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Abstract

Object Recognition and Automatic Selection in a Robotic
Sorting Cell

F.J. Janse van Rensburg

Department of Electronic Engineering
University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Electronic)
October 2006

This thesis relates to the development of an automated sorting cell as part of a
flexible manufacturing line, with the use of object recognition. Algorithms for each
of the individual subsections creating the cell, recognition, position calculation and

robot integration were developed and tested.

The Fourier descriptors object recognition technique is investigated and used.
Invariance to scale, rotation or translation of the boundary of an object makes this
technique very favourable for this application of object recognition. Stereoscopy
with basic trigonometry is used to calculate the position of recognised objects,
after which they are handled by a robot. Integration of the robot into the project

environment is done with trigonometry as well as Euler angles.
It is shown that a successful, automated sorting cell can be constructed with

object recognition. The results show that reliable sorting can be done with available

hardware and the algorithms developed.
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Uittreksel

Voorwerpherkenning en outomatiese seleksie in 'n Robotiese
Sorteringsel
(“Object Recognition and Automatic Selection in a Robotic Sorting Cell”)

F.J. Janse van Rensburg

Departement Elektroniese Ingenieurswese
Unaversiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika
Tesis: MSclng (Elektronies)
Oktober 2006

Hierdie tesis handel oor die ontwikkeling van 'n geoutomatiseerde sorteringsel as
deel van 'n aanpasbare produksielyn, met die hulp van objekherkenning. Algoritmes
vir die verskillende probleme, herkenning, posisiebepaling en robot-integrasie word

ontwikkel en getoets.

Fourier-beskrywers as herkenningsmeganisme word ondersoek en gebruik. In-
variansie tot skaal, rotasie en translasie van die buitelyn van 'n objek maak hier-
die meganisme gunstig vir gebruik in ’'n sorterings sel. Stereoskopie en basiese
trigonometrie word gebruik vir posisiebepaling van objekte in die sorteringsel. In-

tegrasie van die robot geskied met die hulp van trigonometrie en Euler hoeke.
Daar word getoon dat 'n suksesvolle, outomatiese sorteringsel met die hulp van

objekherkenning gebou kan word. Resultate toon die akkuraatheid van die stelsel

is genoegsaam vir betroubare sortering.
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Chapter 1

Introduction and Overview

1.1 Motivation

Over the years, rules governing competition in manufacturing have grown more
stringent and are forcing manufacturers to enhance their efforts to improve com-
petitiveness. Intelligent manufacturing through innovation and optimisation is the
key to improved competitiveness. The sorting cell in the modern flexible manu-
facturing line can be optimised and improved with the addition of intelligence by

means of intelligent object recognition.

Existing sorting methods used in manufacturing lines rely on object properties
such as size or attached barcodes, but situations do arise where these methods are
useless. Using object recognition as identification and sorting technique, with the
help of a robotic arm, allows for more versatility in the sorting cell and overcomes
the constraints of existing methods. The ability to detect some defects in products

will be an added feature to the sorting cell as a side effect of the object recognition.

The addition of intelligence in the sorting cell is the next logical step in the
evolution of intelligent and flexible manufacturing lines. The challenge is to perform
this evolution at the lowest cost possible using of the shelf components and object

recognition techniques which are robust, accurate and reliable.
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1.2 Background

The Centre for Robotics (SENROB) at the University of Stellenbosch forms part of
the Industrial Engineering Department. Research at SENROB is primarily based
on the increase of productivity of manufacturing lines through automation and
optimisation. Existing methods and hardware are evaluated and new methods are
developed. The aim of the centre is to have a fully automated manufacturing line

simulated within the lab.

The sorting cell forms an integral part of the fully automated manufacturing
line. Having an intelligent sorting cell as part of the simulated manufacturing line
will allow SENROB to investigate this area of manufacturing. Knowledge of the
requirements placed on the rest of the manufacturing line, as well as the communi-
cation protocol between cells on the line, will be gained when the intelligent sorting

cell is fully integrated into the simulated manufacturing line.

1.3 Objectives of this Study

The objective of this project is the investigation into and development of an in-
telligent, automated sorting cell in the manufacturing line using object recognition
as sorting method. Firstly, the study involves the development and evaluation of
an object recognition algorithm using the Fourier descriptors technique. Fourier
descriptors use the frequency information stored in the boundary of an object to

distinguish between different objects.

The second part of the study is concerned with the integration of the object
recognition algorithm with a robotic arm which will handle identified objects. The
performance of the object recognition algorithm, as well as a position calculation
algorithm, must be evaluated when used with the supplied RTX robotic arm. Ac-
curacy and reliability are considered more important than speed. Evaluation will

be focused on these aspects.
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1.4 Dissertation Structure

This thesis is structured as follows:

e Chapter 1 motivates the thesis, gives some background and an overview of

the scope of the work.
e Chapter 2 discusses work related to this project.
e Chapter 3 introduces the object recognition theory.
e Chapter 4 contains the robotics theory needed for the project.

e Chapter 5 discusses the integration of the separate fields into a working au-

tomated sorting cell.

e Chapter 6 presents results from the evaluation of the developed automated

sorting cell.

e Chapter 7 contains the conclusions and recommendations achieved from this

project.



Chapter 2

Related Work

2.1 Image Recognition

2.1.1 Digital Image Recognition for Machine Intelligence

In 2000 a final-year project by J. Joubert [5] was the first to investigate the use
of machine vision in SENROB. The goal of the project was to develop an image
recognition program that can classify simple shapes in images stored in the JPEG
format. Basic, free-standing shapes could be identified by comparing the pixel data
in each of the images. Two different techniques of comparing the pixel data of an
image were tested. Objects to be identified had to be precisely placed in front of
the camera at a pre-defined spot. If an object was correctly identified a Chang-
Shing Electric CS113 type robot was used to handle the object. The robot was
controlled by its own computer and no interaction between the image recognition
program and the robot took place. Instructions for the robot for each of the objects
were programmed beforehand and when identification took place the user had to
notify the robot which object it was going to handle. Although none of the image
recognition techniques in this report were used, it gave an idea of what features

and abilities a good object recognition algorithm should have.

2.1.2 Digital Image Recognition for Robot Vision

Following J. Joubert’s investigation W.A. Joubert [6] looked into image recognition

for robot vision the following year for his final year project. His goal was to develop
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recognition software that can be used in conjunction with the RTX robot in SEN-
ROB. The project was done in Delphi with the goal of merging it with a program
developed by André Albers the previous year, controlling the RTX robot using a
Delphi program. Once again comparison between images took place by comparing
individual pixels to one another. This technique is very limiting but the project
helped in the understanding of problems others have encountered and limitations
their methods had.

2.1.3 Shape description with Fourier descriptors

A technical report by Petkovi¢ and Krapac |7] found that defects in products can
be found using object recognition based on shape. The Fourier descriptor technique
was used to extract frequency information from the boundaries of objects, which
was then used to compare correct and defective objects with each other. The pos-
sibility exists to enhance the algorithm to distinguish between various types of de-
fects, thus obtaining information about the defect which can be used for automated
control of the production process. The report was informative on the subjects of
illumination, the descriptors of objects, how Fourier descriptors are calculated and
how to compare descriptors of various objects with each other. Techniques dis-

cussed in the report are investigated and used in chapters 3 and 5.

2.2 Robotics

2.2.1 RTX Robot

The RTX robot manuals [1| contain information about the physical, electrical,
electronic and software properties of the robot. Part 1 of the manual contains basic
information such as how to set up the robot and run a demonstration program
using the software originally supplied with the robot. Part 2 focuses on the physical
attributes of the robot. Design information shows the dimensions of the RTX and
the geometry of the robotic arm. The control and effect of each electric motor are
described, as well as the electronics controlling them. Maintenance information on

the robot is found in part 4 of the manual and the IPC protocol for communication
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with the robot is explained in part 5. Some of the most important attributes of

the RTX robot needs to be highlighted and are summarised from the manuals.

RTX is a robot arm designed by Universal Machine Intelligence (UMI) to be
controlled from a personal computer. It is connected to the controlling computer
via a serial interface. Communications between RTX is handled by a protocol called
Intelligent Peripherals Communications (IPC), which has been developed at UMI
specifically for this purpose. The assembly of the whole robot is shown in figure

2.1. Moving components includes the linear slideway, the upper and lower arm, the

pulley L

timing belt

linear slideway

shoulder and carriage
shoulder motor
intermediate pulleys
final pulley & key —

upper arm
intermediate pulleys

tube
elbow motor
wrist yaw motor
intermediate pulleys

lower arm
wrist spindle
wrist mounting plate
wrist and gripper ———————————»"

connection panel
zed motor and gearbox

base board

Figure 2.1: The RTX robot assembly. (Adapted from [1].)
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wrist and the gripper. The linear slideway is driven by the z-axis motor and moves
the whole robotic arm up and down along the tower of the robot. The upper arm
is connected to the linear slideway at the shoulder. The shoulder holds a vertical
spindle which lets the upper arm swing around the shoulder joint in a horizontal
plane on its bearings when driven by the shoulder motor. The lower arm is fixed
to a tube that rotates on bearings in the upper arm, allowing it to swing around
the elbow joint in a horizontal plane when driven by the elbow motor. The wrist
itself is connected to the rest of the arm at the end of the lower arm. It is capable
of swinging in the horizontal plane around the wrist spindle when driven by the
wrist yaw motor. The gripper of the wrist can perform a pitch rotation around the
gripper joint and a roll rotation around an axis perpendicular to the gripper joint

and parallel to the lower arm.

As the upper and lower arm are the same length, it means that the wrist can

be moved in a straight line outwards from the column, along a radial line between

H Upper arm Wrist unit
— )
1

Lower arm

—

>
~>

Figure 2.2: Moving the wrist outwards along a straight line between the shoulder and
wrist spindles.
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the shoulder and wrist spindles, by rotating the two parts of the arm, making sure
that angle P is always half angle @) in figure 2.2. The gear ration from the shoulder
to the upper arm is twice that of the elbow motor to the lower arm. To move the
wrist in a radial line, you therefore drive the two motors at the same speed but in
opposite directions. In addition, the gripper can be kept pointing along the radial
line be keeping angle R the same as angle P. This is achieved automatically without
needing to drive the yaw motor. When the lower arm moves through an angle @),
the wrist automatically moves through R, which is Q)/2, because of the 2:1 gear
ratio from the combined pulley which rotates on the elbow spindle and the wrist

pulley.

The range of movement and the dimensions of the robot are shown in figure 2.3.

When the arm is initialised, it should be calibrated with the arm positioned as in

750
253.5

90°

________

________

________

Figure 2.3: Range of movement and dimensions of the RTX robot. (Adapted from [1].)
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Axis Endstop to endstop total range encoder counts
encoder counts mm or degrees

zed 0 to -3554 948 mm. 3554

zed underside of wrist 881 mm. 3303
to baseboard

zed gripper pointing 738 mm. 2767
downwards to baseboard

shoulder +2630 to -2630 180 degrees 5260

elbow +2206 to -2630 331 degrees 4836

yaw +1071+4e/3 to -1071+e/3 220 degrees 2142

pitch wl 4+ w2 = 108 to -2642 102 degrees 2750

roll wl - w2 = 4882 to -3560 313 degrees 8442

gripper 1200 to -30 90 mm. 1200

Table 2.1: Ranges of travel for the arm axes from the initialised position. (Adapted
from [1].)

the last image of figure 2.2 with the arm fully extended and at the top of the linear
slideway. Encoders control the individual motors and moving a part of the robot
involves changing the encoder count of the corresponding encoder through the IPC
protocol. The ranges of travel for the arm axes from the initialised position are
shown in table 2.1. In the table w1 is the encoder count for the first wrist motor

and w2 for the second wrist motor.

