (B.14) 

 

 

 

DEFINITION B.8:  A SEPARATING HYPERPLANE IN pℜ  

 

In a two-group classification problem, a separating hyperplane in pℜ  is the hyperplane in 

input space such that all input patterns belonging to group 1 lie on the opposite side of the 

hyperplane to those belonging to group 2.  Therefore, a separating hyperplane in pℜ  is 

such that  

 

                                                           0>iη , ni ,,2,1 K=  (B.15) 

 

 

 

Note that we may additionally require the set of separating hyperplanes in pℜ  to have 

1≥iη , ni ,,2,1 K= , with equality occurring at at least one ix .  The set of hyperplanes 

satisfying this additional criterion is the same as the set of hyperplanes which satisfy 
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(B.15), but the additional requirement normalises the latter set of hyperplanes to each have 

only a single representation.  The single representation induced by the requirement 1≥iη , 

ni ,,2,1 K= , is called the canonical form of a separating hyperplane in pℜ . 

 

DEFINITION B.9:  THE CANONICAL FORM OF A SEPARATING 

                                         HYPERPLANE IN pℜ  

 

The canonical form of a separating hyperplane in pℜ  is defined as the affine set ( )bL ,w  of 

all p-vectors x  safisfying 

 

                                                    ( ) { } 1, ≥+= byyf xwx . (B.16) 
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APPENDIX C  

 EXAMPLES OF SIMULTATION PROGRAMS 
 

 
 
In this appendix, an example of each of the programs used in the Monte Carlo simulation 

studies in Chapters 3 to 6 of the thesis, is given.  All simulation programs were written in 

Fortran.  Sections 1 and 2 contain the code for the simulation program used to generate the 

results reported in Chapter 3.  An example of the programs used in Chapter 4 is given in 

Section 3, and Sections 4 and 5 pertain to the Monte Carlo simulation studies reported in 

Chapters 5 and 6 respectively.  Subroutines and functions required in the main simulation 

programs appear in Section 6, in the order in which they occur in the programs in Sections 

1 to 5, alphabetical per main simulation program.  Note that the required Fortran 

subroutines and functions (in the Fortran IMSL library) are only listed in the programs 

where they are used.  More details regarding these subroutines and functions can be found 

in the IMSL reference. 

 

C.1  NAÏVE SELECTION IN INPUT AND FEATURE SPACE 
 

An example of the Fortran code used to obtain the results in Section 2 of Chapter 3 (in 

Example 3.1) is given below.  Note that Subroutines 1 to 7 will also be used in most of the 

simulation programs to follow. 

 
C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS) 

C PERTAINING TO THE FULL SVM, KFDA, AND LDA MODELS, AND POST-SELECTION 

C AVERAGE TEST ERRORS (AND STANDARD ERRORS) FOR SVM, KFDA, AND LDA MODELS 

  AFTER USING 
C  C.1.1  CORRELATIONS AND 

C  C.1.2  ALIGNMENTS  

C AS SELECTION CRITERIA 

C THE DATA ARE GENERATED FROM A MULTIVARIATE NORMAL DISTRIBUTION AND 

  THE TWO GROUPS DIFFER WITH RESPECT TO LOCATION 
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C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED 

C THE FOLLOWING (OWN) FUNCTION IS REQUIRED: 

C  ALIGNMENT 

 

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED: 
C  1.  BERFOUTKFDA 

C  2.  BERFOUTLDA 

C  3.  BERFOUTSVM 

C  4.  DOENKFDA 

C  5.  DOENSVM 

C  6.  GEMVARV 

C  7.  GRAMMAT 

C  8.  GRAMNUUT 

 

C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED: 

C  1.  DABS 

C  2.  DMACH 

C  3.  DSQRT 

 

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRE : 
C  1.  DCHFAC 

C  2.  DLINDS 

C  3.  DLSASF 

C  4.  DRNMVN 

C  5.  DSVRGP 

C  6.  DQPROG 

 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NMC=1000,CORR=0.0D0,SIGNOISE=20.0D0) 

 PARAMETER (GAMPAR=1.0D0/IP) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 

C POPULATION PARAMETERS 

 DIMENSION AMU1(IP),AMU2(IP) 

 DIMENSION SIGMAM(IP,IP),RSIG(IP,IP) 
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C X MATRICES AND Y VECTORS 

 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM) 

 DIMENSION XT(NMT,IP) 

 DIMENSION GEM(IP),VAR(IP) 

 DIMENSION YV(NNPMM),YVT(NMT) 

 

C KFDA RELATED QUANTITIES 

 DIMENSION EENM(NNPMM),EENP(NNPMM) 

 

C SVM RELATED QUANTITIES 

 DIMENSION GRMATVOL(NNPMM,NNPMM),GRNUUTVOL(NMT,NNPMM) 

 DIMENSION GRMATREG(NNPMM,NNPMM),GRNUUTREG(NMT,NNPMM) 

 DIMENSION GRMATCOR(NNPMM,NNPMM),GRNUUTCOR(NMT,NNPMM) 

 DIMENSION GRMATAL(NNPMM,NNPMM),GRNUUTAL(NMT,NNPMM) 

 DIMENSION ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM) 

 

C VARIOUS OTHER QUANTITIES 

 DIMENSION AKOR(IP),ALIGN(IP) 

 DIMENSION IPERM(IP) 

 DIMENSION INDVEK(IP),INDVEKVOL(IP),JIND(IP) 

 DIMENSION VEKKOR(IP),VEKAL(IP) 

 DIMENSION KIESKOR(IP),KIESAL(IP),KIESREG(IP) 

 DIMENSION FOUTMAT(NMC,4,3),FOUTGEMMAT(4,3),FOUTSTDMAT(4,3) 

 

C OUTPUT FILES 

 CHARACTER*70 FILEOUT1,FILEOUT2 

 FILEOUT1='foutNL9.d' 

 FILEOUT2='kiesNL9.d' 

 

C WRITE FILE HEADERS 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  WRITE(1,*) 'NORMAL DISTRIBUTION GROUP DIFFERENCES IN LOCATION'  

  WRITE(1,*) 'RELEVANT AND IRRELEVANT SUBSETS OF VARIABLES ARE CORRELATED’ 

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'KERNEL HYPERPARAMETER=',GAMPAR 

  WRITE(1,*) 'N1=',NN,'N2=',MM,'NO. OF MONTE CARLO REPETITIONS=',NMC  

  WRITE(1,*) 'NT1=',NT,'NT2=',MT 
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  WRITE(1,*) 'SIGNOISE=',SIGNOISE,'SIG12=0.9' 

  WRITE(1,600) 

 CLOSE(1) 

 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'NORMAL DISTRIBUTION DIFF IN LOCATION' 

  WRITE(1,*) 'CORRELATION BETWEEN REL AND IRREL' 

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'KERNEL HYPERPARAMETER=',GAMPAR 

  WRITE(1,*) 'N1=',NN,'N2=',MM,'NO. OF MONTE CARLO REPETITIONS=',NMC 

  WRITE(1,*) 'NT1=',NT,'NT2=',MT 

  WRITE(1,*) 'SIGNOISE=',SIGNOISE,'SIG12=0.9' 

  WRITE(1,600) 

 CLOSE(1) 

 

C SET UP THE INDICES TO THE SET OF THE SEPARATING INPUT VARIABLES 

 DO J=1,IP 

  KIESREG(J)=J 

 END DO 

 

C ASSIGN VALUES TO THE POPULATION PARAMETERS AND OBTAIN THE COVARIANCE 

C MATRICES REQUIRED TO GENERATE THE TRAINING AND TEST DATA SETS 

 DO 3 I=1,IPTEL 

  AMU1(I)=0.0D0 

  AMU2(I)=1.0D0 

  DO 2 J=1,IPTEL 

   SIGMAM(I,J)=CORR 

2  CONTINUE       

  SIGMAM(I,I)=1.0D0 

  DO J=IPTEL+1,IP 

   SIGMAM(I,J)=0.9D0 

  END DO 

3 CONTINUE 

 DO 5 I=IPTEL+1,IP 

  AMU1(I)=0.0D0 

  AMU2(I)=0.0D0 

  DO J=1,IPTEL 
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   SIGMAM(I,J)=SIGMAM(J,I) 

  END DO 

  DO 4 J=IPTEL+1,IP 

   SIGMAM(I,J)=0.0D0 

4  CONTINUE 

  SIGMAM(I,I)=SIGNOISE 

5 CONTINUE 

 

 TOL=1.0D2*DMACH(4) 

 CALL DCHFAC(IP,SIGMAM,IP,TOL,IRANK,RSIG,IP) 

 

C  INITIALISE VARIOUS QUANTITIES 
 DO 9 I=1,NN 

  YV(I)=-1.0D0 

9 CONTINUE       

 DO 10 I=NN+1,NNPMM 

  YV(I)=1.0D0 

10 CONTINUE       

 SOMY=1.0D0*(MM-NN) 

 SOMY2=NNPMM 

 DO 11 I=1,NT 

  YVT(I)=-1.0D0 

11 CONTINUE       

 DO 12 I=NT+1,NMT 

  YVT(I)=1.0D0 

12 CONTINUE       

 

C SET UP THE KFDA VECTORS 
 DO 13 I=1,NNPMM 

  EENP(I)=0.0D0 

  EENM(I)=0.0D0 

  IF (YV(I).LT.-0.1D0) EENM(I)=1.0D0 

  IF (YV(I).GT.0.1D0) EENP(I)=1.0D0 

13 CONTINUE 
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C THE FOLLOWING STEPS ARE ITERATED OVER FIVE SPECIFICATIONS FOR THE 

C COST PARAMETER 

 DO 1010 ICP=1,5 

  IF (ICP.EQ.1) CPAR=0.1D0 

  IF (ICP.EQ.2) CPAR=1.0D0 

  IF (ICP.EQ.3) CPAR=10.0D0 

  IF (ICP.EQ.4) CPAR=100.0D0 

  IF (ICP.EQ.5) CPAR=1000.0D0 

 

C INITIALISE THE TEST ERROR AND VARIABLE INDEX VECTORS 

  DO 15 I=1,4 

   DO 14 J=1,3 

    FOUTGEMMAT(I,J)=0.0D0 

    FOUTSTDMAT(I,J)=0.0D0 

14   CONTINUE 

15  CONTINUE 

  DO 16 J=1,IP 

   INDVEKVOL(J)=J 

   VEKKOR(J)=0.0D0 

   VEKAL(J)=0.0D0 

16  CONTINUE 

 

C THE START OF THE MONTE CARLO SIMULATION LOOP 

  DO 1004 MC=1,NMC 

 

C GENERATE THE TRAINING DATA 

   CALL DRNMVN(NNPMM,IP,RSIG,IP,XM,NNPMM) 

   DO 18 I=1,NN 

    DO 17 J=1,IPTEL 

     XM(I,J)=XM(I,J)+AMU1(J) 

17    CONTINUE  

18   CONTINUE 

   DO 20 I=1,NN 

    DO 19 J=1,NNOISE 

     XM(I,J+IPTEL)=XM(I,J+IPTEL)+AMU1(J+IPTEL) 

19    CONTINUE  

20   CONTINUE 
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   DO 22 I=1,MM 

    DO 21 J=1,IPTEL 

     XM(NN+I,J)=XM(NN+I,J)+AMU2(J) 

21    CONTINUE  

22   CONTINUE 

   DO 24 I=1,MM 

    DO 23 J=1,NNOISE 

     XM(NN+I,J+IPTEL)=XM(NN+I,J+IPTEL)+AMU2(J+IPTEL) 

23    CONTINUE  

24   CONTINUE 

 

C STANDARDISE THE TRAINING DATA 
   DO 28 J=1,IP 

    S=0.0D0 

    S2=0.0D0 

    DO 26 I=1,NNPMM 

     S=S+XM(I,J) 

     S2=S2+XM(I,J)**2.0D0 

26    CONTINUE 

    GEM(J)=S/NNPMM 

    VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM 

    DO 27 I=1,NNPMM 

     XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J)) 

27    CONTINUE 

28   CONTINUE 

 

C GENERATE THE TEST DATA 

   CALL DRNMVN(NMT,IP,RSIG,IP,XT,NMT) 

   DO 36 I=1,NT 

    DO 35 J=1,IPTEL 

     XT(I,J)=XT(I,J)+AMU1(J) 

35    CONTINUE  

36   CONTINUE 

   DO 38 I=1,NT 

    DO 37 J=1,NNOISE 

     XT(I,J+IPTEL)=XT(I,J+IPTEL)+AMU1(J+IPTEL) 

37    CONTINUE  
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38   CONTINUE 

   DO 40 I=1,MT 

    DO 39 J=1,IPTEL 

     XT(NT+I,J)=XT(NT+I,J)+AMU2(J) 

39    CONTINUE  

40   CONTINUE 

   DO 42 I=1,MT 

    DO 41 J=1,NNOISE 

     XT(NT+I,J+IPTEL)=XT(NT+I,J+IPTEL)+AMU2(J+IPTEL) 

41    CONTINUE  

42   CONTINUE 

 

C STANDARDISE THE TEST DATA 

   DO 45 J=1,IP 

    DO 44 I=1,NMT 

     XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J))) 

44    CONTINUE 

45   CONTINUE 

 

C CALCULATE (AND SORT) ONE VARIABLE AT-A-TIME CORRELATIONS 
   NVER=IPTEL 

   DO 240 J=1,IP 

    S=0.0D0       

    DO 239 I=1,NNPMM 

     S=S+XM(I,J)*YV(I) 

239    CONTINUE 

    AKOR(J)=S/(DSQRT(1.0D0*NNPMM*(SOMY2-SOMY*SOMY/NNPMM))) 

    AKOR(J)=DABS(AKOR(J)) 

240    CONTINUE 

   DO 241 J=1,IP 

    IPERM(J)=J 

241   CONTINUE 

   CALL DSVRGP(IP,AKOR,AKOR,IPERM) 

   DO 242 J=1,NVER 

    KIESKOR(J)=IPERM(IP-NVER+J) 

242   CONTINUE 
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C CALCULATE (AND SORT) ONE VARIABLE AT-A-TIME ALIGNMENTS 

   DO 243 J=1,IP 

    ALIGN(J)=ALIGNMENT(J,XM) 

243   CONTINUE       

   DO 244 J=1,IP 

    IPERM(J)=J 

244   CONTINUE 

   CALL DSVRGP(IP,ALIGN,ALIGN,IPERM) 

   DO 245 J=1,NVER 

    KIESAL(J)=IPERM(IP-NVER+J) 

245   CONTINUE 

 

C UPDATE SELECTION PROPORTIONS 

   DO 206 J=1,IPTEL 

    VEKKOR(KIESKOR(J))=VEKKOR(KIESKOR(J))+1.0D0 

    VEKAL(KIESAL(J))=VEKAL(KIESAL(J))+1.0D0 

206    CONTINUE 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE SVM BASED ON ALL AVAILABLE 

C INPUT VARIABLES 
   NVER=IP 

   CALL GRAMMAT(GAMPAR,XM,NVER,INDVEKVOL,GRMATVOL) 

   CALL DOENSVM(YV,XM,GRMATVOL,CPAR,GAMPAR,NVER,INDVEKVOL,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,INDVEKVOL,GRNUUTVOL) 

   CALL BERFOUTSVM(YV,GRNUUTVOL,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,1,1)=FOUT 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE SVM BASED ONLY ON THE  

C SEPARATING INPUT VARIABLES 

   NVER=IPTEL 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESREG,GRMATREG) 

   CALL DOENSVM(YV,XM,GRMATREG,CPAR,GAMPAR,NVER,KIESREG,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESREG,GRNUUTREG) 

   CALL BERFOUTSVM(YV,GRNUUTREG,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,2,1)=FOUT 
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C CALCULATE THE POST-SELECTION SVM TEST ERROR WHEN THE SELECTION CRITE- 

C RION IS PEARSON’S CORRELATION COEFFICIENT IN INPUT SPACE 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESKOR,GRMATCOR) 

   CALL DOENSVM(YV,XM,GRMATCOR,CPAR,GAMPAR,NVER,KIESKOR,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESKOR,GRNUUTCOR) 

   CALL BERFOUTSVM(YV,GRNUUTCOR,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,3,1)=FOUT 

 

C CALCULATE THE POST-SELECTION SVM TEST ERROR WHEN THE SELECTION CRITE- 

C RION IS THE ALIGNMENT IN FEATURE SPACE 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESAL,GRMATAL) 

   CALL DOENSVM(YV,XM,GRMATAL,CPAR,GAMPAR,NVER,KIESAL,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESAL,GRNUUTAL) 

   CALL BERFOUTSVM(YV,GRNUUTAL,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,4,1)=FOUT 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE KFD BASED ON ALL AVAILABLE 

C INPUT VARIABLES 

   CALL DOENKFDA(EENM,EENP,GRMATVOL,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUTVOL,YVT,ALPHA,BOPT,FOUT) 

   FOUTMAT(MC,1,2)=FOUT 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE KFD BASED ONLY ON THE  

C SEPARATING INPUT VARIABLES 

   CALL DOENKFDA(EENM,EENP,GRMATREG,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUTREG,YVT,ALPHA,BOPT,FOUT) 

   FOUTMAT(MC,2,2)=FOUT 

C CALCULATE THE POST-SELECTION KFD TEST ERROR WHEN THE SELECTION CRITE- 

C RION IS PEARSON’S CORRELATION COEFFICIENT IN INPUT SPACE 

   CALL DOENKFDA(EENM,EENP,GRMATCOR,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUTCOR,YVT,ALPHA,BOPT,FOUT)       

   FOUTMAT(MC,3,2)=FOUT 

 

C CALCULATE THE POST-SELECTION SVM TEST ERROR WHEN THE SELECTION CRITE- 

C RION IS THE ALIGNMENT IN FEATURE SPACE 
   CALL DOENKFDA(EENM,EENP,GRMATAL,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUTAL,YVT,ALPHA,BOPT,FOUT) 
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   FOUTMAT(MC,4,2)=FOUT 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE LD BASED ON ALL AVAILABLE 

C INPUT VARIABLES 

   NVER=IP 

   CALL BERFOUTLDA(XM,XT,YVT,NVER,INDVEKVOL,FOUT) 

   FOUTMAT(MC,1,3)=FOUT 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE LD BASED ONLY ON THE  

C SEPARATING INPUT VARIABLES 

   NVER=IPTEL 

   CALL BERFOUTLDA(XM,XT,YVT,NVER,KIESREG,FOUT) 

   FOUTMAT(MC,2,3)=FOUT 

 

C CALCULATE THE POST-SELECTION LD TEST ERROR WHEN THE SELECTION CRITE- 

C RION IS PEARSON’S CORRELATION COEFFICIENT IN INPUT SPACE 

   CALL BERFOUTLDA(XM,XT,YVT,NVER,KIESKOR,FOUT) 

   FOUTMAT(MC,3,3)=FOUT 

 

C CALCULATE THE POST-SELECTION LD TEST ERROR WHEN THE SELECTION CRITE- 

C RION IS THE ALIGNMENT IN FEATURE SPACE 

   CALL BERFOUTLDA(XM,XT,YVT,NVER,KIESAL,FOUT) 

   FOUTMAT(MC,4,3)=FOUT 

 

  1004 CONTINUE 

C THE END OF THE MONTE CARLO SIMULATION LOOP 

 

C AVERAGE THE OBTAINED TEST ERRORS AND SELECTION FREQUENCIES AND 

C CALCULATE STANDARD ERRORS 

  DO 346 K=1,3 

   DO 345 J=1,4 

    S1=0.0D0 

    S2=0.0D0 

    DO 344 I=1,NMC 

     S1=S1+FOUTMAT(I,J,K) 

     S2=S2+FOUTMAT(I,J,K)**2.0D0 

344    CONTINUE 
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    FOUTGEMMAT(J,K)=S1/NMC 

    FOUTSTDMAT(J,K)=DSQRT((S2-(S1*S1)/NMC)/(NMC*(NMC-1.0D0))) 

345   CONTINUE 

346  CONTINUE 

  DO 349 J=1,IP 

   VEKKOR(J)=VEKKOR(J)/NMC 

   VEKAL(J)=VEKAL(J)/NMC 

349  CONTINUE 

 

C WRITE THE AVERAGE TEST ERRORS AND STANDARD ERRORS TO A FILE 

  OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')  

   WRITE(1,*) 'SVM C: ',CPAR,'G: ',GAMPAR 

   WRITE(1,599) 'FUL','ORA','KOR','AL' 

   WRITE(1,600) (FOUTGEMMAT(J,1),J=1,4) 

   WRITE(1,600) (FOUTSTDMAT(J,1),J=1,4) 

   WRITE(1,*) 'KFDA ' 

   WRITE(1,600) (FOUTGEMMAT(J,2),J=1,4) 

   WRITE(1,600) (FOUTSTDMAT(J,2),J=1,4) 

   WRITE(1,*) 'LDA ' 

   WRITE(1,600) (FOUTGEMMAT(J,3),J=1,4) 

   WRITE(1,600) (FOUTSTDMAT(J,3),J=1,4) 

   WRITE(1,600) 

  CLOSE(1) 

 

C WRITE THE SELECTION PERCENTAGES TO A FILE 

  OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

   WRITE(1,*) 'C: ',CPAR,'G: ',GAMPAR 

   WRITE(1,*) 'CORRELATIONS' 

   WRITE(1,602) (VEKKOR(J),J=1,IP) 

   WRITE(1,*) 'ALIGNMENTS' 

   WRITE(1,602) (VEKAL(J),J=1,IP) 

  CLOSE(1) 

 1010 CONTINUE 

C THE COST PARAMETER LOOP ENDS HERE 

 

C FILE FORMATS 

599 FORMAT(1X,A3,2(4X,A3),5X,A2,3(4X,A3),4X,A4,3(4X,A3)) 
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600 FORMAT(12(F5.3,2X)) 

601 FORMAT(20I3) 

602 FORMAT(12(F5.2,1X)) 

605 FORMAT(14X,9(F5.1,2X)) 

 

7000 STOP 

END 

C THE SIMULATION PROGRAM ENDS HERE 

 

C.2  FEATURE-TO-INPUT SPACE SELECTION 
 
The following simulation program is an example of the Fortran code used to obtain the 

results in Section 4.6 of Chapter 3. 

 
C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS) 

C PERTAINING TO THE FULL SVM AND KFD MODELS, AND POST-SELECTION AVERAGE 

C TEST ERRORS (AND STANDARD ERRORS) FOR SVM AND KFD MODELS AFTER USING 

C  C.2.1  ALIGNMENTS IN FEATURE SPACE 

C  C.2.2  CORRELATIONS IN INPUT SPACE 

C  C.2.3  LEAST SQUARES APPROXIMATION OF DISCRIMINANT FUNCTION VALUES 

C  C.2.4 REGRESSION RANDOM FOREST APPROXIMATION OF DISCRIMINANT 

              FUNCTION  VALUES 

C  C.2.5  THE FOLLOWING PRE-IMAGE APPROXIMATIONS: 

              MEANS IN FEATURE SPACE 

   VARIATION RATIOS 

 

C NOTE THAT THE DISCRIMINANT FUNCTION VALUES  ARE OBTAINED AFTER 

C APPLICATION OF AN SVM ON THE FULL SET OF AVAILABLE INPUT VARIABLES 

C THE DATA ARE GENERATED FROM A MULTIVARIATE NORMAL DISTRIBUTION AND 

C THE TWO GROUPS DIFFER WITH RESPECT TO THEIR VARIANCE-COVARIANCE 

C  STRUCTURE 

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE CORRELATED 

 

C THE FOLLOWING (OWN) FUNCTION IS REQUIRED: 

C  ALIGNMENT 
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C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED: 

C  1.  BERFOUTSVM 

C  2.  DOENSVM 

C  3.  FCN 

C  4.  GRAMMAT 

C  5.  GRAMNUUT 

C  6.  PREIMAGE 

C  7.  RANFOR 

C  8.  BUILDTREE 

C  9.  FINDBESTSPLIT 

C  10.  QUICKSORT 

 

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED: 

C  1.  DABS 

C  2.  DMACH 

C  3.  DSQRT 

C  4.  CPSEC 

 

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED: 

C  1.  DCHFAC 

C  2.  DRNMVN 

C  3.  DSVRGP 

C  4.  DRLSE 

 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=4,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NMC=1000,CORR=0.7D0,SIGFAKTOR=10.0D0,SIGNOISE=20.0D0) 

 PARAMETER (GAMPAR=1.0D0/IP) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 

C POPULATION PARAMETERS 

 DIMENSION SIGMAM1(IP,IP),RSIG1(IP,IP) 

 DIMENSION SIGMAM2(IP,IP),RSIG2(IP,IP) 

 

C X MATRICES AND Y VECTORS 
 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM) 

 DIMENSION XM1(NN,IP),XM2(MM,IP) 
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 DIMENSION XGEM1(IP),XGEM2(IP),GEM(IP),VAR(IP) 

 DIMENSION XT(NMT,IP),XT1(NT,IP),XT2(MT,IP) 

 DIMENSION YV(NNPMM),YVT(NMT),IYV(NNPMM) 

 

C SVM RELATED QUANTITIES 
 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM) 

 DIMENSION ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM) 

 

C VARIOUS QUANTITIES 

 DIMENSION AKOR(IP),ALIGN(IP) 

 DIMENSION XVERSKIL(IP),KIESX(IP) 

 DIMENSION XPRE1(IP),XPRE2(IP),XPREVERSKIL(IP),KIESF(IP) 

 DIMENSION WPRE1(IP),WPRE2(IP),WPREVERSKIL(IP),KIESWD(IP) 

 DIMENSION WPRE(IP),KIESW(IP) 

 DIMENSION FW(NNPMM),BV(IP),INDVEK(IP) 

 DIMENSION Z(IP) 

 DIMENSION KIESL(IP),KIESRF(IP),KIESKOR(IP),KIESAL(IP) 

 DIMENSION IPERM(IP),INDVEKVOL(IP),JIND(IP),KIESREG(IPTEL) 

 DIMENSION FOUTMAT(NMC,11),FOUTGEM(11),FOUTSTD(11) 

 DIMENSION VEKX(IP),VEKF(IP),VEKWD(IP),VEKW(IP),VEKL(IP),VEKRF(IP) 

 DIMENSION VEKKOR(IP),VEKAL(IP) 

 DIMENSION TYD(11) 

 

C OUTPUT FILES 

 CHARACTER*70 FILEOUT1,FILEOUT2 

 FILEOUT1='foutNS.d' 

 FILEOUT2='kiesNS.d' 

 

C WRITE FILE HEADERS 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  WRITE(1,*) 'NORMAL DISTRIBUTION DIFFERENCES IN SPREAD'  

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'GAMPAR=',GAMPAR,'CPARS=',CPARS 

  WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC  

  WRITE(1,*) 'NT=',NT,'MT=',MT 

  WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE 

  WRITE(1,*) 'SIG12=0.9' 
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  WRITE(1,600)         

 CLOSE(1) 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'NORMAL DISTRIBUTION DIFFERENCES IN SPREAD' 

  WRITE(1,*) 'REGRESSION RF AND TREE: USING F-VALUES' 

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'GAMPAR=',GAMPAR,'CPARS=',CPARS 

  WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC 

  WRITE(1,*) 'NT=',NT,'MT=',MT 

  WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE 

  WRITE(1,*) 'SIG12=0.9' 

  WRITE(1,600) 

 CLOSE(1) 

 

C ASSIGN VALUES TO THE POPULATION PARAMETERS AND OBTAIN THE COVARIANCE 

C MATRICES REQUIRED TO GENERATE TRAINING AND TEST DATA SETS 

 DO 3 I=1,IPTEL 

  KIESREG(I)=I 

  DO 2 J=1,IPTEL 

   SIGMAM1(I,J)=CORR 

   SIGMAM2(I,J)=SIGFAKTOR*CORR 

2  CONTINUE 

  SIGMAM1(I,I)=1.0D0 

  SIGMAM2(I,I)=SIGFAKTOR*1.0D0 

3 CONTINUE 

 DO 5 I=1,IPTEL 

  DO 4 J=IPTEL+1,IP 

   SIGMAM1(I,J)=0.9D0 

   SIGMAM2(I,J)=0.9D0 

   SIGMAM1(J,I)=SIGMAM1(I,J) 

   SIGMAM2(J,I)=SIGMAM2(I,J) 

4  CONTINUE 

5 CONTINUE 

 DO 7 I=IPTEL+1,IP 

  DO 6 J=IPTEL+1,IP 

   SIGMAM1(I,J)=0.0D0 

   SIGMAM2(I,J)=0.0D0 
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6  CONTINUE 

  SIGMAM1(I,I)=SIGNOISE*1.0D0 

  SIGMAM2(I,I)=SIGNOISE*1.0D0 

7 CONTINUE 

 

 TOL=1.0D2*DMACH(4) 

 CALL DCHFAC(IP,SIGMAM1,IP,TOL,IRANK,RSIG1,IP) 

 CALL DCHFAC(IP,SIGMAM2,IP,TOL,IRANK,RSIG2,IP) 

 

C INITIALISE VARIOUS QUANTITIES 

 DO 9 I=1,NN 

  YV(I)=-1.0D0 

9 CONTINUE       

 DO 10 I=NN+1,NNPMM 

  YV(I)=1.0D0 

10 CONTINUE       

 SOMY=1.0D0*(MM-NN) 

