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Abstract

The (semi-)arid Namaqualand region on the west coast of South Africa is well-

known for its spring flower displays. Due to the aridity of the region, soils research

has lagged behind that of the more agriculturally productive parts of South

Africa. However, rehabilitation efforts after the hundred or so years of mining,

coupled with the increasing ecology and biodiversity research, have prompted

a recent interest in Namaqualand soils as a substrate for plant growth. The

area is also notable for the abundance of heuweltjies. Much of the previous

heuweltjie-work focussed on biogenic aspects such as their spacing, origin and

age, but although heuweltjies are in fact a soil feature, there have been few

published studies on the soil forming processes within heuweltjies. However, the

depositional history of the sediments on the Namaqualand coastal plain is well

constrained, which is in stark contrast to the paucity of data on their subsequent

pedogenesis. Given that the regolith has been subaerially exposed in some parts

for much of the Neogene, the soil formation forms an important part of the

sediments’ history. The primary aim of this thesis, therefore, was to examine the

soil features of the Namaqualand coastal plain to further the understanding of

pedogenesis in the region.

The regolith of the northern Namaqualand coastal plain, often ten or more metres

deep, comprises successive late Tertiary marine packages, each deposited during

sea-level regression. The surface soil horizons formed from an aeolian parent

material. The relatively low CaCO3 in the aeolian sands dictated the pedogenic

pathway in these deposits. The non-calcareous pathway lead to clay-rich, redder

apedal horizons that show a stronger structure with depth, and generally rest

directly on marine sands via a subtle discontinuity that suggests pedogenesis con-

tinues into the underlying marine facies. The calcareous pathway lead to similar

clay-rich, redder apedal B horizons, but which differ in that they are calcareous,
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and rest on a calcrete horizon often via a stoneline of rounded pebbles. Deeper in

the profile, there is generally a regular alteration of sedimentary units, with the

upper shoreface facies showing reddening, and the lower shoreface sands remain-

ing pale. This seems to be a function of the grain size, since the upper shoreface

materials are coarser, and the redder parts of the lower shoreface are also associ-

ated with slightly coarser sands. In some strata the oxidation of glauconite-rich

sediments resulted in an orange colour. In an area with abundant heuweltjies, a

strongly-cemented calcretized nest was present about 2 m deep within a silica ce-

mented, locally calcareous dorbank profile. Vertical termite burrows are present

up to 12 m deep, and appear to have been conduits for preferential vertical flow.

Soil formation and termite activity is at least as old as the Last Interglacial. E

horizons may have formed in a wetter Last Interglacial paleoclimate, but they

are still active in the present day.

The Namaqualand coastal plain, with its extensive areas of calcrete development,

is almost a textbook setting for calcrete development by inorganic processes.

However, these calcretes also show microscale biogenic features. These include

M rods, MA rods, and fungal filaments. Abiotic alpha-fabric seems dominant

in mature calcrete horizons, and beta-fabric in calcareous nodules in a calcic

B horizon above calcrete. The apparent absence of Mg-calcite and dolomite,

and abundance of sepiolite in the calcretes of coastal Namaqualand suggests

that these Mg-rich clay minerals are the main Mg-bearing phase. Deformation

(pseudo-anticlines) in the calcrete appear to result primarily from the displacive

effect of calcite crystallization. Although evidence of shrink/swell behaviour

is present in the form of accommodating planes, it does not appear to be as

volumetrically significant as displacive calcite.

Indurated light-coloured horizons that resembled calcrete but are non- to mildly

calcareous, break with a conchoidal fracture, resist slaking in both acid and al-

kali, turn methyl-orange purple, and show a bulk-soil sepiolite XRD peak are

similar to palygorskite-cemented material (‘palycrete’) from Spain and Portugal,

and so were tentatively named ‘sepiocrete’. Sepiolite and palygorskite are often

reported from arid region soils but there has been no recorded cementation of

soils by sepiolite. The degree of induration in some of these horizons suggest that

amorphous silica could play a role in cementation, and so this thesis compares

the two silica-cemented horizons encountered in Namaqualand (silcrete and dor-

bank (petroduric)) to these ‘sepiocrete’ horizons. Both silica and sepiolite are
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present in the matrix, although the degree to which silica and sepiolite domi-

nate seems to vary even within same horizon. It seems most probable that both

contribute to the structural properties of the horizon. Sepiolitic horizons do not

form a diagnostic horizon in the World Reference Base, Soil Taxonomy, or the

South African system. To fit the existing soil classification schemes, the terms

‘sepiolitic’ and ‘petrosepiolitic’ (in the same sense as ‘calcic’ and ‘petrocalcic’)

would be appropriate. The term ‘sepiolitic’ should be used for horizons which:

contain sepiolite in amounts great enough for it to be detected by XRD in the

bulk soil, peds (a fractured surface and not just the cutan) cling strongly to the

wetted tongue, and methyl orange turns from orange to purple-pink over most

of a fragmented surface. The term can be easily be applied as a adjective to

other hardpans where sepiolite is significant but not necessarily cementing, such

as ‘sepiolitic’ petrocalcic/petroduric. If the horizon is in addition to the above

criteria cemented to such a degree that it will slake neither in acid (so cannot be

classified as petrocalcic) nor in alkali (and so cannot be classified as petroduric)

then the term ‘petrosepiolitic’ would be appropriate. The ‘sepiolitic’ criteria dis-

tinguish the ‘petrosepiolitic’ horizon from a ‘silcrete’, a silica-cemented horizon

which does not fit the definition of petroduric.

Sepiolite is more prominent than palygorskite in the XRD traces. The <0.08 µm

fraction is the only size fraction where palygorskite could be detected before

acetate treatment. It is unlikely that these fibrous clay minerals are inherited

from either the marine or aeolian parent materials, they appear to be pedogenic

in origin. Sepiolite and palygorskite are associated with the presence of calcite

in the soil profile. Trends in MgO, Al2O3 and SiO2 show that the soil clay

fractions lie on a mixing line between sepiolite and mica end-members, with a

contribution from smectite, and is consistent with the XRD and TEM results.

There is a good correlation between Fe2O3 and TiO2, which can be attributed

to the ubiquitously presence of mica. There was no TEM evidence of fibrous

mineral degradation to sheet silicates, nor for the evolution of mica laterally to

a fibrous mineral. SEM analyses show that much of the sepiolite/palygorskite

occurs as fringed sheets, but higher magnification often revealed these sheets

to be composed of fibres. These are found coating (rather than evolving from)

mica/illite particles, as free-standing mats, and are common on the grain-side of

cutans. Some of these textures suggest illuviation of the fibrous clay minerals,

but another explanation may be that sites such as that immediately adjacent
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to silicate grains have the highest concentration of silica for their formation.

There was no conclusive evidence for or against the presence of kerolite in the

clay fraction, although it does not appear to be a dominant phase in the <2 µm

fraction.

The hypothesis was that the permeable upper horizons in Namaqualand soils

constitute a shallow ephemeral aquifer, which can be considered the pedogenic

analogue of the saline lake environments in which sepiolite typically forms. The

chemical evolution of the soil solution and clay mineral genesis could therefore be

considered in the same terms as the geochemical evolution of closed-basin brines.

The Namaqualand coastal plain, like other maritime areas, shows a trend of de-

creasing pH, increasing Ca and increasing Mg with increasing evaporation. This

can be explained by their seawater-influenced initial ratios, and is consistent with

the ‘chemical divides’ of the Hardie-Eugster model of brine evolution. Halite re-

mains undersaturated at all concentrations in the saturated paste extracts. At

higher concentrations, gypsum reaches saturation, and sulfate is removed from

solution. H4SiO4 activity remains unchanged for all levels of evaporation and

pH. Calcite remains close to saturation, and is only dependent on the HCO−
3

activity and pH for the range of Cl− activity encountered. Most of the soils for

which there is a positive sepiolite identification show a positive sepiolite satura-

tion index. The sepiolite saturation index is independent of Mg2+ and H4SiO4

and only increases with increasing pH. Evidence of the pH control on sepio-

lite saturation is that sepiolite is commonly associated with calcareous horizons.

Sepiolite precipitation is therefore more likely to be triggered when a solution

encounters a pH barrier than by the concentration of ions by evaporation. The

effect of a pH change on the sepiolite saturation index is much greater than that

of the effect on calcite. The marine-influenced high Mg coupled with the Hardie-

Eugster model of brine evolution offers an explanation for sepiolite-dominance at

the coast, and palygorskite-dominance inland. Coastal areas, unlike continental

areas, have Mg>HCO−
3 initially, which results in an increasing Mg trend with

evaporation during the precipitation of sepiolite according to the Hardie-Eugster

scheme. The result is that after sepiolite precipitation is initiated by a geochem-

ical pH-barrier, Mg levels will rise causing the increasing (Mg+Si)/Al ratio to

continue to favour sepiolite precipitation. This suggests that once sepiolite has

begun to precipitate, the subsequent salinity with its accompanying Mg increase

makes substantial palygorskite formation unlikely to follow.
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The hardpan horizons in heuweltjies commonly grade from a ‘sepiolitic’ petro-

calcic in the centre through ‘sepiolitic’/‘petrosepiolitic’ to the petroduric horizon

on the edges. Noteworthy sepiolite-related pedofeatures in the calcrete include

‘ooids’ with successive sepiolite (hydrophilic and therefore a precipitational sub-

strate) and micrite/acicular calcite layers in the coatings; and limpid yellow

nodules with pseudo-negative uniaxial interference figures. They superficially

resemble the spherulites in the fresh termite frass. Their fibrous nature and low

birefringence, together with the low Ca, high Mg, Si composition, and molar

Mg/Si ratios consistent with sepiolite. The pedogenesis of the hardpans in the

heuweltjie is proposed to be as follows: enrichment of cations such as Ca and

Mg in the heuweltjie centre caused by termite foraging results in calcite and clay

authigenesis in the centre of the heuweltjie, leaving the precipitation of pure sil-

ica to occur on the periphery. The decaying organic matter concentrated in the

centre of the mound by the termites is sufficient to supply the components for

calcite precipitation in the centre of the heuweltjie. Following calcite precipita-

tion, the pH is suitable for sepiolite precipitation. The movement of the Mg-Si

enriched water downslope, coupled with the decrease in HCO−
3 and increase in

Mg2+ due to sepiolite precipitation, allows for the precipitation of the ‘sepiolitic’

zone on the outer side of the calcrete, and extend beyond the calcrete in some

heuweltjies.

The Namaqualand coastal plain is well positioned for further work on its regolith,

particularly because of the mining excavations which provide excellent exposures

of well-defined layers of the regolith down to bedrock. Soil formation and termite

activity is at least as old as the Last Interglacial, and so more detailed work would

further the understanding of the subaerial alteration history in southern Africa,

as well as providing better-constrained information on the Namaqualand soils

that can be used by land-use management and biosphere studies.
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Uittreksel

Die (semi) ariede Namakwaland streek teen die Weskus van Suid-Afrika is bek-

end vir sy pragtige lenteblomme. Vanweë die dorre geaardheid van die streek het

grondnavorsing, wat veral op landboukundig-produktiewe dele van Suid-Afrika

gefokus het, hier agterwee gebly. Nietemin, rehabilitasie pogings na die sowat

honderd jaar se myn van diamante, gekoppel aan die toenemende belangstelling

in ekologiese- en biodiversiteitsnavorsing, het die huidige belangstelling in Na-

makwalandse grond as ’n substraat vir plantegroei, aangewakker. Die streek

is ook bekend vir sy oorvloed van “heuweltjies” (lae hope of knoppe in die

landskap), wat algemeen aanvaar word dat dit deur die grasdraertermiet Mi-

crohodotermes viator, met debatteerbare bydraes deur ander diere, veroorsaak

word. Meeste van die vorige werk op heuweltjies het op biogenetiese aspekte

soos spasiëring, oorsprong en ouderdom gefokus. Alhoewel heuweltjies grootliks

’n grondgeaardheid het, is min gepubliseerde werk aangaande die grondvorm-

ingsprosesse hiervan gedoen. Die geskiedenis van die sediment afsettings van die

Namakwalandse kusgebied is redelik bekend, in teenstelling met die skaarste aan

data oor hulle daaropvolgende pedogenese. Omdat die regoliet gedurende som-

mige tye van die Neogeen aan die atmosfeer blootgestel was, maak grondvorming

’n belangrike deel uit van die geskiedenis van die sedimente. Die hoofdoel van

hierdie proefskrif was daarom om die grondkenmerke van die sedimente op die

Namakwalandse kusgebied te ondersoek sodat hulle pedogenese beter verstaan

kan word.

Die regoliet van die noordelike Namakwalandse kusgebied, dikwels tien of meer

meters dik, bestaan uit opeenvolgende lae van mariene oorsprong wat afgesit

is gedurende seevlak terugtrekkings in die Laat Tersiêre tydperk. Die opper-

vlak grondhorisonte het vanaf eoliese moedermateriaal gevorm. Die relatiewe

lae CaCO3 inhoud in die eoliese sande het die pedogenetiese rigting in die af-
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settings bepaal wat gelei het tot ’n meer kleiryke, apedale horison wat sterker

struktuurontwikkeling met diepte toon. Soortgelyke horisonte is teenwoordig in

paleosols onder ’n duinveld wat tot die Laaste Glasiale Maksimum dateer is. Die

apedale horisonte rus f direk op mariene sande via ’n subtiele diskontinüıteit wat

beteken dat pedogenese ook in die onderliggende mariene materiale plaasgevind

het of op kalkreet, dikwels via ’n kliplyn of geronde rolstene. Dieper in die profiel

is daar ’n algemene dog gereelde verandering van die verskillende sedimentêre lae,

met die growwer lae wat meer rooi en die fyner sande wat bleek kleure vertoon.

In sommige van die lae het die oksidasie van gloukoniet-ryke sedimente ’n oranje

kleur veroorsaak.

Die Namakwalandse kusvlakte, met ekstensiewe areas van kalkreet ontwikkeling,

is moontlik ’n teksboek voorbeeld vir kalkreet ontwikkeling deur anorganiese

prosesse. Nietemin toon hierdie kalkrete ook mikroskaal biogenetiese kenmerke.

Dit sluit in M stawe, MA stawe en swamfilamente. Dit wil voorkom asof abiotiese

alfa-raamwerk oorheers in die ouer kalkreet horisonte terwyl beta-raamwerk ge-

assosieer word met die kalkhoudende en kalsiese B horisonte wat bokant kalkreet

voorkom. Die skynbare afwesigheid van Mg-ryke kalkreet en dolomiet en die

volopheid van sepioliet in die kalkrete van die Namakwalandse kusgebied, dui

aan dat hierdie Mg-ryke kleimineraal die hoof Mg-draende fase verteenwoordig.

Deformasie (vals antikliene) in die kalkreet blyk die resultaat te wees van die

verplasende effek van kalsiet kristallisering. Alhoewel bewyse van swel/krimp

gedrag voorkom in die vorm van akkommoderende vlakke, wil dit voorkom dat

dit nie so volumetries belangrik is as die van verplasende kalkreet.

Verharde liggekleurde horisonte wat lyk soos kalkreet maar wat nie- tot swak

kalkhoudend is, wat in konköıdale patrone verbrokkel, wat nie verslemp in suur

of alkali, wat pers verkleur in metiel-oranje en in ’n bulk grondmonster sepioliet

XSD pieke vertoon, skyn vergelykbaar te wees met die paligorskiet-gesementeerde

materiaal (“palikreet”) wat in Spanje en Portugal beskryf is. Dit word hier voor-

lopig “sepiokreet” genoem. Beide silika en sepioliet is teenwoordig in die matriks,

alhoewel die mate wat silika en sepioliet domineer selfs binne die dieselfde ho-

rison skyn te verskil. Dit is baie moontlik dat beide van hulle bydra tot die

struktuureienskappe van die horison. Sepiolitiese horisonte vorm nie ’n diagnos-

tiese horison in die World Reference Base, Soil Taxonomy of die Suid-Afrikaanse

Taksonomiese Grondklassifikasiesisteem nie. Om in die bestaande grondklassi-

fikasiesisteme geakommodeer te word, word voorgestel dat die terme ”sepiolities”
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en hardebank sepioliet (op dieselfde wyse as “kalsies” en “petrokalsies” of harde-

bank karbonaathorison tans), gebruik word.

Sepioliet pieke is meer prominent as die van paligorskiet op die XSD aanwysers

van die kleiner as 2 µm fraksie. Die <0.08 µm fraksie was die enigste groot-

tefraksie waarin paligorskiet bespeur kon word voor asetaat behandeling. Dit

is onwaarskynklik dat hierdie veselkleiminerale geerf kon gewees het van of die

mariene of die eoliese moedermateriale. Hulle blyk van pedologiese oorsprong

te wees. Tendense in die MgO, Al2O3 en SiO2 inhoude toon dat die grond se

kleifraksie lê op ’n gemengde lyn tussen sepioliet en mika endlede, met ’n bydrae

van smektiet, wat in ooreenstemming is met XSD en TEM resultate. Daar is ’n

sterk korrelasie tussen Fe2O3 en TiO2 inhoude, wat toegeskryf kan word aan die

alomteenwoordige mika. Daar was geen TEM bewys van veselmineraal afbraak

na plaatsilikate; ook nie die evolusie van mika lateraal na ’n veselmineraal toe

nie. Daar was geen bevestigende bewyse vir of teen die teenwoordigheid van

keroliet in die kleifraksie nie, alhoewel dit wil voorkom dat dit nie ’n dominante

fase van die kleifraksie uitmaak nie.

Die hipotese word voorgestel dat die deurlatende boonste horisonte in gronde van

Namakwaland eintlik ’n vlak kortstondige waterdraer (akwifer) kan vorm, wat

die pedogenetiese analoog is met ’n sout-meer omgewing waarin sepioliet tipies

sal vorm. Die chemiese evolusie van die grondoplossing kan daarom in dieselfde

terme as die geochemiese evolusie van geslote kom pekel(sout)water beskou word.

Haliet het onderversadig gebly by alle konsentrasies in die versadigde pasta ek-

straksies. By hoër konsentrasie het gips versadiging bereik en sulfaat word dan

uit die oplossing verwyder. Die aktiwiteit van H4SiO4 het onveranderd gebly by

alle vlakke van verdamping. Kalsiet bly naby aan versadiging en is slegs afhank-

lik van die HCO−
3 aktiwiteit en pH vir die reeks van Cl− aktiwiteite wat aangetref

is. Meeste van die gronde waarin sepioliet aangetref is, het ’n positiewe sepioliet

versadigingsindeks getoon. Die sepioliet versadigingsindeks is onafhanklik van

Mg2+ en H4SiO4 en neem slegs toe met toename in pH. Bewyse van pH beheer

by sepioliet versadiging is dat sepioliet slegs met kalkhoudende horisonte geas-

sosieer word. Sepioliet presipitasie sal daarom meer geredelik plaasvind wanneer

’n oplossing ’n pH verandering ondervind as by die konsentrasie van ione deur

verdamping. Die mariene-geaffekteerde hoë Mg gekoppel met die Hardie-Eugster

model van pekelwater gedrag, bied ’n verklaring vir die oorheersing van sepioliet

teen die kus en paligorskiet verder binneland toe. Kusgebiede, in teenstelling
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met kontinentale gebiede, het Mg>HCO−
3 aanvanklik, Mg vlakke sal styg wat

die (Mg+Si)/Al verhouding sal bevoordeel vir die presipitasie van sepioliet. Dit

beteken dat as sepioliet eers begin presipiteer, die gepaardgaande saliniteit, met

verhoging in Mg, betekenisvolle paligorskiet vorming onwaarskynlik sal maak.

Die hardebank horisonte in heuweltjies algemeen wissel van ’n “sepiolitiese”

petrokalsies naby die middel, deur “sepiolities”/“petrosepiolities” na ’n petro-

duriese (dorbank) horison op die rand. Opmerksaam is dat sepioliet-verwante pe-

domaaksels in kalkreet soos olietkorrels insluit. Hulle vorming kan mees waarskyn-

lik verklaar word deur die hidrofiliese/hidrofobiese membraanteorie vir stilstaande

water te gebruik, gegewe die opeenvolgende sepioliet (hidofilies en daarom ’n pre-

sipiterende substraat) en mikriet/naaldvormige kalsiet lae in die bedekkings, en

sterk hidrofobiese organiese materiaal in die heuweltjie. Ietwat van ’n raaisel

is die deurskynende geel nodules met vals-negatiewe eenassige inteferensiefigure.

Laasgenoemde lyk soos sferoliete in vars termiet uitwerpsels. Hulle veselagtige

geaardheid en lae dubbelbreking, tesame met die lae Ca en hoë Mg en Si inhoude

en hoë molare Mg/Si verhouding, is ooreenstemmend met di van sepioliet. Dit

word voorgestel dat die vorming van die hardebanke in die heuweltjie as volg

plaasgevind het: Verryking met katione soos Ca en Mg in die middel van die

heuweltjie deur termiete wat plantmateriaal ingebring het en wat kalsiet en klei

deur outigenese in die middel van die heuweltjie veroorsaak het. Die afbrekende

organiese materiaal wat aangesamel het in die middel van die heuweltjie was

genoeg om die komponente vir kalsiet presipitasie te kon verskaf. Na hierdie or-

ganiese materiaal gëınisieerde kalsiet presipitasie, was die pH geskik vir sepioliet

presipetasie. Die beweging van die Mg-Si-verrykte water verder heuwel afwaarts,

gekoppel aan die verlaging van die HCO−
3 en toename in Mg2+ a.g.v. sepioliet

presipitasie, veroorsaak die presipetasie van die sepiolitiese sone nader aand die

buitenste sone van die heuweltjie met die presipitasie van silika op die rand van

die heuweltjie.

Die Namakwalandse kusgebied is goed geposisioneer vir verdere werk betref-

fende die regoliet, veral a.g.v. die mynaktiwiteite waar diep uitgrawings goeie

blootstelling van goed-gedefinieerde lae tot op vaste rots blootlê. Grondvorming

en termiet-aktiwiteite is tenminste so oud as die Laaste Interglasiale Tydperk.

Verdere werk hierop sal die geskiedenis van die sub-blootgestelde grondopper-

vlak se veranderings in Suidelike Afrika help verklaar. Dit kan ook help met

’n beter begrip van die dikwels verstrengelde informasie wat aangaande Na-
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makwaland bestaan, asook help met landgebruiksbestuur en biosfeer studies.

Bykomend sal mikromorfologiese studies wat die verwantskap tussen kalsiet, se-

pioliet/paligorskiet en silika fases in meer heuweltjies bestudeer, die algemene

model wat in hierdie proefskrif gestel word, verder verfyn.
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Introduction

This study was conceived in order to examine in greater detail the 100 km stretch

of coast that was mapped by F. Ellis and J. J. N. Lambrechts for the De Beers

Namaqualand Mines rehabilitation program, as characterisation and classifica-

tion of all horizons within the regolith before disturbance assists in understand-

ing the new soil forming processes that have begun on the surfaces of the mine

dumps. The study area was subsequently expanded to encompass additional

heuweltjies and ‘sepiocretes’. The Namaqualand region has been receiving an

increasing amount of attention since the commencement of this thesis. This has

culminated in a Special Issue of the Journal of Arid Environments on Sustainable

Land Use in Namaqualand (September 2007, Volume 70, Issue 4, Pages 561-846),

and although the body of literature on Namaqualand is by no means limited to

this volume, the reader unfamiliar with Namaqualand is urged to consult it as

an introduction to the present state of knowledge. Many of the premises (par-

ticularly in terms of the influence of climate on floral kingdoms and ecosystem

functioning) outlined in the Special Issue were presupposed in this thesis.

The thesis is presented as a collection of papers that are intended to be submitted

for publication. Each Chapter has therefore been formulated that it can be read

as a ‘stand-alone’ paper, with reference to the work in previous Chapters. This

means, however, that there is some overlap in the ‘Materials and Methods’ section

of each chapter. The aims of each Chapter is outlined below.

During the initial field work light-coloured horizons were encountered that re-

sembled calcrete but were non-calcareous, broke with a conchoidal fracture and

were resistant to slaking in both acid and alkali. Further examination showed

them to contain a large amount of sepiolite, and they were tentatively named

‘sepiocretes’. The aim of Chapter 1 (Silica- and sepiolite-cemented duricrusts on

the west coast of South Africa), was to derive a name for these horizons based
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on their cementing agent. Since amorphous silica could also have played a role

in cementing the ‘sepiocrete’ horizons, Chapter 1 compares the two known types

of silica-cemented horizons encountered in Namaqualand to these ‘sepiocrete’

horizons.

The aim of Chapter 2 (Soil formation in sediments of the Namaqualand coastal

plain), was to describe and characterise the general soil forming features, both

current soils and paleosols, in the regolith down to bedrock. The mining exca-

vations tens of metres deep down to bedrock have provided an opportunity to

examine soil formation in a regolith that has been subaerially exposed in some

parts for much of the Neogene.

The aims of Chapter 3 (‘Pseudo-anticlines’ and biogenic features in sepiolite-

containing calcrete in Namaqualand) were to describe the micromorphology,

mineralogy and genesis of calcretes on the Namaqualand coastal plain, including

the development of pseudo-anticline structures. Biogenic processes, however, are

increasingly being seen as important to calcrete genesis, and so a particular aim

was to establish whether there was a biogenic contribution to calcrete formation,

and to distinguish the fibrous clay minerals sepiolite and/or palygorskite from

similar biogenic needle fibre calcite.

Chapter 4 (Clay mineral occurrences in Aridisols on the west coast of South

Africa (Namaqualand)) focuses on the clay mineralogy of the soils. The aims

of this Chapter were to evaluate the effect of pretreatments on the sepiolite

and palygorskite peaks, and particularly to concentrate kerolite if present; ex-

amine the clay mineral associations throughout the profile including the marine

parent materials to establish which, if any, were inherited phases; and to ex-

amine the morphology and modes of occurrence of the fibrous clay minerals in

Namaqualand soils, especially for evidence of disintegration or transformation

into sheet silicates.

Chapter 5 (Brine evolution and geochemical barriers: mineral formation in Namaqualand

soils) is based on the hypothesis that the permeable upper horizons in Namaqualand

soils constitute a shallow ephemeral aquifer, which can be considered as a pe-

dogenic analogue of the saline lake environments in which sepiolite typically

forms. The chemical evolution of the soil solution and clay mineral genesis could

therefore be considered in the same terms as the geochemical evolution of closed-

basin brines. The aim was to apply the principles of brine evolution, particularly

the Hardie-Eugster model, to sepiolite genesis in arid soils of the Namaqualand
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coastal plain. The Hardie-Eugster model is based on the effect mineral precip-

itation has on brine evolution, which is determined by the initial ratio of the

component ions in the solution. It was conceived as a means of understanding

the evolution of closed-basin brines, and has since been applied to a diverse range

of environments, from saline soil seeps to coastal pans and calcrete genesis.

Chapter 6 (Micromorphology, mineralogy and genesis of soils associated with a

Namaqualand Heuweltjie) is the first detailed micromorphological study through

one of the heuweltjie (Mima-like) mounds that are ubiquitous in the region. The

aim was to use soil micromorphology and the principles of brine evolution from

Chapter 5 to help explain soil formation within the heuweltjie, particulary the re-

lationship between the (petro)calcic, ‘(petro)sepiolitic’ and petroduric horizons.
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Chapter 1

Silica- and sepiolite- cemented

duricrusts on the west coast of

South Africa

1.1 Introduction

The arid Namaqualand region on the west coast of South Africa has been recog-

nised for its exceptionally high species diversity and endemism (Cowling and

Hilton-Taylor, 1999; Cowling et al., 1999), and the region has been receiving

increasing attention as a result. It is the focus of a Special Issue of the Journal

of Arid Environments (2007). A summary of the landscape and climate and

their effect on vegetation diversity is given by Desmet (2007). Soils knowledge,

however, has lagged behind the biodiversity interest. With the exception of a

study of the clay mineralogy of Namaqualand soils (Singer et al., 1995), soils

information was generally limited to Land Type Surveys (Land Type Survey

Staff, 1987), unpublished irrigation reports, work by Ellis (1988), and an outline

by Watkeys (1999).

Francis et al. (2007) summarised the key characteristics of Namaqualand soils.

They noted the presence of three types of hardpans: reddish brown, silica-

cemented horizons which slake in alkali; calcium carbonate-cemented horizons

which slake in acid; and a cemented horizon they referred to as ‘sepiocrete’, an

indurated light-coloured horizon that resembles calcrete but is non- to mildly
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calcareous, breaks with a conchoidal fracture, is resistant to slaking in both acid

and alkali and reacts positively to methyl orange in the field (Mifsud et al., 1979).

XRD analysis of the bulk soil shows a sepiolite peak. They are commonly asso-

ciated with calcrete in ‘heuweltjies’ (hillocks; circular features having a different

vegetation pattern and raised (1 to 2.5 m) surface, 10 to 20 m diameter, usually

attributed to termites). The material is similar to the palygorskite-cemented

material (‘palycrete’) described by Rodas et al. (1994) and Stahr et al. (2000),

and Sauer et al. (submitted). Sepiolite and palygorskite are often reported from

arid region soils and is commonly found in calcretes (Vanden Heuvel, 1964; Singer

and Norrish, 1974; Yaalon and Wieder, 1976; Elprince et al., 1979; Hay and Wig-

gins, 1980; Watts, 1980; Singer and Galan, 1984; Singer, 1989; Blank and Fos-

berg, 1991; Monger and Daugherty, 1991; Verrecchia and Le Coustumer, 1996;

Singer, 2002; Neaman and Singer, 2004; Owliaie et al., 2006), but there has been

no recorded cementation of soils by sepiolite.

This Chapter describes these ‘sepiocretes’ and their genesis, and attempts to

derive a name for these horizons based on their cementing agent. Since Francis

et al. (2007) and F. Netterberg (pers. comm., 2003) suggested that amorphous

silica could also play a role in cementing the ‘sepiocrete’ horizons, this Chapter

describes and compares the two types of silica-cemented horizons encountered in

Namaqualand to these ‘sepiocrete’ horizons.

