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ABSTRACT 
 
In the aquaculture setting, opportunistic pathogens are present as part of the normal 

aquatic microflora, colonizing surfaces in fish tanks as part of biofilm communities, and 

often causing severe economic losses to the aquacultural industry.  Isolates belonging to 

the genera Chryseobacterium, Elizabethkingia, Myroides and Empedobacter have been 

isolated from diseased fish, and are responsible for causing secondary fish infections, 

fish- and food-product spoilage, and have been described as etiological agents of various 

human diseases.  Thirty-four Chryseobacterium and Elizabethkingia spp. and five 

Myroides and Empedobacter spp. isolates, obtained from various diseased fish species 

and biofilm growth in South African aquaculture systems, were characterised genetically 

using 16S rRNA gene PCR restriction fragment length polymorphism (RFLP), randomly 

amplified polymorphic DNA (RAPD) PCR, whole cell protein (WCP) and outer 

membrane protein (OMP) analyses.  Genetic heterogeneity was displayed by the 

Myroides and Empedobacter spp. study isolates following OMP analysis, although 16S 

rRNA gene RFLP, RAPD-PCR and WCP analysis did not allow for differentiation of 

these isolates. A high degree of genetic heterogeneity was displayed by the 

Chryseobacterium and Elizabethkingia spp. study isolates following OMP analysis, 16S 

rRNA gene RFLP with MspI, and RAPD-PCR with primer P2.  However, based on the 

results obtained by WCP analysis, 16S rRNA gene RFLP with CfoI and TaqI, and 

RAPD-PCR with primer P1 the isolates appeared genetically very homogeneous.  High 

MAR indices and potential multi-drug resistance phenotypes were obtained for the 

Myroides and Empedobacter spp. and some of the Chryseobacterium and Elizabethkingia 

spp. isolates by antimicrobial susceptibility testing.  Primary adherence and the influence 

of environmental changes on adherence was investigated by a modified microtitre-plate 

adherence assay.  Nutrient composition, temperature and hydrodynamic incubation 

conditions were observed to influence adherence abilities of all study isolates.  In 

addition, adherence varied greatly among isolates of the genera Chryseobacterium and 

Elizabethkingia, as opposed to a consistent strong adherence profile observed for the 

Myroides and Empedobacter spp. isolates.  The influence of cell surface properties such 

as capsule presence and cell surface hydrophobicity, on primary adherence of the isolates 

was also investigated.  Quantitative analysis of capsular material revealed the presence of 



thick capsular material surrounding the Myroides and Empedobacter spp. and some of the 

Chryseobacterium and Elizabethkingia spp. isolates, but could not be directly associated 

with adherence.  Hydrophobicity were investigated using the salt aggregation assay 

(SAT) and bacterial adherence to hydrocarbon test (BATH).  A very hydrophilic cell 

surface was observed for all of the Myroides and Empedobacter spp. isolates, and 

majority (74%) of the Chryseobacterium and Elizabethkingia spp. isolates.  Cell surface 

hydrophobicity could not be correlated to the adherence of the Myroides and 

Empedobacter spp. isolates, and only SAT-determined hydrophobicity could be 

positively correlated to adherence of Chryseobacterium and Elizabethkingia spp. isolates 

under certain conditions.  Coaggregation studies were performed between the study 

isolates and various important clinical and aquacultural microorganisms.  High 

coaggregation indices were observed between the Myroides and Empedobacter spp. 

isolates and E. faecalis and S. aureus, and between E. faecalis, S. enterica serovar 

Arizonae, S. aureus and Listeria spp. and the Chryseobacterium and Elizabethkingia spp. 

isolates.  Biofilm-forming capacity of the study isolates in an environment simulating 

their natural environment was investigated microscopically using a flow cell system.  

Typical ‘cone-like’ biofilm structures were observed for selected strains of both Myroides 

and Empedobacter spp. and Chryseobacterium and Elizabethkingia spp. isolates.  The 

effect of increased hydrodynamics on biofilm architecture was seen through the 

narrowing of the biofilm structures and the formation of single cell chains towards the 

increased hydrodynamic area of the flow chambers.  Chryseobacterium and 

Elizabethkingia spp. and Myroides and Empedobacter spp. appear to be potential primary 

biofilm-formers associating with a variety of microbes thus perpetuating their survival in 

a variety of aquatic habitats. 

   

 
 
 
 
 
 



OPSOMMING 
 

Opportunistiese patogene kom gereeld in akwakultuur sisteme voor as deel van die 

akwatiese mikroflora wat dikwels biofilms vorm op oppervlaktes in hierdie sisteme.  

Visinfeksies veroorsaak deur hierdie patogene lei tot ernstige ekonomiese verliese vir 

akwakultuur industrieë.  Chryseobacterium, Elizabethkingia, Myroides en Empedobacter 

spp. is reeds voorheen van verskeie geïnfekteerde visspesies geïsoleer hierdie bakterieë is 

verantwoordelik vir sekondere visinfeksies, die bederf van vis- en kosprodukte, asook 

menslike siektes.  Vier-en-dertig Chryseobacterium en Elizabethkingia spp. en 5 

Myroides en Empedobacter spp. isolate, geïsoleer vanaf verskeie geïnfekteerde visspesies 

en biofilm-groei in Suid Afrikaanse akwakultuur-sisteme, is geneties met behulp van 16S 

rRNS geen PKR restriksie fragment lengte polimorfisme (RFLP), toevallig 

geamplifiseerde polimorfiese DNS (TGPD)  PKR, heel-sel protein (HSP) en buite-

membraan protein (BMP) analise gekarakteriseer.  BMP analise het getoon dat die 

Myroides en Empedobacter spp. isolate geneties heterogeen is, alhoewel 16S rRNS 

TGPD-PKR, TGPD-PKR en HSP analise nie tussen die isolate kon onderskei nie.  BMP 

analise, 16S rRNS TGPD-PKR met MspI en TGPD-PKR met inleier P2 was meer 

suksesvol as HSP analise, 16S rRNS TGPD-PKR met CfoI en MspI, en TGPD-PKR met 

inleier P1, om onderskeid te tref tussen die Chryseobacterium en Elizabethkingia spp. 

isolate en het gedui op ‘n hoë vlak van genetiese heterogeniteit tussen hierdie isolate.  

Beide die Chryseobacterium en Elizabethkingia spp. en Myroides en Empedobacter spp. 

isolate het ‘n hoë vlak van antibiotika weerstand getoon wat dui op ‘n menigvuldigde 

antibiotika weerstands-fenotiepe.  Primêre vashegting vermoëns en die invloed van 

omgewingsfaktore op vashegting is met behulp van ‘n gemodifiseerde mikrotiterplaat 

vashegtings toets ondersoek.  Vashegting van die isolate is beïnvloed deur variasies in die 

samestelling van die medium, temperatuurveranderings en verskillende hidrodinamiese 

inkubasie kondisies.  Inteenstelling met die sterk vashegtingsvermoë van die Myroides en 

Empedobacter spp. isolate, het die vermoë om vas te heg grootliks tussen die 

Chryseobacterium en Elizabethkingia spp. isolate gevarieer.  Verder is ondersoek ingestel 

op die invloed van seloppervlak eienskappe soos die teenwoordigheid van kapsules en 

hidrofobisiteit op die isolate se vermoë om aan oppervlaktes te heg.  Die Myroides en 



Empedobacter spp. isolate en verskeie Chryseobacterium en Elizabethkingia spp. isolate 

is omring deur dik kapsules, maar geen verband tussen vashegting en die 

teenwoordigheid van kapsules kon bepaal word nie.  Die sout aggregasie toets (SAT) en 

bakteriële vashegting aan koolwaterstowwe (BVAK) toets was gebruik om die 

hidrofobisiteit van die isolate se seloppervlaktes te bepaal.  Die Myroides en 

Empedobacter spp. isolate en 74% van die Chryseobacterium en Elizabethkingia spp. 

isolate het ‘n baie hidrofiliese seloppervlak getoon.  Slegs die hidrofobisiteit bepaal deur 

die SAT toets het ‘n positiewe verwantskap met die aanhegtingsvermoë van die 

Chryseobacterium en Elizabethkingia spp. isolate getoon.  Mede-aggregasie tussen die 

isolate en verskeie belangrike mediese en akwakultuur mikroörganismes is ook 

ondersoek.  Die Myroides en Empedobacter spp. isolate het ‘n sterk assosiasie met E. 

faecalis en S. aureus getoon Die Chryseobacterium en Elizabethkingia spp. isolate het 

sterk met E. faecalis, S. aureus, S. enterica serovar Arizonae en Listeria spp. geassosieer.  

Vloei-sel studies is uitgevoer om die biofilm-vormingsvermoë van die isolate te 

ondersoek.  Vir beide die Myroides en Empedobacter spp. en Chryseobacterium en 

Elizabethkingia spp. isolate is tipiese kegelagtige biofilm stukture waargeneem.  Die 

invloed van verhoogde hidrodinamiese kondisies in die vloei-sel het vernouing van die 

biofilm strukture en die vorming van enkel-sel kettings tot gevolg gehad.  Vanuit hierdie 

studie is afgelei dat die Myroides en Empedobacter spp. en Chryseobacterium en 

Elizabethkingia spp. isolate onder verskeie kondisies aan oppervlaktes kan vasheg en dus 

potensiële primêre biofilm-vormings organismses is.  Hierdie organismes besit ook die 

vermoë om met ‘n verskeidenheid ander organismes te assosieer, wat waarskynlik hulle 

suksesvolle oorlewing in akwakultuursisteme verseker.      
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CHAPTER ONE 
 

Literature Review 
 
 

1. Aquaculture  

1.1 The World 
 

Aquaculture has been a source of fish protein for human consumption for nearly 

4000 years (Iwama, 1991).  From 1984 to 1994 the world aquaculture production more 

than doubled, making it one of the fastest growing food production activities (FAO, 

1996).  Today, one fourth of the fish consumed by humans is the product of aquaculture, 

and this percentage will only increase as aquaculture expands and the worlds’ 

conventional fish catch from oceans and lakes continues to decline because of over-

fishing and environmental damage (Folke and Kautsky, 1992).   

Aquaculture products fall into two distinct groups: high-valued species such as 

shrimp and salmon produced for export, and lower-valued species including carp and 

tilapia, which are primarily produced for local consumption.  Aquaculture does not only 

serve as a significant contribution to the protein needs of low-income regions, but also 

boosts the economy of these regions through export of high-valued species to high-

income regions (Christensen, 1997; and Holmes, 1996).  In addition, with the production 

of high-valued species in low-income regions and subsequent increase in economy, 

aquaculture also contributes in the fight against poverty.  With a growth rate of 

approximately 20% a year, the aquaculture industry in China, the largest aquaculture 

industry in the world currently employing 10 million people, promises more jobs 

annually.  Globally, the aquacultural industry is expected to expand, as the worlds’ need 

for fish protein is increasing.  It has been predicted that by 2010, fish protein produced by 

aquaculture would have increased by 50% to 39 million metric tons (FAO, 1996). It can 

be said without a doubt, that the aquacultural industry plays a very important role in 

contributing to the global food supply, alleviation of poverty and survival of poor 

countries. 
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1.2 South Africa 
 

In South Africa, the aquaculture industry includes freshwater culture and 

mariculture.  In 2003, approximately 250 tons of trout and salmon were produced by the 

freshwater industry, primarily in the Western Cape.  Other freshwater species cultivated 

on a small-scale include catfish (Clarias gariepinus), freshwater crayfish (maron) and 

tilapia species.  Mariculture is the largest industry in South Africa, focusing on mussels, 

oysters, abalone, seaweeds and prawns.  Of these, mussel farming is the best established, 

producing most of the estimated 2 650 tons of mariculture in 2003.  Another established 

industry is abalone culture in the southern part of the Cape coast.  Currently, there is an 

experimental offshore farm (cage-culture) of salmon in the Western Cape.  Although the 

South African fisheries sector only plays a small part in the economy of the country, 

contributing only about 1% to the Gross Domestic Product (GDP), it has a substantial 

level of international trade, and contributes significantly to foreign exchange of South 

Africa.  In addition, a comprehensive economic assessment revealed that 16 854 people 

were directly employed in the fishing industry and secondary and associated industries 

employed a further 10 876 people in 2003 (Mather et al., 2003). 

 

2. Bacterial disease as threat to aquaculture industry 
 

The most important threat to the aquaculture industry is disease, often caused by 

bacteria.  Another threat relating to this is the spoilage of fish products by 

microorganisms after harvest, and during packaging, transport and storage.  Due to the 

above-mentioned increasing global importance of aquaculture, the study of these 

microorganisms is becoming increasingly important.  The presence of microorganisms in 

aquaculture plays a very important role in the early life stages of the development of fish, 

since microbial colonization of the egg surface and presence of microorganisms during 

larval stages is detrimental to the development of gut microflora (Hansen and Olafsen, 

1999).   
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In addition, the majority of bacteria causing disease in fish are opportunistic 

pathogens that are present as part of the normal water microflora (Hansen and Olafsen, 

1999).  These disease-causing organisms are often found colonizing surfaces of 

cultivation tanks, and present in or on fish cultivated for human consumption.  Bacterial 

disease is often found to take place during stressful periods when the fish undergo 

physiological changes due to internal stresses such as diseases associated with spawning 

(Inglis et al., 2001).  External environmental stressors, such as changes in temperature 

and oxygen concentration, pollutants, or chemical and abrasive forces may also play a 

role in weakening the first-line defenses to allow for bacterial colonization (Hansen and 

Olafsen, 1999).  Many bacterial species are known to infect fish, from primary pathogens 

such as Vibrio anguillarum and Aeromonas salmonicida to a great range of opportunistic 

pathogens, including Aeromonas hydrophila, Vibrio harveyi, Yersinia ruckeri, and 

members of the yellow-pigmented family Flavobacteriaceae (Inglis et al., 2001).  These 

fish pathogens have caused tremendous problems in the aquaculture industry worldwide 

(Darwish et al., 2004; Gavín et al., 2003; Wang et al., 2003; Coquet et al., 2002a; Kondo 

et al., 2002; Decostere et al., 1999; and Karunasagar et al., 1996). 

  The various fish diseases caused by these pathogens include bacterial cold-water 

disease (BCWD) caused by Flavobacterium psychrophilum, bacterial gill disease (BGD) 

primarily associated with Gram-negative filamentous yellow-pigmented bacteria 

including Flavobacterium columnare and Flavobacterium branchiophilum, and 

Flavobacterium columnare which is the etiological agent of columnaris disease (Inglis et 

al., 2001).  Bacterial kidney disease (BKD) is caused by Renibacterium salmoninarum 

and Edwardsiella tarda is the causative agent of septicaemia in fish and has also been 

implicated in spoilage of fish products (Inglis et al., 2001).  Aeromonas spp. are involved 

in various diseases, often causing secondary infection, and thus described as 

opportunistic pathogens.  Some bacterial fish pathogens such as Psisicirickettsia salmonis 

are obligate intracellular parasites of fish.  Other fish pathogens include Yersinia ruckeri, 

the causative agent of enteric redmouth (ERM) disease, and Vibrio anguillarum and 

Aeromonas salmonicida (Inglis et al., 2001). 

Apart from the above-mentioned bacterial fish diseases, numerous other diseases 

caused by various bacterial fish pathogens and opportunistic pathogens exist.  These 
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bacterial diseases are the most important causes of losses among fish farm stocks, 

therefore necessitating a full understanding for successful therapy and control to avoid 

severe economical aquacultural losses. 

 

2.1 The family Flavobacteriaceae  
 
           The family Flavobacteriaceae belongs to the phylum Cytophaga-Flavobacterium- 

Bacteroides (CFB), together with several other families and many isolated taxa 

(Bernardet et al., 2002).  Gram-negative, non-spore-forming, yellow-pigmented rods that 

weakly produce acid from carbohydrates were initially classified into the genus 

Flavobacterium (Bernardet et al., 1996).  As this genus rapidly acquired a large number 

of poorly defined bacteria resulting in a very heterogeneous group of bacteria, two new 

genera were proposed.  Aerobic, cellulolytic, gliding soil bacteria were reclassified into 

the genus Cytophaga and soil and freshwater bacteria with similar phenotypic traits to 

that of the genus Cytophaga, but incapable of cellulose degradation were placed into the 

genus Flexibacter (Bernardet et al., 1996).  Several other species previously belonging to 

the genus Flavobacterium were also reclassified to new or different genera, including the 

genera Bergeyella, Cytophaga, Empedobacter, Sphingobacterium, Weeksella, Myroides 

and Chryseobacterium (Bernardet et al., 1996; and Vancanneyt et al., 1994).  Bacterial 

cells belonging to the family Flavobacteriaceae are short to moderately long rods with 

parallel or slightly irregular sides and rounded or slightly tapered ends.  They are usually 

0.3 μm to 0.6 μm wide and 1 to 10 μm long although cell morphology may vary among 

members of the same species (Bernardet et al., 2002). Flavobacterial cells may be non-

motile or motile by gliding, which varies among genera.  Gliding motility is an important 

characteristic for differentiating between genera classified in the family and between 

species of some of the genera.  Colony pigmentation varies among genera from non-

pigmented to pigmented by carotenoid or flexirubin pigments or both (Bernardet and 

Nakagawa, 2005).  Carotenoid pigments are usually produced by members of marine 

species while flexirubin pigments are more frequently associated with clinical, freshwater 

or soil organisms (Reichenbach, 1989).  
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The genus Flavobacterium now forms the type genus of the family 

Flavobacteriaceae, and includes genera from diverse ecological niches with various 

physiological characteristics (Bernardet et al., 2002).  Habitats within which genera of 

the family Flavobacteriaceae are found are quite diverse and include soil; freshwater 

environments; marine environments; food and dairy products and their processing 

environments; clinical environments (humans, hospital equipment and medical devices); 

diseased dogs, cats, amphibians, and reptiles; diseased freshwater and marine fish, 

diseased mollusks, crustaceans, and sea urchins; diseased birds and eggs; digestive tract 

of insects; amoebae; and diseased plants (Bernardet and Nakagawa, 2005).  Members of 

the CFB phylum usually constitute one of the major groups of heterotrophic bacteria of 

bacterial communities (Kirchman, 2002; O’Sullivan et al., 2002; Brümmer et al., 2000; 

Manz et al., 1999; and Burchard and Sorogon, 1998).  These organisms frequently 

participate in biofilms and seem to play an important role in biogeochemical cycles, 

through the production of diverse enzymes to degrade a variety of complex organic 

substrates (Johansen and Binnerup, 2002; and Kirchman, 2002). Members of the family 

Flavobacteriaceae have specifically been identified as part of bacterial communities in 

various environments (Bernardet and Nakagawa, 2005).  

Members of the family Flavobacteriaceae produce various enzymes which enable 

them to degrade complex organic macromolecules including cellulose, pectin, xylan, 

chitin and agars.  Proteolytic enzymes produced by these organisms play a role in the 

virulence of some of the pathogenic members of the family (Bernardet and Nakagawa, 

2005).  Fish-pathogenic Flavobacterium spp. produce proteases, which degrade collagen, 

elsatin, fibrinogen and keratin, as well as polysaccharides of connective tissue, and are 

responsible for the characteristic lesions observed in flavobacterial fish diseases 

(Bernardet and Nakagawa, 2005). 

Members of the family Flavobacteriaceae cause disease in humans, birds, fish 

and various other animals (Jooste and Hugo, 1999).  Most members display opportunistic 

pathogenicity by invading immunocompromised hosts, and are often part of the normal 

host microflora or surrounding environment.  This is the case for the potentially 

pathogenic members of the genera Flavobacterium, Chryseobacterium, Myroides, 

Empedobacter, Bergeyella and Weeksella.  They have been implicated in serious 
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aquacultural diseases and thus, economic losses (Bernardet, 1998).  In addition to 

BCWD, F. psychrophilum has been found to be the causative agent of rainbow trout fry 

syndrome (RTFS) in salmonid fish and occasionally other fish species, such as cyprinids 

and eel (Cepeda et al., 2004; and Madetoja et al., 2003).  F. columnare is the causative 

agent of columnaris disease and has been denoted as one of the most important bacterial 

pathogens in freshwater fish (Tryanto and Wakabyashi, 1999).  Chryseobacterium 

scophthalmum, formerly F. scophthalmum, was found to be present in coastal water 

samples in Scotland, and was isolated from wild turbot and found to be responsible for 

causing gill hyperplasia and haemorrhagic septicaemia (Bernardet, 1998). 

 

2.1.1 The genera Chryseobacterium and Elizabethkingia 

2.1.1.1  Taxonomy 

Following extensive phylogenetic investigations, the genus Flavobacterium was 

emended, which gave rise to new genera including the genus Chryseobacterium 

(Bernardet et al., 1996; and Vandamme et al., 1994).  The genus Chryseobacterium 

currently comprises 18 species namely, C. balustinum (Harrison, 1929), C. indoltheticum 

(Campbell and Williams, 1951), C. indologenes (Yabuuchi et al., 1983), C. gleum 

(Holmes et al., 1984), C. scophthalmum (Mudarris et al., 1994), C. ‘proteolyticum’ 

(Yamaguchi and Yokoe, 2000), C. defluvii (Kämpfer et al., 2003), C. joostei (Hugo et al., 

2003),  C. formosense (Young et al., 2005), C. daecheongense (Kim et al., 2005a), C. 

taichungense (Shen et al., 2005), C. vrystaatense (de Beer et al., 2005), C. shingense 

(Shimomura et al., 2005), C. hispanicum (Gallego et al., 2006), C. piscium (de Beer et 

al., 2006), C. soldanellicola, C. taeanense (Park et al., 2006) and C. wanjuense (Weon et 

al., 2006).  Recently, the genus Chryseobacterium was divided, giving rise to a second 

genus, Elizabethkingia (Kim et al., 2005b).  Two former Chryseobacterium spp., C. 

meningosepticum and C. miricola, were allocated to this genus under the epithets E. 

meningoseptica and E. miricola (Kim et al., 2005b).  The division of the genus 

Chryseobacterium is a consequence of high-quality 16S rRNA gene sequencing which 

allows for better discrimination than the conservative DNA-rRNA hybridization 
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techniques, which were previously used for phylogenetic investigations of the genus 

Flavobacterium.  

 

2.1.1.2 Habitat 

Members of the genera Chryseobacterium and Elizabethkingia are found in 

diverse ecological niches, including clinical settings and various food products (Jooste 

and Hugo, 1999). 

 

2.1.1.2.1 Environmental habitats 

Chryseobacterium spp. are primarily isolated from soil, freshwater and marine 

environments.  C. indologenes and C. gleum were isolated from soil and water by Tatum 

et al. (1974), a decade before they were described by Yabuuchi et al. (1983) and Holmes 

et al. (1984), respectively.  Recently, C. indologenes isolates were isolated from soil 

samples in Indonesia and Spain, and showed great economical and environmental 

importance because of their ability to degrade toxic compounds (Lopez et al., 2004; and 

Radianingtyas et al., 2003).  C. indoltheticum was isolated from marine mud samples 

(Campbell and Williams, 1951).  ‘C. proteolyticum’ was isolated by Yamaguchi and 

Yokoe (2000) from soil in a Japanese rice field.  C. daecheongense from freshwater lake 

sediment (Kim et al., 2005a), C. taichungense from contaminated soil (Shen et al., 2005), 

C. formosense from the rhizosphere of garden lettuce (Lactuca sativa L.) and C. 

wanjuense was isolated from the surrounding soil (Weon et al., 2006; and Young et al., 

2005), respectively.  Two new species, C. soldanellicola and C. taeanense were isolated 

from roots of the sand-dune plants Calystegia soldanella (beach morning glory) and 

Elymus mollis (wild rye), respectively (Park et al., 2006).  C. indologenes strains were 

found among the very diverse bacterial community isolated from penguin guano 

collected from Antarctica (Zdonowski et al., 2004). E. meningoseptica spp. are most 

often isolated from clinical settings, but have also been found to occur in soil and aquatic 

environments (Bruun and Ursing, 1987; Owen and Holmes, 1981; and Bruun, 1982). 

 Chryseobacterium spp. isolates are also prevalent in industrial environments.  C. 

defluvii was isolated from activated sludge (Kämpfer et al., 2003), and other 
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Chryseobacterium spp. were isolated from paper mill slimes (Oppong et al., 2003).    C. 

hispanicum was recently isolated from a drinking water distribution system by Gallego et 

al. (2006).  E. meningoseptica was isolated from spent nuclear fuel pools (Bernardet et 

al., 2006), and E. miricola from water condensation on the Russian space laboratory Mir 

(Li et al., 2003). 

Chryseobacterium and Elizabethkingia spp. exhibit varying degrees of tolerance 

to NaCl and environmental strains may occur both in freshwater and seawater, as well as 

in freshwater and marine fish (Bernardet et al., 2006).  There have been many reports of 

fish-associated members of the genera Chryseobacterium and Elizabethkingia.  They 

have been found to be pathogenic or spoilage organisms and some belong to the normal 

fish microflora colonizing the mucus at the surface of the skin, gills and intestines of 

healthy fish, such as eel (Lijnen et al., 2000) and salmon (Morita et al., 1997). 

There have been increasing reports of the isolation of Chryseobacterium and 

Elizabethkingia spp. from environmental biofilm communities.  Four Chryseobacterium 

spp. were recovered from biofilm microflora in domestic sink drains (McBain et al., 

2003).  Several Chryseobacterium spp. were among the common potentially pathogenic 

bacteria, which were isolated from samples of treated and untreated drinking water in 

South Africa (Pavlov et al., 2004).  E. meningoseptica strains were isolated from a slimy 

brown deposit inside the spouts of sink taps of a hospital during a disease outbreak 

(Hoque et al., 2001). 

 

2.1.1.2.2    Food environments 

Chryseobacterium and Elizabethkingia spp. have been isolated from a variety of 

food products, and are often considered food spoilage organisms.  They have been 

isolated from milk and dairy products, canned food products, poultry and poultry plants, 

meat and meat products, fish and fish products and vegetables during commercial 

processing (de Beer et al., 2006; de Beer et al., 2005; Young et al., 2005; Hugo et al., 

2003; Gonzáles et al., 2000; Austin and Austin, 1999; Jooste et al., 1986b; and Owen and 

Holmes, 1981).  The potential of these organisms to spoil milk and dairy products has 

been ascribed to their proteolytic and lipolytic activities (Cousin, 1982; and Gilmour and 
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Rowe, 1981).  C. balustinum, C. indologenes and C. gleum have been isolated from milk 

products and implicated in the spoilage of these products (Jooste et al., 1986).  New 

genomic groups such as C. joostei have also been isolated from the dairy environment 

(Hugo et al., 2003).  C. indologenes and C. gleum have been isolated from meat and meat 

products (Owen and Holmes, 1981), and C. vrystaatense was isolated from raw chicken 

in a chicken-processing plant (de Beer et al., 2005).  C. balustinum was initially isolated 

from the scales of halibut in the Pacific Ocean (Brisou et al., 1959; and Harrison, 1929), 

and was considered to be a fish product spoilage agent rather than a fish pathogen (Austin 

and Austin, 1999).  Later, these organisms were also isolated from the skin and muscle of 

wild and farmed fish and were considered fish product spoilage organisms, since they 

were isolated from the fish stored for three days in melting ice (Gonzáles et al., 2000).  

The C. balustinum, C. gleum and C. indologenes strains isolated from Cape marine fish 

displayed various proteolytic activities, and thus may be involved in the proteolytic 

spoilage of fish products during early chill storage (Bernardet et al., 2006). 

 

 2.1.1.2.3     Human clinical and veterinary environments 

Among the genera Chryseobacterium and Elizabethkingia, E. meningoseptica is 

the species most commonly reported as a human pathogen.  It constitutes a major clinical 

concern, since it is usually resistant to antibiotics used for the treatment of Gram-negative 

bacterial infections, including extended-spectrum β-lactams and aminoglycosides.  

Initially described as the causative agent for meningitis of premature neonatal patients 

(King, 1959), it is now together with other Chryseobacterium spp. isolates, associated 

with many other infections in immunocompromised and postoperative patients.  E. 

meningoseptica has been found to cause endocarditis, cellulitis, abdominal infection, 

septic arthritis and eye infections in severely immunocompromised patients suffering 

from malignancy, end-stage hepatic and renal disease, extensive burns and acquired 

immune deficiency syndrome (AIDS) (Bernardet et al., 2006).  In a recent case report by 

Lee et al. (2006), the first cases of community-acquired necrotizing fasciitis and 

bacteremia caused by E. meningoseptica were reported.  Lee et al. (2006) reported cases 

of E. meningoseptica infection without underlying infection, and questioned the 
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nosocomial opportunistic pathogenicity of this organism in immunocompromised hosts. 

C. indologenes has been associated with bacteremia, where the infection was related to 

indwelling devices such as central venous catheters and endotracheal tubes (Bernardet et 

al., 2006).  Urinary tract infection, ventilator-associated pneumonia, pyomyositis and 

infection of burn wounds by C. indologenes has also been reported (Hsueh et al., 1997; 

and Hseuh et al., 1996).  C. gleum has also been associated with nosocomial infections in 

neonates and immunocompromised patients (Hoque et al., 2001).  

 Although the pathogenicity of Chryseobacterium and Elizabethkingia spp. is not 

well described, these organisms have been isolated from diseased animal species.  C. 

indologenes was isolated from diseased frogs (Olson et al., 1992), E. meningoseptica 

from diseased frogs, turtles, birds, cats and dogs (Mauel et al., 2002; Vancanneyt et al., 

1994; Jacobson et al., 1989; Bruun and Ursing, 1987; and Sims, 1974), and C. balustinum 

and C. scophthalmum from diseased fish (Mudarris et al., 1994).  C. balustinum was 

isolated from the heart blood of a freshwater fish suffering from hemorrhagic septicemia, 

and C. scophthalmum has been found to cause gill hyperplasia and hemorrhagic 

septicemia in turbot species (Bernardet et al., 2006).  Chryseobacterium spp. have been 

found colonizing healthy eel, skin and muscle from wild and farmed freshwater fish, and 

intestines of salmon (Oncorhynchus keta), but were not implicated in causing disease in 

these fish during the investigations (Lijnen et al., 2000; and Morita et al., 1997).  They 

are often thought of as fish product spoilage organisms rather than fish pathogens 

(Bernardet et al., 2006).  In contrast to González et al. (2000), Gennari and Cozzolino 

(1989) isolated Chryseobacterium spp. from fresh Mediterranean sardines (Sardina 

pilchardus) and found that the bacterial numbers decreased as the time in cold storage 

increased.  The current view on C. balustinum pathogenicity is that it may occur in 

freshwater and seawater, and when present on the surface of fish it may be saprophytic, 

become an opportunistic pathogen or spoil the fish product during storage (Bernardet et 

al., 2006).  Recently, a new Chryseobacterium spp., C. piscium was isolated from fresh 

South Atlantic Ocean fish samples, and is considered to be involved in fish spoilage (de 

Beer et al., 2006).  E. meningoseptica has been isolated from diseased farmed koi carp 

suffering from skin lesions and hemorrhagic septicemia (Bernardet et al., 2006). 
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2.1.2 The genera Myroides and Empedobacter 

2.1.2.1  Taxonomy 

The genera Myroides and Empedobacter also originated from the emendation of 

the genus Flavobacterium (Vandamme et al., 1994).  Previously known as F. breve, this 

organism was reclassified to the revived genus Empedobacter under the epithet 

Empedobacter brevis (Vandamme et al., 1994).  The first Myroides spp. were isolated in 

1923 and classified as Bacterium faecale aromaticum, but were reclassified to 

Flavobacterium odoratum (Hugo et al., 2005).  Following extensive polyphasic and 

taxonomic studies, Vancanneyt et al. (1996) reclassified F. odoratum into the new genus 

Myroides.  Currently, there are three described Myroides spp., M. odoratus, M. 

odoratimimus (Vancanneyt et al., 1996) and M. pelagicus (Yoon et al., 2006). 

 

2.1.2.2  Habitats 

E. brevis was originally isolated from canal water, but is mainly known to have a 

clinical origin (Bernardet et al., 2006).  Empedobacter spp. strains have been isolated 

from human eyes, bronchial secretions, peritoneal fluid, dialysis fluid, serous cavity fluid, 

cervixes and vaginas, wounds, blood and urine (Bruun, 1982; and Holmes et al., 1978).  

The first E. brevis was pathogenic to guinea pigs, mice and rabbits (Holmes et al., 1978).  

More recent clinical isolates have not been pathogenic, but may cause keratitis of the 

eyes when present with other bacterial species (Bottone et al., 1992). 

  Myroides spp. have been isolated from various human specimens such as the 

intestine, urine, faeces, wound discharge, sputum and blood (Schreckenberger, 1998; and 

Hugo et al., 2005).  Although primarily isolated from clinical settings the pathogenic role 

of these organisms is still debated and they have been implicated in causing necrotizing 

fasciitis and bacteremia (Hugo et al., 2005).  Holmes et al. (1979) isolated M. odoratus 

from soft tissue in amputation sites and urinary tract infections. In 2000, M. 

odoratimimus was responsible for a major outbreak of urinary tract infection in Turkey 

(Yagci et al., 2000).  They have also been found to be widely distributed in the 

environment, mainly from aquatic sources (Hugo et al., 2005).  Engelbrecht et al. (1996) 

isolated Myroides spp. from South Atlantic fish species and from freshwater fish skin and 
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in the air during chill storage of freshwater fish (Gonzáles et al., 2000), where they 

caused spoilage of fish products.  M. pelagicus was recently isolated from a consortium 

of crude oil-utilizing and – emulsifying bacteria from seawater (Maneerat et al., 2005).  

M. odoratus has also been isolated from mixed-species biofilm communities developed 

on the surfaces of seafood processing plant equipment (Bremer et al., 2001; and Tide et 

al., 1999).  

 

3. Biofilms – complex microbial communities 
 

From the beginning of microbiology, scientists have studied microorganisms as 

planktonic, pure cultures.  In reality, microorganisms have a strong tendency to colonize 

surfaces and thus, with the exception of a few rare cases, there are no free-swimming 

bacteria in nature.  They are naturally found as sessile, highly structured multi-species 

communities, which are referred to as biofilms (Rickard et al., 2003a). 

A biofilm is an assemblage of microbial cells that is irreversibly associated with a 

surface and enclosed in a matrix of primarily polysaccharide material (Donlan, 2002).  

Depending on the environment in which the biofilm has developed, non-cellular materials 

such as mineral crystals, corrosion particles, clay or silt particles, or blood components 

may also be enclosed in the biofilm matrix (Donlan, 2002). Biofilms may form on a wide 

variety of surfaces, including living tissues, indwelling medical devices, industrial or 

potable water system piping, or natural aquatic environments (Donlan, 2002). 

Biofilm communities are regarded as interactive organisms capable of significant 

collective activity (Shapiro, 1998; Shapiro and Dworkin, 1997; and Shapiro, 1988) or 

“microorganisms in a biofilm act together like one multicellular organism” (Netting, 

2001).  Initially, most of the research conducted on biofilms focused on pure bacterial 

cultures, which are rarely found in the natural environment, yet very important in disease.  

Increasing numbers of studies now focus on mixed-culture biofilm communities (Berry et 

al., 2006; Hu et al., 2003; Leonard et al., 2000; Tide et al., 1999; Elvers et al., 1998; Leff 

et al., 1998; and Jeong and Frank, 1994), as well as natural or environmental biofilms.  

Elvers et al. (1998) found that interactions such as neutralism, mutualism, 

commensalisms, amensalism, prey-predator relationships and competition may take place 
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in these complex, multispecies communities.  Since biofilms are most often mixed 

consortiums of either bacteria or involving the microorganism kingdom, mixed biofilm 

community studies are of the essence.  Regardless of how biofilm studies are conducted 

the most important practical reason for studying these communities is to find a way to 

control them.  

 

 3.1  Biofilm Architecture 
 
The term ‘biofilm’ refers to any microbial organization which can range from 

patchy monolayers on some surfaces, very thick gelatinous masses associated with water 

cooling systems, to filamentous accretions near sewage outlets (Wimpenny et al., 2000).  

Biofilm architecture is heterogeneous both in space and time, constantly changing 

because of external and internal processes (Donlan, 2002).  In addition, biofilm 

architecture is dependent on the flow-rate in the surrounding environment and the 

composition of the biofilm (Poulsen, 1999).  In heterogenic biofilms the architecture is 

often irregular due to the different growth and adherence patterns of the microorganisms 

(Costerton et al., 1995).  Although some structural attributes can generally be considered 

universal, every microbial biofilm community is in essence unique (Tolker-Nielsen and 

Molin, 2000).   

At least three different structural organization views or models have been 

described for biofilm architecture (Wimpenny et al., 2000).  The traditional, planar 

homogenous view of biofilm structure originated from early studies on oral biofilms 

(Nyvad and Fejerskov, 1997).  The ‘heterogeneous mosaic’ model was described from 

examination of the inner surfaces of water distribution systems (Keevil and Walker, 

1992).  These biofilms consisted of microcolonies held together by extracellular 

polymeric substances (EPS) and appeared as columns surrounded by a liquid phase in 

which grazing protozoa were observed (Keevil and Walker, 1992).  Below the 

microcolonies, a thick, homogeneous layer of cells attached to the substratum was 

observed (Keevil and Walker, 1992).  The ‘mushroom or tulip’ model is currently the 

most described and accepted model for biofilm architecture (Wimpenny et al., 2000).  In 

this model the mature biofilm structure consists of intricate architecture featuring 
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columns, interstitial voids and typically, though not necessarily, mushroom-like towers 

with stalks narrower than the upper surface parts (Netting, 2001).  Within this elaborate 

architecture, niches are formed throughout the spatially well-organized system, which 

provides an opportunity for metabolic co-operation.  This allows these organisms to exist 

in a mutualistic multi-species consortium (Davey and O'Toole, 2000).  The biofilm has a 

porous structure with capillary water channels within which water and nutrients are 

distributed (Costerton et al., 1995).  These water channels are found both under and 

between the biofilm microcolonies and are believed to also participate in the transport of 

oxygen to the inner areas of the biofilm (Poulsen, 1999).  Transport of nutrients to the 

bottom of the biofilm occurs through special capillary tubes.  Cellular waste is also 

secreted through capillary tubes to the surface of the biofilm (Costerton et al., 1995).  

 

 

 
Figure 1. 1 Diagram illustrating the sequence of development of a mature biofilm structure (Schele 

and Petersen, 2004). 
 
 

 3.2  Extracellular Polymeric Substances 
 
EPS has been considered the primary matrix material of biofilms, and may 

account for up to 90% of the total organic carbon of biofilms (Flemming et al., 2000). 

EPS is primarily composed of polysaccharides, but may vary in chemical and physical 

properties (Sutherland, 2001). Anionic properties of the EPS are due to the presence of 

uronic acids or ketal-linked pyruvates (Sutherland, 2001).  The anionic property plays an 

important role as it allows for the association of divalent cations such as calcium and 
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magnesium, which have been shown to cross-link with the polymer strands and provide 

greater binding force in a developed biofilm (Flemming et al., 2000).    Large amounts of 

water is also incorporated in the EPS structure through hydrogen bonding (Sutherland, 

2001).  Two important properties of EPS that may have an effect on the biofilm include 

the composition and structure of the polysaccharides, which determines the primary 

conformation of the biofilm, and spatial and temporal variation in EPS composition, 

which determines the architecture of the mature biofilm (Sutherland, 2001).  EPS 

production is known to be affected by the nutrient concentration of the growth medium, 

where EPS synthesis is promoted in conditions where carbon is available in excess and 

nitrogen, potassium, or phosphate is limited (Sutherland, 2001).  The presence of EPS 

surrounding biofilm communities is frequently correlated with adhesion and protection of 

the cells contained in the biofilm (Costerton et al., 1995; Vess et al., 1993; and Raad et 

al., 1991).  Because EPS is highly hydrated, it prevents desiccation in some biofilms, and 

may also contribute to the antimicrobial resistance properties of biofilms by impeding the 

mass transport of antibiotics through the biofilm (Donlan, 2000). 

 

 3.3  Process of Biofilm Formation 
 
Three methods for biofilm formation have been described (Stoodley et al., 2002).  

The first method is the relocation of cells attached to a substrate through surface 

translocation (Dalton et al., 1996; and Korber et al., 1995).  The type IV pili allows for 

such relocation of P. aeruginosa cells already attached to surfaces (O’Toole and Kolter, 

1998).  Furthermore, binary division of attached cells also results in the formation of 

biofilms as the daughter cells produced spread horizontally and vertically to form 

microcolonies (Heydorn et al., 2000).  Finally, coaggregation between attached cells and 

free-swimming cells from the surrounding bulk fluid also allow for development of the 

biofilm (Tolker-Nielson et al., 2000).  The morphology of a mature biofilm community 

varies depending on environmental conditions, such as the location, nature of the 

microbes and nutrient availability.  They may be thick multi-layered lawns of cells such 

as those found in dental plaque biofilms, dispersed microcolonies or thin layers of cells 

with protrusions (Wimpenny and Colasanti, 1997).   
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There are various positioning mechanisms, which facilitate the initiation of a 

biofilm structure.  These mechanisms include flagellar motility, which has been described 

as the most common.  Other mechanisms include the various methods of surface 

translocation such as twitching, gliding, darting and sliding (Henrichsen, 1972). 

Modulation of density or regulation of buoyancy by Amoebobacter purpureus is also 

considered a positioning mechanism (Overmann and Pfennig, 1992).  Magnetosomes, 

which cause certain bacterial cells to align with the earths’ geomagnetic field and limit 

their lateral movement, have also been implicated in bacterial cell positioning (Schuler 

and Frankel, 1999; and Bazylinski, 1995).  The most important positioning mechanisms 

are considered aggregation or attachment.  The various factors that may influence 

attachment and biofilm formation are summarized in Table 1.1. 

 
Table 1. 1 Variable factors important in cell attachment and biofilm formation (Wimpenny et al., 

2000). 
 

Properties of the substratum Properties of the bulk fluid Properties of the cell
Texture or roughness Flow velocity Cell surface hydrophobicity

Hydrophobicity pH Fimbriae
Conditioning film Temperature Flagella

Cations Extracellular polymeric substances
Presence of antimicrobial agents  

  
  

3.3.1 Attachment 

There is still controversy with regards to whether initial attachment does indeed 

influence subsequent biofilm formation.  Some scientists have found that biofilm 

formation was not dependent on this initial attachment event (Cerca et al., 2005; and 

Chae et al., 2005).  Others have shown that biofilm formation is preceded by initial 

attachment to a solid substrate, which involves various specific and non-specific physico-

chemical interactions (Rickard et al., 2003a).  Various mechanisms of attachment have 

been described and these mechanisms utilize different cell components.  Outer membrane 

proteins (OMPs); wall polysaccharides such as capsules, lipopolysaccharides (LPS); and 

cell surface agglutinins are examples of such components (Davey and O'Toole, 2000).  

Makin and Beveridge (1996) demonstrated that loss of the B-band LPS reduced the 
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ability of P. aeruginosa cells to interact with hydrophilic surfaces.  Danese et al. (2000) 

showed that the major phase-variable OMPs in Escherichia coli, Ag43, was directly 

required for the cells’ interaction with a surface (Danese et al., 2000).  The precise 

process of initial attachment involves three steps: adsorption, adhesion and adherence.   

 

3.3.1.1  Adsorption 

Adsorption involves physical chemistry, which includes attraction by ionic forces, 

and loose binding interactions such as van der Waals’ forces.  Adhesion is a reversible 

stage, and involves recognition of surface sites or adhesins, which could include either 

proper anchorage devices with precise structures, or could be gels, mucuses or soluble 

substances.  During this stage the bacteria exhibit several species-specific behaviours, 

which include rolling, creeping and aggregate formation before they begin to produce 

small amounts of exopolysaccharide and move on to the next stage (Korber et al., 1995).   

 

3.3.1.2  Adhesion 

Adherence is the irreversible binding of the organism to a surface through specific 

adhesins.  Lectins are a heterogeneous group of glycoproteins, which can be found in all 

organisms from viruses and bacteria to mammals.  They act as recognition, adhesion or 

signaling molecules (Hansen and Olafsen, 1999).  In invertebrates, lectins play a role in 

defense against microorganisms by acting as antibodies that attach to invading microbes 

to make them more susceptible to phagocytosis (Hansen and Olafsen, 1999).  In 

mammals, there are various lectin-like structures which play a role in immunity (Kéry, 

1991).  In E. coli, the flagella and type I pili (mannose-sensitive adhesins) were found to 

be responsible for adhesion to polyvinyl chloride (PVC).  The flagellum is used to 

overcome repulsive forces, which act on the microorganisms from abiotic surfaces. When 

the cell reaches the surface, type I pili are responsible for stable cell-to-surface 

adherence. Once attached, cell motility allows for the movement of the cell along the 

surface to reach desirable areas (Pratt and Kolter, 1998).  O’Toole and Kolter (1998) 

found that in P. aeruginosa biofilm formation, flagellar movement is also necessary to 

propel the cell toward the surface.  In this case type IV pili (encoded by pilA) are 
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responsible for twitching motility, which moves the cell along the adhered surface.  

Flagella are important for attachment and formation of initial biofilm monolayers, while 

pili play a part in the production of confluent films and the accumulation of cells in 

microcolonies (O’Toole and Kolter, 1998).  Another study also implicated pili in biofilm 

formation of Salmonella enteritidis to stainless steel and Teflon (Austin et al., 1998).  

Thin aggregative fimbriae SEF17, were found to be responsible for cell-to-cell contact 

during biofilm formation (Austin et al., 1998).  Although cell structures such as flagella, 

pili and other surface proteins have been found to play a role in biofilm formation, one 

cannot assign a specific task to each structure, since the various structures play different 

roles in this process, in different microbial species (Stickler, 1999). 

 

3.3.1.3  Adherence 

Attachment is mediated by various effects of the substratum, conditioning films 

forming on the substratum, hydrodynamics of the aqueous medium, characteristics of the 

medium and cell surface properties (Donlan, 2002). 

 

3.3.1.3.1     Substratum effects 

 Surface roughness has been found to increase microbial attachment to surfaces.  

This is due to a decrease in shear forces and an increase in surface area (Characklis et al., 

1990).  Physicochemical properties of the surface have also been found to influence 

attachment of microbial cells to surfaces.  Certain hydrophobic interactions that occur 

between the cell surface and the substrate enable the cell to overcome repulsive forces 

and attach to the surface.  Most investigators have found that microorganisms attach more 

rapidly to hydrophobic, non-polar surfaces such as plastics than to hydrophilic materials 

such as glass or metals (Bendinger et al., 1993; Pringle and Fletcher, 1983; and Fletcher 

and Loeb, 1979) 

3.3.1.3.2      Conditioning films 

 A surface exposed in an aqueous medium will become coated by polymers from 

the medium to form a conditioning film, which could affect the rate of microbial cell 
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attachment (Loeb and Neihof, 1975).  An example of such a film is the proteinaceous 

acquired pellicle, which develops on tooth enamel preceding biofilm formation in the oral 

cavity.  Marsh (1995) investigated the composition of the pellicle and found that it 

contained albumin, lysozyme, glycoproteins, phosphoproteins, lipids and gingival crevice 

fluid.  Attachment of bacteria to biomaterials was increased by host-produced 

conditioning films such as blood, tears, urine, saliva, intravascular fluid and respiratory 

secretions (Mittelman, 1996).  The adherence of S. putrefacience and S. enterica serovar 

Typhimurium to stainless steel was found to be increased by the presence of a 

conditioning film (Bagge et al., 2001; and Hood and Zottola, 1997).  In contrast, Barnes 

et al. (1999) found a decrease in attachment of P. fragi and Listeria monocytogenes when 

an organic film was present.  Certain food components such as milk proteins were found 

to decrease bacterial attachment (Barnes et al., 1999). 