2.2.2 RTX MVAL Programming

The RTX robot was controlled by software called MVAL which is run from a com-
puter connected to the robot by a serial cable. The software and driver controlling
the robot was developed as part of a doctoral thesis by H.O.W. von Petersdorff in
1987. Developed in Pascal with MSDOS as operating system, MVAL was used as
the controlling interface for the RTX robot until recently. A project in 2000 by
André Alberts developed a Windows interface for controlling the robot. Using the
interface it is possible to control the robot from a computer next to it, or through
the internet. Although Alberts’ project was successful MVAL was still being used
when this project started. Early control and accuracy experiments were conducted
using MVAL before a JAVA interface to the robot was developed by Thomas Wun-
derlich at the beginning of 2006. MVAL commands can be found in its manual
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[8] written by A.R. Greeff. Through using MVAL to control the robot it was de-
termined that the RTX robot is well suited to test the machine vision techniques

developed in this thesis.

2.2.3 The Internet Control of a Robotic Work Station

A project by André Alberts [9] at the Industrial Engineering department of the
University of Stellenbosch looked into the control of a robotic work station through
the internet. The RTX robot was used in this experiment and was successfully
controlled through the internet using an interface developed in Delphi. The IPC
protocol developed by UMI for the RTX robot was implemented in a Delphi pro-
gram which controlled the robot. Commands were sent over the internet from a
Delphi interface to the controlling Delphi program. The commands were inter-
preted and sent to the RTX robot using the IPC protocol. The availability of the
source code for the interface and control program helped in the understanding of
the IPC protocol controlling the RTX robot. The Delphi interface to the RTX
robot had limitations and was not used long before MVAL was used as primary

control interface again.

2.2.4 RTX Robot Java Interface

To allow the RTX robot to be controlled with new hardware and software, Thomas
Waunderlich set at out the end of 2005 to develop a new interface controlling the
robot using the IPC protocol. To allow communications with the robot using
various operating systems the new interface was written in JAVA. A user-friendly
interface, with which the robot can be controlled directly, was also written. As the
interface was written in JAVA it is possible to use it from within MATLAB and
call specific functions. The JAVA interface was used with MATLAB in this project
since it became available and allows the user to control the electric motors of the
RTX robot individually. The JAVA interface needed specific motor counts for each
of the electric motors to move the robotic arm to a specific position. The motor
counts are calculated using the inverse kinematics solution for the RTX robot and

converting the calculated joint angles to motor counts. The name and use of the
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most important functions of the interface follows. The full function list can be

found in the manual [10] written by Wunderlich.

on(): This function establishes the connection between the RTX robot and the

control PC. It needs to be run after each programme restart.

cal(): When this function is called, the RTX robot is calibrated and moved to its

calibration position. All positions are calculated from this position.
stop(): All robot activities are stopped when this function is called.

setPos(c,s,e,wh,wv,wt,g): This function moves the robot’s motors to the positions
defined by the integers c, s, wh, wv, wt and g. The value of the column motor
count is defined by c, the shoulder motor count by s, elbow by e, wrist yaw

by wh, wrist pitch by wv, wrist roll by wt and the gripper motor count by g.

2.2.5 RTX Robot Control and Kinematics

Through research on the internet, two very informative documents were found
concerning the control and kinematics of the RTX robot from a modern personal
computer. Thomas Wunderlich’s JAVA interface established communication with
the RTX robot, but the JAVA interface requires motor counts as input, not specific
Cartesian positions. To calculate the joint angles and subsequent motor inputs
the forward and inverse kinematics solution of the RTX robot was needed. These

documents helped in the calculation of these solutions.

The project of A. Fernandez |2] gives information about the history of robotics
and basic terms associated with the field. Different kinds of robots are discussed,
as well as their geometry and calculation of their kinematics. Detailed information
about the control aspects of the RTX robot are discussed, some of which were
used in this project. Sam Wane [4] of Staffordshire University’s document gives a
description of the kinematics associated with the RTX robot and shows how they
are calculated. This document was used to calculate and confirm the forward and
inverse kinematics solutions of the RTX robot to be used with the JAVA interface.
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From [2]| the Denavit-Hartenberg formulation was used to find the forward kine-
matics equation of the RTX robot. An extraction of [2] follows. Fernandez defines
the Denavit-Hartenberg equation as a formulation which finds the explicit function
linking the joints space with the Cartesian space of positions/orientations. This
function takes a vector with as many components as degrees of freedom the robot
arm has, and returns a 6-dimensional vector: the three first components are the
special position of the terminal point and the last three give the orientation, in

terms of an approximation vector or as orientation angles.
foJ—m (2.2.1)
The first action in finding the Denavit-Hartenberg formulation is affixing a frame
to each link. It can be done by the following steps:
Step 1: Identify the joint axes and draw lines along them.
For step 2 through 5 below consider two of these neighbouring lines:

Step 2: Identify the common perpendicular between them, or point of intersection.
At the point of intersection, or at the point where the common perpendicular

meets the i'h axis, assign the link frame origin.
Step 3: Assign Zi pointing along the direction of axis i.

Step 4: Assign Xi pointing along the common perpendicular, or if the axes inter-

sect, assign Xi to be normal to the plane containing the two axes.
Step 5: Assign Yi to complete a right-hand coordinate system.

Step 6: Assign 0 to match 1 when the joint variable is zero. For N choose an
origin location and Xy direction freely, but generally so as to cause as many

link parameters as possible to become zero.
From these premises, the Denavit-Hartenberg parameters choice is as follows:
e a; 1 = the distance from Z; | to Z; measured along X, ;
e «,; 1 — the angle between Z; ; to Z; measured about X; ;

e d; = the distance from X; ; to X; measured along Z;
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e 0, = the angle between X, ; to X; measured about Z;

Axis 7

Axis -1

'
,"F/ Ui

Figure 2.4: Denavit-Hartenberg Parameters for a generic joint. (Adapted from [2].)

Now, for each link we can divide the transformation in four simple transformations
which will drive up to the generic DH matrix for a joint. The resultant matrix,

established between the axes ¢ — 1 and 7, is:

cost); —sinb;-cosq; sinb;-sinc;  a;cosb;
i1 sinf; cosf;-coso; —cosl;-sina; a;sinb;
i = .
0 sin oy COS d;
0 0 0 1

And after that, the global transformation matrix is built by multiplication of suc-

cessive link matrices from the base to the tool of the robot.

04, = A, P Ay-.... ™14, (2.2.2)
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This homogeneous transformation matrix °A,, relates a system solitary to the ter-
minal point with the World reference, which has been already defined. Each one
of the elements of this matrix T depends on some or every joint’s variables and on

the geometric constants of the robot arm.



Chapter 3

Object Recognition

3.1 Object Recognition in Flexible Manufacturing

Improving the competitiveness in the modern assembly environment is of the ut-
most importance for manufacturers. Optimisation of production lines holds the
key to improved performance, as manufacturing lines are only cost effective when
demand exceeds supply. With the rapidly changing customer environment and the
growth of global competition, the demand for a certain product may vary drastically
from time to time. To maximise profits production must be controlled according
to demand. Pierpaoli and Urbani [11] state that 'Manufacturing companies in the
21st Century will face frequent, unpredictable market changes” and that 'to remain
competitive, manufacturing companies must possess a new type of manufacturing
system that is highly responsive. They must possess the exact production capacity
and functionality when and where it is needed.” Thus a cost effective, responsive
manufacturing system must be able to manufacture varying product batch sizes,
with the smallest batch consisting of only one product, and be able to produce

different products using, where possible, the same production line.

Due to the varying batch sizes and the different products produced, mixed
batches will be formed somewhere down the production line. A sorting cell on
the production line is needed. Placing the sorting cell near the end of the produc-
tion line and integrating it with the handling process will improve flexibility and

increase the speed of the line. Products will be identified, their position calculated

15
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and handled by manipulators. Depending on the type of product, the manipulator
will place the item in the predefined position for the specific product, thus sorting
the mixed batches.

Sorting can be done by conventional methods like barcodes or sorting by size,
but all of them have their own constraints - there may be not enough space to
place a barcode or product dimensions are to similar too sort by size. When these
methods cannot be used, a more versatile sorting method is needed - one that can
be easily adjusted to sort other groups of products and which does not have the
same constraints as current methods. It must be noted that any new method will
have constraints of its own. To create a new, more intelligent sorting method, a
new kind of recognition sensor is needed. The sensor must be able to differentiate
between different objects of varying and similar shapes and sizes, colours and even
position in the cell. A suitable sensor can be constructed using cameras equipped
with object recognition capabilities. By recognising different objects within the
field of view, it will be able to sort objects of the same type without the need for
human interaction. Object recognition also makes it possible to identify defects in

known products.

Object recognition with the use of cameras involves the translation of the scene
into computer-understandable descriptions of objects. Different description tech-
niques are available, of which only one is investigated, namely Fourier Descriptors.
The versatility of the Fourier Descriptor technique is the reason behind this deci-
sion. In Farooq and Osadebey [12] it is stated that Fourier descriptors are a widely
used, all-purpose shape description and recognition technique. It has been used in
a variety of fields over the years, including the commerce, medical, biological and
technical sectors. In the factory environment most of the work has been done on

the identification of defects on manufactured components.

At the 5" CIRP International Seminar on Intelligent Computation in Manufac-
turing Engineering held from 25 to 28 July 2006 in Ischia, Italy, the paper, "The
use of Fourier Descriptors for Object Recognition in Robotic Assembly" [13], was
presented by the author. It covered most of the aspects of an automated sorting cell

using object recognition with Fourier descriptors as presented in this chapter. The
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implementation of the recognition process as a whole, as well as the implementation

of each of the separate sections, are covered in detail in Chapter 5.

3.2 Algorithm Requirements

Before developing the object recognition algorithm, one needs to take certain factors
into consideration. These factors include the environment in which the algorithm
is going to be used, the kind of objects that are going to be identified, the placing
and orientation of the objects and the available hardware with which images are

obtained and calculations are done.

The environment in SENROB where the recognition takes place can be easily
modified to suit a specific kind of recognition. Environment factors such as lighting
or background can be changed easily; thus environment factors do not contribute
to the requirements set for the object recognition algorithm. The same cannot be
said about the factors implicated by the objects that need to be recognised. As
objects of any shape or colour may be produced on the production line, some with
similar features and other with distinct differences, the algorithm needs to be able
to handle all of them. Furthermore, objects will not be symmetrical around one
or more axis and the orientation in which they are presented to the camera will
differ, as well as the distance from the objects to the camera. Limitations imposed
by hardware include the resolution of images taken of objects and the computing

power at the disposal of the algorithm.

Thus an object recognition algorithm is required that is able to do recognition
invariant to the rotation, translation or scale of an object in an image of set reso-
lution within an allowable period of time. Simple colour recognition may also be

needed.
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3.3 Fourier Descriptors

3.3.1 Mathematical Background

To enable a computer to know what a camera is seeing, the objects in the image
need to be described with a systematic computer description. Fourier descriptors
describe the shape of an object by considering its boundaries. A short synopsis of
the Fourier descriptor mathematics as explained by Gonzalez and Woods [3] follows.

It will give the necessary background to understand how the method operates.