1.1.1 Silica-cemented horizons

Two morphologically distinct silica-cemented horizons occur in southern Africa:

‘dorbank’ in the South African Classification System (Soil Classification Work-

ing Group, 1991), equivalent to the ‘duripan’ of Soil Taxonomy (Soil Survey

Staff, 1999) and ‘petroduric’ of the World Reference Base (1998), and ‘silcretes’.

Although both are the result of silica cementation, their general morphology and

genesis in southern Africa differ (Ellis and Lambrechts, 1994). There is much

less information available on the genesis and morphology of ‘dorbank’ (Ellis and

Schloms, 1982; Ellis, 1988; Ellis and Lambrechts, 1994) than ‘silcrete’ (such as

Summerfield, 1983a; Partridge and Maud, 1987). Two morphological types of

dorbank (petroduric horizons) occur: a massive type, and one with a platy or

laminated structure (Ellis and Lambrechts, 1994). The layers in the platy type

are from a few millimetres to 0.3 m thick, and may show vertical cracks. Of-
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ten coatings or thin layers of calcium carbonate occur between the plates. The

massive dorbank varies in thickness from 1 to 5 m or more.

In regions where both silcrete and dorbank are found, silcrete occurs as cappings

on the oldest landscape positions, with dorbank on lower lying erosion surfaces

(Ellis and Lambrechts, 1994). Ellis and Lambrechts (1994) found that the high

correlation (r2 = 63) between dorbank distribution and the aridity index may

indicate that dorbank developed under present arid climates, or similar paleo-

climates, in contrast to silcrete (r2 = 19). Dorbank is strikingly similar to the

‘red-brown hardpans’ of Australia described by both Litchfield and Mabbutt

(1962) and Chartres (1985), both of whom also draw a distinction between these

and silcrete.

Unlike the dorbanks, South African silcretes are characteristically pale in colour,

which suggests silica accumulation and cementation under hydromorphic condi-

tions in sandy materials (Ellis and Lambrechts, 1994). They are usually 1 to

2 m thick, massive, and very hard. They are commonly associated with Ter-

tiary erosion surfaces and occur as remnant cappings (flat topped mesas) in the

landscape (Partridge and Maud, 1987), where they are referred to as weathering

profile silcretes by Summerfield (1983a). These are usually associated with pale

coloured deeply weathered saprolite (‘pallid zone’) up to 20 m thick, composed

primarily of kaolinite and illite with variable amounts of detrital quartz. Silcrete

also occurs as non-weathering profile silcretes (Summerfield, 1983a), such as the

Cenozoic Kalahari Beds. These have formed through silicification of various

host sediments, especially calcretes and playa sediments (Summerfield, 1983a).

The author observed similar silicification of lower shoreface facies marine sands

(Pether et al., 2000) near the base of deep regolith in mining excavations (De

Beers Namaqualand Mines) on the Namaqualand coastal plain.

1.1.2 ‘Sepiocrete’

Similar materials have been encountered in southern Africa before, but they have

not been classified and no systematic study has been undertaken. Palygorskite-

rich hardpans that macroscopically resembled calcretes, but were generally non-

calcareous, and did not slake in 30% NaOH, were documented from Botswana

(Runtu) by Netterberg (1969), who noted that the cementing medium was prob-
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ably chalcedonic and opaline silica. There are also materials which look like

calcretes but contain no carbonate at the Elandsfontein (near Hopefield) fossil

site (Netterbeg, pers. comm., 2003), a white disintegrating material associated

with dorbank in a heuweltjie near Ebenhaeser (31o35′50′′S 18o16′45′′E, road to

Papendorp), with minor calcite and very abundant sepiolite (1.25 nm peak on

a bulk sample XRD trace) (Ellis, unpublished data), and is present in some

heuweltjies around the Worcester area of the Western Cape and Oudtshoorn in

the Eastern Cape.

Francis et al. (2007) suggested interlocking fibrous sepiolite crystals could pro-

vide an explanation for the cementation of the ‘sepiocrete horizons. Brecciated

sepiolite lutites in the Esquivias deposit (Madrid Basin) are “cemented with

sepiolite” (Pozo and Casas, 1999, p. 400). The addition of 10% sepiolite to ce-

ment increased both the compressive and bending strengths of the mortar (Kavas

et al., 2004). Bain (1971) noted that massive authigenic sepiolite formed in playa

lakes dries to an extremely tough and coherent material. Mosaddeghi et al. (2006)

evaluated the tensile strength of artificial mixtures of sand–palygorskite–calcite,

and found that the effect of 5% palygorskite was approximately similar to that of

30% CaCO3. They suggested that this might be due to the fibrous structure and

the higher surface area of palygorskite as compared to CaCO3, and that the fi-

brous units could act as binding bridges around and between the sand particles.

This strong and non-friable nature is not restricted to sepiolite/palygorskite:

non-slaking kaolin (flint clay) that breaks with a conchoidal fracture was de-

scribed by Keller (1982, p. 30) which “when immersed in water remains intact,

firm “rock-like” indefinitely . . . it withstands weathering for years on the outcrop

or in a stockpile.” Keller (1982) attributed its resistance to slaking to tightly

interlocking, randomly oriented, compact packages and sheaves of kaolin crystals

exhibiting a mutual-boundary texture.

Francis et al. (2007) and Netterberg (pers. comm., 2003) suggested that amor-

phous silica could also play a role in cementing the ‘sepiocrete’ horizons. Inter-

estingly, Keller (1982) noted that although siliceous cement may have increased

certain hydrothermal kaolins’ resistance to slaking, no independent field or lab-

oratory evidence had demonstrated that free silica served as a cement in typical

flint clay of sedimentary origin.
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Massive sepiolite is sometimes called ‘meerschaum’ (from German meaning ‘sea-

froth’ (Hay et al., 1995)), especially in the gem trade when it occurs in compact

masses or nodules (Sariiz and Isik, 1995). In Eskişehir, Turkey, high-quality

sepiolite nodules were formed by alteration of magnesite nodules at shallow burial

under alkaline conditions (Ece and Çoban, 1994). Other major sepiolite deposits

include the Hekimhan region of Turkey (Yalçin and Bozkaya, 1995), Kenya (Hay

et al., 1995), Somalia (Singer et al., 1998) and Spain, all of which formed in a

paleolacustrine environment. There is abundant published information on these

and other sepiolite-palygorskite occurrences (Weaver and Beck, 1977; Singer and

Galan, 1984; Jones and Galan, 1988; Singer et al., 1992; Torres-Rúız et al., 1994;

Akbulut and Kadir, 2003; Jamoussi et al., 2003; Zaaboub et al., 2005, among

others).

1.2 Materials and methods

One typical dorbank (petroduric horizon) and two ‘sepiocrete’ profiles were used

to examine the genesis and cementing agents of these duricrust samples. Sam-

pling was done in the Knersvlakte (Kners, Figure 1.1), and in the Buffels Marine

Complex (BMC) (De Beers Consolidated Mines Ltd - Namaqualand Mines) in the

Kleinzee-Port Nolloth area in the northern part of the (semi-)arid Namaqualand

coastal plain (KV196T and SK11).

1.2.1 Site description

Coastal plain; BMC: profiles SK11 and KV196T

On the Namaqualand coast, the prevailing winds are very strong southerly (oc-

casionally gale force), with occasional berg (east) wind conditions, especially

during winter. Temperatures increase markedly during berg wind conditions,

which may persist for longer than a week. As a result, the average maximum

temperature from February to October (late summer to spring) is over 30o C,

with April and October experiencing temperatures of 38o C. In contrast, the

average maximum temperature from November to January is 25o C (late spring

to summer). Minimum temperatures from March to October are around 6o C,
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Figure 1.1: Location of Buffels Marine Complex (BMC) mining area, KV196T,
SK11, and the Knersvlakte sampling site (Kners). The escarpment (arrowed,
dark lines) forms the eastern edge of the coastal plain. Modified from Ellis (1988).

with July dropping to 3o C. From November to April the minimum is around

10o C (D.B.C.M., 2000, data collected at Kleinzee, July 1995 to March 1997).

The Namaqualand coastal plain receives less than 150 mm winter rainfall an-

nually, with the figure increasing southwards. Crucially for both plant growth

and water movement through the soil, the climate is characterised by highly

reliable rainfall when compared to other arid regions with similar mean annual

precipitation (Desmet, 2007). It typically arrives as widespread, gentle show-

ers (average rainfall event 6 mm, P. Carrick unpublished data, cited by Desmet

(2007)). Drought conditions are rare, and rainfall is higher than average about

once every 10 years, causing ephemeral rivers to flow. Flood events occurred in

the Buffels River, for example, in 1945, 1961, 1962, 1963, 1976, 1980, 1986, 1996

and 1997 (D.B.C.M., 2000). Paleoclimates of the northern Namaqualand region

are not that well constrained, but the consensus for the greater area seems to be

that is was wetter during the Last Glacial (Van Zinderen Bakker, 1976; Tankard

and Rogers, 1978; Parkington et al., 2000).
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Coastal fog adds significantly to the total precipitation. Data from the Pilot Fog

Study at Kleinzee for the period July to October 1995 showed that the highest

precipitation due to fog occurred during August. The total fog recorded during

this period was 1001 mm (D.B.C.M., 2000). Tinely (1985; in D.B.C.M., 2000)

estimated that the plants may trap up to 300 mm of fog per annum.

That evapotranspiration greatly exceeds precipitation in Namaqualand is re-

flected by a vegetation cover (Sandveld bioregion (Desmet, 2007)) of approxi-

mately 60%, as well as the presence of saline pans and ephemeral rivers, and

areas with salt efflorescence and crusts at the soil surface. The evaporation rate

is of the order of 2 m per year. The evaporation rate is higher than expected for

a coastal area due to the wind regime, but is reduced by the regular occurrence

of coastal fog (D.B.C.M., 2000).

The regolith of the Buffels Marine Complex comprises successive late Tertiary

marine packages, each deposited during sea-level regression (Pether, 1994). Some

rest on kaolinized paleochannel sediments, described in detail by Pether (1994),

who concluded that they were laid down as a quartzo-feldspathic sediment in

a fluvial environment, and subsequently deeply weathered, with extensive alter-

ation of feldspar to kaolinite. These sediments are described in greater detail by

Tankard (1966), Tankard (1975), Pether (1994), and Pether et al. (2000). De Vil-

liers and Cadman (2001) favoured an early Tertiary age for this channel north

of the Swartlintjies River, although it may also contain reworked Cretaceous

material (Pether et al., 2000; De Villiers and Cadman, 2001).

The marine packages overlying the kaolinised paleochannel sediments are ar-

ranged en echelon down the bedrock gradient, from oldest and highest inland

to youngest and lowest at the coast. Each package is named after the eleva-

tion of its transgressive maximum as represented in the Hondeklip Bay area

(Pether, 1994; Pether et al., 2000). The 90 m package is ca. 18 - 16 Ma, the 50

m package early Pliocene, and the 30 m package not well constrained, but ca.

3.3 Ma or younger (Pether et al., 2000). The 30 m package is transgressed by

younger littoral deposits up to about 10 m a.m.s.l. (Pether et al., 2000). The sand

fraction is dominated by quartz and feldspar, lesser glauconite and phosphatic

shell fragments, and variable amounts of heavy minerals (garnet, magnetite, il-

menite, biotite, sphene, amphibole, epidote, kyanite (rare) and zircon (rare))

(Pether, 1994). The marine packages are capped by recent aeolian deposits.
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Coastal dunefields originate at the mouth of the rivers and extend inland in a

northerly direction. In places, older soil profiles are overlain by aeolian sands.

Soil formation has taken place in aeolian, ‘sheetwash’, and marine-deposited sed-

iments.

Soils within the broader context of Namaqualand are summarized by Francis

et al. (2007) and Desmet (2007). Soils on the Namaqualand coastal plain in the

vicinity of the Buffels Marine Complex sampling sites can be classified into the

Aridisol and Entisol orders of Soil Taxonomy (Soil Survey Staff, 1999). Greater

detail is presented in Chapter 2. In summary, the Entisol order, in which the

only expression of soil formation is the presence of vegetation and a darkening

of the A horizon, is represented by Quaternary aeolian sands. These regic sands

are classified as the Namib Form in the South African classification system (Soil

Classification Working Group, 1991). The grey sands are of most recent aeo-

lian origin and closest to the coast, the red sands are the oldest and furthest

inland, and the yellow sands usually occupy an intermediate zone between red

and grey. Although described as deep sands there is abundant evidence (even

though mostly incipient) of differentiation into horizons (for example bleaching,

clay illuviation and secondary cementing by silica and carbonate), such that the

more stable landscapes display many typical Aridisol features noted by Buol

et al. (1997): surface soil crusts a few millimetres thick are common; somewhat

altered subsurface horizons where the original stratification has been obliterated

by mixing; argillic subsurface horizons with a higher clay content than the over-

lying horizon; eluvial horizons; horizons of carbonate accumulation that vary

from calcic to petrocalcic (which are generally on the order of 1 m thickness);

red-brown silica-cemented horizons (petroduric in Soil Taxonomy or dorbank in

the South African classification system), which may contain a significant amount

of calcium carbonate and gypsum and are commonly 1 to 2 m thick. Gypsic and

petrogypsic soils occur in the northern part.

Profile KV196T is classified as the Garies Form (Orthic A - Red apedal B -

Dorbank) in the South African classification system (Soil Classification Working

Group, 1991). It is located adjacent to and in a mine excavation in the Buffels

Marine Complex on the farm Kareedoornvlei 177 (see Figure 1.2), on the 95 m

terrace cut into silcrete, 118 m a.m.s.l. (GPS), Terrain unit: crest. It is further

inland than SK11 (Figure 1.1). The profile is pictured in Appendix A.
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Figure 1.2: Location of profiles KV196T, SK11 and their farm names within
the Buffels Marine Complex (BMC) mining area

Profile SK11 is classified as the Pinedene Form (Orthic A - Yellow-brown apedal

B - Signs of Wetness) in the South African classification system. It is located

adjacent to and in a mine excavation in the Buffels Marine Complex on the farm

Sand Kop 322 (see Figure 1.2), on the 65 m terrace, 60 m a.m.s.l. (GPS). Terrain

unit: footslope. It is pictured in Appendix A.

Fieldwork took place in February 2002. Profiles to bedrock were examined and

sampled. Samples were named according to the mining excavation to which they

were closest, the prefix being the farm name. Sample sites were selected to be

representative of each terrace and marine package. Samples (approximately 2

kg) of each horizon were taken from the sidewalls of the mining excavations and

from soil pits dug in the undisturbed areas nearby. The soil morphology was

described in the field. A 10% solution of HCl was used to test for carbonate, and

30% H2O2 for manganese. Colour was described using a Munsell colour chart

(Munsell Color Company, 1975). Horizons falling within 1.5 m of the surface were

treated as diagnostic horizons for classification purposes. Those occurring deeper



13

in the profile were described, but treated as non-diagnostic and no consideration

given to their position in the profile.

Knersvlakte: profile KNERS

Like the Buffels Marine Complex to the north, the Knersvlakte receives a reliable

winter rainfall (MayAugust) of between 100 and 175 mm (Schmiedel and Jürgens

(1999), using data from Weather Bureau (1988)). However, unlike the Buffels

Marine Complex, models show the climate of the Knersvlakte remained as dry

as present back to the Last Glacial Maximum (Desmet (2007), citing data from

Midgley et al. (2001)).

The Knersvlakte forms the southern part of Namaqualand, just north of the

Olifant’s River (Figure 1.1). It is a part of the the Succulent Karoo bioregion

(Desmet, 2007), in contrast to the Sandveld bioregion of the area around the

Buffels Marine Complex. This area occupies a broad plain created by the proto-

Orange River some 20 million years ago and almost completely cuts the continuity

of the African escarpment, creating a very distinct physical boundary between

the sandstone and shale sedimentary rocks of the Cape Fold Mountains to the

south, and the predominately igneous landscape of Namaqualand to the north

(Desmet, 2007). The Knersvlakte is consists of fluviatile sediments (Pickford

and Senut, 1997), and gypsum at depth that is mined in some places. The

area is underlain by shales, phyllites and limestones of the Nama Group and

is streaked by numerous quartz veins (Schmiedel and Jürgens, 1999), that have

weathered to give rise to the distinctive, white, quartz gravel surface (pictured

in (Schmiedel and Jürgens, 1999)). It is characterised by shallow soils overlying

dorbank horizons (Francis et al., 2007).

The Knersvlakte profile (Kners) was located 53 km east of Kliprand turnoff on

N7, at 30◦ 48′ 47.3′′ S, 18◦ 43′ 25.3′′ E, 554 m a.m.s.l. (GPS). Terrain unit: ex-

tensive plain. Borrow pit, upper horizons removed (disturbed). It was associated

with an old (inactive) heuweltjie, and in the vicinity of an alkali intrusive. Field-

work took place in June 2004. Samples (approximately 2 kg) were taken of each

hardpan horizon. The soil morphology was described in the field. A 10% solution

of HCl was used to test for carbonate, and 30% H2O2 for manganese. Colour

was described using a Munsell colour chart (Munsell Color Company, 1975).
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1.2.2 Laboratory methods

Slaking tests were devised to distinguish silica- from carbonate-cemented hard-

pan horizons. These tests were based on the WRB (1998) definition of petroduric,

petrocalcic and fragic horizons. A fragment a few centimetres in diameter was

submerged in water, 5M HCl or 6M NaOH and gently heated on a waterbath

for four days. More solution was added when necessary. Samples which did

not slake were then subjected to alternating 5M HCl and 6M NaOH treatments.

Thin sections for optical microscopy from the Knersvlakte profile were impreg-

nated with a polyester resin and ground without water, and the samples from

the KV196T profile impregnated with an epoxy resin. Fine grained calcite was

identified by effervescence in 1M HCl under the optical microscope. Uncoated

fragments and thin sections were observed before and after etching in 1M HCl

using a Philips Xl30 environmental scanning electron microscope (ESEM) in low

vacuum and with an energy dispersive X-ray analysis system (EDX). High vac-

uum SEM was done on Au-coated fragments using a Leo 1430VP SEM-EDX

system. Major element composition of bulk samples was determined by x-ray

fluorescence (XRF). For chemical and mineralogical (x-ray diffraction, XRD)

analysis, samples were air-dried, crushed in a pestle and mortar (unless specified

as milled, where samples were milled for 5 minutes using a stainless steel ball

mill) and passed through a 2 mm sieve. The >2 mm cement was sorted from the

>2 mm pebbles and recrushed, to minimise shattering of detrital pebbles/gravel.

For XRD analysis, the <2 µm fractions of the bulk samples were separated by

dispersion (shaking briefly by hand, raising the pH to approximately 10 with

Na2CO3) and settling. The 1 to 0.08 µm and <0.08 µm fractions were sepa-

rated by centrifugation. The clay suspension was flocculated by the addition of

MgCl2, after lowering the pH to 5 to 7 with HCl to prevent the precipitation

of brucite and/or clay destruction. The clay suspension was then Mg-, Ca- or

K-saturated, concentrated by centrifugation, and sedimented (or smeared, many

of the seopiolite-rich samples developed ‘mudcracks’) onto a glass slide. XRD

analyses were done with a stepsize of 0.05 degrees and steptime of 40 seconds,

using a Bruker D8 Advance Powder Diffractometer with a graphite monochro-

mator, 40 kV and 40 mA. Ethylene glycol was sprayed lightly onto the surface

of the Mg-saturated sample slides.

The <2 mm fraction was used for chemical analyses. The pH and electrical con-
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ductivity (EC) were measured in a 20 g to 50 mL soil-water mixture. Saturated

paste extracts were prepared for all samples except the Knersvlakte profile, since

it was truncated so only the duricrust was exposed at the surface. They were

prepared with a 300 g sample, to which approximately 100 g (depending on the

clay content) of water was added to form a saturated paste, and equilibrated for

24 hours. The pH of the saturated paste was measured directly. The solution

from the saturated paste was extracted under vacuum. Electrical conductivity

(EC) was measured with a calibrated conductivity meter; alkalinity by potentio-

metric titration to pH 4.5 with 0.01M HCl; major cations by atomic absorption

spectroscopy; major anions by ion chromatography; Si using the blue silicimolyb-

dous acid procedure of Weaver et al. (1968), and dithionite-citrate-bicarbonate

extractable Fe using the method of Mehra and Jackson (1960).

1.3 Results and discussion

Descriptions of a typical dorbank (petroduric) profile (KV196T), and two ‘se-

piocrete’ profiles (SK11; Kners) are given in Table 1.1. Typical examples of

dorbank and ‘sepiocrete’ (from the Knersvlakte profile) are shown in Figures 1.3

and 1.4. Dorbank (petroduric) occurring in the KV196T profile is the massive

type, and the Knersvlakte profile the platy type, and forms prominent cutans

on the ‘sepiocrete’. In the ‘sepiocrete’ samples, water applied from a dropper

spreads nearly instantly away along very fine cracks, usually in a dendritic pat-

tern. This tendency for water to flow along preferential flow paths may explain

the development of the sepiolite veins (arrowed in Figure 1.4).

1.3.1 Slaking behaviour

Dorbank (petroduric)

In this study, even if they effervesced in HCl, the dorbank horizons consis-

tently slaked only in concentrated NaOH (Table 1.1). In comparison, a typi-

cal weathering-profile silcrete (non-calcareous) capping a hill near the town of

Kleinzee did not slake in prolonged contact with heated concentrated NaOH.

This suggests the cement in the dorbank is amorphous silica, compared to a

more crystalline form in the silcrete. It also reveals that iron oxides are not the
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(a) Profile showing area magnified in (b)

(b) Scale bar 1 cm

Figure 1.3: Reddish-brown dorbank (petroduric) forming cutan (Kners/1) on
white ‘sepiocrete’ (Kners/2) from the Knersvlakte (Profile 1, described in Table
1.1). Hammer is 30 cm long.
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Figure 1.4: White ‘sepiocrete’ from the Knersvlakte (Profile 2), Kners/4 de-
scribed in Table 1.1. Sepiolite veins arrowed. Lower fragment partially coated
by white, non-calcareous sepiolite cutan (C). Hammer handle 15 cm long.

cementing agent in dorbank. Despite their red-brown colour (Table 1.1), the

dithionite-citrate-bicarbonate extractable Fe (Mehra and Jackson, 1960) con-

tent of KV196T/8 was only 0.4%. This is consistent with the range found by

Chartres (1985, p. 329) for red-brown hardpans in Australia.

‘Sepiocrete’

SK11/E was the only example where partial slaking occurring in prolonged

water treatments. The remaining ‘sepiocrete’ horizons were generally non- to

locally calcareous (Table 1.1), suggesting calcite is not the primary cement. HCl

treatments did not result in slaking, nor did NaOH treatments. Partial slaking

was observed when alkali/acid treatments were alternated. This is in contrast

to the dorbank samples, which slaked in NaOH even if calcareous. This may
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suggest that the cement in ‘sepiocrete’ is not solely amorphous silica. However,

Mart́ınez-Ramı́rez et al. (1996) noted that the addition of sepiolite to a pH 12.4

NaOH solution caused the pH to be reduced to 8.6. Although the experimental

methodologies were different in that the NaOH solution was refreshed on drying,

and was more concentrated compared to Mart́ınez-Ramı́rez et al. (1996), the pH

was not measured and the possibility exists that the presence of sepiolite caused

a reduction in pH sufficient to reduce the solubility of silica.

However, a weathering profile silcrete (similar to that described by Summerfield

(1983a)) also did not slake in concentrated NaOH under the same experimental

conditions. This suggests that in addition to sepiolite content, the degree of silica

crystallinity and/or impregnation and/or total amount of secondary silica also

plays a role in dictating whether slaking of a particular sample will occur.

The slaking tests established that calcite was not the primary cement in ‘sepi-

ocrete’, but were inconclusive in determining whether silica or sepiolite formed

the cementing agent.

1.3.2 Mineralogy

Dorbank (petroduric)

The clay fraction of dorbank profile KV196T contains smectite, and also mica/illite

(Figure 1.5). The dorbank samples in the Knersvlakte profile (Kners/1 and

Kners/5 in Figure 1.6) contain sepiolite, and possibly palygorskite.

With the exception of the non-calcareous KV196T/4, the dorbank horizons show

broad, low peaks of the clay minerals, a characteristic noted by both Flach et al.

(1969) and Blank and Fosberg (1991), who attributed it to disordered siliceous

coatings masking the clay minerals. Figure 1.7 confirms that very fine material

coats some clay grains.

Amorphous silica (broad opal-A peak at 0.41-0.403 nm (Drees et al., 1989)) does

not appear in any quantity on the diffraction patterns of profile KV196T, despite

its presence as cementing agent being suggested by slaking only in strong alkali.

KV196T/2 is the only horizon that shows a broad rise of the background in the

0.4 nm vicinity. The amorphous silica peak is more apparent in the Knersvlakte
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Figure 1.5: XRD traces of Mg- or Ca- saturated clay fractions from selected
horizons in profile KV196T. Diff: diffuse; EG: ethlyene glycol.
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Figure 1.7: TEM image showing very fine material (such as on the left) coating
clay grains (top right) in dorbank (petroduric) Kners/5 (milled).

profile than KV196T. There seems to be a small opal-C/T peak at 0.41 nm in

KV196T/8 and /3, and Kners/1 and possibly /5. Quartz is present in the clay

fraction. Since quartz is ubiquitous in the marine sands that form the parent

material, and the clay fraction was liberated by milling, there is a large detrital

component which cannot be distinguished from authigenic silica.

‘Sepiocrete’

SK11/E, the non-calcareous ‘sepiocrete’ that slaked partially after prolonged

soaking in water (Table 1.1), is the only horizon within the SK11 profile that

contains monominerallic sepiolite in the clay fraction (Figure 1.8). Amorphous

silica does not appear in the clay fraction. The other horizons in the profile

contain smectite, kaolinite and mica/illite in addition to sepiolite. Palygorskite

appears to be a minor constituent, with the 0.664 nm peak best defined in the

<1 µm fractions (Figure 1.8).
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Figure 1.8: XRD traces of Mg-, K- or Ca- saturated clay fractions from selected
horizons in profile SK11. EG: ethlyene glycol.
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XRD traces of the clay fraction of the ‘sepiocrete’ samples in the Knersvlakte

profile (Figure 1.6) show strong sepiolite peaks in all size fractions. These are not

as clear on the dorbank horizons Kners/1 and Kners/5, but this may be a func-

tion of disordered siliceous coatings masking the clay minerals in dorbank (Flach

et al., 1969; Blank and Fosberg, 1991). Palygorskite is much less prominant that

sepiolite in the <2 µm fraction. Both the dorbank and ‘sepiocrete’ horizons in

the Knersvlakte profile show a very broad amorphous silica peak emerging on the

background at around 0.4 nm, although it is slightly less expressed in Kners/1

and Kners/2. This amorphous silica peak is more apparent in this profile than

either KV196T (Figure 1.5) or SK11 (Figure 1.8). As with the dorbank, the

quartz peaks are likely to have a largely detrital component which cannot be

distinguished from authigenic silica.

The <2 µm fraction of partially slaked ‘sepiocrete’ from Kners/4 was milled

and analysed. The HCl treatment caused a significant broadening of the sepiolite

peak (Figure 1.6), suggesting the sepiolite was partially destroyed by the acid

attack, and consistent with the findings of Gozález et al. (1984) and Dékány et al.

(1999). The 0.4 nm amorphous silica peak was not affected by acid treatment.

The NaOH treatment also caused a slight broadening of the sepiolite peak, but

not to the same degree as the acid treatment. The alkali treatment did not seem

to have affected the 0.4 nm amorphous silica peak either, suggesting the alkali

treatment was insufficient to remove the silica from these samples.

1.3.3 Micromorphology

Dorbank (petroduric)

The dorbank micromass is generally dominated by the reddish orange colour

imparted by Fe (hydr)oxides, with strongly oriented clay more prominent than

amorphous silica in many places (Table 1.2). The amorphous silica is generally

clear and yellowish, and is generally isotropic. It may be than it has been masked

by the colour of the Fe. Spherulites (crystal aggregations with an approximately

circular outline and a permanent cross of extinction in crossed polarized light

(Canti, 1997)) are present, some have an isotropic core and appear to be silica

(Figures 1.9(a)-(b)), others show pseudo-negative uniaxial interference colours

and concentric banding under crossed-polarisers (Figures 1.9(c)-(e)). Summer-



25

field (1983a) observed spherulites with pseudo-uniaxial extinction crosses com-

prised of length-fast chalcedony in a vugh-fill in South African silcrete. The

orientation of the crystals making up the spherulites in the Namaqualand sam-

ples, however, could not be resolved with certainty. Laminated and layer-coated

nodules and aggregates are present in Kners/5 (Figure 1.9(f)-(g)), which are

remarkably similar to the compound ‘glaebular aggregates’ from silcretes in the

Riversdale-Albertina area shown by Summerfield (1983a, p. 903).

Table 1.2: Thin section descriptions. Abbreviations: diam.: diameter; incl.: including;
max.: maximum; occ.: occasional; OIL: oblique incident light; ppl: plane polarised light; xpl:
cross polarised light.
Kleinzee, dorbank, sample 
KV196T/4.  
1 vertical section 20 x 40 mm; 
thickness ~ 30-35 µm.

Knersvlakte, dorbank cutan, 
sample KNERS/1.  
3 vertical sections 50 x 40 mm; 
thickness ~ 30-35 µm.

Knersvlakte, 'sepiocrete' sample 
KNERS/2.  
3 vertical sections 50 x 40 mm; 
thickness ~ 30-35 µm.

Knersvlakte, dorbank, sample 
KNERS/5.  
3 vertical sections 50 x 40 mm; 
thickness ~ 30-35 µm.

Micro-structure Micro-structure Micro-structure Micro-structure
Vughy microstructure. Channel and vughy microstructure. Weakly separated granular to 

massive microstructure.  Granules 
0.6 - 0.05 mm diam.  

Vughy microstructure.

Groundmass Groundmass Groundmass Groundmass
c/f limit: 5μm c/f limit: 5μm c/f limit: 5μm c/f limit: 5μm
c/f ratio: 8:1 c/f ratio: 9:1 c/f ratio: 1:8 c/f ratio: 8:1
c/f-related distribution: chito-
gefuric.

c/f-related distribution: close 
porphyric.

c/f related-distribution: open 
porphyric.

c/f related-distribution: chito-gefuric 
to close porphyric.

