

VARIABLE SELECTION FOR

KERNEL METHODS

WITH APPLICATION TO

BINARY CLASSIFICATION

Surette Oosthuizen

Dissertation presented for the degree of Doctor of Philosophy at Stellenbosch University.

PROMOTER: Prof. S.J. Steel DATE: March 2008

 II

DECLARATION

I, the undersigned, hereby declare that the work contained in this dissertation is my own

original work and that I have not previously in its entirety or in part submitted it at any

university for a degree.

SIGNATURE: ………………………………………

DATE: 19 November 2007

Copyright © 2008 Stellenbosch University

All rights reserved

 III

ABSTRACT

The problem of variable selection in binary kernel classification is addressed in this thesis.

Kernel methods are fairly recent additions to the statistical toolbox, having originated

approximately two decades ago in machine learning and artificial intelligence. These

methods are growing in popularity and are already frequently applied in regression and

classification problems.

Variable selection is an important step in many statistical applications. Thereby a better

understanding of the problem being investigated is achieved, and subsequent analyses of

the data frequently yield more accurate results if irrelevant variables have been eliminated.

It is therefore obviously important to investigate aspects of variable selection for kernel

methods.

Chapter 2 of the thesis is an introduction to the main part presented in Chapters 3 to 6. In

Chapter 2 some general background material on kernel methods is firstly provided, along

with an introduction to variable selection. Empirical evidence is presented substantiating

the claim that variable selection is a worthwhile enterprise in kernel classification

problems. Several aspects which complicate variable selection in kernel methods are

discussed.

An important property of kernel methods is that the original data are effectively

transformed before a classification algorithm is applied to it. The space in which the

original data reside is called input space, while the transformed data occupy part of a

feature space. In Chapter 3 we investigate whether variable selection should be performed

in input space or rather in feature space. A new approach to selection, so-called feature-to-

input space selection, is also proposed. This approach has the attractive property of

combining information generated in feature space with easy interpretation in input space.

 IV

An empirical study reveals that effective variable selection requires utilisation of at least

some information from feature space.

Having confirmed in Chapter 3 that variable selection should preferably be done in feature

space, the focus in Chapter 4 is on two classes of selecion criteria operating in feature

space: criteria which are independent of the specific kernel classification algorithm and

criteria which depend on this algorithm. In this regard we concentrate on two kernel

classifiers, viz. support vector machines and kernel Fisher discriminant analysis, both of

which are described in some detail in Chapter 4. The chapter closes with a simulation

study showing that two of the algorithm-independent criteria are very competitive with the

more sophisticated algorithm-dependent ones.

In Chapter 5 we incorporate a specific strategy for searching through the space of variable

subsets into our investigation. Evidence in the literature strongly suggests that backward

elimination is preferable to forward selection in this regard, and we therefore focus on

recursive feature elimination. Zero- and first-order forms of the new selection criteria

proposed earlier in the thesis are presented for use in recursive feature elimination and their

properties are investigated in a numerical study. It is found that some of the simpler zero-

order criteria perform better than the more complicated first-order ones.

Up to the end of Chapter 5 it is assumed that the number of variables to select is known.

We do away with this restriction in Chapter 6 and propose a simple criterion which uses the

data to identify this number when a support vector machine is used. The proposed criterion

is investigated in a simulation study and compared to cross-validation, which can also be

used for this purpose. We find that the proposed criterion performs well.

The thesis concludes in Chapter 7 with a summary and several discussions for further

research.

 V

OPSOMMING

Die veranderlike-seleksie-probleem word in hierdie proefskrif beskou. Kernmetodes is

ongeveer twee dekades gelede in die masjienleer- en kunsmatige intelligensie-omgewings

voorgestel, en verteenwoordig dus redelike onlangse toevoegings tot statistiese metodes.

Hierdie metodes is gaandeweg besig om meer gewild te raak en word dikwels toegepas in

regressie- en klassifikasie-probleme.

Veranderlike-seleksie is ’n belangrike stap in baie toepassings in statistiek. Daardeur word

’n beter begrip van die probleem wat ondersoek word, verkry, en wanneer irrelevante

veranderlikes elimineer word, lei dit tot akkurater na-seleksie analises van die data. Hieruit

spreek die belangrikheid van die ondersoek van die aspekte van veranderlike-seleksie vir

kernmetodes vanself.

Hoofstuk 2 van die proefskrif is ’n inleiding tot die hoofgedeelte wat in Hoofstukke 3 tot 6

gegee word. In Hoofstuk 2 word eerstens algemene agtergrond-inligting oor kernmetodes

gegee, saam met ’n inleiding tot veranderlike-seleksie. Daarna bied ons empiriese

getuienis aan wat bevestig dat veranderlike-seleksie die moeite werd is in klassifikasie-

probleme vir kernmetodes. Verskeie aspekte wat veranderlike-seleksie in kernmetodes

kompliseer, word ook bespreek.

’n Belangrike eienskap van kernmetodes is dat die oorspronklike data effektiewelik

transformeer word voordat ’n klassifikasie-algoritme daarop toegepas word. Die ruimte

waarbinne die oorspronklike data lê, word ’n insetruimte genoem, terwyl die

getransformeerde data in ’n gedeelte van ’n kernmerkruimte bevat is. In Hoofstuk 3

ondersoek ons of veranderlike-seleksie in die insetruimte gedoen moet word, of eerder in

die kernmerkruimte. ’n Nuwe benadering tot seleksie, sogenaamde kernmerk-na-

insetruimte seleksie, word ook voorgestel. Die aantreklike eienskap van hierdie benadering

is dat inligting wat in die kernmerkruimte genereer word, gekombineer word met maklike

 VI

interpretasie in die insetruimte. ’n Empiriese studie toon aan dat effektiewe veranderlike-

seleksie die gebruik van minstens sommige van die inligting vanuit die kernmerkruimte

vereis.

Nadat in Hoofstuk 3 bevestig is dat veranderlike-seleksie verkieslik in die kernmerkruimte

gedoen moet word, lê die klem in Hoofstuk 4 op twee kategorieë vir seleksie-kriteria in

laasgenoemde ruimte: kriteria wat onafhanklik is van die spesifieke kern-klassifikasie-

algoritme en kriteria wat afhang van hierdie algoritme. In hierdie opsig konsentreer ons op

twee klassifikasie-algoritmes, nl. ondersteuningspunt-algoritmes en Fisher se kern-

diskriminant-analise. Beide word in redelike besonderhede in Hoofstuk 4 beskryf. Die

hoofstuk sluit af met ’n simulasie-studie wat aandui dat twee van die algoritme-

onafhanklike kriteria baie mededingend is met die meer gesofistikeerde algoritme-

afhanklikes.

In Hoofstuk 5 inkorporeer ons ’n spesifieke strategie om deur die ruimte van veranderlike

deelversamelings te soek. Getuienis in die literatuur dui sterk daarop dat terugwaartse

seleksie verkies word bo voorwaartse seleksie, daarom is dit ons fokus. Nul- en eerste-orde

weergawes van die nuut-voorgestelde seleksie-kriteria vroeër in die tesis word aangebied

vir gebruik in terugwaartse seleksie, waarna hulle eienskappe in ’n numeriese studie

ondersoek word. Ons bevinding is dat sommige van die eenvoudiger nul-orde kriteria beter

vaar as die meer ingewikkelde eerste-orde kriteria.

Tot en met die einde van Hoofstuk 5 word aangeneem dat die aantal veranderlikes om te

selekteer bekend is. Ons verwyder hierdie beperking in Hoofstuk 6 en stel ’n eenvoudige

data-afhanklike kriterium voor om die aantal veranderlikes te identifiseer binne die konteks

van ’n ondersteuningspunt-algoritme. Die voorgestelde kriterium word in ’n simulasie-

studie ondersoek en vergelyk met kruis-validasie, wat ook vir hierdie doel aangewend kan

word. Ons bevinding is dat die voorgestelde kriterium goed vaar.

Ons sluit die proefskrif in Hoofstuk 7 af, met ’n opsomming en verskeie voorstelle vir

verdere navorsing.

 VII

ACKNOWLEDGEMENTS

I want to sincerely thank Prof. Sarel Steel for his invaluable guidance and commitment

throughout the study, our head of Department, Prof. Tertius de Wet, for his mentorship,

and all my colleagues, for their continuous encouragement and support.

A special thank you also to my dad, Klopper Oosthuizen, for many investments in me, and

for his love and support, and to my family and friends.

 VIII

CONTENTS

CHAPTER 1: INTRODUCTION

1.1 NOTATION 4

1.2 OVERVIEW OF THE THESIS 7

CHAPTER 2: VARIABLE SELECTION FOR KERNEL METHODS

2.1 INTRODUCTION 10

2.2 AN OVERVIEW OF KERNEL METHODS 13

 2.2.1 BASIC CONCEPTS 13

 2.2.2 KERNEL FUNCTIONS AND THE KERNEL TRICK 16

 2.2.3 CONSTRUCTING A KERNEL CLASSIFIER 26

 2.2.4 A REGULARISATION PERSPECTIVE 27

2.3 VARIABLE SELECTION IN BINARY CLASSIFICATION: IMPORTANT ASPECTS 46

 2.3.1 THE RELEVANCE OF VARIABLES 47

 2.3.2 SELECTION STRATEGIES AND CRITERIA 56

2.4 VARIABLE SELECTION FOR KERNEL METHODS 67

 2.4.1 THE NEED FOR VARIABLE SELECTION 67

 2.4.2 COMPLICATING FACTORS AND POSSIBLE APPROACHES 75

2.5 SUMMARY 79

CHAPTER 3: KERNEL VARIABLE SELECTION IN INPUT SPACE

3.1 INTRODUCTION 80

3.2 NAÏVE SELECTION IN INPUT SPACE 82

3.3 KERNEL VARIABLE SELECTION: FEATURE-TO-INPUT SPACE 98

 3.3.1 RE-EXPRESSING THE DISCRIMINANT FUNCTION 101

 3.3.2 PRE-IMAGE APPROXIMATIONS IN INPUT SPACE 102

 3.3.3 SELECTING VARIABLES TO EXPLAIN THE VARIATION IN nfff ,,, 21 K 107

3.4 MONTE CARLO SIMULATION STUDY 114

 IX

 3.4.1 EXPERIMENTAL DESIGN 114

 3.4.2 STEPS IN EACH SIMULATION REPETITION 119

 3.4.3 GENERATING THE TRAINING AND TEST DATA 120

 3.4.4 HYPERPARAMETER SPECIFICATION 121

 3.4.5 THE VARIABLE SELECTION PROCEDURES 125

 3.4.6 RESULTS AND CONCLUSIONS 126

3.5 SUMMARY 137

CHAPTER 4: ALGORITHM-INDEPENDENT AND ALGORITHM-DEPENDENT SELECTION IN

 FEATURE SPACE

4.1 INTRODUCTION 138

4.2 SUPPORT VECTOR MACHINES 139

 4.2.1 THE TRAINING DATA ARE LINEARLY SEPARABLE IN INPUT SPACE 141

 4.2.2 THE TRAINING DATA ARE LINEARLY SEPARABLE IN FEATURE SPACE 149

 4.2.3 HANDLING NOISY DATA 151

4.3 KERNEL FISHER DISCRIMINANT ANALYSIS 154

 4.3.1 LINEAR DISCRIMINANT ANALYSIS 154

 4.3.2 THE KERNEL FISHER DISCRIMINANT FUNCTION 157

4.4 ALGORITHM-INDEPENDENT VERSUS ALGORITHM-DEPENDENT SELECTION 160

4.5 FEATURE SPACE GEOMTERY 162

 4.5.1 INDIVIDUAL POINTS 163

 4.5.2 SETS OF POINTS 164

4.6 ALGORITHM-INDEPENDENT SELECTION 167

 4.6.1 SELECTION CRITERIA 167

 4.6.2 MONTE CARLO SIMULATION STUDY 173

4.7 ALGORITHM-DEPENDENT SELECTION 177

 4.7.1 SELECTION CRITERIA 177

 4.7.2 MONTE CARLO SIMULATION STUDY 184

4.8 SUMMARY 191

 X

CHAPTER 5: BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

5.1 INTRODUCTION 192

5.2 LITERATURE REVIEW 193

5.3 SELECTION CRITERIA IN BACKWARD ELIMINATION 200

 5.3.1 THE SQUARED NORM OF THE SVM WEIGHT VECTOR: ZERO-ORDER FORM 200

 5.3.2 THE SQUARED NORM OF THE SVM WEIGHT VECTOR: FIRST-ORDER FORM 201

 5.3.3 FURTHER SENSITIVITY SELECTION CRITERIA 208

5.4 MONTE CARLO SIMULATION STUDY 214

5.5 RESULTS AND CONCLUSIONS 215

5.6 SUMMARY 221

CHAPTER 6: VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE

 APPROACH

6.1 INTRODUCTION 222

6.2 RELATED LITERATURE 223

6.3 A PROPOSAL FOR DECIDING ON THE MODEL DIMENSION 224

6.4 PRELIMINARY EVALUATION 229

6.5 MONTE CARLO SIMULATION STUDY 234

6.6 RESULTS AND CONCLUSIONS 237

6.7 SUMMARY 250

CHAPTER 7: SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH 251

REFERENCES 255

 XI

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

A.1 GENERATING MULTIVARIATE DATA WITH LOGNORMAL MARGINAL DISTRIBUTIONS 271

 A.1.1 RESULTS FROM MATRIX ALGEBRA 272

 A.1.2 NON-SINGULARITY (POSITIVE DEFINITENESS) OF A GIVEN MATRIX 274

 A.1.3 OUR APPLICATION 279

A.2 COMPREHENSIVE SIMULATION STUDY RESULTS 282

 A.2.1 ALGORITHM-INDEPENDENT AND ALGORITHM-DEPENDENT SELECTION IN

 FEATURE SPACE 282

 A.2.2 BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS 285

APPENDIX B: SOME MATHEMATICAL RESULTS 298

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

C.1 NAÏVE SELECTION IN INPUT AND FEATURE SPACE 305

C.2 FEATURE-TO-INPUT SPACE SELECTION 317

C.3 ALGORITHM-INDEPENDENT AND ALGORITHM-DEPENDENT SELECTION IN

 FEATURE SPACE 335

C.4 BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS 352

C.5 VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH 381

C.6 FUNCTIONS AND SUBROUTINES 395

CHAPTER 1
INTRODUCTION

1

CHAPTER 1

INTRODUCTION

The field of statistics has often been enriched by contributions from other disciplines.

Examples that spring to mind are factor analysis (largely developed in psychology), and

kriging (in the earth sciences). Since the early 1990s there have been numerous important

developments in pattern analysis which are having a significant impact on several areas in

statistics. The focus in this thesis is on aspects of one of these developments, viz. kernel

methods.

Pattern analysis may informally be described as a collection of procedures designed to

detect patterns in data, which has long been an important objective in various scientific

fields. Advances in data collection, data storage and computing capabilities are providing a

strong impetus for continuing developments in the pattern analysis field. This has also

seen an extension of pattern analysis applications beyond the boundaries of traditional

science. Importantly, pattern analysis is not restricted to the detection of relations only in

numerical data, and can therefore be utilised to solve a wide variety of problems.

Examples are fraud detection and stock market analysis in the financial world, automatic

optical character recognition and image and texture analysis in machine learning, gene

expression array analysis in genomics, and chromatography diagnosis in chemical

engineering.

From a historical perspective, three important stages in the development of pattern analysis

may be distinguished. During the 1950s and 1960s, the theory and application of linear

methods in pattern analysis were successfully established. A prime example of a procedure

developed during this era is the perceptron (Rosenblatt, 1959). During this stage very little

progress was however made in terms of developing non-linear methods. The second stage

in the development of pattern analysis started with the introduction of neural networks and

CHAPTER 1
INTRODUCTION

2

decision trees in the early 1980s. These techniques provided non-linear answers to pattern

analysis problems, but were largely based on heuristic arguments. Non-linear procedures

based on a firm theoretical foundation were still lacking. This gap was filled in the 1990s

with the introduction of kernel methods. It is generally acknowledged that the first

contribution in this regard was made by Boser et al. (1992), with their introduction of the

support vector machine (SVM). Extension of the idea in this seminal paper lead to the

rapid development of several kernel techniques, for example support vector time series

analysis, support vector density estimation and support vector analysis of variance

(ANOVA) decomposition; kernel ridge regression and kernel partial least squares in

regression; kernel Fisher discriminant analysis (KFDA), kernel logistic regression, import

and relevance vector machines in classification; kernel principal component analysis in

dimension reduction; and support vector clustering. For an introduction to these techniques

the reader is referred to Weston et al. (1997), Stitson et al. (1997), Mukherjee et al. (1997),

Schölkopf et al. (1999), Mika et al. (1999), Herbrich (2002), and Schölkopf and Smola

(2002).

In time series analysis, density estimation, ANOVA, regression, classification, dimension

reduction and clustering, a number of standard statistical techniques have traditionally been

available. Compared to these techniques, kernel procedures frequently offer several

advantages. Firstly, in terms of prediction accuracy, kernel methods in many scenarios

yield state-of-the-art performance. The results of an empirical study in Louw and Steel

(2005) for example show that KFDA (the kernel version of ordinary linear discriminant

analysis which will be described in Chapter 5) markedly outperforms ordinary linear

discriminant analysis in most situations. A second advantage is that kernel methods can

even be applied in cases where the number of variables is much larger than the number of

data points. In fact, this property of kernel methods has largely contributed to their

extensive application in the analysis of gene profile data, where hundreds of thousands of

variables are frequently studied using sample sizes smaller than a hundred (see Guyon and

Elisseeff, 2003). Thirdly, as pointed out in the previous paragraph, kernel techniques can

handle data of almost any type, ranging from biosequences to image pixels and graph

nodes – hence their wide applicability. Finally, Shawe-Taylor and Cristianini (2004) point

CHAPTER 1
INTRODUCTION

3

out that kernel methods satisfy the requirements of computational efficiency (computation

time of the algorithm scales polynomially with the number of data cases), robustness (the

algorithm is not particularly sensitive to outliers), and statistical stability (patterns

originating from the true source, and not spurious patterns caused by noise, are typically

detected).

Since their introduction, kernel methods have become increasingly popular, both as an area

of research, and as powerful tools in practice. The current vitality of research in kernel

methods is evident from the large number of publications appearing in the literature. Since

kernel procedures are typically computer intensive, much of the theory on kernel methods

was originally developed by and for researchers and practitioners who are experts in

machine learning and computer science (cf. for example the special issue on kernel

methods in the Journal of Machine Learning Research – Cristianini et al., 2001).

Gradually other disciplines (including statistics) caught up, leading to for example the

formulation of key principles in statistical learning theory. Yet at this stage to our view

kernel methods still present many opportunities for contributions from the statistics

community.

The general focus in this thesis will be on binary classification using kernels. Our specific

focus will be on variable selection in kernel classification. Typical examples of cases

where variable selection in kernel classification will be beneficial, are gene expression

array analysis and fraud detection. In gene analysis, gene expression measurements are

used to quantify the abundance of messenger ribonucleic acid in the tissue biopsies of a

(usually relatively small) number of persons. In such an analysis, the primary purpose is to

identify the genes (variables) which can be used to distinguish between healthy and ill

individuals. In fraud detection, a transaction is evaluated in terms of a large number of

predetermined attributes. Here the pattern analysis task is typically to obtain the attributes

(variables) which distinguish best between honest and fraudulent transactions. In gene

expression array analyses the identification of relevant genes facilitates a better

understanding of potential susceptibility to certain diseases, possibly leading to early

detection and prevention. Additionally, as will be seen in later chapters of this thesis, the

CHAPTER 1
INTRODUCTION

4

elimination of irrelevant genes can potentially lead to a substantial improvement in the

accuracy of the kernel classifier predicting illness. Improved prediction accuracy is also

the most important benefit of a reduction in irrelevant attributes in fraud detection.

Because of the large number of genes or transaction attributes, these examples of variable

selection are however difficult to solve. They are examples of modern variable selection

application domains where data sets containing hundreds of thousands of variables are

common, and even an initial variable filtering process typically only reduces the number of

variables to the order of tens of thousands. We would like to emphasise that these

examples are representative of a large number of important applications which could

potentially benefit from variable selection.

1.1 NOTATION

In this section we define notation that will be used throughout the remainder of the thesis.

In line with our intended focus, consider the following generic two-group classification

problem. We observe a binary response variable { }1,1 +−∈Y , together with classification

variables pXXX ,,, 21 K for 21 nnn += sample cases, where the first 1n cases belong to

group 1 (with 1+=Y) and the remaining 2n cases belong to group 2. The sets jI contain

the indices of the cases in group j , 2,1=j . The resulting training data set is denoted by

(){ }niyii ,,2,1,, K== xT . Here ix is a −p component column vector containing the

values of pXXX ,,, 21 K for case i in the sample. In the literature the ix vectors are often

referred to as training patterns; we will also use the terms training inputs, or sample cases.

Naturally T can be divided into two training sets corresponding to the two groups, viz.

(){ }, ,i i jy i I= ∈xjT , 2,1=j . We write X for the pn× data matrix with thi row equal

to '
ix , or equivalently, with thj column containing the n observations on input variable

jX in the training sample.

CHAPTER 1
INTRODUCTION

5

The objective in classification is to use T to find a real-valued function ()xf , called a

discriminant function, so that (){ }xfsign can be used to assign a new case with observed

values of the classification variables in the vector x to one of the two groups. We will

refer to (){ }xfsign as a classifier.

An important quantity when studying a classifier is its generalisation error. This is

defined by

 () ()()()XfsignYPfErr ≠= , (1.1)

where ()Y,X represents a new observation from the same distribution as the one

generating the training data. The symbol ()ferr will be used to denote the training error

of ()xf , i.e.

 () ()()∑
=

≠=
n

i
iin fyIndferr

1

1 x , (1.2)

where ()AInd denotes the indicator function of the event A .

In order to address the topic of variable selection in classification, we require additional

notation for the classifier obtained using all the available variables, as well as for the post-

selection classifier based only on a subset of selected variables. The former will be

denoted by (){ }xfsign , and the latter by (){ }x~fsign , where x~ represents the

measurements on the selected subset of variables. The size of the selected variable subset

will be denoted by m .

An important concept in kernel methods is the so-called feature transformation function, or

feature map, which is usually denoted by Φ . We think of the function Φ as a non-linear

transformation of the patterns to a so-called feature space. The space to which the patterns

originally belong, i.e. the input space, will be denoted by ℵ (in our applications this will

CHAPTER 1
INTRODUCTION

6

be pℜ), while the feature space is represented by ℑ . Conceptually therefore ()xΦ (or

simply φ) is the feature vector or feature pattern (the data case in ℑ) corresponding to the

input pattern x in ℵ . The symbols ()xΦ and φ will be used interchangeably. The

coordinates of φ represent transformations of the original (input) variables pXXX ,,, 21 K

induced by Φ . They are called features and will be denoted by { }Nj j ,,2,1, K=φ .

Therefore in this thesis Φ is the non-linear transformation function which maps the p -

dimensional input space ℵ to a higher dimensional feature space ℑ , viz.
Np ℜ⊆ℑ→ℜ⊆ℵΦ : , where the dimension of ℑ , denoted by N , may be infinite.

In the statistics literature the terms variable and feature are often used interchangeably.

Note that in this thesis there is an important distinction between (input) variable selection

and feature selection for kernel methods. In the case of variable selection the objective is

to select a subset from the variables pXXX ,,, 21 K , whereas in feature selection interest

lies in selection of a subset from the features { }Nj j ,,2,1, K=φ . We will use

() (){ }niyii ,,2,1,, K==Φ φT , () ℑ⊆Φ T , to denote the training data set embedded in

feature space and () { }nφφφ ,,, 21 K=Φ ℵT in cases where we wish to omit the sample

response values. Here { }nxxx ,,, 21 K=ℵT , ℵ⊆ℵT , indicates the training set of input

patterns.

The concept of an inner product plays a central role in kernel methods. We will use the

notation i
i

iba∑=ba, to represent the standard inner product between two vectors. The

corresponding norm will be denoted by aaa ,= . We will write rI for the rr ×

identity matrix, and rsE for the sr × matrix with all entries equal to 1. The trace of an

nn× matrix A , i.e. ∑
=

n

i
iia

1
, will be denoted by ()Atr .

CHAPTER 1
INTRODUCTION

7

1.2 OVERVIEW OF THE THESIS

In Chapter 2 we firstly provide a fairly extensive introduction to kernel methods. It is

shown how the kernel trick may be used to implicitly perform calculations in a possibly

infinite dimensional feature space, enabling us to fit linear discriminant functions in feature

space which correspond to non-linear discriminant functions in input space. We provide

examples of different kernel functions and briefly discuss properties of the kernel to be

used in the remainder of the thesis. The elegant and useful structure of kernel methods,

which also plays an important role in later chapters, is pointed out. We conclude the

introductory section on kernel methods by showing how they can be derived using

regularisation theory. The remainder of Chapter 2 contains an overview of variable

selection, emphasising a binary classification context. We make use of results from a

numerical study to confirm the importance of variable selection. We then identify general

strategies which may be used for variable selection, and provide an overview of several

more recent statistical procedures that inherently facilitate variable selection. Chapter 2

concludes with remarks regarding aspects that complicate variable selection for kernel

methods, and possible approaches towards performing kernel variable selection.

Chapters 3 and 4 present part of the contribution of this thesis, viz. a new and useful

conceptual framework for variable selection in kernel methods. This framework considers

firstly the data space in which selection of input variables is performed, and secondly the

modular nature of kernel methods. Using this structure, selection criteria may be

categorised according to whether they are defined in input or in feature space, and also

whether they are specific to a particular kernel algorithm, or not. The framework enables

one to identify some of the fairly ad hoc selection criteria proposed in the literature as

special cases of a general strategy. The proposed framework therefore unifies a wide array

of seemingly unrelated selection criteria in the literature, and also allows a logical

development of new ideas and proposals. It provides a structured variable selection

methodology for kernel methods, and represents a contribution to the field.

CHAPTER 1
INTRODUCTION

8

Chapter 3 starts by reporting excerpts from a simulation study which was performed in

order to establish whether selection criteria defined in input space can be used for efficient

kernel variable selection. We then define and motivate criteria that are defined in feature

space, but that ultimately allow the selection of variables to be performed in input space –

and indicate the points in favour of and against such an approach. An empirical evaluation

of the performance of these so-called feature-to-input space selection criteria is described

and reported in the final section of Chapter 3.

Chapters 4 and 5 focus on kernel variable selection carried out entirely in feature space. In

Chapter 4 we consider two classes of selection criteria defined in ℑ , viz. algorithm-

independent and algorithm-dependent criteria, and empirically evaluate their relative

performance. In the case of algorithm-dependent selection criteria we restrict attention to

criteria which can be applied in the context of fitting SVMs, or performing KFDA. The

results of a simulation study conducted to evaluate the proposed criteria are reported and

discussed at the end of Chapter 4. In Chapter 5 we extend the discussion in Chapters 3 and

4 to include a specific selection strategy, viz. a backward elimination approach. Instead of

using selection criteria to simply rank the input variables and then selecting the m variables

with highest ranks, we describe and evaluate recursive feature elimination for kernel

methods. This approach entails stepwise elimination of variables deemed most irrelevant,

and it has the advantage compared to naïve variable ranking of taking into account inter-

dependence amongst the input variables in terms of their effect on the response.

Whereas most of the literature on kernel variable selection assumes the number of input

variables to include in the post-selection classifier to be known, we pay specific attention to

this aspect in Chapter 6. We propose a criterion which can be used in SVMs for deciding

on the number of variables to retain during selection, and evaluate the criterion when it is

used in combination with the best performing selection criteria in Chapter 5. We then

investigate our criterion when it is used in combination with both a forward and backward

selection strategy. Our proposal is shown to perform well in most of the scenarios

investigated. With this we provide a comprehensive variable selection procedure that does

CHAPTER 1
INTRODUCTION

9

not make use of the restrictive assumption of a known value for the number of input

variables in the post-selection classifier.

We close the thesis in Chapter 7 with recommendations and a discussion of directions for

further research.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

10

CHAPTER 2

VARIABLE SELECTION FOR KERNEL
METHODS

2.1 INTRODUCTION

Variable selection is frequently the first step in the analysis of a data set. Often the primary

objective of a study is to determine which input variables influence the outcome of some

response of interest. Even in cases where variable selection is not the goal in itself, suitable

reduction of input variables frequently leads to several additional benefits. Especially in

small sample cases, a reduction in the number of variables may prevent overfitting the data,

and subsequent unstable predictions. Also, a more parsimonious model is simpler to

interpret and cheaper than the model containing all variables. The relevance of variable

selection in traditional statistical procedures is well established. Standard references are

Linhart and Zucchini (1986), Burnham and Anderson (2002), and Miller (2002).

During the past decade it has become clear that variable selection is also important when

kernel methods are used, as is substantiated by many contributions in this regard. In the

introductory paper to a special issue on kernel variable selection, Guyon and Elisseeff

(2003) motivate the importance of variable selection in kernel methods: once again, more

parsimonious description of the data yields simpler interpretation, potential cost savings,

improved insight regarding the relative importance of the explanatory variables, and

frequently also more accurate predictions.

Variable selection is a notoriously difficult problem. It entails a decision on two different

levels: the number of variables to include (a value for the model dimension, i.e. a value for

m), and which subset of m variables this should be. The former is possibly the more

difficult decision to make. Two cases may therefore be distinguished. Firstly, it may be

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

11

possible to assume that the model dimension is known before the selection process starts.

For example, the very large numbers of variables in some application areas makes it

essential that an upper bound on the model dimension be specified. In these cases a

selection criterion only needs to take into consideration the accuracy of ()x~f , without

having to guard against overfitting. Overfitting occurs when noise variables are wrongly

selected in an attempt to decrease ()ferr , usually resulting in an increase in ()fErr . The

second scenario arises when the value of m is not known. For such situations selection

criteria typically provide for a trade-off between accuracy on the training data and

complexity, i.e. the number of variables included. Establishing the right balance between

these conflicting requirements is an important but difficult problem. Hence in the

literature, as pointed out by Ishwaran and Rao (2005), determining the model dimension is

sometimes not considered part of the classical variable selection problem. Examples of

papers dealing with estimation of m include Breiman (1992) and Rao (1999). In this

thesis we start by assuming the value of m to be known, and address the problem of

estimating the true model dimension in the final chapter.

If the value of m is known, the variable selection problem becomes much simpler. Ideally,

one then needs to evaluate all possible models with m input variables, and select the best

one. For this purpose an appropriate criterion to evaluate different subsets of variables (a

variable selection criterion) is of course required. Specifying variable selection criteria in

different application contexts is a difficult problem. We will pay considerable attention to

this aspect of kernel variable selection.

The number of models which need to be evaluated during variable selection is often very

large. Even if the value of m is fixed, evaluating all ()p
m possible models of size m may

not be feasible. This is even more of a problem in cases where a best model of each

possible dimension has to be identified. Such an approach requires evaluation of ()∑
=

p

m

p
m

1

models. Variable selection procedures therefore generally require a strategy for reducing

all possible combinations of input variables to be evaluated to a more manageable number,

and specification of such a strategy is an important aspect of the selection process. Recent

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

12

references regarding variable selection strategies in multiple linear regression are Efron et

al. (2004), Ishwaran (2004), and Shao and Rao (2000). See also Ishwaran and Rao (2005),

and references therein.

It is clear from the above that there are basically three important components which need to

be specified in a variable selection procedure. One requires:

i. A variable selection criterion in order to rate the various combinations of input

 variables;

ii. A variable selection strategy which specifies (in combination with the selection

 criterion) which combinations of input variables should be evaluated;

iii. A method for determining the number of input variables to select.

In this thesis we will discuss these three components in the context of selection for kernel

classifiers. The first component receives attention in Chapters 3 and 4, the second

component is discussed in Chapter 5, and we propose a new method for selecting the model

dimension in kernel methods in Chapter 6.

The aim of the remainder of this chapter is to introduce important concepts in variable

selection and in kernel methods. The chapter is structured as follows. In Section 2.2 we

provide an overview of kernel methods with special consideration of the properties of

kernel functions and the intrinsic modular structure of these techniques. We describe the

construction of a kernel classifier and conclude the section with a description of kernel

methods from a regularisation perspective. Section 2.3 is devoted to (classical) variable

selection in binary classification. We start by providing a historical perspective and

introduce separatory and allocatory variable relevance. This is followed by a presentation

of empirical evidence supporting the need for variable selection (in classical and kernel

application domains), and a discussion of several classical selection strategies and criteria.

We conclude the chapter in Section 2.4 with a discussion of the particular aspects which

complicate variable selection for kernel methods.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

13

2.2 AN OVERVIEW OF KERNEL METHODS

2.2.1 BASIC CONCEPTS

In this section we provide an overview of kernel methods for binary classification. Kernel

techniques yield classification functions of the form (){ }xfsign , where ()xf is non-linear

in the training patterns. There are of course a number of advantages if ()xf is linear in x .

A linear decision boundary is simple to interpret and requires only 1p + parameters to be

estimated from the training data, which reduces the likelihood of overfitting and often

yields classifiers with good generalisation properties. Linear methods however do not

yield satisfactory generalisation errors in all situations: for example, linear classifiers are

inadequate for data that are clearly not linearly separable. A standard approach in such

cases is to construct ()xf to be linear in a transformed version of x . The transformed

training patterns reside in a feature space ℑ , which is usually higher dimensional than the

original input space. A linear model is subsequently fitted in ℑ . This strategy is also

motivated by Cover’s Theorem (see Haykin, 1999), which essentially states that non-

linearly transforming a data set to a higher dimensional space generally renders it more

likely to be linearly separable. See also Kroon (2003, pp. 122-123).

The following simple example from Schölkopf and Smola (2002) illustrates how data

which are not linearly separable may easily be transformed to make it linearly separable.

EXAMPLE 2.1

The one-dimensional data in Figure 2.1 are clearly not linearly separable. However, by

transforming the data using () ()2, xxx =Φ , we obtain the two-dimensional data

represented in Figure 2.2, where the distinct groups of data points are now linearly

separable.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

14

Figure 2.1: One-dimensional data Figure 2.2: Two-dimensional data after the

 transformation using () ()2, xxx =Φ

 

There are several issues which need to be addressed in this context. Firstly, it is necessary

to specify the transformation Φ . There are many popular choices, one of which is to

transform each x to a set of monomials. This leads to polynomial or spline models, which

are popular in statistics. Of course a decision has to be made regarding the order of the

polynomial functions to use. In Example 2.1 we could easily picture the one-dimensional

inputs and see that a quadratic transformation would be sufficient. In practice however

things are seldom so clearcut. The data are usually multi-dimensional and it quickly

becomes impossible to visualise the effect of a non-linear transformation. Even if an

appropriate transformation Φ is known, further problems may arise. Calculations in a

high-dimensional space may be expensive and in some cases even become intractable.

Fitting a model in a high-dimensional space may also entail difficult optimisations, further

complicating the problem. Finally there is the danger of overfitting: using too many

features in a too high-dimensional space may result in a low error rate on the training data

but this may well be accompanied by poor generalisation to new cases.

Conceptually a kernel method also constructs a non-linear discriminant function ()xf by

fitting a linear function in a transformed higher dimensional feature space. One of the

attractive properties of kernel methods is however that the specific non-linear

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

15

transformation Φ need not be specified explicitly. In fact, one is not required (and mostly

not able) to specify the transformed inputs (or feature vectors), and calculations on feature

vectors are performed in an implicit manner by making use of the original input patterns.

Thus calculations in feature space are effectively performed in input space, and are

therefore typically very fast and efficient – independent of the dimension of the feature

space. Although explicit specification of a non-linear transformation Φ is therefore not

required when one uses a kernel method, we will see that this requirement is replaced by

the need to decide on a kernel function. In some respects this is easier than explicitly

specifying a non-linear transformation, but inevitably there are subtleties involved which

have to be handled carefully.

Regularisation is a standard tool for guarding against overfitting (see for example Hastie et

al., 2001, Chapter 5). Since kernel methods can be derived by applying established

principles in regularisation theory, this provides inherent protection against potential

overfitting. We will however see that successful implementation of regularisation usually

requires specification of a regularisation (or smoothing) parameter. If this is done

successfully, a kernel method usually delivers state-of-the-art generalisation performance.

Details regarding a regularisation perspective on kernel methods will be given in Section

2.4. In the next section we present a more intuitive discussion of the basic ideas in kernel

methods.

In summary therefore, a kernel method may be viewed in terms of two steps. The first step

is to replace the original input patterns in the input space ℵ with their non-linearly

transformed counterparts in a feature space ℑ . The second step entails construction of a

discriminant function which is linear in ℑ . Requiring linearity of the discriminant function

implies that we still benefit from the advantages of linear methods. It must however be

kept in mind that the kernel discriminant function thus obtained will typically be highly

non-linear in ℵ .

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

16

2.2.2 KERNEL FUNCTIONS AND THE KERNEL TRICK

Transformations used in kernel applications are in most cases much more complicated than

the transformation illustrated in Example 2.1. In fact, we will see that frequently the

relevant transformation to feature space cannot be specified explicitly, and that it may even

lead to an infinite-dimensional feature space. Fortunately, we will still be able to perform

the calculations required for constructing a classifier linear in ℑ . This is accomplished by

using an appropriate kernel function, which can be defined as follows.

DEFINITION 2.1: A KERNEL FUNCTION

A kernel function ℜ→ℵ×ℵ:k is a function satisfying () () ()zxzx ΦΦ= ,,k for all

ℵ∈zx , , where Φ maps ℵ to an inner product feature space ℑ , i.e. () ℑ∈Φ→Φ xx: .

The theory underlying kernel methods relies on specific requirements regarding the feature

space ℑ . Specifically, ℑ should be a complete separable inner product space (a Hilbert

space). The restriction of ℑ to be a Hilbert space is important, and the reader is referred to

Section 2.2.4 for more details in this regard.

We see from Definition 2.1 that with a kernel function we associate a transformation

function Φ such that () () ()zxzx ΦΦ= ,,k for all ℵ∈zx , . A kernel function therefore

provides an efficient way of calculating inner products in ℑ : to find () ()zx ΦΦ , , we

merely have to evaluate ()zx,k . In the literature this shortcut of substituting ()zx,k for

() ()zx ΦΦ , is generally known as the kernel trick. See also Schölkopf and Smola (2002)

and Kroon (2003). Since ()zx,k does not require the feature vectors ()xΦ and ()zΦ , but

only the input vectors x and z in their original form, the kernel trick obviates the need for

knowing the transformation function Φ and the explicit construction of feature vectors. A

kernel function therefore enables us to work in a higher dimensional feature space without

having to define or construct it explicitly, and moreover, via a kernel function we can

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

17

calculate inner products efficiently even in cases where Φ yields infinite-dimensional

features. In theory we may think of Φ as the transformation function embedding training

patterns in ℑ , but in practice it is sufficient to specify an appropriate kernel function and to

work in ℑ without further attention to Φ .

To illustrate these points we discuss a simple example taken from Shawe-Taylor and

Cristianini (2004, p. 34), a standard textbook on kernel methods.

EXAMPLE 2.2

Consider the quadratic kernel function () 2,, zxzx =k defined on ℵ×ℵ , 2ℜ⊆ℵ . It is

easy to obtain

 () == 2,, zxzxk () 2121
2
2

2
2

2
1

2
1

2
2211 2 zzxxzxzxzxzx ++=+ .

Also, let () []21
2
2

2
1 2,, xxxx=Φ x , mapping the original input space ℵ into a higher

dimensional feature space 3ℜ⊆ℑ . Since

 () () [] [] 2
21

2
2

2
121

2
2

2
1 ,2,,,2,,, zxzx ==ΦΦ zzzzxxxx ,

we see how the kernel trick facilitates indirect and efficient calculation of the inner product

() ()zx ΦΦ , . In this simple special case we are able to identify the features in ℑ , viz.

2
2

2
1 , xx and 212 xx , something which will generally be impossible. Finally in this

example, note that there are also other feature maps which correspond to the quadratic

kernel, for example () []1221
2
2

2
1 ,,, xxxxxx=Φ x , which maps 2ℜ⊆ℵ into 4ℜ⊆ℑ . Hence

we see that it is not necessarily possible to associate a unique feature map with a given

kernel function. 

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

18

We emphasise that the kernel trick may be used without any restrictions regarding the input

domain ℵ , other than it being a set (see also Aronszajn, 1950). This is an important reason

for the wide applicability of kernel procedures. In order to further appreciate the

importance of the kernel trick, one must realise that any algorithm in which the inputs are

only involved in terms of inner products in input space, can readily be kernelised, i.e.

formulated in terms of inner products in a feature space. It is in fact this principle which

led to the extension of several well known statistical procedures. Examples include kernel

logistic regression, kernel principal component analysis, kernel discriminant analysis and

kernel regression analysis.

How does one obtain a function satisfying the requirement in Definition 2.1? A basic point

in this regard is to ensure that the chosen function allows inner product representations in

some higher dimensional feature space. Since the kernel function may be viewed as a

generalised inner product, properties of an ordinary inner product in a vector space dictate

the kernel to be symmetric, i.e. () ()xzzx ,, kk = .

The following definitions and results provide properties of kernel functions and indicate

ways in which these functions may be constructed.

A key property of kernel functions may be formulated in terms of the so-called kernel (or

Gram) matrix.

DEFINITION 2.2: THE KERNEL MATRIX

The kernel matrix for a set of input vectors { }nxxx ,,, 21 K is defined to be the nn×

symmetric matrix K with entries () njikk jiij ,,2,1,,, K== xx .

The following theorem for kernel matrices may be extended to provide a characterisation

of kernel functions.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

19

THEOREM 2.1: Kernel matrices are positive semi-definite

PROOF

For any vector v we have () ()jij

n

ji
iijj

n

ji
i vvkvv xxKvv ΦΦ==′

==
,∑∑

1,1,

 () ()∑ ∑
1 1

,
n

i

n

j
jjii vv

= =
ΦΦ= xx

 () 0
2

1
∑ ≥Φ=
=

n

i
iiv x , as required.

 

Theorem 2.2 summarises the extension of Theorem 2.1 to a result that can be used to

characterise kernel functions.

THEOREM 2.2: CHARACTERISATION OF KERNELS

A function ℜ→ℵ×ℵ:k , which is either continuous or has finite domain, can be

decomposed into a feature transformation function Φ (into a Hilbert space ℑ) applied to

both its arguments, followed by the evaluation of the inner product in ℑ , i.e. k can be

decomposed into

 () () ()zxzx ΦΦ= ,,k

if and only if it satisfies the finitely positive semi-definite property. 

For a proof of Theorem 2.2, see Shawe-Taylor and Cristianini (2004, pp. 61-63). Note that

Theorem 2.2 provides a relatively simple method to confirm that a given function

ℜ→ℵ×ℵ:k is a kernel function: for any value of n and any selection of input vectors

nxxx ,,, 21 K , the resulting kernel matrix must be positive semi-definite.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

20

Construction of new kernels is facilitated by several closure properties possessed by the

class of kernel functions. We provide the next theorem as a summary of these properties.

The reader is referred to Shawe-Taylor and Cristianini (2004, p. 75) for a proof.

THEOREM 2.3: CLOSURE PROPERTIES

Consider kernel functions ℜ→ℵ×ℵ:, 21 kk , pℜℵ⊆ , and ℜℜ×ℜ →:3
NNk , where N

denotes the dimension of the feature space ℑ . Furthermore, let f be a real-valued

function on ℵ , with +ℜ∈a , and B a symmetric positive semi-definite pp × matrix.

Then the function k resulting from the following operations will also be a kernel function:

i. () () ()zxzxzx ,,, 21 kkk +=

ii. () ()zxzx ,, 1akk =

iii. () () ()zxzxzx ,,, 21 kkk =

iv. () () ()zxzx ffk =,

v. () () ()()zxzx ΦΦ= ,, 3kk

vi. () Bzxzx ′=,k 

A frequently used example of constructing a new kernel from an existing one is by

normalising it. Let k be a kernel function with associated feature mapping Φ , then the

normalised kernel k̂ corresponds to the normalised feature mapping () ()xx ΦΦ . It can

be shown that the relationship between the given kernel k and its normalised version k̂ is

given by

 () ()
()

()
()

()
() ()zzxx

zx
z
z

x
xzx

,,
,,,
kk

kk =
Φ
Φ

Φ
Φ

=
)

. (2.1)

Note that the Cauchy-Schwarz inequality implies that () 1,ˆ1 ≤≤− zxk .

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

21

Appropriate specification of the kernel function is an important and difficult aspect when a

kernel procedure is applied: understanding the effect of alternative kernel functions on the

properties of the resulting kernel methods is hardly a trivial matter. In some cases there

may be very specific properties of the data which should be incorporated into specification

of the kernel function. Certain classes of kernel functions can be used to accommodate

such data-specific requirements, and in many practical applications even further fine-tuning

of the kernel function may be required.

As an example, consider a binary classification problem. Recall that an inner product

between two vectors can be interpreted as a measure of their similarity. Hence

() () ()zxzx ΦΦ= ,,k reflects the similarity between ()xΦ and ()zΦ . Ideally a kernel

function should measure similarities between feature patterns in a way that is meaningful in

the particular application. In the context of this example we intuitively desire the measured

similarity to be relatively large when two patterns belong to the same group, and relatively

small otherwise. This suggests that an appropriate kernel function should yield a kernel

matrix with the following structure: an upper left 11 nn × sub-matrix with large entries, a

similar 22 nn × sub-matrix in the lower right position, and all remaining entries relatively

small.

There are many contributions in the literature providing important principles for

incorporating such application-specific a priori information into kernel functions.

Schölkopf et al. (1996), for example, consider the construction of kernels which take into

account prior knowledge for optical character recognition problems. Other important

references concerning appropriate specification of kernel functions include Amari and Wu

(1999), Genton (2001), Cristianini et al. (2000 and 2002), and Shawe-Taylor and

Cristianini (2004). Methods for obtaining tailor-made kernel functions certainly enhance

the versatility of kernel methods, but this specialised topic falls outside our scope and will

therefore not receive further attention in the thesis.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

22

There are several examples of kernel functions occurring frequently in the literature. These

kernels are often applied because of their good performance in many situations. Two

examples are the polynomial and sigmoidal kernels:

• The polynomial kernel () ()dck += zxzx ,, , where d is a natural number and

0≥c , yields a discriminant function which is a thp order polynomial in the data.

• The sigmoidal kernel () ()catanhk -,, zxzx = , where a and c are positive real

numbers, leads to a classifier with attributes similar to a three-layer neural network.

A kernel function which also performs well in many contexts (see for example Schölkopf

et al., 1997) and which has become extremely popular with practitioners is the so-called

Gaussian kernel. It is given by

 () ()2--, zxzx γexpk = (2.2)

where γ is a so-called kernel hyperparameter which has to be specified (cf. for example

Cristianini et al., 1998). The Gaussian kernel function belongs to the family of radial basis

function (RBF) kernels, which are kernels that can be written in the form

() ()()zxzx ,, δhk = , where δ is a metric on ℵ and h is a function defined on positive real

numbers. Usually the metric δ is a function of the inner product, i.e.

() zxzxzxzx -,--, ==δ . In this case the resulting RBF kernel function will be

unitary invariant. We will restrict attention to the Gaussian kernel in this thesis.

The following theorem confirms that (2.2) does in fact define a valid kernel.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

23

THEOREM 2.4: VALID KERNEL FUNCTIONS

Let ℜℵ×ℵ →:1k be an existing kernel. Let also ()xp denote a polynomial with positive

coefficients. The following functions are valid kernels:

i. () ()()zxzx ,, 1kpk =

ii. () ()()zxzx ,, 1kexpk =

iii. () ()2--, zxzx γexpk =

PROOF

i. Part i. follows directly from operations i. to iv. in Theorem 2.3, where ()xf in iv.

 assumes a constant value to provide for a constant term in the polynomial.

ii. Polynomials with positive coefficients may be used to approximate exponential

functions, implying that exponential functions are limits of kernels. Since taking

point-wise limits preserves the positive semi-definite property, the second result

follows.

iii. Clearly from part ii, () ()zxzx ,~, γexpk = with +ℜ∈~γ will be a valid kernel. We

now normalise k to obtain

() ()
() ()zzxx

zx
zx

,~,~
,~

,
γγ

γ

exp exp

exp
k =
)

 ()zzxxzx ,-,-,~
2

~

2

~ γγγexp=

 ()2-- zxγexp=

 where 2~γγ = .

 

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

24

Note also that the Gaussian kernel is an example of a translation invariant kernel: in (2.2)

both input vectors may be translated by the same vector without causing any change in the

Gaussian kernel function value, i.e. () ()azaxzx ++= ,, kk for all ℵ∈a .

Since for the Gaussian kernel, () () 1,2 ==Φ xxx k for all ℵ∈x , all feature vectors are at

a fixed distance from the origin, i.e. they lie on the surface of a hypersphere with radius 1.

Furthermore, consider two feature vectors, ()xΦ and ()zΦ , and denote the angle between

these vectors by θ . Then it follows that () () () 1 cos ,,0 ≤=ΦΦ=≤ θzxzxk , with the

implication that the enclosed angle between any two features will be at most 2π . We can

therefore choose the feature space so that the mapped values all lie in a single orthant. This

is illustrated informally in Figure 2.3 below.

0.5

1

0.5

0

1

0.5

0

Figure 2.3: Using the Gaussian kernel function, all mapped values lie on the surface of a

single orthant of a hypersphere with radius 1

From the above figure it may seem as if the Gaussian kernel maps data into a rather

restricted area of the feature space. The following proposition however shows that features

induced by the Gaussian kernel function actually occupy a space which is in some sense as

large as possible.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

25

THEOREM 2.5: Gaussian kernel matrices have full rank

Given distinct input patterns nxxx ,,, 21 K and a hyperparameter value 0>γ , the kernel

matrix with entries 




=

2
-- jiij expk xxγ will have full rank. 

Provided that no two input patterns are the same, note that the features

() () ()nxxx ΦΦΦ ,,, 21 K will be linearly independent, and hence they span an n-

dimensional subspace of the induced Hilbert space. In this sense the Gaussian kernel

yields features which inhabit a part of the feature space which is as large as possible.

As seen in Equation 2.2, application of the Gaussian kernel requires specification of a

kernel hyperparameter value γ . Similarly, c and d in the polynomial kernel, and a and c in

the sigmoidal kernel are hyperparameter values that need to be specified. This is an

important step in the application of kernel techniques, since inappropriate specification of

kernel hyperparameter values typically has a detrimental effect on their generalisation

performance. Possible approaches to specification of kernel hyperparameter values are

given in Müller et al. (2001). Contributions regarding the specification of γ in the

Gaussian kernel function include Cristianini et al. (1998), Chapelle et al. (2004), Keerthi

(2002) and Wang et al. (2004). Although requiring expensive computations, cross-

validation (or hold-out testing) seems thus far to be the most popular approach for

determining kernel hyperparameter values. In a cross-validation approach, an upper bound

on the generalisation error is calculated on hold-out sections of the data for several

hyperparameter values. The hyperparameter value yielding the best performance across

hold-out data sets is then selected. In kernel functions with large numbers of

hyperparameter values that need to be specified, cross-validation procedures soon become

computationally intractable. Since in the context of SVMs a number of upper bounds on

the 1-fold cross-validation (or leave-one-out) error can be derived (cf. Vapnik and

Chapelle, 2000, and Duan et al., 2001), many of the proposals regarding kernel

hyperparameter specification in SVMs involve the calculation of (fast) approximations to

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

26

the SVM leave-one-out error. These procedures are however often based on solutions to

non-convex optimisation problems and are therefore prone to yield only locally optimum

kernel hyperparameter values.

2.2.3 CONSTRUCTING A KERNEL CLASSIFIER

Having provided some detail regarding kernel functions, we proceed with a description of

the actual construction of a kernel discriminant function in the context of binary

classification. The requirement of a linear classifier in ℑ implies that the classifier will be

of the form (){ }bsign +Φ wx , where ℑ∈w and ℜ∈b have to be determined from the

training data. The feature vector w is usually obtained by solving a constrained

optimisation problem. It is a well known result in the theory of constrained optimisation

that the dual formulation of such an optimisation problem is easier to deal with than the

primal formulation (see for example Shawe-Taylor and Cristianini, 2004). The optimal w

typically turns out to be a linear combination of the transformed input vectors, viz.

()
1

n

i i
i

α
=

= Φ∑w x , where the vector of Lagrange multipliers, viz. []nααα ,,, 21 K=′α

(required to deal with the constraints), are obtained from the data. Hence the kernel

classifier becomes

 () () ()
1 1

, ,
n n

i i i i
i i

sign b sign k bα α
= =

    Φ Φ + = +   
    

∑ ∑x x x x , (2.3)

with x the (new) input pattern to be classified.

The specific form of the objective function which has to be optimised and the constraints

required in determining the α -vector depend on the type of kernel classifier implemented.

For example, the optimisation problem specifications for SVMs differ from those required

for constructing kernel Fisher discriminant functions or kernel logistic regression functions.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

27

Further details in this regard are given in Chapter 4, in particular for SVMs and kernel

Fisher discriminant functions.

Returning to Equation (2.3), we see that different kernel classifiers display two common

characteristics: at a first level the discriminant function depends on the training data only

via a kernel function, and at a second level the discriminant function depends on the

training data via weights nααα ,,, 21 K which are typically obtained through solving an

optimisation problem.

Shawe-Taylor and Cristianini (2004) make use of shared and differentiating aspects in

kernel methods to describe an effective framework for conceptualising these techniques.

This framework has a modular structure, emphasising that the aspects in kernel methods

(for example, specifying the kernel function and its hyperparameter values, and specifying

and finding a solution to the optimisation problem) can be treated independently. This

independence between kernel components induces flexibility in constructing a kernel

technique. Any (sensible) combination of the many possibilities regarding each of the

kernel aspects may be used, and will yield a different kernel procedure.

2.2.4 A REGULARISATION PERSPECTIVE

In the previous section we saw that (binary) classification may be viewed as a function

estimation problem: the finite set of training data, (){ }niyii ,,2,1,, K== xT , where

{ }1, 1iy ∈ − + , is used to estimate a function f such that (){ }y sign f= x can be used to

predict class membership of newly observed cases. In regression contexts, Y is a

continuous response variable, and the objective is to use T to determine a regression

function () ()xx |YEf = estimating (or predicting) the response of a newly observed input

pattern as accurately as possible. Clearly therefore also regression may be viewed as a

function estimation problem.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

28

In any given function estimation problem, let F denote the class of candidate functions

from which the function f will be obtained, i.e. F is the class of candidate functions

ℜ→ℵ:f . For example, in binary classification contexts, F represents the class of all

possible binary discriminant functions. In function estimation problems, Ff ∈ is often

obtained by minimising a measure of error on the training data, e.g. ()1

1
(),

n

i in
i

L f y
=
∑ x .

Here ()(),i iL f yx denotes a loss function used to measure in some appropriate way the

closeness of the estimated or predicted response ()f x to the true response y . Popular

loss functions in classification and regression will be given during the course of our

discussion below. Note that ()1

1
(),

n

i in
i

L f y
=
∑ x is the average or mean loss in the training

data when the estimate ()if x is used instead of the true response iy . Hence this term

reflects the performance of a candidate function only on the training patterns, and is called

the empirical risk. It is important to note that using the function Ff ∈ which minimises

the empirical risk would in most cases lead to overfitting. The result would be an f which

precisely follows the training data, i.e. () , 1, 2, ,i if y i n= =x K . Such a function would

almost certainly generalise poorly to classification of unseen cases.

Another complicating factor is that F is often a class of functions defined on a high-

dimensional space. For example, in the variable selection application domains discussed in

Chapter 1 the data sets often consist of relatively few observations on a large number of

variables. In such cases the data soon become very sparse, rendering function estimation

an ill-posed problem. This means that small perturbations of the data can induce large

changes in the estimated functions. Stated differently, the data provide too little

information to accurately estimate f . Irrespective of the dimension of the problem in

input space, in kernel methods the transformed feature space ℑ typically has a very high

dimension. Therefore ill-posed function estimation is a particularly relevant problem in

this context.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

29

A widely used approach for solving ill-posed function estimation problems is known as

regularisation (see Tikhonov and Arsenin, 1977; Bertero, 1986, and Bertero et al., 1988,

for early contributions in this regard). Regularisation theory formalises classification and

regression problems as so-called variational problems, viz. where one aims to find the

function Ff ∈ which minimises a regularised risk functional. This implies that f is

obtained by solving the following optimisation problem:

 () ()() ()






 Ω+=

∈
∑
=

n

i
iin fyfLfRmin

f 1

1 , λx
H

. (2.4)

In (2.4), H is typically a Hilbert space of candidate functions. Therefore minimisation of

the regularised risk is carried out over all possible functions contained in an appropriately

defined Hilbert space.

Effectively, regularisation restricts the complexity of the function class F . This restriction

is implemented via the term ()fΩ in (2.4), which penalises functions that are complex or

non-smooth. Hence regularisation purposely induces bias in estimating f : when

comparing functions with similar empirical risk values, the simpler function will be

favoured. Obviously the desire for a simple function must not be taken to extremes: there

are data sets requiring fairly complex discriminant functions. The trade-off between

minimisation of the empirical risk, and complexity or non-smoothness of the candidate

functions is controlled by the regularisation or smoothing parameter 0≥λ . In (2.4),

appropriate specification of a value for λ is crucial. With 0=λ , we find ourselves back in

the empirical risk minimisation setup. Larger values of λ implies stricter penalisation of

complex functions, generally yielding simpler solutions. For more details regarding

specification of λ , the reader is referred to Wahba (1990).

The idea behind regularisation is well illustrated in the next example which presents some

details on ridge regression.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

30

EXAMPLE 2.3

Let F represent the class of functions of the form () () βxxx ,== |YEf , where β

denotes a p-dimensional vector of regression coefficients. In addition, assume that

εXβY += , with ()nIε 2,~ σ0 , for a sample of n cases. The ordinary least squares

(OLS) regression function is obtained by assuming a squared error loss function, i.e.

() ()2(), - ()i i i iL f y y f=x x , and finding Ff ∈ which minimises the empirical risk.

Hence, in order to perform OLS we simply need to solve the following optimisation

problem:

 () ()()






 −== ∑

=

n

i
niin yfLfRmin

1

211 , Xβyx
β

. (2.5)

This yields the OLS regression estimate () yXXXβ ′′= 1-ˆ . It is clear that if two or more of

the input variables are highly correlated, XX ′ will become ill-conditioned, and in extreme

cases the inverse of XX ′ may not exist. The result would be a poorly determined OLS

estimate which exhibits high variance (see also Hastie et al., 2001, pp. 59-60). This

limitation of OLS estimates formed the initial rationale for introducing ridge regression

into statistics (Hoerl and Kennard, 1970): to ensure non-singularity of XX ′ , a positive

constant λ is added to the diagonal of XX ′ . Called the pseudo (or generalised) inverse,

() 1−+′ pIXX λ is then substituted for () 1−′XX , yielding the ridge regression least squares

estimate () yXIXXβ ′+′= −1~
pλ .

In applications with many correlated input variables, ridge regression generally performs

better than OLS regression functions. This result is not immediately evident from the

formulation above, but becomes clear when one realises that substitution of the generalised

inverse for () 1−′XX in β̂ yields a ridge regression least squares estimate β~ which can

actually be shown to solve the regularised (or penalised least squares) optimisation problem

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

31

 (){ }ββXβyβ
β

,21 λ+−= nR min (2.6)

Note that the regularisation term ββ,λ in (2.6) restricts the size of the estimated

regression coefficients, thereby guarding against potential high variance.

 

How does one go about solving the regularised optimisation problem in (2.4)? We have

seen that minimisation of the regularised risk should be performed over all functions in a

Hilbert space H . Thus (2.4) is an infinite dimensional problem, and solving it is generally

not a trivial matter. A surprisingly elegant solution can however be found for an important

subclass of the problem in (2.4). This subclass of problems is generated by positive semi-

definite kernel functions, and their solutions yield a wide spectrum of statistical techniques,

including for example the entire family of smoothing splines (cf. Wahba, 1990). Moreover,

we will soon see that they also provide an alternative view on the way in which kernel

methods can be defined.

One might ask why positive semi-definite kernel functions enable us to solve the

optimisation problem in (2.4). Firstly, it can be shown that for a positive semi-definite

kernel function we can define a Hilbert space H such that it possesses the so-called

reproducing property, i.e. such that H will be a reproducing kernel Hilbert space (RKHS).

Thus in kernel-induced regularisation problems the candidate functions reside in an RKHS,

and it is the properties of an RKHS which yield a relatively simple way for obtaining a

solution to the optimisation problem. For more details on RKHSs, see for example Hastie

et al. (2001, Chapter 5). Secondly, if we consider (2.4) in an RKHS, the celebrated

Representer Theorem of Kimeldorf and Wahba (1971) (presented in Theorem 2.6 to

follow) implies that the optimisation problem becomes finite-dimensional.

In the previous paragraph we indicated that with every positive semi-definite kernel

function an RKHS can be associated. In the next definition and the brief section to follow,

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

32

we start with a Hilbert space H and provide the conditions required for H to be an

RKHS. The conclusion in the end is that with every RKHS we can associate a unique

positive semi-definite kernel function.

DEFINITION 2.3: A REPRODUCING KERNEL HILBERT SPACE

Let ℵ be a non-empty set and H a Hilbert space of functions which map ℵ into ℜ .

Then H is a reproducing kernel Hilbert space endowed with a dot product H.,. and a

norm HH ff f ,= if there exists a function :k ℵ×ℵ → ℜ with the following

properties:

i. The reproducing property, viz.

 () () H,., xx kf f = H∈∀ f (2.7)

 and specifically, () () ()zxzx ,=,.,,. kkk H .

ii. The property that k spans H .

It can easily be shown that if the kernel function in Definition 2.3 exists, it will always be

uniquely defined (cf. Schölkopf and Smola, 2002). Note therefore that an RKHS implied

by a kernel function k will henceforth be denoted by kH . To verify that the kernel

function corresponding to an RKHS is a positive semi-definite function, consider

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

33

 () () ()
, 1 , 1

, ,. , ,.
k

n n

i j i j i j i j
i j i j

k k kα α α α
= =

=∑ ∑x x x x
H

 () ()
1 1

,. , ,.

k

n n

i i j j
i j

k kα α
= =

= ∑ ∑x x
H

()
2

1
,. 0

k

n

i i
i

kα
=

= ≥∑ x
H

. (2.8)

For a clearer understanding of an RKHS, we present the following example (see Hastie et

al., 2001, p. 144) which illustrates the explicit construction of an RKHS from a given

positive semi-definite kernel. The properties of an RKHS which are important to us in this

section will also be given along the way.

EXAMPLE 2.4

Let 1 2, , γ γ K and 1 2, , φ φ K respectively denote sequences of positive numbers and

independent functions, with ∞<∑
∞

=1

2

i
iγ , and consider the symmetric function ()zx ,k

defined by () () ()
1

, i i i
i

k γ φ φ
∞

=
= ∑x z x z . Now consider the Hilbert space H consisting of

functions of the form () ()
1

i i
i

f c φ
∞

=
= ∑x x , where the coefficients K , , 21 cc are real

numbers. Also define the scalar product in H to be gf H,
1

i i

ii

c d
γ

∞

=
= ∑ , where

() ()
1

i i
i

f c φ
∞

=
= ∑x x and () ()

1
i i

i
g d φ

∞

=
= ∑x x , 1 2, , d d ∈ℜK . It follows that the squared

norm in kH is

 ∑
∞

=
==

1

2 ,
i i

ic
fff

kk γHH (2.9)

and we assume this to be finite.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

34

Now since

 () () () ()
1 1

, ,.
k

i i i
i i

ii i

c
f k c f

γ φ
φ

γ

∞ ∞

= =
= = =∑ ∑

x
x x xH , (2.10)

k clearly satisfies Equation (2.7). Consequently, as seen in (2.8), k is a positive semi-

definite kernel function. Therefore the Hilbert space kH is an RKHS, with k the

corresponding positive semi-definite reproducing kernel.

 

Summarising: for any given RKHS we can identify a unique positive semi-definite kernel

function, and vice versa. In practical applications we start with a positive semi-definite

kernel function, and perform function estimation in the associated RKHS. However, it will

become clear that we need not explicitly construct the associated RKHS since we can solve

the optimisation problem given in (2.4) simply in terms of the kernel function. We now

return to this aspect.

Performing function estimation in an RKHS involves the use of a functional measuring the

complexity of candidate functions. We do this in terms of () 2
k

f f Ω = H . Substituting

(2.9) into (2.4) we obtain

 () ()()






 += ∑

=∈

n

i
iinf kk

ffyLfRmin
1

21 , HH
λx (2.11)

{ } 











+









= ∑ ∑∑

=

∞

=

∞

=∞
=

n

i j
jj

j
ijjin

c
ccyLmin

jj 1 1

2

1

1)(,
1

γλφ x . (2.12)

Even after this simplification, (2.12) remains an infinite dimensional problem: there are an

infinite number of coefficients K , , 21 cc which have to be determined. Fortunately the

Representer Theorem shows that a finite dimensional solution to (2.12) does exist. We

provide the version given in Schölkopf and Smola (2002).

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

35

THEOREM 2.6: THE REPRESENTER THEOREM

Let ℵ be a set, and as before, use (), ()i iL y f x to denote an arbitrary loss function. Then

each minimiser kf H∈ of the regularised risk () () 2

1

1)(,
k

ffyLfR
n

i
iin Hλ+= ∑

=
x admits a

representation of the form

 () ()
1

,
n

i i
i

f kα
=

= ∑x x x (2.13)

 

Using (2.13) we obtain

 2 ,
k k

f f f= HH () ()
kjij

n

ji
i kk

H
xxxx ,,,

1,
αα∑

=
=

 ()jij
n

ji
i k xx ,

1,
αα∑

=
= Kαα′= . (2.14)

Hence the Representer Theorem guarantees an explicit form for the solution to (2.12).

Moreover, this representation indicates that instead of having to find an infinite number of

coefficients as in (2.12), we actually only have to find n coefficients, viz. 1 2, , , nα α αK .

This phenomenon whereby the infinite-dimensional optimisation problem in (2.11) or

(2.12) reduces to a finite-dimensional optimisation problem, is referred to in the literature

as the kernel property. The functions () (),, ii kh xxx = ni , ,2 ,1= K , are also known as

the representers of evaluation at ix in kH .

Finally therefore we see that the kernel-induced regularised optimisation problem in (2.12)

may also be written in matrix form as

 () (){ }KααKαyα
α

′+= λ,LR min . (2.15)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

36

Note that if ()Kαy,L is a convex function of 1 2, , , nα α αK , (2.15) will be a convex

optimisation problem which does not suffer from local minima, and can thus be solved

easily.

Through different specifications of the convex loss function and the regularisation term,

different regularised statistical procedures can be obtained, including several of the modern

methods which originated in machine learning contexts. In this section we keep the

regularisation term fixed, i.e. we specify the regulariser to be Kαα′ , and proceed by

providing a few examples of the various statistical techniques obtained by different

specifications of the loss function.

We start with a brief description of loss functions that are frequently applied in

classification setups. Perhaps the most basic loss function used in classification is the 0-1

loss, or the misclassification loss function, where a loss of 1 is incurred for each

misclassification. Since the signed function value ()xf y will be positive if f correctly

classifies the input pattern x , and negative otherwise, the misclassification loss function

can also be given in terms of ()xfy . That is, we may write

()() ()() ()()iiiiii fyfyLfyL xxx -, θ== , where θ is the Heaviside function, i.e.

 ()
0 x if ,1
0 xif ,
0 x if ,0

2
1

>
=
<

=xθ .

The misclassification loss function is shown in Figure 2.4.

Loss functions used in classification contexts are often specified in terms of the quantity

()xf y , which is frequently referred to as a classification margin. We have seen that the

sign of the margin indicates whether an input pattern is misclassified or not, but the same

information could be derived from the quantity (){ }xf signy , which attains a value of 1 if

f correctly classifies the input pattern x , and -1 otherwise.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

37

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.4: The misclassification loss function

What do we gain by using the real-valued function ()xf in the margin instead of

(){ }xf sign in (){ }xf signy ? In order to see why the margin in particular is an important

quantity in classification, note first of all that the value of ()xf can be regarded as a

measure of the confidence with which f estimates (or predicts) the binary response: a

large positive value for ()xf indicates f predicting with virtual certainty that x belongs

to group 1, whereas a large negative value indicates a strong belief that x belongs to group

2. Conversely, small values of ()xf indicate uncertain classification of x . Now consider

the margin and note that the relative sizes of positive values of ()xf y provide an

indication of how well f predicts the group membership of x . A large positive margin

indicates that a prediction is far from incorrect, and is thus preferred to a small positive

value indicating a prediction which is closer to being a misclassification. Thus in a sense a

large positive margin indicates a smaller margin for error. Similarly, the relative sizes of

negative margin values can be used as a measure of how badly f predicts the group

membership of x in cases where this is done incorrectly. A small negative margin

signifies that the input pattern x is nearly classified correctly, and this is therefore

preferred to a large negative margin. In summary, large values for ()xf y are preferred.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

38

A second loss function which can be used in classification setups is the so-called hard

margin loss function, viz. () ()() 1- ()i i i iL y f y fθ=x x . This loss function is similar to

misclassification loss: it assigns either a zero penalty, or a penalty of 1, but it is stricter in

the sense that it distinguishes between correct classifications with a margin larger than 1,

correct classifications with a margin smaller than 1, and misclassified cases. The latter two

categories both incur a loss of 1. Therefore the misclassification and hard margin loss

functions operate differently when () []0,1y f ∈x . The reason for the threshold value of 1

for the margin will become clear in Chapter 4. Figure 2.5 below depicts a hard margin loss

function.

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.5: The hard margin loss function

A slight modification to the hard margin loss function yields the soft margin loss function

(also called the hinge loss function). The soft margin loss is defined as

()() 1- ()i i i iL y f y f +=x x , where aa =+ if a is positive, and zero otherwise. Figure

2.6 depicts the soft margin loss function.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

39

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0
1

2
3

4
5

Figure 2.6: The soft margin loss function

As is the case with hard margin loss, the soft margin loss function also penalises correct

classifications that are made with a margin less than 1. The soft margin loss is however

more forgiving when () []1,0∈xf y . On the other hand, for () 0<xf y , the soft margin

loss function assigns a larger penalty than the hard margin loss: as ()xf y decreases, the

penalty increases linearly.

Two related loss functions in classification are the exponential and the deviance (or

logistic) loss functions, given by () ()() - ()i i i iL y f exp y f=x x and

() ()())(1)(, iiii fy-explogfyL xx += respectively. Graphical representations of these loss

functions are given in Figure 2.7.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

40

Margin

Lo
ss

-3 -2 -1 0 1 2 3

0
5

10
15

20

Exponential loss
Deviance loss

Figure 2.7: The exponential and deviance loss functions

From Figure 2.7 we see that both the exponential and the deviance loss functions are

continuous approximations to the soft margin loss: as ()xf y decreases, the penalties

assigned by both of these loss functions increase. The main difference between the

exponential and deviance loss functions is the rate at which the penalties for

() []0,∈ ∞−xf y increases. In this sense the deviance loss function more closely

resembles the soft margin loss: for increasingly large negative margins, the penalty

increases in an approximately linear fashion. Conversely, application of the exponential

loss function implies that penalties will increase exponentially with an increase in negative

margins, which leads to very heavy penalties for badly misclassified cases. This is a good

idea only if these cases are true representations of the underlying populations. However,

when working with noisy data, or with data in which input patterns might have been

mislabelled, large negative margins are likely to correspond to noisy or mislabelled inputs.

In such settings assigning too heavy penalties to badly misclassified cases may yield a

classifier that inappropriately concentrates on correctly classifying noisy or mislabelled

inputs. Since the deviance loss function penalises cases with large negative margins less

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

41

harshly, it is more robust than the exponential loss function and therefore the preferred loss

function in noisy setups.

A reasonable question at this stage is how one should decide which loss function to use,

and what the effect of different loss function specifications on the solution of the problem

in (2.15) will be. Below we summarise results in Zhu and Hastie (2005) which clarify the

statistical properties of classifiers constructed to minimise the risk ()[])(xx YfLEY when

()()L y f x is specified as either the soft margin-, exponential- or deviance loss function.

We will see that particular loss function specifications result in well known kernel

classifiers. For example, the solution to the minimisation problem in (2.15) using

()() 1- ()i i i iL y f y f +=x x is a support vector classifier (cf. Girosi et al., 1995; Wahba,

1998; Evgeniou et al., 2000, and Hastie et al., 2001). Although, as we will see in Chapter

4, the support vector classifier was not originally derived as the solution to a regularised

optimisation problem, viewing the support vector discriminant function as the solution to a

regularisation problem using the loss function ()() 1- ()i i i iL y f y f +=x x provides

additional insight into its structure. In order to appreciate this point, note that the function

which minimises []+−)(1 xx YfEY is

 []{ }+−=)(1arg)(
)(

* xx x
x

YfE minf Y
f

 () 2
11 −== xYP , (2.16)

indicating that it is not unreasonable to conclude that a support vector discriminant function

will be a good estimator of the posterior probability () 2
11 −= xYP .

Now compare the form of the solution in (2.16) with the function which minimises

()[])(xx Yf-expEY and ()()[])(1 xx Yf-explogEY + in the case of the exponential and the

deviance loss functions respectively. In both cases we obtain

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

42

 ()[]{ })(arg)(
)(

* xx x
x

fY-expE minf Y
f

=

 ()()[]{ })(1arg
)(

xx
x

fY-explogE min Y
f

+=

 () (){ }xx 112
1 −=== YPYP log . (2.17)

Estimating)(* xf in (2.17) by)(ˆ * xf , we may obtain a classifier { })(ˆ * xfsign . Based on

the deviance loss function, this classifier is known as a kernel logistic regression (KLR)

function (cf. Zhu and Hastie, 2005).

The form of the risk minimising functions in (2.16) and (2.17) confirms the soft margin-,

exponential- and deviance loss functions to be appropriate in classification setups.

Knowing what functions are being estimated by solving the regularisation problem in

(2.15) may also aid in a decision regarding which loss function to use.

Also from Expression (2.17), an important connection between the exponential and

deviance loss functions becomes apparent: the corresponding minimising functions of

()[])(xx YfLEY have the same form. In addition, note that (2.17) may be rewritten so that

we obtain

 ()
()

() () ()xxx

x
x

*ˆ2*ˆ*ˆ

*ˆ

1

11
fff

f

eee

eYP
−− +

=
+

== , (2.18)

which points to a definite advantage of kernel logistic discriminant functions compared to

support vector classifiers. In the former case, probabilities of group membership can easily

be estimated. That is, ()
()x

x *ˆ21

11ˆ
KLRfe

YP
−+

== , where *ˆ
KLRf denotes the solution to

(2.15) based on the deviance loss. A similar result can however not be obtained for a

support vector classifier. Furthermore, kernel logistic regression generalises naturally to

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

43

kernel multi-logit regression, offering a simple way of handling more than two groups in

classification. Here the estimators of group probabilities will be

 () () ()∑
=

==
M

m

ff mj eejYP
1

ˆˆ **
ˆ xxx , (2.19)

where M denotes the number of groups, and 0ˆ
1

*∑
=

=
M

m
mf .

Although there are ways to extend binary SVMs to classification for multiple groups, these

procedures are intuitively less appealing compared to the natural way in which kernel

logistic regression handles classification into more than two groups.

Since support vector and kernel logistic regression discriminant functions are solutions to

the regularised optimisation problem in (2.15), we know from Theorem 2.6 that both may

be written in the form () ()
1

,
n

i i
i

f kα
=

= ∑x x x . Importantly, in the case of a support vector

discriminant function, the truncation property of the soft margin loss typically causes a

sizeable fraction of 1 2, , , nα α αK to be zero. Therefore a support vector classifier will

only depend on the training patterns with non-zero coefficient values, called support

vectors. Replacing the soft margin loss with the deviance loss function unfortunately

compromises the aforementioned support vector property. Hence in kernel logistic

regression all of 1 2, , , nα α αK will typically be non-zero values. In this sense computation

of *ˆ
KLRf will in general be more expensive than computation of *ˆ

SVMf . In Zhu and Hastie

(2005) the authors propose a classification procedure (called an import vector machine)

which can be obtained by substituting the loss function

() ()())()(1)(, iiiii fy-fexplogfyL xxx −+= in problem (2.15). This particular form of

the loss function is meant to induce a classifier exhibiting the positive attributes of both a

support vector and kernel logistic regression classifier, and it succeeds: an import vector

machine typically has few non-zero 1 2, , , nα α αK coefficients, allows simple calculation

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

44

of posterior group membership probabilities, and can easily be extended to multi-group

classification contexts.

We now briefly turn attention to expression (2.6) in a regression setup, and illustrate how

the ridge regression estimator may be obtained as the solution to the regularised

optimisation problem in (2.15). We have seen in Example 2.3 that the ridge regression

estimator is the minimiser of a regularised risk functional, viz. (){ }ββ
β

R min argˆ = , where

 () 21 ,nR λ= − +β y Xβ β β . (2.20)

Minimising (2.20) is straightforward: differentiating ()R β with respect to β and equating

to zero yields the normal equations pλ ′ ′+ = X X I β X y with solution

-1
pλ ′ ′= + β X X I X y% . Alternatively, we can rewrite the normal equations in the form

αXβ ′= , where ()- λ=α y Xβ . Writing αKXβ ′= , where XXK ′= , we see that ()R β

in (2.20) becomes (2.15). Note that XXK ′= essentially implies that we are using a linear

kernel: the thij element of the matrix XX ′ is simply the inner product between the thi and

thj rows of X . Note also that positive semi-definiteness of the kernel follows

immediately from the fact that

 =′′ vXXv
1 1

,
n n

i i j j
i j

v v
= =
∑ ∑x x

2
2

1
0

n

i i
i

v
=

′= = ≥∑ x X v . (2.21)

We also see that

 () xXαβxx f ′=,= ~ =[]
1

2
1 2

,
,

,

n

n

 α α α

 
 
 
 
 
  

x x
x x

x x

K
M

 (2.22)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

45

which is in line with (2.13). Finally note that implementing the solution
1

n
i i

i
α

=
′= = ∑β X α x%

requires determination of n quantities, 1 2, , , nα α αK , rather than the p quantities

1 2, , , pβ β βK . This is a definite advantage in cases where p becomes much larger than n ,

as is typically the case if we work in a high-dimensional feature space. We refer to

1 2, , , nα α αK as the components of the dual solution, while 1 2, , , pβ β βK is called the

primal solution.

We therefore see that the ridge regression optimisation problem presented in Example 2.3

can also be cast within the more general framework in (2.15). This also presents the

possibility of formulating a generalised version of the ridge problem by replacing the linear

kernel with an appropriate alternative.

Summarising, we have seen that kernel classifiers are solutions to regularised optimisation

problems. This explains the ability of kernel classifiers to generalise well, despite the high-

dimensional spaces in which they are defined. Focusing on support vector- and kernel

logistic discriminant functions, we have also illustrated that different classes of kernel

classifiers may be obtained through appropriate specification of the loss function.

Although kernel classifiers were not originally motivated through a regularised risk

minimisation approach, the underlying theory provides insight regarding the function that

each kernel classifier class aims to estimate, and facilitates comparisons across kernel

techniques.

Having introduced the most important concepts required in training kernel classifiers, we

now turn our attention to the important problem of variable selection in binary

classification applications.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

46

2.3 VARIABLE SELECTION IN BINARY CLASSIFICATION:

 IMPORTANT ASPECTS

The remainder of this chapter is devoted to variable selection in binary classification

contexts. We therefore briefly reconsider the two-group classification problem and

notation introduced in Chapter 1, where a data set T (consisting of n measurements on p

input variables) is used to estimate a classification function which can subsequently be

used to predict the group membership of new data cases. In many such scenarios little or

no prior knowledge is available for a decision regarding how many and which input

variables to observe and include in T . A consequence of this is that the original set of

input variables will usually include some variables which do not contribute any useful

information. Before estimating the classifier, a data-dependent decision regarding possible

reduction in the initial set of input variables is therefore often required. Potential

advantages of such a reduction have already been discussed in Section 2.1: reducing a

(large) set of input variables to a smaller set which contains only the important variables

leads to more accurate classifiers, while simultaneously identifying the variables which

separate the two groups. Although these two advantages often go hand in hand, different

approaches to variable selection tend to focus more sharply on one of the two. In this

regard, different strategies and criteria for variable selection may be described as allocatory

(emphasising more accurate classification) or separatory (emphasising identification of the

variables separating the groups). This aspect is discussed in more detail in Section 2.3.1.

It should also be noted that one can distinguish two levels of decision making in variable

selection. Firstly, a decision regarding the number of variables to retain has to be made,

and secondly, we have to decide which variables these should be. More detail in this

regard will be given in Chapter 6, where we specifically address the problem of specifying

a value for the number of input variables to retain ()m . Before proceeding to a detailed

discussion of other important aspects of variable selection for classification, we provide a

brief historical perspective on the topic. Variable selection has for many years received

considerable attention in the statistics literature. Traditionally selection techniques were

designed in the context of small to medium sized data sets (i.e. data sets usually having

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

47

fewer than 1000 observations on usually no more than 100 input variables). These

techniques often relied on assumptions regarding the underlying distribution generating the

data. For example, many classical selection criteria are based on the F-test for no

additional information. For a comprehensive overview of classical variable selection

procedures, the reader is referred to Louw (1997) and references cited there, including

McKay and Campbell (1982 a and b), and McLachlan (1992).

Applications such as image and text analysis have traditionally been areas of expertise in

mainly the computer and information sciences, and typically involve very large data sets.

Large input dimensions create a strong need for variable selection. Kernel methods belong

to the class of procedures known to perform well in applications characterised by large

numbers of input variables. But even these methods benefit from an initial variable

selection step, as is evidenced by the growing literature on variable selection for kernel

methods, and also by an investigation regarding the importance of variable selection for

kernel methods which is reported in Section 2.4.1.

It seems as if during the last decade much of the research in kernel variable selection has

taken place in the computer science and machine learning fields, and considerable scope

still exists for contributions from the statistics and data mining disciplines. In this regard, it

should however be borne in mind that modern variable selection applications pose

challenges not encountered in classical variable selection. Therefore it comes as no

surprise that approaches to variable selection for kernel methods are quite different to those

in more traditional selection. We will elaborate more on this point in Section 2.4.

2.3.1 THE RELEVANCE OF VARIABLES

In order to further discuss variable selection in classification contexts, we first require

clarity regarding the concept of variable relevance. Relatively few papers in the literature

contain formal definitions of the relevance of variables. In this section we present some

informal definitions regarding degrees and types of variable relevance. Several subtleties

come into play when one considers the relevance of variables. We indicate important

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

48

points to bear in mind, and provide examples illustrating some intricacies involved in

determining the relevance of variables.

In our opinion, a limitation of many papers on variable selection is their failure to

distinguish between the different objectives commonly pursued in classification contexts.

In some cases, the most important objective may be correct classification of new cases, i.e.

the emphasis is placed on the predictive (allocatory) aspects of a classifier. In other cases,

the greater interest may lie in a clear understanding of the nature of separation between

groups. In such classifiers, the descriptive (separatory) aspects of the resulting decision

functions are more important. This distinction is made by McLachlan (1992). Variable

selection procedures should be clear regarding the intended purpose of selection: is the

selection process derived to focus more sharply on improving the allocatory or separatory

properties of a classifier? Most variable selection proposals in the literature assume that

the allocatory aspects of the classifier are more important. In this way selection procedures

often neglect the importance of classifiers explaining the separation among groups.

McKay and Campbell (1982 a and b) and Louw (1997) share this sentiment and categorise

variable selection criteria in discriminant analysis according to whether they primarily

incorporate the allocatory or separatory aspect of a discriminant function. There is

however still much scope for variable selection procedures that concentrate more on

enhancing the separatory properties of a classifier.

A similar distinction is possible regarding the relevance of variables: a variable may be

helpful as far as the correct allocation of a new case to one of the groups is concerned, and

useless regarding concise description of the separation between groups, or vice versa. In

other cases, a variable may be relevant in both an allocatory and separatory sense.

Therefore allocatory relevance rates variables according to the extent to which their

inclusion yields smaller ()fErr , whereas the importance of variables in terms of how well

they explain differences between groups may be referred to as separatory relevance.

Regarding variable relevance in both an allocatory and separatory sense, a further

distinction is possible. A variable may either be considered strongly or weakly relevant in

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

49

allocating new cases, or in describing group separation. John et al. (1994) provide

informal definitions of strong and weak relevance in an allocatory sense. Note however

that similar definitions can also be given to further distinguish among variables which are

relevant with regard to the separation between groups. See also Blum and Langley (1997).

DEFINITION 2.4 STRONG RELEVANCE

Let { }p,,2,1 K=J index the set of available variables pXXX ,,, 21 K . Also, let G

represent the superset containing all possible subsets of J , and use []ΓErr to generically

denote the generalistion error of a model based on the variables with indices in Γ . Now

consider an arbitrary variable jX , J∈j , in this set, and let ()jG + and ()jG − (both G⊆)

represent all possible subsets of J , with and without jX respectively, i.e.

() () { }jGG jj ∪= −+ . Variable jX is said to be strongly relevant if ()[]jGErr + is always

smaller than ()[]jGErr − .

From Definition 2.4 it is clear that a strongly relevant variable can never be removed

without negatively affecting generalisation performance.

DEFINITION 2.5 WEAK RELEVANCE

A variable jX is considered weakly relevant if it is not strongly relevant, and if there

exists a subset of variables not containing jX , i.e. ()jG −
~ , such that ()[]jGErr +

~ is smaller

than ()[]jGErr −
~ .