 SOMY2=NNPMM 

 DO 11 I=1,NT 

  YVT(I)=-1.0D0 

11 CONTINUE       

 DO 12 I=NT+1,NMT 

  YVT(I)=1.0D0 

12 CONTINUE 

 

C THE FOLLOWING STEPS ARE ITERATED OVER FIVE SPECIFICATIONS FOR THE COST 

PARAMETER 

 DO 1010 ICP=1,5 

  IF (ICP.EQ.1) CPARS=0.1D0 

  IF (ICP.EQ.2) CPARS=1.0D0 

  IF (ICP.EQ.3) CPARS=10.0D0 

  IF (ICP.EQ.4) CPARS=100.0D0 

  IF (ICP.EQ.5) CPARS=1000.0D0 

 

C INITIALISE THE TEST ERROR AND VARIABLE INDEX VECTORS 
  DO 15 J=1,11 

   FOUTGEM(J)=0.0D0 
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   FOUTSTD(J)=0.0D0 

   TYD(J)=0.0D0 

15  CONTINUE       

  DO 16 J=1,IP 

   INDVEKVOL(J)=J 

   VEKKOR(J)=0.0D0 

   VEKAL(J)=0.0D0 

   VEKX(J)=0.0D0 

   VEKF(J)=0.0D0 

   VEKWD(J)=0.0D0 

   VEKW(J)=0.0D0 

   VEKL(J)=0.0D0 

   VEKRF(J)=0.0D0 

16  CONTINUE 

 

C THE  START OF THE MONTE CARLO SIMULATION LOOP 

  DO 1004 MC=1,NMC 

C   WRITE(6,*) MC 

 

C GENERATE THE TRAINING DATA SETS 
   CALL DRNMVN(NN,IP,RSIG1,IP,XM1,NN) 

   DO 18 I=1,NN 

    DO 17 J=1,IP 

     XM(I,J)=XM1(I,J) 

17    CONTINUE  

18   CONTINUE 

   CALL DRNMVN(MM,IP,RSIG2,IP,XM2,MM) 

   DO 22 I=1,MM 

    DO 21 J=1,IP 

     XM(NN+I,J)=XM2(I,J) 

21    CONTINUE  

22   CONTINUE 

 

C STANDARDISE THE TRAINING DATA 

   DO 28 J=1,IP 

    S=0.0D0 

    S2=0.0D0 
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    DO 26 I=1,NNPMM 

     S=S+XM(I,J) 

     S2=S2+XM(I,J)**2.0D0 

26    CONTINUE 

    GEM(J)=S/NNPMM 

    VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM 

    DO 27 I=1,NNPMM 

     XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J)) 

27    CONTINUE 

28   CONTINUE 

 

C GENERATE TEST DATA SETS 
   CALL DRNMVN(NT,IP,RSIG1,IP,XT1,NT) 

   CALL DRNMVN(MT,IP,RSIG2,IP,XT2,MT) 

   DO 36 I=1,NT 

    DO 35 J=1,IP 

     XT(I,J)=XT1(I,J) 

35    CONTINUE  

36   CONTINUE 

   DO 40 I=1,MT 

    DO 39 J=1,IP 

     XT(NT+I,J)=XT2(I,J) 

39    CONTINUE  

40   CONTINUE 

 

C STANDARDISE THE TEST DATA 

   DO 45 J=1,IP 

    DO 44 I=1,NMT 

     XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J))) 

44    CONTINUE 

45   CONTINUE 

 

C CALCULATE (AND SORT) ONE-VARIABLE-AT-A-TIME CORRELATIONS 

   TYD1=CPSEC() 

   NVER=IPTEL 

   DO 240 J=1,IP 

    S=0.0D0       
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    DO 239 I=1,NNPMM 

     S=S+XM(I,J)*YV(I) 

239    CONTINUE 

   AKOR(J)=S/(DSQRT(1.0D0*NNPMM*(SOMY2-SOMY*SOMY/NNPMM))) 

   AKOR(J)=DABS(AKOR(J)) 

240   CONTINUE 

   DO 241 J=1,IP 

    IPERM(J)=J 

241   CONTINUE 

   CALL DSVRGP(IP,AKOR,AKOR,IPERM) 

   DO 242 J=1,NVER 

    KIESKOR(J)=IPERM(IP-NVER+J) 

242   CONTINUE 

   TYD2=CPSEC() 

   TYD(1)=TYD(1)+TYD2-TYD1 

 

C CALCULATE (AND SORT) ONE-VARIABLE-AT-A-TIME ALIGNMENTS 

   DO 243 J=1,IP 

    ALIGN(J)=ALIGNMENT(J,XM) 

243   CONTINUE       

   DO 244 J=1,IP 

    IPERM(J)=J 

244   CONTINUE 

   CALL DSVRGP(IP,ALIGN,ALIGN,IPERM) 

   DO 245 J=1,NVER 

    KIESAL(J)=IPERM(IP-NVER+J) 

245   CONTINUE 

   TYD3=CPSEC() 

   TYD(2)=TYD(2)+TYD3-TYD2 

 

C DETERMINE THE VARIABLES PROVIDING BEST POSSIBLE SEPARATION BETWEEN 

C MEAN  VECTORS IN INPUT SPACE 

   DO 64 J=1,IP 

    S=0.0D0 

    DO 62 I=1,NN 

     S=S+XM(I,J) 

62    CONTINUE 
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    XGEM1(J)=S/NN 

    S=0.0D0 

    DO 63 I=NN+1,NNPMM 

     S=S+XM(I,J) 

63    CONTINUE 

    XGEM2(J)=S/MM 

    XVERSKIL(J)=DABS(XGEM1(J)-XGEM2(J)) 

64   CONTINUE 

   DO 65 J=1,IP 

    IPERM(J)=J 

65   CONTINUE 

   CALL DSVRGP(IP,XVERSKIL,XVERSKIL,IPERM) 

   DO 68 J=1,IP 

    KIESX(J)=IPERM(IP-J+1) 

68   CONTINUE 

   TYD4=CPSEC() 

   TYD(3)=TYD(3)+TYD4-TYD3 

 

C OBTAIN PRE-IMAGES OF TWO MEAN VECTORS IN FEATURE SPACE 

   DO 50 I=1,NN 

    ALPHA(I)=1.0D0/NN 

50   CONTINUE 

   DO 51 I=NN+1,NNPMM 

    ALPHA(I)=0.0D0/NN 

51   CONTINUE 

   CALL PREIMAGE(XM,ALPHA,XPRE1) 

   DO 52 I=1,NN 

   ALPHA(I)=0.0D0 

52    CONTINUE 

   DO 53 I=NN+1,NNPMM 

    ALPHA(I)=1.0D0/MM 

53   CONTINUE 

   CALL PREIMAGE(XM,ALPHA,XPRE2) 
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C DETERMINE VARIABLES PROVIDING BEST POSSIBLE SEPARATION BETWEEN MEAN 

C VECTORS IN FEATURE SPACE 

   DO 55 J=1,IP 

    IPERM(J)=J 

    XPREVERSKIL(J)=DABS(XPRE1(J)-XPRE2(J)) 

55   CONTINUE 

   CALL DSVRGP(IP,XPREVERSKIL,XPREVERSKIL,IPERM) 

   DO 58 J=1,IP 

    KIESF(J)=IPERM(IP-J+1) 

58   CONTINUE       

   TYD5=CPSEC() 

   TYD(4)=TYD(4)+TYD5-TYD4 

 

C APPLY AN SVM USING THE FULL SET OF AVAILABLE INPUT VARIABLES 

   TYDSVM1=CPSEC() 

   CALL GRAMMAT(GAMPAR,XM,IP,INDVEKVOL,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,IP,INDVEKVOL, 

             &ALPHAW,BOPT) 

   TYDSVM2=CPSEC() 

   TYDSVM=TYDSVM2-TYDSVM1 

 

C DETERMINE THE PRE-IMAGE OF THE SVM WEIGHT VECTOR 

   DO 81 I=1,NNPMM 

    ALPHA(I)=ALPHAW(I) 

81   CONTINUE 

   CALL PREIMAGE(XM,ALPHA,WPRE) 

 

C DETERMINE THE INPUT VARIABLES CORRESPONDING TO LARGEST ABSOLUTE SVM 

C WEIGHT COEFFICIENTS 

   DO 85 J=1,IP 

    IPERM(J)=J 

    WPRE(J)=DABS(WPRE(J)) 

85   CONTINUE 

   CALL DSVRGP(IP,WPRE,WPRE,IPERM) 

   DO 88 J=1,IP 

    KIESW(J)=IPERM(IP-J+1) 

88   CONTINUE       
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   TYD6=CPSEC() 

   TYD(5)=TYD(5)+TYD6-TYDSVM2+TYDSVM 

 

C DETERMINE PRE-IMAGES OF TWO LINEAR COMBINATIONS FOR THE TWO GROUPS 

C WHERE COEFFICIENTS IN THE LINEAR COMBINATIONS ARE OBTAINED FROM THE 

C RESPECTIVE SVM WEIGHT VECTORS 

   DO 71 I=1,NN 

    ALPHA(I)=ALPHAW(I) 

71   CONTINUE 

   DO 72 I=NN+1,NNPMM 

    ALPHA(I)=0.0D0 

72   CONTINUE 

   CALL PREIMAGE(XM,ALPHA,WPRE1) 

   DO 73 I=1,NN 

    ALPHA(I)=0.0D0 

73   CONTINUE 

   DO 74 I=NN+1,NNPMM 

    ALPHA(I)=ALPHAW(I) 

74   CONTINUE       

   CALL PREIMAGE(XM,ALPHA,WPRE2) 

 

C DETERMINE THE INPUT VARIABLES MAXIMALLY SEPARATING THE ABOVE TWO PRE- 

C IMAGES 

   DO 75 J=1,IP 

    IPERM(J)=J 

    WPREVERSKIL(J)=DABS(WPRE1(J)-WPRE2(J)) 

75   CONTINUE 

   CALL DSVRGP(IP,WPREVERSKIL,WPREVERSKIL,IPERM) 

   DO 78 J=1,IP 

    KIESWD(J)=IPERM(IP-J+1) 

78   CONTINUE 

   TYD7=CPSEC() 

   TYD(6)=TYD(6)+TYD7-TYD6+TYDSVM 
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C CALCULATE THE SVM DISCRIMINANT FUNCTION VALUE FOR ALL THE TRAINING 

C PATTERNS 

   TYDFW1=CPSEC() 

   DO 98 I=1,NNPMM 

    ALPHAW(I)=ALPHAW(I)*YV(I) 

98   CONTINUE 

   DO 105 J=1,NNPMM 

    S=0.0D0 

    DO 104 I=1,NNPMM 

     S=S+ALPHAW(I)*GRMAT(I,J) 

104    CONTINUE 

    FW(J)=S 

105   CONTINUE 

   TYDFW2=CPSEC() 

   TYDFW=TYDFW2-TYDFW1 

 

C PERFORM LEAST SQUARES REGRESSION TO APPROXIMATE SVM DISCRIMINANT 

C FUNCTION VALUES 

   INTCEP=0 

   CALL DRLSE(NNPMM,FW,IP,XM,NNPMM,INTCEP,BV,SST,SSE) 

   DO 185 J=1,IP 

    IPERM(J)=J 

    BV(J)=DABS(BV(J)) 

185   CONTINUE 

   CALL DSVRGP(IP,BV,BV,IPERM) 

   DO 188 J=1,IP 

    KIESL(J)=IPERM(IP-J+1) 

188   CONTINUE 

   TYD8=CPSEC() 

   TYD(7)=TYD(7)+TYD8-TYDFW2+TYDSVM+TYDFW 

   DO 195 I=1,NNPMM 

    DO 194 J=1,IP 

     XMRF(J,I)=XM(I,J) 

194    CONTINUE 

195   CONTINUE 
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C USE A REGRESSION RANDOM FOREST TO APPROXIMATE SVM DISCRIMINANT 

C FUNCTION VALUES AND RETURN VARIABLE RANKINGS ACCORDING TO THE APPLIED 

C RANDOM FOREST 

   CALL RANFOR(XMRF,FW,Z)       

   DO J=1,IP 

    IPERM(J)=J 

    Z(J)=DABS(Z(J)) 

   END DO 

   CALL DSVRGP(IP,Z,Z,IPERM) 

   DO 198 J=1,IP 

    KIESRF(J)=IPERM(IP-J+1) 

198   CONTINUE 

   TYD9=CPSEC() 

   TYD(8)=TYD(8)+TYD9-TYD8+TYDSVM+TYDFW 

 

C USE A REGRESSION TREE TO APPROXIMATE SVM DISCRIMINANT 

C FUNCTION VALUES AND RETURN VARIABLE RANKINGS ACCORDING TO THE APPLIED 

C REGRESSION TREE 

C   CALL REGTREE(XMRF,FW,KIESTREE)       

C   TYD10=CPSEC() 

C   TYD(9)=TYD(9)+TYD10-TYD9+TYDSVM+TYDFW 

 

C UPDATE SELECTION FREQUENCIES 

   DO 206 J=1,IPTEL 

    VEKKOR(KIESKOR(J))=VEKKOR(KIESKOR(J))+1.0D0 

    VEKAL(KIESAL(J))=VEKAL(KIESAL(J))+1.0D0 

    VEKX(KIESX(J))=VEKX(KIESX(J))+1.0D0 

    VEKF(KIESF(J))=VEKF(KIESF(J))+1.0D0 

    VEKW(KIESW(J))=VEKW(KIESW(J))+1.0D0 

    VEKWD(KIESWD(J))=VEKWD(KIESWD(J))+1.0D0  

    VEKL(KIESL(J))=VEKL(KIESL(J))+1.0D0  

    VEKRF(KIESRF(J))=VEKRF(KIESRF(J))+1.0D0   

206   CONTINUE 
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C CALCULATE THE SVM TEST ERROR BASED ON THE FULL SET OF AVAILABLE INPUT 

C VARIABLES 

   NVER=IP 

   CALL GRAMMAT(GAMPAR,XM,NVER,INDVEKVOL,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,INDVEKVOL,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,INDVEKVOL,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,1)=FOUT 

 

C CALCULATE THE SVM TEST ERROR BASED ONLY ON THE SET OF TRULY SEPARATING 

C INPUT VARIABLES 

   NVER=IPTEL 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESREG,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESREG,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESREG,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,2)=FOUT 

 

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA THE USE OF CORRELATIONS IN INPUT SPACE 
   CALL GRAMMAT(GAMPAR,XM,NVER,KIESKOR,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESKOR,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESKOR,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,3)=FOUT 

 

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA THE USE OF ALIGNMENTS IN FEATURE SPACE 
   CALL GRAMMAT(GAMPAR,XM,NVER,KIESAL,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESAL,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESAL,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,4)=FOUT 

 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

331 

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA DIFFERENCES IN GROUP MEANS IN INPUT SPACE 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESX,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESX,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESX,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,5)=FOUT 

 

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA DIFFERENCES IN PRE-IMAGES BASED ON  MEANS IN INPUT SPACE 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESF,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESF,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESF,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,6)=FOUT 

 

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA DIFFERENCES IN PRE-IMAGES BASED LINEAR COMBINATIONS USING 

C THE SVM WEIGHT VECTOR 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESW,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESW,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESW,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,7)=FOUT 

 

C CALCULATE THE TEST ERROR USING DIFFERENCES IN PRE-IMAGES (OF THE WEIGHT 

C VECTOR IN FEATURE SPACE) 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESWD,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESWD,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESWD,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,8)=FOUT 
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C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA LEAST SQUARES APPROXIMATION OF THE SVM DISCRIMINANT 

C FUNCTION VALUES 

   CALL GRAMMAT(GAMPAR,XM,NVER,KIESL,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESL,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESL,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,9)=FOUT 

 

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES 

C SELECTED VIA RANDOM FOREST APPROXIMATION OF THE SVM DISCRIMINANT 

C FUNCTION VALUES 
   CALL GRAMMAT(GAMPAR,XM,NVER,KIESRF,GRMAT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESRF,AL,BOPT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESRF,GRNUUT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMAT(MC,10)=FOUT 

 

1004 CONTINUE 

C THE MONTE CARLO SIMULATION LOOP ENDS HERE 

 

C AVERAGE THE OBTAINED TEST ERRORS AND SELECTION FREQUENCIES AND 

C CALCULATE STANDARD ERRORS 

  DO 345 J=1,11 

   S1=0.0D0 

   S2=0.0D0 

   DO 344 I=1,NMC 

    S1=S1+FOUTMAT(I,J) 

    S2=S2+FOUTMAT(I,J)**2.0D0 

344   CONTINUE 

   FOUTGEM(J)=S1/NMC 

   FOUTSTD(J)=DSQRT((S2-(S1*S1)/NMC)/(NMC*(NMC-1.0D0))) 

345  CONTINUE       
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C CALCULATE THE AVERAGE TIME TO COMPLETE EACH SELECTION PROCEDURE 

  DO 348 J=1,9 

   TYD(J)=1.0D3*TYD(J)/NMC 

348  CONTINUE       

 

C CALCULATE SELECTION PROPORTIONS 

  DO 349 J=1,IP 

   VEKKOR(J)=VEKKOR(J)/NMC 

   VEKAL(J)=VEKAL(J)/NMC 

   VEKX(J)=VEKX(J)/NMC 

   VEKF(J)=VEKF(J)/NMC 

   VEKW(J)=VEKW(J)/NMC 

   VEKWD(J)=VEKWD(J)/NMC 

   VEKL(J)=VEKL(J)/NMC 

   VEKRF(J)=VEKRF(J)/NMC 

349  CONTINUE 

 

C WRITE AVERAGE TEST ERRORS, STANDARD ERRORS, AND AVERAGE TIMES TO 

C COMPLETE EACH SELECTION PROCEDURE TO A FILE 

  OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')  

   WRITE(1,*) 'C: ',CPARS,'G: ',GAMPAR 

   WRITE(1,599) 'FUL','ORA','KOR','AL','XME','FME','WGH','WGHD', 

   & 'LS','RFR','RTRE' 

   WRITE(1,600) (FOUTGEM(J),J=1,11) 

   WRITE(1,600)   

   WRITE(1,600) (FOUTSTD(J),J=1,11) 

   WRITE(1,600) 

   WRITE(1,605) (TYD(J),J=1,9) 

   WRITE(1,600) 

   CLOSE(1) 

 

C WRITE SELECTION PROPORTIONS TO A FILE 

  OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

   WRITE(1,*) 'C: ',CPARS,'G: ',GAMPAR 

   WRITE(1,*) 'CORRELATIONS' 

   WRITE(1,602) (VEKKOR(J),J=1,IP) 

   WRITE(1,*) 'ALIGNMENTS' 
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   WRITE(1,602) (VEKAL(J),J=1,IP) 

   WRITE(1,*) 'DIF IN MEANS: INPUT SPACE' 

   WRITE(1,602) (VEKX(J),J=1,IP) 

   WRITE(1,*) 'DIF IN MEANS: FEATURE SPACE' 

   WRITE(1,602) (VEKF(J),J=1,IP) 

   WRITE(1,*) 'WEIGHT VECTOR' 

   WRITE(1,602) (VEKW(J),J=1,IP) 

   WRITE(1,*) 'WEIGHT VECTOR DIFFERENCES' 

   WRITE(1,602) (VEKWD(J),J=1,IP) 

   WRITE(1,*) 'LEAST SQUARES' 

   WRITE(1,602) (VEKL(J),J=1,IP) 

   WRITE(1,*) 'REGRESSION RANDOM FOREST' 

   WRITE(1,602) (VEKRF(J),J=1,IP) 

   WRITE(1,*) 'REGRESSION TREE' 

   WRITE(1,602) (VEKTREE(J),J=1,IP) 

  CLOSE(1) 

1010CONTINUE 

C END OF THE COST PARAMETER LOOP 

 

C FILE FORMATS 
599 FORMAT(1X,A3,2(4X,A3),5X,A2,3(4X,A3),4X,A4,3(4X,A3)) 

600 FORMAT(12(F5.3,2X)) 

601 FORMAT(20I3) 

602 FORMAT(12(F5.2,1X)) 

605 FORMAT(14X,9(F5.1,2X)) 

 

7000STOP 

END 

C END OF THE MAIN SIMULATION PROGRAM 
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C.3  ALGORITHM-INDEPENDENT AND ALGORITHM-DEPENDENT 

         SELECTION IN FEATURE SPACE 

 
The following Fortran code is an example of the programs used in the numerical 

evaluations reported in Section 6.2 and 7.2 of Chapter 4. 

 
C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS) 

C PERTAINING TO THE FULL SVM AND KFD (BINARY) CLASSIFIERS, AND POST- 

C SELECTION AVERAGE TEST ERRORS (AND STANDARD ERRORS) FOR SVM AND KFD 

  CLASSIFIERS WHEN ALGORITHM- INDEPENDENT SELECTION CRITERIA 

C  C.3.1  CORRELATIONS  

C  C.3.2  ALIGNMENTS 

C  C.3.3  BETWEEN GROUP DISSIMILARITIES IN INPUT SPACE 

C  C.3.4  DIFFERENCES BETWEEN GROUP MEANS IN INPUT SPACE 

C  C.3.5  VARIATION RATIOS IN INPUT SPACE 

C AND ALGORITHM-DEPENDENT SELECTION CRITERIA, VIZ. 

C  C.3.6  THE NORM OF THE SVM WEIGHT VECTOR 

C  C.3.7  THE RAYLEIGH QUOTIENT 

C ARE USED. 

C THE DATA ARE GENERATED FROM A MULTIVARIATE LOGNORMAL DISTRIBUTION AND 

 THE TWO GROUPS DIFFER WITH RESPECT TO LOCATION 

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED 

 
C THE FOLLOWING (OWN) FUNCTIONS ARE REQUIRED: 

C  1.  ALIGNMENT 

C  2.  ALIGNMENTTRANS 

 
C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED: 

C  1.  BERCRIT12 

C  2.  BERCRITCC 

C  3.  BERCRITR 

C  4.  BERCRITW 

C  5.  BERFOUTKFDA 

C  6.  BERFOUTSVM 

C  7.  DOENKFDA 

C  8.  DOENSVM 
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C  9.  GRAMMAT 

C  10. GRAMNUUT 

 
C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED: 

C  1.  CPSEC 

C  2.  DEXP 

C  3.  DSQRT 

 
C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED: 

C  1.  DCHFAC 

C  2.  DSVRGP 

 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=4,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NMC=500,CORR=0.0D0,SIGNOISE=20.0D0) 

 PARAMETER (GAMPAR=1.0D0/IP) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 

C POPULATION PARAMETERS 

 DIMENSION AMU1(IP),AMU2(IP) 

 DIMENSION SIGMAM(IPTEL,IPTEL),RSIG(IPTEL,IPTEL) 

 DIMENSION SIGMAMNOISE(NNOISE,NNOISE),RSIGNOISE(NNOISE,NNOISE) 

 

C X MATRICES AND Y VECTORS 

 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM) 

 DIMENSION XM11(NN,IPTEL),XM21(MM,IPTEL) 

 DIMENSION XM12(NN,NNOISE),XM22(MM,NNOISE) 

 DIMENSION XGEM1(IP),XGEM2(IP),GEM(IP),VAR(IP) 

 DIMENSION XT(NMT,IP),XT11(NT,IPTEL),XT21(MT,IPTEL) 

 DIMENSION XT12(NT,NNOISE),XT22(MT,NNOISE) 

 DIMENSION YV(NNPMM),YVT(NMT) 

 

C SVM AND KFDA RELATED QUANTITIES 

 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM),GRMATV(IP,NNPMM,NNPMM) 

 DIMENSION ALPHAV(IP,NNPMM),ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM) 

 DIMENSION EENP(NNPMM),EENM(NNPMM) 

 DIMENSION B(NNPMM),H(NNPMM,NNPMM) 
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C VARIOUS QUANTITIES 

 DIMENSION TYD(9) 

 DIMENSION FOUTMATK(NMC,10),FOUTVERK(NMC,10) 

 DIMENSION FOUTMATS(NMC,10),FOUTVERS(NMC,10) 

 DIMENSION FOUTGEMK(10),FOUTSTDK(10) 

 DIMENSION FOUTGEMS(10),FOUTSTDS(10) 

 DIMENSION FREKWKIESAL(IP),FREKWKIESALT(IP),FREKWKIESCC(IP) 

 DIMENSION FREKWKIESET(IP),FREKWKIESG(IP),FREKWKIESSV(IP) 

 DIMENSION FREKWKIESN(IP),FREKWKIESW(IP),FREKWKIESR(IP) 

 DIMENSION INDVEKVOL(IP),INDVEKREG(IPTEL),INDVEKEEN(IP) 

 DIMENSION IPERMU(IP),IPERM(IP) 

 DIMENSION IPERMCC(IP),IPERMET(IP),IPERMSV(IP),IPERMAL(IP),IPERMALT(IP) 

 DIMENSION IPERMG(IP),IPERMWW(IP),IPERMRR(IP),IPERMN(IP) 

 DIMENSION INDVEKCC(IP),INDVEKET(IP),INDVEKSV(IP),INDVEKAL(IP) 

 DIMENSION INDVEKG(IP),INDVEKW(IP),INDVEKR(IP),INDVEKN(IP),INDVEKALT(IP) 

 DIMENSION CRITVEKCC(IP),CRITVEKET(IP),CRITVEKSV(IP),CRITVEKAL(IP) 

 DIMENSION CRITVEKG(IP),CRITVEKW(IP),CRITVEKR(IP),CRITVEKN(IP),CRITVEKALT(IP) 

 

 CHARACTER*70 FILEOUT1,FILEOUT2 

 FILEOUT1='foutLL.d' 

 FILEOUT2='kiesLL.d' 

 

C WRITE FILE HEADERS 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN LOCATION'  

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'GAMPAR=',GAMPAR 

  WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC  

  WRITE(1,*) 'NT=',NT,'MT=',MT 

  WRITE(1,*) 'SIGNOISE=',SIGNOISE 

  WRITE(1,600)         

 CLOSE(1) 

 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN LOCATION' 

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'GAMPAR=',GAMPAR 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

338 

  WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC 

  WRITE(1,*) 'NT=',NT,'MT=',MT 

  WRITE(1,*) 'SIGNOISE=',SIGNOISE 

  WRITE(1,600) 

 CLOSE(1) 

 

C ASSIGN VALUES TO THE POPULATION PARAMETERS 

 E=DEXP(1.0D0) 

 BLAM=DSQRT(1.0D0/(E*(E-1.0D0)))       

 EP=-1.0D0*DSQRT(1.0D0/(E-1.0D0))       

 

 DO 3 I=1,IPTEL 

  INDVEKREG(I)=I 

  AMU1(I)=0.0D0 

  AMU2(I)=1.0D0 

  DO 2 J=1,IPTEL 

   SIGMAM(I,J)=DLOG(1.0D0+CORR*(E-1.0D0)) 

2  CONTINUE       

  SIGMAM(I,I)=1.0D0 

3 CONTINUE 

 

 DO 5 I=1,NNOISE 

  AMU1(IPTEL+I)=0.0D0 

  AMU2(IPTEL+I)=0.0D0 

  DO 4 J=1,NNOISE 

   SIGMAMNOISE(I,J)=0.0D0 

4  CONTINUE       

  SIGMAMNOISE(I,I)=1.0D0 

5 CONTINUE 

 TOL=1.0D2*DMACH(4) 

 CALL DCHFAC(IPTEL,SIGMAM,IPTEL,TOL,IRANK,RSIG,IPTEL) 

 CALL DCHFAC(NNOISE,SIGMAMNOISE,NNOISE,TOL,IRANK,RSIGNOISE,NNOISE) 

 

C INITIALISE VARIOUS QUANTITIES 

 DO 9 I=1,NN 

  YV(I)=-1.0D0 

9 CONTINUE       
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 DO 10 I=NN+1,NNPMM 

  YV(I)=1.0D0 

10 CONTINUE       

 SOMY=1.0D0*(MM-NN) 

 SOMY2=NNPMM 

 

 DO 11 I=1,NT 

  YVT(I)=-1.0D0 

11 CONTINUE       

 DO 12 I=NT+1,NMT 

  YVT(I)=1.0D0 

12 CONTINUE       

 

C SET UP THE KFDA VECTORS 

 DO 15 I=1,NNPMM 

  EENP(I)=0.0D0 

  EENM(I)=0.0D0 

  IF (YV(I).LT.-0.1D0) EENM(I)=1.0D0 

  IF (YV(I).GT.0.1D0) EENP(I)=1.0D0 

15 CONTINUE 

 

C THE NEXT LOOP SPECIFIES DIFFERENT VALUES FOR THE COST PARAMETER  

 DO 1010 ICP=1,6 

  IF (ICP.EQ.1) CPAR=0.00001D0 

  IF (ICP.EQ.2) CPAR=0.001D0    

  IF (ICP.EQ.3) CPAR=0.1D0 

  IF (ICP.EQ.4) CPAR=10.0D0 

  IF (ICP.EQ.5) CPAR=1000.0D0 

  IF (ICP.EQ.6) CPAR=1000.0D0 

 