Coarse Material Coarse Material Coarse Material Coarse Material
Subrounded. quartz, less 
feldspar, minor opaques, mica. 
Grains ~0.4 - 0.03mm.

Predominantly subangular quartz, 
also opaques. 5mm diam. common, 
to 0.2 mm.

Predominantly subangular quartz, 
also opaques, feldspar, garnet. 
1mm diam. common, to 0.5 mm.

Subrounded quartz, less feldspar, 
minor opaques, mica. Grains ~1cm -
0.02mm, orientated ~ with long axis 
horizontal.

Micromass Micromass Micromass Micromass
PPL: Limpid, orange-brown.  
Comprises Fe-stained silica, 
and/or clay, some pure silica. 
Although sample slakes only in 
NaOH, pure silica in the matrix is 
difficult to discern, it may be very 
fine-grained. XPL: Granostriated b-
fabric.

PPL: Banded dark orange predomin-
antly speckled; some limpid layers.  
Generally orientated parallel to grain 
edges or to channels. Lamin-ated 
(with very fine dark bands) and 
entire lamination "crenulated". 
Dispersed fine calcite, grey. Mn, 
mammilate, dispersed. XPL: 
Granostriated b-fabric.

PPL: Speckled grey-yellow.  Seems 
to be predominantly sepiolite, 
locally covered by finely dispersed 
grey secondary  calcite which 
projects into tiny voids giving a 
crystallitic b-fabric, and locally 
some silica. XPL: Speckled b-fabric 
dominant, locally cross-hatched 
and crystallitic.

PPL: Limpid to speckled, reddish-
orange-brown.  Comprises Fe-
stained silica, and/or clay, some 
pure silica interspersed. XPL: 
Granostriated b-fabric.

Pedofeatures Pedofeatures Pedofeatures Pedofeatures
Grains coated by amorphous Fe-
oxides incl. hematite (red in OIL). 
Also over this are clay coatings, 
and amorphous (isotropic) silica, 
which tends to be concentrated 
on the outer edges and intergrain 
areas. Coatings are length-slow. 
Dense infillings of clays, forming 
microlaminated crescent 
coatings.  In some cases they 
appear to seal the void and no 
further vertical illuviation occurs 
below. Silica is over the clay.  
Spherulites (with  pseudo-
negative uniaxial interference 
colours).

Coatings:  Grains coated by 
amorphous Fe-oxides incl. hematite 
(red in OIL). Clay, silica may be 
masked by the colour of the Fe 
oxides. The coatings are length-
slow. Crescent coatings, not always 
associated with voids, the voids 
may have been completely filled. 
Spherical, rounded peds 0.5 - 1cm, 
also elongated and large irregular 
(~ 5cm) peds with laminated (limpid 
to speckled with silt-sized quartz) 
reddish-orange-brown coatings. 
Some are aggregate features, 
laminated and layer-coated nodules 
enclosed with other matrix material 
within a larger laminated and layer-
coated nodule.
Spherulites: some show pseudo-
negative uniaxial interference 
figures, some have an isotropic 
core, others concentric banding.

Coatings: Some grains have an 
edge that seems to be coated with 
orientated silica.  "Crenulated" clay 
layers very common, layers 
orientated parallel to grains and 
filling interstices, in some cases the 
inter-coating areas are filled with 
amorphous silica.
Channels: generally branching 
downwards, may be root channels, 
<0.4 mm diam, accommodating 
faces, rough textured sides, 
sometimes side-branching 
chambers. Channels and chambers 
appear to be coated and/or filled 
with decomposed organic material, 
generally 0.02mm diam., often 
occurring as aggregates, and 
usually associated with fine grey 
calcite (often only distinguishable by 
effervescence with HCl), in some 
places resolved as needle fibre 
calcite.

Channels lined and filled with 
sepiolite, arranged in fan-like 
bundles.
Speckled, grey, laminated calcic 
pendants and cappings.
Discreet subangular limpid yellow 
clay (silica?) nodules (300 - 70 um) 
which have a cross-striated or 
isotropic b-fabric and very low (first 
order) interference colours, 
occasionally will show pseudo-
negative uniaxial interference 
colours, may be coated with micrite, 
orientated clay or silica (isotropic).
Coatings: Quartz and clay particles 
coated with micrite (mixed with 
clay) hypocoatings, some are 
coated with isotropic silica and Fe.

Illuviation of clay has been a dominant soil forming process, with strong ori-
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(a) Spherulites (left), limpid crescent
coating, amorphous silica (isotropic).
Kners/3, ppl. Scale bar 0.1 mm.

(b) Same view as (a), xpl.

(c) Spherulites. Kners/5,
ppl. Scale bar 0.1 mm.

(d) Same as (c), xpl. (e) Same as (c), xpl, λ plate,
fast direction indicated.

(f) Portion of complex aggregate (border
with matrix arrowed). Kners/5, ppl. Scale
bar 0.2 mm.

(g) Same view as (f), xpl.

Figure 1.9: Typical views of silica in dorbank (petroduric) horizons. Way-up is
top of page.

entation of clay parallel to grains and crescent coatings on the lower part of

voids common (Figures 1.9(a)-(b)). Figure 1.10(a)-(b) shows a void blocked by

clay-coated grains, resulting in a crescent coating forming on top and no further

illuviation into the lower part of the void . Sullivan (1994) obtained optically ori-
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ented clay coatings on coarse quartz sand by passing smectitic clay suspensions

through sand columns. These coatings were not removed by subsequent passage

of water, suggesting that the dominant clay deposition mechanism involves the

retention of suspensions on sand surfaces by capillary and adsorption forces. It

appears than clay illuviation occurred before silica precipitation in the dorbank

horizons, since the silica is generally (although not exclusively) concentrated on

the void side of the clay coatings (Figures 1.9(a)-(b), 1.10(a)-(b)), similar to that

described by Litchfield and Mabbutt (1962) for red-brown hardpans in Western

Australia. Layering suggestive of illuviation is evident in Figure 1.10(c), the

composition of which (Figure 1.10(d)) is consistent with montmorillonite clay,

silica and the reddish orange colour imparted by Fe (hydr)oxides.

Smectite neoformation also appears to be present. SEM images of a fragment

of KV196T/3 (Figure 1.10(f)) are similar to images of neoformed smectite in

Borchardt (1989, p. 680). The composition (Figure 1.10(e)) is very Mg-rich for

a smectite: it is closer to that of saponite than montmorillonite. The XRD trace

shows the broad peak of an expandable phase (Figure 1.5), as well as mica and

kaolinite peaks. The mica and kaolinite alone could not account for the high

Mg content. The horizon KV196T/3 occurs fairly high up in the profile (Table

1.1), and it may be that the clay is neoformed in the upper part, and illuviated

downwards together with silica and more Al-rich smectite to form harder, more

laminated horizons like KV196T/8 (Figure 1.10(c)).

‘Sepiocrete’

The micromorphology of typical ‘sepiocrete is given in Table 1.2. They are

distinctly different from dorbank horizons, the most obvious being the granular

microstructure, the micrite-rich matrix, and the lack of crescent clay coatings

(Figure 1.11). Prolate calcite crystals (length-slow) project into the inter-granule

areas (Figures 1.11(a)-(b)).

Although the colour and localised effervescence in HCl resemble calcrete in the

field, calcite is not the primary cement: Figures 1.12 and 1.13 shows a fragment

from Kners/4 before and after etching in 1M HCl for 30 seconds, until efferves-

cence ceased. Effervescence was only observed in the lower part of the fragment

where pitting developed (area C in Figure 1.12(b)). Before etching, the calcite

was present in the form of finely dispersed, less than 2 µm particles, consistent

with the low Ca content (Figure 1.12(d)). After etching, most of the calcite was
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(a) Crescent coating developed above
blocked void (v). Scale bar 0.1 mm. Way-up
is top of page. KV196T/4, ppl.

(b) Same view as (a),xpl.

(c) Layering in dorbank, KV196T/8. Scale
bar 20 µm.

(d) Spectrum of square in (c).

(e) Layering and neoformed clay,
KV196T/3. Scale bar 20 µm. C: charging.

(f) Magnification of square indicated in (e).
Scale bar 1 µm.

Figure 1.10: Neoformed and illuviated smectite and silica in dorbank (petroduric)
fragments.

removed. The sample remained very firm (Figure 1.12(b)), which shows calcite

is not the primary cement in these samples, and the micrite causing the speckled

b-fabric observed with the optical microscope is an accessory feature.
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(a) Granular microstructure. Scale bar 0.1
mm, Kners/2, ppl. Way-up is top of page.

(b) Same view as (a), xpl.

(c) Thin section, SEM image of microstructure. Scale bar 100
µm, Kners/2.

(d) Magnification of (c). Scale bar 10 µm.

Figure 1.11: Optical and SEM images of granular microstructure in ‘sepiocrete’.
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The high Mg/Si ratio of the fibres both pre- and post etching (Figure 1.12(d),

(f)) is consistent with molar Mg/Si of 0.67 for sepiolite (Stoessell, 1988). An

interlocking, subparallel morphology is present over much of the sample (Figures

1.12(c), (e), 1.13(b), (c)), perhaps contributing to the induration as suggested

by Francis et al. (2007).

It is sometimes difficult to distinguish sepiolite from silica with certainty under

the optical microscope, given the low birefringence of sepiolite (as in Figures

1.14(a)-(b). Sepiolite appears to form the matrix areas (Figures 1.11, 1.12, 1.13

1.14(d)), whereas the silica is localised: Figures 1.13(c)-(d) show morphology

suggestive of localised amorphous silica. Elemental mapping in Figure 1.14(c)

shows the laminar area to be Si-dominant, and poorer in Mg than comparative

mapping of sepiolite-rich areas like Figures 1.11(d) and 1.14(d).

Pedofeatures similar to the sepiolite/silica indicated in Figure 1.14(a) have been

recorded in Sardinia, Italy in >2.7 Ma buried paleosols (Usai and Dalrymple,

2003). They suggested that the “milky pedofeatures” as they termed them, were

made of different phases of silica such as inorganic opal-A, opal-C and opal-CT,

but mainly composed of opal-C. They noted that slight and local birefringence in

colourless white-milky pedofeatures has been previously described for opal-CT

by Drees et al. (1989). Although silica was the main constituent of the “milky

pedofeatures” (reaching 67% of the total weight), the remaining constituents were

≈ 25% Al2O3, 5% MgO, 2 to 4.6% Fe2O3 and 2% CaO, which they attributed

to chemisorbed impurities to silica (Drees et al., 1989) or analytical imprecision.

The tapering texture of some sepiolite fibres (seen in Figures 1.12(c), 1.13(a),

(c) and (d)) is similar to that observed by Khoury et al. (1982), Blank and

Fosberg (1991) and Akbulut and Kadir (2003). The wider ‘root’ of the tapering

structure suggests that that crystal growth is from the substrate into the void,

with a greater number of shorter fibres growing at the base and fewer fibres

reaching greater lengths growing into the void.

The micromorphology of the ‘sepiocrete’ shows that calcite is not the cementing

agent. Whether sepiolite or silica forms the primary cementing agent is not as

clear: while most of the intergrain area seems to be composed of pure sepiolite,

there are areas that seem to be composed of dense laminar silica. It remains

speculative which has had the greater influence: the pervasive sepiolite matrix

with its interlocking fibres, or the more localised silica with its ability to indurate

a sample to a very firm consistency.
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(a) Before etching. Scale bar 1 mm. (b) After etching

(c) Before etching area B. Scale bar 2 µm.

 Weight %
C 32
O 39
Na 1.3
Mg 8.4
Al 0.7
Si 13
Cl 1.6
K 0.3
Ca 3.7
Fe 0.4
Total 100
m Mg/Si 0.74

(d) EDX analysis of (c)

(e) After etching area B. Scale bar 5 µm.

 Weight %
C 34
O 37
Na 1.1
Mg 9.2
Al 0.9
Si 15
Cl 1.7
K 0.2
Ca 0.7
Fe 0.5
Total 100
m Mg/Si 0.72

(f) EDX analysis of (e)

Figure 1.12: SEM images: 1M HCl etching of ‘sepiocrete’ Kners/4. EDX anal-
ysis semi-quantitative. Mg/Si ratios are molar ratios. Continued in Figure 1.13.
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(a) After etching area B. Scale bar 2 µm. (b) Magnification of (a). Scale bar 1 µm.

(c) After etching area A. Scale bar 2 µm. (d) After etching area C. Scale bar 10 µm.

Figure 1.13: Continued from Figure 1.12 - SEM images: 1M HCl etching of
‘sepiocrete’ Kners/4.

1.3.4 Genesis

Dorbank (petroduric)

Dorbank (petroduric) genesis may be explained by the high pH of the upper

horizons (Table 1.3) which may increase the solubility and mobility of silica,

while the sodic environment may contribute to clay dispersion (Ellis, 1988; Ellis

and Lambrechts, 1994), and facilitate the hydrolytic exchange of Na+, with an

associated rise in pH when the soils are submerged in water (McBride, 1994,

p.91-95). Under the prevailing low rainfall conditions, the soluble silica would

not leach through the profile but rather accumulate in the subsoil. The loci of

silica deposition in duric soils depends on both the depth of water movement

and the amount of adsorption surface area (Chadwick et al., 1987), and it seems

likely that the abundance of illuviated clay in the pore spaces provided a large

adsorption area for silica, and is consistent with the thin section observations that

clay illuviation occurred before silica precipitation. The dorbank horizons have
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(a) Amorphous silica (arrowed); ?:
sepiolite/silica. Scale bar 0.1 mm, ppl.
Way-up is top of page.

(b) Same view as (a), xpl.

(c) Thin section, SEM image of laminar silica (Si). Scale bar 5
µm.

(d) Thin section, SEM image of laminar silica (Si), interstitial
sepiolite (white arrows) and calcite (white, prolate). Scale bar
20 µm.

Figure 1.14: Optical and SEM images of silica in ‘sepiocrete’ Kners/4.
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Table 1.3: Chemistry of selected horizons described in Table 1.1 (n/a: not anal-
ysed).

pH EC* pH EC* HCO3
- Cl- SO4

2- Ca2+ Mg2+ Na+ K+
Si Mg/Si SAR#

Silicic Duricrust: dorbank; Profile KV196T:
/A 0-0.2 m Orthic A  8.6 0.75 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/B 0.2->0.45 m Red apedal B 10.2 0.16 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/1 ±1-1.3 m Red apedal B 10.1 0.09 9.3 0.78 6.6 2.7 0.66 0.17 0.11 5.7 0.81 0.71 0.16 15
/2 1.3-1.45 m Dorbank 8.8 0.84 8.0 7.8 2.3 80 11 9.5 14 100 1.5 1.4 9.7 29
/3 1.45-1.6 m Dorbank 8.7 0.03 7.8 19 0.58 223 28 25 40 174 1.9 0.67 59 31
/4 1.6-1.8 m Calcareous dorbank 8.6 0.06 8.0 38 1.8 418 79 0.87 88 429 4.4 0.29 300 64
/5 1.8-2 m Hardpan/Soft carbonate 8.4 0.03 8.2 7.2 2.24 45 78 60 15 51 2.2 0.75 20 8
/6 2 - ? m Soft dorbank 8.5 0.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/7 ? - 3.5 m Soft dorbank 9.0 1.1 8.2 9.0 3.0 90 11 6.6 8.4 123 1.8 1.3 6.5 45
/8 ± 3.5-±4.5 m Dorbank 8.5 0.02 8.0 11 0.16 56 91 25 14 96 1.4 0.42 34 22
/9 ±4.5- ±6 m Dorbank 8.2 0.06 7.7 38 1.6 478 68 53 84 588 6.1 1.5 57 71
/10 ± 6- ± 10 m Marine deposit 7.6 0.07 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Sepiolitic Duricrust: 'sepiocrete'; Profile SK11:
/A 0-0.2 m Orthic A 9.1 0.14 8.5 1.4 7.3 8.2 1.9 5.8 2.9 16 0.94 0.55 5.3 8
/B 0.2-0.6 m Yellow-brown apedal B 9.2 0.06 8.6 0.60 4.6 2.6 0.39 2.2 1.2 6.3 0.68 0.35 3.4 5
/C 0.6-0.65 m Gleyed sand 9.1 0.08 8.2 0.72 3.7 4.4 0.50 1.6 1.0 8.8 1.0 0.39 2.7 8
/D 0.65-0.7 m Neocutanic 8.7 1.3 7.9 9.4 4.1 88 4.3 3.7 6.2 78 2.3 0.60 10 35
/E 0.7- m 'Sepiocrete' 8.4 0.03 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/1 0.01-0.45 m 'Sepiocrete' 8.7 0.04 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/6 0.45-0.9 m Blocky calc. sed. 9.1 0.02 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/3 0.9-1.1 m Hardpan carbonate 9.2 0.02 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/9 0.9-1.1 m Hardpan carbonate 8.8 3.6 8.0 19 0.23 290 29 21 30 177 2.7 1.3 24 35
/4 1.1-1.15 m Neocarbonate 8.9 0.04 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/4b 1.15-1.5 m Neocarbonate 8.7 2.5 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/5 0.8-1.5 m Termite nest 8.9 2.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

/7 1.5- >2.2 m Sedimentary 8.4 6.3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

*EC: mS/cm; cations, anions: mmolc/L; Si: mmol/L. # SAR: Sodium adsorption ratio Na/((Ca + Mg)/2) 0.5

1: 2.5 Saturated paste extract *

a low water permeability (Table 1.1). It also provides the slow silica-saturated

pore water flow rates (Summerfield, 1983b), which are needed for the shift toward

equilibrium and subsequent silica precipitation.

Although most of the clay in the dorbank profile KV196T is strongly oriented

and illuvial in origin, there appears to be a neoformed Mg-rich smectite in hori-

zon KV196T/3 (Figure 1.10(f)). Borchardt (1989) noted that saponites are

seldom found in soils, and appear to be inherited from the parent material.

The Namaqualand coastal plain, however, is a Mg-rich environment (Table 1.3).

Inglès et al. (1998) found diagenetic Mg-rich smectites in the Ebro Basin, an en-

vironment of high alkalinity, silica, magnesium and water stagnation favourable

to the formation of these minerals. Hay et al. (1986) found them in the Armagosa

desert, and noted that pre-existing sheet silicates such as montmorillonite can

form a template for the precipitation of Mg-smectite, or it may precipitate di-

rectly from solution. Jones and Galan (1988) noted that trioctahedral smectite

precipitation is favoured over sepiolite or palygorskite in an environment with

the highest pH (> 9.5), a high (Mg+Fe)/Si ratio (rather than high (Mg+Si)/Al),

and highest the alkali salinity.
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A broken sponge spicule is evident in horizon KV196T/3 (Figure 1.15). Sponge

spicules often occur in ponded or poorly drained environments (Drees et al.,

1989). Although the dryness and red colour of the dorbank profile KV196T

(Table 1.1) suggest a well aerated environment, Francis et al. (2007) showed how

textural discontinuities in typical Aridisols in Namaqualand can subtly modify

water infiltration and enhance water storage in the profile. The change from a

nodular to a massive structure around 2 m depth (Table 1.1) is accompanied by

an EC maximum (Table 1.3). This, together with the presence of the sponge

spicule, suggests a periodically water-saturated environment, the composition of

which (Table 1.3) is favourable to Mg smectite clay neoformation.

Figure 1.15: SEM: broken sponge spicule in dorbank (petroduric) fragments.

‘Sepiocrete’

Clay dispersion and migration are not as prominent as in the dorbank horizons,

perhaps due to their lower SAR (Table 1.3). The pH of sepiolite-bearing horizons

is consistent with Jones and Galan (1988), in that sepiolite formation is favoured

over palygorskite and trioctahedral smectite in the 8-9.5 pH range.

Rodas et al. (1994) defined ‘palycrete’ as generally having more than 65 % pa-

lygorskite. It may be that when an horizon is enriched to such a degree with

fibrous clay minerals they have the potential to cause a greater induration than

when they occur as an accessory mineral (in calcrete for example), particularly

where they display a morphology of intergrown mats and bundles of fibres (Fig-

ures 1.11(d), 1.13(b)). A possible mechanism for preferential sepiolite enrichment

could be decalcification (Vanden Heuvel, 1964), since sepiolite is closely associ-

ated with calcite in Namaqualand soils (M.L. Francis, unpub. data), as in New
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Mexico (Vanden Heuvel, 1964), and together with palygorskite is a common

mineral in the clay fraction of calcretes (for example Netterberg, 1969; Van-

den Heuvel, 1964; Singer and Norrish, 1974; Yaalon and Wieder, 1976; Elprince

et al., 1979; Hay and Wiggins, 1980; Watts, 1980; Singer and Galan, 1984; Singer,

1989; Blank and Fosberg, 1991; Monger and Daugherty, 1991; Verrecchia and Le

Coustumer, 1996; Singer, 2002; Neaman and Singer, 2004; Owliaie et al., 2006).

Netterberg (pers. comm., 2003) suggested that some ‘sepiocrete’ may have orig-

inated as decalcified calcrete. Evidence in support of this hypothesis are the

presence of calcic pendants and cappings from the Kners profile (Table 1.2),

indicating mobilisation of calcite; and in profile SK11 the calcic horizons occur

below the sepiolite-rich and ‘sepiocrete’ horizons (Table 1.1), which may sug-

gest preferential leaching of calcite to the lower part of the profile. Whether the

calcite was originally present as a calcic or a petrocalcic horizon is not resolved.

In the Kners profile it appears the amorphous silica is overlying the sepiolite

fibres (Figure 1.13(c)), which suggests that sepiolite precipitated first, followed

by silica. This is not so clear from Figure 1.14, where the silica seems to be

associated with mineral grains. The timing and precise mechanism of silica pre-

cipitation in the ‘sepiocrete’ is difficult to resolve: in the case of Kners, it may

have occurred during the phase that formed the dorbank cutans and overlying

dorbank, although there is little micromorphological evidence of illuviation into

the ‘sepiocrete’, and this cannot be ubiquitously applied to all ‘sepiocrete’ con-

taining profiles, since not all are overlain by dorbank.

Figures 1.13(c)-(d) do not clearly resolve whether sepiolite or silica precipitated

first, although Figure 1.13(c) could be interpreted as the amorphous silica over-

lying the sepiolite fibres. The association of sepiolite and silica has been noted

before: Blank and Fosberg (1991) observed sepiolite crystals radiating outward

from laminae of opaline silica in duripans in Idaho, and suggested that some

sepiolite forms via the addition of Mg to opal, and Hay and Wiggins (1980)

observed opal replacing sepiolite (and calcite) in calcrete of the southwestern

United States. A possibility may be a process similar to the pseudomorphic re-

placement of sepiolite by opal in deposits in the Madrid Basin, Spain (Bustillo

and Alonso-Zarza, 2007), which preserved the fibrous microstructure and stri-

ated birefringence of the sepiolite. Bustillo and Bustillo (2000) suggested that

silicification could occur as a function of the sepiolite precipitation, as initial

precipitation of sepiolite depleted the solution in Mg. However, Table 1.3 shows



37

that the Mg is present in excess of the amount of Si required to form sepiolite

(using an Mg/Si ratio of 0.67), and thus the Mg will not be depleted relative to

Si during sepiolite precipitation (Eugster and Jones, 1979).

Several examples of etched quartz grains are present in both ‘sepiocrete’ profiles

in SK11/1 and Kners/4 (not shown), which suggests the localised dissolution

and redistribution of silica within the profile. Boettinger and Southard (1991)

argued that weathered crystalline silicates from a granitic saprolite are the main

source of pedogenic silica for Aridisol pedons in the western Mojave Desert.

Reheis et al. (1992) suggested that the silica released by replacement of alumi-

nosilicates may be locally precipitated as amorphous or opaline silica and (or)

incorporated into newly formed palygorskite and sepiolite.

Amorphous silica can be precipitated either by evaporative concentration, as

the solution becomes increasing supersaturated, and/or it can be precipitated

by a pH change. The buffering effect of sepiolite at pH 8.6 (Mart́ınez-Ramı́rez

et al., 1996), as in the slaking tests, has not been quantified in soil. Since the

sepiolite-containing horizons are generally also calcareous, the pH of these soils

should be low enough to promote the precipitation of silica in solutions entering

these horizons. The rise in pH associated with the hydrolytic exchange of Na+ as

the soils are submerged in water (McBride, 1994, p.92) may be the source of the

dissolved silica. This could be compounded by the high water-holding capacity

of sepiolite, removing water and thereby creating conditions of silica saturation

on a local scale.

1.3.5 Classification

Dorbank (petroduric)

A silcrete was defined as having (an arbitrary) lower limit of 85 wt % SiO2 by

Summerfield (1983b), and was used by Nash and Shaw (1998) to assist in the

classification of calcrete-silcrete intergrades in the Kalahari, although they noted

the influence of detrital quartz and clay minerals on the value. By this definition,

the dorbank has too little SiO2 (Table 1.4)to be classified a ‘silcrete’; this is

consistent with the ‘silcrete’ and ‘dorbank’ morphological differences reviewed in

Section 1.1.1, although both are cemented by silica. Southern African ‘silcrete’
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does not meet the slaking requirements of dorbank, duripan (Soil Survey Staff,

1999) or petroduric (World Reference Base, 1998) horizons. Since the dorbank

horizons are clearly pedogenic (colour, texture, and parent material continuity

with surface horizons, Table 1.1), and also meet the requirements of duripan

and petroduric horizons (with the exception of the minimum thickness for the

cutan Kners/1), classifying them as one of these seems more appropriate than

as ‘silcrete’, despite the presence of the ‘silica-cement’ which corresponds to that

inherent in the term ‘sil-crete’.

Table 1.4: XRF analyses of selected duricrusts described in Table 1.1.

BULK *1 <2 µm *2 <2 µm *3 <2 µm *4 BULK *5 BULK *6 BULK *1

Al2O3 7.37 12.2 10.6 3.74 6.87 2.22 2.44 -

CaO 0.21 4.67 2.85 2.55 13.1 13.3 1.46 -

Fe2O3 3.73 5.31 5.49 2.27 1.92 1.00 1.61 -

K2O 1.33 2.20 2.32 2.02 2.32 0.71 0.62 -

MgO 0.04 4.73 4.45 21.9 9.8 14.0 6.35 24.89

MnO 0.04 0.07 0.05 0.01 -

Na2O 0.06 2.52 1.17 0.59 1.63 1.38 0.16 -

P2O5 0.08 0.15 0.11 0.07 0.11 0.19 0.10 -

SiO2 76.9 56.6 64.6 56.9 54.1 57.0 76.5 55.65

TiO2 0.47 0.46 0.59 0.16 0.42 0.24 0.18 -

H2O
- 2.02 2.40 -

LOI 9.20 11.8 8.61 10.7 4.06 4.37 11.1 19.46

Total 99.4 100.8 100.8 101.0 96.4 96.8 100.5 -
molar Mg/Si 0.57 0.27 0.37 0.12 0.67

'Sepiocrete'Dorbank Sepiolite 

'Ideal' *7

*1: Ebenhaeser, 31o35' 50''S, 18o16'45''E, road to Papendorp (Ellis, unpub. data). 2: KNERS/5, 
milled, Mg-saturated. 3: KV196T/2, crushed, Mg-saturated. 4: SK11/E, crushed, K-saturated. 5: 
SK11/1. 6: KNERS/4. 7: Stoessel (1988)

‘Sepiocrete’

As the morphology and micromorphology shows, the ‘sepiocretes’ are sepiolite-

cemented soil horizons (with or without accessory silica). Sepiolitic horizons do

not form a diagnostic horizon in the World Reference Base (1998), Soil Taxonomy

(Soil Survey Staff, 1999), or the South African system (Soil Classification Work-

ing Group, 1991). The ‘sepiocrete’ horizons do not meet the slaking requirements

of dorbank/duripan/petroduric horizons. They contain less SiO2 than typical

dorbank (Table 1.4), and too little to be classified a ‘silcrete’ after Summerfield

(1983b) and Nash and Shaw (1998). Both silica and sepiolite are present in
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the matrix, although the degree to which silica and sepiolite dominate seems to

vary even within the same horizon. It seems most probable that both contribute

to the structural properties of the horizon. Nash and Shaw (1998) outlined the

practical difficulties in classifying calcrete-silcrete intergrades in Botswana. They

concluded that while an assessment of the matrix chemistry was the ideal, for

practical purposes the end members of the calcrete-silcrete spectrum could be

defined by bulk chemical analysis (‘silcrete’ if more than 85 % SiO2 and ‘cal-

crete’ if more than 50% CaCO3), and if a duricrust falls between these values,

then to examine the micromorphology to identify any evidence of displacement

or replacement. They acknowledged, however, the difficulty in classifying mate-

rial where the material has had a complex evolutionary history, or been almost

completely replaced. Thus the terms ‘sil-sepiocrete’ (for a sepiocrete replaced

and now dominated by silica) or ‘sepio-silcrete’ could be employed in the sense

used by Nash and Shaw (1998).

While the ‘-crete’ terminology provides a useful expression of the cemented nature

of the horizon, to fit the existing soil classification schemes the terms ‘sepiolitic’

and ‘petrosepiolitic’ (in the same sense as ‘calcic’ and ‘petrocalcic’) would be

appropriate. The terms ‘sepiolitic’ and ‘petrosepiolitic’ have the advantage over

the ‘-crete’ terminology that they can be more easily be applied as adjectives to

other hardpans where sepiolite is significant but not necessarily cementing, such

as ‘sepiolitic petrocalcic’. This is particularly relevant since sepiolite is closely

associated with calcite in Namaqualand soils (M.L. Francis, unpub. data), and

is a common mineral in the clay fraction of calcretes (for example Netterberg,

1969; Hay and Wiggins, 1980; Watts, 1980).