 

3.3.1.3.3 Hydrodynamics of the aqueous medium 

 The influence on biofilm formation under increased shear forces when placed 

under high flow rates of the aqueous medium has also been described.  Under these 

conditions, biofilm cell clusters became elongated in the downstream direction of 

unidirectional flows to form filamentous streamers (Stoodley et al., 1999).  This has been 

documented for P. aeruginosa biofilms where the streamers were attached to a substrate 

by an upstream “head” portion and a downstream “tail” portion that freely oscillated in 

the flow.  They also showed that the streamers become elongated over time, with the tails 

getting thinner until there was only a small chain of single cells at their tips (Stoodley et 

al., 1998).  High shear forces also influence the physical properties of biofilms such as 

density and strength.  Liu and Tay (2001) showed that biofilms grown under high fluid 

shear were smoother and denser than those grown under low shear forces.  Desulfovibrio 

spp. and P. aeruginosa biofilms were found to be more rigid and stronger when grown 

under high shear forces (Stoodley et al., 2001).   Fluid flow velocity (and associated shear 

rates) has been suggested to be important in the development of biofilm community 

structure (Beyenal and Lewandowski, 2002) and govern the abilities of individual species 

to immigrate to biofilms and to colonize new surfaces (Cloete et al., 2003; and Stoodley 
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et al., 1999).  The effect of shear rate on bacterial composition and diversity of freshwater 

biofilms has not been studied extensively, but evidence is emerging that high fluid 

velocities with associated high shear forces lead to the development of less diverse 

biofilm communities as compared to those developed at lower shear rates (Rickard et al., 

2004b; Cloete et al., 2003; Rickard et al., 2003b; Liu and Tay, 2002; and Soini et al., 

2002).  

 

3.3.1.3.4    Characteristics of the medium 

 The composition of growth medium has been shown to affect biofilm formation 

by microorganisms.  According to McEldowney and Fletcher (1986), the nutrient level of 

cultivation media affected the adhesion and biofilm formation of some bacteria.  Kim and 

Frank (1994) observed an increased attachment by L. monocytogenes in low-nutrient 

containing medium.  E. coli O517:H7 is reported to form a biofilm only in low-nutrient 

media (Dewanti and Wong, 1995), while other bacterial strains, E. coli K-12 and Vibrio 

cholerae, will not form biofilms in minimal media (Watnick et al., 1999; and Pratt and 

Kolter, 1998).  It has also been observed that substrate concentration also plays a part in 

the dynamics of biofilm structure (Wimpenny et al., 2000).  This was first demonstrated 

in a study of anaerobic bacteria forming colonies in a continuous flow cell system with 

varying substrate concentrations, where colony size was directly correlated with the 

substrate concentration in the flowing media (Szewzyk and Schink, 1987).  Mushroom-

like structures observed in biofilm architecture have been found to develop in 

intermediate substrate concentrations, under continuous flow in laboratory systems 

(Wimpenny et al., 2000). 

 

3.3.1.3.5     Cell surface properties  

 Cell surface hydrophobicity, presence of fimbriae and flagella, and EPS 

production all influence the rate of attachment by microbial cells to surfaces (Donlan, 

2002).  Korber et al. (1989) demonstrated that motile cells attached more readily to 

surfaces than non-motile cells.  Redistribution to vacant areas on surfaces, and 

colonization of these areas by non-motile bacteria is also not as successful as with motile 
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bacteria.  Early studies have suggested that the overall hydrophobicity of a bacterium 

could serve as a good predictor of the surface that an organism might colonize (Costerton 

et al., 1995). 

The importance of cell-surface hydrophobicity in adherence of bacterial cells to 

surfaces is controversial.  Some authors have shown that hydrophobic interactions 

contribute in the adherence process (Bos et al., 1999; van Loosdrecht et al., 1987; Paul 

and Jefferey, 1985; and Rutter and Vincent, 1980), while others have found no 

correlation between hydrophobicity and adherence (Cerca et al., 2005; and Bandin et al., 

1989).  Balebona et al. (2001) observed no correlation between adherence to host tissue 

and hydrophobicity for Vibrio spp. isolated from infected fish.  Additionally, it has been 

proposed that whole cell hydrophobicity is responsible for enhancing autoaggregation 

interactions in biofilm communities (Kos et al., 2003; Del Re et al., 2000; and Ljungh et 

al., 1985).  Rickard et al. (2004a) showed that hydrophobicity, together with 

coaggregation and autoaggregation, are important cellular properties for colonization of 

surfaces and subsequent biofilm development.  

 

3.3.2 Coaggregation 

The first organisms to colonize an area suitable for multi-species biofilm 

communities are referred to as primary colonizers (Fig. 1.2a).  In suitable conditions 

these primary adherers will multiply and cover the substratum (Fig. 1.2b), and secondary 

colonizers will then attach to the primary adherers (Fig. 1.2c) to develop a multi-species 

community (Fig. 1.2d) (Rickard et al., 2003a).  Maturation of a biofilm community relies 

on specific cell-to-cell recognition between two or more genetically distinct strains, 

referred to as coaggregation.  Coaggregation plays an important role as an adhesion 

mechanism involved in integrating and establishing bacteria into a biofilm community 

(Rickard et al., 2002a).  There are two ways by which coaggregation may contribute to 

the development of a mature biofilm community (Fig. 1.2c).  Firstly, single cells in the 

surrounding environment may recognize and adhere to genetically distinct cells already 

adhered to a surface. Secondly, secondary colonizers may coaggregate in suspension and 
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subsequently, this coaggregate then adheres to the developing biofilm (Rickard et al., 

2003a).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. 2 Diagram illustrating the role of coaggregation in the maturation of biofilm communities.  
(a) Colonization by primary colonizers of a substratum covered in a conditioning film; 
(b) Formation of microcolonies through cell division, cell growth and production of EPS; 
(c) Coaggregation of secondary colonizers; (d) Maturation of the multi-species biofilm. 
Adapted from (Rickard et al., 2003a). 

 
 

 

Coaggregation was first described by Gibbons and Nygaard (1970) between oral 

plaque bacteria, and may occur between organisms of the same or different genera.  

Initially, it was suggested that most strains did not coaggregate with members of their 

own genus, with the exception of extensive partnerships that had been documented for 

members of the genus Actinomyces and Streptococcus (Kolenbrander et al., 1990).  

Intraspecies coaggregation has been suggested to be a phenomenon unique to freshwater 

biofilm bacteria (Rickard et al., 2002a).  The sequence of biofilm formation and 

maturation may be deduced through coaggregation studies.  Fusobacterium nucleatum, 

found in dental plaque, is able to coaggregate with all other oral bacteria (Andersen et al., 
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1998; and Kolenbrander et al., 1995).  Due to the fact that it is a non-selective 

coaggregator, it has been described as a bridging organism, which enables the linking 

between primary and secondary colonizers that are unable to coaggregate with each other 

(Kolenbrander et al., 1999).  Similarly, it has been reported that Blastomonas natatoria 

may play a similar role in aquatic biofilms (Rickard et al., 2002b).  

Studies on the coaggregation of oral bacteria have revealed that coaggregation is a 

highly specific process which is mediated by lectin-saccharide interactions between cell 

surface molecules on the partner organisms (Kolenbrander, 1997; Ebisu et al., 1988; 

Kagermeier and London, 1986; and Bourgeau and McBride, 1976).  Receptor partners for 

adhesins are believed to be cell-wall associated polysaccharides as identified in S. 

sanguis (Cassels and London, 1989) and S. oralis (McIntire et al., 1988).  Other bacterial 

structures or molecules involved in coaggregation of oral bacteria include protein 

adhesins on the surface of Capnocytophaga gingivalis and F. nucleatum (Kinder and 

Holt, 1989; Kolenbrander, 1989; and Kolenbrander, 1988), and the carbohydrate receptor 

on S. sanguis (Kolenbrander, 1989; and Kolenbrander, 1988).  Coaggregation interactions 

have also been described for urogenital flora (Kmet and Lucchini, 1997; and Reid et al., 

1988), the intestinal tract of humans (Drago et al., 1997) and pigs (Kmet et al., 1995), 

between strains of Lactobacillus from chicken crops (Vandevoorde et al., 1992), and 

aquatic biofilm-forming bacteria (Rickard et al., 2002a; Rickard et al., 2000; and Buswell 

et al., 1997).  Rickard et al. (2000) investigated surface-associated molecules involved in 

coaggregation between the two aquatic bacterial strains, B. natatoria and Micrococcus 

luteus by heat, protease treatment and sugar reversal tests.  Coaggregation by these two 

aquatic strains was also found to be mediated by lectin-saccharide interactions (Rickard 

et al., 2000).  Taweechaisupapong and Doyle (2000) observed that even though bacteria 

may possess different kinds of adhesins, sensitivity to chelating agents is a common 

property among bacteria.  They proposed that the reversal of coaggregation by chelating 

agents, such as carboxymethylcellulose and citrate, should be investigated further for its 

anti-adhesin properties in the control of biofilm communities (Taweechaisupapong and 

Doyle, 2000). 

Autoaggregation was proposed to be a mechanism whereby a bacterial strain 

within a biofilm expressed polymers to enhance the integration of genetically identical 



 

 

24

strains (Rickard et al., 2003b).  Autoaggregating strains of freshwater bacteria were 

found to be numerically dominant in freshwater biofilm communities, and 

autoaggregation was found together with coaggregation to enhance the development of 

freshwater biofilms (Rickard et al., 2003b).  Intermediate shear rates were observed to 

select for the highest proportion of coaggregating bacteria, whereas higher shear rates 

resulted in a higher proportion of autoaggregating bacteria (Rickard et al., 2004b).  

Therefore, they proposed that coaggregation may only weakly enhance cell-cell 

attachment (as opposed to autoaggregation), but mediated juxtapositioning of species 

next to favourable partner species within taxonomically diverse biofilms (Rickard et al., 

2004a).  At higher shear rates, biofilm diversity decreases and cell physiology changes as 

to select for autoaggregation to allow for genetically similar bacterial cells to withstand 

shear forces and remain within the colonized area (Rickard et al., 2004b). 

 

3.3.2.1 Coaggregation adhesins 

Various cell-surface components mediating coaggregation have been identified in 

oral biofilm bacteria, the majority isolated are those found on spp. of Streptococcus, 

Actinomyces and Fusobacterium (Kolenbrander, 2000).  S. gordonii, for example, carries 

five distinct proteins involved in coaggregation interactions (Rickard et al., 2003a).  One 

of these is a protein adhesin, which facilitates intrageneric, galactoside-inhibitable 

coaggregation with other streptococcal spp. (Clemans et al., 1999).  A lectin-like protein 

adhesin on the surface of S. gordonii has been associated with its ability to adhere to 

components of saliva, polymorphonuclear leucocytes and other spp. of dental plaque 

(Takahashi et al., 2002; and Takahashi et al., 1997).  This organism also possesses thin, 

peritrichous fibrils, which contain the adhesin molecule for coaggregation with A. 

naeslundii (McNab et al., 1999).  It has been found that oral biofilm bacteria often carry 

adhesin molecules on surface structures projecting away from the cell, such as fimbriae 

and fibrils (Handley et al., 2001).  This helps the coaggregating partner organisms 

overcome the electrostatic barrier between them, and make effective contact with each 

other (Busscher et al., 1992).  Finally, a specific adhesin for the coaggregation with 

Porphyromonas gingivalis has also been identified on the surface of S. gordonii (Love et 
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al., 2000).  Surface adhesins do not necessarily always recognize specific coaggregating 

partners.  The bridging organism in dental plaque, F. nucleatum, has three 

multifunctional adhesin molecules that mediate the coaggregation with seven different 

genera of plaque bacteria as well as the adhesion to some host surfaces (Kolenbrander et 

al., 1999; and Shaniztki et al., 1998).   

Coaggregation among freshwater bacteria is known to occur between more than 

15 different bacterial genera.  The adhesins are lectin-like proteins, and the receptors 

contain residues of galactose, galactosamine or lactose (Rickard et al., 2003b; and 

Rickard et al., 2002a).  A sialic acid-binding lectin has been found to be involved in the 

adhesion abilities of the fish pathogen F. psychrophilum (Møller et al., 2003).  

Carbohydrate-binding lectins have also been described for other aquaculture bacterial 

spp. including F. columnare, and members of the genera Pseudomonas and Vibrio 

(Møller et al., 2003; and An and Friedman, 2000).  In addition, protein adhesins have 

been found present on the surface of Aeromonas spp. (An and Friedman, 2000).  

Although not much is known about coaggregation receptors, it has been suggested that 

coaggregation specificity results mainly from the high diversity of unique adhesin 

molecules present on partner organisms (Rickard et al., 2003b). 

 

3.3.3 Quorum Sensing 

A population density-dependent cell-cell signaling mechanism, or quorum 

sensing, regulates a range of biological functions in bacteria and these extracellular 

signaling molecules have been implicated in biofilm formation (Davies et al., 1998).  By 

monitoring the presence of these self-produced extracellular signaling molecules, 

bacterial cells are able to sense their population density.  When the population density is 

significantly high, the accumulated signals trigger the expression of target genes to 

initiate a new set of biological activities (Zhang, 2003; and Parsek and Greenberg, 2000).  

In Gram-negative bacteria, quorum sensing is achieved through the activity of acylated 

homoserine lactones (AHLs) (Davies et al., 1998).   

AHLs have been detected from diverse environments including natural biofilms 

growing on submerged stones taken from a river and from biofilm communities on 
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urethral catheters (Stickler et al., 1998; and McLean et al., 1997).  The AHL-dependent 

quorum sensing system has been found to control biofilm formation in A. hydrophila, 

Burkholderia cepacia and Serratia liquefaciens (Kjelleberg and Molin, 2002).  Davies et 

al. (1998) showed that the development of biofilm structures is influenced by AHLs.  P. 

aeruginosa AHL mutants produced thin layers of cells on a surface, but wild-type biofilm 

morphology was restored by the addition of the AHL.  Additionally, accumulation of 

AHLs in developing biofilms was found to be responsible for the transformation of 

planktonic to sessile cells and coordination of their behaviour to form complex 

communities (Davies et al., 1998).  Hu et al. (2003) studied the production of AHL 

quorum sensing molecules, and found that P. aeruginosa and Enterobacter agglomerans 

produced these molecules.  Agrobacterium tumefaciens, Bacillus cereus and Ralstonia 

spp. were found to produce AHL degradation enzymes, which may indicate a certain 

level of regulation in water reclamation system biofilms (Hu et al., 2003).   

Bruhn et al. (2005) investigated the production of quorum sensing AHL 

molecules among selected strains of Gram-negative fish bacterial pathogens.  AHLs were 

produced by all the strains of A. salmonicida, A. hydrophila, Y. ruckeri, V. salmonicida, 

and V. vulnificus (Bruhn et al., 2005).  Additionally, AHL production was strain-specific 

for V. splendidus and negative for F. psychrophilum (Bruhn et al., 2005).  Although these 

quorum sensing molecules were detected in these fish pathogens, their role in the 

formation of aquatic biofilms has not yet been completely elucidated (Bruhn et al., 2005).  

Cell-to-cell communication has also been found to play an important role in biofilm 

formation by S. gordonii, the primary colonizing organism in oral biofilm communities 

(Loo et al., 2000).  In contrast, Van Houdt et al.  (2004) showed that the production of 

AHL molecules and other quorum sensing molecules did not play a significant role in the 

biofilm formation of Gram-negative bacteria isolated from a raw vegetable processing 

environment. 

 

 

 

 



 

 

27

       3.4 Advantages to microorganisms 
 
Growth as part of multi-species communities confers many advantages to the 

microbial species in biofilms. One such advantage is that microbes in a biofilm are able 

to combine and thus enhance metabolic activities, which allows for the degradation and 

subsequent use of substrates, which planktonic cells would normally not be able to utilize 

(Rickard et al., 2003a).  Examples of these include: glutamate metabolism (Costerton et 

al., 1987), and colonization of an area in close proximity to specific substrates, such as 

the adherence of cellulolytic bacteria to cellulose (Costerton et al., 1987).  

Campylobacter rectus produces a protoheme which functions as a growth factor for P. 

gingivalis, and the growth of C. rectus is stimulated by formate produced by Prevotella 

melaninogenica (Grenier and Mayrand, 1986). This indicates the reliance of some 

organisms on other microbes for growth and, therefore, their dependence on mixed 

biofilm communities for survival.  Furthermore, the presence of pathogenic organisms as 

part of biofilms in animal hosts, allows for better access and delivery of toxic substances 

to host tissue cells, which inevitably increases pathogenicity (Kinder and Holt, 1994).   

EPS or biofilm matrix, which has been found surrounding the biofilm 

communities, also confers an advantage to the organisms in the biofilm.  It acts as a 

barrier, prohibiting diffusion of nutrients, which have been derived from the metabolism 

of substrates by the microbial community, or collected from the surrounding 

environment, and thus maintaining high nutrient availability within the biofilm (Kinder 

and Holt, 1994).  The biofilm matrix also limits the access of harmful substances and 

predators, and protects encased cells from environmental changes, such as shear forces, 

pH changes, oxygen radicals and disinfectants (Jefferson, 2004).  EPS also protects 

biofilm microbes from the immune system in animal hosts by hiding antigens, which are 

then less noticed by the immune system (Kinder and Holt, 1994).  

 Cvitkovitch et al. (2003) observed that microbial biofilms are excellent 

environments for horizontal transfer of genetic material between microbial species.  The 

minimal shear forces and close cell to cell contact in a biofilm, creates a perfect niche for 

this transfer to take place (Donlan, 2002).  Competent bacteria in a biofilm can rapidly 

and easily take up plasmid DNA through conjugation with other microbes, and this 

environment also allows for the spread of phage DNA (Harisson et al., 2005; and Donlan, 
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2002).  Ghigo (2001) described conjugative F-plasmids in E. coli that encode pili, which 

adhere non-specifically to surfaces and other bacteria and thereby it facilitating its own 

transfer through horizontal gene transfer.  Roberts et al. (1999) demonstrated horizontal 

gene transfer in a microcosm dental plaque where a conjugative transposon from B. 

subtilis was transferred to a Streptococcus biofilm.  Assessment of the antibiotic 

resistance of the biofilm bacteria revealed tetracycline resistant Streptococcus spp., 

indicating transfer of the conjugative transposon.  This study revealed not only gene 

transfer in oral microbial biofilms, but also transfer of genetic elements between oral and 

non-oral bacteria (Roberts et al., 1999).  It has also been demonstrated that organisms 

that usually only form microcolonies, were able to form biofilms when they received 

plasmids through conjugation by plasmid-carrying strains (Donlan, 2002). 

Microorganisms in biofilm communities are able to withstand antibiotic doses as 

much as 10 to 1000 times more concentrated (as compared to their planktonic 

counterparts) (Lewis, 2001; Mah and O’Toole, 2001; Costerton et al., 1999; and Nickel 

et al., 1985).  The mechanisms by which bacterial cells in biofilms are able to withstand 

antimicrobial agents are still widely disputed (Fig 1.3).  Due to their close proximity, 

biofilm bacteria are able to communicate through intracellular communication.  This 

allows for a change in physiology by these bacteria when antibiotics are threatening the 

community, and certain organisms are able to produce molecular pumps, which expel 

antibiotics (Harrison et al., 2005).  Similarly, Suci et al. (1998) suggested that due to the 

biofilms’ protective nature, cells in the biofilm are able to undergo a physiologically 

protective set of changes before the antimicrobial agents are able to penetrate the 

protective layers and reach the cells.  It was also proposed that cells in the bulk of the 

biofilm are not physiologically active, which could explain the reduced susceptibilities to 

antimicrobial agents (Huang et al., 1998; and Xu et al., 1998).  Stewart et al. (1998) 

suggested that population density may be responsible for the increased resistance of E. 

aerogenes biofilms to disinfectant chlorine treatments.  Certain cells that are present on 

the boundaries of a biofilm have been identified as persister cells.  These bacteria have 

the ability to withstand antibiotic treatment by not growing in the presence of antibiotics, 

but amazingly do not die either.  Therefore, persister cells block the entry of antibiotic 

substances, and once the antibiotics are no longer a threat these cells continue to grow 
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normally (Harrison et al., 2005).  EPS is thought to play a major role in protection of the 

biofilm organisms from antibiotic substances in many ways.  Antibiotic-degrading 

enzymes, such as β-lactamases, produced by some organisms may be collected in the 

surrounding EPS.  This leads to a higher concentration of these enzymes in one area, as 

opposed to the amount of enzyme produced by planktonic cells, and thus better 

degradation of β-lactam antibiotics (Harrison et al., 2005).  EPS also carries a negative 

charge, and is thus able to bind and prevent entry, and access to biofilm organisms, of 

positively-charged antibiotics (Harrison et al., 2005) (Fig. 1.3).   

 

 
Figure 1. 3 Diagram illustrating mechanisms of antimicrobial resistance by biofilm communities. (1) 

Bacteria near the centre of the microcolony grow slower because they are exposed lower 
concentrations of oxygen and nutrients and are thus spared the effects of antimicrobial 
substances.  Intercellular signals (2) can alter the physiology of the biofilm causing 
members to produce molecular pumps that expel antibiotics from the cells and allow the 
community to grow even in the presence of a drug.  The biofilm matrix is negatively 
charged (3) and so binds to positively antimicrobials, preventing them from reaching the 
cells within the colony.  Persister cells (4) do not grow in the presence of an antibiotic, 
but neither do they die. Upon removal of the drug, the persisters can give rise to a normal 
bacterial colony. Finally, population diversity (5), genetic as well as physiological, 
improves the chance that some cells will survive adverse environmental conditions.  
(Harrison et al., 2005) 

 

 

      3.5 Disadvantages to industries 
 
Microbial biofilms have been found in various different environments, such as 

living tissues, medical devices, food processing plants, industrial or potable water system 
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piping or natural aquatic systems (Donlan, 2002).  They have attracted a lot of interest in 

medical, industrial and environmental industries due to great concern for the potential 

harm they may cause.     

3.5.1 Food-processing industry 

 
In the food-processing industries (seafood, meat and dairy processing plants) 

biofilm formation has also been investigated extensively (Poulsen, 1999).  Through 

attachment, surface growth and biofilm formation, bacteria are able to accumulate on 

food preparation surfaces (Van Houdt et al., 2004; Donlan, 2002; and Poulsen, 1999).  In 

addition, food-spoilage organisms that are not naturally inclined to form sessile 

communities may associate with biofilm-forming communities of food processing 

surfaces and become increasingly resistant to surface sanitizers (Leriche and Carpentier, 

1995; and Sasahara and Zottala, 1993).  Bremer et al. (2001) studied the survival of L. 

monocytogenes attached to stainless steel surfaces in a food processing environment.  The 

attachment of L. monocytogenes to these surfaces increased significantly in the presence 

of Myroides spp. when present together in a mixed biofilm (Bremer et al., 2001).  

Together with the enhanced colonization of L. monocytogenes in mixed-species biofilms, 

increased persistence of L. monocytogenes strains during disinfecting experiments was 

also observed (Bremer et al., 2001).  Enhanced persistence to sanitizers and disinfectants 

increases the risk of contamination of food products by L. monocytogenes in food 

processing plants (Gandhi and Chikindas, 2006).  In addition, the presence of L. 

monocytogenes as part of biofilm communities in these environments also increases the 

risk of increased resistance to antibiotics by contaminating strains, which leads to 

difficulty in treating food-borne listeriosis (Gandhi and Chikindas, 2006).  These 

concerns are not restricted to L. monocytogenes food spoilage and spread of disease 

through contaminated products.  Other spoilage organisms have been found as part of 

biofilms in food processing environments (Van Houdt et al., 2004; and Donlan, 2002).  

For example, S. thermophilus has been isolated from biofilms attached to the heat 

exchangers in milk processing equipment (Genigeorgis, 1995).  Various parts of 

processing equipment such as gaskets, valves and dead ends in pipe systems, as well as 
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cracks, corners, joints and crevices, are continuously in contact with, and thus coated by 

organic materials providing favorable niches for bacterial attachment (Poulsen, 1999).  

   

3.5.2 Clinical environment  
 

The formation of biofilms in a clinical setting is also a cause of great concern.  

According to the Centers for Disease Control and Prevention, 70% of human bacterial 

infections in the Western world are caused by biofilms (Harrison et al., 2005).   Many of 

these diseases are caused by microorganisms that are common, free-living inhabitants of 

the human body that become virulent once sessile in biofilm communities (Netting, 

2001). Clinical and public health scientists have tried to elucidate the formation and 

persistence of these biofilms, since the ability to withstand increased concentrations of 

antimicrobials, leads to augmented difficulty in treating disease.  Other characteristics of 

biofilms that can be important in infectious diseases include: detachment of cells or 

biofilm aggregates, which may result in bloodstream or urinary tract infections, or 

emboli; an augmented production of endotoxins; and resistance to host immune system 

clearance (Donlan, 2002).    

Biofilm-associated bacteria have been implicated in cystic fibrosis, native valve 

endocarditis, otitis media, periodontitis, kidney infections and chronic prostatitis 

(Harrison et al., 2005; Donlan, 2002; and Bell, 2001).  Biofilm-associated bacteria have 

been found attached to non-native tissues and prostheses, of which some of these surfaces 

(contact lenses or sutures) are easily removable and thus eradication of these infections 

does not require surgical removal (Bell, 2001; and Costerton et al., 1999).  Intravascular 

devices such as central venous catheters have also been found to harbour biofilms 

(Donlan, 2002; Elliott et al., 1997; Maki, 1994; and Raad et al., 1992), and to complicate 

this problem, it was found that human blood actually enhances the attachment and 

formation of these biofilms (Murga et al., 2001; Espersen et al., 1990; and Herrmann et 

al., 1988).  The most challenging sites to eradicate biofilm growth are endovascular 

devices such as prosthetic heart valves and synthetic vascular grafts (Bell, 2001).    After 

a course of antibiotic treatment, relapses of biofilm-related infections is a common 
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occurrence.  This often necessitates surgical removal and replacement of the infected 

tissue or medical device (Jefferson, 2004). 

Environmental biofilms may also be sources of pathogenic bacteria that could 

infect humans (Bell, 2001).  Legionella spp. are able to co-exist with bacterial and 

protozoal saprophytes in microbial biofilms, which colonize water-heaters and other 

water-handling systems, such as hospital water systems (Atlas, 1999).  Colonization of 

hospital water-handling systems pose a threat to human health since bacteria which have 

broken free of these biofilms are often found to infect the lungs of patients on ventilators 

(Harrison et al., 2005).  Species of E. meningoseptica have been isolated from biofilm 

communities in sink taps of a hospital and implicated in a neonatal meningitis outbreak 

(Hoque et al., 2001).  In addition, species of the genus Chryseobacterium were isolated 

from a biofilm containing potentially pathogenic bacteria from drinking water samples in 

South Africa (Pavlov et al., 2004).   

 

3.5.3 Aquatic environments 

3.5.3.1 Potable water systems 

Bacterial biofilms are mostly found in aquatic environments, and thus other areas 

of concern are drinking (potable) water distribution systems (Szewzyk et al., 2000; and 

Block, 1992).  Biofilms that form on the surface of pipes and fittings are believed to act 

as a reservoir for the pathogens (Van der Wende et al., 1989; LeChevallier et al., 1987; 

and Camper et al., 1985).  Pathogens such as E. coli (Buswell et al., 2001; Camper et al., 

1996; and Robinson et al., 1995), A. hydrophila (Walker et al., 1995), Legionella 

pneumophila (Murga et al., 2001; Rogers et al., 1994; and Colbourne et al., 1984), C. 

jejuni (Buswell et al., 1999) and H. pylori (Mackay et al., 1999) have been found 

associated with biofilms developed from tap-water microorganisms in potable  water 

systems.  Other problems associated with multispecies biofilms formed within potable 

water systems include microbially-induced corrosion and unpleasant taste and odor (Kerr 

et al., 2003).  
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3.5.3.2 Industrial water systems 

In industrial settings, biofilms are the leading cause of microbial-influenced 

corrosion, and may also cause clogging of industrial pipes and filters (Pratt and Kolter, 

1999; and Costerton et al., 1995).  Biofilm organisms were even isolated from flowing 

water photo-processing tanks by Elvers et al. (1998), where C. indologenes was isolated 

from complex multispecies consortia, which contained not only bacteria but also 

filamentous fungi and yeasts.  Bacterial isolates displaying similarity to C. gleum, C. 

indologenes and C. balustinum have been isolated from biofilms in paper mills, where 

these biofilms have been shown to negatively affect machine efficiency and paper quality 

(Oppong et al., 2003).  In many countries, water reclamation is an important health and 

environmental issue.  A constantly encountered problem in these systems is the presence 

of pathogens that may be harboured in biofilm communities and become a potential 

source of contamination (Hu et al., 2003).     

 

3.5.3.3 Aquaculture industry 

Definite biofilm formation, the organisms preferring plastic surfaces, but also 

adhering to concrete and steel surfaces and increased resistance to tetracycline and 

chloramphenicol, antibiotics often used in aquacultural practices, was observed for the 

well-known bacterial shrimp larvae pathogen, V. harveyi  (Karunasagar et al., 1996). M. 

odoratum isolates were isolated from biofilms on weldments in a seafood processing 

plant where it was observed that at 15˚C, M. odoratum enhance the survival of L. 

monocytogenes on these surfaces (Tide et al., 1999).  Flavobacterium spp. have been 

found to enhance the attachment and accumulation of L. monocytogenes (Jeong and 

Frank, 1994). 

Mixed species biofilm communities may also play advantageous roles, as they are 

able to produce enzymes that degrade complex substances and may remove toxic 

substances from the environment.  C. gleum has been used in a mixed species 

consortium, containing A. radiobacter and Pseudomonas spp. for the degradation of the 

pesticide pentachlorophenol (PCP) (Yu and Ward, 1996).  PCP is associated with wood 

preservation and used as a disinfectant in the food industry and poses a significant health 
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hazard.  The ability to degrade various toxic compounds, such as furan and phenolic 

compounds (Lopez et al., 2004), and the insecticide and nematocide carbofuran 

(Bernardet et al., 2006) has been described for C. indologenes.  C. indologenes has been 

used in a mixed species consortium for the degradation of aniline and 4-chloroaniline 

from contaminated soil (Radianingtyas et al., 2003).  

 

The study of microorganisms in mixed-species biofilms is becoming increasingly 

important in order to elucidate their mechanisms of adherence and maturation into 

biofilm communities as a means of eradicating biofilm communities in the natural 

environment that could potentially harbour pathogens, or control medically important, 

disease-causing biofilms.  The present study proposed to investigate the biofilm-forming 

capacity of bacterial species belonging to the genera Chryseobacterium, Elizabethkingia, 

Myroides and/or Empedobacter isolated from aquaculture settings.  Initial adherence 

abilities, cell-surface properties contributing to adherence and biofilm formation, and 

aggregation properties were investigated, and in vitro flow-cell biofilm studies were 

conducted. 
 

4. Experimental Philosophy 

4.1 Hypothesis to be tested 
 
It is hypothesized that Chryseobacterium, Elizabethkingia and Myroides spp. isolates 

possess the capacity to form biofilms, facilitating their existence and transmission as 

pathogens within aquaculture systems.  It is further hypothesized that their surface 

hydrophobicity properties as well as their intrinsic autoaggregation and coaggregation 

abilities enable these isolates to bind to biotic and abiotic substrates and consequently 

mediate biofilm formation by these bacteria.   

 

4.2 Objectives 
 
4.2.1 To differentiate isolates of Chryseobacterium, Elizabethkingia and Myroides spp. 

by using phenotypic and molecular typing methods. 
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4.2.2 To investigate the effect of environmental cues on the degree of adherence of 

Chryseobacterium, Elizabethkingia and Myroides spp. isolates. 

4.2.3 To determine the role of motility in biofilm formation. 

4.2.4 To determine the role of the outer membrane surface properties in biofilm 

formation. 

4.2.5 To determine whether adhesion of isolates of Chryseobacterium, Elizabethkingia 

and Myroides spp. to surfaces is mediated by hydrophobic interactions or by 

specific receptor interactions. 

4.2.6 To determine whether Chryseobacterium, Elizabethkingia and Myroides spp. 

biofilm formation is influenced by adherence to other bacterial cells on the 

substrate. 

4.2.7 To investigate biofilm formation using flow cell assays. 

 

4.3 Aims 
 
 The following aims will be pursued: 
 
4.3.1 To characterize and identify study isolates phenotypically, biochemically and by 

16S rRNA PCR-RFLP typing. 

4.3.2 To determine whether isolates of Chryseobacterium, Elizabethkingia and 

Myroides spp. are motile by agar motility assays. 

4.3.3 To differentiate between isolates by capsule staining. 

4.3.4 To differentiate between isolates by random amplified polymorphic DNA 

(RAPD) fingerprinting, whole cell protein (WCP), and outer membrane protein 

(OMP) profiling. 

4.3.5 To identify biofilm formation by isolates using the microtitre plate assay.  To 

investigate the impact of altered temperature, nutrients, dynamic conditions, and 

role of spent medium on biofilm formation by isolates of Chryseobacterium, 

Elizabethkingia and Myroides spp. 

4.3.6 To investigate the hydrophobicity of isolates of Chryseobacterium, 

Elizabethkingia and Myroides spp. by salt aggregation test (SAT) and microbial 

adhesion to hydrocarbon (MATH) assays. 
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4.3.7 To determine the ability of isolates of Chryseobacterium, Elizabethkingia and 

Myroides spp. isolates to coaggregate and autoaggregate.  To determine possible 

receptors involved in coaggregation through coaggregation reversal studies. 

4.3.8 To investigate biofilm formation with selected isolates of Chryseobacterium, 

Elizabethkingia and Myroides spp. using flow cells under different nutrient 

conditions. 

 

4.4 Questions to be answered 
 
4.4.1 Do Chryseobacterium, Elizabethkingia and Myroides spp. isolates possess the 

ability to form biofilms?   

4.4.2 Do specific environmental cues impact on biofilm formation by 

Chryseobacterium, Elizabethkingia and Myroides spp. isolates? 

4.4.3 Does the presence of molecules involved in quorum sensing play a role in 

inducing biofilm formation by the study isolates?  

4.4.4 Do the study preferentially adhere to hydrophobic or hydrophilic surfaces, and if 

so to what degree?  

4.4.5 Does motility and the presence of a capsule influence biofilm formation?  How 

important are these structures in mediating initial adherence to surfaces? 

4.4.6 Does surface hydrophobicity play a role in the ability of these organisms to form 

biofilms?   

4.4.7 Is there interstrain variation with respect to the degree of surface hydrophobicity? 

4.4.8 Are the isolates able to coaggregate with members of their respective genus as 

well as with other microorganisms?  Do the study isolates display a greater 

inclination to autoaggregate or coaggregate? 
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CHAPTER TWO 
 

Polyphasic identification and characterization of Chryseobacterium, 
Elizabethkingia, Myroides and Empedobacter spp. isolated from 

aquaculture systems 
 

2.1 Introduction 
 

The genera Chryseobacterium, Elizabethkingia, Myroides and Empedobacter 

belong to the family Flavobacteriaceae which was first proposed by Jooste et al. (1985), 

and later described and validated by Reichenbach (1992) and Holmes (1997), 

respectively.  These genera are continually changing, as new species are isolated, 

described and the biochemical, physiological and molecular properties of individual 

strains and species belonging to these genera are investigated (Bernardet et al., 2006).  

They have been differentiated extensively at a phenotypic level (Bernardet et al., 2006; 

and Hugo et al., 2005).   

Members of the genera Chryseobacterium and Elizabethkingia are aerobic, non-

motile, Gram-negative rods that display bright yellow to orange pigmentation, a result of 

flexirubin pigments (Vandamme et al., 1994; and Reichenbach et al., 1981).  The absence 

of gliding motility and the presence of flexirubin pigments differentiate these genera from 

other genera in the family Flavobacteriaceae (Bernardet et al., 2006).  E. meningoseptica 

is non-pigmented or slightly yellow-beige coloured, but production of the yellow pigment 

is strain-dependent (Bernardet et al., 2002).  Colonies are translucent, circular, convex to 

low convex, smooth, and shiny with entire edges (Vandamme et al., 1994).  Prolonged 

incubation of certain species of both genera produce extracellular slimy substances which 

are responsible for the mucoid consistency of the colonies (Kim et al., 2005a; Kim et al., 

2005b; Young et al., 2005; and Kämpfer et al., 2003).  Chryseobacterium and 

Elizabethkingia spp. grow at 25ºC and 30ºC, while growth at 37ºC varies among species 

of the genus Chryseobacterium, and very poor growth or no growth occurs at 5 ˚C, and 

certain species may grow at 42ºC (Bernardet et al., 2006; Kämpfer et al., 2003; Bernardet 

et al., 2002; and Vandamme et al., 1994).  All species display catalase and oxidase 

activities (Vandamme et al., 1994), and gelatin hydrolysis (Bernardet et al., 2002).  The 
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production of proteases (gelatin- and casein-degrading proteases) is considered an 

important virulence factor of some members of the family Flavobacteriaceae (Bernardet 

and Bowman, 2005).  These proteases degrade components of muscle, cartilage and 

connective tissue, which include actin and myosin, elastin, type IV collagen, fibrinogen, 

fibronectin, gelatin and laminin (Bernardet and Bowman, 2005).  Acid production from 

glucose, indole production and starch hydrolysis varies among the Chryseobacterium spp. 

(de Beer et al., 2006; Park et al., 2006; Weon, et al., 2006; de Beer et al., 2005; Kim et 

al., 2005a; Bernardet et al., 2002; Campbell and Williams, 1951; and Harrison, 1929).  

Most Chryseobacterium and Elizabethkingia spp. isolates exhibit a high tolerance to 

NaCl, with growth observed on nutrient agar of up to 5% NaCl (Bernardet et al., 2006).  

Members of the genera Myroides and Empedobacter are Gram-negative, non-

motile rods which are lightly pigmented due to flexirubin pigmentation and produce a 

fruity odour (Bernardet et al., 2002).  Both genera are strictly aerobic, produce oxidase 

and catalase, grow on McConkey agar, and degrade gelatin (Hugo et al., 2005).  They 

grow at 25ºC, 30ºC and 37ºC, but growth does not take place at 5ºC and 42ºC (Hugo et 

al., 2005).  The genus Empedobacter differs from the genus Myroides by acid production 

from glucose, the production of indole, and the variable hydrolysis of starch, 

characteristics for which Myroides spp. are negative.  Empedobacter spp. colonies are 

pinpoint, low convex, circular, smooth and shiny, with entire edges.  Four colony types 

have been described for Myroides spp.: (1) effuse, spreading colonies with raised, shiny 

centers and dull, matt, spreading edges that becomes smooth and shiny after long 

incubation periods; (2) resembles colony type 1, but colonies are smaller; (3) smooth, 

shiny, and convex with no spreading edges; and (4) mucoid (Holmes et al., 1979).  

Variable tolerance of salt concentrations has been observed for Myroides spp. isolates, 

with tolerance of up to 9% (w/v) NaCl (Yoon et al., 2006).  Although it is very difficult 

to distinguish between Myroides spp. isolates (Hugo et al., 2005), M. odoratus and M. 

odoratimimus differ in carbon source assimilation (Biotype 100 assays) and oxidation 

(Biolog GN MicroPlate assays), and demonstrate a slight difference in their G + C 

content (Vancanneyt et al., 1996).  M. odoratimimus has significantly higher amounts of 

cellular fatty acids, and thus cellular fatty acid composition has been used to distinguish 

between the two Myroides spp.  (Vancanneyt et al., 1996).  
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Extensive use of molecular typing methods have been described for the typing of 

pathogenic organisms responsible for disease outbreaks in animals in veterinary, farming 

and environmental settings (Figueiro et al., 2005; Arias et al., 2004; Szczuka and 

Kaznowski, 2004; Cloeckaert et al., 2003; Coquet et al., 2002b; Michel et al., 2002; 

Crump et al., 2001; Madetoja et al., 2001; Madsen and Dalsgaard, 2000; Triyanto and 

Wakabayashi, 1999; Triyanto et al., 1999; Chakroun et al., 1997; and Bernardet et al., 

1996).  Members of the genera Chryseobacterium, Elizabethkingia, Myroides, and 

Empedobacter have not been typed extensively using molecular typing methods.  

However, Colding et al. (1994) used ribotyping to type clinical Elizabethkingia spp. 

isolates for epidemiological studies, while DNA macrorestriction was used for the 

differentiation of E. meningoseptica isolates (Sader et al., 1995).  Pulsed-field gel 

electrophoresis was used to demonstrate that human and environmental strains of E. 

meningoseptica isolated during an outbreak of meningitis in a neonatal intensive care unit 

belonged to the same strain (Hoque et al., 2001).  Pulsed-field gel electrophoresis (PFGE) 

and infrequent-restriction site PCR were suggested to be very effective tools for the 

discrimination of E. meningoseptica strains isolated during epidemiological 

investigations of a meningitis outbreak (Lin et al., 2004).  A clear differentiation between 

Chryseobacterium and Elizabethkingia spp. was reported through the use of sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis (Hugo et al., 

1999).  Similar results were obtained by Bernardet et al. (2005), who demonstrated 

delineation of clusters of species belonging to the genus Chryseobacterium through 

random amplified polymorphic DNA PCR (RAPD) analysis and whole-cell protein 

(WCP) analysis.  RAPD fingerprinting was also used to distinguish between a cluster of 

pathogenic E. meningoseptica strains and E. meningoseptica isolates from diverse 

geographic areas (Chiu et al., 2000).  Amongst members of the genera Chryseobacterium 

and Elizabethkingia, several examples of 16S rRNA gene sequence similarity values well 

above 97% between members of different species may be found (Li et al., 2003).  

Sequence similarities of up to 99% between Chryseobacterium spp. have been described 

(Li et al., 2003), indicating the overall high similarity and the resulting difficulty in 

delineating new species in this genus.  
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Isolates belonging to the genus Myroides have been typed by DNA 

macrorestriction with restriction enzymes SmaI and SstII and subsequent PFGE which 

allowed for discrimination between different strains of M. odoratimimus (Yagci et al., 

2000).  Arbitrarily-primed PCR techniques yielded identical profiles for all M. 

odoratimimus strains during these investigations and was, therefore, not a good 

discriminatory tool in this case (Yagci et al., 2000). 

Antimicrobial susceptibility testing is a phenotypic typing method that has been 

frequently used for members of these genera, due to their involvement in opportunistic 

human infections.  Resistance phenotypes are important to identify trends in 

susceptibility or resistance and aid in the treatments prescribed for disease in both human 

and veterinary medicine.  The high levels of resistance demonstrated by 

Chryseobacterium and Elizabethkingia spp. to a wide range of antimicrobial agents and 

their unusual susceptibility patterns have been useful in their preliminary identification 

(Bernardet et al., 2006). Chryseobacterium spp. isolates are resistant to many 

antimicrobial agents including extended-spectrum penicillins, first- and second-

generation cephalosporins, and carbapenems (β-lactam antibiotics) as well as 

aminoglycosides, tetracyclines, and chloramphenicol (Schreckenberger, 1998).  

Sensitivity to piperacilln/tazobactam has been reported (Lin et al., 2003).  Resistance to 

penicillin and polymyxin is used in the identification of E. meningoseptica 

(Schreckenberger, 1998).  Similarly, isolates belonging to both the Myroides and 

Empedobacter genera are resistant to a wide range of antimicrobial agents, particularly β-

lactams (penicillins, cephalosporins, aztreonam, and carbapenems), aminoglycosides, 

tetracyclines, quinolones and trimethoprim-sulfamethoxazole, but successful treatment 

with ciprofloxacin has been reported (Yagci et al., 2000; Hsueh et al., 1995; Macfarlane 

et al., 1985; Strandberg et al., 1983; and Holmes et al., 1979).   

There have been increasing reports of fish disease from which Chryseobacterium 

and Elizabethkingia spp. have been isolated, and since few antibiotics are currently 

authorized for fish disease control, most of these multiple-drug resistant species are able 

to evade eradication following treatment.  This leads to an increase in their prevalence, 

higher aquaculture losses and an increase in possible transmission to humans where they 

may act as opportunistic pathogens (Michel el al., 2005).  Successful antibiotic therapy of 
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fish-associated Chryseobacterium and Elizabethkingia spp. was reported by treatment 

with oxolinic acid and associated sulfonamides by Michel et al. (2005).     

OMPs may serve as adhesins anchored on the outer membrane surface of Gram-

negative bacteria (Ofek et al., 2003).  These adhesins play an important role in virulence 

of bacteria as they have been found to mediate intimate adhesion to the target cell by 

bacteria and are often associated with invasion of the target cell or formation of a lesion 

at the adhesion site (Ofek et al., 2003).  As these porins and other OMPs of bacteria have 

an important function in the recognition of specific binding sites and adherence of 

organisms, they serve not only as a phenotypic typing tool but may also reveal important 

information on the biofilm-forming ability of bacteria (Donlan, 2002; Wang et al., 2002; 

Decostere et al., 1999; and Stickler, 1999).  

 A diversity of yellow-pigmented bacteria were isolated on sampling of fish from 

various South African aquaculture sources.  To examine and specifically identify the 

diversity of members of the family Flavobacteriaceae and the genera Chryseobacterium, 

Elizabethkingia, Empedobacter and Myroides specifically, isolates were characterized 

phenotypically as well as  by a diversity of molecular techniques. 

 

2.2 Materials and Methods 

2.2.1 Bacterial isolates and growth conditions 
 

Isolates were obtained from tilapia, trout and salmon specimens presenting with 

external lesions or from internal organs of fish displaying gill necrosis, skin ulcers and 

systemic disease (Table 2.1). Thirty-four Chryseobacterium and Elizabethkingia spp. 

isolates and five Myroides and Empedobacter spp. isolates were tentatively selected on 

the basis of colonial characteristics (colony color, odour and morphology).  Reference 

strains C. balustinum (NCTC 11212), C. gleum (NCTC 11432), C. indologenes (LMG 

8337 = NCTC 10796; Flav IIb), C. indoltheticum (ATCC 27950), C. joostei (LMG 

18212), C. meningosepticum (NCTC 10016), and M. odoratus (NCTC 11036) were 

included in the study.  Study isolates and reference strains were maintained on enriched 

Anacker and Ordal’s agar (EAOA) (Anacker and Ordal, 1959) at ambient temperature 
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(21 ˚C ± 2˚).   For long-term storage, cultures were placed in 80% glycerol and enriched 

Anacker and Ordal’s broth (EAOB) and stored at -80 ˚C.  