C INITIALISE THE TEST ERROR AND STANDARD ERROR VECTORS 

  DO 16 J=1,10 

   FOUTGEMK(J)=0.0D0 

   FOUTSTDK(J)=0.0D0 

   FOUTGEMS(J)=0.0D0 

   FOUTSTDS(J)=0.0D0 

16  CONTINUE       
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C INITIALISE THE VECTORS MEASURING THE IMPLEMENTATION TIME PERTAINING TO 

C EACH SELECTION CRITERION 

 DO J=1,9 

  TYD(J)=0.0D0 

 ENDDO 

 

C INITIALISE SELECTION FREQUENCY VECTORS 

 DO J=1,IP 

  FREKWKIESAL(J)=0.0D0 

  FREKWKIESCC(J)=0.0D0 

  FREKWKIESET(J)=0.0D0 

  FREKWKIESG(J)=0.0D0 

  FREKWKIESN(J)=0.0D0 

  FREKWKIESW(J)=0.0D0 

  FREKWKIESR(J)=0.0D0 

  FREKWKIESALT(J)=0.0D0 

 ENDDO 

 

C THE MONTE CARLO SIMULATION LOOP STARTS HERE 

 DO 1004 MC=1,NMC 

C  WRITE(6,*) MC 

 

C GENERATE THE TRAINING DATA 

  CALL DRNMVN(NN,IPTEL,RSIG,IPTEL,XM11,NN) 

  DO 18 I=1,NN 

   DO 17 J=1,IPTEL 

    XM(I,J)=(BLAM*DEXP(XM11(I,J)))+EP+AMU1(J) 

17   CONTINUE  

18  CONTINUE 

  CALL DRNMVN(NN,NNOISE,RSIGNOISE,NNOISE,XM12,NN) 

  DO 20 I=1,NN 

   DO 19 J=1,NNOISE 

    XM(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM12(I,J)))+ 

              &EP+AMU1(J+IPTEL)/DSQRT(SIGNOISE)) 

19   CONTINUE  

20  CONTINUE 

  CALL DRNMVN(MM,IPTEL,RSIG,IPTEL,XM21,MM) 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

341 

  DO 22 I=1,MM 

   DO 21 J=1,IPTEL 

    XM(NN+I,J)=(BLAM*DEXP(XM21(I,J)))+EP+AMU2(J) 

21   CONTINUE  

22  CONTINUE 

  CALL DRNMVN(MM,NNOISE,RSIGNOISE,NNOISE,XM22,MM) 

  DO 24 I=1,MM 

  DO 23 J=1,NNOISE 

   XM(NN+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM22(I,J)))+ 

                           &EP+AMU2(J+IPTEL)/DSQRT(SIGNOISE)) 

23   CONTINUE  

24  CONTINUE 

 

C STANDARDISE THE TRAINING DATA 

  DO 28 J=1,IP 

   S=0.0D0 

   S2=0.0D0 

   DO 26 I=1,NNPMM 

    S=S+XM(I,J) 

    S2=S2+XM(I,J)**2.0D0 

26   CONTINUE 

   GEM(J)=S/NNPMM 

   VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM 

   DO 27 I=1,NNPMM 

    XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J)) 

27   CONTINUE 

28  CONTINUE 

 

C GENERATE THE TEST DATA 

  CALL DRNMVN(NT,IPTEL,RSIG,IPTEL,XT11,NT) 

  CALL DRNMVN(NT,NNOISE,RSIGNOISE,NNOISE,XT12,NT) 

  CALL DRNMVN(MT,IPTEL,RSIG,IPTEL,XT21,MT) 

  CALL DRNMVN(MT,NNOISE,RSIGNOISE,NNOISE,XT22,MT) 

 

  DO 36 I=1,NT 

   DO 35 J=1,IPTEL 

    XT(I,J)=(BLAM*DEXP(XT11(I,J)))+EP+AMU1(J) 
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35   CONTINUE  

36  CONTINUE 

  DO 38 I=1,NT 

   DO 37 J=1,NNOISE 

    XT(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT12(I,J))) 

                &+EP+AMU1(J+IPTEL)/ DSQRT(SIGNOISE)) 

37   CONTINUE  

38  CONTINUE 

  DO 40 I=1,MT 

   DO 39 J=1,IPTEL 

    XT(NT+I,J)=(BLAM*DEXP(XT21(I,J)))+EP+AMU2(J) 

39   CONTINUE  

40  CONTINUE 

  DO 42 I=1,MT 

   DO 41 J=1,NNOISE 

    XT(NT+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT22(I,J)))+EP 

               &+AMU2(J+IPTEL)/DSQRT(SIGNOISE)) 

41   CONTINUE  

42  CONTINUE 

 

C STANDARDISE THE TEST DATA 

  DO 45 J=1,IP 

   DO 44 I=1,NMT 

    XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J))) 

44   CONTINUE 

45  CONTINUE 

 

C INITIALISE THE VARIABLE INDEX VECTORS 
  DO 50 J=1,IP 

   INDVEKVOL(J)=J 

50  CONTINUE 

  DO 51 J=1,IP 

   IPERMCC(J)=J 

   IPERMET(J)=J 

   IPERMG(J)=J 

   IPERMWW(J)=J 

   IPERMRR(J)=J 
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   IPERMN(J)=J 

   IPERMSV(J)=J 

   IPERMAL(J)=J 

   IPERMALT(J)=J 

51  CONTINUE 

 

C CALCULATE THE TEST ERRORS PERTAINING TO THE FULL (SVM AND KFD) MODELS 

  CALL GRAMMAT(GAMPAR,XM,IP,INDVEKVOL,GRMAT) 

  CALL GRAMNUUT(GAMPAR,XM,XT,IP,INDVEKVOL,GRNUUT) 

  CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

  CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

  FOUTMATK(MC,1)=FOUT 

  CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IP,INDVEKVOL,AL,BOPT) 

  CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

  FOUTMATS(MC,1)=FOUT 

 

C CALCULATE THE TEST ERRORS PERTAINING TO THE CORRECT MODEL 

  CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKREG,GRMAT) 

  CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKREG,GRNUUT) 

  CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

  CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

  FOUTMATK(MC,2)=FOUT 

  CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKREG,AL,BOPT) 

  CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

  FOUTMATS(MC,2)=FOUT 

  DO K=1,IP 

   INDVEKEEN(1)=K 

   TYD1=CPSEC() 

   CALL GRAMMAT(GAMPAR,XM,1,INDVEKEEN,GRMAT) 

   TYD2=CPSEC() 

   TYD0=TYD2-TYD1 

   TYD1=CPSEC() 

   CALL BERCRITW(GRMAT,CRIT1,CRIT2) 

   TYD2=CPSEC() 

   TYD(3)=TYD(3)+TYD0+TYD2-TYD1 

   TYD(4)=TYD(4)+TYD0+TYD2-TYD1 

   CRITVEKW(K)=CRIT1 
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   CRITVEKG(K)=CRIT2 

   TYD1=CPSEC() 

   CALL BERCRIT12(GRMAT,CRIT) 

   TYD2=CPSEC() 

   TYD(5)=TYD(5)+TYD0+TYD2-TYD1 

   CRITVEKET(K)=CRIT 

   TYD1=CPSEC() 

   CALL BERCRITCC(GRMAT,CRIT) 

   TYD2=CPSEC() 

   TYD(6)=TYD(6)+TYD0+TYD2-TYD1 

   CRITVEKCC(K)=CRIT 

   TYD1=CPSEC()  

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   TYD2=CPSEC() 

   CALL BERCRITR(GRMAT,EENP,EENM,ALPHA,CPAR,CRIT) 

   CRITVEKR(K)=CRIT 

   TYD(2)=TYD(2)+TYD0+TYD2-TYD1 

 

C CALCULATE THE SQUARED NORM OF THE SVM WEIGHT VECTOR 

   TYD1=CPSEC() 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,1,INDVEKEEN,AL,BOPT) 

   S=0.0D0 

   DO I=1,NNPMM 

    DO J=1,NNPMM 

     S=S+AL(I)*AL(J)*YV(I)*YV(J)*GRMAT(I,J) 

    END DO 

   END DO 

   TYD2=CPSEC() 

   TYD(1)=TYD(1)+TYD0+TYD2-TYD1 

   CRITVEKN(K)=S 

 

C CALCULATE THE NUMBER OF SUPPORT VECTORS 

   TYD3=CPSEC() 

   TEL=0.0D0 

   DO I=1,NNPMM 

    IF (AL(I).GT.0.00000001D0) TEL=TEL+1.0D0 

   ENDDO 
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   TYD4=CPSEC() 

   TYD(7)=TYD(7)+TYD0+TYD2-TYD1+TYD4-TYD3 

   CRITVEKSV(K)=TEL 

 

C CALCULATE THE ALIGNMENT CRITERION 

   TYD1=CPSEC() 

   CRITVEKAL(K)=ALIGNMENT(INDVEKEEN,XM)  

   TYD2=CPSEC() 

   TYD(8)=TYD(8)+TYD2-TYD1 

   TYD1=CPSEC() 

   CRITVEKALT(K)=ALIGNMENTTRANS(INDVEKEEN,XM) 

   TYD2=CPSEC() 

   TYD(9)=TYD(9)+TYD2-TYD1 

  ENDDO 

 

C ORDER THE SELECTION CRITERIA VALUES PERTAINING TO EACH SINGLE VARIABLE 

C MODEL 

  CALL DSVRGP(IP,CRITVEKW,CRITVEKW,IPERMWW) 

  CALL DSVRGP(IP,CRITVEKG,CRITVEKG,IPERMG) 

  CALL DSVRGP(IP,CRITVEKET,CRITVEKET,IPERMET) 

  CALL DSVRGP(IP,CRITVEKCC,CRITVEKCC,IPERMCC) 

  CALL DSVRGP(IP,CRITVEKR,CRITVEKR,IPERMRR) 

  CALL DSVRGP(IP,CRITVEKN,CRITVEKN,IPERMN) 

  CALL DSVRGP(IP,CRITVEKSV,CRITVEKSV,IPERMSV) 

  CALL DSVRGP(IP,CRITVEKAL,CRITVEKAL,IPERMAL) 

  CALL DSVRGP(IP,CRITVEKALT,CRITVEKALT,IPERMALT) 

 

  DO 244 J=1,IP 

   IPERM(J)=J 

244  CONTINUE 

 

C UPDATE THE VARIABLE INDEX VECTORS 

  DO 53 J=1,IP 

   INDVEKW(J)=IPERMWW(IP-J+1) 

   INDVEKG(J)=IPERMG(IP-J+1) 

   INDVEKET(J)=IPERMET(J) 

   INDVEKCC(J)=IPERMCC(J) 
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   INDVEKR(J)=IPERMRR(IP-J+1) 

   INDVEKN(J)=IPERMN(IP-J+1) 

   INDVEKSV(J)=IPERMSV(J) 

   INDVEKAL(J)=IPERMAL(IP-J+1) 

   INDVEKALT(J)=IPERMALT(IP-J+1) 

53  CONTINUE  

 

C UPDATE THE SELECTION PROPORTIONS 

  DO 54 J=1,IPTEL 

   FREKWKIESET(INDVEKET(J))=FREKWKIESET(INDVEKET(J))+1.0D0 

   FREKWKIESCC(INDVEKCC(J))=FREKWKIESCC(INDVEKCC(J))+1.0D0 

   FREKWKIESR(INDVEKR(J))=FREKWKIESR(INDVEKR(J))+1.0D0 

   FREKWKIESG(INDVEKG(J))=FREKWKIESG(INDVEKG(J))+1.0D0 

   FREKWKIESW(INDVEKW(J))=FREKWKIESW(INDVEKW(J))+1.0D0 

   FREKWKIESSV(INDVEKSV(J))=FREKWKIESSV(INDVEKSV(J))+1.0D0 

   FREKWKIESN(INDVEKN(J))=FREKWKIESN(INDVEKN(J))+1.0D0 

   FREKWKIESAL(INDVEKAL(J))=FREKWKIESAL(INDVEKAL(J))+1.0D0 

   FREKWKIESALT(INDVEKALT(J))=FREKWKIESALT(INDVEKALT(J))+1.0D0 

54  CONTINUE 

 

C CALCULATE SELECTION TEST ERRORS PERTAINING TO SELECTION USING 

C THE RAYLEIGH QUOTIENT 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKR,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKR,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,3)=FOUT 

 

C THE SQUARED NORM OF THE SVM WEIGHT VECTOR 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKN,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,3)=FOUT 

 

C THE VARIATION RATIO 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKW,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKW,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 
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   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,4)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKW,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,4)=FOUT 

 

C DIFFERENCES IN GROUP MEANS 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKG,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKG,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,5)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKG,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,5)=FOUT 

 

C THE SUM OF DISSIMILARITIES BETWEEN THE TWO GROUPS 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKET,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKET,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,6)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKET,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,6)=FOUT 

 

C THE CUT COST 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKCC,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKCC,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,7)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKCC,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,7)=FOUT 
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C THE NUMBER OF SUPPORT VECTORS 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKSV,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKSV,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,8)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKSV,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,8)=FOUT 

 

C THE ALIGNMENT CRITERION 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKAL,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKAL,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,9)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKAL,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,9)=FOUT 

 

C THE TRANSFORMED ALIGNMENT CRITERION 

   CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKALT,GRMAT) 

   CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKALT,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,10)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKALT,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,10)=FOUT  

 

1004 CONTINUE 

C THE MONTE CARLO SIMULATION LOOP ENDS HERE 

 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

349 

C CALCULATE AVERAGES OF THE OBTAINED TEST ERRORS AND OBTAIN STANDARD 

C ERRORS 

  DO 345 J=1,10 

   S1=0.0D0 

   S2=0.0D0 

   S3=0.0D0 

   S4=0.0D0 

   DO 344 I=1,NMC 

    S1=S1+FOUTMATK(I,J) 

    S2=S2+FOUTMATK(I,J)**2.0D0 

    S3=S3+FOUTMATS(I,J) 

    S4=S4+FOUTMATS(I,J)**2.0D0 

344   CONTINUE 

   FOUTGEMK(J)=S1/NMC 

   FOUTSTDK(J)=DSQRT((S2-(S1*S1)/NMC)/(NMC*(NMC-1.0D0))) 

   FOUTGEMS(J)=S3/NMC 

   FOUTSTDS(J)=DSQRT((S4-(S3*S3)/NMC)/(NMC*(NMC-1.0D0))) 

345  CONTINUE 

 

C CALCULATE SELECTION PERCENTAGES 
 DO 349 J=1,IP 

  FREKWKIESET(J)=FREKWKIESET(J)/NMC 

  FREKWKIESCC(J)=FREKWKIESCC(J)/NMC 

  FREKWKIESR(J)=FREKWKIESR(J)/NMC 

  FREKWKIESSV(J)=FREKWKIESSV(J)/NMC 

  FREKWKIESN(J)=FREKWKIESN(J)/NMC 

  FREKWKIESW(J)=FREKWKIESW(J)/NMC 

  FREKWKIESAL(J)=FREKWKIESAL(J)/NMC 

  FREKWKIESALT(J)=FREKWKIESALT(J)/NMC 

  FREKWKIESG(J)=FREKWKIESG(J)/NMC 

349 CONTINUE 

 

C WRITE THE AVERAGE TIMES, TEST ERRORS AND STANDARD ERRORS TO A FILE 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')  

  WRITE(1,*) 'C: ',CPAR,'G: ',GAMPAR 

  WRITE(1,*) 'KFDA' 

  WRITE(1,599) 'FULL','ORACLE','NO/RAY','WANG','FMEANS','BL12','CC','SVs','AL','ALT' 
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  WRITE(1,600) (FOUTGEMK(J),J=1,10) 

  WRITE(1,600) (FOUTSTDK(J),J=1,10) 

  WRITE(1,601) TYD(2),(TYD(J),J=3,9) 

  WRITE(1,*) 'SVM' 

  WRITE(1,600) (FOUTGEMS(J),J=1,10) 

  WRITE(1,600) (FOUTSTDS(J),J=1,10) 

  WRITE(1,601) TYD(1),(TYD(J),J=3,9) 

  WRITE(1,600) 

 CLOSE(1) 

 

C WRITE THE SELECTION PERCENTAGES TO A FILE 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'C: ',CPAR,'G: ',GAMPAR 

  WRITE(1,*) 'WEIGHT VECTOR NORM' 

  WRITE(1,602) (FREKWKIESN(J),J=1,IP) 

  WRITE(1,*) 'RAYLEIGH' 

  WRITE(1,602) (FREKWKIESR(J),J=1,IP) 

  WRITE(1,*) 'DIF IN MEANS: FEATURE SPACE' 

  WRITE(1,602) (FREKWKIESG(J),J=1,IP) 

  WRITE(1,*) 'WANG' 

  WRITE(1,602) (FREKWKIESW(J),J=1,IP) 

  WRITE(1,*) 'BLOCK 12' 

  WRITE(1,602) (FREKWKIESET(J),J=1,IP) 

  WRITE(1,*) 'CUT COST' 

  WRITE(1,602) (FREKWKIESCC(J),J=1,IP) 

  WRITE(1,*) 'ALIGNMENTS' 

  WRITE(1,602) (FREKWKIESAL(J),J=1,IP) 

  WRITE(1,*) 'ALIGNMENTS-TRANS' 

  WRITE(1,602) (FREKWKIESALT(J),J=1,IP) 

  WRITE(1,*) 

 CLOSE(1) 

1010  CONTINUE 

C THE COST PARAMETER LOOP ENDS HERE 
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C FILE FORMATS 

599 FORMAT(3X,A4,3X,A6,2X,A6,3X,A4,2X,A6,3X,A4,5X,A2,7X,A3,3X,A2,6X,A3) 

500 FORMAT(20I3) 

600 FORMAT(10(F7.3,1X)) 

601 FORMAT(16X,9(F7.3,1X)) 

602 FORMAT(12(F5.2,1X)) 

605 FORMAT(I6,2X,4(F12.5,1X)) 

700 FORMAT(10(F20.10)) 

 

7000 STOP 

END 

C END OF THE SIMULATION PROGRAM 
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C.4  BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS 
 
An example of the simulation program used to investigate use of recursive elimination in 

variable selection is given below.  Results of the study are given in Section 5 of Chapter 5. 

 
C IN THIS PROGRAM WE INVESTIGATE SELECTION USING A BACKWARD STRATEGY 

C WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS) 

C PERTAINING TO THE FULL SVM AND KFD MODELS, AND POST-SELECTION AVERAGE 

C TEST ERRORS (AND STANDARD ERRORS) FOR SVM AND KFD MODELS AFTER USING 

C  C.3.1  ZERO ORDER ALIGNMENTS IN FEATURE SPACE 

C  C.3.2  FIRST ORDER ALIGNMENTS IN FEATURE SPACE 

C  C.3.3  TRANSFORMED ZERO ORDER ALIGNMENTS IN FEATURE SPACE 

C  C.3.4  TRANSFORMED FIRST ORDER ALIGNMENTS IN FEATURE SPACE 

C  C.3.5  ZERO ORDER VARIATION RATIOS 

C  C.3.6  FIRST ORDER VARIATION RATIOS 

C  C.3.7  ZERO ORDER DIFFERENCES IN MEANS IN INPUT SPACE 

C  C.3.8  FIRST ORDER DIFFERENCES IN MEANS IN INPUT SPACE 

C  C.3.9  THE ZERO ORDER DISSIMILARITY CRITERION 

C  C.3.10  THE FIRST ORDER DISSIMILARITY CRITERION 

C FOR SVM MODELS AFTER USING 

C  C.3.11  THE ZERO ORDER NORM OF THE SVM WEIGHT VECTOR 

C  C.3.12  THE FIRST ORDER NORM OF THE SVM WEIGHT VECTOR 

C AND FOR KFDA MODELS AFTER USING 

C  C.3.13  THE ZERO ORDER RAYLEIGH QUOTIENT 

C  C.3.14  THE FIRST ORDER RAYLEIGH QUOTIENT 

C THE DATA ARE GENERATED FROM A MULTIVARIATE LOGNORMAL DISTRIBUTION AND 

C THE TWO GROUPS DIFFER WITH RESPECT TO THEIR VARIANCE-COVARIANCE 

C STRUCTURE 

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED 

 
C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED: 

C  1.  BERCRIT12 

C  2.  BERCRITA0 

C  3.  BERCRITA1 

C  4.  BERCRITET1 

C  5.  BERCRITG1 

C  6.  BERCRITW 

C  7.  BERCRTW1 
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C  8.  BERCRITR 

C  9.  BERCRITR1 

C  10.  BERCRITN1 

C  11.  BERFOUTKFDA 

C  12.  BERFOUTSVM 

C  13.  DOENKFDA 

C  14.  DOENSVM 

C  15.  GRAMMAT 

C  16.  GRAMMATL 

C  17.  GRAMNUUT 

C  18.  GRAMNUUTL 

 
C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED: 

C  1.  DEXP 

C  2.  DLOG 

C  3.  DMACH 

C  4.  DSQRT 

 
C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED: 

C  1.  DCHFAC 

C  2.  DRNMVN 

 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=4,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NMC=500,CORR=0.0D0,SIGNOISE=20.0D0,SIGFAKTOR=10.0D0) 

 PARAMETER (GAM=1.0D0/IP,GAMPAR=GAM) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 

C POPULATION PARAMETERS 

 DIMENSION AMU1(IP),AMU2(IP) 

 DIMENSION SIGMAM(IPTEL,IPTEL),RSIG(IPTEL,IPTEL) 

 DIMENSION SIGMAMNOISE(NNOISE,NNOISE),RSIGNOISE(NNOISE,NNOISE) 

 

C X MATRICES AND Y VECTORS 

 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM) 

 DIMENSION XM11(NN,IPTEL),XM21(MM,IPTEL) 

 DIMENSION XM12(NN,NNOISE),XM22(MM,NNOISE) 
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 DIMENSION XGEM1(IP),XGEM2(IP),GEM(IP),VAR(IP) 

 DIMENSION XT(NMT,IP),XT11(NT,IPTEL),XT21(MT,IPTEL) 

 DIMENSION XT12(NT,NNOISE),XT22(MT,NNOISE) 

 DIMENSION YV(NNPMM),YVT(NMT),IYV(NNPMM) 

 

C SVM RELATED QUANTITIES 

 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM),GRMATN(NMT,NNPMM) 

 DIMENSION ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM) 

 

C  KFDA QUANTITIES 

 DIMENSION EENM(NNPMM),EENP(NNPMM) 

 

C VARIOUS OTHER QUANTITIES 

 DIMENSION FOUTMATK(NMC,14,5),FOUTVERK(NMC,14,5) 

 DIMENSION FOUTMATS(NMC,14,5),FOUTVERS(NMC,14,5) 

 DIMENSION FOUTGEM(28,5),FOUTSTD(28,5),R(IP) 

 DIMENSION FREKWKIES(4,IP,5),FREKWKIESINDEP(10,IP) 

 DIMENSION INDVEKVOL(IP),INDVEKP(IP),IPERMU(IP) 

 DIMENSION INDVEKA0(IP),INDVEKA1(IP),INDVEKA2(IP),INDVEKA3(IP) 

 DIMENSION INDVEKA0T(IP),INDVEKA1T(IP),INDVEKA2T(IP),INDVEKA3T(IP) 

 DIMENSION INDVEKW0(IP),INDVEKW1(IP),INDVEKW2(IP),INDVEKW3(IP) 

 DIMENSION INDVEKG0(IP),INDVEKG1(IP),INDVEKG2(IP),INDVEKG3(IP) 

 DIMENSION INDVEKET0(IP),INDVEKET1(IP),INDVEKET2(IP),INDVEKET3(IP) 

 DIMENSION INDVEKN0(IP),INDVEKN1(IP),INDVEKN2(IP),INDVEKN3(IP) 

 DIMENSION INDVEKR0(IP),INDVEKR1(IP),INDVEKR2(IP),INDVEKR3(IP) 

 DIMENSION CRITVEKA0(IP),CRITVEKA1(IP) 

 DIMENSION CRITVEKA0T(IP),CRITVEKA1T(IP) 

 DIMENSION CRITVEKW0(IP),CRITVEKW1(IP) 

 DIMENSION CRITVEKG0(IP),CRITVEKG1(IP) 

 DIMENSION CRITVEKET0(IP),CRITVEKET1(IP) 

 DIMENSION CRITVEKN0(IP),CRITVEKN1(IP) 

 DIMENSION CRITVEKR0(IP),CRITVEKR1(IP) 

 

 CHARACTER*70 FILEOUT1,FILEOUT2 

 FILEOUT1='foutLS.d' 

 FILEOUT2='kiesLS.d' 
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C WRITE FILE HEADERS 

 NVERIN=IPTEL 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN SPREAD'  

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'GAMPAR=',GAMPAR 

  WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC  

  WRITE(1,*) 'NT=',NT,'MT=',MT 

  WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE 

  WRITE(1,600)         

 CLOSE(1) 

 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN SPREAD' 

  WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR 

  WRITE(1,*) 'GAMPAR=',GAMPAR 

  WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC 

  WRITE(1,*) 'NT=',NT,'MT=',MT 

  WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE 

  WRITE(1,600) 

 CLOSE(1) 

 

C ASSIGN VALUES TO THE POPULATION PARAMETERS AND OBTAIN THE COVARIANCE 

C MATRICES REQUIRED FOR GENERATING THE DATA 

 E=DEXP(1.0D0) 

 BLAM=DSQRT(1.0D0/(E*(E-1.0D0)))       

 EP=-1.0D0*DSQRT(1.0D0/(E-1.0D0))  

 DO 3 I=1,IPTEL 

C  KIESREG(I)=I 

  AMU1(I)=0.0D0 

  AMU2(I)=0.0D0 

  DO 2 J=1,IPTEL 

   SIGMAM(I,J)=DLOG(1.0D0+CORR*(E-1.0D0)) 

2  CONTINUE 

  SIGMAM(I,I)=1.0D0 

3 CONTINUE 

 DO 4 I=IPTEL+1,IP 
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  AMU1(I)=0.0D0 

  AMU2(I)=0.0D0 

4 CONTINUE 

 DO 8 I=1,NNOISE 

  DO 7 J=1,NNOISE 

   SIGMAMNOISE(I,J)=0.0D0 

7  CONTINUE 

  SIGMAMNOISE(I,I)=1.0D0 

8 CONTINUE 

 TOL=1.0D2*DMACH(4) 

 CALL DCHFAC(IPTEL,SIGMAM,IPTEL,TOL,IRANK,RSIG,IPTEL) 

 CALL DCHFAC(NNOISE,SIGMAMNOISE,NNOISE,TOL,IRANK,RSIGNOISE,NNOISE) 

 

C  INITIALISE VARIOUS QUANTITIES 

 DO 9 I=1,NN 

  YV(I)=-1.0D0 

9 CONTINUE 

 DO 10 I=NN+1,NNPMM 

  YV(I)=1.0D0 

10 CONTINUE       

 SOMY=1.0D0*(MM-NN) 

 SOMY2=NNPMM 

 DO 11 I=1,NT 

  YVT(I)=-1.0D0 

11 CONTINUE 

 DO 12 I=NT+1,NMT 

  YVT(I)=1.0D0 

12 CONTINUE 

 DO 15 I=1,NNPMM 

  EENP(I)=0.0D0 

  EENM(I)=0.0D0 

  IF (YV(I).LT.-0.1D0) EENM(I)=1.0D0 

  IF (YV(I).GT.0.1D0) EENP(I)=1.0D0 

15 CONTINUE 
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C INITIALISE THE TEST ERROR, STANDARD ERROR AND SELECTION FREQUENCY 

C VECTORS 

 DO K=1,5 

  DO I=1,28 

   FOUTGEM(I,K)=0.0D0 

   FOUTSTD(I,K)=0.0D0 

  END DO 

  DO I=1,4 

   DO J=1,IP 

    FREKWKIES(I,J,K)=0.0D0 

   END DO 

  END DO 

 END DO 

 DO I=1,10 

  DO J=1,IP 

   FREKWKIESINDEP(I,J)=0.0D0 

  END DO 

 END DO 

 

C THE SIMULATION LOOP STARTS HERE 
 DO 390 MC=1,NMC 

C  WRITE(6,*) MC 

 

C GENERATE THE TRAINING DATA 

 CALL DRNMVN(NN,IPTEL,RSIG,IPTEL,XM11,NN) 

 DO 18 I=1,NN 

  DO 17 J=1,IPTEL 

   XM(I,J)=(BLAM*DEXP(XM11(I,J)))+AMU1(J)+EP 

17  CONTINUE  

18 CONTINUE 

 CALL DRNMVN(NN,NNOISE,RSIGNOISE,NNOISE,XM12,NN) 

 DO 20 I=1,NN 

  DO 19 J=1,NNOISE 

   XM(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM12(I,J)))+AMU1(J+IPTEL) 

              &/(DSQRT(SIGNOISE))+EP) 

19   CONTINUE  

20 CONTINUE 
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 CALL DRNMVN(MM,IPTEL,RSIG,IPTEL,XM21,MM) 

 DO 22 I=1,MM 

  DO 21 J=1,IPTEL 

   XM(NN+I,J)=DSQRT(SIGFAKTOR)*((BLAM*DEXP(XM21(I,J)))+AMU2(J)+EP) 

21  CONTINUE  

22 CONTINUE 

 CALL DRNMVN(MM,NNOISE,RSIGNOISE,NNOISE,XM22,MM) 

 DO 24 I=1,MM 

  DO 23 J=1,NNOISE 

  XM(NN+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM22(I,J)))+AMU2(J+IPTEL) 