Suppose the digital boundary of an object is plotted on the XY plane. Starting at
a arbitrary point (zg, yo), coordinate pairs (xo, ¥o), (€1, Y1), (T2,y2), - -, (Tx 1, Yr—1)
are encountered in transversing the boundary in a given direction, say clockwise.
These coordinates can be expressed in the form x(k) = x and y(k) = y,. With
this notation the boundary itself can be represented as the sequence of coordinates
s(k) = [z(k),y(k)], for k =0,1,2,..., K — 1. Moreover, each coordinate pair can

be treated as a complex number so that
s(k) = z(k) + jy(k) (3.3.1)

for k =0,1,2,..., K — 1. The X axis is treated as the real axis and the Y axis
as the imaginary axis of a sequence of complex numbers. The advantage of this

representation is that it reduces a 2-D problem to a 1-D problem. The discrete
Fourier transform (DFT) of s(k) is

=
a(u) = — s(k)eI2muk/ K (3.3.2)
K
k=0
for u = 0,1,2,..., K — 1. The complex coefficients a(u) are called the Fourier

Descriptors of the boundary. The Fourier Descriptors are a frequency based de-
scription of the boundary of the image. The inverse Fourier transform of the a(u)’s

restores s(k). That is,
K-1

s(k) = Z a(u)el? kK (3.3.3)

u=0
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for k=0,1,2,..., K — 1. The Fourier descriptors uniquely describe the boundary

of an object.
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Figure 3.1: A digital boundary and its representation as a complex sequence. The points
(zo,Y0), (x1,y1) shown are (arbitrarily) the first two points in the sequence. (Adapted from

[31)

Comparing the descriptors of different objects gives a measurement of their sim-
ilarity, but do we need all of the descriptors for such a comparison? Using only
the most significant descriptors will improve speed and allow for a more intuitive

understanding of the information, as negligible data is removed.

Meaningful results can still be obtained by using a subset of the descriptors. For
practical images most of the boundary information is located in the low frequency
part of the descriptors. In choosing a low frequency subset, only the first P coef-
ficients are used. This is equivalent to setting a(u) = 0 for v > P — 1 in equation

3.3.3. The result is the following approximation of s(k):

i

alu)e? kK (3.3.4)
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IS
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for k =0,1,2,..., K — 1. Although only P terms are used to obtain components
of 3, k still ranges from 0 to K — 1. The same number of points still exists in
the approximate boundary, but fewer terms are used in the reconstruction of each
point. By using fewer terms to approximate the boundary some of the higher
frequency components of the boundary are lost, leading to a loss in finer detail in the
boundary. The remaining coefficients account for the lower frequency components,
which determine the global shape of the boundary. Thus the smaller P becomes,

the more detail is lost on the boundary.

It is shown in figure 3.2 that only a few Fourier descriptors can be used effectively

to capture the primary shape of a boundary. The square boundary in figure 3.2

Original (A = 64 P =1 F =4 P =5
F= 16 F = 24 F = 32 P =i
P = 48 P = 56 [ P = 63

Figure 3.2: Examples of reconstruction from Fourier descriptors. P is the number of
Fourier coefficients used in the reconstruction of the boundary. (Adapted for [3].)
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consists of K = 64 points. We can see that the approximation only becomes more
square than circular when P is about 8 and that corner definition only appears
until P is about 56 or larger. The lower frequency components form the basis for

differentiating between distinct boundary shapes.

Transformation Boundary Descriptor

Identity s(k) a(u)

Rotation s.(k) = s(k)el® ar(u) = a(u)e’?
Translation si(k) = s(k) + Ay ar(u) = a(u) + Ayyo(u)
Scaling ss(k) = as(k) as(u) = aa(u)

Starting point  s,(k) = s(k — ko)  ayu = a(u)eI2rkou/K

Table 3.1: Basic Fourier descriptor properties. (Adapted from [3].)

The Fourier descriptor method for object recognition is invariant to translation,
rotation, scale of the boundary, and the order in which points are processed. Al-
though the method is not directly insensitive to these geometrical changes, changes
in these parameters can be related to simple transformations on the descriptors.
Table 3.1 summarizes the basic properties for the Fourier descriptors a(u) of a
boundary sequence s(k) that undergoes rotation, translation, scaling or a change
in starting position. Rotation affects all the coefficients equally by a multiplicative
constant term e’?. Translation consists of adding a constant displacement to all
coordinates in the boundary, but does not affect any of the descriptors except for
a = 0, which has the impulse function A. A change in scale of the boundary relates
to an equal change in scale of the descriptors. Changing the starting point affects
all of the descriptors in a different, but known, way. Knowing the effect of each of
the geometric changes makes it possible to remove them and achieve invariance to
translation, rotation, scale and starting point. Ignoring the first descriptor where
a = 0, removes the effect of translation, the inverse DFT of only this point is equal
to the position of the centre of the boundary or A, in table 3.1. Scaling affects
the boundary and the descriptors with the same amount. This constant can easily
be calculated and scaling corrections can be made. From table 3.1 we can see that

the magnitudes of a(u) are invariant to rotation because:

jar(u)] = Ja(w)e”| = Ja(u)] - |e”] = |a(u)] - 1 = |a(u)| (3.3.5)
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The magnitude of a(u) is invariant to the starting point in the coordinate sequence
for the same reason. Having removed all variances, the complex Fourier descriptor
sequences can now be compared. Boundaries of similar objects will have a small
difference. If the difference between an unknown and known object boundary’s
descriptors is small, then they must be of the same kind. The comparison and

usage of Fourier descriptors are covered in detail in chapter 5.

Removing all of the invariances due to the properties in table 3.1 from the descrip-
tors allows for easy comparison between two different sets of descriptors. Although
never implemented in this project, the properties can be used to calculate the ro-
tation of an object or even its position by looking at the change to the descriptors

due to translation and scale.

This paragraph explains the significance of each of the descriptors of a boundary.
To start, the Fourier descriptors of the boundary in figure 3.3(a) is calculated by
taking the discrete Fourier transform of the boundary. Figure 3.3(b) shows the
magnitude for the 21 lowest frequency descriptors. As it is the result of a discrete
Fourier transform the highest frequency components are found in the middle of
the plot and the lowest at the beginning and end. The first Fourier descriptor,
a(0), in 3.3(b) represent the centre of the boundary.The inverse Fourier transform

of it is the coordinate of the crosshair in 3.3(a), the centre of the boundary. Each

4.5

351

251

151

(a) (b)

Figure 3.3: Boundary, (a), and its Fourier descriptors, (b).
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of the following descriptors represents a vector rotating around the origin with a
constant magnitude, forming a circular footprint. The magnitude of the vector
is dependant on the magnitude of its descriptor. The vectors represented by the
second and the last descriptor form a set with a frequency of one complete rotation
when moving around the boundary. The second descriptor rotates anti-clockwise
and the last clockwise. The third and second to last descriptor’s vectors complete
two full rotations when transversing the boundary and the next set will complete
three full rotations and so forth. Adding all of the vectors together at a certain
point in transversing the boundary will give an approximation of a point on the
boundary. Repeating this process for every point an approximation of the complete
boundary can be found. Figure 3.4 shows the vectors related to the first and the last
descriptors being added together. The first vector, rotating anti-clockwise, relates
to the second descriptor and is added to the centre of the boundary as calculated
from the very first descriptor in the sequence. The second vector related to the last
descriptor, rotating clockwise, is added to the centre and first vector resulting in
an approximation of a point on the boundary. As the vectors rotate around their

origins while we transverse the full 360 degrees around the origin the complete

Rotation

direction V2 _
— Rotation

.................. direction V1

i  Approximated
boundary

Figure 3.4: The approximation process featuring vectors related to the two lowest fre-
quency components.
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approximation of the boundary is calculated. An increase in descriptors used will

improve the accuracy of the approximation.

3.3.2 Relationship with the Fourier Series

Similar to the use of a Fourier series to construct a specific time signal using sine
waves of different amplitude and frequency, the Fourier descriptor method uses a
series of circles with different sizes and frequencies to build up a two dimensional
plot of a boundary. Each descriptor coefficient is the frequency representation of a

circle in the two dimensional complex plane, XY.

The Fourier series is a mathematical tool which allows us to analyse arbitrary

periodic signals by decomposing them to a weighted sum of simpler sinusoidal

0.4
0.z

1 e 3 a5 &
(a) Using only 1 term

L L

0.4
0.2

1 2 2 \4/ 5 &

(b) Using 3 terms

R Fa)

0.s
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1 2 3\/4 =1 \6’

(c¢) Using 7 terms

Figure 3.5: Approximating a square wave with different amount of sine waves.
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components or terms. The coefficients, or terms, are a one-to-one mapping of the
original function. Any periodic signal can be approximated by using only a few
of these terms. In figure 3.5 we can see how the accuracy of the approximation
increases as the number of terms used in the reconstruction of a square wave in-
creases. With only one term the approximation is, as expected, a single sine wave.
At a three term approximation the general shape of the signal becomes apparent
and at seven terms the shape is even more visible. With more terms higher fre-
quency components are added which account for the finer details in the signal. A
boundary plotted on in the complex XY plane can easily be interpreted as a peri-
odic signal. In transversing the boundary more than once a complex periodic signal
can be constructed which can be decomposed to a weighted sum of simpler circles
in the complex plane. The original boundary can be approximated in the same way
as the periodic signal by using only a few terms. This has already been shown in
figure 3.2 where a square boundary is approximated with different amount of terms

or sum of circles in the complex plane.
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Robotics

4.1 RTX Geometry

In order to calculate the kinematics of a robot the geometry of the specific robot
is needed. The RTX robot from UMI is a SCARA type robot, providing a blend
of features of cylindrical and articulated robots. With the help of figure 4.1 the
movements of the RTX robot can be explained. The whole robot arm moves up
and down along the tower of the robot, while the next three joints are rotary. These
joints are the shoulder, elbow and wrist yaw. All three joints rotate around axes
parallel to the tower, a familiar feature of SCARA robots, so that movement of the
previous joint affects the position of all of the following joints. The wrist of the

RTX robot is able to perform roll and pitch movements.

Knowing the geometry of the robot a Cartesian coordinate system is chosen, as
in figure 4.1, which will be the reference to express the position of the robot arm
and orientation of the gripper. The shoulder rotates around the Z-axis in the XY-
plane. The rotation of the elbow is around the Z-axis in the XY-plane if a new
coordinate system, with the system centred at the elbow point, is used. With a new
coordinate system centred at the wrist point yaw consists of a rotation around the

Z-axis, pitch a rotation around the X-axis and roll a rotation around the Y-axis.

26
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N

Shoulder rotation

Figure 4.1: Cartesian coordinates and rotations defined for the RTX robot.

4.2 Robot Kinematics

4.2.1 Forward Kinematics of the RTX Robot

The forward kinematics equation is used to calculate the position of the end point
of the robotic arm from the angles for the individual joints. An adequate kinemat-
ics method is an important tool when working with robotics, as it simulates the
movement of the manipulator. The Denavit-Hartenberg method establishes a series
of steps leading to a homogenous matrix which relates the angles of the joints to a
Cartesian position for the end of the robotic arm. Using the Cartesian coordinate

system defined in the previous section and illustrated in figures 4.1 and 4.4 and
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the following Denavit-Hartenberg matrices, the forward kinematics equation can

be found. The Denavit-Hartenberg matrix for rotation about the Z-axis is:

cosf; —sinf; 0 0
0 - sinf; cos#; 0 O (4.2.1)
0 0 10
0 0 0 1
Around the X-axis the Denavit-Hartenberg matrix is
1 0 0 0
6 - 0 cost; —sinf; 0 (42.2)
0 sin#; cosf; 0
0 0 0 1
and for a rotation about the Y-axis it is
cost); 0 sinf; 0O
0 1 0 O
0; : ! (4.2.3)
—sinf;, 0 cos@; 0
0 D= J00) 1
with a translation along X, Y or Z represented with the matrix
0 0 0 =
0 00
ryz o (4.2.4)
0 0 0 z
0 00 1

where x; representing the translation along the X-axis, y; the translation along the

Y-axis and z; translation along the Z-axis.