Therefore inclusion of a weakly relevant variable can in some cases yield higher prediction

accuracy.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

50

The main point to be made in this section concerns the importance of not considering

variables individually when determining their relevance. In variable selection one is

typically interested in obtaining the subset of variables which, when used in combination

with one another, will be the most relevant. In the next example we will show that the

relevance of individual variables can be much different when their use is considered in

combination with other sets of variables. In particular, we will indicate that a variable

which by itself does not contribute to the separation between two groups may indeed

provide helpful information regarding the classification of future cases.

EXAMPLE 2.5

Reconsider the binary classification problem as stated in Chapter 1, and let the correlation

between observations on the pair of variables 1X and 2X be denoted by ρ . Assume that

ρ has a fairly large positive value. Furthermore, let variable 1X provide relatively clear

separation between the two groups in terms of location, but with measurements on 2X for

the two groups following roughly the same distribution. Specifically, conditioning on

group membership, let the distribution of the data cases be

 1

2

5 1
1 ~ ;

5 1
X

Y N
X

ρ
ρ

      
= +       

      
 and 1

2

12.5 1
1 ~ ;

5 1
X

Y N
X

ρ
ρ

      
= −       

      
. (2.23)

We present the marginal distributions of 1X and 2X in Figures 2.8 and 2.9 respectively.

It would seem from Figure 2.9 that an observed value of 2X cannot in any way assist us in

allocating a data case to one of the two groups. However, consider a new case

()pxxx ,,, 21 K=x with the measurement 1x falling in the region of overlap between the

two groups (in Figure 2.10). Clearly, on its own 1x does not seem to be of much help in

classifying the new observation, since 1x can either be considered an exceptionally large

value from group 1, or an exceptionally small value from group 2.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

51

However, consider the observed 2X -value for a new case. From the assumed correlation

structure between 1X and 2X , an above (or below) average value for 2X may

 1X

Figure 2.8: 1X provides relatively clear separation between the two groups

 2X

Figure 2.9: 2X provides no separation between the two groups

0 5 10 15 20

0.
0

0.
05

0.
10

0.
15

Group 1
Group 2

0 5 10

0.
0

0.
05

0.
10

0.
15

Group 1
Group 2

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

52

 1x

Figure 2.10: Suppose 1x in x falls in the region of overlap – therefore on its own 1x is

not useful in the classification of x

 2x

Figure 2.11: Here 2x lies below the average of the 2x values and is indicative of x

belonging to group 2

0 5 10

0.
0

0.
05

0.
10

0.
15

Group 1
Group 2

0 5 10 15 20

0.
0

0.
05

0.
10

0.
15

Group 1
Group 2

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

53

 x

Figure 2.12: The new case is allocated to group 2

be considered indicative of the 1x value lying above (or below) the average of 1X . Hence

if 2x is below the average of the 2x values, the observed 1x value is most likely to lie

below the average of the 1x values as well, implying that the new case should be allocated

to group 2 (see Figures 2.11 and 2.12).

A similar argument is valid for the case where 2x is above the average of the 2x values.

In this way, knowledge of the 2x value assists in the allocation of the new case, i.e.

including 2X in the classifier most probably will result in a smaller ()fErr . Note

however in this example that if there were no correlation between 1X and 2X , inclusion of

2X would not improve ()fErr . In this example variable 2X may therefore be considered

weakly relevant. 

From Example 2.5 we see that it is important to determine the relevance of a variable when

it is used in combination with (ideally) the rest of the variables which will be contained in

0 5 10 15 20

0.
0

0.
05

0.
10

0.
15

Group 1
Group 2

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

54

the model: variables that are completely irrelevant on their own can often, when used in

combination with another (set of) variable(s), provide important auxiliary information and

thus be considered relevant. If the relevance of variable 2X in Example 2.5 were

determined by only considering the contribution of 2X when it is used on its own, its

(weak) relevance (when used in combination with variable 1X) would not have been

revealed.

We now provide two further examples from Guyon and Ellisseeff (2003) which illustrate

that determining the relevance of input variables is not a trivial matter.

EXAMPLE 2.6

Let 1X and 2X be two independent and identically distributed variables. In particular, let

 















+= ΣX ;

1
1

~1 NY and 















−
−

−= ΣX ;
1
1

~1 NY , (2.24)

where []'
21' XX=X and 








=

10
01

Σ .

Since 1X and 2X provide exactly the same separation between the two groups, it might at

first seem unnecessary to make use of both these variables in order to discriminate between

the two groups.

Consider however the orthogonal transformation AXU = where



















−
=

2
1

2
1

2
1

2
1

A . (2.25)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

55

Hence, conditioning on group membership, the distribution of the transformed data cases

will be

 

















+= ΣU ;

0
2~1 NY and 

















−
−= ΣU ;

0
2~1 NY , (2.26)

with []'21' UU=U . From (2.26) we see that, although the separation provided by

21U , and the separation provided by 1X (or 2X) are both equal to 2, the standard

deviation of 21U is 21 , as opposed to the unit standard deviation of 1X .

In this case much is gained by using 1U (and therefore including also variable 2X) instead

of only making use of variable 1X (or vice versa). The separation between two groups can

be improved by adding variables that are identically and independently distributed.

 

The following example illustrates that a significant correlation between input variables

does also not necessarily indicate one of the highly correlated input variables to be

irrelevant.

EXAMPLE 2.7

Consider variables 1X and 2X , and suppose their marginal distributions, conditioning on

group membership, are once again

 















+=








Σ;

1
1

~1
2

1 NY
X
X

 and 















−
−

−=







Σ;

1
1

~1
2

1 NY
X
X

, (2.27)

but now 







=

1
1
ρ

ρ
Σ . In this case the transformation () 221 XXU += implies

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

56

 ()ρ++= 1;2~1 NYU and ()ρ+−−= 1;2~1 NYU . (2.28)

Hence we see that 1X , 2X and 2U provide a separation in location of 2. The standard

deviation of the distribution of 2U is however () 21 ρ+ , a value that will be smaller

than the standard deviation of the distributions of 1X and 2X if 11 <≤− ρ .

 

2.3.2 SELECTION STRATEGIES AND CRITERIA

Given that we may assume a fixed value for m , the number of variables to be selected,

different strategies exist for identifying which m out of p variables this should be. We

proceed with a description of these strategies, once again placing emphasis on selection in

binary classification. The most natural strategy for variable selection is an all possible

subsets approach. This approach is based on an appropriate selection criterion and entails

calculating the criterion for all ()p
m possible subsets and selecting the subset corresponding

to an optimum value of the criterion. If the criterion emphasises separation of the two

groups, the optimum value will typically be a maximum, while in the case of an allocatory

criterion optimisation usually corresponds to finding a minimum value. In application

domains for kernel methods, note however that m may still be a very large number,

rendering such an all possible subsets approach impossible from a computational point of

view. Alternative classical variable selection strategies (viz. backward elimination, forward

selection, and stepwise algorithms) restrict the optimisation process to a much smaller

number of variable subsets. These selection strategies are iterative: at each step a variable

is added to and/or eliminated from a current set of variables, until a sequentially

constructed final subset of size m is reached. Whether a variable is added to and/or

removed from a current set of variables is the aspect which differentiates the

aforementioned selection strategies. Before we discuss implementation of these selection

strategies, the following additional notation is first required.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

57

Let the set of indices corresponding to the entire set of initially available input variables be

denoted by { }p,,2,1 K=J , and the corresponding full set of input variables by V .

Furthermore, let subsets of J be denoted generically by J (and input variable subsets by

V), and the complement of J in J be J , i.e. JJ -J= . Also, let the number of

variables in a subset J be equal to () jJcard = . Recall that in Chapter 1 we defined X as

the data matrix consisting of n measurements on all variables in V . Using the indices

contained in a subset J we now construct a data matrix JX
(

 with rows equal to ′
ix(,

ni ,,2,1= K , where ix(is a j-component ()pj ≤0 < column vector containing the values

of input variables hX , Jh ∈ , for case i in the training data.

Since algorithms for backward elimination, forward selection and stepwise procedures

usually involve several steps, note that we will write kJ to indicate a set of input variable

indices obtained after the thk step of the algorithm. Moreover, we will use the notation

()hkJ - to indicate a particular subset of kJ , viz. the set kJ without variable index h . That

is, () khk JJ ⊂− where kJh∈ . We will also need notation for a specific superset of kJ ,

viz. the set kJ after adding index h . Let this superset be denoted by ()hkJ + , i.e.

() khk JJ ⊃+ where kJh ∉ . We will use similar notation to refer to the corresponding

subsets of input variables, viz. () khk VV ⊃± , where kV is the subset of input variables

included during the thk step of the selection algorithm. Finally, we require notation for the

selection criterion calculated by using only the training sample observations in JX
(

. Hence

during the thk step in the selection algorithm, let kc denote the value of the selection

criterion based on kJX
(

. Similarly ()hkc - and ()hkc + represent the criteria using only the

observations in ()hkJ -X
(

 and ()hkJ +
X
(

 respectively.

Having introduced the necessary variable subset notation, we now proceed with a

discussion of a backward elimination strategy. Backward elimination starts with the full

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

58

set of available variables, therefore J=0J . Each step in backward selection requires the

elimination of a variable, and subsequent updating of the current set of variables. During

for example the first step in the selection algorithm, one needs to determinine which of the

variables in 0V to eliminate. For this purpose the effect of omitting each of the variables in

0V one at a time, is required, i.e. the estimated generalisation performances of the variable

subsets () () ()pVVV -02-01-0 ,,, K have to be compared. Hence step one in backward selection

involves calculation of the values () () ()pccc -02-01-0 ,,, L of the selection criterion, followed

by identification of the optimum criterion value. Suppose the optimum criterion value is

()hc ˆ0 , then hX ˆ is the variable indicated as the least relevant variable in V and we proceed

by eliminating hX ˆ from 0V . The current current set of variable indices is then updated,

yielding () { }hJJJ h
ˆ-0ˆ01 == − and variable subsets (){ } JhV h 1-1 , ∈ to consider during

the next step in the algorithm. The above process continues until only m variables remain,

therefore terminating after step m-pk = , and sequentially generating nested subsets

mpVVVV -210 ⊃⊃⊃⊃ K . With p typically very large, eliminating variables one at a time

is still a costly procedure. Hence it may often be necessary to remove groups of variables

at each step, or at least during the initial stages of the process. Letting r denote the number

of repetitions employed in the selection, note therefore that in general r ≤ mp − , with

equality holding if each step amounts to elimination of only a single variable.

Forward selection proceeds along the same lines as backward elimination, except that at

each step, variables may potentially be added instead of eliminated. Also in the case of

forward selection, more than one variable may be added at a time. After r steps, the

nested subsets rVVVV ⊂⊂⊂⊂ K210 are returned. Of course, r will depend on m, p and

the number of variables simultaneously entering the model during each step of the

algorithm.

Guyon and Elisseeff (2003) indicate the important aspects to consider in deciding whether

to implement a backward elimination or a forward selection procedure. From their

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

59

discussion, backward elimination seems to be the more appropriate choice in most cases.

A disadvantage of backward elimination is that in cases of a small number of variables to

be retained (small m), selection may take significantly longer than would be the case with

forward selection. Backward elimination strategies do however beat forward selection in

more than one respect. Firstly, incorrect inclusions in forward selection often cause the

importance of other variables not to be detected. Thus forward selection may yield a

completely suboptimal subset of variables as a consequence of misleading inclusion of

irrelevant variables early on. Secondly, in forward selection strategies, the full set of

available variables is never assessed. For a small value of m relative to the value of p ,

the forward selection process may in fact terminate far short from considering the full set

of available variables. In backward elimination the full set of potential variables is

considered at the first step.

Stepwise selection may be viewed as a strategy that tries to prevent wrong inclusions from

blinding the procedure to correct inclusions later on. It may essentially be described as a

combination of forward selection and backward elimination: at step k , after an input

variable (say
khX ˆ) has been added to kV , possible elimination of each of the input variables

in kV is considered. In regression contexts, forward stagewise- and forward stepwise-

selection are forward selection strategies based on the correlation between an input variable

and the response, as selection criterion. A new development, which may be considered a

more cautious (less greedy) version of forward stepwise regression, is the least angle

regression and shrinkage (LARS) algorithm (cf. Efron et al., 2004). Application of the

LARS proposal has since been extended to classification setups (specifically to selection in

support vector classifiers using a linear kernel function, cf. Keerthi, 2005) as well. A brief

discussion of the LARS algorithm and related selection procedures follows after the next

paragraph regarding (classical) selection criteria.

Having discussed strategies which avoid consideration of every possible variable subset,

the remaining difficult aspect is a decision regarding which criterion to use in rating the

various subsets. In the context of ordinary discriminant analysis and linear regression,

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

60

several approaches with regards to selection criteria and their application in the various

selection strategies above, may be found in the literature. Important references in this

regard include McKay and Campbell (1982 a and b), McLachlan (1992), Louw (1997) and

George (2000). We have earlier on referred to the useful qualification regarding selection

criteria made by these authors, viz. that selection criteria can be broadly categorised

according to whether they are primarily of a separatory or allocatory nature. Examples of

separatory criteria in classical discriminant analysis include the squared multiple

correlation coefficient, Akaike’s Information Criterion, and Mallows’ pC criterion. Also

the F-statistic was derived to test for so-called no additional information provided by a

variable. In classification problems where the correct allocation of future cases is the

primary concern, selection criteria are typically simply estimators of the generalisation

error rate.

As an alternative to the above approach to variable selection (involving specification of a

selection- criterion and strategy), several more novel proposals in the literature implicitly

perform variable selection as part of the learning algorithm. Examples are the non-negative

garotte (Breiman, 1995), the lasso (Tibshirani, 1996) and the elastic net (Zou and Hastie,

2005) – all derived in a linear regression context, but also been shown to work well in

classification problem domains: Ghosh and Chinnaiyan (2004) apply the lasso in cancer

classification problems, and Zou and Hastie (2005) state that ‘the elastic net penalty can be

used in classification problems’. With a view to our focus on binary classification, we start

by briefly considering the lasso in regression contexts, and then switch over to its

equivalent form for generalised linear models (as proposed by Park and Hastie, 2006).

The non-negative garotte, lasso and elastic net algorithms in regression are examples of

regularised (or shrinkage) estimation, and are thus connected to ridge regression (cf.

Friedman et al., 2007) for a summary of these techniques. The regularised optimisation

problem in the lasso, for example, is:

 ()








+−= ∑
=

p

j
jnRmin

1

21 βλXβyβ
β

. (2.29)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

61

By substituting the regulariser ∑
=

p

j
j

1
β for ∑

=

p

j
j

1

2β in the case of ridge regression, some of the

regression coefficients may be shrunk to zero. Therefore the lasso alters ridge regression to

implement variable selection. For small enough values of λ , the regularisation constraint

will have no effect, and the estimated regression coefficients will be the usual least squares

estimates. As with ridge regression, large values of λ induce bias in the estimation, and an

estimate with smaller variance. Appropriate specification of λ often ensures a trade-off

between the larger bias and smaller variances that result in a smaller generalisation error.

In variable selection, smaller subsets of input variables may also yield larger bias, but

fewer coefficients to estimate and therefore hopefully also a reduction in variance.

Accurate estimation of the true model dimension can be thought of as being equivalent to

correct specification of λ . Cross validation is often considered a good tool for specifying

λ .

The optimisation problem in (2.29) is a quadratic optimisation problem that can, for any

positive value of λ , be solved by standard numerical procedures. It is however shown in

Efron et al. (2004) that lasso estimates for all values of λ can simultaneously be obtained

via the LARS algorithm. Osborne et al. (2000) have also devised an algorithm for

efficiently solving (2.29).

Despite first-class performances in many scenarios, Zhu and Hastie (2005) list three

situations in which the lasso does not perform as well as one would have hoped. The first

of these occurs in the case of wide data sets characterised by (many) more variables than

observations. In this case, the lasso can select a maximum of only n input variables. Also,

the lasso is undefined for λ larger than a certain value. The second unfavourable scenario

involves groups of input variables for which correlations between pairs of variables are

high. In such situations, the lasso often selects only a single variable from the highly

correlated group, causing the importance of the variables with which it is correlated to be

masked. Thirdly, in the case of np < and highly correlated input variables, it was shown

by Tibshirani (1996) that ridge regression outperforms the lasso.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

62

The elastic net was introduced with the aim of finding a regularised estimation technique

that ‘works as well as the lasso whenever the lasso does the best, and can fix the

problems…’ given above (Zou and Hastie, 2005, p. 302).

The regularised optimisation problem for the elastic net makes use of both the lasso and

ridge regression regularisers:

 ()








++−= ∑ ∑
= =

p

j

p

j
jjRmin

1 1

2
21 βλβλXβyβ

β
. (2.30)

In the same way that LARS efficiently finds β for all possible λ values, Zou and Hastie

(2005) developed an efficient algorithm (LARS-EN) for finding β for all possible non-

negative values of 1λ and 2λ . In fact, the computational cost of determining β for all

possible ()21;λλ combinations, is shown to be the same as for a single ordinary least

squares fit. Since LARS and LARS-EN can be used to efficiently find the lasso and elastic

net estimates for a sequence of λ , or 1λ and 2λ parameter values, they are examples of

so-called regularisation path-following algorithms. Once again a cross-validation scheme

over a ()21;λλ -grid is proposed for determining 1λ and 2λ .

In Park and Hastie (2006), LARS and LARS-EN are extended to regularisation path-

following algorithms for generalised linear models. Recall that in generalised linear

models, the objective function to be maximised is () ()βyβ ,l=R , where l is the

likelihood function with respect to the given data set. Through the introduction of a

complexity penalisation term of the form ∑
=

p

j
j

1
β , the usual estimation process is modified

to a variable selection technique. The resulting regularised optimisation problem is

 ()








+− ∑
=

p

j
j,min

1
βλβy

β
l . (2.31)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

63

Park and Hastie (2006) devise an algorithm for efficiently solving (2.31) for all positive

values of the λ regularisation parameter, and demonstrate its use in the application of both

penalised logistic regression (Lockhorst, 1999) and the Cox proportional hazards model

(Cox, 1972).

There are statistical techniques (e.g. classification and regression trees (CART),

multivariate adaptive regression splines (MARS) and random forests (RFs)) that are often

considered to more naturally lend themselves to variable selection. References relevant to

tree methodology are Breiman et al. (1984), De’ath and Fabricius (2000), and Hastie et al.

(2001), and MARS was popularised by Friedman (cf. Friedman, 1991). Since some of our

further investigations make use of RFs, we will conclude this section on selection strategies

and criteria by briefly highlighting some important aspects with regards to the ranking of

variables using output provided by most RF software.

Many positive characteristics can be attributed to classification and regression trees. As

mentioned above, the relatively simple yet effective way in which variables can be ranked,

is certainly one of the much acclaimed advantages in using CART. Unfortunately

however, it is well known that trees are very sensitive to randomness in the data. Small

perturbations in the data typically yield considerable changes in tree structures. Different

data sets generated from the same distribution may result in completely different rankings

of the input variables. Note that the same can be said of most other classical subset

selection methods. Regularisation (shrinkage) approaches to selection are however much

more stable. See Breiman (1996) for an extensive comparative study regarding instabilities

and stabilisation of input variable selection in linear regression.

Random forests (RFs) for classification and regression is a class of methods which was

designed partly in answer to the above shortcoming of CART. Again in our discussion we

will assume the basic theory underlying RFs to be known (cf. for example Bauer and

Kohavi, 1999; Breiman, 1996 and 2001; Dietterich, 1998; and Ho, 1998), and we therefore

mainly focus on important aspects regarding the calculation of relative variable importance

measures in RFs. Hence briefly, random forests are ensembles of single classification or

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

64

regression trees, each constructed after some form of randomness has been added to the

originally available training data set. The final set of predictions is obtained as the majority

vote over the forest of trees (in classification), or the average prediction across trees (in

regression).

DEFINITION 2.6: A RANDOM FOREST

A random forest is a classifier or regression function consisting of a collection of tree

classifiers or tree regression functions

 (){ }, , 1,2, ,= KkT k Kx θ (2.32)

where x is an input vector and kθ is a random vector, generated independently from

121 ,,, θθθ K−− kk , and the { }Kkk ,,2,1, K=θ index the individual trees.

Breiman (2001) reports significant improvements in accuracy for RFs over CART.

Moreover, it has already been mentioned that variable rankings may change considerably

after even only slight perturbation of the original data set. RFs purposely inject

randomness and after averaging results across individual trees, obtain more reliable

variable importance values than those reported per individual tree.

There are numerous ways in which a random element may be incorporated into the growth

of each individual tree in an RF. We mention only a few examples. The reader is referred

to Breiman (1996 and 2001), Amit and Geman (1997), Dietterich (1998) and Ho (1998) for

more details and remarks on how the different variations compare. Firstly, one may

randomly select a set of training sample cases which is then used to grow each individual

tree. A second proposal is to randomly select a split among a number of best splits.

Thirdly, one could add a random element to the response values of the original training set.

A fourth option is to use a random selection of the total number of available features to

grow each tree.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

65

In order to facilitate a discussion regarding variable importance in classification and

regression random forests, the following background and notation is required. Let

nfff ,,, 21 K be the set of response values to be estimated by a regression tree ensemble,

and likewise, let 1 2, , ,K ny y y denote the binary outcomes to be estimated by a

classification random forest. Now consider a classification or regression RF which

incorporates a random element on two levels: firstly, a bootstrap sample

(){ }niyii ,,2,1,, K== xtT is selected randomly and used to grow tree tT , 1, 2, ,t K= K ,

where K denotes the total number of trees in the forest; and secondly, at each node in an

individual tree, a random selection of m out of the total number of p input variables

()pm < , is made. Let RV denote the set of randomly selected variables at a particular

node, then at that node, a decision regarding which variable to split on is restricted to the

m randomly selected variables in RV . Note that RV at distinct nodes in the tree will

typically differ.

Each of the K trees is trained on a different bootstrap sample of cases from the original

training data set and yield estimated values for nfff ,,, 21 K . Thus the process of drawing

bootstrap samples and training individual trees on them, yields tntt fff ˆ,,ˆ,ˆ
21 K ,

1, 2, ,t K= K . Now let iT indicate the set of trees that was trained on a bootstrap sample

which did not contain training data case i . Then the random forest estimate of if is

()i
Tt

tii Tcardff
i

∑
∈

= ˆ(
, ni ,,2,1 K= , where ()iTcard is the number of trees in iT .

The performance of random forests is typically evaluated via an out-of-bag error estimate,

viz.

 ()() ()∑ ∑
= ∈

−
n

i Tt
iti

t i
ff

Tcardn 1

2ˆ1 (
. (2.33)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

66

It can be shown that the random forest error rate depends on the correlation between any

two trees, and the strength of each individual tree in the forest (cf. Breiman, 2001). Low

correlations and individual trees with low error rate yield random forests with low error

rates. Specifying a lower value for m reduces the correlation between pairs of trees, but

increases the error rate of individual trees. We of course need to specify a value for m

which would lead to a favourable trade-off. Luckily, the range of acceptable values for m

has been found to be quite wide. In the literature pm ≅ yields good results in most

cases.

Quantification of the relative importance of input variables typically forms part of random

forest software. We used the following approach, as implemented in the software provided

by Breiman and Cutler (2002). Consider tree tT , and let tJ denote the set of cases which

were not used in training this tree. We start by randomly permuting the entries of variable

1X , and let the resulting training data set be denoted by 1
tT . We then use tT to classify the

training patterns in 1
tT , hence obtaining 11

2
1
1

ˆ,,ˆ,ˆ
tntt fff K , and the corresponding out-of-bag

error estimate () ()21ˆ1
∑
∈

−
tJi

tii
t

ff
Jcard

 when the entries in variable 1X was permuted. This

process of obtaining out-of-bag error estimates is repeated for variables 2X up to pX .

The ratio

 () () ()() ()∑ ∑∑
= ∈∈

−−=
n

i Tt
iti

tJi

j
tii

t
j

it
ff

Tcardn
ff

Jcard
r

1

22 ˆ1ˆ1 (
 (2.34)

is used to quantify the importance of variable jX . Relatively large r -values indicate the

more important input variables.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

67

2.4. VARIABLE SELECTION FOR KERNEL METHODS

In contrast to proposals regarding feature selection, contributions with respect to input

variable selection for kernel methods have been relatively few, and since feature selection

and input variable selection are only equivalent when linear kernels are used, little of the

feature selection literature is relevant in our context. (See Chapter 1 for the distinction

between input variable and feature selection). Ideas in the literature on feature selection for

kernel techniques have varied much. A distinction often made in the machine learning

literature on feature selection, is between so-called filter, wrapper and embedded methods

for selection (cf. Kohavi and John, 1997; and Guyon and Elisseef, 2003). We will say

more on filter and wrapper selection criteria in Chapter 3. Papers on variable filtering

include Liu et al. (2002), Stoppiglia and Dreyfus (2003), and Niijima and Kuhara (2006).

A category of selection procedures involves generalisation of adaptive tuning of multiple

kernel hyperparameter values. Adaptive shrinkage methods are examples of embedded

methods. Proposals regarding shrinkage for selection in SVMs are found in Grandvalet

and Canu (2002), Weston et al. (2001 and 2003), and Chapelle et al. (2004). An input

variable selection approach which may also be regarded as an embedded method is the

more recently proposed procedure by Keerthi (2005). Closely connected to the regularised

optimisation-based selection procedures in the previous section, application of this

procedure is however restricted to SVMs using only linear kernel functions.

2.4.1 THE NEED FOR VARIABLE SELECTION

In this section we illustrate the advantageous effect of correctly eliminating irrelevant

variables on the performance of both classical and kernel classification procedures. For

this purpose we assimilate results from simulation experiments which will be more

thoroughly discussed in Section 3.4.1. In this section we therefore only briefly discuss

aspects of the simulation study needed to interpret the reported results.

One of several factors considered in the simulation study was the distribution used to

generate input variable values in the simulation data sets. We investigated normal and

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

68

lognormal distributions. Each simulation run started by generating a data set (in a binary

classification setup) where only a portion of the initially available variables were relevant

(in a separatory sense). Let the subset of separating variables be denoted by SV , of

variables not separating the two groups by SV , and let V refer to the full set of available

input variables. Depending on the training sample size, there were either ten or sixty input

variables in total. Each of the variables in SV contributed equally to the separation

between groups, and we considered a correlation of either 0ρ = or = 0.7ρ between pairs

of variables in SV . Pairs of variables from SV and SV were either uncorrelated, or

equicorrelated, with – in the case of normal data – a correlation of 0.9SSρ = between them.

In lognormal configurations, we were compelled to set 0.2SSρ = or 0.25 (a motivation in

this regard will be given in Appendix A.1). Furthermore, we generated data groups to be

separated either in terms of location, or with respect to their variance-covariance structure.

Thus in terms of the data distribution and type of group separation, we considered four

configurations: normal data and group separation with respect to either location (denoted

NL cases), or spread (denoted NS cases); and lognormal data with group separation in terms

of location (LL cases), or spread (LS cases). We also varied the training sample sizes.

Small and wide samples consisted of 15 cases in each group; mixed samples had 25 cases

in the first group, and 75 cases in the second; and large samples consisted of 100 cases in

each group.

We divided the data into a training and test set, and applied LDA and KFDA and fitted an

SVM on the training set using measurements on

i. the total number of available variables (in V)

ii. only the fraction of relevant variables (in SV)

Note here that the percentage of relevant variables referred to in ii. where either 1.0=π or

4.0=π . The linear and kernel Fisher discriminant functions, as well as the support vector

classifier obtained in i. and ii. were then evaluated on the test sample. For each of the

classifiers considered, the classification test error rate obtained in ii., relative to the

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

69

classification test error rate in i. was used to measure the effect of irrelevant variables on

classification performance. Denote the test error in i. by ()VErr and the test error in ii. by

()SVErr . The effect of the irrelevant variables (henceforth called irrelevance effect) was

quantified in terms of () ()SVErrErrirr V= . Hence an irrelevance effect value greater

than one indicates the omission of irrelevant variables to yield an improved classification

performance. In turn, irrelevance effect values close to 0 indicate the elimination of

irrelevant variables to have a negative effect on classification accuracy and would be

indicative of situations where seemingly irrelevant variables are actually weakly relevant.

Thus each simulation run yielded an irrelevance effect value for LDA, KFDA and the fitted

SVM. An average of the irrelevance effect values for each classifier was calculated over

1000 simulation runs.

The obtained irrelevance values are reported for normal data and = 0.1π in Table 2.1; and

for normal data and = 0.4π in Table 2.2. Similarly, irrelevance effect values for

lognormal data and = 0.1π are given in Table 2.3, followed by the results for lognormal

data and = 0.4π in Table 2.4. The type of distribution and group separation, sample sizes

and various correlation values considered, are indicated across rows. Configurations that

could not be handled by LDA are indicated by a *-symbol.

From the vast majority of configurations in Tables 2.1-2.4, the improvement in the

performance of LDA, KFDA and SVMs after omitting the variables in SV , is evident. (We

highlighted irrelevance values greater than 2.) Note especially the considerable

improvement in generalisation accuracy realised in wide samples: irrelevance (irr) values

as high as 29 and 45 were observed in NS, 4.0=π configurations (Table 2.2). Fewer of

the NL configurations benefit from the omission of variables in SV : compare 82% of the

NL configurations that showed improvements in accuracy with 89% in the NS case, and

95% in both the LL and LS cases.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

70

In agreement with our discussion in Example 2.5, we see that in some of the cases where

pairs of relevant and irrelevant variables were highly correlated, the model fitted to the full

set of available variables outperformed the one fitted to only the subset of truly relevant

variables. (We underlined all irrelevance values between 0 and 1.) In these cases, the

variables in SV therefore actually turned out to be weakly relevant. Note that the highest

incidence (30%) of weakly relevant variables occurred in the NL, 4.0=π configurations

(Table 2.2), and the lowest (only 0.2%) in LL, 1.0=π .

The KFDA NS results for mixed samples in Table 2.1 require some explanation: all the

irrelevance values equal 1. This would seem to suggest that in these cases excluding the

irrelevant variables has no effect on the error rate. Closer inspection of the simulation

results, however, shows that these irrelevance values are obtained because we found that

for both ()VErr and ()SVErr the smallest error rate obtainable by varying the cost

parameter over the values which we considered, equalled 0.25. A more refined search in

terms of specification of the cost parameter would seem to be necessary in these cases.

Similar remarks are applicable to the results in Table 2.3 and to several tables appearing in

later chapters.

For a comparison of the generally positive effect of eliminating irrelevant variables among

classification techniques, first consider the case of normally distributed data (reported in

Tables 2.1 and 2.2). Here smaller test errors after elimination of irrelevant variables are

typically less prominent in the case of LDA. When the two groups are separated with

respect to location and = 0.1π , the number of configurations in which SVMs benefit more

than KFDA from eliminating variables in SV is more or less equal to the number of

configurations where the converse is true. Hence SVMs and KFDA seem to benefit to the

same extent from eliminating variables in SV . When the groups are however separated

with respect to spread (and = 0.1π), KFDA seems to benefit slightly more: in 13 out of 16

configurations the KFDA irr values are larger than the irr values obtained for SVMs, albeit

by not that large a margin.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

71

Table 2.1 : Ratios of test errors: =π 0.1, normal training data

 NORMAL

LOCATION (NL)

NORMAL

SPREAD (NS)

 Sρ SSρ SVM KFDA LDA SVM KFDA LDA

SMALL 0 0 2.754 1.307 1.263 1.562 1.593 1.071

0.7 0 2.754 1.307 1.263 1.575 1.591 1.073

0 0.9 1.224 1.310 1.131 1.561 1.598 1.073

0.7 0.9 1.229 1.303 1.128 1.571 1.602 1.071

MIXED 0 0 2.662 1.083 1.150 0.997 1.000 1.362

0.7 0 2.677 1.088 1.158 0.996 1.000 1.362

0 0.9 1.255 1.088 1.029 1.303 1.000 1.358

0.7 0.9 1.255 1.088 1.029 1.312 1.000 1.362

LARGE 0 0 1.784 1.091 1.062 1.533 1.561 1.029

0.7 0 1.800 1.091 1.058 1.533 1.565 1.029

0 0.9 1.048 1.052 0.909 1.502 1.565 1.027

0.7 0.9 1.047 1.055 0.909 1.498 1.561 1.031

WIDE 0 0 1.862 2.320 * 3.375 4.767 *

0.7 0 0.871 1.192 * 2.263 2.119 *

0 0.9 0.752 2.820 * 1.445 3.034 *

0.7 0.9 0.953 1.531 * 0.805 0.870 *

For both types of group separation and = 0.4π (Table 2.2), again KFDA profits more from

the omission of variables in SV than SVMs (10 out of 16 data setups yield larger KFDA irr

values compared to the irr values obtained for SVMs in both the NS and NL

configurations).

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

72

Table 2.2 : Ratios of test errors: =π 0.4, normal training data

 NORMAL

LOCATION (NL)

NORMAL

SPREAD (NS)

 Sρ SSρ SVM KFDA LDA SVM KFDA LDA

SMALL 0 0 1.258 1.311 1.271 1.947 2.485 1.129

0.7 0 1.110 1.108 1.145 1.764 1.740 1.129

0 0.9 0.445 1.246 0.000 1.932 2.495 1.124

0.7 0.9 1.052 1.101 1.025 1.729 1.709 1.126

MIXED 0 0 1.201 1.231 1.099 2.250 2.477 1.189

0.7 0 1.265 1.055 1.088 2.422 1.472 1.920

0 0.9 0.146 1.178 0.000 2.151 2.465 1.197

0.7 0.9 1.106 1.014 0.967 2.358 1.433 1.191

LARGE 0 0 1.099 1.056 1.043 0.607 2.056 1.058

0.7 0 1.061 1.017 1.038 1.764 1.740 1.129

0 0.9 0.018 0.494 0.000 1.921 2.094 1.056

0.7 0.9 0.952 0.941 0.897 2.319 1.646 1.056

WIDE 0 0 1.316 3.167 * 14.33 45.00 *

0.7 0 0.997 1.017 * 1.654 1.922 *

0 0.9 1.684 8.833 * 18.80 29.33 *

0.7 0.9 0.922 1.108 * 1.041 1.449 *

Also note that we observe an interaction effect with regard to irr values, depending on the

percentage of irrelevant input variables, and the type of group separation. SVMs, KFDA

and LDA generally benefit more after eliminating variables in SV when = 0.4π instead of

0.1 and when groups are separated with respect to their variance-covariance structure, and

less when = 0.4π instead of 0.1 and when groups are separated in terms of location.

(Compare for example = 2.754irr for an SVM in an NL, = 0.1π scenario in Table 2.1

with = 1.258irr for an SVM in an NL, = 0.4π scenario in Table 2.2; and = 1.562irr for

an SVM in an NS, = 0.1π setup in Table 2.1 with = 1.947irr for an SVM in an NS,

= 0.4π configuration in Table 2.2.)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

73

We now turn our attention to results on the set of configurations when the data followed a

lognormal distribution (reported in Tables 2.3 and 2.4). First note that we mostly observe

greater improvements in classification error after omitting irrelevant variables here than

when the data were normally distributed. Secondly, LDA once again benefits far less from

the elimination of all irrelevant variables. If once again one compares the positive impact

of an accurate reduction of the full set of available variables on the accuracies of KFDA

and SVMs, one finds that when the two groups are separated with respect to location and

= 0.1π , KFDA benefit more from the elimination of irrelevant variables than SVMs. (The

improvement in accuracy is greater for KFDA compared to SVMs in 15 out of 16

configurations). We however observe the opposite when the groups are separated with

respect to their variance-covariance structure. Here we observe greater improvements in

the classification accuracy of SVMs in 11 out of 16 configurations.

In the case of group separation with respect to location and 4.0=π , SVMs benefit much

more (4 out of 12 SVM irr values are larger than KFDA irr values). The same can be said

in the LS case: here SVMs profit more in 2 out of 12 configurations).

Much of the interaction effect between the percentage of irrelevant input variables and the

type of group separation reported in the normal case, is also observed in the lognormal data

setup. The LL configuration is an exception in this regard.

In summary, the above simulation results indicate that successful variable selection

frequently yields significant improvement in the accuracy of both more traditional

classifiers (for example LDA) and kernel classifiers (for example SVMs and KFDA).

Variable selection was shown to be less important in NL configurations, and can perhaps in

that sense be regarded as a less important data setup to consider in subsequent simulation

investigations regarding variable selection prior to kernel analyses.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

74

Table 2.3 : Ratios of test errors: =π 0.1, lognormal training data

 LOGNORMAL

LOCATION (LL)

LOGNORMAL

SPREAD (LS)

 Sρ SSρ SVM KFDA LDA SVM KFDA LDA

SMALL 0 0 1.246 2.355 1.519 2.095 1.782 1.080

0.7 0 1.249 2.310 1.519 2.100 1.788 1.087

0 0.2 2.041 2.369 1.033 1.943 1.794 1.031

0.7 0.2 2.041 2.347 1.033 2.162 1.797 1.040

MIXED 0 0 1.336 2.050 2.044 1.491 1.000 1.247

0.7 0 1.332 2.071 2.044 1.500 1.000 1.247

0 0.2 1.862 2.071 1.756 1.320 1.000 1.237

0.7 0.2 1.875 2.020 1.778 1.327 1.000 1.232

LARGE 0 0 1.117 1.885 1.129 2.034 2.053 1.023

 0.7 0 1.117 1.885 1.124 2.034 2.053 1.021

 0 0.2 1.276 1.549 0.686 1.750 2.005 1.002

 0.7 0.2 1.735 1.995 1.004 1.750 1.995 1.004

WIDE 0 0 4.306 5.877 * 3.351 2.280 *

 0.7 0 2.680 2.640 * 2.584 2.067 *

 0 0.2 1.174 3.172 * 1.729 1.960 *

 0.7 0.2 1.374 1.894 * 1.936 1.869 *

In the configurations considered, the need for variable selection was generally much more

significant in the case of SVMs and KFDA, than for LDA. It is not easy to say whether

variable selection is more important for SVMs than for KFDA. Putting the NL data setups

aside, it seems as if SVMs benefit more, viz. in the LL, 1.0=π , and LS, 1.0=π and

4.0=π cases. Taking the NL configurations into consideration, a comparison of the

importance of variable selection in SVMs and KFDA is however much less conclusive.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

75

Table 2.4 : Ratios of test errors: =π 0.4, lognormal training data

 LOGNORMAL

LOCATION (LL)

LOGNORMAL

SPREAD (LS)

 Sρ SSρ SVM KFDA LDA SVM KFDA LDA

SMALL 0 0 2.013 2.012 1.586 2.133 1.968 1.164

0.7 0 1.727 1.659 1.339 1.932 1.785 1.203

0.7 0.25 1.146 1.359 0.772 1.702 1.918 1.103

MIXED 0 0 1.738 1.459 1.614 2.420 1.209 1.125

0.7 0 1.457 1.275 1.873 2.598 1.064 1.123

0.7 0.25 0.986 1.099 1.457 1.927 1.093 1.069

LARGE 0 0 2.333 1.662 1.161 2.145 2.537 1.056

0.7 0 1.805 1.305 1.061 2.419 1.522 1.071

0.7 0.25 1.111 1.009 0.538 1.968 1.475 1.021

WIDE 0 0 4.286 3.921 * 4.544 3.683 *

0.7 0 1.690 1.775 * 2.199 2.156 *

0.7 0.25 1.102 1.244 * 1.727 1.576 *

2.4.2 COMPLICATING FACTORS AND POSSIBLE APPROACHES

Variable selection for kernel methods is in many respects a more complex problem than for

standard statistical analyses. In this section we point out several of the factors which

complicate the selection process when kernel techniques are used, and broadly discuss

possible approaches towards overcoming these difficulties.

A first difficulty is that most classical selection approaches are based on one or more

assumptions which are typically not made in kernel methods. Here for example we have in

mind the assumption of a normal distribution for the input data. In many applications of

kernel methods such a strong assumption is invalid. Whereas the assumption of normal

data considerably simplifies a decision regarding the value of m in classical approaches,

this is not possible in the case of kernel methods. Note that we will investigate a proposal

for a data-dependent decision regarding m in Chapter 6 of the thesis.

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

76

A second complicating factor comes into play when patterns in the data are non-linear. In

such cases non-linear kernels are needed, resulting in the end in kernel solutions which are

not (weighted) sums over input variables (or even over transformed input variables) as we

would like, i.e. () bf j

p

j
j += ∑

=
xx

1
β or () () bf j

p

j
j +Φ= ∑

=
xx

1
β , but sums over features, viz.

 () () bf +Φ= xwx , bw
N

j
jj += ∑

=1
φ , (2.34)

In a classifier written in the form bj

p

j
j +∑

=
x

1
β or () bj

p

j
j +Φ∑

=
x

1
β , where pxxx ,,, 21 K are

the components of the new case to be classified, we may directly interpret jβ as an

indicator of the relative importance of the thj variable (provided the data have been

appropriately scaled). In Expression (2.26) the jw , Nj ,,2,1 K= however indicate the

relative importance of the thj feature (which does not correspond to the thj variable

transformed to ℑ). Hence the jw can be used to guide feature selection, but do not

provide information regarding the relative importance of the original variables in ℵ .

Therefore, since a kernel classification function is only of the form () bf j

p

j
j += ∑

=
xx

1
β

when a linear kernel is used, we see that the use of a non-linear kernel inevitably obscures

the contribution of each of the input variables to the kernel solution.

In order to further illustrate the point above, recall that in Section 2.2.3 it was shown that a

kernel classification function can be written in the form

 () () bf +Φ= xwx , () bk i

n

i
i += ∑

=
xx

1
α (2.35)

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

77

where the N -vector () ∑∑
==

=Φ=
n

i
iii

n

i
i

11
φxw αα is a linear combination over data cases in

ℑ . This stands in contrast to more traditional classifiers, which are usually expressed as

(linear) combinations over the input variables. Hence the dilemma when attempting

variable selection in a kernel analysis again becomes apparent: iα reflects the relative

importance of the thi data case in the kernel classifier, rendering w (or its associated

()xf) not directly suitable as a basis for variable selection.

It is possible to handle the above problem by progressively taking the transformation to

feature space into account. In our opinion, there are three approaches in this regard. The

most naïve approach is to simply ignore the transformation. Here one assumes the

influence of individual predictors in input and feature space to be approximately the same,

and one performs variable selection by simply using classical selection criteria in input

space. A second approach is to perform the calculation of selection criteria in feature

space, and then to find a connection between the N coordinates of the criterion in ℑ , and

the p coordinates of the criterion in ℵ . Once the selection criterion has been embedded

back into ℵ , it is of course possible to continue the selection process in input space. In this

way part of the selection process is carried out in feature space, and part of it in input

space. A third possibility is to calculate selection criteria and carry out the selection

process in feature space. This however promises to be a computationally more expensive

approach. Note that the first and second approaches (selection in input space) will be

investigated in Chapter 3, followed by a discussion of the third approach (selection in

feature space) in Chapter 4 to 6.

In the second and third approaches to variable selection for kernel methods, one is

compelled to at least at some stage work in feature space. This however confronts us with

a third problem: working in feature space is typically difficult. As we have seen before, we

are restricted to the calculation of inner products via the kernel trick. Hence any selection

criterion which we would like to propose in feature space has to depend on the data only

via inner products between features. Although this may seem very restrictive, we will see

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

78

in Chapters 4 and 5 that there are still several informative ways of utilising the kernel

function to summarise the clustering of the two groups of input data points in feature space.

As pointed out earlier, any kernel method has to use the information provided by the data

via entries in the kernel matrix. Therefore the kernel matrix K plays a central role when

one attempts selection in ℑ . We will see in Section 4.6, that several selection criteria may

be defined explicitly in terms of the structure of K . Since different kernel classification

procedures arise because of different algorithms used to construct the linear classifiers, it

follows that a selection criterion based only on K will ipso facto be applicable to any

kernel method. We can however also take the specific algorithm into account when

proposing a selection criterion. This then leads to selection criteria only applicable in

SVMs, or only in KFDA, as the case may be. These criteria, although not explicitly based

on the structure of K , also utilise entries in the kernel matrix. We will give further

attention to such possibilities in Section 4.7.

The need to specify values for the hyperparameters used in a kernel method further

complicates variable selection. We will treat these quantities largely as nuisance factors,

i.e. we will not undertake a detailed study of the possible interaction between different sets

of variables and hyperparameter values.

We have stated in the introduction to this chapter that in Chapters 3 to 5 the true model

dimension (true value of m) is assumed to be known. In classical applications this usually

leads to a substantial simplification. For example, in least squares multiple regression

analysis, if the value of m is fixed, almost all selection criteria (including amongst others

AIC , BIC and pC) will identify the same subset of variables. The reason for this is that

all these criteria measure accuracy in the same way, viz. in terms of the sum of squared

residuals, and differ only with respect to the manner in which accuracy is traded off against

complexity. In kernel methods, assuming the value of m known does not nearly lead to

the same degree of simplification. To explain this subtle point, suppose we have a fixed

value of m and taking our cue from multiple regression analysis, we try to select variables

by minimising ()ferr . This will almost certainly lead to overfitting, since even with a

CHAPTER 2
VARIABLE SELECTION FOR KERNEL METHODS

79

fixed value for m , the feature transformation which characterises kernel methods implies

that we will be optimising over a very large class of discriminant functions. Consequently,

even the apparently simple case of a known value of m poses formidable challenges

regarding specification of an appropriate selection criterion.

Although the different strategies discussed earlier in this chapter can also be applied in

variable selection for kernel methods, our task is often complicated by the size of the data

sets under investigation. Applying a one-variable-at-a-time forward selection or backward

elimination approach to a data set containing thousands of variables is infeasible. As will

be seen in Chapter 5, the traditional strategies can be suitably modified to make them

practicable.

2.5 SUMMARY

In this chapter we provided an introduction to variable selection for kernel methods, with

application to binary classification problems. This was done in two parts. We started by

discussing the various components required to construct a kernel classifier, indicating that

kernel procedures are regularised techniques. We then introduced the variable selection

problem, and briefly discussed some of the more recent selection approaches based on

regularised estimation. Since kernel procedures implement regularised estimation,

selection procedures that are generalised estimation algorithms can be extended to selection

in (special cases of) kernel techniques as well. Application of such an approach, as devised

by Keerthi (2005), is unfortunately limited to a subset of kernel procedures. There are also

several properties of kernel techniques which further complicate input variable selection.

We concluded the chapter with a discussion of such characteristics, and provided some

pointers regarding possible approaches to be followed in the remaining thesis chapters.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

80

CHAPTER 3

 KERNEL VARIABLE SELECTION IN
INPUT SPACE

3.1 INTRODUCTION

The focus in this and the following two chapters is primarily on defining criteria for

variable selection in kernel classifiers. Recall that in Chapter 2 mention was made of

different classes of selection procedures depending on the nature of the selection criterion,

viz. a filter- or wrapper selection criterion.

Filter criteria may essentially be viewed as pre-processors, independent of the choice of

predictor (cf. Kira and Rendell, 1992, and Guyon and Elisseeff, 2003). A simple example

of a filter criterion is the correlation coefficient between the response and each variable.

There are in fact many proposals toward the derivation of selection criteria based on

correlation coefficients. (See for example Hall, 1998). Filter criteria may be calculated to

rank the relevance of individual input variables or subsets of variables in predicting the

response. Depending on whether the rankings refer to a single variable or a particular

variable subset, the corresponding filter criterion is referred to as either univariate or

multivariate.

Wrapper criteria are determined by choices regarding the predictor to be used. In kernel

methods wrapper criteria may be calculated in one of three ways. The first possibility only

requires a decision to be made regarding the kernel function and its hyperparameter values;

the wrapper criterion in kernel selection is therefore based on the kernel matrix only. We

view such criteria as semi-wrappers. Therefore semi-wrapper selection criteria are derived

with any kernel method in mind. The second type of wrapper criterion additionally

depends on the values of the estimated parameters appearing in the predictor. In the

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

81

context of kernel techniques, such selection criteria may only be applied in context of the

specific class of kernel methods for which they are intended and they additionally require

the specific kernel method to be trained. A third alternative is to use as selection criterion

the estimated generalisation error when the appropriate predictor is applied. One of the

first such wrapper feature selection proposals was by Kohavi and John (1997), viz. to

simply use the cross-validation errors calculated for each variable subset to obtain a

ranking of variable subsets. Finally, note that both semi-wrapper and wrapper selection

criteria may be univariate or multivariate as is the case with filter criteria.

To illuminate the different types of wrapper criteria, consider any kernel predictor.

Suppose we decide to use a Gaussian kernel function with a specified value for the kernel

hyperparameter γ . A semi-wrapper criterion will now only use the information contained

in the kernel matrix, i.e. it depends only on the similarities between the data points as

measured in feature space via the kernel function. Note that the variables selected using

such a criterion will therefore remain the same, irrespective of the specific type of kernel

predictor to be used. Application of the second type of wrapper criterion entails extraction

of additional information from the data. We now for example have to decide that a support

vector classifier will be fitted to the data and at each stage of the selection process the

selection criterion may depend on entries in the kernel matrix, the coefficients

nααα ,,, 21 K and the intercept b. If instead of a support vector classifier we decide on

using KFDA, the selection criterion may once again depend on the quantities listed above

and the resulting set of selected variables need obviously not be the same. Note in this

regard also that in the case of an SVM some of the coefficients nααα ,,, 21 K will typically

be zero and may therefore be described as not having an effect on the selection. Generally,

when in the literature reference is made to wrapper criteria the above dependence on the

type of predictor used as well as on the parameter estimates is implied. In order to speedup

the selection process, parameter values are often not re-estimated for different variable

subsets. Although parameter estimates may thus be kept fixed irrespective of the variable

subset evaluated, the above selection techniques are still considered wrappers as opposed to

semi-wrappers since the post-selection feature subset is potentially different depending on

the type of predictor used.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

82

In summary, semi-wrapper selection criteria are more cost effective than wrapper criteria

and take the new higher dimensional configuration of data points into account in

performing feature selection for kernel methods. Wrapper selection criteria rely more

heavily on the specific class of kernel method in deciding on the relevant variables and are

mostly also more costly. Filter criteria base selection solely on attributes of the data and

are usually very fast to compute. In the remainder of the thesis, we will also refer to filter-

and semi-wrapper criteria as algorithm-independent criteria, while wrapper criteria will be

called algorithm-dependent criteria. Algorithm-independent and algorithm-dependent

variable selection for kernel classifiers will be discussed in Chapter 4.

This chapter may be regarded as an introduction to Chapter 4 in the sense that it first

considers a more basic question before attempting to define selection criteria for kernel

methods, viz. in which space, input- or feature space, should a kernel variable selection

criterion be defined? Whereas filter criteria operate in input space, and semi-wrapper and

wrapper criteria are defined in feature space, we consider a new approach to variable

selection for kernel methods: define the selection criterion in ℑ , and then complete the

variable selection process in ℵ .

In the following section we illustrate that selection in ℵ may be sufficient in some data

scenarios, but inadequate in others. In Section 3.3 we then propose the new variable

selection approach, which is evaluated in the Monte Carlo simulation study described in

Section 3.4. A summary of the chapter is given in Section 3.5.

3.2 NAÏVE SELECTION IN INPUT SPACE

In the final section of Chapter 2 we introduced three approaches towards variable selection

for kernel methods. One of these approaches is based on the assumption that the influence

of individual predictors in input and feature space remains approximately the same, and

involves selection via the use of classical selection criteria in input space. The above

assumption is of course valid in the case of a linear kernel function, but much less likely to

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

83

hold in the case of a non-linear relation between input- and feature space. Therefore in

some cases selection in input space might turn out to be sufficient, but in general the

influence of input variables may change considerably from input to feature space, causing

selection in feature space to yield better results than classical selection. The following

example illustrates exactly this: in an NL scenario in which LDA can be expected to

perform well, classical selection outperforms selection in feature space. However in NS,

LL, and LS data configurations which are less ideal setups for LDA, the results of selection

in feature space are superior.

EXAMPLE 3.1 Naïve selection in input and feature space: correlations and alignments

The following excerpt from the results of a simulation experiment are now presented in

order to compare the post-selection properties of (binary) classifiers after selection in input

space, with those of classifiers following selection in feature space. Both selection

approaches were quite naïve: we used ordinary Pearson correlation coefficients to perform

selection in input space, and analogous to this, for selection in feature space we used

alignments (see Section 3.6 in Chapter 4 for a definition and more details). The full set of

configurations considered is given in Section 3.4. We only report on the subset of these

configurations which was described in Section 2.4.1. The perspective from which we look

at the simulation described there now changes: instead of reporting the effect of correctly

eliminating irrelevant input variables, we now want to compare the effect of eliminating

input variables using naïve selection procedures in input space, with the effect when naïve

selection is carried out in feature space. Hence once again data sets were generated so that

differences in location or spread were contributed only by a smaller (size m) set of

relevant input variables (in SV).

Each simulation repetition started with newly generated training and test data sets, both

consisting of measurements on all variables contained in V . To perform selection in input

space, we calculated absolute values of the correlation coefficients between the response

and each of the variables contained in V , and assuming m as specified in the simulation

setup to be known, selected the m most highly correlated variables. Let the selected subset

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

84

of variables be denoted by ℵV . To perform selection in feature space we calculated

absolute values of the alignment between the response and each of the variables in V , and

once again selected the m variables corresponding to the largest alignments. The resulting

subset of variables will be denoted by ℑV . In this section we only report the results

obtained for the case 0.4m p = .

After selection, we fitted an SVM and performed LDA and KFDA on the training data

using the variables contained in V , SV , ℵV and ℑV respectively. Hence in total there

were twelve combinations of procedures and variable (sub)-sets to evaluate at each data

configuration. For each of the twelve combinations we recorded an average test error and

percentage of misclassifications obtained on the test data. We will refer to the average test

errors based on V , SV , ℵV and ℑV as the average no selection-, oracle- and input- and

feature space selection errors respectively. Tables 3.1 a and b, 3.2 a and b, and 3.3 to 3.5

contain these test errors for LDA, KFDA and SVMs, in scenarios NL, NS, LL, and LS.

Note however that in the large p , small n setups, a linear discriminant function cannot be

obtained: the covariance matrix of the ijx observations, 1,2, ,i n= K ; 1, 2, ,j p= K ; p n> ,

is singular, rendering the use of LDA inappropriate in such cases. This is indicated by *-

symbols in the last four rows of the LDA columns in each table.

In Tables 3.1 a and 3.2 a we report on normal data where irrelevant and relevant input

variables were generated independently (0=SSρ), whereas Tables 3.1 b and 3.2 b

summarise the results obtained when relevant and irrelevant input variables were highly

correlated. In each table the different configurations in terms of the correlation between

pairs of variables in SV are indicated across columns. The various types of errors are

presented row-wise – in groups of four – with the first, second and third group of rows

referring to small, mixed, large (>n p) and wide (>p n) sample sizes. We used 1000

simulation repetitions throughout. Standard errors of the average test errors are given in

brackets.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

85

Importantly, note that the SVM, KFDA and LDA test errors were calculated for a series of

values for the SVM and KFDA cost parameter. In all cases we trained an SVM and

performed KFDA using an RBF kernel function, and kept the kernel hyperparameter

1 pγ = throughout. A motivation for this particular choice will be given in Section 3.4.4.

For each kernel technique we report only the smallest test error achieved across cost

parameter values. Therefore it cannot be argued that the performance of any of the

techniques was at an unfair disadvantage due to misspecification of the cost parameter

value. This allows one to compare the performances of the various techniques. In this

regard, the following can be noted. As expected, LDA performs relatively well in NL (in

Tables 3.1 a and b) and in LL (in Tables 3.3 and 3.5) data scenarios. Compare for example

LDA test error rates for mixed samples and 0=Sρ in the NL configuration in Table 3.1 a,

viz. .156, .142, .143, and .155, with SVM test errors observed in the same setup, viz. .173,

.144, .145 and .157. Also, when 0=Sρ in the NL configuration reported in Table 3.1 b,

LDA based on the full set of available input variables correctly classifies all test sample

cases. Although generally in LL scenarios LDA performs worse than SVMs, we observe

smaller LDA test errors than KFDA in most configurations. For example, LDA test error

rates for mixed samples and 0=Sρ in the LL configuration in Table 3.3 were .071, .044,

.046 and .044. The corresponding KFDA test errors were .089, .061, .063 and .061.

However, as soon as the data are not separated with respect to location, but with respect to

spread, the classification performance of LDA is no longer adequate: for example, the

minimum LDA test error observed for all the large NS data sets is .466 (see Tables 3.2 a

and b), whereas for large LS data sets it is .437 (see Tables 3.4 and 3.5).

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

86

Table 3.1 a: Average test errors for the NL case (4.0=π , 0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()Err V .249 (.001) .352 (.001) .240 (.001) .329 (.001) .239 (.001) .371 (.001)

()SVErr .198 (.001) .317 (.001) .183 (.001) .297 (.001) .188 (.001) .324 (.001)

()ℵVErr .219(.001) .324 (.001) .207 (.001) .304 (.001) .210 (.001) .329 (.001)

()ℑVErr .236 (.002) .330 (.001) .224 (.001) .311 (.001) .222 (.001) .329 (.001)

MIXED SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .173 (.001) .286 (.002) .165 (.001) .232 (.000) .156 (.000) .260 (.001)

()SVErr .144 (.000) .226 (.001) .134 (.000) .220 (.000) .142 (.000) .239 (.001)

()ℵVErr .145 (.001) .226 (.001) .136 (.000) .220 (.000) .143 (.000) .240 (.000)

()ℑVErr .157 (.001) .229 (.001) .148 (.001) .221 (.000) .155 (.001) .240 (.000)

LARGE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .188 (.000) .312 (.000) .171 (.000) .291 (.000) .170 (.000) .302 (.000)

()SVErr .171 (.000) .294 (.000) .162 (.000) .286 (.000) .163 (.000) .291 (.000)

()ℵVErr .171 (.000) .294 (.000) .162 (.000) .286 (.000) .163 (.000) .291 (.000)

()ℑVErr .171 (.000) .294 (.000) .162 (.000) .286 (.000) .163 (.000) .291 (.000)

WIDE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .025 (.000) .308 (.001) .038 (.001) .292 (.001) * *

()SVErr .019 (.000) .309 (.002) .012 (.000) .287 (.001) * *

()ℵVErr .032 (.001) .311 (.001) .023 (.000) .286 (.001) * *

()ℑVErr .040 (.001) .313 (.002) .030 (.000) .286 (.001) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

87

Table 3.1 b: Average test errors for the NL case continued (4.0=π , 9.0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()Err V .089 (.001) .333 (.001) .228 (.001) .326 (.001) .000 (.000) .331 (.001)

()SVErr .200 (.001) .316 (.001) .183 (.001) .296 (.001) .187 (.001) .323 (.001)

()ℵVErr .216 (.001) .322 (.001) .201 (.001) .302 (.001) .200 (.001) .325 (.001)

()ℑVErr .225 (.001) .325 (.001) .218 (.001) .310 (.001) .207 (.001) .324 (.001)

MIXED SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .021 (.000) .253 (.001) .159 (.000) .223 (.000) .000 (.000) .231 (.001)

()SVErr .144 (.000) .226 (.001) .135 (.000) .220 (.000) .143 (.000) .239 (.000)

()ℵVErr .145 (.000) .226 (.001) .136 (.000) .220 (.000) .143 (.000) .240 (.000)

()ℑVErr .153 (.001) .227 (.001) .146 (.001) .220 (.000) .150 (.000) .239 (.000)

LARGE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .003 (.000) .279 (.001) .080 (.001) .269 (.000) .000 (.000) .262 (.000)

()SVErr .171 (.000) .295 (.000) .162 (.000) .286 (.000) .163 (.000) .292 (.000)

()ℵVErr .171 (.000) .295 (.000) .162 (.000) .286 (.000) .163 (.000) .292 (.000)

()ℑVErr .171 (.000) .295 (.000) .162 (.000) .286 (.000) .163 (.000) .292 (.000)

WIDE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .032 (.001) .285 (.001) .106 (.003) .318 (.001) * *

()SVErr .019 (.000) .309 (.001) .012 (.000) .287 (.001) * *

()ℵVErr .018 (.001) .308 (.001) .021 (.002) .290 (.001) * *

()ℑVErr .022 (.001) .310 (.001) .032 (.002) .298 (.001) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

88

Table 3.2 a: Average test errors for the NS case (4.0=π , 0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .259 (.001) .321 (.001) .256 (.001) .308 (.001) .482 (.001) .483 (.001)

()SVErr .119 (.001) .182 (.001) .103 (.001) .177 (.001) .427 (.001) .428 (.001)

()ℵVErr .348 (.003) .363 (.003) .341 (.003) .367 (.003) .479 (.001) .486 (.001)

()ℑVErr .177 (.002) .223 (.002) .160 (.002) .222 (.002) .449 (.001) .447 (.001)

MIXED SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .207 (.001) .264 (.001) .213 (.000) .237 (.000) .359 (.001) .360 (.001)

()SVErr .092 (.000) .109 (.001) .086 (.000) .161 (.001) .302 (.002) .302 (.002)

()ℵVErr .307 (.002) .320 (.002) .250 (.000) .250 (.000) .337 (.001) .329 (.001)

()ℑVErr .367 (.002) .366 (.002) .250 (.000) .250 (.000) .299 (.001) .302 (.001)

LARGE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .156 (.001) .321 (.001) .220 (.000) .308 (.001) .493 (.000) .483 (.001)

()SVErr .257 (.000) .182 .001) .107 (.000) .177 (.001) .466 (.001) .428 (.001)

()ℵVErr .475 (.002) .363 (.003) .305 (.003) .367 (.003) .492 (.000) .486 (.001)

()ℑVErr .257 (.000) .223 (.002) .107 (.000) .222 (.002) .466 (.001) .447 (.001)

WIDE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .086 (.001) .253 (.001) .135 (.001) .223 (.001) * *

()SVErr .006 (.000) .153 (.001) .003 (.000) .116 (.002) * *

()ℵVErr .298 (.002) .356 (.002) .166 (.003) .273 (.003) * *

()ℑVErr .046 (.001) .201 (.001) .014 (.000) .145 (.002) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

89

Table 3.2 b: Average test errors for the NS case continued (4.0=π , 9.0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()Err V .255 (.001) .315 (.001) .257 (.001) .306 (.001) .480 (.001) .483 (.001)

()SVErr .118 (.001) .180 (.001) .103 (.001) .179 (.001) .427 (.001) .429 (.001).

()ℵVErr .338 (.003) .360 (.003) .344 (.003) .368 (.003) .479 (.001) .485 (.001)

()ℑVErr .174 (.002) .218 (.002) .158 (.002) .222 (.002) .448 (.001) .450 (.001)

MIXED SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .200 (.001) .256 (.001) .212 (.000) .235 (.000) .359 (.001) .361 (.001)

()SVErr .092 (.000) .110 (.001) .086 (.000) .164 (.001) .300 (.002) .303 (.002)

()ℵVErr .305 (.002) .317 (.003) .250 (.000) .250 (.000) .335 (.001) .329 (.001)

()ℑVErr .365 (.002) .364 (.002) .250 (.000) .250 (.000) .303 (.001) .302 (.001)

LARGE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .145 (.001) .210 (.001) .222 (.000) .270 (.000) .492 (.000) .492 (.000)

()SVErr .076 (.000) .088 (.000) .106 (.000) .164 (.000) .466 (.001) .466 (.001)

()ℵVErr .244 (.003) .258 (.003) .298 (.003) .327 (.003) .492 (.000) .493 (.000)

()ℑVErr .076 (.000) .088 (.000) .106 (.000) .164 (.000) .466 (.001) .466 (.001)

WIDE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .094 (.001) .151 (.001) .088 (.003) .171 (.002) * *

()SVErr .005 (.000) .145 (.001) .003 (.000) .118 (.002) * *

()ℵVErr .185 (.003) .260 (.002) .193 (.005) .282 (.003) * *

()ℑVErr .169 (.002) .191 (.001) .183 (.003) .173 (.002) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

90

Table 3.3: Average test errors for the LL case (4.0=π , 0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .157 (.001) .221 (.002) .173 (.001) .219 (.002) .157 (.001) .253 (.002)

()SVErr .078 (.001) .128 (.001) .086 (.000) .132 (.001) .099 (.001) .189 (.002)

()ℵVErr .095 (.001) .147 (.002) .104 (.001) .149 (.002) .109 (.001) .203 (.003)

()ℑVErr .080 (.001) .131 (.001) .087 (.001) .135 (.001) .100 (.001) .192 (.002)

MIXED SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .073 (.001) .102 (.001) .089 (.000) .102 (.001) .071 (.001) .133 (.001)

()SVErr .042 (.000) .070 (.000) .061 (.000) .080 (.000) .044 (.000) .071 (.001)

()ℵVErr .044 (.000) .071 (.000) .063 (.000) .082 (.001) .046 (.000) .076 (.001)

()ℑVErr .043 (.000) .070 (.000) .061 (.000) .080 (.001) .044 (.000) .071 (.001)

LARGE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .077 (.000) .148 (.001) .108 (.000) .154 (.001) .101 (.000) .210 (.001)

()SVErr .033 (.000) .082 (.000) .065 (.000) .118 (.000) .087 (.000) .198 (.001)

()ℵVErr .033 (.000) .082 (.000) .065 (.000) .118 (.000) .087 (.000) .198 (.001)

()ℑVErr .033 (.000) .082 (.000) .065 (.000) .118 (.000) .087 (.000) .198 (.001)

 WIDE SAMPLES

 SVM KFDA LDA

 = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .090 (.001) .218 (.001) .149 (.003) .229 (.002) * *

()SVErr .021 (.000) .129 (.001) .038 (.001) .129 (.001) * *

()ℵVErr .032 (.001) .149 (.001) .046 (.001) .146 (.002) * *

()ℑVErr .023 (.000) .134 (.001) .042 (.001) .132 (.001) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

91

Table 3.4: Average test errors for the LS case (4.0=π , 0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()Err V .273 (.002) .313 (.002) .307 (.002) .332 (.002) .439 (.002) .433 (.002)

()SVErr .128 (.001) .162 (.001) .156 (.002) .186 (.002) .377 (.002) .360 (.003)

()ℵVErr .296 (.003) .316 (.004) .330 (.003) .365 (.004) .427 (.002) .446 (.002)

()ℑVErr .157 (.002) .189 (.002) .182 (.002) .220 (.003) .398 (.002) .388 (.003)

MIXED SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .196 (.001) .252 (.001) .237 (.001) .248 (.000) .342 (.001) .339 (.001)

()SVErr .081 (.001) .097 (.001) .196 (.002) .233 (.001) .304 (.001) .302 (.001)

()ℵVErr .276 (.003) .290 (.003) .250 (.000) .250 (.000) .319 (.001) .306 (.001)

()ℑVErr .290 (.002) .309 (.003) .250 (.000) .250 (.000) .312 (.001) .300 (.001)

LARGE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .163 (.001) .225 (.001) .340 (.001) .271 (.000) .473 (.001) .468 (.001)

()SVErr .076 (.000) .093 (.000) .134 (.001) .178 (.000) .448 (.001) .437 (.001)

()ℵVErr .203 (.003) .238 (.004) .293 (.003) .318 (.003) .470 (.001) .477 (.002)

()ℑVErr .072 (.000) .093 (.000) .135 (.001) .179 (.001) .449 (.001) .438 (.001)

WIDE SAMPLES

SVM KFDA LDA

= 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ = 0Sρ = 0.7Sρ

()VErr .259 (.001) .332 (.002) .302 (.001) .345 (.002) * *

()SVErr .057 (.000) .151 (.002) .082 (.001) .160 (.002) * *

()ℵVErr .270 (.002) .352 (.003) .269 (.003) .344 (.005) * *

()ℑVErr .102 (.001) .213 (.002) .132 (.001) .200 (.003) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

92

Table 3.5: Average test errors for the LL and LS cases (4.0=π , 7.0=Sρ , 25.0=SSρ)

SMALL SAMPLES

SVM KFDA LDA

= 0.7Sρ LL LS LL LS LL LS

()Err V .148 (.001) .278 (.002) .178 (.002) .322 (.003) .142 (.002) .396 (.003)

()SVErr .129 (.001) .161 (.002) .131 (.001) .184 (.002) .184 (.003) .359 (.004)

()ℵVErr .139 (.002) .299 (.005) .143 (.002) .358 (.005) .186 (.003) .444 (.003)

()ℑVErr .130 (.001) .187 (.003) .133 (.001) .218 (.004) .185 (.003) .386 (.004)

MIXED SAMPLES

SVM KFDA LDA

= 0.7Sρ LL LS LL LS LL LS

()VErr .069 (.000) .212 (.001) .089 (.001) .249 (.001) .102 (.001) .328 (.001)

()SVErr .069 (.000) .096 (.001) .081 (.001) .233 (.001) .070 (.001) .300 (.002)

()ℵVErr .070 (.001) .267 (.004) .082 (.001) .250 (.000) .074 (.001) .303 (.001)

()ℑVErr .069 (.001) .304 (.004) .081 (.001) .250 (.000) .071 (.001) .296 (.001)

LARGE SAMPLES

SVM KFDA LDA

= 0.7Sρ LL LS LL LS LL LS

()VErr .089 (.000) .182 (.001) .118 (.001) .264 (.002) .107 (.001) .446 (.003)

()SVErr .082 (.001) .092 (.001) .117 (.000) .179 (.001) .199 (.002) .437 (.002)

()ℵVErr .083 (.001) .220 (.005) .117 (.000) .308 (.005) .199 (.002) .473 (.003)

()ℑVErr .082 (.001) .092 (.001) .117 (.000) .180 (.001) .199 (.002) .437 (.002)

WIDE SAMPLES

SVM KFDA LDA

= 0.7Sρ LL LS LL LS LL LS

()VErr .141 (.001) .278 (.002) .158 (.001) .249 (.003) * *

()SVErr .128 (.001) .161 (.001) .127 (.001) .158 (.002) * *

()ℵVErr .134 (.001) .302 (.005) .134 (.002) .300 (.006) * *

()ℑVErr .129 (.001) .187 (.003) .127 (.001) .174 (.003) * *

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

93

Interestingly, KFDA outperforms SVMs in the case of normal data (in the NL and NS

scenarios), while SVMs yield lower error rates than KFDA when the data are lognormally

distributed (in the LL and LS scenarios). The above observations are summarised in Table

3.6 below. First (or tied first) positions are indicated by 1, second (or tied second)

positions are indicated by 2, and worst performances are indicated by 3.

Table 3.6: Relative performances of LDA, KFDA and SVMs

 NL NS LL LS

LDA 1 3 2 3

KFDA 1 1 2 2

SVMs 2 2 1 1

The set of results reported in Table 3.1 b were obtained for NL data when the variables in

V and SV were highly correlated (= 0.9SSρ in all cases). As was also seen in Chapter 2,

Section 3.4.1, Table 3.1 b clearly reflects that whenever pairs of relevant (those in SV) and

(seemingly) irrelevant variables (those in SV) are highly correlated, classification

performance may improve with the inclusion of seemingly irrelevant (hence called weakly

relevant) input variables: use of the full set of available input variables is preferred to use

of the reduced set of truly relevant variables in 10 out of the 24 data configurations. Table

3.2 b contains the simulation test errors obtained when 9.0=SSρ for NS data. Since for

lognormally distributed data we were compelled to only investigate scenarios in which

7.0=Sρ (and not 0=Sρ) whenever we wanted to set 0>SSρ (and then we had to use

25.0=SSρ when 4.0=π), the compound set of results obtained for LL and LS data

scenarios and the correlated case is given in Table 3.5 (A motivation for these particular

configurations will be given in Appendix A.1). In both Tables 3.2 b and 3.5 we see that

correct reduction of V to SV proved beneficial in all configurations under consideration –

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

94

once again bearing evidence to the importance of correct elimination of irrelevant input

variables.

We now compare the performance of naïve selection in input space via correlations, with

that of naïve selection in feature space using alignments. Consider first the NL case where

0=SSρ (in Table 3.1 a). Here both selection approaches succeed in improving the

average no selection misclassification rate, with selection in input space being generally

more efficient. Selection in input and feature space does however perform more or less the

same in tall and wide training samples. Consider next the NL case where 9.0=SSρ (in

Table 3.1 b). We have already seen that, due to the high correlation between relevant and

irrelevant input variables, in this scenario classifiers based on the correct set of input

variables fare worse than the no selection classifier. Hence in this particular configuration,

in terms of a possible improvement in classification accuracy, variable selection does not

seem to be a good idea.

Next consider the results reported for NS data (in Table 3.2 a). In all cases, selection in

input space yielded worse results than in the case of no selection. Selection in feature

space consistently outperformed selection in input space, yielding in the case of large

samples error rates equal to the error rates obtained when the separating variables are

known. This is also in line with the results pertaining to 9.0=SSρ configurations reported

in Table 3.2 b.

In the LL data scenario (in Table 3.3 and part of Table 3.5), the post-selection errors based

on calculating alignments in ℑ are typically smaller than those based on correlations in ℵ .

Compare for example the SVM, KFDA and LDA test errors obtained for small and wide

training sample sizes. A similar pattern is even more evident in the LS data configurations

(in Table 3.4 and part of Table 3.5).

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

95

Finally in this section, we comment on the percentage of times that each variable was

selected. Since similar selection percentages were obtained for the various training sample

sizes considered, we restrict attention to small training data sets. With regards to the

correlation structure, we also only consider configurations where 7.0=Sρ and 0=SSρ or

0.9. The selection percentages pertaining to NL-LS data scenarios are depicted in Figures

3.1 to 3.4.

2 4 6 8 10

20
40

60
80

Indices of input variables

Se
le

ct
io

n
pe

rc
en

ta
ge

2 4 6 8 10

20
40

60
80

Correlations
Alignments

Figure 3.1: Selection percentages obtained in the NL case

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

96

2 4 6 8 10

20
40

60
80

Indices of input variables

Se
le

ct
io

n
pe

rc
en

ta
ge

2 4 6 8 10

20
40

60
80

Correlations
Alignments

Figure 3.2: Selection percentages obtained in the NS case

2 4 6 8 10

0
20

40
60

80
10

0

Indices of input variables

Se
le

ct
io

n
pe

rc
en

ta
ge

2 4 6 8 10

0
20

40
60

80
10

0

Correlations
Alignments

Figure 3.3: Selection percentages obtained in the LL case

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

97

2 4 6 8 10

20
40

60
80

Indices of input variables

Se
le

ct
io

n
pe

rc
en

ta
ge

2 4 6 8 10

20
40

60
80

Correlations
Alignments

Figure 3.4: Selection percentages obtained in the LS case

In Figures 3.1 and 3.3 it is clear that in the NL and LL data setups correlation coefficients in

ℵ and alignments in ℑ does approximately equally well in selecting the separating

variables. In the NS and LS cases reported in Figures 3.2 and 3.4 however, selection in ℵ

performs terribly, while selection in ℑ once again accurately identifies the relevant

variable subset.

 

Of course correlation coefficients and alignments are very simple selection criteria. In the

remainder of the chapter we propose and evaluate the use of other selection criteria defined

in ℵ and ℑ .

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

98

3.3 KERNEL VARIABLE SELECTION: FEATURE-TO-INPUT SPACE

We saw in the previous section that variable selection is a worthwhile enterprise when

kernel methods are used. In the NL case the simple use of traditional selection criteria in

input space, without taking into account properties of the kernel method to be used, yielded

adequate results. More generally however, we saw that the post-selection performance of

kernel methods could be enhanced by incorporating algorithm-specific information in the

selection procedure. Simply making use of the fact that the final classification of cases will

take place in feature space, and therefore using correlations or alignments in ℑ rather than

ordinary correlations in ℵ , lead to significant reductions in the observed test errors.

Notwithstanding the relatively poor performance of naïve selection in input space,

conceptually there are reasons why one would prefer selection to take place in input space

rather than in feature space. In terms of simplicity and interpretability the ideal would be

to associate a single coefficient with each input variable, and base selection on the absolute

sizes of these variable coefficients, as is for example frequently done in a multiple linear

regression model. Although this ideal seems unattainable, we will see in this section that

there are several approaches towards variable selection in input space using information

from feature space. More specifically, we propose and evaluate variable selection

approaches implemented in input space but taking into account the fact that kernel methods

operate in feature space. This so-called feature-to-input space approach may thus be

viewed as an intermediate approach bridging the gap between naïve selection approaches in

input space, and more sophisticated selection procedures performed entirely in feature

space.

Consider therefore the p -dimensional input vectors nxxx ,,, 21 K , belonging to an input

space ℵ , and consisting of jn observations from group j , 2,1=j . The transformed

input vectors, nφφφ ,,, 21
K where ()ii xφ Φ= , ni ,,2,1 K= , belong to a (possibly infinite

dimensional) feature space ℑ . Variable selection in ℑ is considerably more difficult than

selection in ℵ mainly because calculations in ℑ are restricted to evaluation of inner

products between elements of ℑ . The quantities in feature space which are amenable to

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

99

manipulation are linear combinations of the elements in ℑ , in particular linear

combinations of the form

 () i

n

i
iφαξξ ∑

=
=≡

1
α (3.1)

where nααα ,,, 21 K are known scalars. Our discussion focuses on the Gaussian kernel.

For this kernel,

 () 1,,2 === iiiii k xxφφφ , (3.2)

for ni ,,2,1 K= , i.e. the observed data vectors in ℑ are all of length 1. From (3.1) we see

that

 Kααξξξ ′=== ∑ ∑
= =

ij

n

i

n

j
ji k

1 1

2 , αα (3.3)

and this clearly need not equal 1. It will prove useful in the following discussion to have

12 =ξ . This can be guaranteed by restricting nααα ,,, 21 K to satisfy

 1=′Kαα (3.4)

and we implement this restriction without loss of generality throughout the remainder of

our discussion.

The important role played by quantities such as (3.1) in kernel classification is confirmed

by the following observation. A binary kernel classifier is of the form

 ()








+∑
=

n

i
ii bksign

1
, xxα , (3.5)

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

100

where b represents an intercept and x the p -vector corresponding to a new case which

has to be classified. We see that (3.5) equals

 (){ }bsign +Φ ξx , (3.6)

for some ξ as in (3.1). Hence, we can easily associate a kernel classifier with every ξ ,

and vice versa. The quality of such a classifier will of course largely depend on the manner

in which nααα ,,, 21 K are determined or specified.

We require the following further notation in our discussion. Let

 () () ()xxξxx ,,
1

i

n

i
ikf ∑

=
=Φ= α . (3.7)

If we add an intercept to ()xf we obtain a quantity which can be used to assign x to one

of the two groups. Also, we write

 () ()ji

n

i
ijj kff xxx ,

1
∑
=

== α , nj ,,2,1 K= , (3.8)

i.e. jf is the value of f evaluated at the thj input data vector. Finally,

[]'
21 ,,, nfff K=f denotes the vector with nfff ,,, 21 K as components. Combined

once again with an intercept, the quantities nfff ,,, 21 K are used to classify the training

data cases based on the kernel classifier associated with ()xf .

Three proposals for feature-to-input space selection are discussed below. The first and

simplest of these is based on the idea of approximating ()xf in (3.7) with an expression of

the form j

p

j
j x∑

=1
β , where now we may directly interpret jβ as an indicator of the relative

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

101

importance of the thj variable (provided the data have been appropriately scaled). The

second proposal is based on the concept of a pre-image: the pre-image of a vector ℑ∈ξ is

defined to be a vector ℵ∈x such that () ξx =Φ . We will see that not all vectors ℑ∈ξ

have pre-images, and in such cases we are compelled to work in terms of approximations to

the pre-image. The third proposal considers the quantities nfff ,,, 21 K and tries to

identify the input variables which in some sense best explain the observed variation in

these values.

3.3.1 RE-EXPRESSING THE DISCRIMINANT FUNCTION

Consider () ()xxx ,
1

i

n

i
ikf ∑

=
= α , where the scalars nααα ,,, 21 K have been determined by

application of a kernel algorithm. With b denoting an intercept, (){ }bfsign +x is a kernel

classifier. For some kernel functions it is possible to approximate ()xf by an expression

of the form)(
1

j

p

j
j xh∑

=
β , for scalars pβββ ,,, 21 K depending on the input data and the

values of nααα ,,, 21 K , and some function (.)h . The somewhat naïve idea behind such a

re-expression is to interpret jβ as an indicator of the relative importance of the thj

variable. Consider for example the kernel discriminant function when a quadratic kernel

function is used. Ignoring the intercept term in the kernel discriminant function we have

 () ()i

n

i
ikf xxx ,

1
∑

=

= α

 2

1
, i

n

i
i xx∑

=

= α

2

11








= ∑∑

==
j

p

j
ij

n

i
i xxα

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

102

 







+= ∑∑∑

≠==

p

jk
kjikijj

p

j
ij

n

i
i xxxxxx 2

1

2

1
α

 = 





+






 ∑∑∑∑

=≠==

n

i
ikiji

p

jk
kj

n

i
iji

p

j
j xxxxxx

11

2

1

2 αα . (3.9)

From this it would seem that we could use ∑
=

n

i
iji x

1

2α as an indication of the importance of

variable jx . In the case of a kernel classifier based on the Gaussian kernel function we can

use a first-order Taylor expansion as follows:

 ()
2

1
ief

n

i
i

xxx −−

=
∑= γα

 { }K−−+−−= ∑
=

21 422

1
ii

n

i
i xxxx γγα

 ()∑∑∑
===

−−≅
p

j
ijj

n

i
i

n

i
i xx

1

2

11
αγα

 ∑∑∑ ∑∑ ∑∑
= == == ==

−





+−=

p

j
ij

n

i
i

p

j
ij

n

i
ij

p

j

n

i
ij

n

i
i xxxx

1

2

11 11 1

2

1
2 αγαγαγα . (3.10)

From this it would seem that the quantity ∑
=

n

j
iji x

1
α should provide an indication of the

importance of variable jx .

3.3.2 PRE-IMAGE APPROXIMATIONS IN INPUT SPACE

It has already been stated several times that application of a kernel method entails non-

linear transformation of input data nxxx ,,, 21 K to feature vectors nφφφ ,,, 21
K using a

feature mapping ℑ→ℵΦ : . The kernel trick is then used to compute inner products in the

feature space ℑ . In many applications, for example kernel classification, this approach is

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

103

sufficient and there is no need for a closer examination of quantities in ℑ . Variable

selection, however, seems to be an example of a problem where it would be useful to

examine certain vectors in ℑ more closely. This is often a formidable problem, especially

since ℑ may be infinite dimensional. The concept of the pre-image in ℵ of a vector in ℑ

seems to be worth investigating in this regard.

Consider therefore a linear expansion () i

n

i
iφαξξ ∑

=
=≡

1
α in ℑ , where ()ii xφ Φ= ,

ni ,,2,1 K= , with nxxx ,,, 21 K , belonging to an input space ℵ . The pre-image of ξ is a

vector () ℵ∈≡ ξzz such that () ξz =Φ . Schölkopf and Smola (2002, p. 544) provides the

following result which can be used to calculate this pre-image if it exists.

LEMMA 3.1: COMPUTING THE PRE-IMAGE OF A LINEAR

 COMBINATION

Consider ()i
n

i
i xξ Φ∑=

=1
α . If there exists a vector ℵ∈z such that () ξz =Φ , and an

invertible function (.)kf , depending on the kernel function, such that () ()wuwu ,, kfk = ,

then we can compute the pre-image from

 ()∑ 







∑=

= =

−
p

j
j

n

i
jiik kf

1 1

1 , eexz α , (3.11)

where { }n ee ,,1 K is any orthonormal basis of ℵ .

This is obviously a useful result for computing a pre-image if it exists. Unfortunately, in

many cases a pre-image for quantities ()i

n

i
i xξ Φ= ∑

=1
α does not exist. In fact, for the

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

104

Gaussian kernel which we focus on, Schölkopf and Smola (2002, pp. 545-546) argue that

the pre-image of ξ will only exist in trivial cases consisting of a single term. We are

therefore forced into considering the somewhat less satisfactory option of finding an

approximate pre-image for a given linear combination ξ . The vector ℵ∈z~ is called an

approximate pre-image of ξ if

 () () 2~~ zξz Φ−=ρ (3.12)

is small. As pointed out by Schölkopf and Smola (2002, p. 546), the meaning of small in

this definition will depend on the particular application. How can an approximate pre-

image be calculated? We describe an approach discussed by Schölkopf and Smola (2002,

pp. 547-548). Consider the slightly more general problem of finding ℵ∈z~ such that

()z~Φβ provides a good approximation to ()i

n

i
i xξ Φ= ∑

=1
α . For 1=β this is exactly the

pre-image problem. Allowing 1≠β makes sense since the length of z~ is not crucial. A

simple geometric argument (illustrated in Figure 3.3) confirms that this is equivalent to

finding z~ which minimises the distance between ξ and its orthogonal projection onto

()()zΦspan , i.e.

()

() () ()
2

,
,

ξz
zz

zξ
−Φ

ΦΦ
Φ ()

() ()zz
zξ

ξ
ΦΦ

Φ
−=

,
, 2

2 . (3.13)

Our problem is therefore to find z~ to maximise
()

() ()zz
zξ
ΦΦ

Φ
,

, 2

. For the Gaussian kernel this

simplifies to finding z~ to maximise

 () () [] 2

1

2
2

1

2 ,, 





 −−=






=Φ ∑∑

==

n

i
ii

n

i
ii expk zxzxzξ γαα . (3.14)

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

105

 ()pℜΦ

 ξ

 ()()ξz~Φ

Figure 3.3: We try to find z% which minimises the distance between ξ and its orthogonal

projection onto ()()zΦspan

In our numerical study we used standard unconstrained optimisation software to find z~ .

The corresponding optimal value of β can then be computed from

()

() () ()zξ
zz

zξ ~,~,~
~,~

Φ=
ΦΦ

Φ
=β . (3.15)

How can the concept of (approximate) pre-images be utilised for variable selection? We

investigated various possibilities empirically and found the following two options to be

most promising. Since our focus is on binary classification, it seems a sensible idea to

select those variables maximising some measure of the difference between the groups of

data points corresponding to the two populations. Consider in this regard therefore the

respective group means in ℑ , viz.