 

2.2.2. Physiological Characterization 
 

Presence of yellow to orange pigmentation was confirmed by overnight (O/N) 

growth of study isolates on EAOA plates.  Adherence of colonies to agar, and sticky or 

mucoid consistency of colonies were determined visually and documented.   Isolates 

were streaked onto EAOA plates in triplicate to determine the ability to grow at different 

temperatures (5 ºC, 26 ºC, 37 ºC and 42 ºC).   

Motility assays were carried out on modified casitone yeast (CY) agar medium 

(Jooste et al., 1985) containing: 3 g/l casitone, 1 g/l yeast extract, 1 g/l CaCl2
.2H2O, 15 

g/l agar (pH 7.2 adjusted with KOH).  Ten µl of O/N cultures equivalent to a 0.5 

McFarland standard were stab-inoculated with a sterile inoculating needle. Isolates were 

inoculated in triplicate and incubated at room temperature for 5 days.  Motility was 

determined by measuring the migration zones according to Kempf and McBride (2000):  

Strong gliding ability (zone ≥ 2.5 cm), weak gliding ability (zone < 2.5 cm) and no 

gliding ability was documented when no spreading zones were observed.   
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Table 2. 1 Chryseobacterium and Elizabethkingia spp. and Myroides and Empedobacter spp. 
isolates, host species, geographical location and date of isolation. 

  
Strains Species of fish (samle) Origin Date

MY1 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
MY2 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003

MY2B Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
MY3 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003

MY3B Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003

CH1 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH1B Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH2 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003

CH2B Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH3 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH4 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003

CH4B Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH5 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH6 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH7 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH8 Blue tilapia (Oreochromis mossambicus ) Stellenbosch, RSA 2003
CH9 Blue tilapia (Oreochromis mossambicus ) lateral fin Stellenbosch, RSA 2003
CH10 Blue tilapia (Oreochromis mossambicus ) brain Stellenbosch, RSA 2003
CH11 Blue tilapia (Oreochromis mossambicus ) skin Stellenbosch, RSA 2003
CH12 Rainbow trout (Oncorhynchus mykiss ) Stellenbosch, RSA 2003
CH13 Rainbow trout (Oncorhynchus mykiss ) Stellenbosch, RSA 2003
CH14 Rainbow trout (Oncorhynchus mykiss ) Franschhoek, RSA 2003
CH15 Rainbow trout (Oncorhynchus mykiss ) eggs Stellenbosch, RSA 2003
CH16 Rainbow trout (Oncorhynchus mykiss ) eye Malawi, Africa 2003
CH17 Rainbow trout (Oncorhynchus mykiss ) eye Malawi, Africa 2003
CH18 Rainbow trout (Oncorhynchus mykiss ) eye Malawi, Africa 2003
CH19 Rainbow trout (Oncorhynchus mykiss ) eye Malawi, Africa 2003
CH21 Rainbow trout (Oncorhynchus mykiss ) spleen Stellenbosch, RSA 2003
CH22 Rainbow trout (Oncorhynchus mykiss ) skin Stellenbosch, RSA 2003
CH23 Rainbow trout (Oncorhynchus mykiss ) spleen Stellenbosch, RSA 2003
CH24 Rainbow trout (Oncorhynchus mykiss ) liver Stellenbosch, RSA 2003
CH25 Rainbow trout (Oncorhynchus mykiss ) Franschhoek, RSA 2003
CH26 Rainbow trout (Oncorhynchus mykiss ) Franschhoek, RSA 2003
CH27 Rainbow trout (Oncorhynchus mykiss ) Franschhoek, RSA 2003
CH28 Rainbow trout (Oncorhynchus mykiss ) Franschhoek, RSA 2003
CH29 Atlantic salmon (salmo salar ) gill Stanford, RSA 2005
CH30 Atlantic salmon (salmo salar ) gill Stanford, RSA 2005
CH33 Rainbow trout (Oncorhynchus mykiss ) gill Stellenbosch, RSA 2005
CH34 Rainbow trout (Oncorhynchus mykiss ) fin Stellenbosch, RSA 2005  

 

2.2.3. Biochemical characterization 
 
   The following standard biochemical tests were performed for initial identification 

of the isolates: Gram-staining (Hucker modification), oxidase and catalase production, 

indole production, Voges-Proskauer tests, citrate utilization, starch hydrolysis, growth on 

McConkey agar (Harvey and Prescott, 1996), growth in the presence of 5% NaCl  and 
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9% NaCl (Hugo et al., 2005, and Yoon et al., 2006). The presence of glucosamine 

capsular material was determined by Congo red accumulation  (Crump et al., 2001), 

where the ability to absorb the red pigment was investigated by growth on EAOB plates 

containing 0.003 g/l Congo Red, which was recorded over a 2 to 5 d period.   

Proteolytic activity of the test isolates was determined by gelatin and casein 

hydrolysis.  Gelatin hydrolysis was investigated by stab-inoculation of test isolates into 

gelatin deep-tubes, incubation for 3 days at 30 ˚C and examined for gelatin liquefaction 

following 30 min refrigeration to eliminate false-positive results (Kaminski and Ferroni, 

1980).  Growth on Tryptone Yeast Extract Salts (TYES) agar (tryptone, 4 g/l; yeast 

extract, 0.4 g/l; CaCl2.2H2O, 0.2 g/l; MgSO4.7H2O, 0.5 g/l; and agar, 10 g/l) 

supplemented with 2% or 10% skim milk was used to test casein hydrolysis (Cepeda et 

al., 2004; and Madsen and Dalsgaard, 1998).  Ten μl of O/N broth cultures equivalent to 

a 2 McFarland standard were inoculated in triplicate, plates incubated at 30 ˚C for one 

week, and zone diameters were measured and averaged for each isolate.  Proteolytic 

activity was classified as follows: [+] - strong proteolytic activity (zone > 2.5 cm); [(+)] - 

weak proteolytic activity (zone ≤ 2.5 cm); and [-] - no proteolytic activity (no zones) 

(Cepeda et al., 2004; and Madsen and Dalsgaard, 1998).   

 

2.2.4 Genotypic typing  

2.2.4.1 Isolation of Genomic DNA  
  
 Genomic DNA of study isolates and the reference strains was isolated by the 

CTAB/NaCl mini-prep protocol (Ausubel et al., 1989).  O/N EAOB cultures were 

harvested by centrifugation and cell pellets resuspended in 567 μl TE buffer [10 mM 

Tris-HCl, and 1 mM EDTA, (pH 8)].  Thirty μl SDS and 3 μl 20 mg/ml proteinase K 

were added and incubated at 37 °C for 1 h.  After the addition of 100 μl of 5 M NaCl and 

80 μl CTAB/NaCl [10% CTAB, and 0.7 M NaCl], the mixtures were incubated at 65 °C 

for 10 min.  Genomic DNA in the mixtures were extracted by phenol/chloroform/ 

isoamyl alcohol extraction, precipitated using isopropanol and pellets were washed with 

70% ethanol.  Resulting pellets were resuspended in TE buffer and stored at -20 °C.   
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2.2.4.2  16S rRNA gene PCR-RFLP  
 
 Genomic DNA of the study isolates and reference strains was subjected to PCR 

for the amplification of the 1.5 kb 16S rRNA gene sequence using primers 16S-F (5’- 

AGTTTGATCCTGGCTCAG -3’) and 16S-R (5’- TACCTTGTTACGACTTCACCCCA 

-3’) described by Heyndrickx et al. (1996).  Twenty-five μl reaction volumes 

comprised of 1.5 μM of each primer, 100 μM dNTP’s (Roche, Germany), 1.5 mM 

MgCl2, 1U SuperTherm DNA polymerase (JMR Holdings, UK), 1 × reaction buffer and 

100 ng genomic DNA.  Amplifications were performed in a MJ Mini™ Gradient 

Thermal Cycler (BioRad, USA) under the following amplification conditions: 94 °C for 3 

min, followed by 35 amplification cycles of DNA denaturation at 94 °C for 30s, primer 

annealing at 52 °C for 1 min, and extension at 72 °C for 1 min, and a final extension step 

of 72 °C for 8 min.  PCR products were subjected to electrophoresis in a 1.5% 1 × TAE - 

agarose gel (40 mM Tris base, 20 mM glacial acetic acid, and 2 mM EDTA), stained with 

ethidium bromide and viewed by UV transillumination.  The O’Gene Ruler 100 bp Plus 

DNA ladder (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) 

(Fermentas, Canada) was included in the gels, as a molecular weight marker. 

Resulting 1.5 kb 16S rDNA amplimers were digested with restriction enzymes 

CfoI, MspI and TaqI (Roche, Germany), respectively.  Respective restriction fragments 

were then subjected to polyacrylamide gel electrophoresis in 8% polyacrylamide gels 

[10.64 ml of 30% acrylamide (29 g acrylamide, 1 g N,N’-methylenebisacrylamide, and 

ddH2O to 100 ml), 21.08 ml ddH2O, 8 ml 5 × TBE (45 mM Tris base, 45 mM boric acid, 

and 1 mM EDTA), 20% ammonium persulfate, and 14 μl N,N,N’,N’-

tetramethylethylenediamine (TEMED)] in 1 × TBE-buffer at 5 mA for 15 hours.  The 

O’Gene Ruler 100 bp DNA ladder (Fermentas, Canada) was included as a molecular 

weight marker.  Restriction patterns were examined visually for differences in number 

and sizes of fragments.  Differences in molecular weight of fragments were estimated 

using UVIDOC V.97 (UVItec, UK) software. 
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 2.2.4.3 Random Amplified DNA Polymerase Chain Reaction (RAPD- 

PCR)  
 
Genomic DNA of the study isolates and reference strains was subjected to RAPD-

PCR analysis using primers P1 (5’-CGCCCTGCCC- 3’) and P2 (5’CTGCTGGGAC- 3’), 

respectively (Bernardet et al., 2005).  Reaction mixtures (25μl) contained 1 × Exsel-

therm Taq DNA polymerase reaction buffer, 1U Exsel-therm Taq DNA polymerase 

(JMR Holdings, UK), 1.5mM MgCl2, 100 μM dNTP’s (Roche, Germany), 1.5 μM of 

either oligonucleotide primer, and 100 ng template DNA.  Cycle parameters included an 

initial denaturation step at 94ºC for 3 min, followed by 35 cycles of 94ºC for 30 s, 52  ˚C 

for 1 min, 72ºC for 1 min, and finally 8 min at 72ºC in a MJ Mini™ Gradient Thermal 

Cycler (BioRad, USA).  Negative controls containing no template DNA were included in 

all experiments, and in order to ensure reproducibility RAPD amplifications were 

consistently performed using the same thermal cycler.  Additionally, isolates MY1 and 

CH1 were repeatedly amplified on separate occasions to confirm reproducibility of 

RAPD profiles.    

PCR products were subjected to electrophoresis in a 1.5% 1 × TAE - agarose gel, 

stained with ethidium bromide and viewed by UV transillumination. The                              

O’GeneRuler 100 bp DNA ladder plus (Fermentas, Canada) was used as a size marker.  

Band sizes of RAPD amplicons were calculated using UVIDOC V.97 (UVItec, UK).  

Fingerprints were visually examined for differences in number of fragments amplified, 

differences in molecular weight and intensity of PCR fragments.  RAPD profiles were 

analysed using GelCompar (Applied Maths BVBA, Belgium) and natural groupings of 

similar patterns were clustered using the Pearson product-moment correlation coefficient 

with global optimization and results were displayed as a dendrogram. 

  

 2.2.5 Phenotypic typing  

2.2.5.1  Antimicrobial Susceptibility of test isolates 

Antibiotic susceptibility to 25 antimicrobial agents was determined using antibiotic disks 

(Mast Diagnostics and Oxoid, UK), on Mueller-Hinton (MH) agar plates (Biolab, Merck 
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Gauteng) following NCCLS protocols (NCCLS, 2002).  The panel of antibiotics used 

included: amikacin (AK-30), ampicillin (AP-10), amoxycillin (A-10), augmentin (AU-

30), azithromycin (ATH-15), ceftazadime (CAZ-30), cefoxitin (FOX-30), ceftriaxone 

(CRO-30), cefuroxime (CXM-30), chloramphenicol (C-30), ciprofloxacin (CIP-5), 

cotrimoxazole (TS-25), erythromycin (E-15), gentamicin (GM-10, GM-120), imipenem 

(IMI-10), nalidixic acid (NA-30), norfloxacin (NOR), ofloxacin (OFX-5), oxacillin (OX-

1), piperacillin/tazobactam (TZP), sulphamethoxazole (SMX-25), streptomycin (S-10), 

tetracycline (T-25), and trimethoprim (TM-1.25).  Isolates were grown overnight in 

EAOB, the turbidity of the cell suspensions were adjusted to that equivalent to a 0.5 

McFarland standard and used to inoculate MH agar plates, which were incubated for 24 h 

at 26 °C.  Bacterial strains E. coli ATCC 25922, Enterococcus faecalis ATCC 29212, and 

Staphylococcus aureus ATCC 25923 were used as antimicrobial susceptibility testing 

controls, according to NCCLS recommendations.  Testing was done in duplicate and 

resistance profiles (resistant, intermediate, or susceptible) were assigned after measuring 

average zone diameters using NCCLS breakpoints (NCCLS, 2002).  

MAR index values (a/b, where ‘a’ represents the number of antibiotics the isolate 

was resistant to and ‘b’ represents the total number of antibiotics the isolate was tested 

against) were calculated for all isolates.  When isolates are exposed to high-risk sources 

of contamination originating from humans or animals, where antibiotics are often used a 

MAR index value higher than 0.2 is observed.  When antibiotics are seldom or never 

used a MAR index value less than or equal to 0.2 is observed (Krumperman, 1985). 

 

2.2.5.2   Whole Cell Protein analysis 
 

Fifty ml of O/N EAOB cultures were centrifuged at 12000 rpm for 15 min.  Cells 

were washed with 10 ml PBS (pH7), centrifuged at 12000 rpm for 15 min and 

resuspended in 10 ml PBS buffer.  WCP preparations were prepared by sonication in a 

Sonicator ™ Cell Disruptor (Heat Systems-Ultrasonics Inc, USA), and 2 ml aliquots were 

stored at -20 ºC. 

Fifty µl of the protein preparations were solubilised in 20 µl 2 × sample buffer [25 

ml 4 × Tris-Cl/SDS (pH 6.8), 20 ml glycerol, 4 g SDS, 2 ml 2-mercaptoethanol, and 1 mg 
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bromophenol blue, 100 ml ddH2O] and heated for 5 min at 100 ºC.  Preparations were 

subjected to electrophoresis in 14% polyacrylamide gels by SDS-PAGE at 5 A for 14 h.  

A PageRuler™ prestained protein ladder (170/130/100/70/55/45/35/25/15/10 kDa) 

(Fermentas, Canada) was used as protein marker.  

SDS-PAGE gels were stained by silver staining, using a modified protocol 

described by Tsai and Frasch (1982).  SDS-PAGE gels were immersed in a fixing 

solution (50% methanol, 12% acetic acid and 0.0185% formaldehyde) for 1 h.  This was 

followed by two 10 min washes in washing solution (50% ethanol), pretreatment in 2% 

sodium thiosulphate solution for 5 min, and 3 × 30 s washes in sterile ddH2O.  Gels were 

subsequently stained in silver nitrate solution (1 ml of 0.2% silver nitrate and 0.028% 

formaldehyde) for 10 min, and washed twice in sterile ddH2O.  To visualize protein 

bands, gels were immersed in developer (6% sodium carbonate, 0.0185% formaldehyde 

and 0.14 mg sodium thiosulphate).  After sufficient developing, stop solution (50% 

methanol and 12% acetic acid) was added.   

Gels were photographed with a FujiFilm FinePix 3800 digital camera (Fuji Photo 

Film Co., LTD. Japan) and fixed in cellophane in a Gel Air Dryer (BioRad, USA).  

Protein band sizes were calculated using UVIDOC V.97 (UVItec, UK).  Protein profiles 

were visually examined for differences in number, molecular weight and intensity of 

protein bands.    WCP profiles were analysed using GelCompar (Applied Maths BVBA, 

Belgium) and natural groupings of similar patterns were clustered using the Pearson 

product-moment correlation coefficient with global optimization and results were 

displayed as a dendrogram. 

 

2.2.5.3   Outer Membrane Protein analysis 
 

A modification of the method described by Benedí and Martínez-Martínez (2001) 

was used to prepare OMPs with sodium-lauryl-sarcosine (SLS).  Fifty ml of O/N EAOB 

cultures were centrifuged at 12000 rpm for 15 min.  Cells were washed with 10 ml PBS 

(pH 7), centrifuged at 12000 rpm for 15 min and resuspended in 10 ml PBS.  An 

OmniRuptor 400 Ultrasonic Homogenizer (OMNI International Inc, USA) was used to 

sonicate the cells, followed by centrifugation for 10 min at 6000 rpm.  Supernatants were 
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centrifuged in a L7-65 Ultracentrifuge (Beckman Instruments Inc, USA) at 37000 rpm at 

4 ºC for 1 h.  Resulting pellets were resuspended in 2 ml of a 2% SLS-PBS solution and 

incubated at room temperature for 30 min.  Suspensions were centrifuged at 37000 rpm 

for 45 min at 4ºC.  Partially purified OMP preparations were prepared by resuspension of 

the pellets in a 1% SLS PBS solution and centrifugation at 4 ºC for 40 min at 37000 rpm.   

Pellets were resuspended in ddH2O and stored at -20 °C.   

Protein preparations were solubilised in 20 µl 2 × sample buffer and heated for 5 

min at 100 °C.  This was followed by electrophoresis in 12% polyacrylamide gels by 

SDS-PAGE at 5 A for 14 h.  The protein marker PageRuler™ unstained protein ladder 

(170/130/100/70/55/45/35/25/15/10 kDa) (Fermentas, Canada) was included in every 

electrophoresis run.  Gels were stained with the modified silver staining method, as 

described previously (Tsai and Frasch 1982). 

Gels were photographed with a FujiFilm FinePix 3800 digital camera (Fuji Photo 

Film Co., LTD. Japan) and fixed in cellophane in a Gel Air Dryer (Bio-Rad laboratories, 

USA).  Protein band sizes were calculated using UVIDOC V.97 (UVItec, UK).  Protein 

profiles were visually examined for differences in number, molecular weight and 

intensity of protein bands.    OMP profiles were analysed using GelCompar (Applied 

Maths BVBA, Belgium) and natural groupings of similar patterns were clustered using 

the Pearson product-moment correlation coefficient with global optimization and results 

were displayed as a dendrogram. 

 

2.2.6 Typeability, reproducibility and discrimination ability of typing 
methods 

  
Data obtained by the typing techniques were evaluated according to the following 

criteria: typeability, reproducibility and discrimination.  Typeability refers to the ability 

of a typing technique to give an unambiguous positive result for each given isolate, thus, 

giving a percentage of distinct bacterial isolates which can be assigned a positive type 

(Maslow and Mulligan, 1996; and Tenover et al., 1997).  Reproducibility refers to a 

typing technique’s ability to produce the same result for a given isolate on repeated 

testing.  Therefore, reproducibility is the percentage of isolates giving the same result on 

repeated testing.  Over time, minor variation might be observed in types of isolates and, 
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therefore, reproducibility also refers to the typed attribute’s stability over time (Maslow 

and Mulligan, 1996; and Tenover et al., 1997).  Discriminatory power refers to a typing 

technique’s ability to differentiate epidemiologically unrelated isolates (Maslow and 

Mulligan, 1996; and Tenover et al., 1997).  Ideally, the technique should assign each 

isolate to a different type (Tenover et al., 1997).  Traditional phenotypic typing methods 

usually show lower discriminatory power compared to molecular methods (Tenover et 

al., 1997).  The use of a single numerical index of discrimination (D), based on the 

probability that two unrelated isolates sampled from a test population will be placed in 

distinct typing groups, can be calculated using the Simpson’s index of diversity (Hunter 

and Gaston, 1988): 

    
0

11 ( 1)
( 1)
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j j

j
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N N

=

=

= − −
− ∑  

where, D = numerical index; N = strain/isolate number in sample; s = subtype number; 

nj = strain/isolate number belonging to jth subtype.  The desired discrimination index of a 

typing scheme is ≥ 90%, which is sensitive to the number of groups defined by a typing 

scheme and the size of the dominant group.  

 

2.3 Results 
2.3.1 Physiological and biochemical identification of isolates of  

Myroides and  Empedobacter spp.  
 

Phenotypic and biochemical test results obtained for the Myroides and 

Empedobacter (MY) and Chryseobacterium and Elizabethkingia (CH) spp. isolates are 

summarized in Table 2.2.  The isolates were then grouped for further analysis based on 

their phenotypic and biochemical test results.   

Group I contained all of the Myroides and Empedobacter spp. isolates.  Isolates 

were all Gram-negative (Fig. 2.1) and produced the characteristic fruity odour described 

for Myroides spp. (Hugo et al., 2005).  Colonies initially resembled Myroides spp. colony 

type 3 as smooth, shiny, convex colonies with no spreading edges, but were transformed 

to colony type 4 as the colonies became mucoid after 7 days.  Isolates differed from the 

Myroides and Empedobacter spp. description (Hugo et al., 2005) by their inability to 
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grow on McConkey agar.  Weak proteolytic activity was observed as the isolates were 

only able to partially degrade gelatin, as opposed to complete gelatin hydrolysis 

described previously by Hugo et al. (2005), and partial degradation of casein.  With 

regards to differentiating between the Myroides and Empedobacter genera, study isolates 

shared characteristics of the genus Myroides by being negative for the production of 

glucose and their inability to degrade starch, and to the genus Empedobacter by their 

indole-positive phenotype.  The Myroides and Empedobacter spp. isolates displayed very 

thick capsules (Fig. 2.2) and no motility was detected.  Cells displayed the characteristic 

red flexirubin pigment following NaOH exposure (Fig. 2.3).  Growth in the presence of 

5% NaCl was observed for all isolates (Fig. 2.4), but no growth occurred in the presence 

of 9% NaCl. 

 
Figure 2. 1 Light microscope image of Gram-negative staining reaction displayed by Myroides sp. 

isolate MY1 (× 1000 magnification). 
 
 
 
 
 
 

 
Figure 2. 2 Light microscope image of thick capsular material surrounding Myroides sp. isolate MY1 

following negative staining (× 1000 magnification).   
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Figure 2. 3 Release of characteristic red flexirubin pigment from Myroides sp. isolate MY1 cells 
following exposure to 10 N NaOH. 

  
 

 

 

 

 

 

 

 

 
Figure 2. 4 Growth of Myroides sp. isolate MY2B on nutrient agar supplemented with 5% NaCl.  
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Table 2. 2 Phenotypic and biochemical Characteristics of Myroides and Empedobacter spp. and Chryseobacterium and Elizabethkingia spp. isolates. 
Experiments

MY1 MY2 MY2B MY3 MY3B CH1 CH1B CH2 CH2B CH3 CH4 CH4B CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13

Physiological characteristics
Colony morphology* A A A A A 1 1 1 2† 1 1 1 1 1 1 1 3 2 2 2 1
Adherence to agar# + + + + + + + - + + - - - - - - - + - - +
Growth following temperature variation
5°C + + + + + - - - - - - - - - - - +
37°C + + + + + + + + + + + + + + + + + - - - -
42°C$ - - - - - (+) (+) + + - (+) - (+) - - - + - - - -

Biochemical characteristics
Gram Reaction - - - - - - - - - - - - - - - - - - - - -
Flexirubin pigment production + + + + + + + + + + + + + + + + + - + + +
Oxidase + + + + + + + + + + + + + + + + + + + + +
Catalase + + + + + + + + + + + + + + + + + + + + +
Indole Production + + + + + + + + + + + + + + + + + + + + +
Voges-Proskauer
glucose Fermentation - - - - - - - - - - - - - - - - - - - - -
Citrate utilization - - - - - - - - - - - - - - - - - - - - -
Starch utilization - - - - - + + + - + + + + + + + + - - - -
Growth on McConkey agar - - - - - - - - - - - - - - - - - - - - -
Growth on Nutrient agar
containing 5% (w/v) NaCl + + + + + - - - - + - + - - - - - - - - -
Growth on Nutrient agar
containing 9% (w/v) NaCl¥ - - - - - ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
Proteolytic activity
Gelatin Hydrolysis (+) (+) (+) (+) (+) + (+) + (+) + + + + + + + + (+) (+) (+) +
Casein Hydrolysis (+) (+) (+) (+) (+)
Congo Red uptake + + + + + + + + + + + + + + + + + + + + +
Capsule (Light microscope investigation)‡ + + + + + + + + + + (+) + + + (+) + - (+) - (+) (+)
Motility - - - - - - - - - - - - - - - - - - - - -

Myroides isolates Chryseobacterium  isolates

 
* Colony morphology – Myroides and Empedobacter spp. isolates: (A) light yellow, small shiny convex colonies with smooth edges; 

- Chryseobacterium and Elizabethkingia spp. isolates:  (1) Orange, big shiny convex colonies with smooth edges; (‡1) larger 
colonies; (2)  orange, small colonies with smooth edges; (†2)  lighter pigmentation;  (3)  deeper orange, larger convex colonies with smooth edges; (4)   yellow 
colonies with delayed flexirubin pigmentation, very small convex colonies with smooth edges 

# Adherence to agar - Mucoid, stringy consistency of colonies 
$ + = positive; - = negative; (+) = weak positive 
¥   ND = not determined; + = positive; - = negative; (+) =   weak positive for 9% (w/v) NaCl  
‡ Capsule classification - + = Thick capsule; - = No capsule; (+) = Thin capsule  
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Table 2.2 (Continued) Phenotypic and biochemical characteristics of Chryseobacterium and Elizabethkingia spp. isolates. 

Experiments
CH14 CH15 CH16 CH17 CH18 CH19 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH33 CH34

Physiological characteristics
Colony morphology* 2 2 2 2 2 2 1‡ 1 2 2 1 1 4 2 1 1 2 1
Adherence to agar# + - - - - - + + - + + + + + - - - -
Growth following temperature variation
5°C - - - - + - - + + + + + + +
37°C - + + + + + + + + + + + + + + + + +
42°C$ - - (+) - + - + + + + (+) + + + + + + +

Biochemical characteristics
Gram Reaction - - - - - - - - - - - - - - - - - -
Flexirubin pigment production + + - + + + + + - + + + - + + + + +
Oxidase + + + + + + + + + + + + + + + + + +
Catalase + + + + + + + + + + + + + + + + + +
Indole Production + + + + + + + + + + + + + + + + + +
Voges-Proskauer
glucose Fermentation - - - - - - - - - - - - - - - - - -
Citrate utilization - - - - - - - - - - - - - - - - - -
Starch utilization - + + + - + - - - - - - - - - - - -
Growth on McConkey agar - - - - - - - - - - - - - - - - - -
Growth on Nutrient agar
containing 5% (w/v) NaCl - - - - - - - - + + + + + + - - - -
Growth on Nutrient agar
containing 9% (w/v) NaCl¥ ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
Proteolytic activity
Gelatin Hydrolysis + (+) (+) (+) (+) (+) (+) (+) - - - - - - (+) (+) (+) (+)
Casein Hydrolysis
Congo Red uptake + + + + + + + + + + + + + + + + + +
Capsule (Light microscope investigation)‡ (+) (+) (+) - - (+) (+) - + (+) (+) (+) - (+) + - - (+)
Motility - - - - - - - - - - - - - - - - - -

Chryseobacterium isolates

 
 
* Colony morphology – Myroides and Empedobacter spp. isolates: (A) light yellow, small shiny convex colonies with smooth edges; 

- Chryseobacterium and Elizabethkingia spp. isolates:  (1) Orange, big shiny convex colonies with smooth edges; (‡1) larger 
colonies; (2)  orange, small colonies with smooth edges; (†2)  lighter pigmentation;  (3)  deeper orange, larger convex colonies with smooth edges; (4)   yellow 
colonies with delayed flexirubin pigmentation, very small convex colonies with smooth edges 

# Adherence to agar - Mucoid, stringy consistency of colonies 
$ + = positive; - = negative; (+) = weak positive 
¥   ND =  not determined; + = positive; - = negative; (+) =   weak positive for 9% (w/v) NaCl   
‡ Capsule classification - + = Thick capsule; - = No capsule; (+) = Thin capsule  
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2.3.2 Physiological and biochemical identification of        
Chryseobacterium and Elizabethkingia spp. isolates 

 
While the Myroides spp. isolates appeared phenotypically and biochemically 

homogenous, differences were observed between the different Chryseobacterium and 

Elizabethkingia spp. isolates (Table 2.2).  Four distinct colony morphology phenotypes 

were observed for the study isolates (Fig. 2.5): (1) Orange, big shiny convex colonies 

with smooth edges; (‡1) larger colonies; (2) orange, small convex colonies with smooth 

edges; (†2) lighter pigmentation; (3) deeper orange, larger convex colonies with smooth 

edges; and (4) yellow, very small convex colonies with smooth edges, delayed flexirubin 

pigmentation (Table 2.2). All of the Chryseobacterium spp. and Elizabethkingia spp. 

isolates were Gram-negative rods (Fig. 2.6), and only two of the isolates (isolates CH10, 

CH16) did not display the characteristic flexirubin pigmentation (Table 2.2; Fig. 2.7) 

following NaOH exposure.  All of the isolates were positive for catalase, oxidase and 

indole production, and negative for glucose fermentation and citrate utilization as well as 

growth on McConkey agar (Table 2.2).  None of the Chryseobacterium isolates were 

motile.  Capsule staining revealed isolate variability with respect to presence or absence 

and intensity of capsular material observed (Table 2.2). 

 

A  B  

 C C  D  
 
Figure 2. 5 Colony morphologies displayed by Chryseobacterium and Elizabethkingia spp. isolates:  

(A) - Orange, big shiny convex colonies with smooth edges; (B) - orange, small convex 
colonies with smooth edges; (C) - deeper orange, larger convex colonies with smooth 
edges; and (D) - yellow, very small convex colonies with smooth edges.   
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Figure 2. 6 Light microscope image of Gram-negative staining reaction displayed by 

Chryseobacterium and Elizabethkingia  spp. isolate CH8 (×1000 magnification). 
 
 
 

 
 

Figure 2. 7 Release of characteristic red flexirubin pigment from Chryseobacterium and 
Elizabethkingia spp. isolates CH8 cells following exposure to 10 N NaOH.  

 

 

The Chryseobacterium and Elizabethkingia spp. isolates were grouped based on 

their variable phenotypic and biochemical test results (Table 2.3).  Group 2a contained 6 

isolates which differed from group 2b only by the ability of the former to grow at 42 ˚C.  

The isolates clustered into groups 3 and 4 (b and c) were unable to utilize starch.  Group 

3a isolates differed from group 3b by not being able to grow at 37 ˚C.  Isolates in group 4 

were able to grow in the presence of 5% NaCl (Fig. 2.8.) and included group 4a which 

were unable to grow at 42 ˚C and group 4b which were able to grow at these high 

temperatures, but could not hydrolyse starch.  Group 4c differed from group 4b by 

delayed production of the flexirubin pigment, since the colonies only displayed their 

characteristic colour after 7 days of incubation.   Group 5 consisted of two isolates which 



 

 

57

did not produce the flexirubin pigment, and were further subdivided into groups 5a and 

5b, where the former was unable to utilize starch and grow at 37 ˚C.   

 

 

 
 

Figure 2. 8 Growth of Chryseobacterium and Elizabethkingia spp. isolates CH3 in the presence of 
5% NaCl. 

    
 
Table 2. 3 Groupings of Chryseobacterium and Elizabethkingia spp. isolates based on variations in 

phenotypic and biochemical test results. 
Group Isolates

Group I MY1, MY2, MY2B, MY3, MY3B

Group 2
2a CH1, CH1B, CH2, CH4, CH5, CH9

2b CH6, CH7, CH8, CH15, CH17, CH19

Group 3

3a CH11, CH12, CH13, CH14

3b CH2B, CH18, CH21, CH22, CH29, 
CH30, CH33, CH34

Group 4

4a CH3, CH4B

4b CH24, CH25, CH25, CH28

4c CH23, CH27

Group 5

5a CH10

5b CH16

Growth at 42 ˚C

No growth at 42 ˚C

Differentiating phenotypic/
biochemical characteristics

Positive for indole production and growth 
on McConkey agar;
Growth on 5 % NaCl 

Myroides spp. isolates

Chryseobacterium /Elisabethkingia spp. isolates

No flexirubin pigmentation

No starch hydrolysis
No growth at 37 ˚C

Starch hydrolysis;
Growth at 37 ˚C

No starch utilization

No growth at 37 ˚C

Growth at 37 ˚C

Growth in the presence of 5 % NaCl

No growth at 42 ˚C;
Starch and gelatin hydrolysis

Growth at 42 ˚C;
No starch or gelatin hydrolysis

Delayed production of flexirubin pigment
Growth at 42 ˚C;

No starch or gelatin hydrolysis
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2.3.3 Restriction Fragment Length Polymorphic (RFLP) PCR analysis 
 

  TaqI, CfoI and MspI restriction, respectively, of 16S rRNA gene amplicons of 

Myroides and Empedobacter spp. isolates were not sufficiently discriminatory (Figs. 2.9 

– 2.11).  All five isolates displayed identical profiles following restriction with CfoI (C-I), 

MspI (M-I) and TaqI (T-I) (Table 2.4).  CfoI profiles consisted of 3 fragments ranging in 

size from 1114 bp to 52 bp (Fig. 2.9).  MspI and TaqI restriction patterns consisted of 4 

fragments each, ranging in size from 897 bp to 43 bp (Fig. 2.10) and 611 bp to 88 bp 

(Figs. 2.11), respectively.  CfoI and MspI profiles obtained were identical to that obtained 

for the reference M. odoratus (NCTC 11036) strain (Table 2.4).  However, isolates 

displayed a TaqI profile which was variable to that of the reference strain (Table 2.4; 

Figs. 2.11 - 2.12) 

Eleven profiles (T-1 to T-11) were obtained following TaqI restriction of the 

Chryseobacterium and Elizabethkingia spp. study isolates and reference strains (Table 

2.4, Figs. 2.12 - 2.16).  Profiles consisted of 3 - 6 fragments ranging in size from 43 bp to 

847 bp (Table 2.4).  Groups T-1 and T-2 contained 11 and 12 isolates, respectively, and 

these profiles corresponded to that of reference strains C. joostei (LMG 18212) and C. 

gleum (NCTC 11432), respectively (Table 2.4; Fig 2.12).  Two study isolates clustered 

with C. indologenes (LMG 8337 = NCTC 10796; Flav IIb) in group T-3.   

 

 

           1    2    3   4    5    6  

 
Figure 2. 9 Polyacrylamide gel electrophoresis of restriction fragments of Myroides and 

Empedobacter spp. isolates following digestion of the 1500 bp 16S rRNA amplicon with 
CfoI. Lane 1: O’GeneRuler 100 bp DNA ladder plus (3000/2000/ 
1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) (Fermentas, Canada); lanes 
2-6: isolates MY1, MY2, MY2B, MY3, MY3B, respectively. 
 

100 bp 
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           1       2     3     4      5     6  

                
Figure 2. 10 Polyacrylamide gel electrophoresis of restriction fragments of Myroides and 

Empedobacter spp. isolates following digestion of the 1500 bp 16S rRNA amplicon with 
MspI. Lane 1: O’GeneRuler 100 bp DNA ladder plus (3000/2000/1500/1200/1031/900/ 
800/700/600/500/400/300/200/100 bp) (Fermentas, Canada); lanes 2-6: isolates MY1, 
MY2, MY2B, MY3, MY3B, respectively. 
 
 
                      1     2    3    4    5    6 

                
Figure 2. 11 Polyacrylamide gel electrophoresis of restriction fragments of Myroides and 

Empedobacter spp. isolates following digestion of the 1500 bp 16S rRNA amplicon with 
TaqI. Lane 1: O’GeneRuler 100 bp DNA ladder plus 
(3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) (Fermentas, 
Canada), lanes 2-6: isolates MY1, MY2, MY2B, MY3, MY3B, respectively. 

 

 

One study isolate each in groups T-4 and T-11, (Table 2.4) clustered with the 

reference C. indoltheticum (ATCC 27950) and E. meningoseptica (NCTC 10016) strains, 

respectively.  None of the study isolates clustered with C. balustinum (NCTC 11212) 

(Table 2.4).  Isolate CH16 appeared to be untypeable by TaqI restriction and did not yield 

a TaqI profile despite repeated attempts (× 3) to obtain a restriction profile (Table 2.4). 

Groups T-1 to T-4 could be grouped into the same cluster as restriction of the 16S 

rRNA of the isolates belonging to this group displayed similar restriction fragments 

       100 bp 

       500 bp 

 100 bp 

 500 bp 
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differing from each other by very few base pairs (Table 2.4).  Although belonging to this 

cluster, it was possible to differentiate between reference cultures C. joostei, C. gleum, C. 

indologenes and C. indoltheticum, respectively, with TaqI restriction of the 16S rRNA, 

No other clusters were observed following TaqI restriction analysis, and one fragment of 

approximately 49 bp was common to 50% of the profiles. 

 

 

 
          1     2     3     4     5     6     7     8    

 
 

Figure 2. 12 Poly-Acrylamide gel electrophoresis of restriction fragments of reference strains 
following digestion of the 1500 bp 16S rRNA amplicon with TaqI. Lane 1: O’GeneRuler 
100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 
bp) (Fermentas, Canada); and lanes 2-8: reference cultures M. odoratus (NCTC 11036), 
C. balustinum (NCTC 11212), C. gleum (NCTC 11432), C. indologenes (LMG 8337 = 
NCTC 10796; Flav IIb), C. indoltheticum (ATCC 27950), C. joostei (LMG 18212), and 
E. meningoseptica (NCTC 10016), respectively.  
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Table 2. 4 16S rRNA amplicon PCR-RFLP profiles of yellow-pigmented study isolates and selected Myroides, Chryseobacterium and Elizabethkingia 
spp. reference strains.   

 

No. of patterns No. of 
fragments Subtype Size of fragments (bp)

2 (Myroides/Empedobacter ) 4 T-I 897; 355; 185; 43 MY1, MY2, MY2B, MY3, MY3B 5
4 T-II 993; 363; 175; 142 M. odoratus 1

11 (Chryseobacterium/
      Elizabethkingia )

4 T-1 790; 314; 173; 129; 89
CH1, CH1B, CH13, CH15, CH17, CH18, 
CH19, CH22, CH27, CH29, CH30, 
C. joostei

12

5 T-2 812; 325; 176; 134; 91 CH2, CH3, CH4, CH4B, CH5, CH6, CH7, 
CH8, CH9,CH10, C. gleum 11

5 T-3 759; 319; 173; 133; 93 CH11, CH21, C. indologenes 3
5 T-4 793; 313; 171; 130; 87 CH14, C. indoltheticum 2
3 T-5 517; 200; 47 CH12 1
4 T-6 847; 363; 191; 46 CH23, CH24 3
5 T-7 642; 351; 212; 145; 48 CH25, CH26, CH28 3
6 T-8 820; 600; 542; 358; 171; 43 CH33 1
4 T-9 313; 199; 147; 49 CH34 1
4 T-10 780; 570; 143; 99 C. balustinum 1
6 T-11 490; 363; 328; 183; 156; 55 CH2B, E. meningoseptica 2
0 T-0 CH16 1

1 (Myroides/Empedobacter ) 3 C-I 1114; 391; 52 MY1, MY2, MY2B, MY3, MY3B,
M. odoratus

6

13 (Chryseobacterium/
      Elizabethkingia ) 6 C-1 900; 191; 148; 108; 88; 46

CH1, C. gleum , C. indologenes,
C. indoltheticum 4

5 C-2 870; 238; 145; 86; 49

CH1B, CH2, CH3, CH4, CH4B, CH5, CH6, 
CH7, CH8, CH9, CH10, CH11, CH13, CH15, 
CH17, CH18,
E. meningoseptica

17

5 C-3 836; 243; 208; 147; 46 CH2B 1
4 C-4 688; 221; 212; 141 CH19, CH22 2
3 C-5 674; 332; 212 CH21 1
5 C-6 533; 329; 212; 126; 43 CH23 1
4 C-7 677; 410; 234; 54 CH24 1
4 C-8 513; 404; 143; 53 CH25, CH26, CH28 3
4 C-9 864; 238; 222; 143 CH27, CH29, CH30 3
5 C-10 389; 335; 319; 235; 180 CH33 1
2 C-11 230; 195 CH34 1

Taq I

Cfo I

Number of 
isolates

Profiles
Restriction

Enzyme Isolates
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Table2.4 (continued). 16S rRNA amplicon PCR-RFLP profiles of yellow-pigmented study isolates and selected Myroides, Chryseobacterium and     
                                            Elizabethkingia spp. reference strains.   
 
 

No. of patterns No. of 
fragments Subtype Size of fragments (kbp)

11 (Chryseobacterium/
      Elizabethkingia ) 4 C-12 615; 417; 354; 193 C. balstinum 1

5 C-13 900; 242; 149; 131; 109 C. joostei 1
0 C-0 CH12, CH14, CH16 3

1(Myroides/Empedobacter ) 5 M-I 611; 398; 206; 127; 88 MY1, MY2, MY2B, MY3, MY3B, 
M. odoratus 6

20 (Chryseobacterium/
      Elizabethkingia ) 4 M-1 309; 200; 125; 55 CH1 1

4 M-2 646; 262; 147; 67 CH1B, CH3, CH5 3

3 M-3 772; 283; 211 CH2, CH4, CH4B, CH8, CH10, CH17, CH18 7

5 M-4 651; 481; 342; 129; 57 CH2B 1
3 M-5 778; 308; 228 CH6 1
5 M-6 763; 300; 223; 141; 105 CH7, C. gleum 2

5 M-7
712; 279; 208; 130; 94

CH9, CH19, CH22, CH27
C. indologenes, 
C. indoltheticum

5

2 M-8 529; 206 CH12 1
5 M-9 580; 457; 232; 175; 132 CH13 1
2 M-10 574; 357 CH14 1
4 M-11 707; 277; 214; 132 CH15 1
4 M-12 800; 273; 205; 124 CH11, CH21, C. joostei 3
4 M-13 453; 276; 176; 159 CH23 1
4 M-14 596; 220; 174; 165 CH24 1
3 M-15 607; 282; 172 CH25, CH26, CH28 3
4 M-16 753; 276; 204; 84 CH29, CH30 3
6 M-17 558; 303; 294; 221; 144; 101 CH33 1
3 M-18 289; 220; 205 CH34 1
6 M-19 647; 388; 213; 139; 116; 99 C. balustinum 1
4 M-20 704; 535; 110; 103 E. meningoseptica 1
0 M-0 CH16 1

Number of 
isolates

Msp I

Cfo I

IsolatesRestriction
Enzyme

Profiles
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Thirteen restriction profiles (C-1 to C-11) (Figs. 2.17 – 2.20) were generated 

following restriction with CfoI (Table 2.4).  Profiles consisted of 2 - 6 fragments ranging 

in size from 900 bp to 53 bp (Table 2.4).  Isolate CH1 was differentiated from isolates 

clustered into group C-2 (Table 2.4).   
 

                   1   2   3   4    5    6   7    8    9  10  11  12  13   

 
 

 
 
Figure 2. 13 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 

Elizabethkingia spp. study isolates following digestion of the 1500 bp 16S rRNA 
amplicon with TaqI. Lanes 1-7: CH1, CH1B, CH2, CH2B, CH3, CH4, CH4B; lane 8: 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/ 
300/200/100 bp) (Fermentas, Canada); and lanes 9-13: CH8, CH11, CH13, CH14, and 
CH16, respectively. 

                                                                           1      2     3      4     5      6     7       8       9    

 
 
 
 
 
 

  
 
 

 
Figure 2. 14 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 

Elizabethkingia spp. study isolates following digestion of the 1500 bp 16S rRNA 
amplicon with TaqI. Lanes 1-4: CH5, CH6, CH7, CH8; lane 5: O’GeneRuler 100 bp 
ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) 
(Fermentas, Canada); and lanes 6-9: CH10, CH12, CH15, and CH17, respectively. 

             500 bp 

               100 bp 

                  500 bp 

            100 bp 



 

 

64

                                                                                               
        1      2      3     4      5     6     7       8  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 15 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 
Elizabethkingia spp. study isolates following digestion of the 1500 bp 16S rRNA 
amplicon with TaqI. Lane 1: O’GeneRuler 100 bp ladder plus 
(3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) (Fermentas, 
Canada); and lanes 2-8: CH9, CH21, CH23, CH25, CH26, CH28, and CH30, 
respectively. 

 
 
 
                                                 1       2     3      4      5      6      7     8      9     10  

 
 
Figure 2. 16 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 

Elizabethkingia spp. study isolates following digestion of the 1500 bp 16S rRNA 
amplicon with TaqI. Lanes 1 and 6: O’GeneRuler 100 bp ladder plus (3000/2000/1500/ 
1200/1031/900/800/700/600/500/400/300/200/100 bp) (Fermentas, Canada); lanes 2-5: 
CH18, CH19, CH22, CH24; and lanes 7-10: CH27, CH29, CH33, and CH34, 
respectively. 
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Although CfoI restriction allowed for the differentiation of E. meningoseptica 

(NCTC 10016) and study isolate CH2B, the E. meningoseptica (NCTC 10016) reference 

strain was clustered into a larger group of isolates (group C-2) which contained isolates 

belonging to the TaqI C. joostei / C. gleum complex (Table 2.4).  Three isolates, CH12, 

CH14 and CH16, could not be typed by CfoI restriction, although isolates CH12 and 

CH14 were differentiated by TaqI restriction (Table 2.4). CfoI PCR-RFLP analysis did 

not discriminate between reference strains C. gleum (NCTC 11432), C. indologenes 

(LMG 8337 = NCTC 10796; Flav IIb), and C. indoltheticum (ATCC 27950) (Table 2.4; 

Fig. 2.17). C. joostei was grouped into an individual group separating this strain from the 

test isolates it had grouped with by TaqI restriction analysis.  No clusters were observed 

in the CfoI restriction patterns, and no prominent bands were observed for all the profiles, 

although two fragments of approximately 145 bp and 49 bp were common to 45% and 

54% of the profiles, respectively.     
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Figure 2. 17 Polyacrylamide gel electrophoresis of restriction fragments of reference strains following 
digestion of the 1500 bp 16S rRNA amplicon with CfoI. Lane 1: O’GeneRuler 100 bp 
ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) 
(Fermentas, Canada); lanes 2-8: standard cultures M. odoratus (NCTC 11036), C. 
balustinum (NCTC 11212), C. gleum (NCTC 11432), C. indologenes (LMG 8337 = 
NCTC 10796; Flav IIb), C. indoltheticum (ATCC 27950), C. joostei (LMG 18212), and 
E. meningoseptica (NCTC 10016), respectively.  
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Figure 2. 18 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 

Elizabethkingia spp. isolates following digestion of the 1500 bp 16S rRNA amplicon with 
CfoI. Lane 1: O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/ 
600/500/400/300/200/100 bp) (Fermentas, Canada); and lanes 2-9: CH1, CH1B, CH2, 
CH2B, CH3, CH4, CH4B, and CH5, respectively. 
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Figure 2. 19 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 

Elizabethkingia spp. isolates following digestion of the 1500 bp 16S rRNA amplicon with 
CfoI. Lanes 1 and 11: O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/ 
900/800/700/600/500/400/300/200/100 bp) (Fermentas, Canada); lanes 2-10: CH6, CH7, 
CH8, CH9, CH10, CH11, N/A, CH13, N/A; and lanes 12-20: CH15, CH16, CH17, 
CH18, CH19, N/A, CH21, CH22, and CH23, respectively. (N/A – band sizes not 
applicable as isolates were not included in study) 
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Figure 2. 20 Polyacrylamide gel electrophoresis of restriction fragments of Chryseobacterium and 

Elizabethkingia spp. isolates following digestion of the 1500 bp 16S rRNA amplicon with 
CfoI. Lanes 1 and 8: The O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/ 
900/800/700/600/500/400/300/200/100 bp) (Fermentas, Canada); lanes 2-7: CH14, 
CH24, CH25, CH26, CH27, CH28; and lanes 9-13: CH29, CH30, CH33, CH34, N/A, 
respectively. (N/A – band sizes not applicable as isolates were not included in study) 

 
 
 

Twenty profiles (M-1 to M-20) were obtained following MspI restriction (Figs. 