       &/(DSQRT(SIGNOISE))+EP) 

23  CONTINUE  

24 CONTINUE 

 

C STANDARDISE THE TRAINING DATA 

 DO 28 J=1,IP 

  S=0.0D0 

  S2=0.0D0 

  DO 26 I=1,NNPMM 

   S=S+XM(I,J) 

   2=S2+XM(I,J)**2.0D0 

26  CONTINUE 

  GEM(J)=S/NNPMM 

  VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM 

  DO 27 I=1,NNPMM 

   XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J)) 

27  CONTINUE 

28  CONTINUE 

 

C GENERATE THE TEST DATA 

 CALL DRNMVN(NT,IPTEL,RSIG,IPTEL,XT11,NT) 

 CALL DRNMVN(MT,IPTEL,RSIG,IPTEL,XT21,MT) 

 CALL DRNMVN(NT,NNOISE,RSIGNOISE,NNOISE,XT12,NT) 

 CALL DRNMVN(MT,NNOISE,RSIGNOISE,NNOISE,XT22,MT) 

 DO 36 I=1,NT 

  DO 35 J=1,IPTEL 

   XT(I,J)=(BLAM*DEXP(XT11(I,J)))+AMU1(J)+EP 
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35  CONTINUE  

36 CONTINUE 

 DO 38 I=1,NT 

 DO 37 J=1,NNOISE 

 XT(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT12(I,J)))+AMU1(J+IPTEL)/DSQRT(SIGNOIS 

      &E)+EP) 

37 CONTINUE  

38 CONTINUE 

 DO 40 I=1,MT 

  DO 39 J=1,IPTEL 

   XT(NT+I,J)=DSQRT(SIGFAKTOR)*((BLAM*DEXP(XT21(I,J)))+AMU2(J)+EP) 

39  CONTINUE  

40 CONTINUE 

 

 DO 42 I=1,MT 

 DO 41 J=1,NNOISE 

 XT(NT+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT22(I,J)))+AMU2(J+IPTEL)/DSQRT(SIG 

     &NOISE)+EP ) 

41 CONTINUE  

42 CONTINUE 

 

C STANDARDISE THE TEST DATA 

 DO 45 J=1,IP 

  DO 44 I=1,NMT 

   XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J))) 

44  CONTINUE 

45 CONTINUE 

 DO 50 J=1,IP 

  INDVEKVOL(J)=J 

50 CONTINUE 

 

C INITIALISE THE VARIABLE INDEX VECTORS 

 DO 52 J=1,IP     

  INDVEKA0(J)=J 

  INDVEKA1(J)=J 

  INDVEKA0T(J)=J 

  INDVEKA1T(J)=J 
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  INDVEKW0(J)=J 

  INDVEKW1(J)=J 

  INDVEKG0(J)=J 

  INDVEKG1(J)=J 

  INDVEKET0(J)=J 

  INDVEKET1(J)=J 

52 CONTINUE 

 

C OMIT A SINGLE VARIABLE-AT-A-TIME UNTIL ONLY IPTEL=NVERIN VARIABLES REMAIN 

 DO 150 NVERUIT=1,NNOISE 

  NV=IP-NVERUIT+1 

  NVV=NV-1 

 

C FIRST IMPLEMENT TECHNIQUE DEPENDENT VARIABLE SELECTION 

C CALCULATE THE ZERO ORDER ALIGNMENT CRITERION 

  AMAXA=-1.1D0 

  DO 70 KK=1,NV  

   ITEL=0 

   DO 65 J=1,NV 

    IF (J.NE.KK) THEN 

     ITEL=ITEL+1 

     INDVEKA2(ITEL)=INDVEKA0(J) 

    ENDIF 

65   CONTINUE 

   CALL GRAMMAT(GAM,XM,NVV,INDVEKA2,GRMAT) 

   CALL BERCRITA0(GRMAT,CRITA) 

   CRITVEKA0(KK)=CRITA 

   IF (CRITA.GT.AMAXA) THEN 

   AMAXA=CRITA 

   IVERUITA=INDVEKA0(KK) 

   ENDIF 

70  CONTINUE 

  DO 72 J=1,NV 

   INDVEKA3(J)=INDVEKA0(J) 

72  CONTINUE 

  ITEL=0 

  DO 73 J=1,NV    
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  IF (INDVEKA3(J).NE.IVERUITA) THEN 

   ITEL=ITEL+1 

   INDVEKA0(ITEL)=INDVEKA3(J) 

  ENDIF 

  INDVEKA0(ITEL+1)=0 

73  CONTINUE 

 

C CALCULATE THE FIRST ORDER ALIGNMENT CRITERION 

  AMINA=1.0D100 

  CALL GRAMMAT(GAM,XM,NV,INDVEKA1,GRMAT) 

  DO 80 KK=1,NV  

   ITEL=0      

   IDIFA=INDVEKA1(KK) 

   CALL BERCRITA1(IDIFA,XM,GRMAT,GAM,CRITA) 

   CRITVEKA1(KK)=CRITA 

   IF (CRITA.LT.AMINA) THEN 

    AMINA=CRITA 

    IVERUITA=INDVEKA1(KK) 

  ENDIF 

80 CONTINUE 

  DO 82 J=1,NV 

   INDVEKA3(J)=INDVEKA1(J) 

82  CONTINUE 

  ITEL=0 

  DO 83 J=1,NV    

   IF (INDVEKA3(J).NE.IVERUITA) THEN 

    ITEL=ITEL+1 

    INDVEKA1(ITEL)=INDVEKA3(J) 

   ENDIF 

  INDVEKA1(ITEL+1)=0 

83  CONTINUE 

 

C CALCULATE THE ZERO ORDER TRANSFORMED ALIGNMENT CRITERION 

  AMAXA=-1.1D0 

  DO 170 KK=1,NV  

  ITEL=0 

  DO 165 J=1,NV 
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   IF (J.NE.KK) THEN 

    ITEL=ITEL+1 

    INDVEKA2T(ITEL)=INDVEKA0T(J) 

   ENDIF 

165  CONTINUE 

  CALL GRAMMATL(GAM,XM,NVV,INDVEKA2T,GRMAT) 

  CALL BERCRITA0(GRMAT,CRITA) 

  CRITVEKA0T(KK)=CRITA 

  IF (CRITA.GT.AMAXA) THEN 

   AMAXA=CRITA 

   IVERUITA=INDVEKA0T(KK) 

  ENDIF 

170  CONTINUE 

  DO 172 J=1,NV 

   INDVEKA3T(J)=INDVEKA0T(J) 

172  CONTINUE 

  ITEL=0 

  DO 173 J=1,NV    

   IF (INDVEKA3T(J).NE.IVERUITA) THEN 

    ITEL=ITEL+1 

    INDVEKA0T(ITEL)=INDVEKA3T(J) 

   ENDIF 

   INDVEKA0T(ITEL+1)=0 

173  CONTINUE 

 

C CALCULATE THE FIRST ORDER TRANSFORMED ALIGNMENT CRITERION 

  AMINA=1.0D100 

  CALL GRAMMATL(GAM,XM,NV,INDVEKA1T,GRMAT) 

  DO 180 KK=1,NV  

  ITEL=0      

  IDIFA=INDVEKA1T(KK) 

  CALL BERCRITA1(IDIFA,XM,GRMAT,GAM,CRITA) 

  CRITVEKA1T(KK)=CRITA 

  IF (CRITA.LT.AMINA) THEN 

   AMINA=CRITA 

   IVERUITA=INDVEKA1T(KK) 

  ENDIF 
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180  CONTINUE 

  DO 182 J=1,NV 

   INDVEKA3T(J)=INDVEKA1T(J) 

182  CONTINUE 

  ITEL=0 

  DO 183 J=1,NV    

   IF (INDVEKA3T(J).NE.IVERUITA) THEN 

    ITEL=ITEL+1 

    INDVEKA1T(ITEL)=INDVEKA3T(J) 

   ENDIF 

  INDVEKA1T(ITEL+1)=0 

183  CONTINUE 

 

C CALCULATE THE ZERO ORDER VARIATION RATIO CRITERION 

  AMAXW=-1.1D0 

  DO 90 KK=1,NV  

   ITEL=0 

   DO 85 J=1,NV 

    IF (J.NE.KK) THEN 

     ITEL=ITEL+1 

     INDVEKW2(ITEL)=INDVEKW0(J) 

    ENDIF 

85   CONTINUE 

  CALL GRAMMAT(GAM,XM,NVV,INDVEKW2,GRMAT) 

  CALL BERCRITW0(GRMAT,CRITW) 

  CRITVEKW0(KK)=CRITW 

  IF (CRITW.GT.AMAXW) THEN 

   AMAXW=CRITW 

   IVERUITW=INDVEKW0(KK) 

  ENDIF 

90  CONTINUE 

  DO 91 J=1,NV 

   INDVEKW3(J)=INDVEKW0(J) 

91  CONTINUE 

  ITEL=0 

  DO 92 J=1,NV    

   IF (INDVEKW3(J).NE.IVERUITW) THEN 
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    ITEL=ITEL+1 

     INDVEKW0(ITEL)=INDVEKW3(J) 

   ENDIF 

  INDVEKW0(ITEL+1)=0 

92  CONTINUE 

 

C CALCULATE THE FIRST ORDER VARIATION RATIO CRITERION 

  AMINW=1.0D100 

  CALL GRAMMAT(GAM,XM,NV,INDVEKW1,GRMAT) 

  DO 94 KK=1,NV  

   ITEL=0 

   IDIFW=INDVEKW1(KK) 

   CALL BERCRITW1(IDIFW,XM,GRMAT,GAM,CRITW) 

   CRITVEKW1(KK)=CRITW 

   IF (CRITW.LT.AMINW) THEN 

    AMINW=CRITW 

    IVERUITW=INDVEKW1(KK) 

   ENDIF 

94  CONTINUE 

  DO 95 J=1,NV 

   INDVEKW3(J)=INDVEKW1(J) 

95  CONTINUE 

  ITEL=0 

  DO 96 J=1,NV    

   IF (INDVEKW3(J).NE.IVERUITW) THEN 

    ITEL=ITEL+1 

    INDVEKW1(ITEL)=INDVEKW3(J) 

   ENDIF 

   INDVEKW1(ITEL+1)=0 

96  CONTINUE 

 

C CALCULATE THE ZERO ORDER DIFFERENCES IN MEANS 

  AMAXG=-1.1D0 

  DO 98 KK=1,NV  

   ITEL=0 

   DO 97 J=1,NV 

    IF (J.NE.KK) THEN 
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     ITEL=ITEL+1 

     INDVEKG2(ITEL)=INDVEKG0(J) 

    ENDIF 

97   CONTINUE 

   CALL GRAMMAT(GAM,XM,NVV,INDVEKG2,GRMAT) 

   CALL BERCRITW(GRMAT,CRITW,CRITG) 

   CRITVEKG0(KK)=CRITG 

   IF (CRITG.GT.AMAXG) THEN 

    AMAXG=CRITG 

    IVERUITG0=INDVEKG0(KK) 

   ENDIF 

98  CONTINUE 

  DO 99 J=1,NV 

   INDVEKG3(J)=INDVEKG0(J) 

99  CONTINUE 

  ITEL=0 

  DO 100 J=1,NV    

   IF (INDVEKG3(J).NE.IVERUITG0) THEN 

    ITEL=ITEL+1 

    INDVEKG0(ITEL)=INDVEKG3(J) 

   ENDIF 

   INDVEKG0(ITEL+1)=0 

100  CONTINUE 

 

C CALCULATE THE FIRST ORDER DIFFERENCES IN MEANS 

  AMING=1.0D100 

  CALL GRAMMAT(GAM,XM,NV,INDVEKG1,GRMAT) 

  DO 101 KK=1,NV  

   ITEL=0 

   IDIFG=INDVEKG1(KK) 

   CALL BERCRITG1(IDIFG,XM,GRMAT,GAM,CRITG) 

   CRITVEKG1(KK)=CRITG 

   IF (CRITG.LT.AMING) THEN 

    AMING=CRITG 

    IVERUITG1=INDVEKG1(KK) 

   ENDIF 

101  CONTINUE 
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  DO 102 J=1,NV 

   INDVEKG3(J)=INDVEKG1(J) 

102  CONTINUE 

  ITEL=0 

  DO 103 J=1,NV    

   IF (INDVEKG3(J).NE.IVERUITG1) THEN 

    ITEL=ITEL+1 

    INDVEKG1(ITEL)=INDVEKG3(J) 

   ENDIF 

  INDVEKG1(ITEL+1)=0 

103  CONTINUE 

 

C CALCULATE THE ZERO ORDER DISSIMILARITY CRITERION 

  AMINET=1.1D50 

  DO 105 KK=1,NV  

   ITEL=0 

   DO 104 J=1,NV 

    IF (J.NE.KK) THEN 

     ITEL=ITEL+1 

     INDVEKET2(ITEL)=INDVEKET0(J) 

    ENDIF 

104   CONTINUE 

   CALL GRAMMAT(GAM,XM,NVV,INDVEKET2,GRMAT) 

   CALL BERCRIT12(GRMAT,CRITET) 

   CRITVEKET0(KK)=CRITET 

   IF (CRITET.LT.AMINET) THEN 

    AMINET=CRITET 

    IVERUITET0=INDVEKET0(KK) 

   ENDIF 

105   CONTINUE 

  DO 106 J=1,NV 

   INDVEKET3(J)=INDVEKET0(J) 

106  CONTINUE 

  ITEL=0 

  DO 107 J=1,NV    

   IF (INDVEKET3(J).NE.IVERUITET0) THEN 

    ITEL=ITEL+1 
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    INDVEKET0(ITEL)=INDVEKET3(J) 

   ENDIF 

   INDVEKET0(ITEL+1)=0 

107  CONTINUE 

 

C CALCULATE THE FIRST ORDER DISSIMILARITY CRITERION 

  AMINET1=1.0D100 

  CALL GRAMMAT(GAM,XM,NV,INDVEKET1,GRMAT) 

  DO 108 KK=1,NV  

   ITEL=0 

   IDIF=INDVEKET1(KK) 

   CALL BERCRITET1(IDIF,XM,GRMAT,GAM,CRITET1) 

   CRITVEKET1(KK)=CRITET1 

   IF (CRITET1.LT.AMINET1) THEN 

    AMINET1=CRITET1 

    IVERUITET1=INDVEKET1(KK) 

   ENDIF 

108  CONTINUE 

  DO 109 J=1,NV 

   INDVEKET3(J)=INDVEKET1(J) 

109  CONTINUE 

  ITEL=0 

  DO 110 J=1,NV    

   IF (INDVEKET3(J).NE.IVERUITET1) THEN 

    ITEL=ITEL+1 

    INDVEKET1(ITEL)=INDVEKET3(J) 

   ENDIF 

   INDVEKET1(ITEL+1)=0 

110  CONTINUE 

150 CONTINUE 

 

C UPDATE THE (TECHNIQUE INDEPENDENT) SELECTION FREQUENCIES 

 DO 853 I=1,NVERIN 

  II=INDVEKA0(I) 

  FREKWKIESINDEP(1,II)=FREKWKIESINDEP(1,II)+1.0D0 

853 CONTINUE 

 DO 854 I=1,NVERIN 
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  II=INDVEKA1(I) 

  FREKWKIESINDEP(2,II)=FREKWKIESINDEP(2,II)+1.0D0 

854 CONTINUE 

 DO 855 I=1,NVERIN 

  II=INDVEKA0T(I) 

  FREKWKIESINDEP(3,II)=FREKWKIESINDEP(3,II)+1.0D0 

855 CONTINUE 

 DO 856 I=1,NVERIN 

  II=INDVEKA1T(I) 

  FREKWKIESINDEP(4,II)=FREKWKIESINDEP(4,II)+1.0D0 

856 CONTINUE 

 DO 857 I=1,NVERIN 

  II=INDVEKW0(I) 

  FREKWKIESINDEP(5,II)=FREKWKIESINDEP(5,II)+1.0D0 

857 CONTINUE 

 DO 858 I=1,NVERIN 

  II=INDVEKW1(I) 

  FREKWKIESINDEP(6,II)=FREKWKIESINDEP(6,II)+1.0D0 

858 CONTINUE 

 DO 859 I=1,NVERIN 

  II=INDVEKG0(I) 

  FREKWKIESINDEP(7,II)=FREKWKIESINDEP(7,II)+1.0D0 

859 CONTINUE 

 DO 860 I=1,NVERIN 

  II=INDVEKG1(I) 

  FREKWKIESINDEP(8,II)=FREKWKIESINDEP(8,II)+1.0D0 

860 CONTINUE 

 DO 161 I=1,NVERIN 

  II=INDVEKET0(I) 

  FREKWKIESINDEP(9,II)=FREKWKIESINDEP(9,II)+1.0D0 

161 CONTINUE 

 DO 162 I=1,NVERIN 

 II=INDVEKET1(I) 

  FREKWKIESINDEP(10,II)=FREKWKIESINDEP(10,II)+1.0D0 

162 CONTINUE 
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C NOW IMPLEMENT TECHNIQUE DEPENDENT VARIABLE SELECTION 

C  THE NEXT LOOP CONSIDERS DIFFERENT VALUES OF THE COST PARAMETER 

 DO 1090 ICP=1,5 

  IF (ICP.EQ.1) CPARS=0.00001D0 

  IF (ICP.EQ.2) CPARS=0.001D0 

  IF (ICP.EQ.3) CPARS=0.1D0 

  IF (ICP.EQ.4) CPARS=10.0D0 

  IF (ICP.EQ.5) CPARS=1000.0D0 

  IF (ICP.EQ.1) CPARK=0.00001D0 

  IF (ICP.EQ.2) CPARK=0.001D0 

  IF (ICP.EQ.3) CPARK=0.1D0 

  IF (ICP.EQ.4) CPARK=10.0D0 

  IF (ICP.EQ.5) CPARK=1000.0D0 

 

C INITIALISE THE VARIABLE INDEX VECTORS 

  DO 752 J=1,IP     

   INDVEKN0(J)=J 

   INDVEKN1(J)=J 

   INDVEKR0(J)=J 

   INDVEKR1(J)=J 

752  CONTINUE 

 

  DO 750 NVERUIT=1,NNOISE 

   NV=IP-NVERUIT+1 

   NVV=NV-1 

 

C CALCULATE THE ZERO ORDER RAYLEIGH QUOTIENT 

   CALL GRAMMAT(GAM,XM,NV,INDVEKR0,GRMAT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   AMAXR=0.000000000001D0 

   DO 760 KK=1,NV  

    ITEL=0 

    DO 759 J=1,NV 

     IF (J.NE.KK) THEN 

      ITEL=ITEL+1 

      INDVEKR2(ITEL)=INDVEKR0(J) 

     ENDIF 
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759    CONTINUE 

    CALL GRAMMAT(GAM,XM,NVV,INDVEKR2,GRMAT) 

    CALL BERCRITR(GRMAT,EENP,EENM,ALPHA,CPARK,CRITR) 

    IF (CRITR.GT.AMAXR) THEN 

     AMAXR=CRITR 

     IVERUITR0=INDVEKR0(KK) 

    ENDIF 

760    CONTINUE 

    DO 762 J=1,NV 

     INDVEKR3(J)=INDVEKR0(J) 

762    CONTINUE 

    ITEL=0 

    DO 763 J=1,NV    

     IF (INDVEKR3(J).NE.IVERUITR0) THEN 

      ITEL=ITEL+1 

      INDVEKR0(ITEL)=INDVEKR3(J) 

     ENDIF 

763    CONTINUE 

    INDVEKR0(ITEL+1)=0 

 

C CALCULATE THE FIRST ORDER RAYLEIGH QUOTIENT 

    AMAXR1=-1.1D0 

    CALL GRAMMAT(GAM,XM,NV,INDVEKR1,GRMAT) 

    CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

    DO 780 KK=1,NV  

     ITEL=0      

     IDIFR=INDVEKR1(KK) 

     CALL BERCRITR1(IDIFR,XM,GRMAT,GAM,ALPHA,CRITR1) 

     CRITVEKR1(KK)=CRITR1 

     IF (CRITR1.GT.AMAXR1) THEN 

      AMAXR1=CRITR1 

      IVERUITR1=INDVEKR1(KK) 

     ENDIF 

780    CONTINUE 

    DO 782 J=1,NV 

     INDVEKR3(J)=INDVEKR1(J) 

782    CONTINUE 
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    ITEL=0 

    DO 783 J=1,NV    

     IF (INDVEKR3(J).NE.IVERUITR1) THEN 

      ITEL=ITEL+1 

      INDVEKR1(ITEL)=INDVEKR3(J) 

     ENDIF 

783    CONTINUE 

    INDVEKR1(ITEL+1)=0 

 

C CALCULATE THE ZERO ORDER NORM OF THE SVM WEIGHT COEFFICIENT 

    AMAXN=-1.0D100  

    CALL GRAMMAT(GAM,XM,NV,INDVEKN0,GRMAT) 

    CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NV,INDVEKN0,AL,BOPT) 

    DO 716 KK=1,NV  

     ITEL=0 

     DO 711 J=1,NV 

      IF (J.NE.KK) THEN 

       ITEL=ITEL+1 

       INDVEKN2(ITEL)=INDVEKN0(J) 

      ENDIF 

711     CONTINUE 

     CALL GRAMMAT(GAM,XM,NVV,INDVEKN2,GRMAT) 

     S2=0.0D0 

     DO 713 I=1,NNPMM 

      DO 712 J=1,NNPMM 

       S2=S2+AL(I)*AL(J)*YV(I)*YV(J)*GRMAT(I,J) 

712      CONTINUE 

713     CONTINUE 

     CRITN=S2 

     CRITVEKN0(KK)=CRITN 

     IF (CRITN.GT.AMAXN) THEN 

      AMAXN=CRITN 

      IVERUITN0=INDVEKN0(KK) 

     ENDIF 

716    CONTINUE 

    DO 717 J=1,NV 

     INDVEKN3(J)=INDVEKN0(J) 
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717     CONTINUE 

    ITEL=0 

    DO 718 J=1,NV    

     IF (INDVEKN3(J).NE.IVERUITN0) THEN 

      ITEL=ITEL+1 

       INDVEKN0(ITEL)=INDVEKN3(J) 

     ENDIF 

718    CONTINUE 

    INDVEKN0(ITEL+1)=0 

 

C CALCULATE THE FIRST ORDER NORM OF THE SVM WEIGHT COEFFICIENT 

    AMIN=1.0D100 

    DO 720 KK=1,NV  

     ITEL=0 

     IDIFN=INDVEKN1(KK)  

     CALL BERCRITN1(IDIFN,GAM,CPARS,YV,XM,NV,INDVEKN1,CRITN) 

     CRITVEKN1(KK)=CRITN 

     IF (CRITN.LT.AMIN) THEN 

      AMIN=CRITN 

      IVERUITN1=INDVEKN1(KK) 

     ENDIF 

720    CONTINUE 

    DO 721 J=1,NV 

     INDVEKN3(J)=INDVEKN1(J) 

721    CONTINUE 

    ITEL=0 

    DO 722 J=1,NV    

     IF (INDVEKN3(J).NE.IVERUITN1) THEN 

      ITEL=ITEL+1 

      INDVEKN1(ITEL)=INDVEKN3(J) 

     ENDIF 

722    CONTINUE 

    INDVEKN1(ITEL+1)=0 

750   CONTINUE 

 

C UPDATE THE (TECHNIQUE DEPENDENT) SELECTION FREQUENCIES 

   NVERIN=IPTEL 
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   DO 151 I=1,NVERIN 

    II=INDVEKR0(I) 

    FREKWKIES(1,II,ICP)=FREKWKIES(1,II,ICP)+1.0D0 

151   CONTINUE 

   DO 152 I=1,NVERIN 

    II=INDVEKR1(I) 

    FREKWKIES(2,II,ICP)=FREKWKIES(2,II,ICP)+1.0D0 

152   CONTINUE 

   DO 153 I=1,NVERIN 

    II=INDVEKN0(I) 

    FREKWKIES(3,II,ICP)=FREKWKIES(3,II,ICP)+1.0D0 

153   CONTINUE 

   DO 154 I=1,NVERIN 

    II=INDVEKN1(I) 

    FREKWKIES(4,II,ICP)=FREKWKIES(4,II,ICP)+1.0D0 

154   CONTINUE 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE FULL MODEL 

   CALL GRAMMAT(GAM,XM,IP,INDVEKVOL,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,IP,INDVEKVOL,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,1,ICP)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,IP,INDVEKVOL,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,1,ICP)=FOUT 

 

C CALCULATE THE TEST ERROR PERTAINING TO THE ‘ORACLE’ 
   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKVOL,GRMAT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKVOL,GRNUUT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,2,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKVOL,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,2,ICP)=FOUT    
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C CALCULATE THE FOLLOWING POST-SELECTION TEST ERRORS 

C AFTER USING THE ZERO-ORDER RAYLEIGH QUOTIENT 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKR0,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKR0,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,3,ICP)=FOUT    

 

C AFTER USING THE ZERO-ORDER NORM OF THE SVM WEIGHT VECTOR 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKN0,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKN0,GRNUUT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKN0,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,3,ICP)=FOUT   

 

C AFTER USING THE FIRST-ORDER RAYLEIGH QUOTIENT 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKR1,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKR1,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,4,ICP)=FOUT 

 

C AFTER USING THE FIRST-ORDER NORM OF THE SVM WEIGHT VECTOR 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKN1,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKN1,GRNUUT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKN1,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,4,ICP)=FOUT 

C AFTER USING THE ZERO-ORDER ALIGNMENT CRITERION 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA0,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA0,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,5,ICP)=FOUT 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA0,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,5,ICP)=FOUT    
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C AFTER USING THE FIRST-ORDER ALIGNMENT CRITERION 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA1,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA1,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,6,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA1,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,6,ICP)=FOUT    

 

C AFTER USING THE ZERO-ORDER TRANSFORMED ALIGNMENT CRITERION 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA0T,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA0T,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,7,ICP)=FOUT    

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA0T,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA0T,GRNUUT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA0T,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,7,ICP)=FOUT    

 

C AFTER USING THE FIRST-ORDER TRANSFORMED ALIGNMENT CRITERION 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA1T,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA1T,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,8,ICP)=FOUT    

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA1T,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA1T,GRNUUT) 

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA1T,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,8,ICP)=FOUT    

 

C AFTER USING THE ZERO-ORDER VARIATION RATIO CRITERION 
   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKW0,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKW0,GRNUUT) 
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   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,9,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKW0,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,9,ICP)=FOUT    

 

C AFTER USING THE FIRST-ORDER VARIATION RATIO CRITERION 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKW1,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKW1,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,10,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKW1,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,10,ICP)=FOUT     

 

C AFTER USING THE ZERO-ORDER DIFFERENCES IN MEANS 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKG0,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKG0,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,11,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKG0,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,11,ICP)=FOUT    

 

C AFTER USING THE ZERO-ORDER DIFFERENCES IN MEANS 
   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKG1,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKG1,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,12,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKG1,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,12,ICP)=FOUT    
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C AFTER USING ZERO-ORDER DISSIMILARITIES 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKET0,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKET0,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,13,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKET0,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,13,ICP)=FOUT 

 

C AFTER USING FIRST-ORDER DISSIMILARITIES 

   CALL GRAMMAT(GAM,XM,NVERIN,INDVEKET1,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKET1,GRNUUT) 

   CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT) 

   CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

   FOUTMATK(MC,14,ICP)=FOUT    

   CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKET1,AL,BOPT) 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTMATS(MC,14,ICP)=FOUT     

 

1090 CONTINUE 

THE COST PARAMETER LOOP ENDS HERE 

 

390 CONTINUE 

C THE MONTE CARLO SIMULATION LOOP ENDS HERE 

 

C CALCULATE AVERAGE TEST ERRORS AND STANDARD ERRORS 

 DO 394 K=1,5 

  DO 392 I=1,NMC 

   DO 391 J=1,14 

    FOUTGEM(J,K)=FOUTGEM(J,K)+FOUTMATK(I,J,K) 

    FOUTSTD(J,K)=FOUTSTD(J,K)+FOUTMATK(I,J,K)**2.0D0 

    FOUTGEM(14+J,K)=FOUTGEM(14+J,K)+FOUTMATS(I,J,K) 

    FOUTSTD(14+J,K)=FOUTSTD(14+J,K)+FOUTMATS(I,J,K)**2.0D0 

391   CONTINUE 

392  CONTINUE 
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  DO 393 J=1,14 

   FOUTGEM(J,K)=FOUTGEM(J,K)/NMC 

   FOUTSTD(J,K)=DSQRT((FOUTSTD(J,K)-NMC*(FOUTGEM(J,K)**2.0D0))/ 

              & (NMC*(NMC-1))) 

   FOUTGEM(14+J,K)=FOUTGEM(14+J,K)/NMC 

   FOUTSTD(14+J,K)=DSQRT((FOUTSTD(14+J,K)-NMC*(FOUTGEM(14+J,K)**2.0D0))/ 

             & (NMC*(NMC-1))) 

393  CONTINUE 

394  CONTINUE 

 

C CALCULATE SELECTION PERCENTAGES 

 DO 398 I=1,10 

  DO 397 J=1,IP 

   FREKWKIESINDEP(I,J)=FREKWKIESINDEP(I,J)/NMC 

397  CONTINUE 

398 CONTINUE 

 DO 402 ICP=1,5 

  DO 401 I=1,4 

   DO 400 J=1,IP 

    FREKWKIES(I,J,ICP)=FREKWKIES(I,J,ICP)/NMC 

400   CONTINUE 

401  CONTINUE 

402 CONTINUE 

 