Using equations 4.2.1, 4.2.2, 4.2.3 and 4.2.4 the forward kinematics equation for
the RTX robot is found. The column up and down movement of the arm is a simple
translation along the Z-axis, z., and is represented in the first matrix in equation

4.2.5. The physical length of the shoulder results in a translation along the Y-axis,
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ys, while movement of the shoulder is a rotation about the Z-axis, 6. This, and the
shoulder translation is also represented by the first matrix in 4.2.5. The movement
of the elbow causes a translation, y., due to the length of it and a rotation around
the Z-axis, 0., which the second matrix in 4.2.5 represents. °As forms the partial
matrix for the movement of the robotic arm from the base to the wrist. Multiplying
the matrices in equation 4.2.5 leaves equation 4.2.6, the Denavit-Hartenberg matrix

for movement from the base of the robot to the base of the wrist.

cosf)y —sinf, 0 0 cosf, —sinf, 0 O
04, — sinfly;,  cosf, 0 vy sinf, cosf. 0 vy. (4.2.5)
0 0 1 =z 0 0 1 0
0 0 0 1 0 0 0 1
cos(Os +0.) —sin(fs+0.) 0 —yssinby — y.sin(fs + 0.)
04, sin(fs +0.) cos(fs+60.) 0 yscosbs+ y.cos(ds + 6,) (4.2.6)
0 0 1 Ze
0 0 0 1

From the wrist to the gripper the first rotation encountered, 6,, is that of the
wrist yaw around the Z-axis, represented by the first matrix in equation 4.2.7. The
second matrix in 4.2.7 represents the pitch rotation, 0, of the wrist around the
X-axis. The last matrix represents the roll rotation, 0,, around the Y-axis and
the gripper length translation, y,,, along the Y-axis. Equation 4.2.8 represents the
Denavit-Hartenberg matrix for the movement from the wrist to the gripper of the
robotic arm and is derived from equation 4.2.7. In 4.2.7 and 4.2.8 the operator cos

is shortened to ¢ and sin shortened to s.

c, —sb0, 0 0 1 0 0 0 cf, 0 s6, 0
30, — 50, cb, 0 0 0 cb, —s0, 0 0 1 0 wy (4.2.7)
10 0 s0, b, O sh,. 0 cb,
01 0 0 0 1 0 0 0 1
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by - O, — 50y, - 50, - 50, —cb, - s0,,
cl, - s0,, + cby, - s0, - 50, cl, - s0,
—ct, - s0, 50,
0 0

cby - cl, — 50y, - 50, - 50, —ch, - s0,,
cl, - 50y, + cby, - s0, - 50, cl,, - s0, (42.8)

—cf, - s0, 50,

0 0

The full forward kinematics can be found by multiplying the two partial matrices
0A3 and 3Ay. The resulting equation (4.2.9) is the global kinematics matrix for the
RTX robot.

04 =0 A3 3 Aq (4.2.9)

Substituting the values for the angles and translations into the matrix ® Ag will yield
the x,y and z position of the tip of the robotic arm in the last column as illustrated
in equation 4.2.10.

Lposition

W By yposition

(4.2.10)

*
*

Zposition

1

jaw)
=)
=

4.2.2 Positioning of the Gripper

The positioning of the gripper at the end of the robotic arm is a more complicated
problem. The process of finding solutions for the joint angles resulting in a specific
Cartesian position for the end of the arm is sometimes called finding the robot’s
inverse kinematics solution. Whereas the forward kinematics solution is always
defined, the inverse kinematics solution is not always solvable. This means that it
is not always possible to move a manipulator to a specific position or orientation.
Fernandez [2| states that all practical six-axis robots, such as the RTX, usually
have a solution for a position within the range of movement of the specific robot,
but positions do exist for which an inverse kinematics solution can not be solved,
called singularities. The range of movement of the RTX robot is shown in figure

4.2. Movement of the robot arm is covered in chapter 2, while detailed information
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Figure 4.2: Range of movement of the RT'X robot. (Adapted from [1].)

can be found in its manuals [1].

Algorithms for solving the joint angles to position simple mechanisms are easily
calculated, but for more complicated, multiple axes manipulators it is much more
difficult to solve the inverse kinematics equation using only geometry. Reasons
include the necessity of relating the orientation of the tool to the corresponding
axial position, the existence of more than one solution and the solving of nonlinear
equations. Robots with more than six axes can have an infinite number of solutions,
but for the RTX and other with six axes the number is finite.
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Elbow Angle

Shoulder Angle

Figure 4.3: Top view of RTX robot with shoulder and elbow.

No standard method exists to construct the inverse kinematics of a robot. Differ-
ent methods have been developed for different robots depending on their particular
configuration and characteristics, but even with these methods the problem is com-
plex if all of the axes are taken in consideration. Knowing or choosing the wrist
yaw, pitch and roll angles greatly reduces the complexity of the problem and allows

for a simpler solution.

When using the RTX robot to handle recognised objects, we have control over
where the objects are picked up and put down for sorting. Choosing these positions
not to be singular for chosen wrist yaw, pitch and roll orientations, geometry can be
used to find solutions for the remaining joints, the shoulder and elbow, of the robot.
Using a method from [4] the robot is viewed from above as a two link manipulator
from where the law of cosines is used to calculate the shoulder and elbow angles.
However, before this can be done the position at the end of the elbow, P in figure
4.3, has to be calculated. This is done using similar methods as those used by Wane

in [4]. Images explaining the methods were also adapted from [4].

Calculating the position of point P in figure 4.3 is done by removing the contri-
bution of the wrist due to its pitch and yaw from the required position for the end

of the robotic arm. The contribution of the pitch is removed first. Looking at fig-
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Pivot point ro_.
v >

Tool tip
(a) Side view of wrist showing the contribution of
the pitch to x and z. (Adapted from [4].)

Apparent length=r

AN

Pivot point

(b) Top view of wrist showing the contribution of the yaw to
x and y. (Adapted from [4].)

Figure 4.4: Contributions of the wrist to the x, y and z position to the end position of
the robot arm.

ure 4.4(a) the length of the wrist in the XY plane and the z-direction is calculated
using:
7 = Ly, - cos B, (4.2.11)

z = Ly, -sinb, (4.2.12)

The variable L., resembles the length of the tool, while 8, is the wrist pitch angle.
Z is the contribution of the wrist to the z-position of the arm and r the vector

length of the wrist in the XY plane. This vector length is dissected into individual
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contributions of the wrist to the x-and y-positions of the end of the robot due to
the wrist yaw. This contribution of r in the X and Y direction is calculated next.
Looking at figure 4.4(b) and using geometry to find the following equations where

0, is the wrist yaw angle, these contribution are found.
y=r-cosb, (4.2.13)

x =r-sinf, (4.2.14)

The vector length of the wrist in the XY plane is r, y is the contribution of r in
the y-direction and x the contribution in the x-direction. Roll does not affect the
position of the gripper, only its orientation. Knowing the wrist’s contributions to
the robotic arm’s final position and removing them the point P in 4.3 is found.
Using the law of cosines the shoulder and elbow angles that result in this position

can be calculated.

p=a,+y (4.2.15)
Y
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N
\
\
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X < ~

Figure 4.5: Using the law of cosines to find the shoulder angle, 65, and elbow angle, 6.
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Knowing the distance from the origin to the point P to be p we can find a solution

for the lengths as and a3 in figure 4.5 using the law of cosines.

a3 = a3 + p* — 2a9p cos ay (4.2.16)

a3 = a3 + p* — 2azp cos as (4.2.17)

Making a and a the subjects of equation 4.2.16 and 4.2.17 we find:

2 2 9
Qg = cos (M) (4.2.18)
2azp
2, 2 2
as = cos ! (m) (4.2.19)
2a3p

Using s and ag the angles for the shoulder, 6,, and elbow, 6. are:

0, = 90 — (as + tan" (%)) (4.2.20)

Lp
9@ = 9 + a3 (4.2.21)

Substituting values for p, as and a3 into these equations and choosing suitable
angles for the wrist yaw, pitch and roll, the numerical values for the shoulder and
elbow angles are found and can be used to move the tip of the robotic arm to a

specific position.



Chapter 5

System Integration

5.1 Hardware and Function Allocation

The integrated system consists of the hardware and the associated functions per-

formed inside each hardware block shown in figure 5.1.

DSP

A/D Converter
Colour to greyscale

{t

Cameras

Image acquisition

7

<=

PC

Image Recognition
Position Calculation
Robot Control

Robot

Object Handling

Figure 5.1: Hardware and Function Allocation.
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5.2 The Automated Sorting Cell

subsectionEnvironment and System Setup Knowing the sorting environment and

O Calibration Point

[0 Robot Position /qp\
s Camera Position
and Orientation

1 Sorting Area
Sorted Area

(k) (-k:0) (-k;m)

Figure 5.2: Setup of the Sorting Cell Environment.

choosing a suitable setup for the hardware is important to ensure maximum per-
formance. The sorting environment in SENROB is on top of a large working bench
with a flat wooden surface. Lighting in SENROB is provided by overhead florescent
tubes, which provide sufficient lighting for the recognition algorithm. Additional
lighting placed above each of the cameras used in the sorting cell, angled at the
calibration point, improves the recognition algorithm performance slightly, as the
boundaries of objects are more clearly visible. Looking at figure 5.2 the calibration
point forms the middle of the setup and all hardware is placed relative to this point.
The robot’s base is placed at (—k,0) with £ = 535 mm. with the robotic arm fully
extended directly above the calibration point in its calibration position. With the
centre of the coordinate system at the calibration point, objects to be recognised
are placed in the rectangular area with corners at (y,x) positions of (—55, —75),
(55, =75), (55, 75) and (—55,75) and taken to the sorted area with (y, z) corners at
(—195, —400), (—195, —440), (—385,—400) and (—385, —440) when handled. Each
type of object has a specific place in the sorted area where it is placed by the ma-
nipulator. The cameras are placed out of the robotic arm’s way at (—320, —535)
and (320, —535) respectively, resulting in a 60 degree view angle for each of the

cameras.
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Figure 5.3: Photo of the sorting cell environment.
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5.2.1 Sorting Process

The sorting process starts when a new batch of unknown objects arrive at the
sorting station. The station is notified that a new batch has arrived and a picture
of the batch is taken with each of the cameras. The pictures are sent to the
recognition algorithm which recognises the objects in the batch, identify their colour
and calculate their positions. The recognition process is discussed in detail in the
next section. After the objects have been recognised, they are handled by the
robotic manipulator according to strategies described later in this chapter. The
sorting process ends with the removal of the tray in which the objects arrived.
Any unknown or defective objects will be removed with the tray. The arrival,
notification and removal of the tray is done manually until full integration with the
rest of the simulated factory environment in SENROB is possible. Full integration
was not possible as other projects related to the simulated factory environment in
SENROB were not yet completed.