 ()∑
∈

Φ=
jIi

i
j

j n
xΦ 1 , 2,1=j . (3.16)

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

106

The two pre-images corresponding to these feature space mean vectors, namely ()1
~ Φz and

()2
~ Φz respectively, can be computed as explained above. Our first proposal for variable

selection based on pre-images is to select the variables corresponding to the largest

absolute components of the difference vector () ()21
~~ ΦzΦzδ −= , which is equivalent to

selecting the variables maximising the quantity () () 2
21

~~ ΦzΦz − . This proposal is based

on the assumption that variables which maximally separate the two groups in terms of the

pre-images in ℵ of their mean vectors in feature space, will also be the appropriate

variables for separating the groups in feature space. Note that this proposal is independent

of the specific kernel classifier being used. This variable selection proposal is investigated

further in the simulation study discussed later, and we refer to it as a feature-to-input space

proposal based on mean vectors, abbreviated to ()MFI .

It is also possible to propose a variable selection criterion based on pre-images and using

information derived from the specific kernel classifier. Consider in this regard the kernel

classifier weight vector ()∑
=

Φ=
n

i
ii

1
xw α , where the scalars nααα ,,, 21 K are determined

from the training data according to some kernel algorithm. We can write this weight vector

as

 () ()∑∑
∈∈

Φ+Φ=+=
21

21
Ii

ii
Ii

ii xxwww αα . (3.17)

In line with our first proposal we now consider the vector () ()21
~~ wzwzδ −= and propose

to select the variables corresponding to the largest absolute components of this vector.

Here, ()1
~ wz and ()2

~ wz are once again the pre-images of 1w and 2w respectively. This

proposal, called feature-to-input space variable selection based on the weight vector and

abbreviated to ()WFI , is also investigated more thoroughly in the later simulation study.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

107

3.3.3 SELECTING VARIABLES TO EXPLAIN THE VARIATION IN

 nfff ,,, 21 K

In this section we discuss the possibility of selecting input variables to explain the observed

variation in the values nfff ,,, 21 K , where ()ji

n

i
ij kf xx ,

1
∑
=

= α , nj ,,2,1 K= . Note that

{ }bfsign j + , with b an intercept, is used to assign case j in the training data to one of the

two groups.

A first possibility in this regard is to use multiple linear regression analysis. Note first of

all that jjf kα,= , where jk is the thj column of the kernel matrix K . Consequently,

if we write []nkkkK K21= , we have

 KααKf =′=



















=

nf

f
f

M
2

1

 (3.18)

(since the kernel matrix is symmetric). Suppose our objective is to approximate

nfff ,,, 21 K as well as possible by using a function of the form () ∑
=

=
p

k
kk xg

1
βx , with

pβββ ,,, 21
K constants which have to be determined. Applying this function to

nxxx ,,, 21 K gives the values

 () j

p

k
jkkjj xgg xβx ,

1
=== ∑

=
β , nj ,,2,1 K= , (3.19)

where [] '
21 ,,, pβββ K=β and ''

2
'
1 ,,, nxxx K are the rows of the data matrix X . We can

therefore write

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

108

 Xβg =



















=

ng

g
g

M
2

1

. (3.20)

We would now like to determine pβββ ,,, 21 K to minimise the discrepancy between the

values in f and g . If we measure discrepancy in a least squares sense, we look for

pβββ ,,, 21 K to minimise

 ∑ ∑
= =









−

n

i

p

j
ijji xf

1

2

1
β . (3.21)

This is an ordinary least squares optimisation problem, with solution

 [] () () KαXXXfXXXβ ′′=′′=≡ −− 11
21

'ˆ,,ˆ,ˆˆ
pβββ K . (3.22)

It follows that [] βXg ˆˆ,,ˆ,ˆˆ '
21

=≡
n

ggg K , and the accuracy of the least squares

approximation is reflected in the value of the residual sum of squares,

 () ()∑
=

−=−=
n

i
ii gferr

1

22ˆ gfβ . (3.23)

There is probably little reason to believe that this approximation will be accurate.

However, the motivation for investigating β̂ is different: we hope that the relative

importance of the input variables will be reflected in the relative sizes of pβββ ˆ,,ˆ,ˆ 21 K .

The following heuristic argument lends support to this hope.

Consider the special case of a linear kernel function, i.e. () jijik xxxx ,, = . In this case

the kernel matrix becomes XXK ′= and (3.22) simplifies to

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

109

 αXβ ′=ˆ , i.e. ∑
=

=
n

i
ijij x

1

ˆ αβ , pj ,,2,1 K= . (3.24)

Now suppose input variable 1X separates the two groups well. Since we work with our

data in centred form, this implies that 1ix will be (relatively) large positive for

{ }1,,2,1 ni K∈ and (relatively) large negative for { }2,,2,1 ni K∈ (or, vice versa). In

addition, for any reasonable kernel classifier the (signed) α -coefficients corresponding to

the 1Y = + group (the first 1n data cases) will differ in sign from the α -coefficients

corresponding to the 1Y = − group (the remaining 2n data cases). This implies that 1β̂

will have a relatively large absolute value, thereby reflecting the importance of variable

1X .

Variable selection based on multiple linear regression analysis of nfff ,,, 21 K is

investigated further in the simulation study discussed later, and we refer to it as feature-to-

input space least squares selection, abbreviated to ()LSFI .

The above approach may be viewed from a broader perspective. Apart from an intercept,

the values nfff ,,, 21 K contain all the relevant information for classifying the training data

cases. Naturally these values exhibit a certain degree of variation. It seems a reasonable

strategy to select the input variables which in some sense best explain this variation. Such

a strategy can be implemented in a variety of ways, of which multiple linear regression

analysis as described above is a first possibility. More generally, at a first level a

distinction can be made between a regression and a classification approach to analysing the

information provided by nfff ,,, 21 K . In the regression approach we view nfff ,,, 21 K as

the values of a response variable and wish to identify the subset of input variables best

explaining the variation in nfff ,,, 21 K . In the classification approach, there are two

options: we can either use ()ii fsigny =ˆ or iy , ni ,,2,1 K= , as training data labels. Once

again we seek the subset of input variables best explaining the variation in ˆiy or iy ,

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

110

ni ,,2,1 K= . At a second level, we have to decide whether to proceed parametrically or

non-parametrically when modelling the variation in the response values. A parametric

approach seems to be the less desirable option. Firstly, it makes rigid assumptions, which

may be too restrictive, and secondly, it is difficult to surmise which parametric form to use.

A non-parametric approach does not suffer from these disadvantages. Since classification

and regression trees as well as random forests offer a natural way to quantify the

importance of input variables, we propose their use in this regard.

The above remarks are summarised in Table 3.7. We propose linear discriminant analysis

and multiple linear regression analysis as examples of parametric classification and

regression techniques, although it must be noted that any other parametric classification or

regression procedure may also be used.

Table 3.7: Possible approaches toward modelling the variation in response values

 CLASSIFICATION REGRESSION

PARAMETRIC Linear discriminant analysis
Multiple linear regression

analysis

NON-PARAMETRIC
Classification trees or

random forests

Regression trees or random

forests

In an initial simulation study regression random forests were found to perform quite well as

a variable selection strategy based on explaining the variation in nfff ,,, 21 K . We

therefore provide a more detailed discussion of random forests and the way in which they

measure variable importance. A random forest consists of an ensemble of classification or

regression trees (regression trees in our application) grown on bootstrap samples of the

original training data and featuring random selections of input variables to determine the

split at a particular node. More specifically, consider bootstrap samples

() ()(){ }nibyb iib ,,2,1,, K== xT , drawn with replacement from the training data

(){ }niyii ,,2,1,, K== xT , Bb ,,2,1 K= . The tree grown on bT is denoted by bT , and

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

111

if this tree is applied to the original training data we obtain fitted values
bnbb

fff ˆ,,ˆ,ˆ
21

K .

Of course, some of the original data points will not be present in bootstrap sample b . Let

()iT represent the subset of trees from BTTT ,,, 21 K that were trained on bootstrap samples

not containing case nii ,,2,1, K= . Then the random forest fitted value for case i is

defined to be

 () ()i
Tb

bii TcardfRFf
i

∑
∈

= ˆˆ , (3.25)

where ()iTcard is the number of trees in ()iT . Clearly,
bi

f̂ , iTb ∈ , is an estimate of if

based on a tree constructed from data which did not contain case i . In this sense it is to be

expected that the squared error ()2ˆ
bii ff − will provide a more realistic indication of the

accuracy with which if can be estimated than a squared error based on an estimate of if

calculated from data containing case i . Quantities such as
bi

f̂ are called out-of-bag,

calculated for data cases not included in the sample from which the tree bT was

constructed. The performance of a random forest can be evaluated in terms of the out-of-

bag estimates, viz. ()[]2

1

1 ˆ∑
=

−
n

i
iin RFff .

It is important to note that a random form of variable selection takes place when tree bT in

a random forest is grown. At each node in bT a subset dS of pd < input variables is

randomly selected from the total set of p available input variables. At that specific node

the variable on which to split is then determined in the usual tree-growing fashion from the

variables in dS . Naturally the set dS will typically differ from node to node. It is of

course necessary to specify a value for d . In this regard it has been shown that the random

forest error rate depends on the correlation between any two trees, as well as the strength of

each individual tree in the forest (cf. Breiman, 2001). Small correlations between trees,

combined with individual trees with low error rates, yield random forests with low error

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

112

rates. Now specifying a small value for d reduces the correlation between pairs of trees,

but tends to increase the error rate of individual trees. We therefore need to specify a value

for d which leads to a favourable trade-off between these two conflicting requirements.

Fortunately the range of d-values leading to good random forest error rates has been found

to be quite large. A recommendation which is frequently implemented in practice is to use

3pd = .

Of particular interest to us is quantification of the relative importance of the input variables

in a random forest. The following approach, implemented in the software provided by

Breiman and Cutler (http://stat-www.berkeley.edu/users/breiman/RandomForests/), was

implemented in our simulation study. Suppose we wish to quantify the importance of

variable pjX j ,,2,1, K= . Consider tree bT and let bJ denote the set of cases which

were not used in training this tree. We randomly permute the values of variable jX for all

the data cases in bJ . Using the jX - permuted out-of-bag training patterns corresponding

to bJ we calculate estimates for all the if - values in bJ . If this is done for all B trees, we

can calculate out-of-bag random forest estimates ()RFf j
i

)(ˆ , ni ,,2,1 K= . A measure of

the importance of variable jX is then obtained by calculating the relative increase in out-

of-bag error caused by permutation of the jX -values, i.e. the measure of variable

importance for variable jX is

 ()()[] ()[]2

1

2

1

ˆˆ ∑∑
==

−−
n

i
ii

n

i

j
ii RFffRFff . (3.26)

Large values of this measure would be an indication that jX is an important input

variable.

At this stage one might rightfully ask which of the above pre-image, regression and

classification approaches should be used. Such a recommendation can only be made once

the properties of kernel methods constructed from the selected input variables, yielded by

http://stat-www.berkeley.edu/users/breiman/RandomForests/

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

113

each selection approach, have been evaluated. Two properties are especially important in

this regard. Firstly, in terms of the generalisation error of the classifier based on the

selected variables, we would naturally like our procedure to be able to classify new cases

accurately. Secondly, the probability with which a given selection procedure includes an

input variable into the set of selected variables should be considered. Here one would hope

that variables which contribute to separation between the groups will be selected with high

probability while pure noise variables would appear fairly rarely amongst the selected

variables. The complicated dependence on the data implied by a selection procedure,

combined with the complex form of (some of) the selection criteria, make it impossible to

investigate these post-selection classification properties of kernel methods analytically.

Investigating the relative merits of the different selection procedures therefore necessitates

one to conduct a simulation study.

In the remainder of this chapter we describe a fairly extensive simulation study for

evaluating the different variable selection proposals based on pre-images and regression

and classification analyses of nfff ,,, 21 K , as described above. Details regarding the

experimental design, the steps entailed by each simulation repetition, and the generation of

training and test data sets are provided in Sections 3.4.1 to 3.4.3. In Section 3.4.4 we

comment on the problem of specifying values for the hyperparameters in a kernel classifier,

and in Section 3.4.5 we summarise the specific procedures which were investigated.

Results of the study are discussed in Section 3.4.6.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

114

3.4 MONTE CARLO SIMULATION STUDY

3.4.1 EXPERIMENTAL DESIGN

Naturally there are many factors influencing the post-selection properties of kernel

classifiers, making it virtually impossible to conduct an exhaustive investigation in this

regard. In our simulation studies we attempted to investigate the influence of the most

important of these factors, which we now proceed to describe.

i. The underlying distribution from which the input variables arise. Two cases

were considered: a multivariate normal, and a multivariate lognormal

distribution. These distributions were selected as representative of symmetric

and asymmetric distributions respectively.

ii. The manner in which the two groups differ. Firstly, we looked at situations

where the groups differ with respect to location, and then only for a subset of m

of the available input variables (see v below). We will refer to this subset of

variables as the set of separating or relevant input variables, whose indices are

contained in V⊂SV , with () mVcard S = . The set of input variables which do

not contribute to differences between the two groups will be denoted by
S

V

(with () mpVcard S −=). Secondly, situations were investigated where the two

groups differ only with respect to spread (variance-covariance structure) – once

again only for the variables contained in a subset SV of the set of available input

variables.

iii. The dimension of the problem, i.e. the total number p of input variables in V ,

which was 10 in cases where p n< and 60 whenever p n> .

iv. We varied the training sample size, investigating three cases. Firstly, small

equal group sample sizes, viz. 1521 == nn ; secondly, relatively large equal

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

115

group sample sizes, viz. 10021 == nn . Thirdly, to provide for scenarios where

the prevalence of positive cases and negative cases differs (as is often the case),

mixed sample sizes, viz. 75;25 21 == nn . Combining these different sample

sizes with the different values of p specified in iii, gives us the following cases

which were investigated: 1521 == nn and 10=p (referred to as small samples

in the further discussion), 75;25 21 == nn and 10=p (referred to as mixed

samples in the further discussion), and 10021 == nn combined with 10=p

(referred to as large samples in the further discussion). In addition we also

investigated the scenario 1521 == nn and 60=p , referred to as wide samples

in the further discussion, since the standard ‘data case’ by ‘variables’ input

matrix has a ‘wide’ appearance for such data sets. Note that we can also

describe these scenarios in terms of the ratio of total sample size n to the

number of input variables p . This gives pn - values of 3, 10, 20 and 0.5 for

the scenarios described above.

v. The fraction of relevant input variables contributing towards separation between

the two groups, i.e. pm=π . We used two fractions: 0.1 (thus, 1 out of 10, and

6 out of 60), and 0.4 (thus, 4 out of 10, and 24 out of 60).

vi. Finally, we varied the dependence amongst the input variables as reflected in

their correlation coefficients. Consider two distinct input variables, jX and

kX . If kj XX , SV∈ , we denote the correlation between jX and kX by Sρ ,

and we assume that all such pairs exhibit this correlation. If kj XX , SV∈ , we

use the symbol Sρ for the common correlation between all such pairs, and if

jX SV∈ , kX SV∈ , the common correlation coefficient is denoted by SSρ . For

normal input data we consistently assumed that all irrelevant variables were

independent, i.e. we used 0=Sρ throughout. For the relevant variables we

used 0=Sρ and 7.0=Sρ , combining this with two values for the correlation

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

116

between relevant and irrelevant variables, viz. 0=SSρ and 9.0=SSρ . For

lognormal input data we also fixed 0=Sρ and investigated the following

cases: for 1.0=π , we combined each of 0=Sρ and 7.0=Sρ with each of

0=SSρ and 2.0=SSρ ; for 4.0=π , we combined 0=Sρ and 7.0=Sρ with

0=SSρ , and 7.0=Sρ with 25.0=SSρ . See Appendix A.1, for a detailed

motivation.

We require notation to describe the cases arising from combination of the factors described

above at their different levels. Firstly, we write NL to denote cases where the training data

were generated from two normal distributions differing with respect to location, NS for the

cases where the two normal distributions differed with respect to spread, and LL and LS for

the corresponding lognormal distribution cases. For the NL scenarios, Table 3.8

summarises the 32 different configurations that were investigated. In this table, 1ρ denotes

the cases where 0,0 == SSS ρρ ; 2ρ the cases where 0,7.0 == SSS ρρ ; 3ρ the cases

where 9.0,0 == SSS ρρ ; and 4ρ the cases where 9.0,7.0 == SSS ρρ . As noted

above, we used 0=Sρ throughout. In later tables we refer to NL1-NL4, NL17-NL20

collectively as small sample cases, to NL5-NL8, NL21-NL24 collectively as mixed sample

cases, to NL9-NL12, NL25-NL28 collectively as large sample cases, and to NL13-NL16,

NL29-NL32 collectively as wide sample cases. Similar notation and conventions are used

for the NS scenarios, with the obvious replacement of NL by NS, thereby giving rise to

cases NS1 to NS32.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

117

Table 3.8: Notation for NL (normal location differences) cases

SAMPLE SIZE

1521 == nn 75,25 21 == nn 10021 == nn

1.0=π NL1 NL5 NL9
1ρ

4.0=π NL2 NL6 NL10

1.0=π NL3 NL7 NL11
2ρ

4.0=π NL4 NL8 NL12

1.0=π NL17 NL21 NL25
3ρ

4.0=π NL18 NL22 NL26

1.0=π NL19 NL23 NL27

10=p

4ρ
4.0=π NL20 NL24 NL28

1.0=π NL13
1ρ

4.0=π NL14

1.0=π NL15
2ρ

4.0=π NL16

1.0=π NL29
3ρ

4.0=π NL30

1.0=π NL31

60=p

4ρ
4.0=π NL32

For lognormal input data with location differences between the two groups, Table 3.9

provides a similar summary of the different configurations which were investigated. In this

table, 1ρ denotes the cases where 0,0 == SSS ρρ ; 2ρ the cases where 0,7.0 == SSS ρρ ;

3ρ the cases where 2.0,0 == SSS ρρ ; 4ρ the cases where 2.0,7.0 == SSS ρρ ; and 5ρ

the cases where 25.0,7.0 == SSS ρρ . Once again we used 0=Sρ throughout.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

118

Table 3.9: Notation for LL (lognormal location differences) cases

SAMPLE SIZE

1521 == nn 75,25 21 == nn 10021 == nn

1.0=π LL1 LL5 LL9
1ρ

4.0=π LL2 LL6 LL10

1.0=π LL3 LL7 LL11
2ρ

4.0=π LL4 LL8 LL12

3ρ 1.0=π LL17 LL20 LL23

4ρ 1.0=π LL18 LL21 LL24

10=p

5ρ 4.0=π LL19 LL22 LL25

1.0=π LL13
1ρ

4.0=π LL14

1.0=π LL15
2ρ

4.0=π LL16

3ρ 1.0=π LL26

4ρ 1.0=π LL27

60=p

5ρ 4.0=π LL28

In later tables we refer to LL1-LL4, LL17-LL19 collectively as small sample cases, to LL5-

LL8, LL20-LL22 collectively as mixed sample cases, to LL9-LL12, LL23-LL25 collectively

as large sample cases, and to LL13-LL16, LL26-LL28 collectively as wide sample cases.

Similar notation and conventions are used for the LS scenarios, with the obvious

replacement of LL by LS, thereby giving rise to cases LS1 to LS28.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

119

3.4.2 STEPS IN EACH SIMULATION REPETITION

For each of the configurations described in the previous section we performed 1000 Monte

Carlo repetitions, each repetition entailing generation of a new training data set according

to the specifications of the case. Now consider any given relevant selection procedure.

This procedure was applied to the training data, thereby obtaining a selected subset of m

variables. After mc Monte Carlo repetitions we therefore ended up with mc (potentially)

different sets of input variables identified by this particular selection technique. For each

selection technique we are interested in two measures of its performance:

i. The probability with which an input variable is selected;

ii. The generalisation error if the particular selection technique is applied.

The probability with which a given procedure selects variable jX for inclusion in the

model is estimated by

 () ∑
=

==
mc

k
kjj

I
mc

selectedisXvariablePp
1

1ˆˆ , (3.27)

where mc is the number of Monte Carlo simulation repetitions, and kI is the indicator of

the event that variable jX is selected for inclusion at Monte Carlo repetition k . For

estimating the generalisation error of a given selection technique, we have to use test data

cases which are independent of the training data. Hence, as part of every Monte Carlo

repetition we also generated a new test data set according to the specifications for the

training data. The number of cases in the test data set was 2000 throughout, with the

percentages corresponding to the two groups the same as in the training data. These test

data cases were classified using the relevant kernel classifier based only on the input

variables selected from the corresponding training data set. The misclassification error rate

was calculated as the proportion of incorrectly classified test cases, and we used the

average over the 1000 Monte Carlo repetitions of these misclassification error rates as an

estimate of the generalisation error associated with the given selection proposal.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

120

3.4.3 GENERATING THE TRAINING AND TEST DATA

For a more detailed description of the way in which the NL, NS, LL and LS data sets were

generated, consider the p - component mean vector jμ and the pp × variance-covariance

matrix jΣ of the multivariate distribution for group 2,1, =jj . Partition these vectors

and matrices as follows:

 jμ











=

jS

jS

μ
μ

, and jΣ 







=

SSS

SSjS

ΣΣ
ΣΣ

, (3.28)

where the quantities indexed by the subscript S correspond to the m relevant input

variables in SV , and the quantities indexed by S correspond to the mp − irrelevant input

variables in SV . Note therefore that SSΣ contains the covariances between pairs of

relevant and irrelevant variables.

The following further notation is also required. We assumed the same variance for all

relevant variables and we denote this value for group j by 2

jSσ , 2,1=j . Similarly, the

same variance was used for all irrelevant variables and for group j this value is denoted by
2

jS
σ , 2,1=j . In group j we therefore have ()kXvar 2

jSσ= for all kX SV∈ , and

()kXvar 2

jS
σ= for all kX

S
V∈ . Similarly, for 2,1=j , we write

jS
τ ()ki XXcovar ,= for

all ki XX , kiVS ≠∈ , , and
jS

τ ()ki XXcovar ,= for all ki XX , kiV
S

≠∈ , . Finally, let

the common covariance in group j between any pair of relevant and irrelevant variables,

viz. ()ki XXcovar , , iX SV∈ , kX SV∈ , be denoted by
jSS

τ , 2,1=j .

We are now ready to describe the parameter settings for the different scenarios which were

investigated. In all cases where the two groups differed with respect to location, i.e. all the

NL and LL cases, we used [] '''
1

,00=μ and [] '''
2

,01=μ . This implies that the mean

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

121

vectors corresponding to the irrelevant variables were identical for both groups, while the

relevant variables each had an expected value of 0 in the first group, and an expected value

of 1 in the second group. In these cases the two groups had identical variance-covariance

matrices and we set 12 =
jSσ and 202 =

jS
σ for 2,1=j . This implies that we had

SSS
ρττ ==

21
, SSS

ρττ 20
21

== and SSSSSS
ρττ 20

21
== , with Sρ , Sρ and SSρ as

discussed in Section 3.4.1.

In data scenarios where the two groups differed with respect to their variance-covariance

structure, i.e. the NS and the LS cases, we set 0==
21
μμ , and generated differences

between the two groups by assuming larger variation for the relevant variables in cases

belonging to the second group, than for cases belonging to the first group. More

specifically, we set 12

1
=Sσ and 102

2
=Sσ , while keeping 202 =

jS
σ for 2,1=j . In these

cases we therefore had SS
ρτ =

1
, SS

ρτ 10
2

= , SSS
ρττ 20

21
== , SSSS

ρτ 20
1

= and

SSSS
ρτ 200

2
= , with Sρ , Sρ and SSρ once again as discussed in Section 3.4.1.

Note finally that the Johnson translation system (Johnson, 1986) was used to generate

lognormal data (cf. also Louw, 1997, and Section A.1 in this thesis).

3.4.4 HYPERPARAMETER SPECIFICATION

We saw in Chapter 2 that application of a kernel classifier requires specification of values

for two types of parameters, viz. parameters used in the kernel function (γ in the Gaussian

kernel), and a regularisation parameter (λ). Viewed in different frameworks, kernel

procedures typically involve solving constrained optimisation problems which contain a

penalisation term. Different formulations of these optimisation problems use either λ or,

in the place of λ , a so-called cost parameter value (C), with λ inversely proportional to C.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

122

In this section we briefly discuss the problem of appropriately specifying values for C and

γ . We start by exploring the influence of different specifications of C and γ on the

accuracy of kernel classifiers, and end the section with a few pointers to the relevant

literature with regard to hyperparameter specification.

We investigated the effect of hyperparameter values in kernel analyses via a numerical

study. We were particularly interested in knowing whether the influence of

hyperparameter specification differs for kernel procedures based on different subsets of

variables. For this purpose we made use of the experimental design described in Sections

3.4.1 and 3.4.3. Each simulation repetition involved the following two steps. We

generated a training sample according to the data scenario under consideration, and used it

to train an SVM and perform KFDA using

i. the total number of available variables (in V)

ii. only the fraction of relevant variables (in SV).

We then generated a test data set according to the same data configuration, and calculated

the test error achieved by each of the four classifiers. We repeated this process using C and

γ which we varied over a grid, from ()55 10;10 −− == γC to ()33 10;10 == γC . We used

1000 Monte Carlo repetitions, and for each classifier calculated average test errors over the

1000 repetitions.

Generally similar patterns were found for the different data scenarios considered. As an

example, surface plots for the test errors obtained in the NL data, viz. NL18, is presented

below.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

123

 a SVMs based on V b SVMs based on SV

 c KFDA based on V d KFDA based on SV

 Figure 3.4: Surface plots of average test errors in NL18 data

Two observations are important in Figure 3.4. Firstly, in kernel analyses the use of

different subsets of variables have a significant impact on the effect of the specification of

hyperparameter values. Secondly, the effect of hyperparameters changes when different

kernel procedures are used. In the NL18 data configuration, for example, it seems as if the

region of unsuitable hyperparameter specifications is somewhat smaller when SVMs or

KFDA is based on SV instead of on V . Surface plots of the errors in SVMs are also quite

different from those obtained for KFDA.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

124

Many contributions in the literature focus on the problem of optimising hyperparameter

values in kernel analyses. Cross-validation is often used, although it is computationally

expensive. This may become problematic in cases where a large number of

hyperparameters have to be specified.

Many authors investigate specification of multiple hyperparameter values. References in

this regard include Amari and Wu (1999), Chapelle et al. (2004), Duan et al. (2001),

Grandvalet and Canu (2002), Keerthi (2002), and Keerthi and Lin (2003). Of particular

interest is the paper by Hastie et al. (2004), in which it is shown that the regularised

optimisation problem for SVMs (refer to Chapter 2) can be solved simultaneously for all

values of the regularisation parameter λ . It should also be noted that some of the ideas in

the above papers have been extended to variable selection: input variables with relatively

small associated kernel hyperparameter values are considered unimportant and are

therefore discarded from the model.

In the numerical investigations presented in the thesis, our concern with regard to the

specification of hyperparameters was that it should not influence our recommendations

regarding which selection procedures perform better.

The way in which we specified γ was based on the results of an empirical study in Steel

and Louw (2004), which strongly suggest using the reciprocal of the number of variables in

the model. In this chapter, as well as in Chapters 4 and 5, our aim is to rank different

variable subsets of the same size (m). Allowing kernel analyses based on V to be

favoured, we therefore specified p1=γ . According to the proposal by Steel and Louw

(2004) this will not be the best choice for any of the post-selection models (a better

specification would have been m1=γ). Since we are only interested in the relative

performance of selection procedures, we do not consider this to be a drawback. The

p1=γ specification places models based on V at an advantage. Hence the error of a

selection procedure X relative to the no selection error (i.e. () ()VErrXErr) can be

regarded as a conservative estimate of improvements in accuracy gained via the use of X.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

125

In numerical evaluations presented in the remainder of this chapter, we varied the cost

parameter between 410− and 410 . The values for C that were used in Chapters 4 to 6 are

given in the sections where the Monte Carlo simulation studies are described.

3.4.5 THE VARIABLE SELECTION PROCEDURES

Several variable selection proposals were introduced in Section 3.3. All of these proposals

were evaluated empirically in a simulation study along the lines described in Sections 3.4.1

to 3.4.3. It became evident, however, that not all of the proposed approaches are

worthwhile. Consequently the results presented and discussed in Section 3.4.6 are only for

the following selection procedures.

- Feature-to-input space pre-image approximations of the group mean vectors. We

abbreviate this to FI(M) – see the discussion in Section 3.3.2.

- Feature-to-input space pre-image approximation of the kernel classifier weight

vector. We abbreviate this to FI(W) – see once again the discussion in Section

3.3.2.

- Using least squares multiple linear regression analysis to explain the variation in the

values nfff ,,, 21 K , where ()ji

n

i
ij kf xx ,

1
∑
=

= α , nj ,,2,1 K= . We abbreviate this

to FI(LS) – see the discussion in Section 3.3.3.

- Using regression random forests to explain the variation in the values

nfff ,,, 21 K . We abbreviate this to FI(RF) – see once again the discussion in

Section 3.3.3.

- Using alignments to perform selection in feature space. Since the selection in this

case is performed entirely in feature space, we abbreviate this to F(A).

The selection strategies discussed in Sections 3.4.1 to 3.4.3 that are excluded from the

simulation study include the strategies based on re-expressing the kernel function

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

126

(discussed in Section 3.3.1), and several of the approaches for explaining the variation in

nfff ,,, 21 K discussed in Section 3.3.3.

3.4.6 RESULTS AND CONCLUSIONS

In this section we present and briefly discuss the results of the simulation study described

above. We focus on two aspects: the post-selection classification accuracy of SVMs after

using the variable selection procedures in Section 3.4.5, and the probabilities with which

each of the variables was selected.

Consider first the post-selection classification accuracy of the selection procedures

considered. For easier comparison of the procedures, we calculated the size of the average

test error obtained for a procedure X relative to that of the SVM based only on the relevant

subset of variables, i.e. () ()SVErrXErr . We will refer to these relative errors as selection

values. The obtained selection values are reported in two parts. Firstly, in Tables 3.10-

3.13, we report all values pertaining to the first 16 configurations for each data scenario

(i.e. the configurations where 0=SSρ , viz. NL1-NL16, NS1-16NS16, LL1-LL16, and LS1-

LS16). Secondly, the selection values for the configurations where 0>SSρ , (viz. NL17-

NL32, NS17-NS32, LL17-LL28, and LS1-LS28), are given in Tables 3.14-3.17.

The selection values in Tables 3.10-3.13 reveal that it is difficult to make an overall

recommendation regarding the best performing variable selection procedures: the relative

performances of the procedures seem to depend on the data scenario (NL, NS, LL or LS), as

well as on the sample size.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

127

Table 3.10: Selection values for NL data

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

NL1 0.0 0.0 0.1 1.19 1.16 1.17 1.16 1.16

NL2 0.0 0.0 0.4 1.19 1.15 1.18 1.23 1.16

NL3 0.7 0.0 0.1 1.20 1.15 1.16 1.15 1.16

NL4 0.7 0.0 0.4 1.04 1.03 1.07 1.09 1.05

MIXED SAMPLES

NL5 0.0 0.0 0.1 1.03 1.00 1.02 1.00 1.01

NL6 0.0 0.0 0.4 1.09 1.02 1.06 1.05 1.03

NL7 0.7 0.0 0.1 1.03 1.00 1.02 1.00 1.01

NL8 0.7 0.0 0.4 1.01 1.00 1.04 1.05 1.02

LARGE SAMPLES

NL9 0.0 0.0 0.1 1.00 1.00 1.00 1.00 1.00

NL10 0.0 0.0 0.4 1.00 1.00 1.00 1.00 1.00

NL11 0.7 0.0 0.1 1.00 1.00 1.00 1.00 1.00

NL12 0.7 0.0 0.4 1.00 1.00 1.02 1.03 1.01

WIDE SAMPLES

NL13 0.0 0.0 0.1 1.75 1.55 1.57 2.44 3.51

NL14 0.0 0.0 0.4 2.11 1.74 1.74 1.74 25.4

NL15 0.7 0.0 0.1 1.08 1.05 1.09 1.05 1.55

NL16 0.7 0.0 0.4 1.01 1.01 1.03 1.00 1.58

The NL scenario (in Table 3.10) leads us to somewhat different conclusions than in the case

of NS, LL and LS data. Therefore first consider this setup. In small sample cases, the

selection procedures perform very similar – still FI(M) seems to perform the best, yielding

slightly smaller average test errors than those obtained for FI(RF). In mixed and large

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

128

samples the selection values corresponding to the different selection procedures all lie very

close to 1, indicating that practically all the selection procedures consistently identify the

correct variables. This shows that the selection criteria perform well, especially in large

samples. The FI(M) and FI(W) criteria perform relatively well in wide sample cases,

followed by F(A); whereas FI(RF) performs rather poorly.

The relatively high selection values obtained for FI(RF) in wide NL samples lead us to also

closely consider the FI(RF)-selection values obtained for NS, LL and LS data. In this

regard, we see that FI(RF) performs poorly only in wide samples from a normal

distribution. The NL14 and NS14 configurations are by far the most problematic: compare

for example the FI(RF) selection value of 25.4 to the value of 1.74 achieved by FI(M) in

NL14, and similarly, 83.17 with 48.33 in NS14. The performance of FI(RF) is affected less

in NL data.

We now consider the NS, LL and LS data setups (in Tables 3.11 to 3.13 respectively). Here

F(A) and FI(RF) definitely stand out, consistently yielding the lowest selection values, and

doing so by a relatively large margin. The relative performance of F(A) and FI(RF)

changes when the different data scenarios and sample sizes are considered. In small NS

and LL samples, F(A) outperforms FI(RF), whereas in mixed NS, LL and LS data the

reverse is true. Once again in wide NS, LL and LS data, F(A) performs best. In large

samples it is not clear which of the two procedures should be favoured.

Concerning the performance of the remaining selection procedures, we again see that in

data sets with different sizes, the relative performance of FI(M), FI(W) and FI(LS) vary.

We have seen that in small NL data, FI(M) performs best. In mixed NS, LL and LS data,

FI(W) is favoured after FI(RF) and F(A), whereas in wide NS and LS samples, FI(LS)

comes in third.

Turning our attention to the configurations where 0>SSρ (in Tables 3.14-3.17), we see

that in essence, our conclusions and recommendations in the case of 0=SSρ also hold for

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

129

these data setups. We therefore only indicate instances where the remarks in the previous

Table 3.11: Selection values for NS data

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

NS1 0.0 0.0 0.1 1.19 1.64 1.63 1.64 1.26

NS2 0.0 0.0 0.4 1.44 2.82 2.58 2.87 1.63

NS3 0.7 0.0 0.1 1.18 1.66 1.65 1.67 1.26

NS4 0.7 0.0 0.4 1.23 1.89 1.84 1.78 1.37

MIXED SAMPLES

NS5 0.0 0.0 0.1 1.06 1.04 1.04 1.05 1.04

NS6 0.0 0.0 0.4 3.98 3.34 2.66 2.91 1.05

NS7 0.7 0.0 0.1 1.06 1.04 1.04 1.04 1.04

NS8 0.7 0.0 0.4 3.35 2.81 2.28 2.29 1.07

LARGE SAMPLES

NS9 0.0 0.0 0.1 1.00 1.83 1.82 1.72 1.00

NS10 0.0 0.0 0.4 1.00 3.11 2.34 2.83 1.00

NS11 0.7 0.0 0.1 1.00 1.84 1.80 1.72 1.00

NS12 0.7 0.0 0.4 1.00 2.88 2.18 2.17 1.00

WIDE SAMPLES

NS13 0.0 0.0 0.1 2.02 3.73 3.74 3.26 3.96

NS14 0.0 0.0 0.4 7.67 48.33 45.67 5.50 83.2

NS15 0.7 0.0 0.1 1.50 2.38 2.44 1.80 2.51

NS16 0.7 0.0 0.4 1.31 2.19 2.38 1.19 3.26

paragraphs cannot be extended to 0>SSρ data setups, and further comment on some

aspects that we feel is important to emphasise. Firstly, in the small sample NL setup, we

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

130

see that FI(M) is no longer the best performer, and that the FI(LS) procedure should

Table 3.12: Selection values for LL data

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

LL1 0.0 0.0 0.1 1.05 1.42 1.33 1.70 1.07

LL2 0.0 0.0 0.4 1.03 1.15 1.15 1.71 1.01

LL3 0.7 0.0 0.1 1.06 1.32 1.32 1.73 1.09

LL4 0.7 0.0 0.4 1.02 1.09 1.10 1.28 1.05

MIXED SAMPLES

LL5 0.0 0.0 0.1 1.00 1.05 1.05 1.08 1.00

LL6 0.0 0.0 0.4 1.02 1.02 1.07 1.17 1.00

LL7 0.7 0.0 0.1 1.02 1.05 1.03 1.12 1.00

LL8 0.7 0.0 0.4 1.00 1.00 1.00 1.16 1.00

LARGE SAMPLES

LL9 0.0 0.0 0.1 1.00 1.03 1.02 1.03 1.01

LL10 0.0 0.0 0.4 1.00 1.06 1.06 1.00 1.00

LL11 0.7 0.0 0.1 1.00 1.04 1.03 1.03 1.01

LL12 0.7 0.0 0.4 1.00 1.02 1.30 1.21 1.00

WIDE SAMPLES

LL13 0.0 0.0 0.1 1.10 1.56 1.67 3.61 1.05

LL14 0.0 0.0 0.4 1.10 1.48 1.48 1.48 1.48

LL15 0.7 0.0 0.1 1.07 1.36 1.36 1.37 1.11

LL16 0.7 0.0 0.4 1.04 1.13 1.06 1.06 1.22

rather be used. In wide NL data sets, where formerly FI(W) came second to FI(M), FI(W)

now performs best, followed by FI(LS). Secondly, as was seen in the 0=SSρ data setups,

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

131

the use of FI(RF) can also in the case of 0>SSρ not be recommended for wide NL and NS

 Table 3.13: Selection values for LS data

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

LS1 0.0 0.0 0.1 1.24 1.97 1.92 2.16 1.12

LS2 0.0 0.0 0.4 1.23 1.88 1.74 2.24 1.13

LS3 0.7 0.0 0.1 1.26 1.98 1.92 2.14 1.15

LS4 0.7 0.0 0.4 1.17 1.55 1.65 1.53 1.16

MIXED SAMPLES

LS5 0.0 0.0 0.1 1.21 1.17 1.13 1.15 1.00

LS6 0.0 0.0 0.4 3.58 2.28 1.84 2.56 1.02

LS7 0.7 0.0 0.1 1.21 1.17 1.14 1.15 1.01

LS8 0.7 0.0 0.4 3.19 1.65 2.04 2.03 1.10

LARGE SAMPLES

LS9 0.0 0.0 0.1 1.01 1.66 1.12 2.02 1.00

LS10 0.0 0.0 0.4 0.95 1.33 1.07 2.03 0.95

LS11 0.7 0.0 0.1 1.01 1.65 1.12 2.12 1.00

LS12 0.7 0.0 0.4 1.00 1.12 1.52 1.59 1.00

WIDE SAMPLES

LS13 0.0 0.0 0.1 1.51 2.98 2.95 2.83 1.41

LS14 0.0 0.0 0.4 1.79 4.39 4.30 1.93 1.98

LS15 0.7 0.0 0.1 1.42 2.34 2.42 1.67 1.43

LS16 0.7 0.0 0.4 1.41 1.97 2.14 1.23 1.78

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

132

Samples. For example, the NL14 selection value for FI(RF) is 25.89, compared to a value

of 1.42 in the case of FI(M). Thirdly, in the NS, LL and LS scenarios once again F(A) and

FI(RF) dominate.

Table 3.14: Selection values for NL data

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

NL17 0.0 9.0 0.1 1.2 1.15 1.16 1.08 1.16

NL18 0.0 9.0 0.4 1.13 1.11 1.07 1.04 1.13

NL19 0.7 9.0 0.1 1.19 1.15 1.15 1.08 1.16

NL20 0.7 9.0 0.4 1.03 1.03 1.04 1.04 1.03

MIXED SAMPLES

NL21 0.0 9.0 0.1 1.04 1.00 1.01 1.00 1.01

NL22 0.0 9.0 0.4 1.06 1.01 1.02 1.01 1.03

NL23 0.7 9.0 0.1 1.04 1.01 1.01 1.00 1.01

N24 0.7 9.0 0.4 1.00 1.00 1.02 1.02 1.00

LARGE SAMPLES

NL25 0.0 9.0 0.1 1.00 1.00 1.00 1.00 1.00

NL26 0.0 9.0 0.4 1.00 1.00 1.01 1.00 1.01

NL27 0.7 9.0 0.1 1.00 1.00 1.00 1.00 1.00

NL28 0.7 9.0 0.4 1.00 1.00 1.00 1.00 1.00

WIDE SAMPLES

NL29 0.0 9.0 0.1 1.18 1.28 1.05 1.21 3.53

NL30 0.0 9.0 0.4 1.16 1.42 0.11 0.05 25.89

NL31 0.7 9.0 0.1 1.07 1.09 1.07 1.07 1.64

NL32 0.7 9.0 0.4 1.00 1.01 0.87 0.97 1.59

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

133

Our conclusions with regard to the relative performances of F(A) and FI(RF) in small,

mixed and large samples when 0=SSρ carry directly over to cases where 0>SSρ . In

wide samples, however, a distinction between the two procedures is not that clear, except

in LL data, where F(A) performs best.

Table 3.15: Selection values for NS data (continued)

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

NS17 0.0 9.0 0.1 1.2 1.66 1.64 1.67 1.27

NS18 0.0 9.0 0.4 1.47 2.81 2.58 2.83 1.65

NS19 0.7 9.0 0.1 1.19 1.67 1.64 1.66 1.26

NS20 0.7 9.0 0.4 1.21 1.91 1.85 1.77 1.36

MIXED SAMPLES

NS21 0.0 9.0 0.1 1.06 1.04 1.04 1.04 1.04

NS22 0.0 9.0 0.4 3.97 3.27 2.57 2.85 1.05

NS23 0.7 9.0 0.1 1.07 1.05 1.04 1.05 1.04

NS24 0.7 9.0 0.4 3.31 2.83 2.22 2.23 1.25

LARGE SAMPLES

NS25 0.0 9.0 0.1 1.00 1.83 1.80 1.70 1.00

NS26 0.0 9.0 0.4 1.00 3.13 2.29 2.76 1.00

NS27 0.7 9.0 0.1 1.00 1.82 1.79 1.70 1.00

NS28 0.7 9.0 0.4 1.00 2.78 2.13 2.16 1.00

WIDE SAMPLES

NS29 0.0 9.0 0.1 1.74 2.22 2.26 1.90 3.93

NS30 0.0 9.0 0.4 33.8 40.8 17.8 15.0 56.4

NS31 0.7 9.0 0.1 1.31 1.66 2.17 1.56 0.94

NS32 0.7 9.0 0.4 1.32 1.73 1.91 1.23 1.69

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

134

Table 3.16: Selection values for LL data (continued)

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

LL17 0.0 20.0 0.1 1.03 1.36 1.14 1.26 1.10

LL18 0.7 20.0 0.1 1.03 1.31 1.17 1.23 1.08

LL19 0.7 25.0 0.4 1.01 1.04 1.08 1.15 1.05

MIXED SAMPLES

LL20 0.0 20.0 0.1 1.00 1.00 1.00 0.96 0.94

LL21 0.7 20.0 0.1 1.02 1.06 1.05 1.03 1.00

LL22 0.7 25.0 0.4 1.00 1.03 1.03 1.18 1.06

LARGE SAMPLES

LL23 0.0 20.0 0.1 1.00 1.01 1.00 1.04 1.04

LL24 0.7 20.0 0.1 1.00 1.03 1.02 1.04 1.01

LL25 0.7 25.0 0.4 1.00 1.07 1.40 1.43 1.01

WIDE SAMPLES

LL26 0.0 20.0 0.1 1.00 1.19 1.10 1.10 1.00

LL27 0.7 20.0 0.1 1.02 1.19 1.20 1.19 1.10

LL28 0.7 25.0 0.4 1.01 1.12 1.02 0.98 1.10

Consider now the selection percentages with which each of the input variables was

selected. In Figure 3.5 we present the percentages obtained for F(A), FI(RF) and FI(M) in

the second configuration of each data scenario.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

135

Table 3.17: Selection values for LS data (continued)

SMALL SAMPLES

 Sρ SSρ π F(A) FI(M) FI(W) FI(LS) FI(RF)

LS17 0.0 20.0 0.1 1.28 1.95 1.58 1.95 1.07

LS18 0.7 20.0 0.1 1.27 1.88 1.50 1.92 1.12

LS19 0.7 25.0 0.4 1.16 1.42 1.50 1.50 1.16

MIXED SAMPLES

LS20 0.0 20.0 0.1 1.21 1.13 1.03 1.15 1.00

LS21 0.7 20.0 0.1 1.20 1.14 1.11 1.15 1.00

LS22 0.7 25.0 0.4 3.17 1.43 1.94 2.01 1.08

LARGE SAMPLES

LS23 0.0 20.0 0.1 0.99 1.25 1.02 2.02 0.99

LS24 0.7 20.0 0.1 1.01 1.26 1.01 2.12 1.00

LS25 0.7 25.0 0.4 1.00 1.05 1.62 1.62 1.00

WIDE SAMPLES

LS26 0.0 20.0 0.1 1.07 1.41 1.16 1.34 1.08

LS27 0.7 20.0 0.1 1.15 1.71 1.58 1.51 1.21

LS28 0.7 25.0 0.4 1.16 1.43 1.51 1.48 1.14

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

136

2 4 6 8 10

0
20

40
60

80
10

0

NL data

2 4 6 8 10

0
20

40
60

80
10

0

NS data

F(A)
FI(RF)
FI(M)

2 4 6 8 10

0
20

40
60

80
10

0

LL data

2 4 6 8 10

0
20

40
60

80
10

0

LS data

Figure 3.5: Selection percentages for the F(A), FI(RF) and FI(M) procedures

Figure 3.5 substantiates our findings based on selection values. In the small sample NL

setup, FI(M) performs relatively well, whereas in NS, LL and LS scenarios, the use of

FI(RF) and FI(A) is preferred.

CHAPTER 3
KERNEL VARIABLE SELECTION IN INPUT SPACE

137

3.5 SUMMARY

The basic question addressed in this chapter concerned the space in which selection should

be performed. We found that although selection in input space is sufficient for NL data,

this is definitely not the case for the other data configurations. It is therefore necessary to

utilise information arising from feature space in the selection process.

In this regard we proposed a new approach: so-called feature-to-input space selection. The

basic idea underlying this approach is to combine the information obtained from feature

space computations with the easy interpretation in input space. On a technical level

implementation of such an approach requires calculation of pre-images of quantities in

feature space. We discussed this aspect in some detail. This led to the definition of several

new FI selection criteria. From another angle we also investigated the possibility of

selecting variables in input space which best explain the variation in the discriminant

function values obtained by applying the kernel algorithm to the input patterns.

The results of an empirical study investigating the properties of the new selection

procedures were reported and discussed. Although no clear winner emerged in all cases,

the following general conclusions can be made. One of the FI criteria, viz. FI(RF),

performed very well, with the exception of wide normal data sets. This suggests that the

new FI approach is promising, deserving of further exploration. As expected, the

alignment, being the only criterion computed entirely in feature space, also did well. The

other three criteria performed very similar.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

138

CHAPTER 4

 ALGORITHM-INDEPENDENT AND
ALGORITHM-DEPENDENT SELECTION IN

FEATURE SPACE

4.1 INTRODUCTION

Different approaches towards variable selection for kernel methods were introduced in

Chapter 3. We saw that selection could be performed in input space, using for example a

naïve criterion such as the correlations between the response and the input variables; in

feature space, using a criterion such as the alignment, or based on feature-to-input space

criteria such as pre-images. The empirical study discussed in Chapter 3 showed that the

merits of these different approaches depend on the distribution generating the training

patterns and the nature of the separation between the groups. For example, for data from

normal populations differing with respect to location, it may well be sufficient to restrict

attention to selection strategies in input space. This changes, however, when we are faced

with NS, LL or LS data setups, when selection in feature space or selection using feature-to-

input space concepts seems to be preferable.

In this chapter we therefore present a more thorough discussion of variable selection based

on feature space criteria. We start by providing some details regarding the two kernel

classification procedures which play a role in the remainder of the thesis: the support vector

machine (SVM) in Section 4.2 and kernel Fisher discriminant analysis (KFDA) in Section

4.3. In Section 4.4 we make a distinction between criteria which may be applied in any

kernel classification problem (so-called algorithm-independent criteria), and criteria which

depend on output from the specific kernel algorithm and which are therefore only

applicable in cases where this algorithm is employed. The important role played by the

kernel matrix will become clear during this discussion. Section 4.5 is devoted to a fairly

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

139

brief discussion of feature space geometry. This enables us to define several variable

selection criteria which are suitable for application in any kernel classification context. We

define these criteria in Section 4.6.1, and we report and discuss the results of a simulation

study investigating the properties of the criteria in Section 4.6.2. Section 4.7 is devoted to

the class of algorithm-dependent selection criteria. Definitions of such criteria are given in

Section 4.7.1, followed by numerical evaluations of their properties and performance in

Section 4.7.2. Section 4.8 contains a summary of the chapter.

4.2 SUPPORT VECTOR MACHINES

The introduction of support vector machines in a paper delivered at the 1992 Annual

Workshop on Computational Learning Theory is widely acknowledged as one of the first

contributions to kernel procedures (cf. Boser et al., 1992). Interestingly, the mathematics

which underlies SVM algorithms had already been available since the early 1960s. It took

however approximately three decades to bring together all the required mathematical

results to produce an SVM methodology which could be applied to real-world problems.

This is perhaps understandable, since the SVM requires synthesis of concepts from a wide

range of fields: from generalisation theory, regularisation and the control of algorithm

complexity, to functional analysis, reproducing kernel Hilbert spaces and optimisation

theory. An algorithm which is equivalent to that of SVMs, but which is restricted to fitting

hyperplanes in input space, was in fact introduced by Vapnik and Lerner (1963). Other

important early contributions include Cover (1965), Duda and Hart (1973), and Anlauf and

Biehl (1989). Aronszajn (1950) provided an early discussion of the use of kernel functions,

while Aizerman et al. (1964) contributed interpretational insight to the use of kernel

functions, viz. that they provide a way of calculating inner products in a feature space.

Cristianini and Shawe-Taylor (2000) is the first comprehensive introduction to SVMs. At

this time research on SVMs had reached a maturity which made many view SVMs as a

subfield of machine learning and statistics in its own right. Currently, SVMs are still a fast

developing area of research, and have also become popular as a powerful tool in practice.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

140

The SVM for classification may be explained and viewed from several different

perspectives. For example, an SVM discriminant function is usually written as

() ()∑
=

+=
n

i
iii bkyf

1
, xxx α , where nyyy ,,,

21
K are the class labels of the training patterns,

but we can of course incorporate the labels into the α -parameters, thereby obtaining

 () ()∑
=

+=
n

i
ii bkf

1
, xxx α , (4.1)

which is the general form of kernel discriminant functions given in Section 2.2.3. Hence

the first perspective of support vector classifiers is that they belong to a more general class

of procedures having the form in (4.1), with a specific algorithm for determining values for

the parameters from the training data.

Another quite different perspective is provided by regularisation theory. In Section 2.2.4

we saw that different kernel methods may be viewed as solutions to different regularisation

problems of the form

 () ()() ()






 Ω+=

∈
∑
=

n

i
iin fyfLfRmin

f 1

1 , λx
H

, (4.2)

where L is a loss function and ()fΩ denotes the regularisation penalty applied to a

function f . If we take L to be the soft margin loss function (see Figure 2.6) and use an

2L penalty functional, the SVM is obtained as the solution to the optimisation problem in

(4.2) (see also Hastie et al., 2001, p. 380). From this perspective one would tend to

conclude that the SVM effectively avoids the danger of overfitting training data in high

dimensional spaces. Such a conclusion is however based on the assumption that the

regularisation parameter λ is specified ‘optimally’. (For a thorough discussion of SVMs

in a regularisation framework, the reader is referred to the paper by Evgeniou et al., 2000).

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

141

Although the regularisation perspective on SVMs is very useful, the original SVM proposal

was from an entirely different point of view. In the next three sections we explain the

original motivation for SVMs. We start in Section 4.2.1 by considering the case where the

training patterns corresponding to the two groups are linearly separable when viewed in

input space ℵ . It will become clear in this section that the SVM is based on a simple and

intuitively acceptable argument for finding a separating hyperplane. The basic idea of a

separating hyperplane is extended in Section 4.2.2 to the scenario where the training

patterns are not linearly separable in input space, but in fact only in a feature space

corresponding to some non-linear transformation Φ . In this section the use of a kernel

function elegantly solves the problem of computing inner products in a feature space. The

most general case is discussed in Section 4.2.3: the training patterns from the two groups

are now no longer linearly separable even in feature space.

The concept of a hyperplane plays an important role when discussing SVMs. A hyperplane

or affine set is an extension of the concept of a line to higher dimensional spaces.

Hyperplanes can be defined in input or in feature space. In input space a hyperplane

()bL ,wℵ is the set ()bL ,wℵ { }0,: =+ℜ∈= bp xwx . A similar definition holds in

feature space, with a hyperplane ()bL ,wℑ now defined to be the set

()bL ,wℑ { }0,: =+ℜ∈= bN zwz . The reader is referred to Appendix B for a more

detailed discussion of hyperplanes and their properties.

4.2.1 THE TRAINING DATA ARE LINEARLY SEPARABLE IN INPUT

 SPACE

Reconsider the binary classification problem described in Chapter 1. We observe training

data (){ }niyii ,,2,1,, K== xT on a response variable { }1,1 +−∈Y and p classification

variables pXXX ,,, 21 K for 21 nnn += sample cases. Our objective is to use T to find a

discriminant function ()xf so that the classifier (){ }xfsign can be used to assign a new

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

142

case with observed values of the classification variables in the vector x to one of the two

groups. In this section we assume that the training patterns are linearly separable in input

space, i.e. that there is at least one hyperplane ()bL ,wℵ which perfectly separates the two

groups of training patterns. Intuitively this means that all the input patterns to the ‘left’ of

()bL ,wℵ will belong to one of the groups and all the patterns to the ‘right’ will belong to

the second group. Of course, in such scenarios there will typically be many separating

hyperplanes for the training data, and this is illustrated in Figure 4.1 for the two-

dimensional case. The question to be answered in such cases is: which one of the many

separating hyperplanes should we use? We now describe the answer to this question

provided by the SVM.

-4 -2 0 2 4

-4
-2

0
2

4

X1

X
2

Figure 4.1: Many separating linear functions in two dimensions

It is clear that for every separating hyperplane ()bL ,wℵ we have () ,0, >+ by ii xw

1,2, ,i n= K . By appropriate rescaling of the hyperplane parameters w and b we can

therefore find w and b such that () ,1, ≥+ by ii xw 1,2, ,i n= K , with equality for at least

one value of i . This shows that we can restrict attention to hyperplanes for which

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

143

 { } 1,,2,1,, ==+ nibmin i Kxw . (4.3)

A hyperplane ()bL ,wℵ satisfying (4.3) is called a canonical hyperplane for the training

patterns nxxx ,,, 21 K . Note that if ()bL ,wℵ is a canonical hyperplane for nxxx ,,, 21 K ,

then ()bL −−ℵ ,w will also be canonical. Since the unsigned distance from a point pℜ∈x

to a hyperplane ()bL ,wℵ is given by

 () wxwxw bd b += ,, , (4.4)

it follows from (4.3) that the (unsigned) distance from a canonical hyperplane ()bL ,wℵ to

the point closest to the hyperplane is simply w1 .

Consideration of the distances between training patterns and a hyperplane leads to the

concept of the margin of a data set with respect to a hyperplane. The geometric margin of

a point pℜ∈x with respect to a hyperplane ()bL ,wℵ is simply ()xw bd , , while the

geometric margin of the training patterns nxxx ,,, 21 K with respect to this hyperplane is

defined to be (){ }nid min ib ,,2,1,, K=xw . The geometric margin of nxxx ,,, 21 K with

respect to a canonical hyperplane ()bL ,wℵ is therefore w1 . (For more details on

margins the reader is referred to Appendix B). In the discussion below we will simply

refer to the margin, meaning the geometric margin of nxxx ,,, 21 K with respect to a

specified hyperplane, and we will denote this quantity by g . Figure 4.2 illustrates the

geometric margin of a canonical hyperplane.

The SVM separating hyperplane for a linearly separable set of training patterns

nxxx ,,, 21 K is now defined to be the hyperplane with maximum margin. There are

several arguments which can be presented to support the sensibility of such an approach.

Consider first the following motivation, based on Schölkopf and Smola, 2002, pp. 192-193.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

144

-4 -2 0 2 4

-4
-2

0
2

4

X1

X
2

Figure 4.2: The geometric margin of a canonical separating hyperplane

It is reasonable to assume that the test and training patterns are generated by the same

underlying distribution. More specifically, imagine the test data to be generated according

to some distribution in circular regions around each of the training patterns. We would

obviously like to classify as many as possible of the test data cases correctly. For test data

cases to be classified correctly the circular region around a training pattern into which these

test cases fall has to be on the same side of the separating hyperplane as the training pattern

itself. The probability of this occurring is increased by maximising the margin of the

training patterns with respect to the hyperplane. Figure 4.2 illustrates this argument.

Suppose the nearest training case to a hyperplane ()bL ,wℵ is ix~ , with corresponding

training label 1~ +=iy . Now consider an unseen pattern *
ix with 1* +=iy . Clearly, a

larger distance between ()bL ,wℵ and i%x leaves more room for *
ix to lie between ()bL ,wℵ

and i%x and still be classified correctly. In Figure 4.3 the star indicates the unseen input

pattern which would not have been classified correctly were the margin any smaller.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

145

-4 -2 0 2 4

-4
-2

0
2

4

X1

X
2

Figure 4.3: Maximising the geometric margin

A second more technical argument supporting maximisation of the margin is based on

expressions providing upper bounds for the generalisation error of a separating hyperplane.

The reader is referred to Schölkopf and Smola (2002, p. 194) for an example of such a

bound. In essence these bounds, which hold with some prescribed probability calculated

with respect to the distribution generating the data, are of the form ()() ()ghbLErr ≤ℵ ,w ,

where ()()bLErr ,wℵ is the generalisation error of the hyperplane classifier ()bL ,wℵ , and

()gh is a decreasing function of the margin g . Hence, increasing the margin will decrease

the bound ()gh , implying that we obtain a classifier with better generalisation error

behaviour and thereby supporting maximisation of the margin.

The above discussion explains why the SVM is frequently referred to as a maximum

margin classifier. Another term frequently used for the hyperplane having maximum

margin is the optimal separating hyperplane (OSH). We see that for the simple case where

the training patterns are linearly separable in input space the SVM is equivalent to the OSH

classifier.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

146

Having described and motivated the concept underlying the SVM, we now focus on the

technical problem of actually finding the OSH, assuming that it exists. Since the margin of

nxxx ,,, 21 K with respect to a canonical hyperplane ()bL ,wℵ is simply w1 , we can

formulate the following optimisation problem.

PROBLEM 4.1

Consider a linearly separable training data set T . Find the hyperplane ()bL ~,~wℵ which

solves the optimisation problem

 { }2
2
1

,
w

w b
min subject to () ,1, ≥+ by ii xw 1,2, ,i n= K . (4.5)

The hyperplane ()bL ~,~wℵ solving Problem 4.1 will be the OSH. Note that we consider

22w rather than w merely for mathematical convenience. Since the quantity to be

minimised in Problem 4.1 is quadratic, and since minimisation takes place under linear

constraints, we see that this problem is a convex quadratic optimisation problem having a

global minimiser. This is a particularly attractive property of the SVM: we obtain the SVM

as the unique solution to an optimisation problem, without having to worry about the

possibility of getting stuck at a local minimum. In order to solve Problem 4.1 we import a

Lagrange multiplier for each restriction. This enables us to write down an expression for

the primal Lagrangian of the problem:

 () ()[]∑
=

−+−=
n

i
iii bybL

1

2
2
1 1,,, xwwαw α , (4.6)

where nααα ,,, 21 K are the non-negative Lagrange multipliers. The Lagrangian in (4.6)

has to be minimised with respect to w and b , and maximised with respect to

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

147

nααα ,,, 21 K . In optimisation theory it is well known (see for example Rockafellar, 1970)

that it is easier to solve the so-called dual Lagrangian formulation of Problem 4.1, which is

obtained by differentiating ()αw ,,bL with respect to w and b , setting the derivatives

equal to zero and substituting the resulting equations back into the primal Lagrangian,

()αw ,,bL . In our case the resulting equations are

 () 0=−=
∂

∂
∑
=

i

n

i
iiybL xw

w
αw

1

,, α , and (4.7)

 () 0,,
1

==
∂

∂
∑
=

n

i
iiy

b
bL ααw . (4.8)

Substituting i

n

i
iiy xw ∑

=
=

1
α and 0

1
=∑

=

n

i
iiy α back into the primal Lagrangian in (4.6) yields

the dual form of the optimisation problem:

PROBLEM 4.2

 ()








+−= ∑∑∑
===

n

i
i

n

ji
jijiji

n

ji
jijiji yyyyWmax

11,1,
2
1 ,, ααααα xxxxα

α
 or









− ∑∑
==

n

ji
jijiji

n

i
i yymax

1,
2
1

1
, xx

α
ααα (4.9)

 subject to 0
1

=∑
=

n

i
iiy α and 0≥iα , ni ,,2,1 K= .

This is a quadratic programming problem and it can be solved by using standard software.

Denote the maximising α by α~ , then the optimal weight vector %w can easily be obtained

from (4.7), viz. i
n

i
iiy xw ∑=

=1

~~ α . This provides us with a computable expression for the

weight vector of the OSH.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

148

There are various ways of determining a value for the intercept b~ of the maximum margin

classifier. The most commonly used method is based on the so-called Karush-Kuhn-

Tucker (KKT) optimality conditions, viz.

 ()[] 01, =−+ by iii xwα , 1,2, ,i n= K . (4.10)

It follows from the theory of quadratic programming that the KKT conditions are satisfied

at the optimal solution. This implies that whenever 0~ >iα , () 1
~

,~ =+ by ii xw from which

it follows that iiyb xw,~~
−= (since in a dichotomous classification setup 1±=iy). For

the sake of increased numerical stability it is common practice to average iiyb xw,~~
−=

over all training patterns for which 0~ >iα . In situations where the two classes overlap,

and especially also in cases where the sample number of observations from the two classes

are unbalanced, contributions in the literature have shown that the above method for

determining b% can be improved to yield smaller generalisation errors. Alternatively, one

could use the value b% causing ()ferr to be a minimum.

How do we use the OSH for classification of new cases? The OSH is the set

()bL ~,~wℵ { }0
~

,~: =+ℜ∈= bp xwx , and this defines the decision boundary between the

two groups. We classify a new case with training pattern x into one of the two groups by

using the classifier

 (){ }








+= ∑
=

n

i
iii bysignfsign

1

~,~ xxx α . (4.11)

Note that in terms of the training patterns computation of (4.11) only entails evaluation of

an inner product. The classifier in (4.11) is the simplest example of a support vector

classifier: because the discriminant function ∑
=

+
n

i
iii by

1

~,~ xxα is a linear function of x , it

is also known as a linear support vector classifier.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

149

Before moving on to a discussion of the case where the two groups are linearly separable

only in feature space, note from (4.7) that the weight vector of the OSH is a linear function

of the training patterns, ix , 1,2, ,i n= K . We also see from (4.8) that the sum of the

Lagrange coefficients iα corresponding to group 1 is equal to the sum of these quantities

corresponding to group 2. Perhaps most importantly, Equation (4.10) shows that 0iα >%

only if () 1
~

,~ =+ by ii xw . That is, only the training patterns closest to the hyperplane

(realising the minimum canonical margin value of 1) can have non-zero Lagrange

multipliers. These training patterns, referred to as support vectors or support points,

typically form a fairly small fraction of the total number of input patterns in the training

data. It follows that we can calculate the OSH weight vector from i
n

i
iiy xw ∑=

=1

~~ α by

summing only over the (relatively small number of) support vectors – the support vectors

contain all the information required to compute w~ . This sparseness property of SVMs

contributes to their popularity: once having trained an SVM, it is often quite fast to use.

4.2.2 THE TRAINING DATA ARE LINEARLY SEPARABLE IN

 FEATURE SPACE

In this section we extend the formulation of a linear support vector classifier to the case

where the training patterns from the two groups are not linearly separable in input space,

i.e. the case where the support vector classifier turns out to be a non-linear decision

function in input space. This is the context in which the use of the kernel trick (Aronszajn,

1950) was originally modernised, and consequently also the context in which SVMs were

proposed by Boser et al. (1992). Recall from Chapter 2 that any algorithm in which the

training patterns appear only in the form of inner products can easily be extended to an

algorithm which is linear in feature space, and typically non-linear in input space, by

substituting a kernel function for the inner product. Such a modification of the linear

support vector classifier in (4.11) is straightforward: we simply replace the inner product

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

150

xx ,i by an appropriate kernel function ().,.k evaluated on the pair ()xx ,i . This yields

the general form of the support vector classifier, viz.

 (){ } ()






 += ∑

=

n

i
iii bkysignfsign

1

~,~ xxx α . (4.12)

This support vector classifier corresponds to the hyperplane which we obtain by solving the

following optimisation problem.

PROBLEM 4.3

 () () ()








+−= ∑∑∑
===

n

i
i

n

ji
jijiji

n

ji
jijiji kyykyyWmax

11,1,
2
1 ,, ααααα xxxxα

α
 or









− ∑∑
==

n

ji
jijiji

n

i
i yymax

1,
2
1

1
, xx

α
ααα (4.13)

 subject to 0
1

=∑
=

n

i
iiy α and 0≥iα , ni ,,2,1 K= .

Implicit to the above formulation is the concept of transforming the training patterns

originally observed in an input space ℵ to a higher dimensional feature space ℑ , and then

finding an optimal separating hyperplane in ℑ . The final classifier (4.12) is therefore a

linear function in ℑ , but typically highly non-linear in ℵ .

The weight vector of the separating hyperplane in ℑ has the same form as in the linear

case – the original input patterns are merely replaced by their feature space counterparts,

i.e. we have ()i
n

i
iiy xw Φ∑=

=1

~~ α , where Φ introduces the non-linearity of w~ with respect to

the observed input patterns. As pointed out in Chapter 2, ()ixΦ is usually unobtainable,

since for example the associated feature space ℑ may have infinite dimension, or Φ may

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

151

be unknown or difficult to determine. Fortunately this does not prevent us from computing

the resulting support vector classifier. For a new case with training pattern x we have

 (){ } (){ }bsignfsign ~
,~ +Φ= xwx

 () ()








+ΦΦ= ∑
=

bysign
n

i
iii

~,~
1

xxα

 ()








+= ∑
=

bkysign i
n

i
ii

~,~
1

xxα (4.14)

Note that the intercept b~ is calculated as in the previous section; we only replace the inner

product by a kernel function.

4.2.3 HANDLING NOISY DATA

The previous two sections were devoted to a discussion of the support vector classifier

when the training patterns are linearly separable: in Section 4.2.1 we assumed the patterns

to be linearly separable in input space, and in Section 4.2.2, in feature space. In practice

we frequently encounter scenarios where the training patterns are not linearly separable

even in feature space. Moreover, if one cannot assume the data to be free of noise, care

should be taken against possible overfit if a support vector classifier with a very small

training error is used. In such cases we have to accommodate training patterns falling on

the ‘wrong’ side of the hyperplane decision boundary. Vapnik and Cortes (1995) presented

an algorithm for fitting hyperplanes in such situations. The method introduces a vector

[]′= nξξξ ,,, 21 Kξ to the optimisation problems discussed thus far, enabling us to allow for

training patterns to violate the optimisation constraints () ,1, ≥+ by ii xw 1,2, ,i n= K . In

fact, the constraints are relaxed to

 () ,1, iii by ξ−≥+xw 1,2, ,i n= K , (4.15)

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

152

where nξξξ ,,, 21 K are called slack variables and we assume 0≥iξ . The slack variable

iξ measures the degree to which training input pattern ()ixΦ violates the former

optimisation constraint, i.e. the extent to which ()ixΦ falls on the ‘wrong’ side of the

hyperplane decision boundary in feature space. Since we would obviously not like to have

transgressions which are too large, we have to incorporate the iξ into the objective

function as well. This can be done in different ways, a common approach being to modify

the objective function in Problem 4.1 to














+ ∑

=

n

i
ib

hCmin
1

2
2
1

,
ξw

w
. In this expression C is

a non-negative cost parameter, controlling the trade-off between maximising the margin

and minimising the penalty associated with training patterns on the wrong side of the

decision boundary. Also, h(.) is a monotonically increasing function on +ℜ . Very often

we take () xxh = , so that the basic optimisation problem which has to be solved can be

formulated as follows.

PROBLEM 4.4







 + ∑

=

n

i
ib

Cmin
1

2
2
1

,
ξw

w

 subject to () iii by ξ−≥+ 1, xw , 0≥iξ , 1,2, ,i n= K .

It is possible to show that the solution to Problem 4.4 is once again of the form

i

n

i
iiy xw ∑

=
=

1

~~ α , with only a subset of nααα ~,,~,~
21 K being positive. In fact, the positive iα~

correspond to the data cases where the constraint () iii by ξ−≥+ 1,~ xw is exactly met,

and these points are once again called support vectors. It can also be shown that we can

find nααα ~,,~,~
21 K by solving the following quadratic optimisation problem.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

153

PROBLEM 4.5

 () ()








−= ∑∑
==

n

ji
jijiji

n

i
i kyyWmax

1,
2
1

1
, xxα

α
ααα

 subject to 0
1

=∑
=

n

i
iiy α and Ci ≤≤ α0 , ni ,,2,1 K= .

It is interesting to observe that the dual objective function in Problem 4.5 is exactly the

same as that in Problem 4.3, Equation (4.13). The only difference between Problem 4.3

and Problem 4.5 is a change in the restriction placed on the iα ’s: the restriction 0≥iα in

Problem 4.3 is replaced by the restriction Ci ≤≤ α0 , ni ,,2,1 K= , in Problem 4.5.

Determining a value for the intercept is also analogous to the previous cases: a commonly

used option is to determine b~ as the average of ()∑−=
=

n

i
jiiij kyyb

1
, xxα over all cases

satisfying Cj << α0 .

Specification of the cost parameter, C , is an important aspect. If C is too large, it leads to

a decision boundary which follows the training data too closely, allowing too few training

errors, and possibly yielding an overfit of the training data. Specifying the value of C too

small implies that the term 22w in the objective function is dominant, which can easily

lead to underfitting.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

154

4.3 KERNEL FISHER DISCRIMINANT ANALYSIS

In this section we turn attention to a second procedure for classification in feature space,

viz. kernel Fisher discriminant analysis. KFDA was first proposed in Mika et al. (1999) as

a direct generalisation of Fisher’s well known linear discriminant analysis. As such it

seems that from a statistical perspective KFDA is an intuitively simpler technique than

support vector machines. Although perhaps less well known than support vector machines,

the performance in terms of generalisation error of KFDA compares well to that of SVMs

(cf. Mika et al., 1999). An advantage offered by KFDA compared to SVMs is that the

former provides a natural option for calculating posterior probabilities of group

membership (cf. Schölkopf and Smola, 2002, p. 464).

Since KFDA is a kernel classification procedure, kernel Fisher discriminant functions

exhibit all the characteristics of this class of discriminant functions. In particular, the

discriminant function in KFDA is linear in feature space, but typically highly non-linear in

input space. As we will see, KFDA basically entails the well known transformation of

training patterns ℵ∈ix to a feature space ℑ , followed by application of linear

discriminant analysis in ℑ .

We start our discussion of KFDA in Section 4.3.1 with a brief revision of LDA. We then

show in Section 4.3.2 how the LDA algorithm can be generalised to feature space to obtain

the kernel Fisher discriminant function. Several further aspects of KFDA are also

discussed in this section. Parts of our discussion are based on Louw and Steel (2006).

4.3.1 LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis is one of the best known and most frequently used statistical

procedures for solving classification problems, being especially successful in cases where

the training patterns arise from (approximate) normal distributions. In such scenarios it can

for example be derived by applying Bayes’ theorem, provided we also assume equal

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

155

variance-covariance matrices in the two groups. Another possibility for deriving the LDA

classifier is to seek the direction which corresponds to the linear projection providing the

best possible separation between the two groups. Group separation is measured in terms of

two aspects: firstly, in terms of the distances between the two projected group means (this

should be as large as possible), and secondly, in terms of the variance of the data within a

specific group (which should be as small as possible). From this perspective the linear

discriminant function is defined to be { }xu,~
0 +usign , where u~ maximises the ratio

 () ,
,

J
′

= =
′

Bu uu Buu
u Wu Wu u

. (4.16)

In (4.16), ()()′−−= 2121 xxxxB is the between group scatter matrix, while W is the

pooled sample covariance matrix for the two groups defined by the expression

() ()() ()()∑∑
∈∈

′−−+′−−=−+
2

22
1

1121 2
Ii

ii
Ii

iinn xxxxxxxxW , with 1x and 2x the

respective group sample mean vectors. The quantity ()uJ in (4.16) is often referred to as

the Rayleigh quotient. Note also that W is typically assumed to be a non-singular matrix.

How do we find u~ maximising the ratio in (4.16)? A well known extension of the

Cauchy-Schwarz inequality implies that u~ is proportional to ()21
1 xxW −− , i.e.

()21
1~ xxWu −= −c for some constant c . Taking this constant equal to 1 we find that

()21
1~ xxWu −= − . The intercept traditionally used in LDA is given by

() ()211
1

12
1

22
1

0 log nnu +′−′= −− xWxxWx , and the LDA rule to classify a new case with

training pattern x therefore becomes

 () () (){ }xxxWxWxxWx ,log 21
1

211
1'

12
1'

22
1 −++− −−− nnsign . (4.17)

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

156

Obviously the linear classifier in (4.17) will not be adequate in all cases. Several attempts

have therefore been made to broaden the applicability of LDA, leading to extensions of the

basic technique such as quadratic discriminant analysis (QDA), flexible discriminant

analysis, penalised discriminant analysis, and regularised discriminant analysis. A

quadratic discriminant function is obtained when the assumption of equal variance-

covariance matrices for the two groups is relaxed. This leads to a significant increase in

the number of parameters which have to be estimated: whereas LDA in a binary

classification problem requires estimation of 1p + parameters, quadratic discriminant

analysis requires ()3 2 1p p + + parameters. For large values of p this represents a

substantial increase, which may lead to worse than expected classification performance in

the quadratic case. In an attempt to gain the advantages offered by the greater flexibility of

quadratic discriminant analysis while retaining at least some of the simplicity of LDA,

Friedman (1989) proposed an approach known as regularised discriminant analysis. For a

discussion of this and other generalisations of LDA, the interested reader is referred to

Hastie et al., 2001.

LDA and QDA perform well in many practical applications. As stated in Hastie et al.

(2001), the reason for this is unlikely to be that the assumptions of equal variance-

covariance matrices (in the linear case) and multivariate normal distributions (in the linear

and the quadratic cases) hold. A more likely explanation is to be found in the relative

simplicity of these procedures, requiring relatively few parameters to be estimated

(especially in the linear case). Sometimes this is all that can reasonably be achieved on

small data sets.

There are however many examples of data sets where more complex non-linear functions

are required to provide adequate separation between cases belonging to different groups.

In order to provide techniques for such scenarios without having to relinquish the positive

attributes of a linear classifier, Mika (2002) extends LDA to a classification technique

operating linearly in feature space, called kernel Fisher discriminant analysis, which we

now discuss.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

157

4.3.2 THE KERNEL FISHER DISCRIMINANT FUNCTION

It was indicated in Chapter 2 that the kernel Fisher discriminant function is of the form

() () ()






 +=









+ΦΦ ∑∑
==

bksignbsign
n

i
ii

n

i
ii

11
,, xxxx αα , where nααα ,,, 21 K and b are

determined from the training data by applying the KFDA algorithm. In this section we

provide more detail on this process.

Since KFDA is a direct extension to feature space of LDA, the KFDA algorithm requires

one to maximise a Rayleigh quotient in ℑ . Hence, let ()()′−−= 2121Φ ΦΦΦΦB denote

the between group scatter matrix in feature space, and similarly, let () Φ21 2 W−+ nn

()() ()()∑∑
∈∈

′−−+′−−=
21

2211
Ii

ii
Ii

ii ΦΦΦΦ ϕϕϕϕ denote the within group scatter matrix in

ℑ . In the KFDA algorithm one needs to solve the following optimisation problem:

 ()












=
′
′

=
ℑ∈ vvW

vvB
vWv
vBvv

v ,
,

Φ

Φ

Φ

ΦJmax . (4.18)

In principle, if we could assume ΦW to be non-singular we could, similar to the LDA

solution ()1
1 2

−= −u W x x% , find ()21
1~ ΦΦWv −= −

Φ in feature space and construct the

linear discriminant rule

 { }0 ,sign v + v φ% . (4.19)

However, in many cases ΦB and ΦW have infinite dimension and are therefore not directly

obtainable. Solving the optimisation problem in (4.18) is therefore impracticable, and we

require an alternative formulation.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

158

For this purpose, consider the linear space D spanned by nφφφ ,,, 21 K , and an arbitrary

vector in feature space, denoted in this section by z . Now z can be decomposed into

21 zzz += , with D∈1z and ⊥∈D2z , and where ⊥D denotes the orthogonal

complement of D , so that ,Az z 11 , zAz= for any symmetric matrix A whose rows (or

columns) belong to D . Since it can be shown that the rows of both ΦB and ΦW belong to

D , we can write zzB ,Φ 11Φ , zzB= and zzW ,Φ 11Φ , zzW= for any z in ℑ .

Substituting these expressions into (4.18), we see that our optimisation problem is

equivalent to maximising ()
11

11

1
'
1

1
'
1

1 ,
,
zzW
zzB

zWz
zBzz

Φ

Φ

Φ

Φ ==J over D∈1z , and it is therefore

sufficient to restrict attention to vectors z belonging to D , i.e. vectors which can be

written in the form ()∑∑
==

Φ==
n

i
ii

n

i
ii

11
xφz αα for given scalars nααα ,,, 21 K . Defining the

n elements of jm by ()∑
=

jn

k
ki

j
k

n 1
,1 xx , 1, 2j = , if we let α be the vector containing

nααα ,,, 21 K , we may therefore write

 () () ()ki

n

i

jn

k
i

j
ki

n

i

jn

k
i

j
jj k

nn
xxxxΦz ,1,1,

1 11 1
∑ ∑∑ ∑
= == =

=ΦΦ= αα jmα,= , 1, 2j = .

If we now define ()()′−−= 2121 mmmmM , it readily follows that the numerator of ()J v

in (4.18) is given by zBz Φ′ = Μαα′ . One can also obtain the denominator of (4.18) in a

tractable form. Define an 1nn × kernel matrix 1K for class 1 to be the matrix with

elements ()jik xx , 1,,2,1;,,2,1 nj ni KK == , and write
1n1 for the 11 nn × matrix with all

elements equal to 1/1 n . Define 2K and
2n1 similarly. If we now set

() jn
j

j j
K1IKN ′−= ∑

=

2

1
, it follows that the denominator of ()J v in (4.18) can be written as

ΦzW z = Ναα′ . We conclude that maximising (4.18) is equivalent to maximising the ratio

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

159

 ()
αΝα
αΜα

Ναα
Μααα

,
,

=
′
′

=J . (4.20)

While solving (4.18) will generally be impossible (because maximisation has to be carried

out over possibly infinite dimensional vectors z in feature space), maximisation of (4.20)

is in this regard simple, since it only involves vectors nℜ∈α . Now suppose α~ maximises

(4.20), and let ()∑
=

Φ=
n

i
ii

1

~~ xz α . Since () () ()xxxxφz ,~,~,
11

i

n

i
i

n

i
ii k∑∑

==
=ΦΦ= αα , the

KFDA classification rule in feature space becomes

 { } ()






 +=+ ∑

=
xxzu ,~~

,~
1

i

n

i
ikbsignbsign α , (4.21)

which is a practically useful result once the coefficients nααα ~,,~,~
21 K and the intercept b~

have been determined. We will refer to (4.21) as the KFDA classification rule. Note how

application of the kernel trick once again obviates explicit specification or use of the

feature mapping Φ .

The above approach does however leave us with one problem: the matrix N is singular

and consequently we cannot find the maximising α~ by simply calculating

()21
1~ mmNα −= − . Mika et al. (1999) propose and motivate the use of regularisation to

overcome this difficulty. In the present context regularisation entails replacing N by a

matrix INN λλ += , for some (small) positive scalar λ . This yields a solution

()21
1~ mmNα −= −

λ , depending on λ , which can be used in (4.21).

The intercept b~ in (4.21) can be specified in different ways. Müller et al. (2001) mention

the mean of the average projections of the two groups. A popular choice is

() ()211
1

12
1

22
1 log~ nnb +′−′= −− mNmmNm λλ , which shows a clear similarity to the

intercept used in LDA.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

160

There are also other approaches which may be used to derive the KFDA classification rule.

Mika et al. (2001) show how this can be done by solving a convex quadratic optimisation

problem, while Van Gestel et al. (2002) exploit a link between least squares support vector

machines and LDA in feature space. Finally, Shawe-Taylor and Cristianini (2004) present

an argument which enables one to find the KFDA classification function by solving a ridge

like problem in feature space. In our empirical work we used the approach which was

presented above, based on regularising the matrix N .

4.4 ALGORITHM-INDEPENDENT VERSUS ALGORITHM-DEPEN-

 DENT SELECTION

In this section we discuss the difference between variable selection criteria which may be

applied in any kernel classification problem (so-called algorithm-independent criteria), and

those that depend on the output of a specific kernel classification algorithm and which are

therefore only applicable when this specific algorithm is used (so-called algorithm-

dependent criteria). The following definition is relevant in this regard.

DEFINITION 4.1: ALGORITHM-INDEPENDENT AND -DEPENDENT CRITERIA

An input variable selection criterion which can be used for any kernel classifier, for

example the SVM as well as the kernel Fisher discriminant classifier, is called algorithm-

independent, while a criterion which depends on the output from a specific kernel

classification algorithm is called algorithm-dependent.

This distinction is now discussed in greater detail. We saw in Chapter 2, and again in the

discussion of the SVM in Section 4.2 and KFDA in Section 4.3, that the general form of a

kernel classifier is given by

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

161

 () () ()∑
=

+=+Φ=
n

i
ii bkbf

1
,, xxxwx α , (4.22)

where ()∑
=

ℑ∈Φ=
n

i
ii

1
xw α , and where nααα ,,, 21 K and b are output from the particular

kernel learning algorithm. Although different kernel classifiers are based on different

algorithms to calculate nααα ,,, 21 K and b , all of these algorithms use the information

provided by the training patterns via the output from a kernel function. We can therefore

view an algorithm-independent criterion as a criterion which depends only on the

information provided by the kernel function applied to all pairs of training patterns,

together with the training labels. For an algorithm-dependent criterion there is additional

dependence on the coefficients nααα ,,, 21 K . Also, in selection based on an algorithm-

specific criterion the kernel algorithm used in derivation of the criterion and the post-

selection algorithm should be the same. In contrast, algorithm independent criteria may be

applied as part of the pre-processing step to any kernel analysis.

It should be clear that the kernel matrix plays an important role in both algorithm-

independent and algorithm-dependent criteria. The kernel matrix K is the n n×

symmetric matrix with entries ()jiij kk xx ,= , nji ,,2,1, K= . An algorithm-independent

selection criterion uses properties of K and patterns in its entries to select a subset of the

available input variables. For example, if we keep in mind that ijk may be viewed as a

measure of the similarity between training patterns ix and jx , it seems reasonable to

postulate the following ‘ideal’ structure for K : in the top-left 11 nn × sub-matrix, as well as

the bottom-right 22 nn × sub-matrix, we would like to observe entries reflecting a high

degree of similarity between training patterns, while in the two off-diagonal sub-matrices a

high degree of dissimilarity should ideally be reflected. Such considerations imply that we

can perform variable selection to end up with a matrix K which is in some sense as ‘close

as possible’ to this ‘ideal’ structure. In our further discussions we will use the notation IK

to denote a kernel matrix exhibiting such an ‘ideal’ structure.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

162

Another aspect regarding use of K in variable selection is that K obviously has to be re-

computed every time a new set of input variables is considered. In this respect using the

Gaussian kernel offers somewhat of a computational advantage. We require some notation.

Let jK be the kernel matrix based on variable jX only, pj ,,2,1 K= , i.e. jK has

elements (){ } pjnkixx-exp kjji ,,2,1;,,2,1,, KK ==−γ . Then the kernel matrix

corresponding to a subset variable subset V with indices in { }pJ ,,2,1 K=⊂ J can be

formed by element-wise multiplication of the elements of the kernel matrices Jjj ∈,K .

Having once computed and stored the single variable kernel matrices pKKK ,,, 21 K we

are therefore able to subsequently compute the kernel matrix corresponding to any subset

of variables without the need for re-computing exponentials.

Finally, an exhaustive all possible subsets approach to variable selection requires a kernel

matrix to be computed for every possible subset of variables. Even using the

computational savings for the Gaussian kernel referred to in the previous paragraph, this is

a daunting computational problem except in cases where p is very small. It is therefore no

surprise that stepwise variable selection approaches are popular options in practical

applications. An important example of a stepwise elimination approach, viz. recursive

feature elimination, is discussed in Chapter 5.

4.5 FEATURE SPACE GEOMETRY

In this section we examine data properties and operations in feature space more closely.

We start in Section 4.5.1 with several results pertaining to individual points in ℑ . This is

followed in Section 4.5.2 with results applicable to sets of feature vectors and linear

combinations in feature space. We consistently emphasise the form of the results when a

Gaussian kernel function is used.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

163

4.5.1 INDIVIDUAL POINTS

Consider a typical feature vector denoted by ()xΦ or ()zΦ , ℵ∈zx, , or simply by φ . The

following result summarises some useful operations on one (or between two) feature

vector(s).