The term ‘sepiolitic’ should be used for horizons which: (a) contain sepiolite in

amounts great enough for it to be detected by XRD in the bulk soil; (b) have

peds (a fractured surface and not just the cutan) that cling strongly to the wetted

tongue; and (c) cause methyl orange to turn from orange to purple-pink over

most of a fragmented surface. If the horizon is in addition to the above criteria

cemented to such a degree that it will slake neither in acid (so cannot be classified

as petrocalcic) nor in alkali (and so cannot be classified as petroduric) then the

term ‘petrosepiolitic’ would be appropriate. The ‘sepiolitic’ criteria distinguish

the ‘petrosepiolitic’ horizon from a ‘silcrete’ (of Summerfield, 1983a; Partridge

and Maud, 1987), a silica-cemented horizon which does not fit the definition of

petroduric.
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Sepiolite has an influence on the soil properties, and it is suggested that the term

‘sepiolitic’ be used where the sepiolite content is greater than an accessory phase

in the clay fraction. Sepiolite is abundant in coastal Namaqualand soils (Francis

et al., 2004) and palygorskite is also present (Singer et al., 1995). Neaman and

Singer (2004) outlined the effects of palygorskite, including ‘palycrete’, on soil

properties. Sepiolite has a high water holding capacity (Jones and Galan, 1988).

When added to lime mortars, this causes a decrease in the rate of the carbonation

process by provoking a decrease in the free water content in the porous system

of the mortar, which impedes CO2 dissolution, a rate-controlling step of the

carbonation process (Mart́ınez-Ramı́rez et al., 1995). Further work is needed to

establish this effect on soils, it may be similar to the effect of evapotranspiration

on calcite precipitation: Netterberg (1969) suggested the decrease in pore water

pressure as a result of increased suction pressure will bring about CO2 loss and

favour calcite precipitation. Francis et al. (2007) speculated on the effect this

water-holding capacity would have on plants growing in sepiolite-rich soils, and

thus its effect on the ecosystem of arid regions. It has a high plasticity (Bain,

1971), which would affect the geotechnical usefulness of the soil.

1.4 Summary and conclusions

1.4.1 Dorbank (petroduric)

The low water permeability (indicated by the amount of time taken for a water

drop to penetrate during field tests) of dorbank provides the slow silica-saturated

pore water flow rates needed for the shift toward equilibrium and subsequent sil-

ica precipitation, and allows the deposition of strongly oriented clay. Illuviation

of clay in the dorbank has been a dominant soil forming process: there is a strong

orientation of clay parallel to the grains, crescent coatings on the lower part of

voids, and in some cases voids are blocked by clay-coated grains. Amorphous

material was observed coating some clay grains. There also appears to be a neo-

formed Mg-rich smectite in horizon KV196T/3. Although the dry state and red

colour of the dorbank profile suggests it is well-drained, a change to a massive

structure at this depth is accompanied by an EC maximum. Together with the

presence of a sponge spicule, this suggests a periodically water-saturated environ-

ment, the composition of which is favourable to Mg smectite clay neoformation.
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The high pH of the upper horizons could have increased the solubility and mo-

bility of silica, and the sodic environment have contributed to clay dispersion

and rise in pH due to the hydrolytic exchange of Na+. Under the low rainfall

conditions, the soluble silica will not leach through the profile but accumulate

in the subsoil. The abundance of illuviated clay in the pore spaces may have

provided a large adsorption area for silica, since the silica is generally (although

not exclusively) concentrated on the void side of the clay coatings.

1.4.2 ‘Sepiocrete’

The micromorphology of typical ‘sepiocrete’ is distinctly different from dorbank

horizons, the most obvious being the granular microstructure, the micrite-rich

matrix, and the lack of crescent clay coatings. It is sometimes difficult to distin-

guish sepiolite from silica with certainty under the optical microscope, given the

low birefringence of sepiolite. Sepiolite appears to form the matrix areas, whereas

the silica is localised. The interlocking, subparallel morphology of sepiolite over

much of the sample may contribute to the induration.

In contrast to the dorbank samples which slaked in NaOH even if calcareous,

neither HCl nor NaOH treatments resulted in slaking of the ‘sepiocrete’ samples.

Partial slaking was observed when alkali/acid treatments were alternated. This

may suggest that the cement in ‘sepiocrete’ is not solely amorphous silica, or

that the presence of sepiolite could have cause a reduction in pH sufficient to

reduce the solubility of silica. A weathering profile silcrete also did not slake

in concentrated NaOH under the same experimental conditions, which suggests

that in addition to sepiolite content, the degree of silica polymerisation and/or

impregnation and/or total amount of secondary silica also plays a role in dictating

whether slaking of a particular sample will occur. The ‘sepiocrete’ horizons

therefore do not meet the slaking requirements of dorbank/duripan/petroduric

horizons. They contain less SiO2 than typical dorbank, and too little to be

classified a ‘silcrete’. Both silica and sepiolite are present in the matrix, although

the degree to which silica and sepiolite dominate seems to vary even within same

horizon. It seems most probable that both sepiolite and silica contribute to the

structural properties of the horizon.
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The amorphous silica appears in some places to be overlying the sepiolite fibres

which suggests that sepiolite precipitated first. In other areas the silica seems

to be associated with mineral grains. The timing and precise mechanism of sil-

ica precipitation in the ‘sepiocrete’ is difficult to resolve. It seems unlikely that

silica precipitation was caused by the initial precipitation of sepiolite depleting

the solution in Mg, since Mg is present in excess of the amount of silica required

to form sepiolite (using an Mg/Si ratio of 0.67), and thus will not be depleted

first during sepiolite precipitation. Etched quartz grains in both ‘sepiocrete’ pro-

files suggests the local dissolution and redistribution of silica within the profile,

perhaps prompted by a (local) rise in pH due to the hydrolytic exchange of Na+.

Clay dispersion and migration are not as prominent as in the dorbank horizons,

possibly a function of their differing profile chemistry. The pH of sepiolite-bearing

horizons is consistent with that for sepiolite formation. The calcic pendants and

cappings in the ‘sepiocrete’ from the Kners profile indicate the mobilisation of

calcite, and suggest the profile has a complex evolutionary history. It could be

that the ‘sepiocrete’ resulted from the (partial) silicification of what was origi-

nally a sepiolite-rich calcic/petrocalcic horizon. In profile SK11 the calcic hori-

zons occur below the sepiolite-rich and ‘sepiocrete’ horizons, suggesting leaching

of calcite to the lower part of the profile, but the horizon no longer fits into a “cal-

crete” category, and can neither be classified as a dorbank/duripan/petroduric,

nor a silcrete horizon.

Given the physical properties of sepiolite, and its effect on physical properties

of a soil, its presence should be recorded during soil classification. The term

‘sepiolitic’ should be used for horizons which: contain sepiolite in amounts great

enough for it to be detected by XRD in the bulk soil, peds (a fractured surface and

not just the cutan) cling strongly to the wetted tongue, and methyl orange turns

from orange to purple-pink over most of a fragmented surface. If the horizon

is in addition to the above criteria cemented to such a degree that it will slake

neither in acid (so cannot be classified as petrocalcic) nor in alkali (and so cannot

be classified as petroduric) then the term ‘petrosepiolitic’ would be appropriate.

The ‘sepiolitic’ criteria distinguish the ‘petrosepiolitic’ horizon from a ‘silcrete’,

a silica-cemented horizon which does not fit slaking requirements of a petroduric

horizon.
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Chapter 2

Soil formation in sediments of

the Namaqualand coastal plain

2.1 Introduction

There has been a surge of interest in arid regions, particularly their biodiversity

and ecology. Namaqualand itself has been the focus of much research recently,

ranging from publications such as Cowling and Pierce (1999) to a Special Issue

of the Journal of Arid Environments. Although there is eighty or so years of

sedimentological and paleontological research that has been conducted in the di-

amond mining areas along the west coast of southern Africa (Pickford and Senut

(2000) and Pether et al. (2000), for example), there is very little information

available on the soils. This is becoming increasingly relevant since mining activi-

ties in Namaqualand result in large ‘overburden dumps’, formed by the inversion

and mixing of the usual regolith profile (commonly tens of metres deep). Soil

forming processes have begun anew on the surfaces of these dumps, as previ-

ously deep and inaccessible layers of the regolith are now becoming important

for land use. This has prompted further studies (including Schmidt, 2002; Ma-

hood, 2003; Blood, 2006; Ndeinoma, 2006), in particular the work of Prinsloo

(2005). More details on the effects of the mining processes on the soils and veg-

etation, and the challenges of the rehabilitation processes are given by Carrick

and Krüger (2007).



44

Information on coastal Namaqualand soils is mostly limited to Land Type Surveys

(Land Type Survey Staff, 1987) and unpublished studies done for mining com-

panies, focused on the saline-sodic nature of the soils and the associated re-

habilitation difficulties, irrigation reports, and part of a study of Karoo soils by

Ellis (1988). An exception is a study by Singer et al. (1995) that detected the

fibrous clay minerals sepiolite and palygorskite in the clay fraction. Recently,

Francis et al. (2007) summarised the available information and key characteris-

tics of Namaqualand soils, and Chapter 1 described silica- and sepiolite-cemented

horizons in Namaqualand.

The aim of this Chapter is to describe and characterise the general soil form-

ing features within a regolith similar to that described by Pether (1994), from

the northern part of the Namaqualand coastal plain (Alexander Bay Formation

(SACS, 1980)). The mining excavations tens of metres deep down to bedrock

have provided an opportunity to examine soil formation in a regolith that has

been subaerially exposed in some parts for much of the Neogene.

Conventionally soil pits are dug and described in South Africa to a depth of

about 1.5m, below which the importance of a soil for most agricultural purposes

diminishes sharply (Soil Classification Working Group, 1991). However, Fey

et al. (2002) suggested that the characterisation of the entire regolith before

disturbance, assists in understanding the new pedogenic processes forming on

the surfaces of mining dumps. Stone and Comerford (1994) reviewed biological

activity far below the 1.5m soil depth; and Moody and Graham (1994), in deep

sands on a marine terrace in California, argued that there is a zone of active

pedogenesis in the basal unit of the regolith just above the bedrock, expressed

by illuviation and precipitation of clays, iron oxides and silica. Excavations of the

regolith to bedrock during mining on the Namaqualand coastal plain provided

many excellent exposures of these processes, both near-surface and deeper in the

regolith. Studying the deeper layers of the regolith have helped to distinguish

paleosols (Nettleton et al., 2000), which have served as the ‘record keepers’ of

the changing conditions at the soil surface.
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2.2 Site description

Sampling was done in two of the mining areas belonging to De Beers Consolidated

Mines Ltd - Namaqualand Mines. These are the Buffels Marine Complex (BMC)

in the Kleinzee-Port Nolloth area, and the Koingnaas Complex (KNC) further

south in the Koingnaas-Hondeklip Bay area (Figure 2.1).

Figure 2.1: Location of field area (grey). BMC: Buffels Marine Complex; KNC:
Koingnaas Complex. The escarpment forms the eastern edge of the coastal plain.
Modified from Ellis (1988).

2.2.1 Climate

The key influences of climate in soil formation are moisture and temperature.

Temperature affects the rate of chemical reactions in the decomposition and

synthesis of minerals and in biological processes (White, 1979).
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Temperature

In Namaqualand, the prevailing winds are very strong southerly (occasionally

gale force), with occasional berg (east) wind conditions, especially during win-

ter. Temperatures increase markedly during berg wind conditions, which may

persist for longer than a week. As a result, the average maximum temperature

from February to October (late summer to spring) is over 30o C, with April and

October experiencing temperatures of 38o C. In contrast, the average maximum

temperature from November to January is 25o C (late spring to summer). Mini-

mum temperatures from March to October are around 6o C, with July dropping

to 3o C. From November to April the minimum is around 10o C (D.B.C.M., 2000,

data collected at Kleinzee, July 1995 to March 1997).

Moisture

White (1979) noted that the effectiveness of moisture in soil forming processes is

dependent on i) rainfall (the intensity, duration and seasonal distribution), ii) the

evaporation rate from the surface and from within the soil, iii) the topography

of the land surface, and iv) the soil and rock mass permeability.

Rainfall

The Namaqualand coastal plain receives less than 150 mm winter rainfall an-

nually, with the figure increasing southwards. Crucially for both plant growth

and water movement through the soil, the climate is characterised by highly

reliable rainfall when compared to other arid regions with similar mean annual

precipitation (Desmet, 2007). It typically arrives as widespread, gentle show-

ers (average rainfall event 6 mm, P. Carrick unpublished data, cited by Desmet

(2007)). Drought conditions are rare, and rainfall is higher than average about

once every 10 years, causing ephemeral rivers to flow. Flood events occurred

in the Buffels River, for example, in 1945, 1961, 1962, 1963, 1976, 1980, 1986,

1996 and 1997 (D.B.C.M., 2000). Coastal fog adds significantly to the total

precipitation. It can be observed to extend inland to the rise of the escarp-

ment, occurs frequently along the coastal plain at elevations below the 200 m

contour line (Olivier, 2002). Data from the Pilot Fog Study at Kleinzee for the
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period July to October 1995 showed that the highest precipitation due to fog

occurred during August. The total fog recorded during this period was 1001 mm

(D.B.C.M., 2000). Tinely (1985; in D.B.C.M., 2000) estimated that the plants

may trap up to 300 mm of fog per annum.

Paleoclimates of the northern Namaqualand region are not that well constrained,

but the consensus for the greater area seems to be that is was wetter during the

Last Glacial (Van Zinderen Bakker, 1976; Tankard and Rogers, 1978; Parkington

et al., 2000).

Evaporation

That evapotranspiration greatly exceeds precipitation in Namaqualand is re-

flected by a vegetation cover (Sandveld bioregion (Desmet, 2007)) of approxi-

mately 60%, as well as the presence of saline pans and ephemeral rivers, and

areas with salt efflorescence and crusts at the soil surface. The evaporation rate

is of the order of 2 m per year. The evaporation rate is higher than expected for

a coastal area due to the wind regime, but is reduced by the regular occurrence

of coastal fog (D.B.C.M., 2000).

Topography

The coastal plain is a flat to very gently undulating pediplain truncated by

the Great Escarpment (approximately 1500 m a.m.s.l.). There is a small escarp-

ment on the eastern edge of the mining area, with a maximum altitude of 213

m a.m.s.l.There are two rivers in the BMC: the Buffels River with subsurface

flow (Heinecken, 1981) which forms the southern border of the BMC; and the

ephemeral Kwakanaab River, which ends in the Dreyer’s Pan area. Dreyer’s

Pan is one of the large saline pans in the BMC, others are Bloupan, Karaspan,

and Soutpan. The ephemeral Swartlintjies River runs through the KNC. The

locations of these features are shown in Figure 2.2.

Microrelief

‘Heuweltjies’ (hillocks) occur throughout Namaqualand and along the western
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(a) Buffels Marine Complex (b) Koingnaas Complex

Figure 2.2: Figure 2.1 magnified to show location of sample sites (circles) within
Buffels Marine Complex (BMC) and Koingnaas Complex (KNC) at De Beers
Namaqualand Mines. Farm boundaries and position of rivers and pans indicated.

and southern Cape coasts (Picker et al., 2007). They are distinguishable in

the field and on aerial photographs as circular features (diameter usually 10 -

20 m) showing a different vegetation pattern and a slightly raised (1 - 2.5 m)

surface, and they cover most of the field area. They are thought to be termi-

taria of the harvester termite Microhodotermes viator (Moore and Picker, 1991),

with debated contribution from mole rats (Lovegrove and Siegfried, 1986; Cox

et al., 1987; Lovegrove and Siegfried, 1989; Laurie, 2002; Midgley and Hoff-

man, 1991) and/or another species of grassland termite in older (30 000 years

B.P.) heuweltjies (Midgley et al., 2002) such as Hodotermes mossambicus (Moore

and Picker, 1991).

Soils within the heuweltjie generally tend to be more alkaline (sodic and calcare-

ous) and enriched with silica (including silica- and calcite-cemented lenses) than

intervening soil (Ellis, 2002). This suggests they are drier than the intermound

area and is consistent with their raised topography (Francis et al., 2007).
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Soil Permeability

Hydrophobicity and crusting at the surface of Namaqualand soils is common.

These phenomena affect the soil water balance by enhancing preferential flow

(Francis et al., 2007). Soil permeability is also affected by the presence of tex-

tural barriers and cemented horizons at depth, strongly influencing subsurface

water storage and its provision to plants (Francis et al., 2007).

2.2.2 Regolith

The regolith pertaining to this study comprises successive late Tertiary marine

packages, each deposited during sea-level regression (Pether, 1994). Some rest on

kaolinized paleochannel sediments, described in detail by Pether (1994), who con-

cluded that they were laid down as a quartzo-feldspathic sediment in a fluvial

environment, and subsequently deeply weathered, with extensive alteration of

feldspar to kaolinite. These sediments are described in greater detail by Tankard

(1966), Tankard (1975), Pether (1994), and Pether et al. (2000). De Villiers and

Cadman (2001) favoured an early Tertiary age for the kaolinized paleochannel

north of the Swartlintjies River, although it may also contain reworked Creta-

ceous material (Pether et al., 2000; De Villiers and Cadman, 2001).

The marine packages are arranged en echelon down the bedrock gradient, from

oldest and highest inland to youngest and lowest at the coast. Each package

is named after the elevation of its transgressive maximum as represented in the

Hondeklip Bay area (Pether, 1994; Pether et al., 2000). The 90 m package is

ca. 18 - 16 Ma, the 50 m package early Pliocene, and the 30 m package not well

constrained, but ca. 3.3 Ma or younger (Pether et al., 2000). The 30 m package

is transgressed by younger littoral deposits up to about 10 m a.m.s.l. (Pether

et al., 2000). The sand fraction is dominated by quartz and feldspar, lesser glau-

conite and phosphatic shell fragments, and variable amounts of heavy minerals

(garnet, magnetite, ilmenite, biotite, sphene, amphibole, epidote, kyanite (rare)

and zircon (rare)) (Pether, 1994). The marine packages are capped by recent

aeolian deposits. Coastal dunefields originate at the mouth of the rivers and

extend inland in a northerly direction. In places, older soil profiles are overlain

by aeolian sands. Soil formation has taken place in aeolian, ‘sheetwash’, and

marine-deposited sediments.
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2.2.3 Bedrock geology and morphology

The bedrock geology in the vicinity of Kleinzee (Buffels Marine Complex, Figure

2.1) consists of Stinkfontein Formation (Gariep Belt) metasediments, mainly

quartzite, phyllite, schist, arkose and minor intercalated volcanics. Amphibolite

bands, quartz veins and small pegmatite intrusions are fairly common (Hartnady

and Von Veh, 1990; Rogers et al., 1990). Bedrock morphology is characterised by

a number of emergent wave-cut terraces (Rogers et al., 1990), on top of which are

the marine sediments. The oldest cliff-line is at 95 m a.m.s.l., cut into silcrete-

capped, deeply kaolinised bedrock ‘pallid zone’ (Partridge and Maud, 1987).

The Koingnaas Complex (KNC) near Hondeklip Bay (Figure 2.1) consists of

Namaqua Basement gneiss and granite-gneiss. The absence of linear terraces in

the KNC is attributed to the complex bedrock morphology of the Basement gneiss

(Rogers et al., 1990). Palaeochannels have incised the local bedrock, and are filled

with kaolinized fluvial sediment (Pether, 1994). Silcrete and the ‘pallid zone’

sediments also occur in the Hondeklip-Koingnaas region. Pether (1994) found

the silcretes near Hondeklip Bay to be petrographically and geochemically similar

to the high-TiO2 weathering profile silcretes of Summerfield (1983c), which have

been interpreted as markers of the ‘African Surface’ by Partridge and Maud

(1987; 2000).

2.3 Methods

Fieldwork took place in February 2002. Fifteen profiles to bedrock were exam-

ined and sampled from south of Hondeklip Bay to north of Kleinzee (details of

the dorbank (petroduric) profile KV196T are presented in Chapter 1). The sam-

ple sites are shown in Figure 2.2. Samples were named according to the mining

excavation to which they were closest, the prefix being the farm name. Sam-

ple sites were selected to be representative of each terrace and marine package.

These are the 50 m and 30 m packages in the Koingnaas area, and the 30 m, 50

m, 65 m and 90 m terraces in the Kleinzee area. Samples (approximately 2 kg) of

each horizon were taken from the sidewalls of the mining excavations to bedrock,

and from soil pits dug in the undisturbed areas nearby. The soil morphology was

described in the field. A 10% solution of HCl was used to test for carbonate, and
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30% H2O2 for manganese. Colour was described using a Munsell colour chart

(Munsell Color Company, 1975). Root content was estimated visually. Horizons

falling within 1.5 m of the surface were treated as diagnostic horizons for classifi-

cation purposes. Those occurring deeper in the profile were described, but treated

as non-diagnostic and no consideration given to their position in the profile for

classification purposes. Eluvial, bleached horizons occurring in non-diagnostic

positions were referred to as ‘gleyed sand’, cemented carbonate horizons were

referred to as ‘hardpan carbonate’ when in the diagnostic position, otherwise as

‘calcrete’. Terrain units were described according to the definition in Soil Clas-

sification Working Group (1991). Most of the profiles fall into the ‘footslope’ or

‘valley bottom’ units, which in this landscape is the coastal pediplain. Horizons

were assigned to either aeolian, upper shoreface or lower shoreface facies parent

material. Near-surface aeolian facies were further subdivided where there was

a prominent lithological discontinuity. Fluvial material may have been present,

but field evidence was not definitive.

Munsell colours were manipulated to arrive at a single value that expressed the

redness of each sample for easy comparison. A redness rating (Rr) was selected

from Alexander (1985) and Arduino (1985):

Rr = (K −H)CV −1 (2.1)

with K set to 25 (Arduino, 1985), C the Munsell chroma, and V the Munsell

value. H is the hue index (Munsell Color Company, 1975) obtained by adding 0

to the number preceding R, 10 to that preceding YR and 20 to that preceding

Y in the Munsell colour notation. With K set to 25, all samples redder than 5Y

have a redness rating greater than zero.

All samples (i.e. each horizon in every profile) were air-dried, crushed, passed

through a 2 mm sieve and weighed. The >2 mm cement was sorted from the >2

mm pebbles and recrushed, to minimise shattering of pebbles/gravel. The <2

mm fraction was used for chemical analyses. The pH (in water) and electrical

conductivity (EC) were measured in a 20 g to 50 mL soil-water mixture. Thirty

percent H2O2 was used to oxidise selected marine sands (6 samples), to check

whether alternating colour layers within the unit were a result of oxidation. The

uppermost horizon of eleven profiles was selected for organic carbon and nitrogen

analysis, milled to a fine powder and analysed in a Eurovector Elemental Anal-
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yser. Slaking tests were devised to distinguish silica- from carbonate-cemented

hardpan horizons. These tests were based on the WRB (1998) definition of petro-

duric, petrocalcic and fragic horizons. Each sample was submerged in water, 5M

HCl or 6M NaOH and gently heated on a waterbath for four days. Samples

which did not slake were then subjected to alternating 5M HCl and 6M NaOH

treatments until slaking occurred.

2.4 Results and discussion

Depositional processes on the Namaqualand coastal plain have resulted in the

sediment being arranged in horizontal strata.

“The most fundamental and, possibly, the only real difference be-

tween soil and other unconsolidated geological material is that, in

the case of soils, the materials have been organized by natural, non-

depositional processes into horizons.” (van der Eyk et al., 1969, p43)

In some cases the sedimentary features have been completely obscured by pe-

dogenesis, and it was difficult to determine in the field whether the horizontal

layers were depositional or pedogenic in origin.

The regolith characteristics are discussed below from the surface to bedrock. A

generalized regolith profile is shown in Figure 2.3. This is for a calcareous

soil profile. All the horizon sequence permutations and their descriptions are

in Table 2.1. The location, composition, cement, and genesis of profiles SK11

(petrosepiolitic) and KV196T (petroduric, dorbank) in the BMC (Figure 2.2)

are discussed in Chapter 1. Profile photographs are presented in Appendix A.

Unpublished reports on rehabilitation difficulties at De Beers Namaqualand Mines

have noted the highly saline-sodic nature of the base of the soil profiles, com-

pared to the upper horizons and suggested this was caused by the gradual leach-

ing of salts through the regolith over time (Roux and Odendaal, 1992; Scott and

Johnston, 1994; Scott et al., 1995). This was mostly based on a studies of the

disturbed “overburden dumps” which form a regolith pile that is inverted from

its usual horizon sequence (i.e. deepest layers on top). Table 2.1 shows this to

be generally true (AK1, AK61H), but also that the individual horizon charac-
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Figure 2.3: Sketch of generalized regolith profile

teristics are more important than absolute depth in determining the EC. The

dorbank, calcrete and clay-rich horizons show elevated EC values relative to the

horizons above and below. This gives an EC rise, usually around the middle

of the profile, where these horizons occur in the profile (KV220PRN, LCK1-5,

SN30, SNT60, TP231L. TP266Q).

2.4.1 A horizons

Where the regic sands are less than 500 mm thick and lie over a classifiable

buried soil, this soil has been classified. Where the regic sand is more than 0.5 m

deep, it has been classified as the Namib soil form (Soil Classification Working

Group, 1991).

Soil profiles commonly have a crust on the surface, up to 3 mm thick. The crust

appears to consist of an algal mat and deflocculated clay particles cementing

the upper part of the A horizon. These were described by Francis et al. (2007).

A horizons are darkened by organic matter, which also imparts a strongly hy-

drophobic character to the horizon, some taking in excess of 20 seconds for a

drop of water to penetrate (Table 2.1). Orthic A horizons are present at the

surface where there are no regic sands, and are redder and darker than the regic

sands, and are generally 0.2 to 0.3 m thick. Some show evidence of a bleaching

in the A horizon (DL88, Table 2.1), a feature noted to occur commonly in South

African arid soils (Ellis, 1988).
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Regic sands are young aeolian dunes, which may be vegetated. In the profiles

studied they range in thickness from 0.3 to 3.2 m. They are generally medium

sand, single-grain apedal, loose, non-plastic and non-sticky. Most are calcareous.

pH in water ranges from 8.7 to 9.8 and EC (in the same 1: 2.5 suspension) is

0.02 to 0.29 mS cm−1 (Table 2.1). Average organic carbon in the surface of regic

sands is 0.98 %, and is 1.05 % in orthic A horizons. Average nitrogen is 0.03 %

(regic sands), and 0.05 % (orthic A). Humification at the surface of these regic

sands is the only visible sign of pedogenesis.

In some cases there is a lithological discontinuity at the base of the regic sand,

manifest either as a heavy-mineral enriched layer (such as profile 6869, Table 2.1)

or stoneline (such as SNT60, Table 2.1), interpreted to represent a buried aeolian

deflation surface. Aeolian deflation processes in the modern interdune surface

areas (profile OBT) are evident from heavy-mineral enriched surface sands and

gravel-lag deposits with the same particle-size as the buried stonelines.

When compared to profiles with no regic sands, it becomes apparent that the

A horizon that developed with the neocutanic or neocarbonate B horizon on

which the regic sands lie has been eroded: in areas with no regic sands there

is colour continuity between the orthic A horizon and its associated B horizon

(profiles AK61H, SK11, SL4-1, SPNT, OBT, TP231L, Table 2.1), whereas there

is a marked colour discontinuity between the regic sand and the underlying B

horizon (profiles LKC1-5, SN30, SNT60, TP266Q), and in the case of SNT60,

also a lithological discontinuity.

Southerly winds prevail along the coastal plain, and are responsible for the forma-

tion of coastal dunefields (Harmse and Swanevelder, 1987). The calcareous dunes

supply high pH calcareous material to the surface of the soil profile. Continuing

burial by young aeolian dunes is evident from regic sands with buried horizons

rich in organic matter (KV220PRN/3, and a buried hearth and hand axes and

associated rock fragments (Figure 2.4). The age of these dunes is unclear, they

form part of a dune corridor north of the Buffels River mouth, and may be anal-

ogous to the one north of the Swartlintjies river (Tankard and Rogers, 1978).
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Figure 2.4: Archaeological site. Hearth and hand axe (arrowed) buried by regic
sands, approximately 1.5m deep. Near AK61H.

2.4.2 B horizons

The most common are neocarbonate B horizons (generally 0.1 to 1.3 m thick),

underlain in most cases by hardpan carbonate (Prieska soil form) and less com-

monly by calcareous dorbank (Trawal soil form). In many cases, there is a

stoneline (up to cobble-size) between the hardpan carbonate and the overlying

neocarbonate horizon (such as 6869/iv, KV220PRN/9, TP266Q in Table 2.1).

The neocarbonate horizons generally have a weak, medium, angular blocky struc-

ture; are loose, non- to very slightly plastic and non- to very slightly sticky; and

have a medium sand texture. The pH in water is 8.7 to 9.9, and EC (in the same

1 to 2.5 suspension) is 0.04 to 3.5 mS cm−1 (Table 2.1).

Neocutanic and yellow-brown apedal B horizons (0.05 to 0.4 m) are also present,

in one case over hardpan carbonate (Ashkam soil form, profile 6869), but more

commonly over an eluvial horizon, underlain in turn by another neocutanic hori-

zon with more silt and clay (SK11, SL4-1, Table 2.1). The pH is lower than
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the neocarbonate horizons, (7.9 - 9.2) and EC is 0.1 to 2.2 mS cm−1 (Table

2.1). These horizons have a slightly stronger structure than the neocarbonate

horizons, and are more sticky and plastic generally. They are loose to friable.

Profile KV196T (furthest inland, Figure 2.2), has a 0.3 m thick red apedal B

horizon over a 3 m dorbank horizon (Garies Form). The red apedal B horizon

is loose, weak coarse angular blocky, non-plastic and non-sticky, and has a pH

in water (1: 2.5 suspension) of 10.1. The EC (of the same suspension) is 0.1 mS

cm−1. This profile was discussed in more detail in Chapter 1.