U

Take Pictures

v

Recognition
Process

U
Object
Handling
U

Figure 5.4: Flow diagram of the Sorting Process.
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5.3 Hardware

Hardware used in the development of the automated sorting cell includes the RTX
robot, two CCD cameras, a Blackfin DSP evaluation kit from Analog Devices and
a personal computer. The two analog cameras are connected to the Blackfin eval-
uation kit which was programmed to act as an analog to digital converter for the
camera images. When new images of the sorting environment are required, the per-
sonal computer sends a command via a serial interface to the Blackfin. It takes a
picture from each of the cameras and send the digital images back to the computer.
The computer does the necessary calculations and sends appropriate commands to
the robot. The robot and computer are connected by a serial cable. Figure 5.5

illustrates how the hardware is connected.

f »“/I \Ji %
RTX Personal- |
Robot Computer -
DSP T Serial
T Cameras Blackfin
Object Evaluation kit

Figure 5.5: Hardware connection for the automated sorting cell.
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5.3.1 RTX Robot

The RTX robot was manufactured by Universal Machine Intelligence and is con-
trolled by the IPC protocol developed by the company. The IPC protocol allows
status requests and control of the joints at different speeds. Using the JAVA inter-
face written by Wunderlich [10] to interpret commands, the robot was controlled.
The interface allows each of the joints to be controlled separately, but the interface
is unable to change the speed of movement. Moving the manipulator to a new
position consists of converting the joint angles to motor encoder counts and using
the interface to send the counts to the robot. Motor encoder counts are calculated
using table 5.1 and send via the JAVA interface to the robot with the following
command where z, s, e, y, p, r and g represent the encoder counts for the zed,

shoulder, elbow, yaw, pitch, roll and gripper motors respectively:

InterRob.pushpos(z,s,e,y,p,r,g)

Motor Movement Encoder Counts
z 1 mm. 3.74953
shoulder 1 degree 29.2227
elbow 1 degree 14.6113

yaw 1 degree 9.73994

pitch 1 degree 13.4862

roll 1 degree 13.4862
—0.0585+1/0.05852+4-10.7-10—6k

gripper  kmm. 5507 10-5

Table 5.1: Counstants for converting distances and angles to motor encoder counts.

When the RTX is programmed to move to a new position, the RTX’s onboard
processors calculate a velocity profile for each of the moving motors. The velocity
profile of the motors are calculated to move the manipulator to a new position as
quickly as possible, moving all of the motors at once, each at its maximum speed.

The maximum speed using the JAVA interface is constant.

Aspects such as the physical size, range of movement, design, control and me-

chanical properties are briefly discussed in chapter 2 and detailed information can
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Figure 5.6: Velocity profile for each of the motors. Adapted from [1].

be found in the RTX manuals [1]. The griper’s size is not included in the docu-

mentation. The flat contact area on both sides of the gripper is 2cm. by 2cm..

5.3.2 Camera hardware

Two AVC526LN mini colour CCD cameras are used to capture images of the sorting
area. As they are analog, an analog to digital converter is implemented using a
Blackfin DSP evaluation kit. The colour images are also reduced to 8-bit greyscale
images with the Blackfin DSP, as they convey enough information and reduce the
complexity of the images. Digital images are sent to a personal computer which
uses them in the recognition process. The AVC526LN camera can accommodate

a variety of lenses with different focal lengths. For this project, the cameras are

Figure 5.7: AVC526LN Mini CCD Camera.
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needed to focus at the calibration point in figure 5.2 which is /5352 + 3202 =
623 mm. away from each of the cameras. This is the required working distance,
WD. A field of view (FOV) of about 190 mm. is required at this distance. Using
equation 5.3.1 with the CCD width for the AVC526LN equal to 3.2mm., it is
found that a 10.5mm. focal length (FL) lens is needed. The closest available lens,

a 12mm., was acquired for both of the cameras.

WD
FL=CCD: o (5.3.1)

5.3.3 Blackfin Evaluation Kit

In order to use the available analog CCD cameras for the project, an analog to
digital converter was needed. An available Blackfin 533 evaluation kit was pro-
grammed in C to interface with both the cameras through the AV ports and the
personal computer using a serial link. The Blackfin 533 evaluation kit includes
the ADV7171 analog to digital converter, which was programmed to accept sig-
nals from the cameras and store the digital image in the kit’s memory when the
evaluation kit receives the appropriate command from the control computer. The
DSP then converts the digital colour images to 8-bit greyscale images and send the
image data over the serial link to the personal computer which uses it to recognise

objects, identify their colours and calculate their positions.

5.4 Recognition

5.4.1 The Process

The recognition process is the most important step in the sorting process. Unknown
objects must be recognised accurately, their colours identified and their positions
calculated. The process starts when pictures of the sorting area are received. The
digital boundary of the objects in the images are found and interpolated to a set
number of points. From here the boundaries are send to a guard algorithm that
decides if a specific boundary belongs to the object set based on the size, orienta-
tion and the size of the object’s circumference. This process is less computational

intensive than the recognition process and avoids running the recognition algorithm
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Figure 5.8: Flow diagram of Recognition Process.

on boundaries that are definitely not known. Valid objects’ boundaries are sent to
the recognition algorithm which decides on the boundaries type and assigns the
appropriate label to the boundary. The positions of the recognised objects are then
calculated and stored after which the information about the recognised objects are

available for use in the handling algorithm.
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5.4.2 Objects to be recognised

To verify the performance of the automated sorting cell and its individual compo-
nents, a standard set of objects are needed. The test objects must be composed of
objects with similarities but also some distinct differences to test the recognition
algorithm and demonstrate the capabilities of the method. The pieces must also be
of a size and shape to be handled by the robotic arm. For these reasons chess pieces
were chosen. In figure 5.9 all of the chess pieces are shown with their different pro-
files from different angles. In image (a) and (b) is the bishop, (c¢) and (d) is of the
castle, next is the king in (e) and (f) followed by the rook in (g) and (h), then the
pawn in (i) and lastly the queen in (j) and (k). Each of the test pieces is available
in a dark or light brown colour. The size of the pieces varies from about 4cm high
with 1.8cm diameter for the pawn to about 5.5cm high with 2.1cm diameter for

the king. All of the other pieces fall between these values.

fiszhdas
i1l

Figure 5.9: Pieces to be recognised from different angles.
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5.4.3 Guard System

The objective of the guard algorithm is to optimise the recognition and handling
process by reducing the recognition process time. This is done by avoiding the com-
putation intensive Fourier descriptor process for boundaries that are definitely not
known to the system. Considering the height, width, circumference, shortest and
longest distances from the centre of the boundary to the boundary the algorithm
decides if an object falls into the chess pieces class and if the objects orientation
allows it to be handled. When an objects boundary is received by the algorithm
the boundary is scaled to have a set height from where the width, circumference,
shortest and longest distance from the centre is calculated. The orientation of the
object is found easily by looking at the height to width ratio. If a piece is not stand-
ing, handling will not be possible and it is designated to be invalid. For an object
to belong to the chess piece class, its dimensions properties must fall within the

boundaries stated in table 5.2 when scaled to a height of 200 pixels. Furthermore,

70 < Width < 140
525 < Circumference < 700
15 < Shortest distance < 50
100 < Longest distance < 200

Table 5.2: Valid regions for dimension Figure 5.10: Object boundary with arrows
properties to fall between to belong to the showing the longest and shortest distances
chess piece class. from the centre to the boundary.

when the values for the width and shortest distance to the centre of an object are
plotted against each other, the resulting point must fall within one of the regions
summarised in table (5.3) and shown in figure (5.11). In the figure some sample
valid points are shown within the regions and some invalid points outside. These

regions are defined by equation 5.4.1.
R? = (w, — w)* + (d, — d.)?* < radius® (5.4.1)

In this equation the root of R? is the distance from the point (w,,d,), the width
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Region centre (w.,d.) radius’
(100,23) 10
(82,30) 53
(112,38) 59
(135,49) 65
(131,23) 70

Table 5.3: Table of valid regions with centre point and radius of each region.

and the shortest distance of the current boundary, to the middle of a region with
centre (we,d.). If R is smaller than the radius of a region, the boundary belongs
to a valid object. Other kinds of object classes will have different bounding values

and different valid regions.

60 - - - - - - -
55}
50}
451

40+

351 1
301 ]
i . @ |

Shortest distance from boundary to centre

20}

15 1 1 1
70 80 90 100 110 120 130 140 150

Boundary width

Figure 5.11: Valid regions with sample points of width vs. shortest distance to centre.
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5.4.4 Using Fourier Descriptors for Recognition

The Fourier descriptors of a boundary uniquely describe it. Object recognition
takes place by comparing the Fourier descriptors of known and unknown objects’
boundaries with each other. The first step in building a reliable algorithm with
Fourier descriptors is to calculate and index the descriptors of known objects for
comparison later. The indexed or calibration objects for this project are shown
in figure 5.9 and the Fourier descriptors of these objects are calculated using the
methods described in chapter 3. The digital boundaries of the objects are found,
interpolated to set number of points, in this case 1000 points, and the discrete

Fourier transform are performed on the boundaries resulting in their Fourier de-
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Figure 5.12: Full Fourier descriptors sets of the king, (a), and subset containing 40
lowest frequency components, (b).
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scriptors. As discussed in chapter 3, a smaller subset of the descriptors is sufficient
for comparison. Figure 5.12(a) is of all the descriptors for the king and it is clearly
visible that the contribution of most of the middle components, the higher fre-
quency components, is negligible. Figure 5.12(b) shows the forty lowest frequency
components of the same object, ignoring the less contributing components. Even
here the contribution of the higher frequency components is small. Throughout
the project the forty lowest frequency components were used for comparison. The
amount of components used for comparison varies according to the type of objects
that need to be recognised. The right amount can only be found by trial and error.
A general rule is to use more descriptors for comparison for objects with much de-
tail, where higher frequency components will play a bigger role, and less descriptors
for simple objects with less high frequency components. Looking at a plot of all
the descriptors of the objects to be recognised, helps finding a limit from where the

higher frequency components play a negligible role.

5.4.4.1 Descriptors of Chess Pieces

To illustrate the differences between the Fourier descriptors of the objects, the mag-
nitude of the twenty lowest frequency components with the corresponding objects
are plotted in figures 5.13 to 5.16.

x 10"

o TT?Q??@ ooo@@‘??@??
5 10 15

0 20

(a) Bishop (angle 1) and its 20 lowest frequency descriptors.

Figure 5.13: Fourier descriptors of a bishop’s profile.
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(a) Bishop (angle 2) and its 20 lowest frequency descriptors.
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(b) Castle (angle 1) and its 20 lowest frequency descriptors.
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(c) Castle (angle 2) and its 20 lowest frequency descriptors.
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(d) King (angle 1) and its 20 lowest frequency descriptors.

50

Figure 5.14: Fourier descriptors of a bishop’s, castle’s and king’s profiles from different

angles.
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(a) King (angle 2) and its 20 lowest frequency descriptors.
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(b) Rook (angle 1)-and its 20 lowest frequency descriptors.
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(¢) Rook (angle 2) and its 20 lowest frequency descriptors.
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(d) Pawn and its 20 lowest frequency descriptors.

Figure 5.15: Fourier descriptors of the king’s, rook’s and pawn’s profiles from different
angles.



CHAPTER 5. SYSTEM INTEGRATION 52

0 QT\@@ODOH\ 00 qq? T?

0 5 10 15 20

(a) Queen (angle 1) and its 20 lowest frequency descriptors.
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(b) Queen (angle 2) and its 20 lowest frequency descriptors.

Figure 5.16: Fourier descriptors of the queen’s profile from different angles.

The first descriptor, u(0), responsible for the translation of an object is usually
very large. It has been removed in figures 5.13 to 5.16 to plot the remaining descrip-
tors to a scale allowing the magnitudes of the smaller descriptors to be more clearly
visible. The similarities between descriptors of the same objects photographed from
different objects is evident, especially in those of the queen, where the profile of

the piece does not change much with a change in perspective.

5.4.4.2 Comparison of indexed objects

The difference between the descriptors of unknown and calibration images is deter-
mined by using the Euclidean metric function. If the difference between the two
descriptor arrays is below a chosen threshold, then the unknown object must be the
same as the one it is compared to. Choosing M = 40 significant descriptors, the

difference between the calibration descriptor array, a., and the unknown object’s
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descriptor array, a;, is

- =
err = |[a. — a;|| =

(5.4.2)

5 (act) - at<u>)2

u=1

The arrays a. and a; comprise only of the significant descriptors; u starts at one
as the first place in the array, zero, holds a(0) which is influenced by translation.
Other variances must be removed as described in chapter 3 before comparison can
take place. Using equation 5.4.2 to compare the calibration images with each other,
knowledge regarding their similarities and suitable thresholds for recognition are

gained. Table 5.4 shows the result of this operation.