RESULT 4.1

i. Inner products

It has already been pointed out that () () ()zxzx ΦΦ= ,,k . In the case of the Gaussian

kernel this is also the cosine of the angle between ()xΦ and ()zΦ (since

() () 1, ==Φ xxx k – see point ii. below). Thus, when one uses a Gaussian kernel, inner

products in feature space will always lie in the interval []1,0 . Also, ()zx,k is large when

the enclosed angle between x and z is small. Clearly we may view ()zx,k as a measure

of similarity between the training patterns x and z .

ii. Norms

The norm of a feature vector ()xΦ is () () () ()xxxxx ,, k=ΦΦ=Φ . For the

Gaussian kernel function the feature vectors will have unit norm, i.e. () () 1, ==Φ xxx k .

Hence, as also shown in Section 2.2.2, when one uses a Gaussian kernel all feature vectors

lie on the surface of a hypersphere with radius 1, which implies that the enclosed angle

between any two features will be at most 2π . Therefore we can view input patterns

mapped to a feature space via use of a Gaussian kernel to all lie in a single orthant of a

hypersphere with radius 1 in ℑ . This was illustrated in Figure 2.3.

iii. Distances

The Euclidian distance between feature vectors ()xΦ and ()zΦ is

() () () () () ()zxzxzx Φ−ΦΦ−Φ=Φ−Φ ,2

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

164

 () () () () () ()zzzxxx ΦΦ+ΦΦ−ΦΦ= ,,2,

 () () ()zzzxxx ,,2, kkk +−= . (4.23)

This reduces to ()[]zx,12 k− when using a Gaussian kernel function. In this case we know

that with () () 02 ≅Φ−Φ zx , () 1, ≅zxk , whereas with () () ∞≅Φ−Φ 2zx , () 0, ≅zxk .

Hence, when the feature space is induced via use of a Gaussian kernel, the Euclidian

distance between any two feature vectors will be confined to the interval []1,0 .

 

4.5.2 SETS OF POINTS

We now proceed with several definitions and results summarising properties of and

operations on a set of two or more feature vectors (for example, the feature vectors

corresponding to a data group in classification or clustering). We will use the notation

{ }nF φφφ ,,, 21 K= to represent such a set.

DEFINITION 4.2: THE CENTRE OF MASS

Define the centre of mass (sample mean vector, or centroid) of a set of points in feature

space as ∑
=

=
n

i
in

1

1 φΦ . Also, let ∑
∈

=
jIi

ijnj φΦ 1 represent the centre of mass of the feature

vectors belonging to data group j .

Note that Φ may be a vector such that no pattern in ℵ will yield Φ after being

transformed to ℑ , i.e. there does not necessarily exist an input pattern ℵ∈x such that

()Φ =x Φ .

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

165

The following proposition clarifies the interpretation of the centre of mass in feature space.

PROPOSITION 4.1

The centre of mass of a set of feature vectors ()Φ is the solution to the optimisation

problem









−∑
=

n

i
inmin

1

21 μφ
μ

. (4.24)

The above proposition can easily be verified by keeping in mind that () 0
1

=−∑
=

n

i
i Φφ .

Despite the inaccessibility of the coordinates of ∈ ℑΦ , the norm of the centre of mass can

easily be calculated.

RESULT 4.2

Consider a set of feature vectors { }nF φφφ ,,, 21 K= with Φ the centre of mass.

i. Norms

Calculation of the norm of Φ is straightforward:

1 1

1 1, ,
n n

i j
i jn n= =

= = ∑ ∑Φ Φ Φ φ φ

, 1

1 ,
n

i j
i jn =

= ∑ φ φ

 ∑
=

=
n

ji
ijk

n 1,

1 . (4.25)

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

166

ii. Distances

The mean sample Euclidian distance from feature vectors in F to Φ is

() ()2

1 1

1 1n n

i i i
i in n= =

′
− = − −∑ ∑φ Φ φ Φ φ Φ

 ()∑ ∑ −=
= =

N

j

n

i
jijφ

n 1 1

21
Tφ

 ∑∑∑
===

−+=
n

ji
ij

n

ji
ij

n

i
ii k

n
k

n
k

n 1,
2

1,
2

1

211

 ∑∑
==

−=
n

ji
ij

n

i
ii k

n
k

n 1,
2

1

11 . (4.26)

The Euclidian distance between two mean vectors in feature space is

 ∑ ∑∑ ∑∑ ∑
∈ ∈∈ ∈∈ ∈

+−=−
2 2

22
1 2

21
1 1

11
1111112

21 ,,2,
Ii Ij

jnin
Ii Ij

jnin
Ii Ij

jnin φφφφφφΦΦ

 21
2
2

2
1

1 22 21 1

,2,, nnnn
Ii Ij

ji
Ii Ij

ji
Ii Ij

ji ∑ ∑∑ ∑∑ ∑
∈ ∈∈ ∈∈ ∈

−+= φφφφφφ

 21
2
2

2
1

1 22 21 1

2 nnknknk
Ii Ij

ij
Ii Ij

ij
Ii Ij

ij ∑ ∑∑ ∑∑ ∑
∈ ∈∈ ∈∈ ∈

−+= . (4.27)

 

Of course, when one uses a Gaussian kernel function, the mean sample distance in (4.26)

reduces to ∑
=

−
n

ji
ijk

n 1,
2

11 .

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

167

4.6 ALGORITHM-INDEPENDENT SELECTION

4.6.1 SELECTION CRITERIA

THE ALIGNMENT

Reconsider the so-called ‘ideal’ kernel matrix, IK , in binary classification. It seems

natural to propose selecting the subset of input variables yielding a kernel matrix with the

‘closest’ agreement to the structure in IK . How can one measure the agreement of

matrices jK , J⊂∈ Jj , with IK ? Cristianini et al. (2002) define a measure of

agreement between kernel matrices 1K and 2K as

 ()
FF

FA
2211

21
21

,,

,
,

KKKK

KK
KK = , (4.28)

where ()ABBA trba
ji

ijijF == ∑
,

, is the so-called Frobenius inner product between

matrices A and B . In (4.28) the resemblance of the alignment with a correlation

coefficient is evident: if the elements of 1K and 2K are stacked into 2n -dimensional

vectors 1k and 2k , the alignment can be viewed as the cosine of the angle between 1k and

2k . Hence it follows that () 1,1 21 ≤≤− KKA . The alignment was initially introduced in

the context of finding the ‘optimal’ hyperparameter values in kernel analyses. In this

context, kernel matrices corresponding to alternative hyperparameter values are measured

against yyK ′=I , where














−−−+++=′

43421 K43421 K
terms nterms n 21

1,,1,1,1,,1,1y , (4.29)

and a hyperparameter specification yielding a kernel matrix closer to yyK ′=I is

considered to be the more ‘optimal’ specification.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

168

Hence IK (as proposed in the paper by Cristianini et al., 2002) contains an 11 nn × sub-

matrix of 1’s in the top left position, a similar 22 nn × sub-matrix in the bottom right

position, all other elements equal to -1, thereby clearly reflecting ‘perfect similarity’

between cases belonging to the same group, and ‘perfect dissimilarity’ between cases

belonging to opposite groups.

Returning to the variable selection problem, it seems reasonable to propose the use of

()IA KK , to measure the agreement of the structure in kernel matrices (based on different

subsets of input variables) with the structure in yyK ′=I . That is, we propose using

 () ()
FF

F
I AA

yyyyKK

yyK
yyKKK

′′

′
=′=

,,

,
,, , (4.30)

which simplifies to

() () ()

()∑ ∑

∑ ∑ ∑ ∑∑ ∑

= =

∈ ∈ ∈ ∈∈ ∈
−+

=
n

i

n

j
ji

Ii Ij Ii Ij
ji

Ii Ij
jiji

kn

kkk
A

1 1

2,

,2,,
1 1 1 22 2

xx

xxxxxx
 (4.31)

to rate the different variable subsets of a given size, and then to select the subset of input

variables corresponding to the highest value for the alignment criterion (A) above.

In our evaluation of the alignment criterion later on, we make use of the Gaussian kernel

function to obtain the kernel matrices corresponding to the variable subsets considered. Of

course, using the Gaussian kernel function, ‘perfect similarity’ between input patterns

belonging to the same class is reflected by 1’s in the 11 nn × and 22 nn × sub-matrices of

K , and ‘perfect dissimilarity’ is reflected by all the remaining entries being equal to 0.

One might now ask whether yyK ′=I should not be redefined: should we not rather make

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

169

use of













=′

43421 K321K

terms nterms n 21

0,,0,0,1,,1,1y in (4.30)? If we decide on the latter definition of IK , note

that (4.31) would simply become

() ()

()∑ ∑

∑ ∑ ∑ ∑

= =

∈ ∈ ∈ ∈
+

=
n

i

n

j
ji

Ii Ij Ii Ij
jiji

kn

kk
A

1 1

2
1 ,

,,
1 1 2 2

xx

xxxx
. (4.32)

In a binary classification setup, one expects the ()∑ ∑
∈ ∈1 2

,
Ii Ij

jik xx -term to provide valuable

information regarding how well the two groups can be separated, and therefore we believe

that the form of the criterion in (4.31) should be preferred to the one in (4.32). If one uses

the Gaussian kernel function to calculate K , a problem however arises with the criterion in

(4.31): a kernel matrix reflecting ‘perfect’ separation between the two groups will have 0’s

instead of -1’s in its 21 nn × sub-matrix. In order to ensure comparability of K with

yyK ′=I , we therefore suggest making use of the following translation of the Gaussian

kernel function:

 () () 1,2,
~

−= jiji kk xxxx

 12
2

−




 −−= jiexp xxγ . (4.33)

Based firstly on the use of (4.33) instead of the usual Gaussian kernel function (in (2.2)) to

calculate the kernel matrices (pertaining to each variable subset under consideration), and

secondly, on using the alignment criterion (in (4.31)) to decide between input variable

subsets of a fixed size, an alternative selection procedure therefore arises. We will refer to

this proposal as the translated alignment (or the AT) procedure in subsequent sections.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

170

THE SUM OF GROUP SIMILARITIES

Often in a two-group classification problem it is more important to discern significant

differences between cases belonging to opposite groups than establishing similarities

among sample cases in the same group. Arguing that perhaps the first two terms (which

accumulate similarities between cases in the same group) in the numerator of the alignment

may overshadow the third term (which quantifies the correspondence between input

patterns from distinct groups), a possible criterion for selecting input variables may

therefore simply be the sum of the kernel matrix entries in the 1 2n n× submatrix, viz.

∑ ∑
∈ ∈

=
1 2Ii Ij

ijkSS .

If the two groups are well separated, similarities between pairs of input patterns observed

for sample cases belonging to opposite groups should be small. Therefore, using SS, our

selection strategy is to select the subset of variables which minimises the sum of

similarities contained in the 21 nn × submatrix of the kernel matrix. If the Gaussian kernel

function is used, note that 210 nnSS ≤≤ . Naturally one could also consider using the

translated Gaussian kernel function in (4.33). In this case, 2121 nnSSnn ≤≤− .

THE DIFFERENCE IN GROUP MEANS

When the two groups are separated mainly with respect to their mean vectors (in ℑ), a

logical choice for a selection criterion is the distance between the respective group means,

where the means are calculated in feature space. Hence we propose selecting the subset of

variables which maximises the length of the difference vector 1 2−Φ Φ in ℑ . A possible

selection criterion is therefore
2

21 ΦΦ −=M , and we propose selection of the variable

subset which yields a maximum value for M. Recall that in general the coordinates of

ℑ∈jΦ , 2,1=j , cannot be obtained. Fortunately, we have seen in (4.27) that a value for

M can be calculated via use of a kernel function.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

171

THE VARIANCE RATIO

Wang et al. (2004) propose the following criterion for determining a value for the

hyperparameter γ in the Gaussian kernel function:

 () 2
11

2
2

2
1

ΦΦ −

+
=

ssVA γ . (4.34)

In this expression, ∑
∈

=
jIi

ijnj φΦ 1 and ∑
∈

−=
jIi

jijs
22 Φφ , 1, 2j = . Note that ()γVA can

easily be calculated: the denominator is given in (4.27), and the terms in the numerator are

 ()∑ ∑∑
∈ ∈∈

−=−=
j jj Ii Ih

ihj
Ii

jij kns xxΦφ ,
22 , 2,1=j . (4.35)

The numerator in ()γVA may be interpreted as a measure of the total within-group sample

variation in feature space. Similarly, the denominator is a measure of the between-group

variation, once again in feature space. Given these interpretations of the numerator and

denominator, we will refer to ()γVA as a variation ratio criterion.

The variation ratio resembles the reciprocal of the Rayleigh quotient in feature space (given

in Section 4.3.2), which is maximised to determine the KFD classifier. In KFDA we work

with measures of this variation after projecting the feature vectors onto a line in feature

space, and our purpose is to find the classification rule maximising the between-to-within

group variation measured along the projection line. The variation ratio criterion also

considers between- and within-group variation after projecting the points in feature space

onto some line. In order to see this, consider the average (centre) of the projections of all

group j cases in ℑ onto a line spanned by u in ℑ , viz.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

172

 ∑
∈

=
jIi

j
i

j nP u
uu
φu

Φu ,
,

, 1, 2j = . (4.36)

The line connecting the post-projection centres jP Φu , 1, 2j = , has length

2

21 ΦΦ uu PP −
2

11 ,,,,
2

2
1

1
uuuφuuuuφu ∑∑

∈∈
−=

Ii
in

Ii
in

() 2

21

,

,,











 −

=
uu

uΦuΦu

2

21

,
,











 −

=
uu

uΦΦu

()()1 2 1 2

′′ − −
=

′
u Φ Φ Φ Φ u

u u
. (4.37)

Substituting 1 2= −u Φ Φ in (4.37), the length of the line connecting the post-projection

centres jP ΦΦΦ 21− , 1, 2j = , turns out to be
2

21 ΦΦ − , the denominator in the variation

ratio. Hence, if we project all data cases in ℑ onto the line connecting the group centres in

feature space, i.e. onto 1 2−Φ Φ , the length of the line connecting the post-projection group

centres in ℑ is exactly the length of the line connecting the original group centres in ℑ .

Although the denominator in the variation ratio seems to simply measure between-group

variation in ℑ , it can therefore also be interpreted as a measure of between group variation

after projecting all sample points onto 1 2−Φ Φ . From the above observation, the similarity

of the denominator in ()γVA and the numerator in the Rayleigh quotient becomes more

apparent.

From a classification perspective, a small value for the variation ratio is desirable and

Wang et al. (2004) consequently propose determining γ to minimise ()γVA . It seems

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

173

natural to consider using the variation ratio as a criterion in variable selection: for a given

variable subset size m , select those variables minimising this criterion. In a selection setup

it seems reasonable to keep γ fixed, since we are not primarily interested in the variation

ratio as a function of γ , but in obtaining relative ranks for the variable subsets of equal

size. We propose using 1 pγ = in ()γVA . Since we will be using ()γVA as selection

criterion and not to determine a value for γ , we will suppress its dependence on γ and

simply denote it by VA .

4.6.2 MONTE CARLO SIMULATION STUDY

We now describe an empirical study which was conducted to evaluate the relative

performance of the algorithm-independent selection criteria in the previous section (A, AT,

M, SS and VA), and follow this with a presentation and brief discussion of the results that

were obtained.

In essence we made use of the same simulation configurations as described in Section 3.4.

Recall that the post-selection simulation results presented in Chapter 3 indicated NL

configurations to be more suited for selection in input space. Therefore note that all NL

configurations were omitted in the simulation study discussed in this section, and will also

not be investigated in any of the simulation studies described in the remainder of the thesis.

We also only generated data sets where the relevant and irrelevant subsets of input

variables were uncorrelated (i.e. where 0=SSρ). The resulting experimental design

amounted to 16 configurations per data scenario, viz. the NS, LL and LS setups. In this

section, note that we make use of the following numbering of data configurations: a ‘1’

refers to 0=Sρ , 1.0=π cases; a ‘2’ refers to 0=Sρ , 4.0=π cases; we use a ‘3’ to

denote all 7.0=Sρ , 1.0=π cases; and a ‘4’ is used in cases where 7.0=Sρ and 4.0=π .

Each simulation repetition was structured as follows. Consider any selection criterion. We

firstly generated a training sample according to the data scenario under consideration, and

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

174

used the training sample values on each of the input variables pXXX ,,, 21 K to obtain a

value for the criterion. Depending on the selection criterion considered, we used the m

smallest (or largest) absolute values of a selection criterion to indicate the m input

variables to select, and kept record of the number of times each input variable was selected.

We then generated a test sample, and calculated the test error after performing KFDA or

after fitting an SVM based on the selected subset of input variables only. We calculated

the average of the selection frequencies and test errors over the simulation repetitions (we

made use of 500 repetitions throughout), and repeated the process for all selection criteria.

Note that we treated specification of the kernel hyperparameter and the cost

hyperparameter (in this case we used 5 3 1 1 3 510 ,10 ,10 ,10 ,10 ,10C − − −=) in the same manner

as in the simulation studies carried out in Chapters 2 and 3. The average test errors

reported are the minimum average test errors obtained over the various C-values. The

value of the kernel hyperparameter was once again specified as 1 pγ = throughout.

The average test errors are reported in a set of six tables. The first pair of tables (Tables

4.1 and 4.2 below) report NS average test errors, the second pair of tables correspond to the

LL data scenarios, and the third pair summarise the LS results. Furthermore, the first table

of each pair reports the average KFDA test errors, while the second table of each pair

summarises SVM generalisation performances. As was the case in Chapters 2 and 3, note

that we included rows which report on the average KFDA and SVM test errors when no

selection is performed (in the ()VErr -rows), as well as the average KFDA and SVM errors

when only the set of relevant input variables are used (in the ()SVErr -rows). Standard

errors ranged between 0.000 and 0.007.

Since our conclusions based on the NS scenario were representative of the conclusions

emanating in the LL and LS scenarios, note that we only present Tables 4.1 and 4.2 below.

The four remaining tables are given in Appendix A.2.1.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

175

Table 4.1: Average test errors in the NS case

KFDA

 ()VErr ()SVErr ()VAErr ()MErr ()SSErr ()AErr ()ATErr

NS1 SMALL .454 .282 .407 .414 .461 .345 .336

MIXED .250 .250 .250 .250 .250 .250 .250

LARGE .379 .258 .259 .259 .436 .258 .258

 WIDE .410 .085 .462 .463 .468 .207 .194

NS2 SMALL .225 .102 .188 .193 .291 .154 .149

MIXED .199 .086 .130 .132 .250 .250 .250

LARGE .204 .110 .110 .110 .243 .110 .110

 WIDE .129 .003 .123 .125 .160 .014 .012

NS3 SMALL .455 .282 .410 .417 .465 .340 .332

MIXED .250 .250 .250 .250 .250 .250 .250

LARGE .379 .259 .259 .259 .427 .259 .259
 WIDE .425 .138 .466 .467 .472 .281 .274

NS4 SMALL .309 .153 .221 .227 .313 .197 .191

MIXED .250 .250 .250 .250 .250 .250 .250

LARGE .135 .083 .083 .083 .218 .083 .083

 WIDE .223 .019 .237 .238 .266 .110 .101

Firstly, we note that in mixed samples, the KFDA errors pertaining to the NS1, NS3 and

NS4 cases, as well as the LS1, LS3 and LS4 cases, were consistently 0.25 – see the

discussion on page 70. Secondly, we see that the AT criterion generally was the best

performer, with the A criterion in second place, followed by the VA-, and M criteria. The

SS criterion performed rather poorly throughout. Relative to differences between the post-

selection errors when AT and A were used, as well as between the errors obtained in the

case of VA and M, note that we typically observe a larger margin between errors using A

and VA.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

176

Table 4.2: Average test errors in the NS case (continued)

SVM

 ()VErr ()SVErr ()VAErr ()MErr ()SSErr ()AErr ()ATErr

NS1 SMALL .455 .290 .408 .412 .462 .345 .336

MIXED .332 .254 .259 .266 .267 .266 .260

LARGE .396 .258 .258 .258 .426 .258 .258

 WIDE .430 .123 .463 .464 .468 .251 .240

NS2 SMALL .259 .129 .189 .194 .297 .203 .169

MIXED .206 .091 .127 .129 .365 .366 .365

LARGE .227 .090 .090 .090 .231 .090 .090

 WIDE .086 .005 .246 .248 .287 .049 .043

NS3 SMALL .450 .291 .408 .415 .464 .346 .339

MIXED .334 .254 .259 .260 .268 .267 .266

LARGE .397 .257 .257 .257 .429 .257 .257
 WIDE .430 .187 .470 .471 .476 .295 .285

NS4 SMALL .320 .180 .250 .255 .326 .227 .222

MIXED .265 .116 .144 .146 .363 .366 .367

LARGE .163 .077 .077 .077 .217 .077 .077

 WIDE .250 .151 .321 .322 .341 .198 .194

The above conclusions hold irrespective of whether SVMs were trained, or KFDA were

performed. Differences between the post-selection average errors were somewhat less

prominent in the LL data scenarios. There AT and A perform very similarly, with the AT

criterion doing only slightly better in wide sample cases. The VA criterion generally

outperformed M, especially in small sample cases. A clear distinction between VA and M

was however not possible for mixed, large and wide samples. In the LS data setups, once

again the AT criterion emerged as the overall winner. As was the case with NS and LL

data, VA consistently outperformed M, except in wide samples, where the opposite was

found.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

177

4.7 ALGORITHM-DEPENDENT SELECTION

In this section, we consider algorithm-dependent selection criteria. In addition to entries in

the kernel matrix, algorithm-dependent criteria are allowed to also depend on the

nααα ,,,
21 K values obtained as output from the kernel algorithm. This allowance of

course causes algorithm-dependent criteria to be computationally much more expensive.

We start by considering a criterion for selection in SVMs, and then focus on selection in

KFDA.

4.7.1 SELECTION CRITERIA

THE SQUARED NORM OF THE SVM WEIGHT VECTOR

Consider an SVM discriminant function, () () bf +Φ= xwx , , where the weight vector w

is given by ()∑
=

Φ=
n

i
iii y

1
xw α , with nααα ,,,

21 K of course output from the SVM

algorithm. It follows that the squared norm of the SVM weight vector is

()∑ ∑
= =

=
n

i

n

j
jijiji kyy

1 1

2 , xxw αα , with k the kernel function. Since 2w plays such an

intrinsic part in the SVM methodology, we consider the use of 2w as selection criterion

for SVMs: firstly, can 2w be regarded as an appropriate selection criterion, and secondly,

if so, how should 2w be used?

One tends to think that amongst variable subsets with the same size, if one performs

variable selection based on 2w , the variable subset of choice should be the subset leading

to a minimum value for 2w ; after all, the idea underlying training of an SVM is to

maximise the margin, which is inversely proportional to 2w . This point of view turns out

to be wrong. Substantial empirical evidence convinced us that the proper way of using

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

178

2w as criterion in selection for SVMs, is to select the subset of variables which maximise

the value of 2w . The following heuristic argument may provide more insight. Consider

()
2

1 1

2 ,∑ ∑
= =

=
n

i

n

j
jijiji kyy xxw αα

 () () ()
2

,,, 212211

,2,, ∑∑∑
∈∈∈∈∈∈

−+=
IjIi

jiji
IjIi

jiji
IjIi

jiji kkk xxxxxx αααααα . (4.38)

This expression follows easily if we keep in mind that 1i jy y = when sample cases i and

j belong to the same group, and 1i jy y = − otherwise. Since the iα ’s and the Gaussian

kernel function values are non-negative, it follows that each of the three terms in (4.38)

will also be non-negative. Suppose we compute (4.38) for a subset of variables which

separate the two groups well. Then the cross-group term in (4.38) will tend to be small,

since entities from groups which are well separated will look markedly different and

therefore ()jik xx , will be close to zero if i and j correspond to cases from different

groups. This should result in a larger value of (4.38) than the value obtained for a subset of

variables which do not separate the two groups well. Note that this does not contradict the

practice of computing nααα ,,,
21 K for an SVM by maximising the margin, and therefore

minimising 2w . One should bear in mind that when we compute nααα ,,,
21 K , we do so

for a fixed set of input variables, i.e. for fixed values of ()jik xx , . This is completely

different from the situation in variable selection.

With the aim of empirically verifying the above conclusion, we conducted a very limited

simulation experiment. We used the same data structure as in the NS, LL and LS data

scenarios described in Chapter 3, and fixed the number of relevant input variables at 1m =

(out of 5p =). Regarding the correlation between pairs of input variables, we set 0=Sρ

or 0.7. The correlation between pairs of relevant and irrelevant variables was 0=SSρ

throughout. In cases where the two groups were separated with respect to location, we

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

179

investigated one extra scenario: in addition to a difference in group means ()Δμμ =− 1121

equal to 1, we also set 3=Δ . When differences between the two groups were obtained via

different variance-covariance structures, we used 12
1 =s and 1002

2 =s in addition to 12
1 =s

and 102
2 =s .

Note that the experiment did not involve any selection steps: we simply trained five SVMs

(each making use of the Gaussian kernel), based on the single input variables

1 2 5, , ,X X XK . For each of the five support vector classifiers, i.e. ()1XSVM , ()2XSVM ,

K , ()5XSVM , we then calculated an average 2w -value and, based on 2000 test cases, an

average test error over 1000 simulation repetitions. The experiment was repeated using

different cost parameter values, viz. C = 0.01, 0.1, 1, 10, 100 and 1000, and for both small

(1521 == nn) and large (10021 == nn) sample sizes.

The results are summarised in Tables 4.3-4.5, for the NS, LL and LS data scenarios

respectively. Each cell contains two rows. The entry in the first row of each cell is the

average value of 2w , and the figure in the second row is the corresponding test error

value. Note that we do not report the average test errors at each of the six cost parameter

values considered, but only at the C-value where a minimum average test error was

obtained. For each configuration (in the table columns) we indicate the largest average
2w -value in bold face.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

180

Table 4.3: Average 2w values and minimum average test errors for NS data

SMALL SAMPLES

VARIABLE
0=Sρ ,

1=Δ

7.0=Sρ ,

1=Δ

0=Sρ ,

3=Δ

7.0=Sρ ,

3=Δ

1X
0.0845

.2904

0.01658

.2885

2.4876

.1330

0.7184

.1334

2X
0.0252

.5001

0.0211

.4999

1.3631

.4994

0.4853

.5000

3X
0.0156

.4997

0.0089

.4998

2.2004

.4999

2.8824

.5003

4X
0.1662

.5003

0.0256

.5002

1.7159

.5004

1.4332

.5001

5X
0.1462

.5001

0.0176

.5002

0.3199

.5001

0.5859

.4998

LARGE SAMPLES

VARIABLE
0=Sρ ,

1=Δ

7.0=Sρ ,

1=Δ

0=Sρ ,

3=Δ

7.0=Sρ ,

3=Δ

1X
.0413

.2570

.0490

.2572

.8939

.1069

.9536

.1072

2X
.0151

.4998

.0089

.4995

.0477

.4995

1.5409

.4994

3X
.0267

.5005

.0118

.4999

.0409

.5003

5.2769

.4999

4X
.0097

.5005

.0098

.4999

.4827

.5003

.1451

.5003

5X
.0152

.4998

.0046

.5002

.0914

.4997

.1851

.5007

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

181

Table 4.4: Average 2w -values and minimum average test errors for LL data

SMALL SAMPLES

VARIABLE
0=Sρ ,

1=Δ

7.0=Sρ ,

1=Δ

0=Sρ ,

3=Δ

7.0=Sρ ,

3=Δ

1X
.000003

.1237

.000303

.1235

.000020

.02624

.002007

.02602

2X
.000000

.4995

.000200

.4998

.000001

.4999

.000046

.4497

3X
.000001

.5002

.000016

.5003

.000000

.5010

.000024

.5000

4X
000001

.5005

.000100

.5000

.000000

.5001

.000047

.4998

5X
.000000

.4998

.000206

.4995

.000001

.4998

.000048

.0260

LARGE SAMPLES

VARIABLE
0=Sρ ,

1=Δ

7.0=Sρ ,

1=Δ

0=Sρ ,

3=Δ

7.0=Sρ ,

3=Δ

1X
.0003

.1137

.000001

.1144

.1408

.0218

.0103

.02213

2X
.0000

.5000

.000000

.4999

.0580

.5004

.0038

.4998

3X
.0000

.4996

.000000

.5005

.1553

.4999

.0062

.5005

4X
.0000

.4999

.000000

.5001

.1010

.4999

.0035

.5001

5X
.0000

.5000

.000000

.4996

.1810

.4999

.0070

.4493

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

182

Table 4.5: Average 2w -values and minimum average test errors for LS data

SMALL SAMPLES

VARIABLE
0=Sρ ,

1=Δ

7.0=Sρ ,

1=Δ

0=Sρ ,

3=Δ

7.0=Sρ ,

3=Δ

1X
.0472

.2135

.1503

.2119

.2331

.1100

4.7804

.1108

2X
.2078

.4994

.0603

.5002

.1602

.5005

1.3880

.5002

3X
.2298

.5001

.02819

.4999

.1085

.5001

.1817

.4997

4X
.1329

.5000

.1735

.4996

.2458

.4999

.1518

.4992

5X
.0711

.4002

.0401

.5003

.01619

.4998

.1002

.5002

LARGE SAMPLES

VARIABLE
0=Sρ ,

1=Δ

7.0=Sρ ,

1=Δ

0=Sρ ,

3=Δ

7.0=Sρ ,

3=Δ

1X
.8006

.1805

.2489

.1800

1.7244

.0825

7.7024

.0830

2X
.1783

.5004

.0093

.5002

.6405

.5000

.6188

.5002

3X
.2281

.5001

.02202

.5004

.4727

.4998

.4940

.5002

4X
.1481

.5002

.0240

.4998

.6134

.5001

.3220

.4999

5X
.2342

.4999

.0141

.4992

.0433

.4999

3.8326

.4997

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

183

As in the numerical experiments reported in previous chapters, first note the significant

improvement in the minimum (over C-values) average test error when the support vector

classifier uses only the separating input variable ()1X , rather than any other single variable.

What can be said about suitability of the idea to select the set of input variables maximising
2w ? Consider first the small sample results, summarised in the first parts of Tables 4.3 to

4.5. Here the LL data sets do indeed yield maximum values of 2w for the SVM based on

1X , which is also the SVM having the smallest test error. In these cases it seems that

using a selection procedure based on maximising 2w should work well. The results for

the small sample NS and LS data scenarios are not as promising. In the four small sample

NS cases, 2w is a maximum for ()1XSVM only once, with a similar result for the four

small sample LS cases. The large sample results (presented in the lower parts of Tables 4.3

to 4.5) are decidedly more promising. For each of NS, LL and LS we find 2w to be a

maximum for ()1XSVM in three out of the four scenarios investigated. Overall it seems

that selecting variables to maximise 2w may indeed be a worthwhile proposal. Note that

in our further discussions we will denote the 2w criterion by N.

THE RAYLEIGH QUOTIENT

In this section we turn attention to selection for KFDA. Considering algorithm-dependent

selection, we now ask whether it is possible to propose a quantity for selection which, in

addition to kernel matrix entries, also make use of the nααα ,,,
21 K output from the KFDA

algorithm. We follow our reasoning in proposing the N criterion for SVMs, and focus our

attention on the key aspect in KFDA methodology.

The objective of KFDA in binary classification is to find the direction in feature space

corresponding to the projection providing the best possible separation between the two

groups. Separation is measured in terms of the ratio between the distance between the two

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

184

projected group means in ℑ , and the variance of the projected data in ℑ within a specific

group. We have seen in Section 4.3.2 that the KFDA objective is realised via maximisation

of the Rayleigh quotient (given in (4.20)). The Rayleigh quotient is the criterion on which

the KFDA algorithm is founded, and since its value depends on the KFDA α -coefficients,

we propose using it to rate variable subsets of the same size: variable subsets corresponding

to large values for the Rayleigh quotient are preferred.

Note that the Rayleigh quotient bears strong resemblance to the inverse of the variation

ratio criterion in Section 4.6.1. A distinction between these two criteria is of course that,

through additional dependence of the Rayleigh quotient on the KFDA nααα ,,,
21 K

output, the latter is computation-wise a much more expensive criterion.

4.7.2 MONTE CARLO SIMULATION STUDY

We compared the performances of the algorithm-dependent selection criteria that were

proposed in the previous section, viz. the Rayleigh coefficient (R) in KFDA, and the norm

of the weight vector in SVMs (N) by conducting a Monte Carlo simulation study. In our

numerical evaluation we made use of the same experimental design and simulation

configurations as those described in Section 4.6.2.

The obtained average test errors are presented in Tables 4.6-4.8 below. Each table contains

KFDA test errors in the first three columns, followed by SVM test errors in columns 5 to 7.

We once again report the no selection and the oracle average test errors (denoted as before

by ()VErr and ()SVErr respectively); and in the case of KFDA, the post-selection error

based on R (denoted by ()RErr); or in the case of SVMs, the average error rate obtained

after performing selection based on the N criterion (in the ()NErr column).

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

185

Table 4.6: Average test errors in the NS case

KFDA SVM

 ()VErr ()SVErr ()RErr sel ()VErr ()SVErr ()NErr sel

NS1 SMALL .454 .282 .326 1.16 .455 .290 .328 1.13

MIXED .250 .250 .250 1.00 .332 .254 .254 1.00

LARGE .379 .250 .258 1.03 .396 .258 .258 1.00

 WIDE .410 .085 .204 2.40 .430 .123 .255 2.07

NS2 SMALL .255 .102 .138 1.35 .259 .129 .175 1.36

MIXED .199 .086 .092 1.07 .206 .091 .096 1.05

LARGE .204 .110 .110 1.00 .227 .090 .090 1.00

 WIDE .129 .003 .009 3.00 .086 .005 .039 7.80

NS3 SMALL .455 .282 .324 1.15 .450 .291 .332 1.14

MIXED .250 .250 .250 1.00 .334 .254 .254 1.00

LARGE .379 .259 .259 1.00 .397 .257 .257 1.00

 WIDE .425 .138 .278 2.01 .430 .187 .295 1.58

NS4 SMALL .309 .153 .180 1.18 .320 .180 .209 1.16

MIXED .250 .250 .250 1.00 .265 .116 .120 1.03

LARGE .135 .083 .083 1.00 .163 .077 .077 1.00

 WIDE .223 .019 .097 5.11 .250 .151 .185 1.23

The selection (sel) column for KFDA contains the values () ()SVErrRErr , whereas for

SVMs, the selection column represents () ()SVErrNErr . Since the ()SVErr -values

portray the scenario where we did know which of the m variables were relevant, they

represent the best one could possibly do. Hence the values in the selection columns should

be larger than 1. Of course smaller sel-values (i.e. values closer to 1) indicate higher post-

selection classification accuracy. Care should again be taken when interpreting the mixed

sample results – see the discussion on page 70.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

186

Table 4.7: Average test errors in the LL case

KFDA SVM

 ()VErr ()SVErr ()RErr Sel ()VErr ()SVErr ()NErr sel

LL1 SMALL .337 .135 .137 1.01 .331 .122 .124 1.02

MIXED .165 .079 .079 1.00 .171 .064 .064 1.00

LARGE .215 .122 .122 1.00 .232 .115 .115 1.00

 WIDE .301 .058 .069 1.19 .265 .068 .071 1.04

LL2 SMALL .166 .078 .078 1.00 .157 .084 .084 1.00

MIXED .078 .042 .042 1.00 .071 .045 .046 1.02

LARGE .072 .032 .032 1.00 .077 .033 .034 1.03

 WIDE .122 .039 .049 1.26 .089 .020 .022 1.10

LL3 SMALL .330 .137 .139 1.01 .334 .121 .124 1.02

MIXED .160 .079 .079 1.00 .171 .064 .064 1.00

LARGE .213 .121 .121 1.00 .229 .113 .113 1.00

 WIDE .352 .117 .127 1.09 .324 .122 .190 1.56

LL4 SMALL .219 .124 .125 1.01 .216 .127 .127 1.00

MIXED .100 .079 .079 1.00 .100 .068 .069 1.01

LARGE .151 .084 .084 1.00 .143 .084 .085 1.01

 WIDE .228 .099 .107 1.08 .218 .128 .133 1.04

Comparing the selection values obtained for the R criterion for KFDA with those of the N

criterion for SVMs, we see that in the NS and LL data scenarios, selection using the N

criterion is mostly preferred to selection using the R criterion. Two exceptions occur: in

the NS2 and the LL3 wide sample cases the R criterion outperforms the N criterion. In the

NS2 case selection using the R criterion yields significantly smaller average test errors than

selection using the N criterion: compare a selection value of 3 in the case of R with a value

of 7.8 in the case of N. Finally, in the LS data setups, note that we generally observe the

opposite: there the R criterion outperforms the N criterion, with a single exception

occurring in the LS4 wide sample case.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

187

Table 4.8: Average test errors in the LS case

KFDA SVM

 ()VErr ()SVErr ()RErr sel ()VErr ()SVErr ()NErr sel

LS1 SMALL .438 .225 .248 1.10 .441 .213 .368 1.73

MIXED .250 .250 .250 1.00 .335 .227 .242 1.07

LARGE .360 .201 .202 1.00 .361 .180 .194 1.08

 WIDE .449 .119 .200 1.68 .449 .136 .332 2.44

LS2 SMALL .262 .126 .138 1.10 .269 .125 .158 1.26

MIXED .193 .096 .099 1.03 .195 .086 .245 2.85

LARGE .154 .085 .085 1.00 .163 .076 .078 1.03

 WIDE .279 .054 .106 1.96 .260 .062 .128 2.06

LS3 SMALL .442 .223 .244 1.09 .442 .208 .266 1.28

MIXED .250 .250 .250 1.00 .333 .224 .245 1.09

LARGE .360 .201 .202 1.00 .361 .179 .193 1.08

 WIDE .457 .141 .263 1.87 .449 .174 .356 2.05

LS4 SMALL .323 .149 .158 1.06 .315 .166 .223 1.34

MIXED .243 .129 .135 1.05 .251 .095 .146 1.54

LARGE .206 .126 .126 1.00 .221 .092 .095 1.03

 WIDE .342 .082 .196 2.39 .327 .168 .250 1.49

Up to this point, the results of our numerical evaluation has lead us to conclude that, of the

algorithm-independent selection criteria, the AT criterion generally is the selection criterion

of choice, followed by the A criterion, and then by VA. Amongst the algorithm-dependent

criteria, we concluded that typically in NS and LL data setups, the N criterion for SVMs

performs best, but that in LS scenarios, use of the R criterion for KFDA should be

recommended.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

188

The remaining question is whether the extra computational burden required to calculate the

algorithm-dependent criteria is justified: do the algorithm-dependent criteria tend to select

better variable subsets?

In order to facilitate a recommendation regarding a choice between algorithm-independent

and -dependent selection criteria, we calculated the selection values corresponding to best-

perfoming algorithm-independent criteria (i.e. AT, A and VA), and report these values,

along with the N and R selection values (provided earlier on) in Tables 4.9-4.11. Care

should once again be taken when interpreting the mixed sample results – refer to the

discussion on page 70.

Table 4.9: Selection values for algorithm-dependent and –independent criteria in NS data

KFDA SVM

 AT A VA R AT A VA N

NS1 SMALL 1.19 1.22 1.44 1.16 1.16 1.19 1.41 1.13

MIXED 1.00 1.00 1.00 1.00 1.02 1.05 1.02 1.00

LARGE 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00

 WIDE 2.28 2.44 5.44 2.40 1.95 2.04 3.76 2.07

NS2 SMALL 1.46 1.51 1.84 1.35 1.31 1.57 1.47 1.36

MIXED 2.91 2.91 1.51 1.07 4.01 4.02 1.40 1.05

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 WIDE 4.00 4.67 41.0 3.00 8.60 9.8 49.2 7.80

NS3 SMALL 1.18 1.21 1.45 1.15 1.16 1.19 1.40 1.14

MIXED 1.00 1.00 1.00 1.00 1.05 1.05 1.02 1.00

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 WIDE 1.99 2.04 3.38 2.01 1.52 1.58 2.51 1.58

NS4 SMALL 1.25 1.29 1.44 1.18 1.23 1.26 1.39 1.16

MIXED 1.00 1.00 1.00 1.00 3.16 3.16 1.24 1.03

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 WIDE 5.32 5.79 12.5 5.11 1.28 1.31 2.13 1.23

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

189

Table 4.10: Selection values for algorithm-dependent and –independent criteria in LL data

KFDA SVM

 AT A VA R AT A VA N

LL1 SMALL 1.03 1.03 1.15 1.01 1.03 1.03 1.14 1.02

MIXED 1.01 1.01 1.00 1.00 1.02 1.00 1.00 1.00

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 WIDE 1.10 1.14 1.52 1.19 0.96 0.97 1.34 1.04

LL2 SMALL 1.01 1.01 1.06 1.00 1.01 1.02 1.06 1.00

MIXED 1.00 1.00 1.00 1.00 0.93 0.93 0.93 1.02

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03

 WIDE 1.08 1.10 1.15 1.26 1.10 1.15 1.50 1.10

LL3 SMALL 1.01 1.02 1.12 1.01 1.03 1.04 1.17 1.02

MIXED 1.01 1.00 1.00 1.00 1.05 1.00 1.02 1.00

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 WIDE 1.06 1.09 1.40 1.09 1.07 1.07 1.33 1.56

LL4 SMALL 1.01 1.01 1.03 1.01 1.02 1.02 1.06 1.00

MIXED 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.01

LARGE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01

 WIDE 1.07 1.09 1.33 1.08 1.03 1.03 1.13 1.04

We see that the pattern in all three tables is more or less the same. In KFDA the algorithm-

dependent R criterion does very well. It is only in wide samples that the algorithm-

independent AT criterion performs better, in many cases only slightly so. The same

conclusion is largely applicable to the N criterion for SVMs, except in LS data, where the

AT criterion more or less dominates N. Overall it is evident that the additional effort

required to compute the algorithm-dependent criteria offers a substantial improvement in

post-selection classification accuracy.

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

190

Table 4.11: Selection values for algorithm-dependent and –independent criteria in LS data

KFDA SVM

 AT A VA R AT A VA N

LS1 SMALL 1.20 1.22 1.63 1.10 0.70 0.72 1.73 1.73

MIXED 1.00 1.00 1.00 1.00 1.10 1.10 1.07 1.07

LARGE 1.00 1.00 1.03 1.00 1.01 1.01 1.04 1.08

 WIDE 1.50 1.55 3.24 1.68 1.38 1.43 2.88 2.44

LS2 SMALL 1.18 1.20 1.44 1.10 1.20 1.22 1.48 1.26

MIXED 2.60 2.60 1.45 1.03 2.26 3.43 1.45 2.85

LARGE 1.00 1.00 1.01 1.00 1.00 1.00 1.03 1.03

 WIDE 1.72 1.83 3.98 1.96 1.56 1.63 3.82 2.06

LS3 SMALL 1.21 1.25 1.68 1.09 1.25 1.28 1.75 1.28

MIXED 1.00 1.00 1.00 1.00 1.19 1.20 1.11 1.09

LARGE 1.00 1.00 1.04 1.00 1.01 1.01 1.04 1.08

 WIDE 1.67 1.72 2.99 1.87 1.39 1.43 2.43 2.05

LS4 SMALL 1.15 1.17 1.38 1.06 1.14 1.16 1.29 1.34

MIXED 1.94 1.94 1.37 1.05 3.24 3.25 1.51 1.54

LARGE 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.03

 WIDE 2.10 2.18 3.82 2.39 1.22 1.24 1.88 1.49

CHAPTER 4
KERNEL VARIABLE SELECTION IN FEATURE SPACE

191

4.8 SUMMARY

It was found in Chapter 3 that at least some feature space information should be used in the

variable selection process. In this chapter we therefore studied selection in feature space,

focusing on different types of feature space information. This led to two classes of

selection criteria, viz. algorithm-independent and algorithm-dependent criteria. Criteria in

the first category only uses feature space information which is independent of the specific

kernel algorithm being applied, whilst criteria in the second category also employ

information derived from this algorithm.

This chapter started with a section in which a detailed description of SVMs and KFDA was

provided. Several algorithm-independent criteria were then defined, and compared in an

empirical study. The results indicated that the AT and A criteria performed best, followed

by VA. Two algorithm-dependent criteria were also defined, and their properties studied

empirically. No general preference for one of the two criteria was found. Finally, we

compared the algorithm-independent and -dependent criteria. Although the algorithm-

dependent criteria generally performed best, the AT and A criteria were still very much

competitive, especially in wide samples. Given their computational simplicity, these two

criteria are recommendable, especially when p is large.

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

192

CHAPTER 5

 BACKWARD ELIMINATION FOR KERNEL
CLASSIFIERS

5.1 INTRODUCTION

In order to address the variable selection problem in its entirety, three questions need to be

answered, viz. which selection criterion to use, how to reduce the number of all possible

variable subsets in an efficient manner to a manageable number, and how many input

variables to include in the final model. Thus far in the thesis we have focused on the first

aspect. We investigated the performance of several selection criteria when a filter

approach is used: after quantifying the individual contribution of each input variable to the

selection criterion under consideration, we simply selected the fixed number of variables

corresponding to the optimum value of the selection criterion. In this approach the relative

importance of each input variable is measured without any consideration of the other input

variables. Generally this is a serious drawback. Depending on which of the other variables

have already been selected or eliminated from the model, relationships among input

variables may influence the relevance of variables. In this chapter we therefore evaluate

the performance of selection criteria when they are used in combination with a selection

strategy. The strategy investigated in this chapter is backward elimination.

In the literature backward elimination of input variables in the context of kernel techniques

is known as recursive feature elimination (RFE). There are several reasons why this

strategy is frequently preferred to forward selection. If p is large a forward strategy may

terminate before the model containing all the variables, or models containing a large

number of variables, is considered. This is generally undesirable, especially in situations

where it is reasonable to expect a large percentage of input variables to be selected. The

disadvantages of a forward selection strategy are also pointed out in a review paper on

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

193

variable selection by Guyon and Elisseeff (2003). They argue that ‘weaker subsets are

found by forward selection because the importance of variables is not assessed in the

context of variables not included yet’ and illustrate this by means of an example. Finally,

we will present empirical evidence in Chapter 6 supporting the preference for backward

elimination to forward selection.

An outline of the remainder of the chapter is as follows. In Section 5.2 we present a review

of the literature on RFE. Section 5.3 introduces the use of several selection criteria in

backward elimination, which is then evaluated in a fairly extensive Monte Carlo simulation

study described in Section 5.4. The results of this simulation study are discussed in Section

5.5, followed by a summary of the chapter in Section 5.6.

5.2 LITERATURE REVIEW

In the literature on kernel variable selection, RFE was initially studied as an input variable

selection strategy for SVMs in the context of binary classification problems in micro-array

analyses (Guyon et al., 2002). RFE is an iterative backward elimination strategy: starting

with the classifier using the comprehensive set of p input variables, each step in the RFE-

algorithm involves elimination of one (or more) input variables. Elimination of variables

continues until only m variables remain. Importantly, note that the original RFE-

algorithm assumes m p< to be known.

The paper by Guyon et al. (2002) played an important role in introducing RFE and we

therefore discuss this paper in some detail. Application of RFE requires specification of an

appropriate criterion for identifying the variable(s) to be discarded at a given step of the

algorithm. Guyon et al. (2002) initially propose use of the squared coefficients of the

weight vector obtained after training a linear support vector classifier for this purpose. To

explain their idea, let the observations on the input variables remaining after step 1d − be

denoted by ni
id

,,2,1,
,1

K
(=

−
x . Then step d in the algorithm requires one to train a

linear SVM, yielding a discriminant function

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

194

 () xwx ,dd bf += , (5.1)

where ∑=
= −

n

i idiid y
1 ,1

xw (α and 1 2, , , nα α αK are the usual SVM outputs. Because a linear

kernel function is used, dw is a vector in pℜ , and its thj coefficient can therefore be

interpreted as a measure of the importance of the thj input variable. Hence Guyon et al.

(2002) propose that in each step of the RFE-algorithm, variable with the smallest 2
d

w -value

should be discarded. This strategy has been shown to work well if the final SVM only

makes use of a linear kernel function and is therefore restricted to operate in input space.

However, in Chapter 3 it was found that, with exception of NL data sets, selection in input

space performed rather poorly. Since the strength of SVMs mostly lies in their use of non-

linear kernels and a classification function defined in feature space, we expect the

performance of SVM-RFE based on { }pjw dj ,,2,1,2 K= in input space to be suboptimal in

most cases.

When a non-linear kernel function is used, the SVM classifier is non-linear in input space,

and then SVM-RFE should arguably also be based on non-linear relations in ℵ . In their

follow-up proposal regarding RFE selection criteria, Guyon et al. (2002) therefore make

use of the weight vector coefficients of a non-linear support vector classifier. That is,

elimination of input variables at the thd step in SVM-RFE is based on dw in the non-

linear SVM discriminant function

 () ()xwx Φ+= ,dd bf , (5.2)

where ()∑ Φ=
=

−

n

i idiid y
1 ,1xw (α is now an N -dimensional vector in ℑ . Importantly, note

that the individual elements in dw are associated with the N individual features in ℑ . If

a non-linear kernel function is used, the features are usually intricate functions of the

original input variables. In cases where the kernel function does not imply an infinite value

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

195

of N , the elements in dw can then be used for feature selection. However, since no single

element in dw can be used to quantify the importance of the role played by any individual

input variable in the kernel classifier, the vector dw cannot be used directly as a criterion

for input variable selection.

It is however not unreasonable to assume that the SVM weight vector can be used for

variable selection in RFE even when a non-linear kernel function is employed. Consider

therefore once again step d and suppose
2v

d
−w denotes the squared norm of dw if variable

vX is omitted at this step. Guyon et al. (2002) suggest using

222 v

ddvW −−=∆ ww (5.3)

as a criterion for identifying the variable which should be omitted. This is simply the

absolute change in the value of 2
dw upon omission of variable vX , and the proposal is to

remove the variable minimising (5.3). The variable identified for omission at step d is

therefore the variable whose exclusion has the smallest effect on 2
dw . In this sense,

2
vW∆ may be regarded as a so-called sensitivity selection criterion (cf. Rakotomamonjy,

2003).

It is necessary to refer to an approximation frequently employed in RFE to reduce the

amount of computations in cases where p is large. Consider step d of the algorithm and

assume that only one variable is discarded at each step. Then at the start of step d there are

1+− dp variables remaining in the model. Application of (5.3) as selection criterion

would therefore entail fitting 1+− dp different SVMs, one corresponding to each of the

remaining variables being omitted. In order to reduce the amount of computations required

for implementation of this strategy, Guyon et al. (2002) propose the following

approximation: assume that the SVM coefficients based on the reduced model obtained by

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

196

omitting a variable are identical to those based on the current full model. This assumption

obviates re-calculation of 1 2, , , nα α αK after omission of each of the 1+− dp candidate

variables; we simply use 1 2, , , nα α αK computed after completion of step 1−d and only

re-calculate the entries in the kernel matrix after omitting each of the candidate variables in

turn.

Guyon et al. (2002) evaluated SVM-RFE using gene expression data sets (the colon cancer

data set, cf. Alon et al., 1999, and the leukaemia data set, cf. Golub et al., 1999). In both

data examples pre-processing of the data features prominently. Standardisation of each

input variable (i.e. subtracting the mean and dividing by the standard deviation of the

variable) is consistently carried out. Guyon et al. (2002) also recommend standardisation

of sample cases across variables. This of course only makes sense when the input variables

are measured on the same scale, as is the case in micro-array data. The authors also use

logarithmic transformations and apply a squashing function to reduce the effect of possible

outliers.

Given that RFE is a numerically expensive procedure, a question may be raised as to

whether it is worthwhile compared to simpler and computationally cheaper alternatives.

Guyon et al. (2002) address this issue and point out that a full implementation of RFE

consistently outperforms more naïve and cheaper alternatives, such as for example input

variable ranking based on only a first RFE iteration. This is a consequence of the fact that

RFE investigates the relevance of subsets of input variables simultaneously, thereby taking

their joint effect into account. A procedure based on identifying a subset of input variables

from their individual rankings may easily end up recommending highly correlated

variables, many of which may in fact be superfluous. As a result, other useful variables

may in the process be discarded. Moreover, there are further ways to speedup the RFE

procedure. A very simple strategy, implemented by Guyon et al. (2002), is to remove half

of the remaining input variables at each step during the first stages of the algorithm. As

soon as approximately 100 variables remain, a single variable is then eliminated at each

RFE step until the desired m variables is reached. Alternatively, one can make use of the

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

197

strategy presented in Furlanello et al. (2003), viz. entropy-based RFE, a faster version of

the original RFE algorithm.

Prior to the introduction of SVM-RFE, gene selection in cancer classification problems was

typically carried out using techniques related to calculating ordinary Pearson correlations

(cf. for example Golub et al., 1999). In Guyon et al. (2002) SVM-RFE is compared with

such correlation methods as well as with a naïve ranking method. The authors only make

use of { }pjw dj ,,2,1,2 K= as selection criteria (since they argue this to be a sensible choice

considering the data sets at hand), and find that SVM-RFE generally outperforms selection

based on the correlation- and naïve ranking techniques.

We now discuss contributions in the literature that are connected to the Guyon et al. (2002)

paper, firstly considering contributions which propose and evaluate relatively small

modifications to the original SVM-RFE algorithm, specifically the use of other selection

criteria. More sophisticated criteria may yield post-selection SVMs with better properties,

and more general criteria can widen the scope of RFE. We also discuss papers which make

more comprehensive and fundamental changes, regarding for example the selection search

strategy used, or core assumptions underlying the basic RFE algorithm.

An important contribution regarding the use of alternative selection criteria in SVM-RFE is

the paper by Rakotomamonjy (2003). In this paper various selection criteria for RFE are

proposed, such as 2w , and criteria based on generalisation error bounds (for example the

radius/margin bound and the span estimate). For each of the criteria two methods of

determining the variable which should be eliminated at each step are investigated: a zero-

order method which eliminates the variable whose omission optimises the criterion, as well

as a first-order method, which optimises the first derivative of the criterion.

Rakotomamonjy (2003) points out that the zero-order method based on optimising 2w is

equivalent to the RFE method suggested for non-linear SVMs by Guyon et al. (2002). He

investigates RFE using the various criteria on two simulated data sets, as well as on four

real-world data sets. An SVM based on variables selected by means of correlation methods

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

198

is also evaluated in the study. In general, the error rates of the SVM classifiers based on

the selected subsets are lower (in some cases markedly so) than the error rates of the SVM

classifier using all the input variables. Although there is no single criterion which

consistently yields a classifier with the lowest error rate, the zero and first order criteria

based on 2w generally perform well.

It should be noted that prior to the Rakotomamonjy (2003) paper, work on selection criteria

derived from (SVM) generalisation error bounds had already been reported. A first

example is the paper by Weston et al. (2001), where the authors make use of scaling factors

and the radius-margin bound on the SVM generalisation error in combination with a

gradient descent algorithm for variable selection. A second example is found in Weston et

al. (2003). In this paper the number of non-zero elements in the SVM weight vector is

used as selection criterion. Denote this so-called zero-norm selection criterion by

{ }0 0i icard w w= ≠w . The zero-norm criterion is minimised over input variable subsets,

and the subset for which 0w is a minimum is selected. This is not an easy minimisation

problem to solve. Bradley et al. (1998) and Bradley and Mangasarian (1998) developed a

method for this purpose. Weston et al. (2003) also developed a minimisation procedure

(2l -AROM) which they then compared with the method of Bradley et al. (1998) and

Bradley and Mangasarian (1998). The method by Bradley and Mangasarian (1998) solves

an approximation to the above minimisation problem, and is referred to as FSV selection.

In addition, 2l -AROM and FSV are compared to SVM-RFE (Guyon et al., 2002), the

gradient descent method minimising the radius-margin bound (Weston et al., 2001), and

naïve ranking using correlation coefficients. Summarising their findings, Weston et al.

(2003) conclude that only SVM-RFE and the gradient descent method minimising the

radius-margin bound are acceptable for variable selection when groups are not necessarily

linearly separable.

In Louw and Steel (2006) RFE is extended to KFDA (KFDA-RFE). The authors consider

the use of the alignment and of the Rayleigh coefficient as selection criteria in an RFE

scheme, and then evaluate KFDA-RFE using simulated data and two benchmark data sets

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

199

(the heart disease and breast cancer data sets in Rätsch et al., 2001). In their conclusion it

is stated that ‘using either the Rayleigh coefficient or the alignment as selection criterion in

KFDA-RFE, in the vast majority of cases leads to more parsimonious models with higher

classification accuracy than using the model based on all the input variables’.

Regarding changes related to the RFE search strategy, one may choose to allow re-entrance

of input variables eliminated during previous steps of the algorithm. One can for example

adjust the original SVM-RFE algorithm to no longer implement a backward elimination

strategy, but rather forward or stepwise selection. Fujarewicz and Wiench (2003), for

example, compared the performance of a recursive forward selection or replacement

strategy (RFR) with ordinary RFE in real life classification contexts. A choice between

RFE and RFR was however not that apparent and seemed to depend on the sizes of the

gene subsets under consideration. RFE appeared to outperform RFR when gene subsets

were large.

Recall that the originally proposed SVM-RFE assumes a known value for the optimal

number of input variables to retain. Furlanello et al. (2003) treat the more realistic scenario

of an unknown optimal dimension for the final classifier in an RFE context.

Finally in this section, note that there are several papers in the literature illustrating the

successful application of RFE. See for example Aliferis et al. (2003), Brown et al. (2000),

Furey et al. (2000), Komura et al. (2004), Notterman et al. (2001), and Schummer et al.

(1999). Many researchers also comment on the good performance of RFE in many

contexts (cf. Krishnapuram et al., 2004, Ambroise et al., 2002, and Li et al., 2002) and

subsequently use RFE to benchmark new proposals. Comprehensive discussions of SVM-

RFE may also be found in several textbooks, for example McLachlan et al. (2004) and

Chen et al. (2004). An interesting application of RFE in penalised logistic regression is

given in Zhu and Hastie (2004).

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

200

5.3 SELECTION CRITERIA IN BACKWARD ELIMINATION

In this section we discuss several selection criteria that can be used in a backward

elimination strategy. During each step we seek to quantify sensitivity of a criterion to

elimination of the individual input variables in the model at that stage. For this purpose we

follow Rakotomamonjy (2003) and optimise values of a criterion in one of two ways: in a

so-called zero-order approach we optimise values of the criterion itself, while in a first-

order approach we optimise values of the derivative of the criterion with respect to input

variables in the model.

Section 5.3.1 is devoted to a discussion of 2w as a zero-order selection criterion, while in

Section 5.3.2 we discuss this quantity as a first-order criterion. During the discussion in

Section 5.3.2 we introduce results that are used later on to derive first-order versions of

other criteria. In Section 5.3.3 we introduce several further selection criteria for RFE: the

Rayleigh coefficient which is applicable in KFDA, and algorithm-independent criteria, viz.

the alignment (A), the sum of the similarites between pairs of inputs belonging to opposite

groups (SS), the variation ratio (VA), and differences between the two group means in

feature space (G). These algorithm-independent criteria have the advantage that the post-

selection classifier may be any kernel classifier. For all the criteria in Section 5.3.3 we

discuss both the zero- and the first-order form.

5.3.1 THE SQUARED NORM OF THE SVM WEIGHT VECTOR: ZERO-

 ORDER FORM

Consider an SVM discriminant function, () () bf +Φ= xwx , , where the weight vector w

is given by ()∑
=

Φ=
n

i
iii y

1
xw α , with nααα ,,,

21 K output from the SVM algorithm. It

follows that ()∑ ∑
= =

=
n

i

n

j
jijiji kyy

1 1

2 , xxw αα , with k the kernel function. How can we use

2w as RFE-criterion? We answer this question first from a zero-order perspective,

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

201

dealing with the first-order version in Section 5.3.2. Consider therefore an RFE strategy

where at each step we optimise 2w with respect to omission of every individual variable

which is still in the model. Recall that in Section 4.7.1, it was indicated that by ‘optimise’

in this context it is meant that one should proceed in an RFE strategy by sequentially

omitting variables to maximise 2w . Empirical evidence lead to the conclusion that RFE

based on maximising 2w may indeed be a worthwhile proposal.

5.3.2 THE SQUARED NORM OF THE SVM WEIGHT VECTOR: FIRST-

 ORDER FORM

In this section we describe a way in which the first-order version of 2w can be used as

selection criterion in an RFE scheme. Much of the discussion is based on contributions in

the important papers by Rakotomamonjy (2002 and 2003) and Chapelle et al. (2004). The

results introduced in this section are also used in Section 5.3.3 when we derive the first-

order versions of several other selection criteria.

The basic idea underlying the use of a first-order selection criterion in RFE is to discard

variables with respect to which the criterion is relatively insensitive. This broadly implies

that we have to consider the derivative of the criterion with respect to each of the variables

(still) in the model, and eliminate the variable corresponding to the smallest absolute

derivative. If we wish to implement this idea, it is necessary to have computable

expressions for the relevant derivatives. We proceed with a discussion of how expressions

for these derivatives can be found in the case of 2w .

Consider therefore ()∑ ∑
= =

=
n

i

n

j
jijiji kyy

1 1

2 ,~~ xxw αα and suppose we wish to differentiate

this quantity with respect to variable lX . In this we have to keep in mind that both ix and

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

202

jx contain an observation on lX , and that in finding nααα ~,,~,~
21 K we optimised over

quantities depending on lX . We require modification of our notation: thus far we have

indicated an observation on the thl input variable by lx . In keeping with the notation used

in the literature, in this section we will however associate a new interpretation with lx , and

therefore now use lv to represent a measurement on variable lX . According to

Rakotomamonjy (2002) two approaches are possible:

i. we can differentiate directly with respect to lX , using the results provided below, or

ii. we can introduce a so-called scale factor for each variable and then perform the

 differentiation with respect to the relevant scale factor.

We discuss both these approaches, starting with i.

The following theoretical result is required.

LEMMA 5.1: THE DERIVATIVE OF A QUADRATIC OPTIMISATION

 OBJECTIVE FUNCTION AT ITS OPTIMISING ARGUMENT

Let θv be an 1×n vector, and θP an nn× matrix, and suppose θP is smoothly dependent

on θ . Consider the following optimisation problem:

 { }αPαvα
α

θθ ′−′
∈ 2

1 max
F

 (5.4)

conditional on { }0αbαα ≥== ;: ' cF .

If α~ is the vector where the maximum in (5.4) is attained, we may differentiate the

objective function with respect to θ as if α~ does not depend on θ . Therefore, we may

write

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

203

{ }

αPαvα
αPαvα ~~~

2
12

1

θθθ
θθθθ

∂
∂′−

∂
∂′=

∂

′−′∂
. (5.5)

 

Clearly the SVM quadratic optimisation problem can be written as in (5.4): setting θ =v 1

and y
θ θ=P K with { }y

i j ijij
y y kθ =K , =b y , 0c = and ixθ = , we obtain

 { }αKα1α
α

y

F
 max θ′−′

∈ 2
1 . (5.6)

Note that (5.6) is identical to (4.13) in Problem 4.3, i.e. we get the dual optimisation

problem for the SVM. According to Chapelle et al. (2004) it can be shown that

αKα1αw y
θ′−′= 2

12
2
1 (cf. also Vapnik, 1998). We can therefore apply (5.5) to obtain

[]

l

y

l xx ∂

′−∂
=

∂

∂ αKα1αw ~~2 2
12

θ













∂
∂

′−
∂
∂′= α

K
α1α ~~~2 2

1

l

y

l xx
θ

 α
K

αα
K

α1α ~~~~~2
l

y

l

y

l xxx ∂
∂

′−=
∂

∂
′−

∂
∂′= θθ

()

l

kj
k

j k
jkj x

k
yy

∂

∂
−= ∑ ∑

xx ,~~ αα , (5.7)

as given in Rakotomamonjy (2003, p. 12) and Chapelle et al. (2004, p. 16). At this point

the reader should note that it is also possible to arrive at the same result without the use of

Lemma 5.1. Such an alternative approach may be found in Chapelle et al. (2004, p. 17).

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

204

The term () lkj xk ∂∂ xx , and the meaning of lx is explained in the appendix of

Rakotomamonjy (2002). We follow the author by re-defining the bivariate kernel function

ℜ→ℜ×ℜ ppk : using ℜ→ℜ pk 2:ˆ . That is, we write

 () [] [] 




 ′′= kpkkjpjjkj xxxxxxkk ,,,,,,,, 2121 KKxx

 ()plppppl xxxxxxxxk 22121 ,,,,,,,,,,ˆ KKKK +++=

 ()xk̂= . (5.8)

Importantly, note the distinction between 1: ×pv and 12: ×px in this section. Here lv

refers to the thl of the p original input variables which occur in both arguments (or input

patterns) in the original kernel function ()k . The symbols lx and plx + however are two

observations (belonging to two different input patterns) of the thl of the p input variables.

That is, lx and plx + are two distinct observations of variable lX .

The following definition is from the theory of differentiation of multivariate functions.

DEFINITION 5.1: DIFFERENTIABILITY OF A MULTIVARIATE FUNCTION

A function ℜ→ℜ pf 2: is differentiable at a point p2ℜ∈a if

 () () () () ()hhaha a ofdff ++=+ (5.9)

where () 0→ho as 0h →×12: p . In (5.9), ℜ→ℜ pfd 2:a , i.e. fda is a function from

p2ℜ to ℜ . 

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

205

We can now also define the gradient of a multivariate function ℜ→ℜ pf 2: .

DEFINITION 5.2: THE GRADIENT OF A MULTIVARIATE FUNCTION

The gradient of ℜ→ℜ pf 2: in a point p2ℜ∈a is the 2 p-vector fa∇ with thi element

the partial derivative of f with respect to ix in the point a , i.e.

()ifa∇ () axx
=∂

∂
= ||f

xi
, also denoted by ()afDi () axx

=∂
∂

= ||f
xi

.

There is a relation between fa∇ and the function fda in (5.9), viz.

()() =ha fd =∇ ha ,f ()∑
= =∂

∂p

i i
i f

x
h

2

1 || axx . Note also that we can write

fa∇ ()∑
=

=
p

i
ii fD

2

1
ea , where { }p221 ,,, eee K is the well known canonical basis in p2ℜ .

We now consider our application where f is a bivariate function of two −p component

vectors, i.e. ℜ→ℜ×ℜ ppf : with value ()kjf xx , when applied to the pair ()kj xx , of

input patterns. As explained earlier we can also view such a function as a real-valued

function defined on p2ℜ .

DEFINITION 5.3: THE GRADIENT OF A MULTIVARIATE FUNCTION

 WITH RESPECT TO AN INPUT VARIABLE

The gradient of ℜ→ℜ pf 2: with respect to variable iv at a point p2ℜ∈a is the

−p2 component vector

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

206

 fiv
a∇ () () ip

ip
i

i
 ||f

x
 ||f

x +
+

=∂
∂

+=∂
∂

= eaxxeaxx . (5.10)

It is clear from (5.10) that

2

fiv
a∇ () ()aa fDfD ipi

22
++= . (5.11)

We would now like to apply these results to the case where the function f is 2w , the

squared norm of the SVM weight vector. This requires differentiation of the kernel

function. Consider therefore the kernel function evaluated at the pair ()kj xx , , where jx

and kx are two input patterns. The point 12: ×pa above is taken to be the vector

[]'
''
kj xx . Now () () ()kjkljlkj

l
kxxk

x
xxxx ,2, −−=

∂
∂ γ , with a similar expression for

()kj
lp

k
x

xx ,
+∂

∂ . It follows from (5.7) and (5.11) that the first-order 2w sensitivity

selection criterion based on direct differentiation with respect to variable lv and using the

Gaussian kernel to quantify similarities between input patterns, is

 () =lJ =∇
22waiv () ()

2

,~~2 







−∑∑

j k
kjkljlkjkj kxxyy xxααγ (5.12)

(cf. also Rakotomamonjy, 2002, p.11).

Now consider the second approach for deriving a first-order version of 2w as selection

criterion. This approach makes use of differentiation with respect to virtual scaling factors

(cf. Rakotomamonjy, 2003). Let [] '
21 ,,,1: psssp K=×s be a vector of virtual scaling

factors, with one scaling factor for each of the variables. We consider the kernel function

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

207

in the form () ()kjkj kk xsxsxx ⋅⋅= ,, , where xs ⋅ denotes the component-wise vector

product, i.e. [] '
2211 ,,, pp xsxsxs K=⋅ xs . This view of the kernel function is valid since

we later put 1s = , the −p component vector with 1 in every position.

Consider once again ()αKα1αw y
θ′−′= 2

12 2 , where the elements of the nn× matrix y
θK

are now viewed as { } ()jijiij
y kyy xsxsK ⋅⋅= ,θ . If we now differentiate 2w with respect

to the thl scaling factor ls , we obtain

 =
∂

∂
−=

∂

∂
α

K
α

w ~~ '
2

l

y

l ss
θ ()

l

kj
k

j k
jkj s

k
yy

∂

⋅⋅∂
− ∑ ∑

xsxs ,~~ αα . (5.13)

Now,

()

() ()kjkljll

kj
l

kj
l

kxxs

-exp
s

k
s

xsxs

xsxsxsxs

⋅⋅−−=






 ⋅−⋅

∂
∂

=⋅⋅
∂
∂

,2

,

2

2

γ

γ

and if we put 1s = , this simplifies to

 () () ()kjkljllkj
l

kxxsk
s

xsxs
1s

xsxs ⋅⋅−−=
=

⋅⋅
∂
∂ ,2||, 2γ .

The scaling factor version of the first-order 2w criterion is now defined to be

 () =lJ =
=∂

∂
1s

w ||
2

ls
 () ()∑ ∑ −−

j k
kjkljlkjkj kxxyy xx ,~~2 2ααγ (5.14)

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

208

In Rakotomamonjy (2002) the sensitivity criterion in (5.14) mostly outperformed the

criterion in (5.12). Hence the only selection criteria investigated in Rakotomamonjy (2003)

are derivatives calculated with respect to scale parameters. In light of this we will also

restrict attention to criteria found through differentiation with respect to scale factors.

5.3.3 FURTHER SENSITIVITY SELECTION CRITERIA

Following a backward elimination strategy, Rakotomamonjy (2003) investigates the use of

quantities based on the radius-margin and span bounds on the SVM generalisation error as

sensitivity selection criteria. These criteria can however only be used in the context of

SVMs, and they were found by Rakotomamonjy (2003) to perform worse than 2w . In

this section we therefore discuss several other criteria which can be used for selection prior

to the application of any type of kernel classifier.

Any of the algorithm-independent criteria in Chapter 4 (viz. A, G, SS or VA) can be used in

an RFE scheme of selection. In most cases, finding derivatives of these criteria is much

simpler than obtaining the gradient vector with respect to the squared norm of the SVM

weight vector. Note that in this section we also discuss use of the Rayleigh quotient as

sensitivity selection criterion within the context of KFDA. Importantly, note that for all the

criteria we assume the use of a Gaussian kernel function. That is, we always assume

 ()






 =





== nji-expkk jijiij ,,2,1,-,

2
K xxxx γ , (5.15)

leading to

 ()








=−−=
∂

∂
nji kxx

v
k

ijjkij
k

ij ,,2,1,2 2 Kγ . (5.16)

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

209

It is of course also possible to find the first order forms of selection criteria when other

kernel functions are used.

Since G and SS are the simplest selection criteria, we start by finding their first order forms.

THE SUM OF SIMILARITIES

In Chapter 4 the sum of similarities criterion was defined as the sum of the entries in the

21 nn × sub-matrix of K , i.e. ∑
∈∈

=
21 , IjIi

ijkSS . In order to measure the sensitivity of SS

with respect to input variable kX , we simply require

 ()∑
∈∈

−−=
∂
∂

21 ,

22
IjIi

ijjkik
k

kxx
v
SS γ . (5.17)

THE DIFFERENCE BETWEEN GROUP MEANS

We showed in Chapter 4 that the squared difference between the two group means in

feature space can easily be calculated using entries in the empirical kernel matrix. Let the

difference in group means be denoted by G , i.e.

 ∑∑∑
∈∈∈∈∈∈

−+=
212211 ,

21
,

2
2

,

2
1 2

IjIi
ij

IjIi
ij

IjIi
ij nnknknkG . (5.18)

The first order form of the selection criterion calculated with respect to variable kX is

 ∑∑∑
∈∈∈∈∈∈ ∂

∂
−

∂

∂
+

∂

∂
=

∂
∂

212211 ,
21

,

2
2

,

2
1 2

IjIi k

ij

IjIi k

ij

IjIi k

ij

k
nn

v
k

n
v
k

n
v
k

v
G

 () ()




−+−−= ∑∑
∈∈

2
2

,

2

,

2
1

2

21

2 nkxxnkxx
Iji

ijjkik
Iji

ijjkikγ

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

210

 ()




−− ∑
∈∈ 21 ,

21
22

IjIi
ijjkik nnkxx . (5.19)

Note that both Expressions (5.18) and (5.20) will feature in the derivation of the first-order

form of the alignment, of the Rayleigh quotient and also of the variation ratio.

THE ALIGNMENT

Consider the alignment selection criterion, viz.

∑

∑ ∑ ∑
∈ ∈ ∈∈

−+
=

ji
ij

Iji Iji IjIi
ijijij

kn

kkk
A

,

2

, , ,1 2 21

2
. (5.20)

Let the numerator and denominator of (5.21) be denoted by NA and DA respectively, i.e.

let DN AAA = . Hence we require

 2
D

k

D
N

k

N
D

k
A

v
AA

v
A

A
v
A









∂
∂

−
∂
∂

=
∂
∂ , (5.21)

where

 ∑∑∑
∈∈∈∈ ∂

∂
−

∂

∂
+

∂

∂
=

∂
∂

2121 ,,,
2

IjIi k

ij

Iji k

ij

Iji k

ij

k

N

v
k

v
k

v
k

v
A

 () () ()








−−−+−−= ∑∑∑
∈∈∈∈ 2121 ,

2

,

2

,

2 22
IjIi

ijjkij
Iji

ijjkij
Iji

ijjkij kxxkxxkxxγ , (5.22)

and

 ∑∑
=

−

=








∂

∂








=

∂
∂ n

ji k

ij
ij

n

ji
ij

k

D

v
k

kkn
v
A

1,1,

2 .
2
1

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

211

 ()∑∑
=

−

=
−








−=

n

ji
ijjkik

n

ji
ij kxxkn

1,

22

1,

2
2
1

2 γ . (5.23)

Substituting the derivatives in (5.23) and (5.24) into (5.22), the first-order form of the

alignment criterion can now easily be obtained. We write the criterion in its unsimplified

form, viz.

kv
A

∂
∂ () () ()















−−−+−








−= ∑∑∑∑

∈∈∈∈= 2121

2
1

,

2

,

2

,

2

1,

2 22
IjIi

ijjkij
Iji

ijjkij
Iji

ijjkij

n

ji
ij kxxkxxkxxkγ

 () ∑∑∑∑ ∑ ∑
===∈ ∈ ∈∈ 


















−
















−++

n

ji
ij

n

ji
ijjkik

n

ji
ij

Iji Iji IjIi
ijijij knkxxkkkk

1,

2

1,

22

1,

2

, , ,

2
1

1 2 21

22 γ .

 (5.24)

THE RAYLEIGH QUOTIENT

For simpler derivation of a sensitivity selection criterion based on the Rayleigh quotient,

consider [] []NααMαα ′−′= loglogR log , where as before,

 ()()′−−= 2121 ΦΦΦΦM (5.25)

and

 22221111 21
K1KKKK1KKKN nn −′+−′= , (5.26)

with
jn1 an jj nn × matrix with common element jn1 , and jK an jnn × submatrix of

K ; 2,1=j . That is, []21 | ΚΚK = . In order to measure the sensitivity of R log with

respect to the thk input variable, we require

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

212

 [] []








∂
′∂

′
−









∂
′∂

′
=

∂
∂

kkk vvv
Rlog Nαα

Mαα
Mαα

Mαα
11





















∂
∂′

′
−





















∂
∂′

′
= αNα

Nαα
αMα

Mαα kk vv
11 . (5.27)

The thl element in
kv∂

∂M is

 () () () ()
′









−

∂
∂

−+′−







−

∂
∂

2222 ΦΦΦΦΦΦΦΦ 1111
kk vv

() ()
′









∂
∂

−
∂
∂

−+′−







∂
∂

−
∂
∂

= ∑∑∑∑
∈∈∈∈

21111121
2121

n
v

n
v

n
v

n
v lj

Ij k
lj

Ij k
lj

Ij k
lj

Ij k
KKΦΦΦΦKK

Since the ()thil element in jnj j
K1K is 


















∑∑
∈∈ j

j Ir
lr

Ir
irn kk

1

1 , the ()thil element in
kv∂

∂N is

 ∑ ∑∑∑∑
= ∈∈∈∈ 






















∂
∂











−





















∂
∂

−














∂

′∂
+







 ′
∂

∂

2,1j
j

Ir k

lr

Ir
irj

Ir
lr

Ir k

ir

il
k

j
j

il
j

k

j n
v
kknk

v
k

vv jjjj

K
KK

K
.

Substituting the above two expressions into (5.28) yields the first-order form of the

selection criterion based on the KFDA Rayleigh quotient.

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

213

THE VARIATION RATIO

Very similar to the alignment, the first order form of the variation ratio selection criterion

can be derived as follows. We denote the numerator of the variation ratio by NR , and the

denominator by DR , i.e. 2
2

2
1 ssRN += and

2
21 ΦΦ −=DR . Hence,

 2
D

k

D
N

k

N
D

k
R

v
RR

v
R

R
v
R









∂
∂

−
∂
∂

=
∂
∂ . (5.28)

A formula for calculating the terms in NR was given in Chapter 4. Using this we have

 2
,

1
, 21

nknknR
Iji

ij
Iji

ijN ∑∑
∈∈

−−= . (5.29)

Also in Chapter 4 we saw that DR can easily be obtained using entries in the empirical

kernel matrix, viz.

 21
,

2
2

,

2
1

, 2121

2 nnknknkR
IjIi

ij
Iji

ij
Iji

ijD ∑∑∑
∈∈∈∈

−+= . (5.30)

The following derivatives are now easily obtained:

 () ()








−+−=
∂
∂

∑∑
∈∈

2
,

2

,
1

2

21

2 nkxxnkxx
v
R

Iji
ijjkik

Iji
ijjkik

k

N γ (5.31)

 () ()




−+−−=
∂
∂

∑∑
∈∈

2
2

,

2

,

2
1

2

21

2 nkxxnkxx
v
R

Iji
ijjkik

Iji
ijjkik

k

D γ

 ()




−− ∑
∈∈ 21 ,

21
222

IjIi
ijjkik nnkxx (5.32)

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

214

5.4 MONTE CARLO SIMULATION STUDY

When applied in an RFE selection strategy, the performances of selection criteria discussed

in the previous section may differ from their one-step selection performances in Chapter 4.

In the next section we therefore report on a fairly extensive Monte Carlo simulation study

that was carried out in order to study the performance of the proposed variable selection

criteria when they are used in combination with a backward elimination strategy.

We used the same parameter configurations and data generating strategy as discussed in

Section 4.6.2. These differ from the setup in Section 3.4.1, in that we omitted all NL data

sets, and always generated the relevant and irrelevant subsets of input variables to be

uncorrelated (i.e. we se 0=SSρ throughout). The various levels for the correlation

(amongst the relevant set of input variables), the number of relevant variables, and the

training and test sample sizes amounted to 16 configurations to consider per data scenario

(viz. the LL, LS and NS setups), and thus 48 configurations in total – each requiring its own

simulation program. The output of each program were the average post-selection test

errors (with their standard errors), and per input variable and selection criterion, the

percentage of times that the particular variable was selected. The averages and percentages

were calculated across 500 Monte Carlo simulation repetitions.

To obtain the output described in the previous paragraph, we performed the following

actions in each simulation repetition. We started by generating a training and test data set

using the comprehensive set of available input variables in V . Now consider a given

selection criterion. We applied this criterion to the training data, and identified a variable

to discard. This process was continued until the predetermined number m of input

variables remained. For each of these variables a selection frequency counter was

increased. Finally, the relevant kernel classifier (KFDA and SVMs in the case of

algorithm-independent criteria, and only the appropriate one of the two for the algorithm-

dependent criteria) based on the identified variables was trained and used to classify the

test data cases, thereby yielding a test error value. Averaging these results over the 500

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

215

repetitions yielded estimates of the probability of selecting the different variables, and the

error rate associated with each criterion.

5.5 RESULTS AND CONCLUSIONS

The average test errors obtained in the LL, LS and NS data scenarios are given in Tables

A.5 to A.28 in Appendix A.2.2. Standard errors ranged between 0.000 and 0.008, and were

omitted from the tables. Four tables are reported for each data scenario: one corresponding

to each of the sample sizes considered. Furthermore, each table is divided into four

segments, thus providing for the different correlation structures and number of relevant

input variables considered. The four sets of average test errors in each table correspond to

the following configurations:

Table 5.1: Correlation structures and number of relevant variables considered

SMALL, MIXED and LARGE SAMPLES WIDE SAMPLES

 i. 0=Sρ , 1=m (out of)10=p

 ii. 0=Sρ , 4=m (out of)10=p

 iii. 7.0=Sρ , 1=m (out of)10=p

 iv. 7.0=Sρ , 4=m (out of)10=p

 i. 0=Sρ , 6=m (out of)60=p

 ii. 0=Sρ , 24=m (out of)60=p

 iii. 7.0=Sρ , 6=m (out of)60=p

 iv. 7.0=Sρ , 24=m (out of)60=p

In turn, each of the four table segments consists of three rows. In the first row of each

segment the average test errors pertaining to the classifier using the full set of available

input variables appear in the FULL column, the test errors based on the classifier using

only the subset of relevant variables appear in the oracle (ORA) column, and the average

test errors that were obtained for the respective post-RFE selection classifiers are given in

the remaining columns. These columns are indicated as follows: The algorithm-

independent RFE selection criteria (viz. the alignment, the sum of dissimilarities, the

difference in group means and the variation ratio) are respectively denoted by A, G, SS or

VA. The notation is additionally augmented with a zero or one, depending on whether the

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

216

zero- or first order form of the criterion was used. For example, A0 refers to the zero-order

alignment, while the first-order alignment is denoted by A1. Note also that in the case of

the alignment criterion further distinction has to be made between the ordinary zero- and

first order forms (A0 and A1) and their respective translated versions (A0T and A1T). The

two sets of algorithm-dependent RFE selection criteria (viz. the norm of the SVM weight

vector and the KFDA Rayleigh coefficient) are denoted by N and R respectively. Once

again a zero or one is added to the notation in order to differentiate between zero- and first

order criteria. Values in the second row of each table segment depict the size of the

average post-selection errors relative to the average error achieved by the oracle. For

example, in the first segment of Table A.5 we see that the zero-order Rayleigh criterion

(R0) yields a post-selection average KFDA test error of 0.145, compared to an oracle

average test error of 0.134. Relative to the oracle, the R0 error is therefore

082.1134.0145.0 = , indicating that selection based on the R0 criterion yields an average

error which is 8.2% higher than the best one can possibly do. Rankings of the

performances of the post-selection classifiers are based on the above relative errors, and are

given in the third row (with a 1 indicating the next best performance after that of the

oracle). For example, in the first segment of Table A.5, the ranking of R0 indicates RFE

selection using the R0 criterion to be the best performer, followed by selection based on

A1T, and then by selection using the V0 criterion.

In Appendix A, we first report the results obtained for the LL data sets (in Tables A.5-

A.12), followed by the output obtained in the LS (in Tables A.13-A.20) and the NS case (in

Tables A.21-A.28). Tables A.5-A.8, A.13-A.16 and A.21-A.24 report KFDA errors,

whereas Tables A.9-A12, A.17-A20 and A.25-A.28 contain the average test errors when

the post-selection classifiers evaluated were SVMs.

With exception of sets of results pertaining to large sample sizes, we see that the relative

performance of the RFE selection criteria tend to vary much across the various correlation

structures and number of relevant input variables considered. We therefore further

summarise the small, mixed and wide sample results in Tables A.5-A.28 by averaging rows

1 and 2 over the four segments in each table (i.e. over the four levels of correlation

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

217

structures and the number of relevant variables). In each table we also average the relative

errors in the second row of each segment, and based on the obtained average relative risks,

obtain new relative rankings for the selection criteria. For each data scenario and sample

size, the summary tables are provided below. The first and second rows in each summary

table contains average errors and average relative errors across correlation structures and

values of m . Newly determined relative ranks based on the average relative errors (across

correlation structures and m -value)s are given in the third row. Note that our conclusions

regarding the performances of RFE selection criteria will largely be based upon these

relative rankings.

We first provide the set of summary tables pertaining to the NS data scenario (refer to

Tables 5.2-5.7). These are given in pairs: each first table reports KFDA test errors, and

each second table contains SVM test errors. The first pair of tables corresponds to the

small sample case, whereas the second and third pairs of tables contain test errors obtained

in the case of mixed and wide sample sizes, respectively. The same structure is followed in

reporting the sets of summary tables corresponding to the LL and LS data scenarios (in

Tables 5.8-5.13 and Tables 5.14-5.19 respectively).

Considering the results reported in Tables 5.2-5.19, we first ask whether it is possible to

infer whether algorithm-independent or algorithm-dependent selection criteria are

preferred. A clear pronouncement is possible for NS data, where the R criterion does

exceptionally well for KFDA, although the N criterion for SVMs generally performs worse

than most of the algorithm-independent criteria. For LL and LS data the algorithm-

dependent criteria are seldom best, finishing mostly in the middle of the rankings. Note

that one cannot conclude that the R criterion generally outperforms the N criterion. In fact,

for lognormal data the N criterion is better.