Yaalon (1981) suggested that parent materials of different original carbonate

content may be responsible for the final development of either red sands or ae-

olianites on the KwaZulu-Natal coast. Highly calcareous littoral sands (calcium

carbonate content higher than 30 %) become cemented to form the aeolianites,

whereas sands containing less than about 25 % CaCO3 are fixed by vegetation,

with soil-forming processes producing clayey red sands. Deposits with a CaCO3

content close to the threshold values separating the two diagenetic pathways can

exhibit both decalcification at the surface and preservation of the CaCO3 below

it (Yaalon, 1981). Pether (1994) noted that the soluble carbonate content of the

coastal plain calcretes (acid digestion) is only 3%. The data of Singer et al. (1995)

for the same area showed a maximum of 20% CaCO3 in a calcrete horizon, and

most of the A and B horizons had less than 5%. Some profiles like LKC1-5 (Table

2.1) had non-calcareous regic sands. This suggests the relatively low CaCO3 in

the aeolian sands dictates the pedogenic pathway in these deposits, and reddened

neocarbonate and neocutanic horizons develop as the aeolian deposits age.

Rubification was used as an index of soil development by Harden (1982) and

Bockheim et al. (1992). In the Sonoran desert of Baja California, a progressive

development of red pigment in Pliocene to Recent sediments has occurred by in

situ alteration of iron bearing minerals through an intermediate stage of brown

ferric oxide, in areas with a low water table, alkaline groundwater and interstitial

oxidising conditions (Walker, 1967; Walker and Honea, 1969; Van Houten, 1973).

Soils sampled in this study occur in well drained, oxidised environments. When

sorted by their hue, samples fall into the field where goethite is predominant

(7.5YR to 2.5YR). The red apedal samples fall into the hematite field (10R to

5YR) (Schwertmann and Taylor, 1989; Schwertmann, 1993).
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Age

Sediment supply to the aeolian sand sheet is delivered to the coastline via rivers,

washed onto the beaches north of the river mouths, and then blown inland by the

predominantly southerly winds (Harmse and Swanevelder, 1987). Dunefields are

common on the north side of river mouths on the West Coast, and can be dis-

tinguished easily on Google Earth satellite images. Three profiles (6869, SNT60

and SN30) were investigated in the ‘parabolic dunefield’ north of the Swartlintjies

River mouth, and one profile (SL4-1) in the older material over which it accreted

(Figure 2.5). This ‘parabolic dunefield’ was delineated by Tankard and Rogers

(1978, p. 328-330), who proposed that it accreted following movement of the

Swartlintjies River mouth sediment source 5 km to the west and 110 m lower

Figure 2.5: Interpretation of dune plume north of Swartlintjies River, from Tankard and Rogers
(1978). ‘Vegetated parabolic dune plume’ (grey; SN30, SNT60, 6869) accreted following the
movement of the Swartlintjies River mouth sediment-source during Last Glacial (arrowed). It
accreted over older ‘degraded parabolic dunes’ (dots; SL4-1). Modern unvegetated barchanoid
dunes discontinuously override the plume (clear). Position of profiles SN30, SNT60, 6869 and
SL4-1 was determined using their grid co-ordinates on the equivalently-scaled orthophoto sheets
3017AD1, AB21, AA25, AB16, AA20 (1st Edition, 1990).
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than present, during the Last Glacial sea-level lowering. Tankard and Rogers

(1978) interpreted this ‘parabolic dunefield’ to have formed as barchan dunes

which were deposited during the Last Glacial and subsequently vegetated. Mod-

ern unvegetated barchanoid dunes override the plume.

Following this interpretation, horizons 6869/i,ii; SNT60/1; and SN30/A which

are classified as ‘regic sands’ in Table 2.1 (where the only sign of pedogenesis

in the profile is darkening of the upper horizon by organic material), are more

specifically the vegetated parabolic dunes that were deposited during the Last

Glacial Maximum. Profile SL4-1, occurs within the zone of the older ‘degraded

parabolic dunes’ of Tankard and Rogers (1978). Its redder colour and more

clay-rich nature compared to the pale regic sands lend support to its greater age.

The colour and lithological discontinuities between the Last Glacial Maximum

regic sands and their underlying redder, more clay-rich B horizons horizons

(6869/4, SN30/B, SNT60/2, Table 2.1) suggest that their accretion took place

after significant pedogenesis had already occurred. The resemblance of these

underlying horizons to the B horizons of profile SL4-1 (i.e. the older ‘degraded

parabolic dunes’ of Tankard and Rogers (1978)) suggests a pre-Last Glacial Max-

imum age. This is consistent with the δ14C ages of 25 000 to 30 000 years B.P. for

calcrete associated with heuweltjies (although further south) in the Clanwilliam

and Elands Bay areas (Midgley et al., 2002).

An attempt was made to extend this to the rest of the profiles: the degree of

reddening and clay enrichment of profiles AK1/trig, DL88, KV196T, and SK11

(Group Aii in Table 2.2) are of the same magnitude as the pre-Last Glacial

Maximum profile SL4-1, and the truncated B horizons (6869/4, SNT60/1 and

SN30/A) (Group B). This suggests they are of an equivalent age, and older than

profiles OBT, SPNT, TP231L (Group Ai). Together with the data from Midgley

et al. (2002), this information shows evidence of pedogenesis from before the Last

Glacial for both the northern and southern parts of Namaqualand.

2.4.3 Eluvial horizons

A 0.2 m thick eluvial horizon in the diagnostic position (Soil Classification Work-

ing Group, 1991) is present in a calcareous profile TP231L, where it has formed

above a neocarbonate B on calcrete (Table 2.1). Bleached horizons also occur
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Table 2.2: Redness rating (Arduino, 1985) for each soil profile, calculated from
equation 2.1. The higher the redness rating, the redder the soil. /.../ indicates
horizon interpreted to be missing or eroded. Abbreviations: db-dorbank; gs-gleyed sand
(eluvial); hk-hard carbonate; nc-neocarbonate; ne-neocutanic; ot-orthic; rs-regic sand (may be
darkened by organic matter); re-red apedal; rs-regic sand; unsp-unspecified; ye- yellow-brown
apedal.

Profile Soil Form Horizon Sequence Redness Rating (dry) 

A) A-horizon genetically related to underlying horizons
i) Low redness rating
OBT Prieska Form  ot / nc / hk  3 / 3 / 0
SPNT Prieska Form rs / ot / nc / hk 1 / 1 / 3 / 1
TP231L Kinkelbos Form ot / E / nc 3 / 2 / 2

ii) High redness rating
AK1/trig Oakleaf Form ot / ne / rock 8 / 6 / ..
DL88 Augrabies Form ot / nc / unsp 6 / 6 / 5
KV196T Garies Form ot / re / db 15 / 12 / 16
SK11 Pinedene Form ot / ye / gs / ne 8 / 8 / 5 / 9
SL4-1 Pinedene Form ot / ye / gs / ne 9 / 9 / 5 / 6

B) Regic sands unconformably rest on B-horizon
6869 Prieska Form rs / .. / nc / nc / hk 1 / .. / 3 / 6 / 0
LKC1-5 Namib Form rs / .. / ne 3 / .. / 6
SN30 Prieska Form rs /.. / nc / hk 3 / .. / 4 / 0
SNT60 Namib Form rs /.. / nc / hk 1 / .. / 4 / 2
TP266Q Namib Form rs / .. / nc / hk 3 / .. / 6 / 0

third in a sequence from the surface, not in a diagnostic position as an E horizon

and thus have been classified as ‘gleyed sand’ (‘gs’) according to the definition

of the Soil Classification Working Group (1991, p. 243). They are overlain by

a B horizon and underlain by an horizon with a much higher clay content and

EC (such as SK11 and SL4-1 (Table 2.1). Both SK11 (0.05 m thick) and SL4-1

(0.13 m thick) were non-calcareous. Profile SL4-1 is discussed in greater detail by

Francis et al. (2007). The significance of these eluvial horizons for water storage

in Namaqualand ecosystems has been discussed by Francis et al. (2007).

Evidence for leaching below the average depth of water storage is often observed

in arid-region soils (Buol et al., 1997). Buol et al. (1997) noted that while this is

often attributed to a more humid paleoclimate, given the typically erratic nature

of the rainfall in arid regions these soil features may simply reflect the rainfall of

the extreme, rather than the average, years.

An important point in considering the development of these E horizons is the

reliability of the rainfall in coastal Namaqualand: although it is a “arid” region

with a high evaporation rate (2 m per year (D.B.C.M., 2000)) and less than

150 mm annual rainfall, the rainfall is reliant and occurs as frequent but low

volume winter rainfall events (Desmet, 2007), Namaqualand presently receives
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flood events about every 10 years which cause the ephemeral rivers to flow,

although drought years do occur (D.B.C.M., 2000).

The example in profile SL4-1 (Table 2.1) occurs in a profile in which vertical

tunnels that may be attributed to termites (J. Pether, pers. comm., February

2002) have become conduits for water, extending to bedrock about 12 m deep

(Figure 2.6). See Section 2.4.6 for a more detailed discussion of these burrows.

The bedrock in this profile shows signs of wetness. This suggests that both

lateral and vertical water movement through the regolith is extensive, and occurs

along strongly preferential flow paths. Many of the mine excavations have water

present, in some profiles water flows out of the deeper parts of the regolith (as

in 6869, also with abundant vertical termite burrows (J. Pether, pers. comm.,

February 2002) which appear to have become conduits for water). The lower

part of some B horizons were slightly moist to moist, especially when above a

cemented horizon (for example 6869, DL88, KV220PRN, see Table 2.1), which is

consistent with the suggestion of Francis et al. (2007) that these act as a barrier

to water movement.

Although the Namaqualand coast may have been wetter during the Last Glacial

(Van Zinderen Bakker, 1976; Tankard and Rogers, 1978; Parkington et al., 2000),

and many profiles are older (Section 2.4.2), Namaqualand presently receives flood

events about every 10 years which cause the ephemeral rivers to flow, in addition

to reliant but low volume winter rainfall events. Together with the water evident

flowing out of the deeper part of the regolith in many profiles, this suggests

these subsurface bleached horizons presently function as aquifers during profile

wetting, and although some may have existed in a wetter paleoclimate, they

continue to be active in the present.

2.4.4 Cemented horizons

Calcite-cemented horizons

Horizons of calcite accumulation are common. The distribution of carbonates can

vary from dispersed to highly cemented (calcic to petrocalcic (Soil Survey Staff,

1999); soft carbonate to hardpan carbonate (Soil Classification Working Group,

1991)). In the diagnostic position these horizons were classified as ‘hardpan
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Figure 2.6: Possible vertical termite burrows (arrowed) that have become con-
duits for preferential flow, extending through upper shoreface (red) and lower
shoreface (grey) to bedrock, which shows evidence of wetness (lower right). Mine
dumps obscure surface. Benches 3 m high. Profile SL4-1.

carbonate’, otherwise as ‘calcrete’ in Table 2.1. There thickness ranges from

0.2 m to over 1 m. Petrocalcic horizons slake in acid (Soil Survey Staff, 1999).

Some samples classified as hardpan carbonate had areas which slaked in water

to a fine sediment (Table 2.1). This is consistent with the observations of Pether

(1994) that the soluble carbonate content (acid digestion) is only 3% and the

host material is a muddy sand. The average pH in water (1: 2.5 suspension)

is 8.3 - 9.6, and EC ranges from 0.02 to 4.93 mS/cm (Table 2.1). Higher salt

contents are often associated with dissolution of the horizon (AK1/2, SPNT/5,

Table 2.1).

In locations with particularly thick regic sand cover (such as profile KV220PRN

(Table 2.1), and the buried hearth site in Figure 2.4) a calcrete horizon is

present near the base of the calcareous regic sand (1.2 to 1.4 m deep in profile

KV220PRN). This is interpreted to be a modern pedogenic process. In profile

KV220PRN, a second calcrete horizon occurs deeper in the profile (2.8 to 3.8

m deep), the upper boundary of which shows dissolution features. The calcrete
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lies under a redder neocarbonate horizon, both of which are identical to the cal-

crete and reddened neocarbonate B horizons found elsewhere (Group B in Table

2.2). This suggests the horizons in Group B are the buried remains of partially

eroded paleosols, and that soil forming processes have begun anew in the over-

lying cover sands, via a process of aggradation as observed by (Knox, 1977) for

calcrete profiles near Saldanha Bay.

Silica-cemented horizons

Silica-cemented horizons (dorbank (Soil Classification Working Group, 1991),

equivalent to the ‘duripan’ of Soil Taxonomy (Soil Survey Staff, 1999) and ‘petro-

duric’ of the World Reference Base (1998) are present. These horizons slake

in concentrated alkali, or if calcareous, alternating acid and alkali treatments.

Horizons that slaked only in concentrated NaOH were interpreted to be silica-

cemented and classified as ‘dorbank’. If they effervesced in HCl but slaked only

in NaOH, they were classified as ‘calcareous dorbank’.

Their composition, micromorphology and genesis was discussed in more detail

in Chapter 1. They can be 3 m and more thick, are generally very hard and

very firm, have an average pH in water of 8.5, and an EC (of the same 1: 2.5

suspension) that ranges from 0.02 to 8.9 mS cm−1 (Table 2.1). Horizons with

high EC’s show localized dissolution. The dorbank horizons are generally brown

(7.5YR 5/4) to yellowish-red (5YR 5/6) when dry and reddish-brown (5YR 4/4)

to yellowish-red (5YR 5/6) when moist. The calcareous dorbank horizons are

paler than their non-calcareous counterparts. The dorbank horizons in both

profile AK1 (Table 2.1)and KV196T (Chapter 1) contain gypsum in cracks and

in voids. In KV196T the gypsum was identified by SEM-EDX, also occurs as

well crystalline nodules (pictured in Appendix A).

Sepiocrete and sil-sepiocrete intergrades

In this study, samples that effervesced in HCl but slaked only in NaOH were

classified as calcareous dorbank. One sample (SK11/1), although locally effer-

vescing vigorously in HCl, only slaked partially after alternating HCl and NaOH

treatments. I initially classified it as siliceous calcrete (such as Watts (1980)

and Nash and Shaw (1998)), because its colour and macroscopic appearance
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are closer to the other calcrete samples than the other dorbank samples, and it

occurred above a calcrete. Subsequent SEM studies (Chapter 1) showed that

calcite does not play a role in the cement, and that the interlocking of fibres is

dominant, suggesting sepiolite contributes to the cement, with localised silica.

These ‘sepiocretes’ were discussed in more detail in Chapter 1.

2.4.5 Marine sediments

The marine sediments were broadly divided into an upper shoreface and lower

shoreface facies, based on their bedding and particle size characteristics. The

upper shoreface facies extends seaward from the low-tide level, comprising the

breaker and surf zones. The onshore transport generates three-dimensional, lu-

nate bedforms (megaripples), and larger bedforms. The coarsest sediment in the

shallow-marine sequence is concentrated here (Pether, 1994).

The lower shoreface facies is deposited seaward of the breaker zone and its as-

sociated larger bedforms. It is subjected to oscillatory wave currents during

fair-weather periods. Benthic organisms colonize the less routinely mobile sedi-

ment. Erosion and deposition in the lower shoreface take place mainly during and

after storms. Hummocky cross-laminated, fine-sandy beds consisting of low an-

gle, undulatory lamination in broad overlapping troughs and low hummocks are

recognised as products of storm deposition at lower shoreface to offshore depths.

The lower shoreface contains more bioturbated beds and a greater diversity of

trace fossils than the upper shoreface (Pether, 1994).

The upper shoreface is on top of the lower shoreface facies on the Namaqualand

coastal plain. This is consistent with deposition during sea level regression

(Pether, 1994; Pether et al., 2000). Upper shoreface deposits are generally coarser

than lower shoreface deposits, and have a redder hue. Vertical burrows filled with

coarser sediment also have a slightly redder hue than surrounding sands. The

coarser sediment may provide an opportunity for preferential flow, with a greater

amount of interstitial space and more oxidation during dry periods. Nearby, iron

pans (3 mm thick) in the finer sediment are also testament to the mobilization of

iron. Probable hematite halos (comparable to those observed by Walker (1967))

are evident in pale yellow lower shoreface sands (Figure 2.7).
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Figure 2.7: Probable hematite ‘haloes’ in lower shoreface sands, approximately
9m deep. Portion of hammer shown is 20cm long.

Upper shoreface sediments

These are generally yellowish-brown when dry (10YR 5/6), medium- to coarse

sand with many gravel fragments and a weak- to moderate, coarse, angular-

blocky structure. They are generally loose, non-plastic and non-sticky. The

average pH in water is 8.35, and EC (of the same 1: 2.5 suspension) is 1.15

mS/cm (range 0.11 to 3.96 mS/cm, Table 2.1). The marine sands are non-

calcareous, and often show large-scale bedforms. The upper shoreface ranges

from 0.7 to 2 m thick in the profiles studied, but varies depending on the pack-

age (Pether, 1994; Pether et al., 2000).

Lower shoreface sediments

These are generally light-grey (10YR 7/1), pale-yellow (5Y 7/4) or light-yellowish-

brown (10YR 6/4) when dry. Oxidation of glauconite-rich sediments resulted in

some layers becoming a more orange colour (such as in profiles LKC1-5 and

SNT60, Table 2.1). This was determined by oxidising green lower shoreface sed-

iments with H2O2, which then became a distinctly more orange colour. The

average pH in water of lower shoreface sediments is 8.24, and the average EC (of

the same 1: 2.5 suspension) is 0.97 mS/cm (range 0.05 to 2.87 mS/cm, Table 2.1).

They are non-plastic and non-sticky, single-grain apedal, loose, non-calcareous

medium sand which shows cross-lamination in places, and can contain abun-

dant marine shells. In the profiles studied they are generally 12 m thick, but,



70

like the upper shoreface facies, the thickness varies depending on the package

(Pether, 1994; Pether et al., 2000).

In one place, there appears to be illuviation (or precipitation) of white clay

at the base of a much coarser layer within the fine pale sands. This coarser

layer is much redder than the over- and underlying pale fine sands. The X-

ray diffraction pattern of this coarser layer shows the presence of apatite in

addition to smectite, kaolinite and mica. At the base of some profiles there

appear to be silica-cemented layers. Some are also calcareous. The silica and

Fe-oxide precipitation, and clay illuviation observed in the lower shoreface facies

on the Namaqualand coastal plain correspond with Moody and Graham’s (1994)

observations in deep sands on marine terrace in central California.

Often, the marine deposits rest directly on bedrock. In some profiles the bedrock

is highly weathered, deeply kaolinised ‘pallid zone’ (Partridge and Maud, 1987)

on the order of 5 m thickness, which in some cases is associated with silcrete

boulders. A silcrete-capping is associated with pallid zones in southern Africa

(Partridge and Maud, 1987), these boulders are therefore likely to be remnants of

the original silcrete capping. It occurs in situ near Kleinzee and Hondeklip Bay.

Other profiles rest on kaolinized paleochannel sediments (18 m thick in profile

6869, see Table 2.1). These sediments were described in detail by Pether (1994),

who concluded that they were laid down as a quartzo-feldspathic sediment in

a fluvial environment, and subsequently deeply weathered, with extensive alter-

ation of feldspar to kaolinite.

2.4.6 Biological activity

Evidence of biological activity is present at all levels in the regolith profile (Table

2.1), from the surface horizons with tunnels a few millimetres in diameter in the A

and B horizons of to the deep marine sediments just above bedrock. It is difficult

to determine whether burrows in the marine sediments were formed by marine

fauna or by burrowing terrestrial organisms. In some cases the burrows have

been calcretized, although the surrounding sediment is generally non-calcareous.
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Tunnels

Calcrete horizons are extensively tunnelled, the tunnels are approximately 6mm-

8mm diameter and a few centimeters long. In some cases the calcrete and deeper

marine sediment contains larger tunnels (diameter approximately 10-15 cm). The

dorbank horizons often contain 6 mm diameter borings and gypsum-filled voids

(tunnels?).

Roots

Klappa (1980) distinguishes rhizoliths from faunal borings and burrows. They

are abundant in calcretes and aeolianites of Quaternary age. The calcretized

tunnels in sediment below a calcrete horizon in TP231L (Table 2.1) resemble

roots and may be rhizoliths. Roots were identifiable in many profiles, up to 2 -

3 m deep (Table 2.1).

Termites

On the Namaqualand coast the heuweltjies are distinguishable on aerial pho-

tographs, and in some places may be buried by recent sands. There was also

abundant evidence of termite activity in deep profiles. The age of the activity

was not always clear, except in places where secondary silica and calcite had

clearly replaced the nests or tunnels. A particularly well preserved example of a

nest was present in the calcretized sidewall of SK11 approximately 1.7 m deep

(Table 2.1; Figure 2.8).

In a mine excavation adjacent to an area with abundant heuweltjies (visible

using Google Earth, 29◦ 30′ 45′′ S, 17◦ 05′ E), a strongly-cemented calcretized

nest was present about 2 m deep within a silica cemented, locally calcareous

dorbank profile (profile AK1, Table 2.1). It is nearly identical to the fossilised

nests presented by Coaton (1981). Silica cementation of the soil surrounding the

nest continues from about 30cm from the surface to below the hive (Figure 2.9).

Unfortunately AK1 was truncated by mining processes. The clay content of the

surface horizon (AK1/1 Table 2.1) suggests it is a B horizon (neocarbonate). This

horizon has a redness rating (dry) of 6. This is in line with Group Aii in Table 2.2,
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Figure 2.8: Profile SK11 (described in Table 2.1) with termite nest, 1.7 m deep
below calcrete.

which suggests a pre-Last Glacial Maximum age for this neocarbonate B horizon.

While the underlying dorbank and nest must be older than or contemporaneous

with the neocarbonate B horizon, field relationships do not resolve the age of

the nest relative to the dorbank. However, given the massive nature and the

thickness of the silica cementation in the dorbank overlying the nest, it seems

likely that the nest predates the silica cementation. This age is broadly consistent

with the δ14C ages of 25 000 to 30 000 years B.P. for calcrete associated with

heuweltjies (further south) in the Clanwilliam and Elands Bay areas (Midgley

et al., 2002), and the 32 100 ± 720 years B.P. for the nearly identical fossilised

nests from Clanwilliam presented by Coaton (1981).

As discussed in Section 2.4.3, what appear to be vertical termite burrows (J.

Pether, pers. comm., February 2002) are observable for 3 m or more vertically

in the marine sediments in sediments up to 12 m deep. They are distinguishable

from the surrounding sediment by texture and colour differences (Figure 2.10)

and appear in some cases to have acted as conduits for preferential flow from

the surface (as in Figure 2.6). Stone and Comerford (1994) note that some

African and central Asian desert and dryland termite species extend galleries to

remarkable depths to reach free water, citing depths of 10 m to 70 m. As noted

in the discussion on eluvial horizons, there were signs of wetness on the bedrock

of SL4-1, and water coming out the regolith towards the base of 6869.
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(a) (b)

Figure 2.9: Profile AK1 (described in Table 2.1) with strongly-cemented, cal-
careous hive 2 m deep within dorbank. Hammer 30 cm long.

Figure 2.10: Possible vertical termite burrows (arrowed), now conduits for pref-
erential flow in lower shoreface sands.
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2.5 Conclusions

Soil formation on the Namaqualand coastal plain seems to be linked to periodic

and episodic profile saturation that intrude the background of aridity. That evap-

otranspiration greatly exceeds precipitation is reflected accumulations of leach-

able salts such as halite and gypsum, and accumulations of calcite and silica.

Soil formation and termite activity is at least as old as the Last Interglacial. E

horizons may have formed in a wetter Last Interglacial paleoclimate, but they

are still active in the present day. Evidence for this includes moist horizons above

cemented barriers and water was observed flowing out of the regolith. This is con-

sistent with the regular winter rainfall, and every 10 year flood events. Seems

likely that during the periodic and episodic wet events that the formation of

eluvial horizons takes place, and leachable salts are moved through the profile.

These features remain metastable in the soil profile during intervening periods

of aridity.

The surface soil horizons have generally formed from an aeolian parent material,

and seem to follow either a calcareous or non-calcareous pedogenic pathway,

perhaps depending on whether the original parent material was calcareous. The

non-calcareous pathway leads to more clay-rich, redder apedal horizons that

gradually show a stronger structure with depth, and generally rest directly on

marine sands via a subtle discontinuity (as observed by Pether (1994)) that

suggests pedogenesis continues through the profile into the marine facies. The

clays appear to form predominantly in situ, since cutans are not obvious in the

field. The lack of cutans may also be a result of the fairly low clay contents to

begin with, however, and redistribution of clays within the profile is likely given

the water movement through the profile. Further work on the micromorphology

of the B horizons would help to confirm this. The calcareous pathway leads

to similar clay-rich, redder apedal B horizons, but which differ in that they

are calcareous, and rest on a calcrete horizon, often via a stoneline of rounded

pebbles. The relatively low CaCO3 in the aeolian sands dictates the pedogenic

pathway in these deposits, and reddened neocarbonate and neocutanic horizons

develop as the aeolian deposits age.

Deeper in the profile, there is generally a regular alteration of sedimentary units,

such that the upper shoreface facies sediments show a degree of reddening, the

lower shoreface sands have remained pale. This seems to be a function of the grain
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size, since the upper shoreface materials are coarser due to their higher energy

depositional environment, and the redder parts of the lower shoreface are also

associated with slightly coarser sands. In some places oxidation of glauconite-rich

sediments resulted in some layers becoming a more orange colour.

The Namaqualand coastal plain is well positioned for further work on its regolith,

particularly because of the mining excavations which provide excellent exposures

of well-defined layers of the regolith down to bedrock. The water-holding capacity

of Namaqualand soils is surprising given that they are Aridisols (Francis et al.,

2007), and suggests that a case could be made for their endemism (Bockheim,

2005). Some of the features which deserve further study are regular calcrete

layers and fossils (marine, terrestrial) which have the potential for dating; the

abundance of pedogenic carbonates which could lend themselves to techniques

to reveal whether they have played a role in atmospheric CO2 sequestration

(Monger and Gallegos, 2000); evidence of deep/relict termite activity; dunefields

overlying buried and truncated soils such as the well characterised Last Glacial

dunefield north of the Swartlintjies. The identification and classification of the

paleosols in the detail suggested by Nettleton et al. (2000) to reveal subtleties

in past soil forming factors, could possibly offer some constraints on the climate

conditions under which they formed.
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Chapter 3

‘Pseudo-anticlines’ and biogenic

features in sepiolite-containing

calcrete in Namaqualand

3.1 Introduction

The Namaqualand coastal plain, with its extensive areas of calcrete development,

is almost a textbook setting for calcrete development by inorganic processes: it is

an area where the evaporation greatly exceeds precipitation; experiences inputs

of marine aerosols due to strong onshore winds and the aggradation of calcareous

regic sands (Chapter 2) similar to that described by Knox (1977) at Saldanha

Bay. It also contains abundant ‘pseudo-anticline’ structures (pictured in (Francis

et al., 2007)) which could be attributed to displacive growth of calcite and/or

expandable clay minerals (Watts, 1977). There is an abundance of literature on

calcrete, with many studies focussing on calcrete micromorphology (Allen, 1985;

Monger et al., 1991a; Monger and Adams, 1996, to mention only a few) and it

has been reviewed by authors such as Wright and Tucker (1991) and Alonso-

Zarza (2003) and references therein. Notable work in southern Africa (Kalahari)

includes Netterberg (1969) and Watts (1980), and recently work such as Nash

and McLaren (2003).

Biogenic processes, are increasingly being seen as important to calcrete genesis:

Phillips et al. (1987) suggested that just as fungal hyphae can stabilize macro-
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aggregates in soils, the mineralized filaments may produce permanently stabilized

macro-aggregates that provide the locus for further carbonate precipitation, lead-

ing to eventual induration. Monger et al. (1991) found that soil microorganisms

were involved in calcite precipitation in desert soil near Las Cruces, New Mexico,

and that where soil columns were irrigated with Ca-rich solutions, calcite only

formed in soils containing soil microorganisms.

Folk (1993) suggested that bacteria and “nannobacteria” (sic) play an important

role in catalyzing the precipitation of carbonate minerals. Loisy et al. (1999)

noted that the originally organic micro-rods were transformed to calcite via a

biomineralization process, which increased the CaCO3 content of the primary

matrix. Diagenetic evolution lead to their recrystallization to microsparite, con-

tributing to the hardening of soil layers as the micro- and nanoporosity were

progressively filled.

Wright and Tucker (1991) reviewed the formation and characteristics of biotic

and abiotic calcretes, and a review of the biogenic process in calcrete development

is given by (Goudie, 1996).

This Chapter aims to describe the biogenic contribution to calcrete formation,

following Knox’s (1977) suggestion that a study of the semi-indurated parts of

the profile could bring to light biogenic structures. In calcretes near Saldanha

Bay on the west coast of South Africa, Knox (1977) observed that needle fibre

calcite (“acicular networks”) and filaments (“tubules”) were associated with the

semi-indurated zones in the profile. The strongly indurated zones consisted of

cryptocrystalline calcite, and the beta-fabric features were no longer recognizable.

THis study particularly aimed to distinguish the biogenically acicular calcite from

the similar-shaped clay minerals sepiolite and palygorskite using HCl-etching

and EDAX analyses, since Singer et al. (1995, p. 65) questioned whether the

biogenic calcite fibres described by Knox (1977) in calcretes near Saldanha Bay

were indeed calcite, rather than sepiolite/palygorskite fibres. This study also

aimed to determine whether the pseudo-anticline structures could be attributed

to displacive growth of calcite and/or expandable clay minerals, as speculated

by Francis et al. (2007).
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3.2 Materials and methods

A subset of samples (calcrete and calcareous nodules) was selected from those

described in (Chapter 2). The calcrete samples are SNT60/5A; SPNT/4; OBT/4;

TP266Q/1 and calcite nodules (calcite-cemented sand) approximately 3 cm in

diameter from neocarbonate B horizons 6869/iii and 6869/iv. The locations

and profile descriptions are shown in Chapter 2, Figure 2.2 2 and Table 2.1

respectively. The profiles are pictured in Appendix A.

Namaqualand, particularly the coastal part that was the focus of this study, is

a region that experiences an extremely high evaporation rate (about 2 m per

year) and less than 150 mm annual winter rainfall, supplemented by regular fog

occurrences (Eckardt and Schemenauer, 1998; D.B.C.M., 2000; Olivier, 2002).