B1 B2 C1 C? K1 K2 R1 R2 p Q1 Q2

B1 0 8846 7374 9380 9284 12464 13488 12473 11512 9850 8793
B2 | 8940 0 10944 6736 5432 10080 9942 8755 9835 7454 7908
C1| 8361 12279 0 7880 14563 18578 11744 11894 8548 11475 10567
C2 | 10958 7787 8118 0 12213 17240 7634 8077 6086 7864 8298
K1| 4479 4486 10719 8726 0 9845 12385 11493 11564 8867 8635
K2 11261 9011 14802 13334 10658 0 14903 12256 14419 14323 13949
R1 | 16369 11939 12569 7931 18009 20019 0 3996 3755 15418 15830
R2 | 15454 10734 12996 8567 17062 16807 4079 0 0821 15042 15518
P | 16339 13813 10700 7394 19666 22651 4392 6688 0 15786 15916
Q1| 8636 6649 9123 6069 9577 14290 11453 10944 10026 0 2395
Q2| 8197 7295 8688 6622 = 9645 14391 12160 11676 10454 2477 0

Table 5.4: Calibration objects Fourier Descriptor comparison. Smallest difference to
object of another type in bold.

5.4.4.3 Determining the Thresholds

The differences between objects vary greatly. Thus, choosing a separate thresh-
old for each of the calibration images will increases reliability. Taking the first
calibration bishop for example, the smallest difference is 7749 when compared to
the first castle. Picking a threshold of 25% of the smallest difference to another
image, 1800, will ensure accurate recognition of the bishop even under imperfect
conditions. Choosing a similar threshold of 25% for the pawn will lead to problems

as the smallest difference to its descriptors is only 3755 when compared to the first
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Figure 5.17: Comparison between the boundaries of the first rook and the pawn.

rook. A reliable threshold for the rook can still be found at 50% of the smallest
difference, but the chance of a wrong recognition for the rook is greater than that
for the bishop. The small difference between the rooks and the pawn can be ex-
plained when we look at their boundaries shown in figure 5.17. The objects share

a very similar boundary, with only a large difference at the top.

The smallest difference in table 5.4 is between the two queens. Mistaking the
first queen for the second calibration queen does not affect the performance of
the system and the small difference between these two can be ignored. In fact,
mistaking any object for the same object viewed from another angle does not affect
the performance of the system. Using the smallest difference to a another boundary
that is not of the same type as a guide line, thresholds for each of the calibration
object boundaries can be chosen as in table 5.5. The percentage of the smallest
difference to the boundary is shown in the margin column. A lower percentage

increases the likelihood of a correct recognition.

The choice of thresholds is further influenced by the average difference when
compared to images of objects taken in non ideal environments. For example, the
difference between the calibration pawn and a pawn in an imperfect environment is

always relatively small. The same is not true for more complex objects such as the
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Object Threshold  Margin
Bishop (angle 1) 2200 29%
Bishop (angle 2) 1800 40%
Castle (angle 1) 2200 30%
Castle (angle 2) 2000 33%
King (angle 1) 1900 35%
King (angle 2) 2500 25%
Rook (angle 1) 2000 50%
Rook (angle 2) 2000 50%
Pawn 1900 51%
Queen (angle 1) 2400 32%
Queen (angle 2) 2400 30%

Table 5.5: Thresholds for each of the calibration boundaries.

king. This is due to the change of the visible boundary of an object under different
light conditions. Taking this in consideration the threshold for the various images

can be fine tuned by trail and error.

5.4.4.4 Recognition Example

Using the Fourier descriptors of an object with these thresholds for recognition is
illustrated in the following example. The boundary of the object in figure 5.18(a) is
shown in figure 5.18(b). The Fourier descriptors of the boundary is calculated and
the 20 lowest frequency coefficients, without the large a(u) responsible for trans-
lation, are shown in figure 5.19. The difference between the 40 lowest frequency

components of this boundary and each of the indexed calibration boundaries are

(a) (b)

Figure 5.18: Object for comparison, (a), and its resulting boundary (b).
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x10°

Figure 5.19: The 20 lowest frequency components of the example queen’s boundary.

Bl B2 (1 (2 KI K2 RI Rz P QI Q2
9337 6164 9566 5448 9707 14507 10684 10261 9478 1996 3496

Table 5.6: Difference between descriptors of the test object and each of the calibration
objects.

calculated and are shown in table 5.6. The lowest difference, 1996, are to the first
calibration queen. The difference is also below the threshold for the queen and the

boundary is defined as that of a queen chess piece.

5.4.4.5 Limitations

The Fourier descriptor method for object recognition does hold limitations. The
most important one for this project’s purposes comes from the overlapping of ob-
jects’ silhouettes. If two objects are placed close together or if both of them fall
in the same line of sight, recognition of the individual objects will not be possible.
Figure 5.20 illustrates the problem. When the silhouettes of objects overlap, the
resulting boundary that is calculated and sent to the object recognition algorithm is
that of the combined boundary for both pieces. This boundary will be interpolated
and its Fourier descriptors will be calculated. The difference between the descrip-
tors of the combined boundary and those of the indexed calibration boundaries will
be large as the boundary’s shape differs a lot from all of them. The algorithm will
label the boundary as unknown even though both pieces contributing to the bound-

ary are known. Plotting the differences in the 40 lowest frequency descriptors of a
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(a) (b)

Figure 5.20: Two chess pieces in the same line of sight, (a), and the resulting boundary

(b).

test queen and one of the indexed calibration queen in figure 5.21(a) illustrates the
small differences between the descriptors. Comparing this to the plot in differences
for the combined boundary and the same indexed queen in figure 5.21(b), it is clear

that it is not possible to recognise individual pieces in combined boundaries.

x 10

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

(a) Difference between Fourier coefficients of  (b) Difference between Fourier coefficients of
a queen-queen comparison. the queen-combined boundary comparison.

Figure 5.21: Differences in Fourier descriptors.

5.4.5 Colour Identification

The chess pieces do not only differ in shape but also in colour. An algorithm
is needed to identify the colour of a recognised chess piece. As the chess pieces
are either of light or dark brown colour, as shown in figure 5.22, the problem is

simplified. The colour of an object can be determined by taking the average value
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of the pixel colour values inside the boundary of an object. The average value
will be between 0 and 255, as it is a greyscale image where 0 represents black
and 255 white. Differentiation between colours is done by placing a threshold in
the middle of the expected average colour values for light and dark brown pieces.
If the average value is below the threshold, the piece is dark brown, and if the
value is above the threshold it is light brown. Expected colour values close to the
extremes, 0 or 255, can be achieved by increasing the contrast of the image, making
colour identification more reliable as expected values are removed further from the
threshold.

(a) (b)

Figure 5.22: Chess pieces with different colours, a black king, (a), and white queen (b).

5.4.6 Position Calculation

To enable a robotic arm to handle recognised objects, it is necessary to determine
the position of the objects relative to the robotic arm. Various techniques exist
to calculate the positions of objects in images, including 3D reconstruction and
stereoscopy. 3D reconstruction is more computational intensive than stereoscopy.
Complex calculations is made resulting in unnecessary information for the purposes

of this project. Stereoscopy only finds the position of an object and was used.

With more than one camera and basic geometry, the position of an object is
calculated through stereoscopy and simple surveying techniques. This is done by
using a calibration point and setting up the camera and work area as illustrated in

figure 5.23. Extracting the angles ¢; and , from the images, the z and y position
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Figure 5.23: Environment setup for position calculations.

of the object can be found in relationship to the cameras. This position is converted
to be relative to the robot knowing the placement of the cameras relative to the
robot. The equations used to calculate x and y in figure 5.23 are deduced as follows.

From figure 5.23 we find:

6 = tan' »7% (5.4.3)
Defining ¢; and ¢, as
$r=0—¢1 (5.4.4)
¢ =0+ 0o (5.4.5)
we have:
¢1 = tan”! Zii (5.4.6)
¢z = tan” ::‘Z (5.4.7)

Making x the subject in equation 5.4.6 and y the subject in equation 5.4.7 we get:

k+y

v (5.4.8)

y=(m—x)tangs — k (5.4.9)
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Substituting z in equation 5.4.9 with equation (5.4.8) we find y as:

2m tan ¢y — k(B2 4 1)

tan ¢
Y= Bnds L (5.4.10)

tan ¢

Using equation 5.4.8 and 5.4.10 the values of z and y can be found and the position

of an object relative to the cameras will be known.

5.4.6.1 Extracted Angles

The angles ¢; and @5 are found from the amount of pixels between the center of
an object in an image and the calibration point in the image. The center of an
object is calculated from the first descriptor, a(0), of the boundary, as explained
previously. The amount of pixels between the centre of the boundary and the
calibration point is converted to a specific angle, knowing roughly the distance
between the camera and the object. This amount of pixels is calculated for each of
the objects in both of the images, converted to angles and the position calculated.
A constant conversion factor between pixels and angles was used, leading to some
inaccuracy in the calculated position. With the non-linearity of the camera lenses
and varying distance between the object and the cameras, the true pixels to angle
conversion factor changes constantly. The constant factor that is used is an average

of the true conversion factors encountered.

5.4.6.2 Sensitivity

The sensitivity of the position calculation algorithm to errors in the extracted angles
is a measurement of the method’s usability for this project. Rewriting equations
5.4.4 and 5.4.4 to include errors A; and A,, the measurement errors on the extracted
angles, and using equations 5.4.8 and 5.4.10 the effect of the errors on the positions

can be calculated.
¢1=0— (o1 + A1) (5.4.11)

P2 =0+ (2 + As) (5.4.12)

Assuming an error on only one of the extracted angles for a object standing at the
calibration point, the error on the x and y positions are calculated and shown in

figures 5.24(a) and 5.24(b). It is clear that the error on the calculated position does
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Figure 5.24: Position errors due to errors in the extracted angle.

not relate to the extracted angle error in a linear way. A maximum error of 50° is
however very unlikely. Assuming a maximum error of 5°, still relatively large and
unlikely, the relationship between position error and extracted angle error can be

approximated to a linear function, as figures 5.25(a) and 5.25(b) illustrates.
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Figure 5.25: Position errors due to errors in the extracted angle.

From the figures it is approximated that for every error of 1° in the extracted
angle the calculated x-position will differ 6.67 mm. from the actual x-position. The
y-position will differ 11.15mm. from the actual y-position for every 1° error. The

calculated y-position is almost twice as sensitive as the x-position for an error in the
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extracted angle. Expected errors due to a slight incorrect pixels to angle conversion
factor are low, below 0.25°. Small errors on both of the extracted angles will either
cancel each other out or increase the sensitivity of the algorithm depending on
their direction. With small errors this method for position calculation still provides

enough accuracy for handling and can be used.

5.4.6.3 Limitations

Stereoscopy presents some limitations when the objects in the images are not
unique. Figure 5.26 shows the sorting area from above, with three objects rep-
resented by O, [J and A and the positions of the cameras. Looking at an image
taken by camera 1 from left to right the sequence of the objects will be O O A.
For camera 2 the same sequence will differ and will be [0 O A. If the objects O,
(0 and A are unique by shape or colour their position can be calculated without
any problem, but if this is not the case, stereoscopy will not able to calculate their
positions. The problem is with the extraction of the angles needed for the position
calculations. If the [J and A are both black pawns there is now way to know which
angle from camera 1 correspond to which angle in camera 2. The only way to
guarantee reliable results from the stereoscopy algorithm is to ensure that all the

objects in the sorting area are unique.

o

%Cam1 CamZK

Figure 5.26: Illustrating limits of stereovision algorithm.
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5.5 Handling

The last step in the sorting process is the handling of the objects in the sorting area.
To handle an object the manipulator is moved from its resting position, 230 mm.
above the calibration point, to directly above the specific object. The robotic arm
is then lowered with the gripper open until the object is in the middle of the open
gripper. The gripper is then sufficiently closed to grab the object and the arm is
raised straight up to a set height. From here the arm is rotated at this height to
the positions in the sorted area for the specific piece where it is lowered into its
position or dropped into a container. The arm returns to its resting position, from

where the same process starts for the next piece.