2.21-2.25), with profiles consisting of 2 - 6 fragments ranging in size from 800 bp to 55 

bp (Table 2.4). With CfoI, study isolate CH1 (group M-1) grouped individually, and did 

not cluster with any reference strains (Table 2.4).   MspI allowed for the differentiation of 

isolates clustered into groups C-2 (CfoI) and T-1/2 (TaqI) (Table 2.4).  Both CfoI and 

MspI allowed for the differentiation of isolates clustered into groups T-1 and T-6 by TaqI 

restriction (Table 2.4).  Study isolates CH25, CH26 and CH28 displayed identical profiles 

with all three restriction enzymes (Table 2.4).   

One cluster was observed following MspI restriction, this cluster contained 4 

groups (M-3, M-5, M6 and M16) which shared three similar fragments of approximately 

767 bp, 292 bp, and 217 bp in size differing by a few base pairs (Table 2.4).  Group M-6 

that formed part of this cluster contained two extra fragments of 141 bp and 105 bp, and 

group M-16 also part of this cluster contained one 84 bp fragment in addition to the 
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clustering fragments (Table 2.4).  Two fragments of approximately 125 bp and 207 bp in 

size were observed for 45% of the profiles (Table 2.4).   

    None of the reference strains were consistently identical with specific study 

isolates following restriction with the three respective restriction enzymes.  However, 

study isolate CH7 and reference strain C. gleum (NCTC 11432) shared similar restriction 

patterns following TaqI and MspI restriction (groups T-2 and M-5) (Table 2.4).  

Reference strain E. meningoseptica (NCTC 10016) grouped by itself with MspI 

restriction (M-20) (Table 2.4; Fig. 2.21).  The 16S rRNA amplicons of study isolate 

CH16 and reference strain C. balustinum (NCTC 11212) were non-typeable with MspI, 

as well as TaqI and CfoI (Table 2.4).   

                                                              
 
 
 
 

                                                                        1      2      3      4     5              6     7      8     9  

 
 

Figure 2. 21 Polyacrylamide gel electrophoresis of restriction fragments of reference strains following 
digestion of the 1500 bp 16S rRNA amplicon with MspI. Lanes 1 and 6: O’GeneRuler 
100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 
bp) (Fermentas, Canada); lanes 2-5: reference strains M. odoratus (NCTC 11036), C. 
balustinum (NCTC 11212), C. gleum (NCTC 11432), C. indologenes (LMG 8337 = 
NCTC 10796; Flav IIb); and lanes 7-9: C. indoltheticum (ATCC 27950), C. joostei (LMG 
18212), and E. meningoseptica (NCTC 10016), respectively.  

 
 
 
 
 
 

        500 bp 

                  200 bp 



 

 

69

                                                                         1        2          3         4         5         6          7     

 
Figure 2. 22 Polyacrylamide gel electrophoresis of restriction fragments of study isolates following 

digestion of the 1500 bp 16S rRNA amplicon with MspI. Lanes 1-2: CH1, CH1B; lane 3: 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/ 
300/200/100 bp) (Fermentas, Canada); and lanes 4-7: CH2B, CH2, CH3, and CH5, 
respectively. 
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Figure 2. 23 Polyacrylamide gel electrophoresis of restriction fragments of study isolates following 
digestion of the 1500 bp 16S rRNA amplicon with MspI. Lanes 1 and 7: O’GeneRuler 
100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 
bp) (Fermentas, Canada); and lanes 2-6: CH6, CH7, CH8, CH9, CH10; and lanes 8-13: 
CH11, CH12, CH13, CH14, CH15, and CH16, respectively. 
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Figure 2. 24 Polyacrylamide gel electrophoresis of restriction fragments of study isolates following 
digestion of the 1500 bp 16S rRNA amplicon with MspI. Lanes 1 and 6: O’GeneRuler 
100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 
bp) (Fermentas, Canada); lanes 2-5: CH4, CH4B, CH19, CH21; and lanes 7-11: CH22, 
CH23, CH24, CH25, CH26, CH17, and CH18, respectively. 
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Figure 2. 25 Polyacrylamide gel electrophoresis of restriction fragments of study isolates following 
digestion of the 1500 bp 16S rRNA amplicon with MspI. Lanes 3(A), 4 (B), and 9(C): 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400 
/300/200/100 bp) (Fermentas, Canada); (A): lanes 1-2: (B): lanes 5-8: CH27, CH28, 
CH29, CH30; and (C): lanes 10-11: CH33 and CH34, respectively. 
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2.3.4 Random amplification of polymorphic DNA (RAPD) PCR analysis 
 

RAPD fingerprinting with both the primers P1 and P2 produced single patterns, 

respectively, for the Myroides and Empedobacter spp isolates (Fig. 2.26).  The P1 

primer generated 3 bands ranging in size from approximately 470 bp to 1151 bp (Table 

2.5; Fig. 2.26A).  Three fragments, ranging in size from approximately 1889 bp to 909 

bp were generated with primer P2 (Table 2.5; Fig. 2.26B).  It was not possible to 

differentiate between species using these RAPD primers. 

High reproducibility was observed for isolate MY1 strains, and although the 

concentration of genomic DNA of reference strain M. odoratus (NCTC 11036) was 

identical for both the P1 and P2 RAPD reactions, no visible fragments were obtained with 

the P1 primer (Fig. 2.27).  Therefore, it was not possible to identify the study isolates to 

species-level by P1 RAPD fingerprinting (Fig. 2.27).   
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Figure 2. 26 Agarose gel electrophoresis of RAPD amplification products for the Myroides and 
Empedobacter spp isolates generated with primers P1 and P2, respectively.  (A): Lane 1: 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/ 
300/200/100 bp) (Fermentas, Canada); and lanes 2-6: study isolates MY1, MY2, MY2B, 
MY3, MY3B, respectively. (B): Lane 1: O’GeneRuler 100 bp ladder plus 
(3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) (Fermentas, 
Canada); and lanes 2-6: study isolates MY1, MY2, MY2B, MY3, MY3B, respectively.        
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Eighteen RAPD fingerprints were produced for the 34 Chryseobacterium/ 

Elizabethkingia spp. isolates and 6 reference strains with the P1 primer (Table 2.5; Figs. 

2.27-2.29), while 20 fingerprints were obtained with the P2 primer (Table 2.5; Fig. 2.30-

2.32).  P1 fingerprints consisted of 3-9 fragments although 16 fragments were obtained 

for isolate CH34 (Table 2.5).  Fingerprints ranged in size from approximately 164 bp to 

4824 bp (Table 2.5).   

Five common fragments of approximately 1900 bp, 1360 bp, 1212 bp, 965 bp and 

895 bp were observed with primer P1 among RAPD profiles of different groups with the 

1900 bp fragment being observed in 7 of the 18 groups, although the intensity did differ 

between the groups (Table 2.5; Figs. 2.27 – 2.29).  No fragments were common to 100% 

of the study isolates.  Reference strains were grouped separately into individual groups 

and did not cluster with any of the study isolates (Table 2.5; Figs. 2.27 – 2.29).   

The 20 fingerprints generated by primer P2 consisted of 3-14 fragments ranging 

in size from approximately 157 bp to 3375 bp (Table 2.5).  Nine fragments of 

approximately 2530 bp, 1965 bp, 1062 bp, 983 bp, 930 bp, 858 bp, 791 bp, 500 bp and 

189 bp were observed for a number of subtypes (Table 2.5).  A 500 bp fragment was 

observed in 7 out of the 20 groups, while a 189 bp fragment was observed in 6 subtypes, 

although the intensity did differ between the groups (Table 2.5; Figs. 2.30 – 2.32).  No 

fragments were common to 100% of the study isolates.  Subtypes RP2-1 and RP2-2 

differed by the absence of a fragment of approximately 1407 bp present in the profiles of 

isolates in subtype RP2-2 (Table 2.5).  Subtype RP2-3 shared this 1407 bp fragment with 

subtype RP2-1 but had five additional fragments of between 1407 bp and 744 bp in size 

(Table 2.5).  Subtypes RP2-9 and RP2-10 differed by the absence of a 389 bp fragment 

present in subtype RP2-10 (Table 2.5).  Additionally, subtypes RP2-9 and RP2-10 shared 

two fragments of approximately 500 bp and 189bp with subtypes RP2-1, RP2-2, and 

RP2-3 (Table 2.5).   
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Figure 2.27 Agarose gel electrophoresis of RAPD amplification products for the reference strains 
generated with primer P1.  Lanes 1-7: reference strains C. balustinum (NCTC 11212), C. 
gleum (NCTC 11432), C. indologenes (LMG 8337 = NCTC 10796; Flav IIb), C. 
indoltheticum (ATCC 27950), C. joostei (LMG 18212), and E. meningoseptica (NCTC 
10016), M. odoratus (NCTC 11036), respectively; and lane 8: O’GeneRuler 100 bp 
ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) 
(Fermentas, Canada). 

 

 

 

Although RAPD primer P1 clustered isolates CH1, CH1B and CH3 – CH9 into 

one group (RP1-1), RAPD primer P2 allowed for the differentiation of  these isolates into 

two groups differentiating between isolates CH1 and CH1B, and isolates CH3 – CH9 

(Table 2.5), respectively.  As with PCR-RFLP typing, RAPD profiling indicated 

relatively high degree of genetic diversity among the Chryseobacterium and 

Elizabethkingia spp. isolates, and allowed for preliminary differentiation of these test 

isolates.  
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Table 2. 5 RAPD profiles of Myroides and Empedobacter spp. and Chryseobacterium  and Elizabethkingia spp. study isolates and reference strains 
generated with primer P1.   

 

No. of patterns No. of 
fragments Subtype Size of fragments (kbp)

1 (Myroides/Empedobacter ) 3 RP1-I 1151; 1043; 570 MY1, MY2, MY2B, MY3, MY3B 5
0 RP1-0 M. odoratus 1

18 (Chryseobacterium/
      Elizabethkingia )

4 RP1-1 1900; 1360; 992; 895 CH1, CH1B, CH3, CH4, CH4B, CH5, CH6, 
CH7, CH8, CH9

10

5 RP1-2 1900; 1760; 1607; 1360; 895 CH2, CH2B 2

4 RP1-3 2100; 1484; 1102; 779 CH10 1

4 RP1-4 1667; 1212; 958; 819 CH11, CH12 2

4 RP1-5 3061; 2452; 1212; 1019 CH13, CH14 2

7 RP1-6 3216; 2055; 1392; 1360; 1196; 965; 667 CH15, CH16, CH17, CH18, CH19 5

5 RP1-7 1900; 1212; 743; 463; 348 CH21 1

1 RP1-8 1227 CH22 1

2 RP1-9 1900; 997 CH23, CH24 2

3 RP1-10 1900; 1187; 849 CH25, CH26, CH27, CH28 4

4 RP1-11 3694; 1900; 1188; 965 CH29, CH30, CH33 3

16 RP1-12
4043; 2613; 2331; 2189; 1900; 1738; 1476; 
1324; 1212; 1101; 895; 722; 639; 385; 284; 
164

CH34 1

9 RP1-13 1530; 1389; 1264; 1059; 962; 751; 613; 280; 
200 C. balustinum 1

5 RP1-14 1561; 882; 817; 625; 467 C. gleum 1

6 RP1-15 3078; 1491; 1389; 1102; 841; 762 C. indologenes 1

6 RP1-16 2031; 900; 829; 482; 318; 228 C. indoltheticum 1

3 RP1-17 4824; 1031; 710 C. joostei 1

4 RP1-18 1851; 1314; 1059; 659 E. meningoseptica 1

Primer

P1

No. of 
isolates

Profiles
Isolates
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Table 2.5 (continued) RAPD profiles of Myroides / Empedobacter spp. and Chryseobacterium /Elizabethkingia spp. study isolates and reference 
strains generated with primer P2. 

 

No. of patterns No. of 
fragments Subtype Size of fragments (kbp)

1 (Myroides/Empedobacter ) 3 RP2-I 1889; 1110; 909 MY1, MY2, MY2B, MY3, MY3B 5
5 RP2-II 2611; 1874; 858; 629; 481 M. odoratus 1

20 (Chryseobacterium/
      Elizabethkingia ) 5 RP2-1 2530; 1965; 1407; 500; 189 CH1, CH1B 2

4 RP2-2 2530; 1965; 500; 189
CH3, CH4, CH4B, CH5, CH6, CH7, CH8, 
CH9 8

9 RP2-3
2.530; 1.407; 1.305; 1.181; 1.055; 0.810;
0.744; 0.500; 0.189 CH2, CH2B 2

1 RP2-4 526 CH10 1
3 RP2-5 1728; 1265; 695 CH11, CH12 2
3 RP2-6 1407; 1140; 991 CH13, CH14 2
3 RP2-7 1750; 707; 549 CH15, CH16, CH17, CH18, CH19 5
3 RP2-8 1147; 930; 500 CH21 1
5 RP2-9 1062; 930; 500; 389; 189 CH22 1
3 RP2-10 1062; 500; 189 CH23, CH24 2
6 RP2-11 1142; 1011; 894; 800; 500; 189 CH25, CH26, CH28 3
6 RP2-12 2356; 2025; 1745; 983; 858; 791 CH27 1
3 RP2-13 2768; 983; 791 CH29, CH30, CH33 3

12 RP2-14 3375; 3156; 2453; 2199; 1200; 1129; 1052; 
983; 858; 746; 620; 468 CH34 1

3 RP2-15 1005; 496; 177 C. balustinum 1

11 RP2-16 2493; 2341; 1406; 1316; 1248; 1031; 806;
684; 489; 248; 174 C. gleum 1

10 RP2-17 2876; 2552; 1543; 1416; 967; 800; 653; 
612; 537; 428 C. indologenes 1

7 RP2-18 1987; 1273; 986; 744; 485; 418; 169 C. indoltheticum 1
7 RP2-19 2733; 1453; 1316; 1223; 512; 386; 157 C. joostei 1

14 RP2-20
2454; 2015; 1481; 1361; 1290; 1018; 936;
879; 738; 616; 587; 469; 397; 163 E. meningoseptica 1

No. of 
isolates

P2

Primer
Profiles

Isolates
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Figure 2. 27 Agarose gel electrophoresis of RAPD amplification products for the Chryseobacterium 
and Elizabethkingia spp. study isolates generated with primer P1.  Lanes 1 and 19: 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/ 
300/200/100 bp) (Fermentas, Canada); lanes 2-5: isolates CH1, CH1B, CH2, and CH2B, 
respectively; lanes 6-13: isolates CH3, CH4, CH4B, CH5, CH6, CH7, CH8, CH9, 
respectively; and lanes 14-18: isolates CH10, CH11, CH12, CH13 and CH14, 
respectively. 
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Figure 2. 28 Agarose gel electrophoresis of RAPD amplification products for the Chryseobacterium 

and Elizabethkingia spp isolates generated with primer P1.  Lanes 1, 10 and 20: 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/ 
700/600/500/400/300/200/100 bp) (Fermentas, Canada); lanes 2-6: isolates CH15, CH16, 
CH17, CH18 and CH19, respectively; lanes 7-9: isolates CH21, CH22, and CH23, 
respectively; and lanes 11-19: isolates CH24, CH25, CH26, CH27, CH28, CH29, CH30, 
CH33 and CH34, respectively. 
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Figure 2. 29 Agarose gel electrophoresis of RAPD amplification products for the reference strains 
generated with primer P2.  Lane 1: O’GeneRuler 100 bp ladder plus 
(3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 bp) (Fermentas, 
Canada); lanes 2-8: reference strains C. balustinum (NCTC 11212), C. gleum (NCTC 
11432), C. indologenes (LMG 8337 = NCTC 10796; Flav IIb), C. indoltheticum (ATCC 
27950), C. joostei (LMG 18212), E. meningoseptica (NCTC 10016), and M. odoratus 
(NCTC 11036), respectively. 
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Figure 2. 30 Agarose gel electrophoresis of RAPD amplification products for the Chryseobacterium 

and  Elizabethkingia spp. study isolates generated with P2.  Lanes 1 and 19: O’GeneRuler 
100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/300/200/100 
bp) (Fermentas, Canada), lanes 2-5: isolates CH1, CH1B, CH2, and CH2B, respectively, 
lanes 6-13: isolates CH3, CH4, CH4B, CH5, CH6, CH7, CH8, CH9, respectively, and 
lanes 14-18: isolates CH10, CH11, CH12, CH13 and CH14, respectively. 
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Figure 2. 31 Agarose gel electrophoresis of RAPD amplification products for the Chryseobacterium 
and Elizabethkingia spp. study isolates generated with primer P2.  Lanes 1, 10 and 20: 
O’GeneRuler 100 bp ladder plus (3000/2000/1500/1200/1031/900/800/700/600/500/400/ 
300/200/100 bp) (Fermentas, Canada); lanes 2-6: isolates CH15, CH16, CH17, CH18 and 
CH19, respectively; lanes 7-9: isolates CH21, CH22, and CH23, respectively; and lanes 
11-19: isolates CH24, CH25, CH26, CH27, CH28, CH29, CH30, CH33 and CH34, 
respectively. 

 
 
 
 

Clusters obtained by Pearson product-moment correlation coefficient are shown in 

dendograms (Figs. 2.33 – 2.36).  With primer P1, a total number of 3 clusters were 

obtained for the Myroides and Empedobacter spp. isolates.  These clusters displayed a 

maximum similarity level of 99.5%.  The collection of isolates was divided into 2 major 

clusters (A and B) at a similarity level of approximately 93% (Fig. 2.33).  Clusters A and 

B were further subdivided into 3 and 2 clusters, respectively, comprising isolates that had 

also been clustered visually.  Although none of the isolates were clustered at 100% 

similarity, identical patterns were observed for all of the isolates during visual analysis 

(Table 2.5).   

 

 
 
 
 
 
Figure 2. 32 Dendogram of the cluster analysis of RAPD profiles of Myroides and Empedobacter spp. 

isolates and reference strain following DNA amplification using primer P1. 
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 With primer P1, a total number of 29 clusters were obtained for the 

Chryseobacterium and Elizabethkingia spp. isolates.  These clusters displayed a 

maximum similarity level of 100%.  The collection of isolates was divided into 2 major 

clusters (A and B) at a similarity level of approximately -14% (Fig. 2.34).  Clusters A and 

B were further subdivided into 4 and 19 clusters, respectively, comprising isolates that 

had also been clustered visually.  Cluster A contained all the reference strains included in 

this study, and cluster B comprised of the study isolates.  Similarity levels of 100% were 

obtained for some of the isolates that were clustered together based on visual 

observations, i.e., CH2-CH2B (RP1-2), CH23-CH24 (RP1-9), CH25-CH28 (RP1-10), 

and CH29-CH33 (RP1-11).  Study isolates clustered together in group RP1-1 were not 

clustered together with GelCompar analysis, although 100% similarity was calculated for 

some of the isolates belonging to this group (CH6-CH7, and CH3-CH4), similarity of 

98% was observed between other isolates in this group (Fig. 2.34).  Overall, all the 

Chryseobacterium and Elizabethkingia spp. isolates clustered at 63%, while the reference 

isolates clustered at 33%. 

 

With primer P2, a total number of 5 clusters were obtained for the Myroides and 

Empedobacter spp. isolates.  These clusters displayed a maximum similarity level of 

99%.  The collection of isolates was divided into 2 major clusters (A and B) at a 

similarity level of -29% (Fig. 2.35). Reference strain M. odoratus NTCC 11036, in 

cluster B was differentiated from the study isolates in cluster A which comprised of 4 

clusters. Although none of the isolates were clustered at 100% similarity, identical 

patterns were observed for all of the isolates during visual analysis (Table 2.5).  Due to 

differences in band intensities and gel alignment, clustering in GelCompar appeared to 

group isolates differently compared to visual clusters.   
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Figure 2. 33 Dendogram of the cluster analysis of RAPD profiles of Chryseobacterium/ 

Elizabethkingia spp. isolates and reference strains following DNA amplification using 
primer P1. 

 

 

 
 
 
 
 
 
 
 
 
Figure 2. 34 Dendogram of the cluster analysis of RAPD profiles of Myroides and Empedobacter spp. 

isolates and reference strain following DNA amplification using primer P2. 
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With primer P2, a total number of 36 clusters were obtained for the 

Chryseobacterium and Elizabethkingia spp. isolates.  These clusters displayed a 

maximum similarity level of 100%.  The collection of isolates was divided into 2 major 

clusters (A and B) at a similarity level of approximately -22% (Fig. 2.36).  Clusters A and 

B were further subdivided into 16 and 18 clusters, respectively, comprising isolates that 

had also been clustered visually.  Cluster B was further subdivided into clusters B1 and 

B2, cluster B1 contained all the reference strains included in this study, and displayed 

63% similarity to cluster B2 which comprised of the study isolates.  Similarity levels of 

100% were obtained for some of the isolates that were clustered together based on visual 

observations, i.e., CH17 and CH19 (RP2-7), and CH29-CH30 (RP2-13).  On the contrary, 

isolates sharing identical RAPD profiles showed different levels of similarity, i.e., CH1-

CH1B (RP2-1) clustered at 98% similarity, CH3-CH9 (RP2-2) clustered at 99-95% 

similarity, CH2-CH2B (RP2-3) clustered at 99% similarity, CH11-CH12 (RP2-5) 

clustered at 98% similarity, CH13-CH14 (RP2-6) clustered at 98% similarity, CH15-

CH19 (RP2-7) clustered at >99%, CH23-CH24 (RP2-10) clustered at 99% similarity, 

CH25-CH26 and CH28 (RP2-11) clustered at 97-99% similarity, respectively.  Although 

CH29 and CH30 clustered at 100% similarity, CH33 included in group RP2-13 with 

these isolates only displayed 95% similarity to these isolates.  Clustering in GelCompar 

appeared to group isolates differently compared to visual clusters, and may be ascribed to 

differences in band intensities and gel alignment.  

 

2.3.5 Antimicrobial susceptibility tests 
 

With respect to the aminoglycoside antibiotics, the Myroides and Empedobacter 

spp. study isolates displayed 100% resistance to amikacin, gentamicin and streptomycin 

(Table 2.6; Fig. 2.37).  For the β-lactam antibiotics, isolates displayed 100% resistance to 

ampicillin, amoxicillin, augmentin, and oxacillin (Table 2.6; Fig. 2.37). 
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Figure 2. 35 Dendogram of the cluster analysis of RAPD profiles of Chryseobacterium/ 

Elizabethkingia spp. isolates and reference strains following DNA amplification using 
primer P2. 

 
 
 
 

For the cephalosporins, isolates displayed 100% resistance to ceftriaxone and 

cefuroxime (Table 2.6; Fig. 2.37), while decreased susceptibility (40%) to ceftazidime 

and 100% susceptibility to cefoxitin were observed.  Resistance to imipenem, a 

carbapenem, was observed for 80% of the study isolates, while that of 

piperacillin/tazobactam, an ureidopenicillin, was 60% (Table 2.6; Fig. 2.37).  Study 

isolates displayed 100% susceptibility to azithromycin and only 40% erythromycin 
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susceptibility.  Isolates displayed 100% resistance to tetracycline and 60% susceptibility 

to chloramphenicol, resepectively (Table 2.6; Fig. 2.37).  On comparison of quinolone 

zone diameters, 100% of the isolates were susceptible to nalidixic acid and norfloxacin 

but showed decreased susceptibility to ciprofloxacin (40%) and ofloxacin (80%), 

respectively (Table 2.6; Fig. 2.37).  For the tetrahydrofolic acid biosysnthesis inhibitors, 

100% of the isolates were susceptible to sulphamethoxazole and cotrimoxazole but 

displayed 100% resistance to trimethoprim (Table 2.6; Fig. 2.37).  MAR indices ranged 

between 0.48 – 0.56, and the most effective antibiotics against the Myroides and 

Empedobacter spp. isolates were azithromycin, cefoxitin, cotrimoxazole, naladixic acid, 

norfloxacin, and sulphamethoxazole. 

 Chryseobacterium and Elizabethkingia spp. study isolates displayed variation 

with respect to their antimicrobial susceptibility to the aminoglycoside antibiotics.  For 

amikacin and streptomycin, majority of the isolates showed sensitivity with 44.12% and 

58.82% susceptibility, respectively (Fig. 2.38).  For lower concentrations of gentamicin 

(GM-10), 55.88% of the isolates were resistant, while 44.12% displayed intermediate 

resistance to higher concentrations of gentamicin (GM-120) (Table 2.6; Fig. 2.38).  For 

the β-lactam antibiotics, majority of the study isolates displayed resistance to the 

penicillins - ampicillin (67.65%), amoxicillin (73.53%), augmentin (61.76%), and 

oxacillin (91.18%) (Table 2.6; Fig. 2.38).  Susceptibility (64.71%) to the carbapenem, 

imipenem, was observed, while 100% of isolates were susceptible to piperacillin-

tazobactam, an ureidopenicillin (Table 2.6; Fig. 2.38).      Majority of the isolates were 

susceptible to the macrolide antibiotics, azithromycin (50%) and erythromycin (44.12%), 

respectively, while 52.94% percent of the isolates displayed resistance to 

chloramphenicol but 41.18% were susceptible to tetracycline (Table 2.6; Fig. 2.38).  

Resistance to the folic acid biosynthesis inhibitor, sulphamethoxazole, was observed for 

82.35% of the study isolates, while only 11.76% and 5.88% resistance, respectively, was 

observed for trimethoprim and cotrimoxazole (Table 2.6; Fig. 2.38).  High levels of 

susceptibility was observed for the quinolone antibiotics including ciprofloxacin 

(61.76%), ofloxacin (73.53), naladixic acid (73.53%), and norfloxacin (76.47%) (Table 

2.6; Fig. 2.38).  MAR indices ranged from 0.04 to 0.64 for the Chryseobacterium/ 

Elizabethkingia spp. study isolates.  Twenty-four (70.6%) of the study isolates displayed 
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MAR indices higher than 0.2, and eight (23.5%) of the isolates displayed MAR indices 

higher than 0.5 (Table 2.6; Fig. 2.38). 

The most effective antibiotics against the Chryseobacterium and Elizabethkingia 

spp. isolates were piperacillin-tazobactam, ceftazidime, cefoxitin, imipenem and the 

quinolone antibiotics (Table 2.6; Fig. 2.38). 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 36 Percentages of resistance (■), intermediate susceptibility (  ), and susceptibility (□) of 

the Myroides and Empedobacter spp. isolates to the panel of antibiotics tested. 
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Table 2. 6 Antibiograms for Myroides and Empedobacter spp. and Chryseobacterium and Elizabethkingia spp. isolates. 
 

MY1 MY2 MY2B MY3 MY3B CH1 CH1B CH2 CH2B CH3 CH4 CH4B CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13

Amikacin (AK-30) R R R R R R R R R I R I S S S S R I I S R
Ampicillin (AP-10) R R R R R R R R R R R R R R R R S S R R S
Amoxycillin (A-10) R R R R R R R R R R R R R R R R R I R R S
Augmentin (AU-30) R R R R R R R R R R R R R R R R S S R R S
Azithromycin (ATH-15) S S S S S R R R S R R R R R R R S S S S S
Ceftazadime (CAZ-30) S S I I I S S S S S S S S S S S S S S S S
Cefoxitin (FOX-30) S S S S S S S S S S S S S S S S S S I S S
Ceftriaxone (CRO-30) R R R R R I I I R S I I S S S S S S R I S
Cefuroxime (CXM-30) R R R R R R R R R R R R R R R R S S R R S
Chloramphenicol (C-30) I I S I S R R R R R R R R R R R S S S S S
Ciprofloxacin (CIP-5) R I S R S R R I R R I R S S S S S S S S S
Cotrimoxazole (TS-25) S S S S S I I S I S S S S S S S S S S I S
Erythromycin (E-15) I I S I S R R R I R R R R R R R S S I S S
Gentamicin (GM-10) R R R R R R I R R R R R R R R R R S S S R
Gentamicin (GM-120) R R R R R I I I R I I I S S I I I I S S I
Imipenem (IMI-10) R R R R I R R R R R R R R R R R S S S S S
Nalidixic acid (NA-30) S S S S S S S S S S S S S S S S S S S S R
Norfloxacin (NOR-10) S S S S S S S S R S S S S S S S S S S S S
Ofloxacin (OFX-5) I S S S S R R R R R R R S S S S S S S S S
Oxacillin (OX-1) R R R R R R R R R R R R R R R R R R R R R
Piperacillin/tazobactam (TZP-110) S S R S I S S S S S S S S S S S S S S S S
Sulphamethoxazole (SMX-25) S S S S S R R R R R R R R R R R I S R R S
Streptomycin (S-10) R R R R R S S S S S S S S S I I I S I S R
Tetracycline (T-25) R R R R R I R R R R I R S S R R S S I S S
Trimethoprim (TM-1.25) R R R R R S S S I S S S S S S S S S S S S
MAR indices 0.56 0.52 0.56 0.56 0.48 0.56 0.56 0.56 0.64 0.56 0.52 0.56 0.44 0.44 0.48 0.48 0.16 0.04 0.28 0.24 0.20

Antibiotic
Myroides / Empedobacter 

spp. Chryseobacterium / Elizabethkingia spp. isolates

 
R – Resistant 
I – Intermediate susceptibility 
S - Susceptible 
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Table 2.6 (Continued). Antibiograms for Chryseobacterium and Elizabethkingia spp. isolates. 

CH14 CH15 CH16 CH17 CH18 CH19 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH33 CH34

Amikacin (AK-30) R R I R R R S S S S S S S S S R S R
Ampicillin (AP-10) S R R R R R R S S S R S R S R S S R
Amoxycillin (A-10) R R R R R R R S S S R I R S R I S R
Augmentin (AU-30) S R R R R R S S S S I S R S R S S R
Azithromycin (ATH-15) S I I I I S S S S S S S S S I S S R
Ceftazadime (CAZ-30) S S S S S S S S R S S S R S S S R S
Cefoxitin (FOX-30) S S I R I S S S S S S S R S S S S S
Ceftriaxone (CRO-30) S R R I R I S S S S S S S S S S S I
Cefuroxime (CXM-30) S R R R R R S S S S S S S S R S S R
Chloramphenicol (C-30) S R R I R R S S S S S S R S I R S R
Ciprofloxacin (CIP-5) S I I I S I S S S S I S S S S S S I
Cotrimoxazole (TS-25) S S S S S S S S R S S S R S S S S I
Erythromycin (E-15) S I I S I I S S S S S S R S I S S R
Gentamicin (GM-10) R R R I R R S S S S S S S S S R S R
Gentamicin (GM-120) R R R R R I S S S S S S S I I S R I
Imipenem (IMI-10) S S S S S S S S S S S S S S S S S R
Nalidixic acid (NA-30) I S S S S S S S R R R R S R S R R S
Norfloxacin (NOR-10) S S S S S S S S S I R I S I I S I I
Ofloxacin (OFX-5) S S R S S S S S S S S S I S S S S S
Oxacillin (OX-1) R R R R R R R R R S S R R R R S R R
Piperacillin/tazobactam (TZP-110) S S S S S S S S S S S S S S S S S S
Sulphamethoxazole (SMX-25) R S R R R R R I R R R R R R R S R R
Streptomycin (S-10) R R R R R R S S S S S S S S R R S R
Tetracycline (T-25) S I I R I R R R S S S S S S I R S R
Trimethoprim (TM-1.25) S S S S S S S S I I R I I I S R R R
MAR indices 0.28 0.44 0.48 0.44 0.48 0.44 0.20 0.08 0.20 0.08 0.24 0.12 0.40 0.12 0.28 0.28 0.24 0.60

Antibiotic Chryseobacterium / Elizabethkingia spp. isolates

 
R – Resistant 
I – Intermediate susceptibility 
S - Susceptible 
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Figure 2. 37 Percentages of resistance (■), intermediate susceptibility (  ), and susceptibility (□) of 

the Chryseobacterium and Elizabethkingia spp. isolates to the panel of antibiotics tested. 
 
 
 

2.3.6 Whole Cell Protein (WCP) analysis 
 

Analysis of WCPs identified a single WCP profile for all five Myroides and 

Empedobacter spp. isolates, consisting of 19 protein bands ranging in size from 40 kDa 

to 17 kDa (Table 2.7).  No differentiation could be made between the study isolates (Fig. 

2.39) or between study isolates and the reference strain M. odoratus (NTCC 11036) (Fig. 

2.39). 

Fifteen WCP profiles were obtained for the Chryseobacterium and 

Elizabethkingia spp. study isolates and reference strains (Table 2.7; Figs. 2.40 – 2.43).  

Profiles consisted of 12 to 35 protein fragments ranging in size from 10 kDa to 255 kDa 

(Table 2.7; Figs. Figs. 2.40 – 2.43). Reference strains were grouped separately into 

individual groups and could not be clustered with any of the study isolates (Table 2.7; 

Figs. 2.40 – 2.43), as was observed with RAPD analysis. 
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Thirteen protein bands ranging in size from 16 kDa to 109 kDa were common to 

Chryseobacterium and Elizabethkingia spp. isolates WCP profiles, with 47% of the 

isolates displaying bands of 86 kDa, 60 kDa, and 46 kDa, and 53% displaying bands of 

109 kDa, 69 kDa, 58 kDa, and, 16 kDa in size.  With the exception of isolates CH23 and 

CH24 (Table 2.7; Figs. 2.40 – 2.43), a 50 kDa protein band was common to all the study 

isolates (Table 2.7; Figs. 2.40 – 2.43), while 60% of the isolates displayed protein bands 

of 55 kDa and 41 kDa.  All the reference strains displayed a protein band of 18 kDa, and 

67% of the isolates (including 4 reference strains) possessed a 32 kDa protein (Table 2.7; 

Fig 2.40 – 2.43).  Although all of the study isolates possessed a ~36 kDa protein, no 

protein bands were common to all of the study isolates and reference strains.      

 

 
                              1         2         3          4         5           6        7  

 
 

Figure 2.39 Electrogram displaying whole cell protein profiles of Myroides and Empedobacter spp. 
isolates.  Lanes 1-6: isolates M. odoratus (NTCC 11036), MY1, MY2, MY2B, MY3, 
MY3B, respectively; and lane 7: PageRuler™ prestained protein ladder (170/130/ 
100/70/55/45/35/25/15/10 kDa)  (Fermentas, Canada). 

 

 

 

 

 

 

         70 kDa 

                  35 kDa 

              15 kDa 
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Table 2. 7 WCP profiles for Myroides and Empedobacter and Chryseobacterium and 
Elizabethkingia spp. study isolates and reference strains.   

 
Profiles

No. of patterns Subtype No. of 
fragments Size of fragments (KDa)

1 (Myroides/
Empedobacter ) W-I 19 40; 39; 38; 37; 36; 35; 34; 33; 32; 31; 30; 29; 

28; 27; 26; 25; 23; 21; 17

MY1, MY2, MY2B, 
MY3, MY3B, 
M. odoratus

6

15 (Chryseobacterium/
      Elizabethkingia ) W-1 30

189; 163; 157; 141; 130; 124; 116; 109; 101; 
93; 89; 86; 83; 79; 69; 66; 63; 62; 58; 55; 51; 
46; 41; 39; 38; 36; 35; 25; 21; 18

CH1, CH1B, CH3, 
CH4, CH4B, CH5, 

CH6, CH7, CH8, CH9, 
CH21, CH29, CH30, 

CH33, CH34

15

W-2 13
189; 168; 116; 101; 91; 73; 62; 60; 51; 44; 
36; 32; 13 CH2, CH2B 2

W-3 19
169; 160; 133; 119; 115; 110; 98; 95; 84; 79; 
73; 70; 67; 65; 56; 50; 37; 36; 33

CH10, CH15, CH16, 
CH17, CH18, CH19 6

W-4 35

255; 226; 217; 188; 183; 177; 160; 154; 141; 
134; 128; 125; 122; 116; 110; 101; 93; 81; 
77; 75; 69; 66; 62; 59; 55; 50; 47; 39; 37; 35; 
31; 27; 17; 16; 15

CH11, CH12 2

W-5 25
232; 226; 221; 181; 170; 148; 143; 121; 115; 
112; 106; 104; 97; 87; 82; 69; 67; 59; 52; 47; 
37; 35; 32; 28; 16

CH13, CH14 2

W-6 26
189; 163; 154; 128; 126; 124; 116; 114; 110; 
105; 95; 89; 80; 73; 70; 67; 65; 62; 60; 59; 
50; 43; 40; 37; 35; 34

CH22 1

W-7 14 183; 153; 138; 128; 121; 112; 98; 82; 68; 64; 
61; 59; 53; 47 CH23, CH24 2

W-8 35

218; 189; 174; 153; 140; 130; 128; 118; 112; 
109; 106; 103; 90; 85; 75; 69; 67; 66; 64; 60; 
57; 55; 51; 41; 38; 37; 35; 31; 29; 27; 22; 17; 
16; 15; 13

CH25, CH26, CH28 3

W-9 28
212; 206; 200; 178; 162; 143; 135; 129; 118; 
113; 107; 97; 87; 73; 68; 59; 56; 52; 47; 42; 
38; 36; 34; 33; 30; 29; 24; 19

CH27 1

W-10 12
126; 112; 99; 87; 82; 60; 50; 41; 40; 23; 19; 
16 C. balustinum 1

W-11 23
217; 205; 187; 173; 131; 112; 96; 84; 72; 59; 
54; 47; 43; 40; 37; 35; 34; 31; 24; 18; 15; 13; 
11

C. gleum 1

W-12 28
170; 141; 119; 110; 106; 101; 94; 89; 82; 79; 
71; 54; 45; 40; 39; 37; 34; 31; 29; 25; 23; 21; 
19; 17; 13; 12; 11; 10

C. indologenes 1

W-13 16 114; 109; 92; 86; 73; 40; 39; 38; 37; 25; 18; 
16; 14; 12; 11; 10 C. joostei 1

W-14 25
196; 175; 162; 149; 136; 114; 107; 95; 89; 
86; 77; 55; 43; 40; 39; 38; 37; 34; 32; 26; 25; 
20; 17; 14; 11

C. indoltheticum 1

W-15 22 198; 172; 109; 102; 91; 81; 69; 62; 56; 47; 
39; 38; 35; 33; 28; 25; 20; 17; 15; 13; 11; 10 E. meningoseptica 1

Isolates No. of 
isolates
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Figure 2. 38 Electrogram displaying whole cell protein profiles of Chryseobacterium and 
Elizabethkingia reference strains.  Lane 1: PageRuler™ prestained protein ladder 
(170/130/100/70/55/45/35/25/15/10 kDa)  (Fermentas, Canada); and lanes 2-7: reference 
strains C. balustinum (NCTC 11212), C. gleum (NCTC 11432), C. indologenes (LMG 
8337 = NCTC 10796; Flav IIb), C. joostei (LMG 18212), E. meningoseptica (NCTC 
10016), and C. indoltheticum (ATCC 27950), respectively. 
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Figure 2. 39 Electrogram displaying whole cell protein profiles of Chryseobacterium and 
Elizabethkingia spp. study isolates.  Lanes 1, 9, and 15: PageRuler™ prestained protein 
ladder (170/130/100/70/55/45/35/25/15/10 kDa) (Fermentas, Canada); lanes 2-8: study 
isolates CH1, CH1B, CH2, CH2B, CH3, CH4, CH4B; and lanes 10-14: CH5, CH6, CH7, 
CH8, CH9, and respectively. 
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Figure 2. 40 Electrogram displaying whole cell protein profiles of Chryseobacterium and 
Elizabethkingia spp. study isolates.  Lane 1: PageRuler™ prestained protein ladder 
(170/130/100/70/55/45/35/25/15/10 kDa) (Fermentas, Canada); and lanes 2-13: CH10, 
CH11, CH12, CH13, CH14, CH15, CH16, CH17, CH18, CH19, and CH21, respectively. 
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Figure 2. 41 Electrogram displaying whole cell protein profiles of Chryseobacterium and 
Elizabethkingia spp. study isolates.  Lanes 1 and 8: PageRuler™ prestained protein ladder 
(170/130/100/70/55/45/35/25/15/10 kDa)  (Fermentas, Canada); lanes 2-7: CH19, CH21, 
CH22, CH23, CH24, CH25; and lanes 9-15: CH26, CH27, CH28, CH29, CH30, CH33, 
and CH34, respectively. 

 
 
 
 Clusters obtained by the Pearson product-moment correlation coefficient are 

shown in dendograms (Figs. 2.44-2.45).  For the Myroides and Empedobacter spp. 

isolates a total of 5 clusters were established at a maximum similarity level of 92% (Fig. 
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2.44).  The collection of isolates was divided into 2 major clusters (A and B) at 55% 

similarity.  Cluster A contained study isolate MY1 and the reference strain M. odoratus 

NTCC 11036 displaying 68% similarity.  Cluster B contained two distinct branches 

which displayed 76% similarity, with MY2 and MY2B on one branch displaying 89% 

similarity, and MY3 and MY3B on the other branch displaying 92% similarity.  Although 

none of the isolates were clustered at 100% similarity, identical profiles were observed 

during visual analysis for both the study isolates and the reference strain (Table 2.7).  

These differences may be ascribed to differences in protein band intensities and gel 

alignment, which leads to different clustering by GelCompar analysis compared to visual 

clustering. 

 
 
 
 
 
 
 
 
Figure 2. 42 Dendrogram generated by cluster analysis of whole cell protein profiles of the Myroides/ 

Empedobacter spp. isolates and reference strain. 
 
 
 

For the Chryseobacterium and Elizabethkingia spp. isolates a total of 37 clusters 

were established at a maximum similarity level of 100% (Fig. 2.45).  The collection of 

isolates was divided into 2 major clusters (A and B) at 14% similarity.  Cluster A 

contained three distinct branches (A1-3), branch A1 containing 5 of the reference strains 

displayed 35% similarity with A2 containing study isolates only, and branch A3 

containing only reference strain C. balustinum NCTC 11212 displayed 27% similarity to 

branches A2 and A3.  Cluster B contained two distinct branches comprised of study 

isolates only which displayed 45% similarity.  Groups W-2, W-4, W-5, W-7 and W-8, 

respectively, contained isolates displaying identical protein profiles during visual 

analysis, and displayed similarity ≥97% between isolates in the respective groups (Table 

2.7; Fig. 2.45).  Isolates grouped together in group W-3, were separated into the two 

branches of cluster B with isolates CH3 and CH4 in one branch and majority of these 

isolates (CH1-CH1B, CH5-CH9, and CH21) in the other branch.  Isolates belonging to 

group W-1 were separated by the two major clusters, as well as by the two branches in 
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cluster B.  Although isolates belonging to groups W-1 to W-8 appeared identical during 

visual analysis, 100% similarity was not observed by GelCompar analysis.  These 

differences may be attributed to differences in protein band intensities and gel alignment. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 43 Dendrogram generated by cluster analysis of whole cell protein profiles of the 

Chryseobacterium and Elizabethkingia spp. isolates and reference strains. 
 
 

2.3.6 Outer Membrane Protein (OMP) analysis 
 
Two different profiles were established following visual analysis of OMP profiles 

of the Myroides and Empedobacter spp. isolates (Table 2.8; Fig. 2.46).  These profiles 
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31 kDa. Isolates were grouped as follows:  isolates MY1, MY3 (O-I), and isolates MY2, 

MY2B, MY3B and M. odoratus (NTCC 11036) (O-II), respectively (Table 2.8).   Profiles 

differed by the presence/absence of one OMP band of approximately 34 kDa (Table 2.8).  

Two over-expressed OMPs, of approximately 38 kDa and 31 kDa were observed in both 

OMP profiles. 

Twenty-two different OMP profiles were observed for the Chryseobacterium and 

Elizabethkingia spp. isolates (Table 2.8; Figs. 2.47 - 2.52).  OMP profiles consisted of 2 - 

19 fragments, ranging in size from approximately 200 kDa to 18 kDa (Table 2.8; Figs. 

2.47 - 2.52).  Six fragments of approximately 60 kDa, 48 kDa, 32 kDa, 30 kDa, 24 kDa, 

and 21 kDa were observed among different subtypes of isolates.  The 60 kDa, 48 kDa, 30 

kDa fragments were common to 50% of the isolates, while a 24 kDa fragment was 

observed for 48% of the isolates. A 32 kDa and 21 kDa fragment, respectively, were 

observed for 62% and 67% of the isolates (Table 2.8; Figs. 2.47 - 2.52).  The intensity of 

the fragments, however, differed among the different fragments (Table 2.8; Figs. 2.47 - 

2.52).  No fragments were common to all of the test isolates.  OMP profiles obtained for 

the study isolates did not correspond to those obtained for the reference strains (Figs. 2.47 

- 2.52), but reference strains C. joostei (LMG 18212) and C. indoltheticum (ATCC 

27950) shared identical profiles (Table 2.8; Fig. 2.48). 
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Figure 2. 44 Electrogram displaying outer membrane protein profiles of Myroides and Empedobacter 
spp. isolates.  Lane 1: PageRuler™ unstained protein ladder (200/150/120/100/85/70/60/ 
50/40/30/20/15/10 kDa) (Fermentas, Canada); and lanes 2-7: isolates M. odoratus (NTCC 
11036), MY1, MY2, MY2B, MY3,and MY3B, respectively. 
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Figure 2. 45 Electrogram displaying outer membrane protein profiles of Chryseobacterium and 
Elizabethkingia reference strains. Lanes 1-4: reference strains C. balustinum (NCTC 
11212), C. gleum (NCTC 11432), C. indologenes (LMG 8337 = NCTC 10796; Flav IIb), 
and E. meningoseptica (NCTC 10016), respectively; and lane 5: PageRuler™ unstained 
protein ladder (200/150/120/100/85/70/60/50/40/30/20/15/10 kDa) (Fermentas, Canada). 
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Figure 2. 46 Electrogram displaying outer membrane protein profiles of Chryseobacterium and 

Elizabethkingia reference strains. Lanes 1 and 2: reference strains C. joostei (LMG 
18212), C. indoltheticum (ATCC 27950), respectively; and lane 3: PageRuler™ 
unstained protein ladder (200/150/120/100/85/70/60/50/40/30/20/15/10 kDa) (Fermentas, 
Canada). 
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Table 2. 8 OMP profiles of Myroides and Empedobacter and Chryseobacterium and Elizabethkingia 
spp isolates and reference strains.   