Crucially for both plant growth and water movement through the soil, the climate

is characterised by highly reliable rainfall when compared to other arid regions

with similar mean annual precipitation (Desmet, 2007). It typically arrives as

widespread, gentle showers (average rainfall event 6 mm, P. Carrick unpublished

data, cited by Desmet (2007)). Drought conditions are rare, and rainfall is

higher than average about once every 10 years, causing ephemeral rivers to flow.

Paleoclimates of the northern Namaqualand region are not that well constrained,

but the consensus for the greater area seems to be that is was wetter during the

Last Glacial (Van Zinderen Bakker, 1976; Tankard and Rogers, 1978; Parkington

et al., 2000). A more detailed summary of the landscape, (paleo)climate and

vegetation is given by Desmet (2007) and in Chapters 1 and 2.

Uncoated fragments and thin sections were observed before and after etching in

1M HCl using low vacuum SEM-EDX with a Philips Xl30 ESEM. High vacuum

SEM was done on Au-coated fragments using a Leo 1430VP SEM-EDX system.

Thin sections for optical microscopy were impregnated with an epoxy resin, and

ground without water. For XRD analysis of the carbonates and cutans, an

air-dried fragment was ground in an agate pestle and mortar and analysed as

a powder. For XRD analysis of the clay fraction, the bulk samples were air-

dried, crushed and passed through a 2 mm sieve. To minimize shattering of

pebbles/gravel, the >2 mm cement was sorted from the >2 mm pebbles and

recrushed. Selected samples were milled and treated with a pH 5 sodium ac-

etate buffer for a short time (following the findings of Vanden Heuvel, 1964)

until effervescence ceased, and then concentrated by centrifugation. This was
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repeated with fresh solution until there was no more effervescence. The <2 µm

fraction was separated by dispersion (shaking briefly by hand, raising the pH

to approximately 10 with Na2CO3) and settling. The clay suspension was floc-

culated by the addition of MgCl2, after lowering the pH to 5 to 7 with HCl to

prevent the precipitation of brucite and/or clay destruction. The clay suspension

was then Mg- or K-saturated, concentrated by centrifugation, and sedimented

(or smeared, many of the seopiolite-rich samples developed ‘mudcracks’) onto a

glass slide. XRD analyses were done using a stepsize of 0.05 degrees and step-

time of 40 seconds, using a Bruker D8 Advance Powder Diffractometer with a

graphite monochromator, 40 kV and 40 mA. Ethylene glycol was sprayed lightly

onto the surface of the Mg-saturated sample slides.

3.3 Results and discussion

3.3.1 Composition

Carbonates

The dominant carbonate mineral in the calcretes is calcite (Figure 3.1). Dolomite

appears to be absent. Calcite in the clay fraction shows a very small shift towards

magnesian calcite (Figure 3.2). Both SPNT and SNT60/5A have the calcite peak

at 0.3023 nm. This yields a 0.037 mole fraction MgCO3 in the calcite following

the calculation Y = 0.3033 - 0.0271 X, where Y is the d(211) in nanometres

(Doner and Lynn, 1989) .

The 0.326 nm peak (well-developed in SPNT/4 and to a lesser extent in SNT60/5a)

is somewhat of an enigma. It could be attributed to aragonite (0.327 nm, in-

tensity = 52, JCPDS card 05-0453 from Doner and Lynn, 1989), with the 0.34

nm aragonite peak (intensity = 100) overlapping that of quartz (JCPDS card

05-0490 Drees et al., 1989), but the 0.198 nm (intensity = 65) and other aragonite

peaks are absent. The 0.326 nm peak is absent from the clay fraction in both of

these samples, although calcite is present (Figure 3.2). If authigenic aragonite

were present, it should occur together with calcite in the clay fraction too. Since

the material used to determine the nature of the carbonates and to extract the

clay fraction were obtained from different peds, a possibility is that an aragonitic
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Figure 3.1: Carbonates in calcrete: XRD traces of crushed, bulk samples. Mg-C:
Mg-carbonate. Carbonate peaks: Doner & Lynn (1989); quartz: Drees et al.
(1989). A: aragonite (JCPDS card 05-0453); C: calcite (JCPDS card 05-0586);
D: dolomite (JCPDS card 11-0078); Q: quartz (JCPDS card 05-0490).

shell fragment was present in the ped crushed for bulk XRD analysis, but not the

ped from which clays were extracted. Other contenders for the 0.326 nm peak

are titanate (0.325nm, JCPDS card no. 73-2066) and zircon (0.328 nm, JCPDS

card no. 83-1379), both present in the heavy mineral fraction of the marine sands

(Pether, 1994). A possible reason for their presence in the bulk trace but not the

clay fraction, could be that their greater specific gravity caused them to settle

faster than the clay particles and so not be extracted with the clay fraction.

Clays

The clay fraction of coastal Namaqualand calcretes is dominated by sepiolite and

contains varying amounts of kaolinite, palygorskite and mica (Figure 3.2). Mica

is likely to be detrital, given the abundance of it in the lower shoreface facies (see

Chapter 2) and that it is a common component of the bedrock in the region.

The decrease of the 1.2 nm peak in TP266Q/1 and the increase of the 1.04

nm peak on heating is consistent with sepiolite (Hayashi et al., 1969). These
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peak positions overlap with palygorskite and mica, but the heated trace does

show a small increase in the 0.94 nm region (Van Scoyoc et al., 1979), sug-

gesting some palygorskite is present even though the 0.644 nm palygorskite

peak is absent. This is consistent with the clay mineralogy of other southern

African calcretes (Netterberg, 1969; Watts, 1980). Sepiolite and palygorskite

are present in Namaqualand soils, with sepiolite dominant in the coastal areas

(Singer et al., 1995). Hay and Wiggins (1980) found sepiolite to be the most

common clay mineral associated with calcretes in the southwestern USA, and

palygorskite was notably absent.

Although the <2 mm samples were milled before acetate treatment to liberate

calcite-cemented clays, the clay peaks are substantially enhanced after the ac-

etate treatment (Figure 3.2). The difference is most noticeable with palygorskite,

and consistent with Vanden Heuvel’s (1964, p. 201) observation that palygorskite

showed “greater immobilization” by the calcite aggregates than sepiolite.

Many of the calcretes show sepiolite cutans around the blocky peds, evident

in the field by their non-effervescence with HCl and by turning methyl orange

pink (Mifsud et al., 1979). An XRD trace of a typical cutan (Figure 3.3) shows

sepiolite, quartz and calcite. The sepiolite peak is broad, and it extends into

the palygorskite peak zone of 1.048 nm, but the presence of a small amount of

palygorskite is suggested by small 0.644 and 0.323 nm peaks.

Watts (1980) noted an inverse relationship between the mol % MgCO3 in calcite

and the sepiolite/palygorskite content, which suggested that these Mg-rich clay

minerals were the main Mg-bearing phase in Botswana calcretes. The apparent

absence of Mg-calcite and dolomite, and abundance of sepiolite in the calcretes

of coastal Namaqualand suggests a similar partitioning has occurred.

3.3.2 Morphology and micromorphology

‘Pseudo-anticlines’

Some profiles show ‘pseudo-anticline’ features (Watts, 1977), pictured in Francis

et al. (2007). These may be attributed to both the displacive growth of cal-

cite and expansion of clay minerals (Watts, 1977; Wright and Tucker, 1991). A

blocky structure and accommodating planes in calcrete sample TP266Q/1 (Fig-
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Figure 3.3: XRD trace of sepiolite cutan on calcrete (OBT/4), powdered bulk
sample. C: calcite (JCPDS card 05-0586, Doner & Lynn (1989)); P: palygorskite
(Bradley, 1940; Christ 1969); S: sepiolite (Brindley, 1959) Q: quartz (JCPDS
card 05-0490, Drees et al., 1989).

ures 3.4(a), (b)) suggest shrink/swell behaviour has occurred, and is consistent

with presence of smectite in the clay fraction of TP266Q/1 (Figure 3.2), although

the ‘diapiric anticlines’ that Watts (1977) attributed to the upward injection of

swelling clays were not present. Volumetrically, the displacive calcite appears to

be more significant than the shrink/swell behaviour represented by the accom-

modating planes.

Clay neoformation/illuviation may also contribute to displacement and folding

via an increase in volume in a similar manner to displacive calcite, rather than

via a shrink/swell mechanism. Clay coatings almost completely fill the intergrain

spaces after the calcite is removed, including spaces between a fractured quartz

grain (Figure 3.4(c)). This is consistent with Pether’s (1994) observations that

the soluble carbonate content (acid digestion) is only 3% and the host material is

a muddy sand. The oriented nature of these coatings suggests they are illuvial in

origin, although according to Ranson and Bidwell (1990, in Wright and Tucker,

1991), clay coatings in calcareous soils may have formed through stress rather

than illuviation.
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(a) Accommodating planes (arrowed). Scale
bar 0.1 mm, ppl.

(b) Same as (a). Micrite displacing
fractured quartz grains along fractures. Xpl,
λ plate, fast direction indicated.

(c) HCl-etched. Orientated clay matrix;
fractured quartz grain (1-3). Scale bar 0.1
mm, xpl, λ plate, fast direction indicated.

(d) Calcite displacing feldspar grain along
cleavage planes. Scale bar 0.1 mm, xpl.

(e) Calcite replacing ferro-magnesian
mineral (pyroxene); embayed quartz grain.
Scale bar 0.1 mm, xpl.

(f) Needle fibre calcite and mineralized
filaments (arrowed, cross-section) with
radial length-fast (?)calcite/oxalate, lining
void. xpl, λ plate, fast direction indicated.
Scale bar 0.02 mm.

Figure 3.4: Displacive, replacive and needle fibre calcite; clay textures in calcrete
TP266Q/1.
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Both displacive and replacive calcite are present. Displacive calcite is dominant

(Figures 3.4(b), (d)), resulting in a ‘floating fabric’ (Watts, 1978), represented

in this sample by a close porphyric c/f-related distribution (Stoops, 2003). As

noted by Watts (1978), replacement appears to be of a ferro-magnesian mineral,

the shape of which suggests pyroxene (Figure 3.4(e)). Both the embayed quartz

grain and the calcite pseudomorph (Figure 3.4(e)) suggest silicate dissolution

has also occurred in the profile, although to a lesser extent. Reheis et al. (1992)

found that pedogenic calcite both displaced and replaced grains in sediments of

the Kyle Canyon alluvial fan, southern Nevada.

In Buczynski and Chafetz’s (1987) model, calcite crystals in the vadose zone pre-

cipitate from a supersaturated solution that is not being constantly replenished,

forming rapidly at grain contacts as the last fluid dries. This crystallization

is too rapid to be accommodated by pressure solution and the interpenetra-

tion of quartz grains. Consequently, the ‘rapid’ build-up in stress is released by

grain fracturing. This is consistent with much of sample TP266Q/1, with the

abundant evidence of grain shattering and the micrite suggesting rapid crystal-

lization. Chadwick and Nettleton (1990, in Wright and Tucker, 1991) attributed

displacive fabric features in calcretes to calcite crystals preferentially forming co-

hesive bonds with other calcite crystals, thereby displacing non-carbonate grains.

Biogenic fabric

The typical abiotic alpha-fabric features (Wright and Tucker, 1991) dominate the

mature calcrete horizon TP266Q/1 (Figure 3.4). Biogenic beta-fabric features

(needle fibre calcite, mineralized filaments) are present, but to a lesser degree.

They are, however, dominant in calcite-cemented nodules from a calcic B horizon

(6869/iii and 6869/iv) above calcrete (Figure 3.5).

Figure 3.4(f) shows the cross-section through mineralized filaments in a void in

a mature calcrete horizon (TP266Q/1). They appear to comprise a radially-

oriented, length slow mineral with high birefringence, and are closely associated

with needle fibre calcite. They are consistent with the morphology of fungal

filaments found by Phillips et al. (1987) and Verrecchia et al. (1993). Mineralized

filaments dominate the fabric of calcite-cemented nodules from a calcic B horizon

above a calcrete (Figure 3.5).
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Verrecchia et al. (1993) found that filament coatings were predominantly calcium

oxalate. Their analyses showed oxalate to have a C/Ca ratio of about 1, with

calcite having a much smaller C/Ca ratio. The C/Ca ratio of filaments in Fig-

ure 3.5(a) (analyses 2-4, Figure 3.5(b)) suggests calcium oxalate in the coating,

whereas the non-filament matrix (analyses 1 and 5) are micrite. Non-mineralized

filaments (Phillips et al., 1987) and nanobacteria (Folk, 1993; Folk, 1999) are

also present (Figures 3.5(c), (d)). Verrecchia et al. (1993) attributed the fila-

ments in a calcrete from Israel to fungi, since they occurred in an environment

without light, eliminating the involvement of photosynthetic microorganisms like

cyanobacteria and algae. This also seems a reasonable assumption to make for

the Namaqualand samples. Folk (1993) argued convincingly against modern

contamination of the sample, and provided many examples for nanobacteria in

calcretes (Folk, 1999).

Needle fibre calcite (Figure 3.5(e), (f)) is present as the MA(2), MAB, and MB

rod forms of Verrecchia and Verrecchia (1994), who concluded that MA rods are

of biological origin which can be attributed to calcite precipitation in the interior

of fungal mycelian bundles, which are then released and redistributed in the soil

following the decay of the organic matter. MB rods form after the release of

MA rods; their serrated plates are a secondary syntactic growth of CaCO3 of

physico-chemical origin on an MA skeleton. The monocrystalline M micro-rods

are much smaller than MA rods (0.5 - 1 µm), and have an ambiguous origin

related to either physico-chemical nuclei or calcified bacteria; they are commonly

associated with gels or organic material and do not appear to evolve toward larger

or more complex morphologies (Verrecchia and Verrecchia, 1994). Loisy et al.

(1999) recognised the micro-rods as bacilliform and threadlike bacteria, which

mineralize into calcite, forming micro-rod mats and can form clusters and micritic

platelets. In Figure 3.5(d) M micro-rods are seen covering needle fibre calcite; this

relationship is also present in calcrete in Israel (Verrecchia and Verrecchia, 1994,

p. 657) and a calcrete paleosol in France (Loisy et al., 1999, p. 198).

The analysis of the fibrous mat under the nanobacteria (Figure 3.5(d)) suggests

that it is not calcite. The morphology of the M micro-rods is very similar to that

of the fibrous clay minerals sepiolite and palygorskite, which are abundant in

calcretes on the Namaqualand coastal plain (Figures 3.2 to 3.3). The <1 µm clay

fraction of this sample is dominated by sepiolite, with less intense palygorskite,

smectite, kaolinite and possibly illite (Chapter 4), therefore it seems likely that
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(a) Micrite and Ca-oxalate covered
filaments. Scale bar 2 µm. Au-coated.

Wt % 1 2 3 4 4 5

C 14 21 19 19 19 17
Mg 1.4 0.7 0.8
Ca 34 16 20 22 20 28
O 51 63 60 59 60 55
Total 100 100 100 100 100 100
C/Ca 0.4 1.3 1.0 0.9 1.0 0.6

(b) EDAX analyses of areas indicated in (a)

(c) Collapsed, non-mineralized filament.
Scale bar 10 µm. Au-coated.

(d) Nannobacteria (left) on fibrous clay
mineral mat (analysis arrowed); M
micro-rods covering MA needle-fibre calcite
(top right). Scale bar 1 µm. Au-coated.

(e) Needle fibre calcite: MAB rod. Scale bar
5 µm. Uncoated.

(f) Mineralized filaments (F); needle fibre
calcite: MA rods (MA2 rod (bottom)), MB
rod (arrowed). Scale bar 5 µm. Uncoated.

Figure 3.5: SEM images: Biogenic calcite from calcite nodules in 6869/iii and
/iv, calcic B above a calcrete. Needle fibre calcite classified according to Verrec-
chia and Verrecchia (1994, further details in text). Images (a)-(d) collected at
University of Stellenbosch, (e), (f) at University of Kwazulu-Natal.
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the mat is in fact interwoven (predominantly fibrous) clay minerals. Further

evidence for the association of sepiolite/palygorskite with the organic structures

is in Figure 3.6. The samples with mineralized filaments and needle fibre calcite

from Figure 3.5 were etched in 1M HCl. The micrite, needle fibre calcite and

mineralized filaments dissolved (Figure 3.6(a)), and revealed the fibrous clay

minerals (Figure 3.6(b)). The composition of the area is consistent with the

HCl-etched calcite/oxalate and the clay fraction described above. The large

proportion of Mg and Si is consistent with the predominant sepiolite.

(a) Mineralized filament, partially dissolved.
Scale bar 5 µm.

(b) Magnification of area indicated in (a).
Scale bar 1 µm.

Figure 3.6: 6869/iii, from Figure 3.5 after etching for 15 seconds with 1M HCl.

3.4 Conclusions

The clay fraction of coastal Namaqualand calcretes is dominated by sepiolite,

with varying kaolinite, palygorskite and detrital mica contents. The clay fraction

is closely associated with calcite: although the <2 mm samples were milled

before acetate treatment to liberate calcite-cemented clays, all the clay peaks

are substantially enhanced after the acetate treatment. The difference is most

noticeable with palygorskite, which is in some cases only detectable after acetate

treatment. The apparent absence of Mg-calcite and dolomite, and abundance of

sepiolite in the calcretes of coastal Namaqualand suggests that this Mg-rich clay

mineral is the main Mg-bearing phase.

Deformation (pseudo-anticlines) in the calcrete appear to result primarily from

the displacive effect of calcite crystallization. Although evidence of shrink/swell
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behaviour is present in the form of accommodating planes, it does not appear to

be as volumetrically significant as displacive calcite. Clay minerals are closely as-

sociated with the displacing calcite, suggesting that clay neoformation/illuviation

may contribute to displacement and folding, but calcite crystallization seems to

be mainly responsible for opening fractures.

Both biotic and abiotic factors contributed to calcrete formation, although abi-

otic alpha-fabric seems dominant in the mature calcrete horizon, and beta-fabric

in calcareous nodules in a calcic B horizon above calcrete.

There is evidence for the association of sepiolite/palygorskite with the organic

calcite structures. Since the micromorphology of acicular calcite can sometimes

resemble the acicular clay minerals sepiolite or palygorskite, EDAX analyses and

HCl-etching is necessary to distinguish the two. In this system, the distinction is

made easier by the fact that sepiolite (and to a lesser extent palygorskite) are the

main Mg-bearing phases, since the XRD analysis revealed the main carbonate

phase in the calcretes is low-Mg calcite.
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Chapter 4

Clay mineral occurrences in

Aridisols on the west coast of

South Africa (Namaqualand)

4.1 Introduction

Namaqualand is an arid region of low agricultural and habitation density, and

so information on the soils and their clay mineralogy is sparse in comparison

to other areas in South Africa. The Namaqualand coastal plain experiences an

extremely high evaporation rate (about 2 m per year) and less than 150 mm an-

nual winter rainfall that is supplemented by regular fog occurrences (Eckardt and

Schemenauer, 1998; D.B.C.M., 2000; Olivier, 2002). Namaqualand has recently

become the focus of an increasing amount of biodiversity and ecological research

(ranging from publications such as Cowling and Pierce, 1999; to a Special Is-

sue of the Journal of Arid Environments, 2007). Rehabilitation efforts after the

hundred or so years of mining, coupled with the increasing interest in ecology

and biodiversity, has prompted a recognition of the soils as a substrate for plant

growth and has motivated studies such as those by Prinsloo (2005), Francis et al.

(2007) and Chapter 2.

It is this arid climate which has allowed the formation of large amounts of the

relatively rare soil clay minerals sepiolite and palygorskite. Singer et al. (1995)

studied the mineralogy of Namaqualand soils from the Land Type survey (Land



91

Type Survey Staff, 1987), and found that palygorskite dominated the soils inland

of the escarpment whereas sepiolite was more prominent in the clay fraction of

soils from coastal areas due to marine-influenced elevation of magnesium levels.

Chapter 1 reported occurrences of ‘sepiocrete’ in Namaqualand, horizons which

appear to be cemented by sepiolite. Sepiolite and palygorskite are often reported

from arid region soils and are commonly found in calcretes (Vanden Heuvel, 1964;

Singer and Norrish, 1974; Yaalon and Wieder, 1976; Elprince et al., 1979; Hay

and Wiggins, 1980; Singer and Galan, 1984; Singer, 1989; Blank and Fosberg,

1991; Monger and Daugherty, 1991; Verrecchia and Le Coustumer, 1996; Singer,

2002; Neaman and Singer, 2004; Owliaie et al., 2006), southern African examples

of which are described by Netterberg (1969) and Watts (1980). Sepiolite is

considered to be rarer in the pedogenic environment than palygorskite (Singer

and Galan, 1984; Singer, 1989; Singer, 2002), although Hay and Wiggins (1980)

found sepiolite to be the most common clay mineral associated with calcretes in

the southwestern USA with palygorskite notably absent.

Kerolite is a hydrated and disordered talc-like mineral (Mg3Si4O10(OH)2.nH2O)

with a basal spacing of 0.96 nm, giving a broad diffraction peak at 1.0 nm

(Brindley et al., 1977) that is sometimes found with sepiolite and other Mg-rich

clay phases. Kerolite and randomly interstratified kerolite-stevensite have been

reported to occur with sepiolite (Eberl et al., 1982; Khoury et al., 1982; Hay et al.,

1986; Martin De Vidales et al., 1991, among others). Both Stoessell (1988) and

Léveillé et al. (2002) suggested that the inherent difficulties in its identification

(poor crystallinity and XRD peak overlap with other phases) in mixed mineral

assemblages means it could be overlooked. In spring-related deposits in the

Amboseli Lake Basin on the Kenya-Tanzania border, kerolite appeared often

to have had a sepiolite precursor, and may have formed as weathering product

during a lowering of pH (Stoessell and Hay, 1978; Hay and Stoessell, 1984). Its

stability field is close to that of sepiolite (Stoessell, 1988). Since sepiolite is so

abundant in Namaqualand soils, there is a possibility of kerolite occurring too,

particularly in the fine clay fraction due to the fine, disordered nature of kerolite

(Brindley et al., 1977; Pozo and Casas, 1999). It has not yet been recorded from

a pedogenic environment.

The aims of this Chapter were to evaluate the effect of pretreatments on the se-

piolite and palygorskite peaks; concentrate kerolite if present; examine the clay

mineral associations throughout the profile including the marine parent materi-
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als to establish which phases are inherited; and to examine the morphology and

modes of occurrence of the fibrous clay minerals in Namaqualand soils, especially

for evidence of disintegration or transformation into sheet silicates, since Singer

et al. (1995) concluded that the sepiolite and palygorskite in their study were

in a state of disintegration or transformation into sheet silicates. This study

is relevant to the growing body of literature on sepiolite and palygorskite oc-

currences, particularly the issue of neoformation and transformation, that has

appeared since the findings of Singer et al. (1995) were published (Torres-Rúız

et al., 1994; Sánchez and Galán, 1995; Lopez-Galindo et al., 1996; Jamoussi

et al., 2003; Zaaboub et al., 2005).

4.2 Materials and methods

For analysis of the clay fraction, a subset of 43 samples was selected from those

described in Chapter 2. These were selected to be representative of the hori-

zon types encountered. Sampling was done on the Namaqualand coastal plain,

in two of the mining areas belonging to De Beers Consolidated Mines Ltd -

Namaqualand Mines. These are the Buffels Marine Complex (BMC) in the

Kleinzee-Port Nolloth area, and the Koingnaas Complex (KNC) further south in

the Koingaas-Hondeklip Bay area The location of the study area overlaps with

the north-western coastal area of the region studied by Singer et al. (1995), an

area where they found sepiolite to be dominant. These soils can be classified into

the Aridisol and Entisol orders of Soil Taxonomy (Soil Survey Staff, 1999). The

clay mineralogy of the dorbank (petroduric) and “sepiocrete” horizons was pre-

sented in Chapter 1, and the clay mineralogy of calcretes on the Namaqualand

coastal plain was presented in Chapter 3. Profile descriptions and sampling de-

tails of the samples used in this Chapter are in Chapter 2. A summary of the

landscape, climate and vegetation is in Desmet (2007) and Chapter 2. Profile

photographs are presented in Appendix A.

The parent material comprises successive late Tertiary marine packages, each

deposited during sea-level regression (Pether, 1994). The marine packages are

arranged en echelon down the bedrock gradient, from oldest and highest inland

to youngest and lowest at the coast. Each package is named after the elevation

of its transgressive maximum as represented in the Hondeklip Bay area (Pether,
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1994; Pether et al., 2000). The 90 m package is ca. 18 - 16 Ma, the 50 m package

early Pliocene, and the 30 m package not well constrained, but ca. 3.3 Ma or

younger (Pether et al., 2000). The 30 m package is transgressed by younger

littoral deposits up to about 10 m a.m.s.l. (Pether et al., 2000). The sand

fraction is dominated by quartz and feldspar, lesser glauconite and phosphatic

shell fragments, and variable amounts of heavy minerals (garnet, magnetite,

ilmenite, biotite, sphene, amphibole, epidote, kyanite (rare) and zircon (rare))

(Pether, 1994). The marine packages are capped by recent aeolian deposits.

Coastal dunefields originate at the mouth of the rivers and extend inland in a

northerly direction. In places, older soil profiles are overlain by aeolian sands.

Soil formation has taken place in aeolian, ‘sheetwash’, and marine-deposited

sediments.

Some of the marine sediments rest on kaolinized paleochannel sediments, de-

scribed in detail by Pether (1994), who concluded that they were laid down as a

quartzo-feldspathic sediment in a fluvial environment, and subsequently deeply

weathered, with extensive alteration of feldspar to kaolinite. These channel sedi-

ments are described in greater detail by Tankard (1966), Tankard (1975), Pether

(1994), and Pether et al. (2000). De Villiers and Cadman (2001) favoured an

early Tertiary age for this channel north of the Swartlintjies River, although it

may also contain reworked Cretaceous material (Pether et al., 2000; De Villiers

and Cadman, 2001).

Uncoated fragments and thin sections were observed before and after etching in

1M HCl using low vacuum SEM-EDX with a Philips Xl30 ESEM. High vacuum

SEM was done on Au-coated fragments using a Leo 1430VP SEM-EDX system.

For XRD analysis of the clay fraction, the bulk samples were air-dried, crushed

and passed through a 2 mm sieve. To minimize shattering of pebbles/gravel, the

>2 mm cement was sorted from the >2 mm pebbles and recrushed. To compare

the effect of milling and acetate pretreatments, selected samples were also milled

for 5 minutes using a stainless steel ball mill, and then treated with a pH 5

sodium acetate buffer for a short time (following the findings of Vanden Heuvel,

1964) until effervescence ceased, and then concentrated by centrifugation. This

was repeated with a fresh pH 5 sodium acetate buffer solution until no further

effervescence was observed in the sample. The <2 µm fractions of the (a) sieved,

(b) milled, and (c) milled and acetate-treated subsamples were then separated

by dispersion (shaking briefly by hand, raising the pH to approximately 10 with
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Na2CO3) and settling. The 1 to 0.08 µm and <0.08 µm fractions were separated

by centrifugation from the <2 µm fraction. The clay suspension was flocculated

by addition of MgCl2 after lowering the pH to 5 to 7 with HCl to prevent the

precipitation of brucite and/or clay destruction. The clay suspension was then

Mg-, Ca- or K-saturated, concentrated by centrifugation, and sedimented (or

smeared, many of the sepiolite-rich samples developed ‘mudcracks’) onto a glass

slide. XRD analyses were done with a stepsize of 0.05 degrees and steptime of

40 seconds, using a Bruker D8 Advance Powder Diffractometer with a graphite

monochromator, 40 kV and 40 mA. Ethylene glycol was sprayed lightly onto the

surface of the Mg-saturated sample slides. After analysis, the ethylene glycollated

1 to 0.08 µm and <0.08 µm samples were allowed to remain under ethylene

glycol for 10 weeks, and then re-analysed to allow comparison to the findings of

Brindley et al. (1977), Hay et al. (1995) and Léveillé et al. (2002) for kerolite. For

samples where glycerol was used, it was by gaseous diffusion. NaN3 was added

to the 1 to 0.08 µm and <0.08 µm suspensions as a bacteriocide during storage.

TEM-EDX analyses of clay fractions were done using a Philips CM120 Biotwin

equipped with EDX detector. Total chemical analysis was done on the Mg- and

K-saturated clay fractions, using fused glass beads in a Philips 1404 Wavelength

Dispersive XRF spectrometer, fitted with a Rh tube.

4.3 Results and discussion

4.3.1 Effect of milling and acetate pretreatments on clay

fraction

Milling before separating the clay fraction substantially reduced the sharpness of

the peaks. Although the < 2 mm samples were milled before acetate treatment

in order to liberate calcite-cemented clays, the clay peaks were substantially

enhanced after the acetate treatment (Figures 4.1(a), 4.2). This suggests that

the clays are aggregated with calcite. The calcite aggregates binding the clays

appear to be finer than the size fraction which can be liberated with ball milling,

because it is only in the <0.08 µm clay fraction that acetate treatment appeared

not to liberate any different clays (compare the <0.08 µm with the 1 to 0.08 µm

and <2 µm traces in Figure 4.2).
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This was also noted in Chapter 3, where the difference was most noticeable with

palygorskite and is consistent with Vanden Heuvel’s (1964, p. 201) observation

that palygorskite showed “greater immobilization” by the calcite aggregates than

sepiolite. The <0.08 µm is the only size fraction where palygorskite could be

detected before acetate treatment (Figure 4.2). It may be that palygorskite

appeared to be more closely associated (aggregated) with calcite because it is

finer than the other clay minerals, and finer than the size fraction that can be

liberated by ball milling.

4.3.2 Clay mineral variations in soil profiles

Table 4.1 shows the dominant clay phases in the <2 mm fraction for representa-

tive soil profiles. The corresponding XRD traces are presented alphabetically in

Figures 4.1 to 4.6. Sepiolite occurs across all packages and elevations up to 99 m

a.m.s.l., the farthest sampled from the sea (about 30 km). Neither sepiolite nor

palygorskite are present in the marine sediments, which contain only smectite,

mica, and kaolinite in varying proportions. Although the appearance of sepiolite

and palygorskite seems to be limited to subaerially-reworked material, not all

aeolian material contains sepiolite/palygorskite (profiles LKC1-5 and SL4-1 in

Figures 4.4 and 4.6, for example). It is therefore unlikely that the sepiolite is

inherited from either the marine or aeolian parent materials. The appearance of

sepiolite and palygorskite are most consistently associated with the presence of

calcite in the soil profile. The presence of high angled peaks in 6869/4 and /iv

(Figures 4.1(a), (b)) suggests either that some interlayers are present, or that

these may be reflections of sepiolite.