Moving the manipulator to a new position involves deciding on a wrist yaw, pitch

and roll angle and calculating the inverse kinematics function for the remaining two

O Calibration Point

[0 Robot Position (t

Camera Position
and Orientation

[ Sorting Area
7] Sorted Area
== Manipulator

(-k;-m) (-k;0) (-k;m)

O Calibration Point
[0 Robot Position

—o-

Camera Position
and Orientation

[ Sorting Area
L7 Sorted Area
== Manipulator

S

(-k;-m) (-k;0) (-k:m
(b)

Figure 5.27: Different solutions to the inverse kinematic equation.

=
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joints. For the inverse kinematics function for the RTX there will be two solutions,
a right and a left arm solution as illustrated in figure 5.27. Throughout the left arm
solution in figure 5.27(b) was used as it is the only possible solution for the RTX
in the sorted area. Keeping with the left arm solution reduces movement time, as
moving from a right arm pose in the sorting area to a left arm pose in the sorted

area takes more time as bigger angle movements at the joints are needed.

Deciding on the wrist yaw, pitch and roll angles involves looking at the position
of the manipulator when objects are picked up or put down. To increase the range
of the robotic arm in the sorting area, the yaw angle is kept at 0° relative to the
base coordinate system of the robot, as illustrated in both figures in 5.27. At the
sorted area the yaw angle is at —90°, as shown in figure 5.28, to increase the reach
within this area. The roll of the wrist is always kept at 0°. The pitch of the wrist
is influenced by the chosen strategy for picking up recognised pieces, while the roll

is kept at 0° throughout.

O Calibration Point
[0 Robot Position O

Camera Position
and Orientation

[ Sorting Area
%) Sorted Area
= Manipulator

J

(-k;-m) (-k:0) (-k:m)

Figure 5.28: Manipulator pose in sorted area.

The simplest and quickest strategy for handling is to assume that all of the objects
in the area have been identified and to start with the object closest to the robot
and working towards the back of the sorting area. For maximum grip the pitch of
the gripper is at 0°, level with the surface of the area. This strategy works well
for the ideal situation, but provisions must be made for other situations. Taking

in consideration that all of the objects in the area might not have been recognised
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or that an operator may wish the objects to be handled in another sequence the

following handling strategies have been devised:

e Strategy 1: Handling sequence starts at the front of the sorting cell and
works towards the back of the sorting cell assuming all the pieces have been

recognised.

e Strategy 2: Handling sequence starts at the front of the sorting cell and works

towards the back of the sorting cell assuming unknown objects are in the area.

e Strategy 3: Handling starts at the back of the sorting cell and works towards
the front.

e Strategy 4: Operator chooses a handling sequence manually.

e Strategy 5: Operator chooses to handle only a specific piece.

O

Figure 5.29: Elbow and wrist for handling strategy 1 with pitch at 0°.

Strategy 1 assumes every object has been recognised. This has already been
explained in a previous paragraph of this section. Strategy 2 is a development
of strategy 1 but makes provision for unidentified objects. Objects might not be
recognised due to defects in the objects, lighting conditions or simply because they
are not chess pieces. In such a situation, handling objects from the front of the
sorting area with the gripper level with the surface will cause problems. If an
unidentified object is under the base of the wrist when the arm moves down to
pick up another piece, the unidentified object might be knocked over, causing the
position of other objects to change. Or the robotic arm may not be able to move
down sufficiently to grip a required object as the unidentified object may cause an

obstruction. Changing the pitch of the gripper from level with the surface to —60°,
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Figure 5.30: Elbow and wrist for handling strategies with pitch at —60°.

as shown in figure 5.30, will keep the base of the gripper above other objects that
may be in the way, avoiding knocking them over. The pitch angle is maintained

throughout the rest of the handling manoeuvres.

Strategies 3 and 4 are similar to strategy 2. The pitch of the gripper is kept
at —60° to avoid knocking over other pieces, but the sequence in which objects
are handled are different. Strategy 3’s sequence is the opposite of strategy 2 while
strategy 4 can be any sequence as defined by the operator. Strategy 5 allows the
operator to choose a specific piece leaving the rest behind, also using a pitch angle
of —60°.

¥

Figure 5.31: Movement of the robot arm from the sorting to sorted area.



Chapter 6

Results

The performance of the automated sorting cell can be measured through the perfor-
mance of the subsystems and the performance of the integrated system. The sub-
systems include the guard, shape recognition, colour identification and positioning
systems and were tested in the SENROB environment using the chess pieces. The

integrated system is tested by evaluating the handling aspects of the sorting cell.

6.1 Guard Algorithm

Testing the guard algorithm is a simple procedure. Boundaries of objects are sent
to the algorithm and it decides whether a boundary belong to the chess piece set

or not.

Results are presented with a picture of the test object followed by the attributes
on which the guard system bases its decision. All attributes are calculated after the
object’s boundary has been scaled to a height of 200 pixels. Attributes contributing
to an invalid classification are shown in bold. First some of the indexed calibration
boundaries of the chess pieces under ideal conditions are tested with results in table
6.1. As expected, none of the calibration images produce an attribute outside the

allowable regions.

67
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Width — 108.88

Circumference — 637.47

Shortest distance from centre — 36.88
Longest distance from centre = 112.59
Valid = Yes

Width = 81.08

Circumference — 586.33
Shortest distance from centre — 30.43

Longest distance from centre = 110.02
Valid = Yes

Width = 99.16
Circumference — 636.97

Shortest distance from centre — 23.97
Valid = Yes

Table 6.1: Results for the some of the chess piece profiles.

Testing the performance of the algorithm for images taken in a non-ideal setup
is important. The first test case is a queen where the camera is slightly out of focus,
and the second is a pawn in a non ideal illuminated environment, both shown in
figure 6.2. In both of these test cases the objects were still valid. Although the

queen is out of focus, its boundary does not change and is still that of a queen, The

Width — 98.42
Circumference — 647.03
Shortest distance from centre — 23.70

Longest distance from centre = 110.04
Valid = Yes

Width = 134.45
Circumference — 642.70
Shortest distance from centre — 49.39

Longest distance from centre = 110.38
Valid = Yes

Table 6.2: Attributes for object in non ideal conditions.
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boundary of the pawn, however, does change, but not significantly and it is still
allowed through to the Fourier descriptors recognition algorithm. Stopping invalid
boundaries from being passed to the recognition algorithms is just as important as

letting valid objects through.

The most likely situation where this might happen is the combined boundary
of overlapping objects in images. As explained in chapter 5, if the silhouettes of
objects overlap the resulting boundary will be of the combined silhouettes of the
objects, a boundary that will definitely not be recognised. Looking at the following
test cases, we see that none of their boundaries are deemed valid by the guard

system.

Width = 144.8
Circumference — 737.40
Shortest distance from centre — 52.39

Longest distance from centre = 117.96
Valid = No

Width = 165.58
Circumference — 933.74
Shortest distance from centre — 3.8

Longest distance from centre = 129.08
Valid = No

Table 6.3: Attributes for invalid objects.

6.2 Recognition with Fourier Descriptors

Performance with overhead lighting: The recognition algorithm is tested
by calculating the differences in the 40 lowest frequency coefficients of test and
calibration objects. The thresholds chosen in table 5.5 are then used to determine
the accuracy of the algorithm. Accuracy is expressed as the percentage of correct
recognitions that have been made. The first set of tests that were run, involved all
of the chess pieces under normal conditions in SENROB using only the overhead
lights for illumination. Table 6.4 holds the results.
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Object Threshold  Margin
Bishop (angle 1) 2200 29%
Bishop (angle 2) 1800 40%
Castle (angle 1) 2200 30%
Castle (angle 2) 2000 33%
King (angle 1) 1900 35%
King (angle 2) 2500 25%
Rook (angle 1) 2000 50%
Rook (angle 2) 2000 50%
Pawn 1900 51%
Queen (angle 1) 2400 32%
Queen (angle 2) 2400 30%

Table 6.5: Thresholds for each of the calibration boundaries.

For easy comparison, the thresholds first defined in table 5.5 are repeated in table
6.5. With these thresholds, and looking at table 6.4, an accuracy of 79.16% was
achieved for these results. The classification column of table 6.4 holds the identity
of the indexed piece with which the difference is below the threshold, if not the
identity for the indexed piece with the lowest difference is shown in brackets. The
objects whose smallest difference was not below the particular threshold, were a

king, three rooks and a pawn.

The problem with the recognition of the king can be explained by looking at its

image in figure 6.1. The rotation of the object results in a boundary not similar

Figure 6.1: Image of unrecognised king angle.
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to those in the indexed calibration set. Two options exist to ensure that a king
with this rotation is recognised. Either the thresholds for the calibration kings
are increased in order for the difference to be below them, or an extra calibration
boundary is added which correlates with this rotation. Seeing that the smallest
difference between the second calibration king and another type of object is 9845
in table 5.4, raising the threshold for this calibration boundary is a viable option.
A threshold of 3200 or 32% will ensure that this profile of the king will be recog-
nised. Raising the threshold increases the chances that another type of object
might be recognised as a king. Adding another calibration boundary will increase

the reliability of the algorithm without changing the thresholds.

The inability of the algorithm to recognise the rooks and the pawn is also caused
by a threshold problem. Thresholds of 2000 (50%) and 1900 (51%) were chosen
for the rooks and pawn respectively. At 50% they are the closest to their smallest
difference to another object. Coincidentally, the closest boundary for the rooks
is the pawn and vice versa. Increasing the threshold might lead to a pawn being
recognised as a rook and a rook as a pawn. No other option exists, however,
under the current conditions. The shapes of the objects are just very similar.
Adjusting the threshold for the rooks to 2400 (60%) and the pawn’s to 2000 (53%)
increases the accuracy of the current algorithm to 96%, with the king being the

only unrecognised object.

Performance with added directional lighting: Changing the conditions un-
der which recognition takes place might improve the algorithm’s performance. If
the boundaries of unknown objects have more definition, especially those of the
rook and pawn, their differences will become more apparent. The easiest way to
improve the definition of a boundary is by removing any shadows that may dilute
the edges of an object in an image. This is done by adding directional lighting,
placed directly above each of the cameras and angled towards the camera calibra-
tion point, to the sorting cell. Figure 6.2 demonstrates the significant improvement
in boundary definition. The accuracy tests were reconducted and the results are
shown in table 6.6.
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(a) (b)
(c) ()

Figure 6.2: Image and resulting boundary with overhead lighting, (a) and (b) and with
added directional lighting, (c) and (d).

Looking at the results, we immediately see that the difference between test pawns
and the calibration pawn are significantly lower. Throughout, the use and testing
of the sorting cell the difference between pawns were always low when directional
lighting was added. Knowing this, the threshold for the calibration pawn can be
adjusted to a much smaller value of 1000. The differences between the other test and
calibration images are also lower, but not to the same extent as those of the pawn
comparison. The queen comparison also yields notably better results. The only
piece that could not be identified under the improved conditions was a rook. The
rook piece is the most complex of all the test pieces, delivering a slightly different
profile almost from every angle. Improving the reliability for the recognition of a
rook can only be done by adding a number of calibration boundaries to the index

of the rook’s profile from different angles.
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6.3 Colour Identification

The colour identification algorithm was tested in normal lighting conditions in
SENROB. A threshold of 100 was used to differentiate between the dark and light
brown chess pieces. If the average colour value of an object was below the threshold
it is black. Above the threshold it is white. A total of 34 tests were run with a result
of 100% accuracy. Table 6.7 shows some of the results. Under different lighting
the average colour values for the objects will differ and the threshold should be

adjusted accordingly.