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

218

Table 5.2: Average small sample NS KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.185

2

1.181

1

1.426

9

1.290

4

1.365

7

1.266

3

1.301

5

1.9

10

1.317

6

2.698

12

2.110

11

1.421

8

Table 5.3: Average small sample NS SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.316

7

1.361

9

1.356

8

1.234

2

1.296

4

1.207

1

1.263

3

1.707

10

1.305

6

2.353

12

1.873

11

1.302

5

Table 5.4: Average mixed sample NS KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.111

5

1.006

1

1.739

8

1.046

4

1.848

12

1.282

6

1.011

2

1.739

9

1.025

3

1.739

10

1.739

11

1.505

7

Table 5.5: Average mixed sample NS SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.106

4

1.187

5

2.265

10

1.043

3

2.273

11

1.276

6

1.021

1

2.161

8

1.031

2

2.277

12

2.258

9

1.524

7

Table 5.6: Average wide sample NS KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.944

1

2.079

2

2.292

8

2.171

5

2.260

7

2.147

4

2.128

3

2.714

9

2.221

6

3.889

12

3.031

11

2.805

10

Table 5.7: Average wide sample NS SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

2.150

1

3.672

9

2.901

8

2.746

7

2.381

5

2.235

3

2.373

4

5.410

10

2.579

6

2.64

12

3.95

11

2.190

2

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

219

Table 5.8: Average small sample LL KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.224

6

2.253

10

1.207

5

1.168

2

1.205

4

1.168

2

1.155

1

1.839

8

1.171

3

2.328

11

1.532

7

2.147

9

Table 5.9: Average small sample LL SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.197

5

1.221

8

1.208

7

1.165

3

1.204

6

1.144

1

1.162

2

1.930

10

1.183

4

2.433

12

1.559

9

2.257

11

Table 5.10: Average mixed sample LL KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.110

3

1.724

12

1.322

9

1.299

8

1.151

4

1.285

7

1.012

2

1.696

11

1.010

1

1.239

5

1.519

10

1.255

6

Table 5.11: Average mixed sample LL SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.030

3

1.046

4

1.402

10

1.347

9

1.189

5

1.295

7

1.012

2

1.897

12

1.011

1

1.294

6

1.653

11

1.325

8

Table 5.12: Average wide sample LL KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

2.068

8

3.416

12

1.633

5

1.550

4

1.788

6

1.542

3

1.4

1

3.126

10

1.534

2

3.371

11

1.882

7

3.092

9

Table 5.13: Average wide sample LL SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.591

6

1.749

9

1.505

3

1.439

1

1.650

7

1.549

5

1.461

2

2.888

10

1.528

4

3.307

11

1.692

8

3.428

12

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

220

Table 5.14: Average small sample LS KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.500

5

1.502

6

1.583

8

1.384

2

1.485

4

1.300

1

1.484

3

1.915

10

1.532

7

2.295

12

1.922

11

1.808

9

Table 5.15: Average small sample LS SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.351

5

1.263

3

1.532

8

1.262

2

1.386

6

1.210

1

1.416

7

1.746

11

1.346

4

2.098

12

1.696

10

1.601

9

Table 5:16: Average mixed sample LS KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.393

5

1.066

2

1.632

8

1.359

4

1.632

9

1.465

6

1.056

1

1.619

7

1.111

3

1.632

10

1.632

11

1.632

12

Table 5:17: Average mixed sample LS KFDA relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.199

3

1.334

4

2.380

11

1.491

5

2.288

9

1.699

6

1.108

1

2.015

8

1.181

2

2.442

12

2.369

10

1.945

7

Table 5.18: Average wide sample LS KFDA relative- test errors and ranks

R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

3.347

7

2.344

1

2.915

6

2.761

4

4.648

11

2.772

5

2.523

2

3.604

8

2.760

3

5.040

12

4.013

10

3.634

9

Table 5.19: Average wide sample LS SVM relative- test errors and ranks

N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

1.944

1

2.079

2

2.292

8

2.171

5

2.260

7

2.147

4

2.128

3

2.714

9

2.221

6

3.889

12

3.031

11

2.805

10

CHAPTER 5
BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

221

We now consider the relative performance of the criteria in the different sample size

scenarios. In the small sample cases the A1T and V0 criteria perform very well: in all of

these cases, except the NS KFDA results, one of these two criteria does best. Overall, the

best performing criteria in mixed samples are V0 and G0: with exception of a single case,

one of these two criteria always performs best. The relative performances are slightly more

erratic in wide samples. Now the algorithm-dependent criteria perform very well in the NS

and LS scenarios, while the V0 and A1 criteria also do well, especially in the LL data setup.

Regarding a choice between use of the zero- or first-order forms of the selection criteria,

we consider only those that perform well. For the G, N and V criteria the zero-order forms

are better, but for the A criterion, the first-order version performs best. A general

conclusion cannot be made for the R criterion, except for LL data, where R0 dominates. It

is interesting to observe that the greater complexity of the first-order versions does not

generally yield superior results, and we are led to recommend use of the zero-order criteria.

5.6 SUMMARY

In this chapter we once again considered selection in feature space, but now combined with

a specific selection strategy, viz. backward elimination. We started with a review of

recursive feature elimination, as it is generally known in the literature. This was followed

by a description of selection criteria for RFE. Following the precedent set in a standard

paper in this area, we defined zero-order and first-order versions of each criterion. Several

conclusions followed from the empirical study. Regarding a comparison of the algorithm-

independent and -dependent criteria, we found that in NS data the R criterion was clearly

best in KFDA, but not so the N criterion in SVMs. Interestingly, in LL and LS data, the

algorithm-dependent criteria were outperformed by the algorithm-independent ones.

Training sample size had a significant influence on the relative performances of the

different criteria. Overall the alignment and variation ratio seem recommendable. The

zero- and first-order versions of the different criteria were also compared. Generally, the

benefit from the greater complexity of the first-order criteria was doubtful.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

222

CHAPTER 6

 VARIABLE SELECTION
FOR SUPPORT VECTOR MACHINES:

A TWO-STAGE APPROACH

6.1 INTRODUCTION

Up to this point in the thesis we have emphasised the importance of variable selection

when kernel methods are used, and assuming the number of variables to include to be

known, investigated the use of several selection criteria in combination with a backward

elimination strategy. In this chapter we address the important problem of using the data to

decide on the number of variables to include in the final model. As before, the number of

relevant variables in a given scenario will be denoted by m , i.e. in simulation studies we

generate data in such a way that the two groups differ from one another with respect to m

of the p input variables. We can view the decision on the number of variables to use as

one of estimating the value of m . Attention is restricted to input variable selection for

SVMs in binary classification. Combining our proposal for estimating m with a strategy

that can be used to search through the available models, we arrive at a complete proposal

for input variable selection.

The chapter is structured as follows. In Section 6.2 we review the literature related to the

work presented in this chapter. Section 6.3 contains an illustration of the importance of

accurate estimation of m , as well as a discussion of our proposal in this regard. In Section

6.4 we start with an evaluation of our proposal: we report the results of a simulation

investigation where we studied the behaviour of the criterion which we propose for

deciding on a value of m as a function of the number of variables included in a model. At

each model dimension we purposely consider the model containing the best (relevant)

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

223

variables, possibly combined with one or more irrelevant variables. The idea behind this is

to see whether the proposed criterion reaches an ‘optimal’ value at the correct model

dimension. We empirically investigate various aspects of the performance of the proposed

criterion when it is combined with other previously discussed criteria, as well as with a

strategy for moving through the space of different variable subsets. The chapter concludes

with a summary in Section 6.7.

6.2 RELATED LITERATURE

Data-dependent specification of the number of variables to include is an important aspect

of kernel variable selection which has thus far not received much attention in the literature:

presupposing a fixed value for this number has somehow become common practice in most

contributions to kernel variable selection. Generally in applications the value of m is of

course unknown and has to be determined from the data. In this section we first provide

pointers to some papers on data-dependent specification of the model dimension in

classical statistical procedures, and then we refer to a current approach which entails

automatic determination of a value for m when kernel techniques are used.

Important contributions to selecting the model dimension in the context of traditional

statistical procedures (based on maximum likelihood principles) are Akaike (1970) and

Schwarz (1978). In a more general framework Breiman (1992) and Rao (1999) propose

use of the bootstrap (cf. Efron, 1979 and 1982). The number of input variables to include

in CART is determined through pruning which is typically based on cross-validation (cf.

Geisser, 1975, and Stone, 1977). Bunke and Droge (1984) compare the bootstrap with

cross-validation for deciding on a model dimension in linear regression problems. Other

references regarding a choice between statistical models of varying complexity may be

found in Rao (1999).

Cross-validation is currently the predominant way of determining the dimension of post-

selection kernel models. The computational expense of cross-validation however often

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

224

renders it an unattractive option, especially in applications where p is large. Speedup

cross-validation algorithms for least squares SVMs and kernel ridge regression are

discussed in Senjian et al. (2007).

In some approaches to the variable selection problem, the value of m is automatically

estimated from the data. If selection is performed through the use of regularised

optimisation (briefly described in Chapter 2), also called soft selection (cf. for example

Chapelle et al., 2004), a coefficient (or scaling factor) is associated with each input

variable. The selection algorithm returns the estimated coefficient associated with each

variable, where some of the estimated values may be zero. The number of non-zero scaling

factors is taken as the number of variables to select. For more details regarding soft

selection, the reader may consult references provided in Chapter 2 and also the paper by

Chapelle et al. (2004).

6.3 A PROPOSAL FOR DECIDING ON THE MODEL DIMENSION

This section consists of two parts: in the first part we provide an illustration of the

importance of determining the number of input variables to be used in an SVM. We then

proceed with a discussion of a method which can be used for this purpose. The following

notation will be used: as indicated earlier, m will denote the number of relevant variables;

an estimate of m will be denoted by m̂ , i.e. this will represent the number of variables

which we propose to include in the model; and finally, k will be used as an index for the

different possible model dimensions.

Figure 6.1 displays boxplots of the test errors obtained after training SVMs on subsets of

variables of different sizes. The sizes of the subsets are indicated on the x-axis. We

considered a binary classification setup, and all training cases (which consisted of

measurements on 5=p input variables) were generated so that differences between the

two groups were caused only by a subset of 3=m relevant input variables. In the figure

the boxplot at 1=k depicts the test error values obtained from SVMs based on only one of

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

225

the three relevant variables, the boxplot at 2=k corresponds to SVMs based on two

relevant input variables, and so on, up to 5=k , where of course two irrelevant variables

are also included. We used NS and LS data with 0=Sρ and 0.7, and 0=SSρ or 0.9 in the

normal case, and 0=Sρ and 0.7, and 0=SSρ or 0.2 in the lognormal case. Regarding the

cost parameter, we used a series of values, viz. 001.0=C , 0.01, 0.1, 1, 10, 100 and 1000,

and we report the best results obtained. Figure 6.1 summarises the results for NS data with

0=Sρ and 0=SSρ . Figures for the other cases which were investigated convey the same

message and are therefore not shown. The full set of average test errors for the different

parameter configurations are summarised per data configuration in Tables 6.1 and 6.2.

1 2 3 4 5

0.
10

0.
15

0.
20

0.
25

k

TE
S

T
 E

R
R

O
R

Figure 6.1: Boxplots of test errors at different model dimensions

Clearly in Figure 6.1, if we assume that it is possible to consistently identify the best subset

per dimension correctly, then the SVM test errors based on the correct model dimension

(3=m in the above scenario) is significantly smaller and have smaller variation than the

errors at other values of k .

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

226

Table 6.1: Average SVM test errors at different model dimensions in the NS case

 k
Sρ SSρ 1 2 3 4 5

0.0 0.0 .258 .166 .120 .151 .175
0.0 0.9 .258 .166 .120 .149 .171
0.7 0 .258 .182 .145 .181 .210
0.7 0.9 .253 .182 .145 .178 .206

Table 6.2: Average SVM test errors at different model dimensions in the LS case

 k
Sρ SSρ 1 2 3 4 5

0.0 0.0 .184 .118 .093 .127 .157
0.0 0.2 .182 .115 .092 .120 .143
0.7 0 .184 .145 .129 .163 .193
0.7 0.2 .184 .145 .130 .160 .186

From Figure 6.1 and the average test errors reported at the different model dimensions in

Tables 6.1 and 6.2, the importance of correctly determining the SVM model dimension (if

one is given the best variable subset of each dimension), is evident. In the above scenarios

the SVM misclassification rate can be significantly improved if instead of 2=k or 4 one

uses the correct number of input variables, viz. 3== mk .

We now proceed with a discussion of our proposal for a data-dependent decision regarding

the value of m . In the end this forms part of a two-stage approach for selecting a subset of

{ }pXXX ,,, 21 K to construct an SVM classifier. Initially, p subsets are identified as

candidates for final selection: a subset 1V consisting of the single variable deemed best in

some sense, a subset 2V consisting of the best two variables, and so on up to

{ }pp XXXV ,,, 21 K= . As seen in previous chapters, two aspects arise here: firstly, a

criterion has to be specified to decide on an optimal subset of a given size, and secondly,

one has to decide on the method which will be used to search through the different subsets

of variables. We call the criterion in terms of which the optimal subsets of different

dimensions are defined the inner (selection) criterion, and we discuss two possibilities in

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

227

this regard further on in this section. For a given inner criterion, forward selection,

backward elimination, or an all possible subsets approach may be considered for scanning

the subsets of variables. We know that the all possible subsets approach is only feasible for

moderately large values of p , say 40<p . For larger values of p , the number of subsets

of a given dimension which have to be examined becomes prohibitively large, and a choice

has to be made between a forward selection and backward elimination approach. Several

authors prefer the backward elimination approach, arguing that an unwise decision during

the early stages of a forward selection approach may lead to good models of higher

dimensions not being considered at all. In the empirical evaluation later on we will see that

also in our proposed selection approach, backward elimination is generally to be preferred

to forward selection. In any case, an important requirement for the inner criterion is that

we should be able to calculate this criterion quickly.

During the second stage of variable selection a so-called outer (selection) criterion has to

be used to choose one of the previously identified subsets pVVV ,,, 21 K . At this stage fast

computation of the criterion becomes less important, since only p candidate subsets

remain. However, an important requirement for the outer criterion is that it should not be a

monotone function of the number of variables in the subsets under consideration. This

requirement is essential to prevent the criterion from simply selecting the best 1-variable

subset, or the set containing all the input variables.

What recommendations can be made regarding the inner and outer criterion for use in

SVMs? As seen in Chapter 5, different (inner) selection criteria have been proposed in the

literature, including 2w and criteria based on generalisation error bounds (for example,

the radius-margin bound and the span estimate). Since training an SVM is computationally

fairly expensive, the inner criterion should preferably not be based on quantities which

depend on a trained SVM. To be more specific in this regard, we recommend that the inner

criterion should only be a function of the kernel matrix. Of the algorithm-independent (and

thus more quickly computable) selection criteria discussed in Chapter 4, the zero-order

forms of the alignment (see Cristianini et al., 2002) and also of the variation ratio (see

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

228

Wang et al., 2004) performed well, and we will evaluate our proposal using these two inner

criteria.

Regarding the outer criterion, we stated in Section 6.2 that one possibility would be to use

cross-validation estimates of the error rates of the SVM classifiers constructed from

pVVV ,,, 21 K to select one of these subsets. Since cross-validation is infeasible for data

sets with a large number of input variables, we consider using an alternative outer criterion.

A well known upper bound on the (leave-one-out) generalisation performance of SVMs is

based on the number of support vectors (see Schölkopf and Smola, 2002, p. 198, as well as

Vapnik and Chapelle, 2000, and Chapelle et al., 2004, for more detail on various bounds on

the generalisation errors of SVMs). The following theorem summarises this bound.

THEOREM 6.1

The expectation of the number of support vectors obtained during training on a training

data set of size n , divided by n , is an upper bound on the expected probability of test error

of the SVM trained on training data sets of size 1−n .

 

Based on the above theorem, we propose using the number of support vectors (NSV) as an

outer selection criterion. We therefore propose estimation of m by m̂ , where m̂

minimises the NSV criterion, i.e.

 (){ }k
pk

VNSVminargm
,,2,1

ˆ
K=

= , (6.1)

where ()kVNSV is the number of support vectors (the number of positive SVM α -

coefficients) of the SVM based on the variables in kV . Note that this proposal is based on

the fact that the bound in Theorem 6.1 is a monotone non-decreasing function of the

number of support vectors.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

229

The only aspect remaining is to specify a selection strategy. As pointed out before, in the

literature on variable selection for SVMs a backward elimination approach is preferred to

forward selection and an all possible subsets approach. In the simulation experiments

described in later sections we will compare these different strategies and see that backward

elimination is indeed to be preferred in our proposed approach as well.

6.4 PRELIMINARY EVALUATION

The aim of this section is to report a limited initial evaluation of the use of the NSV outer

criterion introduced in Section 6.3, independently of the use of an inner criterion. Hence in

this section we assume that the NSV criterion is given the nested sequence of best variable

subsets corresponding to all possible model dimensions, viz. pVVV ⊂⊂⊂ K21 . If the

NSV criterion does not perform well in this simplified scenario, evaluation of its

performance in combination with an inner criterion will of course be pointless.

In our preliminary study we restricted attention to large (i.e. 10021 == nn) NS and LS data

sets. We simulated 500 binary classification training and test data sets, and in each

generated differences between the two groups to be caused by 3=m out of a total of

5=p input variables. We considered all four correlation configurations described in

Chapter 3 and used 102
2 =s throughout. In total we therefore had eight simulation setups

to evaluate. During each simulation repetition we trained a support vector classifier using

the best variable subset per possible model dimension (5,,2,1 K=k), and calculated the

corresponding NSV criterion values and test errors for each of the five trained SVMs. In

training the SVMs for each model dimension we used k1=γ . These steps were repeated

for each simulated data set, at cost parameter values 100,10,1,1.0,01.0,001.0 =C and

1000 . For each model dimension and cost parameter value we then calculated an average

NSV value, and an average test error. This yielded 5678 =× sets of 5=p average NSV

and test error figures.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

230

Since the results for different data configurations were very similar, we summarise only a

sample of average NSV and test error values: the figures obtained for each model

dimension and each value of C , with 0=Sρ and 0=SSρ in NS and LS data sets are given

in Tables 6.3 and 6.4 respectively. The NSV values appear in the first row of each cell, and

the test errors follow in the second row. We indicate minimum values of the NSV criterion

and of the test errors in bold face.

Table 6.3: Average NSV values and test errors for 0=Sρ and 0=SSρ in the NS case

 k

C 1 2 3 4 5

.001
200.00

.257

200.00

.161

200.00

.107

200.00

.152

200.00

.182

.01
199.99

.258

200.00

.161

200.00

.106

200.00

.152

200.00

.182

.1
153.34

.258

141.25

.161

134.10

.106

161.83

.134

179.08

.167

1
119.32

.257

87.27

.163

71.70

.110

87.12

.118

102.26

.130

10
110.13

.258

75.22

.167

55.76

.118

62.89

.131

71.86

.149

100
106.78

.259

71.33

.171

52.37

.134

58.01

.164

64.78

.193

1000
106.87

.259

68.36

.178

50.22

.158

56.78

.207

62.33

.221

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

231

Table 6.4: Average NSV values and test errors for 0=Sρ and 0=SSρ in the LS case

 k

C 1 2 3 4 5

.001
199.85

.183

200.00

.129

200.00

.104

200.00

.154

200.00

.192

.01
199.92

.182

200.00

.129

200.00

.104

200.00

.156

200.00

.195

.1
163.23

.180

161.76

.123

162.32

.101

179.86

.146

189.79

.187

1
113.45

.181

91.33

.114

83.83

.091

102.29

.110

117.63

.130

10
97.39

.186

64.174

.111

53.48

.081

64.82

.098

75.44

.115

100
90.54

.188

51.60

.107

38.90

.079

48.02

.103

56.94

.128

1000
86.86

.191

44.08

.108

32.40

.088

41.08

.120

49.49

.149

The results of this initial evaluation of the NSV criterion were encouraging: in only a

small percentage of all 56 cases the minimum average NSV value occurred at an

‘incorrect’ value of k (i.e. in this setup at model dimension 3=≠ mk). Therefore,

assuming that the inner criterion always correctly identifies the best subset per dimension,

using the NSV criterion to determine the number of separating input variables would have

yielded the incorrect number relatively rarely. It should also be noted though that in 12 out

of 56 instances an inappropriate value of C (mostly 001.0=C or 0.01) caused the number

of support vectors to be large and equal at all values of k , rendering a decision based on

the NSV criterion regarding the number of variables to use impracticable. Still, in the

evaluated setups it seems as if NSV-based specification of the number of variables to use is

not overly sensitive to potential misspecification of C . In Tables 6.3 and 6.4 for example,

the NSV criterion correctly identifies m at 100,10,1 =C and 1000.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

232

The average NSV values and SVM test errors (as percentages) for 7.0=Sρ and 0=SSρ in

the NS and LS scenarios are displayed in Figures 6.2 and 6.3 respectively, plotted

1 2 3 4 5

0
20

40
60

80
12

0

C = 1

1 2 3 4 5
0

20
40

60
80

12
0

C = 10

NSV CRITERION
TEST ERROR

1 2 3 4 5

0
20

40
60

80
12

0

C = 100

1 2 3 4 5

0
20

40
60

80
12

0

C = 1000

Figure 6.2: The average number of support vectors, and the average test error (as a

 percentage), when 7.0=Sρ and 0=SSρ in the NS case

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

233

1 2 3 4 5

0
20

40
60

80
12

0

C = 1

1 2 3 4 5

0
20

40
60

80
12

0

C = 10

NSV CRITERION
TEST ERROR

1 2 3 4 5

0
20

40
60

80
12

0

C = 100

1 2 3 4 5

0
20

40
60

80
12

0

C = 1000

Figure 6.3: The average number of support vectors, and the average test error (as a

 percentage) when 7.0=Sρ and 0=SSρ in the LS case

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

234

against the different values of k . Results corresponding to other correlation structures

were similar.

In both figures it is clear that the average test errors decrease from 1=k , reach a minimum

at 3=k , and steadily increase at 4=k and 5. The same pattern also holds for the NSV

criterion, and we see that in these scenarios, a decision on the number of input variables to

include, if it is based on minimising the number of support vectors, would yield the correct

number (3=m in this setup) in all cases.

6.5 MONTE CARLO SIMULATION STUDY

The promising results in Section 6.4 encouraged us to evaluate the performance of the

selection strategy proposed in Section 6.3 via a more extensive Monte Carlo simulation

study. In essence we made use of the experimental design described in Chapter 3, but in

some cases we considered different factor levels. We now discuss these modifications.

Firstly, since we saw in previous chapters that little benefit is gained by using SVMs in NL

cases, we only evaluated our dimension selection procedure using NS, LL and LS data sets.

Also, the total number of available variables (in V) was taken as either 5=p or 50=p .

In data sets where p equalled 5, we generated observations from the two groups to differ

with respect to 3=m input variables. When 50=p , we used 10=m . Depending on the

value of p the proportion of relevant input variables was therefore either 2.0=π (when

50=p) or 6.0=π (when 5=p). A second modification was with respect to the sample

sizes considered. In parts of the study where we compared the various inner criteria and

selection strategies, we restricted attention to small (i.e. 1521 == nn) and large (i.e.

10021 == nn) data sets, whereas in cases where we considered the use of the NSV

criterion versus cross-validation as outer criterion, we also included mixed samples (where

501 =n and 1502 =n). Thirdly, in NS and LS configurations we restricted attention to

only a single value for the variance of the second group, viz. 102
2 =s (as opposed to

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

235

102
2 =s and 1002

2 =s in Chapter 3). Regarding hyperparameter specifications, we

followed a recommendation by Schölkopf and Smola (2002), and consistently used a cost

parameter value of 10nC = . Note that more details with regard to specification of γ will

be given as we proceed with the discussion. We used 1000 Monte Carlo simulation

repetitions throughout, and for each model dimension we report the average test error

(based on test data sets consisting of 2000 cases) and the fraction of times that each of the

input variables was selected.

Recall that the first step during each simulation repetition involves computation of the

zero-order versions of the alignment and the variation ratio as inner criteria on the training

data, in order to identify pVVV ⊂⊂⊂ K21 . We used p1=γ to calculate these inner

criteria. Let the nested subsets of input variables obtained after using the alignment and the

variation ratio be denoted by () () ()pAVAVAV ⊂⊂⊂ K21 and

() () ()pRVRVRV ⊂⊂⊂ K21 respectively. The second step in our approach requires

application of an outer selection criterion. After calculating the outer criterion for the best

variable subsets of sizes pk ,,2,1 K= , we then have to select the number of variables

corresponding to the optimal outer criterion value. In our proposal we use the NSV as

outer selection criterion. Therefore, during the second step in each simulation repetition

we (potentially) needed to train p2 SVMs, based on two (potentially) different variable

subsets of sizes pk ,,2,1 K= as identified by the alignment and the variation ratio as inner

criteria. Here we specified k1=γ . We then calculated the NSV values corresponding to

these p2 SVMs. Let the NSV values for selection using the alignment and the variation

ratio be denoted by () () ()pANSVANSVANSV ,,, 21 K and

() () ()pRNSVRNSVRNSV ,,, 21 K respectively. A value for m using the alignment as

inner selection criterion was then obtained as

 (){ }k
pk

A ANSVmin argm
,,2,1

ˆ
K=

= . (6.2)

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

236

Similarly, using the variation ratio as inner criterion we identified the number of variables

to include in the final model as

 (){ }k
pk

R RNSVmin argm
,,2,1

ˆ
K=

= . (6.3)

Finally then in this section, note that Am̂ and Rm̂ respectively indicate the number of input

variables to select as identified by the NSV outer criterion, after using the alignment and

the variation ratio as inner criteria. Since prior to determining Am̂ and Rm̂ we reduced the

sets of variables to consider to only the best variable subsets of each dimension, note that

Am̂ and Rm̂ also index the variable subset selected using the alignment and the NSV

outer criterion, and the variation ratio and the NSV criterion, in that order.

The final step in each simulation repetition involved separate calculation of several

quantities when using both the alignment and the variation ratio for selection. We report

averages of these quantities over the 1000 simulation repetitions. The quantities are:

i. Test errors of the post-selection SVM, which we will refer to as the alignment NSV

and variation ratio NSV test errors.

ii. SVM test errors based on subsets containing only the correct number of input

variables, which we will call correct dimension test errors (denoted by CDIM in the

tables).

iii. The number of times that each of pXXX ,,, 21 K was selected.

iv. The number of times that each of the possible model dimensions, i.e. pk ,,2,1 K= ,

was selected.

v. SVM test errors based on the subset of relevant input variables. We will refer to

these errors as oracle test errors (denoted by ORA in the tables), since they

represent a gold standard against which the performance of proposed procedures

can be measured.

vi. SVM test errors based on all available input variables, i.e. the so-called no selection

test errors (denoted by NO in the tables).

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

237

6.6 RESULTS AND CONCLUSIONS

The results obtained from the Monte Carlo simulation study described in Section 6.5 are

summarised in this section.

Consider first the relative performance of the two selection strategies, i.e. backward

elimination and forward selection. For this purpose we compare corresponding entries in

Tables 6.5 and 6.6 below. Note that the first entry in each cell of the CDIM and NSV

columns in these (and later similar) tables corresponds to the alignment as inner criterion,

while the second entry corresponds to the variation ratio as inner criterion. We generally

observe smaller average test errors in backward elimination. This is particularly evident in

small sample cases, although we also observe relatively large improvements in

classification accuracy if backward elimination is used in large LS samples. The more

pronounced differences between the performances of backward and forward selection are

summarised in Tables 6.7 and 6.8.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

238

Table 6.5: Average test errors in forward selection

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV NO ORA CDIM NSV NO

NS1 5 0.0 .039 .045
.042

.066

.064
.122 .016 .016

.016
.016
.016

.047

NS2 5 7.0 .041 .048
.043

.065

.064
.125 .015 .015

.015
.016
.016

.047

NS3 50 0.0 .008 .168
.143

.252

.231
.259 .002 .003

.003
.012
.011

.158

NS4 50 7.0 .009 .152
.127

.238

.213
.259 .003 .004

.004
.013
.013

.158

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV NO ORA CDIM NSV NO

LL1 5 0.0 .088 .095
.096

.121

.122
.133 .041 .041

.041
.046
.046

.066

LL2 5 7.0 .133 .140
.134

.139

.137
.187 .087 .087

.087
.090
.090

.121

LL3 50 0.0 .067 .159
.156

.115

.115
.178 .028 .028

.029
.047
.046

.072

LL4 50 7.0 .130 .184
.147

.143

.141
.273 .084 .084

.084
.086
.086

.204

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV NO ORA CDIM NSV NO

LS1 5 0.0 .133 .158
.152

.179

.178
.210 .079 .080

.079
.082
.082

.117

LS2 5 7.0 .161 .197
.177

.203

.200
.255 .105 .106

.105
.109
.108

.151

LS3 50 0.0 .089 .311
.301

.262

.261
.384 .054 .077

.073
.078
.077

.295

LS4 50 7.0 .133 .367
.342

.362

.346
.405 .066 .165

.137
.148
.141

.340

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

239

Table 6.6: Average test errors in backward elimination

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV NO ORA CDIM NSV NO

NS1 5 0.0 .039 .043
.039

.062

.060
.121 .015 .015

.015
.016
.016

.048

NS2 5 7.0 .042 .046
.042

.066

.063
.122 .015 .015

.015
.016
.016

.047

NS3 50 0.0 .008 .040
.021

.128

.088
.259 .002 .002

.002
.011
.010

.158

NS4 50 7.0 .009 .041
.023

.128

.091
.259 .004 .004

.004
.012
.012

.158

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV NO ORA CDIM NSV NO

LL1 5 0.0 .088 .095
.097

.118

.119
.134 .041 .041

.041
.045
.045

.066

LL2 5 7.0 .133 .143
.136

.138

.137
.188 .087 .087

.087
.090
.090

.121

LL3 50 0.0 .067 .100
.098

.115

.115
.178 .029 .029

.029
.046
.045

.073

LL4 50 7.0 .129 .184
.146

.142

.139
.277 .084 .086

.085
.085
.084

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV NO ORA CDIM NSV NO

LS1 5 0.0 .132 .156
.153

.177

.177
.207 .079 .079

.079
.082
.082

.116

LS2 5 7.0 .162 .203
.175

.205

.195
.257 .106 .106

.106
.110
.109

.151

LS3 50 0.0 .087 .239
.227

.234

.225
.381 .054 .067

.063
.066
.065

.294

LS4 50 7.0 .132 .314
.260

.304

.263
.404 .066 .119

.071
.093
.076

.339

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

240

Table 6.7: Average test errors for backward and forward selection in small samples when

50=p

 BACKWARD FORWARD

 Sρ CDIM NSV CDIM NSV

NS3 0.0 .040
.021

.128

.088
.168
.143

.252

.231
NS4 7.0 .041

.023
.128
.091

.152

.127
.238
.213

LS3 0.0 .239
.227

.234

.225
.311
.301

.262

.261
LS4 7.0 .314

.260
.304
.263

.367

.342
.362
.346

Table 6.8: Average test errors for backward and forward selection in large samples

when 50=p

 BACKWARD FORWARD

 Sρ CDIM NSV CDIM NSV

LS3 0.0 .067
.063

.066

.065
.077
.073

.078

.077
LS4 7.0 .119

.071
.093
.076

.165

.137
.148
.141

It is clear that backward elimination is preferable to forward selection. The question may

now be asked whether one should consider using an all possible subsets approach. We

compared backward elimination and an all possible subsets approach in a limited

simulation study (5=p), and found the two strategies to perform largely the same (see

Table 6.9 for the test errors using an all possible subsets approach, and Table 6.10 for

easier comparison of the three selection strategies). Since an all possible subsets approach

is impracticable for large values of p , we recommend the use of a backward elimination

strategy. Most of the results reported and discussed further on in this section were obtained

using backward elimination.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

241

Table 6.9: Average test errors in all possible subsets selection when 5=p

 SMALL SAMPLES LARGE SAMPLES

 Sρ ORA CDIM NSV NO ORA CDIM NSV NO

NS1 0.0 .034 .043
.039

.064

.063
.121 .016 .016

.016
.016
.016

.047

NS2 7.0 .041 .044
.041

.064

.062
.123 .015 .015

.015
.016
.016

.047

 SMALL SAMPLES LARGE SAMPLES

 Sρ ORA CDIM NSV NO ORA CDIM NSV NO

LL1 0.0 .090 .094
.097

.122

.123
.132 .041 .041

.041
.045
.045

.065

LL2 7.0 .134 .141
.135

.140

.138
.187 .087 .087

.087
.089
.089

.120

 SMALL SAMPLES LARGE SAMPLES

 Sρ ORA CDIM NSV NO ORA CDIM NSV NO

LS1 0.0 .131 .157
.151

.176

.177
.205 .079 .080

.079
.082
.082

.119

LS2 7.0 .161 .197
.172

.202

.194
.251 .106 .107

.106
.110
.109

.152

Consider next the quality of the proposed inner criteria. Given the superiority of backward

elimination, we focus on the results in Table 6.6, and compare corresponding entries in the

ORA and CDIM columns. These are summarised in Table 6.11. Recall that the figures in

the CDIM columns are average test errors of models of the correct dimension identified by

the alignment and the variation ratio inner criterion. The extent to which these test errors

exceed the corresponding oracle test errors reflects failure of the inner criteria to identify

the variables separating the two groups correctly.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

242

Table 6.10: Average test errors in forward selection, backward elimination and

 an all possible subsets approach

 FORWARD BACKWARD ALL POSSIBLE
 SMALL LARGE SMALL LARGE SMALL LARGE
 p Sρ CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV

NS1 5 0.0 .045
.042

.066

.064
.016
.016

.016

.016
.043
.039

.062

.060
.015
.015

.016

.016
.043
.039

.064

.063
.016
.016

.016

.016
NS2 5 7.0 .048

.043
.065
.064

.015

.015
.016
.016

.046

.042
.066
.063

.015

.015
.016
.016

.044

.041
.064
.062

.015

.015
.016
.016

 FORWARD BACKWARD ALL POSSIBLE
 SMALL LARGE SMALL LARGE SMALL LARGE
 p Sρ CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV

LL1 5 0.0 .095
.096

.121

.122
.041
.041

.046

.046
.095
.097

.118

.119
.041
.041

.045

.045
.094
.097

.122

.123
.041
.041

.045

.045
LL2 5 7.0 .140

.134
.139
.137

.087

.087
.090
.090

.143

.136
.138
.137

.087

.087
.090
.090

.141

.135
.140
.138

.087

.087
.089
.089

 FORWARD BACKWARD ALL POSSIBLE
 SMALL LARGE SMALL LARGE SMALL LARGE
 p Sρ CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV CDIM NSV

LS1 5 0.0 .158
.152

.179

.178
.080
.079

.082

.082
.156
.153

.177

.177
.079
.079

.082

.082
.157
.151

.176

.177
.080
.079

.082

.082
LS2 5 7.0 .197

.177
.203
.200

.106

.105
.109
.108

.203

.175
.205
.195

.106

.106
.110
.109

.197

.172
.202
.194

.107

.106
.110
.109

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

243

Table 6.11: Average test errors in backward elimination

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM ORA CDIM

NS1 5 0.0 .039 .043
.039 .015 .015

.015
NS2 5 7.0 .042 .046

.042 .015 .015
.015

NS3 50 0.0 .008 .040
.021 .002 .002

.002
NS4 50 7.0 .009 .041

.023 .004 .004
.004

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM ORA CDIM

LL1 5 0.0 .088 .095
.097 .041 .041

.041
LL2 5 7.0 .133 .143

.136 .087 .087
.087

LL3 50 0.0 .067 .100
.098 .029 .029

.029
LL4 50 7.0 .129 .184

.146 .084 .086
.085

 SMALL SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM ORA CDIM

LS1 5 0.0 .132 .156
.153 .079 .079

.079
LS2 5 7.0 .162 .203

.175 .106 .106
.106

LS3 50 0.0 .087 .239
.227 .054 .067

.063
LS4 50 7.0 .132 .314

.260 .066 .119
.071

In Table 6.11 we see that for a small number of input variables our inner criteria perform

well, especially so in large sample cases. As expected the performance deteriorates with an

increase in the number of variables, especially in small samples. The worst cases in this

regard are NS3 and NS4, as well as LS3 and LS4. Note that the average test errors when the

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

244

alignment was used as inner criterion are given in the first row of each cell, and test errors

pertaining to selection based on variation ratios follow in the second row. Comparing the

performance of the two proposed inner criteria, we see that the variation ratio mostly

outperforms the alignment, especially in small sample cases. In light of the above results

our conclusion at this stage is that the proposed variable selection strategy performs well

when it is based on backward elimination using the variation ratio as inner selection

criterion.

We now move on to a discussion of the performance of the outer criteria. Results appear in

Table 6.12. Note that only results based on the variation ratio as inner criterion combined

with backward elimination are reported. Table 6.12 also contains a further column

(denoted by CV) and representing test errors if cross-validation is used to estimate the value

of m . Consider the correct dimension test errors and the test errors in the NSV and CV

columns. Bear in mind that when we apply an outer criterion such as NSV or CV, we use

the data to select a model dimension. This introduces an extra element of uncertainty and

one would thus expect the outer criterion error rates to exceed corresponding correct

dimension values. If an outer criterion selected the correct model dimension with

probability 1, the resulting average test errors would be identical to those in the CDIM

column. Therefore any difference between entries in the CDIM and an outer criterion

column reflects failure of the outer criterion to determine the model dimension correctly in

all cases. Interestingly, this is not always undesirable. In some cases we actually found

that the NSV test error is smaller than the corresponding CDIM test error. This can only be

the result of the NSV criterion fortuitously identifying a lower model dimension in cases

where a sizable proportion of the variables selected by the inner criterion is useless. In

general the outer criteria test errors summarised in Table 6.12 are not far above the CDIM

values, except in the NS3 and NS4 cases.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

245

Table 6.12: Average test errors for outer criteria in backward elimination

 SMALL SAMPLES MIXED SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV CV NO ORA CDIM NSV CV NO ORA CDIM NSV CV NO

NS1 5 0.0 .039 .039 .060 .065 .121 .017 .017 .017 .019 .052 .017 .017 .017 .019 .052
NS2 5 7.0 .042 .042 .063 .067 .122 .017 .017 .018 .021 .052 .017 .017 .018 .021 .052
NS3 50 0.0 .008 .021 .088 .057 .259 .004 .004 .009 .009 .198 .004 .004 .009 .009 .198
NS4 50 7.0 .009 .023 .091 .063 .259 .005 .005 .011 .011 .197 .005 .005 .011 .011 .197

 SMALL SAMPLES MIXED SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV CV NO ORA CDIM NSV CV NO ORA CDIM NSV CV NO

LL1 5 0.0 .088 .097 .119 .111 .134 .034 .034 .038 .037 .055 .034 .034 .038 .037 .055
LL2 5 7.0 .133 .136 .137 .137 .188 .071 .071 .065 .064 .100 .071 .071 .065 .064 .100
LL3 50 0.0 .067 .098 .115 .104 .178 .0002 .024 .039 .028 .062 .0002 .024 .039 .028 .062
LL4 50 7.0 .129 .146 .139 .167 .277 .0004 .079 .068 .067 .115 .0004 .079 .068 .067 .115

 SMALL SAMPLES MIXED SAMPLES LARGE SAMPLES

 p Sρ ORA CDIM NSV CV NO ORA CDIM NSV CV NO ORA CDIM NSV CV NO

LS1 5 0.0 .132 .153 .177 .167 .207 .081 .082 .083 .087 .116 .081 .082 .083 .087 .116
LS2 5 7.0 .162 .175 .195 .187 .257 .102 .102 .106 .107 .166 .102 .102 .106 .107 .166
LS3 50 0.0 .087 .227 .225 .235 .381 .042 .064 .064 .066 .261 .042 .064 .064 .066 .261
LS4 50 7.0 .132 .260 .263 .275 .404 .055 .087 .084 .084 .290 .055 .087 .084 .084 .290

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

246

We see that it is impossible to express a general preference for either of the two outer

criteria based only on test errors: in some cases the NSV criterion performs better, but in

other cases CV is preferred. It does however seem that the difference between the two

criteria is larger in cases where the NSV criterion performs better.

In addition to the post-selection error rate we also estimated the probabilities with which

each of the two outer criteria identified different final model dimensions. A selection of

the results is presented in Figures 6.4 and 6.5. The small sample results in the first row of

these figures are for the uncorrelated NS, LL and LS cases respectively, while the second

and third rows contain the corresponding mixed and large sample results. Note that similar

results were obtained for the correlated case (i.e. when 7.0=Sρ). Scenarios where we had

5=p and 3=m relevant variables are displayed in Figure 6.4, and cases where 50=p

and 10=m are given in Figure 6.5.

The ideal outer criterion would identify a model dimension of three with probability 1. If

an outer criterion decides on a lower final model dimension, this amounts to underfitting,

whilst overfitting occurs when the identified model dimension exceeds the correct model

dimension.

In order to avoid too many categories in Figure 6.5 we grouped together the selection

percentages for model dimensions ,3,2,1 =k and 4 into a so-called severe underfitting

(SU) category, selection percentages for 9,,6,5 K=k into an underfitting (U) category, for

15,,11 K=k into an overfitting (O) category, and for 50,,17,16 K=k into a severe

overfitting (SO) category. The percentage of times that the correct number of input

variables was selected is labelled C.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

247

Figure 6.4: Selection percentages for the NSV outer criterion compared to those

 obtained for cross-validation when 5=p

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

SMALL SAMPLES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

THE NSV-CRITERION
CROSS-VALIDATION

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

MIXED SAMPLES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

LARGE SAMPLES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

248

SU U C O SO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

SMALL SAMPLES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

THE NSV-CRITERION
CROSS-VALIDATION

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

MIXED SAMPLES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

LARGE SAMPLES

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SU U C O SO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6.5: Selection percentages for the NSV outer criterion compared to those

 obtained for cross-validation when 50=p

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

249

Some general trends are evident from Figure 6.4. For small samples CV appears to identify

the correct model dimension with somewhat higher probability than the NSV criterion. The

reverse is true for large samples. Also, for small samples the NSV criterion tends to

underfit, whilst CV shows some overfitting and therefore definitely includes irrelevant

variables in some cases. Both criteria perform very well in the large sample, scale

difference situations, especially so the NSV criterion.

For both outer criteria the scenarios reported in Figure 6.5, with their large number of input

variables, proved to be much more difficult to handle. Even for large samples the selection

percentages at the correct model dimension are relatively small. We again see that the NSV

criterion is prone to underfitting, whereas cross-validation tends to overfit. Whether

underfitting is more acceptable than overfitting, or vice versa, depends on the main variable

selection objective: improving the accuracy of the model, or easier interpretation. In the

latter case a simpler model is probably to be preferred, in which case we would prefer the

NSV criterion. However, including seemingly irrelevant variables may sometimes improve

the accuracy of a classifier, and if this is of primary interest one would prefer CV to NSV,

given the tendency of the former criterion to overfit rather than underfit. Although it is

difficult to make a firm recommendation regarding the outer criterion, we have a slight

preference for NSV. This is based on the better performance of NSV in small p scenarios

and the fact that cross-validation is computationally expensive when p is large.

CHAPTER 6
VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH

250

6.7 SUMMARY

In this chapter we addressed an important aspect of variable selection for kernel classifiers,

viz. how to make a data-dependent decision regarding the number of input variables to

include. In our opinion, this is a problem to which a satisfactory solution has not yet been

proposed in the literature. We restricted attention to support vector classifiers, and based

on an upper bound on the expected probability of test error which can be given in terms of

the expected number of support vectors, proposed using the number of support vectors to

decide on the post-selection dimension.

The NSV criterion performed very well when we assumed the best variable subsets of each

dimension to be known. We therefore proceeded with a numerical evaluation of the

performance of the NSV criterion when the optimal variable subsets of each size had to be

determined in a data-dependent manner. In this regard, we made use of the selection

criteria which performed well in the previous chapters, viz. the zero-order versions of the

alignment and the variation ratio criteria. With regard to ways of searching through the

variable subsets, we compared a backward elimination strategy with a forward selection

approach.

Overall it also seemed that the complete variable selection approach which we proposed

(i.e., a backward elimination strategy with variation ratio as inner criterion and the number

of support vectors or cross-validation as outer criterion) performed quite well in terms of

generalisation error and the probability of identifying the correct model dimension. Based

on the simulation study results there can be little doubt that backward elimination is

superior to forward selection, and that the variation ratio is superior to the alignment

criterion. No firm recommendation can however be made regarding an outer criterion,

although the number of support vectors criterion is simpler and maybe slightly better than

cross-validation.

CHAPTER 7
SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

251

CHAPTER 7

 SUMMARY AND DIRECTIONS FOR
FURTHER RESEARCH

In this thesis the problem of (input) variable selection for kernel classification methods was

investigated, with particular emphasis being placed on support vector machines and, to a

lesser extent, kernel Fisher discriminant analysis. This chapter is devoted to a summary of

the main findings emanating from the research and an indication of directions for further

research.

It is clear from the empirical results reported in the thesis that it is worthwhile to perform

variable selection when a kernel classifier is applied. Two purposes are thereby served: the

kernel classifier based on the selected variables frequently classifies new cases more

accurately than the classifier based on all the variables, and we obtain an indication of the

input variables which are important in describing the response. The relevance of the

variable selection problem for kernel classifiers is enhanced by the fact that kernel

classification is often performed in cases where the number of variables exceeds the

number of data points (so-called wide data sets). An important example is provided by data

sets encountered in micro-array analyses. The work reported in this thesis is therefore a

contribution to solving a highly relevant problem.

A point which has also been emphasised repeatedly in the thesis is that there are several

factors which complicate variable selection for kernel classifiers. The first and probably

most important complicating factor is the (implicit) feature mapping which underlies kernel

methods. A direct result of this transformation is that a kernel discriminant function is

typically of the form () ()∑
=

+=
n

i
ii bkf

1
, xxx α , i.e. we obtain an expression in which a

weight iα is naturally associated with the thi data point. This contrasts with, for example,

CHAPTER 7
SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

252

a procedure such as ordinary discriminant analysis where an expression which is a linear

combination of the variables is obtained. It is clearly much more straightforward to

propose variable selection for procedures falling into the latter category than for those

where the discriminant function is a sum of terms associated with the individual data

points.

In an attempt to deal with this complicating factor we investigated in Chapter 3 the merit of

selection in different spaces: selection performed in input space (thereby effectively

ignoring the feature transformation), in feature space (thereby explicitly taking the

transformation to feature space into account), and so-called feature-to-input space selection

(an attempt to combine information generated in feature space with the easier interpretation

afforded by working in input space). In this last context we introduced and applied the idea

of using the pre-images in input space of suitable quantities in feature space for variable

selection. Although we found that input space selection performed well in certain data

configurations (notably the case where the data distribution in the two groups was normal

with a separation between the groups in terms of location), it turned out that selection

making use of feature space information generally performed better.

Going hand in hand with the concept of transforming data from input to feature space is

specification of a kernel function to compute inner products in feature space. This also

complicates the selection process: we have to decide on the form of the kernel function and

we have to specify, or determine from the data, values for its hyperparameters. In our

investigation we restricted the discussion to the frequently used Gaussian kernel function,

and we implemented a simple recommendation for obtaining a value for its

hyperparameter, viz. =γ the reciprocal of the number of variables being considered. This

brings us to a direction for further research: how do different kernel functions compare in

terms of the ease and the success with which we can perform variable selection? Is it

possible to construct a kernel function specifically with variable selection in mind? And

finally, what options, apart from the obvious but numerically intensive possibility of cross-

validation, are available for determining hyperparameter values while performing variable

selection?

CHAPTER 7
SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

253

Focusing on feature space selection in Chapter 4, we introduced a distinction between

algorithm-independent and algorithm-dependent selection criteria. The former are criteria

depending only on the empirical kernel matrix and can therefore be applied in any kernel

procedure based on this matrix. Algorithm-dependent criteria use information which is

derived from a specific kernel classification algorithm and as such these criteria can only

be applied when this specific algorithm is employed. The results of an empirical study are

presented and discussed in Chapter 4, and we see that two of the algorithm-independent

criteria are very competitive compared to the more sophisticated algorithm-dependent

criteria. Further research may therefore also include consideration of alternative algorithm-

independent selection criteria.

Another aspect of variable selection which was investigated concerns the strategy used to

search through the available models. Since an all possible subsets approach is infeasible

when the number of input variables p becomes large, different stepwise procedures were

investigated. Empirical evidence and results reported in the literature suggest that in this

context backward elimination is superior to forward selection. We therefore presented a

fairly extensive discussion of recursive feature elimination in Chapter 5, and found this to

be an acceptable selection approach, especially in large p scenarios. Zero- and first-order

forms of the new selection criteria proposed earlier in the thesis were presented for use in

recursive feature eliminationand their properties investigated in a numerical study. It was

found that some of the simpler zero-order criteria performed better than the more

complicated first-order ones, making further investigation regarding the use of alternative

zero-order criteria seem promising.

In Chapter 6 the focus fell on using the data to motivate a decision regarding the number of

variables to select. We restricted attention to support vector machines, and proposed a new

criterion, namely the number of support vectors, for this purpose. A complete strategy for

solving the variable selection problem was obtained by combining this criterion with a

backward elimination approach for searching through the space of variable subsets, and

with the alignment and variation ratio for identifying the best subset of a given dimension.

The alignment and variation ratio were used because of their good performance in earlier

CHAPTER 7
SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

254

chapters. Overall it seemed that the resulting complete variable selection approach (i.e., a

backward elimination strategy with variation ratio as inner criterion and the number of

support vectors or cross-validation as outer criterion) performed quite well. Given that no

complete solution to the variable selection problem for SVMs is available, we feel that this

is an important contribution. It was shown in Chapter 6 that use of the number of support

vectors is motivated by it being an important quantity in a well known upper bound on the

generalisation performance of SVMs. Many alternative forms of such upper bounds can be

found in the literature, and in these upper bounds, other quantities play an important role.

Therefore it may prove worthwhile to investigate the use of such alternative quantities for a

decision regarding the number of variables to select.

Other directions for further research are finding efficient ways to integrate variable

selection and the specification of hyperparameter values, and also, to estimate the

generalisation ability of a post-selection kernel classifier. Solutions to both of the above

problems will undoubtedly prove very useful, but lie outside the scope of this thesis.

REFERENCES

255

REFERENCES

Aizerman, M.A., Bravermann, E.M. and Rozonoér, L.I. (1964). Theoretical foundations of

the potential function method in pattern recognition learning. Automation and Remote

Control, 25, 821-837.

Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical

Mathematics, 2, 203-217.

Aliferis, C.F., Tsamardinos, I., Massion, P., Statnikov, A., Fanananpazir, N., and Hardin,

D. (2003). Machine Learning models for classification of lung cancer and selection of

genomic markers using array gene expression data. Proceedings of FLAIRS, special track

AI in Medicine.

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D. and Levine, A.J.

(1999). Broad patterns of gene expression revealed by clustering analysis of tumour and

normal colon tissues probed by oligonucleotide arrays. Cell Biology, 96, 6745-6750.

Amari, S. and Wu, S. (1999). Improving support vector machines by modifying kernel

functions. Neural Networks, 12, 783-789.

Ambroise, C. and McLachlan, G.J. (2002). Selection bias in gene extraction on the basis of

microarray gene expression data. Proceedings of the National Academy of Science USA,

99, 6562-6566.

Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized

trees. Neural Computation, 9, 1545-1588.

REFERENCES

256

Anlauf, J.K. and Biehl, M. (1989). The adatron: an adaptive perceptron algorithm.

Europhis. Letters, 10, 687-692.

Aronszajn, N. (1950). Theory of reproducing kernels. Proceedings of the Cambridge

Philosophical Society, 40, 337-401.

Barla, A., Odone, F. and Verri, A. (2003). Histogram intersection kernel for image

classification. Proceedings of the International Conference on Image Processing, 3, 513-

516.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification

algorithms. Machine Learning, 36(1,2), 105-139.

Bertero, M. (1986). Regularization methods for linear inverse problems. Inverse

problems. Springer-Verlag, Berlin.

Bertero, M., Poggio, T. and Torre, V. (1988). Ill-posed problems in early vision.

Proceedings of the IEEE, 76, 869-889.

Boser, B.E., Guyon, I.M, and Vapnik, V.N. (1992). A training algorithm for optimal

margin classifiers. Proceedings of the 5th annual ACM Workshop on Computational

Learning Theory, 144-152.

Bousquet, O. and Elisseeff, A. (2002). Stability and generalisation. Journal of Machine

Learning Research, 2, 499-526.

Blum, A. and Langley, P. (1997). Selection of relevant features and examples in machine

learning. Artificial Intelligence, 97(1-2), 245-271.

REFERENCES

257

Bradley, P.S., and Mangasarian, O.L. (1998). Feature selection via concave minimization

and support vector machines. Proceedings of the Fifteenth International Conference on

Machine Learning, 82-90.

Bradley, P.S., Mangasarian, O.L. and Street, W.N. (1998). Feature selection via

mathematical programming. INFORMS Journal on Computing, 10, 209-217.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and

regression trees. Chapman and Hall, New York.

Breiman, L. (1992). Little bootstrap and other methods for dimensionality selection in

regression – X fixed prediction error. Journal of the American Statistical Association, 87,

738-754.

Breiman, L. (1995). Better subset selection using the nonnegative garotte. Technometrics,

37, 373-384.

Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2), 123-140.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals

of Statistics, 24, 2350-2383.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Breiman, L. and Cutler, A. (2002). Manual On Setting Up, Using, And Understanding

Random Forests V3.1, http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.

Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M. Jr. and

Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data using

support vector machines. Proceedings of the National Academy of Science USA, 97, 262-

267.

http://oz.berkeley.edu/users/breiman/Using_random_forests_V3

REFERENCES

258

Bunke, O. and Droge, B. (1984). Bootstrap and cross-validation estimates of the prediction

error of linear regression models. Annals of Statistics, 12, 1400-1424.

Burnham, K.P. and Anderson, D.R. (2002). Model selection and multimodel inference: a

practical information-theoretic approach. Springer-Verlag, New York.

Cancedda, N., Gaussier, E., Goutte, C., Renders, J.-M., Kandola, J., Hofmann, T., Poggio,

T. and Shawe-Taylor, J. (2003). Word-sequence kernels. Journal of Machine Learning

Research, 3(6), 1059-1082.

Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S. (2004). Choosing multiple

parameters for support vector machines. Machine Learning, 46(1-3), 131-159.

Chen, N., Lu, W.,Yang, J. and Li, G. (2004). Support vector machines in chemistry.

World Scientific Publishing, Singapore.

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3),

273-297.

Cover, T.M. (1965). Geometrical and statistical properties of systems of linear inequalities

with applications in pattern recognition. IEEE Trans. Electron. Comput., 14, 326–334.

Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical

Society, Series B, 34, 187-220.

Cristianini, N., Campbell, C. and Shawe-Taylor, J. (1998). Dynamically adapting kernels

in support vector machines. In: Proceedings of Neural Information Processing Workshop,

204-210.

REFERENCES

259

Cristianini, N., Lodhi, H. and Shawe-Taylor, J. (2000). Latent semantic kernels for feature

selection. NeuroCOLT2 Technical Report Series NC-TR-2000-080, Royal Holloway

College, University of London.

Cristianini, N. and Shawe-Taylor, J. (2000). Support vector machines and other kernel-

based learning algorithms. Cambridge University Press, United Kingdom.

Cristianini, N., Shawe-Taylor, J. and Williamson, R.C. (2001). Introduction to the special

issue on kernel methods. Journal of Machine Learning Research, 2, 95-96.

Cristianini, N., Shawe-Taylor, J., Ellisseef, A. and Kandola, J. (2002). On kernel target

alignment. Advances in Neural Information Processing Systems, MIT Press, Cambridge.

Dash, M. and Liu, H. (1997). Feature selection for classification. International Journal of

Intelligent Data Analysis I, 131-156.

De’ath, G. and Fabricius, K.E. (2000). Classification and regression trees: a powerful yet

simple technique for ecological data analysis. Ecology, 81(11), 3178-3192.

Dietterich, T.G. (1998). An experimental comparison of three methods for constructing

ensembles of decision trees: bagging, boosting and randomisation. Machine Learning,

40(2), 139-157.

Duan, K., Keerthi, S.S. and Poo, A.N. (2001). An empirical evaluation of simple

performance measures for tuning SVM hyperparameters. Unpublished manuscript.

Duda, R.O. and Hart, P.E. (1973). Pattern Classification and Scene Analysis. Wiley.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7,

1-26.

REFERENCES

260

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM,

Philadelphia.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with

discussion). Annals of Statistics, 32, 407-499.

Evgeniou, T., Pontil, M. and Poggio, T. (2000). Regularization networks and support

vector machines. Advances in Computational Mathematics, 13(1), 1-50.

Friedman, J.H. (1989). Regularized discriminant analysis. Journal of the American

Statistical Association, 84, 165-175.

Friedman, J.H. (1991). Multivariate Adaptive Regression Splines (with discussion).

Annals of Statistics, 19, 1-141.

Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a statistical

view of boosting (with discussion). Annals of Statistics, 28, 337-407.

Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R. (2007). Pathwise coordinate

optimization. To appear in Annals of Applied Statistics.

Fujarewicz and Wiench (2003). Selecting differentially expressed genes for colon tumor

classification. International Journal of Applied Mathematics and Computer Science, 13(3),

101-110.

Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M. and Haussler, D.

(2000). Support vector machine classification and validation of cancer tissue samples

using microarray expression data. Bioinformatics, 16, 906-914.

REFERENCES

261

Furlanello, C., Serafini, M., Merler, S. and Jurman, G. (2003). Gene selection and

classification by entropy-based recursive feature elimination. Proceedings of the Joint

International Conference on Neural Networks, 4, 3077-3082.

Geisser, S. (1975). The predictive sample re-use methods with application. Journal of the

American Statistical Association, 70, 320-328.

Genton, M.G. (2001). Classes of kernels for machine learning: a statistics perspective.

Journal of Machine Learning Research, 2, 299-312.

George, E.I. (2000). The variable selection problem. Journal of the American Statistical

Association, 95(452), 1304-1308.

Ghosh, D. and Chinnaiyan, A. (2004). Classification and selection of biomarkers in

genomic data using lasso. The University of Michigan, Department of Biostatistics

working paper series, 42. Berkeley Electronic Press.

Girosi, F., Jones, M. and Poggio, T. (1995). Regularization theory and neural network

architectures. Neural Computation, 7, 219-269.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,

H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S. (1999).

Molecular classification of cancer: class discovery and class prediction by gene expression

array monitoring. Science, 286, 531-537.

Grandvalet, Y. and Canu, S. (2002). Adaptive scaling for feature selection in SVMs. In

Neural Information Processing Systems, Paper AA09.

Guyon, I.M., Weston, J., Barnhill, S. and Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. Machine Learning, 46, 389-422.

REFERENCES

262

Guyon, I.M. and Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157-1182.

Habbema, J.D.F. and Hermans, J. (1977). Selection of variables in discriminant analysis

by F-statistic and error rate. Technometrics, 19, 487-493.

Hall, M.A. (1998). Correlation-based feature selection for machine learning. PhD thesis,

Department of Computer Science, University of Waikato, Hamilton, New Zealand.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning:

data mining, inference, and prediction. Springer-Verlag, New York.

Haykin, S. (1999). Neural networks: A comprehensive foundation. Prentice Hall, New

Jersey.

Herbrich, R. (2002). Learning kernel classifiers. MIT Press, Cambridge.

Ho, T.K. (1998). The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844.

Hoerl, A.E. and Kennard, R. (1970). Ridge regression: biased estimation for

nonorthogonal problems. Technometrics, 12, 55-67.

Ishwaran, H. (2004). Discussion of “Least angle regression” by B. Efron, T. Hastie, I.

Johnston and R. Tibshirani. Annals of Statistics, 32, 452-457.

Ishwaran, H., Rao, J.S. (2005). Spike and slab variable selection: Frequentist and Bayesian

strategies. Annals of Statistics, 33(2), 730-773.

REFERENCES

263

John, G. H., Kohavi, R. and Pfleger, K. (1994). Irrelevant features and the subset selection

problem, Machine Learning: Proceedings of the Eleventh International Conference, 121-

129.

Johnson, M.E. (1987). Multivariate statistical simulation. New York: Wiley.

Keerthi, S.S. (2002). Efficient tuning of SVM hyperparameters using radius/margin bound

and iterative algorithms. IEEE Transactions on Neural Networks, 13(5), 1225-1229.

Keerthi, S.S. and Lin, C.J. (2003). Asymptotic behaviors of support vector machines with

Gaussian kernel. Neural Computation, 15, 1667-1689.

Keerthi, S.S. (2005). Generalized LARS as an effective feature selection tool for text

classification with SVMs. ACM International Conference Proceeding Series, 119, 417-

424.

Kimeldorf, G.S. and Wahba, G. (1971). A correspondence between Bayesian estimation

on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41,

495-502.

Kira, K. and Rendell, L. (1992). A practical approach to feature selection. Proceedings of

the th9 International Conference on Machine Learning, 249-256.

Kohavi, R. and John, G. (1997). Wrappers for feature subset selection. Artificial

Intelligence, 97(1-2), 273-324.

Komura, D., Nakamura, H., Tsutsumi, S., Aburatani, H. and Ihara, S. (2004).

Multidimensional support vector machines for visualization of gene expression data.

Bioinformatics, 21(4), 439-444.

REFERENCES

264

Krishnapuram, B., Carin, L. and Hartemink, A. (2004). Gene expression array analysis:

joint feature selection and classifier design. Kernel Methods in Computational Biology,

MIT Press.

Kroon, R.S. (2003). Support Vector Machines, generalization bounds, and transduction.

MComm thesis, Department of Computer Science, University of Stellenbosch.

Leray, P. and Gallinari, P. (1999). Feature selection with neural networks.

Behaviormetrika, 26(1),145-166.

Linhart, H. and Zucchini, W. (1986). Model selection. Wiley, New York.

Liu, H., Li, J. and Wong, L. (2002). A comparative study on feature selection and

classification methods using gene expression profiles and proteomic patterns. Genome

Informatics, 13, 51-60.

Li, Y., Campbell, C. and Tipping, M. (2002). Bayesian automatic relevance determination

algorithms for classifying gene expression data. Bioinformatics, 18, 1332-1339.

Lockhorst, J. (1999). The lasso and generalised linear models, Technical Report,

University of Adelaide.

Lodhi, H., Saunders, C. Shawe-Taylor, J., Cristianini, N. Watkins, C. and Schölkopf, B.

(2002). Text classification using string kernels. Journal of Machine Learning Research,

2:3, 419-444.

Louw, N. (1997). Aspects of the pre- and post-selection classification performance of

discriminant analysis and logistic regression. PhD Thesis, The Department of Statistics

and Actuarial Science, University of Stellenbosch, South Africa.

REFERENCES

265

Louw, N. and Steel, S.J. (2005). A review of kernel Fisher discriminant analysis for

statistical classification, South African Statistical Journal, 39, 1-21.

Louw, N. and Steel, S.J. (2006). Variable selection in kernel Fisher discriminant analysis

by means of recursive feature elimination. Computational Statistics and Data Analysis,

51(3), 2043-2055.

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1988). Multivariate Analysis. Academic Press,

London.

Masotti, M. (2005). Exploring ranklets performances in mammographic mass

classification using recursive feature elimination. Unpublished Manuscript, University of

Bologna, Department of Physics, Bologna, Italy.

McKay, R.J. and Campbell, N.A. (1982 a). Variable selection techniques in discriminant

analysis I. Description. British Journal of Mathematical and Statistical Psychology, 35, 1-

29.

McKay, R.J. and Campbell, N.A. (1982 b). Variable selection techniques in discriminant

analysis II. Allocation. British Journal of Mathematical and Statistical Psychology, 35,

30-41.

McLachlan, G.J. (1992). Discriminant analysis and statistical pattern recognition. Wiley,

New York.

McLachlan, G.J., Do, K.A. and Ambroise, C. (2004). Analysing microarray gene

expression data. Wiley, New York.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A.J. and Müller, K.-R. (1999).

Fisher discriminant analysis with kernels. Proceedings of Neural Networks for Signal

Processing, 9, 41-48.

REFERENCES

266

Mika, S., Rätsch, G., and Müller, K.-R. (2001). A mathematical programming approach to

the kernel Fisher algorithm. Advances in Neural Information Processing Systems, 13, 591-

597.

Mika, S. (2002). Kernel Fisher Discriminants. PhD thesis, Techniche Universität Berlin.

Miller, A. (2002). Subset selection in regression. Chapman and Hall, London.

Morrison, D.F. (1976). Multivariate statistical models. McGraw-Hill Series in Probability

and Statistics, New York.

Mukherjee, S., Osuna, E. and Girosi, F. (1997). Non-linear prediction of chaotic time

series using a support vector machine, Neural Networks for Signal Processing:

Proceedings of the 1997 IEEE Workshop, 7, 511-520.

Müller, K-R., Mika, S., Rätsch, G., Tsuda, K. and Schölkopf, B. (2001). An introduction

to kernel-based learning algorithms. In: IEEE Neural Networks, 12(2), 181-201.

Niijima, S., and Kuhara, S. (2006). Gene subset selection in kernel-induced feature space.

Pattern Recognition Letters, 27(16), 1884-1892.

Notterman, D., Alon, U., Sierk, A. and Levine, A. (2001). Transcriptional gene expression

profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by

oligonucleotide arrays. Cancer Res., 61, 3124-3130.

Osborne, M., Presnell, B. and Turlach, B. (2000). A new approach to variable selection in

least squares problems. IMA Journal of Numerical Analysis, 20, 389-404.

Park, M.Y. and Hastie, T. (2006). 1L regularization path algorithm for generalized linear

models. The Journal of the Royal Statistical Society B, 58, 267-288.

REFERENCES

267

Pozdnoukhov, A. and Bengio, S. (2004). Tangent vector kernels for invariant image

classification with SVMs. In: Proceedings of the International Conference on Pattern

Recognition, 486-489.

Rakotomamonjy, A. (2002). Variable selection using SVM-based criteria. Perception

Systeme Information, Insa de Rouen , Technical Report PSI 2002-04.

Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of

Machine Learning Research, 3, 1357-1370.

Rätsch, G., Onoda, T. and Muller, K.-R. (2001). Soft margins for AdaBoost. Machine

Learning, 42, 287-320.

Rao, J.S. (1999). Bootstrap choice of cost complexity for better subset selection. Statistica

Sinica, 9, 273-287.

Rockafellar, R.T. (1970). Convex analysis. Princeton University Press.

Rosenblatt, F. (1959). Principles of Neurodynamics. Spartan Books, New York.

Schölkopf, B., Burges, C.J.C. and Vapnik, V. (1996). Incorporating invariances in support

vector learning machines. Artificial Neural Networks, Springer Lecture Notes in Computer

Science, 112, 47-52.

Schölkopf, B., Kah-Kay, S., Burges, C.J.C., Girosi, F., Niyogi, P., Poggio, T. and Vapnik,

V. (1997). Comparing support vector machines with Gaussian kernels to radialbasis

function classifiers. In: IEEE Signal Processing, 45(11), 2758-2765.

Schölkopf, B., Burges, C.J.C. and Smola, A.J. (1999). Advances in kernel methods:

support vector learning. MIT Press, Cambridge.

REFERENCES

268

Schölkopf, B. and Smola, A.J. (2002). Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT Press, London.

Schummer, M., Ng, W., Bumgarner, R., Nelson, P., Schummer, B., Bednarski, D., Hassell,

L., Baldwin, R., Karlan, B., and Hood, L. (1999). Comparative hybridization of an array of

21 500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas.

Genes, 238, 375-385.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 461-464.

Shao, J. and Rao, J.S. (2000). The GIC for model selection: A hypothesis testing approach.

Linear models. Journal of Statistical Plann. Inference, 88, 215-231.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis.

Cambridge University Press, Cambridge.

Shi, T. and Horvath, S. (2006). Unsupervised learning with Random Forest predictors.

Journal of Computational and Graphical Statistics, 15(1), 118-138.

Shi, T., Seligson, D., Belldegrun, A.S., Palotie, A. and Horvath, S. (2005). Tumor

classification by tissue microarray profiling: random forest clustering applied to renal cell

carcinoma. Modern Pathology, 18(4), 547-57.

Steel, S.J. and Louw, N. (2004). Simple and fast model selection for the Gaussian kernel.

Unpublished manuscript.

Stitson, M.O., Gammerman, A., Vapnik,V., Vovk, V., Watkins, C. and Weston, J. (1997).

Support vector ANOVA decomposition. Technical report, Royal Holloway College,

Report number CSD-TR-97-23.

REFERENCES

269

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and

Akaike’s Criterion. Journal of the Royal Statistical Society B, 38, 44-47.

Stoppiglia, H., and Dreyfus, G. (2003). Ranking a random feature for variable and feature

selection. Journal of Machine Learning Research, 3, 1399-1414.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society B, 58, 267–288.

Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of ill-posed problems. W.H.

Winston, Washington D.C.

Van Gestel, T., Suykens, J.A.K., Lanckriet, G., Lambrechts, A., de Moor, B. and

Vandewalle, J. (2002). Bayesian framework for least squares support vector machine

classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural

Computation, 14, 1115-1147.

Vapnik, V.N. and Lerner, A. (1963). Pattern recognition using a generalized portrait

method. Automation and Remote Control, 24, 774-780.

Vapnik, V.N. (1998). Statistical Learning Theory, Wiley, New York.

Vapnik, V.N. and Chapelle, O. (2000). Bounds on error expectation for support vector

machines. Neural Computation, 12, 2013-2036.

Wahba, G. (1990). Spline models for observational data. Series in Applied Mathematics,

59, SIAM, Philadelphia.

Wahba, G. (1998). Support vector machines, reproducing kernel Hilbert spaces and the

GACV. Technical Report 984rr, Department of Statistics, University of Wisconsin,

Madison WI.

REFERENCES

270

Wang, W., Xu, Z., Lu, W., Zhang, X. (2004). Determination of the spread parameter in

the Gaussian kernel for classification and regression. Neurocomputing, 58-60, 655-662.

Weston, J., Gammerman, A., Stitson, O., Vapnik, V., Vovk, V. and Watkins, C. (1997).

Density estimation using support vector machines. Technical Report, Royal Holloway

College, Report number CSD-TR-97-23.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. and Vapnik, V. (2001).

Feature selection for SVMs. Neural Information Processing Systems, Cambridge MA,

MIT Press.

Weston, J., Elisseeff, A., Schölkopf, B. and Tipping, M. (2003). Use of the zero-norm with

linear models and kernel methods. Journal of Machine Learning Research, 3, 1439-1461.

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on

convex risk minimisation. Annals of Statistics, 32, 56-85.

Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by penalized logistic

regression. Biostatistics, 5, 427-443.

Zhu, J. and Hastie, T. (2005). Kernel logistic regression and the import vector machine.

Journal of Computational and Graphical Statistics, 14, 185-205.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society B, 67(2), 301-320.

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

271

APPENDIX A

SIMULATION STUDY DISTRIBUTIONS
AND COMPREHENSIVE RESULTS

There are two sections in this appendix. In Section A.1 we describe the procedure which

was used in the empirical work to generate correlated random variables with lognormal

marginal distributions. Section A.2 contains tables which provide a comprehensive

summary of the empirical study results discussed in Chapters 4 and 5.

A.1 GENERATING MULTIVARIATE DATA WITH LOGNORMAL

 MARGINAL DISTRIBUTIONS

In simulation experiments conducted in the course of the thesis, we used different

correlation structures between pairs of input variables in the normal and lognormal data

scenarios. In this section some points to consider when generating lognormal data are

discussed, and a motivation is given for using different sets of correlation values for the

normal and lognormal data setups in our simulation design. In Section A.1.1 we start with

a series of results from matrix algebra required to understand the technical difficulties one

might run into when generating multivariate lognormal data. Since we need to specify

correlations between input variables which yield a positive-definite covariance matrix,

results required to ensure positive-definiteness of a (covariance) matrix are given in Section

A.1.2. Using the results in Sections A.1.1 and A.1.2, a motivation for the correlation

structure used in generating lognormal data, is given in Section A.1.3.

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

272

A.1.1 RESULTS FROM MATRIX ALGEBRA

The following results are required in Section A.1.2.

RESULT A.1.1: THE DETERMINANT OF AN EQUI-CORRELATION

 MATRIX
 (See Mardia and Kent, 1988, p. 461)

Consider the equi-correlation matrix

 ()
pp

p
pp ××

+−= EIA ρρ1 . (A.1)

Then

 () 







−+

−
−

=
×

−

× pp
p

pp p
EIA

ρ
ρ

ρ 111
11 , (A.2)

and

 () ()()11 1 1p pρ ρ−= − + −A . (A.3)

RESULT A.1.2: THE INVERSE OF A MATRIX UNDER SPECIAL

 CONDITIONS (See Morrison, 1976, pp. 69-70)

Consider the p p× matrix

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

273

p p

a c c
c a c

c c a
×

 
 
 =
 
 
 

K

K

O

M O O M

K

. (A.4)

The inverse of this matrix has common diagonal element

 ()
() ()()

2
1

a p c
a c a p c

+ −
− + −

 , (A.5)

and common off-diagonal element

 () ()()cpaca
c

1−+−
− . (A.6)

RESULT A.1.3: THE DETERMINANT OF A MATRIX UNDER SPECIAL

 CONDITIONS

Consider again the matrix K in Result A.1.2. Since



























=
×

1

1

1

K

MOOM

K

K

a
c

a
c

a
c

a
c

a
c

a
c

a
pp

K , (A.7)

it follows from Result A.1.1 that

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

274

 () 





 −+






 −=

−

a
cp

a
ca

p
p 111

1

K . (A.8)

A.1.2 NON-SINGULARITY (POSITIVE DEFINITENESS) OF A GIVEN

 MATRIX

We consider a p p× matrix

 1 1 1 2

2 1 2 2

11 12

21 22

p p p p

p p
p p p p

× ×

×
× ×

 
 

=  
  

Σ Σ
Σ

Σ Σ
. (A.9)

We assume that Σ is symmetric and we would like to determine conditions which

guarantee that Σ is positive definite, i.e. conditions under which 0>Σ .

The following notation is used regarding the submatrices of Σ :

 11 1 1

1
1

:

1

a a
a a

p p

a a

 
 
 × =
 
 
 

Σ

K

O

M O O M

K

 , (A.10)

2

2

22 2 2

2

:

b b

b bp p

b b

σ

σ

σ

 
 
 × =  
 
  

Σ

L

O

M O O M

K

 , (A.11)

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

275

 and 12 1 2 21:

c c c
c c c

p p

c c c

 
 
  ′× = =
 
 
 

Σ Σ

L

O

M O O M

L

. (A.12)

It is known that

 1
11 22 21 11 12. −= −Σ Σ Σ Σ Σ Σ , (A.13)

and from Result A.1.1. we may write

 () ()()1 1
11 11 1 1pa p a−= − + −Σ . (A.14)

We now require 1
22 21 11 12

−−Σ Σ Σ Σ . From Result A.1.2 we know that 1
11
−Σ is a matrix with

common diagonal element

 ()
() ()()

1

1

1 2
1 1 1

p a
r

a p a
+ −

=
− + −

 , (A.15)

and common off-diagonal element

() ()()11 1 1

as
a p a

= −
− + −

 . (A.16)

We therefore have

 1
21 11 12

−Σ Σ Σ
2 1 1 2

1
11p p p p

c c−

× ×
= E Σ E ()()

2 1 1 2

2
1 1

p p p p
c r p s

× ×
= + − E E ,

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

276

which yields

 1
21 11 12

−Σ Σ Σ ()()
12

11
2 1

pp
psprc

×
−+= E ()()

12

11
2

1 pp
sprcp

×
−+= E .

Hence 12
1

222122 ΣΣΣΣ −− will be a matrix with common diagonal element

()()2 2
1 1 1t p c r p sσ= − + − and common off-diagonal element ()()2

1 1 1u b p c r p s= − + − .

We are now in a position to use Result A.1.3 to write down 1
22 21 11 12

−−Σ Σ Σ Σ . It follows

that

 1
22 21 11 12

−−Σ Σ Σ Σ = () ()()22
1

21 1 1
pp u u

t tt p
−

− + −

Combining all the above results we find

 1
11 22 21 11 12. −= −Σ Σ Σ Σ Σ Σ

 () ()() () ()()21 2
11

1 21 1 1 1 1 1
pp p u u

t ta p a t p
−−= − + − − + − .

Our problem now is to determine the conditions under which the above expression is

positive. We first of all require 11Σ to be positive-definite, since 11Σ is the covariance

matrix of the first 1p random variables. Hence we require

 () ()()1 1
11 1 1 0pa p a−− + − > ⇔ 1 0a− > and ()11 1 0p a+ − > , or

 1 0a− < and ()11 1 0p a+ − <

 ⇔
1

1 1
1

a
p

− < <
−

 or 1a > and
1

1
1

a
p

< −
−

 (impossible) .

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

277

Our first requirement is therefore that

1

1 1
1

a
p

− < <
−

, (A.17)

and this guarantees that 11 0>Σ . We now also require 1
22 21 11 12 0−− >Σ Σ Σ Σ . Hence

consider

 () ()()22
11

22 21 11 12 21 1 1
pp u u

t tt p
−−− = − + −Σ Σ Σ Σ

 () ()()22
1

21 1
pp u u u

t t tt p
−

= − − +

 () ()2 22 2
1

21 1
p pp pu u u

t t tt t p
−

= − + −

 () () 22 2
11

2 1
pp p u

tt u p ut
−−= − + −

 () ()2 1
2

pt u t u p u−= − − +

 () ()()2 1
2 1pt u t p u−= − + − .

Therefore 1
22 21 11 12 0−− >Σ Σ Σ Σ ⇔ t u> and ()2 1 0t p u+ − > , or

 t u< and ()2 1 0t p u+ − < .

From the earlier expressions for r and s it follows that

 () ()1
1

11
1 1

r p s
p a

+ − =
+ −

 , (A.18)

and this is a positive quantity since we require
1

1
1

a
p

> −
−

 for 11Σ to be positive.

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

278

Also, since ()()2 2
1 1 1t p c r p sσ= − + − and ()()2

1 1 1u b p c r p s= − + − , it now follows that

()
2

2 1

11 1
p ct
p a

σ= −
+ −

()
()

2 2 2
1 1

1

1
1 1
p a p c

p a
σ σ+ − −

=
+ −

and
()

2
1

11 1
p cu b
p a

= −
+ −

()
()

2
1 1

1

1
1 1

b p ab p c
p a

+ − −
=

+ −
, so that it can easily be seen that

 t u< ⇔ 2 bσ <

 or t u> ⇔ 2 bσ > .

Also,

 ()2 1 0t p u+ − < or ()2 1 0t p u+ − >

 ⇔
() () ()

2 2
2 1 1

2
1 1

1 0
1 1 1 1

p c p cp b
p a p a

σ
 

− + − − <  + − + − 

 or () () () 0
11

1
11 1

2
1

2
1

2
12 >











−+
−−+

−+
−

ap
cpbp

ap
cp

σ

 ⇔ () ()
2

2 1 2
2

1
0

1 1
p p cb p b

p a
σ − + − <

+ −

 or () () 0
11 1

2
21

2
2 >

−+
−+−

ap
cppbpbσ .

Hence, our second requirement, which guarantees that 1
22 21 11 12 0−− >Σ Σ Σ Σ , is

 2 bσ > and () ()
2

2 1 2
2

1
0

1 1
p p cb p b

p a
σ − + − >

+ −
 , (A.19)

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

279

 or 2 bσ < and () ()
2

2 1 2
2

1
0

1 1
p p cb p b

p a
σ − + − <

+ −
. (A.20)

Therefore, if one specifies a (covariance) matrix (A.9) to have a structure as given in

(A.10) to (A.12), positive definiteness of the matrix is guaranteed if (A.17) and (A.19) or

(A.20) hold.

A.1.3 OUR APPLICATION

The Johnson translation system for generating multivariate data with lognormal marginal

distributions (Johnson, 1987) starts with normally distributed random variables

1 2, , , pZ Z ZK , i.e.

 ()2~ 0,j jZ N σ , 1, 2, ,j p= K , where () kjZZcovar jkkj ≠= ,, σ . (A.21)

The standard normal random variables 1 2, , , pZ Z ZK are then transformed to lognormally

distributed random variables 1 2, , , pX X XK , via

 jZ
j j jX eλ ξ= + , 1, 2, ,j p= K . (A.22)

This implies

 i. () () 2 2j jZ
j j j j jE X E e eσλ ξ λ ξ= + = +

 ii. () 2 22 22 2 22j j
j j j j jE X e eσ σλ λ ξ ξ= + + , and

 iii. () ()2 2 2 22 2 2 2j k jk j k
j k j k j k k j j kE X X e e eσ σ σ σ σλ λ λ ξ λ ξ ξ ξ

+ +
= + + + .

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

280

Hence also

 iv. () 




 −=−= 1

2222 2222 jjjj eeeeXvar jjjj
σσσσ λλλ , and

 v. () () () 222 2222
, kjjkkj eeXXcovar kjkjkj

σσσσσ λλλλ +++ −= .

We now require jλ , jξ and jkσ , , 1, 2, , ;j k p= K j k≠ , such that the following

requirements are satisfied:

 ()j jE X µ= ; () 2
jj sXvar = ; and () jkkj XXcorr ρ=, . (A.23)

Now,

 () 2
jj sXvar = ⇒

2 22 21j j
j je e sσ σλ  − = 

 

 ⇒
2 2

1j j

j
j

s

e eσ σ
λ =

 − 
 

, 1, 2, ,j p= K . (A.24)

Also,

 ()j jE X µ= ⇒
2 2j

j j jeσλ ξ µ+ =

 ⇒







 −

−=
1

22

2 2

jj

j

ee

esj
jj

σσ

σ

µξ , 1, 2, ,j p= K . (A.25)

Finally,

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

281

 () jkkj XXcorr ρ=, ⇒
() ()

() ()

2 2

2 2 2 2

2

2

1

1 1

j k jk

j k j k

j k
jk

j k

e e

e e e

σ σ σ

σ σ σ σ

λ λ
ρ

λ λ

+

+

−
=

 − − 
 

 ⇒ ()2 2
log 1 1 1j k

jk jk e eσ σσ ρ
  = + − −  

  

 , 1, 2, , ;j k p= K j k≠ . (A.26)

Use of the Johnson translation system for generating correlated lognormal data first

requires specification of pjj ,,2,1,2 K=σ , and jkρ , , 1, 2, , ;j k p= K j k≠ (in A.26).

These specifications then imply the values for jξ , jλ and jkσ , , 1, 2, , ;j k p= K j k≠ ,

such that (A.23) will hold. In this section it was shown that care must however be taken

when specifying pjj ,,2,1,2 K=σ , and jkρ , , 1, 2, , ;j k p= K j k≠ , so that use of the

Johnson translation system does not imply jkσ values rendering the covariance matrix for

the initial normal input variables a singular matrix. Via Johnson translations, generating

lognormal data with a particular structure first requires normal data with a specific

structure. In Section 3.4.1, since lognormal data with 0=Sρ or 0.7, and 9.0=SSρ

implied the use of normal data with a singular covariance matrix, we were forced to use

2.0=SSρ or 25.0=SSρ instead.

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

282

A.2 COMPREHENSIVE SIMULATION STUDY RESULTS

A.2.1 KERNEL VARIABLE SELECTION IN FEATURE SPACE

In this section we present the remaining set of results of the Monte Carlo simulation study

described in Chapter 4, where we studied the relative performance of selection criteria

defined in feature space.