Visual evaluation of the peak intensities in Figures 4.1 - 4.6 suggests that sepio-

lite is more abundant than palygorskite. The relative abundances of sepiolite and

palygorskite in Table 4.1 were estimated using the 0.644 nm peak of palygorskite

in addition to the 12.1/1.048 nm peak ratio, since the 0.644 nm peak does not

overlap with other phases, and its intensity is medium strong (Bradley, 1940),

increasing if the sample is oriented (Nathan et al., 1970, in Singer, 1989). How-

ever, in a mixture of phases the quantity of sepiolite could be overestimated and

that of palygorskite underestimated using peak height or area of the main reflec-

tion line, since even in low concentrations sepiolite might show high diffraction

intensity (Ouhadi and Yong, 2003). Despite this, the dominance of sepiolite over
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Table 4.1: Clay mineral variation down profiles. Abundances were visually es-
timated from peak sizes: ‘xxx’ dominant peak; ‘x’ trace or only in <0.08 µm
fraction; ‘-’ not detected. Traces shown in Figures 4.1 to 4.6.

Depth Horizon † Facies ‡ Estimated React Smectite 1.4 nm Sepio- Palygor- Mica/ Kaolinite Inter-
(m) Texture ‡ HCl lite skite Illite stratified
6869: Prieska Form (Orthic A - Neocarbonate B - Hardpan carbonate).  KNC, 30 m package, 41 m a.m.s.l. (GPS), footslope.
0- /i A1 Regic sand (Orthic A) Aeolian dune Med. sand Calc.
0.45- /ii A2 Regic sand               Aeo lian deflation Med. sand Calc.
0.5- /iii II B1 Neocarbonate B Aeolian? Med. sand Calc. - - XXX X - X -
0.6- /iv II B2 Neocarbonate B Aeolian? Lo. sand Calc. X - XXX XX X X ?
0.8 over hardpan carbonate
New profile, mining excavation, upper material removed. Askham Form (Orthic A - Yellow-brown apedal B - Hardpan carbonate). 
?-0.32 /4 III B Yellow-brown apedal B Obscured Lo. sand <1µm X XXX X XX X ?
0.32- /5 IV C1 Hardpan carbonate U. shoreface Lo. c. sand Calc. X X X X -
1- /6 IV C2 Marine deposit U. shoreface C. sand -
6m-9m unit consists of alternate coarser, redder & finer, yellower sedimentary layers.
6-9 /7 V C3 Marine deposit L. shoreface Med. sand - XXX - - - X XX -
6-9 /8 V C3 Marine deposit L. shoreface C. sand - XXX - - - X XX -
9-18m more homogenous texture & colour than 6m-9m. Textural layering not associated with prominent colour contrast.
9-18 /13 VI C4 Marine deposit L. shoreface C. sand -
9-18 /11 VI C4 Marine deposit L. shoreface Med. sand - XXX - - - X X -
18-36 /cc V C5 Gleyed clay Fluvial paleo- (Sa.) clay - - - - - - XXX -
Water dripping out 2-3m above bedrock. channel

AK1/TRIG: Oakleaf Form (Orthic A - Neocutanic B - Unspecified). BMC, 90m terrace, 119 m a.m.s.l. (GPS). Terrain unit: crest.
0- /1 A1 Orthic A, bio crust Aeolian Lo. sand Calc.
0.05- /2 A2 Orthic A Aeolian Lo. sand -
0.3- /3 B Neocarbonate B Aeolian Lo. sand Calc. XBr. - XXX X -
Bedrock from 0.6 m.

AK61H: Coega Form (Orthic A - Hardpan carbonate). BMC, 30m terrace, 28 m a.m.s.l. (GPS), footslope.
0- /4 A Orthic A Aeolian F. sand Calc. Very little clay in horizon -
0.35- /1 II C1 Hardpan carbonate Obscured Calc. XX XXX XX XXX X -
1.05- /2 II C3 Blocky calcretized sed. Marine Calc. cutan
1.55- /3 II C4 Marine deposit Marine -
Bedrock from 2.1 m.

LCK1-5: Namib Form (Orthic A - Regic sand).  KNC, 50 m package, 30 m a.m.s.l. (GPS), footslope-valley bottom.
0- /A A Regic sand (Orthic A) Aeolian Med. sand - Very little clay in horizon X - -
0.3- /B B Regic sand Aeolian Med. sand - - - - - XX - -
1- /1 II B2 Neocutanic B Obscured Med. sand - XX - - - XXX XX -
1.3- /3 II B3 Neocutanic, luvic Obscured Med. sand -
1.9- /4 III C1 Gleyed sand? Obscured Med. sand -
2.4- /6 V C3 Sedimentary? Obscured Med. sand -
3.4- /7 VI C4 Marine deposit U. shoreface C. sand -
Pale sand (LKC1-5/8) interlayered with more orange sand (/9).
5.4- /8 VII C5 Marine deposit L. shoreface Med. sand - XXX - - - - - -
5.4- /9 VII C6 Marine deposit L. shoreface Med. sand - XX - - - - - -
Bedrock from 12 m.

OBT: Prieska Form (Orthic A - Neocarbonate B - Hardpan carbonate). BMC, 95 m terrace, 99 m a.m.s.l. (GPS), crest.
0- /1 rs Aeolian deflation surface Aeolian Med. sand -
0.03- /2 A Orthic A Aeolian Med. sand -
0.25- /3 B Neocarbonate B Aeolian Med. sand - - - XX Br. - - - -
0.45- /4 II C1 Hardpan carbonate Obscured Calc. - - XXX X X - -
1- /5 II C2 Sedimentary? Obscured Lo. sand Occ. calc.
Bedrock not reached.

SL4-1: Pinedene Form (Orthic A-Yellow-brown apedal B-Signs of Wetness). KNC, 30 m package, 46 m a.m.s.l. (GPS), footslope.
0-0.3 /1 A1 Orthic A Aeolian Med. sand - - - - - XX X -
0.3- /2 B1 Yellow-brown apedal B Aeolian Med. sand - - - - - XXX X -
0.5- /3 E Gleyed sand Aeolian Med. sand - - - - - XX X -
0.63- /4 B2 Neocutanic Obscured Med. sand - X - - - XXX XX -
0.8- /5 II B3 Slightly gleyed sand? Obscured Med. sand - - - - - XX X -
0.95- /6 III B4 Pedocutanic Obscured Lo. sand - X - - - XXX XX -
0.97- /7 III B5 Pedocutanic Obscured Calc.
1.22- /8 III B6 Pedocutanic Obscured Lo. sand -
2.45- /9 IV C1 Marine deposit U. shoreface Lo. sand -
3.05- /11 V C2 Marine deposit L. shoreface Med. sand Calc.
Bedrock from 9 m, evidence of wetness.

† Classified according to the Soil Classification Working Group (1991). Roman numerals indicate different sedimentary units.
‡

§  XXX: dominant peak; X: trace/only <0.08 µm fraction; -: not detected.

Br.-broad; c.-coarse; calc.-calcareous; f.-fine; med.-medium; l.-lower; lo.-loamy; occ.-occasional; sed.- sediment; sl.-slight; u.-
upper; v.-very.

--------------Br.--------------

No clay
No clay

-------Br.-------

No clay
No clay

-------Br.-------
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Figure 4.1: (a): XRD traces of clay fraction from profile 6868. Bold lines show
kerolite peak positions. Diff.- diffuse; EG: ethlyene glycol. ‘Milled EG’ and
‘milled acetate EG’ traces identical to ‘<2 µm EG’.
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Figure 4.1: (b): Continued - XRD traces of clay fraction from profile 6868.
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Figure 4.1: (c): Continued - XRD traces of clay fraction from profile 6868.

palygorskite on the coastal plain is consistent with the results of Singer et al.

(1995, p. 45), who found that sepiolite-containing soils were concentrated toward

the coast, and palygorskite-containing soils farther inland.

The XRD traces from two of the horizons (bulk soil) overlying sepiolite-containing

calcretes (AK61H, Figure 4.2; OBT/3, Figure 4.5) and a neocarbonate B hori-

zon over hard rock (AK1/TRIG/3, Figure 4.3) are typified by very broad 1.21

nm and 0.4 to 0.374 nm peaks, suggesting a very fine or poorly crystalline se-

piolite phase. TEM analysis of OBT/3 (Figure 4.7(a)) and 6869/iv (Figure

4.10) showed an amorphous phase in addition to crystalline sepiolite and mica.

The broad rise in the 0.4 to 0.374 nm region also occurred in traces with a

sharper sepiolite peak, such as the calcrete horizon OBT/4. This suggests there

is an amorphous silica component in addition to sepiolite in the clay fraction. In

AK1/TRIG/3 (Figure 4.7(b)), acicular crystals are apparently developing from

an amorphous phase, although well crystallized sepiolite is also present (Figure
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Figure 4.2: XRD traces of clay fraction from profile AK61H. Bold lines show
kerolite peak positions. Diff.-diffuse; EG: ethlyene glycol. ‘Milled EG’ traces
identical to ‘milled acetate EG’.
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Figure 4.3: XRD traces of clay fraction from profile AK1/TRIG. Bold lines
show kerolite peak positions. Diff.-diffuse; EG: ethlyene glycol.

4.7(c)). The amorphous silica may be available for sepiolite formation via a pro-

cess similar to that described by Dı́az Torres et al. (1990), in which sepiolite and

palygorskite fibres develop from silica gel, or as suggested by Blank and Fosberg

(1991), by which sepiolite may form via the addition of Mg to opal.

The hardpan carbonate horizon 6869/5 (Figure 4.1(b)) differs from the other

calcrete samples (Figures 4.2, 4.5 and in Chapter 3) in that there is a broad

1.4 nm non-expanding phase dominant and a less dominant 1.21 nm sepio-

lite peak. Chlorite occurred in the palygorskite-containing soils examined by

Singer et al. (1995). Hay and Wiggins (1980), however, found some samples in

the southwestern USA that showed a delicate fibrous structure under TEM, but

which gave a broad peak from 1.26 to 1.4 nm that was unchanged with ethylene

glycol and heating to 300 ◦C, and only slightly reduced by heating to 500 ◦C.

There is no discernible trend in mica abundance with depth (Table 4.1). In the

Namaqualand soils, the mica is likely to be detrital. Mica is a common component

of the bedrock in the region and is also detectable macroscopically in many of the

marine deposits, especially the lower shoreface facies. The aeolian deposits are
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Figure 4.4: XRD traces of clay fraction from profile LKC1-5. Bold lines show
kerolite peak positions.

generally derived from the mechanical reworking of this marine material (Tankard

and Rogers, 1978; Harmse and Swanevelder, 1987; Pether, 1994). Bühmann et al.

(2004) found for soils in the Western Cape (Mediterranean climate) that mica

was generally inherited from the parent material, and decreased in proportion

to present day mean annual rainfall. Mica neoformation, however, can also take

place under 550 mm annual rainfall, provided soils have a pool of exchangeable

K and swelling clays as a precursor phase (Bühmann et al., 2004).

Smectite generally increases downwards (Table 4.1) dominating the clay fraction

of the marine sands at the base of the profiles. In the case of LKC1-5, a non-

calcareous, non-sepiolite/palygorskite bearing profile, it appears to increase at

the expense of mica/illite (Figure 4.4).
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Figure 4.5: XRD traces of clay fraction from profile OBT. Bold lines show
kerolite peak positions. Diff.-diffuse; EG: ethlyene glycol.

There is a slight increase in the kaolinite content down the profile. The basal

parts of the regolith profile are marine sands, which are older than the subaerially

reworked upper parts. The basal parts are also wetter, with many profiles having

water running out just above or on bedrock. The leaching process in the basal

part of the regolith has therefore been more intense than in the upper parts. This

is particularly evident in profile 6869, where the lowest part of the profile consists

of much older kaolinized fluvial sediments in a bedrock channel underlying the

marine sands. Pether (1994) concluded that the channels were laid down as a

quartzo-feldspathic sediment in a fluvial environment, and subsequently deeply

weathered, with extensive alteration of feldspar to kaolinite. De Villiers and

Cadman (2001) favoured an early Tertiary age for this channel north of the

Swartlintjies River, although it may also contain reworked Cretaceous material.

The overlying marine sediments of profile 6869 are from the 30 m package, the

age of which is not well constrained, being estimated at ca. 3.3 Ma or younger

(Pether et al., 2000). Bühmann et al. (2004) found for soils in the Western Cape

that the transformation of chlorite to kaolinite was the most significant pedogenic
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Figure 4.6: XRD traces of clay fraction from profile SL4-1. Bold lines show
kerolite peak positions.
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(a) <2 µm (milled; acetate-treated) fraction from
OBT/3 (Figure 4.5): mica (platy); sepiolite
(acicular); amorphous phase (center); aggregated
silica(?) spheres. Scale bar 500 nm.

(b) 1 to 0.08 µm fraction from AK1/TRIG/3 (Figure
4.3). Scale bar 200 nm.

(c) Same as (b): mica (platy); sepiolite (acicular);
aggregated silica (?) spheres. Scale bar 500 nm.

Figure 4.7: TEM images of clay fractions.
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process in soils derived from metamorphic rocks, and that the kaolinite content

was poorly related to the present day mean annual precipitation, and more likely

associated with the chlorite content in the parent rock. Although the soils in the

region of the present study on the Namaqualand coast were not derived from

metamorphic rock directly, the bedrock underlying the marine deposits on which

the soils formed is metamorphic (see references in Chapter 2), and so this theory

of kaolinite formation may also apply here.

4.3.3 Kerolite

Kerolite has broad asymmetric XRD peaks at approximately 1.0 and 0.45 nm,

and a less intense 0.32 nm peak (Brindley et al., 1977; Léveillé et al., 2002).

These peaks overlap with other phases present in the samples: the palygorskite

1.048 nm and mica 1.0 nm peaks; the sepiolite 060 and palygorskite 040 peaks at

0.449 nm (Bradley, 1940; Brindley, 1959); and the palygorskite 400 peak at 0.323

(Bradley, 1940) or 0.317 nm (Christ et al., 1969). As a result, all samples with

a mix of these phases show peaks in the correct position for kerolite (Figures

4.1(a) and (b), 4.2, 4.3, and 4.5). These patterns show no change in the 1.0

nm peak after ethylene glycol treatment for ten weeks, which is similar to the

findings of Léveillé et al. (2002), but unlike that of Brindley et al. (1977) and Hay

et al. (1995). It may be hypothesized that due to the fine, disordered nature of

kerolite (Brindley et al., 1977; Pozo and Casas, 1999), its presence would be better

resolved by a study of the fine clay fraction. The concentration of palygorskite in

the fine clay fraction, however, means that this was not the case. TEM data were

also inconclusive, with both Figures 4.7(a) and (b) (corresponding to the XRD

traces of 4.3 4.7(a)), for example, showing poorly crystalline material, although

Figures 4.10(a) and (b) do resemble the “colloform aggregates” of Pozo and Casas

(1999, p. 402).

4.3.4 Chemical composition of clay fraction

Trends in MgO, Al2O3 and SiO2 (Figure 4.8(a)) show that Namaqualand soil

clay fractions lie on a mixing line between sepiolite and mica end-members, with

a contribution from smectite. This is consistent with the XRD and TEM results.

The soils have a similar chemical composition to the Namaqualand sepiolite-

bearing soils studied by Singer et al. (1995).
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The influence of mica/illite on the clay fraction chemistry is reflected by the

positive correlation between K2O and Al2O3 (Figure 4.8(b)). The trend is also

observed in the K-saturated soils where it is displaced to higher K2O values, and

it is very similar to the trend displayed by the data of Singer et al. (1995) for

sepiolite-containing soils from nearly the same area. The palygorskite-containing

soils of Singer et al. (1995) (from an area more inland of the present study area)

are displaced to higher Al2O3 values in comparison to both the soils from this

study, and the sepiolite-containing soils from their study. This displacement is

more pronounced at lower K2O values, and is consistent with the elevated Al2O3

contents of pure palygorskite compared to pure sepiolite (Figure 4.8(b)).

The K2O content of the Mg-saturated clay fractions ranges from 0.7 to 3.57 %.

This is equivalent to 10 to 50 % illite, following the method of Singer et al. (1995)

in using 7.1 % K2O for average illite and assuming that all the K2O is attributed

to mica/illite, since the XRD traces display no prominent feldspar peaks. If,

however, the main potassium-bearing phase is mica rather than a relatively K-

depleted illite, the maximum calculated mica content is 38 % (using 9.35 % K2O

as the average mica from the mean K2O content of the mica analyses listed in

Figure 4.8).

The present data show a good correlation between Fe2O3 and TiO2 (Figures

4.8(c) and (d)). This can be attributed to the presence of mica in the soils, since

the soil clays fall on the mica Fe2O3-TiO2 trendline (Figure 4.8(d)) and show

similar Fe2O3/TiO2 ratios to mica (compare the trendline in Figure 4.8(c) for

the sepiolitic and non-sepiolitic soils with the trendline for single mineral micas

shown in Figure 4.8(d)). In contrast, pure kerolite, sepiolite, palygorskite (Figure

4.8(c)) and smectite (Figure 4.8(d)) show a poor correlation between Fe2O3 and

TiO2.

The present data suggest the Fe2O3 in Namaqualand soils is due to the mica

content. This is in contrast to the conclusion of Singer et al. (1995), that

Namaqualand sepiolite is a ferric sepiolite. Their conclusion was based on XRF

data from whole clay fractions that were CBD-pretreated to remove free iron

oxides. Although illite was noted to be present, Singer et al. (1995) did not

publish the TiO2 content of their soils. Also, the interpretation that Fe2O3

in Namaqualand soils is due to the mica content is more consistent with the

results of Galan and Carretero (1999), who found sepiolite to be a true triocta-
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Figure 4.8: Trends in total element composition of Mg- and K-saturated clay
fractions from Namaqualand soils compared to pure minerals. (a) to (c): R2

trendlines based on sepiolitic and non-sepiolitic soils from the present study;
(d) R2 trendline based all the mica data. Note scale differences in (c) and (d),
where (c) shows data from this study plotted with kerolite, sepiolite, palygorskite,
and (d) plotted with mica and smectite Sepiolite (Stoessell and Hay, 1978; Stoes-
sell, 1988; Singer, 1989), kerolite (Brindley et al., 1977; Stoessell and Hay, 1978; Eberl
et al., 1982; Stoessell, 1988; Léveillé et al., 2002), palygorskite (Singer, 1989), and mica and
smectite compiled by Deer et al. (1992) - rose muscovite , muscovite, glauconite, phlogopite,
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hedral mineral, very pure (near end-member) with negligible structural substitu-

tion and eight octahedral positions filled with magnesium, close to Brauner and

Preisinger’s (1956) theoretical formula Si12Mg8O30(OH)4(OH2)4.8H2O. Galan

and Carretero’s (1999) EDX analyses of sepiolite showed no structural Al and

Fe, and an octahedral occupancy close to 8. They attributed the presence of

some Al, Fe, K or Ca in some of the determinations to minor impurities.
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4.3.5 Sepiolite/palygorskite modes of occurrence

Chapter 3 showed that fibrous clay minerals in Namaqualand calcretes are associ-

ated with mineralized filaments and needle fibre calcite, and also occur as frayed

mats composed of woven fibres. ‘Fraying’ is a very common texture in sepio-

lite/palygoskite occurrences. It is either reported from a sheet that is composed

of fibres (Khoury et al., 1982; Jamoussi et al., 2003), or a sheet which appears to

be solid (such as Monger and Daugherty, 1991; Pozo and Casas, 1999). Suarez

et al. (1994) showed the fraying observed under TEM to be illite particles evolv-

ing laterally into palygorskite fibres.

SEM analyses show that much of the sepiolite/palygorskite in this study occurs

as fringed sheets (Figure 4.9(a), (b)). These are found coating (rather than

evolving from) mica/illite particles (Figures 4.9(c)-(d)), as free-standing mats

such as those shown in Chapter 3, and are common on the grain-side of cutans

(for example Figures 4.9(e)-(f)).

While the textures in Figures 4.9(b)-(f) suggest illuviation of the fibrous clay

minerals, another explanation may be that sites such as that immediately adja-

cent to silicate grains have the highest concentration of silica for their formation.

Many examples of etched and embayed silicate grains have been observed in this

study. Monger and Daugherty (1991) concluded that silica released from silicate

grains by pressure solution during calcite crystallization was required for paly-

gorskite formation in New Mexico aridisols. While Figure 4.9(d) shows distinctly

that mica is not evolving laterally to a fibrous mineral, Figure 4.9(a) shows fi-

bres developing from a wavy sheet-like mineral. This resembles the SEM images

of mixed-layer kerolite/smectite associated with sepiolite from the Amargosa

Desert, Nevada (Eberl et al., 1982, p. 324) and the Amboseli Basin, Tanzania-

Kenya (Hay et al., 1995, p. 461).

4.3.6 Palygorskite/sepiolite transformation

In any discussion of sepiolite or palygorskite, particularly palygorskite and its

origins, the issue of transformation to/from a sheet silicate becomes relevant: se-

piolite/palygorskite being transformed to smectite (Bigham et al., 1980; Golden

et al., 1985), palygorskite fibres developing from an illite (Suarez et al., 1994),
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(a) Fringed sheets, etched 15 sec. in 1M
HCl. Scale bar 2 µm.

(b) Fringed texture. Scale bar 2µm.

(c) Magnification of (b), showing fibres
coating mica grains and fringed texture.
Scale bar 1µm.

(d) Fibres on mica grain (EDX analysis not
shown), but no fringing. Scale bar 2µm.

(e) Sepiolite/palygorskite cutan. Scale bar
100 µm. Fe from sample-holder.

(f) Magnification of cutan in (e). Scale bar
1 µm.

Figure 4.9: SEM images of sepiolite/palygorskite occurrences in calcareous nod-
ules from 6869/iv (XRD traces shown in Figure 4.1(a)).
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or no evidence of a solid state smectite-palygorskite transition (Verrecchia and

Le Coustumer, 1996; Akbulut and Kadir, 2003). Jones and Galan (1988, p.

654 to 657) reviewed the issue of transformation vs. direct precipitation in se-

piolite/palygorskite genesis. Recent studies using trace elements and isotopes

favoured a direct precipitation of sepiolite, and a transformation or dissolution-

reprecipitation of illite and/or smectite as a mechanism for palygorskite forma-

tion (Torres-Rúız et al., 1994; Sánchez and Galán, 1995; Lopez-Galindo et al.,

1996; Jamoussi et al., 2003; Zaaboub et al., 2005).

This study has found no TEM evidence to favour a hypothesis for fibrous mineral

degradation to sheet silicates, as was suggested Singer et al. (1995). Figure 4.7(b)

shows what seems to be the formation of sepiolite, and Figures 4.7(c), 4.10(a) and

4.10(b) show what seems to be well crystalline sepiolite/palygorskite, the only

exception being where a fibre bundle was burned by the electron beam (Figure

4.10(c)). Singer (1989) noted that the variation in morphology of sepiolite and

palygorskite crystals under TEM is greater within than between the species, and

suggested that may be due to different pretreatments used, or to transport in the

case of detrital clays. Owliaie et al. (2006) found three morphological forms of

palygorskite in relation to the degree of weathering: i) sheaves or bundles repre-

senting the least weathering; ii) “split” bundles and sharp-pointed crystals, some

of which may have been transformed to other clay minerals such as smectite; and

iii) individual fibres with rounded tips and no sharp edges, indicating maximum

weathering.

The TEM images (Figures 4.7 and 4.10) often show sepiolite/palygorskite to

occur as flat aggregates giving the appearance of frayed edges, as well as sin-

gle fibres: they resemble the palygorskite “nanofibres” and “fibre bundles” of

Esquivel et al. (2005), the palygorskite textures found by Verrecchia and Le

Coustumer (1996) and Khademi and Mermut (1999). None of these authors

attributed the textures to transformation into a sheet silicate. The large fibre

bundle in Figure 4.10(c) resembles the TEM image of sepiolite precipitated by

Siffert and Wey (1962). The fibre bundles are not only evident in the images of

the mechanically and chemically treated clay extracts: an in situ fibre bundle in

an etched calcareous nodule is shown in Figure 4.10(d).
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(a) TEM: 1 to 0.08 µm fraction. Scale bar
200 nm.

(b) TEM: <0.08 µm fraction. Scale bar 200
nm.

(c) TEM: <0.08 µm fraction; beam damage
arrowed. Scale bar 500 nm.

(d) SEM: palygorskite/sepiolite bundle in
calcareous nodule etched 15 sec. in 1M HCl.
Scale bar 1 µm.

Figure 4.10: TEM images of sepiolite/palygorskite fibres and fibre bundles from
6869/iv (XRD traces shown in Figure 4.1(a)).

4.4 Conclusions

Milling before separating the clay fraction reduced the sharpness of all peaks.

Acetate treatment after milling substantially enhanced the clay peaks, which

suggests that the clays are aggregated with calcite. The calcite aggregates bind-

ing the clays appear to be finer than the size fraction that can be liberated with

ball milling, because it is only in the <0.08 µm fraction that acetate treatment

appeared not to liberate any further clays.

The <0.08 µm fraction is the only size fraction in which palygorskite could be

detected before acetate treatment. It may be that it is finer than the other clay
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minerals, and finer than the size fraction which can be liberated with ball milling.

Sepiolite was difficult to distinguish from palygorskite in both TEM and SEM

images and so this could not be visually confirmed.

Sepiolite is more prominent than palygorskite in the XRD traces. It is unlikely

that these fibrous clay minerals are inherited from either the marine or aeolian

parent materials, because neither sepiolite nor palygorskite are present in the

marine sediments (which contain only smectite, mica, and kaolinite in varying

proportions), and although the appearance of sepiolite and palygorskite seems

to be limited to subaerially-reworked material, not all aeolian material contains

sepiolite/palygorskite. Sepiolite and palygorskite are most consistently associ-

ated with the presence of calcite in the soil profile. Sepiolite occurs across all

packages and elevations up to 99 m a.m.s.l., the farthest sampled from the sea

being about 30 km inland.

There is little trend in mica abundance with depth. In the Namaqualand soils,

the mica is likely to be detrital - it is a common component of the bedrock

in the region, and also detectable macroscopically in many of the marine de-

posits, especially the lower shoreface facies. Smectite content generally increases

downwards, and dominates the clay fractions of the marine sands at the base of

the profiles. In the case of LKC1-5, a non-calcareous, non-sepiolite/palygorskite

bearing profile, it appears to increase at the expense of mica/illite. There is a

slight increase in the content of kaolinite down the profile. The basal portion of

the regolith profile comprises marine sands which are older than the subaerially

reworked upper parts. The lower parts are also wetter, with many profiles hav-

ing water seepage above the bedrock where the leaching process has been more

intense and protracted than in the upper parts.

Some SEM images show fibres developing from a wavy sheet-like mineral. These

resemble the SEM images of mixed-layer kerolite/smectite associated with sepi-

olite from the Amargosa Desert (Nevada) and the Amboseli Basin (Tanzania-

Kenya). This study was not able to find conclusive evidence for or against the

presence of pedogenic kerolite in the clay fraction, although it does not appear

to be a dominant phase in the less than 2 µm fraction.

The positive correlation between K2O and Al2O3 is a reflection of the ubiquitous

mica in the sediments. The K2O content of the Mg-saturated clay fractions

ranges from 0.7 to 3.57 %, equivalent to 10 to 50 % illite or up to 38 % mica in

the clay fractions.
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Trends in MgO, Al2O3 and SiO2 show that the soil clay fractions lie on a mixing

line between sepiolite and mica end-members, with a contribution from smectite.

This is consistent with the XRD and TEM results.

There is a strong correlation between Fe2O3 and TiO2. This can be attributed to

the presence of mica in the soils, since the soil clays fall on the mica Fe2O3-TiO2

trendline with similar Fe2O3/TiO2 ratios to mica, rather than a ferric sepiolite.

There was no TEM evidence of fibrous mineral degradation to sheet silicates, nor

for the evolution of mica laterally to a fibrous mineral. SEM analyses show that

much of the sepiolite/palygorskite occurs as fringed sheets, but higher magnifica-

tion often reveals these sheets to be composed of fibres. These are found coating

(rather than evolving from) mica/illite particles, as free-standing mats, and are

common on the grain-side of cutans. Some of these textures suggest illuviation

of the fibrous clay minerals, but another explanation may be that sites such as

that immediately adjacent to silicate grains have the highest concentration of

silica for their formation. One TEM image shows what was interpreted to be

acicular crystals developing from an amorphous phase, although well crystalline

sepiolite was also present.
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Chapter 5

Brine evolution and geochemical

barriers: mineral formation in

Namaqualand soils

5.1 Introduction

Pedogenic sepiolite dominates the clay fraction of calcareous soils on the Namaqua-

land coastal plain, sometimes accompanied by palygorskite (Singer et al., 1995,

and Chapter 4). The occurrence of sepiolite in soils, especially as a dominant

mineral, is generally reported to be rare except for some calcic and petrocalcic

horizons. It is more common in arid-region alkaline lake sediments such as in the

Tertiary Madrid Basin (Torres-Rúız et al., 1994; Sánchez and Galán, 1995; Lopez-

Galindo et al., 1996) and Tunisian sequences (Jamoussi et al., 2003; Zaaboub

et al., 2005). This is an environment which in some cases is difficult to distin-

guish from the pedogenic (Singer, 1989).