Object Awverage colour value | Classification
White bishop | 125 White
White castle | 163 White
White king 184 White
Black king 1 Black
Black rook 19 Black
White pawn | 177 White
Black pawn 32 Black
Black queen | 40 Black

Table 6.7: Colour identification results.

6.4 Position Calculation

The performance of the position calculation algorithm is tested by placing a known
item at a specific position in the sorting area and comparing it to the calculated
position. The castle chess piece was placed at the positions stated in table 6.8
and the resulting positions, also in the table, were calculated. It must be taken
into account that the manual placement of the object at a specific position is not
100% accurate. The error in position was calculated as the direct distance between
the actual position and the calculated position. Inaccurate placement of the chess
piece was to blame for maximum error of 4.47 mm., an extreme when compared to
the other values. The average error without the extreme value of 4.47 is 1.83 mm.,

sufficiently accuracy with which to handle the objects with the robot arm. Taking
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Placed Position + (y, x)

Calculated Position (y, )

Error in mm.

(-40,-40)
(-40,-40)
(-40,0)
(-40,0)
(-40,40)
(-40,40)
(-20,0)
(-20,-20)
(-20,20)
(-20,20)
(0,-40)
(0,-40)
(0,-20)
(0,-20)
(0,0)
(0,40)
(0,40)
(20,-20)
(40,-40)
(40,-40)
(40,0)
(40,0)
(40,40)
(40,40)

(-41.81,-40.68)
(-41.17,-40.85)
(-41.4,-0.07)
41.10,-0.05)
40.34,42.23)
39.80,42.51)
21.91,-0.06)
(-21.75,-20.52)
-19.85,20.85)
-19.20,22.50)
-1.70,-42.34)
-1.98,-41.03)
)
)

(_
(_
(_
(_

7

“1.18,-21.15
-1.90,-21.53
(0.08,0.10)
(0.57,40.09)
(1.81,41.19)
(17.90.-23.95)
(38.42,-41.10)
(37.64,-41.76)
(37.89,-1.16)
(38.80,-2.07)
(40.68,42.10)
(39.92.40.36)

N N TN N

1.93
1.44
1.40
1.10
2.26
2.52
1.91
1.83
0.86
2.62
2.89
2.23
1.64
2.44
0.13
0.58
2.17
4.47
1.92
2.94
241
2.39
2.20
0.37

Table 6.8: Position algorithm results and accuracy.

76

into account the small contribution the slight inaccurate placement of the object

makes to the error, the accuracy is even better.

The source for the slight inaccuracies lies at the pixels to angle conversion. As an

average of the pixels to angle ratio for the whole sorting area is used, the conversion

factor will be slightly off for most positions in the area. As mentioned in chapter

5, the pixels to angle ratio is dependant on the distance of object from the camera

and the shape of the lens. Getting more accurate results will require using better

lenses and restricting the distance from the object to the camera. Both of which is

unnecessary as accuracy is sufficient. An inaccurate placement of the cameras will

also cause inaccuracies.
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6.5 Handling

Handling aspects of the sorting cell are tested in two ways. The first is concerned
with the accuracy of the movements of the robot and the second with the function-

ing of the different handling strategies.

Movement accuracy of the robot was tested by placing an object in the sorting
area. The accuracy of the gripper position relative to the object at pick-up, the time
from first movement from the resting position until drop-off and the repeatability
of the movement are measured. After the object is recognised and its position
is calculated, the testing procedure starts. The robot moves from its calibration
position to its resting position as defined in chapter 5, 230 mm. above the camera
calibration point. From here it moves at the same height to directly above the
recognised piece while opening the gripper 40 mm.. The gripper is lowered around
the object to about 8 mm. above the surface. The accuracy of the gripper position
relative to the object is measured at this point. The object is gripped by the
manipulator and raised to a height of 350 mm. from where it is moved at this
height to the sorted area. Here it is lowered into the sorted area, but not dropped.
The timed period for the movement stops here. To test repeatability, the object is
taken back to its original position via the same route and placed. The difference
in original position and the placed position acts as a measurement of repeatability.

Test results are shown in table 6.9.

Test  Placed Calculated Gripper Repeatability ~ Movement
position (y,x) position (y,x) accuracy (y,z) accuracy (y,x) time
1. (-20,-20) (-20.7,18.3)  (0,1.2) (0,0) 365
9. (-40,40) (-40.6,36.7)  (0,2) (0,1) 37s
3. (-20,-20) (-23,-21.5)  (1.8,1.5) 0,2) 37s
4. (-40,-40) (-41.4,-41.4)  (0,0) (0,1) 395
5. (0,-40) (-0.2,-41) (0,0) (0,0.5) 40s
6. (40,0) (42.4,2.8) (1,2) 0,2) 305

Table 6.9: Handling accuracy results.

From the results we can see that the positioning of the gripper is very accurate

when compared to the calculated position. The gripper’s placement is dependant
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on the calculated position, and the improvement of its accuracy relative to an object
is directly connected to the improvement of the positioning calculations accuracy.
For any practical use the current accuracy for both the gripper positioning and
the positioning calculation is sufficient. Movements are repeated accurately. Every
object was returned to its original position with errors only due to the original
gripper position being inaccurate at pick-up, slightly moving an object while closing

the gripper.

Each of the different strategies was tested by placing multiple objects in the
sorting area and sorting them, each time using a different strategy. When there
were no unrecognised pieces the first strategy worked flawlessly, handling three
pieces in 2 minutes and 21 seconds, measured from resting position until the last
piece was place in the sorted area. All of the other strategies performed without
error and objects could be handled in sequence from the front to the back of the
sorting cell or vice versa. When an object was behind another one it could be
handled without touching the one in front. It took all of the strategies about the
same time to handle three objects placed in the sorting cell, as can be seen in table
6.10. The time was measured from resting position until all pieces were placed in

the sorted area.

Strategy | Time

1. 2 min 21s
2. 2 min 26s
3. 2 min 27s
4. 2 min 27s

Table 6.10: Sorting time for each of the strategies.
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(b) Handling viewed from the side.

Figure 6.3: Handling an object behind another.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

This thesis was an investigation into and development of an intelligent, automated

sorting cell in the manufacturing line, using object recognition as sorting method.

The automated sorting cell was constructed with the RTX robot, two CCD cam-
eras, an analog to digital converter in the form of a Blackfin evaluation kit and
a personal computer. The cameras supplied images of the sorting area in the cell
to the image processing algorithms responsible for recognising objects, identifying
their colour and calculating their position within the cell. A shape-based object
recognition algorithm was written using Fourier descriptors for comparison between
the boundaries of test and calibration chess pieces. A separate function was cre-
ated to determine the colour (light or dark brown) of a recognised object based
on the average greyscale colour value in an area around the centre of the object.
The position of an object was calculated using stereoscopy and simply surveying
techniques. When objects in the sorting cell have been recognised, their colours
identified and their positions calculated, they are sorted according to a strategy

chosen by the user.

The separate components contributing to a working automated sorting cell were

evaluated as well as the integrated system. It is concluded that:

80
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e Object recognition can be used as sorting method within a sorting cell.
Fourier descriptors allows for reliable recognition of objects, especially those
symmetrical around their longest axis as their profile does not change when
viewed from a different angles. Reliability for asymmetrical objects are achieved
by extending the indexed calibration boundary set to include the boundaries

of objects’ profiles from other angles.

e Sufficient accuracy for the position calculation of an object is possible using
only stereoscopy. Inaccuracies are caused by an inaccurate environment setup,
the varying distance between the object and the camera and camera lens
distortion. Stereoscopy limits the sorting ability of the cell to unique objects.
Non-unique items cause confusion when pairing extracted angles from the two

camera images for position calculation.

e The robot can be precisely moved and movements can be repeated accurately,
allowing for reliable handling of objects. Slight precision errors occur due to
a slight inaccurate calculated position sent to the robot and misalignment of

the robot within the sorting environment.

e Objects are handled accurately using any of the available strategies. The

strategies allow the user to choose in which sequence objects are handled.

In conclusion, with object recognition by Fourier descriptors a reliable and rel-
atively accurate automated sorting cell was created. Items unique by shape and
colour placed in the sorting area are sorted to the sorted area in a chosen sequence.
The sorting cell will form an integral part of the simulated factory environment
within SENROB when completed.
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7.2 Recommendations

The results reveal that a reliable and accurate automated sorting cell has been
developed. However, there are a number of additions or improvements that can be
investigated in the future with the aim to increase accuracy, reliability and overall

performance of the sorting cell.

7.2.1 Object Recognition Improvements

Although it has been proved that object recognition through the use of Fourier
descriptors can be used as sorting method, it is not optimal in its current form. As
explained in chapter 5, if the silhouettes of objects overlap the resulting boundary
will be unknown to the algorithm and none of the objects will be recognised, even
if they are known to the system. Complementing the current recognition algorithm
with a method capable of recognising only parts of the boundary will increase the

usability of object recognition in the sorting cell.

Various techniques exist that are capable of matching partial boundaries to
indexed boundaries, including the landmark-based method and curve moments
method. Being able to recognise part of the boundary, the indexed boundary can

be used to guess the position of the object enabling the cell to handle it.

A more complex solution using only Fourier descriptors also exists for the prob-
lem. If the cameras are moved around the sorting area in a known way, view angles
will be found for each object where it is the only object in the specific line of site. Or
more simply, the sorting area can consist of a turntable. Objects placed in the area
will be recognised and handled. When all of the recognised objects are handled,
the turntable will turn, changing the line of site at any unrecognised objects from
the first attempt. They will then be recognised and handled. Any unrecognised

left on the board will most likely be unknown to the recognition algorithm.

7.2.2 Position Calculation and Gripper Positioning

It was concluded that the current position calculation and gripper positioning for

pick-up are sufficiently accurate for the purposes of the project. However, great care
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was taken in the setup of the environment and calibration of the algorithms and
robot to ensure this. With continuous use of the sorting cell, vibrations caused by
the movement of the robot and human interaction will cause the system to become
less and less calibrated. A method of calibrating the robot and algorithms for
precise position calculation and gripper positioning without the need for a precise

positioned environment is proposed.

More accurate handling of objects can be achieved by using closed loop control of
the gripper with the cameras as primary sensors. The current method can be used
to move the gripper within the area of an object from where closed loop control

can take over, guiding the gripper to the exact position relative to the object.

If the position of non-unique items in the sorting cell can be calculated the us-
ability of the cell will be extended. An alternative method for position calculation
in the form of 3D environment reconstruction can be investigated. 3D reconstruc-
tion will allow the position of non-unique objects to be calculated and even might
lead to improved methods for recognising the objects. The method will, however,
be far more computational intensive than the current one, but the robustness of

the sorting cell will be improved greatly.

7.2.3 Automated Sorting Cell Hardware

It is recommended that two digital cameras, connected directly to the personal
computer, be used. This eliminates the need for an analog to digital converter
and allows for the full control of the system from one computer. Another option
is to embed all the control algorithms on the evaluation board removing the need
for the computer. For integration into the simulated factory environment within

SENROB, full control from a personal computer is the best option.

7.2.4 RTX control

Control of the RTX through the JAVA interface was successful, but it is recom-
mended that the interface is extended to include speed control over the robot and
allow for the different drive modes. This will allow more precise control, needed

when complex manoeuvres is necessary.
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