Table A.1: Average test errors in the LL case

KFDA

 ()VErr ()SVErr ()VAErr ()MErr ()SSErr ()AErr ()ATErr

LL1 SMALL .337 .135 .155 .159 .219 .139 .139

MIXED .165 .079 .079 .080 .127 .080 .080

LARGE .215 .122 .122 .122 .183 .122 .122
 WIDE .301 .058 .088 .089 .095 .066 .064

LL2 SMALL .166 .078 .083 .085 .103 .079 .079

MIXED .078 .042 .042 .042 .056 .042 .042

LARGE .072 .032 .032 .041 .035 .032 .032

 WIDE .122 .039 .045 .045 .050 .043 .042

LL3 SMALL .330 .137 .154 .157 .214 .140 .139

MIXED .160 .079 .079 .079 .127 .079 .080

LARGE .213 .121 .121 .121 .179 .121 .121
 WIDE .352 .117 .164 .164 .169 .127 .124

LL4 SMALL .219 .124 .128 .129 .151 .125 .125

MIXED .100 .079 .079 .079 .092 .079 .079

LARGE .151 .084 .084 .084 .092 .084 .084
 WIDE .228 .099 .132 .132 .143 .108 .106

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

283

Table A.2: Average test errors in the LL case (continued)

SVM

 ()VErr ()SVErr ()VAErr ()MErr ()SSErr ()AErr ()ATErr

LL1 SMALL .331 .122 .139 .145 .208 .126 .126

MIXED .171 .064 .064 .065 .116 .064 .065

LARGE .232 .115 .115 .115 .176 .115 .115

 WIDE .265 .068 .091 .092 .099 .066 .065

LL2 SMALL .157 .084 .089 .090 .108 .086 .085

MIXED .071 .045 .042 .043 .057 .042 .042

LARGE .077 .033 .033 .033 .043 .033 .033

 WIDE .089 .020 .030 .030 .032 .023 .022

LL3 SMALL .334 .121 .141 .144 .203 .126 .125

MIXED .171 .064 .065 .065 .114 .064 .067

LARGE .229 .113 .113 .113 .174 .113 .113
 WIDE .324 .122 .162 .164 .170 .131 .130

LL4 SMALL .216 .127 .134 .135 .156 .130 .129

MIXED .100 .068 .068 .069 .078 .069 .069

LARGE .143 .084 .084 .084 .098 .084 .084

 WIDE .218 .128 .144 .145 .150 .132 .132

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

284

Table A.3: Average test errors in the LS case

KFDA

 ()VErr ()SVErr ()VAErr ()MErr ()SSErr ()AErr ()ATErr

LS1 SMALL .438 .225 .367 .369 .407 .275 .269

 MIXED .250 .250 .250 .250 .250 .250 .250

 LARGE .360 .201 .207 .219 .451 .202 .201

 WIDE .499 .119 .385 .384 .377 .185 .179

LS2 SMALL .262 .126 .181 .182 .239 .151 .149

 MIXED .193 .096 .139 .145 .250 .250 .250

 LARGE .154 .085 .086 .089 .214 .085 .085

 WIDE .279 .054 .215 .215 .233 .099 .093

LS3 SMALL .442 .223 .375 .378 .421 .278 .270

 MIXED .250 .250 .250 .250 .250 .250 .250

 LARGE .360 .201 .210 .223 .448 .201 .201

 WIDE .457 .141 .421 .420 .413 .243 .236

LS4 SMALL .323 .149 .205 .209 .276 .175 .171

 MIXED .243 .129 .177 .182 .250 .250 .250

 LARGE .206 .126 .127 .130 .250 .126 .126

 WIDE .342 .082 .313 .313 .317 .179 .172

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

285

Table A.4: Average test errors in the LS case (continued)

SVM

 ()VErr ()SVErr ()VAErr ()MErr ()SSErr ()AErr ()ATErr

LS1 SMALL .441 .213 .368 .375 .414 .153 .150

 MIXED .335 .227 .242 .250 .250 .250 .250

 LARGE .361 .180 .187 .203 .444 .181 .181

 WIDE .449 .136 .391 .388 .385 .194 .188

LS2 SMALL .269 .125 .185 .186 .252 .153 .150

 MIXED .195 .086 .125 .130 .330 .295 .194

 LARGE .163 .076 .078 .081 .199 .076 .076

 WIDE .260 .062 .237 .236 .236 .101 .097

LS3 SMALL .442 .208 .364 .375 .418 .267 .259

 MIXED .333 .224 .249 .248 .265 .268 .266

 LARGE .361 .179 .187 .201 .448 .181 .181

 WIDE .449 .174 .423 .423 .420 .248 .241

LS4 SMALL .315 .166 .214 .222 .294 .193 .189

 MIXED .251 .095 .143 .147 .335 .309 .308

 LARGE .221 .092 .093 .096 .239 .092 .092

 WIDE .327 .168 .316 .316 .317 .209 .205

A.2.2 BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

In this section we present the full set of results that was obtained in the Monte Carlo

simulation study in Chapter 5, where the performances of RFE selection criteria were

evaluated. The average KFDA test errors for the NS case and small, mixed, large and wide

sample sizes are given first, followed by the average SVM test errors corresponding to the

same cases. Results pertaining to the LL and LS data scenarios are given in similar order.

Conclusions drawn from Tables A.5-A.28 (given below) are discussed in Chapter 5.

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

286

Table A.5: Average KFDA test errors for the NS case and small samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.455

.285

.343

1.204

3

.348

1.221

4

.414

1.453

9

.355

1.246

5

.377

1.323

6

.340

1.193

1

.405

1.421

7

.487

1.709

11

.411

1.442

8

.498

1.747

12

.461

1.618

10

.341

1.196

2

.255

.104

.110

1.058

1

.117

1.125

3

.141

1.356

7

.132

1.269

5

.135

1.298

6

.132

1.269

5

.122

1.173

4

.208

2.000

9

.128

1.085

2

.450

4.327

11

.281

2.702

10

.171

1.644

8

.453

.281

.343

1.221

3

.332

1.181

1

.416

1.480

9

.364

1.295

5

.384

1.367

6

.345

1.228

4

.408

1.452

7

.489

1.740

11

.412

1.466

8

.499

1.776

12

.461

1.641

10

.341

1.214

2

.306

.152

.191

1.257

4

.182

1.197

2

.215

1.414

8

.205

1.349

6

.224

1.474

9

.209

1.375

7

.176

1.158

1

.327

2.151

3

.194

1.276

5

.447

2.941

12

.377

2.480

11

.248

1.632

10

Table A.6: Average KFDA test errors for the NS case and mixed samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.250

.250

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.201

.086

.089

1.035

3

.086

1.000

1

.250

2.907

6

.087

1.012

2

.250

2.907

6

.140

1.628

4

.087

1.012

2

.250

2.907

6

.089

1.035

3

.250

2.907

6

.250

2.907

6

.180

2.093

5

.250

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.237

.122

.172

1.410

5

.125

1.025

1

.250

2.049

8

.143

1.172

4

.303

2.484

9

.183

1.500

6

.126

1.033

2

.250

2.049

8

.130

1.066

3

.250

2.049

8

.250

2.049

8

.235

1.926

7

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

287

Table A.7: Average KFDA test errors for the NS case and large samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.379

.257

.259

1.008

3

.272

1.058

4

.258

1.004

2

.257

1.000

1

.257

1.000

1

.257

1.000

1

.257

1.000

1

.498

1.938

6

.257

1.000

1

.257

1.000

1

.442

1.720

5

.257

1.000

1

.136

.084

.084

1.000

1

.109

1.298

3

.084

1.000

1

.084

1.000

1

.084

1.000

1

.084

1.000

1

.084

1.000

1

.109

1.298

3

.084

1.000

1

.084

2.429

4

.204

1.012

2

.085

1.012

2

.379

.258

.259

1.004

2

.273

1.058

3

.259

1.004

2

.258

1.000

1

.258

1.000

1

.258

1.000

1

.258

1.000

1

.499

1.934

4

.259

1.004

2

.258

1.000

1

.435

1.686

4

.259

1.004

2

.205

.111

.133

1.198

4

.123

1.108

2

.111

1.000

1

.111

1.000

1

.111

1.000

1

.111

1.000

1

.111

1.000

1

.291

2.622

5

.111

1.000

1

.111

1.000

1

.327

2.946

6

.131

1.180

3

Table A.8: Average KFDA test errors for the NS case and wide samples
FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.410

.087

.106

1.218

1

.199

2.287

3

.438

5.034

9

.414

4.759

6

.326

3.747

5

.268

3.080

4

.421

4.839

7

.485

5.575

11

.432

4.966

8

.496

5.701

12

.467

5.368

10

.158

1.816

2

.130

.003

.004

1.333

1

.004

1.333

1

.007

2.333

4

.007

2.333

4

.006

2.000

3

.006

2.000

3

.005

1.667

2

.022

7.333

6

.006

2.000

3

.452

150.7

8

.135

45.00

7

.009

3.000

5

.427

.142

.222

1.563

1

.226

1.592

2

.448

3.155

9

.427

3.007

7

.375

2.641

5

.342

2.408

4

.402

2.831

6

.492

3.465

11

.433

3.049

8

.498

3.507

12

.482

3.394

10

.268

1.887

3

.222

.019

.136

7.158

4

.038

2.000

1

.146

7.684

6

.139

7.316

5

.164

8.632

8

.160

8.421

7

.054

2.842

2

.308

16.21

10

.098

5.158

3

.475

25.00

12

.397

20.89

11

.159

8.368

9

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

288

Table A.9: Average SVM test errors for the NS case and small samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.453

.294

.381

1.296

5

.365

1.241

3

.416

1.415

8

.358

1.218

2

.379

1.289

4

.343

1.167

1

.407

1.384

6

.488

1.660

10

.413

1.405

7

.499

1.697

11

.462

1.571

9

.343

1.167

1

.260

.128

.162

1.266

5

.187

1.461

7

.162

1.266

5

.155

1.211

3

.157

1.227

4

.153

1.195

2

.147

1.148

1

.215

1.680

8

.153

1.195

2

.454

3.547

10

.287

2.242

9

.184

1.438

6

.451

.293

.383

1.307

5

.365

1.246

3

.418

1.427

9

.368

1.256

4

.388

1.324

6

.349

1.191

2

.411

1.403

7

.489

1.669

11

.415

1.416

8

.498

1.700

12

.461

1.573

10

.345

1.177

1

.320

.183

.255

1.393

6

.274

1.497

9

.241

1.317

5

.229

1.251

3

.246

1.344

7

.233

1.273

4

.204

1.115

1

.333

1.820

10

.220

1.202

2

.452

2.470

12

.385

2.104

11

.261

1.426

8

Table A.10: Average SVM test errors for the NS case and mixed samples
FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.332

.253

.261

1.032

5

.259

1.024

4

.268

1.059

8

.253

1.000

1

.268

1.059

8

.253

1.000

1

.258

1.020

3

.266

1.051

7

.259

1.024

4

.265

1.047

6

.268

1.059

9

.256

1.012

2

.209

.096

.100

1.042

4

.103

1.073

5

.367

3.823

10

.097

1.010

1

.369

3.844

11

.152

1.583

6

.098

1.021

2

.332

3.458

8

.099

1.031

3

.371

3.865

12

.366

3.813

9

.190

1.979

7

.332

.253

.262

1.036

3

.260

1.028

2

.268

1.059

6

.253

1.000

1

.268

1.059

6

.253

1.000

1

.260

1.028

2

.265

1.047

5

.260

1.028

2

.264

1.043

4

.268

1.059

6

.256

1.012

1

.264

.117

.154

1.316

4

.190

1.624

6

.365

3.12

10

.136

1.162

3

.366

3.128

11

.178

1.521

5

.119

1.017

1

.361

3.085

8

.122

1.043

2

.369

3.154

12

.363

3.103

9

.245

2.094

7

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

289

Table A.11: Average SVM test errors for the NS case and large samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.397

.257

.262

1.019

2

.257

1.000

1

.257

1.000

1

.257

1.000

1

.257

1.000

1

.257

1.000

1

.257

1.000

1

.499

1.942

4

.257

1.000

1

.257

1.000

1

.442

1.720

3

.257

1.000

1

.163

.076

.076

1.000

1

.082

1.079

3

.076

1.000

1

.076

1.000

1

.076

1.000

1

.076

1.000

1

.076

1.000

1

.102

1.342

4

.076

1.000

1

.076

1.000

1

.195

2.566

5

.077

1.013

2

.398

.258

.261

1.012

2

.258

1.000

1

.258

1.000

1

.258

1.000

1

.258

1.000

1

.258

1.000

1

.258

1.000

1

.499

1.934

4

.258

1.000

1

.258

1.000

1

.434

1.682

3

.258

1.000

1

.227

.091

.091

1.000

1

.093

1.022

2

.091

1.000

1

.091

1.000

1

.091

1.000

1

.091

1.000

1

.091

1.000

1

.283

3.11

4

.091

1.000

1

.091

1.000

1

.323

3.545

5

.116

1.275

3

Table A.12: Average SVM test errors for the NS case and wide samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.433

.129

.267

2.070

3

.265

2.054

2

.451

3.496

9

.431

3.341

6

.369

2.860

5

.319

2.473

4

.440

3.411

7

.485

3.76

11

.447

3.465

8

.497

3.853

12

.470

3.643

10

.206

1.597

1

.085

.006

.019

3.167

3

.054

9

6

.025

4.167

5

.023

3.833

4

.018

3.000

2

.018

3.000

2

.016

2.667

1

.077

12.83

7

.019

3.167

3

.485

80.83

9

.280

46.67

8

.025

1.013

2

.430

.179

.363

2.028

3

.356

1.989

2

.454

2.536

9

.435

2.430

7

.396

2.212

5

.364

2.034

4

.415

2.318

6

.492

2.749

11

.440

2.458

8

.499

2.788

12

.483

2.698

10

.288

1.609

1

.252

.155

.207

1.335

3

.255

1.645

9

.218

1.406

6

.214

1.381

4

.225

1.452

8

.222

1.432

7

.170

1.097

1

.356

2.297

10

.190

1.226

2

.480

3.097

12

.432

2.787

11

.215

1.387

5

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

290

Table A.13: Average KFDA test errors for the LL case and small samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.332

.134

.145

1.082

1

.396

2.955

12

.168

1.254

7

.166

1.239

6

.164

1.224

4

.151

1.127

2

.163

1.216

3

.322

2.403

9

.165

1.231

5

.376

2.806

11

.223

1.664

8

.359

2.679

10

.165

.076

.105

1.382

8

.138

1.816

10

.088

1.158

4

.085

1.118

1

.090

1.184

5

.097

1.276

6

.087

1.145

3

.097

1.276

6

.086

1.132

2

.153

2.013

11

.103

1.335

7

.128

1.684

9

.331

.134

.150

1.119

2

.387

2.888

12

.163

1.216

6

.158

1.179

5

.162

1.209

4

.146

1.09

1

.161

1.201

3

.309

2.306

9

.166

1.239

7

.375

2.799

11

.207

1.545

8

.348

2.60

10

.215

.124

.163

1.315

6

.168

1.355

7

.149

1.202

5

.141

1.137

3

.149

1.202

5

.146

1.177

4

.131

1.056

1

.170

1.371

8

.134

1.081

2

.210

1.694

11

.194

1.565

9

.202

1.629

10

Table A.14: Average KFDA test errors for the LL case and mixed samples
FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.164

.078

.078

1

1

.176

2.256

10

.117

1.5

6

.105

1.346

4

.092

1.179

8

.094

1.205

3

.078

1

1

.174

2.231

9

.079

1.013

2

.105

1.346

4

.134

1.718

7

.108

1.385

5

.079

.042

.059

1.405

9

.053

1.262

6

.050

1.19

5

.058

1.381

7

.047

1.119

4

.068

1.619

8

.044

1.048

2

.050

1.19

5

.042

1

1

.050

1.19

5

.058

1.381

6

.049

1.167

3

.162

.078

.078

1

1

.174

2.231

10

.117

1.5

7

.105

1.346

5

.097

1.244

4

.089

1.141

3

.078

1

1

.170

2.179

9

.080

1.026

2

.105

1.346

5

.132

1.692

8

.107

1.372

6

.101

.081

.084

.084

1.037

.093

1.148

7

.089

1.099

5

.091

1.123

6

.086

1.062

4

.095

1.173

8

.081

1

1

.096

1.185

9

.081

1

1

.087

1.074

3

.104

1.284

10

.089

1.099

5

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

291

Table A.15: Average KFDA test errors for the LL case and large samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.215

.121

.121

1.000

1

.367

3.033

5

.121

1.000

1

.121

1.000

1

.121

1.000

1

.121

1.000

1

.121

1.000

1

.317

2.620

4

.121

1.000

1

.499

4.124

6

.186

1.537

2

.213

1.760

3

.075

.033

.040

1.212

3

.057

1.727

5

.033

1.000

1

.033

1.000

1

.033

1.000

1

.033

1.000

1

.033

1.000

1

.039

1.182

2

.033

1.000

1

.033

1.000

1

.043

1.303

4

.043

1.303

4

.212

.121

.121

1

1

.369

3.050

5

.121

1.000

1

.121

1.000

1

.121

1.000

1

.121

1.000

1

.121

1.000

1

.309

2.554

4

.121

1.000

1

.500

4.132

6

.193

1.595

2

.225

1.860

3

.152

.084

.121

1.440

5

.085

1.012

2

.084

1.000

1

.084

1.000

1

.084

1.000

1

.084

1.000

1

.084

1.000

1

.105

1.250

3

.084

1.000

1

.084

1.000

1

.121

1.441

5

.108

1.286

4

Table A.16: Average KFDA test errors for the LL case and wide samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.300

.059

.139

2.356

6

.292

4.949

8

.091

1.542

2

.091

1.542

2

.097

1.644

5

.092

1.559

3

.090

1.525

1

.285

4.831

5

.092

1.559

3

.312

5.288

9

.095

1.610

4

.229

3.881

7

.126

.038

.057

1.500

3

.157

4.132

11

.064

1.684

6

.056

1.474

2

.072

1.895

8

.049

1.289

1

.062

1.632

5

.067

1.763

7

.064

1.684

6

.097

2.553

10

.061

1.605

4

.095

2.500

9

.349

.115

.253

2.200

8

.321

2.791

9

.175

1.522

4

.168

1.461

2

.195

1.696

6

.179

1.557

5

.147

1.278

1

.425

3.696

12

.169

1.470

3

.361

3.139

11

.216

1.878

7

.334

2.904

10

.229

.097

.215

2.216

8

.174

1.794

6

.173

1.784

5

.167

1.722

3

.186

1.918

7

.171

1.763

4

.113

1.165

2

.215

2.216

8

.138

1.423

1

.243

2.505

10

.236

2.433

9

.299

3.082

11

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

292

Table A.17: Average SVM test errors for the LL case and small samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.335

.121

.150

1.24

2

.150

1.24

2

.157

1.298

6

.154

1.273

5

.152

1.256

3

.138

1.140

1

.152

1.256

3

.317

2.620

4

.154

1.273

5

.373

3.083

9

.215

1.777

7

.357

2.950

8

.157

.081

.096

1.185

5

.105

1.296

8

.092

1.136

3

.089

1.099

1

.094

1.160

4

.102

1.259

7

.092

1.136

3

.101

1.247

6

.090

1.111

2

.159

1.963

11

.106

1.309

9

.133

1.642

10

.337

.121

.155

1.281

7

.144

1.19

2

.152

1.256

6

.146

1.207

3

.151

1.248

5

.133

1.099

1

.150

1.240

4

.305

2.521

9

.155

1.281

7

.372

3.074

11

.199

1.645

8

.346

2.86

10

.217

.132

.143

1.083

4

.153

1.159

7

.151

1.144

5

.143

1.083

4

.152

1.152

6

.142

1.076

3

.134

1.015

1

.176

1.333

8

.141

1.068

2

.213

1.614

11

.199

1.508

9

.208

1.576

10

Table A.18: Average SVM test errors for the LL case and mixed samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.174

.064

.064

1.000

1

.064

1.000

1

.105

1.641

6

.093

1.453

4

.078

1.219

2

.081

1.266

3

.064

1.000

1

.170

2.656

8

.064

1.000

1

.093

1.453

4

.123

1.922

7

.097

1.516

5

.072

.042

.047

1.190

4

.046

1.095

3

.050

1.190

6

.057

1.357

3

.048

1.143

5

.066

1.571

9

.044

1.048

2

.050

1.190

6

.042

1.000

1

.050

1.190

6

.059

1.405

8

.050

1.190

6

.175

.065

.065

1.000

1

.065

1.000

1

.107

1.646

8

.095

1.462

6

.085

1.308

4

.078

1.200

3

.065

1.000

1

0.166

2.554

10

.067

1.031

2

.094

1.446

5

.124

1.908

9

.098

0.508

7

.100

.069

.069

1.000

1

.075

1.087

3

.078

1.130

4

.077

1.116

6

.075

1.087

3

.079

1.145

5

.069

1.00

1

.082

1.188

7

.070

1.014

2

.075

1.087

3

.095

1.377

8

.075

1.087

3

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

293

Table A.19: Average SVM test errors for the LL case and large samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.233

.114

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.314

2.754

4

.114

1.000

1

.499

4.377

5

.181

1.588

2

.208

1.825

3

.079

.033

.034

1.030

2

.034

1.030

2

.034

1.030

2

.033

1.000

1

.033

1.000

1

.033

1.000

1

.033

1.000

1

.039

1.182

3

.033

1.000

1

.033

1.000

1

.043

1.303

4

.043

1.303

4

.229

.114

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.114

1.000

1

.306

2.684

4

.114

1.000

1

.500

4.386

5

.187

1.640

2

.220

1.930

3

.145

.084

.090

1.071

2

.091

1.083

3

.084

1.000

1

.084

1.000

1

.084

1.000

1

.084

1.000

1

.084

1.000

1

.109

1.298

4

.084

1.000

1

.084

1.000

1

.125

1.488

6

.113

1.345

5

Table A.20: Average SVM test errors for the LL case and wide samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.269

.060

.111

1.850

9

.104

1.733

8

.094

1.567

2

.093

1.550

1

.102

1.700

7

.095

1.583

3

.097

1.617

5

.292

4.867

11

.096

1.600

4

.298

4.967

12

.099

1.650

6

.241

4.017

10

.092

.021

.042

2.000

6

.057

2.714

7

.037

1.762

2

.033

1.571

1

.042

2.000

6

.040

1.905

4

.041

1.952

5

.037

1.762

2

.042

2.000

6

.079

3.762

8

.038

1.810

3

.105

5.000

9

.348

.123

.169

1.374

3

.166

1.350

2

.174

1.415

5

.170

1.382

4

.192

1.561

7

.177

1.439

6

.150

1.220

1

.424

3.447

11

.169

1.374

3

.348

2.829

10

.212

1.724

8

.344

2.797

9

.219

.130

.148

.156

1.200

3

.166

1.277

6

.163

1.254

4

.174

1.338

7

.165

1.269

5

.137

1.054

1

.192

1.477

8

.148

1.138

2

.217

1.669

10

.206

1.585

9

.247

1.900

11

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

294

Table A.21: Average KFDA test errors for the LS case and small samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.438

.221

.303

1.371

2

.360

1.629

5

.380

1.719

8

.321

1.452

3

.340

1.538

4

.291

1.317

1

.374

1.692

6

.446

2.018

11

.377

.706

7

.479

2.167

12

.411

1.860

9

.412

1.864

10

.266

.129

.211

1.636

7

.182

1.411

4

.185

1.434

6

.174

1.349

2

.183

1.419

5

.168

1.302

1

.182

1.411

4

.232

1.798

8

.181

1.403

3

.339

2.628

11

.247

1.915

10

.234

1.814

9

.437

.223

.298

1.336

2

.371

1.664

5

.378

1.695

7

.316

1.417

3

.344

1.543

4

.294

1.318

1

.376

1.686

6

.435

1.951

10

.376

1.686

6

.481

2.157

11

.410

1.839

9

.402

1.803

8

.308

.157

.260

1.656

8

.205

1.306

3

.233

1.484

7

.207

1.318

4

.226

1.439

6

.198

1.261

2

.180

1.146

1

.297

1.892

10

.209

1.331

5

.350

2.229

12

.326

2.076

111

.275

1.752

9

Table A.22: Average KFDA test errors for the LS case and mixed samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.250

.250

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.194

.096

.165

1.719

3

.114

1.188

2

.250

2.604

8

.152

1.583

5

.250

2.604

8

.186

1.938

6

.111

1.156

1

.245

2.552

7

.115

1.198

4

.250

2.604

8

.250

2.604

8

.250

2.604

8

.250

.250

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.250

1.000

1

.242

.130

.241

1.854

4

.140

1.077

2

.250

1.923

5

.241

1.854

4

.250

1.923

5

.250

1.923

5

.139

1.069

1

.250

1.923

5

.162

1.246

3

.250

1.923

5

.250

1.923

5

.250

1.923

5

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

295

Table A.23: Average KFDA test errors for the LS case and large samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.358

.200

.203

1.015

2

.301

1.505

6

.222

1.110

5

.203

1.015

2

.213

1.065

3

.202

1.010

1

.215

1.075

4

.474

2.370

9

.220

1.100

5

.499

2.495

10

.453

2.265

8

.378

1.890

7

.155

.085

.123

1.447

5

.100

1.176

4

.088

1.035

3

.086

1.012

2

.086

1.012

2

.086

1.012

2

.085

1.000

1

.201

2.365

7

.086

1.012

2

.085

1.000

1

.213

2.506

8

.146

1.718

6

.361

.202

.205

1.015

4

.300

1.485

7

.237

1.173

8

.208

.990

1

.218

1.079

5

.204

1.010

2

.219

1.084

3

.476

2.356

11

.234

1.158

6

.500

2.475

12

.453

2.243

10

.376

1.861

9

.208

.127

.180

1.417

4

.127

1.000

1

.131

1.031

3

.128

1.008

2

.128

1.008

2

.127

1.000

1

.127

1.000

1

.257

2.024

6

.128

1.008

2

.127

1.000

1

.274

2.157

7

.207

1.630

5

Table A.24: Average KFDA test errors for the LS case and wide samples

FULL ORA R0 R1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.449

.120

.371

1.015

2

.304

1.505

6

.358

1.110

5

.328

1.015

2

.334

1.065

3

.291

1.010

1

.354

1.075

.421

2.370

9

.356

1.100

5

.471

2.495

10

.382

2.265

8

.384

1.890

7

.282

.054

.194

3.593

8

.146

2.704

6

.135

2.500

4

.130

2.407

3

.141

2.611

5

.146

2.704

6

.126

2.333

1

.164

3.037

7

.129

2.389

2

.402

7.444

11

.248

4.593

10

.224

4.148

9

.455

.143

.419

2.930

8

.324

2.266

1

.398

2.783

6

.370

2.578

3

.385

2.692

7

.347

2.427

2

.371

2.594

4

.456

3.189

11

.395

2.762

5

.475

3.322

12

.436

3.049

10

.423

2.958

9

.342

.079

.298

3.772

7

.148

1.873

1

.268

3.392

5

.262

3.316

4

.283

10.51

12

.279

3.532

6

.175

2.215

2

.370

4.684

9

.231

2.924

3

.432

5.468

11

.413

5.228

10

.334

4.228

8

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

296

Table A.25: Average SVM test errors for the LS case and small samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.438

.212

.277

1.307

2

.266

1.255

1

.377

1.778

8

.317

1.495

4

.337

1.590

5

.288

1.358

3

.371

1.750

6

.446

2.104

11

.375

1.769

7

.478

2.255

12

.412

1.943

10

.408

1.925

9

.277

.129

.173

1.341

2

.175

1.357

3

.187

1.450

7

.177

1.372

4

.184

1.426

6

.170

1.318

1

.184

1.426

6

.241

1.868

9

.183

1.419

5

.346

2.682

11

.254

1.969

10

.233

1.806

8

.438

.212

.287

1.354

2

.271

1.278

1

.375

1.769

8

.313

1.476

4

.340

1.604

5

.290

1.368

3

.372

1.755

6

.435

2.052

11

.373

1.759

7

.480

2.264

12

.408

1.925

10

.399

1.882

9

.315

.164

.230

1.402

5

.239

1.457

7

.245

1.494

8

.223

1.360

3

.238

1.451

6

.213

1.299

2

.196

1.195

1

.305

1.860

10

.224

1.366

4

.356

2.171

12

.333

2.030

11

.283

1.726

9

Table A.26: Average SVM test errors for the LS case and mixed samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.336

.223

.243

1.090

4

.241

1.081

3

.268

1.202

10

.241

1.081

2

.268

1.202

10

.246

1.103

1

.246

1.103

1

.261

1.170

7

.248

1.112

5

.262

1.175

8

.266

1.193

9

.256

1.148

6

.197

.090

.107

1.189

3

.126

1.400

4

.337

3.744

10

.140

1.556

5

.337

3.744

10

.175

1.944

6

.101

1.122

1

.246

2.733

8

.105

1.167

2

.348

3.867

11

.325

3.611

9

.233

2.589

7

.335

.225

.246

1.093

2

.248

1.102

4

.268

1.191

10

.241

1.071

1

.269

1.196

11

.247

1.098

3

.251

1.116

5

.260

1.156

7

.251

1.116

5

.263

1.169

8

.267

1.187

9

.256

1.138

6

.252

.097

.138

1.423

3

.170

1.753

4

.328

3.381

10

.219

2.258

5

.292

3.010

9

.257

2.649

6

.106

1.093

1

.291

3.000

8

.129

1.330

2

.345

3.557

12

.338

3.485

11

.282

2.907

7

APPENDIX A: SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS

297

Table A.27: Average SVM test errors for the LS case and large samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.362

.182

.184

1.011

1

.185

1.016

2

.206

1.132

6

.185

1.016

2

.196

1.077

3

.184

1.011

1

.198

1.088

4

.473

2.599

9

.204

1.121

5

.499

2.742

10

.450

2.473

8

.371

2.038

7

.164

.076

.076

1.000

1

.076

1.000

1

.078

1.026

3

.077

1.013

2

.077

1.013

2

.077

1.013

2

.076

1.000

1

.190

2.500

5

.077

1.013

2

.076

1.000

1

.204

2.684

6

.136

1.789

4

.362

.181

.185

1.022

5

.184

1.017

4

.219

1.210

8

.188

1.039

6

.198

1.094

2

.183

1.011

1

.199

1.099

3

.475

2.624

11

.216

1.193

7

.499

2.757

12

.450

2.486

10

.368

2.033

9

.226

.093

.100

1.075

5

.111

1.194

6

.098

1.054

4

.094

1.011

2

.095

1.022

3

.093

1.000

1

.093

1.000

1

.252

2.710

8

.094

1.011

2

.093

1.000

1

.284

3.054

9

.196

2.108

7

Table A.28: Average SVM test errors for the LS case and wide samples

FULL ORA N0 N1 A0 A1 A0T A1T VA0 VA1 G0 G1 SS0 SS1

.447

.136

.265

1.949

2

.263

1.934

1

.365

2.684

8

.338

2.485

4

.339

2.493

5

.300

2.206

3

.363

2.669

9

.425

3.125

11

.361

2.654

6

.472

3.471

12

.396

2.912

10

.364

2.676

7

.261

.063

.133

2.111

1

.165

2.619

8

.153

2.429

5

.146

2.317

2

.158

2.508

7

.162

2.571

6

.147

2.333

3

.172

2.730

9

.149

2.365

4

.416

6.603

11

.256

4.063

10

.256

4.063

10

.450

.174

.333

1.914

2

.328

1.885

1

.393

2.259

8

.368

2.115

5

.378

2.172

6

.345

1.983

3

.367

2.109

4

.459

2.638

11

.391

2.247

7

.476

2.736

12

.438

2.517

10

.405

2.328

9

.334

.157

.283

1.803

5

.295

1.879

8

.282

1.796

4

.277

1.764

3

.293

1.866

7

.287

1.828

6

.220

1.401

1

.371

2.363

10

.254

1.618

2

.431

2.745

12

.413

2.631

11

.338

2.153

9

APPENDIX B: SOME MATHEMATICAL RESULTS

298

APPENDIX B

SOME MATHEMATICAL RESULTS

In this appendix, definitions and results required in the introduction to SVMs in Section 5.2

are given. We start with the definition of a hyperplane in pℜ , followed by a brief

description of the way in which a vector lying in the hyperplane may be obtained. A result

for the distance from an arbitrary point to a hyperplane, and thus also for its functional and

geometric margins, is given. We then provide the definition of a hyperplane in canonical

form.

Consider the following definition of a hyperplane in pℜ .

DEFINITION B.1: A HYPERPLANE IN pℜ

A hyperplane in pℜ is defined as the affine set ()bL ,w of all p-vectors x satisfying

 () 0, =+= bf xwx , (B.1)

where pℜ∈w is a given vector and b is a given scalar. Hence

 ()bL ,w { }0,: =+ℜ∈= bp xwx . (B.2)

Note that for the case 0=b in equations (B.1) and (B.2), ()0,wL { }0,: =ℜ∈= xwx p

consists of all vectors in pℜ which are orthogonal to w . This will be a ()1−p -

APPENDIX B: SOME MATHEMATICAL RESULTS

299

dimensional subspace in pℜ . Let this subspace be denoted by W . Starting with w , and

performing Gram-Schmidt orthogonalisation, an orthogonal basis (say 121 ,,, −puuu K) can

be found for W .

Now consider the case where 0≠b . Let x be a typical vector in W , i.e. 0, =xw . Also,

let bx be a vector such that bb −=xw, . Put bxxz += , then

bb −=+= xwxwzw ,,, , i.e. 0, =+ bzw , and we can conclude that any vector z of

the form bxxz += , W∈x , bb −=xw, , will belong to the hyperplane ()bL ,w .

Moreover, we can assume without loss of generality that Wb ⊥x , since

b
W

b
W

bWb PPP xwxxwxw ⊥⊥ =



 += ,,, .

In general therefore consider a vector ()bL ,wz ∈ , i.e. 0, =+ bzw . Any such vector can

be obtained in two steps: First, find a vector W∈x , where W is the subspace with

W⊥w . Second, find a vector ⊥∈Wbx such that bb −=xw, . Now put bxxz += .

Note that we can put zx WP= .

DEFINITION B.2: PROJECTION OF AN ARBITRARY POINT ONTO A

 HYPERPLANE IN pℜ

The projection of an arbitrary point pℜ∈q onto a hyperplane L is defined as

 bWL PP xqq += . (B.3)

APPENDIX B: SOME MATHEMATICAL RESULTS

300

Note that ()bLPL ,wq ∈ , since bPL −=qw, . Also, () qqzq
z LL

P−=−
∈

min . This follows

since () xxqxxqzq −−=−−=− bb is a minimum over W∈x if

() xxqx WbW PP =−= . The ()bL ,wz ∈ minimising zq − is therefore given by

xxxz LbW PP =+= . Note therefore that () bWLL
PP xxxxzq

q
−=−=− ⊥∈

min (since

⊥∈Wbx).

We are now in a position to define the distance between an arbitrary vector pℜ∈q and the

hyperplane ()bL ,w (cf. also Hastie et al., 2001, p. 106).

DEFINITION B.3: DISTANCE FROM AN ARBITRARY POINT TO A

 HYPERPLANE IN pℜ

The distance between an arbitrary point pℜ∈q and a hyperplane L is

 () bWL
P xxzq

q
−=− ⊥

∈
min . (B.4)

Note that ⊥W is a one-dimensional space, spanned for example by w . Hence

() wwwxwx aP
W

==⊥
2, , where of course 2, wxw=a .

We now find that

2

bW
P xq −⊥ = bb aa xwxw −− ,

 = 222 2 bbaa xxww +′−

APPENDIX B: SOME MATHEMATICAL RESULTS

301

 = 2
22

2 ,2,
b

b
x

w

wq

w

wq
++ . (B.5)

Since ⊥∈Wbx , we also have

 w
w

w
xx 2

,b
bWb

x
P == ⊥ = w

w 2
b− (B.6)

and 2

2
2

4

2
2

w
w

w
x bb

b == . (B.7)

Therefore
2

bW
P xq −⊥ = ()2

2 ,1 b+wq
w

, and the distance from q to L simplifies to

 ()L,qδ = bW
P xq −⊥ = ()b+wq

w
,1 (B.8)

Note that in the literature ()ℵLi ,xδ is frequently referred to as the geometric margin of the

thi input pattern with respect to ℵL . Note also that the minimum value of (B.8) over all

training patterns ix , ni ,,2,1 K= , is referred to as the geometric margin of the hyperplane.

DEFINITION B.4: THE GEOMETRIC MARGIN OF A HYPERPLANE IN pℜ

 WITH RESPECT TO AN ARBITRARY POINT

The geometric margin of a data case ()ii y,x with respect to a hyperplane ()bL ,wℵ is

 ()bii += xw
w

,1δ . (B.9)

APPENDIX B: SOME MATHEMATICAL RESULTS

302

DEFINITION B.5: THE GEOMETRIC MARGIN OF A HYPERPLANE IN

 pℜ WITH RESPECT TO A TRAINING SET

The geometric margin of a hyperplane ()bL ,wℵ with respect to a training set is

 ()












=+= nibmin i ,,2,1,,1
Kxw

w
δ . (B.10)

DEFINITION B.6: THE FUNCTIONAL MARGIN OF A HYPERPLANE IN

 pℜ WITH RESPECT TO AN ARBITRARY POINT

The (functional) margin of a a hyperplane ()bL ,wℵ with respect to a data case ()ii y,x is

defined to be

 ()by iii += xw,η . (B.11)

In a two-group classification setup, note that 0>iη in (B.11) implies correct classification

of the case ()ii y,x . From (B.9), the relation between the (functional) margin of an

arbitrary data case ()ii y,x with respect to ℵL and the distance from input ix to ℵL is

clear:

 () 







=ℵ

i

i
i y

L
η

δ
w

x 1, . (B.12)

APPENDIX B: SOME MATHEMATICAL RESULTS

303

Of course in a binary classification setup, assuming correct classification of the case

()ii y,x , (B.12) simplifies to

 ()
w

x i
i L η

δ =ℵ, . (B.13)

DEFINITION B.7: THE FUNCTIONAL MARGIN OF A HYPERPLANE IN

 pℜ

The functional margin of a hyperplane ()bL ,wℵ is defined as the minimum of its functional

margin with respect to each point in the training data set, viz.

 (){ }nibymin ii ,,2,1,, K=+= xwη (B.14)

DEFINITION B.8: A SEPARATING HYPERPLANE IN pℜ

In a two-group classification problem, a separating hyperplane in pℜ is the hyperplane in

input space such that all input patterns belonging to group 1 lie on the opposite side of the

hyperplane to those belonging to group 2. Therefore, a separating hyperplane in pℜ is

such that

 0>iη , ni ,,2,1 K= (B.15)

Note that we may additionally require the set of separating hyperplanes in pℜ to have

1≥iη , ni ,,2,1 K= , with equality occurring at at least one ix . The set of hyperplanes

satisfying this additional criterion is the same as the set of hyperplanes which satisfy

APPENDIX B: SOME MATHEMATICAL RESULTS

304

(B.15), but the additional requirement normalises the latter set of hyperplanes to each have

only a single representation. The single representation induced by the requirement 1≥iη ,

ni ,,2,1 K= , is called the canonical form of a separating hyperplane in pℜ .

DEFINITION B.9: THE CANONICAL FORM OF A SEPARATING

 HYPERPLANE IN pℜ

The canonical form of a separating hyperplane in pℜ is defined as the affine set ()bL ,w of

all p-vectors x safisfying

 () { } 1, ≥+= byyf xwx . (B.16)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

305

APPENDIX C

 EXAMPLES OF SIMULTATION PROGRAMS

In this appendix, an example of each of the programs used in the Monte Carlo simulation

studies in Chapters 3 to 6 of the thesis, is given. All simulation programs were written in

Fortran. Sections 1 and 2 contain the code for the simulation program used to generate the

results reported in Chapter 3. An example of the programs used in Chapter 4 is given in

Section 3, and Sections 4 and 5 pertain to the Monte Carlo simulation studies reported in

Chapters 5 and 6 respectively. Subroutines and functions required in the main simulation

programs appear in Section 6, in the order in which they occur in the programs in Sections

1 to 5, alphabetical per main simulation program. Note that the required Fortran

subroutines and functions (in the Fortran IMSL library) are only listed in the programs

where they are used. More details regarding these subroutines and functions can be found

in the IMSL reference.

C.1 NAÏVE SELECTION IN INPUT AND FEATURE SPACE

An example of the Fortran code used to obtain the results in Section 2 of Chapter 3 (in

Example 3.1) is given below. Note that Subroutines 1 to 7 will also be used in most of the

simulation programs to follow.

C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS)

C PERTAINING TO THE FULL SVM, KFDA, AND LDA MODELS, AND POST-SELECTION

C AVERAGE TEST ERRORS (AND STANDARD ERRORS) FOR SVM, KFDA, AND LDA MODELS

 AFTER USING
C C.1.1 CORRELATIONS AND

C C.1.2 ALIGNMENTS

C AS SELECTION CRITERIA

C THE DATA ARE GENERATED FROM A MULTIVARIATE NORMAL DISTRIBUTION AND

 THE TWO GROUPS DIFFER WITH RESPECT TO LOCATION

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

306

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED

C THE FOLLOWING (OWN) FUNCTION IS REQUIRED:

C ALIGNMENT

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED:
C 1. BERFOUTKFDA

C 2. BERFOUTLDA

C 3. BERFOUTSVM

C 4. DOENKFDA

C 5. DOENSVM

C 6. GEMVARV

C 7. GRAMMAT

C 8. GRAMNUUT

C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED:

C 1. DABS

C 2. DMACH

C 3. DSQRT

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRE :
C 1. DCHFAC

C 2. DLINDS

C 3. DLSASF

C 4. DRNMVN

C 5. DSVRGP

C 6. DQPROG

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NMC=1000,CORR=0.0D0,SIGNOISE=20.0D0)

 PARAMETER (GAMPAR=1.0D0/IP)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

C POPULATION PARAMETERS

 DIMENSION AMU1(IP),AMU2(IP)

 DIMENSION SIGMAM(IP,IP),RSIG(IP,IP)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

307

C X MATRICES AND Y VECTORS

 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM)

 DIMENSION XT(NMT,IP)

 DIMENSION GEM(IP),VAR(IP)

 DIMENSION YV(NNPMM),YVT(NMT)

C KFDA RELATED QUANTITIES

 DIMENSION EENM(NNPMM),EENP(NNPMM)

C SVM RELATED QUANTITIES

 DIMENSION GRMATVOL(NNPMM,NNPMM),GRNUUTVOL(NMT,NNPMM)

 DIMENSION GRMATREG(NNPMM,NNPMM),GRNUUTREG(NMT,NNPMM)

 DIMENSION GRMATCOR(NNPMM,NNPMM),GRNUUTCOR(NMT,NNPMM)

 DIMENSION GRMATAL(NNPMM,NNPMM),GRNUUTAL(NMT,NNPMM)

 DIMENSION ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM)

C VARIOUS OTHER QUANTITIES

 DIMENSION AKOR(IP),ALIGN(IP)

 DIMENSION IPERM(IP)

 DIMENSION INDVEK(IP),INDVEKVOL(IP),JIND(IP)

 DIMENSION VEKKOR(IP),VEKAL(IP)

 DIMENSION KIESKOR(IP),KIESAL(IP),KIESREG(IP)

 DIMENSION FOUTMAT(NMC,4,3),FOUTGEMMAT(4,3),FOUTSTDMAT(4,3)

C OUTPUT FILES

 CHARACTER*70 FILEOUT1,FILEOUT2

 FILEOUT1='foutNL9.d'

 FILEOUT2='kiesNL9.d'

C WRITE FILE HEADERS

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'NORMAL DISTRIBUTION GROUP DIFFERENCES IN LOCATION'

 WRITE(1,*) 'RELEVANT AND IRRELEVANT SUBSETS OF VARIABLES ARE CORRELATED’

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'KERNEL HYPERPARAMETER=',GAMPAR

 WRITE(1,*) 'N1=',NN,'N2=',MM,'NO. OF MONTE CARLO REPETITIONS=',NMC

 WRITE(1,*) 'NT1=',NT,'NT2=',MT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

308

 WRITE(1,*) 'SIGNOISE=',SIGNOISE,'SIG12=0.9'

 WRITE(1,600)

 CLOSE(1)

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'NORMAL DISTRIBUTION DIFF IN LOCATION'

 WRITE(1,*) 'CORRELATION BETWEEN REL AND IRREL'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'KERNEL HYPERPARAMETER=',GAMPAR

 WRITE(1,*) 'N1=',NN,'N2=',MM,'NO. OF MONTE CARLO REPETITIONS=',NMC

 WRITE(1,*) 'NT1=',NT,'NT2=',MT

 WRITE(1,*) 'SIGNOISE=',SIGNOISE,'SIG12=0.9'

 WRITE(1,600)

 CLOSE(1)

C SET UP THE INDICES TO THE SET OF THE SEPARATING INPUT VARIABLES

 DO J=1,IP

 KIESREG(J)=J

 END DO

C ASSIGN VALUES TO THE POPULATION PARAMETERS AND OBTAIN THE COVARIANCE

C MATRICES REQUIRED TO GENERATE THE TRAINING AND TEST DATA SETS

 DO 3 I=1,IPTEL

 AMU1(I)=0.0D0

 AMU2(I)=1.0D0

 DO 2 J=1,IPTEL

 SIGMAM(I,J)=CORR

2 CONTINUE

 SIGMAM(I,I)=1.0D0

 DO J=IPTEL+1,IP

 SIGMAM(I,J)=0.9D0

 END DO

3 CONTINUE

 DO 5 I=IPTEL+1,IP

 AMU1(I)=0.0D0

 AMU2(I)=0.0D0

 DO J=1,IPTEL

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

309

 SIGMAM(I,J)=SIGMAM(J,I)

 END DO

 DO 4 J=IPTEL+1,IP

 SIGMAM(I,J)=0.0D0

4 CONTINUE

 SIGMAM(I,I)=SIGNOISE

5 CONTINUE

 TOL=1.0D2*DMACH(4)

 CALL DCHFAC(IP,SIGMAM,IP,TOL,IRANK,RSIG,IP)

C INITIALISE VARIOUS QUANTITIES
 DO 9 I=1,NN

 YV(I)=-1.0D0

9 CONTINUE

 DO 10 I=NN+1,NNPMM

 YV(I)=1.0D0

10 CONTINUE

 SOMY=1.0D0*(MM-NN)

 SOMY2=NNPMM

 DO 11 I=1,NT

 YVT(I)=-1.0D0

11 CONTINUE

 DO 12 I=NT+1,NMT

 YVT(I)=1.0D0

12 CONTINUE

C SET UP THE KFDA VECTORS
 DO 13 I=1,NNPMM

 EENP(I)=0.0D0

 EENM(I)=0.0D0

 IF (YV(I).LT.-0.1D0) EENM(I)=1.0D0

 IF (YV(I).GT.0.1D0) EENP(I)=1.0D0

13 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

310

C THE FOLLOWING STEPS ARE ITERATED OVER FIVE SPECIFICATIONS FOR THE

C COST PARAMETER

 DO 1010 ICP=1,5

 IF (ICP.EQ.1) CPAR=0.1D0

 IF (ICP.EQ.2) CPAR=1.0D0

 IF (ICP.EQ.3) CPAR=10.0D0

 IF (ICP.EQ.4) CPAR=100.0D0

 IF (ICP.EQ.5) CPAR=1000.0D0

C INITIALISE THE TEST ERROR AND VARIABLE INDEX VECTORS

 DO 15 I=1,4

 DO 14 J=1,3

 FOUTGEMMAT(I,J)=0.0D0

 FOUTSTDMAT(I,J)=0.0D0

14 CONTINUE

15 CONTINUE

 DO 16 J=1,IP

 INDVEKVOL(J)=J

 VEKKOR(J)=0.0D0

 VEKAL(J)=0.0D0

16 CONTINUE

C THE START OF THE MONTE CARLO SIMULATION LOOP

 DO 1004 MC=1,NMC

C GENERATE THE TRAINING DATA

 CALL DRNMVN(NNPMM,IP,RSIG,IP,XM,NNPMM)

 DO 18 I=1,NN

 DO 17 J=1,IPTEL

 XM(I,J)=XM(I,J)+AMU1(J)

17 CONTINUE

18 CONTINUE

 DO 20 I=1,NN

 DO 19 J=1,NNOISE

 XM(I,J+IPTEL)=XM(I,J+IPTEL)+AMU1(J+IPTEL)

19 CONTINUE

20 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

311

 DO 22 I=1,MM

 DO 21 J=1,IPTEL

 XM(NN+I,J)=XM(NN+I,J)+AMU2(J)

21 CONTINUE

22 CONTINUE

 DO 24 I=1,MM

 DO 23 J=1,NNOISE

 XM(NN+I,J+IPTEL)=XM(NN+I,J+IPTEL)+AMU2(J+IPTEL)

23 CONTINUE

24 CONTINUE

C STANDARDISE THE TRAINING DATA
 DO 28 J=1,IP

 S=0.0D0

 S2=0.0D0

 DO 26 I=1,NNPMM

 S=S+XM(I,J)

 S2=S2+XM(I,J)**2.0D0

26 CONTINUE

 GEM(J)=S/NNPMM

 VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM

 DO 27 I=1,NNPMM

 XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J))

27 CONTINUE

28 CONTINUE

C GENERATE THE TEST DATA

 CALL DRNMVN(NMT,IP,RSIG,IP,XT,NMT)

 DO 36 I=1,NT

 DO 35 J=1,IPTEL

 XT(I,J)=XT(I,J)+AMU1(J)

35 CONTINUE

36 CONTINUE

 DO 38 I=1,NT

 DO 37 J=1,NNOISE

 XT(I,J+IPTEL)=XT(I,J+IPTEL)+AMU1(J+IPTEL)

37 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

312

38 CONTINUE

 DO 40 I=1,MT

 DO 39 J=1,IPTEL

 XT(NT+I,J)=XT(NT+I,J)+AMU2(J)

39 CONTINUE

40 CONTINUE

 DO 42 I=1,MT

 DO 41 J=1,NNOISE

 XT(NT+I,J+IPTEL)=XT(NT+I,J+IPTEL)+AMU2(J+IPTEL)

41 CONTINUE

42 CONTINUE

C STANDARDISE THE TEST DATA

 DO 45 J=1,IP

 DO 44 I=1,NMT

 XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J)))

44 CONTINUE

45 CONTINUE

C CALCULATE (AND SORT) ONE VARIABLE AT-A-TIME CORRELATIONS
 NVER=IPTEL

 DO 240 J=1,IP

 S=0.0D0

 DO 239 I=1,NNPMM

 S=S+XM(I,J)*YV(I)

239 CONTINUE

 AKOR(J)=S/(DSQRT(1.0D0*NNPMM*(SOMY2-SOMY*SOMY/NNPMM)))

 AKOR(J)=DABS(AKOR(J))

240 CONTINUE

 DO 241 J=1,IP

 IPERM(J)=J

241 CONTINUE

 CALL DSVRGP(IP,AKOR,AKOR,IPERM)

 DO 242 J=1,NVER

 KIESKOR(J)=IPERM(IP-NVER+J)

242 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

313

C CALCULATE (AND SORT) ONE VARIABLE AT-A-TIME ALIGNMENTS

 DO 243 J=1,IP

 ALIGN(J)=ALIGNMENT(J,XM)

243 CONTINUE

 DO 244 J=1,IP

 IPERM(J)=J

244 CONTINUE

 CALL DSVRGP(IP,ALIGN,ALIGN,IPERM)

 DO 245 J=1,NVER

 KIESAL(J)=IPERM(IP-NVER+J)

245 CONTINUE

C UPDATE SELECTION PROPORTIONS

 DO 206 J=1,IPTEL

 VEKKOR(KIESKOR(J))=VEKKOR(KIESKOR(J))+1.0D0

 VEKAL(KIESAL(J))=VEKAL(KIESAL(J))+1.0D0

206 CONTINUE

C CALCULATE THE TEST ERROR PERTAINING TO THE SVM BASED ON ALL AVAILABLE

C INPUT VARIABLES
 NVER=IP

 CALL GRAMMAT(GAMPAR,XM,NVER,INDVEKVOL,GRMATVOL)

 CALL DOENSVM(YV,XM,GRMATVOL,CPAR,GAMPAR,NVER,INDVEKVOL,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,INDVEKVOL,GRNUUTVOL)

 CALL BERFOUTSVM(YV,GRNUUTVOL,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,1,1)=FOUT

C CALCULATE THE TEST ERROR PERTAINING TO THE SVM BASED ONLY ON THE

C SEPARATING INPUT VARIABLES

 NVER=IPTEL

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESREG,GRMATREG)

 CALL DOENSVM(YV,XM,GRMATREG,CPAR,GAMPAR,NVER,KIESREG,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESREG,GRNUUTREG)

 CALL BERFOUTSVM(YV,GRNUUTREG,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,2,1)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

314

C CALCULATE THE POST-SELECTION SVM TEST ERROR WHEN THE SELECTION CRITE-

C RION IS PEARSON’S CORRELATION COEFFICIENT IN INPUT SPACE

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESKOR,GRMATCOR)

 CALL DOENSVM(YV,XM,GRMATCOR,CPAR,GAMPAR,NVER,KIESKOR,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESKOR,GRNUUTCOR)

 CALL BERFOUTSVM(YV,GRNUUTCOR,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,3,1)=FOUT

C CALCULATE THE POST-SELECTION SVM TEST ERROR WHEN THE SELECTION CRITE-

C RION IS THE ALIGNMENT IN FEATURE SPACE

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESAL,GRMATAL)

 CALL DOENSVM(YV,XM,GRMATAL,CPAR,GAMPAR,NVER,KIESAL,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESAL,GRNUUTAL)

 CALL BERFOUTSVM(YV,GRNUUTAL,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,4,1)=FOUT

C CALCULATE THE TEST ERROR PERTAINING TO THE KFD BASED ON ALL AVAILABLE

C INPUT VARIABLES

 CALL DOENKFDA(EENM,EENP,GRMATVOL,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUTVOL,YVT,ALPHA,BOPT,FOUT)

 FOUTMAT(MC,1,2)=FOUT

C CALCULATE THE TEST ERROR PERTAINING TO THE KFD BASED ONLY ON THE

C SEPARATING INPUT VARIABLES

 CALL DOENKFDA(EENM,EENP,GRMATREG,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUTREG,YVT,ALPHA,BOPT,FOUT)

 FOUTMAT(MC,2,2)=FOUT

C CALCULATE THE POST-SELECTION KFD TEST ERROR WHEN THE SELECTION CRITE-

C RION IS PEARSON’S CORRELATION COEFFICIENT IN INPUT SPACE

 CALL DOENKFDA(EENM,EENP,GRMATCOR,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUTCOR,YVT,ALPHA,BOPT,FOUT)

 FOUTMAT(MC,3,2)=FOUT

C CALCULATE THE POST-SELECTION SVM TEST ERROR WHEN THE SELECTION CRITE-

C RION IS THE ALIGNMENT IN FEATURE SPACE
 CALL DOENKFDA(EENM,EENP,GRMATAL,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUTAL,YVT,ALPHA,BOPT,FOUT)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

315

 FOUTMAT(MC,4,2)=FOUT

C CALCULATE THE TEST ERROR PERTAINING TO THE LD BASED ON ALL AVAILABLE

C INPUT VARIABLES

 NVER=IP

 CALL BERFOUTLDA(XM,XT,YVT,NVER,INDVEKVOL,FOUT)

 FOUTMAT(MC,1,3)=FOUT

C CALCULATE THE TEST ERROR PERTAINING TO THE LD BASED ONLY ON THE

C SEPARATING INPUT VARIABLES

 NVER=IPTEL

 CALL BERFOUTLDA(XM,XT,YVT,NVER,KIESREG,FOUT)

 FOUTMAT(MC,2,3)=FOUT

C CALCULATE THE POST-SELECTION LD TEST ERROR WHEN THE SELECTION CRITE-

C RION IS PEARSON’S CORRELATION COEFFICIENT IN INPUT SPACE

 CALL BERFOUTLDA(XM,XT,YVT,NVER,KIESKOR,FOUT)

 FOUTMAT(MC,3,3)=FOUT

C CALCULATE THE POST-SELECTION LD TEST ERROR WHEN THE SELECTION CRITE-

C RION IS THE ALIGNMENT IN FEATURE SPACE

 CALL BERFOUTLDA(XM,XT,YVT,NVER,KIESAL,FOUT)

 FOUTMAT(MC,4,3)=FOUT

 1004 CONTINUE

C THE END OF THE MONTE CARLO SIMULATION LOOP

C AVERAGE THE OBTAINED TEST ERRORS AND SELECTION FREQUENCIES AND

C CALCULATE STANDARD ERRORS

 DO 346 K=1,3

 DO 345 J=1,4

 S1=0.0D0

 S2=0.0D0

 DO 344 I=1,NMC

 S1=S1+FOUTMAT(I,J,K)

 S2=S2+FOUTMAT(I,J,K)**2.0D0

344 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

316

 FOUTGEMMAT(J,K)=S1/NMC

 FOUTSTDMAT(J,K)=DSQRT((S2-(S1*S1)/NMC)/(NMC*(NMC-1.0D0)))

345 CONTINUE

346 CONTINUE

 DO 349 J=1,IP

 VEKKOR(J)=VEKKOR(J)/NMC

 VEKAL(J)=VEKAL(J)/NMC

349 CONTINUE

C WRITE THE AVERAGE TEST ERRORS AND STANDARD ERRORS TO A FILE

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'SVM C: ',CPAR,'G: ',GAMPAR

 WRITE(1,599) 'FUL','ORA','KOR','AL'

 WRITE(1,600) (FOUTGEMMAT(J,1),J=1,4)

 WRITE(1,600) (FOUTSTDMAT(J,1),J=1,4)

 WRITE(1,*) 'KFDA '

 WRITE(1,600) (FOUTGEMMAT(J,2),J=1,4)

 WRITE(1,600) (FOUTSTDMAT(J,2),J=1,4)

 WRITE(1,*) 'LDA '

 WRITE(1,600) (FOUTGEMMAT(J,3),J=1,4)

 WRITE(1,600) (FOUTSTDMAT(J,3),J=1,4)

 WRITE(1,600)

 CLOSE(1)

C WRITE THE SELECTION PERCENTAGES TO A FILE

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'C: ',CPAR,'G: ',GAMPAR

 WRITE(1,*) 'CORRELATIONS'

 WRITE(1,602) (VEKKOR(J),J=1,IP)

 WRITE(1,*) 'ALIGNMENTS'

 WRITE(1,602) (VEKAL(J),J=1,IP)

 CLOSE(1)

 1010 CONTINUE

C THE COST PARAMETER LOOP ENDS HERE

C FILE FORMATS

599 FORMAT(1X,A3,2(4X,A3),5X,A2,3(4X,A3),4X,A4,3(4X,A3))

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

317

600 FORMAT(12(F5.3,2X))

601 FORMAT(20I3)

602 FORMAT(12(F5.2,1X))

605 FORMAT(14X,9(F5.1,2X))

7000 STOP

END

C THE SIMULATION PROGRAM ENDS HERE

C.2 FEATURE-TO-INPUT SPACE SELECTION

The following simulation program is an example of the Fortran code used to obtain the

results in Section 4.6 of Chapter 3.

C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS)

C PERTAINING TO THE FULL SVM AND KFD MODELS, AND POST-SELECTION AVERAGE

C TEST ERRORS (AND STANDARD ERRORS) FOR SVM AND KFD MODELS AFTER USING

C C.2.1 ALIGNMENTS IN FEATURE SPACE

C C.2.2 CORRELATIONS IN INPUT SPACE

C C.2.3 LEAST SQUARES APPROXIMATION OF DISCRIMINANT FUNCTION VALUES

C C.2.4 REGRESSION RANDOM FOREST APPROXIMATION OF DISCRIMINANT

 FUNCTION VALUES

C C.2.5 THE FOLLOWING PRE-IMAGE APPROXIMATIONS:

 MEANS IN FEATURE SPACE

 VARIATION RATIOS

C NOTE THAT THE DISCRIMINANT FUNCTION VALUES ARE OBTAINED AFTER

C APPLICATION OF AN SVM ON THE FULL SET OF AVAILABLE INPUT VARIABLES

C THE DATA ARE GENERATED FROM A MULTIVARIATE NORMAL DISTRIBUTION AND

C THE TWO GROUPS DIFFER WITH RESPECT TO THEIR VARIANCE-COVARIANCE

C STRUCTURE

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE CORRELATED

C THE FOLLOWING (OWN) FUNCTION IS REQUIRED:

C ALIGNMENT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

318

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED:

C 1. BERFOUTSVM

C 2. DOENSVM

C 3. FCN

C 4. GRAMMAT

C 5. GRAMNUUT

C 6. PREIMAGE

C 7. RANFOR

C 8. BUILDTREE

C 9. FINDBESTSPLIT

C 10. QUICKSORT

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED:

C 1. DABS

C 2. DMACH

C 3. DSQRT

C 4. CPSEC

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED:

C 1. DCHFAC

C 2. DRNMVN

C 3. DSVRGP

C 4. DRLSE

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=4,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NMC=1000,CORR=0.7D0,SIGFAKTOR=10.0D0,SIGNOISE=20.0D0)

 PARAMETER (GAMPAR=1.0D0/IP)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

C POPULATION PARAMETERS

 DIMENSION SIGMAM1(IP,IP),RSIG1(IP,IP)

 DIMENSION SIGMAM2(IP,IP),RSIG2(IP,IP)

C X MATRICES AND Y VECTORS
 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM)

 DIMENSION XM1(NN,IP),XM2(MM,IP)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

319

 DIMENSION XGEM1(IP),XGEM2(IP),GEM(IP),VAR(IP)

 DIMENSION XT(NMT,IP),XT1(NT,IP),XT2(MT,IP)

 DIMENSION YV(NNPMM),YVT(NMT),IYV(NNPMM)

C SVM RELATED QUANTITIES
 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM)

 DIMENSION ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM)

C VARIOUS QUANTITIES

 DIMENSION AKOR(IP),ALIGN(IP)

 DIMENSION XVERSKIL(IP),KIESX(IP)

 DIMENSION XPRE1(IP),XPRE2(IP),XPREVERSKIL(IP),KIESF(IP)

 DIMENSION WPRE1(IP),WPRE2(IP),WPREVERSKIL(IP),KIESWD(IP)

 DIMENSION WPRE(IP),KIESW(IP)

 DIMENSION FW(NNPMM),BV(IP),INDVEK(IP)

 DIMENSION Z(IP)

 DIMENSION KIESL(IP),KIESRF(IP),KIESKOR(IP),KIESAL(IP)

 DIMENSION IPERM(IP),INDVEKVOL(IP),JIND(IP),KIESREG(IPTEL)

 DIMENSION FOUTMAT(NMC,11),FOUTGEM(11),FOUTSTD(11)

 DIMENSION VEKX(IP),VEKF(IP),VEKWD(IP),VEKW(IP),VEKL(IP),VEKRF(IP)

 DIMENSION VEKKOR(IP),VEKAL(IP)

 DIMENSION TYD(11)

C OUTPUT FILES

 CHARACTER*70 FILEOUT1,FILEOUT2

 FILEOUT1='foutNS.d'

 FILEOUT2='kiesNS.d'

C WRITE FILE HEADERS

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'NORMAL DISTRIBUTION DIFFERENCES IN SPREAD'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'GAMPAR=',GAMPAR,'CPARS=',CPARS

 WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC

 WRITE(1,*) 'NT=',NT,'MT=',MT

 WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE

 WRITE(1,*) 'SIG12=0.9'

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

320

 WRITE(1,600)

 CLOSE(1)

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'NORMAL DISTRIBUTION DIFFERENCES IN SPREAD'

 WRITE(1,*) 'REGRESSION RF AND TREE: USING F-VALUES'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'GAMPAR=',GAMPAR,'CPARS=',CPARS

 WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC

 WRITE(1,*) 'NT=',NT,'MT=',MT

 WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE

 WRITE(1,*) 'SIG12=0.9'

 WRITE(1,600)

 CLOSE(1)

C ASSIGN VALUES TO THE POPULATION PARAMETERS AND OBTAIN THE COVARIANCE

C MATRICES REQUIRED TO GENERATE TRAINING AND TEST DATA SETS

 DO 3 I=1,IPTEL

 KIESREG(I)=I

 DO 2 J=1,IPTEL

 SIGMAM1(I,J)=CORR

 SIGMAM2(I,J)=SIGFAKTOR*CORR

2 CONTINUE

 SIGMAM1(I,I)=1.0D0

 SIGMAM2(I,I)=SIGFAKTOR*1.0D0

3 CONTINUE

 DO 5 I=1,IPTEL

 DO 4 J=IPTEL+1,IP

 SIGMAM1(I,J)=0.9D0

 SIGMAM2(I,J)=0.9D0

 SIGMAM1(J,I)=SIGMAM1(I,J)

 SIGMAM2(J,I)=SIGMAM2(I,J)

4 CONTINUE

5 CONTINUE

 DO 7 I=IPTEL+1,IP

 DO 6 J=IPTEL+1,IP

 SIGMAM1(I,J)=0.0D0

 SIGMAM2(I,J)=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

321

6 CONTINUE

 SIGMAM1(I,I)=SIGNOISE*1.0D0

 SIGMAM2(I,I)=SIGNOISE*1.0D0

7 CONTINUE

 TOL=1.0D2*DMACH(4)

 CALL DCHFAC(IP,SIGMAM1,IP,TOL,IRANK,RSIG1,IP)

 CALL DCHFAC(IP,SIGMAM2,IP,TOL,IRANK,RSIG2,IP)

C INITIALISE VARIOUS QUANTITIES

 DO 9 I=1,NN

 YV(I)=-1.0D0

9 CONTINUE

 DO 10 I=NN+1,NNPMM

 YV(I)=1.0D0

10 CONTINUE

 SOMY=1.0D0*(MM-NN)

 SOMY2=NNPMM

 DO 11 I=1,NT

 YVT(I)=-1.0D0

11 CONTINUE

 DO 12 I=NT+1,NMT

 YVT(I)=1.0D0

12 CONTINUE

C THE FOLLOWING STEPS ARE ITERATED OVER FIVE SPECIFICATIONS FOR THE COST

PARAMETER

 DO 1010 ICP=1,5

 IF (ICP.EQ.1) CPARS=0.1D0

 IF (ICP.EQ.2) CPARS=1.0D0

 IF (ICP.EQ.3) CPARS=10.0D0

 IF (ICP.EQ.4) CPARS=100.0D0

 IF (ICP.EQ.5) CPARS=1000.0D0

C INITIALISE THE TEST ERROR AND VARIABLE INDEX VECTORS
 DO 15 J=1,11

 FOUTGEM(J)=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

322

 FOUTSTD(J)=0.0D0

 TYD(J)=0.0D0

15 CONTINUE

 DO 16 J=1,IP

 INDVEKVOL(J)=J

 VEKKOR(J)=0.0D0

 VEKAL(J)=0.0D0

 VEKX(J)=0.0D0

 VEKF(J)=0.0D0

 VEKWD(J)=0.0D0

 VEKW(J)=0.0D0

 VEKL(J)=0.0D0

 VEKRF(J)=0.0D0

16 CONTINUE

C THE START OF THE MONTE CARLO SIMULATION LOOP

 DO 1004 MC=1,NMC

C WRITE(6,*) MC

C GENERATE THE TRAINING DATA SETS
 CALL DRNMVN(NN,IP,RSIG1,IP,XM1,NN)

 DO 18 I=1,NN

 DO 17 J=1,IP

 XM(I,J)=XM1(I,J)

17 CONTINUE

18 CONTINUE

 CALL DRNMVN(MM,IP,RSIG2,IP,XM2,MM)

 DO 22 I=1,MM

 DO 21 J=1,IP

 XM(NN+I,J)=XM2(I,J)

21 CONTINUE

22 CONTINUE

C STANDARDISE THE TRAINING DATA

 DO 28 J=1,IP

 S=0.0D0

 S2=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

323

 DO 26 I=1,NNPMM

 S=S+XM(I,J)

 S2=S2+XM(I,J)**2.0D0

26 CONTINUE

 GEM(J)=S/NNPMM

 VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM

 DO 27 I=1,NNPMM

 XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J))

27 CONTINUE

28 CONTINUE

C GENERATE TEST DATA SETS
 CALL DRNMVN(NT,IP,RSIG1,IP,XT1,NT)

 CALL DRNMVN(MT,IP,RSIG2,IP,XT2,MT)

 DO 36 I=1,NT

 DO 35 J=1,IP

 XT(I,J)=XT1(I,J)

35 CONTINUE

36 CONTINUE

 DO 40 I=1,MT

 DO 39 J=1,IP

 XT(NT+I,J)=XT2(I,J)

39 CONTINUE

40 CONTINUE

C STANDARDISE THE TEST DATA

 DO 45 J=1,IP

 DO 44 I=1,NMT

 XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J)))

44 CONTINUE

45 CONTINUE

C CALCULATE (AND SORT) ONE-VARIABLE-AT-A-TIME CORRELATIONS

 TYD1=CPSEC()

 NVER=IPTEL

 DO 240 J=1,IP

 S=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

324

 DO 239 I=1,NNPMM

 S=S+XM(I,J)*YV(I)

239 CONTINUE

 AKOR(J)=S/(DSQRT(1.0D0*NNPMM*(SOMY2-SOMY*SOMY/NNPMM)))

 AKOR(J)=DABS(AKOR(J))

240 CONTINUE

 DO 241 J=1,IP

 IPERM(J)=J

241 CONTINUE

 CALL DSVRGP(IP,AKOR,AKOR,IPERM)

 DO 242 J=1,NVER

 KIESKOR(J)=IPERM(IP-NVER+J)

242 CONTINUE

 TYD2=CPSEC()

 TYD(1)=TYD(1)+TYD2-TYD1

C CALCULATE (AND SORT) ONE-VARIABLE-AT-A-TIME ALIGNMENTS

 DO 243 J=1,IP

 ALIGN(J)=ALIGNMENT(J,XM)

243 CONTINUE

 DO 244 J=1,IP

 IPERM(J)=J

244 CONTINUE

 CALL DSVRGP(IP,ALIGN,ALIGN,IPERM)

 DO 245 J=1,NVER

 KIESAL(J)=IPERM(IP-NVER+J)

245 CONTINUE

 TYD3=CPSEC()

 TYD(2)=TYD(2)+TYD3-TYD2

C DETERMINE THE VARIABLES PROVIDING BEST POSSIBLE SEPARATION BETWEEN

C MEAN VECTORS IN INPUT SPACE

 DO 64 J=1,IP

 S=0.0D0

 DO 62 I=1,NN

 S=S+XM(I,J)

62 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

325

 XGEM1(J)=S/NN

 S=0.0D0

 DO 63 I=NN+1,NNPMM

 S=S+XM(I,J)

63 CONTINUE

 XGEM2(J)=S/MM

 XVERSKIL(J)=DABS(XGEM1(J)-XGEM2(J))

64 CONTINUE

 DO 65 J=1,IP

 IPERM(J)=J

65 CONTINUE

 CALL DSVRGP(IP,XVERSKIL,XVERSKIL,IPERM)

 DO 68 J=1,IP

 KIESX(J)=IPERM(IP-J+1)

68 CONTINUE

 TYD4=CPSEC()

 TYD(3)=TYD(3)+TYD4-TYD3

C OBTAIN PRE-IMAGES OF TWO MEAN VECTORS IN FEATURE SPACE

 DO 50 I=1,NN

 ALPHA(I)=1.0D0/NN

50 CONTINUE

 DO 51 I=NN+1,NNPMM

 ALPHA(I)=0.0D0/NN

51 CONTINUE

 CALL PREIMAGE(XM,ALPHA,XPRE1)

 DO 52 I=1,NN

 ALPHA(I)=0.0D0

52 CONTINUE

 DO 53 I=NN+1,NNPMM

 ALPHA(I)=1.0D0/MM

53 CONTINUE

 CALL PREIMAGE(XM,ALPHA,XPRE2)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

326

C DETERMINE VARIABLES PROVIDING BEST POSSIBLE SEPARATION BETWEEN MEAN

C VECTORS IN FEATURE SPACE

 DO 55 J=1,IP

 IPERM(J)=J

 XPREVERSKIL(J)=DABS(XPRE1(J)-XPRE2(J))

55 CONTINUE

 CALL DSVRGP(IP,XPREVERSKIL,XPREVERSKIL,IPERM)

 DO 58 J=1,IP

 KIESF(J)=IPERM(IP-J+1)

58 CONTINUE

 TYD5=CPSEC()

 TYD(4)=TYD(4)+TYD5-TYD4

C APPLY AN SVM USING THE FULL SET OF AVAILABLE INPUT VARIABLES

 TYDSVM1=CPSEC()

 CALL GRAMMAT(GAMPAR,XM,IP,INDVEKVOL,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,IP,INDVEKVOL,

 &ALPHAW,BOPT)

 TYDSVM2=CPSEC()

 TYDSVM=TYDSVM2-TYDSVM1

C DETERMINE THE PRE-IMAGE OF THE SVM WEIGHT VECTOR

 DO 81 I=1,NNPMM

 ALPHA(I)=ALPHAW(I)

81 CONTINUE

 CALL PREIMAGE(XM,ALPHA,WPRE)

C DETERMINE THE INPUT VARIABLES CORRESPONDING TO LARGEST ABSOLUTE SVM

C WEIGHT COEFFICIENTS

 DO 85 J=1,IP

 IPERM(J)=J

 WPRE(J)=DABS(WPRE(J))

85 CONTINUE

 CALL DSVRGP(IP,WPRE,WPRE,IPERM)

 DO 88 J=1,IP

 KIESW(J)=IPERM(IP-J+1)

88 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

327

 TYD6=CPSEC()

 TYD(5)=TYD(5)+TYD6-TYDSVM2+TYDSVM

C DETERMINE PRE-IMAGES OF TWO LINEAR COMBINATIONS FOR THE TWO GROUPS

C WHERE COEFFICIENTS IN THE LINEAR COMBINATIONS ARE OBTAINED FROM THE

C RESPECTIVE SVM WEIGHT VECTORS

 DO 71 I=1,NN

 ALPHA(I)=ALPHAW(I)

71 CONTINUE

 DO 72 I=NN+1,NNPMM

 ALPHA(I)=0.0D0

72 CONTINUE

 CALL PREIMAGE(XM,ALPHA,WPRE1)

 DO 73 I=1,NN

 ALPHA(I)=0.0D0

73 CONTINUE

 DO 74 I=NN+1,NNPMM

 ALPHA(I)=ALPHAW(I)

74 CONTINUE

 CALL PREIMAGE(XM,ALPHA,WPRE2)

C DETERMINE THE INPUT VARIABLES MAXIMALLY SEPARATING THE ABOVE TWO PRE-

C IMAGES

 DO 75 J=1,IP

 IPERM(J)=J

 WPREVERSKIL(J)=DABS(WPRE1(J)-WPRE2(J))

75 CONTINUE

 CALL DSVRGP(IP,WPREVERSKIL,WPREVERSKIL,IPERM)

 DO 78 J=1,IP

 KIESWD(J)=IPERM(IP-J+1)

78 CONTINUE

 TYD7=CPSEC()

 TYD(6)=TYD(6)+TYD7-TYD6+TYDSVM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

328

C CALCULATE THE SVM DISCRIMINANT FUNCTION VALUE FOR ALL THE TRAINING

C PATTERNS

 TYDFW1=CPSEC()

 DO 98 I=1,NNPMM

 ALPHAW(I)=ALPHAW(I)*YV(I)

98 CONTINUE

 DO 105 J=1,NNPMM

 S=0.0D0

 DO 104 I=1,NNPMM

 S=S+ALPHAW(I)*GRMAT(I,J)

104 CONTINUE

 FW(J)=S

105 CONTINUE

 TYDFW2=CPSEC()

 TYDFW=TYDFW2-TYDFW1

C PERFORM LEAST SQUARES REGRESSION TO APPROXIMATE SVM DISCRIMINANT

C FUNCTION VALUES

 INTCEP=0

 CALL DRLSE(NNPMM,FW,IP,XM,NNPMM,INTCEP,BV,SST,SSE)

 DO 185 J=1,IP

 IPERM(J)=J

 BV(J)=DABS(BV(J))

185 CONTINUE

 CALL DSVRGP(IP,BV,BV,IPERM)

 DO 188 J=1,IP

 KIESL(J)=IPERM(IP-J+1)

188 CONTINUE

 TYD8=CPSEC()

 TYD(7)=TYD(7)+TYD8-TYDFW2+TYDSVM+TYDFW

 DO 195 I=1,NNPMM

 DO 194 J=1,IP

 XMRF(J,I)=XM(I,J)

194 CONTINUE

195 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

329

C USE A REGRESSION RANDOM FOREST TO APPROXIMATE SVM DISCRIMINANT

C FUNCTION VALUES AND RETURN VARIABLE RANKINGS ACCORDING TO THE APPLIED

C RANDOM FOREST

 CALL RANFOR(XMRF,FW,Z)

 DO J=1,IP

 IPERM(J)=J

 Z(J)=DABS(Z(J))

 END DO

 CALL DSVRGP(IP,Z,Z,IPERM)

 DO 198 J=1,IP

 KIESRF(J)=IPERM(IP-J+1)

198 CONTINUE

 TYD9=CPSEC()

 TYD(8)=TYD(8)+TYD9-TYD8+TYDSVM+TYDFW

C USE A REGRESSION TREE TO APPROXIMATE SVM DISCRIMINANT

C FUNCTION VALUES AND RETURN VARIABLE RANKINGS ACCORDING TO THE APPLIED

C REGRESSION TREE

C CALL REGTREE(XMRF,FW,KIESTREE)

C TYD10=CPSEC()

C TYD(9)=TYD(9)+TYD10-TYD9+TYDSVM+TYDFW

C UPDATE SELECTION FREQUENCIES

 DO 206 J=1,IPTEL

 VEKKOR(KIESKOR(J))=VEKKOR(KIESKOR(J))+1.0D0

 VEKAL(KIESAL(J))=VEKAL(KIESAL(J))+1.0D0

 VEKX(KIESX(J))=VEKX(KIESX(J))+1.0D0

 VEKF(KIESF(J))=VEKF(KIESF(J))+1.0D0

 VEKW(KIESW(J))=VEKW(KIESW(J))+1.0D0

 VEKWD(KIESWD(J))=VEKWD(KIESWD(J))+1.0D0

 VEKL(KIESL(J))=VEKL(KIESL(J))+1.0D0

 VEKRF(KIESRF(J))=VEKRF(KIESRF(J))+1.0D0

206 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

330

C CALCULATE THE SVM TEST ERROR BASED ON THE FULL SET OF AVAILABLE INPUT

C VARIABLES

 NVER=IP

 CALL GRAMMAT(GAMPAR,XM,NVER,INDVEKVOL,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,INDVEKVOL,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,INDVEKVOL,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,1)=FOUT

C CALCULATE THE SVM TEST ERROR BASED ONLY ON THE SET OF TRULY SEPARATING

C INPUT VARIABLES

 NVER=IPTEL

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESREG,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESREG,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESREG,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,2)=FOUT

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA THE USE OF CORRELATIONS IN INPUT SPACE
 CALL GRAMMAT(GAMPAR,XM,NVER,KIESKOR,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESKOR,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESKOR,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,3)=FOUT

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA THE USE OF ALIGNMENTS IN FEATURE SPACE
 CALL GRAMMAT(GAMPAR,XM,NVER,KIESAL,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESAL,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESAL,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,4)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

331

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA DIFFERENCES IN GROUP MEANS IN INPUT SPACE

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESX,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESX,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESX,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,5)=FOUT

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA DIFFERENCES IN PRE-IMAGES BASED ON MEANS IN INPUT SPACE

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESF,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESF,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESF,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,6)=FOUT

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA DIFFERENCES IN PRE-IMAGES BASED LINEAR COMBINATIONS USING

C THE SVM WEIGHT VECTOR

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESW,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESW,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESW,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,7)=FOUT

C CALCULATE THE TEST ERROR USING DIFFERENCES IN PRE-IMAGES (OF THE WEIGHT

C VECTOR IN FEATURE SPACE)

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESWD,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESWD,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESWD,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,8)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

332

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA LEAST SQUARES APPROXIMATION OF THE SVM DISCRIMINANT

C FUNCTION VALUES

 CALL GRAMMAT(GAMPAR,XM,NVER,KIESL,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESL,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESL,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,9)=FOUT

C CALCULATE THE SVM TEST ERROR BASED ON THE SUBSET OF INPUT VARIABLES

C SELECTED VIA RANDOM FOREST APPROXIMATION OF THE SVM DISCRIMINANT

C FUNCTION VALUES
 CALL GRAMMAT(GAMPAR,XM,NVER,KIESRF,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAMPAR,NVER,KIESRF,AL,BOPT)

 CALL GRAMNUUT(GAMPAR,XM,XT,NVER,KIESRF,GRNUUT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMAT(MC,10)=FOUT

1004 CONTINUE

C THE MONTE CARLO SIMULATION LOOP ENDS HERE

C AVERAGE THE OBTAINED TEST ERRORS AND SELECTION FREQUENCIES AND

C CALCULATE STANDARD ERRORS

 DO 345 J=1,11

 S1=0.0D0

 S2=0.0D0

 DO 344 I=1,NMC

 S1=S1+FOUTMAT(I,J)

 S2=S2+FOUTMAT(I,J)**2.0D0

344 CONTINUE

 FOUTGEM(J)=S1/NMC

 FOUTSTD(J)=DSQRT((S2-(S1*S1)/NMC)/(NMC*(NMC-1.0D0)))

345 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

333

C CALCULATE THE AVERAGE TIME TO COMPLETE EACH SELECTION PROCEDURE

 DO 348 J=1,9

 TYD(J)=1.0D3*TYD(J)/NMC

348 CONTINUE

C CALCULATE SELECTION PROPORTIONS

 DO 349 J=1,IP

 VEKKOR(J)=VEKKOR(J)/NMC

 VEKAL(J)=VEKAL(J)/NMC

 VEKX(J)=VEKX(J)/NMC

 VEKF(J)=VEKF(J)/NMC

 VEKW(J)=VEKW(J)/NMC

 VEKWD(J)=VEKWD(J)/NMC

 VEKL(J)=VEKL(J)/NMC

 VEKRF(J)=VEKRF(J)/NMC

349 CONTINUE

C WRITE AVERAGE TEST ERRORS, STANDARD ERRORS, AND AVERAGE TIMES TO

C COMPLETE EACH SELECTION PROCEDURE TO A FILE

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'C: ',CPARS,'G: ',GAMPAR

 WRITE(1,599) 'FUL','ORA','KOR','AL','XME','FME','WGH','WGHD',

 & 'LS','RFR','RTRE'

 WRITE(1,600) (FOUTGEM(J),J=1,11)

 WRITE(1,600)

 WRITE(1,600) (FOUTSTD(J),J=1,11)

 WRITE(1,600)

 WRITE(1,605) (TYD(J),J=1,9)

 WRITE(1,600)

 CLOSE(1)

C WRITE SELECTION PROPORTIONS TO A FILE

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'C: ',CPARS,'G: ',GAMPAR

 WRITE(1,*) 'CORRELATIONS'

 WRITE(1,602) (VEKKOR(J),J=1,IP)

 WRITE(1,*) 'ALIGNMENTS'

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

334

 WRITE(1,602) (VEKAL(J),J=1,IP)

 WRITE(1,*) 'DIF IN MEANS: INPUT SPACE'

 WRITE(1,602) (VEKX(J),J=1,IP)

 WRITE(1,*) 'DIF IN MEANS: FEATURE SPACE'

 WRITE(1,602) (VEKF(J),J=1,IP)

 WRITE(1,*) 'WEIGHT VECTOR'

 WRITE(1,602) (VEKW(J),J=1,IP)

 WRITE(1,*) 'WEIGHT VECTOR DIFFERENCES'

 WRITE(1,602) (VEKWD(J),J=1,IP)

 WRITE(1,*) 'LEAST SQUARES'

 WRITE(1,602) (VEKL(J),J=1,IP)

 WRITE(1,*) 'REGRESSION RANDOM FOREST'

 WRITE(1,602) (VEKRF(J),J=1,IP)

 WRITE(1,*) 'REGRESSION TREE'

 WRITE(1,602) (VEKTREE(J),J=1,IP)

 CLOSE(1)

1010CONTINUE

C END OF THE COST PARAMETER LOOP

C FILE FORMATS
599 FORMAT(1X,A3,2(4X,A3),5X,A2,3(4X,A3),4X,A4,3(4X,A3))

600 FORMAT(12(F5.3,2X))

601 FORMAT(20I3)

602 FORMAT(12(F5.2,1X))

605 FORMAT(14X,9(F5.1,2X))

7000STOP

END

C END OF THE MAIN SIMULATION PROGRAM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

335

C.3 ALGORITHM-INDEPENDENT AND ALGORITHM-DEPENDENT

 SELECTION IN FEATURE SPACE

The following Fortran code is an example of the programs used in the numerical

evaluations reported in Section 6.2 and 7.2 of Chapter 4.

C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS)

C PERTAINING TO THE FULL SVM AND KFD (BINARY) CLASSIFIERS, AND POST-

C SELECTION AVERAGE TEST ERRORS (AND STANDARD ERRORS) FOR SVM AND KFD

 CLASSIFIERS WHEN ALGORITHM- INDEPENDENT SELECTION CRITERIA

C C.3.1 CORRELATIONS

C C.3.2 ALIGNMENTS

C C.3.3 BETWEEN GROUP DISSIMILARITIES IN INPUT SPACE

C C.3.4 DIFFERENCES BETWEEN GROUP MEANS IN INPUT SPACE

C C.3.5 VARIATION RATIOS IN INPUT SPACE

C AND ALGORITHM-DEPENDENT SELECTION CRITERIA, VIZ.

C C.3.6 THE NORM OF THE SVM WEIGHT VECTOR

C C.3.7 THE RAYLEIGH QUOTIENT

C ARE USED.