Profiles

No. of patterns Subtype No. of 
fragments Size of fragments (Kbp)

O-I 11 272; 112; 106; 92; 86; 78; 75; 72; 38; 34; 31 MY1, MY3 2

O-II 10 272; 112; 106; 92; 86; 78; 75; 72; 38; 31 MY2, MY2B, MY3B,
M. odoratus 4

22 (Chryseobacterium/
      Elizabethkingia )

O-1 11 61; 57; 53; 48; 42; 36; 32; 27; 24; 23; 21 CH1, CH4, CH4B 3

O-2 17
90; 87; 83; 67; 62; 55; 50; 45; 40; 36; 34; 33; 
30; 28; 26; 24; 21 CH1B 1

O-3 11 135; 115; 105; 91; 57; 53; 47; 36; 33; 31; 21 CH2, CH2B 2

O-4 17 95; 84; 69; 59; 56; 47; 43; 40; 37; 33; 31; 28; 
27; 24; 22; 21; 20

CH3, CH10 2

O-5 11 42; 38; 36; 32; 29; 27; 26; 25; 23; 22; 18
CH5, CH6, CH7, 
CH8,  CH9 5

O-6 11 108; 83; 62; 60; 56; 49; 47; 41; 31; 28; 21 CH11, CH12 2

O-7 10 200; 147; 120; 86; 83; 74; 46; 30; 22; 21 CH13 1

O-8 2 45; 22 CH14 1

O-9 6 61; 45; 37; 36; 24; 21
CH15, CH16, CH17, 
CH18; CH19 5

O-10 4 66; 49; 26; 22 CH21 1

O-11 17
168; 146; 119; 105; 88; 80; 76; 62; 55; 47; 
44; 34; 32; 30; 29; 28; 26 CH23, CH24 2

O-12 4 42; 32; 30; 29 CH25, CH26, CH28 3

O-13 7 111; 103; 91; 86; 54; 43; 34 CH27 1

O-14 11 111; 93; 88; 65; 59; 48; 32; 29; 24; 23; 21 CH22, CH29 2

O-15 5 60; 57; 44; 32; 21 CH30 1

O-16 10 108; 91; 85; 59; 48; 32; 28; 27; 23; 21 CH33 1

O-17 8 56; 54; 51; 48; 40; 35; 23; 21 CH34 1

O-18 1 31 C. balustinum 1
O-19 6 53; 40; 35; 31; 29; 26 C. gleum 1

O-20 14
110; 96; 59; 54; 51; 45; 39; 36; 33; 31; 30; 
29; 27; 25 C. indologenes 1

O-21 4 53; 49; 45; 31 E. meningoseptica 1

O-22 19 108; 96; 89; 80; 72; 62; 59; 49; 43; 40; 38; 
34; 31; 29; 28; 27; 26; 24; 20

C. indoltheticum
C. joostei 2

Isolates

2 (Myroides/
Empedobacter )

No. of 
isolates
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Figure 2. 47 Electrogram displaying outer membrane protein profiles of Chryseobacterium and 

Elizabethkingia spp. study isolates. Lanes 1, 6 and 13: PageRuler™ unstained protein 
ladder (200/150/120/100/85/70/60/50/40/30/20/15/10 kDa) (Fermentas, Canada); lanes 2-
5: CH1, CH2, CH2B, CH4; lanes 7-12: CH4B, CH5, CH6, CH7, CH8, and CH9, 
respectively; and lane 14: CH1B. 
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Figure 2. 48 Electrogram displaying outer membrane protein profiles of Chryseobacterium and 
Elizabethkingia spp. study isolates.  Lanes 1 and 2: CH3 and CH10; lanes 3 (A) and 6 
(B): PageRuler™ unstained protein ladder (200/150/120/100/85/70/60/50/40/30/20/15/10 
kDa)  (Fermentas, Canada); and lanes 4 and 5: CH23 and CH24, respectively. 
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Figure 2. 49 Electrogram displaying outer membrane protein profiles of Chryseobacterium and 
Elizabethkingia spp. study isolates.  Lanes 1 and 6: PageRuler™ unstained protein ladder 
(200/150/120/100/85/70/60/50/40/30/20/15/10 kDa)  (Fermentas, Canada); lanes 2-5: 
CH11, CH12, CH13, CH14; and lanes 7-12: CH15, CH16, CH17, CH18, CH19, and 
CH21, respectively. 
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Figure 2. 50 Electrogram displaying outer membrane protein profiles of Chryseobacterium and 
Elizabethkingia spp. study isolates.  Lanes 1-3: CH28, CH25, CH26; lane 4: CH 
PageRuler™ unstained protein ladder (200/150/120/100/85/70/60/50/40/30/20/15/10 
kDa)  (Fermentas, Canada); and lanes 5-10: CH27, CH28, CH22, CH29, CH30, CH33, 
and CH34, respectively. 
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 Clusters obtained by the Pearson product-moment correlation coefficient are 

shown in dendograms (Figs. 2.53-2.54).  For the Myroides and Empedobacter spp. 

isolates a total of 5 clusters were established at a maximum similarity level of 91.5% 

(Fig. 2.53).  The collection of isolates was divided into 2 major clusters (A and B) at 

~70% similarity.  Cluster A contained two distinct branches with the first branch 

containing study isolates MY1, MY2 and MY3, and the second containing study isolates 

MY2B and MY3B, and cluster B contained reference strain M. odoratus NTCC 11036.  

Isolates grouped together in group O-I by visual analysis, were separated by the two 

major clusters.  Isolates MY1 and MY3 displaying identical profiles in visual analysis 

displayed 82.5% similarity in GelCompar analysis (Fig. 2.53).  These differences may be 

ascribed to differences in protein band intensities and gel alignment, which leads to 

different clustering by GelCompar analysis compared to visual clustering. 

 
 
 
 
 
 
 
 
 
Figure 2. 51 Dendrogram generated by cluster analysis of outer membrane protein profiles of the 

Myroides and Empedobacter spp. isolates and reference strain. 
 
 
 

For the Chryseobacterium and Elizabethkingia spp. isolates a total of 38 clusters 

were established at a maximum similarity level of 100% (Fig. 2.54).  The collection of 

isolates was divided into 7 major clusters (A to G) at 16% similarity.  Groups O-1, O-3, 

O-5, O-6, O-11, O-12 and O-14, respectively, contained isolates displaying identical 

protein profiles during visual analysis, and displayed similarity ≥81% between isolates in 

the respective groups (Table 2.8; Fig. 2.54).  Isolates grouped together in groups O-4 and 

O-9, were separated by dendograms analysis, but remained within clusters D and A, 

respectively.  Variation of clustering by dendograms analysis and visual analysis may be 

attributed to differences in protein band intensities and gel alignment.  Unlike RAPD and 

WCP analysis, the reference strains did not cluster together but were dispersed more 

widely amongst the study isolates.  In accordance to the high discriminatory index 
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calculated for OMP analysis (Table 2.10), dendograms analysis indicated that the isolates 

displayed far more genetic heterogeneity by OMP subtyping than by RAPD analysis and 

WCP analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 52 Dendrogram generated by cluster analysis of outer membrane protein profiles of the 

Chryseobacterium and Elizabethkingia spp. isolates and reference strains. 
 
 

2.3.8 Typeability, reproducibility and discriminatory ability of typing 
methods 

 

 Since all the Myroides and Empedobacter spp. isolates were typeable by PCR-

RFLP analysis, RAPD primer P2 fingerprinting, WCP analysis and OMP analysis (Table 
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2.9), the typeability index was determined at 100% for each respective typing method. 

Not all of these isolates were typeable by RAPD primer P1 fingerprinting and therefore 

the typeability index was calculated to be 83.3%.  All of the Chryseobacterium and 

Elizabethkingia spp. isolates were typeable by RAPD fingerprinting, WCP analysis and 

OMP analysis and therefore the typeability index was determined at 100% for each 

respective typing method.  Since not all of these isolates were typeable by PCR-RFLP 

analysis, the typeability indices were calculated to be 97.5% and 92.5% for TaqI and 

MspI, and CfoI restriction analysis, respectively. Using Simpson’s index of diversity, the 

discriminatory indices of 16S rRNA gene PCR-RFLP analysis, RAPD fingerprinting, 

WCP analysis and OMP analysis, respectively, were calculated and are shown in Table 

2.10.  OMP analysis appeared to be the most discriminatory method for differentiating 

between Myroides and Empedobacter spp. isolates and Chryseobacterium and 

Elizabethkingia spp. isolates.  16S rRNA gene PCR-RFLP analysis using restriction 

endonucleases CfoI and MspI as well as RAPD-PCR with primer P1, and WCP analysis 

appeared to be the least discriminatory methods for the Myroides and Empedobacter spp. 

isolates, and RAPD-PCR primer P1 typing was the least discriminatory for the 

Chryseobacterium and Elizabethkingia spp. isolates. 

 

2.4 Discussion 
  

The increased isolation of members of the genus Chryseobacterium and 

Elizabethkingia by fish pathology laboratories (Bernardet et al., 2005) has highlighted the 

need to investigate the yellow-pigmented Flavobacteriaceae from aquatic sources.  

Yellow-pigmented isolates belonging to the genera Chryseobacterium, Elizabethkingia, 

Myroides and Empedobacter were isolated from a diversity of aquaculture fish during the 

period 2003 – 2005.  Using physiological and biochemical tests it was not possible to 

differentiate between the Myroides and Empedobacter genera, although a closer 

relatedness to the genus Myroides was observed.  
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Table 2. 9 Overall summary of subtypes obtained using diverse molecular typing techniques for 
differentiation of Myroides and Empedobacter spp. and Chryseobacterium and 
Elizabethkingia spp. isolates and reference strains. 

Cfo I Msp I Taq I Primer I Primer II WCP OMP
Myroides / 

Empedobacter spp.
MY1 A C-I M-I T-I RP1-I RP2-I W-I O-I
MY2 A C-I M-I T-I RP1-I RP2-I W-I O-II
MY2B A C-I M-I T-I RP1-I RP2-I W-I O-II
MY3 A C-I M-I T-I RP1-I RP2-I W-I O-I
MY3B A C-I M-I T-I RP1-I RP2-I W-I O-II
M. odoratus 
(NTCC 11036) A C-I M-I T-II RP1-0* RP2-II W-I O-II

Chryseobacterium / 
Elizabethkingia spp.

CH1 2a C-1 M-1 T-1 RP1-1 RP2-1 W-1 O-1
CH1B 2a C-2 M-2 T-1 RP1-1 RP2-1 W-1 O-2
CH2 2a C-2 M-3 T-2 RP1-2 RP2-3 W-2 O-3
CH2B 3b C-3 M-4 T-5 RP1-2 RP2-3 W-2 O-3
CH3 4a C-2 M-2 T-11 RP1-1 RP2-2 W-1 O-4
CH4 2a C-2 M-3 T-2 RP1-1 RP2-2 W-1 O-1
CH4B 4a C-2 M-3 T-2 RP1-1 RP2-2 W-1 O-1
CH5 2a C-2 M-2 T-2 RP1-1 RP2-2 W-1 O-5
CH6 2b C-2 M-5 T-2 RP1-1 RP2-2 W-1 O-5
CH7 2b C-2 M-6 T-2 RP1-1 RP2-2 W-1 O-5
CH8 2b C-2 M-3 T-2 RP1-1 RP2-2 W-1 O-5
CH9 2a C-2 M-7 T-2 RP1-1 RP2-2 W-1 O-5
CH10 5a C-2 M-3 T-2 RP1-3 RP2-4 W-3 O-4
CH11 3a C-2 M-12 T-3 RP1-4 RP2-5 W-4 O-6
CH12 3a C-0* M-8 T-5 RP1-4 RP2-5 W-4 O-6
CH13 3a C-2 M-9 T-1 RP1-5 RP2-6 W-5 O-7
CH14 3a C-0* M-10 T-4 RP1-5 RP2-6 W-5 O-8
CH15 2b C-2 M-11 T-1 RP1-6 RP2-7 W-3 O-9
CH16 5b C-0* M-0* T-0* RP1-6 RP2-7 W-3 O-9
CH17 2b C-2 M-3 T-1 RP1-6 RP2-7 W-3 O-9
CH18 3b C-2 M-3 T-1 RP1-6 RP2-7 W-3 O-9
CH19 2b C-4 M-7 T-1 RP1-6 RP2-7 W-3 O-9
CH21 3b C-5 M-12 T-3 RP1-7 RP2-8 W-1 O-10
CH22 3b C-4 M-7 T-1 RP1-8 RP2-9 W-6 O-14
CH23 4c C-6 M-13 T-6 RP1-9 RP2-10 W-7 O-11
CH24 4b C-7 M-14 T-6 RP1-9 RP2-10 W-7 O-11
CH25 4b C-8 M-15 T-7 RP1-10 RP2-11 W-8 O-12
CH26 4b C-8 M-15 T-7 RP1-10 RP2-11 W-8 O-12
CH27 4c C-9 M-7 T-1 RP1-10 RP2-12 W-9 O-13
CH28 4b C-8 M-15 T-7 RP1-10 RP2-11 W-8 O-12
CH29 3b C-9 M-16 T-1 RP1-11 RP2-13 W-1 O-14
CH30 3b C-9 M-16 T-1 RP1-11 RP2-13 W-1 O-15
CH33 3b C-10 M-17 T-8 RP1-11 RP2-13 W-1 O-16
CH34 3b C-11 M-18 T-9 RP1-12 RP2-14 W-1 O-17
C. balustinum 
(NCTC 11212) 4c C-1 M-19 T-10 RP1-13 RP2-15 W-10 O-18
C. gleum (NCTC) 11432 2a C-13 M-6 T-2 RP1-14 RP2-16 W-11 O-19
C. indologenes 
(LMG 8337 = NCTC 10796; 
Flav IIb) 3a C-1 M-7 T-3 RP1-15 RP2-17 W-12 O-20
C. indoltheticum 
(ATCC 27950) 2a C-1 M-7 T-4 RP1-16 RP2-18 W-13 O-22
C. joostei (LMG 18212) 2a C-13 M-12 T-1 RP1-17 RP2-19 W-14 O-22
E. meningoseptica 
(NCTC 10016) 3b C-2 M-20 T-11 RP1-18 RP2-20 W-15 O-21

Isolates Biochemical 
groupings

RAPD analysis PROTEIN CONTENT16S rRNA PCR-RFLP groups

 
*  Isolates untypeable by respective typing method. 
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Table 2. 10 Discrimination indices of molecular typing methods used to subtype Myroides and 
Empedobacter spp. and Chryseobacterium and Elizabethkingia spp. isolates, respectively. 

 

Myroides / 
Empedobacter
spp. isolates

16S PCR-RFLP
Cfo I 1 0

Msp I 1 0

Taq I 2 33

RAPD PCR
Primer P1 1 0

Primer P2 2 33

WCP analysis 1 0

OMP analysis 2 53

Chryseobacterium
/ Elizabethkingia

spp. isolates

16S PCR-RFLP
Cfo I 13 78

Msp I 20 94

Taq I 11 82

RAPD PCR
Primer P1 18 76

Primer P2 20 93

WCP analysis 15 84

OMP analysis 22 96

Typing method Number of types Index (%)

 
 
 
 
 

Thick capsular material was observed surrounding the Myroides spp. cells, and 

this might potentially facilitate their adherence to surfaces and their ability to interact 

with other organisms (Brisou, 1959).  Although the M. odoratus (NTCC 11036) type 

strain tested negative for growth on 5% NaCl, study isolates were able to grow in the 

presence of 5% NaCl indicating their ability to survive in marine water and thus infect 

maricultured fish and cause spoilage of marine fish products, or foods preserved with 
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high salt concentrations. Myroides spp. have been previously isolated from South Atlantic 

fish species (Engelbrecht et al., 1996) confirming the ability of Myroides spp. isolates to 

proliferate in both freshwater and marine ecosystems.  Differences observed between the 

type strain M. odoratus (NTCC 11036) and the present study isolates might be related to 

differences in the host and ecosystem from which the species originated.  The type strain 

is of clinical origin and the present study isolates would have evolved differently based 

on the freshwater systems from which they were isolated, where lower temperatures 

predominate and the nutrient availability continuously fluctuates. It has been suggested 

that differentiation between the species belonging to this genus through phenotypic, 

physiological and biochemical tests is not possible (Hugo et al., 2005), and effective 

discrimination is only possible through carbon source assimilation tests, oxidation assays 

and differences in DNA G + C content (Vancanneyt et al. 1996).  

Of the molecular subtyping methods, only OMP profiling allowed the 

differentiation of the Myroides and Empedobacter spp. study isolates which clustered 

together by 16S rRNA-PCR-RFLP typing, RAPD analysis and WCP fingerprinting 

(Table 2.9).  This clustering of isolates or the lack of diversity would explain the low 

discriminatory indices (Table 2.10) and suggest a genetically homogeneous population.  

OMP differences might be implicated in the ability of the isolates to adhere to surfaces as 

this is facilitated by OMP proteins (Ofek et al., 2003).  

Based on phenotypic and biochemical test results, isolates displayed 

characteristics reported for a number of different Chryseobacterium and Elizabethkingia 

spp.  Study isolates were clustered on the basis of phenotypic and biochemical traits, and 

compared to previously described species.  Physiological observations such as colony 

morphology and biochemical test results did not correlate which is consistent with 

previous findings that these organisms are very closely related and molecular 

characterization is required to distinguish between the isolates (Bernardet et al., 2006).  

Chryseobacterium and Elizabethkingia spp. isolates were grouped based on their 

phenotypic and biochemical test results (Table 2.3).  The growth of the isolates clustered 

into group 2a at 42 ˚C suggested identification as C. defluvii or C. indologenes, which are 

able to grow at this temperature (Bernardet et al., 2006).  Isolate CH2B produced a weak 

yellow pigment and was presumptively identified as E. meningoseptica, which displays 
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this phenotype.  The inability to hydrolyse starch suggested that isolates in groups 3 and 

5b were potentially C. balustinum, C. indoltheticum, C. scophthalmum, C. vrystaatense or 

C. piscium as these species were previously described as being devoid of the ability to 

hydrolyse starch (de Beer et al., 2006; de Beer et al., 2005; Kim et al., 2005a; Campbell 

and Williams, 1951; and Harrison, 1929). Isolates in group 3a and 5b could not grow 

above temperatures of 37 ˚C, but this phenotype could not be used to further distinguish 

the groups as it was shown that growth at this temperature varies significantly among 

Chryseobacterium species (Bernardet et al., 2006).  The growth of group 4 isolates in 5% 

NaCl, suggested C. piscium or C. taeanense (de Beer et al., 2006).  Since the isolates in 

subgroup 4b were unable to hydrolyse starch, which suggested similarity to C. piscium 

(de Beer et al., 2006).   

Contrary to expectations, it was not possible to identify Chryseobacterium and 

Elizabethkingia spp. isolates based on similarity of RAPD, WCP and/or OMP profiles of 

reference strains and study isolates.  It was, however, possible to cluster isolates with 

reference strains by 16S rRNA-PCR-RFLP analysis.  However, using the different 

subtyping methods allowed the clustering as well as differentiation of study isolates 

(Table 2.9).  OMP analysis and 16S rRNA PCR RFLP analysis using MspI allowed the 

differentiation of isolates clustered together by CfoI, TaqI, RAPD analysis and WCP 

profiling (Table 2.9).  Discriminatory indices ranged from 76 – 96% when 

Chryseobacterium and Elizabethkingia isolates were characterized, suggesting the ability 

of OMP analysis, RAPD PCR with primer P2 and 16S rRNA-PCR-RFLP analysis with 

MspI to discriminate between isolated species belonging to these genera (Table 2.10).  

Although it was not possible to correlate RAPD profiles with that of specific reference 

strains, differentiation between study isolates, as well as reference strains was possible.  

The presence of common bands in profiles obtained with RAPD primers P1 and P2 could 

potentially be used to identify genes or gene sequences which will allow rapid molecular-

based identification of Chryseobacterium and Elizabethkingia species (diagnosis) or their 

species group (species assignment).  

 Chiu et al. (2000) used the RAPD technique to differentiate E. meningoseptica 

from bacteria of other genera used in their study.  They observed that RAPD profiling 

allowed the differentiation of E. meningoseptica from different geographic areas (Chiu et 
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al., 2000).  Chryseobacterium spp. isolates from salmon (isolates CH29 and CH30) were 

identical to a trout isolate (CH33) with regards to their biochemical, RAPD and WCP 

subtypes.  Isolates from different fish species appeared to be genetically distinct although 

clusters were observed with the fish species grouping.  Chryseobacterium isolates CH16-

CH19 isolated from fish form Malawi shared RAPD, WCP and OMP profiles with CH15, 

which was isolated from trout eggs from Stellenbosch.  RAPD primers used in the present 

study were identical to those used in the polyphasic study of Chryseobacterium strains 

isolated from diseased fish species by Bernardet et al. (2005).  According to Bernardet et 

al. (2005), delineation of species was possible through RAPD analysis, although a very 

high overall similarity of Chryseobacterium and Elizabethkingia strains was 

demonstrated.  This increases the difficulty in delineating new species to these genera.      

 Phenotypic typing techniques did not allow for grouping of the study isolates with 

any of the reference strains and the study isolates could therefore not be characterized to 

species level through any of the molecular techniques. WCP analysis generated 15 

protein profiles, and although not as discriminatory as RAPD analysis, similar groupings 

were observed.  Similar results were obtained by Bernardet et al. (2005), who 

demonstrated delineation of clusters of species belonging to the genus Chryseobacterium 

through RAPD PCR analysis and WCP analysis.  OMP analysis generated 21 protein 

profiles, and allowed for the differentiation between isolates clustered together in groups 

C-2, T-2, RP1-1, RP2-2 and W-1 similar to CfoI restriction analysis (Table 2.9).  OMP 

analysis also allowed for the discrimination of study isolates CH29 and CH30, which 

could not be accomplished using of the other typing techniques (Table 2.9). 

 Although in most cases, visual groupings in profiles corresponded to clusters 

obtained following GelCompar analysis, it is possible to explain the discrepancy between 

the two methods.  In visual analysis band intensity was disregarded in favour of 

presence/absence of bands which allowed for a more accurate assessment of clusters 

sharing similar or identical RAPD profiles.  However, GelCompar software takes 

variability in band intensities into account when delineating clusters, which may account 

for differences in groups obtained by visual grouping and clusters obtained from 

GelCompar analysis.  In addition, the presence of primary, secondary and tertiary 

amplicons (Bassam et al., 1992) and poor gel alignment due to slight differences in 
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electrophoretic conditions could have affected the clustering of RAPD profiles.  

Differences in band intensities resulting from both variation in levels of protein 

expression and the concentration effect and slight differences in SDS-PAGE leading to 

poor gel alignment, may explain the differences in groups obtained by GelCompar 

analysis compared to clusters established during visual analysis of profiles observed for 

WCP analysis and OMP analysis.  For the Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. isolates, reference strains were clustered into 

separate clusters than the through GelCompar analysis of RAPD profiles and WCP 

profiles.  However, in accordance to the high discriminatory index obtained for OMP 

analysis (Table 2.10), differentiation was made between the reference strains which were 

clustered amongst the study isolates during GelCompar analysis.         

    The most effective antibiotics for Myroides and Empedobacter spp. isolates 

were azithromycin, cefoxitin, cotrimoxazole, naladixic acid, norfloxacin and 

sulphamethoxazole due to 100% susceptibility demonstrated by the study isolates (Table 

2.6; Fig. 2.37).  All of the isolates had very high MAR indices, indicating that these 

isolates have previously been exposed to antibiotics, although the isolates from the Blue 

tilapia aquaculture system had not been treated with antibiotics (Table 2.1).  This 

suggests that the isolates acquired resistance genes from another source, or that they 

possess a high intrinsic antibiotic resistance.  Either scenario poses a great threat in 

veterinary or human medicine, as exposure to antibiotics could lead to a multiple drug 

resistance (MDR) phenotype which would make treatment of any infection nearly 

impossible. Varying levels of susceptibility and resistance was observed for the 

Chryseobacterium and Elizabethkingia spp. isolates.  The only antibiotic to which the 

isolates displayed 100% susceptibility was piperacillin-tazobactam (Table 2.6; Fig. 2.38).  

Piperacillin/tazobactam was also among the most active agents against the genera 

Chryseobacterium and Elizabethkingia in a study by Kirby et al. (2004).  High MAR 

indices were recorded for seven isolates isolated from Blue tilapia aquaculture systems, 

and one isolate from a rainbow trout system.  Unlike the trout systems, tilapia aquaculture 

systems have not previously been exposed to antibiotics, and therefore these isolates are 

expected to have contaminated the aquaculture system from other environments where 

antibiotics had been used previously or isolates have acquired resistance genes while in 
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aquaculture system.  No specific correlation could be made between antimicrobial 

susceptibility profiles displayed by the study isolates and subtypes generated by PCR 

RFLP, RAPD, WCP or OMP typing.        

To evade the actions of β-lactam antibiotics, bacteria produce hydrolytic enzymes 

referred to as β-lactamases (Zeba et al., 2005).  Hydrolyzing enzymes are commonly 

found in the genera Myroides, Empedobacter, Chryseobacterium and Elizabethkingia 

(Michel et al., 2005).  β-lactamase enzymes that have the ability to hydrolyse carbapenem 

antibiotics are called metallo-β-lactamases (MβL) and have been reported in the genera 

Chryseobacterium, Elizabethkingia and Myroides (Zeba et al., 2005; Woodford et al., 

2000).  Chromosomal-encoded MβLs are inherent to few bacterial species, including the 

flavobacteria (Bush, 1998; and Livermore, 1997).  MβLs have been reported for C. 

indologenes (Zeba et al., 2005; and Bellais et al., 1999), E. meningoseptica (Rossolini et 

al., 1998) and M. odoratus (Sato et al., 1985).  The MβL enzymes identified by Zeba et 

al. (2005) were able to hydrolyse common β-lactam antibiotics such as ampicillin, 

amoxicillin and cefuroxime, but was unable to act on ceftazidime.  Chryseobacterium and 

Elizabethkingia spp. isolates CH1-8 and CH34 resistant to imipenem in the present study 

displayed similar susceptibility/resistance profiles results as that reported by Zeba et al. 

(2005).  Therefore, it is not unlikely that these isolates possess  MβLs.  It has been 

proposed that species belonging to the genera Chryseobacterium, Elizabethkingia and 

Myroides may represent a reservoir of diverse MβLs, which could potentially spread to 

Gram-negative bacteria of greater clinical significance (Woodford et al., 2000).  

Carbapenems are increasingly used for the treatment of infections caused by MDR Gram-

negative organisms (Bush, 1998), and thus the presence of MβL producing organisms in 

the environment could pose a threat to treatment of human infection.   

If an organism is able to hydrolyse β-lactam antibiotics from various groups, it is 

said to possess extended spectrum β-lactamases (ESβL), and these have been found to 

occur in Chryseobacterium and Elizabethkingia spp. (Bellais et al., 2002).  Bellais et al. 

(2000) identified chromosomally-encoded ESβLs in E. meningoseptica, and ESβLs have 

also been described for C. gleum (Bellais et al., 2002).  In the present study, isolates 

identified as possibly carrying ESβLs genes included: CH1-8 (resistant to all penicillins, 

cefuroxime and imipenem), CH34 (resistant to oxacillin, cefuroxime and imipenem), and 
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MY2B (resistant to all penicillins, ceftrioxone, cefuroxime, and pipperacillin/tazobactam) 

(Table 2.6).   

Chryseobacterium, Elizabethkingia, Myroides, and Empedobacter spp. isolates 

are occasionally involved in human clinical outbreaks (Lee et al., 2006; Bernardet et al., 

2006; Hugo et al., 2005; Hoque et al., 2001; Yagci et al., 2000; Hseuh et al., 1997; Hseuh 

et al., 1996; and Holmes et al., 1979).  According to Bernardet et al. (2005), the 

acquisition of resistant strains from an aquacultural environment by 

immunocompromised humans should not be underestimated.  Although their virulence 

for fish has not been proven, the present study confirms the report by Bernardet et al. 

(2005) that Chryseobacterium spp. strains are widely distributed in aquacultural settings 

and may be easily isolated from diseased fish.  The presence of different strains 

belonging to different clusters occurring in the same fish farm or sampling site was also 

observed for study isolates.  Chryseobacterium spp. most likely are harboured as part of 

fish flora but act as opportunistic pathogens when fish undergo severe stress.  In addition 

to being present on fish, Leonard et al. (2000) reported the ability of heterotrophic 

bacteria to exist in biofilms in aquaculture recirculation systems.  These biofilm-

associated bacteria thus serve as a potential reservoir or source for future infection or re-

infection.   

 Given their potential pathogenic role in aquaculture systems, the ability of study 

isolates to adhere to surfaces and form biofilms was investigated.  This involved 

investigating the capacity to form biofilms and an exploration of surface characteristics 

and their role in the biofilm-forming phenotype. 
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CHAPTER THREE 
 

Adherence and cell-surface characterization of Chryseobacterium, 
Elizabethkingia, Myroides and Empedobacter spp. isolates obtained from 

aquaculture systems 
 

3.1 Introduction 

Microorganisms display a strong tendency to colonize surfaces.  With the 

subsequent multiplication, adherence of additional bacterial species and production of 

EPS, a complex microbial biofilm community is formed on the colonized surface.  

Aquatic microorganisms are well known for their ability to form biofilms (Rickard et al., 

2003b; Webb et al., 2003; Donlan, 2002; Bell, 2001; and Stickler, 1999).  

Adhesion is a prerequisite for the formation of biofilms on surfaces (Coquet et al., 

2002a) and may be influenced by various substrate, cell-surface and environmental 

factors (Table 3.1).  Formation of a biofilm is preceded by the attachment of primary 

colonizers, mediated through physico-chemical interactions with components of an 

adsorbed, organic conditioning film present on the substratum (Rickard et al., 2003b).  In 

addition to physico-chemical interactions, initial adherence of microorganisms to surfaces 

may also involve protein and polysaccharide factors, and is thus a very complex process 

(Cerca et al., 2005).  Physico-chemical interactions include various long-range non-

specific interactions such as Lifshitz-van der Waals forces, electrostatic forces, acid-base 

interactions, and Brownian motion forces (Azeredo and Oliveira, 2000; and van Oss and 

Giese, 1995).  Depending on the sum of the different non-specific interactions, 

microorganisms will be attracted or repelled upon reaching a surface (Fonseca et al., 

2001).  Initial attachment of cells is facilitated by expression of cell-surface polymers, 

which alter cell surface properties (Rickard et al., 2004a).  Various mechanisms of 

attachment have been described and these mechanisms utilize different cell components 

including cell-surface structures such as flagella, pili, fimbriae, OMPs and cell wall 

polysaccharides such as capsules (Donlan, 2002; Davey and O’Toole, 2000; and Stickler, 

1999).  Sugars such as glucose, glucuronic acids, galactose, and fructose that are 

commonly found in the composition of capsular structures have been proposed to play a 
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capital role in the mechanisms of adherence (Brisou, 1959).  In addition, many of these 

structures are important components of bacterial motility and non-motile mutants of P. 

aeruginosa have been shown to lack biofilm-forming ability, compared to wild type cells 

(Stickler, 1999).   

 
Table 3. 1 Summary of the factors influencing adherence and biofilm formation  

(Wimpenny et al., 2000). 
 

Influential factors Descriptions
Genotypic factors The specific genotype of the organism.

Expression of genes encoding surface properties.
Expression of signalling molecules.
Formation of EPS.
Organism growth dynamics; specific growth rate, lag periods, affinity for substrates.
Expression of genetic factors not directly connected to biofilm formation (e.g. motility).

Physico-chemical factors Phase interface (combinations of solid, liquid and gaseous).
Substratum composition and roughness.
Substrate composition, concentration, gradient.
Temperature, pH, water potential, pressure, oxygen supply and demand, radiation effects.

Stochastic processes Initial colonisation: attachment, detachment.
Random changes in abiotic and biotic factors.

Deterministic phenomena Specific interactions between organisms: competition, neutralism, cooperation and predation.

Mechanical processes Shear due to laminar or turbulent flow conditions; abrasion; logistic restrictions.

Import-export 

Addition or removal of biotic or abiotic components to a biofilm system; e.g. import of sand, clay
minerals or organic detritus into a biofilm structure. Sloughing off of biomass, release of individual
cells.

Temporal changes
Diurnal or annual periodic changes in biotic and abiotic environment; e.g. light, temperature
pH, P O2.
Irregular changes due to unforseen events  

 
 
 
 Cell-surface hydrophobicity is considered important in adhesion because 

hydrophobic interactions tend to increase with increasing non-polar nature of one or both 

surfaces involved (i.e., microbial cell surface and the substratum surface).  Most bacteria 

are negatively charged but still contain hydrophobic surface components (Donlan, 2002).  

Microorganisms have been found to attach more rapidly to hydrophobic, non-polar 

surfaces such as plastics than to hydrophilic materials such as glass or metals (Bendinger 

et al., 1993; Pringle and Fletcher, 1983; and Fletcher and Loeb, 1979).  Costerton et al. 

(1995) suggested that the overall hydrophobicity of a bacterium could serve as a good 

predictor of the surface that an organism might colonize.  There is a difference of opinion 



 

 

112

concerning the importance of cell-surface hydrophobicity in adherence of bacterial cells 

to surfaces.  Some authors have shown that hydrophobic interactions contribute in the 

adherence process, Zita and Hermansson (1997) found a significant correlation between 

the hydrophobicity of E. coli cells and their adherence ability to activated sludge flocs, 

and Pasmore et al. (2001) demonstrated that increased hydrophobicity of P. aeruginosa 

cells results in increased biofilm initiation to surfaces in water-processing environments.  

Others have found no correlation between hydrophobicity and adherence (Cerca et al., 

2005; Chae et al., 2006; and Balebona et al., 2001).  Chae et al. (2006) found that there 

was no correlation between the hydrophobicity and attachment of L. monocytogenes to 

glass surfaces, while Cerca et al. (2005) found that hydrophobicity had no influence on 

the adherence of Staphylococcus epidermidis to surfaces in the clinical environment.  In 

addition, the adhesion of pathogenic Vibrio spp. to fish mucus or cells was found not to 

be mediated by cell surface hydrophobicity (Balebona et al., 2001).  

Several methods have been used to determine hydrophobicity of bacterial cells 

such as bacterial adherence to hydrocarbons (BATH) (Rosenberg et al., 1980), 

hydrophobic interaction chromatography (HIC) (Donlon and Colleran, 1993), 

aggregation in the presence of different salt concentrations (Lindhal et al., 1981), 

adherence to nitrocellulose filters (NCF) (Lachica and Zink, 1984) and contact angle (van 

Loosdrecht et al., 1987).  The salting aggregation test (SAT) provides a measure of 

overall surface hydrophobicity, while the bacterial adherence to hydrocarbon (BATH) 

assay indicates the presence of hydrophobic domains on an otherwise hydrophilic cell 

surface (Sorongon et al., 1991; and van der Mei et al., 1987).  With the BATH assay, a 

cell suspension is mixed with a hydrocarbon for a predetermined time period to allow 

optimal interaction of the bacteria with the hydrocarbon phase.  As a result, cells may 

remain in the liquid phase or partition either into the liquid-hydrocarbon interface or into 

the hydrocarbon phase, depending on their hydrophobicity (Pembrey et al., 1999).  SAT 

assay is based on the more hydrophobic bacterial cells associating with lower 

concentrations of ammonium sulfate and precipitating.  Hydrophobicity is determined 

through visual analysis, and documented as the concentration of ammonium salt at which 

the bacterial cell precipitates (Rozgonyi et al., 1985).   
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 Fluid flow velocity (and associated shear rates) has been suggested to be 

important in the development of biofilm community structure (Beyenal and 

Lewandowski, 2002) and govern the abilities of individual species to immigrate to 

biofilms and to colonize new surfaces (Cloete et al., 2003; and Stoodley et al., 1999). 

Various observations have indicated that high fluid velocities with associated high shear 

forces lead to the development of less diverse biofilm communities as compared to those 

developed at lower shear rates (Rickard et al., 2004b; Cloete et al., 2003; Rickard et al., 

2003b; Liu and Tay, 2002; and Soini et al., 2002).  An increase in surface roughness has 

been observed to increase the extent of microbial colonization (Characklis et al., 1990).  

This is because shear forces are diminished, and surface area is higher on rougher 

surfaces (Donlan, 2002). 

The composition of the substratum and composition and concentration of 

substrates has also been implicated in biofilm-forming abilities of microorganisms such 

as L. monocytogenes, which displays increased attachment in minimal media (Kim and 

Frank, 1994; and Harvey et al., 2006) and  E. coli O517:H7 which has been reported to 

form a biofilm only in low-nutrient media (Dewanti and Wong, 1995).  However, other 

bacterial strains, E. coli K-12 and V. cholerae, will not form biofilms in minimal media 

(Watnick et al., 1999; and Pratt and Kolter, 1998).  In addition, factors other than 

adherence such as cell-size have been directly correlated to substrate concentration for 

anaerobic biofilm-forming bacteria (Szewzyk and Schink, 1987). 

 Efforts are continually being made to improve assays for investigating all aspects 

of adhesion and adherence.  The microtitre-plate adherence assay is a rapid method for 

investigating biofilm-forming abilities of microorganisms and involves the investigation 

of bacterial attachment to the surface of multiwell plates (O’Toole et al., 1999).  Using 

this technique, large quantities of bacterial strains can be investigated for their biofilm 

formation capability (O’Toole et al., 1999).  PVC or polystyrene microtitre plates are 

commonly used, although polypropylene, polycarbonate plastic or borosilicate glass have 

also proven effective substrates for microtitre adherence assays (O’Toole et al., 1999).  

Although various modifications of this technique have been described (Gavín et al., 

2003; Croxatto et al., 2002; and O'Toole et al., 1999), the modified microtitre plate assay 
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described by Stepanovic et al. (2000) has been found to be a more accurate and objective 

assay (Flemming et al., 2006). 

   A survey of the literature revealed the presence of Chryseobacterium/ 

Elizabethkingia and/or Myroides and Empedobacter spp. isolates in biofilms from 

different sources (Pavlov et al., 2004; McBain et al., 2003; Bremer et al., 2001; Hoque et 

al., 2001; and Tide et al., 1999).  However, not much is known about the factors involved 

in initiating biofilm-formation by these isolates.  Thus, all study isolates were assayed for 

their ability to adhere to polystyrene using the microtitre plate assay.  A clear picture of 

attachment cannot be obtained without considering the effects of substratum, 

conditioning films forming on the substratum, hydrodynamics of the aqueous medium, 

characteristics of the medium, and cell-surface properties.  In the present study, the effect 

of some of these factors including hydrodynamics and characteristics of the aqueous 

medium, and effects of incubation temperature, on the initial adherence ability of the 

study isolates to PVC microtitre plates as substratum, were investigated.   

 

3.2 Materials and Methods 

3.2.1 Microtitre plate adherence assays 

Microtitre plate adherence assays (Stepanovic et al., 2000) were conducted to 

determine the adherence abilities of the study isolates.  Myroides and Empedobacter spp. 

and Chryseobacterium and Elizabethkingia spp. study isolates were cultured O/N in 

EAOB, pelleted by centrifugation (12 000 rpm, 2 min) and washed three times in PBS 

(pH 7.2).  Washed cells were resuspended in PBS and standardized to a turbidity 

equivalent to a 0.5 McFarland standard.   Wells of sterile 96-well U-bottomed microtitre 

plates (Deltalabs, S.L, Barcelona, Spain), were filled with 90 µl of growth media, EAOB 

or Tryptic soy broth (TSB), and inoculated with 10 µl of the standardized cell suspension, 

in triplicate.  Two negative control wells, containing only broth and PBS were included in 

each run, and a Vibrio spp. isolate was used as a positive control.  Plates were placed on a 

horizontal shaker and/or benchtop to simulate dynamic and static conditions, 

respectively, and incubated aerobically at room temperature (21 ˚C ± 2 ˚C) and/or 37 ˚C.  

Following incubation, contents of each well were aspirated, and washed three times with 
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150 µl of sterile PBS.  Plates were vigorously shaken in order to remove all non-adherent 

bacteria.  Remaining attached bacteria were fixed for 15 min with 150 µl of 99% 

methanol, and left to dry.  Plates were stained for 5 min with 150 µl crystal violet.  

Excess stain was rinsed off by placing the plate under running tap water.  After the plates 

had been air dried, the dye bound to the adherent cells were resolubilized with 150 µl 

33% (v/v) glacial acetic acid.  Optical density (OD) of each well was taken at 595 nm 

using an automated microtitre-plate reader (Microplate Reader model 680, BioRad 

Laboratories Inc., Hercules, California).  Tests were done in triplicate on three separate 

occasions and the results averaged (Stepanovic et al., 2000).  Isolates were classified into 

the following adherence categories non-adherent, weakly adherent, moderately adherent, 

or strongly adherent, according to criteria described by Stepanovic et al. (2000).  The cut-

off OD (ODc) for the microtitre plate test was defined as three standard deviations above 

the mean OD of the negative control.  

 Isolates were classified as follows: 

OD ≤ ODC    non-adherent, 

ODC <OD ≤ 2 × ODC  weakly adherent, 

2 × ODC < OD ≤ 4 × ODC moderately adherent, 

4 × ODC <OD   strongly adherent. 

 

A second method of assessing the biofilm-forming capacity for each of the study 

isolates was expressed relative to the average value of all isolates as follows: 

Relative biofilm capacity = 0 0

1

[ ] / ( ) /
y

x n

n

A A A A y−

=

⎡ ⎤
− ⎢ ⎥

⎣ ⎦
∑ , 

where, xA  = absorbance at 595 nm for isolate x , 0A  = absorbance for uninoculated 

growth medium, and y = number of isolates in sample (Van Houdt et al., 2004).  

 

Adherence was assayed by varying parameters including:  incubation temperature [room 

temperature (21 ˚C ± 2 ˚C) vs 37 ˚C], incubation time (16 h, 24 h, 36 h and 42 h), growth 

media [EAOB (nutrient-poor media) vs TSB (nutrient-rich media)] and static vs dynamic 

incubation, in order to determine optimal conditions for in vitro biofilm formation.  
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3.2.1.2 Induction of adherence 

 
The standard microtitre adherence test (Stepanovic et al., 2000) was modified to 

determine the ability of various aquaculture, food and/or human pathogens to induce 

adherence by selected study isolates.  One Myroides and Empedobacter spp. isolate 

(MY1), and seven Chryseobacterium and Elizabethkingia spp. isolates (CH2B, CH8, 

CH15, CH23, CH25, CH26, CH34) were selected for the induction experiments based on 

their adherence in EAOB and TSB under static conditions at room temperature (as 

described in section 3.2.1).  The panel of microorganisms whose induction abilities were 

assayed included Aeromonas hydrophila, A. salmonicida, A. sobria, Chryseobacterium 

and Elizabethkingia spp. isolate CH2B, E. coli, E. tarda, L. innocua, L. monocytogenes, 

P. aeruginosa, S. enterica serovar Arizonae, F. johnsoniae-like spp. isolate YO59, and a 

Vibrio spp. isolate. 

Three-day old cultures of each of the organisms were centrifuged at 2000 rpm for 

10 min and filter-sterilised using 0.2 µm filters, in order to obtain cell-free spent medium.  

Study isolates were prepared as described in section 3.2.1.  10µl of the standardised 

suspension was added to the microtitre wells containing 100µl TBS and 90µl of the 

filtered supernatant.  Controls included standardised cell suspensions added to TSB and 

respective filtered supernatant in TSB in order to determine a change in adherence 

abilities and ensure that the change in adherence was due to induction, respectively.  

Microtitre plates were incubated on the benchtop at room temperature for three days.  

Adherence abilities of study isolates were classified into the described four categories 

(Stepanovic et al., 2000) as well as measuring the relative biofilm-forming capacities 

(Van Houdt et al., 2004).   

 

3.2.2 Cell-surface hydrophobicity and capsule presence 

  

 Bacterial surface hydrophobicity of the Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. study isolates was assessed using the 

bacterial adherence to hydrocarbons (BATH) and modified salting aggregation test (SAT) 

assays.   
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 3.2.2.1  Bacterial Adherence to Hydrocarbons (BATH) 

  O/N EAOB broth cultures of all study isolates were harvested during the 

exponential growth phase (18 h old cultures) by centrifugation at 12000 rpm for 2 min.  

Pellets were washed three times and resuspended in sterile 0.1 M PBS (pH 7).  Bacterial 

suspensions were adjusted to an OD of 0.8 at a wavelength of 550 nm (A0 of 188 

CFU/ml), using a DU 640 spectrophotometer (Beckman Coulter, Fullerton, California, 

USA).  Samples (3ml) of bacterial suspensions were placed in glass tubes with 400 μl of 

the hydrocarbon, xylene (BDH, VWR International, Leicestershire, UK), equilibrated in a 

water bath at 25 ºC for 10 min, and vortexed (Couquet et al., 2002a; and Rosenberg et al., 

1980).  After phase separation of 15 min, the optical density (OD550) of the lower aqueous 

phase was determined (A1).  Values were then expressed as the percentage of cells that 

adhered to hydrocarbon (A) compared with the control suspension as follows:  A = [(A0 – 

A1)/A0] × 100.  Each value represents the mean of experiments done in triplicate and on 

two separate occasions (Couquet et al., 2002a; and Rosenberg et al., 1980).  Study 

isolates were considered strongly hydrophobic when values were >50%, moderately 

hydrophobic when values were in the range of 20 – 50%, and hydrophilic when values 

were <20% (Mattos-Guaraldi et al., 1999).  PBS was used as a negative control and a 

Vibrio spp. isolate was used as a positive control. 

 

3.2.2.2  Salting Aggregation Test (SAT) 

O/N EAOB cultures were harvested, washed twice and resuspended in PBS (pH 

7.2) to a final turbidity equivalent to a 0.5 McFarland standard.  A series of ammonium 

sulfate [(NH4)2SO4] solutions in concentrations of 0 M, 0.2 M, 0.5 M, 1 M, 1.5 M, 2 M, 

2.5 M, 3 M and 4 M were prepared (Sorongon et al., 1991), and 350 μl methyl blue added 

to each of the 10 ml solutions for better visualization of aggregation (Rozgonyi et al., 

1985).  Twenty five μl volumes of the bacterial suspensions were mixed with 25 μl of the 

series of (NH4)2SO4 solutions on a microscope slide.  After 2 min and 4 min of mixing, 

respectively, on a rocking shaker at ambient temperature, slides were visually examined 

and scored against a white background.  The lowest final concentration of (NH4)2SO4 

causing aggregation was recorded as the SAT value.  Experiments were done in triplicate 
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on two separate occasions and respective ammonium sulphate concentrations were used 

as negative controls (Sorongon et al., 1991).  Isolates were classified as either hydrophilic 

or hydrophobic, according to their SAT value.  Classification proceeded as follows: < 0.1 

M = highly hydrophobic, 0.1 M – 1.0 M = moderate hydrophobicity and > 1.0 M = 

hydrophilic (Møller et al., 2003). 