C WRITE THE OBTAINED SELECTION PERCENTAGES TO A FILE 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'INDVEKA0'    

  WRITE(1,600) (FREKWKIESINDEP(1,J),J=1,IP) 

  WRITE(1,*) 'INDVEKA1' 

  WRITE(1,600) (FREKWKIESINDEP(2,J),J=1,IP) 

  WRITE(1,*) 'INDVEKA0T' 

  WRITE(1,600) (FREKWKIESINDEP(3,J),J=1,IP) 

  WRITE(1,*) 'INDVEKA1T' 

  WRITE(1,600) (FREKWKIESINDEP(4,J),J=1,IP) 

  WRITE(1,*) 'INDVEKW0' 

  WRITE(1,600) (FREKWKIESINDEP(5,J),J=1,IP) 

  WRITE(1,*) 'INDVEKW1' 
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  WRITE(1,600) (FREKWKIESINDEP(6,J),J=1,IP) 

  WRITE(1,*) 'INDVEKG0' 

  WRITE(1,600) (FREKWKIESINDEP(7,J),J=1,IP) 

  WRITE(1,*) 'INDVEKG1' 

  WRITE(1,600) (FREKWKIESINDEP(8,J),J=1,IP) 

  WRITE(1,*) 'INDVEKET0' 

  WRITE(1,600) (FREKWKIESINDEP(9,J),J=1,IP) 

  WRITE(1,*) 'INDVEKET1' 

  WRITE(1,600) (FREKWKIESINDEP(10,J),J=1,IP) 

  WRITE(1,600) 

  DO ICP=1,5 

   IF (ICP.EQ.1) CPARS=0.1D0 

   IF (ICP.EQ.2) CPARS=1.0D0 

   IF (ICP.EQ.3) CPARS=10.0D0 

   IF (ICP.EQ.4) CPARS=100.0D0 

   IF (ICP.EQ.5) CPARS=1000.0D0 

   IF (ICP.EQ.1) CPARK=0.1D0 

   IF (ICP.EQ.2) CPARK=1.0D0 

   IF (ICP.EQ.3) CPARK=10.0D0 

   IF (ICP.EQ.4) CPARK=100.0D0 

   IF (ICP.EQ.5) CPARK=1000.0D0 

   WRITE(1,*) 'CPARK=',CPARK 

   WRITE(1,*) 'INDVEKRO' 

   WRITE(1,600) (FREKWKIES(1,J,ICP),J=1,IP) 

    WRITE(1,*) 'INDVEKR1' 

   WRITE(1,600) (FREKWKIES(2,J,ICP),J=1,IP) 

   WRITE(1,*) 'CPARS=',CPARS 

   WRITE(1,*) 'INDVEKN0' 

   WRITE(1,600) (FREKWKIES(3,J,ICP),J=1,IP) 

   WRITE(1,*) 'INDVEKN1' 

   WRITE(1,600) (FREKWKIES(4,J,ICP),J=1,IP) 

   WRITE(1,600) 

  END DO 

 CLOSE(1) 
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C WRITE THE OBTAINED AVERAGE TEST ERRORS AND STANDARD ERRORS TO A FILE 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  ICP=1,5 

   IF (ICP.EQ.1) CPARS=0.1D0 

   IF (ICP.EQ.2) CPARS=1.0D0 

   IF (ICP.EQ.3) CPARS=10.0D0 

   IF (ICP.EQ.4) CPARS=100.0D0 

   IF (ICP.EQ.5) CPARS=1000.0D0 

   IF (ICP.EQ.1) CPARK=0.1D0 

   IF (ICP.EQ.2) CPARK=1.0D0 

   IF (ICP.EQ.3) CPARK=10.0D0 

   IF (ICP.EQ.4) CPARK=100.0D0 

   IF (ICP.EQ.5) CPARK=1000.0D0 

   WRITE(1,*) CPARK 

   WRITE(1,605) 'FUL','ORA','R0','R1','A0','A1','A0T','A1T','W0','W1','G0','G1','ET0','ET1' 

   WRITE(1,601) (FOUTGEM(J,ICP),J=1,14) 

   WRITE(1,601) (FOUTSTD(J,ICP),J=1,14) 

   WRITE(1,*) CPARS 

   WRITE(1,605) 'FUL','ORA','N0','N1','A0','A1','A0T','A1T','W0','W1','G0','G1','ET0','ET1' 

   WRITE(1,601) (FOUTGEM(J,ICP),J=15,28) 

   WRITE(1,601) (FOUTSTD(J,ICP),J=15,28) 

   WRITE(1,600) 

  END DO 

 CLOSE(1) 

 

C FILE FORMATS 

500 FORMAT(20I3) 

600 FORMAT(14(F6.4,1X)) 

600 FORMAT(14(F5.3,1X)) 

605 FORMAT(1X,A3,3X,A3,3X,4(A2,4X),2(A3,3X),4(A2,4X),2(A3,3X)) 

700 FORMAT(10(F20.10)) 

 

7000STOP 

END 

C END OF THE SIMULATION PROGRAM 
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C.5 VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES:  

        A TWO-STAGE APPROACH 
 

The following simulation program is an example of the Fortran code used in the Monte 

Carlo study described in Chapter 6 of the thesis.  The aim of the study was to evaluate the 

integrated use of cross-validation and the NSV -criteria together with alignments and 

variation ratios in SVM selection. 

 
C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS) 

C PERTAINING TO  

C  C.7.1  A FULL SUPPORT VECTOR CLASSIFIER 

C  C.7.2  AN SVM BASED ONLY ON THE SUBSET OF TRULY SEPARATING VARIABLES 

C  C.7.3  THE POST-SELECTION SVM AFTER USING 
   ALIGNMENTS AND THE NSV CRITERION 

   VARIATION RATIOS AND THE NSV CRITERION 

   VARIATION RATIOS AND CROSS-VALIDATION 

 

C NOTE THAT WE MAKE USE OF A BACKWARD SELECTION STRATEGY 

C THE DATA ARE GENERATED FROM A MULTIVARIATE NORMAL DISTRIBUTION AND 

C  THE TWO GROUPS DIFFER WITH RESPECT TO THEIR VARIANCE-COVARIANCE 

C  STRUCTURE 

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED 

 

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED: 

C  1.  BERCRITA 

C  2.  BERCRITW 

C  3.  BERFOUTSVM 

C  4.  CROSSVAL 

C  5.  DOENSVM 

C  6.  GRAMMAT 

C  7.  GRAMNUUT 

C  8.   

 

C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED: 

C  1.  DSQRT 

C  2.  DMACH 
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C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED: 

C  1.  DCHFAC 

C  2.  DRNMVN 

 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 PARAMETER (IPTEL=10,NNOISE=IP-IPTEL) 

 PARAMETER (NVAR=NNPMM,NCON=2*NVAR+1,NEQ=1) 

 PARAMETER (LDA=2*NVAR+1,LDH=NVAR) 

 PARAMETER (NMC=1000) 

 PARAMETER (CORR=0.0D0) 

 PARAMETER (CPAR=NNPMM/10.0D0) 

 PARAMETER (SIGFAKTOR=100.0D0) 

 

C DISTRIBUTION PARAMETERS 

 DIMENSION AMU1(IP),AMU2(IP) 

 DIMENSION SIGMAM11(IPTEL,IPTEL),RSIG11(IPTEL,IPTEL) 

 DIMENSION SIGMAM12(IPTEL,IPTEL),RSIG12(IPTEL,IPTEL) 

 DIMENSION SIGMAM2(NNOISE,NNOISE),RSIG2(NNOISE,NNOISE) 

 

C X MATRICES AND Y VECTORS 

 DIMENSION XM11(NN,IPTEL),XM21(MM,IPTEL) 

 DIMENSION XM12(NN,NNOISE),XM22(MM,NNOISE) 

 DIMENSION XM(NNPMM,IP),YV(NNPMM) 

 DIMENSION XT11(NT,IPTEL),XT21(MT,IPTEL) 

 DIMENSION XT12(NT,NNOISE),XT22(MT,NNOISE) 

 DIMENSION XT(NMT,IP),YVT(NMT) 

 DIMENSION GEM(IP),SA(IP) 

 

C SVM RELATED QUANTITIES 

 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM) 

 DIMENSION AL(NNPMM),NSV(IP,2) 

 DIMENSION ALPHA(NVAR)   

 

C SELECTION QUANTITIES 

 DIMENSION SOMVEK(IP+2,2),SOM2VEK(IP+2,2) 
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 DIMENSION INDVEKVOL(IP) 

 DIMENSION INDVEKA0(IP),INDVEKA1(IP),INDVEKA2(IP),INDVEKA3(IP) 

 DIMENSION INDVEKAMAT(IP,IP) 

 DIMENSION INDVEKW0(IP),INDVEKW1(IP),INDVEKW2(IP),INDVEKW3(IP) 

 DIMENSION INDVEKWMAT(IP,IP) 

 DIMENSION INDREEKS(IP) 

 DIMENSION CRITVEKA(IP),CRITVEKW(IP),CRITVEKG(IP) 

 DIMENSION CRITVEKA0(IP),CRITVEKW0(IP) 

 DIMENSION AKIES(IP,IP),WKIES(IP,IP),ADIM(IP),WDIM(IP),CVDIM(IP) 

 DIMENSION FOUTAVEK(IP),FOUTWVEK(IP)      

 

 CHARACTER*70 FILEOUT1,FILEOUT2 

 FILEOUT1='kiesNS.d' 

 FILEOUT2='foutNS.d' 

 

C WRITE FILE HEADERS 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  WRITE(1,*) 'NORMAALVERDELING ',NMC,' MC HERHALINGS' 

  WRITE(1,*) IP,' VERANDERLIKES',NN,' STEEKPROEFGR' 

  WRITE(1,*) IPTEL,' RELEVANTE VERANDERLIKES' 

  WRITE(1,*) 'KORRELASIE=',CORR,' SIGFAKTOR=',SIGFAKTOR 

  WRITE(1,600) 

 CLOSE(1) 

 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,*) 'NORMAALVERDELING ',NMC,' MC HERHALINGS' 

  WRITE(1,*) IP,' VERANDERLIKES',NN,' STEEKPROEFGR' 

  WRITE(1,*) IPTEL,' RELEVANTE VERANDERLIKES' 

  WRITE(1,*) 'KOR=',CORR,' SIGFAKTOR=',SIGFAKTOR 

  WRITE(1,600) 

 CLOSE(1) 

  

C SETUP THE DISTRIBUTION PARAMETERS 

 DO 3 I=1,IPTEL 

  AMU1(I)=0.0D0 

  AMU2(I)=0.0D0 

  DO 2 J=1,IPTEL 
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   SIGMAM11(I,J)=CORR 

   SIGMAM12(I,J)=CORR 

2  CONTINUE       

  SIGMAM11(I,I)=1.0D0 

  SIGMAM12(I,I)=1.0D0*SIGFAKTOR 

3 CONTINUE 

 DO 5 I=1,NNOISE 

  AMU1(IPTEL+I)=0.0D0 

  AMU2(IPTEL+I)=0.0D0 

  DO 4 J=1,NNOISE 

   SIGMAM2(I,J)=0.0D0 

4  CONTINUE 

  SIGMAM2(I,I)=20.0D0 

5 CONTINUE 

 TOL=1.0D2*DMACH(4) 

 CALL DCHFAC(IPTEL,SIGMAM11,IPTEL,TOL,IRANK,RSIG11,IPTEL) 

 CALL DCHFAC(IPTEL,SIGMAM12,IPTEL,TOL,IRANK,RSIG12,IPTEL) 

 CALL DCHFAC(NNOISE,SIGMAM2,NNOISE,TOL,IRANK,RSIG2,NNOISE) 

 

C SET UP THE RESPONSE VECTOR FOR THE TRAINING AND TEST DATA 
 DO 8 I=1,NN 

  YV(I)=-1.0D0 

8 CONTINUE 

 DO 9 I=NN+1,NNPMM 

  YV(I)=1.0D0 

9 CONTINUE       

 DO 10 I=1,NT 

  YVT(I)=-1.0D0 

10  CONTINUE       

 DO 11 I=NT+1,NMT 

  YVT(I)=1.0D0 

11 CONTINUE 

 

C INITIALISE THE TEST ERRORS 

 FOUTA=0.0D0 

 FOUTA2=0.0D0 

 FOUTW=0.0D0 
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 FOUTW2=0.0D0 

 FOUTCV=0.0D0 

 FOUTCV2=0.0D0 

 

C INITIALISE THE TEST AND STANDARD ERRORS VECTORS 
 DO J=1,IP+1 

  SOMVEK(J,1)=0.0D0 

  SOMVEK(J,2)=0.0D0   

  SOM2VEK(J,1)=0.0D0 

  SOM2VEK(J,2)=0.0D0   

 END DO 

 

C INITIALISE THE SELECTED DIMENSION AND VARIABLE INDEX VECTORS 

 DO I=1,IP 

  ADIM(I)=0.0D0 

  WDIM(I)=0.0D0 

  CVDIM(I)=0.0D0 

  DO J=1,IP 

   AKIES(I,J)=0.0D0   

   WKIES(I,J)=0.0D0  

  END DO 

 END DO 

 

C THE SIMULATION LOOP STARTS HERE 

 DO 390 MC=1,NMC 

C  WRITE(6,*) MC 

 

C GENERATE THE DATA FROM GROUP 1 
  CALL DRNMVN(NN,IPTEL,RSIG11,IPTEL,XM11,NN) 

  DO 18 I=1,NN 

   DO 17 J=1,IPTEL 

    XM(I,J)=XM11(I,J)+AMU1(J) 

17   CONTINUE  

18  CONTINUE 

  CALL DRNMVN(NN,NNOISE,RSIG2,NNOISE,XM12,NN) 

  DO 20 I=1,NN 

   DO 19 J=1,NNOISE 
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    XM(I,J+IPTEL)=XM12(I,J)+AMU1(J+IPTEL) 

19   CONTINUE  

20  CONTINUE 

 

C GENERATE THE DATA FROM GROUP 2 
  CALL DRNMVN(MM,IPTEL,RSIG12,IPTEL,XM21,MM) 

  DO 22 I=1,MM 

   DO 21 J=1,IPTEL 

    XM(NN+I,J)=XM21(I,J)+AMU2(J) 

21   CONTINUE  

22  CONTINUE 

  CALL DRNMVN(MM,NNOISE,RSIG2,NNOISE,XM22,MM) 

  DO 24 I=1,MM 

   DO 23 J=1,NNOISE 

    XM(NN+I,J+IPTEL)=XM22(I,J)+AMU2(J+IPTEL) 

23   CONTINUE  

24  CONTINUE 

 

C GENERATE THE TEST DATA 

  CALL DRNMVN(NT,IPTEL,RSIG11,IPTEL,XT11,NT) 

  CALL DRNMVN(NT,NNOISE,RSIG2,NNOISE,XT12,NT) 

  CALL DRNMVN(MT,IPTEL,RSIG12,IPTEL,XT21,MT) 

  CALL DRNMVN(MT,NNOISE,RSIG2,NNOISE,XT22,MT) 

  DO 36 I=1,NT 

   DO 35 J=1,IPTEL 

    XT(I,J)=XT11(I,J)+AMU1(J) 

35   CONTINUE  

36  CONTINUE 

  DO 38 I=1,NT 

   DO 37 J=1,NNOISE 

    XT(I,J+IPTEL)=XT12(I,J)+AMU1(J+IPTEL) 

37   CONTINUE  

38  CONTINUE 

  DO 40 I=1,MT 

   DO 39 J=1,IPTEL 

    XT(NT+I,J)=XT21(I,J)+AMU2(J) 

39   CONTINUE  



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

387 

40  CONTINUE 

  DO 42 I=1,MT 

   DO 41 J=1,NNOISE 

    XT(NT+I,J+IPTEL)=XT22(I,J)+AMU2(J+IPTEL) 

41   CONTINUE  

42  CONTINUE 

 

C STANDARDISE THE TRAINING DATA 

  DO 44 J=1,IP 

   S1=0.0D0 

   S2=0.0D0 

   DO 43 I=1,NNPMM 

    S1=S1+XM(I,J) 

    S2=S2+XM(I,J)*XM(I,J) 

43   CONTINUE 

   GEM(J)=S1/NNPMM 

   SA(J)=DSQRT((S2-NNPMM*GEM(J)*GEM(J))/(NNPMM-1)) 

44  CONTINUE       

  DO 47 J=1,IP 

   DO 46 I=1,NNPMM 

    XM(I,J)=(XM(I,J)-GEM(J))/SA(J) 

46   CONTINUE 

47  CONTINUE 

 

C STANDARDISE THE TEST DATA 

  DO 49 J=1,IP 

   DO 48 I=1,NMT 

    XT(I,J)=(XT(I,J)-GEM(J))/SA(J) 

48   CONTINUE 

49  CONTINUE  

  DO 52 J=1,IP     

   INDVEKVOL(J)=J 

   INDVEKA0(J)=J 

   INDVEKW0(J)=J 

52  CONTINUE 

 

  GAM=1.0D0/IP     
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C OMIT A SINGLE VARIABLE-AT-A-TIME 

  DO 150 NVERUIT=1,IP-1 

   NV=IP-NVERUIT+1 

   NVV=NV-1 

 

   DO J=1,IP 

    INDVEKAMAT(IP+1-NVERUIT,J)=INDVEKA0(J) 

    INDVEKWMAT(IP+1-NVERUIT,J)=INDVEKW0(J) 

   END DO 

 

C CALCULATE THE ALIGNMENT-0 CRITERION 

   AMAXA=-1.1D0 

   DO 70 KK=1,NV  

    ITEL=0 

    DO 65 J=1,NV 

     IF (J.NE.KK) THEN 

      ITEL=ITEL+1 

      INDVEKA2(ITEL)=INDVEKA0(J) 

     ENDIF 

65    CONTINUE 

   CALL GRAMMAT(GAM,XM,NVV,INDVEKA2,GRMAT) 

   CALL BERCRITA(GRMAT,CRITA) 

   CRITVEKA0(KK)=CRITA 

   IF (CRITA.GT.AMAXA) THEN 

    AMAXA=CRITA 

    IVERUITA=INDVEKA0(KK) 

   ENDIF 

70   CONTINUE 

   DO 72 J=1,NV 

    INDVEKA3(J)=INDVEKA0(J) 

72   CONTINUE 

   ITEL=0 

   DO 73 J=1,NV    

    IF (INDVEKA3(J).NE.IVERUITA) THEN 

     ITEL=ITEL+1 

     INDVEKA0(ITEL)=INDVEKA3(J) 

    ENDIF 
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    INDVEKA0(ITEL+1)=0 

73   CONTINUE 

 

C CALCULATE THE VARIATION RATIO CRITERION 

   AMAXW=-1.1D0 

   DO 90 KK=1,NV  

    ITEL=0 

    DO 85 J=1,NV 

     IF (J.NE.KK) THEN 

      ITEL=ITEL+1 

      INDVEKW2(ITEL)=INDVEKW0(J) 

     ENDIF 

85    CONTINUE 

    CALL GRAMMAT(GAM,XM,NVV,INDVEKW2,GRMAT) 

    CALL BERCRITW(GRMAT,CRITW,CRITDUMMY) 

    CRITVEKW0(KK)=CRITW 

    IF (CRITW.GT.AMAXW) THEN 

     AMAXW=CRITW 

     IVERUITW=INDVEKW0(KK) 

    ENDIF 

90   CONTINUE 

   DO 91 J=1,NV 

    INDVEKW3(J)=INDVEKW0(J) 

91   CONTINUE 

   ITEL=0 

   DO 92 J=1,NV    

    IF (INDVEKW3(J).NE.IVERUITW) THEN 

     ITEL=ITEL+1 

     INDVEKW0(ITEL)=INDVEKW3(J) 

    ENDIF 

    INDVEKW0(ITEL+1)=0 

92   CONTINUE 

150  CONTINUE 

C END OF THE ONE VARIABLE AT-A-TIME LOOP 
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C UPDATE THE SELECTED INPUT VARIABLE INDEX VECTORS 

  DO J=1,IP 

   INDVEKAMAT(1,J)=INDVEKA0(J) 

   INDVEKWMAT(1,J)=INDVEKW0(J) 

  END DO 

  DO I=1,IP 

   DO J=1,I 

    AKIES(I,INDVEKAMAT(I,J))=AKIES(I,INDVEKAMAT(I,J))+1.0D0 

    WKIES(I,INDVEKWMAT(I,J))=WKIES(I,INDVEKWMAT(I,J))+1.0D0    

   END DO 

  END DO 

 

C NOW CALCULATE THE ERROR RATES FOR THE SEQUENCES OF SELECTED INPUT 

C VARIABLES AND THE NUMBER OF SUPPORT VECTORS CORRESPONDING TO EACH 

  DO J=1,IP 

   NSV(J,1)=0 

   NSV(J,2)=0 

  END DO 

  DO J=1,IP 

   NVERIN=J 

   GAM=1.0D0/J 

   DO I=1,J 

    INDREEKS(I)=INDVEKAMAT(J,I) 

   END DO 

   CALL GRAMMAT(GAM,XM,NVERIN,INDREEKS,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDREEKS,GRNUUT) 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,NVERIN,INDREEKS,AL,BOPT) 

   DO I=1,NNPMM 

    IF(AL(I).GT.0.1D-20) NSV(J,1)=NSV(J,1)+1 

   END DO 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTAVEK(J)=FOUT 

   SOMVEK(J,1)=SOMVEK(J,1)+FOUT 

   SOM2VEK(J,1)=SOM2VEK(J,1)+FOUT**2.0D0 

   DO I=1,J 

    INDREEKS(I)=INDVEKWMAT(J,I) 

   END DO 
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   CALL GRAMMAT(GAM,XM,NVERIN,INDREEKS,GRMAT) 

   CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDREEKS,GRNUUT) 

   CALL DOENSVM(YV,XM,GRMAT,CPAR,NVERIN,INDREEKS,AL,BOPT) 

   DO I=1,NNPMM 

    IF(AL(I).GT.0.1D-20) NSV(J,2)=NSV(J,2)+1 

   END DO 

   CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

   FOUTWVEK(J)=FOUT 

   SOMVEK(J,2)=SOMVEK(J,2)+FOUT 

   SOM2VEK(J,2)=SOM2VEK(J,2)+FOUT**2.0D0 

  END DO 

 

C USE CROSS-VALIDATION TO DETERMINE THE NUMBER OF INPUT VARIABLES 

  CALL CROSSVAL(XM,YV,INDVEKWMAT,IBESTDIM) 

  IAMIN=NNPMM+1 

  IWMIN=NNPMM+1 

 

C USE THE NUMBER OF SUPPORT VECTORS (CALCULATED ABOVE) TO DETERMINE THE 

C NUMBER OF INPUT VARIABLES (BASED ON ALIGNMENTS AND VARIATION RATIOS) 

  DO J=1,IP 

   IF(NSV(J,1).LT.IAMIN) THEN 

    IAMIN=NSV(J,1) 

    IADIM=J 

   END IF 

   IF(NSV(J,2).LT.IWMIN) THEN 

    IWMIN=NSV(J,2) 

    IWDIM=J 

   END IF 

  END DO 

 

C UPDATE THE NUMBER OF INPUT VARIABLES SELECTED 

  ADIM(IADIM)=ADIM(IADIM)+1.0D0 

  WDIM(IWDIM)=WDIM(IWDIM)+1.0D0 

  CVDIM(IBESTDIM)=CVDIM(IBESTDIM)+1.0D0 

 

C UPDATE THE TEST ERROR AND STANDARD ERROR VECTORS 

  FOUTA=FOUTA+FOUTAVEK(IADIM) 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

392 

  FOUTA2=FOUTA2+FOUTAVEK(IADIM)**2.0D0         

  FOUTW=FOUTW+FOUTWVEK(IWDIM)   

  FOUTW2=FOUTW2+FOUTWVEK(IWDIM)**2.0D0  

  FOUTCV=FOUTCV+FOUTWVEK(IBESTDIM) 

  FOUTCV2=FOUTCV2+FOUTWVEK(IBESTDIM)**2.0D0  

 

C CALCULATE THE TEST ERROR WHEN ONLY THE SUBSET OF SEPARATING 

C  VARIABLES IS USED 

  GAM=1.0D0/IPTEL 

  CALL GRAMMAT(GAM,XM,IPTEL,INDVEKVOL,GRMAT) 

  CALL GRAMNUUT(GAM,XM,XT,IPTEL,INDVEKVOL,GRNUUT) 

  CALL DOENSVM(YV,XM,GRMAT,CPAR,IPTEL,INDVEKVOL,AL,BOPT) 

  CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT) 

  SOMVEK(IP+1,1)=SOMVEK(IP+1,1)+FOUT 

  SOM2VEK(IP+1,1)=SOM2VEK(IP+1,1)+FOUT**2.0D0 

390 CONTINUE 

C THE MONTE CARLO SIMULATION LOOP ENDS HERE 

 

C CALCULATE THE AVERAGE TEST ERRORS AND STANDARD ERRORS 

 FOUTA=FOUTA/NMC 

 FOUTW=FOUTW/NMC 

 FOUTCV=FOUTCV/NMC 

 FOUTA2=DSQRT((FOUTA2/NMC-FOUTA**2.0D0)/NMC) 

 FOUTW2=DSQRT((FOUTW2/NMC-FOUTW**2.0D0)/NMC) 

 FOUTCV2=DSQRT((FOUTCV2/NMC-FOUTCV**2.0D0)/NMC) 

 DO J=1,IP+1 

  SOMVEK(J,1)=SOMVEK(J,1)/NMC 

  SOMVEK(J,2)=SOMVEK(J,2)/NMC 

  SOM2VEK(J,1)=DSQRT((SOM2VEK(J,1)/NMC-SOMVEK(J,1)**2.0D0)/NMC) 

  SOM2VEK(J,2)=DSQRT((SOM2VEK(J,2)/NMC-SOMVEK(J,2)**2.0D0)/NMC) 

 END DO 

 

C CALCULATE THE AVERAGE NUMBER OF SELECTED INPUT VARIABLES AND SELECTION 

C PERCENTAGES 

 DO I=1,IP 

  ADIM(I)=ADIM(I)/NMC 

  WDIM(I)=WDIM(I)/NMC 
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  CVDIM(I)=CVDIM(I)/NMC 

  DO J=1,IP 

   AKIES(I,J)=AKIES(I,J)/NMC 

   WKIES(I,J)=WKIES(I,J)/NMC 

  END DO 

 END DO 

 

C WRITE THE OBTAINED AVERAGE TEST ERRORS AND STANDARD ERRORS TO A FILE 

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND') 

  WRITE(1,600) FOUTA,FOUTA2 

  WRITE(1,600) (SOMVEK(J,1),J=1,IP+1) 

  WRITE(1,600) (SOM2VEK(J,1),J=1,IP+1) 

  WRITE(1,*) 

  WRITE(1,600) FOUTW,FOUTW2 

  WRITE(1,600) (SOMVEK(J,2),J=1,IP+1) 

  WRITE(1,600) (SOM2VEK(J,2),J=1,IP+1) 

  WRITE(1,*) 

  WRITE(1,600) FOUTCV,FOUTCV2 

  WRITE(1,600) (SOMVEK(J,2),J=1,IP+1) 

  WRITE(1,600) (SOM2VEK(J,2),J=1,IP+1) 

  WRITE(1,*) 

 CLOSE(1) 

 

C WRITE THE AVERAGE NUMBER OF INPUT VARIABLES SELECTED AND THE OBTAINED 

C  SELECTION PERCENTAGES TO A FILE 

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND') 

  DO I=1,IP 

   WRITE(1,600) (AKIES(I,J),J=1,IP) 

  END DO 

  WRITE(1,*) 

  WRITE(1,600) (ADIM(I),I=1,IP) 

  WRITE(1,*) 

  DO I=1,IP 

   WRITE(1,600) (WKIES(I,J),J=1,IP) 

  END DO 

  WRITE(1,*) 

  WRITE(1,600) (WDIM(I),I=1,IP) 
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  WRITE(1,*) 

  DO I=1,IP 

   WRITE(1,600) (WKIES(I,J),J=1,IP) 

  END DO 

  WRITE(1,*) 

  WRITE(1,600) (CVDIM(I),I=1,IP) 

  WRITE(1,*) 

 CLOSE(1) 

 

C FILE FORMATS 

500 FORMAT(20I3) 

600 FORMAT(15(F10.5,1X)) 

605 FORMAT(I6,2X,4(F12.5,1X)) 

700 FORMAT(10(F20.10)) 

 

STOP 

END 

C THE SIMULATION PROGRAM ENDS HERE 
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C.6  FUNCTIONS AND SUBROUTINES 

 