C THE DATA ARE GENERATED FROM A MULTIVARIATE LOGNORMAL DISTRIBUTION AND

 THE TWO GROUPS DIFFER WITH RESPECT TO LOCATION

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED

C THE FOLLOWING (OWN) FUNCTIONS ARE REQUIRED:

C 1. ALIGNMENT

C 2. ALIGNMENTTRANS

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED:

C 1. BERCRIT12

C 2. BERCRITCC

C 3. BERCRITR

C 4. BERCRITW

C 5. BERFOUTKFDA

C 6. BERFOUTSVM

C 7. DOENKFDA

C 8. DOENSVM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

336

C 9. GRAMMAT

C 10. GRAMNUUT

C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED:

C 1. CPSEC

C 2. DEXP

C 3. DSQRT

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED:

C 1. DCHFAC

C 2. DSVRGP

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=4,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NMC=500,CORR=0.0D0,SIGNOISE=20.0D0)

 PARAMETER (GAMPAR=1.0D0/IP)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

C POPULATION PARAMETERS

 DIMENSION AMU1(IP),AMU2(IP)

 DIMENSION SIGMAM(IPTEL,IPTEL),RSIG(IPTEL,IPTEL)

 DIMENSION SIGMAMNOISE(NNOISE,NNOISE),RSIGNOISE(NNOISE,NNOISE)

C X MATRICES AND Y VECTORS

 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM)

 DIMENSION XM11(NN,IPTEL),XM21(MM,IPTEL)

 DIMENSION XM12(NN,NNOISE),XM22(MM,NNOISE)

 DIMENSION XGEM1(IP),XGEM2(IP),GEM(IP),VAR(IP)

 DIMENSION XT(NMT,IP),XT11(NT,IPTEL),XT21(MT,IPTEL)

 DIMENSION XT12(NT,NNOISE),XT22(MT,NNOISE)

 DIMENSION YV(NNPMM),YVT(NMT)

C SVM AND KFDA RELATED QUANTITIES

 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM),GRMATV(IP,NNPMM,NNPMM)

 DIMENSION ALPHAV(IP,NNPMM),ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM)

 DIMENSION EENP(NNPMM),EENM(NNPMM)

 DIMENSION B(NNPMM),H(NNPMM,NNPMM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

337

C VARIOUS QUANTITIES

 DIMENSION TYD(9)

 DIMENSION FOUTMATK(NMC,10),FOUTVERK(NMC,10)

 DIMENSION FOUTMATS(NMC,10),FOUTVERS(NMC,10)

 DIMENSION FOUTGEMK(10),FOUTSTDK(10)

 DIMENSION FOUTGEMS(10),FOUTSTDS(10)

 DIMENSION FREKWKIESAL(IP),FREKWKIESALT(IP),FREKWKIESCC(IP)

 DIMENSION FREKWKIESET(IP),FREKWKIESG(IP),FREKWKIESSV(IP)

 DIMENSION FREKWKIESN(IP),FREKWKIESW(IP),FREKWKIESR(IP)

 DIMENSION INDVEKVOL(IP),INDVEKREG(IPTEL),INDVEKEEN(IP)

 DIMENSION IPERMU(IP),IPERM(IP)

 DIMENSION IPERMCC(IP),IPERMET(IP),IPERMSV(IP),IPERMAL(IP),IPERMALT(IP)

 DIMENSION IPERMG(IP),IPERMWW(IP),IPERMRR(IP),IPERMN(IP)

 DIMENSION INDVEKCC(IP),INDVEKET(IP),INDVEKSV(IP),INDVEKAL(IP)

 DIMENSION INDVEKG(IP),INDVEKW(IP),INDVEKR(IP),INDVEKN(IP),INDVEKALT(IP)

 DIMENSION CRITVEKCC(IP),CRITVEKET(IP),CRITVEKSV(IP),CRITVEKAL(IP)

 DIMENSION CRITVEKG(IP),CRITVEKW(IP),CRITVEKR(IP),CRITVEKN(IP),CRITVEKALT(IP)

 CHARACTER*70 FILEOUT1,FILEOUT2

 FILEOUT1='foutLL.d'

 FILEOUT2='kiesLL.d'

C WRITE FILE HEADERS

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN LOCATION'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'GAMPAR=',GAMPAR

 WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC

 WRITE(1,*) 'NT=',NT,'MT=',MT

 WRITE(1,*) 'SIGNOISE=',SIGNOISE

 WRITE(1,600)

 CLOSE(1)

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN LOCATION'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'GAMPAR=',GAMPAR

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

338

 WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC

 WRITE(1,*) 'NT=',NT,'MT=',MT

 WRITE(1,*) 'SIGNOISE=',SIGNOISE

 WRITE(1,600)

 CLOSE(1)

C ASSIGN VALUES TO THE POPULATION PARAMETERS

 E=DEXP(1.0D0)

 BLAM=DSQRT(1.0D0/(E*(E-1.0D0)))

 EP=-1.0D0*DSQRT(1.0D0/(E-1.0D0))

 DO 3 I=1,IPTEL

 INDVEKREG(I)=I

 AMU1(I)=0.0D0

 AMU2(I)=1.0D0

 DO 2 J=1,IPTEL

 SIGMAM(I,J)=DLOG(1.0D0+CORR*(E-1.0D0))

2 CONTINUE

 SIGMAM(I,I)=1.0D0

3 CONTINUE

 DO 5 I=1,NNOISE

 AMU1(IPTEL+I)=0.0D0

 AMU2(IPTEL+I)=0.0D0

 DO 4 J=1,NNOISE

 SIGMAMNOISE(I,J)=0.0D0

4 CONTINUE

 SIGMAMNOISE(I,I)=1.0D0

5 CONTINUE

 TOL=1.0D2*DMACH(4)

 CALL DCHFAC(IPTEL,SIGMAM,IPTEL,TOL,IRANK,RSIG,IPTEL)

 CALL DCHFAC(NNOISE,SIGMAMNOISE,NNOISE,TOL,IRANK,RSIGNOISE,NNOISE)

C INITIALISE VARIOUS QUANTITIES

 DO 9 I=1,NN

 YV(I)=-1.0D0

9 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

339

 DO 10 I=NN+1,NNPMM

 YV(I)=1.0D0

10 CONTINUE

 SOMY=1.0D0*(MM-NN)

 SOMY2=NNPMM

 DO 11 I=1,NT

 YVT(I)=-1.0D0

11 CONTINUE

 DO 12 I=NT+1,NMT

 YVT(I)=1.0D0

12 CONTINUE

C SET UP THE KFDA VECTORS

 DO 15 I=1,NNPMM

 EENP(I)=0.0D0

 EENM(I)=0.0D0

 IF (YV(I).LT.-0.1D0) EENM(I)=1.0D0

 IF (YV(I).GT.0.1D0) EENP(I)=1.0D0

15 CONTINUE

C THE NEXT LOOP SPECIFIES DIFFERENT VALUES FOR THE COST PARAMETER

 DO 1010 ICP=1,6

 IF (ICP.EQ.1) CPAR=0.00001D0

 IF (ICP.EQ.2) CPAR=0.001D0

 IF (ICP.EQ.3) CPAR=0.1D0

 IF (ICP.EQ.4) CPAR=10.0D0

 IF (ICP.EQ.5) CPAR=1000.0D0

 IF (ICP.EQ.6) CPAR=1000.0D0

C INITIALISE THE TEST ERROR AND STANDARD ERROR VECTORS

 DO 16 J=1,10

 FOUTGEMK(J)=0.0D0

 FOUTSTDK(J)=0.0D0

 FOUTGEMS(J)=0.0D0

 FOUTSTDS(J)=0.0D0

16 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

340

C INITIALISE THE VECTORS MEASURING THE IMPLEMENTATION TIME PERTAINING TO

C EACH SELECTION CRITERION

 DO J=1,9

 TYD(J)=0.0D0

 ENDDO

C INITIALISE SELECTION FREQUENCY VECTORS

 DO J=1,IP

 FREKWKIESAL(J)=0.0D0

 FREKWKIESCC(J)=0.0D0

 FREKWKIESET(J)=0.0D0

 FREKWKIESG(J)=0.0D0

 FREKWKIESN(J)=0.0D0

 FREKWKIESW(J)=0.0D0

 FREKWKIESR(J)=0.0D0

 FREKWKIESALT(J)=0.0D0

 ENDDO

C THE MONTE CARLO SIMULATION LOOP STARTS HERE

 DO 1004 MC=1,NMC

C WRITE(6,*) MC

C GENERATE THE TRAINING DATA

 CALL DRNMVN(NN,IPTEL,RSIG,IPTEL,XM11,NN)

 DO 18 I=1,NN

 DO 17 J=1,IPTEL

 XM(I,J)=(BLAM*DEXP(XM11(I,J)))+EP+AMU1(J)

17 CONTINUE

18 CONTINUE

 CALL DRNMVN(NN,NNOISE,RSIGNOISE,NNOISE,XM12,NN)

 DO 20 I=1,NN

 DO 19 J=1,NNOISE

 XM(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM12(I,J)))+

 &EP+AMU1(J+IPTEL)/DSQRT(SIGNOISE))

19 CONTINUE

20 CONTINUE

 CALL DRNMVN(MM,IPTEL,RSIG,IPTEL,XM21,MM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

341

 DO 22 I=1,MM

 DO 21 J=1,IPTEL

 XM(NN+I,J)=(BLAM*DEXP(XM21(I,J)))+EP+AMU2(J)

21 CONTINUE

22 CONTINUE

 CALL DRNMVN(MM,NNOISE,RSIGNOISE,NNOISE,XM22,MM)

 DO 24 I=1,MM

 DO 23 J=1,NNOISE

 XM(NN+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM22(I,J)))+

 &EP+AMU2(J+IPTEL)/DSQRT(SIGNOISE))

23 CONTINUE

24 CONTINUE

C STANDARDISE THE TRAINING DATA

 DO 28 J=1,IP

 S=0.0D0

 S2=0.0D0

 DO 26 I=1,NNPMM

 S=S+XM(I,J)

 S2=S2+XM(I,J)**2.0D0

26 CONTINUE

 GEM(J)=S/NNPMM

 VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM

 DO 27 I=1,NNPMM

 XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J))

27 CONTINUE

28 CONTINUE

C GENERATE THE TEST DATA

 CALL DRNMVN(NT,IPTEL,RSIG,IPTEL,XT11,NT)

 CALL DRNMVN(NT,NNOISE,RSIGNOISE,NNOISE,XT12,NT)

 CALL DRNMVN(MT,IPTEL,RSIG,IPTEL,XT21,MT)

 CALL DRNMVN(MT,NNOISE,RSIGNOISE,NNOISE,XT22,MT)

 DO 36 I=1,NT

 DO 35 J=1,IPTEL

 XT(I,J)=(BLAM*DEXP(XT11(I,J)))+EP+AMU1(J)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

342

35 CONTINUE

36 CONTINUE

 DO 38 I=1,NT

 DO 37 J=1,NNOISE

 XT(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT12(I,J)))

 &+EP+AMU1(J+IPTEL)/ DSQRT(SIGNOISE))

37 CONTINUE

38 CONTINUE

 DO 40 I=1,MT

 DO 39 J=1,IPTEL

 XT(NT+I,J)=(BLAM*DEXP(XT21(I,J)))+EP+AMU2(J)

39 CONTINUE

40 CONTINUE

 DO 42 I=1,MT

 DO 41 J=1,NNOISE

 XT(NT+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT22(I,J)))+EP

 &+AMU2(J+IPTEL)/DSQRT(SIGNOISE))

41 CONTINUE

42 CONTINUE

C STANDARDISE THE TEST DATA

 DO 45 J=1,IP

 DO 44 I=1,NMT

 XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J)))

44 CONTINUE

45 CONTINUE

C INITIALISE THE VARIABLE INDEX VECTORS
 DO 50 J=1,IP

 INDVEKVOL(J)=J

50 CONTINUE

 DO 51 J=1,IP

 IPERMCC(J)=J

 IPERMET(J)=J

 IPERMG(J)=J

 IPERMWW(J)=J

 IPERMRR(J)=J

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

343

 IPERMN(J)=J

 IPERMSV(J)=J

 IPERMAL(J)=J

 IPERMALT(J)=J

51 CONTINUE

C CALCULATE THE TEST ERRORS PERTAINING TO THE FULL (SVM AND KFD) MODELS

 CALL GRAMMAT(GAMPAR,XM,IP,INDVEKVOL,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IP,INDVEKVOL,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,1)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IP,INDVEKVOL,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,1)=FOUT

C CALCULATE THE TEST ERRORS PERTAINING TO THE CORRECT MODEL

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKREG,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKREG,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,2)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKREG,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,2)=FOUT

 DO K=1,IP

 INDVEKEEN(1)=K

 TYD1=CPSEC()

 CALL GRAMMAT(GAMPAR,XM,1,INDVEKEEN,GRMAT)

 TYD2=CPSEC()

 TYD0=TYD2-TYD1

 TYD1=CPSEC()

 CALL BERCRITW(GRMAT,CRIT1,CRIT2)

 TYD2=CPSEC()

 TYD(3)=TYD(3)+TYD0+TYD2-TYD1

 TYD(4)=TYD(4)+TYD0+TYD2-TYD1

 CRITVEKW(K)=CRIT1

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

344

 CRITVEKG(K)=CRIT2

 TYD1=CPSEC()

 CALL BERCRIT12(GRMAT,CRIT)

 TYD2=CPSEC()

 TYD(5)=TYD(5)+TYD0+TYD2-TYD1

 CRITVEKET(K)=CRIT

 TYD1=CPSEC()

 CALL BERCRITCC(GRMAT,CRIT)

 TYD2=CPSEC()

 TYD(6)=TYD(6)+TYD0+TYD2-TYD1

 CRITVEKCC(K)=CRIT

 TYD1=CPSEC()

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 TYD2=CPSEC()

 CALL BERCRITR(GRMAT,EENP,EENM,ALPHA,CPAR,CRIT)

 CRITVEKR(K)=CRIT

 TYD(2)=TYD(2)+TYD0+TYD2-TYD1

C CALCULATE THE SQUARED NORM OF THE SVM WEIGHT VECTOR

 TYD1=CPSEC()

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,1,INDVEKEEN,AL,BOPT)

 S=0.0D0

 DO I=1,NNPMM

 DO J=1,NNPMM

 S=S+AL(I)*AL(J)*YV(I)*YV(J)*GRMAT(I,J)

 END DO

 END DO

 TYD2=CPSEC()

 TYD(1)=TYD(1)+TYD0+TYD2-TYD1

 CRITVEKN(K)=S

C CALCULATE THE NUMBER OF SUPPORT VECTORS

 TYD3=CPSEC()

 TEL=0.0D0

 DO I=1,NNPMM

 IF (AL(I).GT.0.00000001D0) TEL=TEL+1.0D0

 ENDDO

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

345

 TYD4=CPSEC()

 TYD(7)=TYD(7)+TYD0+TYD2-TYD1+TYD4-TYD3

 CRITVEKSV(K)=TEL

C CALCULATE THE ALIGNMENT CRITERION

 TYD1=CPSEC()

 CRITVEKAL(K)=ALIGNMENT(INDVEKEEN,XM)

 TYD2=CPSEC()

 TYD(8)=TYD(8)+TYD2-TYD1

 TYD1=CPSEC()

 CRITVEKALT(K)=ALIGNMENTTRANS(INDVEKEEN,XM)

 TYD2=CPSEC()

 TYD(9)=TYD(9)+TYD2-TYD1

 ENDDO

C ORDER THE SELECTION CRITERIA VALUES PERTAINING TO EACH SINGLE VARIABLE

C MODEL

 CALL DSVRGP(IP,CRITVEKW,CRITVEKW,IPERMWW)

 CALL DSVRGP(IP,CRITVEKG,CRITVEKG,IPERMG)

 CALL DSVRGP(IP,CRITVEKET,CRITVEKET,IPERMET)

 CALL DSVRGP(IP,CRITVEKCC,CRITVEKCC,IPERMCC)

 CALL DSVRGP(IP,CRITVEKR,CRITVEKR,IPERMRR)

 CALL DSVRGP(IP,CRITVEKN,CRITVEKN,IPERMN)

 CALL DSVRGP(IP,CRITVEKSV,CRITVEKSV,IPERMSV)

 CALL DSVRGP(IP,CRITVEKAL,CRITVEKAL,IPERMAL)

 CALL DSVRGP(IP,CRITVEKALT,CRITVEKALT,IPERMALT)

 DO 244 J=1,IP

 IPERM(J)=J

244 CONTINUE

C UPDATE THE VARIABLE INDEX VECTORS

 DO 53 J=1,IP

 INDVEKW(J)=IPERMWW(IP-J+1)

 INDVEKG(J)=IPERMG(IP-J+1)

 INDVEKET(J)=IPERMET(J)

 INDVEKCC(J)=IPERMCC(J)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

346

 INDVEKR(J)=IPERMRR(IP-J+1)

 INDVEKN(J)=IPERMN(IP-J+1)

 INDVEKSV(J)=IPERMSV(J)

 INDVEKAL(J)=IPERMAL(IP-J+1)

 INDVEKALT(J)=IPERMALT(IP-J+1)

53 CONTINUE

C UPDATE THE SELECTION PROPORTIONS

 DO 54 J=1,IPTEL

 FREKWKIESET(INDVEKET(J))=FREKWKIESET(INDVEKET(J))+1.0D0

 FREKWKIESCC(INDVEKCC(J))=FREKWKIESCC(INDVEKCC(J))+1.0D0

 FREKWKIESR(INDVEKR(J))=FREKWKIESR(INDVEKR(J))+1.0D0

 FREKWKIESG(INDVEKG(J))=FREKWKIESG(INDVEKG(J))+1.0D0

 FREKWKIESW(INDVEKW(J))=FREKWKIESW(INDVEKW(J))+1.0D0

 FREKWKIESSV(INDVEKSV(J))=FREKWKIESSV(INDVEKSV(J))+1.0D0

 FREKWKIESN(INDVEKN(J))=FREKWKIESN(INDVEKN(J))+1.0D0

 FREKWKIESAL(INDVEKAL(J))=FREKWKIESAL(INDVEKAL(J))+1.0D0

 FREKWKIESALT(INDVEKALT(J))=FREKWKIESALT(INDVEKALT(J))+1.0D0

54 CONTINUE

C CALCULATE SELECTION TEST ERRORS PERTAINING TO SELECTION USING

C THE RAYLEIGH QUOTIENT

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKR,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKR,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,3)=FOUT

C THE SQUARED NORM OF THE SVM WEIGHT VECTOR

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKN,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,3)=FOUT

C THE VARIATION RATIO

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKW,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKW,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

347

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,4)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKW,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,4)=FOUT

C DIFFERENCES IN GROUP MEANS

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKG,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKG,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,5)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKG,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,5)=FOUT

C THE SUM OF DISSIMILARITIES BETWEEN THE TWO GROUPS

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKET,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKET,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,6)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKET,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,6)=FOUT

C THE CUT COST

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKCC,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKCC,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,7)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKCC,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,7)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

348

C THE NUMBER OF SUPPORT VECTORS

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKSV,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKSV,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,8)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKSV,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,8)=FOUT

C THE ALIGNMENT CRITERION

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKAL,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKAL,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,9)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKAL,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,9)=FOUT

C THE TRANSFORMED ALIGNMENT CRITERION

 CALL GRAMMAT(GAMPAR,XM,IPTEL,INDVEKALT,GRMAT)

 CALL GRAMNUUT(GAMPAR,XM,XT,IPTEL,INDVEKALT,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,10)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPAR,GAMPAR,IPTEL,INDVEKALT,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,10)=FOUT

1004 CONTINUE

C THE MONTE CARLO SIMULATION LOOP ENDS HERE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

349

C CALCULATE AVERAGES OF THE OBTAINED TEST ERRORS AND OBTAIN STANDARD

C ERRORS

 DO 345 J=1,10

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 S4=0.0D0

 DO 344 I=1,NMC

 S1=S1+FOUTMATK(I,J)

 S2=S2+FOUTMATK(I,J)**2.0D0

 S3=S3+FOUTMATS(I,J)

 S4=S4+FOUTMATS(I,J)**2.0D0

344 CONTINUE

 FOUTGEMK(J)=S1/NMC

 FOUTSTDK(J)=DSQRT((S2-(S1*S1)/NMC)/(NMC*(NMC-1.0D0)))

 FOUTGEMS(J)=S3/NMC

 FOUTSTDS(J)=DSQRT((S4-(S3*S3)/NMC)/(NMC*(NMC-1.0D0)))

345 CONTINUE

C CALCULATE SELECTION PERCENTAGES
 DO 349 J=1,IP

 FREKWKIESET(J)=FREKWKIESET(J)/NMC

 FREKWKIESCC(J)=FREKWKIESCC(J)/NMC

 FREKWKIESR(J)=FREKWKIESR(J)/NMC

 FREKWKIESSV(J)=FREKWKIESSV(J)/NMC

 FREKWKIESN(J)=FREKWKIESN(J)/NMC

 FREKWKIESW(J)=FREKWKIESW(J)/NMC

 FREKWKIESAL(J)=FREKWKIESAL(J)/NMC

 FREKWKIESALT(J)=FREKWKIESALT(J)/NMC

 FREKWKIESG(J)=FREKWKIESG(J)/NMC

349 CONTINUE

C WRITE THE AVERAGE TIMES, TEST ERRORS AND STANDARD ERRORS TO A FILE

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'C: ',CPAR,'G: ',GAMPAR

 WRITE(1,*) 'KFDA'

 WRITE(1,599) 'FULL','ORACLE','NO/RAY','WANG','FMEANS','BL12','CC','SVs','AL','ALT'

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

350

 WRITE(1,600) (FOUTGEMK(J),J=1,10)

 WRITE(1,600) (FOUTSTDK(J),J=1,10)

 WRITE(1,601) TYD(2),(TYD(J),J=3,9)

 WRITE(1,*) 'SVM'

 WRITE(1,600) (FOUTGEMS(J),J=1,10)

 WRITE(1,600) (FOUTSTDS(J),J=1,10)

 WRITE(1,601) TYD(1),(TYD(J),J=3,9)

 WRITE(1,600)

 CLOSE(1)

C WRITE THE SELECTION PERCENTAGES TO A FILE

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'C: ',CPAR,'G: ',GAMPAR

 WRITE(1,*) 'WEIGHT VECTOR NORM'

 WRITE(1,602) (FREKWKIESN(J),J=1,IP)

 WRITE(1,*) 'RAYLEIGH'

 WRITE(1,602) (FREKWKIESR(J),J=1,IP)

 WRITE(1,*) 'DIF IN MEANS: FEATURE SPACE'

 WRITE(1,602) (FREKWKIESG(J),J=1,IP)

 WRITE(1,*) 'WANG'

 WRITE(1,602) (FREKWKIESW(J),J=1,IP)

 WRITE(1,*) 'BLOCK 12'

 WRITE(1,602) (FREKWKIESET(J),J=1,IP)

 WRITE(1,*) 'CUT COST'

 WRITE(1,602) (FREKWKIESCC(J),J=1,IP)

 WRITE(1,*) 'ALIGNMENTS'

 WRITE(1,602) (FREKWKIESAL(J),J=1,IP)

 WRITE(1,*) 'ALIGNMENTS-TRANS'

 WRITE(1,602) (FREKWKIESALT(J),J=1,IP)

 WRITE(1,*)

 CLOSE(1)

1010 CONTINUE

C THE COST PARAMETER LOOP ENDS HERE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

351

C FILE FORMATS

599 FORMAT(3X,A4,3X,A6,2X,A6,3X,A4,2X,A6,3X,A4,5X,A2,7X,A3,3X,A2,6X,A3)

500 FORMAT(20I3)

600 FORMAT(10(F7.3,1X))

601 FORMAT(16X,9(F7.3,1X))

602 FORMAT(12(F5.2,1X))

605 FORMAT(I6,2X,4(F12.5,1X))

700 FORMAT(10(F20.10))

7000 STOP

END

C END OF THE SIMULATION PROGRAM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

352

C.4 BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS

An example of the simulation program used to investigate use of recursive elimination in

variable selection is given below. Results of the study are given in Section 5 of Chapter 5.

C IN THIS PROGRAM WE INVESTIGATE SELECTION USING A BACKWARD STRATEGY

C WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS)

C PERTAINING TO THE FULL SVM AND KFD MODELS, AND POST-SELECTION AVERAGE

C TEST ERRORS (AND STANDARD ERRORS) FOR SVM AND KFD MODELS AFTER USING

C C.3.1 ZERO ORDER ALIGNMENTS IN FEATURE SPACE

C C.3.2 FIRST ORDER ALIGNMENTS IN FEATURE SPACE

C C.3.3 TRANSFORMED ZERO ORDER ALIGNMENTS IN FEATURE SPACE

C C.3.4 TRANSFORMED FIRST ORDER ALIGNMENTS IN FEATURE SPACE

C C.3.5 ZERO ORDER VARIATION RATIOS

C C.3.6 FIRST ORDER VARIATION RATIOS

C C.3.7 ZERO ORDER DIFFERENCES IN MEANS IN INPUT SPACE

C C.3.8 FIRST ORDER DIFFERENCES IN MEANS IN INPUT SPACE

C C.3.9 THE ZERO ORDER DISSIMILARITY CRITERION

C C.3.10 THE FIRST ORDER DISSIMILARITY CRITERION

C FOR SVM MODELS AFTER USING

C C.3.11 THE ZERO ORDER NORM OF THE SVM WEIGHT VECTOR

C C.3.12 THE FIRST ORDER NORM OF THE SVM WEIGHT VECTOR

C AND FOR KFDA MODELS AFTER USING

C C.3.13 THE ZERO ORDER RAYLEIGH QUOTIENT

C C.3.14 THE FIRST ORDER RAYLEIGH QUOTIENT

C THE DATA ARE GENERATED FROM A MULTIVARIATE LOGNORMAL DISTRIBUTION AND

C THE TWO GROUPS DIFFER WITH RESPECT TO THEIR VARIANCE-COVARIANCE

C STRUCTURE

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED:

C 1. BERCRIT12

C 2. BERCRITA0

C 3. BERCRITA1

C 4. BERCRITET1

C 5. BERCRITG1

C 6. BERCRITW

C 7. BERCRTW1

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

353

C 8. BERCRITR

C 9. BERCRITR1

C 10. BERCRITN1

C 11. BERFOUTKFDA

C 12. BERFOUTSVM

C 13. DOENKFDA

C 14. DOENSVM

C 15. GRAMMAT

C 16. GRAMMATL

C 17. GRAMNUUT

C 18. GRAMNUUTL

C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED:

C 1. DEXP

C 2. DLOG

C 3. DMACH

C 4. DSQRT

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED:

C 1. DCHFAC

C 2. DRNMVN

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=4,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NMC=500,CORR=0.0D0,SIGNOISE=20.0D0,SIGFAKTOR=10.0D0)

 PARAMETER (GAM=1.0D0/IP,GAMPAR=GAM)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

C POPULATION PARAMETERS

 DIMENSION AMU1(IP),AMU2(IP)

 DIMENSION SIGMAM(IPTEL,IPTEL),RSIG(IPTEL,IPTEL)

 DIMENSION SIGMAMNOISE(NNOISE,NNOISE),RSIGNOISE(NNOISE,NNOISE)

C X MATRICES AND Y VECTORS

 DIMENSION XM(NNPMM,IP),XMRF(IP,NNPMM)

 DIMENSION XM11(NN,IPTEL),XM21(MM,IPTEL)

 DIMENSION XM12(NN,NNOISE),XM22(MM,NNOISE)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

354

 DIMENSION XGEM1(IP),XGEM2(IP),GEM(IP),VAR(IP)

 DIMENSION XT(NMT,IP),XT11(NT,IPTEL),XT21(MT,IPTEL)

 DIMENSION XT12(NT,NNOISE),XT22(MT,NNOISE)

 DIMENSION YV(NNPMM),YVT(NMT),IYV(NNPMM)

C SVM RELATED QUANTITIES

 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM),GRMATN(NMT,NNPMM)

 DIMENSION ALPHA(NNPMM),ALPHAW(NNPMM),AL(NNPMM)

C KFDA QUANTITIES

 DIMENSION EENM(NNPMM),EENP(NNPMM)

C VARIOUS OTHER QUANTITIES

 DIMENSION FOUTMATK(NMC,14,5),FOUTVERK(NMC,14,5)

 DIMENSION FOUTMATS(NMC,14,5),FOUTVERS(NMC,14,5)

 DIMENSION FOUTGEM(28,5),FOUTSTD(28,5),R(IP)

 DIMENSION FREKWKIES(4,IP,5),FREKWKIESINDEP(10,IP)

 DIMENSION INDVEKVOL(IP),INDVEKP(IP),IPERMU(IP)

 DIMENSION INDVEKA0(IP),INDVEKA1(IP),INDVEKA2(IP),INDVEKA3(IP)

 DIMENSION INDVEKA0T(IP),INDVEKA1T(IP),INDVEKA2T(IP),INDVEKA3T(IP)

 DIMENSION INDVEKW0(IP),INDVEKW1(IP),INDVEKW2(IP),INDVEKW3(IP)

 DIMENSION INDVEKG0(IP),INDVEKG1(IP),INDVEKG2(IP),INDVEKG3(IP)

 DIMENSION INDVEKET0(IP),INDVEKET1(IP),INDVEKET2(IP),INDVEKET3(IP)

 DIMENSION INDVEKN0(IP),INDVEKN1(IP),INDVEKN2(IP),INDVEKN3(IP)

 DIMENSION INDVEKR0(IP),INDVEKR1(IP),INDVEKR2(IP),INDVEKR3(IP)

 DIMENSION CRITVEKA0(IP),CRITVEKA1(IP)

 DIMENSION CRITVEKA0T(IP),CRITVEKA1T(IP)

 DIMENSION CRITVEKW0(IP),CRITVEKW1(IP)

 DIMENSION CRITVEKG0(IP),CRITVEKG1(IP)

 DIMENSION CRITVEKET0(IP),CRITVEKET1(IP)

 DIMENSION CRITVEKN0(IP),CRITVEKN1(IP)

 DIMENSION CRITVEKR0(IP),CRITVEKR1(IP)

 CHARACTER*70 FILEOUT1,FILEOUT2

 FILEOUT1='foutLS.d'

 FILEOUT2='kiesLS.d'

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

355

C WRITE FILE HEADERS

 NVERIN=IPTEL

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN SPREAD'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'GAMPAR=',GAMPAR

 WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC

 WRITE(1,*) 'NT=',NT,'MT=',MT

 WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE

 WRITE(1,600)

 CLOSE(1)

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'LOGNORMAL DISTRIBUTION DIFF IN SPREAD'

 WRITE(1,*) 'IP=',IP,'IPTEL=',IPTEL,'CORR=',CORR

 WRITE(1,*) 'GAMPAR=',GAMPAR

 WRITE(1,*) 'NN=',NN,'MM=',MM,'NMC=',NMC

 WRITE(1,*) 'NT=',NT,'MT=',MT

 WRITE(1,*) 'SIGFAKTOR=',SIGFAKTOR,'SIGNOISE=',SIGNOISE

 WRITE(1,600)

 CLOSE(1)

C ASSIGN VALUES TO THE POPULATION PARAMETERS AND OBTAIN THE COVARIANCE

C MATRICES REQUIRED FOR GENERATING THE DATA

 E=DEXP(1.0D0)

 BLAM=DSQRT(1.0D0/(E*(E-1.0D0)))

 EP=-1.0D0*DSQRT(1.0D0/(E-1.0D0))

 DO 3 I=1,IPTEL

C KIESREG(I)=I

 AMU1(I)=0.0D0

 AMU2(I)=0.0D0

 DO 2 J=1,IPTEL

 SIGMAM(I,J)=DLOG(1.0D0+CORR*(E-1.0D0))

2 CONTINUE

 SIGMAM(I,I)=1.0D0

3 CONTINUE

 DO 4 I=IPTEL+1,IP

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

356

 AMU1(I)=0.0D0

 AMU2(I)=0.0D0

4 CONTINUE

 DO 8 I=1,NNOISE

 DO 7 J=1,NNOISE

 SIGMAMNOISE(I,J)=0.0D0

7 CONTINUE

 SIGMAMNOISE(I,I)=1.0D0

8 CONTINUE

 TOL=1.0D2*DMACH(4)

 CALL DCHFAC(IPTEL,SIGMAM,IPTEL,TOL,IRANK,RSIG,IPTEL)

 CALL DCHFAC(NNOISE,SIGMAMNOISE,NNOISE,TOL,IRANK,RSIGNOISE,NNOISE)

C INITIALISE VARIOUS QUANTITIES

 DO 9 I=1,NN

 YV(I)=-1.0D0

9 CONTINUE

 DO 10 I=NN+1,NNPMM

 YV(I)=1.0D0

10 CONTINUE

 SOMY=1.0D0*(MM-NN)

 SOMY2=NNPMM

 DO 11 I=1,NT

 YVT(I)=-1.0D0

11 CONTINUE

 DO 12 I=NT+1,NMT

 YVT(I)=1.0D0

12 CONTINUE

 DO 15 I=1,NNPMM

 EENP(I)=0.0D0

 EENM(I)=0.0D0

 IF (YV(I).LT.-0.1D0) EENM(I)=1.0D0

 IF (YV(I).GT.0.1D0) EENP(I)=1.0D0

15 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

357

C INITIALISE THE TEST ERROR, STANDARD ERROR AND SELECTION FREQUENCY

C VECTORS

 DO K=1,5

 DO I=1,28

 FOUTGEM(I,K)=0.0D0

 FOUTSTD(I,K)=0.0D0

 END DO

 DO I=1,4

 DO J=1,IP

 FREKWKIES(I,J,K)=0.0D0

 END DO

 END DO

 END DO

 DO I=1,10

 DO J=1,IP

 FREKWKIESINDEP(I,J)=0.0D0

 END DO

 END DO

C THE SIMULATION LOOP STARTS HERE
 DO 390 MC=1,NMC

C WRITE(6,*) MC

C GENERATE THE TRAINING DATA

 CALL DRNMVN(NN,IPTEL,RSIG,IPTEL,XM11,NN)

 DO 18 I=1,NN

 DO 17 J=1,IPTEL

 XM(I,J)=(BLAM*DEXP(XM11(I,J)))+AMU1(J)+EP

17 CONTINUE

18 CONTINUE

 CALL DRNMVN(NN,NNOISE,RSIGNOISE,NNOISE,XM12,NN)

 DO 20 I=1,NN

 DO 19 J=1,NNOISE

 XM(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM12(I,J)))+AMU1(J+IPTEL)

 &/(DSQRT(SIGNOISE))+EP)

19 CONTINUE

20 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

358

 CALL DRNMVN(MM,IPTEL,RSIG,IPTEL,XM21,MM)

 DO 22 I=1,MM

 DO 21 J=1,IPTEL

 XM(NN+I,J)=DSQRT(SIGFAKTOR)*((BLAM*DEXP(XM21(I,J)))+AMU2(J)+EP)

21 CONTINUE

22 CONTINUE

 CALL DRNMVN(MM,NNOISE,RSIGNOISE,NNOISE,XM22,MM)

 DO 24 I=1,MM

 DO 23 J=1,NNOISE

 XM(NN+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XM22(I,J)))+AMU2(J+IPTEL)

 &/(DSQRT(SIGNOISE))+EP)

23 CONTINUE

24 CONTINUE

C STANDARDISE THE TRAINING DATA

 DO 28 J=1,IP

 S=0.0D0

 S2=0.0D0

 DO 26 I=1,NNPMM

 S=S+XM(I,J)

 2=S2+XM(I,J)**2.0D0

26 CONTINUE

 GEM(J)=S/NNPMM

 VAR(J)=(S2-(S**2.0D0)/NNPMM)/NNPMM

 DO 27 I=1,NNPMM

 XM(I,J)=(XM(I,J)-GEM(J))/DSQRT(VAR(J))

27 CONTINUE

28 CONTINUE

C GENERATE THE TEST DATA

 CALL DRNMVN(NT,IPTEL,RSIG,IPTEL,XT11,NT)

 CALL DRNMVN(MT,IPTEL,RSIG,IPTEL,XT21,MT)

 CALL DRNMVN(NT,NNOISE,RSIGNOISE,NNOISE,XT12,NT)

 CALL DRNMVN(MT,NNOISE,RSIGNOISE,NNOISE,XT22,MT)

 DO 36 I=1,NT

 DO 35 J=1,IPTEL

 XT(I,J)=(BLAM*DEXP(XT11(I,J)))+AMU1(J)+EP

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

359

35 CONTINUE

36 CONTINUE

 DO 38 I=1,NT

 DO 37 J=1,NNOISE

 XT(I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT12(I,J)))+AMU1(J+IPTEL)/DSQRT(SIGNOIS

 &E)+EP)

37 CONTINUE

38 CONTINUE

 DO 40 I=1,MT

 DO 39 J=1,IPTEL

 XT(NT+I,J)=DSQRT(SIGFAKTOR)*((BLAM*DEXP(XT21(I,J)))+AMU2(J)+EP)

39 CONTINUE

40 CONTINUE

 DO 42 I=1,MT

 DO 41 J=1,NNOISE

 XT(NT+I,J+IPTEL)=DSQRT(SIGNOISE)*((BLAM*DEXP(XT22(I,J)))+AMU2(J+IPTEL)/DSQRT(SIG

 &NOISE)+EP)

41 CONTINUE

42 CONTINUE

C STANDARDISE THE TEST DATA

 DO 45 J=1,IP

 DO 44 I=1,NMT

 XT(I,J)=(XT(I,J)-GEM(J))/(DSQRT(VAR(J)))

44 CONTINUE

45 CONTINUE

 DO 50 J=1,IP

 INDVEKVOL(J)=J

50 CONTINUE

C INITIALISE THE VARIABLE INDEX VECTORS

 DO 52 J=1,IP

 INDVEKA0(J)=J

 INDVEKA1(J)=J

 INDVEKA0T(J)=J

 INDVEKA1T(J)=J

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

360

 INDVEKW0(J)=J

 INDVEKW1(J)=J

 INDVEKG0(J)=J

 INDVEKG1(J)=J

 INDVEKET0(J)=J

 INDVEKET1(J)=J

52 CONTINUE

C OMIT A SINGLE VARIABLE-AT-A-TIME UNTIL ONLY IPTEL=NVERIN VARIABLES REMAIN

 DO 150 NVERUIT=1,NNOISE

 NV=IP-NVERUIT+1

 NVV=NV-1

C FIRST IMPLEMENT TECHNIQUE DEPENDENT VARIABLE SELECTION

C CALCULATE THE ZERO ORDER ALIGNMENT CRITERION

 AMAXA=-1.1D0

 DO 70 KK=1,NV

 ITEL=0

 DO 65 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKA2(ITEL)=INDVEKA0(J)

 ENDIF

65 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKA2,GRMAT)

 CALL BERCRITA0(GRMAT,CRITA)

 CRITVEKA0(KK)=CRITA

 IF (CRITA.GT.AMAXA) THEN

 AMAXA=CRITA

 IVERUITA=INDVEKA0(KK)

 ENDIF

70 CONTINUE

 DO 72 J=1,NV

 INDVEKA3(J)=INDVEKA0(J)

72 CONTINUE

 ITEL=0

 DO 73 J=1,NV

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

361

 IF (INDVEKA3(J).NE.IVERUITA) THEN

 ITEL=ITEL+1

 INDVEKA0(ITEL)=INDVEKA3(J)

 ENDIF

 INDVEKA0(ITEL+1)=0

73 CONTINUE

C CALCULATE THE FIRST ORDER ALIGNMENT CRITERION

 AMINA=1.0D100

 CALL GRAMMAT(GAM,XM,NV,INDVEKA1,GRMAT)

 DO 80 KK=1,NV

 ITEL=0

 IDIFA=INDVEKA1(KK)

 CALL BERCRITA1(IDIFA,XM,GRMAT,GAM,CRITA)

 CRITVEKA1(KK)=CRITA

 IF (CRITA.LT.AMINA) THEN

 AMINA=CRITA

 IVERUITA=INDVEKA1(KK)

 ENDIF

80 CONTINUE

 DO 82 J=1,NV

 INDVEKA3(J)=INDVEKA1(J)

82 CONTINUE

 ITEL=0

 DO 83 J=1,NV

 IF (INDVEKA3(J).NE.IVERUITA) THEN

 ITEL=ITEL+1

 INDVEKA1(ITEL)=INDVEKA3(J)

 ENDIF

 INDVEKA1(ITEL+1)=0

83 CONTINUE

C CALCULATE THE ZERO ORDER TRANSFORMED ALIGNMENT CRITERION

 AMAXA=-1.1D0

 DO 170 KK=1,NV

 ITEL=0

 DO 165 J=1,NV

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

362

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKA2T(ITEL)=INDVEKA0T(J)

 ENDIF

165 CONTINUE

 CALL GRAMMATL(GAM,XM,NVV,INDVEKA2T,GRMAT)

 CALL BERCRITA0(GRMAT,CRITA)

 CRITVEKA0T(KK)=CRITA

 IF (CRITA.GT.AMAXA) THEN

 AMAXA=CRITA

 IVERUITA=INDVEKA0T(KK)

 ENDIF

170 CONTINUE

 DO 172 J=1,NV

 INDVEKA3T(J)=INDVEKA0T(J)

172 CONTINUE

 ITEL=0

 DO 173 J=1,NV

 IF (INDVEKA3T(J).NE.IVERUITA) THEN

 ITEL=ITEL+1

 INDVEKA0T(ITEL)=INDVEKA3T(J)

 ENDIF

 INDVEKA0T(ITEL+1)=0

173 CONTINUE

C CALCULATE THE FIRST ORDER TRANSFORMED ALIGNMENT CRITERION

 AMINA=1.0D100

 CALL GRAMMATL(GAM,XM,NV,INDVEKA1T,GRMAT)

 DO 180 KK=1,NV

 ITEL=0

 IDIFA=INDVEKA1T(KK)

 CALL BERCRITA1(IDIFA,XM,GRMAT,GAM,CRITA)

 CRITVEKA1T(KK)=CRITA

 IF (CRITA.LT.AMINA) THEN

 AMINA=CRITA

 IVERUITA=INDVEKA1T(KK)

 ENDIF

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

363

180 CONTINUE

 DO 182 J=1,NV

 INDVEKA3T(J)=INDVEKA1T(J)

182 CONTINUE

 ITEL=0

 DO 183 J=1,NV

 IF (INDVEKA3T(J).NE.IVERUITA) THEN

 ITEL=ITEL+1

 INDVEKA1T(ITEL)=INDVEKA3T(J)

 ENDIF

 INDVEKA1T(ITEL+1)=0

183 CONTINUE

C CALCULATE THE ZERO ORDER VARIATION RATIO CRITERION

 AMAXW=-1.1D0

 DO 90 KK=1,NV

 ITEL=0

 DO 85 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKW2(ITEL)=INDVEKW0(J)

 ENDIF

85 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKW2,GRMAT)

 CALL BERCRITW0(GRMAT,CRITW)

 CRITVEKW0(KK)=CRITW

 IF (CRITW.GT.AMAXW) THEN

 AMAXW=CRITW

 IVERUITW=INDVEKW0(KK)

 ENDIF

90 CONTINUE

 DO 91 J=1,NV

 INDVEKW3(J)=INDVEKW0(J)

91 CONTINUE

 ITEL=0

 DO 92 J=1,NV

 IF (INDVEKW3(J).NE.IVERUITW) THEN

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

364

 ITEL=ITEL+1

 INDVEKW0(ITEL)=INDVEKW3(J)

 ENDIF

 INDVEKW0(ITEL+1)=0

92 CONTINUE

C CALCULATE THE FIRST ORDER VARIATION RATIO CRITERION

 AMINW=1.0D100

 CALL GRAMMAT(GAM,XM,NV,INDVEKW1,GRMAT)

 DO 94 KK=1,NV

 ITEL=0

 IDIFW=INDVEKW1(KK)

 CALL BERCRITW1(IDIFW,XM,GRMAT,GAM,CRITW)

 CRITVEKW1(KK)=CRITW

 IF (CRITW.LT.AMINW) THEN

 AMINW=CRITW

 IVERUITW=INDVEKW1(KK)

 ENDIF

94 CONTINUE

 DO 95 J=1,NV

 INDVEKW3(J)=INDVEKW1(J)

95 CONTINUE

 ITEL=0

 DO 96 J=1,NV

 IF (INDVEKW3(J).NE.IVERUITW) THEN

 ITEL=ITEL+1

 INDVEKW1(ITEL)=INDVEKW3(J)

 ENDIF

 INDVEKW1(ITEL+1)=0

96 CONTINUE

C CALCULATE THE ZERO ORDER DIFFERENCES IN MEANS

 AMAXG=-1.1D0

 DO 98 KK=1,NV

 ITEL=0

 DO 97 J=1,NV

 IF (J.NE.KK) THEN

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

365

 ITEL=ITEL+1

 INDVEKG2(ITEL)=INDVEKG0(J)

 ENDIF

97 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKG2,GRMAT)

 CALL BERCRITW(GRMAT,CRITW,CRITG)

 CRITVEKG0(KK)=CRITG

 IF (CRITG.GT.AMAXG) THEN

 AMAXG=CRITG

 IVERUITG0=INDVEKG0(KK)

 ENDIF

98 CONTINUE

 DO 99 J=1,NV

 INDVEKG3(J)=INDVEKG0(J)

99 CONTINUE

 ITEL=0

 DO 100 J=1,NV

 IF (INDVEKG3(J).NE.IVERUITG0) THEN

 ITEL=ITEL+1

 INDVEKG0(ITEL)=INDVEKG3(J)

 ENDIF

 INDVEKG0(ITEL+1)=0

100 CONTINUE

C CALCULATE THE FIRST ORDER DIFFERENCES IN MEANS

 AMING=1.0D100

 CALL GRAMMAT(GAM,XM,NV,INDVEKG1,GRMAT)

 DO 101 KK=1,NV

 ITEL=0

 IDIFG=INDVEKG1(KK)

 CALL BERCRITG1(IDIFG,XM,GRMAT,GAM,CRITG)

 CRITVEKG1(KK)=CRITG

 IF (CRITG.LT.AMING) THEN

 AMING=CRITG

 IVERUITG1=INDVEKG1(KK)

 ENDIF

101 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

366

 DO 102 J=1,NV

 INDVEKG3(J)=INDVEKG1(J)

102 CONTINUE

 ITEL=0

 DO 103 J=1,NV

 IF (INDVEKG3(J).NE.IVERUITG1) THEN

 ITEL=ITEL+1

 INDVEKG1(ITEL)=INDVEKG3(J)

 ENDIF

 INDVEKG1(ITEL+1)=0

103 CONTINUE

C CALCULATE THE ZERO ORDER DISSIMILARITY CRITERION

 AMINET=1.1D50

 DO 105 KK=1,NV

 ITEL=0

 DO 104 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKET2(ITEL)=INDVEKET0(J)

 ENDIF

104 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKET2,GRMAT)

 CALL BERCRIT12(GRMAT,CRITET)

 CRITVEKET0(KK)=CRITET

 IF (CRITET.LT.AMINET) THEN

 AMINET=CRITET

 IVERUITET0=INDVEKET0(KK)

 ENDIF

105 CONTINUE

 DO 106 J=1,NV

 INDVEKET3(J)=INDVEKET0(J)

106 CONTINUE

 ITEL=0

 DO 107 J=1,NV

 IF (INDVEKET3(J).NE.IVERUITET0) THEN

 ITEL=ITEL+1

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

367

 INDVEKET0(ITEL)=INDVEKET3(J)

 ENDIF

 INDVEKET0(ITEL+1)=0

107 CONTINUE

C CALCULATE THE FIRST ORDER DISSIMILARITY CRITERION

 AMINET1=1.0D100

 CALL GRAMMAT(GAM,XM,NV,INDVEKET1,GRMAT)

 DO 108 KK=1,NV

 ITEL=0

 IDIF=INDVEKET1(KK)

 CALL BERCRITET1(IDIF,XM,GRMAT,GAM,CRITET1)

 CRITVEKET1(KK)=CRITET1

 IF (CRITET1.LT.AMINET1) THEN

 AMINET1=CRITET1

 IVERUITET1=INDVEKET1(KK)

 ENDIF

108 CONTINUE

 DO 109 J=1,NV

 INDVEKET3(J)=INDVEKET1(J)

109 CONTINUE

 ITEL=0

 DO 110 J=1,NV

 IF (INDVEKET3(J).NE.IVERUITET1) THEN

 ITEL=ITEL+1

 INDVEKET1(ITEL)=INDVEKET3(J)

 ENDIF

 INDVEKET1(ITEL+1)=0

110 CONTINUE

150 CONTINUE

C UPDATE THE (TECHNIQUE INDEPENDENT) SELECTION FREQUENCIES

 DO 853 I=1,NVERIN

 II=INDVEKA0(I)

 FREKWKIESINDEP(1,II)=FREKWKIESINDEP(1,II)+1.0D0

853 CONTINUE

 DO 854 I=1,NVERIN

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

368

 II=INDVEKA1(I)

 FREKWKIESINDEP(2,II)=FREKWKIESINDEP(2,II)+1.0D0

854 CONTINUE

 DO 855 I=1,NVERIN

 II=INDVEKA0T(I)

 FREKWKIESINDEP(3,II)=FREKWKIESINDEP(3,II)+1.0D0

855 CONTINUE

 DO 856 I=1,NVERIN

 II=INDVEKA1T(I)

 FREKWKIESINDEP(4,II)=FREKWKIESINDEP(4,II)+1.0D0

856 CONTINUE

 DO 857 I=1,NVERIN

 II=INDVEKW0(I)

 FREKWKIESINDEP(5,II)=FREKWKIESINDEP(5,II)+1.0D0

857 CONTINUE

 DO 858 I=1,NVERIN

 II=INDVEKW1(I)

 FREKWKIESINDEP(6,II)=FREKWKIESINDEP(6,II)+1.0D0

858 CONTINUE

 DO 859 I=1,NVERIN

 II=INDVEKG0(I)

 FREKWKIESINDEP(7,II)=FREKWKIESINDEP(7,II)+1.0D0

859 CONTINUE

 DO 860 I=1,NVERIN

 II=INDVEKG1(I)

 FREKWKIESINDEP(8,II)=FREKWKIESINDEP(8,II)+1.0D0

860 CONTINUE

 DO 161 I=1,NVERIN

 II=INDVEKET0(I)

 FREKWKIESINDEP(9,II)=FREKWKIESINDEP(9,II)+1.0D0

161 CONTINUE

 DO 162 I=1,NVERIN

 II=INDVEKET1(I)

 FREKWKIESINDEP(10,II)=FREKWKIESINDEP(10,II)+1.0D0

162 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

369

C NOW IMPLEMENT TECHNIQUE DEPENDENT VARIABLE SELECTION

C THE NEXT LOOP CONSIDERS DIFFERENT VALUES OF THE COST PARAMETER

 DO 1090 ICP=1,5

 IF (ICP.EQ.1) CPARS=0.00001D0

 IF (ICP.EQ.2) CPARS=0.001D0

 IF (ICP.EQ.3) CPARS=0.1D0

 IF (ICP.EQ.4) CPARS=10.0D0

 IF (ICP.EQ.5) CPARS=1000.0D0

 IF (ICP.EQ.1) CPARK=0.00001D0

 IF (ICP.EQ.2) CPARK=0.001D0

 IF (ICP.EQ.3) CPARK=0.1D0

 IF (ICP.EQ.4) CPARK=10.0D0

 IF (ICP.EQ.5) CPARK=1000.0D0

C INITIALISE THE VARIABLE INDEX VECTORS

 DO 752 J=1,IP

 INDVEKN0(J)=J

 INDVEKN1(J)=J

 INDVEKR0(J)=J

 INDVEKR1(J)=J

752 CONTINUE

 DO 750 NVERUIT=1,NNOISE

 NV=IP-NVERUIT+1

 NVV=NV-1

C CALCULATE THE ZERO ORDER RAYLEIGH QUOTIENT

 CALL GRAMMAT(GAM,XM,NV,INDVEKR0,GRMAT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 AMAXR=0.000000000001D0

 DO 760 KK=1,NV

 ITEL=0

 DO 759 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKR2(ITEL)=INDVEKR0(J)

 ENDIF

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

370

759 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKR2,GRMAT)

 CALL BERCRITR(GRMAT,EENP,EENM,ALPHA,CPARK,CRITR)

 IF (CRITR.GT.AMAXR) THEN

 AMAXR=CRITR

 IVERUITR0=INDVEKR0(KK)

 ENDIF

760 CONTINUE

 DO 762 J=1,NV

 INDVEKR3(J)=INDVEKR0(J)

762 CONTINUE

 ITEL=0

 DO 763 J=1,NV

 IF (INDVEKR3(J).NE.IVERUITR0) THEN

 ITEL=ITEL+1

 INDVEKR0(ITEL)=INDVEKR3(J)

 ENDIF

763 CONTINUE

 INDVEKR0(ITEL+1)=0

C CALCULATE THE FIRST ORDER RAYLEIGH QUOTIENT

 AMAXR1=-1.1D0

 CALL GRAMMAT(GAM,XM,NV,INDVEKR1,GRMAT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 DO 780 KK=1,NV

 ITEL=0

 IDIFR=INDVEKR1(KK)

 CALL BERCRITR1(IDIFR,XM,GRMAT,GAM,ALPHA,CRITR1)

 CRITVEKR1(KK)=CRITR1

 IF (CRITR1.GT.AMAXR1) THEN

 AMAXR1=CRITR1

 IVERUITR1=INDVEKR1(KK)

 ENDIF

780 CONTINUE

 DO 782 J=1,NV

 INDVEKR3(J)=INDVEKR1(J)

782 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

371

 ITEL=0

 DO 783 J=1,NV

 IF (INDVEKR3(J).NE.IVERUITR1) THEN

 ITEL=ITEL+1

 INDVEKR1(ITEL)=INDVEKR3(J)

 ENDIF

783 CONTINUE

 INDVEKR1(ITEL+1)=0

C CALCULATE THE ZERO ORDER NORM OF THE SVM WEIGHT COEFFICIENT

 AMAXN=-1.0D100

 CALL GRAMMAT(GAM,XM,NV,INDVEKN0,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NV,INDVEKN0,AL,BOPT)

 DO 716 KK=1,NV

 ITEL=0

 DO 711 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKN2(ITEL)=INDVEKN0(J)

 ENDIF

711 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKN2,GRMAT)

 S2=0.0D0

 DO 713 I=1,NNPMM

 DO 712 J=1,NNPMM

 S2=S2+AL(I)*AL(J)*YV(I)*YV(J)*GRMAT(I,J)

712 CONTINUE

713 CONTINUE

 CRITN=S2

 CRITVEKN0(KK)=CRITN

 IF (CRITN.GT.AMAXN) THEN

 AMAXN=CRITN

 IVERUITN0=INDVEKN0(KK)

 ENDIF

716 CONTINUE

 DO 717 J=1,NV

 INDVEKN3(J)=INDVEKN0(J)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

372

717 CONTINUE

 ITEL=0

 DO 718 J=1,NV

 IF (INDVEKN3(J).NE.IVERUITN0) THEN

 ITEL=ITEL+1

 INDVEKN0(ITEL)=INDVEKN3(J)

 ENDIF

718 CONTINUE

 INDVEKN0(ITEL+1)=0

C CALCULATE THE FIRST ORDER NORM OF THE SVM WEIGHT COEFFICIENT

 AMIN=1.0D100

 DO 720 KK=1,NV

 ITEL=0

 IDIFN=INDVEKN1(KK)

 CALL BERCRITN1(IDIFN,GAM,CPARS,YV,XM,NV,INDVEKN1,CRITN)

 CRITVEKN1(KK)=CRITN

 IF (CRITN.LT.AMIN) THEN

 AMIN=CRITN

 IVERUITN1=INDVEKN1(KK)

 ENDIF

720 CONTINUE

 DO 721 J=1,NV

 INDVEKN3(J)=INDVEKN1(J)

721 CONTINUE

 ITEL=0

 DO 722 J=1,NV

 IF (INDVEKN3(J).NE.IVERUITN1) THEN

 ITEL=ITEL+1

 INDVEKN1(ITEL)=INDVEKN3(J)

 ENDIF

722 CONTINUE

 INDVEKN1(ITEL+1)=0

750 CONTINUE

C UPDATE THE (TECHNIQUE DEPENDENT) SELECTION FREQUENCIES

 NVERIN=IPTEL

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

373

 DO 151 I=1,NVERIN

 II=INDVEKR0(I)

 FREKWKIES(1,II,ICP)=FREKWKIES(1,II,ICP)+1.0D0

151 CONTINUE

 DO 152 I=1,NVERIN

 II=INDVEKR1(I)

 FREKWKIES(2,II,ICP)=FREKWKIES(2,II,ICP)+1.0D0

152 CONTINUE

 DO 153 I=1,NVERIN

 II=INDVEKN0(I)

 FREKWKIES(3,II,ICP)=FREKWKIES(3,II,ICP)+1.0D0

153 CONTINUE

 DO 154 I=1,NVERIN

 II=INDVEKN1(I)

 FREKWKIES(4,II,ICP)=FREKWKIES(4,II,ICP)+1.0D0

154 CONTINUE

C CALCULATE THE TEST ERROR PERTAINING TO THE FULL MODEL

 CALL GRAMMAT(GAM,XM,IP,INDVEKVOL,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,IP,INDVEKVOL,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,1,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,IP,INDVEKVOL,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,1,ICP)=FOUT

C CALCULATE THE TEST ERROR PERTAINING TO THE ‘ORACLE’
 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKVOL,GRMAT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKVOL,GRNUUT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,2,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKVOL,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,2,ICP)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

374

C CALCULATE THE FOLLOWING POST-SELECTION TEST ERRORS

C AFTER USING THE ZERO-ORDER RAYLEIGH QUOTIENT

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKR0,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKR0,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,3,ICP)=FOUT

C AFTER USING THE ZERO-ORDER NORM OF THE SVM WEIGHT VECTOR

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKN0,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKN0,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKN0,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,3,ICP)=FOUT

C AFTER USING THE FIRST-ORDER RAYLEIGH QUOTIENT

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKR1,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKR1,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,4,ICP)=FOUT

C AFTER USING THE FIRST-ORDER NORM OF THE SVM WEIGHT VECTOR

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKN1,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKN1,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKN1,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,4,ICP)=FOUT

C AFTER USING THE ZERO-ORDER ALIGNMENT CRITERION

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA0,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA0,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,5,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA0,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,5,ICP)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

375

C AFTER USING THE FIRST-ORDER ALIGNMENT CRITERION

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA1,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA1,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,6,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA1,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,6,ICP)=FOUT

C AFTER USING THE ZERO-ORDER TRANSFORMED ALIGNMENT CRITERION

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA0T,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA0T,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,7,ICP)=FOUT

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA0T,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA0T,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA0T,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,7,ICP)=FOUT

C AFTER USING THE FIRST-ORDER TRANSFORMED ALIGNMENT CRITERION

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA1T,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA1T,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,8,ICP)=FOUT

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKA1T,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKA1T,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKA1T,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,8,ICP)=FOUT

C AFTER USING THE ZERO-ORDER VARIATION RATIO CRITERION
 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKW0,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKW0,GRNUUT)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

376

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,9,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKW0,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,9,ICP)=FOUT

C AFTER USING THE FIRST-ORDER VARIATION RATIO CRITERION

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKW1,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKW1,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,10,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKW1,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,10,ICP)=FOUT

C AFTER USING THE ZERO-ORDER DIFFERENCES IN MEANS

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKG0,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKG0,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,11,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKG0,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,11,ICP)=FOUT

C AFTER USING THE ZERO-ORDER DIFFERENCES IN MEANS
 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKG1,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKG1,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,12,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKG1,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,12,ICP)=FOUT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

377

C AFTER USING ZERO-ORDER DISSIMILARITIES

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKET0,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKET0,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,13,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKET0,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,13,ICP)=FOUT

C AFTER USING FIRST-ORDER DISSIMILARITIES

 CALL GRAMMAT(GAM,XM,NVERIN,INDVEKET1,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDVEKET1,GRNUUT)

 CALL DOENKFDA(EENM,EENP,GRMAT,CPARK,ALPHA,BOPT)

 CALL BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

 FOUTMATK(MC,14,ICP)=FOUT

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NVERIN,INDVEKET1,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTMATS(MC,14,ICP)=FOUT

1090 CONTINUE

THE COST PARAMETER LOOP ENDS HERE

390 CONTINUE

C THE MONTE CARLO SIMULATION LOOP ENDS HERE

C CALCULATE AVERAGE TEST ERRORS AND STANDARD ERRORS

 DO 394 K=1,5

 DO 392 I=1,NMC

 DO 391 J=1,14

 FOUTGEM(J,K)=FOUTGEM(J,K)+FOUTMATK(I,J,K)

 FOUTSTD(J,K)=FOUTSTD(J,K)+FOUTMATK(I,J,K)**2.0D0

 FOUTGEM(14+J,K)=FOUTGEM(14+J,K)+FOUTMATS(I,J,K)

 FOUTSTD(14+J,K)=FOUTSTD(14+J,K)+FOUTMATS(I,J,K)**2.0D0

391 CONTINUE

392 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

378

 DO 393 J=1,14

 FOUTGEM(J,K)=FOUTGEM(J,K)/NMC

 FOUTSTD(J,K)=DSQRT((FOUTSTD(J,K)-NMC*(FOUTGEM(J,K)**2.0D0))/

 & (NMC*(NMC-1)))

 FOUTGEM(14+J,K)=FOUTGEM(14+J,K)/NMC

 FOUTSTD(14+J,K)=DSQRT((FOUTSTD(14+J,K)-NMC*(FOUTGEM(14+J,K)**2.0D0))/

 & (NMC*(NMC-1)))

393 CONTINUE

394 CONTINUE

C CALCULATE SELECTION PERCENTAGES

 DO 398 I=1,10

 DO 397 J=1,IP

 FREKWKIESINDEP(I,J)=FREKWKIESINDEP(I,J)/NMC

397 CONTINUE

398 CONTINUE

 DO 402 ICP=1,5

 DO 401 I=1,4

 DO 400 J=1,IP

 FREKWKIES(I,J,ICP)=FREKWKIES(I,J,ICP)/NMC

400 CONTINUE

401 CONTINUE

402 CONTINUE

C WRITE THE OBTAINED SELECTION PERCENTAGES TO A FILE

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'INDVEKA0'

 WRITE(1,600) (FREKWKIESINDEP(1,J),J=1,IP)

 WRITE(1,*) 'INDVEKA1'

 WRITE(1,600) (FREKWKIESINDEP(2,J),J=1,IP)

 WRITE(1,*) 'INDVEKA0T'

 WRITE(1,600) (FREKWKIESINDEP(3,J),J=1,IP)

 WRITE(1,*) 'INDVEKA1T'

 WRITE(1,600) (FREKWKIESINDEP(4,J),J=1,IP)

 WRITE(1,*) 'INDVEKW0'

 WRITE(1,600) (FREKWKIESINDEP(5,J),J=1,IP)

 WRITE(1,*) 'INDVEKW1'

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

379

 WRITE(1,600) (FREKWKIESINDEP(6,J),J=1,IP)

 WRITE(1,*) 'INDVEKG0'

 WRITE(1,600) (FREKWKIESINDEP(7,J),J=1,IP)

 WRITE(1,*) 'INDVEKG1'

 WRITE(1,600) (FREKWKIESINDEP(8,J),J=1,IP)

 WRITE(1,*) 'INDVEKET0'

 WRITE(1,600) (FREKWKIESINDEP(9,J),J=1,IP)

 WRITE(1,*) 'INDVEKET1'

 WRITE(1,600) (FREKWKIESINDEP(10,J),J=1,IP)

 WRITE(1,600)

 DO ICP=1,5

 IF (ICP.EQ.1) CPARS=0.1D0

 IF (ICP.EQ.2) CPARS=1.0D0

 IF (ICP.EQ.3) CPARS=10.0D0

 IF (ICP.EQ.4) CPARS=100.0D0

 IF (ICP.EQ.5) CPARS=1000.0D0

 IF (ICP.EQ.1) CPARK=0.1D0

 IF (ICP.EQ.2) CPARK=1.0D0

 IF (ICP.EQ.3) CPARK=10.0D0

 IF (ICP.EQ.4) CPARK=100.0D0

 IF (ICP.EQ.5) CPARK=1000.0D0

 WRITE(1,*) 'CPARK=',CPARK

 WRITE(1,*) 'INDVEKRO'

 WRITE(1,600) (FREKWKIES(1,J,ICP),J=1,IP)

 WRITE(1,*) 'INDVEKR1'

 WRITE(1,600) (FREKWKIES(2,J,ICP),J=1,IP)

 WRITE(1,*) 'CPARS=',CPARS

 WRITE(1,*) 'INDVEKN0'

 WRITE(1,600) (FREKWKIES(3,J,ICP),J=1,IP)

 WRITE(1,*) 'INDVEKN1'

 WRITE(1,600) (FREKWKIES(4,J,ICP),J=1,IP)

 WRITE(1,600)

 END DO

 CLOSE(1)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

380

C WRITE THE OBTAINED AVERAGE TEST ERRORS AND STANDARD ERRORS TO A FILE

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 ICP=1,5

 IF (ICP.EQ.1) CPARS=0.1D0

 IF (ICP.EQ.2) CPARS=1.0D0

 IF (ICP.EQ.3) CPARS=10.0D0

 IF (ICP.EQ.4) CPARS=100.0D0

 IF (ICP.EQ.5) CPARS=1000.0D0

 IF (ICP.EQ.1) CPARK=0.1D0

 IF (ICP.EQ.2) CPARK=1.0D0

 IF (ICP.EQ.3) CPARK=10.0D0

 IF (ICP.EQ.4) CPARK=100.0D0

 IF (ICP.EQ.5) CPARK=1000.0D0

 WRITE(1,*) CPARK

 WRITE(1,605) 'FUL','ORA','R0','R1','A0','A1','A0T','A1T','W0','W1','G0','G1','ET0','ET1'

 WRITE(1,601) (FOUTGEM(J,ICP),J=1,14)

 WRITE(1,601) (FOUTSTD(J,ICP),J=1,14)

 WRITE(1,*) CPARS

 WRITE(1,605) 'FUL','ORA','N0','N1','A0','A1','A0T','A1T','W0','W1','G0','G1','ET0','ET1'

 WRITE(1,601) (FOUTGEM(J,ICP),J=15,28)

 WRITE(1,601) (FOUTSTD(J,ICP),J=15,28)

 WRITE(1,600)

 END DO

 CLOSE(1)

C FILE FORMATS

500 FORMAT(20I3)

600 FORMAT(14(F6.4,1X))

600 FORMAT(14(F5.3,1X))

605 FORMAT(1X,A3,3X,A3,3X,4(A2,4X),2(A3,3X),4(A2,4X),2(A3,3X))

700 FORMAT(10(F20.10))

7000STOP

END

C END OF THE SIMULATION PROGRAM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

381

C.5 VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES:

 A TWO-STAGE APPROACH

The following simulation program is an example of the Fortran code used in the Monte

Carlo study described in Chapter 6 of the thesis. The aim of the study was to evaluate the

integrated use of cross-validation and the NSV -criteria together with alignments and

variation ratios in SVM selection.

C IN THIS PROGRAM WE CALCULATE AVERAGE TEST ERRORS (AND STANDARD ERRORS)

C PERTAINING TO

C C.7.1 A FULL SUPPORT VECTOR CLASSIFIER

C C.7.2 AN SVM BASED ONLY ON THE SUBSET OF TRULY SEPARATING VARIABLES

C C.7.3 THE POST-SELECTION SVM AFTER USING
 ALIGNMENTS AND THE NSV CRITERION

 VARIATION RATIOS AND THE NSV CRITERION

 VARIATION RATIOS AND CROSS-VALIDATION

C NOTE THAT WE MAKE USE OF A BACKWARD SELECTION STRATEGY

C THE DATA ARE GENERATED FROM A MULTIVARIATE NORMAL DISTRIBUTION AND

C THE TWO GROUPS DIFFER WITH RESPECT TO THEIR VARIANCE-COVARIANCE

C STRUCTURE

C SETS OF RELEVANT AND IRRELEVANT INPUT VARIABLES ARE UNCORRELATED

C THE FOLLOWING (OWN) SUBROUTINES ARE REQUIRED:

C 1. BERCRITA

C 2. BERCRITW

C 3. BERFOUTSVM

C 4. CROSSVAL

C 5. DOENSVM

C 6. GRAMMAT

C 7. GRAMNUUT

C 8.

C THE FOLLOWING IMSL FUNCTIONS ARE REQUIRED:

C 1. DSQRT

C 2. DMACH

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

382

C THE FOLLOWING IMSL SUBROUTINES ARE REQUIRED:

C 1. DCHFAC

C 2. DRNMVN

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

 PARAMETER (IPTEL=10,NNOISE=IP-IPTEL)

 PARAMETER (NVAR=NNPMM,NCON=2*NVAR+1,NEQ=1)

 PARAMETER (LDA=2*NVAR+1,LDH=NVAR)

 PARAMETER (NMC=1000)

 PARAMETER (CORR=0.0D0)

 PARAMETER (CPAR=NNPMM/10.0D0)

 PARAMETER (SIGFAKTOR=100.0D0)

C DISTRIBUTION PARAMETERS

 DIMENSION AMU1(IP),AMU2(IP)

 DIMENSION SIGMAM11(IPTEL,IPTEL),RSIG11(IPTEL,IPTEL)

 DIMENSION SIGMAM12(IPTEL,IPTEL),RSIG12(IPTEL,IPTEL)

 DIMENSION SIGMAM2(NNOISE,NNOISE),RSIG2(NNOISE,NNOISE)

C X MATRICES AND Y VECTORS

 DIMENSION XM11(NN,IPTEL),XM21(MM,IPTEL)

 DIMENSION XM12(NN,NNOISE),XM22(MM,NNOISE)

 DIMENSION XM(NNPMM,IP),YV(NNPMM)

 DIMENSION XT11(NT,IPTEL),XT21(MT,IPTEL)

 DIMENSION XT12(NT,NNOISE),XT22(MT,NNOISE)

 DIMENSION XT(NMT,IP),YVT(NMT)

 DIMENSION GEM(IP),SA(IP)

C SVM RELATED QUANTITIES

 DIMENSION GRMAT(NNPMM,NNPMM),GRNUUT(NMT,NNPMM)

 DIMENSION AL(NNPMM),NSV(IP,2)

 DIMENSION ALPHA(NVAR)

C SELECTION QUANTITIES

 DIMENSION SOMVEK(IP+2,2),SOM2VEK(IP+2,2)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

383

 DIMENSION INDVEKVOL(IP)

 DIMENSION INDVEKA0(IP),INDVEKA1(IP),INDVEKA2(IP),INDVEKA3(IP)

 DIMENSION INDVEKAMAT(IP,IP)

 DIMENSION INDVEKW0(IP),INDVEKW1(IP),INDVEKW2(IP),INDVEKW3(IP)

 DIMENSION INDVEKWMAT(IP,IP)

 DIMENSION INDREEKS(IP)

 DIMENSION CRITVEKA(IP),CRITVEKW(IP),CRITVEKG(IP)

 DIMENSION CRITVEKA0(IP),CRITVEKW0(IP)

 DIMENSION AKIES(IP,IP),WKIES(IP,IP),ADIM(IP),WDIM(IP),CVDIM(IP)

 DIMENSION FOUTAVEK(IP),FOUTWVEK(IP)

 CHARACTER*70 FILEOUT1,FILEOUT2

 FILEOUT1='kiesNS.d'

 FILEOUT2='foutNS.d'

C WRITE FILE HEADERS

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 WRITE(1,*) 'NORMAALVERDELING ',NMC,' MC HERHALINGS'

 WRITE(1,*) IP,' VERANDERLIKES',NN,' STEEKPROEFGR'

 WRITE(1,*) IPTEL,' RELEVANTE VERANDERLIKES'

 WRITE(1,*) 'KORRELASIE=',CORR,' SIGFAKTOR=',SIGFAKTOR

 WRITE(1,600)

 CLOSE(1)

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,*) 'NORMAALVERDELING ',NMC,' MC HERHALINGS'

 WRITE(1,*) IP,' VERANDERLIKES',NN,' STEEKPROEFGR'

 WRITE(1,*) IPTEL,' RELEVANTE VERANDERLIKES'

 WRITE(1,*) 'KOR=',CORR,' SIGFAKTOR=',SIGFAKTOR

 WRITE(1,600)

 CLOSE(1)

C SETUP THE DISTRIBUTION PARAMETERS

 DO 3 I=1,IPTEL

 AMU1(I)=0.0D0

 AMU2(I)=0.0D0

 DO 2 J=1,IPTEL

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

384

 SIGMAM11(I,J)=CORR

 SIGMAM12(I,J)=CORR

2 CONTINUE

 SIGMAM11(I,I)=1.0D0

 SIGMAM12(I,I)=1.0D0*SIGFAKTOR

3 CONTINUE

 DO 5 I=1,NNOISE

 AMU1(IPTEL+I)=0.0D0

 AMU2(IPTEL+I)=0.0D0

 DO 4 J=1,NNOISE

 SIGMAM2(I,J)=0.0D0

4 CONTINUE

 SIGMAM2(I,I)=20.0D0

5 CONTINUE

 TOL=1.0D2*DMACH(4)

 CALL DCHFAC(IPTEL,SIGMAM11,IPTEL,TOL,IRANK,RSIG11,IPTEL)

 CALL DCHFAC(IPTEL,SIGMAM12,IPTEL,TOL,IRANK,RSIG12,IPTEL)

 CALL DCHFAC(NNOISE,SIGMAM2,NNOISE,TOL,IRANK,RSIG2,NNOISE)

C SET UP THE RESPONSE VECTOR FOR THE TRAINING AND TEST DATA
 DO 8 I=1,NN

 YV(I)=-1.0D0

8 CONTINUE

 DO 9 I=NN+1,NNPMM

 YV(I)=1.0D0

9 CONTINUE

 DO 10 I=1,NT

 YVT(I)=-1.0D0

10 CONTINUE

 DO 11 I=NT+1,NMT

 YVT(I)=1.0D0

11 CONTINUE

C INITIALISE THE TEST ERRORS

 FOUTA=0.0D0

 FOUTA2=0.0D0

 FOUTW=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

385

 FOUTW2=0.0D0

 FOUTCV=0.0D0

 FOUTCV2=0.0D0

C INITIALISE THE TEST AND STANDARD ERRORS VECTORS
 DO J=1,IP+1

 SOMVEK(J,1)=0.0D0

 SOMVEK(J,2)=0.0D0

 SOM2VEK(J,1)=0.0D0

 SOM2VEK(J,2)=0.0D0

 END DO

C INITIALISE THE SELECTED DIMENSION AND VARIABLE INDEX VECTORS

 DO I=1,IP

 ADIM(I)=0.0D0

 WDIM(I)=0.0D0

 CVDIM(I)=0.0D0

 DO J=1,IP

 AKIES(I,J)=0.0D0

 WKIES(I,J)=0.0D0

 END DO

 END DO

C THE SIMULATION LOOP STARTS HERE

 DO 390 MC=1,NMC

C WRITE(6,*) MC

C GENERATE THE DATA FROM GROUP 1
 CALL DRNMVN(NN,IPTEL,RSIG11,IPTEL,XM11,NN)

 DO 18 I=1,NN

 DO 17 J=1,IPTEL

 XM(I,J)=XM11(I,J)+AMU1(J)

17 CONTINUE

18 CONTINUE

 CALL DRNMVN(NN,NNOISE,RSIG2,NNOISE,XM12,NN)

 DO 20 I=1,NN

 DO 19 J=1,NNOISE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

386

 XM(I,J+IPTEL)=XM12(I,J)+AMU1(J+IPTEL)

19 CONTINUE

20 CONTINUE

C GENERATE THE DATA FROM GROUP 2
 CALL DRNMVN(MM,IPTEL,RSIG12,IPTEL,XM21,MM)

 DO 22 I=1,MM

 DO 21 J=1,IPTEL

 XM(NN+I,J)=XM21(I,J)+AMU2(J)

21 CONTINUE

22 CONTINUE

 CALL DRNMVN(MM,NNOISE,RSIG2,NNOISE,XM22,MM)

 DO 24 I=1,MM

 DO 23 J=1,NNOISE

 XM(NN+I,J+IPTEL)=XM22(I,J)+AMU2(J+IPTEL)

23 CONTINUE

24 CONTINUE

C GENERATE THE TEST DATA

 CALL DRNMVN(NT,IPTEL,RSIG11,IPTEL,XT11,NT)

 CALL DRNMVN(NT,NNOISE,RSIG2,NNOISE,XT12,NT)

 CALL DRNMVN(MT,IPTEL,RSIG12,IPTEL,XT21,MT)

 CALL DRNMVN(MT,NNOISE,RSIG2,NNOISE,XT22,MT)

 DO 36 I=1,NT

 DO 35 J=1,IPTEL

 XT(I,J)=XT11(I,J)+AMU1(J)

35 CONTINUE

36 CONTINUE

 DO 38 I=1,NT

 DO 37 J=1,NNOISE

 XT(I,J+IPTEL)=XT12(I,J)+AMU1(J+IPTEL)

37 CONTINUE

38 CONTINUE

 DO 40 I=1,MT

 DO 39 J=1,IPTEL

 XT(NT+I,J)=XT21(I,J)+AMU2(J)

39 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

387

40 CONTINUE

 DO 42 I=1,MT

 DO 41 J=1,NNOISE

 XT(NT+I,J+IPTEL)=XT22(I,J)+AMU2(J+IPTEL)

41 CONTINUE

42 CONTINUE

C STANDARDISE THE TRAINING DATA

 DO 44 J=1,IP

 S1=0.0D0

 S2=0.0D0

 DO 43 I=1,NNPMM

 S1=S1+XM(I,J)

 S2=S2+XM(I,J)*XM(I,J)

43 CONTINUE

 GEM(J)=S1/NNPMM

 SA(J)=DSQRT((S2-NNPMM*GEM(J)*GEM(J))/(NNPMM-1))

44 CONTINUE

 DO 47 J=1,IP

 DO 46 I=1,NNPMM

 XM(I,J)=(XM(I,J)-GEM(J))/SA(J)

46 CONTINUE

47 CONTINUE

C STANDARDISE THE TEST DATA

 DO 49 J=1,IP

 DO 48 I=1,NMT

 XT(I,J)=(XT(I,J)-GEM(J))/SA(J)

48 CONTINUE

49 CONTINUE

 DO 52 J=1,IP

 INDVEKVOL(J)=J

 INDVEKA0(J)=J

 INDVEKW0(J)=J

52 CONTINUE

 GAM=1.0D0/IP

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

388

C OMIT A SINGLE VARIABLE-AT-A-TIME

 DO 150 NVERUIT=1,IP-1

 NV=IP-NVERUIT+1

 NVV=NV-1

 DO J=1,IP

 INDVEKAMAT(IP+1-NVERUIT,J)=INDVEKA0(J)

 INDVEKWMAT(IP+1-NVERUIT,J)=INDVEKW0(J)

 END DO

C CALCULATE THE ALIGNMENT-0 CRITERION

 AMAXA=-1.1D0

 DO 70 KK=1,NV

 ITEL=0

 DO 65 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKA2(ITEL)=INDVEKA0(J)

 ENDIF

65 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKA2,GRMAT)

 CALL BERCRITA(GRMAT,CRITA)

 CRITVEKA0(KK)=CRITA

 IF (CRITA.GT.AMAXA) THEN

 AMAXA=CRITA

 IVERUITA=INDVEKA0(KK)

 ENDIF

70 CONTINUE

 DO 72 J=1,NV

 INDVEKA3(J)=INDVEKA0(J)

72 CONTINUE

 ITEL=0

 DO 73 J=1,NV

 IF (INDVEKA3(J).NE.IVERUITA) THEN

 ITEL=ITEL+1

 INDVEKA0(ITEL)=INDVEKA3(J)

 ENDIF

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

389

 INDVEKA0(ITEL+1)=0

73 CONTINUE

C CALCULATE THE VARIATION RATIO CRITERION

 AMAXW=-1.1D0

 DO 90 KK=1,NV

 ITEL=0

 DO 85 J=1,NV

 IF (J.NE.KK) THEN

 ITEL=ITEL+1

 INDVEKW2(ITEL)=INDVEKW0(J)

 ENDIF

85 CONTINUE

 CALL GRAMMAT(GAM,XM,NVV,INDVEKW2,GRMAT)

 CALL BERCRITW(GRMAT,CRITW,CRITDUMMY)

 CRITVEKW0(KK)=CRITW

 IF (CRITW.GT.AMAXW) THEN

 AMAXW=CRITW

 IVERUITW=INDVEKW0(KK)

 ENDIF

90 CONTINUE

 DO 91 J=1,NV

 INDVEKW3(J)=INDVEKW0(J)

91 CONTINUE

 ITEL=0

 DO 92 J=1,NV

 IF (INDVEKW3(J).NE.IVERUITW) THEN

 ITEL=ITEL+1

 INDVEKW0(ITEL)=INDVEKW3(J)

 ENDIF

 INDVEKW0(ITEL+1)=0

92 CONTINUE

150 CONTINUE

C END OF THE ONE VARIABLE AT-A-TIME LOOP

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

390

C UPDATE THE SELECTED INPUT VARIABLE INDEX VECTORS

 DO J=1,IP

 INDVEKAMAT(1,J)=INDVEKA0(J)

 INDVEKWMAT(1,J)=INDVEKW0(J)

 END DO

 DO I=1,IP

 DO J=1,I

 AKIES(I,INDVEKAMAT(I,J))=AKIES(I,INDVEKAMAT(I,J))+1.0D0

 WKIES(I,INDVEKWMAT(I,J))=WKIES(I,INDVEKWMAT(I,J))+1.0D0

 END DO

 END DO

C NOW CALCULATE THE ERROR RATES FOR THE SEQUENCES OF SELECTED INPUT

C VARIABLES AND THE NUMBER OF SUPPORT VECTORS CORRESPONDING TO EACH

 DO J=1,IP

 NSV(J,1)=0

 NSV(J,2)=0

 END DO

 DO J=1,IP

 NVERIN=J

 GAM=1.0D0/J

 DO I=1,J

 INDREEKS(I)=INDVEKAMAT(J,I)

 END DO

 CALL GRAMMAT(GAM,XM,NVERIN,INDREEKS,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDREEKS,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPAR,NVERIN,INDREEKS,AL,BOPT)

 DO I=1,NNPMM

 IF(AL(I).GT.0.1D-20) NSV(J,1)=NSV(J,1)+1

 END DO

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTAVEK(J)=FOUT

 SOMVEK(J,1)=SOMVEK(J,1)+FOUT

 SOM2VEK(J,1)=SOM2VEK(J,1)+FOUT**2.0D0

 DO I=1,J

 INDREEKS(I)=INDVEKWMAT(J,I)

 END DO

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

391

 CALL GRAMMAT(GAM,XM,NVERIN,INDREEKS,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,NVERIN,INDREEKS,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPAR,NVERIN,INDREEKS,AL,BOPT)

 DO I=1,NNPMM

 IF(AL(I).GT.0.1D-20) NSV(J,2)=NSV(J,2)+1

 END DO

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 FOUTWVEK(J)=FOUT

 SOMVEK(J,2)=SOMVEK(J,2)+FOUT

 SOM2VEK(J,2)=SOM2VEK(J,2)+FOUT**2.0D0

 END DO

C USE CROSS-VALIDATION TO DETERMINE THE NUMBER OF INPUT VARIABLES

 CALL CROSSVAL(XM,YV,INDVEKWMAT,IBESTDIM)

 IAMIN=NNPMM+1

 IWMIN=NNPMM+1

C USE THE NUMBER OF SUPPORT VECTORS (CALCULATED ABOVE) TO DETERMINE THE

C NUMBER OF INPUT VARIABLES (BASED ON ALIGNMENTS AND VARIATION RATIOS)

 DO J=1,IP

 IF(NSV(J,1).LT.IAMIN) THEN

 IAMIN=NSV(J,1)

 IADIM=J

 END IF

 IF(NSV(J,2).LT.IWMIN) THEN

 IWMIN=NSV(J,2)

 IWDIM=J

 END IF

 END DO

C UPDATE THE NUMBER OF INPUT VARIABLES SELECTED

 ADIM(IADIM)=ADIM(IADIM)+1.0D0

 WDIM(IWDIM)=WDIM(IWDIM)+1.0D0

 CVDIM(IBESTDIM)=CVDIM(IBESTDIM)+1.0D0

C UPDATE THE TEST ERROR AND STANDARD ERROR VECTORS

 FOUTA=FOUTA+FOUTAVEK(IADIM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

392

 FOUTA2=FOUTA2+FOUTAVEK(IADIM)**2.0D0

 FOUTW=FOUTW+FOUTWVEK(IWDIM)

 FOUTW2=FOUTW2+FOUTWVEK(IWDIM)**2.0D0

 FOUTCV=FOUTCV+FOUTWVEK(IBESTDIM)

 FOUTCV2=FOUTCV2+FOUTWVEK(IBESTDIM)**2.0D0

C CALCULATE THE TEST ERROR WHEN ONLY THE SUBSET OF SEPARATING

C VARIABLES IS USED

 GAM=1.0D0/IPTEL

 CALL GRAMMAT(GAM,XM,IPTEL,INDVEKVOL,GRMAT)

 CALL GRAMNUUT(GAM,XM,XT,IPTEL,INDVEKVOL,GRNUUT)

 CALL DOENSVM(YV,XM,GRMAT,CPAR,IPTEL,INDVEKVOL,AL,BOPT)

 CALL BERFOUTSVM(YV,GRNUUT,YVT,AL,BOPT,FOUT)

 SOMVEK(IP+1,1)=SOMVEK(IP+1,1)+FOUT

 SOM2VEK(IP+1,1)=SOM2VEK(IP+1,1)+FOUT**2.0D0

390 CONTINUE

C THE MONTE CARLO SIMULATION LOOP ENDS HERE

C CALCULATE THE AVERAGE TEST ERRORS AND STANDARD ERRORS

 FOUTA=FOUTA/NMC

 FOUTW=FOUTW/NMC

 FOUTCV=FOUTCV/NMC

 FOUTA2=DSQRT((FOUTA2/NMC-FOUTA**2.0D0)/NMC)

 FOUTW2=DSQRT((FOUTW2/NMC-FOUTW**2.0D0)/NMC)

 FOUTCV2=DSQRT((FOUTCV2/NMC-FOUTCV**2.0D0)/NMC)

 DO J=1,IP+1

 SOMVEK(J,1)=SOMVEK(J,1)/NMC

 SOMVEK(J,2)=SOMVEK(J,2)/NMC

 SOM2VEK(J,1)=DSQRT((SOM2VEK(J,1)/NMC-SOMVEK(J,1)**2.0D0)/NMC)

 SOM2VEK(J,2)=DSQRT((SOM2VEK(J,2)/NMC-SOMVEK(J,2)**2.0D0)/NMC)

 END DO

C CALCULATE THE AVERAGE NUMBER OF SELECTED INPUT VARIABLES AND SELECTION

C PERCENTAGES

 DO I=1,IP

 ADIM(I)=ADIM(I)/NMC

 WDIM(I)=WDIM(I)/NMC

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

393

 CVDIM(I)=CVDIM(I)/NMC

 DO J=1,IP

 AKIES(I,J)=AKIES(I,J)/NMC

 WKIES(I,J)=WKIES(I,J)/NMC

 END DO

 END DO

C WRITE THE OBTAINED AVERAGE TEST ERRORS AND STANDARD ERRORS TO A FILE

 OPEN(1,FILE=FILEOUT2,ACCESS='APPEND')

 WRITE(1,600) FOUTA,FOUTA2

 WRITE(1,600) (SOMVEK(J,1),J=1,IP+1)

 WRITE(1,600) (SOM2VEK(J,1),J=1,IP+1)

 WRITE(1,*)

 WRITE(1,600) FOUTW,FOUTW2

 WRITE(1,600) (SOMVEK(J,2),J=1,IP+1)