 

3.2.3 Statistical analysis 

Statistical significance of differences (p < 0.05) due to altered variables 

(temperature, medium and agitation) on the results obtained by the microtitre adherence 

assays were determined using repeated measures analysis of variance (ANOVA), the 

means separated by a Bonferroni least significant difference test using Statistica 7 

(Statsoft, Tulsa, USA).  Relationships between microtitre adherence and hydrophobicity 

(BATH and SAT assays, respectively), was determined by 2D scatterplot analysis (p-

values < 0.05 were considered significant), using Statistica.  

 

3.3 Results 

3.3.1 Microtitre adherence assays 

The 5 Myroides and Empedobacter spp. study isolates and 34 Chryseobacterium 

and Elizabethkingia spp. isolates were screened for adherence to polystyrene microtitre 

plate wells following incubation for 24 h at room temperature (21 ˚C ± 2 ˚C) or 37 ˚C, 

under static or dynamic conditions in nutrient-rich (TSB) or nutrient-poor (EAOB) 

media.   

At room temperature, biofilm formation ranged from 0.42 (MY2) to 0.65 (MY3B) 

in EAOB under dynamic conditions, while under static conditions, biofilm formation 

ranged from 0.40 (MY2) to 0.67 (MY3B) (Table 3.2; Fig. 3.1).  At 37 ˚C, biofilm 

formation ranged from 0.15 (MY3B) to 0.29 (MY3) under dynamic conditions in EAOB, 

while under static conditions biofilm formation ranged from 0.18 (MY3B) to 0.30 (MY3) 

(Fig. 3.2).  For TSB under dynamic conditions, biofilm formation ranged from 1.22 

(MY2) to 1.64 (MY3), while under static conditions, biofilm formation ranged from 1.68 
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(MY2) to 2.04 (MY1) (Table 3.2; Fig. 3.1).  At 37 ˚C, biofilm formation in TSB under 

dynamic conditions ranged from 0.20 (MY2) to 0.28 (MY3), while biofilm formation 

under static conditions ranged from 0.15 (MY3) to 0.26 (MY3) (Fig 3.2).  At room 

temperature, biofilm formation and relative biofilm-forming capacity ≤ 0.1 respectively, 

were considered a negative result, and none of the isolates were considered to be non-

adherent in the presence of TSB, under both static and dynamic conditions (Table 3.3; 

Figs. 3.3–3.4).  Isolates displayed non-adherence or weak adherence and weak to 

moderate adherence at 37 ˚C in EAOB and TSB, respectively (Table 3.3; Figs. 3.3–3.4).  

Significant differences (p < 0.05) in biofilm formation were observed when isolates were 

assayed under static/dynamic conditions at room temperature and 37 ˚C in nutrient-poor 

media, respectively (ANOVA, t-tests).  All of the isolates had a relative biofilm-forming 

capacity at room temperature that was significantly (p < 0.05) lower than that 

demonstrated by the Vibrio spp. isolate in EAOB but significantly (p < 0.05) higher in 

TSB (Table 3.3; Figs. 3.3-3.4). While the Vibrio spp. isolate preferred EAOB to TSB for 

biofilm formation, all of the Myroides and Empedobacter spp. isolates displayed stronger 

adherence in the presence of TSB (Table 3.2-3.3; Figs. 3.1-3.4).  The five Myroides and 

Empedobacter spp. study isolates displayed overall strong adherence at room temperature 

with both nutrient-rich and nutrient-poor media, under both static and dynamic conditions 

(Table 3.3).  From these biofilm formation values, greater biofilm formation was 

documented under static conditions (Table 3.3).  By contrast, weak to moderate 

adherence was observed with nutrient-poor and nutrient-rich media at 37 ˚C, respectively 

(Table 3.3).   
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Table 3. 2 Biofilm formation values and profiles, and relative biofilm-formation capacity of 

Myroides and Empedobacter spp. study isolates following incubation at room 
temperature (~21 ˚C) under static or dynamic conditions in nutrient-rich (TSB) or 
nutrient-poor (EAOB) media, respectively. 

 

Vibrio  spp. 1.34 ±0.28 S* 1.61 ±0.18 S 0.11 ±0.00 W 0.14 ±0.07 W 2.03 ±0.46 + 2.40 ±0.24 + 0.02 ±0.00 - 0.03 ±0.00 -
MY1 0.61 ±0.16 S 0.56 ±0.05 S 1.56 ±0.17 S 2.04 ±0.05 S 0.86 ±0.17 + 0.73 ±0.07 + 1.31 ±0.24 + 1.35 ±0.17 +
MY2 0.42 ±0.07 S 0.40 ±0.04 M 1.23 ±0.11 S 1.68 ±0.08 S 0.56 ±0.06 + 0.47 ±0.08 + 1.02 ±0.06 + 1.10 ±0.10 +
MY2B 0.57 ±0.10 S 0.55 ±0.03 S 1.37 ±0.06 S 1.73 ±0.12 S 0.80 ±0.06 + 0.70 ±0.10 + 1.15 ±0.08 + 1.13 ±0.12 +
MY3 0.59 ±0.15 S 0.61 ±0.08 S 1.64 ±0.18 S 1.78 ±0.09 S 0.83 ±0.15 + 0.80 ±0.12 + 1.39 ±0.77 + 1.16 ±0.11 +
MY3B 0.65 ±0.11 S 0.67 ±0.10 S 1.34 ±0.12 S 1.87 ±0.09 S 0.92 ±0.10 + 0.90 ±0.13 + 1.12 ±0.07 + 1.23 ±0.13 +

StaticDynamic Static Dynamic Static Dynamic

Isolate
EAOB

Average (OD±SD)
TSB

Average (OD±SD)

Biofilm formation¥

(OD595)
(Room temperature)

Relative biofilm-forming capacity#

(Room temperature)

EAOB
Average (OD±SD)

TSB
Average (OD±SD)

Static Dynamic

 
¥  Biofilm formation assayed according to Stepanovic et al. (2000). 
* W/M/S refers to adherence categories displayed by isolates according to criteria described by Stepanovic et al. (2000). 
# Relative biofilm-forming capacity described by Van Houdt et al. (2004).  
 
 
 
 
 
 
Table 3. 3 Biofilm formation by Myroides and Empedobacter spp. study isolates (n = 5) following 

incubation at room temperature (~21 ˚C) and 37 ˚C, under static or dynamic conditions in 
nutrient-rich (TSB) or nutrient-poor (EAOB) media, respectively. 

 

No. (%) Average
OD±SD No. (%) Average

OD±SD No. (%) Average
OD±SD No. (%) Average

OD±SD No. (%) Average
OD±SD

21 ˚C EAOB dynamic - - - - - - 5 (100) 0.57 ±0.12 5 (100) 0.57 ±0.12
21 ˚C EAOB static - - - - 1 (80) 0.40 ±0.04 4 (80) 0.60 ±0.07 5 (100) 0.56 ±0.06

21 ˚C TSB dynamic - - - - - - 5 (100) 1.43 ±0.17 5 (100) 1.43 ±0.17
21 ˚C TSB static - - - - - - 5 (100) 1.82 ±0.14 5 (100) 1.82 ±0.14

37 ˚C EAOB dynamic 1 (20) 0.15 ±0.00 4 (80) 0.25 ±0.03 - - - - 4 (80) 0.25 ±0.03
37 ˚C EAOB static 1 (20) 0.18 ±0.00 4 (80) 0.29 ±0.01 - - - - 4 (80) 0.29 ±0.01

37 ˚C TSB dynamic - - - - 5 (100) 0.25 ±0.04 - - 5 (100) 0.25 ±0.04
37 ˚C TSB static - - 1 (20) 0.15 ±0.00 4 (80) 0.20 ±0.04 - - 5 (100) 0.18 ±0.04

Non-adherentParameters
Biofilm formation

Weak Moderate Strong Total

Number of isolates
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Figure 3. 1 Biofilm formation by Myroides and Empedobacter spp. study isolates on polystyrene 

microtitre plates, at room temperature in nutrient-rich media (TSB) and nutrient-poor 
media (EAOB) under dynamic and static conditions. EAOB dynamic (first column), 
EAOB static (second column), TSB dynamic (third column), TSB static (fourth column). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 2 Biofilm formation by Myroides and Empedobacter spp. study isolates on polystyrene 

microtitre plates, at 37 ˚C in nutrient-rich media (TSB) and nutrient-poor media (EAOB) 
under dynamic and static conditions. EAOB dynamic (first column), EAOB static 
(second column), TSB dynamic (third column), TSB static (fourth column). 
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Figure 3. 3 Relative biofilm-forming capacity of Myroides and Empedobacter spp. study isolates on 

polystyrene microtitre plates, at room temperature in nutrient-rich media (TSB) and 
nutrient-poor media (EAOB) under dynamic and static conditions.  EAOB dynamic (first 
column), EAOB static (second column), TSB dynamic (third column), TSB static (fourth 
column). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 4 Relative biofilm-forming capacity of Myroides and Empedobacter spp. study isolates on 

polystyrene microtitre plates, at 37 ˚C in nutrient-rich media (TSB) and nutrient-poor 
media (EAOB) under dynamic and static conditions.  EAOB dynamic (first column), 
EAOB static (second column), TSB dynamic (third column), TSB static (fourth column). 
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Initiation of adherence by the study isolates was assayed by incubating the 

microtitre plate for 16, 30 and 40 hours, under static and dynamic conditions at room 

temperature in nutrient-poor (EAOB) media.  Adherence of the Vibrio spp. isolate 

increased over time with strongest adherence at 40 hours, regardless of static or dynamic 

conditions (Figs. 3.5-3.6).  The Myroides and Empedobacter spp. isolates displayed 

strongest adherence within the first 16 hours, after which adherence appeared to decrease 

over time to 40 hours, regardless of agitation conditions (Figs. 3.5-3.6). 

For the Chryseobacterium and Elizabethkingia spp. assays conducted at room 

temperature, biofilm formation and, therefore, relative biofilm-forming capacity ≤ 0.1, 

respectively, was considered a negative result (in the case of 37 ˚C, biofilm-forming 

capacity ≤ 0.2 was considered a negative result).  Biofilm formation values of the 

Chryseobacterium and Elizabethkingia spp. isolates at room temperature ranged from 

0.07 (CH10) to 0.71 (CH25) in EAOB under dynamic conditions while under static 

conditions, biofilm formation ranged from 0.06 (CH22) to 0.83 (CH34) (Table 3.4; Fig. 

3.7).  At 37 ˚C, biofilm formation ranged from 0.11 (CH8, CH9) to 0.41 (CH29) under 

dynamic conditions in EAOB, while under static conditions biofilm formation ranged 

from 0.15 (CH27) to 0.65 (CH19) (Fig. 3.8).  For TSB at room temperature under 

dynamic conditions, biofilm formation ranged from 0.07 (CH24) to 0.59 (CH13), while 

under static conditions biofilm formation ranged from 0.09 (CH24) to 0.80 (CH2B) 

(Table 3.4; Fig. 3.7).  At 37 ˚C, biofilm formation in TSB under dynamic conditions 

ranged from 0.07 (CH15, CH16, CH17, CH19) to 0.84 (CH2B), while biofilm formation 

under static conditions ranged from 0.07 (CH1, CH16, CH18, CH19) to 0.50 (CH2B) 

(Fig 3.8).  

In nutrient-poor media, 79.41 to 91.14% of the isolates were able to form biofilms 

at room temperature compared to 47.06 – 64.74% in nutrient-poor media at 37 ˚C under 

dynamic and static conditions, respectively (Table 3.5).  All of the isolates formed 

biofilms at room temperature in nutrient-rich TSB medium under static conditions 

compared to 88.24% at 37 ˚C in TSB (Table 3.5).  Chryseobacterium and Elizabethkingia 

spp. isolates therefore appeared to prefer nutrient-rich conditions at room temperature for 

biofilm formation.   The relative biofilm-forming capacity of the study isolates was poor 
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at 37 ˚C (Fig. 3.10) compared to room temperature (Fig. 3.9), however, it was observed 

that study isolate CH2B formed biofilms best at 37 ˚C in TSB (Table 3.4; Fig. 3.10). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 5 Time course of adherence exhibited by Myroides and Empedobacter spp. isolates under 

dynamic conditions in EAOB at room temperature for incubation times of 16, 24, 30 and 
40 hours.  16 h dynamic (first column), 16 h static (second column), 30 h dynamic (third 
column), 30 h static (fourth column), 40 h dynamic (fifth column), and 40 h (sixth 
column). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 6 Time course of adherence exhibited by Myroides and Empedobacter spp. isolates under 

static conditions in EAOB at room temperature for incubation times of 16, 24, 30 and 40 
hours.  16 h dynamic (first column), 16 h static (second column), 30 h dynamic (third 
column), 30 h static (fourth column), 40 h dynamic (fifth column), and 40 h (sixth 
column). 
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    Significant differences (p < 0.05) in biofilm formation under static/dynamic 

conditions were observed at room temperature/37 ˚C in nutrient-rich and nutrient-poor 

media (EAOB room temperature- p = 0.000; 37 ˚C p = 0.0001; and TSB room 

temperature- p = 0.000; 37 ˚C p = 0.000). The Vibrio spp. isolate, and 9/32 (28.1 %) of 

the biofilm forming Chryseobacterium and Elizabethkingia spp. isolates preferred EAOB 

to TSB while 12/32 (37.5 %) of the isolates preferred TSB to EAOB.   

 

 
Table 3. 4 Biofilm formation values and profiles, and relative biofilm-formation capacity of 

Chryseobacterium and Elizabethkingia spp. study isolates following incubation at room 
temperature (~21 ˚C) under static or dynamic conditions in nutrient-rich (TSB) or 
nutrient-poor (EAOB) media, respectively. 

 

Vibrio  spp. 1.34 ±0.28 S* 1.61 ±0.18 S 0.11 ±0.00 W 0.14 ±0.07 W 2.03 ±0.46 + 2.40 ±0.24 + 0.02 ±0.00 - 0.03 ±0.00 -
CH1 0.08 ±0.00 W 0.08 ±0.01 N 0.18 ±0.05 W 0.11 ±0.02 W 0.04 ±0.03 - 0.00 ±0.05 - 0.64 ±0.42 + 0.10 ±0.12 +
CH1B 0.12 ±0.02 W 0.18 ±0.03 W 0.19 ±0.05 W 0.20 ±0.05 M 0.27 ±0.19 + 0.48 ±0.20 + 0.68 ±0.35 + 0.58 ±0.26 +
CH2 0.13 ±0.04 W 0.18 ±0.07 W 0.19 ±0.04 W 0.19 ±0.04 M 0.35 ±0.26 + 0.46 ±0.53 + 0.68 ±0.26 + 0.51 ±0.53 +
CH2B 0.23 ±0.02 M 0.31 ±0.13 M 0.44 ±0.13 S 0.80 ±0.06 S 0.92 ±0.22 + 1.22 ±1.08 + 2.56 ±1.53 + 3.84 ±1.95 +
CH3 0.16 ±0.04 M 0.21 ±0.05 M 0.25 ±0.03 M 0.26 ±0.06 M 0.49 ±0.33 + 0.66 ±0.36 + 1.11 ±0.17 + 0.90 ±0.45 +
CH4 0.12 ±0.02 W 0.19 ±0.02 W 0.20 ±0.03 M 0.23 ±0.02 M 0.28 ±0.14 + 0.54 ±0.16 + 0.78 ±0.21 + 0.73 ±0.20 +
CH4B 0.13 ±0.03 W 0.17 ±0.06 W 0.22 ±0.04 M 0.21 ±0.06 M 0.32 ±0.23 + 0.36 ±0.44 + 0.95 ±0.31 + 0.66 ±0.58 +
CH5 0.14 ±0.03 W 0.16 ±0.06 W 0.21 ±0.04 M 0.18 ±0.02 W 0.36 ±0.26 + 0.34 ±0.44 + 0.88 ±0.40 + 0.49 ±0.46 +
CH6 0.14 ±0.03 W 0.19 ±0.03 W 0.20 ±0.08 M 0.19 ±0.03 M 0.40 ±0.23 + 0.49 ±0.24 + 0.78 ±0.79 + 0.54 ±0.23 +
CH7 0.11 ±0.03 W 0.19 ±0.05 W 0.24 ±0.04 M 0.23 ±0.06 M 0.24 ±0.24 + 0.51 ±0.36 + 1.05 ±0.41 + 0.74 ±0.28 +
CH8 0.12 ±0.01 W 0.16 ±0.06 W 0.20 ±0.03 M 0.18 ±0.03 W 0.28 ±0.07 + 0.35 ±0.42 + 0.75 ±0.18 + 0.44 ±0.14 +
CH9 0.09 ±0.02 W 0.10 ±0.01 N 0.10 ±0.03 W 0.10 ±0.05 W 0.12 ±0.16 + 0.00 ±0.10 - 0.07 ±0.21 + 0.05 ±0.25 -
CH10 0.07 ±0.00 N 0.07 ±0.01 N 0.48 ±0.21 S 0.62 ±0.13 S 0.00 ±0.02 - 0.00 ±0.06 - 2.81 ±1.94 + 2.85 ±1.61 +
CH11 0.36 ±0.03 S 0.37 ±0.03 M 0.23 ±0.01 M 0.28 ±0.06 M 1.65 ±0.10 + 1.63 ±0.31 + 0.97 ±0.12 + 1.01 ±0.45 +
CH12 0.35 ±0.03 S 0.39 ±0.07 M 0.26 ±0.05 M 0.24 ±0.04 M 1.61 ±0.20 + 1.72 ±0.68 + 1.24 ±0.29 + 0.82 ±0.34 +
CH13 0.31 ±0.14 S 0.26 ±0.07 M 0.59 ±0.08 S 0.69 ±0.05 S 1.39 ±0.78 + 0.92 ±0.59 + 3.63 ±0.67 + 3.24 ±0.64 +
CH14 0.45 ±0.22 S 0.43 ±0.03 S 0.57 ±0.08 S 0.53 ±0.06 S 2.19 ±0.77 + 1.99 ±0.28 + 3.54 ±0.46 + 2.39 ±0.70 +
CH15 0.12 ±0.01 W 0.12 ±0.02 W 0.25 ±0.05 M 0.28 ±0.08 M 0.29 ±0.08 + 0.11 ±0.21 + 1.13 ±0.48 + 0.99 ±0.58 +
CH16 0.12 ±0.02 W 0.13 ±0.01 W 0.25 ±0.05 M 0.27 ±0.05 M 0.29 ±0.14 + 0.14 ±0.09 + 1.14 ±0.44 + 0.96 ±0.40 +
CH17 0.15 ±0.01 M 0.14 ±0.04 W 0.26 ±0.06 M 0.28 ±0.04 M 0.44 ±0.07 + 0.20 ±0.33 + 1.19 ±0.46 + 1.03 ±0.42 +
CH18 0.14 ±0.02 W 0.15 ±0.03 W 0.27 ±0.04 M 0.30 ±0.05 M 0.37 ±0.18 + 0.29 ±0.20 + 1.30 ±0.35 + 1.12 ±0.38 +
CH19 0.14 ±0.01 W 0.18 ±0.04 W 0.26 ±0.03 M 0.24 ±0.06 M 0.40 ±0.12 + 0.48 ±0.28 + 1.20 ±0.31 + 0.81 ±0.44 +
CH21 0.10 ±0.02 W 0.16 ±0.10 W 0.14 ±0.01 W 0.13 ±0.04 W 0.18 ±0.15 + 0.36 ±0.72 + 0.33 ±0.10 + 0.22 ±0.25 +
CH22 0.08 ±0.02 W 0.06 ±0.01 N 0.08 ±0.00 N 0.14 ±0.06 W 0.07 ±0.11 - 0.00 ±0.08 - 0.00 ±0.23 - 0.28 ±0.36 +
CH23 0.07 ±0.01 N 0.06 ±0.01 N 0.09 ±0.02 N 0.11 ±0.05 W 0.00 ±0.04 - 0.00 ±0.10 - 0.00 ±0.17 - 0.11 ±0.30 -
CH24 0.07 ±0.00 N 0.07 ±0.00 N 0.07 ±0.00 N 0.09 ±0.03 W 0.00 ±0.03 - 0.00 ±0.03 - 0.00 ±0.03 - 0.00 ±0.18 -
CH25 0.71 ±0.16 S 0.69 ±0.06 S 0.13 ±0.05 W 0.18 ±0.08 W 3.69 ±0.69 + 3.52 ±0.66 + 0.29 ±0.37 + 0.49 ±0.43 +
CH26 0.20 ±0.05 M 0.20 ±0.02 W 0.11 ±0.02 W 0.19 ±0.07 M 0.74 ±0.28 + 0.55 ±0.18 + 0.12 ±0.12 + 0.53 ±0.37 +
CH27 0.09 ±0.02 W 0.07 ±0.01 N 0.10 ±0.04 W 0.13 ±0.07 W 0.12 ±0.17 + 0.00 ±0.11 - 0.04 ±0.26 - 0.21 ±0.37 +
CH28 0.35 ±0.08 S 0.40 ±0.11 M 0.13 ±0.04 W 0.18 ±0.05 W 1.57 ±0.11 + 1.75 ±0.92 + 0.25 ±0.24 + 0.50 ±0.31 +
CH29 0.42 ±0.10 S 0.37 ±0.07 M 0.21 ±0.04 M 0.37 ±0.19 M 1.98 ±0.48 + 1.61 ±0.49 + 0.85 ±0.33 + 1.52 ±1.05 +
CH30 0.38 ±0.07 S 0.39 ±0.04 M 0.21 ±0.04 M 0.64 ±0.03 S 1.77 ±0.29 + 1.71 ±0.43 + 0.87 ±0.33 + 2.95 ±1.86 +
CH33 0.38 ±0.03 S 0.17 ±0.04 W 0.14 ±0.04 W 0.20 ±0.04 M 1.78 ±0.31 + 0.38 ±0.27 + 0.30 ±0.34 + 0.60 ±0.20 +
CH34 0.63 ±0.15 S 0.83 ±0.06 S 0.51 ±0.06 S 0.56 ±0.04 S 3.24 ±0.20 + 4.41 ±0.18 + 3.04 ±0.35 + 2.53 ±0.20 +

Static Dynamic Static

Isolate

Biofilm formation¥

(OD595)
(Room temperature)

Relative biofilm-forming capacity#

(Room temperature)

EAOB
Average (OD±SD)

TSB
Average (OD±SD)

EAOB
Average (OD±SD)

TSB
Average (OD±SD)

Static DynamicDynamic Static Dynamic

 
¥  Biofilm formation assayed according to Stepanovic et al. (2000). 
* W/M/S refers to adherence categories displayed by isolates according to criteria described by Stepanovic et al. (2000). 
# Relative biofilm-forming capacity described by Van Houdt et al. (2004).  
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Figure 3. 7 Biofilm formation by Chryseobacterium and Elizabethkingia spp. study isolates on polystyrene microtitre plates, at room temperature in     
                             nutrient-rich media (TSB) and nutrient-poor media (EAOB) under dynamic and static conditions.  EAOB dynamic (first column), EAOB static  
                             (second column), TSB dynamic (third column), TSB static (fourth column). 
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Figure 3.8 Biofilm formation by Chryseobacterium and Elizabethkingia spp. study isolates on polystyrene microtitre plates, at 37 ˚C in nutrient-rich    
                             media(TSB) and nutrient-poor media (EAOB) under dynamic and static conditions.  EAOB dynamic (first column), EAOB static (second   
                             column), TSB dynamic (third column), TSB static (fourth column). 
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Table 3. 5 Biofilm formation by Chryseobacterium and Elizabethkingia spp. study isolates (n = 34) 
following incubation at room temperature (~21 ˚C) and 37 ˚C, under static or dynamic 
conditions in nutrient-rich (TSB) or nutrient-poor (EAOB) media, respectively. 

 

No. (%) Average
OD±SD No. (%) Average

OD±SD No. (%) Average
OD±SD No. (%) Average

OD±SD No. (%) Average
OD±SD

21 ˚C EAOB dynamic 3 (8.82) 0.07 ±0.00 17 (50) 0.12 ±0.02 4 (11.76) 0.18 ±0.04 10 (29.41) 0.43 ±0.13 31 (91.18) 0.23 ±0.16
21 ˚C EAOB static 7 (20.59) 0.07 ±0.01 16 (47.06) 0.17 ±0.02 8 (23.53) 0.34 ±0.07 3 (8.82) 0.65 ±0.20 27 (79.41) 0.27 ±0.17

21 ˚C TSB dynamic 3 (8.82) 0.08 ±0.01 10 (29.41) 0.14 ±0.03 16 (47.06) 0.23 ±0.02 5 (14.71) 0.52 ±0.06 31 (91.18) 0.25 ±0.13
21 ˚C TSB static - - 11 (32.35) 0.14 ±0.03 17 (50) 0.25 ±0.05 6 (17.65) 0.64 ±0.10 34 (100) 0.28 ±0.18

37 ˚C EAOB dynamic 18 (52.94) 0.15 ±0.02 9 (26.47) 0.24 ±0.05 7 (20.59) 0.38 ±0.02 - - 16 (47.06) 0.31 ±0.10
37 ˚C EAOB static 12 (35.29) 0.17 ±0.01 13 (38.24) 0.26 ±0.05 9 (26.47) 0.50 ±0.09 - - 22 (64.74) 0.38 ±0.17

37 ˚C TSB dynamic 12 (35.29) 0.08 ±0.01 21 (61.76) 0.12 ±0.02 1 (2.94) 0.84 ±0.00 22 (64.71) 0.48 ±0.51
37 ˚C TSB static 4 (11.76) 0.07 ±0.00 24 (70.59) 0.11 ±0.02 4 (11.76) 0.18 ±0.02 2 (5.88) 0.49 ±0.01 30 (88.24) 0.26 ±0.20

Parameters

Number of isolates
Biofilm formation

Non-adherent Weak Moderate Strong Total

 

 

 

Incubation time variation indicated that adherence of the Vibrio spp. isolate 

increased over time with strongest adherence at 40 hours, regardless of agitation 

conditions (Figs. 3.11-3.12).  All of the Chryseobacterium and Elizabethkingia spp. 

isolates displayed biofilm formation after 16 h of incubation under dynamic conditions 

(Table 3.6; Fig. 3.11).  Contrary to that observed for the Vibrio spp. isolate, biofilm 

formation by the study isolates generally decreased as incubation time increased with 

only 47.06% of the isolates capable of biofilm-formation after 40 h of incubation (Table 

3.6; Fig 3.11).   

 
Table 3. 6 Biofilm formation by Chryseobacterium and Elizabethkingia spp. study isolates (n = 34) 

following incubation for 16 h, 30 h, and 40 h at room temperature (~21 ˚C), under static 
or dynamic conditions in nutrient-poor (EAOB) media, respectively. 

  

No. (%) Average
OD±SD No. (%) Average

OD±SD No. (%) Average
OD±SD No. (%) Average

OD±SD No. (%) Average
OD±SD

16 hours dynamic - - 13 (38.24) 0.20 ±0.05 16 (47.06) 0.35 ±0.06 5 (14.71) 0.83 ±0.10 34 (100) 0.37 ±0.22
16 hours static 7 (20.59) 0.12 ±0.01 14 (41.18) 0.23 ±0.04 8 (23.53) 0.32 ±0.08 5 (14.71) 0.70 ±0.08 27 (79.41) 0.34 ±0.19

30 hours dynamic 1 (2.94) 0.18 ±0.00 25 (73.53) 0.24 ±0.04 5 (14.71) 0.43 ±0.04 3 (8.82) 0.87 ±0.02 33 (97.06) 0.33 ±0.19
30 hours static 9 (26.47) 0.19 ±0.01 19 (55.88) 0.28 ±0.06 4 (11.76) 0.58 ±0.16 2 (5.88) 1.00 ±0.12 25 (73.53) 0.39 ±0.23

40 hours dynamic 18 (52.94) 0.18 ±0.01 11 (32.35) 0.28 ±0.07 4 (11.76) 0.63 ±0.16 1 (2.94) 0.92 ±0.00 16 (47.06) 0.41 ±0.23
40 hours static 14 (41.18) 0.17 ±0.01 14 (41.18) 0.27 ±0.04 6 (17.65) 0.67 ±0.13 - - 20 (58.82) 0.39 ±0.20

Parameters

Number of isolates
Biofilm formation

Non-adherent Weak Moderate Strong Total
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Figure 3. 7 Relative biofilm-forming capacity of Chryseobacterium and  Elizabethkingia spp. study isolates on polystyrene microtitre plates, at room 

temperature in nutrient-rich media (TSB) and nutrient-poor media (EAOB) under dynamic and static conditions.  EAOB dynamic (first 
column), EAOB static (second column), TSB dynamic (third column), TSB static (fourth column).  
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Figure 3. 8 Relative biofilm-forming capacity of Chryseobacterium and Elizabethkingia spp. study isolates on polystyrene microtitre plates, at 37 ˚C in 

nutrient-rich media (TSB) and nutrient-poor media (EAOB) under dynamic and static conditions.  EAOB dynamic (first column), EAOB static 
(second column), TSB dynamic (third column), TSB static (fourth column).  
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Figure 3.11 Time course of biofilm formation by Chryseobacterium and Elizabethkingia spp. isolates at 16, 30 and 40 hours of incubation, under  
dynamic and static conditions in EAOB at room temperature.  16 h dynamic (first column), 16 h static (second column), 30 h dynamic (third 
column), 30 h static (fourth column), 40 h dynamic (fifth column), 40 h static (sixth column).  
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Figure 3. 12 Time course of biofilm-forming capacity of Chryseobacterium and Elizabethkingia spp. isolates at 16, 30 and 40 hours of incubation, under  
dynamic and static conditions in EAOB at room temperature.  16 h dynamic (first column), 16 h static (second column), 30 h dynamic (third 
column), 30 h static (fourth column), 40 h dynamic (fifth column), 40 h static (sixth column). 
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3.3.1.1 Induction experiments 
 
Induction experiments were carried out in nutrient-rich media (TSB) at room 

temperature under static conditions.  Myroides / Empedobacter spp. isolate MY1 

displayed strong adherence under these conditions with a biofilm-forming capacity (BFC) 

value of 2.29 (Table 3.7; Fig. 3.13).   

Although increases in biofilm formation was observed in the spent supernatant of 

A. hydrophila (BFC - 3.62), A. salmonicida (BFC - 3.19), A. sobria (BFC - 7.69) and S. 

enterica serovar Arizonae (BFC – 6.11), none of the increases were found to be 

significantly higher than that obtained in TSB without added spent supernatants 

(ANOVA; Statistica v.7.0, Statsoft, Tulsa, USA) (Table 3.7; Fig. 3.13).  Similarly, the 

Chryseobacterium / Elizabethkingia spp. isolates CH23 and CH26 displaying strong 

adherence under experimental conditions with biofilm-forming capacities of 1.94 and 

2.21, respectively, did not display significant induction of adherence in the presence of 

spent supernatants (ANOVA; Statistica v.7.0, Statsoft, Tulsa, USA) (Table 3.7; Fig. 

3.13).  Study isolate CH2B displayed moderate adherence under experimental conditions 

with a biofilm-forming capacity value of 0.69.  Significant increases in adherence by this 

study isolate was observed in the presence of spent supernatants from E. coli (BFC – 

1.04; p = 0.0019), L. monocytogenes (BFC – 1.73; p = 0.0004), S. enterica serovar 

Arizonae (BFC – 0.97; p = 0.0022), and F. johnsoniae-like spp. YO59 (BFC – 0.90; p = 

0.0005) (ANOVA; Statistica v.7.0, Statsoft, Tulsa, USA) (Table 3.7; Fig. 3.13). 

 Study isolate CH34 also displayed moderate adherence with a biofilm-forming 

capacity of 0.71 which was significantly increased with the spent supernatant of 

Chryseobacterium / Elizabethkingia spp. isolate CH2B (BFC – 2.47; p = 0.0002) 

(ANOVA; Statistica v.7.0, Statsoft, Tulsa, USA) (Table 3.7; Fig. 3.13).  Weakly adherent 

Chryseobacterium / Elizabethkingia spp. study isolates CH15 (BFC – 0.13) and CH25 

(BFC – 0.04) were induced to a significantly stronger adherence phenotype by 8/12 (67 

%) and 7/12 (58 %) of the inducing spent supernatants, respectively, of which A. 

hydrophila, P. aeruginosa, F. johnsoniae-like spp. YO59, and the Vibrio spp. isolate, 

caused significant induction in both study isolates (ANOVA; Statistica v.7.0, Statsoft, 

Tulsa, USA) (Table 3.7; Fig. 3.13).  Study isolate CH8 showed a non-biofilm-forming 
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phenotype in TSB at room temperature under static conditions.  A biofilm-forming 

phenotype was induced by spent supernatants of A. salmonicida (BFC – 1.35; p = 

0.0000), E. coli (BFC – 0.94; p = 0.0000), E. tarda (BFC – 1.49; p = 0.0030), L. 

monocytogenes (BFC – 0.35; p = 0.0004), P. aeruginosa (BFC – 1.17; p = 0.0009), and 

the Vibrio spp. isolates (BFC – 0.32; p = 0.0000) (ANOVA; Statistica v.7.0, Statsoft, 

Tulsa, USA) (Table 3.7; Fig. 3.13).  From theses results it was evident that the study 

isolates were not induced to a stronger adherence phenotype when an already strongly 

adherence profile was recorded in TSB without added spent supernatants. 

 
Table 3. 7 Relative biofilm-formation capacity of the Myroides and Empedobacter spp. isolate 

(MY1) and selected Chryseobacterium and Elizabethkingia spp. study isolates following 
exposure to spent medium of 13 Gram-negative and Gram-positive bacteria at room 
temperature (~21 ˚C) under static conditions in nutrient-rich (TSB) media.   

 

MY1 CH2B CH8 CH15 CH23 CH25 CH26 CH34
Nutrient-rich media (TSB) 2.29 ±0.17 0.69 ±0.17 0.00 ±0.00 0.13 ±0.06 1.94 ±0.57 0.04 ±0.03 2.21  ±0.50 0.71 ±0.15

A. hydrophila 3.62 ±4.05 0.45 ±0.79 0.00 ±0.00 0.41 ±0.70 0.27 ±0.47 0.07  ±0.13 0.00  ±0.00 0.50  ±0.87
A. salmonicida 3.19 ±2.90 0.56 ±0.98 1.34 ±0.67 0.46 ±0.54 1.04 ±0.79 0.00  ±0.00 1.04  ±1.44 0.34  ±0.58
A. sobria 7.69 ±0.53 0.00 ±0.00 0.00 ±0.00 0.31 ±0.53 0.00 ±0.00 0.00  ±0.00 0.00  ±0.00 0.00  ±0.00
Chryseobacterium /
Elizabethkingia spp. isolate CH2B

1.05 ±0.59 1.02 ±1.11 0.00 ±0.17 2.39 ±0.96 1.30 ±0.87 0.00  ±0.48 0.20  ±0.84 2.47  ±0.28

E. coli 1.53 ±0.29 1.03 ±0.10 0.94 ±0.08 1.11 ±0.34 1.73 ±0.56 0.00  ±0.06 0.88  ±0.05 0.85  ±0.33
E. tarda 2.10 ±0.19 0.93 ±0.21 1.49 ±0.70 1.08 ±0.45 0.39 ±0.52 0.78  ±0.19 0.48  ±0.06 0.74  ±0.21
L. innocua 2.20 ±0.61 1.65 ±0.22 0.00 ±0.10 0.51 ±0.30 0.54 ±0.20 0.65  ±0.07 1.02  ±0.12 1.37  ±0.24
L. monocytogenes 1.14 ±0.14 1.73 ±0.19 0.35 ±0.12 1.67 ±0.13 1.70 ±0.14 0.33  ±0.13 0.36  ±0.17 0.72  ±0.07
P. aeruginosa 0.00 ±0.38 1.51 ±0.67 1.17 ±0.50 1.30 ±0.31 1.02 ±0.60 1.59  ±0.25 0.73  ±0.46 1.84  ±0.40
S. enterica 6.11 ±3.43 0.97 ±0.23 0.00 ±1.00 0.00 ±1.15 0.85 ±1.47 1.01  ±0.44 0.00  ±0.93 0.71  ±0.51
Flavobacterium spp. isolate YO59 1.99 ±0.26 0.90 ±0.10 0.29 ±0.27 1.05 ±0.29 0.95 ±0.32 0.81  ±0.05 0.81  ±0.11 1.19  ±0.25
Vibrio  spp. 0.31 ±0.54 0.33 ±0.57 0.32 ±0.56 0.30 ±0.52 0.30 ±0.52 0.33  ±0.57 0.35  ±0.61 0.42  ±0.72

Myroides /Empedobacter spp. isolate and Chryseobacterium /Elizabethkingia spp. 
isolates relative biofilm-forming capacity Test isolates

 
* Relative biofilm-forming capacity according to Van Houdt et al., 2004 
 
 

3.3.2 Cell-surface hydrophobicity assays 

 
3.3.2.1   Bacterial adherence to hydrocarbons (BATH) 

 
BATH values for the Myroides and Empedobacter spp. isolates ranged from 3.03 

to 5.13 %, thus all of the isolates were classified as very hydrophilic (Table 3.8).  It was 

not possible to correlate biofilm formation or biofilm-forming capacity of Myroides and 

Empedobacter spp. study isolates at room temperature/37 ˚C in TSB/EAOB with the 

BATH hydrophobicity measurements.   
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Figure 3. 9 Relative biofilm-forming capacity of the Myroides and Empedobacter spp. isolate (MY1) and selected Chryseobacterium and  Elizabethkingia 

spp. isolates following exposure to spent medium, at room temperature in nutrient-rich media (TSB) under static conditions.  The filtered 
supernatants of 13 bacterial isolates were used as follows:  

 
 
 
 
 

A. hydrophila A. salmonicida A. sobria Chryseobacterium / Elizabethkingia spp. isolate CH2BE. coli

E. tarda 
L. innocua

L. monocytogenes P. aeruginosa S. enterica serovar Arizonae F. johnsoniae-like isolate –YO59 Vibrio spp.
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Table 3. 8 Cell surface hydrophobicity (BATH and SAT assays) values and profiles, capsule 
presence and Congo red accumulation results for Myroides and Empedobacter and 
Chryseobacterium and Elizabethkingia spp. isolates. 

   

Ave±SD Profile Ave±SD Profile
Myroides/Empedobacter 

spp. isolates
MY1 4.86 ±0.39 very hydrophilic 3 ±0 Very hydrophilic ++ +
MY2 3.16 ±1.20 very hydrophilic 3 ±0 Very hydrophilic ++ +
MY2B 5.05 ±0.21 very hydrophilic 3 ±0 Very hydrophilic ++ +
MY3 3.03 ±0.49 very hydrophilic 2.5 ±0.2 Very hydrophilic ++ +
MY3B 5.13 ±0.71 very hydrophilic 2.5 ±0 Very hydrophilic ++ +

Chryseobacterium/
Elizabethkingia 

spp. isolates
CH1 7.67 ±0.65 very hydrophilic 0.5 ±0 Moderate hydrophobicity + +
CH1B 4.67 ±0.70 very hydrophilic 0.5 ±0 Moderate hydrophobicity + +
CH2 5.40 ±0.78 very hydrophilic 0.2 ±0.08 Moderate hydrophobicity + +
CH2B 0.77 ±1.48 very hydrophilic 4 ±0 very hydrophylic ++ +
CH3 19.14 ±1.37 very hydrophilic 0.5 ±0.12 Moderate hydrophobicity + +
CH4 23.21 ±2.65 Moderate hydrophobicity 0.5 ±0 Moderate hydrophobicity (+) +
CH4B 16.84 ±0.76 very hydrophilic 0.5 ±0.12 Moderate hydrophobicity (+) +
CH5 17.15 ±0.28 very hydrophilic 0.5 ±0 Moderate hydrophobicity + +
CH6 11.73 ±1.21 very hydrophilic 0.5 ±0.12 Moderate hydrophobicity + +
CH7 18.93 ±4.76 very hydrophilic 0.5 ±0 Moderate hydrophobicity + +
CH8 14.17 ±0.63 very hydrophilic 0.5 ±0 Moderate hydrophobicity (+) +
CH9 28.12 ±3.45 Moderate hydrophobicity 2.5 ±0 very hydrophylic ++ +
CH10 11.71 ±1.06 very hydrophilic 1 ±0.26 Moderate hydrophobicity - +
CH11 24.99 ±2.97 Moderate hydrophobicity 3 ±0 very hydrophylic (+) +
CH12 17.25 ±2.21 very hydrophilic 3 ±0 very hydrophylic - +
CH13 12.66 ±0.39 very hydrophilic 1.5 ±0 very hydrophylic (+) +
CH14 15.09 ±3.97 very hydrophilic 1.5 ±0 very hydrophylic (+) +
CH15 40.90 ±1.39 Moderate hydrophobicity 1.5 ±0 very hydrophylic (+) +
CH16 33.18 ±5.03 Moderate hydrophobicity 1.5 ±0 very hydrophylic (+) +
CH17 30.70 ±4.41 Moderate hydrophobicity 1.5 ±0 very hydrophylic - +
CH18 42.36 ±1.50 Moderate hydrophobicity 2 ±0.32 very hydrophylic - +
CH19 28.70 ±1.53 Moderate hydrophobicity 1 ±0 Moderate hydrophobicity (+) +
CH21 25.03 ±4.10 Moderate hydrophobicity 2.5 ±0 very hydrophylic (+) +
CH22 3.54 ±2.29 very hydrophilic 3 ±0 very hydrophylic - +
CH23 2.55 ±1.05 very hydrophilic 0.5 ±0.12 Moderate hydrophobicity + +
CH24 14.98 ±1.54 very hydrophilic 1 ±0 Moderate hydrophobicity (+) +
CH25 8.77 ±0.68 very hydrophilic 3 ±0 very hydrophylic (+) +
CH26 8.77 ±0.68 very hydrophilic 3 ±0 very hydrophylic (+) +
CH27 1.58 ±0.10 very hydrophilic 2 ±0.2 very hydrophylic - +
CH28 8.77 ±0.68 very hydrophilic 3 ±0 very hydrophylic (+) +
CH29 16.01 ±2.69 very hydrophilic 2.5 ±0 very hydrophylic + +
CH30 12.08 ±0.09 very hydrophilic 1 ±0.32 Moderate hydrophobicity - +
CH33 72.25 ±6.16 very hydrophobic 2.5 ±0 very hydrophylic - +
CH34 12.73 ±1.48 very hydrophilic 3 ±0 very hydrophylic (+) +

Capsule† Congo
Red

Isolate

Surface hydrophobicity
BATH* 

(%)
SAT#

(NH4)2SO4

 
* BATH assay described by Rosenberg et al., 1980 
# SAT assay described by (Sorongon et al., 1991; and Rozgonyi et al., 1985). 
† (++) = very thick capsule; (+) = thin capsule; (-) = no capsule 
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BATH values for the Chryseobacterium and Elizabethkingia spp. isolates ranged 

from 0.77 to 72.25 %, with 70.6 % (24/34) of the isolates being classified as very 

hydrophilic, 26.5 % (9/34) moderately hydrophobic, and only 3.0 % (isolate CH33) as 

very hydrophobic (Table 3.8). The three isolates (CH10, CH23, CH24) which were 

considered non-adherent in nutrient-poor adherence assays were very hydrophilic (Table 

3.8), while the only hydrophobic isolate (CH33) displayed positive biofilm formation 

under all conditions (Table 3.4 and 3.8).  Isolate CH2B, the most hydrophilic isolate 

(0.77%), displayed positive biofilm formation under all conditions with very strong 

adherence in TSB, especially at 37 ˚C (Tables 3.4 and 3.8).  No significant correlation 

could be observed between biofilm formation and hydrophobicity measured using the 

BATH assay. 
 

3.3.2.2   Salting Aggregation Test (SAT) 

SAT values for the Myroides and Empedobacter spp. isolates ranged from 2.5 – 3 

M, and all the isolates were classified as being very hydrophilic (Table 3.8).  As for the 

BATH assay, it was not possible to correlate biofilm formation or biofilm-forming 

capacity of the study isolates at room temperature/37 ˚C in TSB/EAOB with the SAT 

hydrophobicity of the isolates.  Similarly, no correlation was observed between 

hydrophobicity of the isolates calculated by BATH and SAT assays. 

 Of the Chryseobacterium and Elizabethkingia spp. isolates, 19/34 (55.88 %) were 

classified as being very hydrophilic with SAT values ranging from 1.5 – 4 M, and 15/34 

(44.12 %) displayed moderate hydrophobicity, with values of 0.2 – 1.0 M.  Isolate CH2 

displayed the lowest SAT hydrophobicity value (0.2 M), as well as weak adherence in the 

adherence assay (Tables 3.4 and 3.8).  As with the BATH assay, isolate CH2B displayed 

the highest (4 M) hydrophilicity and displayed positive biofilm formation under all 

conditions with very strong adherence in TSB at 37 ˚C (Tables 3.4 and 3.8).  Positive 

correlations were observed between hydrophobicity by the SAT assay and biofilm 

formation as well as biofilm-forming capacity, respectively, of Chryseobacterium/ 

Elizabethkingia spp. isolates in nutrient-poor EAOB medium at room temperature under 

dynamic/static conditions (r = 0.5192, p = 0.002; r = 0.5183, p = 0.002; r = 0.4571, p = 

0.0066; r = 0.4653, p = 0.0056).  A similar relationship was observed for SAT 
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hydrophobicity and biofilm formation and biofilm-forming capacity, respectively, for 

isolates in nutrient-rich TSB at 37 ˚C under dynamic conditions (r = 0.3646, p = 0.034; r 

= 0.3749, p = 0.029).  No significant correlation was observed between hydrophobicity 

determined by SAT and BATH assays.   
 
 

3.4 Discussion 

Myroides and Empedobacter spp. study isolates displayed strong adherence 

profiles and high relative biofilm-forming capacity, with a preference for adherence at 

lower temperatures (~21 ˚C) and nutrient-rich environments with low hydrodynamic 

forces (static incubation).  These conditions correlated with their area of isolation, as 

aquacultural tanks are generally kept at lower temperatures (ambient temperature), with 

high nutrient availability and steady slow water flow.   