FUNCTION ALIGNMENT 

SUBROUTINE BERFOUTKFDA 

SUBROUTINE BERFOUTLDA 

SUBROUTINE BERFOUTSVM 

SUBROUTINE DOENSVM 

SUBROUTINE GEMVARV 

SUBROUTINE GRAMMAT 

SUBROUTINE GRAMNUUT 

SUBROUTINE FCN 

SUBROUTINE PREIMAGE 

SUBROUTINE RANFOR 

SUBROUTINE BUILDTREE 

SUBROUTINE FINDBESTSPLIT 

SUBROUTINE TESTREEBAG 

SUBROUTINE PERMOBMR 

SUBROUTINE ZERV 

SUBROUTINE ZERVR 

SUBROUTINE ZERM 

SUBROUTINE PACKLB 

SUBROUTINE UNPACKLB 

SUBROUTINE QUICKSORT 

SUBROUTINE PERM1 

SUBROUTINE RAND1 

SUBROUTINE LRND 

SUBROUTINE LRND1 

FUNCTION RNORM 

SUBROUTINE BERCRITW 

SUBROUTINE BERCRIT12 

SUBROUTINE BERCRITCC 

SUBROUTINE BERCRITR 

FUNCTION ALIGNMENTTRANS 

SUBROUTINE GRAMMATL 

SUBROUTINE BERCRITA0 

SUBROUTINE BERCRITA1 

SUBROUTINE BERCRITW0 
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SUBROUTINE BERCRITW1 

SUBROUTINE BERCRITW 

SUBROUTINE BERCRITG1 

SUBROUTINE BERCRIT12 

SUBROUTINE BERCRITET1 

SUBROUTINE BERCRITN1 

SUBROUTINE BERCRITR 

SUBROUTINE BERCRITR1 

SUBROUTINE BERCRITA 

SUBROUTINE BERCRITW 

SUBROUTINE CROSSVAL 

SUBROUTINE DEELGRAMNUUT 

SUBROUTINE DOENSVMIN 

SUBROUTINE BERFOUTSVMUIT 

 

FUNCTION ALIGNMENT(J,XM) 

C CALCULATES THE ALIGNMENT SELECTION CRITERION TO EVALUATE THE 

C IMPORTANCE OF INPUT VARIABLE J  

C INPUT:     THE INDEX (J) OF THE INPUT VARIABLE TO EVALUATE 

C                   THE TRAINING INPUT PATTERNS 

C OUTPUT: THE ALIGNMENT VALUE 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1) 

 DIMENSION XM(NNPMM,IP) 

 S1=0.0D0 

 S2=0.0D0 

 S3=0.0D0 

 S4=0.0D0 

 DO 5 I1=1,NN 

  DO 4 I2=1,NN 

   S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J)) 

   S1=S1+DEXP(-S) 

   S4=S4+DEXP(-2*S) 

4  CONTINUE 

5 CONTINUE 

 DO 10 I1=NN+1,NNPMM 

  DO 9 I2=NN+1,NNPMM 
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   S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J)) 

   S2=S2+DEXP(-S) 

   S4=S4+DEXP(-2*S) 

9  CONTINUE 

10 CONTINUE 

 DO 15 I1=1,NN 

  DO 14 I2=NN+1,NNPMM 

   S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J)) 

   S3=S3+DEXP(-S) 

   S4=S4+2.0D0*DEXP(-2*S) 

14  CONTINUE 

15 CONTINUE 

 S3=2.0D0*S3 

 ALIGNMENT=(S1+S2-S3)/((1.0D0*NNPMM)*DSQRT(S4)) 

RETURN 

END 

C END OF THE ALIGNMENT FUNCTION 

 

SUBROUTINE BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT) 

C CALCULATES A KFDA TEST ERROR 

C INPUT:      KERNEL MATRIX ON THE TEST INPUT PATTERNS 

                    THE TEST LABELS 

                    THE FITTED KFD ALPHA VECTOR 

C OUTPUT: THE NUMBER OF INCORRECT CLASSIFICATIONS ON THE TEST DATA SET 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 DIMENSION GRNUUT(NMT,NNPMM),ALPHA(NNPMM),YVT(NMT) 

 FOUT=0.0D0       

 DO 10 I=1,NMT 

  TOETS=1.0D0 

  S=BOPT 

  DO 5 J=1,NNPMM 

   S=S+ALPHA(J)*GRNUUT(I,J) 

5  CONTINUE 

  IF (S.LT.0.0D0) TOETS=-1.0D0 

  IF (DABS((YVT(I)-TOETS)).GT.0.1D0) FOUT=FOUT+1.0D0 
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10 CONTINUE       

 FOUT=FOUT/NMT 

RETURN 

END 

C END OF THE BERFOUTKFDA SUBROUTINE 
 

SUBROUTINE BERFOUTLDA(XM,XT,YVT,NVER,JIND,FOUT) 

C CALCULATES AN LDA TEST ERROR 

C INPUT:      THE TEST AND TRAINING INPUT PATTERNS 

C                    THE TEST LABELS 

C                    THE NO. OF AND INDICES OF THE SUBSET OF INPUT VARIABLES 

C USES:        GEMVARV AND DLINDS 

C OUTPUT: THE NUMBER OF INCORRECT CLASSIFICATIONS ON THE TEST DATA SET 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 DIMENSION XM(NNPMM,IP),XT(NMT,IP),YVT(NMT) 

 DIMENSION XGEM1(IP),XGEM2(IP) 

 DIMENSION SINV(IP,IP),SMAT(IP,IP),SMAT1(IP,IP) 

 DIMENSION XV(NVER),JIND(IP) 

 

 CALL GEMVARV(XM,SMAT,XGEM1,XGEM2) 

 

 DO I=1,NVER 

  DO J=1,NVER 

   SMAT1(I,J)=SMAT(JIND(I),JIND(J)) 

  END DO 

 END DO 

 

 CALL DLINDS(NVER,SMAT1,IP,SINV,IP) 

 

 FOUT=0.0D0 

 DO 1151 I=1,NMT 

  DO 1148 J=1,NVER 

   XV(J)=XT(I,JIND(J)) 

1148 CONTINUE        

  SOM1=0.0D0 
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  SOM2=0.0D0 

  DO 1150 I1=1,NVER 

   DO 1149 I2=1,NVER 

    V1=XV(I1)-XGEM1(JIND(I1)) 

    V2=XV(I2)-XGEM1(JIND(I2)) 

    SOM1=SOM1+V1*SINV(I1,I2)*V2 

    V1=XV(I1)-XGEM2(JIND(I1)) 

    V2=XV(I2)-XGEM2(JIND(I2)) 

    SOM2=SOM2+V1*SINV(I1,I2)*V2 

1149  CONTINUE 

1150 CONTINUE 

  DIST1=SOM1-DLOG((1.0D0*NN)/(1.0D0*MM)) 

  DIST2=SOM2 

  IF (DIST1.LT.DIST2) GROEP=-1.0D0 

  IF (DIST1.GE.DIST2) GROEP=1.0D0 

  IF (DABS((YVT(I)-GROEP)).GT.0.1D0) FOUT=FOUT+1.0D0 

1151CONTINUE 

 FOUT=FOUT/NMT 

RETURN 

END 

C END OF THE BERFOUTLDA SUBROUTINE 

 

SUBROUTINE BERFOUTSVM(YV,GRNUUT,YVT,ALPHA,BOPT,FOUT) 

C CALCULATES AN SVM TEST ERROR   

C INPUT:      KERNEL MATRIX ON THE TEST INPUT PATTERNS 

C                    THE TEST LABELS 

C                    THE FITTED SVM ALPHA VECTOR 

C OUTPUT: THE NUMBER OF INCORRECT CLASSIFICATIONS ON THE TEST DATA SET 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 DIMENSION GRNUUT(NMT,NNPMM),ALPHA(NNPMM),YVT(NMT) 

 DIMENSION YV(NNPMM) 

 FOUT=0.0D0       

 DO 10 I=1,NMT 

  TOETS=1.0D0 

  S=BOPT 
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  DO 5 J=1,NNPMM 

   S=S+ALPHA(J)*YV(J)*GRNUUT(I,J) 

5  CONTINUE 

  IF (S.LT.0.0D0) TOETS=-1.0D0 

  IF (DABS((YVT(I)-TOETS)).GT.0.1D0) FOUT=FOUT+1.0D0 

10 CONTINUE       

 FOUT=FOUT/NMT 

RETURN 

END 

C END OF THE BERFOUTSVM SUBROUTINE 

 

SUBROUTINE DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT) 

C OBTAINS THE KFD ALPHA VECTOR  (USING ALL COMPONENTS, OR ONLY A SUBSET 

C OF COMPONENTS OF THE TRAINING INPUTS) 

C INPUT:      THE KERNEL MATRIX ON THE INPUT PATTERNS (ALL COMPONENTS OR 

C                         ONLY A SUBSET) 

C USES:             DLSASF 

C OUTPUT: THE KFD ALPHA VECTOR 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (LDH=NNPMM) 

 DIMENSION GRMAT(NNPMM,NNPMM) 

 DIMENSION EENP(NNPMM),EENM(NNPMM) 

 DIMENSION B(NNPMM),H(NNPMM,NNPMM) 

 DIMENSION ALPHA(NNPMM),AKM(NNPMM),AKP(NNPMM),SOM(NNPMM) 

 DO 55 J=1,NNPMM 

  S1=0.0D0 

  S2=0.0D0 

  DO 54 I=1,NNPMM 

   S1=S1+GRMAT(I,J)*EENM(I) 

   S2=S2+GRMAT(I,J)*EENP(I) 

54  CONTINUE 

  AKM(J)=S1/NN 

  AKP(J)=S2/MM 

  SOM(J)=AKP(J)+AKM(J) 

  B(J)=AKP(J)-AKM(J) 

55 CONTINUE 
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 DO 58 J1=1,NNPMM 

  DO 57 J2=1,NNPMM 

   S=0.0D0 

   DO 56 I=1,NNPMM 

    S=S+GRMAT(I,J1)*GRMAT(I,J2) 

56   CONTINUE 

  H(J1,J2)=(S-MM*AKP(J1)*AKP(J2)-NN*AKM(J1)*AKM(J2))/NNPMM 

57  CONTINUE 

  H(J1,J1)=H(J1,J1)+CPAR 

58 CONTINUE 

 CALL DLSASF(NNPMM,H,LDH,B,ALPHA) 

 AS=0.0D0 

 DO 59 J=1,NNPMM 

  AS=AS+ALPHA(J)*SOM(J) 

59 CONTINUE 

 BOPT=-0.50*AS-DLOG((1.0D0*NN)/(1.0D0*MM)) 

RETURN 

END 

C END OF THE DOENKFDA SUBROUTINE  

 

SUBROUTINE DOENSVM(YV,XM,GRMAT,CPAR,GAM,NVER,INDVEK,AL,BOPT) 

C OBTAINS THE SVM ALPHA VECTOR (USING ALL COMPONENTS, OR ONLY A SUBSET OF 

C COMPONENTS OF THE TRAINING INPUT PATTERNS) 

C INPUT:      A VALUE FOR THE KERNEL HYPERPARAMETER 

C                   THE KERNEL MATRIX 

C                   THE VECTOR OF INDICES TO THE COMPONENTS IN INPUT PATTERNS TO BE 

C                   USED 

C USES:       DQPROG, DSVRGP 

C OUTPUT: THE KERNEL MATRIX 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NVAR=NNPMM,NCON=2*NVAR+1,NEQ=1,LDA=NCON,LDH=NVAR) 

 DIMENSION XM(NNPMM,IP),YV(NNPMM),GRMAT(NNPMM,NNPMM) 

 DIMENSION XV(IP),XVV(IP) 

 DIMENSION A(NCON,NVAR),B(NCON),G(NVAR),H(NVAR,NVAR) 

 DIMENSION SOL(NVAR),ALAM(NVAR),AL(NNPMM) 

 DIMENSION FW(NNPMM),FWR(NNPMM),YVR(NNPMM) 
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 DIMENSION IACT(NVAR),IPERM(NNPMM) 

 DIMENSION INDVEK(IP) 

 

 EP=1.0D-8  

 DO 28 I=1,NVAR 

  A(1,I)=YV(I) 

28 CONTINUE 

 DO 30 I=1,NVAR 

  DO 29 J=1,NVAR 

   A(I+1,J)=0.0D0 

   A(NVAR+I+1,J)=0.0D0 

29  CONTINUE   

  A(I+1,I)=1.0D0 

  A(NVAR+I+1,I)=-1.0D0  

30 CONTINUE 

 B(1)=0.0D0 

 DO 35 I=1,NVAR 

  B(I+1)=0.0D0 

  B(NVAR+I+1)=-1.0D0*CPAR 

35 CONTINUE 

 DO 36 I=1,NVAR 

  G(I)=-1.0D0 

36 CONTINUE 

 DO 40 I=1,NVAR 

  DO 39 J=1,NVAR 

   H(I,J)=YV(I)*YV(J)*GRMAT(I,J) 

39  CONTINUE       

40 CONTINUE       

 CALL DQPROG(NVAR,NCON,NEQ,A,LDA,B,G,H,LDH,DIAG,SOL,NACT, 

      & IACT,ALAM) 

 DO 45 I=1,NVAR 

  IF (DABS(SOL(I)).LT.EP) SOL(I)=0.0D0 

  IF (DABS(SOL(I)-CPAR).LT.EP) SOL(I)=CPAR 

  AL(I)=SOL(I) 

45 CONTINUE 
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C DETERMINE THE Y INTERCEPT VALUE 

 DO 200 J=1,NNPMM 

  IPERM(J)=J 

  S=0.0D0 

  DO 199 I=1,NNPMM 

   S=S+AL(I)*YV(I)*GRMAT(I,J) 

199  CONTINUE 

  FW(J)=S 

200 CONTINUE 

 CALL DSVRGP(NNPMM,FW,FWR,IPERM) 

 DO 205 I=1,NNPMM 

  YVR(I)=YV(IPERM(I)) 

205 CONTINUE 

 BPAR=-FWR(1)+1.0D0 

 BOPT=BPAR 

 NFOUTE=NN 

 NFOUTEOPT=NFOUTE 

 NTEL=0 

210  NTEL=NTEL+1 

 BPAR=-(FWR(NTEL)+FWR(NTEL+1))/2.0D0 

 IF (YVR(NTEL).LE.0.0D0) NFOUTE=NFOUTE-1 

 IF (YVR(NTEL).GT.0.0D0) NFOUTE=NFOUTE+1 

 IF (NFOUTE.LT.NFOUTEOPT) THEN 

  NFOUTEOPT=NFOUTE 

  BOPT=BPAR 

 ENDIF 

 IF (NTEL.LE.NNPMM-2) GOTO 210 

RETURN 

END 

END OF THE DOENSVM SUBROUTINE 

 

SUBROUTINE GEMVARV(XX,SMAT,XGEM1,XGEM2) 

C REQUIRED IN BERFOUTLDA 

C OBTAINS  

C INPUT: 

C USES:       DCORVC, 

C OUTPUT: IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
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 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XX(NNPMM,IP),XX1(NN,IP),XX2(MM,IP) 

 DIMENSION XGEM1(IP),XGEM2(IP) 

 DIMENSION SMAT(IP,IP),S1(IP,IP),S2(IP,IP) 

 EXTERNAL DCORVC,DLINDS 

 DO 10 I=1,NN 

  DO 5 J=1,IP 

   XX1(I,J)=XX(I,J) 

5  CONTINUE 

10 CONTINUE 

 DO 20 I=1,MM 

  DO 15 J=1,IP 

   XX2(I,J)=XX(NN+I,J) 

15  CONTINUE 

20 CONTINUE       

 IDO=0 

 NROW=NN 

 NVAR=IP 

 LDX=NN 

 IFRQ=0 

 IWT=0 

 MOPT=0 

 ICOPT=0 

 LDCOV=IP 

 LDINCD=1 

 CALL DCORVC(IDO,NROW,NVAR,XX1,LDX,IFRQ,IWT,MOPT, 

 &            ICOPT,XGEM1,S1,LDCOV,INCD,LDINCD,NOBS, 

 &            NMISS,SUMWT) 

 NROW=MM 

 LDX=MM 

 CALL DCORVC(IDO,NROW,NVAR,XX2,LDX,IFRQ,IWT,MOPT, 

 &            ICOPT,XGEM2,S2,LDCOV,INCD,LDINCD,NOBS, 

 &            NMISS,SUMWT) 

 NOEM=NN+MM-2 

 DO 30 I=1,IP 

  DO 25 J=1,IP 

   SMAT(I,J)=((NN-1)*S1(I,J)+(MM-1)*S2(I,J))/NOEM 
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25  CONTINUE       

30 CONTINUE 

RETURN 

END 

END OF THE GEMVARV SUBROUTINE 
 

SUBROUTINE GRAMMAT(GAMPAR,XM,NV,INDVEK,GRMAT) 

C CALCULATES THE KERNEL MATRIX ON THE TRAINING INPUT PATTERNS (USING ALL 

COMPONENTS, OR ONLY A SUBSET OF COMPONENTS) 

C INPUT:      A VALUE FOR THE KERNEL HYPERPARAMETER 

C                    THE TRAINING INPUT PATTERNS 

C                    THE VECTOR OF INDICES TO THE COMPONENTS IN INPUT PATTERNS TO BE 

C                    USED 

C OUTPUT: THE KERNEL MATRIX 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 DIMENSION INDVEK(IP) 

 DO 10 I=1,NNPMM-1 

  GRMAT(I,I)=1.0D0 

  DO 5 J=I+1,NNPMM 

   S=0.0D0 

   DO 3 K=1,NV 

    KK=INDVEK(K) 

    S=S+(XM(I,KK)-XM(J,KK))*(XM(I,KK)-XM(J,KK)) 

3   CONTINUE       

   GRMAT(I,J)=DEXP(-GAMPAR*S) 

5  CONTINUE 

10 CONTINUE 

 GRMAT(NNPMM,NNPMM)=1.0D0 

 DO 20 I=2,NNPMM 

  DO 15 J=1,I-1 

   GRMAT(I,J)=GRMAT(J,I) 

15  CONTINUE       

20 CONTINUE       

RETURN 

C END OF THE GRAMMAT SUBROUTINE  
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SUBROUTINE GRAMNUUT(GAMPAR,XM,XT,NV,INDVEK,GRNUUT) 

C CALCULATES THE KERNEL MATRIX ENTRIES BETWEEN TRAINING AND TEST 

C PATTERNS (USING ALL COMPONENTS, OR ONLY A SUBSET OF COMPONENTS) 

C INPUT:     A VALUE FOR THE KERNEL HYPERPARAMETER 

C                   THE TRAINING AND TEST INPUT PATTERNS 

C                   THE VECTOR OF INDICES TO THE COMPONENTS IN INPUT PATTERNS TO BE 

C                   USED 

C OUTPUT: THE KERNEL MATRIX 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT) 

 DIMENSION XM(NNPMM,IP),GRNUUT(NMT,NNPMM) 

 DIMENSION XT(NMT,IP) 

 DIMENSION INDVEK(IP) 

 DO 10 I=1,NMT 

  DO 5 J=1,NNPMM 

   S=0.0D0 

   DO 3 K=1,NV 

    KK=INDVEK(K) 

    S=S+(XT(I,KK)-XM(J,KK))*(XT(I,KK)-XM(J,KK)) 

3   CONTINUE       

   GRNUUT(I,J)=DEXP(-GAMPAR*S) 

5  CONTINUE 

10 CONTINUE 

RETURN 

END 

C END OF THE GRAMNUUT SUBROUTINE 

 

SUBROUTINE FCN(NDIM,X,F) 

C REQUIRED IN THE PREIMAGE SUBROUTINE  

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=4,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (GAMPAR=1.0D0/IP) 

 DIMENSION X(IP),X1(IP),X2(IP) 

 COMMON /PREIM/ ALPHAC(NNPMM),XMC(NNPMM,IP),GAMPARC 

 S=0.0D0 

 DO 20 I=1,NNPMM 
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  DO 5 J=1,NDIM 

   X1(J)=XMC(I,J) 

   X2(J)=X(J) 

5  CONTINUE 

  S1=0.0D0 

  DO 10 K=1,NDIM 

   S1=S1+(X1(K)-X2(K))*(X1(K)-X2(K)) 

10  CONTINUE       

  TERM=ALPHAC(I)*DEXP(-GAMPARC*S1) 

  S=S+TERM 

20 CONTINUE 

 F=-1.0D0*S*S 

RETURN 

END 

C END OF THE FCN SUBROUTINE 

 

SUBROUTINE PREIMAGE(XM,ALPHA,XPRE) 

C FINDS AN APPROXIMATE PRE-IMAGE FOR A GIVEN LINEAR COMBINATION OF THE 

C DATA POINTS IN FEATURE SPACE 

C THE LINEAR COMBINATION IS SPECIFIED BY SPECIFYING ITS COEFFICIENTS IN THE 

C VECTOR ALPHA. 

C THE IMSL ROUTINE DUMINF IS USED TO PERFORM THE REQUIRED OPTIMISATION. 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 EXTERNAL FCN 

 PARAMETER (IP=10,IPTEL=4,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (GAMPAR=1.0D0/IP) 

 DIMENSION XM(NNPMM,IP),ALPHA(NNPMM) 

 DIMENSION XGUESS(IP),XSCALE(IP),RPARAM(7),XPRE(IP) 

 DIMENSION IPARAM(7) 

 COMMON /PREIM/ ALPHAC(NNPMM),XMC(NNPMM,IP),GAMPARC 

 

 DO 5 I=1,NNPMM 

  ALPHAC(I)=ALPHA(I) 

  DO 4 J=1,IP 

   XMC(I,J)=XM(I,J) 

4  CONTINUE 

5 CONTINUE 
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 GAMPARC=GAMPAR 

 NDIM=IP 

 DO 8 J=1,IP 

  XGUESS(J)=XM(1,J) 

  XSCALE(J)=1.0D0 

8 CONTINUE 

 FSCALE=1.0D0 

 IPARAM(1)=0 

 CALL DUMINF(FCN,NDIM,XGUESS,XSCALE,FSCALE,IPARAM,RPARAM, 

      & XPRE,FVALUE) 

RETURN 

END 

END OF THE PREIMAGE SUBROUTINE 

 

SUBROUTINE RANFOR(X,Y,ZSCORE) 

C USES:       DUMINF, FCN 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 PARAMETER(MDIM=10,NSAMPLE=200,NTEST=1,NTHSIZE=5, 

1 NRNODES=2*(NSAMPLE/NTHSIZE)+1,JPRINT=0,JBT=250,MTRY=MDIM/3, 

1 IMP=1,NIMP=IMP*NSAMPLE,MIMP=IMP*MDIM, 

1 TH=0.5D0,IMPPRINT=1) 

 

 DIMENSION X(MDIM,NSAMPLE),Y(NSAMPLE),YB(NSAMPLE), 

1 RSNODECOST(NRNODES),ZSCORE(MDIM), 

1 RSTREECOST(0:NRNODES),BESTCRIT(NRNODES),SD(MDIM),WTS(NSAMPLE), 

1 V(NSAMPLE),UT(NSAMPLE),XT(NSAMPLE),XB(MDIM,NSAMPLE), 

1 ERRIMP(MIMP), YTR(NSAMPLE),YPTR(NSAMPLE),YL(NSAMPLE),XA(3*MDIM), 

1 AVNODE(NRNODES),UTR(NSAMPLE),PREDIMP(NIMP,MIMP),ZA(MDIM), 

1 TGINI(MDIM),UPPER(NRNODES), 

1 YPRED(NTEST),YTREE(NTEST),XTS(MDIM,NTEST),YTS(NTEST) 

  

 DIMENSION JDEX(NSAMPLE),IITREEMAP(2,NRNODES), NODESTATUS(NRNODES), 

1 NODEPOP(NRNODES),NPERT(NSAMPLE),IP(MDIM),NTERM(0:NRNODES), 

1 NPERM(NSAMPLE),IIPARENT(NRNODES),JJCAT(MDIM),NOUT(NSAMPLE), 

1 JIN(NSAMPLE),ISORT(NSAMPLE),NODESTART(NRNODES),NCASE(NSAMPLE), 

1 NBRTERM(NRNODES),JPERM(JBT),MBEST(NRNODES),INCL(MDIM) 
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 DO N=1,717 

  ZZ=RAND(1) 

 END DO 

  

 DO M=1,MDIM 

  JJCAT(M)=1 

 END DO 

  

 QVERRTS=0 

 AVERRB=0 

  

 AVY=0 

 VARY=0 

 DO N=1,NSAMPLE 

  NTRUE=N-1 

  VARY=VARY+NTRUE*(Y(N)-AVY)**2/(NTRUE+1) 

  AVY=(NTRUE*AVY+Y(N))/(NTRUE+1) 

 END DO 

 VARY=VARY/NSAMPLE 

  

 CALL ZERVR(YPTR,NSAMPLE) 

 CALL ZERV(NOUT,NSAMPLE) 

 ASTR=0 

 ASD=0 

 

 DO JB=1,JBT 

  CALL ZERV(JIN,NSAMPLE) 

  DO N=1,NSAMPLE 

   K=INT(RAND1(1)*NSAMPLE)+1 

   JIN(K)=1 

   YB(N)=Y(K) 

   DO M=1,MDIM 

    XB(M,N)=X(M,K) 

   END DO 

  END DO 

 

 NLS=NSAMPLE 
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 CALL BUILDTREE(XB,YB,YL,MDIM,NLS,NSAMPLE,IITREEMAP,JDEX, 

1 UPPER,AVNODE,BESTCRIT, NODESTATUS,NODEPOP,NODESTART, 

1 NRNODES,NTHSIZE,RSNODECOST,NCASE,IIPARENT,UT,V,IPRINT, 

1 XT,MTRY,IP,NLIM,MBEST,JJCAT,TGINI) 

 NDBIGTREE=NRNODES 

 DO K=NRNODES,1,-1 

  IF (NODESTATUS(K).EQ.0) NDBIGTREE=NDBIGTREE-1 

  IF (NODESTATUS(K).EQ.2) NODESTATUS(K)=-1 

 END DO 

 CALL ZERVR(YTR,NSAMPLE) 

 CALL TESTREEBAG(X,NSAMPLE,MDIM,IITREEMAP,NODESTATUS, 

1 NRNODES,NDBIGTREE,YTR,UPPER,AVNODE,MBEST,JJCAT) 

 

  ERRB=0 

 JOUT=0 

 DO N=1,NSAMPLE 

  IF(JIN(N).EQ.0) THEN 

   YPTR(N)=(NOUT(N)*YPTR(N)+YTR(N))/(NOUT(N)+1) 

   NOUT(N)=NOUT(N)+1 

  END IF 

 

  IF(NOUT(N).GT.0) JOUT=JOUT+1 

   ERRB=ERRB+(Y(N)-YPTR(N))**2 

 END DO 

 ERRB=ERRB/NSAMPLE 

 

 IF(IMP.EQ.1) THEN 

  DO MR=1,MDIM 

   CALL PERMOBMR(MR,X,UTR,XT,JIN,NSAMPLE,MDIM) 

   CALL TESTREEBAG(X,NSAMPLE,MDIM,IITREEMAP,NODESTATUS, 

1   NRNODES,NDBIGTREE,YTR,UPPER,AVNODE,MBEST,JJCAT) 

   DO N=1,NSAMPLE 

    X(MR,N)=XT(N) 

   END DO 

   EM=0 

   DO N=1,NSAMPLE 

    IF(JIN(N).EQ.0) THEN 
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     PREDIMP(N,MR)=(NOUT(N)*PREDIMP(N,MR)+YTR(N)) 

1     /(NOUT(N)+1) 

    END IF 

    EM=EM+(Y(N)-PREDIMP(N,MR))**2 

   END DO 

   ERRIMP(MR)=EM/NSAMPLE 

  END DO  

 END IF 

END DO 

 

IF(IMP.EQ.1) THEN 

 DO M=1,MDIM 

  ERRIMP(M)=100.0D0*((ERRIMP(M)/ERRB)-1) 

  IF(ERRIMP(M).LE.0.0D0) ERRIMP(M)=0.0D0 

 END DO 

END IF 

 

DO M=1,MDIM 

 ZSCORE(M)=ERRIMP(M) 

END DO  

 

END 

C END OF THE RANFOR SUBROUTINE 

 

SUBROUTINE BUILDTREE(X,Y,YL,MDIM,NLS,NSAMPLE,IITREEMAP, 

1 JDEX,UPPER,AVNODE,BESTCRIT, NODESTATUS, 

1 NODEPOP,NODESTART,NRNODES,NTHSIZE,RSNODECOST, 

1 NCASE,IIPARENT,UT,V,IPRINT,XT,MTRY,IP,NLIM, 

1 MBEST,JJCAT,TGINI) 

 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION IITREEMAP(2,NRNODES),IIPARENT(NRNODES), 

1 NODESTATUS(NRNODES),IP(MDIM),NODEPOP(NRNODES), 

1 NODESTART(NRNODES),JDEX(NSAMPLE),NCASE(NSAMPLE), 

1 MBEST(NRNODES),JJCAT(MDIM) 

 

 DIMENSION Y(NSAMPLE),BESTCRIT(NRNODES),X(MDIM,NSAMPLE), 
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1 AVNODE(NRNODES),XT(NSAMPLE),UPPER(NRNODES), 

1 V(NSAMPLE),UT(NSAMPLE),RSNODECOST(NRNODES), 

1 YL(NSAMPLE),TGINI(MDIM) 

 

 CALL ZERV(NODESTATUS,NRNODES) 

 CALL ZERV(NODESTART,NRNODES) 

 CALL ZERV(NODEPOP,NRNODES) 

 CALL ZERVR(AVNODE,NRNODES) 

 