 WRITE(1,600) (SOM2VEK(J,2),J=1,IP+1)

 WRITE(1,*)

 WRITE(1,600) FOUTCV,FOUTCV2

 WRITE(1,600) (SOMVEK(J,2),J=1,IP+1)

 WRITE(1,600) (SOM2VEK(J,2),J=1,IP+1)

 WRITE(1,*)

 CLOSE(1)

C WRITE THE AVERAGE NUMBER OF INPUT VARIABLES SELECTED AND THE OBTAINED

C SELECTION PERCENTAGES TO A FILE

 OPEN(1,FILE=FILEOUT1,ACCESS='APPEND')

 DO I=1,IP

 WRITE(1,600) (AKIES(I,J),J=1,IP)

 END DO

 WRITE(1,*)

 WRITE(1,600) (ADIM(I),I=1,IP)

 WRITE(1,*)

 DO I=1,IP

 WRITE(1,600) (WKIES(I,J),J=1,IP)

 END DO

 WRITE(1,*)

 WRITE(1,600) (WDIM(I),I=1,IP)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

394

 WRITE(1,*)

 DO I=1,IP

 WRITE(1,600) (WKIES(I,J),J=1,IP)

 END DO

 WRITE(1,*)

 WRITE(1,600) (CVDIM(I),I=1,IP)

 WRITE(1,*)

 CLOSE(1)

C FILE FORMATS

500 FORMAT(20I3)

600 FORMAT(15(F10.5,1X))

605 FORMAT(I6,2X,4(F12.5,1X))

700 FORMAT(10(F20.10))

STOP

END

C THE SIMULATION PROGRAM ENDS HERE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

395

C.6 FUNCTIONS AND SUBROUTINES

FUNCTION ALIGNMENT

SUBROUTINE BERFOUTKFDA

SUBROUTINE BERFOUTLDA

SUBROUTINE BERFOUTSVM

SUBROUTINE DOENSVM

SUBROUTINE GEMVARV

SUBROUTINE GRAMMAT

SUBROUTINE GRAMNUUT

SUBROUTINE FCN

SUBROUTINE PREIMAGE

SUBROUTINE RANFOR

SUBROUTINE BUILDTREE

SUBROUTINE FINDBESTSPLIT

SUBROUTINE TESTREEBAG

SUBROUTINE PERMOBMR

SUBROUTINE ZERV

SUBROUTINE ZERVR

SUBROUTINE ZERM

SUBROUTINE PACKLB

SUBROUTINE UNPACKLB

SUBROUTINE QUICKSORT

SUBROUTINE PERM1

SUBROUTINE RAND1

SUBROUTINE LRND

SUBROUTINE LRND1

FUNCTION RNORM

SUBROUTINE BERCRITW

SUBROUTINE BERCRIT12

SUBROUTINE BERCRITCC

SUBROUTINE BERCRITR

FUNCTION ALIGNMENTTRANS

SUBROUTINE GRAMMATL

SUBROUTINE BERCRITA0

SUBROUTINE BERCRITA1

SUBROUTINE BERCRITW0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

396

SUBROUTINE BERCRITW1

SUBROUTINE BERCRITW

SUBROUTINE BERCRITG1

SUBROUTINE BERCRIT12

SUBROUTINE BERCRITET1

SUBROUTINE BERCRITN1

SUBROUTINE BERCRITR

SUBROUTINE BERCRITR1

SUBROUTINE BERCRITA

SUBROUTINE BERCRITW

SUBROUTINE CROSSVAL

SUBROUTINE DEELGRAMNUUT

SUBROUTINE DOENSVMIN

SUBROUTINE BERFOUTSVMUIT

FUNCTION ALIGNMENT(J,XM)

C CALCULATES THE ALIGNMENT SELECTION CRITERION TO EVALUATE THE

C IMPORTANCE OF INPUT VARIABLE J

C INPUT: THE INDEX (J) OF THE INPUT VARIABLE TO EVALUATE

C THE TRAINING INPUT PATTERNS

C OUTPUT: THE ALIGNMENT VALUE

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1)

 DIMENSION XM(NNPMM,IP)

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 S4=0.0D0

 DO 5 I1=1,NN

 DO 4 I2=1,NN

 S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J))

 S1=S1+DEXP(-S)

 S4=S4+DEXP(-2*S)

4 CONTINUE

5 CONTINUE

 DO 10 I1=NN+1,NNPMM

 DO 9 I2=NN+1,NNPMM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

397

 S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J))

 S2=S2+DEXP(-S)

 S4=S4+DEXP(-2*S)

9 CONTINUE

10 CONTINUE

 DO 15 I1=1,NN

 DO 14 I2=NN+1,NNPMM

 S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J))

 S3=S3+DEXP(-S)

 S4=S4+2.0D0*DEXP(-2*S)

14 CONTINUE

15 CONTINUE

 S3=2.0D0*S3

 ALIGNMENT=(S1+S2-S3)/((1.0D0*NNPMM)*DSQRT(S4))

RETURN

END

C END OF THE ALIGNMENT FUNCTION

SUBROUTINE BERFOUTKFDA(GRNUUT,YVT,ALPHA,BOPT,FOUT)

C CALCULATES A KFDA TEST ERROR

C INPUT: KERNEL MATRIX ON THE TEST INPUT PATTERNS

 THE TEST LABELS

 THE FITTED KFD ALPHA VECTOR

C OUTPUT: THE NUMBER OF INCORRECT CLASSIFICATIONS ON THE TEST DATA SET

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

 DIMENSION GRNUUT(NMT,NNPMM),ALPHA(NNPMM),YVT(NMT)

 FOUT=0.0D0

 DO 10 I=1,NMT

 TOETS=1.0D0

 S=BOPT

 DO 5 J=1,NNPMM

 S=S+ALPHA(J)*GRNUUT(I,J)

5 CONTINUE

 IF (S.LT.0.0D0) TOETS=-1.0D0

 IF (DABS((YVT(I)-TOETS)).GT.0.1D0) FOUT=FOUT+1.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

398

10 CONTINUE

 FOUT=FOUT/NMT

RETURN

END

C END OF THE BERFOUTKFDA SUBROUTINE

SUBROUTINE BERFOUTLDA(XM,XT,YVT,NVER,JIND,FOUT)

C CALCULATES AN LDA TEST ERROR

C INPUT: THE TEST AND TRAINING INPUT PATTERNS

C THE TEST LABELS

C THE NO. OF AND INDICES OF THE SUBSET OF INPUT VARIABLES

C USES: GEMVARV AND DLINDS

C OUTPUT: THE NUMBER OF INCORRECT CLASSIFICATIONS ON THE TEST DATA SET

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

 DIMENSION XM(NNPMM,IP),XT(NMT,IP),YVT(NMT)

 DIMENSION XGEM1(IP),XGEM2(IP)

 DIMENSION SINV(IP,IP),SMAT(IP,IP),SMAT1(IP,IP)

 DIMENSION XV(NVER),JIND(IP)

 CALL GEMVARV(XM,SMAT,XGEM1,XGEM2)

 DO I=1,NVER

 DO J=1,NVER

 SMAT1(I,J)=SMAT(JIND(I),JIND(J))

 END DO

 END DO

 CALL DLINDS(NVER,SMAT1,IP,SINV,IP)

 FOUT=0.0D0

 DO 1151 I=1,NMT

 DO 1148 J=1,NVER

 XV(J)=XT(I,JIND(J))

1148 CONTINUE

 SOM1=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

399

 SOM2=0.0D0

 DO 1150 I1=1,NVER

 DO 1149 I2=1,NVER

 V1=XV(I1)-XGEM1(JIND(I1))

 V2=XV(I2)-XGEM1(JIND(I2))

 SOM1=SOM1+V1*SINV(I1,I2)*V2

 V1=XV(I1)-XGEM2(JIND(I1))

 V2=XV(I2)-XGEM2(JIND(I2))

 SOM2=SOM2+V1*SINV(I1,I2)*V2

1149 CONTINUE

1150 CONTINUE

 DIST1=SOM1-DLOG((1.0D0*NN)/(1.0D0*MM))

 DIST2=SOM2

 IF (DIST1.LT.DIST2) GROEP=-1.0D0

 IF (DIST1.GE.DIST2) GROEP=1.0D0

 IF (DABS((YVT(I)-GROEP)).GT.0.1D0) FOUT=FOUT+1.0D0

1151CONTINUE

 FOUT=FOUT/NMT

RETURN

END

C END OF THE BERFOUTLDA SUBROUTINE

SUBROUTINE BERFOUTSVM(YV,GRNUUT,YVT,ALPHA,BOPT,FOUT)

C CALCULATES AN SVM TEST ERROR

C INPUT: KERNEL MATRIX ON THE TEST INPUT PATTERNS

C THE TEST LABELS

C THE FITTED SVM ALPHA VECTOR

C OUTPUT: THE NUMBER OF INCORRECT CLASSIFICATIONS ON THE TEST DATA SET
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

 DIMENSION GRNUUT(NMT,NNPMM),ALPHA(NNPMM),YVT(NMT)

 DIMENSION YV(NNPMM)

 FOUT=0.0D0

 DO 10 I=1,NMT

 TOETS=1.0D0

 S=BOPT

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

400

 DO 5 J=1,NNPMM

 S=S+ALPHA(J)*YV(J)*GRNUUT(I,J)

5 CONTINUE

 IF (S.LT.0.0D0) TOETS=-1.0D0

 IF (DABS((YVT(I)-TOETS)).GT.0.1D0) FOUT=FOUT+1.0D0

10 CONTINUE

 FOUT=FOUT/NMT

RETURN

END

C END OF THE BERFOUTSVM SUBROUTINE

SUBROUTINE DOENKFDA(EENM,EENP,GRMAT,CPAR,ALPHA,BOPT)

C OBTAINS THE KFD ALPHA VECTOR (USING ALL COMPONENTS, OR ONLY A SUBSET

C OF COMPONENTS OF THE TRAINING INPUTS)

C INPUT: THE KERNEL MATRIX ON THE INPUT PATTERNS (ALL COMPONENTS OR

C ONLY A SUBSET)

C USES: DLSASF

C OUTPUT: THE KFD ALPHA VECTOR

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (LDH=NNPMM)

 DIMENSION GRMAT(NNPMM,NNPMM)

 DIMENSION EENP(NNPMM),EENM(NNPMM)

 DIMENSION B(NNPMM),H(NNPMM,NNPMM)

 DIMENSION ALPHA(NNPMM),AKM(NNPMM),AKP(NNPMM),SOM(NNPMM)

 DO 55 J=1,NNPMM

 S1=0.0D0

 S2=0.0D0

 DO 54 I=1,NNPMM

 S1=S1+GRMAT(I,J)*EENM(I)

 S2=S2+GRMAT(I,J)*EENP(I)

54 CONTINUE

 AKM(J)=S1/NN

 AKP(J)=S2/MM

 SOM(J)=AKP(J)+AKM(J)

 B(J)=AKP(J)-AKM(J)

55 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

401

 DO 58 J1=1,NNPMM

 DO 57 J2=1,NNPMM

 S=0.0D0

 DO 56 I=1,NNPMM

 S=S+GRMAT(I,J1)*GRMAT(I,J2)

56 CONTINUE

 H(J1,J2)=(S-MM*AKP(J1)*AKP(J2)-NN*AKM(J1)*AKM(J2))/NNPMM

57 CONTINUE

 H(J1,J1)=H(J1,J1)+CPAR

58 CONTINUE

 CALL DLSASF(NNPMM,H,LDH,B,ALPHA)

 AS=0.0D0

 DO 59 J=1,NNPMM

 AS=AS+ALPHA(J)*SOM(J)

59 CONTINUE

 BOPT=-0.50*AS-DLOG((1.0D0*NN)/(1.0D0*MM))

RETURN

END

C END OF THE DOENKFDA SUBROUTINE

SUBROUTINE DOENSVM(YV,XM,GRMAT,CPAR,GAM,NVER,INDVEK,AL,BOPT)

C OBTAINS THE SVM ALPHA VECTOR (USING ALL COMPONENTS, OR ONLY A SUBSET OF

C COMPONENTS OF THE TRAINING INPUT PATTERNS)

C INPUT: A VALUE FOR THE KERNEL HYPERPARAMETER

C THE KERNEL MATRIX

C THE VECTOR OF INDICES TO THE COMPONENTS IN INPUT PATTERNS TO BE

C USED

C USES: DQPROG, DSVRGP

C OUTPUT: THE KERNEL MATRIX

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NVAR=NNPMM,NCON=2*NVAR+1,NEQ=1,LDA=NCON,LDH=NVAR)

 DIMENSION XM(NNPMM,IP),YV(NNPMM),GRMAT(NNPMM,NNPMM)

 DIMENSION XV(IP),XVV(IP)

 DIMENSION A(NCON,NVAR),B(NCON),G(NVAR),H(NVAR,NVAR)

 DIMENSION SOL(NVAR),ALAM(NVAR),AL(NNPMM)

 DIMENSION FW(NNPMM),FWR(NNPMM),YVR(NNPMM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

402

 DIMENSION IACT(NVAR),IPERM(NNPMM)

 DIMENSION INDVEK(IP)

 EP=1.0D-8

 DO 28 I=1,NVAR

 A(1,I)=YV(I)

28 CONTINUE

 DO 30 I=1,NVAR

 DO 29 J=1,NVAR

 A(I+1,J)=0.0D0

 A(NVAR+I+1,J)=0.0D0

29 CONTINUE

 A(I+1,I)=1.0D0

 A(NVAR+I+1,I)=-1.0D0

30 CONTINUE

 B(1)=0.0D0

 DO 35 I=1,NVAR

 B(I+1)=0.0D0

 B(NVAR+I+1)=-1.0D0*CPAR

35 CONTINUE

 DO 36 I=1,NVAR

 G(I)=-1.0D0

36 CONTINUE

 DO 40 I=1,NVAR

 DO 39 J=1,NVAR

 H(I,J)=YV(I)*YV(J)*GRMAT(I,J)

39 CONTINUE

40 CONTINUE

 CALL DQPROG(NVAR,NCON,NEQ,A,LDA,B,G,H,LDH,DIAG,SOL,NACT,

 & IACT,ALAM)

 DO 45 I=1,NVAR

 IF (DABS(SOL(I)).LT.EP) SOL(I)=0.0D0

 IF (DABS(SOL(I)-CPAR).LT.EP) SOL(I)=CPAR

 AL(I)=SOL(I)

45 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

403

C DETERMINE THE Y INTERCEPT VALUE

 DO 200 J=1,NNPMM

 IPERM(J)=J

 S=0.0D0

 DO 199 I=1,NNPMM

 S=S+AL(I)*YV(I)*GRMAT(I,J)

199 CONTINUE

 FW(J)=S

200 CONTINUE

 CALL DSVRGP(NNPMM,FW,FWR,IPERM)

 DO 205 I=1,NNPMM

 YVR(I)=YV(IPERM(I))

205 CONTINUE

 BPAR=-FWR(1)+1.0D0

 BOPT=BPAR

 NFOUTE=NN

 NFOUTEOPT=NFOUTE

 NTEL=0

210 NTEL=NTEL+1

 BPAR=-(FWR(NTEL)+FWR(NTEL+1))/2.0D0

 IF (YVR(NTEL).LE.0.0D0) NFOUTE=NFOUTE-1

 IF (YVR(NTEL).GT.0.0D0) NFOUTE=NFOUTE+1

 IF (NFOUTE.LT.NFOUTEOPT) THEN

 NFOUTEOPT=NFOUTE

 BOPT=BPAR

 ENDIF

 IF (NTEL.LE.NNPMM-2) GOTO 210

RETURN

END

END OF THE DOENSVM SUBROUTINE

SUBROUTINE GEMVARV(XX,SMAT,XGEM1,XGEM2)

C REQUIRED IN BERFOUTLDA

C OBTAINS

C INPUT:

C USES: DCORVC,

C OUTPUT: IMPLICIT DOUBLE PRECISION (A-H,O-Z)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

404

 PARAMETER (IP=10,IPTEL=1,NNOISE=IP-IPTEL,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XX(NNPMM,IP),XX1(NN,IP),XX2(MM,IP)

 DIMENSION XGEM1(IP),XGEM2(IP)

 DIMENSION SMAT(IP,IP),S1(IP,IP),S2(IP,IP)

 EXTERNAL DCORVC,DLINDS

 DO 10 I=1,NN

 DO 5 J=1,IP

 XX1(I,J)=XX(I,J)

5 CONTINUE

10 CONTINUE

 DO 20 I=1,MM

 DO 15 J=1,IP

 XX2(I,J)=XX(NN+I,J)

15 CONTINUE

20 CONTINUE

 IDO=0

 NROW=NN

 NVAR=IP

 LDX=NN

 IFRQ=0

 IWT=0

 MOPT=0

 ICOPT=0

 LDCOV=IP

 LDINCD=1

 CALL DCORVC(IDO,NROW,NVAR,XX1,LDX,IFRQ,IWT,MOPT,

 & ICOPT,XGEM1,S1,LDCOV,INCD,LDINCD,NOBS,

 & NMISS,SUMWT)

 NROW=MM

 LDX=MM

 CALL DCORVC(IDO,NROW,NVAR,XX2,LDX,IFRQ,IWT,MOPT,

 & ICOPT,XGEM2,S2,LDCOV,INCD,LDINCD,NOBS,

 & NMISS,SUMWT)

 NOEM=NN+MM-2

 DO 30 I=1,IP

 DO 25 J=1,IP

 SMAT(I,J)=((NN-1)*S1(I,J)+(MM-1)*S2(I,J))/NOEM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

405

25 CONTINUE

30 CONTINUE

RETURN

END

END OF THE GEMVARV SUBROUTINE

SUBROUTINE GRAMMAT(GAMPAR,XM,NV,INDVEK,GRMAT)

C CALCULATES THE KERNEL MATRIX ON THE TRAINING INPUT PATTERNS (USING ALL

COMPONENTS, OR ONLY A SUBSET OF COMPONENTS)

C INPUT: A VALUE FOR THE KERNEL HYPERPARAMETER

C THE TRAINING INPUT PATTERNS

C THE VECTOR OF INDICES TO THE COMPONENTS IN INPUT PATTERNS TO BE

C USED

C OUTPUT: THE KERNEL MATRIX

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 DIMENSION INDVEK(IP)

 DO 10 I=1,NNPMM-1

 GRMAT(I,I)=1.0D0

 DO 5 J=I+1,NNPMM

 S=0.0D0

 DO 3 K=1,NV

 KK=INDVEK(K)

 S=S+(XM(I,KK)-XM(J,KK))*(XM(I,KK)-XM(J,KK))

3 CONTINUE

 GRMAT(I,J)=DEXP(-GAMPAR*S)

5 CONTINUE

10 CONTINUE

 GRMAT(NNPMM,NNPMM)=1.0D0

 DO 20 I=2,NNPMM

 DO 15 J=1,I-1

 GRMAT(I,J)=GRMAT(J,I)

15 CONTINUE

20 CONTINUE

RETURN

C END OF THE GRAMMAT SUBROUTINE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

406

SUBROUTINE GRAMNUUT(GAMPAR,XM,XT,NV,INDVEK,GRNUUT)

C CALCULATES THE KERNEL MATRIX ENTRIES BETWEEN TRAINING AND TEST

C PATTERNS (USING ALL COMPONENTS, OR ONLY A SUBSET OF COMPONENTS)

C INPUT: A VALUE FOR THE KERNEL HYPERPARAMETER

C THE TRAINING AND TEST INPUT PATTERNS

C THE VECTOR OF INDICES TO THE COMPONENTS IN INPUT PATTERNS TO BE

C USED

C OUTPUT: THE KERNEL MATRIX

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=1,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NT=1000,MT=1000,NMT=NT+MT)

 DIMENSION XM(NNPMM,IP),GRNUUT(NMT,NNPMM)

 DIMENSION XT(NMT,IP)

 DIMENSION INDVEK(IP)

 DO 10 I=1,NMT

 DO 5 J=1,NNPMM

 S=0.0D0

 DO 3 K=1,NV

 KK=INDVEK(K)

 S=S+(XT(I,KK)-XM(J,KK))*(XT(I,KK)-XM(J,KK))

3 CONTINUE

 GRNUUT(I,J)=DEXP(-GAMPAR*S)

5 CONTINUE

10 CONTINUE

RETURN

END

C END OF THE GRAMNUUT SUBROUTINE

SUBROUTINE FCN(NDIM,X,F)

C REQUIRED IN THE PREIMAGE SUBROUTINE

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=4,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (GAMPAR=1.0D0/IP)

 DIMENSION X(IP),X1(IP),X2(IP)

 COMMON /PREIM/ ALPHAC(NNPMM),XMC(NNPMM,IP),GAMPARC

 S=0.0D0

 DO 20 I=1,NNPMM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

407

 DO 5 J=1,NDIM

 X1(J)=XMC(I,J)

 X2(J)=X(J)

5 CONTINUE

 S1=0.0D0

 DO 10 K=1,NDIM

 S1=S1+(X1(K)-X2(K))*(X1(K)-X2(K))

10 CONTINUE

 TERM=ALPHAC(I)*DEXP(-GAMPARC*S1)

 S=S+TERM

20 CONTINUE

 F=-1.0D0*S*S

RETURN

END

C END OF THE FCN SUBROUTINE

SUBROUTINE PREIMAGE(XM,ALPHA,XPRE)

C FINDS AN APPROXIMATE PRE-IMAGE FOR A GIVEN LINEAR COMBINATION OF THE

C DATA POINTS IN FEATURE SPACE

C THE LINEAR COMBINATION IS SPECIFIED BY SPECIFYING ITS COEFFICIENTS IN THE

C VECTOR ALPHA.

C THE IMSL ROUTINE DUMINF IS USED TO PERFORM THE REQUIRED OPTIMISATION.

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 EXTERNAL FCN

 PARAMETER (IP=10,IPTEL=4,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (GAMPAR=1.0D0/IP)

 DIMENSION XM(NNPMM,IP),ALPHA(NNPMM)

 DIMENSION XGUESS(IP),XSCALE(IP),RPARAM(7),XPRE(IP)

 DIMENSION IPARAM(7)

 COMMON /PREIM/ ALPHAC(NNPMM),XMC(NNPMM,IP),GAMPARC

 DO 5 I=1,NNPMM

 ALPHAC(I)=ALPHA(I)

 DO 4 J=1,IP

 XMC(I,J)=XM(I,J)

4 CONTINUE

5 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

408

 GAMPARC=GAMPAR

 NDIM=IP

 DO 8 J=1,IP

 XGUESS(J)=XM(1,J)

 XSCALE(J)=1.0D0

8 CONTINUE

 FSCALE=1.0D0

 IPARAM(1)=0

 CALL DUMINF(FCN,NDIM,XGUESS,XSCALE,FSCALE,IPARAM,RPARAM,

 & XPRE,FVALUE)

RETURN

END

END OF THE PREIMAGE SUBROUTINE

SUBROUTINE RANFOR(X,Y,ZSCORE)

C USES: DUMINF, FCN

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 PARAMETER(MDIM=10,NSAMPLE=200,NTEST=1,NTHSIZE=5,

1 NRNODES=2*(NSAMPLE/NTHSIZE)+1,JPRINT=0,JBT=250,MTRY=MDIM/3,

1 IMP=1,NIMP=IMP*NSAMPLE,MIMP=IMP*MDIM,

1 TH=0.5D0,IMPPRINT=1)

 DIMENSION X(MDIM,NSAMPLE),Y(NSAMPLE),YB(NSAMPLE),

1 RSNODECOST(NRNODES),ZSCORE(MDIM),

1 RSTREECOST(0:NRNODES),BESTCRIT(NRNODES),SD(MDIM),WTS(NSAMPLE),

1 V(NSAMPLE),UT(NSAMPLE),XT(NSAMPLE),XB(MDIM,NSAMPLE),

1 ERRIMP(MIMP), YTR(NSAMPLE),YPTR(NSAMPLE),YL(NSAMPLE),XA(3*MDIM),

1 AVNODE(NRNODES),UTR(NSAMPLE),PREDIMP(NIMP,MIMP),ZA(MDIM),

1 TGINI(MDIM),UPPER(NRNODES),

1 YPRED(NTEST),YTREE(NTEST),XTS(MDIM,NTEST),YTS(NTEST)

 DIMENSION JDEX(NSAMPLE),IITREEMAP(2,NRNODES), NODESTATUS(NRNODES),

1 NODEPOP(NRNODES),NPERT(NSAMPLE),IP(MDIM),NTERM(0:NRNODES),

1 NPERM(NSAMPLE),IIPARENT(NRNODES),JJCAT(MDIM),NOUT(NSAMPLE),

1 JIN(NSAMPLE),ISORT(NSAMPLE),NODESTART(NRNODES),NCASE(NSAMPLE),

1 NBRTERM(NRNODES),JPERM(JBT),MBEST(NRNODES),INCL(MDIM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

409

 DO N=1,717

 ZZ=RAND(1)

 END DO

 DO M=1,MDIM

 JJCAT(M)=1

 END DO

 QVERRTS=0

 AVERRB=0

 AVY=0

 VARY=0

 DO N=1,NSAMPLE

 NTRUE=N-1

 VARY=VARY+NTRUE*(Y(N)-AVY)**2/(NTRUE+1)

 AVY=(NTRUE*AVY+Y(N))/(NTRUE+1)

 END DO

 VARY=VARY/NSAMPLE

 CALL ZERVR(YPTR,NSAMPLE)

 CALL ZERV(NOUT,NSAMPLE)

 ASTR=0

 ASD=0

 DO JB=1,JBT

 CALL ZERV(JIN,NSAMPLE)

 DO N=1,NSAMPLE

 K=INT(RAND1(1)*NSAMPLE)+1

 JIN(K)=1

 YB(N)=Y(K)

 DO M=1,MDIM

 XB(M,N)=X(M,K)

 END DO

 END DO

 NLS=NSAMPLE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

410

 CALL BUILDTREE(XB,YB,YL,MDIM,NLS,NSAMPLE,IITREEMAP,JDEX,

1 UPPER,AVNODE,BESTCRIT, NODESTATUS,NODEPOP,NODESTART,

1 NRNODES,NTHSIZE,RSNODECOST,NCASE,IIPARENT,UT,V,IPRINT,

1 XT,MTRY,IP,NLIM,MBEST,JJCAT,TGINI)

 NDBIGTREE=NRNODES

 DO K=NRNODES,1,-1

 IF (NODESTATUS(K).EQ.0) NDBIGTREE=NDBIGTREE-1

 IF (NODESTATUS(K).EQ.2) NODESTATUS(K)=-1

 END DO

 CALL ZERVR(YTR,NSAMPLE)

 CALL TESTREEBAG(X,NSAMPLE,MDIM,IITREEMAP,NODESTATUS,

1 NRNODES,NDBIGTREE,YTR,UPPER,AVNODE,MBEST,JJCAT)

 ERRB=0

 JOUT=0

 DO N=1,NSAMPLE

 IF(JIN(N).EQ.0) THEN

 YPTR(N)=(NOUT(N)*YPTR(N)+YTR(N))/(NOUT(N)+1)

 NOUT(N)=NOUT(N)+1

 END IF

 IF(NOUT(N).GT.0) JOUT=JOUT+1

 ERRB=ERRB+(Y(N)-YPTR(N))**2

 END DO

 ERRB=ERRB/NSAMPLE

 IF(IMP.EQ.1) THEN

 DO MR=1,MDIM

 CALL PERMOBMR(MR,X,UTR,XT,JIN,NSAMPLE,MDIM)

 CALL TESTREEBAG(X,NSAMPLE,MDIM,IITREEMAP,NODESTATUS,

1 NRNODES,NDBIGTREE,YTR,UPPER,AVNODE,MBEST,JJCAT)

 DO N=1,NSAMPLE

 X(MR,N)=XT(N)

 END DO

 EM=0

 DO N=1,NSAMPLE

 IF(JIN(N).EQ.0) THEN

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

411

 PREDIMP(N,MR)=(NOUT(N)*PREDIMP(N,MR)+YTR(N))

1 /(NOUT(N)+1)

 END IF

 EM=EM+(Y(N)-PREDIMP(N,MR))**2

 END DO

 ERRIMP(MR)=EM/NSAMPLE

 END DO

 END IF

END DO

IF(IMP.EQ.1) THEN

 DO M=1,MDIM

 ERRIMP(M)=100.0D0*((ERRIMP(M)/ERRB)-1)

 IF(ERRIMP(M).LE.0.0D0) ERRIMP(M)=0.0D0

 END DO

END IF

DO M=1,MDIM

 ZSCORE(M)=ERRIMP(M)

END DO

END

C END OF THE RANFOR SUBROUTINE

SUBROUTINE BUILDTREE(X,Y,YL,MDIM,NLS,NSAMPLE,IITREEMAP,

1 JDEX,UPPER,AVNODE,BESTCRIT, NODESTATUS,

1 NODEPOP,NODESTART,NRNODES,NTHSIZE,RSNODECOST,

1 NCASE,IIPARENT,UT,V,IPRINT,XT,MTRY,IP,NLIM,

1 MBEST,JJCAT,TGINI)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION IITREEMAP(2,NRNODES),IIPARENT(NRNODES),

1 NODESTATUS(NRNODES),IP(MDIM),NODEPOP(NRNODES),

1 NODESTART(NRNODES),JDEX(NSAMPLE),NCASE(NSAMPLE),

1 MBEST(NRNODES),JJCAT(MDIM)

 DIMENSION Y(NSAMPLE),BESTCRIT(NRNODES),X(MDIM,NSAMPLE),

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

412

1 AVNODE(NRNODES),XT(NSAMPLE),UPPER(NRNODES),

1 V(NSAMPLE),UT(NSAMPLE),RSNODECOST(NRNODES),

1 YL(NSAMPLE),TGINI(MDIM)

 CALL ZERV(NODESTATUS,NRNODES)

 CALL ZERV(NODESTART,NRNODES)

 CALL ZERV(NODEPOP,NRNODES)

 CALL ZERVR(AVNODE,NRNODES)

 DO N=1,NSAMPLE

 UT(N)=0

 JDEX(N)=N

 END DO

 NCUR=1

 NODESTART(1)=1

 NODEPOP(1)=NLS

 NODESTATUS(1)=2

 AV=0

 SS=0

 DO N=1,NLS

 D=Y(JDEX(N))

 SS=SS+(N-1)*(AV-D)*(AV-D)/N

 AV=((N-1)*AV+D)/N

 END DO !N

 AVNODE(1)=AV

 RSNODECOST(1)=SS/NLS

 DO 30 KBUILD=1,NRNODES

 IF (KBUILD.GT.NCUR) GOTO 50

 IF (NODESTATUS(KBUILD).NE.2) GOTO 30

 NDSTART=NODESTART(KBUILD)

 NDEND=NDSTART+NODEPOP(KBUILD)-1

 NODECNT=NODEPOP(KBUILD)

 SUMNODE=NODECNT*AVNODE(KBUILD)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

413

 JSTAT=0

 CALL FINDBESTSPLIT(X,XT,UT,JDEX,Y,MDIM,NSAMPLE,

1 NDSTART,NDEND,MSPLIT,DECSPLIT,UBEST,NCASE,NDENDL,

1 JSTAT,V,MTRY,IP,NLIM,SUMNODE,NODECNT,YL,JJCAT)

 IF (JSTAT.EQ.1) THEN

 NODESTATUS(KBUILD)=-1

 GO TO 30

 ELSE

 MBEST(KBUILD)=MSPLIT

 UPPER(KBUILD)=UBEST

 BESTCRIT(KBUILD)=DECSPLIT

 END IF

 TGINI(MSPLIT)=TGINI(MSPLIT)+DECSPLIT

 NODEPOP(NCUR+1)=NDENDL-NDSTART+1

 NODEPOP(NCUR+2)=NDEND-NDENDL

 NODESTART(NCUR+1)=NDSTART

 NODESTART(NCUR+2)=NDENDL+1

 AV=0

 SS=0

 DO N=NDSTART,NDENDL

 D=Y(JDEX(N))

 K=N-NDSTART

 SS=SS+K*(AV-D)*(AV-D)/(K+1)

 AV=(K*AV+D)/(K+1)

 END DO !N

 AVNODE(NCUR+1)=AV

 RSNODECOST(NCUR+1)=SS/NLS

 AV=0

 SS=0

 DO N=NDENDL+1,NDEND

 D=Y(JDEX(N))

 K=N-NDENDL-1

 SS=SS+K*(AV-D)*(AV-D)/(K+1)

 AV=(K*AV+D)/(K+1)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

414

 END DO !N

 AVNODE(NCUR+2)=AV

 RSNODECOST(NCUR+2)=SS/NLS

 NODESTATUS(NCUR+1)=2

 NODESTATUS(NCUR+2)=2

 IF (NODEPOP(NCUR+1).LE.NTHSIZE)

1 NODESTATUS(NCUR+1)=-1

 IF (NODEPOP(NCUR+2).LE.NTHSIZE)

1 NODESTATUS(NCUR+2)=-1

 IITREEMAP(1,KBUILD)=NCUR+1

 IITREEMAP(2,KBUILD)=NCUR+2

 IIPARENT(NCUR+1)=KBUILD

 IIPARENT(NCUR+2)=KBUILD

 NODESTATUS(KBUILD)=1

 NCUR=NCUR+2

 IF (NCUR.GE.NRNODES) GOTO 50

30 CONTINUE

50 CONTINUE

END

C END OF THE BUILDTREE SUBROUTINE

SUBROUTINE FINDBESTSPLIT(X,XT,UT,JDEX,Y,MDIM,

1 NSAMPLE,NDSTART,NDEND,MSPLIT,DECSPLIT,UBEST,

1 NCASE,NDENDL,JSTAT,V,MTRY,IP,NLIM,

1 SUMNODE,NODECNT,YL,JJCAT)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION NCASE(NSAMPLE),JDEX(NSAMPLE),IP(MDIM),

1 NCAT(32),ICAT(32),JJCAT(MDIM)

 DIMENSION X(MDIM,NSAMPLE),UT(NSAMPLE),XT(NSAMPLE),

1 V(NSAMPLE),Y(NSAMPLE),YL(NSAMPLE),

1 SUMCAT(32),AVCAT(32),TAVCAT(32)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

415

 CRITMAX=0

200 CALL ZERV(IP,MDIM)

 NON=0

 DO MT=1,MTRY

 CRITVAR=0

100 KV=INT(RAND(1)*MDIM)+1

 IF(IP(KV).EQ.1) GOTO 100

 IP(KV)=100

 LC=JJCAT(KV)

 IF(LC.EQ.1) THEN

 DO N=NDSTART,NDEND

 XT(N)=X(KV,JDEX(N))

 YL(N)=Y(JDEX(N))

 END DO

 ELSE

 CALL ZERVR(SUMCAT,32)

 CALL ZERV(NCAT,32)

 DO N=NDSTART,NDEND

 L=NINT(X(KV,JDEX(N)))

 D=Y(JDEX(N))

 SUMCAT(L)=SUMCAT(L)+D

 NCAT(L)=NCAT(L)+1

 END DO

 DO J=1,LC

 IF(NCAT(J).GT.0) THEN

 AVCAT(J)=SUMCAT(J)/NCAT(J)

 ELSE

 AVCAT(J)=0

 END IF

 END DO

 DO N=1,NSAMPLE

 XT(N)=AVCAT(NINT(X(KV,JDEX(N))))

 YL(N)=Y(JDEX(N))

 END DO

 END IF

 DO N=NDSTART,NDEND

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

416

 V(N)=XT(N)

 END DO

 DO N=1,NSAMPLE

 NCASE(N)=N

 END DO

 CALL QUICKSORT(V,NCASE,NDSTART,NDEND,NSAMPLE)

 IF(V(NDSTART).GE.V(NDEND))THEN

 NON=NON+1

 IF(NON.GE.3*MDIM) THEN

 JSTAT=1

 RETURN

 END IF

 GOTO 100

 END IF

 SUML=0

 SUMR=SUMNODE

 NPOPL=0

 NPOPR=NODECNT

 DO NSP=NDSTART,NDEND-1

 D=YL(NCASE(NSP))

 SUML=SUML+D

 SUMR=SUMR-D

 NPOPL=NPOPL+1

 NPOPR=NPOPR-1

 IF (V(NSP).LT.V(NSP+1)) THEN

 CRIT=(SUML*SUML/NPOPL)+(SUMR*SUMR/NPOPR)

 IF (CRIT.GT.CRITVAR) THEN

 UBESTT=(V(NSP)+V(NSP+1))/2.0

 CRITVAR=CRIT

 NBESTT=NSP

 ENDIF

 END IF

 END DO

 IF(CRITVAR.GT.CRITMAX) THEN

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

417

 UBEST=UBESTT

 NBEST=NBESTT

 MSPLIT=KV

 CRITMAX=CRITVAR

 DO N=NDSTART,NDEND

 UT(N)=XT(N)

 END DO

 IF (JJCAT(KV).GT.1) THEN

 IC=JJCAT(KV)

 DO J=1,IC

 TAVCAT(J)=AVCAT(J)

 END DO

 END IF

 END IF

 END DO

 NL=NDSTART-1

 DO NSP=NDSTART,NDEND

 IF(UT(NSP).LE.UBEST) THEN

 NL=NL+1

 NCASE(NL)=JDEX(NSP)

 END IF

 END DO

 NDENDL=MAX0(NL,NDSTART+1)

 NR=NDENDL

 DO NSP=NDSTART,NDEND

 IF(UT(NSP).GT.UBEST) THEN

 NR=NR+1

 IF(NR.GT.NSAMPLE) GOTO 765

 NCASE(NR)=JDEX(NSP)

 END IF

 END DO

765 CONTINUE

 IF(NDENDL.GE.NDEND) NDENDL=NDEND-1

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

418

 DO N=NDSTART,NDEND

 JDEX(N)=NCASE(N)

 END DO

 LC=JJCAT(MSPLIT)

 IF(LC.GT.1) THEN

 DO J=1,LC

 IF(TAVCAT(J).LT.UBEST) THEN

 ICAT(J)=1

 ELSE

 ICAT(J)=0

 END IF

 END DO

 CALL PACKLB(LC,ICAT,NUBEST)

 UBEST=REAL(NUBEST)

 END IF

 DECSPLIT=CRITMAX-(SUMNODE*SUMNODE/NODECNT)

END

C END OF THE FINDBESTSPLIT SUBROUTINE

SUBROUTINE TESTREEBAG(X,NSAMPLE,MDIM,IITREEMAP,NODESTATUS,

C USES: DUMINF, FCN

1 NRNODES,NDBIGTREE,YTREE,UPPER,AVNODE,MBEST,JJCAT)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION X(MDIM,NSAMPLE),

1 UPPER(NRNODES),AVNODE(NRNODES),YTREE(NSAMPLE)

 DIMENSION IITREEMAP(2,NRNODES),NODESTATUS(NRNODES),

1 MBEST(NRNODES),JJCAT(MDIM),ICAT(32)

 DO N=1,NSAMPLE

 KT=1

 DO K=1,NDBIGTREE

 IF(NODESTATUS(KT).EQ.-1) THEN

 YTREE(N)=AVNODE(KT)

 GOTO 100

 END IF

 M=MBEST(KT)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

419

 LC=JJCAT(M)

 IF(LC.EQ.1) THEN

 IF (X(M,N).LE.UPPER(KT)) THEN

 KT=IITREEMAP(1,KT)

 ELSE

 KT=IITREEMAP(2,KT)

 ENDIF

 ELSE

 MM=NINT(UPPER(KT))

 CALL UNPACKLB(LC,MM,ICAT)

 J=NINT(X(M,N))

 IF(ICAT(J).EQ.1) THEN

 KT=IITREEMAP(1,KT)

 ELSE

 KT=IITREEMAP(2,KT)

 ENDIF

 END IF

 END DO

100 CONTINUE

 END DO

END

C END OF THE TESTREEBAG SUBROUTINE

SUBROUTINE PERMOBMR(MR,X,TP,TX,JIN,NSAMPLE,MDIM)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION X(MDIM,NSAMPLE),TP(NSAMPLE),TX(NSAMPLE),

1 JIN(NSAMPLE)

 KOUT=0

 CALL ZERVR(TP,NSAMPLE)

 DO N=1,NSAMPLE

 IF(JIN(N).EQ.0) THEN

 KOUT=KOUT+1

 TP(KOUT)=X(MR,N)

 END IF

 END DO !N

 CALL PERM1(KOUT,NSAMPLE,TP)

 IOUT=0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

420

 DO N=1,NSAMPLE

 TX(N)=X(MR,N)

 IF(JIN(N).EQ.0) THEN

 IOUT=IOUT+1

 X(MR,N)=TP(IOUT)

 END IF

 END DO

END

C END OF THE PERMOBMR SUBROUTINE

SUBROUTINE ZERV(IX,M1)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION IX(M1)

 DO 10 N=1,M1

 IX(N)=0

10 CONTINUE

END

C END OF THE ZERV SUBROUTINE

SUBROUTINE ZERVR(RX,M1)

C INPUT: A VALUE

C USES: DUMINF, FCN

C OUTPUT:

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION RX(M1)

 DO 10 N=1,M1

 RX(N)=0.0D0

10 CONTINUE

END

C END OF THE ZERVR SUBROUTINE

SUBROUTINE ZERM(MX,M1,M2)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION MX(M1,M2)

 DO 10 I=1,M1

 DO 20 J=1,M2

 MX(I,J)=0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

421

20 CONTINUE

10 CONTINUE

END

C END OF THE ZERM SUBROUTINE

SUBROUTINE PACKLB(L,ICAT,NPACK)

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 INTEGER ICAT(32)

 NPACK=0

 DO 10 K=1,L

 NPACK=NPACK+ICAT(K)*(2**(K-1))

10 CONTINUE

END

C END OF THE PACKLB SUBROUTINE

SUBROUTINE UNPACKLB(L,NPACK,ICAT)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 INTEGER ICAT(32)

 CALL ZERV(ICAT,32)

 N=NPACK

 ICAT(1)=MOD(N,2)

 DO 10 K=2,L

 N=(N-ICAT(K-1))/2

 ICAT(K)=MOD(N,2)

10 CONTINUE

END

C END OF THE UNPACKLB SUBROUTINE

SUBROUTINE QUICKSORT(V,IPERM,II,JJ,KK)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION IPERM(KK),V(KK),IU(32),IL(32)

 M=1

 I=II

 J=JJ

10 IF (I.GE.J) GO TO 80

20 K=I

 IJ=(J+I)/2

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

422

 IIT=IPERM(IJ)

 VT=V(IJ)

 IF (V(I).LE.VT) GO TO 30

 IPERM(IJ)=IPERM(I)

 IPERM(I)=IIT

 IIT=IPERM(IJ)

 V(IJ)=V(I)

 V(I)=VT

 VT=V(IJ)

30 L=J

 IF (V(J).GE.VT) GO TO 50

 IPERM(IJ)=IPERM(J)

 IPERM(J)=IIT

 IIT=IPERM(IJ)

 V(IJ)=V(J)

 V(J)=VT

 VT=V(IJ)

 IF (V(I).LE.VT) GO TO 50

 IPERM(IJ)=IPERM(I)

 IPERM(I)=IIT

 IIT=IPERM(IJ)

 V(IJ)=V(I)

 V(I)=VT

 VT=V(IJ)

 GO TO 50

40 IPERM(L)=IPERM(K)

 IPERM(K)=IITT

 V(L)=V(K)

 V(K)=VTT

50 L=L-1

 IF (V(L).GT.VT) GO TO 50

 IITT=IPERM(L)

 VTT=V(L)

60 K=K+1

 IF (V(K).LT.VT) GO TO 60

 IF (K.LE.L) GO TO 40

 IF (L-I.LE.J-K) GO TO 70

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

423

 IL(M)=I

 IU(M)=L

 I=K

 M=M+1

 GO TO 90

70 IL(M)=K

 IU(M)=J

 J=L

 M=M+1

 GO TO 90

80 M=M-1

 IF (M.EQ.0) RETURN

 I=IL(M)

 J=IU(M)

90 IF (J-I.GT.10) GO TO 20

 IF (I.EQ.II) GO TO 10

 I=I-1

100 I=I+1

 IF (I.EQ.J) GO TO 80

 IIT=IPERM(I+1)

 VT=V(I+1)

 IF (V(I).LE.VT) GO TO 100

 K=I

110 IPERM(K+1)=IPERM(K)

 V(K+1)=V(K)

 K=K-1

 IF (VT.LT.V(K)) GO TO 110

 IPERM(K+1)=IIT

 V(K+1)=VT

 GO TO 100

END

C END OF THE QUICKSORT SUBROUTINE

SUBROUTINE PERM1(NP,NS,TP)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DIMENSION TP(NS)

 J=NP

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

424

11 RND = RAND(1)

 K=INT(J*RND)+1

 TX=TP(J)

 TP(J)=TP(K)

 TP(K)=TX

 J=J-1

 IF(J.GT.1) GO TO 11

 END

C END OF THE PERM1 SUBROUTINE

FUNCTION RAND(J)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 SAVE DSEED

 DATA DSEED /17395/

 CALL LRND(DSEED,U)

 RAND=U

END

C END OF THE RAND FUNCTION

SUBROUTINE LRND(DSEED,U)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DATA D31M1 /2147483647/

 DSEED=DMOD(16087*DSEED,D31M1)

 U=DSEED/D31M1

RETURN

END

C END OF THE LRND SUBROUTINE

FUNCTION RAND1(J)

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 SAVE DSEED1

 DATA DSEED1 /17395/

 CALL LRND1(DSEED1,U)

 RAND1=U

END

C END OF THE RAND1 FUNCTION

SUBROUTINE LRND1(DSEED1,U)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

425

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 DATA D31M1 /2147483647.D0/

 DSEED1=DMOD(16087.0D0*DSEED1,D31M1)

 U=DSEED1/D31M1

RETURN

END

C END OF THE LRND1 SUBROUTINE

FUNCTION RNORM(J)

 IMPLICIT DOUBLE PRECISION(A-H,O-Z)

 U=RAND(1)

 V=RAND(1)

 RNORM=DSQRT(-2.0D0*DLOG(U))*DCOS(6.28318531D0*V)

END

C END OF THE RNORM FUNCTION

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

426

SUBROUTINE BERCRITW(GRMAT,CRIT1,CRIT2)

C CALCULATES THE VARIATION RATIO AND THE DISTANCE BETWEEN MEANS

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 DO 5 I=1,NN

 DO 4 J=1,NN

 S1=S1+GRMAT(I,J)

4 CONTINUE

5 CONTINUE

 S2=0.0D0

 DO 10 I=NN+1,NNPMM

 DO 9 J=NN+1,NNPMM

 S2=S2+GRMAT(I,J)

9 CONTINUE

10 CONTINUE

 S3=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+GRMAT(I,J)

14 CONTINUE

15 CONTINUE

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM)

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM

 CRIT1=TELLER/ANOEMER

 CRIT2=TELLER

 RETURN

END

C END OF THE BERCRITW SUBROUTINE

SUBROUTINE BERCRIT12(GRMAT,CRIT)

C CALCULATES THE SUM OF DISSIMILARITIES IN THE KERNEL MATRIX

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

427

 S3=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+GRMAT(I,J)

14 CONTINUE

15 CONTINUE

 CRIT=S3

RETURN

END

C END OF THE BERCRIT12 SUBROUTINE

SUBROUTINE BERCRITCC(GRMAT,CRIT)

C CALCULATES THE CUT COST SELECTION CRITERION

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S1=S1+2.0D0*GRMAT(I,J)

14 CONTINUE

15 CONTINUE

 S2=0.0D0

 DO 17 I=1,NNPMM

 DO 16 J=1,NNPMM

 S2=S2+GRMAT(I,J)**2

16 CONTINUE

17 CONTINUE

 CRIT=DABS(S1/NNPMM*DSQRT(S2))

RETURN

END

C END OF THE BERCRITCC SUBROUTINE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

428

SUBROUTINE BERCRITR(GRMAT1,EENP,EENM,ALPHA,CPAR,CRIT)

C CALCULATES THE RAYLEIGH QUOTIENT

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION GRMAT1(NNPMM,NNPMM),EENP(NNPMM),EENM(NNPMM)

 DIMENSION B(NNPMM),H(NNPMM,NNPMM),ALPHA(NNPMM)

 DIMENSION AKP(NNPMM),AKM(NNPMM)

 DIMENSION AM(NNPMM,NNPMM),ALPHAN(NNPMM),ALPHAM(NNPMM)

 DO 62 J=1,NNPMM

 S1=0.0D0

 S2=0.0D0

 DO 61 I=1,NNPMM

 S1=S1+GRMAT1(I,J)*EENM(I)

 S2=S2+GRMAT1(I,J)*EENP(I)

61 CONTINUE

 AKM(J)=S1/NN

 AKP(J)=S2/MM

 B(J)=AKP(J)-AKM(J)

62 CONTINUE

 DO 65 J1=1,NNPMM

 DO 64 J2=1,NNPMM

 S=0.0D0

 DO 63 I=1,NNPMM

 S=S+GRMAT1(I,J1)*GRMAT1(I,J2)

63 CONTINUE

 H(J1,J2)=(S-MM*AKP(J1)*AKP(J2)-NN*AKM(J1)*AKM(J2))/NNPMM

64 CONTINUE

 H(J1,J1)=H(J1,J1)+CPAR

65 CONTINUE

 DO 73 I=1,NNPMM

 DO 72 J=1,NNPMM

 AM(I,J)=B(I)*B(J)

72 CONTINUE

73 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

429

 DO 75 I=1,NNPMM

 S=0.0D0

 DO 74 J=1,NNPMM

 S=S+H(I,J)*ALPHA(J)

74 CONTINUE

 ALPHAN(I)=S

75 CONTINUE

 DO 77 I=1,NNPMM

 S=0.0D0

 DO 76 J=1,NNPMM

 S=S+AM(I,J)*ALPHA(J)

76 CONTINUE

 ALPHAM(I)=S

77 CONTINUE

 S1=0.0D0

 S2=0.0D0

 DO 78 I=1,NNPMM

 S1=S1+ALPHAM(I)*ALPHA(I)

 S2=S2+ALPHAN(I)*ALPHA(I)

78 CONTINUE

 CRIT=S1/S2

RETURN

END

C END OF THE BERCRITR SUBROUTINE

FUNCTION ALIGNMENTTRANS(J,XM)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,IPTEL=4,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1)

 DIMENSION XM(NNPMM,IP)

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 S4=0.0D0

 DO 5 I1=1,NN

 DO 4 I2=1,NN

 S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J))

 S1=S1+(2.0D0*DEXP(-S)-1.0D0)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

430

 S4=S4+(2.0D0*DEXP(-S)-1.0D0)**2.0D0

4 CONTINUE

5 CONTINUE

 DO 10 I1=NN+1,NNPMM

 DO 9 I2=NN+1,NNPMM

 S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J))

 S2=S2+(2.0D0*DEXP(-S)-1.0D0)

 S4=S4+(2.0D0*DEXP(-S)-1.0D0)**2.0D0

9 CONTINUE

10 CONTINUE

 DO 15 I1=1,NN

 DO 14 I2=NN+1,NNPMM

 S=(XM(I1,J)-XM(I2,J))*(XM(I1,J)-XM(I2,J))

 S3=S3+(2.0D0*DEXP(-S)-1.0D0)

 S4=S4+2.0D0*(2.0D0*DEXP(-S)-1.0D0)**2.0D0

14 CONTINUE

15 CONTINUE

 S3=2.0D0*S3

 ALIGNMENTTRANS=(S1+S2-S3)/((1.0D0*NNPMM)*DSQRT(S4))

RETURN

END

C END OF THE ALIGNMENTTRANS FUNCTION

SUBROUTINE GRAMMATL(GAMPAR,XM,NV,INDVEK,GRMAT)

C CALCULATES THE KERNEL MATRIX BASED ON THE TRANSFORMED GAUSSIAN KERNEL

C FUNCTION

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 DIMENSION INDVEK(IP)

 DO 10 I=1,NNPMM-1

 GRMAT(I,I)=1.0D0

 DO 5 J=I+1,NNPMM

 S=0.0D0

 DO 3 K=1,NV

 KK=INDVEK(K)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

431

 S=S+2.0D0*(XM(I,KK)-XM(J,KK))*(XM(I,KK)-XM(J,KK))-1.0D0

3 CONTINUE

 GRMAT(I,J)=DEXP(-GAMPAR*S)

5 CONTINUE

10 CONTINUE

 GRMAT(NNPMM,NNPMM)=1.0D0

 DO 20 I=2,NNPMM

 DO 15 J=1,I-1

 GRMAT(I,J)=GRMAT(J,I)

15 CONTINUE

20 CONTINUE

RETURN

END

C END OF THE GRAMMATL SUBROUTINE

SUBROUTINE BERCRITA0(GRMAT,CRIT)

C CALCULATES THE ZERO ORDER ALIGNMENT CRITERION

C INPUT: THE KERNEL MATRIX CALCULATED ON THE TRAINING INPUT PATTERNS

C USES: FUNCTION DSQRT

C OUTPUT: THE VALUE OF THE ZERO ORDER ALIGNMENT
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 DO 10 I=1,NN

 DO 5 J=1,NN

 S1=S1+GRMAT(I,J)

 S3=S3+GRMAT(I,J)**2.0D0

5 CONTINUE

10 CONTINUE

 DO 20 I=NN+1,NNPMM

 DO 15 J=NN+1,NNPMM

 S1=S1+GRMAT(I,J)

 S3=S3+GRMAT(I,J)**2.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

432

15 CONTINUE

20 CONTINUE

 DO 30 I=1,NN

 DO 29 J=NN+1,NNPMM

 S2=S2+2.0D0*GRMAT(I,J)

 S3=S3+2.0D0*(GRMAT(I,J)**2.0D0)

29 CONTINUE

30 CONTINUE

 CRIT=(S1-S2)/(NNPMM*DSQRT(S3))

RETURN

END

C END OF THE BERCRITA0 SUBROUTINE

SUBROUTINE BERCRITA1(KK,XM,GRMAT,GAM,CRIT)

C CALCULATES THE FIRST ORDER ALIGNMENT CRITERION

C INPUT: THE INDEX OF THE VARIABLE W.R.T WHICH DIFFERENTIATION TAKES PLACE

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 S4=0.0D0

 S5=0.0D0

 DO 10 I=1,NN

 DO 5 J=1,NN

 S1=S1+GRMAT(I,J)

 S3=S3+GRMAT(I,J)**2.0D0

 S4=S4+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)

 S5=S5+((XM(I,KK)-XM(J,KK))**2.0D0)*(GRMAT(I,J)**2.0D0)

5 CONTINUE

10 CONTINUE

 DO 20 I=NN+1,NNPMM

 DO 15 J=NN+1,NNPMM

 S1=S1+GRMAT(I,J)

 S3=S3+GRMAT(I,J)**2.0D0

 S4=S4+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

433

 S5=S5+((XM(I,KK)-XM(J,KK))**2.0D0)*(GRMAT(I,J)**2.0D0)

15 CONTINUE

20 CONTINUE

 DO 30 I=1,NN

 DO 29 J=NN+1,NNPMM

 S2=S2+2.0D0*GRMAT(I,J)

 S3=S3+2.0D0*(GRMAT(I,J)**2.0D0)

 S4=S4-2.0D0*((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)

 S5=S5+2.0D0*((XM(I,KK)-XM(J,KK))**2.0D0)*(GRMAT(I,J)**2.0D0)

29 CONTINUE

30 CONTINUE

 A1=S1-S2

 A2=NNPMM*DSQRT(S3)

 AFGA1=-2.0D0*GAM*S4

 AFGA2=(-2.0D0*GAM*S5)*NNPMM/DSQRT(S3)

 CRIT=DABS((A2*AFGA1-A1*AFGA2)/(A2*A2))

RETURN

END

C END OF THE BERCRITA1 FUNCTION

SUBROUTINE BERCRITW0(GRMAT,CRIT)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 DO 5 I=1,NN

 DO 4 J=1,NN

 S1=S1+GRMAT(I,J)

4 CONTINUE

5 CONTINUE

 S2=0.0D0

 DO 10 I=NN+1,NNPMM

 DO 9 J=NN+1,NNPMM

 S2=S2+GRMAT(I,J)

9 CONTINUE

10 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

434

 S3=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+GRMAT(I,J)

14 CONTINUE

15 CONTINUE

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM)

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM

 CRIT=TELLER/ANOEMER

RETURN

END

C END OF THE BERCRITW0 SUBROUTINE

SUBROUTINE BERCRITW1(KK,XM,GRMAT,GAM,CRIT)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 S4=0.0D0

 S5=0.0D0

 S6=0.0D0

 DO 10 I=1,NN

 DO 5 J=1,NN

 S1=S1+GRMAT(I,J)

 S4=S4+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)

5 CONTINUE

10 CONTINUE

 DO 20 I=NN+1,NNPMM

 DO 15 J=NN+1,NNPMM

 S2=S2+GRMAT(I,J)

 S5=S5+((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)

15 CONTINUE

20 CONTINUE

 DO 30 I=1,NN

 DO 29 J=NN+1,NNPMM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

435

 S3=S3+2.0D0*GRMAT(I,J)

 S6=S6+2.0D0*((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J)

29 CONTINUE

30 CONTINUE

 W1=S1/(NN*NN)+S2/(MM*MM)-(2.0D0*S3)/(NN*MM)

 T1=S4/(NN*NN)+S5/(MM*MM)-(2.0D0*S6)/(NN*MM)

 AFGW1=-2.0D0*GAM*T1

 W2=NNPMM-S1/NN-S2/MM

 AFGW2=(2.0D0*GAM*S4)/NN+(2.0D0*GAM*S5)/MM

 CRIT=DABS((W2*AFGW1-W1*AFGW2)/(W2*W2))

RETURN

END

C END OF THE BERCRITW1 SUBROUTINE

SUBROUTINE BERCRITW(GRMAT,CRIT1,CRIT2)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 DO 5 I=1,NN

 DO 4 J=1,NN

 S1=S1+GRMAT(I,J)

4 CONTINUE

5 CONTINUE

 S2=0.0D0

 DO 10 I=NN+1,NNPMM

 DO 9 J=NN+1,NNPMM

 S2=S2+GRMAT(I,J)

9 CONTINUE

10 CONTINUE

 S3=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+GRMAT(I,J)

14 CONTINUE

15 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

436

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM)

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM

 CRIT1=TELLER/ANOEMER

 CRIT2=TELLER

RETURN

END

C END OF THE BERCRITW SUBROUTINE

SUBROUTINE BERCRITG1(KK,XM,GRMAT,GAM,CRITG1)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 DO 4 I=1,NN

 DO 3 J=1,NN

 S1=S1+(-2.0D0*GAM*((XM(I,KK)-XM(J,KK)**2.0D0)*GRMAT(I,J)))

3 CONTINUE

4 CONTINUE

 S2=0.0D0

 DO 6 I=NN+1,NNPMM

 DO 5 J=NN+1,NNPMM

 S2=S2+(-2.0D0*GAM*((XM(I,KK)-XM(J,KK)**2.0D0)*GRMAT(I,J)))

5 CONTINUE

6 CONTINUE

S3=0.0D0

DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+(-2.0D0*GAM*((XM(I,KK)-XM(J,KK)**2.0D0)*GRMAT(I,J)))

14 CONTINUE

15 CONTINUE

 CRITG1=DABS((1.0D0/(NN**2))*S1+(1.0D0/(MM**2))*S2

 & -(2.0D0/(NN**MM))*S3)

RETURN

END

C END OF THE BERCRITG1 SUBROUTINE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

437

SUBROUTINE BERCRIT12(GRMAT,CRIT)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S3=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+GRMAT(I,J)

14 CONTINUE

15 CONTINUE

 CRIT=S3

RETURN

END

C END OF THE BERCRIT12 SUBROUTINE

SUBROUTINE BERCRITET1(KK,XM,GRMAT,GAM,CRIT)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S=S+(-2.0D0*GAM*(XM(I,KK)-XM(J,KK)**2)*GRMAT(I,J))

14 CONTINUE

15 CONTINUE

 CRIT=DABS(S)

RETURN

END

C END OF THE BERCRITET1 SUBROUTINE

SUBROUTINE BERCRITN1(KK,GAM,CPARS,YV,XM,NV,INDVEKN1,CRIT)

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),XMN(NNPMM,NNPMM),YV(NNPMM)

 DIMENSION GRMATN(NNPMM,NNPMM),GRMAT(NNPMM,NNPMM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

438

 DIMENSION AL(NNPMM)

 DIMENSION INDVEKN1(IP)

 CALL GRAMMAT(GAM,XM,NV,INDVEKN1,GRMAT)

 CALL DOENSVM(YV,XM,GRMAT,CPARS,GAM,NV,INDVEKN1,AL,BOPT)

 S=0.0D0

 DO 10 I=1,NNPMM

 DO 9 J=1,NNPMM

 S=S+(-2.0D0*GAM*AL(I)*AL(J)*YV(I)*YV(J)*

 &((XM(I,KK)-XM(J,KK))**2.0D0)*GRMAT(I,J))

9 CONTINUE

10 CONTINUE

 CRIT=DABS(S)

RETURN

END

C END OF THE BERCRITN1 SUBROUTINE

SUBROUTINE BERCRITR(GRMAT1,EENP,EENM,ALPHA,CPAR,CRIT)

C CALCULATES THE ZERO-ORDER RAYLEIGH CRITERION

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION GRMAT1(NNPMM,NNPMM),EENP(NNPMM),EENM(NNPMM)

 DIMENSION B(NNPMM),H(NNPMM,NNPMM),ALPHA(NNPMM)

 DIMENSION AKP(NNPMM),AKM(NNPMM)

 DIMENSION AM(NNPMM,NNPMM),ALPHAN(NNPMM),ALPHAM(NNPMM)

 DO 62 J=1,NNPMM

 S1=0.0D0

 S2=0.0D0

 DO 61 I=1,NNPMM

 S1=S1+GRMAT1(I,J)*EENM(I)

 S2=S2+GRMAT1(I,J)*EENP(I)

61 CONTINUE

 AKM(J)=S1/NN

 AKP(J)=S2/MM

 B(J)=AKP(J)-AKM(J)

62 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

439

 DO 65 J1=1,NNPMM

 DO 64 J2=1,NNPMM

 S=0.0D0

 DO 63 I=1,NNPMM

 S=S+GRMAT1(I,J1)*GRMAT1(I,J2)

63 CONTINUE

 H(J1,J2)=(S-MM*AKP(J1)*AKP(J2)-NN*AKM(J1)*AKM(J2))/NNPMM

64 CONTINUE

 H(J1,J1)=H(J1,J1)+CPAR

65 CONTINUE

 DO 73 I=1,NNPMM

 DO 72 J=1,NNPMM

 AM(I,J)=B(I)*B(J)

72 CONTINUE

73 CONTINUE

 DO 75 I=1,NNPMM

 S=0.0D0

 DO 74 J=1,NNPMM

 S=S+H(I,J)*ALPHA(J)

74 CONTINUE

 ALPHAN(I)=S

75 CONTINUE

 DO 77 I=1,NNPMM

 S=0.0D0

 DO 76 J=1,NNPMM

 S=S+AM(I,J)*ALPHA(J)

76 CONTINUE

 ALPHAM(I)=S

77 CONTINUE

 S1=0.0D0

 S2=0.0D0

 DO 78 I=1,NNPMM

 S1=S1+ALPHAM(I)*ALPHA(I)

 S2=S2+ALPHAN(I)*ALPHA(I)

78 CONTINUE

 CRIT=S1/S2

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

440

 RETURN

 END

C END OF THE BERCRITR SUBROUTINE

 SUBROUTINE BERCRITR1(KK,XM,GRMAT,GAM,ALPHA,CRIT)

C CALCULATES THE FIRST ORDER RAYLEIGH CRITERION

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=10,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM),ALPHA(NNPMM)

 DIMENSION RM1(NNPMM),RM2(NNPMM),RMMAT(NNPMM,NNPMM)

 DIMENSION RNMAT(NNPMM,NNPMM)

 DIMENSION DRMMAT(NNPMM,NNPMM),DRNMAT(NNPMM,NNPMM)

 DO 5 I=1,NNPMM

 S=0.0D0

 DO 2 J=1,NN

 S=S+GRMAT(I,J)

2 CONTINUE

 RM1(I)=S/NN

5 CONTINUE

 DO 10 I=1,NNPMM

 S=0.0D0

 DO 7 J=NN+1,NNPMM

 S=S+GRMAT(I,J)

7 CONTINUE

 RM2(I)=S/MM

10 CONTINUE

 DO 15 I=1,NNPMM

 DO 14 J=1,NNPMM

 RMMAT(I,J)=(RM1(I)-RM2(I))*(RM1(J)-RM2(J))

14 CONTINUE

15 CONTINUE

 DO 25 I=1,NNPMM

 DO 24 J=1,NNPMM

 S1=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

441

 S21=0.0D0

 S22=0.0D0

 DO 16 II=1,NN

 S1=S1+GRMAT(I,II)*GRMAT(J,II)

 S21=S21+GRMAT(I,II)

 S22=S22+GRMAT(J,II)

16 CONTINUE

 S2=S21*S22/NN

 S3=0.0D0

 S41=0.0D0

 S42=0.0D0

 DO 17 II=NN+1,NNPMM

 S3=S3+GRMAT(I,II)*GRMAT(J,II)

 S41=S41+GRMAT(I,II)

 S42=S42+GRMAT(J,II)

17 CONTINUE

 S4=S41*S42/MM

 RNMAT(I,J)=S1-S2+S3-S4

24 CONTINUE

25 CONTINUE

 S1=0.0D0

 S2=0.0D0

 DO 30 I=1,NNPMM

 DO 29 J=1,NNPMM

 S1=S1+ALPHA(I)*RMMAT(I,J)*ALPHA(J)

 S2=S2+ALPHA(I)*RNMAT(I,J)*ALPHA(J)

29 CONTINUE

30 CONTINUE

 DELER1=S1

 DELER2=S2

 DO 45 L=1,NNPMM

 DO 44 K=1,NNPMM

 S1=0.0D0

 DO 35 J=1,NN

 S1=S1-2.0D0*GAM*((XM(L,KK)-XM(J,KK))**2.0D0)*GRMAT(L,J)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

442

35 CONTINUE

 S1=S1/NN

 S2=0.0D0

 DO 36 J=NN+1,NNPMM

 S2=S2-2.0D0*GAM*((XM(L,KK)-XM(J,KK))**2.0D0)*GRMAT(L,J)

36 CONTINUE

 S2=S2/MM

 S3=0.0D0

 DO 37 J=1,NN

 S3=S3-2.0D0*GAM*((XM(K,KK)-XM(J,KK))**2.0D0)*GRMAT(K,J)

37 CONTINUE

 S3=S3/NN

 S4=0.0D0

 DO 38 J=NN+1,NNPMM

 S4=S4-2.0D0*GAM*((XM(K,KK)-XM(J,KK))**2.0D0)*GRMAT(K,J)

38 CONTINUE

 S4=S4/MM

 DRMMAT(L,K)=(S1-S2)*(RM1(K)-RM2(K))+(RM1(L)-RM2(L))*(S3-S4)

44 CONTINUE

45 CONTINUE

 DO 95 I=1,NNPMM

 DO 94 J=1,NNPMM

 S1=0.0D0

 DO 55 II=1,NN

 S1=S1-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II)

 & *GRMAT(J,II)

55 CONTINUE

 S2=0.0D0

 DO 56 II=1,NN

 S2=S2-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II)

 & *GRMAT(I,II)

56 CONTINUE

 S3=0.0D0

 DO 58 II=NN+1,NNPMM

 S3=S3-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II)

 & *GRMAT(J,II)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

443

58 CONTINUE

 S4=0.0D0

 DO 59 II=NN+1,NNPMM

 S4=S4-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II)

 & *GRMAT(I,II)

59 CONTINUE

 S51=0.0D0

 S52=0.0D0

 S61=0.0D0

 S62=0.0D0

 DO 61 II=1,NN

 S51=S51-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II)

 S52=S52+GRMAT(J,II)

 S62=S62-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II)

 S61=S61+GRMAT(I,II)

61 CONTINUE

 S5=S51*S52/NN

 S6=S61*S62/NN

 S71=0.0D0

 S72=0.0D0

 S81=0.0D0

 S82=0.0D0

 DO 63 II=NN+1,NNPMM

 S71=S71-2.0D0*GAM*((XM(I,KK)-XM(II,KK))**2.0D0)*GRMAT(I,II)

 S72=S72+GRMAT(J,II)

 S82=S82-2.0D0*GAM*((XM(J,KK)-XM(II,KK))**2.0D0)*GRMAT(J,II)

 S81=S81+GRMAT(I,II)

63 CONTINUE

 S7=S71*S72/MM

 S8=S81*S82/MM

 DRNMAT(I,J)=S1+S2+S3+S4-S5-S6-S7-S8

94 CONTINUE

95 CONTINUE

 S1=0.0D0

 S2=0.0D0

 DO 150 I=1,NNPMM

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

444

 DO 149 J=1,NNPMM

 S1=S1+ALPHA(I)*DRMMAT(I,J)*ALPHA(J)

 S2=S2+ALPHA(I)*DRNMAT(I,J)*ALPHA(J)

149 CONTINUE

150 CONTINUE

 TELLER1=S1

 TELLER2=S2

C CRIT=DABS((TELLER1/DELER1)-(TELLER2/DELER2))

 CRIT=DABS(1.0D0/(DELER2**2)*(DELER2*TELLER1-DELER1*TELLER2))

 RETURN

 END

C END OF THE BERCRITR1 SUBROUTINE

SUBROUTINE BERCRITA(GRMAT,CRIT)

C CALCULATES THE ZERO ORDER ALIGNMENT CRITERION

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 S2=0.0D0

 S3=0.0D0

 DO 10 I=1,NN

 DO 5 J=1,NN

 S1=S1+GRMAT(I,J)

 S3=S3+GRMAT(I,J)**2.0D0

5 CONTINUE

10 CONTINUE

 DO 20 I=NN+1,NNPMM

 DO 15 J=NN+1,NNPMM

 S1=S1+GRMAT(I,J)

 S3=S3+GRMAT(I,J)**2.0D0

15 CONTINUE

20 CONTINUE

 DO 30 I=1,NN

 DO 29 J=NN+1,NNPMM

 S2=S2+2.0D0*GRMAT(I,J)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

445

 S3=S3+2.0D0*(GRMAT(I,J)**2.0D0)

29 CONTINUE

30 CONTINUE

CRIT=(S1-S2)/(NNPMM*DSQRT(S3))

RETURN

END

SUBROUTINE BERCRITW(GRMAT,CRIT1,CRIT2)

C CALCULATE THE VARIATION RATIO CRITERION AND THE DISTANCE BETWEEN MEANS

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 DIMENSION XM(NNPMM,IP),GRMAT(NNPMM,NNPMM)

 S1=0.0D0

 DO 5 I=1,NN

 DO 4 J=1,NN

 S1=S1+GRMAT(I,J)

4 CONTINUE

5 CONTINUE

 S2=0.0D0

 DO 10 I=NN+1,NNPMM

 DO 9 J=NN+1,NNPMM

 S2=S2+GRMAT(I,J)

9 CONTINUE

10 CONTINUE

 S3=0.0D0

 DO 15 I=1,NN

 DO 14 J=NN+1,NNPMM

 S3=S3+GRMAT(I,J)

14 CONTINUE

15 CONTINUE

 TELLER=S1/(NN*NN)+S2/(MM*MM)-2.0D0*S3/(NN*MM)

 ANOEMER=1.0D0*NNPMM-S1/NN-S2/MM

 CRIT1=TELLER/ANOEMER

 CRIT2=TELLER

 RETURN

 END

SUBROUTINE CROSSVAL(XM,YV,MODELMAT,IBESTDIM)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

446

C IMPLEMENTS CROSS-VALIDATION TO DETERMINE THE SVM NUMBER OF INPUT

C VARIABLES

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NCV=5)

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT)

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT)

 PARAMETER (LDH=NNPMMIN)

 DIMENSION XM(NNPMM,IP),YV(NNPMM)

 DIMENSION XMIN(NNPMMIN,IP),YVIN(NNPMMIN)

 DIMENSION XMUIT(NNPMMUIT,IP),YVUIT(NNPMMUIT)

 DIMENSION GRMAT(NNPMMIN,NNPMMIN),GRNUUT(NNPMMUIT,NNPMMIN)

 DIMENSION B(NNPMMIN),H(NNPMMIN,NNPMMIN),HINV(NNPMMIN,NNPMMIN)

 DIMENSION AL(NNPMMIN)

 DIMENSION FOUTVEK(IP),MODELMAT(IP,IP),INDVEK(IP)

 DO 2 I=1,IP

 FOUTVEK(I)=0.0D0

2 CONTINUE

 DO 500 ICR=1,NCV

C OBTAIN HOLD-OUT DATA

 NBEG=(ICR-1)*NNUIT+1

 NEND=ICR*NNUIT

 MBEG=NN+(ICR-1)*MMUIT+1

 MEND=NN+ICR*MMUIT

 IF(ICR.EQ.1) THEN

 DO 10 I=NBEG,NEND

 YVUIT(I)=YV(I)

 DO 9 J=1,IP

 XMUIT(I,J)=XM(I,J)

9 CONTINUE

10 CONTINUE

 DO 15 I=MBEG,MEND

 YVUIT(NNUIT+I-MBEG+1)=YV(I)

 DO 14 J=1,IP

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

447

 XMUIT(NNUIT+I-MBEG+1,J)=XM(I,J)

14 CONTINUE

15 CONTINUE

 DO 20 I=NEND+1,NN

 YVIN(I-NEND)=YV(I)

 DO 19 J=1,IP

 XMIN(I-NEND,J)=XM(I,J)

19 CONTINUE

20 CONTINUE

 DO 25 I=MEND+1,NNPMM

 YVIN(NNIN+I-MEND)=YV(I)

 DO 24 J=1,IP

 XMIN(NNIN+I-MEND,J)=XM(I,J)

24 CONTINUE

25 CONTINUE

 ENDIF

 IF((ICR.GT.1).AND.(ICR.LT.NCV)) THEN

 DO 30 I=NBEG,NEND

 YVUIT(I-NBEG+1)=YV(I)

 DO 29 J=1,IP

 XMUIT(I-NBEG+1,J)=XM(I,J)

29 CONTINUE

30 CONTINUE

 DO 35 I=MBEG,MEND

 YVUIT(NNUIT+I-MBEG+1)=YV(I)

 DO 34 J=1,IP

 XMUIT(NNUIT+I-MBEG+1,J)=XM(I,J)

34 CONTINUE

35 CONTINUE

 DO 40 I=1,NBEG-1

 YVIN(I)=YV(I)

 DO 39 J=1,IP

 XMIN(I,J)=XM(I,J)

39 CONTINUE

40 CONTINUE

 DO 45 I=NEND+1,NN

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

448

 YVIN(I-NNUIT)=YV(I)

 DO 44 J=1,IP

 XMIN(I-NNUIT,J)=XM(I,J)

44 CONTINUE

45 CONTINUE

 DO 50 I=NN+1,MBEG-1

 YVIN(NNIN+I-NN)=YV(I)

 DO 49 J=1,IP

 XMIN(NNIN+I-NN,J)=XM(I,J)

49 CONTINUE

50 CONTINUE

 DO 55 I=MEND+1,NNPMM

 YVIN(NNIN+MBEG-NN-1+I-MEND)=YV(I)

 DO 54 J=1,IP

 XMIN(NNIN+MBEG-NN-1+I-MEND,J)=XM(I,J)

54 CONTINUE

55 CONTINUE

 ENDIF

 IF(ICR.EQ.NCV) THEN

 DO 60 I=NBEG,NEND

 YVUIT(I-NBEG+1)=YV(I)

 DO 59 J=1,IP

 XMUIT(I-NBEG+1,J)=XM(I,J)

59 CONTINUE

60 CONTINUE

 DO 65 I=MBEG,MEND

 YVUIT(NNUIT+I-MBEG+1)=YV(I)

 DO 64 J=1,IP

 XMUIT(NNUIT+I-MBEG+1,J)=XM(I,J)

64 CONTINUE

65 CONTINUE

 DO 70 I=1,NBEG-1

 YVIN(I)=YV(I)

 DO 69 J=1,IP

 XMIN(I,J)=XM(I,J)

69 CONTINUE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

449

70 CONTINUE

 DO 75 I=NN+1,MBEG-1

 YVIN(NNIN+I-NN)=YV(I)

 DO 74 J=1,IP

 XMIN(NNIN+I-NN,J)=XM(I,J)

74 CONTINUE

75 CONTINUE

 ENDIF

C TRAIN AN SVM ON THE IN-DATA AND TEST ON THE HOLD-OUT DATA

 DO JJ=1,IP

 DO I=1,JJ

 INDVEK(I)=MODELMAT(JJ,I)

 END DO

 GAM=1.0D0/JJ

 CALL DEELGRAMMAT(GAM,JJ,INDVEK,XMIN,GRMAT)

 CALL DEELGRAMNUUT(GAM,JJ,INDVEK,XMIN,XMUIT,GRNUUT)

 CALL DOENSVMIN(YVIN,XMIN,GRMAT,JJ,INDVEK,AL,BOPT)

 CALL BERFOUTSVMUIT(YVIN,GRNUUT,YVUIT,AL,BOPT,FOUT)

 FOUTVEK(JJ)=FOUTVEK(JJ)+FOUT

 END DO

500 CONTINUE

C DETERMINE THE NUMBER OF INPUT VARIABLES

 AMIN=1.0D15

 DO 510 I=1,IP

 IF (FOUTVEK(I).LT.AMIN) THEN

 AMIN=FOUTVEK(I)

 IBESTDIM=I

 ENDIF

510 CONTINUE

 RETURN

 END

C END OF THE CROSSVAL SUBROUTINE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

450

SUBROUTINE DEELGRAMMAT(GAM,NV,INDVEK,XMIN,GRMAT)

C CALCULATES THE KERNEL MATRIX ON THE IN- (TRAINING) DATA

C USED IN SUBROUTINE CROSSVAL

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM,IPP1=IP+1)

 PARAMETER (NCV=5)

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT)

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT)

 DIMENSION XMIN(NNPMMIN,IP),GRMAT(NNPMMIN,NNPMMIN)

 DIMENSION INDVEK(IP)

 DO 10 I=1,NNPMMIN-1

 GRMAT(I,I)=1.0D0

 DO 5 J=I+1,NNPMMIN

 S=0.0D0

 DO 3 K=1,NV

 KK=INDVEK(K)

 S=S+(XMIN(I,KK)-XMIN(J,KK))*(XMIN(I,KK)-XMIN(J,KK))

3 CONTINUE

 GRMAT(I,J)=DEXP(-GAM*S)

5 CONTINUE

10 CONTINUE

 GRMAT(NNPMMIN,NNPMMIN)=1.0D0

 DO 20 I=2,NNPMMIN

 DO 15 J=1,I-1

 GRMAT(I,J)=GRMAT(J,I)

15 CONTINUE

20 CONTINUE

 RETURN

 END

C END OF THE DEELGRAMMAT SUBROUTINE

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

451

SUBROUTINE DEELGRAMNUUT(GAMPAR,NV,INDVEK,XMIN,XMUIT,GRNUUT)

C CALCULATES THE KERNEL MATRIX ON THE OUT- (TEST) DATA

C USED IN SUBROUTINE CROSSVAL

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NCV=5)

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT)

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT)

 DIMENSION XMIN(NNPMMIN,IP),XMUIT(NNPMMUIT,IP)

 DIMENSION GRNUUT(NNPMMUIT,NNPMMIN)

 DIMENSION INDVEK(IP)

 DO 10 I=1,NNPMMUIT

 DO 5 J=1,NNPMMIN

 S=0.0D0

 DO 3 K=1,NV

 KK=INDVEK(K)

 S=S+(XMUIT(I,KK)-XMIN(J,KK))*(XMUIT(I,KK)-XMIN(J,KK))

3 CONTINUE

 GRNUUT(I,J)=DEXP(-GAMPAR*S)

5 CONTINUE

10 CONTINUE

RETURN

END

SUBROUTINE DOENSVMIN(YV,XM,GRMAT,NVER,INDVEK,AL,BOPT)

C TRAINS AN SVM ON THE IN- (TRAINING) DATA

C USED IN SUBROUTINE CROSSVAL
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NCV=5)

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT)

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT)

 PARAMETER (CPAR=NNPMMIN/10.0D0)

 PARAMETER (NVAR=NNPMMIN,NCON=2*NVAR+1,NEQ=1,LDA=NCON,LDH=NVAR)

 DIMENSION XM(NNPMMIN,IP),YV(NNPMMIN),GRMAT(NNPMMIN,NNPMMIN)

 DIMENSION XV(IP),XVV(IP)

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

452

 DIMENSION A(NCON,NVAR),B(NCON),G(NVAR),H(NVAR,NVAR)

 DIMENSION SOL(NVAR),ALAM(NVAR),AL(NNPMMIN)

 DIMENSION FW(NNPMMIN),FWR(NNPMMIN),YVR(NNPMMIN)

 DIMENSION IACT(NVAR),IPERM(NNPMMIN)

 DIMENSION INDVEK(IP)

 EP=1.0D-8

 DO 28 I=1,NVAR

 A(1,I)=YV(I)

28 CONTINUE

 DO 30 I=1,NVAR

 DO 29 J=1,NVAR

 A(I+1,J)=0.0D0

 A(NVAR+I+1,J)=0.0D0

29 CONTINUE

 A(I+1,I)=1.0D0

 A(NVAR+I+1,I)=-1.0D0

30 CONTINUE

 B(1)=0.0D0

 DO 35 I=1,NVAR

 B(I+1)=0.0D0

 B(NVAR+I+1)=-1.0D0*CPAR

35 CONTINUE

 DO 36 I=1,NVAR

 G(I)=-1.0D0

36 CONTINUE

 DO 40 I=1,NVAR

 DO 39 J=1,NVAR

 H(I,J)=YV(I)*YV(J)*GRMAT(I,J)

39 CONTINUE

40 CONTINUE

 CALL DQPROG(NVAR,NCON,NEQ,A,LDA,B,G,H,LDH,DIAG,SOL,NACT,

 & IACT,ALAM)

 DO 45 I=1,NVAR

 IF (DABS(SOL(I)).LT.EP) SOL(I)=0.0D0

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

453

 IF (DABS(SOL(I)-CPAR).LT.EP) SOL(I)=CPAR

 AL(I)=SOL(I)

45 CONTINUE

 DO 200 J=1,NNPMMIN

 IPERM(J)=J

 S=0.0D0

 DO 199 I=1,NNPMMIN

 S=S+AL(I)*YV(I)*GRMAT(I,J)

199 CONTINUE

 FW(J)=S

200 CONTINUE

 CALL DSVRGP(NNPMMIN,FW,FWR,IPERM)

 DO 205 I=1,NNPMMIN

 YVR(I)=YV(IPERM(I))

205 CONTINUE

 BPAR=-FWR(1)+1.0D0

 BOPT=BPAR

 NFOUTE=NNIN

 NFOUTEOPT=NFOUTE

 NTEL=0

210 NTEL=NTEL+1

 BPAR=-(FWR(NTEL)+FWR(NTEL+1))/2.0D0

 IF (YVR(NTEL).LE.0.0D0) NFOUTE=NFOUTE-1

 IF (YVR(NTEL).GT.0.0D0) NFOUTE=NFOUTE+1

 IF (NFOUTE.LT.NFOUTEOPT) THEN

 NFOUTEOPT=NFOUTE

 BOPT=BPAR

 ENDIF

 IF (NTEL.LE.NNPMMIN-2) GOTO 210

RETURN

END

APPENDIX C: EXAMPLES OF SIMULATION PROGRAMS

454

SUBROUTINE BERFOUTSVMUIT(YVIN,GRNUUT,YVUIT,ALPHA,BOPT,FOUT)

C TRAINS AN SVM ON THE OUT- (TEST) DATA

C USED IN SUBROUTINE CROSSVAL

 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

 PARAMETER (IP=50,NN=100,MM=100,NNPMM=NN+MM)

 PARAMETER (NCV=5)

 PARAMETER (NNUIT=NN/NCV,MMUIT=MM/NCV,NNIN=NN-NNUIT,MMIN=MM-MMUIT)

 PARAMETER (NNPMMIN=NNIN+MMIN,NNPMMUIT=NNUIT+MMUIT)

 DIMENSION GRNUUT(NNPMMUIT,NNPMMIN),ALPHA(NNPMMIN)

 DIMENSION YVIN(NNPMMIN),YVUIT(NNPMMUIT)

 FOUT=0.0D0

 DO 10 I=1,NNPMMUIT

 TOETS=1.0D0

 S=BOPT

 DO 5 J=1,NNPMMIN

 S=S+ALPHA(J)*YVIN(J)*GRNUUT(I,J)

5 CONTINUE

 IF (S.LT.0.0D0) TOETS=-1.0D0

 IF (DABS((YVUIT(I)-TOETS)).GT.0.1D0) FOUT=FOUT+1.0D0

10 CONTINUE

 FOUT=FOUT/NNPMMUIT

RETURN

END

C END OF THE BERFOUTSVMUIT SUBROUTINE

	DECLARATION
	ABSTRACT
	OPSOMMING
	ACKNOWLEDGEMENTS
	CONTENTS
	INTRODUCTION
	2 VARIABLE SELECTION FOR KERNEL METHODS
	3 VARIABLE SELECTION IN INPUT SPACE
	4 ALGORITHM-INDEPENDENT AND ALGORITHM-DEPENDENT SELECTION IN FEATURE SPACE
	5 BACKWARD ELIMINATION FOR KERNEL CLASSIFIERS
	6 VARIABLE SELECTION FOR SUPPORT VECTOR MACHINES: A TWO-STAGE APPROACH
	7 SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH
	REFERENCES
	APPENDIX A SIMULATION STUDY DISTRIBUTIONS AND COMPREHENSIVE RESULTS
	APPENDIX B SOME MATHEMATICAL RESULTS
	APPENDIX C EXAMPLES OF SIMULTATION PROGRAMS