Species of the genus Myroides have been isolated from aquatic sources (Hugo et 

al., 2005) including South Atlantic fish spp., freshwater fish skin and in the air during 

chill storage of freshwater fish (Gonzáles et al., 2000).  Myroides species have also been 

isolated from surface-associated structures or consortia including M. pelagicus from 

crude oil-utilizing and –emulsifying consortia in seawater (Maneerat et al., 2005) and M. 

odoratus from mixed-species biofilm communities developed on the surfaces of seafood-

processing plant equipment (Bremer et al., 2001; and Tide et al., 1999).  In the present 

study, isolates also displayed moderate adherence at 37 ˚C in nutrient rich-environments 

under dynamic conditions.  These conditions simulate warm-blooded animal host 

environments with higher hydrodynamic properties in vitro, including areas such as 

human eyes, internal organs, blood, cavity fluids and wounds from which members of 

these genera have been isolated.  Empedobacter strains have been isolated from human 

eyes, bronchial secretions, peritoneal fluid, dialysis fluid, serous cavity fluid, cervixes 

and vaginas, wounds, blood and urine (Bruun, 1982; and Holmes et al., 1978), while 

Myroides spp. have been isolated from human intestine, urine, faeces, wound discharge, 

sputum and blood (Hugo et al., 2005; and Schreckenberger, 1998).  M. odoratus has been 

isolated from soft tissue in amputation sites and from patients suffering from urinary tract 

infections (Holmes et al., 1979).  Similarly, Yagci et al. (2000) isolated M. odoratimimus 
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from urinary tract infections.  The strong adherence profile displayed by study isolates 

was found to commence within the first 16 hours of incubation, indicating their strong 

affinity for adherence to surfaces as opposed to planktonic existence in nutrient-poor 

environments, resulting in better utilization of limited nutrients.   

Although the presence of thick capsular material has previously been correlated to 

the strong adherence phenotype (Ofek et al., 2003), it was not possible to correlate this 

qualitative characteristic with adherence in the present study.  Quantitative 

characterization of the capsule might provide clues to the capsules’ roles in Myroides and 

Empedobacter spp. adherence.  All the Myroides and Empedobacter spp. isolates 

displayed very hydrophilic profiles by both SAT and BATH assays, but no significant 

differences were observed between biofilm-formation and hydrophobicity assays, as well 

as between the SAT and BATH assays.  Thus, in this study we could not show that 

hydrophobicity plays a significant role in the adherence of Myroides and Empedobacter 

spp. isolates to polystyrene surfaces. 

Outer membrane proteins may serve as adhesins anchored on the outer membrane 

surface of Gram-negative bacteria (Ofek et al., 2003).  These adhesins play an important 

role in virulence of bacteria as they have been found to mediate intimate adhesion to the 

target cell by bacteria and are often associated with invasion of the target cell or 

formation of a lesion at the adhesion site (Ofek et al., 2003). In the previous chapter, 

distinction between the Myroides and Empedobacter spp. study isolates was made by the 

presence of an extra OMP band present in the protein profiles of two of the study isolates 

MY1 and MY3 (Section 2.3.7).  No significant difference in biofilm formation or relative 

biofilm-forming capacity was observed for these isolates, in comparison to other 

Myroides spp. isolates eliminating the possibility of these proteins playing a significant 

role in adhesion to polystyrene surfaces.  These two isolates did however show lower 

hydrophobicity values (± 1%) compared to the other Myroides and Empedobacter spp. 

isolates, and their increased hydrophilicity may potentially be correlated to the altered 

OMP profiles.  Further investigation into the effect of this OMP might reveal the role of 

the protein in the hydrophilicity of the organism.  

Adherence of the Myroides and Empedobacter spp. study isolates was not 

influenced by the spent medium supernatant from L. monocytogenes or L. innocua.  
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However it has been found that the attachment of L. monocytogenes to stainless steel 

food surface areas was increased by the presence of M.  odoratus strains (Bremer et al., 

2001), thus it is possible that the Myroides spp. isolates may produce the inducing factor 

when L. monocytogenes strains are present in their immediate environment.   

Chryseobacterium and Elizabethkingia spp. isolates showed variation in their 

biofilm-forming profiles and relative biofilm-forming capacities depending on incubation 

temperatures and growth media used. As with the Myroides and Empedobacter study 

isolates, best adherence by majority of the isolates was documented at ambient 

temperature (~21 ˚C) under low hydrodynamic conditions (static incubation) in nutrient-

rich environments, correlating to conditions from the aquaculture isolation sites. In a 

study by Basson et al. (in press) on the adherence abilities of Flavobacterium spp. 

isolates isolated from South African aquaculture systems, a preference for biofilm 

formation by the Flavobacterium spp. isolates was observed at 26ºC, in nutrient-poor 

EAOB medium, under dynamic flow conditions, although they were able to form biofilm 

structures to a lesser extent in nutrient-rich TSB.  The significance of these results is that 

both genera belong to the family Flavobacteriaceae, yet display differences in their 

adherence abilities.  Chryseobacterium spp. are part of the normal microflora of aquatic 

environments  and are often isolated from mucus on the surface of the skin, gills and 

intestines of fish (Bernardet et al., 2006).  They have been found colonizing healthy eel, 

skin and muscle from wild and farmed freshwater fish and intestines of salmon 

(Oncorhynchus keta) but were not implicated in causing disease in these fish during the 

investigations (Lijnen et al., 2000; and Morita et al., 1997).  As opportunistic pathogens, 

they cause disease in fish with low immunity due to environmental stress or suffering 

from underlying disease caused by primary fish pathogens.  In addition, they have been 

implicated in fish product spoilage during processing of the products as well as during 

storage of the fish products (Bernardet et al., 2006; de Beer et al., 2006; and González et 

al., 2000).  Their ability to adhere to surfaces in aquaculture cultivation tanks increases 

the risk of secondary infection of cultivated fish or spoilage of fish products during 

processing, contributing to aquacultural losses.      

Chryseobacterium and Elizabethkingia spp. study isolates also displayed weak to 

moderate, and a few strong adherence profiles at 37 ˚C in nutrient-rich environments but 
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contrary to the Myroides and Empedobacter isolates, preferred lower hydrodynamic 

conditions which resulted in better adherence capabilities.  An exception, isolate CH2B, 

which previously clustered with the E. meningoseptica reference strain through 16S 

rRNA PCR-RFLP analysis (Section 2.3.3), displayed the highest biofilm formation value 

obtained in this study at 37 ˚C in nutrient-rich media under dynamic conditions. This 

isolate may thus play a significant role in warm-blooded animal biofilm-associated 

disease.  Species of these genera have been associated with many infections in 

immunocompromised and post-operative patients (Lee et al., 2006; Bernardet et al., 

2005; Hoque et al., 2001; Hsueh et al., 1997; and Hseuh et al., 1996).  Therefore, the 

ability of these environmental study isolates to adhere in conditions similar to that of the 

human body (e.g., 37 ˚C and an environment rich in nutrients), may pose a threat to the 

health of workers handling aquaculture stock and the related fish products, especially 

from fish like blue tilapia.  In addition, the dispersal of these isolates to veterinary or 

medical environments increases the threat of disease and adherence under suitable 

conditions could lead to difficulty in eradication of adherent or biofilm-associated 

Chryseobacterium and Elizabethkingia spp. organisms.  In addition, adherent isolates 

displayed very high MAR indices and antimicrobial susceptibility test results suggested 

the possibility of MDR phenotypes by these isolates (section 2.3.5). 

Molecules in the spent medium supernatant of other bacterial species (potentially 

including various quorum sensing AHLs) did not induce significant increased adherence 

of study isolates which were capable of initial strong adherence without induction.  

Weakly adherent isolates were induced to stronger adherence by growth in media 

supplemented with supernatant containing spent media from Aeromonas spp., E. tarda, E. 

coli, Flavobacterium spp. isolate YO59, Listeria spp., P. aeruginosa, S. enterica serovar 

Arizonae, and a Vibrio spp. isolate.  Therefore, it is likely that weakly adherent 

Chryseobacterium spp. or Elizabethkingia spp. organisms may be incorporated into 

biofilms more readily in the presence of these species and contribute to an overall 

increased risk of medical and veterinary infection and disease, secondary infections in the 

aquacultural environment, contamination and spoilage of food products as well as 

industrial or potable water system contamination.  Although the specific molecules 

causing induction of adherence were not identified, certain mechanisms and biological 
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molecules have previously been described.  Wentworth et al. (1991) found that dying 

cells of P. aeruginosa release intracellular lectins which tether intact bacteria to each 

other or to the underlying surfaces through carbohydrate-lectin interactions.  Members of 

the Cytophaga-Flavobacterium-Bacteriodes to which the family Flavobacteriaceae 

belong live on material released from dead microorganisms due to their ability to produce 

diverse enzymes (O’Sullivan et al., 2002).  It has also been proposed that secreted 

polysaccharides of the biofilm matrix may trap additional bacteria, contributing to the 

maturation of a biofilm community (Ofek et al., 2003).  Furthermore, Hasman et al. 

(1999) found that E. coli expresses Ag43 protein which induces the autoaggregation of 

nonfimbriated bacteria.  P. aeruginosa secretes a polyuronic acid, alginate, which 

promotes accumulation of biofilm bacteria and biofilm development (Costerton et al., 

1995).  Another possible mechanism that may be employed by the inducing bacteria 

could be similar to that of staphylococci which secrete an intracellular protein and binds 

to bacterial surfaces or to components of the extracellular matrix in order to enhance the 

adhesion of microorganisms to the target substrata (Palmer et al., 2003).  In P. 

aeruginosa two quorum sensing signaling systems, lasR-lasI and rhlR-rhlI, are involved 

in biofilm formation (Davies et al., 1998).  

Some bacteria may undergo time-dependent changes in avidity of adhesion (Ofek 

et al., 2003).  In the present study, it was found that the majority of the Chryseobacterium 

and Elizabethkingia spp. study isolates adhered to the surface within the first 16 hours of 

incubation.  By comparison, the Vibrio spp. control showed increased biofilm formation 

as duration increased.  This indicates the affinity of the isolates to live in sessile state 

rather than having planktonic existence when nutrient availability is limited.  This 

lifestyle mode, i.e., biofilm formation, allows nutrient access and utilization in nutrient 

poor environments (Ofek et al., 2003).   

No correlation was observed between hydrophobicity as determined by the BATH 

assay, and the ability of the Chryseobacterium and Elizabethkingia isolates to adhere, as 

non-biofilm-forming and strong biofilm-forming isolates displayed very hydrophilic to 

moderate hydrophobicity profiles.  A positive correlation with a significant difference 

was observed between the SAT and growth of the isolates in nutrient-poor media at room 

temperature under dynamic and static conditions. Similarly, a significant positive 
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correlation was observed between SAT and growth of the isolates in nutrient-rich media 

at 37 ˚C under dynamic conditions.  Basson et al. (in press) found a weak negative 

correlation for biofilm-forming capacity of Flavobacterium spp. isolates and BATH 

hydrophilicity following growth in nutrient-poor EAOB, once again indicating the 

differences in adherence and cell-surface properties possibly involved in adherence and 

biofilm formation of the genera in the family Flavobacteriaceae.  In addition, no 

correlation could be made between hydrophobicity as determined by SAT and BATH 

assays.  This was also observed for SAT and BATH assay hydrophobicity results for 

Flavobacterium spp. isolates from similar aquaculture systems (Basson et al., in press).  

These hydrophobicity assays often fail to correlate (Ofek et al., 2003; and Babelona et 

al., 2001), which might be explained by the SAT assay measuring the hydrophobicity of 

the outer surface as a whole, while the BATH assay, measured it in terms of adhesion 

(Mattos-Guaraldi et al., 1999).  Additionally, hydrophobicity and surface charge of 

bacteria may differ between species, serotypes or strains, change with variation in growth 

conditions, physiological state of cells, and composition of suspension media, or might 

involve variable expression of surface-associated proteins between strains (Mattos-

Guaraldi et al., 1999; and Sorongon et al., 1991).  Capsule components have been shown 

to play an important role in the adhesion and biofilm formation of certain bacterial 

species (Bell, 2001; and Decostere et al., 1999).  The expression of a capsule layer by 76 

% of the Chryseobacterium / Elizabethkingia spp. isolates could not be correlated to the 

different adherence abilities or the hydrophobicity demonstrated by the study isolates.  

Ofek et al. (2003) have observed that the presence of a capsule may be responsible for 

masking hydrophobic surface components, thus influencing BATH test results.       

The present study has revealed that the majority of the study isolates were capable 

of initial adherence to surfaces, which may be correlated to biofilm-formation.  It was 

found that the presence of molecules or substances produced by human and aquaculture 

bacterial pathogens may induce the adherence of non-adherent or weakly adhering 

species of these genera.  No definite correlations could be made between adherence and 

the hydrophobicity characteristics demonstrated by the isolates, or the 

genotypes/phenotypes displayed by Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. isolates in sections 2.3.3 to 2.3.7.   
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Pure culture biofilms are not found in nature, and in reality consist of a diversity 

of different microorganisms.  The composition of these mixed biofilms is a result of the 

autoaggregation and coaggregation characteristics demonstrated by the organisms.  The 

role of autoaggregation and/or coaggregation was thus investigated for Myroides and 

Empedobacter spp. and Chryseobacterium and Elizabethkingia spp. isolates. 
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CHAPTER FOUR 
 

Biofilm maturation through aggregation of biofilm bacteria. 
Coaggregation and autoaggregation studies of Chryseobacterium, 

Elizabethkingia, Myroides and Empedobacter spp. bacteria isolated from 
aquaculture systems. 

 

4.1 Introduction 
 

After primary adherent organisms have successfully attached to a surface, they 

begin to divide and their progeny cover the surface of the substratum.  Subsequent 

organisms then adhere to the primarily attached cells, with this attachment being 

facilitated through either coaggregation or autoaggregation (Rickard et al., 2003a).  

Coaggregation is the adherence of genetically distinct organisms and could either be 

intergeneric as well as inter- and intraspecies aggregation (Rickard et al., 2003b).  

Autoaggregation has been described as a ‘selfish’ ploy by which organisms aggregate 

with their own species so as to reach a competitive advantage within a community 

(Rickard et al., 2003a).  Both coaggregation and autoaggregation lead to the formation of 

microcolonies and subsequently, contribute to the maturation of a biofilm community 

(Rickard et al., 2003b).  

 Coaggregation was first recognized between different oral plaque-forming 

bacteria, where both intergeneric and intrageneric coaggregation was observed 

(Kolenbrander et al., 1999; and Gibbons and Nyaard, 1970).  This phenomenon is now 

recognized in diverse environments including amongst bacteria isolated from aquatic 

environment biofilms (Buswell et al., 1997), mammalian gut biofilms, the human 

urogenital tract and potable-water-supply systems (Handley et al., 2001).  

 When considering the benefits coaggregation confers on bacterial partnerships, it 

is likely that the strength and specificity of the interactions will be subject to natural 

selection.  Given that most bacteria exist in environments with fluctuating conditions 

(e.g., shear forces, nutrient availability or physiological conditions), bacteria within 

coaggregated communities will survive and proliferate under conditions that reduce the 

prevalence of single non-coaggregated cells (Rickard et al., 2003a).  Shear force can 
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select for coaggregation ability within a multi-species biofilm community, thus Elvers et 

al. (1998) proposed that coaggregation interactions may enhance the development of 

biofilms in fast-flowing water systems as non-coaggregating organisms would be washed 

away from their optimum ecological niche.  Majority of microorganisms integrating into 

biofilm communities will possess physiological and biochemical characteristics that 

support the integration and survival of these organisms within biofilms (Handley et al., 

2001).  The ability to coaggregate may be a significant physiological characteristic of 

bacteria in biofilms under high shear, as non-coaggregating bacteria are less likely to 

successfully integrate into developing biofilms (Handley et al., 2001).  Rickard et al. 

(2003b) conducted a study in a water tank with a localized shear force directed across the 

biofilm surface with the surrounding body of water almost static, and found 

coaggregating strains occurring in a much higher frequency in the freshwater 

multispecies biofilm than in the surrounding bulk liquid.  Coaggregation is likely to 

enhance the development of freshwater multi-species biofilms (Rickard et al., 2003b). 

Another benefit is that coaggregating cells on a substratum can possess a 

combined metabolic advantage over single cells.  Palmer et al. (2003) demonstrated that 

the coaggregating partnership of S. oralis and A. naeslundii formed a nutritionally 

beneficial, mutualistic relationship that allowed each to grow where neither grew alone.  

This mutualism is a synergistic action of several species with overlapping patterns of 

enzyme activity to catabolise complex organic materials and results in the liberation of 

additional nutrients, which might help to maintain the characteristic diversity of biofilm 

communities found in many habitats (Bradshaw et al., 1994).  Clearly in such 

relationships, the close proximity of the participating organisms, brought together 

through coaggregation, would maximize the efficiency of the consortium (Rickard et al., 

2003a).   

 Since coaggregation can take the form of intra-, inter-, or multigeneric 

interactions (Buswell et al., 1997), a combination of these interactions contributes to the 

overall structure of the bacterial community in dental biofilms (Kolenbrander, 1988). 

Both intra- and inter-species aggregation interactions play a major role in the formation 

of biofilms (Shen et al., 2005).  Intergeneric coaggregation is common between oral 

bacteria (Kolenbrander and London, 1993), but intraspecies coaggregation has been 
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observed to occur between freshwater biofilm bacteria but has not yet been reported 

between plaque bacteria.  Thus, intraspecies coaggregation may well be a characteristic 

that is unique to freshwater biofilm bacteria (Rickard et al., 2002a). 

 Coaggregation is a highly specific process which often involves the interaction of 

complementary bacterial surface molecules functioning as adhesins and receptors 

(Kolenbrander, 1995).  Examples of bacterial structures or molecules involved in 

coaggregation include fimbriae from numerous oral species, such as S. sanguis, A. 

viscosus and P. gingivalis, protein adhesins on the surface of Capnocytophaga gingivalis 

and F. nucleatum, and a carbohydrate receptor on S. sanguis (Kinder and Holt, 1994).  

Aggregation occurs through adhesin-receptor interactions, where the adhesins are lectin-

like proteins and the receptors contain carbohydrates such as galactose, galactosamine or 

lactose residues (Kolenbrander, 2000; Rickard et al., 2003b; Rickard et al., 2002a; 

Clemans et al., 1999; and Cisar et al., 1979).  Lectin-saccharide interactions mediating 

coaggregation are very common in both oral and aquatic biofilm communities (Malik et 

al., 2003; Rickard et al., 2003b; and Kolenbrander, 2000).  Galactosides are the sugars 

most commonly recognized by lectins of oral bacteria (Kolenbrander, 2000) and aquatic 

bacteria (Rickard et al., 2000).  Coaggregation of aquatic bacteria may be reversed by the 

addition of simple sugars (Rickard et al., 2003b; and Buswell et al., 1997), which allows 

identification of the type of carbohydrate receptor as well as the receptor bearing cell.  In 

addition, Kolenbrander (1995) proposed the treatment of coaggregating partners with 

either protease or heat to identify the coaggregating partner being the protein adhesin. 

 In this chapter, the coaggregation and autoaggregation abilities of members of the 

genera Chryseobacterium and Elizabethkingia and Myroides and Empedobacter were 

investigated to determine their influence in biofilm communities.  Strongest 

coaggregating partners were subjected to reversal studies so as to potentially elucidate 

adhesin-receptor interactions. 
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4.2 Materials and Methods 

4.2.1 Autoaggregation and coaggregation assays 
 
 Three Myroides and Empedobacter spp. isolates (MY1, MY2B, MY3B), and 20 

Chryseobacterium and Elizabethkingia spp. isolates (CH1, CH2B, CH3, CH4B, CH8, 

CH11, CH12, CH15, CH18, CH21, CH22, CH23, CH25, CH26, CH28, CH29, CH30, 

CH33 and CH34) were examined for their ability to coaggregate, and all of the study 

isolates were examined for their ability to autoaggregate.  The 23 selected isolates were 

subjected to coaggregation assays with the following bacterial partner strains, i.e., A. 

hydrophila, A. sobria, A. salmonicida, A. media, S. enterica serovar Arizonae, 

Acinetobacter spp., E. faecalis ATCC 2912, E. coli, F. johnsoniae-like spp. isolates 

YO12, YO19, YO51, YO60, YO64, L. monocytogenes, L. innocua LMG 13568, 

Micrococcus luteus,  P. aeruginosa and S. aureus ATCC 25923.  Study isolates and 

potential coaggregation partners were grown in 50 ml Erlenmeyer flasks, containing 20 

ml EAOB or TSB and harvested after 36 h, by centrifugation for 10 min at 10 000 rpm.  

Cells were washed and resuspended in sterile distilled H2O.  Cell suspensions were 

standardized to an OD of 0.3 at a wavelength of 660 nm (Malik et al., 2003).   

In order to measure the percentage of autoaggregation, a sample of 1 ml bacterial 

suspension was transferred to a sterile plastic 2 ml cuvette and the OD was measured 

after 60 min at room temperature using a DU 640 spectrophotometer (Beckman Coulter) 

at a wavelength of 660 nm (Malik et al., 2003).  The degree of autoaggregation of each of 

the 39 isolates tested was determined as the percent decrease of optical density after 60 

min using the equation: 

% Autoaggregation = 
o

o

OD
ODOD 60−

 × 100, 

where ODo, refers to the initial OD of the organism, while OD60 refers to the OD of 

the supernatant following 60 min incubation at room temperature and centrifugation at 

2000 rpm for 2 min (Malik et al., 2003).  

The degree of coaggregation was determined by OD readings of paired isolate 

suspensions (500 µl of each isolate).  Cell mixtures were centrifuged at 2000 rpm for 2 

min and the OD of the supernatant (600 µl) was measured at a wavelength of 660 nm 
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(Malik et al., 2003).  The quantitative coaggregation rate of paired isolates was calculated 

using the equation: 

% Coaggregation = 
Tot

STot

OD
ODOD −

 × 100,  

where ODTot refers to the initial OD, taken immediately after the relevant strains were 

paired; and ODS refers to the OD of the supernatant, following centrifugation of the 

mixture after a 60 min incubation period at room temperature (Malik et al., 2003).  

Experiments were carried out in triplicate on two separate occasions. 

 

4.2.2 Reversal and inhibition of coaggregation  
 

Isolate CH2B was selected in order to investigate the effect of simple sugars, heat 

and protease treatment on its ability to coaggregate with L. innocua and L. 

monocytogenes. 

 

4.2.2.1  Reversal with simple sugars 
 

The ability of sugars to reverse coaggregation assays were conducted according to 

the method described by Rickard et al. (2003b).  Filter-sterilized solutions of lactose and 

galactose, respectively, were added to coaggregating partners to final concentrations of 

50 mM.  Mixtures were vortexed and tested for coaggregation using the method 

described in section 4.2.1. 

 

4.2.2.2 Inhibition of coaggregation by heat treatment 
 

The ability of heat treatment to inhibit coaggregation was conducted using the 

method of Kolenbrander et al. (1985).  Cells were harvested from O/N EAOB/TSB 

cultures, washed three times and resuspended in de-ionized water.  Bacterial suspensions 

were then heated at 80˚C for 30 min in a waterbath.  Following heat treatment, the OD of 

each bacterial suspension was adjusted to 0.3 at a wavelength of 660 nm.  The capacity of 

heat-treated cells to coaggregate was assessed with the method described in section 4.2.1. 
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4.2.2.3  Inhibition of coaggregation by protease treatment 
 

Protease sensitivity of the polymers mediating coaggregation on each of the 

members of coaggregating pairs was tested using a method described by Rickard et al. 

(2004a).  Cells were harvested from O/N EAOB/TSB cultures and resuspended in de-

ionized water to an OD of 0.3 at a wavelength of 660 nm.  Proteinase K was added to the 

standardized cell suspensions to a final concentration of 2 mg/ml.  Incubation at 37˚C for 

2 h was followed by centrifugation and washing of the pelleted cells three times in de-

ionized water.  Cells were resuspended and the OD adjusted to 0.3 at 660 nm.  Protease-

treated and untreated cells were combined and the capacity to coaggregate determined 

using the method described in section 4.2.1.  

 

4.3 Results 

4.3.1 Autoaggregation assays 
 

Autoaggregation indices of the Myroides and Empedobacter spp. isolates ranged 

from 7.0 – 24.8% (Table 4.1). Autoaggregation enabled the differentiation of the 

Myroides and Empedobacter spp. isolates into two groups based on the percentage 

autoaggregation where groups 1 (isolates MY1, MY3) and group 2 (isolates MY2, 

MY2B, MY3B) displayed approximately 20-25% and 7-9% autoaggregation, 

respectively (Table 4.1).  A significant correlation was observed between autoaggregation 

and biofilm formation as well as relative biofilm-forming capacity in nutrient-rich media 

at room temperature under dynamic conditions (biofilm formation – r = 0.9629, p = 

0.008; relative biofilm-forming capacity – r = 0.9629, p = 0.0085) (ANOVA; Statistica 

v.7.0, Statsoft, Tulsa, USA).  However, no significant correlations were observed with 

the BATH and SAT hydrophobicity assays.  In addition the isolate clusters observed in 

autoaggregation correlated to the OMP profiles obtained in Chapter 2 (Table 2.9). 

Autoaggregation for the Chryseobacterium and Elizabethkingia spp. isolates 

appeared to be strain-specific with indices ranging from 2.9 – 51.6% (Table 4.1).   
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Table 4. 1 Autoaggregation indices of the Myroides and Empedobacter,  and Chryseobacterium and 
Elizabethkingia spp. isolates and 17 bacterial partner strains selected for coaggregation 
assays.  

 
Bacterial isolates Autoaggregation (%)*

Acinetobacter spp. 25.4
Aeromonas salmonicida 41.8
Aeromonas hydrophila 28.3
Aeromonas media 20.3
Aeromonas sobria 27.5
Enterococcus faecalis ATCC 9212 45.0
Flavobacterium johnsoniae -like isolates
YO12 33.9
YO19 16.1
YO51 13.9
YO60 27.5
YO64 20.1
Listeria innocua LMG 13568 56.2
Listeria monocytogenes 28.9
Micrococcus luteus 51.1
Pseudomonas aeruginosa 24.3
Salmonella enterica serovar Arizonae 71.9
Staphylococcus aureus ATCC 25923 76.1
Myroides/Empedobacter spp. isolates
MY1 22.4
MY2 7.0
MY2B 8.8
MY3 24.8
MY3B 7.7
Chryseobacterium/Elizabethkingia spp. isolates
CH1 17.8
CH1B 47.0
CH2 41.2
CH2B 37.4
CH3 19.1
CH4 23.6
CH4B 19.9
CH5 38.9
CH6 2.9
CH7 15.4
CH8 23.8
CH9 51.6
CH10 41.3
CH11 26.3
CH12 25.9
CH13 41.2
CH14 43.5
CH15 20.4
CH16 45.7
CH17 46.2
CH18 20.4
CH19 42.7
CH21 28.8
CH22 14.0
CH23 15.7
CH24 30.1
CH25 21.3
CH26 14.6
CH27 32.0
CH28 17.9
CH29 15.1
CH30 14.9
CH33 22.6
CH34 24.9  

* Autoaggregation indices represent the mean of two independent experiments carried out in triplicate at OD 660 nm (Malik et al.,   
    2003). 
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Strongly adherent isolates had autoaggregation indices of 21.3 – 43.5%, moderately 

adherent isolates 14.9 – 41.2%, weakly adherent isolates 2.9 – 47.0%, and non-adherent 

isolates 14.0 – 51.6%.  A significant positive correlation was observed between 

autoaggregation and biofilm formation as well as relative biofilm-forming capacity in 

nutrient-rich media at room temperature under dynamic conditions (biofilm formation – r 

= 0.3501, p = 0.0424; relative biofilm-forming capacity – r = 0.3505, p = 0.0421) 

(ANOVA; Statistica v.7.0, Statsoft, Tulsa, USA).  In addition, no significant relationships 

between autoaggregation and hydrophobicity by the BATH and SAT assays were 

obtained.   

  

4.3.2 Coaggregation assays 
 

Coaggregation indices of the Myroides and Empedobacter spp. isolates with all 17 

of the selected strains were relatively low and ranged from 6.8 – 42.4% (Table 4.2).  The 

highest coaggregating partner was S. aureus ATCC 25923 with coaggregation indices 

ranging from 30.8 – 42.4% (Table 4.2).  Their second highest partner was Enterococcus 

faecalis ATCC 9212 with coaggregation indices ranging from 30.9 – 35.0% (Table 4.2).  

No significant differences or correlations (ANOVA; Statistica v.7.0, Statsoft, Tulsa, 

USA) were obtained between coaggregation assay results and the phenotypic or 

genotypic typing technique results obtained in Chapter 2 (Table 2.9).  In addition, no 

significant correlations could be made between the autoaggregation and coaggregation 

indices of the study isolates (ANOVA, t-tests).  

Coaggregation occurred to varying degrees with all of the 17 partner strains, and 

the 20 selected Chryseobacterium and Elizabethkingia spp. isolates (Table 4.3).  

Coaggregation indices ranged from 1.10 – 82.2%, with strongest coaggregation displayed 

with E. faecalis ATCC 9212, S. enterica serovar Arizonae, L. monocytogenes, L. innocua 

LMG 13568, and S. aureus ATCC 25923.  Both strong- (isolates CH25, and CH34) and 

weak- (isolates CH4, CH4B, CH8, CH15, CH18, CH21, CH26, and CH33) biofilm-

forming isolates were able to coaggregate strongly with a variety of partner strains (Table 

4.3).  Therefore, it was not possible to identify isolates capable of forming moderate- to 

strong- biofilms structures as being more effective in coaggregation than the non-biofilm-
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forming isolates.  No significant differences or correlations were obtained between 

coaggregation assay results, autoaggregation assays, and the phenotypic or genotypic 

typing technique results obtained in Chapter 2 (Table 2.9).   
 

 
Table 4. 2 Coaggregation indices of the selected biofilm-forming and non-biofilm forming Myroides 

and Empedobacter spp. isolates and 17 bacterial partner strains. 
 

MY1 MY2B MY3B

+++ +++ +++
22.4 8.8 7.7

Partner strains Range (%)
Acinetobacter spp. 6.8 - 10.5 8.6 10.5 6.8
Aeromonas salmonicida 13.2 - 20.7 20.7 13.2 13.2
Aeromonas hydrophila 8.2 - 15.0 15.0 10.0 8.2
Aeromonas media 9.0 - 10.1 9.0 9.4 10.1
Aeromonas sobria 7.8 - 13.4 13.4 11.0 7.8
Enterococcus faecalis ATCC 9212 30.9 - 35.0 30.9 35.0 32.1
Flavobacterium johnsoniae -like isolates
YO12 12.7 - 13.8 13.8 13.1 12.7
YO19 9.1 - 9.6 9.6 9.1 9.1
YO51 8.0 - 11.4 11.4 8.0 9.3
YO60 8.4 - 9.9 9.9 8.4 9.9
YO64 8.9 - 10.5 10.5 8.9 8.9
Listeria innocua LMG 13568 16.4 - 18.4 18.4 16.4 17.4
Listeria monocytogenes 7.4 - 10.1 10.1 9.8 7.4
Micrococcus luteus 13.5 - 14.4 14.4 13.5 13.7
Pseudomonas aeruginosa 11.7 - 14.6 14.6 12.1 11.7
Salmonella enterica serovar Arizonae 11.4 - 12.5 12.5 11.4 12.4
Staphylococcus aureus ATCC 25923 30.8 - 42.4 30.8 42.4 34.7

Myroides/Empedobacter 
spp. isolates

Autoaggregation Index (%)#

Coaggregation indices (%)*

Biofilm Phenotype‡

 
 
* Coaggregation indices represent the means of two independent replicate experiments as described by Malik et al. (2003). 
‡ Biofilm phenotypes were determined by microtitre assays (Stepanovic et al., 2000 and Van Houdt et al., 2004). -, +, ++, +++ refer to      
  no biofilm, weak, moderate and strong biofilm formation. 
# Autoaggregation indices were determined according to assay of Malik et al. (2003). 

 

 

Isolate CH2B was identified as being the strongest coaggregating isolate with 

53% of the partner strains (Table 4.4).  Isolate CH18 displayed the lowest coaggregation 

indices with 29% of the partner stains, and was thus designated the weakest overall 

partner in the coaggregation assays (Table 4.4).  Isolate MY1 coaggregated strongly with 

approximately 70% (12/17) of the partner strains (Table 4.4). 
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Table 4. 3 Coaggregation indices of the selected biofilm-forming and non-biofilm forming Chryseobacterium and Elizabethkingia spp. isolates, and 17 
bacterial partner strains selected for coaggregation assays.  

 

CH1 CH2B CH3 CH4 CH4B CH8 CH11 CH12 CH15 CH18 CH21 CH22 CH23 CH25 CH26 CH28 CH29 CH30 CH33 CH34

- ++ ++ + + + ++ ++ + + + - - +++ + ++ ++ ++ + +++
17.8 37.4 19.1 23.6 19.9 23.8 26.3 25.9 20.4 20.4 28.8 14.0 15.7 21.3 14.6 17.9 15.1 14.9 22.6 24.9

Partner strains Range (%)
Acinetobacter spp. 7.2 - 32.7 13.06 32.71 14.54 14.37 15.27 14.86 16.29 16.46 9.60 7.21 13.61 7.41 16.23 16.12 11.85 11.47 12.29 11.92 13.16 14.52

Aeromonas salmonicida 12.4 - 31.6 24.50 31.58 23.07 24.17 18.02 24.66 25.65 27.00 18.80 12.38 24.10 23.29 27.38 25.84 21.22 23.93 23.42 20.85 25.18 21.20

Aeromonas hydrophila 10.0 - 32.4 13.03 18.06 16.86 15.40 17.17 14.80 19.28 12.77 9.99 13.20 18.35 17.90 13.24 17.24 32.43 16.54 16.17 15.94 15.16 20.84
Aeromonas media 12.8 - 38.0 17.64 38.03 16.87 16.07 14.73 16.90 18.93 17.70 23.22 18.77 19.76 15.83 16.04 26.06 15.60 16.06 14.57 12.84 20.10 17.96
Aeromonas sobria 11.0 - 27.5 11.09 27.49 14.26 11.88 14.17 19.15 15.39 17.35 13.85 15.10 10.96 13.76 14.17 16.19 14.94 13.46 14.25 17.91 13.44 21.96
Enterococcus faecalis 
ATCC 9212 32.2 - 55.7 40.58 44.32 42.71 43.16 46.53 43.70 43.70 54.08 55.68 50.66 48.89 55.73 44.21 33.26 34.28 35.56 32.21 43.22 37.85 37.28

Flavobacterium 
johnsoniae -like isolates
YO12 15.5 - 38.4 20.48 36.56 26.07 38.35 37.65 25.30 22.86 28.68 24.03 24.07 29.50 18.26 15.52 20.52 17.34 19.64 37.77 33.67 20.80 29.04
YO19 7.1 - 40.5 16.83 28.92 21.05 28.62 37.54 19.79 21.94 21.18 19.14 18.30 39.46 18.72 7.13 19.62 26.10 22.02 34.79 40.54 25.63 28.73
YO51 1.1 - 40.2 14.12 25.24 22.11 24.58 23.64 16.64 15.79 15.93 13.54 12.41 40.19 9.73 1.10 18.37 21.45 23.25 21.03 39.65 15.41 24.61
YO60 12.5 - 32.1 12.50 17.98 19.94 17.03 18.12 15.20 18.31 18.31 18.46 14.03 17.02 16.32 18.03 17.73 32.08 15.77 15.56 16.12 15.24 19.79
YO64 11.6 - 36.6 11.96 16.70 14.48 15.36 17.55 14.36 19.90 13.50 13.23 11.62 16.92 27.05 14.21 22.94 36.63 17.47 16.34 16.37 16.13 17.88
Listeria innocua LMG 13568 13.8 - 77.3 23.61 77.35 21.92 23.22 24.81 18.75 14.96 17.61 14.77 13.82 19.04 20.24 24.07 24.64 21.50 20.23 21.52 22.77 25.02 27.60

Listeria monocytogenes 12.5 - 70.4 13.62 70.36 12.61 16.09 15.21 29.77 24.85 22.39 22.15 21.23 15.15 16.74 17.03 19.02 15.13 12.51 16.30 14.61 18.90 21.05
Micrococcus luteus 15.4 - 37.2 21.59 37.18 21.31 22.89 20.16 23.54 23.84 24.89 22.22 15.38 22.69 24.84 24.28 23.51 18.63 18.08 20.14 20.59 19.88 17.06
Pseudomonas aeruginosa 12.2 - 44.1 13.66 44.13 18.61 21.67 20.83 20.09 25.34 18.11 15.85 17.05 18.11 19.72 14.07 16.98 21.53 17.91 12.20 13.54 26.62 14.26
Salmonella enterica 
serovar Arizonae 12.4 - 56.6 19.86 45.98 20.85 21.08 19.20 21.98 22.79 56.57 12.38 18.46 21.36 22.10 19.91 23.34 21.57 22.63 17.56 16.18 27.18 18.22

Staphylococcus aureus 
ATCC 25923 31.3 - 82.2 42.20 82.16 41.00 45.37 44.44 41.57 41.57 47.20 48.25 43.96 41.14 49.06 32.56 44.10 43.21 45.29 31.25 45.11 48.38 53.23

Chryseobacterium/Elizabethkingia
spp. isolates

Autoaggregation Index (%)#

Coaggregation indices (%)*

Biofilm Phenotype‡

 
 
* Coaggregation indices represent the means of two independent replicate experiments as described by Malik et al. (2003). 
‡ Biofilm phenotypes were determined by microtitre assays (Stepanovic et al., 2000 and Van Houdt et al., 2004). -, +, ++, +++ refer to no biofilm, weak, moderate and strong biofilm formation. 
# Autoaggregation indices were determined according to assay of Malik et al. (2003).  

 

 

154



 

 

155

Table 4. 4 Study isolates displaying strongest and weakest coaggregation with 17 bacterial partner 
strains in coaggregation assays. 

 

Range 
(%)

Weakest
Partner

Strongest
Partner

Range 
(%)

Weakest
Partner

Strongest
Partner

Acinetobacter spp. 6.8 - 10.5 MY3B MY2B 7.2 - 32.7 CH18 CH2B

Aeromonas salmonicida 13.2 - 20.7 MY2B MY1 12.4 - 31.6 CH18 CH2B

Aeromonas hydrophila 8.2 - 15.0 MY3B MY1 10.0 - 32.4 CH15 CH2B
Aeromonas media 9.0 - 10.1 MY1 MY3B 12.8 - 38.0 CH30 CH2B

Aeromonas sobria 7.8 - 13.4 MY3B MY1 11.0 - 27.5 CH21 CH2B
Enterococcus faecalis ATCC 9212 30.9 - 35.0 MY1 MY2B 32.2 - 55.7 CH29 CH15
Flavobacterium johnsoniae -like isolates
YO12 12.7 - 13.8 MY3B MY1 15.5 - 38.4 CH23 CH4
YO19 9.1 - 9.6 MY3B MY1 7.1 - 40.5 CH23 CH30
YO51 8.0 - 11.4 MY2B MY1 1.1 - 40.2 CH23 CH21
YO60 8.4 - 9.9 MY2B MY1 12.5 - 32.1 CH1 CH26
YO64 8.9 - 10.5 MY2B MY1 11.6 - 36.6 CH18 CH26
Listeria innocua LMG 13568 16.4 - 18.4 MY2B MY1 13.8 - 77.3 CH18 CH2B
Listeria monocytogenes LMG 7.4 - 10.1 MY3B MY1 12.5 - 70.4 CH28 CH2B
Micrococcus luteus 13.5 - 14.4 MY2B MY1 15.4 - 37.2 CH18 CH2B
Pseudomonas aeruginosa 11.7 - 14.6 MY3B MY1 12.2 - 44.1 CH29 CH2B
Salmonella enterica serovar Arizonae 11.4 - 12.5 MY2B MY1 12.4 - 56.6 CH15 CH12
Staphylococcus aureus ATCC 25923 30.8 - 42.4 MY1 MY2B 31.3 - 82.2 CH29 CH2B

Myroides/Empedobacter
spp. isolates

Chryseobacterium/Elizabethkingia
spp. isolates

Coaggregation Partners

 
 
 
 

4.3.3 Reversal and inhibition of coaggregation 
 

High coaggregation indices were obtained between the Chryseobacterium and 

Elizabethkingia spp. isolate CH2B and the Listeria spp. coaggregation partners (Table 

4.3).  Therefore, reversal and inhibition of the coaggregation partnerships were 

investigated with the sugars, lactose and galactose, and inhibition through heat and 

proteinase K treatment (Table 4.5).  Sugar reversal experiments led to an overall increase 

in coaggregation with the Listeria spp. partner strains and autoaggregation of isolate 

CH2B (Table 4.5).  Heat treatment of CH2B resulted in a decrease in autoaggregation 

(37.4 to 20.9%) and coaggregation (L. innocua – 77.3 to 33.5%; L. monocytogenes – 70.4 

to 12.9%).  However, no such a decrease was observed when the Listeria spp. partner 

strains were treated with heat (Table 4.5).  Similarly, proteinase K treatment of isolate 

CH2B resulted in a decrease of autoaggregation by this isolate (37.4 – 25.8%) as well as 

coaggregation with the partner strains (L. innocua – 77.3 to 38.2%; L. monocytogenes – 

70.4 to 5.8%).  Proteinase K treatment of the partner strains did not result in a decrease in 

coaggregation (Table 4.5). 
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Table 4. 5 Sugar reversal, and heat and proteinase K inhibition of coaggregation between 
Chryseobacterium and Elizabethkingia spp. study isolate CH2B and coaggregation 
partners L. innocua and L. monocytogenes. 

 

No Treatment
CH2B 37.4 77.3 70.4

Lactose reversal
CH2B 68.7 96.0 89.6
L. innocua 94.5 - -
L. monocytogenes 87.8 - -

Galactose reversal
CH2B 56.4 86.2 95.7
L. innocua 85.0 - -
L. monocytogenes 95.8 - -

Heat inhibition
CH2B 20.9 33.5 12.9
L. innocua 93.8 - -
L. monocytogenes 97.7 - -

Proteinase K inhibition
CH2B 25.8 38.2 5.8
L. innocua 80.4 - -
L. monocytogenes 94.6 - -

Treatment

Coaggregation (%)*

CH2B L. innocua L. monocytogenes

Untreated Partners

 
 

* Coaggregation indices represent the means of two independent replicate experiments as described by Malik et al. (2003). 
 
 
 

4.4 Discussion 
 
 Coaggregation is a process by which genetically distinct bacteria become attached 

to one another through specific molecules (Rickard et al., 2003a).  Similarly, 

autoaggregation describes the aggregation of bacteria, although this attachment is 

between genetically identical strains (Rickard et al., 2003a).  Both coaggregation and 

autoaggregation interactions may influence the development of complex multi-species 

biofilms (Rickard et al., 2003a).   

Myroides and Empedobacter spp. study isolates displayed variation in 

autoaggregation indices which clustered the isolates into two groups.  The group 
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displaying an approximately 10% higher autoaggregation index contained two isolates 

which were previously (section 2.3.7) clustered into a separate group due to the presence 

of an additional OMP.  OMPs may serve as adhesins anchored on the outer membrane 

surface of Gram-negative bacteria, and have been found to mediate intimate adhesion to 

surfaces by bacteria (Ofek et al., 2003).  Since these proteins were found not to play a 

role in adhesion to PVC (Chapter 3), it is possible that these proteins may play a role in 

the recognition or adherence of genetically identical bacterial cells.   

Similar to the Myroides and Empedobacter spp. study isolates, diverse 

autoaggregation indices were also obtained between the Chryseobacterium and 

Elizabethkingia spp. isolates. Autoaggregation interactions have been shown to be 

enhanced by increased hydrophobicity (Rickard et al., 2004b).  For F. johnsoniae a 

positive correlation was observed between surface hydrophobicity by the BATH assay 

and autoaggregation (Basson et al., in press).  However, no correlation between 

hydrophobicity and autoaggregation was observed in the present study.  A positive 

correlation was found between autoaggregation and adherence of the Myroides and 

Empedobacter spp. isolates in nutrient-rich media at room temperature under dynamic 

conditions.  For the F. johnsoniae study isolates, the ability to autoaggregate did not 

correlate with a specific biofilm formation phenotype (Basson et al., in press).  These 

comparisons indicate the diversity in adherence and biofilm formation mechanisms in the 

family Flavobacteriaceae.     

Myroides and Empedobacter spp. isolates displayed high coaggregation indices 

with E. faecalis and S. aureus, bacteria important from a food microbiology and public 

health perspective.  It has been found that the attachment of L. monocytogenes to stainless 

steel food surface areas was largely increased by the presence of M.  odoratus strains 

(Bremer et al., 2001).  In the present study, coaggregation between the Myroides and 

Empedobacter spp. study isolates and L. monocytogenes was very low.  Isolate MY1 

displaying higher autoaggregation indices, was also a strong coaggregating partner with 

70% of the bacterial partners.  This indicates that the additional OMP displayed (section 

2.3.7) by this isolate might potentially be involved in the recognition or aggregation with 

not only genetically identical, but also genetically distinct bacteria.   

 Diverse coaggregation indices were obtained for the Chryseobacterium and 
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Elizabethkingia spp. isolates and respective partner strains.  Unlike the Myroides and 

Empedobacter spp. isolates, the OMP profiles described previously (section 2.3.7) for the 

Chryseobacterium and Elizabethkingia spp. could not be correlated to specific 

autoaggregating or coaggregating profiles.  Strongest coaggregation was displayed with 

E. faecalis ATCC 9212, S. enterica serovar Arizonae, L. monocytogenes, L. innocua 

LMG 13568, and S. aureus ATCC 25923.  Similarly, in a previous study (Basson et al., 

in press), F. johnsoniae isolates showed overall high rates of coaggregation against S. 

enterica serovar Arizonae, S. aureus ATCC 25923, E. faecalis ATCC 2912, and to a 

lesser extent to L. monocytogenes, L. innocua and Micrococcus spp.  Therefore, it is 

possible that species of genera belonging to the family Flavobacteriaceae display 

specificity in their coaggregation affinity with specific strains belonging to other genera. 

Biofilm induction experiments (section 3.3.1.1) revealed increased adherence of 

isolates CH15 and CH25 in cell-free supernatants of A. hydrophila and P. aeruginosa, 

and isolate CH8 in the presence of cell-free supernatants of A. salmonicida, L. 

monocytogenes and P. aeruginosa.  However, intermediate coaggregation indices were 

observed between these isolates and the respective inducing partners, indicating that 

induction of increased adherence of the study isolates was due to molecules (such as 

those implicated in quorum sensing) released by the partner strains into the growth 

media, rather than molecules present on their cell-surfaces.      

Study isolate CH2B coaggregated strongest with 53% of the partner strains, and 

displayed very high coaggregation indices with the Listeria spp. partner strains.  

Coaggregation between aquatic biofilm-forming bacteria was found to be reversed by 

simple sugars such as galactose, galactosamine and lactose (Rickard et al., 2003a; and 

Buswell et al., 1997).  For oral bacteria, coaggregation interactions have been described 

as either lactose-inhibitable or lactose-non-inhibitable depending on the reversal ability of 

this sugar (Kolenbrander, 1995).  In the present study, the addition of lactose and 

galactose did not reverse coaggregation, and treatment with a more diverse range of 

sugars is necessary in order to identify the specific carbohydrate receptor.  Subsequent 

inhibition studies, with heat and proteinase treatment revealed isolate CH2B as the lectin 

bearing partner. 
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M. luteus, B. natatoria, Fusobacterium and Prevotella spp. were identified as 

bridging organisms in biofilms due to their ability to coaggregate with all the 

coaggregating partners (Rickard et al., 2002a; Buswell et al., 2001; Kolenbrander, 1989; 

and  Kolenbrander et al., 1985).  In the present study, study isolate CH2B displayed high 

coaggregation indices with 10 of the 17 partner strains, and it is, therefore, not unlikely 

that it is a possible bridging organism in aquaculture environments.  