 DO N=1,NSAMPLE 

  UT(N)=0 

  JDEX(N)=N 

 END DO 

 

 NCUR=1 

 NODESTART(1)=1 

 NODEPOP(1)=NLS 

 NODESTATUS(1)=2 

  

 AV=0 

 SS=0 

 DO N=1,NLS 

  D=Y(JDEX(N)) 

  SS=SS+(N-1)*(AV-D)*(AV-D)/N 

  AV=((N-1)*AV+D)/N 

 END DO !N 

 AVNODE(1)=AV 

 RSNODECOST(1)=SS/NLS 

  

 DO 30 KBUILD=1,NRNODES 

  IF (KBUILD.GT.NCUR) GOTO 50 

  IF (NODESTATUS(KBUILD).NE.2) GOTO 30 

  

  NDSTART=NODESTART(KBUILD) 

  NDEND=NDSTART+NODEPOP(KBUILD)-1 

  NODECNT=NODEPOP(KBUILD) 

  SUMNODE=NODECNT*AVNODE(KBUILD) 
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  JSTAT=0 

  CALL FINDBESTSPLIT(X,XT,UT,JDEX,Y,MDIM,NSAMPLE, 

1  NDSTART,NDEND,MSPLIT,DECSPLIT,UBEST,NCASE,NDENDL, 

1  JSTAT,V,MTRY,IP,NLIM,SUMNODE,NODECNT,YL,JJCAT) 

 

  IF (JSTAT.EQ.1) THEN 

   NODESTATUS(KBUILD)=-1 

   GO TO 30 

  ELSE 

   MBEST(KBUILD)=MSPLIT 

   UPPER(KBUILD)=UBEST 

   BESTCRIT(KBUILD)=DECSPLIT 

  END IF 

 

 TGINI(MSPLIT)=TGINI(MSPLIT)+DECSPLIT 

 NODEPOP(NCUR+1)=NDENDL-NDSTART+1 

 NODEPOP(NCUR+2)=NDEND-NDENDL 

 NODESTART(NCUR+1)=NDSTART 

 NODESTART(NCUR+2)=NDENDL+1 

 

 AV=0 

 SS=0 

 DO N=NDSTART,NDENDL 

  D=Y(JDEX(N)) 

  K=N-NDSTART 

  SS=SS+K*(AV-D)*(AV-D)/(K+1) 

  AV=(K*AV+D)/(K+1) 

 END DO !N 

 AVNODE(NCUR+1)=AV 

 RSNODECOST(NCUR+1)=SS/NLS 

 AV=0 

 SS=0 

 DO N=NDENDL+1,NDEND 

  D=Y(JDEX(N)) 

  K=N-NDENDL-1 

  SS=SS+K*(AV-D)*(AV-D)/(K+1) 

  AV=(K*AV+D)/(K+1) 
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 END DO !N 

 AVNODE(NCUR+2)=AV 

 RSNODECOST(NCUR+2)=SS/NLS 

 

 NODESTATUS(NCUR+1)=2 

 NODESTATUS(NCUR+2)=2 

 IF (NODEPOP(NCUR+1).LE.NTHSIZE) 

1  NODESTATUS(NCUR+1)=-1 

 IF (NODEPOP(NCUR+2).LE.NTHSIZE) 

1  NODESTATUS(NCUR+2)=-1 

 

 IITREEMAP(1,KBUILD)=NCUR+1 

 IITREEMAP(2,KBUILD)=NCUR+2 

 IIPARENT(NCUR+1)=KBUILD 

 IIPARENT(NCUR+2)=KBUILD 

 NODESTATUS(KBUILD)=1 

 NCUR=NCUR+2 

 

 IF (NCUR.GE.NRNODES) GOTO 50 

 

30 CONTINUE 

50 CONTINUE 

 

END 

C END OF THE BUILDTREE SUBROUTINE 

 

SUBROUTINE FINDBESTSPLIT(X,XT,UT,JDEX,Y,MDIM, 

1 NSAMPLE,NDSTART,NDEND,MSPLIT,DECSPLIT,UBEST, 

1 NCASE,NDENDL,JSTAT,V,MTRY,IP,NLIM, 

1 SUMNODE,NODECNT,YL,JJCAT) 

  IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION NCASE(NSAMPLE),JDEX(NSAMPLE),IP(MDIM), 

1 NCAT(32),ICAT(32),JJCAT(MDIM) 

 DIMENSION X(MDIM,NSAMPLE),UT(NSAMPLE),XT(NSAMPLE), 

1 V(NSAMPLE),Y(NSAMPLE),YL(NSAMPLE), 

1 SUMCAT(32),AVCAT(32),TAVCAT(32) 
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  CRITMAX=0 

200  CALL ZERV(IP,MDIM) 

  NON=0 

  DO MT=1,MTRY 

   CRITVAR=0 

100   KV=INT(RAND(1)*MDIM)+1 

   IF(IP(KV).EQ.1) GOTO 100 

   IP(KV)=100 

   LC=JJCAT(KV) 

   IF(LC.EQ.1) THEN 

    DO N=NDSTART,NDEND 

      XT(N)=X(KV,JDEX(N)) 

    YL(N)=Y(JDEX(N)) 

   END DO 

  ELSE 

   CALL ZERVR(SUMCAT,32) 

   CALL ZERV(NCAT,32) 

   DO N=NDSTART,NDEND 

    L=NINT(X(KV,JDEX(N))) 

    D=Y(JDEX(N)) 

    SUMCAT(L)=SUMCAT(L)+D 

    NCAT(L)=NCAT(L)+1 

   END DO 

   DO J=1,LC 

    IF(NCAT(J).GT.0) THEN 

     AVCAT(J)=SUMCAT(J)/NCAT(J) 

    ELSE 

     AVCAT(J)=0 

    END IF 

   END DO 

   DO N=1,NSAMPLE 

    XT(N)=AVCAT(NINT(X(KV,JDEX(N)))) 

    YL(N)=Y(JDEX(N)) 

   END DO 

  END IF 

 

  DO N=NDSTART,NDEND 
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   V(N)=XT(N) 

  END DO 

  DO N=1,NSAMPLE 

   NCASE(N)=N 

  END DO 

  CALL QUICKSORT(V,NCASE,NDSTART,NDEND,NSAMPLE) 

  IF(V(NDSTART).GE.V(NDEND))THEN 

   NON=NON+1 

   IF(NON.GE.3*MDIM) THEN 

    JSTAT=1 

    RETURN 

   END IF 

   GOTO 100 

  END IF 

      

  SUML=0 

  SUMR=SUMNODE 

  NPOPL=0 

  NPOPR=NODECNT 

   

  DO NSP=NDSTART,NDEND-1 

   D=YL(NCASE(NSP)) 

   SUML=SUML+D 

   SUMR=SUMR-D 

   NPOPL=NPOPL+1 

   NPOPR=NPOPR-1 

   IF (V(NSP).LT.V(NSP+1)) THEN 

    CRIT=(SUML*SUML/NPOPL)+(SUMR*SUMR/NPOPR) 

    IF (CRIT.GT.CRITVAR) THEN 

     UBESTT=(V(NSP)+V(NSP+1))/2.0 

     CRITVAR=CRIT 

     NBESTT=NSP 

    ENDIF 

   END IF 

  END DO 

 

  IF(CRITVAR.GT.CRITMAX) THEN 
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   UBEST=UBESTT 

   NBEST=NBESTT 

   MSPLIT=KV 

   CRITMAX=CRITVAR 

   DO N=NDSTART,NDEND 

    UT(N)=XT(N) 

   END DO 

   IF (JJCAT(KV).GT.1) THEN 

    IC=JJCAT(KV) 

    DO J=1,IC 

     TAVCAT(J)=AVCAT(J) 

    END DO 

   END IF 

  END IF 

 END DO 

 

  NL=NDSTART-1 

   DO NSP=NDSTART,NDEND 

    IF(UT(NSP).LE.UBEST) THEN 

     NL=NL+1 

     NCASE(NL)=JDEX(NSP) 

    END IF 

   END DO 

 

  NDENDL=MAX0(NL,NDSTART+1) 

  NR=NDENDL 

  DO NSP=NDSTART,NDEND 

   IF(UT(NSP).GT.UBEST) THEN 

    NR=NR+1 

    IF(NR.GT.NSAMPLE) GOTO 765 

    NCASE(NR)=JDEX(NSP) 

   END IF 

  END DO 

765  CONTINUE 

 

  IF(NDENDL.GE.NDEND) NDENDL=NDEND-1 
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  DO N=NDSTART,NDEND 

   JDEX(N)=NCASE(N) 

  END DO 

  LC=JJCAT(MSPLIT) 

  IF(LC.GT.1) THEN 

   DO J=1,LC 

    IF(TAVCAT(J).LT.UBEST) THEN 

     ICAT(J)=1 

    ELSE 

     ICAT(J)=0 

    END IF 

   END DO 

   CALL PACKLB(LC,ICAT,NUBEST) 

   UBEST=REAL(NUBEST) 

  END IF 

   

  DECSPLIT=CRITMAX-(SUMNODE*SUMNODE/NODECNT) 

END 

C END OF THE FINDBESTSPLIT SUBROUTINE 

 

SUBROUTINE TESTREEBAG(X,NSAMPLE,MDIM,IITREEMAP,NODESTATUS, 

C USES:       DUMINF, FCN 

1 NRNODES,NDBIGTREE,YTREE,UPPER,AVNODE,MBEST,JJCAT) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION X(MDIM,NSAMPLE), 

1 UPPER(NRNODES),AVNODE(NRNODES),YTREE(NSAMPLE) 

  

 DIMENSION IITREEMAP(2,NRNODES),NODESTATUS(NRNODES), 

1 MBEST(NRNODES),JJCAT(MDIM),ICAT(32) 

 DO N=1,NSAMPLE 

 KT=1 

 DO K=1,NDBIGTREE 

 IF(NODESTATUS(KT).EQ.-1) THEN 

         YTREE(N)=AVNODE(KT) 

         GOTO 100 

 END IF 

 M=MBEST(KT) 
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 LC=JJCAT(M) 

 IF(LC.EQ.1) THEN 

  IF (X(M,N).LE.UPPER(KT)) THEN  

   KT=IITREEMAP(1,KT) 

  ELSE 

   KT=IITREEMAP(2,KT) 

  ENDIF  

 ELSE 

 MM=NINT(UPPER(KT)) 

 CALL UNPACKLB(LC,MM,ICAT) 

 J=NINT(X(M,N)) 

  IF(ICAT(J).EQ.1) THEN  

   KT=IITREEMAP(1,KT) 

  ELSE 

   KT=IITREEMAP(2,KT) 

  ENDIF 

 END IF 

 END DO 

100 CONTINUE 

 END DO 

END 

C END OF THE TESTREEBAG SUBROUTINE 

 

SUBROUTINE PERMOBMR(MR,X,TP,TX,JIN,NSAMPLE,MDIM) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION X(MDIM,NSAMPLE),TP(NSAMPLE),TX(NSAMPLE), 

1 JIN(NSAMPLE) 

 KOUT=0 

 CALL ZERVR(TP,NSAMPLE) 

 DO N=1,NSAMPLE 

 IF(JIN(N).EQ.0) THEN 

         KOUT=KOUT+1 

         TP(KOUT)=X(MR,N) 

 END IF 

 END DO !N 

 CALL PERM1(KOUT,NSAMPLE,TP) 

 IOUT=0 
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 DO N=1,NSAMPLE 

 TX(N)=X(MR,N) 

 IF(JIN(N).EQ.0) THEN 

    IOUT=IOUT+1 

    X(MR,N)=TP(IOUT) 

 END IF 

 END DO 

END 

C END OF THE PERMOBMR SUBROUTINE 

 

SUBROUTINE ZERV(IX,M1) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION IX(M1) 

 DO 10 N=1,M1 

 IX(N)=0 

10 CONTINUE 

END 

C END OF THE ZERV SUBROUTINE 

 

SUBROUTINE ZERVR(RX,M1) 

C INPUT:     A VALUE 

C USES:       DUMINF, FCN 

C OUTPUT: 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION RX(M1) 

 DO 10 N=1,M1 

 RX(N)=0.0D0 

10 CONTINUE 

END 

C END OF THE ZERVR SUBROUTINE 

 

SUBROUTINE ZERM(MX,M1,M2) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION MX(M1,M2) 

 DO 10 I=1,M1 

  DO 20 J=1,M2 

   MX(I,J)=0 
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20  CONTINUE 

10 CONTINUE 

END 

C END OF THE ZERM SUBROUTINE 

 

SUBROUTINE PACKLB(L,ICAT,NPACK) 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 INTEGER ICAT(32) 

 NPACK=0 

 DO 10 K=1,L 

  NPACK=NPACK+ICAT(K)*(2**(K-1)) 

10 CONTINUE 

END 

C END OF THE PACKLB SUBROUTINE 

 

SUBROUTINE UNPACKLB(L,NPACK,ICAT) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 INTEGER ICAT(32) 

 CALL ZERV(ICAT,32) 

 N=NPACK 

 ICAT(1)=MOD(N,2) 

 DO 10 K=2,L 

  N=(N-ICAT(K-1))/2 

  ICAT(K)=MOD(N,2) 

10 CONTINUE 

END 

C END OF THE UNPACKLB SUBROUTINE 

 

SUBROUTINE QUICKSORT(V,IPERM,II,JJ,KK) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION IPERM(KK),V(KK),IU(32),IL(32) 

 M=1 

 I=II 

 J=JJ 

10 IF (I.GE.J) GO TO 80 

20 K=I 

 IJ=(J+I)/2 
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 IIT=IPERM(IJ) 

 VT=V(IJ) 

 IF (V(I).LE.VT) GO TO 30 

 IPERM(IJ)=IPERM(I) 

 IPERM(I)=IIT 

 IIT=IPERM(IJ) 

 V(IJ)=V(I) 

 V(I)=VT 

 VT=V(IJ) 

30 L=J 

 IF (V(J).GE.VT) GO TO 50 

 IPERM(IJ)=IPERM(J) 

 IPERM(J)=IIT 

 IIT=IPERM(IJ) 

 V(IJ)=V(J) 

 V(J)=VT 

 VT=V(IJ) 

 IF (V(I).LE.VT) GO TO 50 

 IPERM(IJ)=IPERM(I) 

 IPERM(I)=IIT 

 IIT=IPERM(IJ) 

 V(IJ)=V(I) 

 V(I)=VT 

 VT=V(IJ) 

 GO TO 50 

40 IPERM(L)=IPERM(K) 

 IPERM(K)=IITT 

 V(L)=V(K) 

 V(K)=VTT 

50 L=L-1 

 IF (V(L).GT.VT) GO TO 50 

 IITT=IPERM(L) 

 VTT=V(L) 

60 K=K+1 

 IF (V(K).LT.VT) GO TO 60 

 IF (K.LE.L) GO TO 40 

 IF (L-I.LE.J-K) GO TO 70 
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 IL(M)=I 

 IU(M)=L 

 I=K 

 M=M+1 

 GO TO 90 

70 IL(M)=K 

 IU(M)=J 

 J=L 

 M=M+1 

 GO TO 90 

80 M=M-1 

 IF (M.EQ.0) RETURN 

 I=IL(M) 

 J=IU(M) 

90 IF (J-I.GT.10) GO TO 20 

 IF (I.EQ.II) GO TO 10 

 I=I-1 

100 I=I+1 

 IF (I.EQ.J) GO TO 80 

 IIT=IPERM(I+1) 

 VT=V(I+1) 

 IF (V(I).LE.VT) GO TO 100 

 K=I 

110 IPERM(K+1)=IPERM(K) 

 V(K+1)=V(K) 

 K=K-1 

 IF (VT.LT.V(K)) GO TO 110 

 IPERM(K+1)=IIT 

 V(K+1)=VT 

 GO TO 100 

END 

C END OF THE QUICKSORT SUBROUTINE 

 

SUBROUTINE PERM1(NP,NS,TP) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DIMENSION TP(NS) 

 J=NP 
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11 RND = RAND(1) 

 K=INT(J*RND)+1 

 TX=TP(J) 

 TP(J)=TP(K) 

 TP(K)=TX 

 J=J-1 

 IF(J.GT.1) GO TO 11 

 END 

C END OF THE PERM1 SUBROUTINE 

 

FUNCTION RAND(J) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 SAVE DSEED 

 DATA DSEED /17395/ 

 CALL LRND(DSEED,U) 

 RAND=U 

END 

C END OF THE RAND FUNCTION 

 

SUBROUTINE LRND(DSEED,U) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DATA D31M1 /2147483647/ 

 DSEED=DMOD(16087*DSEED,D31M1) 

 U=DSEED/D31M1 

RETURN 

END 

C END OF THE LRND SUBROUTINE 

 

FUNCTION RAND1(J) 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 SAVE DSEED1 

 DATA DSEED1 /17395/ 

 CALL LRND1(DSEED1,U) 

 RAND1=U 

END 

C END OF THE RAND1 FUNCTION 

SUBROUTINE LRND1(DSEED1,U) 
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 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 DATA D31M1 /2147483647.D0/ 

 DSEED1=DMOD(16087.0D0*DSEED1,D31M1) 

 U=DSEED1/D31M1 

RETURN 

END 

C END OF THE LRND1 SUBROUTINE 

 

FUNCTION RNORM(J) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 U=RAND(1) 

 V=RAND(1) 

 RNORM=DSQRT(-2.0D0*DLOG(U))*DCOS(6.28318531D0*V) 

END 

C END OF THE RNORM FUNCTION 
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SUBROUTINE BERCRITW(GRMAT,CRIT1,CRIT2) 

C CALCULATES THE VARIATION RATIO AND THE DISTANCE BETWEEN MEANS 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S1=0.0D0 

 DO 5 I=1,NN 

  DO 4 J=1,NN 

   S1=S1+GRMAT(I,J) 

4  CONTINUE 

5 CONTINUE 

 S2=0.0D0 

 DO 10 I=NN+1,NNPMM 

  DO 9 J=NN+1,NNPMM 

   S2=S2+GRMAT(I,J) 

9  CONTINUE 

10  CONTINUE 

 S3=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S3=S3+GRMAT(I,J) 

14  CONTINUE 

15 CONTINUE 

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM) 

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM 

 CRIT1=TELLER/ANOEMER 

 CRIT2=TELLER 

 RETURN 

END 

C END OF THE BERCRITW SUBROUTINE 

 

SUBROUTINE BERCRIT12(GRMAT,CRIT) 

C CALCULATES THE SUM OF DISSIMILARITIES IN THE KERNEL MATRIX 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 
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 S3=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S3=S3+GRMAT(I,J) 

14  CONTINUE 

15 CONTINUE 

 CRIT=S3 

RETURN 

END 

C END OF THE BERCRIT12 SUBROUTINE 

 
SUBROUTINE BERCRITCC(GRMAT,CRIT) 

C CALCULATES THE CUT COST SELECTION CRITERION 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S1=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S1=S1+2.0D0*GRMAT(I,J) 

14  CONTINUE 

15 CONTINUE 

 

 S2=0.0D0 

 DO 17 I=1,NNPMM 

  DO 16 J=1,NNPMM 

   S2=S2+GRMAT(I,J)**2 

16  CONTINUE 

17 CONTINUE 

 CRIT=DABS(S1/NNPMM*DSQRT(S2)) 

RETURN 

END 

C END OF THE BERCRITCC SUBROUTINE 
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SUBROUTINE BERCRITR(GRMAT1,EENP,EENM,ALPHA,CPAR,CRIT) 

C CALCULATES THE RAYLEIGH QUOTIENT 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION GRMAT1(NNPMM,NNPMM),EENP(NNPMM),EENM(NNPMM) 

 DIMENSION B(NNPMM),H(NNPMM,NNPMM),ALPHA(NNPMM) 

 DIMENSION AKP(NNPMM),AKM(NNPMM) 

 DIMENSION AM(NNPMM,NNPMM),ALPHAN(NNPMM),ALPHAM(NNPMM) 

 

 DO 62 J=1,NNPMM 

  S1=0.0D0 

  S2=0.0D0 

  DO 61 I=1,NNPMM 

   S1=S1+GRMAT1(I,J)*EENM(I) 

   S2=S2+GRMAT1(I,J)*EENP(I) 

61  CONTINUE 

  AKM(J)=S1/NN 

  AKP(J)=S2/MM 

  B(J)=AKP(J)-AKM(J) 

62 CONTINUE       

 

 DO 65 J1=1,NNPMM 

  DO 64 J2=1,NNPMM 

   S=0.0D0 

   DO 63 I=1,NNPMM 

    S=S+GRMAT1(I,J1)*GRMAT1(I,J2) 

63   CONTINUE 

   H(J1,J2)=(S-MM*AKP(J1)*AKP(J2)-NN*AKM(J1)*AKM(J2))/NNPMM 

64  CONTINUE 

  H(J1,J1)=H(J1,J1)+CPAR 

65 CONTINUE 

 

 DO 73 I=1,NNPMM 

  DO 72 J=1,NNPMM 

   AM(I,J)=B(I)*B(J) 

72  CONTINUE 

73 CONTINUE 
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 DO 75 I=1,NNPMM 

  S=0.0D0 

  DO 74 J=1,NNPMM 

   S=S+H(I,J)*ALPHA(J) 

74  CONTINUE 

  ALPHAN(I)=S 

75 CONTINUE 

 DO 77 I=1,NNPMM 

  S=0.0D0 

  DO 76 J=1,NNPMM 

   S=S+AM(I,J)*ALPHA(J) 

76  CONTINUE 

  ALPHAM(I)=S 

77 CONTINUE 

 S1=0.0D0 

 S2=0.0D0 

 DO 78 I=1,NNPMM 

  S1=S1+ALPHAM(I)*ALPHA(I) 

  S2=S2+ALPHAN(I)*ALPHA(I) 

78 CONTINUE 

 CRIT=S1/S2 

RETURN 

END 

C END OF THE BERCRITR SUBROUTINE 

 

FUNCTION ALIGNMENTTRANS(J,XM) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,IPTEL=4,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1) 

 DIMENSION XM(NNPMM,IP) 

 S1=0.0D0 

 S2=0.0D0 

 S3=0.0D0 

 S4=0.0D0 

 DO 5 I1=1,NN 

  DO 4 I2=1,NN 

   S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J)) 

   S1=S1+(2.0D0*DEXP(-S)-1.0D0) 
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   S4=S4+(2.0D0*DEXP(-S)-1.0D0)**2.0D0 

4  CONTINUE 

5 CONTINUE 

 DO 10 I1=NN+1,NNPMM 

  DO 9 I2=NN+1,NNPMM 

   S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J)) 

   S2=S2+(2.0D0*DEXP(-S)-1.0D0) 

   S4=S4+(2.0D0*DEXP(-S)-1.0D0)**2.0D0 

9  CONTINUE 

10 CONTINUE 

 DO 15 I1=1,NN 

  DO 14 I2=NN+1,NNPMM 

   S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J)) 

   S3=S3+(2.0D0*DEXP(-S)-1.0D0) 

   S4=S4+2.0D0*(2.0D0*DEXP(-S)-1.0D0)**2.0D0 

14  CONTINUE 

15 CONTINUE 

 S3=2.0D0*S3 

 ALIGNMENTTRANS=(S1+S2-S3)/((1.0D0*NNPMM)*DSQRT(S4)) 

RETURN 

END 

C END OF THE ALIGNMENTTRANS FUNCTION 

 
SUBROUTINE GRAMMATL(GAMPAR,XM,NV,INDVEK,GRMAT) 

C CALCULATES THE KERNEL MATRIX BASED ON THE TRANSFORMED GAUSSIAN KERNEL 

C FUNCTION 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 DIMENSION INDVEK(IP) 

 

 DO 10 I=1,NNPMM-1 

  GRMAT(I,I)=1.0D0 

  DO 5 J=I+1,NNPMM 

   S=0.0D0 

   DO 3 K=1,NV 

    KK=INDVEK(K) 
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    S=S+2.0D0*(XM(I,KK)-XM(J,KK))*(XM(I,KK)-XM(J,KK))-1.0D0 

3   CONTINUE 

  GRMAT(I,J)=DEXP(-GAMPAR*S) 

5  CONTINUE 

10 CONTINUE 

 GRMAT(NNPMM,NNPMM)=1.0D0 

 DO 20 I=2,NNPMM 

  DO 15 J=1,I-1 

   GRMAT(I,J)=GRMAT(J,I) 

15  CONTINUE 

20 CONTINUE 

RETURN 

END 

C END OF THE GRAMMATL SUBROUTINE  

 

SUBROUTINE BERCRITA0(GRMAT,CRIT) 

C CALCULATES THE ZERO ORDER ALIGNMENT CRITERION 

C INPUT:     THE KERNEL MATRIX CALCULATED ON THE TRAINING INPUT PATTERNS 

C USES:       FUNCTION DSQRT 

C OUTPUT: THE VALUE OF THE ZERO ORDER ALIGNMENT 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S1=0.0D0 

 S2=0.0D0 

 S3=0.0D0 

 DO 10 I=1,NN 

  DO 5 J=1,NN 

   S1=S1+GRMAT(I,J) 

   S3=S3+GRMAT(I,J)**2.0D0 

5  CONTINUE 

10  CONTINUE 

 DO 20 I=NN+1,NNPMM 

  DO 15 J=NN+1,NNPMM 

   S1=S1+GRMAT(I,J) 

   S3=S3+GRMAT(I,J)**2.0D0 
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15  CONTINUE 

20 CONTINUE 

 DO 30 I=1,NN 

  DO 29 J=NN+1,NNPMM 

   S2=S2+2.0D0*GRMAT(I,J) 

   S3=S3+2.0D0*(GRMAT(I,J)**2.0D0) 

29  CONTINUE 

30 CONTINUE 

 CRIT=(S1-S2)/(NNPMM*DSQRT(S3)) 

RETURN 

END 

C END OF THE BERCRITA0 SUBROUTINE 

 

SUBROUTINE BERCRITA1(KK,XM,GRMAT,GAM,CRIT) 

C CALCULATES THE FIRST ORDER ALIGNMENT CRITERION 

C INPUT:   THE INDEX OF THE VARIABLE W.R.T WHICH DIFFERENTIATION TAKES PLACE 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 S1=0.0D0 

 S2=0.0D0 

 S3=0.0D0 

 S4=0.0D0 

 S5=0.0D0 

 DO 10 I=1,NN 

  DO 5 J=1,NN 

   S1=S1+GRMAT(I,J) 

   S3=S3+GRMAT(I,J)**2.0D0 

   S4=S4+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J) 

   S5=S5+((XM(I,KK)-XM(J,KK))**2.0D0)*(GRMAT(I,J)**2.0D0) 

5  CONTINUE 

10 CONTINUE 

 DO 20 I=NN+1,NNPMM 

  DO 15 J=NN+1,NNPMM 

   S1=S1+GRMAT(I,J) 

   S3=S3+GRMAT(I,J)**2.0D0 

   S4=S4+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J) 
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   S5=S5+((XM(I,KK)-XM(J,KK))**2.0D0)*(GRMAT(I,J)**2.0D0) 

15  CONTINUE 

20 CONTINUE 

 DO 30 I=1,NN 

  DO 29 J=NN+1,NNPMM 

   S2=S2+2.0D0*GRMAT(I,J) 

   S3=S3+2.0D0*(GRMAT(I,J)**2.0D0) 

   S4=S4-2.0D0*((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J) 

   S5=S5+2.0D0*((XM(I,KK)-XM(J,KK))**2.0D0)*(GRMAT(I,J)**2.0D0) 

29  CONTINUE 

30 CONTINUE 

 A1=S1-S2 

 A2=NNPMM*DSQRT(S3) 

 AFGA1=-2.0D0*GAM*S4 

 AFGA2=(-2.0D0*GAM*S5)*NNPMM/DSQRT(S3) 

 CRIT=DABS((A2*AFGA1-A1*AFGA2)/(A2*A2)) 

RETURN 

END 

C END OF THE BERCRITA1 FUNCTION 

 

SUBROUTINE BERCRITW0(GRMAT,CRIT) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S1=0.0D0 

 DO 5 I=1,NN 

  DO 4 J=1,NN 

   S1=S1+GRMAT(I,J) 

4  CONTINUE 

5 CONTINUE 

 S2=0.0D0 

 DO 10 I=NN+1,NNPMM 

  DO 9 J=NN+1,NNPMM 

   S2=S2+GRMAT(I,J) 

9  CONTINUE 

10 CONTINUE 
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 S3=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S3=S3+GRMAT(I,J) 

14  CONTINUE 

15 CONTINUE 

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM) 

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM 

 CRIT=TELLER/ANOEMER 

RETURN 

END 

C END OF THE BERCRITW0 SUBROUTINE 

 

SUBROUTINE BERCRITW1(KK,XM,GRMAT,GAM,CRIT) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 S1=0.0D0 

 S2=0.0D0 

 S3=0.0D0 

 S4=0.0D0 

 S5=0.0D0 

 S6=0.0D0 

 DO 10 I=1,NN 

  DO 5 J=1,NN 

   S1=S1+GRMAT(I,J) 

   S4=S4+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J) 

5  CONTINUE 

10 CONTINUE 

 DO 20 I=NN+1,NNPMM 

  DO 15 J=NN+1,NNPMM 

   S2=S2+GRMAT(I,J) 

   S5=S5+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J) 

15  CONTINUE 

20 CONTINUE 

 DO 30 I=1,NN 

  DO 29 J=NN+1,NNPMM 
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   S3=S3+2.0D0*GRMAT(I,J) 

   S6=S6+2.0D0*((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J) 

29  CONTINUE 

30 CONTINUE 

 W1=S1/(NN*NN)+S2/(MM*MM)-(2.0D0*S3)/(NN*MM) 

 T1=S4/(NN*NN)+S5/(MM*MM)-(2.0D0*S6)/(NN*MM) 

 AFGW1=-2.0D0*GAM*T1 

 W2=NNPMM-S1/NN-S2/MM 

 AFGW2=(2.0D0*GAM*S4)/NN+(2.0D0*GAM*S5)/MM 

 CRIT=DABS((W2*AFGW1-W1*AFGW2)/(W2*W2)) 

RETURN 

END 

C END OF THE BERCRITW1 SUBROUTINE 

 

SUBROUTINE BERCRITW(GRMAT,CRIT1,CRIT2) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S1=0.0D0 

 DO 5 I=1,NN 

 DO 4 J=1,NN 

 S1=S1+GRMAT(I,J) 

4 CONTINUE 

5 CONTINUE 

 S2=0.0D0 

 DO 10 I=NN+1,NNPMM 

 DO 9 J=NN+1,NNPMM 

 S2=S2+GRMAT(I,J) 

9 CONTINUE 

10 CONTINUE 

 S3=0.0D0 

 DO 15 I=1,NN 

 DO 14 J=NN+1,NNPMM 

 S3=S3+GRMAT(I,J) 

14 CONTINUE 

15 CONTINUE 
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 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM) 

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM 

 CRIT1=TELLER/ANOEMER 

 CRIT2=TELLER 

RETURN 

END 

C END OF THE BERCRITW SUBROUTINE 

 

SUBROUTINE BERCRITG1(KK,XM,GRMAT,GAM,CRITG1) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S1=0.0D0 

 DO 4 I=1,NN 

  DO 3 J=1,NN 

   S1=S1+(-2.0D0*GAM*((XM(I,KK)-XM(J,KK)**2.0D0)*GRMAT(I,J))) 

3  CONTINUE 

4 CONTINUE 

 S2=0.0D0 

 DO 6 I=NN+1,NNPMM 

  DO 5 J=NN+1,NNPMM 

   S2=S2+(-2.0D0*GAM*((XM(I,KK)-XM(J,KK)**2.0D0)*GRMAT(I,J))) 

5  CONTINUE 

6 CONTINUE 

S3=0.0D0 

DO 15 I=1,NN 

 DO 14 J=NN+1,NNPMM 

  S3=S3+(-2.0D0*GAM*((XM(I,KK)-XM(J,KK)**2.0D0)*GRMAT(I,J))) 

14 CONTINUE 

15 CONTINUE 

 CRITG1=DABS((1.0D0/(NN**2))*S1+(1.0D0/(MM**2))*S2 

     & -(2.0D0/(NN**MM))*S3) 

RETURN 

END 

C END OF THE BERCRITG1 SUBROUTINE 
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SUBROUTINE BERCRIT12(GRMAT,CRIT) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S3=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S3=S3+GRMAT(I,J) 

14  CONTINUE 

15 CONTINUE 

 CRIT=S3 

RETURN 

END 

C END OF THE BERCRIT12 SUBROUTINE 

 

SUBROUTINE BERCRITET1(KK,XM,GRMAT,GAM,CRIT) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 

 S=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S=S+(-2.0D0*GAM*(XM(I,KK)-XM(J,KK)**2)*GRMAT(I,J)) 

14  CONTINUE 

15 CONTINUE 

 CRIT=DABS(S) 

RETURN 

END 

C END OF THE BERCRITET1 SUBROUTINE 

 

SUBROUTINE BERCRITN1(KK,GAM,CPARS,YV,XM,NV,INDVEKN1,CRIT) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),XMN(NNPMM,NNPMM),YV(NNPMM) 

 DIMENSION GRMATN(NNPMM,NNPMM),GRMAT(NNPMM,NNPMM) 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

438 

 DIMENSION AL(NNPMM) 

 DIMENSION INDVEKN1(IP) 

 

 CALL GRAMMAT(GAM,XM,NV,INDVEKN1,GRMAT) 

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NV,INDVEKN1,AL,BOPT) 

 S=0.0D0 

 DO 10 I=1,NNPMM 

  DO 9 J=1,NNPMM 

   S=S+(-2.0D0*GAM*AL(I)*AL(J)*YV(I)*YV(J)* 

              &((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)) 

9  CONTINUE 

10 CONTINUE 

 CRIT=DABS(S) 

RETURN 

END 

C END OF THE BERCRITN1 SUBROUTINE 

 

SUBROUTINE BERCRITR(GRMAT1,EENP,EENM,ALPHA,CPAR,CRIT) 

C CALCULATES THE ZERO-ORDER RAYLEIGH CRITERION 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

      DIMENSION GRMAT1(NNPMM,NNPMM),EENP(NNPMM),EENM(NNPMM) 

      DIMENSION B(NNPMM),H(NNPMM,NNPMM),ALPHA(NNPMM) 

      DIMENSION AKP(NNPMM),AKM(NNPMM) 

      DIMENSION AM(NNPMM,NNPMM),ALPHAN(NNPMM),ALPHAM(NNPMM) 

 

      DO 62 J=1,NNPMM 

      S1=0.0D0 

      S2=0.0D0 

      DO 61 I=1,NNPMM 

      S1=S1+GRMAT1(I,J)*EENM(I) 

      S2=S2+GRMAT1(I,J)*EENP(I) 

61    CONTINUE 

      AKM(J)=S1/NN 

      AKP(J)=S2/MM 

      B(J)=AKP(J)-AKM(J) 

62    CONTINUE       
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      DO 65 J1=1,NNPMM 

      DO 64 J2=1,NNPMM 

      S=0.0D0 

      DO 63 I=1,NNPMM 

      S=S+GRMAT1(I,J1)*GRMAT1(I,J2) 

63    CONTINUE 

      H(J1,J2)=(S-MM*AKP(J1)*AKP(J2)-NN*AKM(J1)*AKM(J2))/NNPMM 

64    CONTINUE 

      H(J1,J1)=H(J1,J1)+CPAR 

65    CONTINUE 

 

      DO 73 I=1,NNPMM 

      DO 72 J=1,NNPMM 

      AM(I,J)=B(I)*B(J) 

72    CONTINUE 

73    CONTINUE 

      DO 75 I=1,NNPMM 

      S=0.0D0 

      DO 74 J=1,NNPMM 

      S=S+H(I,J)*ALPHA(J) 

74    CONTINUE 

      ALPHAN(I)=S 

75    CONTINUE 

      DO 77 I=1,NNPMM 

      S=0.0D0 

      DO 76 J=1,NNPMM 

      S=S+AM(I,J)*ALPHA(J) 

76    CONTINUE 

      ALPHAM(I)=S 

77    CONTINUE 

      S1=0.0D0 

      S2=0.0D0 

      DO 78 I=1,NNPMM 

      S1=S1+ALPHAM(I)*ALPHA(I) 

      S2=S2+ALPHAN(I)*ALPHA(I) 

78    CONTINUE 

      CRIT=S1/S2 



APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS 
 

440 

      RETURN 

      END 

C END OF THE BERCRITR SUBROUTINE 

 

      SUBROUTINE BERCRITR1(KK,XM,GRMAT,GAM,ALPHA,CRIT) 

C CALCULATES THE FIRST ORDER RAYLEIGH CRITERION 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM) 

      DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM),ALPHA(NNPMM) 

      DIMENSION RM1(NNPMM),RM2(NNPMM),RMMAT(NNPMM,NNPMM) 

      DIMENSION RNMAT(NNPMM,NNPMM) 

      DIMENSION DRMMAT(NNPMM,NNPMM),DRNMAT(NNPMM,NNPMM) 

 

      DO 5 I=1,NNPMM 

      S=0.0D0 

      DO 2 J=1,NN 

      S=S+GRMAT(I,J) 

2     CONTINUE 

      RM1(I)=S/NN 

5     CONTINUE 

      DO 10 I=1,NNPMM 

      S=0.0D0 

      DO 7 J=NN+1,NNPMM 

      S=S+GRMAT(I,J) 

7     CONTINUE 

      RM2(I)=S/MM 

10    CONTINUE 

 

      DO 15 I=1,NNPMM 

      DO 14 J=1,NNPMM 

      RMMAT(I,J)=(RM1(I)-RM2(I))*(RM1(J)-RM2(J)) 

14    CONTINUE 

15    CONTINUE 

 

      DO 25 I=1,NNPMM 

      DO 24 J=1,NNPMM 

      S1=0.0D0 
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      S21=0.0D0 

      S22=0.0D0 

      DO 16 II=1,NN 

      S1=S1+GRMAT(I,II)*GRMAT(J,II) 

      S21=S21+GRMAT(I,II) 

      S22=S22+GRMAT(J,II) 

16    CONTINUE 

      S2=S21*S22/NN 

      S3=0.0D0 

      S41=0.0D0 

      S42=0.0D0 

      DO 17 II=NN+1,NNPMM 

      S3=S3+GRMAT(I,II)*GRMAT(J,II) 

      S41=S41+GRMAT(I,II) 

      S42=S42+GRMAT(J,II) 

17    CONTINUE 

      S4=S41*S42/MM 

      RNMAT(I,J)=S1-S2+S3-S4 

24    CONTINUE 

25    CONTINUE 

 

      S1=0.0D0 

      S2=0.0D0 

      DO 30 I=1,NNPMM 

      DO 29 J=1,NNPMM 

      S1=S1+ALPHA(I)*RMMAT(I,J)*ALPHA(J) 

      S2=S2+ALPHA(I)*RNMAT(I,J)*ALPHA(J) 

29    CONTINUE 

30    CONTINUE 

      DELER1=S1       

      DELER2=S2       

 

      DO 45 L=1,NNPMM 

      DO 44 K=1,NNPMM 

      S1=0.0D0 

      DO 35 J=1,NN 

      S1=S1-2.0D0*GAM*((XM(L,KK)-XM(J,KK))**2.0D0)*GRMAT(L,J) 
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35    CONTINUE 

      S1=S1/NN 

      S2=0.0D0 

      DO 36 J=NN+1,NNPMM 

      S2=S2-2.0D0*GAM*((XM(L,KK)-XM(J,KK))**2.0D0)*GRMAT(L,J) 

36    CONTINUE 

      S2=S2/MM 

      S3=0.0D0 

      DO 37 J=1,NN 

      S3=S3-2.0D0*GAM*((XM(K,KK)-XM(J,KK))**2.0D0)*GRMAT(K,J) 

37    CONTINUE 

      S3=S3/NN 

      S4=0.0D0 

      DO 38 J=NN+1,NNPMM 

      S4=S4-2.0D0*GAM*((XM(K,KK)-XM(J,KK))**2.0D0)*GRMAT(K,J) 

38    CONTINUE 

      S4=S4/MM 

      DRMMAT(L,K)=(S1-S2)*(RM1(K)-RM2(K))+(RM1(L)-RM2(L))*(S3-S4) 

44    CONTINUE 

45    CONTINUE 

 

      DO 95 I=1,NNPMM 

      DO 94 J=1,NNPMM 

      S1=0.0D0 

      DO 55 II=1,NN 

      S1=S1-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II) 

     & *GRMAT(J,II) 

55    CONTINUE 

      S2=0.0D0 

      DO 56 II=1,NN 

      S2=S2-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II) 

     & *GRMAT(I,II) 

56    CONTINUE 

      S3=0.0D0 

      DO 58 II=NN+1,NNPMM 

      S3=S3-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II) 

     & *GRMAT(J,II) 
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58    CONTINUE 

      S4=0.0D0 

      DO 59 II=NN+1,NNPMM 

      S4=S4-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II) 

     & *GRMAT(I,II) 

59    CONTINUE 

      S51=0.0D0 

      S52=0.0D0 

      S61=0.0D0 

      S62=0.0D0 

      DO 61 II=1,NN 

      S51=S51-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II) 

      S52=S52+GRMAT(J,II) 

      S62=S62-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II) 

      S61=S61+GRMAT(I,II) 

61    CONTINUE 

      S5=S51*S52/NN 

      S6=S61*S62/NN 

      S71=0.0D0 

      S72=0.0D0 

      S81=0.0D0 

      S82=0.0D0 

      DO 63 II=NN+1,NNPMM 

      S71=S71-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II) 

      S72=S72+GRMAT(J,II) 

      S82=S82-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II) 

      S81=S81+GRMAT(I,II) 

63    CONTINUE 

      S7=S71*S72/MM 

      S8=S81*S82/MM 

      DRNMAT(I,J)=S1+S2+S3+S4-S5-S6-S7-S8 

94    CONTINUE 

95    CONTINUE 

 

      S1=0.0D0 

      S2=0.0D0 

      DO 150 I=1,NNPMM 
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      DO 149 J=1,NNPMM 

      S1=S1+ALPHA(I)*DRMMAT(I,J)*ALPHA(J) 

      S2=S2+ALPHA(I)*DRNMAT(I,J)*ALPHA(J) 

149   CONTINUE 

150   CONTINUE 

      TELLER1=S1       

      TELLER2=S2       

 

C      CRIT=DABS((TELLER1/DELER1)-(TELLER2/DELER2)) 

      CRIT=DABS(1.0D0/(DELER2**2)*(DELER2*TELLER1-DELER1*TELLER2)) 

      RETURN 

      END 

C END OF THE BERCRITR1 SUBROUTINE 

 

SUBROUTINE BERCRITA(GRMAT,CRIT) 

C CALCULATES THE ZERO ORDER ALIGNMENT CRITERION 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 S1=0.0D0 

 S2=0.0D0 

 S3=0.0D0 

 DO 10 I=1,NN 

  DO 5 J=1,NN 

   S1=S1+GRMAT(I,J) 

    S3=S3+GRMAT(I,J)**2.0D0 

5  CONTINUE 

10 CONTINUE 

 DO 20 I=NN+1,NNPMM 

  DO 15 J=NN+1,NNPMM 

   S1=S1+GRMAT(I,J) 

   S3=S3+GRMAT(I,J)**2.0D0 

15  CONTINUE 

20 CONTINUE 

 DO 30 I=1,NN 

  DO 29 J=NN+1,NNPMM 

   S2=S2+2.0D0*GRMAT(I,J) 
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   S3=S3+2.0D0*(GRMAT(I,J)**2.0D0) 

29  CONTINUE 

30 CONTINUE 

CRIT=(S1-S2)/(NNPMM*DSQRT(S3)) 

RETURN 

END 

 

SUBROUTINE BERCRITW(GRMAT,CRIT1,CRIT2) 

C CALCULATE THE VARIATION RATIO CRITERION AND THE DISTANCE BETWEEN MEANS 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM) 

 S1=0.0D0 

 DO 5 I=1,NN 

  DO 4 J=1,NN 

   S1=S1+GRMAT(I,J) 

4  CONTINUE 

5 CONTINUE 

 S2=0.0D0 

 DO 10 I=NN+1,NNPMM 

  DO 9 J=NN+1,NNPMM 

   S2=S2+GRMAT(I,J) 

9  CONTINUE 

10 CONTINUE 

 S3=0.0D0 

 DO 15 I=1,NN 

  DO 14 J=NN+1,NNPMM 

   S3=S3+GRMAT(I,J) 

14  CONTINUE 

15 CONTINUE 

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM) 

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM 

 CRIT1=TELLER/ANOEMER 

 CRIT2=TELLER 

 RETURN 

 END 

SUBROUTINE CROSSVAL(XM,YV,MODELMAT,IBESTDIM) 
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C IMPLEMENTS CROSS-VALIDATION TO DETERMINE THE SVM NUMBER OF INPUT 

C VARIABLES 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NCV=5) 

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT) 

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT) 

 PARAMETER (LDH=NNPMMIN) 

 DIMENSION XM(NNPMM,IP),YV(NNPMM) 

 DIMENSION XMIN(NNPMMIN,IP),YVIN(NNPMMIN) 

 DIMENSION XMUIT(NNPMMUIT,IP),YVUIT(NNPMMUIT) 

 DIMENSION GRMAT(NNPMMIN,NNPMMIN),GRNUUT(NNPMMUIT,NNPMMIN) 

 DIMENSION B(NNPMMIN),H(NNPMMIN,NNPMMIN),HINV(NNPMMIN,NNPMMIN) 

 DIMENSION AL(NNPMMIN) 

 DIMENSION FOUTVEK(IP),MODELMAT(IP,IP),INDVEK(IP) 

 

 DO 2 I=1,IP 

  FOUTVEK(I)=0.0D0 

2 CONTINUE 

 DO 500 ICR=1,NCV 

 

C OBTAIN HOLD-OUT DATA 

 NBEG=(ICR-1)*NNUIT+1 

 NEND=ICR*NNUIT 

 MBEG=NN+(ICR-1)*MMUIT+1 

 MEND=NN+ICR*MMUIT 

 

 IF(ICR.EQ.1) THEN 

 DO 10 I=NBEG,NEND 

  YVUIT(I)=YV(I) 

  DO 9 J=1,IP 

   XMUIT(I,J)=XM(I,J) 

9  CONTINUE 

10 CONTINUE 

 DO 15 I=MBEG,MEND 

  YVUIT(NNUIT+I-MBEG+1)=YV(I) 

  DO 14 J=1,IP 
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   XMUIT(NNUIT+I-MBEG+1,J)=XM(I,J) 

14  CONTINUE 

15 CONTINUE 

 DO 20 I=NEND+1,NN 

  YVIN(I-NEND)=YV(I) 

  DO 19 J=1,IP 

   XMIN(I-NEND,J)=XM(I,J) 

19  CONTINUE 

20 CONTINUE 

 DO 25 I=MEND+1,NNPMM 

  YVIN(NNIN+I-MEND)=YV(I) 

  DO 24 J=1,IP 

   XMIN(NNIN+I-MEND,J)=XM(I,J) 

24  CONTINUE 

25 CONTINUE 

 ENDIF 

 

 IF((ICR.GT.1).AND.(ICR.LT.NCV)) THEN 

 DO 30 I=NBEG,NEND 

  YVUIT(I-NBEG+1)=YV(I) 

  DO 29 J=1,IP 

   XMUIT(I-NBEG+1,J)=XM(I,J) 

29  CONTINUE 

30 CONTINUE 

 DO 35 I=MBEG,MEND 

  YVUIT(NNUIT+I-MBEG+1)=YV(I) 

  DO 34 J=1,IP 

   XMUIT(NNUIT+I-MBEG+1,J)=XM(I,J) 

34  CONTINUE 

35 CONTINUE 

 DO 40 I=1,NBEG-1 

  YVIN(I)=YV(I) 

  DO 39 J=1,IP 

   XMIN(I,J)=XM(I,J) 

39  CONTINUE 

40 CONTINUE   

 DO 45 I=NEND+1,NN 
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  YVIN(I-NNUIT)=YV(I) 

  DO 44 J=1,IP 

   XMIN(I-NNUIT,J)=XM(I,J) 

44  CONTINUE 

45 CONTINUE 

 DO 50 I=NN+1,MBEG-1 

  YVIN(NNIN+I-NN)=YV(I) 

  DO 49 J=1,IP 

   XMIN(NNIN+I-NN,J)=XM(I,J) 

49  CONTINUE 

50 CONTINUE      

 DO 55 I=MEND+1,NNPMM 

  YVIN(NNIN+MBEG-NN-1+I-MEND)=YV(I) 

  DO 54 J=1,IP 

   XMIN(NNIN+MBEG-NN-1+I-MEND,J)=XM(I,J) 

54  CONTINUE 

55 CONTINUE      

 ENDIF 

 

 IF(ICR.EQ.NCV) THEN 

 DO 60 I=NBEG,NEND 

 YVUIT(I-NBEG+1)=YV(I) 

 DO 59 J=1,IP 

  XMUIT(I-NBEG+1,J)=XM(I,J) 

59 CONTINUE 

60 CONTINUE 

 DO 65 I=MBEG,MEND 

  YVUIT(NNUIT+I-MBEG+1)=YV(I) 

  DO 64 J=1,IP 

   XMUIT(NNUIT+I-MBEG+1,J)=XM(I,J) 

64  CONTINUE 

65 CONTINUE 

 DO 70 I=1,NBEG-1 

  YVIN(I)=YV(I) 

  DO 69 J=1,IP 

   XMIN(I,J)=XM(I,J) 

69  CONTINUE 
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70 CONTINUE   

 DO 75 I=NN+1,MBEG-1 

  YVIN(NNIN+I-NN)=YV(I) 

  DO 74 J=1,IP 

   XMIN(NNIN+I-NN,J)=XM(I,J) 

74  CONTINUE 

75 CONTINUE      

 ENDIF 

 

C TRAIN AN SVM ON THE IN-DATA AND TEST ON THE HOLD-OUT DATA 

 DO JJ=1,IP 

  DO I=1,JJ 

   INDVEK(I)=MODELMAT(JJ,I) 

  END DO 

  GAM=1.0D0/JJ 

  CALL DEELGRAMMAT(GAM,JJ,INDVEK,XMIN,GRMAT) 

  CALL DEELGRAMNUUT(GAM,JJ,INDVEK,XMIN,XMUIT,GRNUUT) 

  CALL DOENSVMIN(YVIN,XMIN,GRMAT,JJ,INDVEK,AL,BOPT) 

  CALL BERFOUTSVMUIT(YVIN,GRNUUT,YVUIT,AL,BOPT,FOUT) 

  FOUTVEK(JJ)=FOUTVEK(JJ)+FOUT 

 END DO 

500 CONTINUE 

 

C DETERMINE THE NUMBER OF INPUT VARIABLES 

 AMIN=1.0D15       

 DO 510 I=1,IP 

 IF (FOUTVEK(I).LT.AMIN) THEN 

  AMIN=FOUTVEK(I) 

  IBESTDIM=I 

 ENDIF 

510 CONTINUE  

 RETURN 

 END 

C END OF THE CROSSVAL SUBROUTINE 
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SUBROUTINE DEELGRAMMAT(GAM,NV,INDVEK,XMIN,GRMAT) 

C CALCULATES THE KERNEL MATRIX ON THE IN- (TRAINING) DATA  

C USED IN SUBROUTINE CROSSVAL 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1) 

 PARAMETER (NCV=5) 

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT) 

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT) 

 DIMENSION XMIN(NNPMMIN,IP),GRMAT(NNPMMIN,NNPMMIN) 

 DIMENSION INDVEK(IP) 

 

 DO 10 I=1,NNPMMIN-1 

  GRMAT(I,I)=1.0D0 

  DO 5 J=I+1,NNPMMIN 

  S=0.0D0 

   DO 3 K=1,NV 

    KK=INDVEK(K) 

    S=S+(XMIN(I,KK)-XMIN(J,KK))*(XMIN(I,KK)-XMIN(J,KK)) 

3   CONTINUE 

  GRMAT(I,J)=DEXP(-GAM*S) 

5  CONTINUE 

10 CONTINUE 

 GRMAT(NNPMMIN,NNPMMIN)=1.0D0 

 

 DO 20 I=2,NNPMMIN 

  DO 15 J=1,I-1 

   GRMAT(I,J)=GRMAT(J,I) 

15  CONTINUE       

20 CONTINUE       

 RETURN 

 END 

C END OF THE DEELGRAMMAT SUBROUTINE 
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SUBROUTINE DEELGRAMNUUT(GAMPAR,NV,INDVEK,XMIN,XMUIT,GRNUUT) 

C CALCULATES THE KERNEL MATRIX ON THE OUT- (TEST) DATA  

C USED IN SUBROUTINE CROSSVAL 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NCV=5) 

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT) 

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT) 

 DIMENSION XMIN(NNPMMIN,IP),XMUIT(NNPMMUIT,IP) 

 DIMENSION GRNUUT(NNPMMUIT,NNPMMIN) 

 DIMENSION INDVEK(IP) 

 

 DO 10 I=1,NNPMMUIT 

  DO 5 J=1,NNPMMIN 

  S=0.0D0 

  DO 3 K=1,NV 

   KK=INDVEK(K) 

   S=S+(XMUIT(I,KK)-XMIN(J,KK))*(XMUIT(I,KK)-XMIN(J,KK)) 

3  CONTINUE       

  GRNUUT(I,J)=DEXP(-GAMPAR*S) 

5  CONTINUE 

10 CONTINUE 

RETURN 

END 

 

SUBROUTINE DOENSVMIN(YV,XM,GRMAT,NVER,INDVEK,AL,BOPT) 

C TRAINS AN SVM ON THE IN- (TRAINING) DATA 

C USED IN SUBROUTINE CROSSVAL 
 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NCV=5) 

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT) 

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT) 

 PARAMETER (CPAR=NNPMMIN/10.0D0) 

 PARAMETER (NVAR=NNPMMIN,NCON=2*NVAR+1,NEQ=1,LDA=NCON,LDH=NVAR) 

 DIMENSION XM(NNPMMIN,IP),YV(NNPMMIN),GRMAT(NNPMMIN,NNPMMIN) 

 DIMENSION XV(IP),XVV(IP) 
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 DIMENSION A(NCON,NVAR),B(NCON),G(NVAR),H(NVAR,NVAR) 

 DIMENSION SOL(NVAR),ALAM(NVAR),AL(NNPMMIN) 

 DIMENSION FW(NNPMMIN),FWR(NNPMMIN),YVR(NNPMMIN) 

 DIMENSION IACT(NVAR),IPERM(NNPMMIN) 

 DIMENSION INDVEK(IP) 

 

 EP=1.0D-8  

 

 DO 28 I=1,NVAR 

  A(1,I)=YV(I) 

28 CONTINUE 

 

 DO 30 I=1,NVAR 

  DO 29 J=1,NVAR 

   A(I+1,J)=0.0D0 

   A(NVAR+I+1,J)=0.0D0 

29  CONTINUE   

  A(I+1,I)=1.0D0 

  A(NVAR+I+1,I)=-1.0D0  

30 CONTINUE 

 B(1)=0.0D0 

 DO 35 I=1,NVAR 

  B(I+1)=0.0D0 

  B(NVAR+I+1)=-1.0D0*CPAR 

35 CONTINUE 

 DO 36 I=1,NVAR 

  G(I)=-1.0D0 

36 CONTINUE       

 DO 40 I=1,NVAR 

  DO 39 J=1,NVAR 

   H(I,J)=YV(I)*YV(J)*GRMAT(I,J) 

39  CONTINUE       

40 CONTINUE       

 CALL DQPROG(NVAR,NCON,NEQ,A,LDA,B,G,H,LDH,DIAG,SOL,NACT, 

      & IACT,ALAM) 

 DO 45 I=1,NVAR 

  IF (DABS(SOL(I)).LT.EP) SOL(I)=0.0D0 
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  IF (DABS(SOL(I)-CPAR).LT.EP) SOL(I)=CPAR 

 AL(I)=SOL(I) 

45 CONTINUE 

 

 DO 200 J=1,NNPMMIN 

  IPERM(J)=J 

  S=0.0D0 

   DO 199 I=1,NNPMMIN 

    S=S+AL(I)*YV(I)*GRMAT(I,J) 

199   CONTINUE 

  FW(J)=S 

200  CONTINUE 

 CALL DSVRGP(NNPMMIN,FW,FWR,IPERM) 

 DO 205 I=1,NNPMMIN 

  YVR(I)=YV(IPERM(I)) 

205 CONTINUE 

 

 BPAR=-FWR(1)+1.0D0 

 BOPT=BPAR 

 NFOUTE=NNIN 

 NFOUTEOPT=NFOUTE 

 NTEL=0 

210 NTEL=NTEL+1 

 BPAR=-(FWR(NTEL)+FWR(NTEL+1))/2.0D0 

 IF (YVR(NTEL).LE.0.0D0) NFOUTE=NFOUTE-1 

 IF (YVR(NTEL).GT.0.0D0) NFOUTE=NFOUTE+1 

 IF (NFOUTE.LT.NFOUTEOPT) THEN 

  NFOUTEOPT=NFOUTE 

  BOPT=BPAR 

 ENDIF 

 IF (NTEL.LE.NNPMMIN-2) GOTO 210 

RETURN 

END 
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SUBROUTINE BERFOUTSVMUIT(YVIN,GRNUUT,YVUIT,ALPHA,BOPT,FOUT) 

C TRAINS AN SVM ON THE OUT- (TEST) DATA  

C USED IN SUBROUTINE CROSSVAL 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM) 

 PARAMETER (NCV=5) 

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT) 

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT) 

 DIMENSION GRNUUT(NNPMMUIT,NNPMMIN),ALPHA(NNPMMIN) 

 DIMENSION YVIN(NNPMMIN),YVUIT(NNPMMUIT) 

 FOUT=0.0D0       

 DO 10 I=1,NNPMMUIT 

  TOETS=1.0D0 

  S=BOPT 

  DO 5 J=1,NNPMMIN 

   S=S+ALPHA(J)*YVIN(J)*GRNUUT(I,J) 

5  CONTINUE 

 IF (S.LT.0.0D0) TOETS=-1.0D0 

 IF (DABS((YVUIT(I)-TOETS)).GT.0.1D0) FOUT=FOUT+1.0D0 

10 CONTINUE       

 FOUT=FOUT/NNPMMUIT 

RETURN 

END 

C END OF THE BERFOUTSVMUIT SUBROUTINE 
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