 In the present study, it was determined that Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. study isolates possessed the ability to 

associate with bacteria that are important from a food microbiology and public health 

perspective.  Given their MDR phenotypes (section 2.3.5) and their ability to adhere to 

surfaces (Chapter 3), this is a great concern from a public health standpoint.  The 

investigation of biofilm formation and architecture by the flow-cell studies was 

conducted to further elucidate the biofilm-forming capacity and interaction of the study 

isolates with other bacterial species.  
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CHAPTER FIVE 
 

Biofilm flow cell studies 
 

5.1 Introduction 
 

In natural systems, such as the aquaculture system, biofilms are often located in 

places where access is limited, which makes direct analysis of these communities and the 

individual microorganisms difficult.  However, just as laboratory-based batch culture 

experiments have been used to study the physiological behaviour of suspended bacteria, 

it is possible to obtain significant information about the bacterial behaviour of organisms 

growing in a complex biofilm using experimental biofilm model systems (Christensen et 

al., 1999). 

Microorganisms isolated from a diversity of biofilm environments (medical, 

environmental and industrial) have been subjected to adherence and biofilm studies 

(Bomo et al., 2003; Mridula et al., 2003; Coquet et al., 2002a; Croxatto et al., 2002; 

Wang et al., 2002; and Karunasagar et al., 1996).  The use of several techniques have 

allowed for the successful recreation of biofilm communities and the study thereof.  

These techniques include solid supports suspended in beakers (Critchley et al., 2003; 

Coquet et al., 2002a; Wang et al., 2002; Elvers et al., 1998; and Karunasagar et al., 

1996), flow cell studies (Wang et al., 2003; and Hall-Stoodley and Lappin-Scott, 1998), 

bioreactor studies (Banning et al., 2003; and Bremer et al., 2002) and molecular 

techniques (Oppong et al., 2003; and O’Sullivan et al., 2002). 

Molecular techniques allow for the study of microbial communities and the genes 

involved in biofilm formation. O’Sullivan et al. (2002) examined bacterial diversity of 

biofilms formed on stones in River Taff and identified members of the Cytophaga-

Flavobacterium-Bacteroides phylum in these river biofilm communities (O’Sullivan et 

al., 2002). 

The ability of microorganisms to adhere to surfaces present in medical, food, 

aquacultural and industrial environments has been successfully studied through 

suspending various materials as solid supports in beakers and allowing for biofilm 
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formation (Critchley et al., 2003; Coquet et al., 2002a; Wang et al., 2002; Elvers et al., 

1998; and Karunasagar et al., 1996).  Adherence to glass and wood by fish pathogens V. 

anguillarum and Y. ruckeri, respectively, was demonstrated using this technique (Wang 

et al., 2002; and Coquet et al., 2002a).  Similarly, the ability of the shrimp pathogen V. 

harveyi to adhere to various materials used in the aquaculture industry including 

concrete, stainless steel and plastic was determined by suspending these surfaces in 

inoculated beakers (Karunasagar et al., 1996). 

  Bioreactors and flow systems have been devised to gain more accurate models of 

the dynamics of biofilms in conditions simulating that of the natural environment 

(Banning et al., 2003; Wang et al., 2003; Bremer et al., 2002; and Hall-Stoodley and 

Lappin-Scott, 1998). Flow systems, including the Robbins’ device and flow cells, 

generally consist of inoculated chambers or channels, which contain either removable 

components or are covered with glass slides for microscopic investigation. Continuous 

flow of fresh medium through these systems is facilitated by the use of a pump.  

The Robbins’ device provides quantifiable samples of biofilms growing on 

submerged surfaces in aqueous systems.  This device has been used in studies of biofilm 

formation by P. aeruginosa and S. aureus isolated from patients suffering from cystic 

fibrosis and osteomyelitis, respectively, and in industrial studies for biofilm sampling in 

very high pressure oil transmission pipelines (Kharazmi et al., 1999).  The Robbins’ 

device consists of removable silicone disks, although a number of other materials can be 

inserted (McLean et al., 1999), on which biofilms can form and then be examined in vitro 

(Kharazmi et al., 1999).  This device is limited with regards to delineating the structural 

organization within the biofilm communities, since substratum needs to be removed for 

investigation, and often leads to destruction of spatial cellular arrangements (architecture) 

within the community being analyzed (Karthikeyan et al., 2000).  Flow cell systems 

allow for the direct microscopic investigation of both structural and spatial organization 

within intact, fully-hydrated biofilm communities, under continuous flow conditions 

(Karthikeyan et al., 2000). Different flow cell models have been used for the study of 

biofilm formation, including the study of the effect of a V. anguillarum OMP on their 

biofilm formation ability (Wang et al., 2003) and the study of biofilm growth by 

Mycobacterium spp. in flow cell systems where the batch culture was re-circulated at a 
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constant flow rate (Hall-Stoodley and Lappin-Scott, 1998).  Investigations of biofilm 

formation in flow cell systems have been enhanced by fluorescence in situ hybridization 

and fluorescent antibody techniques in conjunction with epifluorescence or scanning 

confocal laser microscopy (Karthikeyan et al, 2000).  16S rRNA in situ hybridization 

analysis has been described for the study of mixed staphylococcal biofilms consisting of 

S. aureus and S. epidermidis (Ziebuhr et al., 1999).  Another technique includes the 

insertion of various Green Fluorescent Protein (GFP)-variant genes into specific biofilm 

members, which permits the direct analysis of the abundance and distribution of these 

organisms within multispecies systems over time (Karthikeyan et al, 2000).   

In the present study, members of the genera Myroides and Empedobacter and 

Chryseobacterium and Elizabethkingia isolated from various aquaculture sources, 

displayed heterogeneity with respect to biochemical, phenotypic and genotypic 

phenotypes, and were able to adhere to PVC surfaces, as well as autoaggregate and 

coaggregate with bacterial strains important from a food microbiology and public health 

perspective.  The following study investigated the biofilm structures in both single and 

mixed biofilm communities by these isolates in flow cell systems simulating their natural 

environment in order to investigate biofilm architecture and obtain information on their 

behavior and interaction with other bacterial species.     

 

5.2 Materials and Methods 
 

Based on the microtitre adherence assay studies, one Myroides and Empedobacter 

spp. study isolate (MY1) and seven Chryseobacterium and Elizabethkingia spp. study 

isolates (CH2B, CH8, CH15, CH23, CH26, CH25, and CH34) were selected for pure 

culture flow cell studies (Table 5.1).  A L. monocytogenes strain was used together with 

MY1 and CH2B in the mixed-species biofilm flow cell studies. 

            An eight chamber continuous-flow flow cell (Wolfaardt et al., 1994) constructed 

of Perspex (Fig. 5.1), with flow chambers 2.2 mm deep, 4 mm wide, and 31 mm long was 

used.  A no. 1 microscope coverslip (Lasec, RSA) was attached to the Perspex with 

silicone adhesive.  Effluent silicone tubes with an inner diameter of 1 mm and either 10 

or 150 mm in length (The Silicone Tube, RSA) were attached to the flow chambers with 
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silicone adhesive.  Plastic adapters (T-connectors, 1/16”; straight connectors, 1/16” x 

1/16”; Cole-Parmer Instrument Co., USA) were used for the attachment of the silicone 

tubing to a reservoir containing 2 l of growth media (EAOB/TSB).  Flow chambers and 

silicone tubing was sterilized with liquid bleach O/N and rinsed with sterile growth 

medium for 1 h prior to inoculation.  A flow rate of 14.5 ml.h-1 was maintained with a 

Watson Marlow 205S multichannel peristaltic pump.  Sterile syringes were used to 

inoculate 1 ml pure O/N culture of the respective study isolates, into each chamber.  In 

the case of mixed-species studies, 0.5 ml of the respective pure O/N cultures of the study 

bacterial species per chamber was inoculated into the flow cell chambers.  Stagnant 

conditions were maintained for the first hour, before inoculated chambers were exposed 

to flowing growth medium, either nutrient-rich (TSB) or nutrient-poor (EAOB) media, 

respectively.  Flow cell systems were maintained at room temperature (23 ± 2˚C).  Each 

flow cell chamber was investigated microscopically using a Nikon Eclipse E400 

microscope (Nikon, Japan) after 24 h and 48 h of incubation, respectively, to visualize 

bacterial attachment and biofilm-formation.    

 
Table 5.1 Selection of Myroides and Empedobacter spp. isolate and Chryseobacterium and 

Elizabethkingia spp. isolates for flow cell experiments based on their adherence abilities 
in TSB and EAOB media as determined in microtitre plate adherence assay results. 

 

Static Dynamic Static Dynamic
MY1 S‡ S S S
CH2B M# M S S
CH8 W¥ W W M
CH15 W W M M
CH23 N§ N W N
CH25 S S W W
CH26 M W M W
CH34 S S S S

Study isolates

EAOB TSB

Microtitre Adherence Profiles*
at room temperature (23 ± 2˚C)

under static/dynamic conditions

 
 

* Biofilm formation assayed according to Stepanovic et al. (2000). 
‡ Strongly adherent 
# Moderately adherent 
 ¥ Weakly adherent 
 § Non-adherent 
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Figure 5.1 Eight channel perspex flow cell used to cultivate biofilms for microscopic examination.  

Flow cells are covered with a glass coverslip, connected to upstream growth medium 
reservoir with silicone tubes, and effluent silicone tubes to carry effluent to waste 
container. 

 
 

5.3 Results 

5.3.1 Pure culture, single species flow cell experiments 
 

Adherence of study isolates to the glass coverslips was investigated by light 

microscopy, starting from the surface of the glass slide and scanning several planes 

interspersed by short distances in order to visualize biofilm architecture and microbial 

behavior throughout the depth of the individual flow chambers.  Adherence to glass 

coverslips in nutrient-poor (EAOB) media was observed for all the study isolates within 

the first 24 h of inoculation.  However, the ability to form biofilm structures varied 

between the isolates. 

Myroides and Empedobacter spp. isolate MY1 displayed microcolony formation 

in the form of cone-like structures narrowing to single cell chains toward flowing media 

or during increased hydrodynamic conditions, within the first 24 h of incubation (Fig. 

5.2).  Cream-colored carpets covering the surface of the slide were observed without the 

microscope after 48 h incubation.  Thick biofilm growth with polar attached cells (Fig. 

5.3) and cone-structures reaching deep into the flowing media were observed (Fig. 5.4).  

In addition, individual microcolonies formed connecting structures/bridges between each 
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other (Fig. 5.6).  Biofilm growth was thick in the middle of the glass slides, but 

monolayers were observed at the side where silicone adhesive came into contact with the 

glass surface indicating preference to hydrophilic surfaces.  

 

 
Figure 5. 2 Light microscope image depicting cone-like biofilm structures of MY1 associated with 

the glass slide surface, and cell chains reaching into the media (arrows) following 24 h of 
flow cell incubation in nutrient-poor (EAOB) media (× 1000 magnification). Insertion: 
Image depicting cell-to-cell aggregation (arrow) to form cell chains. 

 
 
 

 
 

Figure 5. 3 Light microscope image depicting polar attachment (spots) on the glass slide surface by 
study isolate MY1 following 48 h of flow cell incubation nutrient-poor (EAOB) media   
(× 1000 magnification). 
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Figure 5. 4 Light microscope image depicting cone formation (arrows) of biofilm structures formed 
by isolate MY1 on the glass slide surface following 48 h of flow cell incubation nutrient-
poor media (EAOB) (× 1000 magnification). 

 
 
 

A   B 
 
 
 
 
 
 
 
 
 
 
 
C                D  
 
Figure 5. 5 Enhanced light microscope images (Paint Shop Pro v.7) depicting the sequence of bridge 

formation (A to E indicated with arrows) between microcolonies of isolate MY1 into 
flowing media following 48 h of flow cell incubation in nutrient-poor media (EAOB).  
Images were obtained by scanning several planes interspersed by short distances from the 
surface of the glass slide (A) into the depth of the flow chamber (D) (× 1000 
magnification). 
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E 
 
Figure 5. 6 Enhanced light microscope images (Paint Shop Pro v.7) depicting the bridge 

formation between microcolonies of isolate MY1 into flowing media following 
48 h of flow cell incubation in nutrient-poor media (EAOB).  Images were 
obtained by scanning several planes interspersed by short distances from the 
surface of the glass slide (Fig 5.5A-D) into the depth of the flow chamber (× 
1000 magnification). 

 
 
 

 Isolate CH2B displayed initial widespread attachment to glass surfaces after 24 h 

of incubation in nutrient-poor (EAOB) media.  Microcolonies with chains of cells into the 

hydrodynamic area were also observed (Fig 5.7).  After 48 h of incubation, majority of 

the cells were attached at a polar end, and the typical mushroom/or cone-structures were 

observed with chains of cells reaching into the media (Fig 5.8). 
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Figure 5. 7 Light microscope image depicting cells of CH2B associated with the glass slide surface 

and chains of cells reaching into the flowing media (arrows) following 24 h of flow cell 
incubation in nutrient-poor media (EAOB) (× 1000 magnification).  Insertion: Enhanced 
image (Paint Shop Pro v.7) depicting cell-to-cell adherence in cell chains from encircled 
area 

 
 

 
 

Figure 5. 8 Light microscope image depicting polar attachment (arrow) of CH2B cells in 
microcolony form to glass slide surface and chains of cells reaching from cone-structures 
into the flowing media (arrow) following 48 h of flow cell incubation in nutrient-poor 
media (EAOB) (× 1000 magnification). 

 
 
 
   Isolate CH8 displayed preference for adherence at the outlet side of the flow 

chamber, as well as at the side of the glass slide where the silicone adhesive and the 

Perspex met, indicating a preference for hydrophobic surfaces for adherence (Fig. 5.9). 

After 48 h of incubation, no biofilm formation was observed, confirming the microtitre 
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plate assay results of this isolate showing weak adherence and biofilm-forming capacity 

(Table 5.1).   

 

 
Figure 5. 9 Light microscope image depicting CH8 cells associated with the glass-perspex interface 

following 24 h of flow cell incubation in nutrient-poor media (EAOB) (× 1000 
magnification). 

 
 
 
 
 Isolate CH15 displayed microcolony formation and polar attachment of the cells 

following 24 hours of incubation, and subsequent cone-formed biofilm structures at 48 

hours of incubation in nutrient-poor (EAOB) media. (Fig. 5.10). As with isolate CH8, 

isolates appeared to adhere more prominently along the edges of the glass slide at the 

perspex-glass interface. 

For study isolates CH23, CH25 and CH26, very few, single cells were observed 

attached to the glass slide surface after 48 h of incubation in nutrient-poor (EAOB) 

media.  In addition, cells were very thin and short, and a lot of movement was observed.  

As the study isolates did not possess motility mechanisms, the movement indicated loose 

attachment with cells being moved rapidly across the glass surface by the flow of the 

medium. 
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Figure 5. 10 Light microscope image depicting cone formation (arrows) of biofilm structures formed 
by isolate CH15 on the glass slide surface following 48 h of flow cell incubation nutrient-
poor media (EAOB) (× 1000 magnification). 

 
 
 

Of the seven Chryseobacterium and Empedobacter spp. isolates tested by flow 

cell studies in nutrient-poor (EAOB) media, isolate CH34 appeared to attach to the glass 

slide and form biofilms most rapidly.  Biofilm formation in the form of cone-like biofilm 

structures was observed within 24 h of incubation in EAOB.  However, after 48 h of 

incubation biofilm-formation was not as complex as observed for isolates CH2B and 

CH15.  Preferential attachment was observed to take place at the inlet side of the flow 

chamber.  Majority of isolate CH34 cells attached to the glass surface along their length, 

and polar attachment was less frequent compared to the other study isolates (Fig. 5.11). 

 

 

 
Figure 5. 11 Light microscope image depicting cells of isolate CH34 associated with the glass slide 

surface following 24 h of flow cell incubation (× 1000 magnification). 
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 In nutrient-rich media (TSB), Myroides and Empedobacter spp. isolate MY1 did 

not display as prolific biofilm structures as observed in nutrient-poor (EAOB) media.  

After 24h and 48 h of growth, only monolayers of cells were observed on the glass 

surface, and the majority of the cells displayed polar attachment (Fig. 5.12).  

 

 

 
Figure 5. 12 Light microscope image depicting polar attachment (arrow) of MY1 cells in nutrient-rich 

(TSB) media following 48 h of flow cell incubation (× 1000 magnification). 
 
 
 
 
 For the Chryseobacterium and Elizabethkingia spp. isolates CH2B and CH15, 

similar results were obtained in nutrient-rich (TSB) flow cell experiments.  After 24 h of 

incubation, overall initial attachment of cells on the glass slides was observed.  Cells 

were mostly attached along their length, with few long single cell chains reaching into the 

media (Figs. 5.13-5.14).  Biofilm structures resembling cone-like structures were 

observed from a few microcolonies after 48 h of incubation, but the structures observed 

were not as complex as those observed in nutrient-poor conditions (Figs. 5.15-5.16).   

 Cells of isolate CH8 appeared to adhere mostly to the inlet side of the flow cell 

chamber.  Cell sizes varied from filamentous, long rods to shorter rods in microcolonies 

scattered over the surface after 24 h of growth (Fig. 5.17).  Although microcolonies 

increased in size after 48 h, no biofilm formation was observed (Fig 5.18).   
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Figure 5. 13 Light microscope image depicting isolate CH2B cells associated with the glass slide 

surface and chains of cells reaching into the flowing media (arrow) following 24 h of 
flow cell incubation in nutrient-rich (TSB) media (× 1000 magnification). 

 
 
 
 
 

 
 
Figure 5. 14 Light microscope image depicting isolate CH15 cells associated with the glass slide 

surface and chains of cells reaching into the flowing media (arrow) following 24 h of 
flow cell incubation in nutrient-rich (TSB) media (× 1000 magnification). 
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Figure 5. 15 Light microscope image depicting isolate CH2B cells associated with the glass slide 
surface as microcolonies displaying simple biofilm structures (arrows) following 48 h of 
flow cell incubation in nutrient-rich (TSB) media (× 1000 magnification). 

 
 
 
 
 
 

 
 

Figure 5. 16 Light microscope image depicting isolate CH15 cells associated with the glass slide 
surface as microcolonies displaying simple biofilm structures (arrows) following 48 h of 
flow cell incubation in nutrient-rich (TSB) media (× 1000 magnification). 
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Figure 5. 17 Light microscope image depicting scattered microcolonies of isolate CH8 cells associated 

with the glass slide surface following 24 h of flow cell incubation in nutrient-rich (TSB) 
media (× 1000 magnification). 

 

 

 
Figure 5. 18 Light microscope image depicting larger microcolonies of isolate CH8 cells associated 

with the glass slide surface following 48 h of flow cell incubation in nutrient-rich (TSB) 
media (× 1000 magnification). 

 

 

 

For study isolates CH23 and CH25, adherence to the glass surface by a few single 

cells was observed.  Cells of isolate CH23 did not display adherence after 24 h and this 

remained unchanged in the next 24 h (Fig. 5.19). 

Attachment of single cells only occurred following 48 h of incubation by isolate 

CH25 cells (Fig. 5.20).  Cells of both isolates CH23 and CH25 appeared to be twitching 

and rotating in place.  Although the cells of isolate CH26 appeared not to adhere to glass 
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surfaces, a cotton-like assemblage was observed at the inlet side of the flow cell chamber.  

Similar cotton-like growth was observed for isolate CH34 throughout the flow chamber.  

Although chains of cells were observed, no attachment of cells to the glass surface was 

noticeable, and growth seemed more prominent at the bottom of the chamber.    

Cell-counts on viable bacterial cells collected from the waste/effluent washout of 

the flow cell system ranged form 8.7 × 1010 cells.ml-1 to 3.95 × 1013 cells.ml-1 in nutrient-

poor (EAOB) media, and 1.46 ×1011 cells.ml-1 to 1.8 × 1013 cells.ml-1 in nutrient-rich 

(TSB) media following 24 hrs of incubation.    

 

 
Figure 5. 19 Light microscope image depicting isolated single cells of isolate CH23 associated with 

the glass slide surface following 24 h of flow cell incubation in nutrient-rich (TSB) media 
(× 1000 magnification). 

 
 
 

 
Figure 5. 20 Light microscope image depicting loosely attached, scattered single cells of isolate CH25 

associated with the glass slide surface following 24 h of flow cell incubation in nutrient-
rich (TSB) media (× 1000 magnification). 
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5.3.2 Pure culture, multi-species flow cell experiments 
 

Distinction between bacterial strains in mixed-culture experiments was made 

visually by comparing images to that of pure culture, single-species flow cell 

experiments.  Cells differed morphologically, with Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. being longer, thinner cells, and Listeria spp. 

short, thick cells.   

When co-inoculated into flow cell chambers containing nutrient-poor (EAOB) 

media with L. monocytogenes, isolate MY1 cells scattered across the glass surface after 

24 h of inoculation (Fig. 5.21).  After 48 h, it appeared as if the L. monocytogenes cells 

formed microcolonies underneath a carpet of MY1 cells which covered the glass surface 

(Fig. 5.22).  In nutrient-rich (TSB) media, a similar pattern of surface colonization by the 

MY1 cells was observed with either microcolonies (Fig. 5.23) formed within 24 h, or 

filamentous ‘rope-like’ structures (Figs. 5.24-5.25) of L. monocytogenes formed under 

the monolayer of MY1 after 48 h of growth.   

 

 

 
Figure 5. 21 Light microscope image depicting adherence of isolate MY1 cells associated with the 

glass slide surface following 24 h of flow cell incubation in nutrient-poor (EAOB) media, 
when co-inoculated with L. monocytogenes (× 1000 magnification). 
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Figure 5. 22 Light microscope image depicting microcolonies of L. monocytogenes (arrows) below a 

carpet of MY1 cells following 48 h of flow cell incubation in nutrient-poor (EAOB) 
media (× 1000 magnification). 

 
 
 
 
 

 
Figure 5. 23 Light microscope image depicting microcolonies of L. monocytogenes (arrows) below a 

carpet of MY1 cells following 48 h of flow cell incubation in nutrient-rich (TSB) media 
(× 1000 magnification). 
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A   B  

Figure 5. 24 Light microscope image depicting the carpet of MY1 cells covering the surface of the 
glass slide (A) and rope-like filamentous structures of L. monocytogenes below the carpet 
of MY1 cells (B) following 48 h of flow cell incubation in nutrient-rich (TSB) media (× 
1000 magnification). 

 
 
 
 

A   B  
Figure 5. 25 Light microscope image depicting the carpet of MY1 cells covering the surface of the 

glass slide (A) and rope-like filamentous structures of L. monocytogenes below the carpet 
of MY1 cells (B) following 48 h of flow cell incubation in nutrient-rich (TSB) media (× 
1000 magnification). 

 
 
 
 When co-inoculated in nutrient-poor (EAOB ) media, both isolate CH2B and L. 

monocytogenes displayed delayed attachment to the glass surfaces, and attached cells 

were only observed 48 h following inoculation.  Although both CH2B and L. 

monocytogenes cells were able to attach to the glass slides, distinct colonies were formed 

with no association between the different species (Fig. 5.26).  In nutrient-rich (TSB) 

media, cells of both species were scattered over the surface after 24 h of inoculation, 

although after 48 h only a monolayer of isolate CH2B was observed covering the surface 

of the glass slide. 
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Figure 5. 26 Light microscope image depicting the distinctly separated adherence of CH2B cells (A) 

and L. monocytogenes microcolonies (B) following 48 h of flow cell incubation in 
nutrient-poor (EAOB) media (× 1000 magnification). 

 

 

5.4 Discussion 
 

Although the Myroides and Empedobacter spp. isolate MY1 displayed higher 

biofilm-forming capacities in nutrient-rich (TSB) media (1.31 – 1.35) than in nutrient-

poor (EAOB) media (0.73 – 0.86) to the hydrophobic polystyrene surfaces in microtitre 

adherence assays (section 3.3.1), better biofilm-formation was observed to hydrophilic 

glass surfaces in nutrient-poor (EAOB) media during flow cell studies.  Surface 

colonization and the formation of cone-like biofilm structures was observed for this 

isolate within the first 24 hrs of incubation, which was consistent with the results 

obtained in the time course of adherence assay where best adherence was determined at 

16 h (section 3.3.1), although, no drastic decrease in biofilm formation or adherence was 

observed after 48 h of incubation as observed in the adherence assays (Fig. 3.5; section 

3.3.1).  The cone-like architecture of MY1 biofilm structures narrowing toward the 

flowing media and forming long single-cell chains, may be due to the influence of shear 

force or increased hydrodynamic conditions of the flowing media in the centre of the 

flow cell chambers.  This architecture has previously been described for P. aeruginosa 

biofilms under high flow rates of an aqueous medium (Stoodley et al., 1999).  It was 

found that under high shear forces in fast flowing aqueous media, biofilm cell clusters of 

P. aeruginosa became elongated in the downstream direction of unidirectional flow to 

A

B

B



 

 

180

form filamentous streamers, which became elongated over time, with the tails getting 

thinner until there was only a small chain of single cells at their tips (Stoodley et al., 

1999).  The Myroides spp. isolates displayed a very hydrophilic surface hydrophobicity 

with both SAT and BATH hydrophobicity assays (section 3.2.2); and this hydrophilicity 

may be implicated in the strong adherence and great affinity for the hydrophilic glass 

surface used in the flow cell system. 

It has been found that the attachment of Listeria monocytogenes to stainless 

steel food surface areas was largely increased by the presence of Myroides spp. strains 

(Bremer et al., 2001).  In section 3.3.11 it was proposed that inducing molecules could be 

produced by the MY1 isolate, as no significant induction of adherence of this isolate was 

observed in the presence of L. monocytogenes.  Mixed-species flow cell studies revealed 

layered attachment of these two species, with MY1 attached to the surface and L. 

monocytogenes forming microcolonies or filamentous structures beneath the surface 

covering layer of MY1 cells.  Consistent with the coaggregation studies (section 4.3.2) 

which indicated a low index of coaggregation between the two species, it was observed 

that although the species were able to co-exist in a biofilm community, no intimate 

association between the cells was observed.  Although the autoaggregation index for 

MY1 was not very high, autoaggregation between the cells could be the reason for 

association and aggregation of the cells in nutrient-poor (EAOB) media, leading to bridge 

formation by these cells in the higher hydrodynamic conditions of the flow cell chamber.   

Microscopic analysis of biofilm formation using flow cells revealed important 

qualitative characteristics and differences displayed by the Chryseobacterium/ 

Elizabethkingia spp. isolates.  Biofilms formed by each of the seven study isolates 

differed in terms of structure and morphology, as well as nutrient condition preference.  

Biofilm structures ranged from small micro-colonies formed by isolate CH8 in nutrient-

rich (TSB) media to multi-layered biofilms with intricate cone-like structures formed by 

isolates CH2B, CH15 and CH34 in nutrient-poor (EAOB) media.   

Isolate CH2B displayed stronger adherence to polystyrene surfaces in microtitre 

adherence assays in nutrient-rich (TSB) media (BFC – 2.56 to 3.84) than in nutrient-poor 

(EAOB) media. (BFC – 0.92 to 1.22), although more complex biofilm structures were 

observed in nutrient-poor (EAOB) media flow cell systems.  In nutrient-poor (EAOB) 
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media, majority of the cells attached by their polar sides which could be an attempt to 

increase surface area for nutrient uptake in nutrient-limited environments, since 

horizontal attachment was observed in nutrient-rich (TSB) media.  Conversely, this 

attachment could also be a looser attachment than that observed for nutrient-rich (TSB) 

media, and thus indicate attachment to surfaces for a shorter period in nutrient-limited 

environments.   

A very hydrophilic nature was obtained for isolate CH2B with the BATH (0.8 %) 

and SAT assays, and this was noticeable in the flow cell studies as the cells adhered 

along the entire surface of the glass slide.  Cells of isolate CH2B formed similar single 

cell chains as observed in the MY1 biofilm structure.  Isolate CH2B displayed an 

autoaggregation index of 37 % (section 4.3.1) which could explain the aggregation of 

these cells in the high shear area of the flow-cell chamber.   

In the mixed-species flow cell experiment, both CH2B and L. monocytogenes 

attached to the glass slide, although the high coaggregation displayed by these two 

bacterial species (section 4.3.2) was not apparent, as the microcolonies of the two species 

formed apart from one another on the glass surface.   

Cone-like biofilm structures were also observed for isolates CH15 and CH34 in 

the flow cell experiments.  Isolate CH15 formed more complex structures in nutrient-

poor (EAOB) media although higher biofilm-forming capacity values in the microtitre 

assay were obtained for this isolate in nutrient-rich (TSB) media. As with isolate CH2B, 

isolate CH15 cells displayed polar attachment in nutrient-poor (EAOB) media, and 

horizontal attachment in nutrient-rich (TSB) media.  The moderate hydrophobicity of 

41% obtained in the BATH assay for CH15 cells might explain the preference of these 

cells for adherence to the glass-perspex interface.  Isolate CH34 adhered and formed 

biofilm structures within the first 24 h of incubation with adherence and biofilm 

formation being more complex at the inlet side of the flow cell chambers.  This is 

consistent with the time course of adherence results indicating adherence within 16 h of 

incubation.  It was also observed that adherence of isolate CH34 cells was consistent in 

both nutrient types, as observed in microtitre adherence assays, although adherence to the 

perspex bottom of the chamber was more prominent in nutrient-rich (TSB) media.  

Similarly, isolate CH26 formed a mucoid clump of cells at the inlet side of the chamber 
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in nutrient-rich (TSB) media, although no surface attachment was observed for these cells 

during the flow cell experiments.  No biofilm structures were observed for isolate CH8, 

as with isolate CH15, adherence was observed at the glass-perspex interface.  Surface 

hydrophobicity for isolates CH8, CH26 and CH34 was determined as very hydrophilic by 

the BATH assay with percentages of 14, 9 and 13 %, respectively and surface 

hydrophobicity cannot, therefore, be the only factor influencing glass-perspex interface 

adherence these isolates.  This preference could be attributed to difference in texture, 

such as roughness of the perspex sides which has been shown to increase the adherence 

abilities of Y. ruckeri to fish farm materials (Coquet et al., 2002a).  It was also observed 

that adherence was more prominent at the outlet side of the flow cell chamber, which 

could indicate a series of changes in the cell surface composition before adherence was 

induced.  Although isolate CH25 displayed a strong adherence profile in nutrient-poor 

(EAOB) media, during adherence assays (BFC – 3.5 to 3.7), this isolate together with the 

non-biofilm forming isolate CH23 did not display biofilm formation in the flow cell 

experiments, suggesting that shear rates might impact the ability to form biofilm 

structures.   

Sampling of the effluent revealed >1010 cells.ml-1, suggesting that biofilms 

function as a source of planktonic cells through high cell yield and detachment.  In a 

previous study the planktonic-cell yield of a Pseudomonad biofilm was found to be >109 

cells.ml-1 (Bester et al., 2005). 

 The present study has shown the strong biofilm-forming ability of Myroides and 

Empedobacter spp. isolate MY1, and the strain-to-strain variation in the ability of 

Chryseobacterium and Elizabethkingia spp. isolates to form biofilms.  Hydrophobicity 

characteristics of these organisms could not be consistently correlated with the capacity 

to form biofilms, and initial adherence abilities could not be correlated to biofilm 

formation in flow cell experiments.  Nevertheless, it was evident that members of these 

genera possess the ability to colonize and form intricate biofilm structures in 

hydrodynamic environments simulating the natural aquaculture environment from which 

they were isolated.  Co-existence in biofilm communities with the food pathogen L. 

monocytogenes was also observed not only for the Myroides and Empedobacter spp. 
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isolate, but also for the Chryseobacterium and Elizabethkingia spp. isolate.  However, the 

nature and degree of this relationship remains to be elucidated. 

   Multi-species interactions demonstrated by these organisms displays the 

importance of biofilm formation studies by these opportunistic fish pathogens, since 

association with aquacultural, veterinary and human pathogens, as well as food-spoilage 

organisms could lead to infection and re-infection of aquaculture live-stock and 

subsequent spoilage of aquaculture food products, and alarmingly a horizontal spread of 

MDR phenotypes from these isolates to medically-important bacterial species. 
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CHAPTER SIX 

Concluding Remarks 
 

6.1 The Research in Perspective 
 

 In the present study, Myroides and Empedobacter spp. and Chryseobacterium and 

Elizabethkingia spp. isolated from a variety of fish species in South Africa were 

identified and characterized by a combination of phenotypic and biochemical methods. 

The ability of these isolates to adhere to surfaces, and their biofilm-forming capacity was 

investigated with adherence assays and a flow cell system simulating their natural 

environmental conditions.  In addition, the capacity of these isolates to form biofilms was 

investigated by studies of cell-surface properties which potentially play a role in 

adherence to substrates.     The association of the isolated species with various bacterial 

species important in the aquaculture, medical and food industries was investigated to 

elucidate the organization of the study isolates and other bacterial species in natural 

mixed-species biofilm communities.   This is the first report on the investigation of the 

adherence- and biofilm-forming capacities of yellow-pigmented Myroides and 

Empedobacter spp. and Chryseobacterium and Elizabethkingia from aquaculture systems 

in South Africa. 

 Phenotypic, physiological and biochemical characterization allowed limited 

discrimination of the 5 Myroides and Empedobacter spp. and 34 Chryseobacterium and 

Elizabethkingia spp. isolates. This is in accordance with other studies based on the 

identification and characterization of Chryseobacterium and Elizabethkingia spp. isolates 

(Bernardet et al., 2005) and Myroides and Empedobacter spp. isolates (Hugo et al., 2005; 

and Vancanneyt et al., 1996).  However, these methods are essential for preliminary 

identification of Myroides and Empedobacter spp. and Chryseobacterium and 

Elizabethkingia spp. isolates to the genus level, and were thus useful in the current study 

(Bernardet et al., 2006; Bernardet et al., 2005; and Hugo et al., 2005). 

 16S rRNA gene PCR-RFLP, RAPD fingerprinting, and WCP analysis did not 

allow the discrimination of the Myroides and Empedobacter spp. isolates, although 

discrimination between the isolates was observed with OMP analysis (Discrimination 
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index – 0.53).  The Myroides and Empedobacter spp. isolates could therefore not be 

characterized to species level using the molecular typing techniques used in the current 

study.   

Discrimination of the Chryseobacterium and Elizabethkingia spp. isolates with 

16S rRNA gene PCR-RFLP using restriction enzymes CfoI and TaqI, RAPD 

fingerprinting with primer P1 and WCP analysis  was limited (Table 2.10), although 

molecular typing of these isolates using 16S rRNA gene PCR-RFLP using restriction 

enzyme TaqI, RAPD fingerprinting with primer P2 and OMP analysis, provided evidence 

of the genetic heterogeneity among closely related Chryseobacterium and 

Elizabethkingia spp. isolates (Table 2.10).  The discriminatory power of RAPD 

fingerprinting was demonstrated by Bernardet et al. (2005) who observed delineation of 

clusters of species belonging to the genus Chryseobacterium through RAPD analysis, 

although the discrimination with WCP analysis obtained by Bernardet et al. (2005) was 

not apparent in the current study.   

The limited discrimination power of 16S rRNA gene PCR-RFLP could be due to 

16S rRNA gene sequence similarities since up to 99% similarity has been described 

between Chryseobacterium spp. (Li et al., 2003).  It indicates the overall high similarity, 

and presents the difficulty in delineating species belonging to this genus using this typing 

technique.  Study isolates could not be clustered with any of the reference strains with 

certainty, possibly due to adaptational differences to the environments from which they 

were isolated and therefore, none of the isolates could be characterized to species level.  

The presence of common bands in profiles obtained with RAPD primers P1 and P2 could 

potentially be used to identify genes or gene sequences which will allow rapid molecular-

based identification of Chryseobacterium and Elizabethkingia species (diagnosis) or their 

species group (species assignment).   

High MAR indices were obtained for the Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. isolates obtained from Blue tilapia 

aquaculture systems that had not previously been exposed to antibiotic treatment.  These 

results indicated contamination from environments where the isolates were exposed to 

antibiotic agents, or that these isolates acquired the resistance determinants through 

horizontal gene transfer within the aquaculture system.  Such high antibiotic resistance 
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phenotypes raise concern regarding antibiotic treatment of aquaculture disease outbreaks, 

and the spread of these opportunistic pathogens to environments where they could infect 

immunocompromised humans.  In addition, the spread of antibiotic resistance genes in 

biofilm communities has been reported (Harrison et al., 2005) and thus horizontal gene 

transfer of antibiotic resistance genes from these isolates to pathogenic organisms in 

aquaculture systems or potable water systems could lead to major economic losses in the 

aquaculture industry and uncontrollable disease outbreaks in humans. 

The biofilm-forming ability of Myroides and Empedobacter spp. and 

Chryseobacterium and Elizabethkingia spp. isolates was confirmed by means of 

microtitre-plate adherence assays and flow cell studies.  Both techniques effectively 

differentiated strong and weakly adherent isolates.  The modified Stepanovic et al. (2000) 

microtitre-plate adherence assay was a rapid and highly reproducible technique for 

screening a large group of isolates.  Application of the equation for the calculation of 

biofilm-forming capacity (van Houdt et al., 2004) allowed for correlation between 

biofilm formation and relative biofilm-forming capacity in order to accurately determine 

the biofilm-forming isolates.  Although the flow cell study was more time-consuming, 

important qualitative information about the biofilm structures produced by the study 

isolates was obtained.  

The Myroides and Empedobacter spp. isolates displayed strong adherence and 

high relative biofilm-forming capacity.  The impact of environmental cues, i.e., 

temperature, nutrient availability, and hydrodynamic conditions, was apparent in these 

assays as the isolates displayed a preference to adhere at lower temperatures (~21 ˚C) and 

nutrient-rich environments with low hydrodynamic forces (static incubation).  It was also 

observed that these isolates were capable of moderate adherence in higher temperatures 

(37 ˚C), indicating their ability to adhere in warm-blooded animal hosts.  The effect of 

cell-surface properties on adherence, such as the qualitative determination of thick 

capsular material surrounding the cells, and very hydrophilic nature of the cell surface as 

determined by both SAT and BATH hydrophobicity assays, could not be correlated to the 

adherence of the Myroides and Empedobacter spp. isolates to polystyrene surfaces.  In 

flow-cell systems, the selected Myroides and Empedobacter spp. isolate displayed typical 

‘cone-like’ biofilm structures, intricate bridge formation between microcolonies and a 
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strong affinity for hydrophilic glass surfaces for biofilm formation, correlating to the very 

hydrophilic nature as was observed in the hydrophobicity assays.  The effect of increased 

hydrodynamic conditions on the biofilm architecture was also observed as the biofilm 

structures were observed to narrow toward the increased dynamic areas forming single-

cell chains as previously described for other bacterial species (Rickard et al., 2004b; and 

Stoodley et al., 1999). 

Although variation in the biofilm-forming capacities was observed for the 

Chryseobacterium and Elizabethkingia spp. isolates, the impact of environmental cues on 

the adherence abilities of the isolates was also evident, as majority of these isolates 

preferred to adhere at ambient temperature (~21 ˚C), under low hydrodynamic conditions 

(static incubation) in nutrient-rich environments.  It was, however, observed that some of 

the isolates displayed strong adherence at 37 ˚C, indicating the diversity of environments 

Chryseobacterium and Elizabethkingia spp. isolates are able to colonise.  The presence of 

molecules produced by other bacterial species which possibly include quorum sensing 

molecules was found to play a role in the induction of increased biofilm formation by 

isolates capable of weak adherence prior to induction.  It is, therefore, likely that weakly 

adherent Chryseobacterium and Elizabethkingia spp. isolates may be incorporated into 

biofilms more readily in the presence of other bacterial species, or their extracellular 

products and contribute to an overall increased risk of medical and veterinary infection 

and disease, secondary infection in the aquaculture environment, spoilage of food 

products as well as industrial or potable water system contamination.   

The qualitative observation of expression of a capsule layer by majority of the 

Chryseobacterium and Elizabethkingia spp. isolates could not be correlated to the 

different adherence abilities of the isolates.  In addition, no correlation was observed 

between hydrophobicity profiles obtained by the BATH assay. Increased hydrophobicity 

determined by the SAT assay, however, could be correlated to increased adherence of the 

isolates at ambient temperature in nutrient-poor conditions under dynamic/static 

incubation, as well as at 37 ˚C in nutrient-rich media under dynamic conditions.  In 

accordance to previous findings (Basson et al., in press; Ofek et al., 2003; and Babelona 

et al., 2001), no correlation could be found between the hydrophobicity profiles 

determined by the SAT and BATH assays in the present study. 
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Chryseobacterium and Elizabethkingia spp. isolates selected for investigation of 

biofilm formation in the flow-cell system, displayed variation in their adherence abilities 

from non-adherent to strongly adherent in the microtitre adherence assays.  Microscopic 

analysis of biofilm formation in flow cell systems revealed important qualitative 

characteristics and differences displayed by the study isolates.  Biofilm formation 

differed between study isolates in terms of structure and morphology, as well as nutrient 

condition preference.  Biofilm structures ranged from small micro-colonies to multi-

layered biofilms with intricate ‘cone-like’ structures, and the effects of hydrodynamic 

conditions were also observed in theses biofilm structures.  For some of the isolates, polar 

attachment of the cells were observed in nutrient-limited conditions as opposed to 

horizontal attachment in nutrient-rich environments indicating that the adherence 

behaviour of the isolates is influenced by nutrient availability and that these organisms 

may be able to regulate attachment/detachment in response to nutrient conditions, or 

regulate surface exposure so as to increase nutrient uptake when conditions are limited.   

Initial adherence abilities of the isolates could not be directly correlated to their 

ability to form biofilms, although this could be due to the differences in surface 

hydrophobicity of the polystyrene surfaces used in microtitre adherence which is 

hydrophobic, and the hydrophilic glass surfaces used in the flow cell assay.  For the 

strongly adherent and biofilm-forming isolates included in the flow cell experiments, it 

was observed that the isolate (CH2B) displaying very hydrophilic surface hydrophobicity 

values with the BATH and SAT assay associated better with the glass surface, whereas 

the isolate displaying more hydrophobic properties (CH15) in the BATH and SAT assays 

adhered more readily to the glass-perspex interface of the flow cell chambers.  However, 

a consistent trend relating to hydrophobicity determined by BATH and SAT assays and 

adherence preference to either glass or the glass-perspex interface was not observed for 

all the isolates included in the flow cell study, and it is thus proposed that hydrophobicity 

is not the sole factor influencing adherence preferences of these isolates.  

Association of the Myroides and Empedobacter spp. and Chryseobacterium and 

Elizabethkingia spp. isolates with genetically identical and genetically distinct bacterial 

strains was investigated by autoaggregation and coaggregation assays.  Myroides and 

Empedobacter spp. isolates displayed variation in autoaggregation indices, correlating to 
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the visual groupings obtained in the OMP analysis, and thus indicating a possible 

relationship between the additional OMP present in some of the isolates and the 

recognition of genetically identical bacterial strains.  In addition, it was also found that 

increased autoaggregation correlated to increased adherence by these isolates in nutrient-

rich environments at ambient temperature under dynamic conditions.  Diverse 

autoaggregation indices were also obtained for the Chryseobacterium and 

Elizabethkingia spp. isolates.  In pure culture flow cell studies, isolates displaying high 

autoaggregation indices displayed the formation of single cell chains under increased 

hydrodynamic conditions, which is in accordance to what has previously been described 

(Rickard et al., 2004b). 

 High coaggregation indices were observed between the Myroides and 

Empedobacter spp. isolates and E. faecalis and S. aureus.  Due to the high overall 

coaggregation between majority of the coaggregating partners and the isolate displaying 

the presence of an additional OMP selected for the coaggregation assays, it was 

suggested that these proteins may be involved in recognition or aggregation of both 

genetically distinct/identical bacterial strains.  Strongest coaggregation was observed 

between the Chryseobacterium and Elizabethkingia spp. isolates and E. faecalis, S. 

enterica serovar Arizonae, S. aureus and Listeria spp. coaggregating partner strains.  

Observations in mixed-species biofilm flow cell experiments could be correlated to 

results obtained by coaggregation assays.  Isolates displaying lower coaggregation 

indices (Myroides spp. isolate MY1 and Listeria spp. coaggregation partner strains) 

appeared to form layered biofilms with no intimate association between the two bacterial 

strains.  In contrast, isolates displaying higher coaggregation indices (Chryseobacterium 

and Elizabethkingia spp. isolate CH2B and Listeria spp. coaggregation partner strains) 

were found to simultaneously attach to the glass surface and form mixed colony biofilm 

structures. 

 In conclusion, the present study has shown that members of the genera Myroides, 

Empedobacter, Chryseobacterium and Elizabethkingia isolated from South African 

aquaculture systems possess the ability to adhere to surfaces and form biofilms under 

various environmental conditions.  These isolates displayed the ability to coaggregate 

with bacterial species important from a food and health perspective, and displayed high 
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antibiotic resistance profiles.  Although they are mostly described as opportunistic 

pathogens in both veterinary and human infections, their association with pathogens and 

spoilage organisms causing great economical losses in the aquaculture and food 

industries and lethal infections in humans raises concern with regards to being associated 

with potential reservoirs for infection and re-infection as well as their ability to 

incorporate food spoilage organisms into biofilms with increased cleaning and sanitation 

resistance on food preparation surfaces. 

 

6.2 Future prospects   
 

Recommended future investigations originating from preliminary findings in the 

current study would include 16S rRNA sequencing for the possible 

identification/characterization to species-level of specific Myroides, Empedobacter, 

Chryseobacterium and/or Elizabethkingia isolates.  Further investigation and 

identification of common bands in profiles obtained with RAPD primers P1 and P2, is 

also recommended as this could potentially be used in the rapid molecular identification 

of specific Chryseobacterium and Elizabethkingia species (diagnosis) or their species 

group (species assignment).  An in-depth study on the genes conferring resistance to 

antimicrobial agents by these isolates is also proposed so as to elucidate the MDR 

potential of these organisms.  Quantitative characterization of the capsular material 

observed for the study isolates might provide valuable information to the capsules’ roles 

in the adherence abilities of these species.  Further investigation into the nature and effect 

of the OMP observed in the Myroides and Empedobacter spp. isolates might reveal the 

role of this protein in the hydrophilicity, and recognition or aggregation of genetically 

identical as well as genetically distinct bacterial strains by these organisms.  

Characterization of possible quorum sensing molecules involved in induction of the 

adherence of the study isolates is also suggested, for better elucidation of interaction 

between the study isolates and other bacterial strains in biofilm communities, as well as 

the effect of study isolates on important bacterial strains, or vise versa.  Furthermore, the 

investigation of specific cell-surface molecules mediating strong coaggregation abilities 

between the study isolates and coaggregating partners may provide valuable information 
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for anti-adhesion therapy which could be applied in aquaculture systems for the 

eradication of biofilms harbouring pathogenic organisms.         
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