The genesis of both sepiolite and palygorskite requires solutions with high pH,

soluble Mg and Si. Palygorskite requires additional Al. Sepiolite requires a

slightly higher pH and higher (Mg+Si)/Al than palygorskite (Jones and Galan,

1988, p. 664). This Al for palygorskite formation may be obtained through a

pre-existing sheet silicate, possibly through a dissolution-reprecipitation mech-

anism (Elprince et al., 1979; Galan and Ferrero, 1982; Singer, 1989; Jones and

Galan, 1988; Lopez-Galindo et al., 1996). Jones and Galan (1988, p. 663) noted
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that the water-accommodating structure of sepiolite is more suited to direct

precipitation from solution than that of palygorskite. Some authors, however,

have favoured the idea of a neoformation of palygorskite: Singer and Norrish

(1974), for example, found no precursor minerals such as smectite, and Mon-

ger and Daugherty (1991) favoured neoformation of palygorskite based on its

morphology. Recent trace element and isotopic data, however, have tended to

show that palygorskite is transformed whereas sepiolite is neoformed. Sánchez

and Galán (1995) found that palygorskite was formed by transformation of il-

lite and smectite involving reaction with Mg, and sepiolite was a neoformation

product favoured by evaporation of silica- and Mg-bearing waters. Zaaboub

et al. (2005) showed that sepiolite would have precipitated directly in lacustrine,

playa-lake or sebka environments under alkaline conditions, high Si, high Mg and

low Al activity; whereas palygorskite would have formed by transformation of

already existing illite and/or smectite type aluminosilicates in solutions in equi-

librium with isotopically heavier, and therefore more evaporated, solutions than

the sepiolite.

In the pedogenic setting, Bouza et al. (2007) concluded that the association

of calcite, fluorite, sepiolite, and possibly opal-CT in Argentinian Aridisols indi-

cated a successive precipitation of these minerals under alkaline conditions during

evaporation. Singer and Norrish (1974), considering occurrences of palygorskite

in Australian soils, suggested that a soil solution having a similar composition to

that of lakes from arid regions where palygorskite typically occurs, would itself

constitute a suitable medium for palygorskite formation. Mineral stability dia-

grams have subsequently been applied to the genesis of sepiolite and palygorskite

in soil environments (Singer and Norrish, 1974; Elprince et al., 1979; Fernandez-

Marcos et al., 1979; Monger and Daugherty, 1991; Ducloux et al., 1995; Bouza

et al., 2007).

Coastal Namaqualand soils experience greater evaporation than precipitation,

and exhibit macroscopically many of the typical evaporite minerals (calcite, gyp-

sum, halite). The presence of eluvial and bleached subsurface horizons, and

wetness above layers of reduced permeability, suggest the presence of (tempo-

rary) subsurface water (Chapter 2 and Francis et al. (2007)). Also, many of

the profiles have a calcrete horizon (with abundant sepiolite in the clay frac-

tion, and accessory palygorskite) at the transition from the upper, finer aeolian-

deposited sediments, to their underlying coarser upper shoreface marine sedi-
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ments (Chapter 2). This fine-coarse transition has been identified by authors

such as Yaalon and Wieder (1976), Singer (1989), Singer (2002) and Bouza et al.

(2007) as the position at which sepiolite and palygorskite precipitation takes

place, due to temporary waterlogging resulting from the accumulation of water

at the boundary, until it attains the higher fluid pressure needed to fill the larger

pores of the horizon below (Rode, 1969, cited by Yaalon and Wieder (1976)).

The soil mantle in an arid environment is analogous to a closed basin in that

it loses more water by evaporation than it loses by hydraulic flow. Although

Chapter 2 showed the presence of preferential vertical water movement through

the regolith to bedrock, this loss of water through evaporation as the dominant

mechanism of mineral formation is evident in the accumulation of evaporite min-

erals (ranging in the Namaqualand soils from halite and gypsum to calcite and

sepiolite). The upward movement of water (vapour) through the soil due to the

nocturnal chilling of the surface was demonstrated by (Prinsloo, 2005) and is

outlined by Francis et al. (2007). The presence of these evaporite minerals will

influence the composition of the soil solution (appropriately simulated through

making an extract of a saturated paste) to a degree dependent on both the con-

centration of the more soluble minerals (e.g. halite) and the solubility of the less

soluble minerals (e.g. calcite, sepiolite). This Chapter hypothesized, therefore,

that the permeable upper horizons in the Namaqualand soils constitute a shallow

ephemeral aquifer, which can be considered the pedogenic analogue of the saline

lake environments in which sepiolite typically forms. The chemical evolution of

the soil solution and clay mineral genesis could therefore be considered in the

same terms as the geochemical evolution of closed-basin brines.

The main objective was to apply the principles of brine evolution, particu-

larly those of the Hardie-Eugster model (Hardie and Eugster, 1970; Eugster and

Hardie, 1978; Eugster and Jones, 1979), to sepiolite genesis in arid soils of the

Namaqualand coastal plain, assuming that in equilibrated soil solutions the pre-

cipitating mineral controls the activity of one of its common ions (Kittrick, 1971).

The Hardie-Eugster model was conceptualized for the evolution of closed-basin

brines, and has since been applied to a diverse range of environments, from saline

soil seeps (Timpson et al., 1986) to coastal pans (Smith and Compton, 2004) and

a model of calcrete genesis (Wang et al., 1993).

Evaporite minerals including calcite, gypsum, halite and sepiolite were consid-
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ered by Garrels and Mackenzie (1967), Hardie and Eugster (1970) and Eugster

and Jones (1979) to precipitate from solution during evaporation and evolution

of closed-basin brines. The precipitation of these minerals affects the composi-

tion of the remaining brine in a manner determined by the initial ratio of the

component ions in the solution. Mineral precipitation was considered to con-

stitute an important chemical divide in the evolving composition of the brine,

but it is not the only mechanism which governs chemical fractionation in brines.

Other mechanisms of solute depletion include sorption or exchange reactions on

active surfaces, degassing, and bacterial reduction (Eugster and Jones, 1979).

Conservative solutes, unaffected by such processes, can be used to measure the

concentration effects. Depending on the removal mechanisms involved and their

relative importance, each solute follows a different evolutionary path. Paths for

a specific solute may differ from basin to basin, with the result that solute be-

haviour can be used to delineate the important processes for a particular basin

and aid in unravelling its chemical evolution.

The objective was thus to use the variation in solute composition of equilibrated

saturated paste extracts as a means of understanding the pedochemical history

of mineral precipitation in Namaqualand soils. The present study was limited

to those phases which were observed to be present and have been shown to

be neoformed by precipitating from water: gypsum, halite, amorphous silica,

calcite, dolomite (to represent Mg-rich calcite, even though no dolomite was

detected in the calcretes analysed in Chapter 3), sepiolite and, hypothetically,

kerolite, since its environment of formation is very similar to that of sepiolite

and it was not possible either to confirm or refute its presence (Chapter 4). The

Al-bearing phases that were detected with XRD can all be adequately explained

by mineral transformation or dissolution re-precipitation: palygorskite (Jones

and Galan, 1988; Sánchez and Galán, 1995; Zaaboub et al., 2005), kaolinite

from feldspar weathering (Chapter 2), and smectite from illite/mica (Chapter 4).

Although these transformations can only be achieved in a medium of suitable

composition (Faure, 1998), for the purposes of this thesis only those phases that

are neoformed were considered. Sepiolite was much more prominant on the XRD

traces (Chapter 4) than palygorskite.

Soil solution chemistry is used in this Chapter to refine our understanding of the

origin of sepiolite, and to contrast this with the genesis of other minerals that

formed in the process of evaporation of the soil solution on the Namaqualand
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coastal plain. This Chapter focuses particularly on the genesis of sepiolite, be-

cause of its relative rarity in the soil environment (although reports of it are

increasing) and the uncertainties that sometimes surround its genesis.

5.2 Materials and methods

Fieldwork took place in February 2002. Fourteen soil profiles to bedrock were

examined and sampled, from south of Hondeklip Bay to north of Kleinzee, ap-

proximately 150 km south of the Orange River on the west coast of South Africa.

Samples were taken from the sidewalls of the mining excavations and from soil

pits dug in the undisturbed areas nearby (described in Chapter 2). A summary

of the landscape, climate and vegetation is given by Desmet (2007) and Chap-

ter 2. Profile photographs are presented in Appendix A. The sepiolite on the

Namaqualand coastal plain is clearly pedogenic in origin, since neither sepiolite

nor palygorskite are present in the marine sediments (they contain only smec-

tite, mica, and kaolinite in varying proportions), and although the appearance of

sepiolite and palygorskite seems to be limited to subaerially-reworked material,

not all aeolian material contains sepiolite/palygorskite (Chapter 4). Sepiolite

and palygorskite are most consistently associated with the presence of calcite

in the soil profile. Sepiolite occurs across all packages and elevations up to 99

m a.m.s.l., the farthest sampled from the sea (about 30 km). Saturated paste

extracts were prepared for every sample that was analysed by X-ray diffraction

(Chapters 1, 3, 4). The horizon types and their clay mineralogy are described in

detail in those Chapters.

Saturated pastes were prepared with 300g of < 2 mm material, to which water

(approximately 100g, depending on the clay content of the soil) was added to

form a saturated paste. A subset of samples was duplicated and the saturated

pastes allowed to stand for 6 and 60 hours. There was very little difference in

composition (and resulting saturation indices) after 24 hours of equilibration and

so 24 hours was used for all subsequent samples. Samples were equilibrated at

ambient temperatures and open to gas exchange with the atmosphere, and so

effectively equilibrated with a pCO2 of -3.5 atm. The pH of the saturated paste

was measured directly. The water from the saturated paste was extracted under

vacuum and the following variables analysed: electrical conductivity (EC), using
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a calibrated conductivity meter; alkalinity, by potentiometric titration to pH 4.5

with 0.01M HCl; major cations (Ca2+, Mg2+, K+, Na+) by atomic absorption

spectroscopy; anions (Cl−, F−, NO−
2 , NO−

3 , Br−, and SO2−
4 ) by ion chromatog-

raphy; Si using the blue silicimolybdous acid procedure of Weaver et al. (1968)

(described by Hallmark et al., 1982), and P using the ascorbic acid-molybdenum

blue method of Murphy and Riley (1962).

Square brackets [ ] denote ion activities throughout this Chapter. The saturation

index (SI) is the log(IAP/Keq) for a dissolution reaction (Drever, 1997, p. 25).

When the SI = 0, the ion activity product (IAP) = K eq (the solubility product)

which implies equilibrium with respect to the phase in question. A negative SI

means that the IAP is less than K eq which implies undersaturation of the solution

with respect to the phase, and conversely a positive SI implies supersaturation.

The saturation index (SI) was used in preference to stability diagrams, because

it is a numerical index and allows the variation of mineral stability to be plotted

against an independent salinity variable. Stability diagrams also have the dis-

advantage of requiring assumptions to be made about the activities of accessory

solutes.

Speciation and saturation index calculations were performed with the program

PHREEQC (Interactive Version 2.8.0.0; Parkhurst and Appelo, 1999), run with

the database file phreeq.dat. The solubility equations and equilibrium constants

in phreeq.dat are:

Halite:

NaCl = Na+ + Cl− logK = 1.582 (5.1)

Gypsum:

CaSO4.2H2O = Ca2+ + SO2−
4 + 2H2O logK = −4.580 (5.2)

Quartz:

SiO2 + 2H2O = H4SiO4 logK = −3.980 (5.3)

Amorphous silica:

SiO2 + 2H2O = H4SiO4 logK = −2.710 (5.4)
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Calcite:

CaCO3 = Ca+2 + CO2−
3 logK = −8.480 (5.5)

Dolomite:

CaMg(CO3)2 = Ca2+ + Mg2+ + 2CO2−
3 logK = −17.090 (5.6)

Sepiolite:

Mg2Si3O7.5(OH).3H2O + 4H+ + 0.5H2O = 2Mg2+ + 3H4SiO4 logK = 15.760

(5.7)

Two equilibruim constants for sepiolite are included in phreeq.dat : ‘sepiolite’

which uses log K = 15.760 from Stoessell (1988), and ‘sepiolite (d)’ which uses

log K = 18.78 from Wollast et al. (1968). The former was used in this Chapter

because it was calculated from samples equilibrated for nearly 10 years at 25o C

and 1 atm and is in good agreement with that extrapolated by Christ et al. (1973)

from higher temperatures. The log K determined by Wollast et al. (1968) was for

a poorly crystalline, non-equilibrated sample (Christ et al., 1973; Stoessell, 1988).

Kerolite was added to the phreeq.dat database file using the log K from Stoessell

(1988):

Mg3Si4O10(OH)2.H2O + 6H+ + 3H2O = 3Mg2+ + 4H4SiO4 logK = 25.79

(5.8)

PHREEQC is a computer program written in the C programming language that

is designed to perform a wide variety of low-temperature aqueous geochemical

calculations (Parkhurst and Appelo, 1999) with capabilities for speciation and

saturation-index calculations. PHREEQC uses ion-association and Debye Hückel

expressions to account for the non-ideality of aqueous solutions. This type of

aqueous model is adequate at low ionic strength but may break down at higher

ionic strengths (in the range of seawater and above) (Parkhurst and Appelo,

1999). The authors of PHREEQC attempted to extend the range of applicability

of the aqueous model through the use of ionic strength terms in the Debye Hückel

expressions. These terms were fit for the major ions using chloride mean-salt

activity-coefficient data. Thus in sodium chloride dominated solutions (as with

the saturated paste extracts from Namaqualand Coastal Plain, see Section 5.3,

Table 5.1) the model may be reliable at higher ionic strengths. For high ionic
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strength waters, the specific interaction approach to thermodynamic properties of

aqueous solutions should be used (Pitzer, 1973; Pitzer, 1979; Harvie and Weare,

1980; Harvie et al., 1984), but this approach is not incorporated in PHREEQC

2.8.0.0 (Parkhurst and Appelo, 1999). PHREEQC Version 2.12 uses the Pitzer

activity coefficient model and so replaces PHRQPITZ (Plummer et al., 1988) for

brine speciation calculations, using the pitzer.dat database. However, at the time

of writing the pitzer.dat database included for download with PHREEQC Version

2.13.2 is of limited usefulness to soil applications since the database contains

no data for silica and pedogenic clay minerals. The database file phreeq.dat

consequently remains the most suitable for this system.

5.3 Results and discussion

Seawater has an ionic strength of 0.67 according to the PHREEQC calculation of

the seawater data from Nordstrom et al. (1979) (included with the PHREEQC

distribution as Example 1 of the Help File). The speciation calculations showed

the ionic strength of the samples to be in range of 0.004 to 0.76, with most of the

samples falling well below the concentration of seawater (Figure 5.1). Given the

discussion in Section 5.2, it suggests that PHREEQC is an adequate tool with

which to perform speciation calculations in these soils.

Watts (1980) noted an inverse relationship between the mol % MgCO3 in calcite

and the sepiolite/palygorskite content, which suggested that these Mg-rich clay

minerals are the main Mg-bearing phase in Botswana calcretes. The apparent

absence of Mg-calcite and dolomite, and abundance of sepiolite in the calcretes of

coastal Namaqualand suggests that a similar partitioning has occurred (Chapter

3) and so it has been assumed in this Chapter that sepiolite controls the Mg

levels in the saturated paste extracts.

The saturated paste extract data (Table 5.1) were divided into sepiolitic and

non-sepiolitic categories based on XRD findings (Chapters 1, 3, 4) and then

PHREEQC (Parkhurst and Appelo, 1999) was used to calculate the ion activities

and mineral saturation indices. A few samples showed detectable Br−, NO3
−,

F− and NO2
−, but these could not be accurately determined because the high

salinity of the samples required a large dilution, resulting in the less abundant

ions being diluted to below the detection limit of ion chromatography.
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Figure 5.1: Variation of ion activities with Cl− in saturated paste extracts. Solid
circles represent soils with sepiolite (some with accessory palygorskite) in the
clay fraction; open circles represent no detectable sepiolite or palygorskite; × -
no clay present. Na-Cl represents the conservative slope. Grey square with ∗
is seawater from Nordstrom et al. (1979) which is included in the PHREEQC
User Manual (Parkhurst and Appelo, 1999) as Example 1. Dashed line: seawater
composition projected back to zero.
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Soluble Al was not measured since it was assumed to be low at the pH range

encountered, and the Al-bearing phases that were detected with XRD could all

be adequately explained by mineral transformation or dissolution re-precipitation

(see Section 5.1). The phosphate and fluoride were very minor made no difference

to the saturation index calculations. The system was therefore simplified to the

components Na+, K+, Ca2+, Mg2+, Si, pH, Cl−, SO2−
4 , and HCO−

3 .

Most of the soils for which there was a positive sepiolite identification (1.2 nm

XRD peak, Chapters 1, 3, 4) showed a positive sepiolite saturation index (Figure

5.2), suggesting that the saturated paste extracts were in equilibrium with sepi-

olite. This is in direct contrast to the findings of Singer et al. (1995), which were

that sepiolitic and palygorskitic soils in the same region were undersaturated

with respect to both these phases when using a 1:1 soil-water solution. Their

interpretation, therefore, that these minerals were pedogenically formed in the

past and are currently in a state of alteration towards mixed layer or smectite

clay due to a reduction in alkalinity and/or Mg supply induced by climatic shifts

during the Late Pleistocene and Holocene, therefore requires revision. Follow-

ing Kittrick’s (1971, p. 453) suggestion that “where the soil solution has had

appreciable contact with precipitating minerals, it is likely to be in equilibrium

with them”, the data from the current study showing sepiolite equilibrium in

sepiolitic soils suggest that sepiolite can be considered a ‘precipitating mineral’

and thus forming in the present day. Furthermore, in Chapter 4 there was no

TEM evidence to favour a hypothesis for fibrous mineral degradation to sheet

silicates.

5.3.1 Chloride as a proxy for evaporative concentration

Chloride is a reliable measure of the degree of evaporative concentration up to

halite saturation because chloride is usually conserved over the widest concen-

tration range since anion exchange is minor and Cl− remains in solution until

halite reaches saturation (Eugster and Jones, 1979). Eugster and Jones (1979)

explained that this does not mean the solute is not involved in the formation

of efflorescent crusts (which were observed in some profiles in this study, see

Chapter 2), but that it will be redissolved quantitatively by subsequent runoff.

Halite remains undersaturated at all concentrations in the saturated paste ex-

tracts (Figure 5.2), confirming the suitability of Cl− being used as a proxy for

evaporative concentration in this system.
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Figure 5.2: Variation of mineral saturation indices (SI) with Cl− activity in sat-
urated paste extracts. SI > 0 indicates supersaturation, SI<0 undersaturation,
and SI = 0 equilibrium with respect to a phase. Symbols as for Figure 5.1.
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The variation in activity of all the ions with Cl− is consistent with a seawater

dilution line (Figure 5.1). The ions K+, Ca2+ and Mg2+ increase with increasing

evaporation but at a slope less than that for the conservative solutes Na+ and Cl−

(Figure 5.1). According to Eugster and Jones (1979), this is typical for removal

mechanisms such as mineral precipitation, sorption, or degassing, which operate

over the full range of evaporative concentration so that an essentially linear

relationship results, but with a slope less than that for conservative solutes.

Sulfate increases until log[Cl−] reaches -1 and then levels off (Figure 5.1) as

gypsum reaches saturation (Figure 5.2: gypsum SI vs log[Cl−]).

H4SiO4 activity remains unchanged for all levels of evaporation (Figure 5.1). This

is consistent with the behaviour of an uncharged solute which has reached satu-

ration with respect to the corresponding solid phase (Eugster and Jones, 1979).

In the Namaqualand soil system the most likely neoformed minerals control-

ling the H4SiO4 solubility are sepiolite and amorphous silica/quartz. Many of

the sepiolite-containing samples show an amorphous silica component in their

XRD trace (Chapter 4), and silica-cemented horizons are common (Chapter 1),

ranging from silcrete to petroduric (WRB, 1998). There are many examples of

etched quartz grains suggesting remobilisation of silica. Figure 5.2: sepiolite SI

vs log[Cl−] shows that the sepiolite-bearing soils are saturated or supersaturated

with respect to sepiolite through the entire concentration range. All the soils

analysed are close to saturation with respect to both quartz and amorphous

silica (Figure 5.2: quartz and amorphous silica SI vs log[Cl−]).

Both quartz and amorphous silica saturation indices are independent of pH (Fig-

ure 5.3) and directly dependent on silica concentration (Figure 5.4). This is

because the solubility of both quartz and amorphous silica is expressed only in

terms of one aqueous species, H4SiO4 (equations 5.3 and 5.4). As a result, in the

amorphous silica and quartz SI vs log[H4SiO4] plots (Figure 5.4), the SI reaches

zero where log[H4SiO4] is equal to the log K used to calculate the saturation

index of the respective phases, in this case -2.710 for amorphous silica and -

3.980 for quartz. In the H4SiO4 vs Cl− activity plot, however, (Figure 5.1), the

X- and Y-axes were calculated from independent variables. Therefore, in the

Namaqualand coastal plain soils the best explanation for the unchanged H4SiO4

activity for all levels of evaporation (Figure 5.1) is that it is consistent with the

behaviour of an uncharged solute which has reached saturation with respect to

the corresponding solid phase (Eugster and Jones, 1979), i.e. quartz, amorphous

silica and/or sepiolite.
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Figure 5.3: Variation of mineral saturation indices (SI) with pH; saturated paste
extracts. SI> 0 indicates supersaturation, SI<0 undersaturation, and SI= 0
equilibrium with respect the phase in question. Symbols as for Figure 5.1.
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Figure 5.4: Variation of mineral saturation indices (SI) with activity of com-
ponent ion; saturated paste extracts. SI> 0 indicates supersaturation, SI<0
undersaturation, and SI= 0 equilibrium with respect to a phase. Symbols as for
Figure 5.1.
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Alkalinity was only present as bicarbonate. The HCO−
3 activity vs Cl− activity

plot (Figure 5.1) most effectively distinguishes the sepiolitic vs non-sepiolitic

soils, with the sepiolitic soils generally having higher HCO−
3 activities consistent

with observations that only the calcareous soils are sepiolitic. The HCO−
3 activity

of both the sepiolitic and non-sepiolitic soils decreases slightly with increasing

Cl−. The decrease in HCO−
3 activity coupled with a simultaneous increase in

Ca2+ is consistent with calcite precipitation at the first ‘chemical divide’ in the

Hardie-Eugster model of brine evolution (Hardie and Eugster, 1970; Eugster and

Hardie, 1978; Eugster and Jones, 1979). All the Namaqualand soils are close to

saturation with respect to calcite (Figure 5.2: calcite SI vs log[Cl−]).

Calcite, usually the first mineral to precipitate on evaporative concentration,

represents a critical branching point in the evolutionary path of the evaporating

water (Eugster and Jones, 1979). The path then taken by the solution depends

on whether the calcium concentration in equivalents is greater or less than the

carbonate alkalinity in equivalents, that is, whether 2mCa2+ is greater or less

than (mHCO−3
+ 2mCO2−

3
) where m is molal units (Drever, 1997, p. 330). This is

because two conditions must be fulfilled simultaneously during the equilibrium

precipitation of calcite: 1) the ion activity product [Ca2+]·[CO2−
3 ] must remain

constant, and 2) Ca2+ and CO2−
3 are removed in solution in equal molar pro-

portion (Eugster and Jones, 1979). Condition 1 specifies that the concentrations

of Ca2+ and CO2−
3 must vary antithetically, whereas condition 2 requires that

the Ca2+/CO2−
3 molar ratio will change unless it was precisely one at the outset

(Eugster and Jones, 1979). The net effect is that waters in which HCO−
3 is dom-

inant over Ca2+ initially will become enriched in HCO−
3 and depleted in Ca2+,

and vice versa (Eugster and Jones, 1979).

In these coastal Namaqualand soil solutions it appears that calcite precipitation

results in a solution in which the Ca2+ increases and HCO−
3 decreases (Figure

5.1). According to the conditions outlined above, this is because the initial

Ca2+/HCO−
3 ratio is greater than one. Given the proximity of the sea (maximum

sampling distance 30 km from coast) and strong onshore winds, these soils would

be expected to reflect maritime ionic ratios. Ca2+/HCO−
3 ratio is greater than

one for seawater, according to the data from Nordstrom et al. (1979) (plotted

in Figure 5.1): the molality of Ca2+ in seawater is 9.504e-03, and of HCO−
3 is

1.514e-03. CO2−
3 is negligible in comparison at 3.821e-052. This is consistent

with trends in Figure 5.1 and suggests that initial maritime ratios control the
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evaporative evolution of the soil solution by providing an initial Ca2+/HCO−
3

ratio greater than one.

5.3.2 Marine-influenced initial ratios and subsequent evap-

oration trends

The increasing Mg with increasing Cl activity (evaporation) (Figure 5.1), is in

contrast to that which is expected to occur, given that sepiolite is expected to

precipitate with increasing evaporation, as was shown in the classic model of

Garrels and Mackenzie (1967). Since both sepiolitic and non sepiolitic soils show

the increasing Mg with Cl trend, it cannot be attributed to an increase in actual

sepiolite content.

The Ca-HCO−
3 -Cl trend is also opposite to that of Garrels and Mackenzie (1967).

It was established in Section 5.3.1 that the increasing Ca and decreasing HCO−
3

with Cl trend is a result of evaporating a solution with a Ca2+/HCO−
3 ratio

greater than one, and that the initial ratio is marine-influenced. Singer et al.

(1995) considered sea-spray enriched precipitation as one source of Mg for sepi-

olite precipitation. The saturated paste extracts have similar Mg/Cl ratios to

seawater (Figure 5.1). It can be hypothesized that the trend of increasing (rather

than decreasing) Mg with Cl may also be marine-influenced.

Mg-Cl trends from a variety of literature sources are tabulated in Table 5.2.

Only Mg-silicates and Ca-Mg carbonates were included in the table because the

focus was on the marine-influenced increasing Mg-Cl and Ca-HCO−
3 -Cl trends.

Where the original authors’ data were not in mmolc/L, it was replotted in these

units and on a log-log scale for comparison with data from the present study.

Theoretical evaporation trends for two soil solutions in the present study were

also included: one from a non-calcareous, non-sepiolitic horizon and the other

from a calcareous, sepiolitic horizon. Both horizons are otherwise similar in

terms of their environments of formation (clay-enriched sand over a barrier, see

Chapter 2).

Table 5.2 shows that the maritime and continental areas show distinctly op-

posite trends. The marine-influenced areas, as in this study, generally show a

trend of decreasing pH, increasing Ca and increasing Mg with increasing evap-

oration. This can be explained by their initial solute proportions Ca>HCO−
3 ,
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Mg>HCO−
3 , Mg>Si and Mg>Ca, consistent with the ‘chemical divides’ of the

Hardie-Eugster model of brine evolution (Hardie and Eugster, 1970; Eugster and

Hardie, 1978; Eugster and Jones, 1979). In contrast, continental areas such as

that studied by Garrels and Mackenzie (1967) show decreasing Ca, decreasing Mg

and increasing HCO−
3 with evaporation, due to their initial solute proportions

Ca<HCO−
3 , Mg<HCO−

3 , Mg<Si and Ca>Mg (Table 5.2). The trends do not

depend on such factors as the maximum concentration or ionic strength, scale,

using Cl as the concentration factor, modelling the evaporation from a single

sample or plotting all the samples against Cl for a system.

According to the Hardie-Eugster scheme presented in Drever (1997, p. 331),

sepiolite precipitation affects the Mg/HCO−
3 ratio. Where Mg was present in

excess initially, it is the HCO−
3 that is depleted (as Table 5.2 shows to have

occurred in maritime areas). Where the HCO−
3 is present in excess initially, it

is the Mg that is depleted - as in the model by Garrels and Mackenzie (1967)

and other continental areas (Table 5.2). This maritime-continental model is

simplistic in that factors other than the marine influence could affect initial Mg

ratios, such as the parent soil or rock type, which have not been accounted for in

the compilation of the data in Table 5.2. The data collected in Table 5.2 serves to

show, however, that the changes in ionic ratios in the saturated paste extracts are

consistent with other marine-influenced surface waters, and differ antithetically

to surface waters where the maritime influence is absent. The data by Banks et al.

(2004) is an exception to the maritime-continental evolution trends, but they

are from a cold arid environment, in contrast to the other continental locations

in Table 5.2. Additionally, they are from a diversity of hydrological, geological

and topographical environments which were sparsely sampled, and the immature

highland groundwaters are dominated by Ca, Mg and HCO−
3 ions resulting from

carbonate and silicate weathering reactions (Banks et al., 2004).

The maritime influence on the Mg-Ca-HCO−
3 ratio in coastal areas is also indi-

cated by the different composition of fog water collected at the coast compared to

fog water collected further inland. The west coast fog, which can be observed to

extend inland to the rise of the escarpment, occurs frequently along the coastal

plain at elevations below the 200 m contour line (Olivier, 2002). Data from

Eckardt and Schemenauer (1998) showed that fog collected at Gobabeb (Desert

Ecological Research Unit) in Namibia, 60 km from the coast, had an average com-

position showing Ca>HCO−
3 >Mg, after rinsing to remove previously built-up
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aerosols. These aerosols had a much higher Mg content than the fog. In contrast,

fog collected in the same study from “the gravel plain near the coastal town of

Swakopmund” had a composition showing Mg>Ca>HCO−
3 , a considerably more

maritime signature according to the data in Table 5.2. This suggests that fog

deposition nearer the coast is accompanied by a greater proportion of marine

aerosols than fog which has travelled further inland. Further evidence of the

elevated Mg from marine aerosols in coastal fog is found in the work of Olivier

(2002), who found Mg>Ca>HCO−
3 in a windblown sea-salt contaminated fog

collector at Cape Columbine on the West Coast of South Africa. After washing

down the collector screens prior to collecting the second sample, a more accurate

reflection of the fog water composition was obtained: HCO−
3 >Ca>Mg.

5.3.3 pH control of sepiolite equilibrium

Although sepiolitic soils are more abundant on the higher side of the Mg-Cl trend

(Figure 5.1), the degree of evaporative concentration shown by the saturated

paste extracts does not distinguish the sepiolitic from non-sepiolitic soils (Figure

5.2). In contrast to halite and gypsum, which clearly approach saturation as

the Cl− activity increases, the phases sepiolite, calcite, dolomite and kerolite are

consistently close to saturation for all levels of Cl− activity (Figure 5.2).

On first consideration, this appears to be a problem related to the kinetics of

precipitating a complicated Mg-silicate such as sepiolite, compared to a relatively

simple salt like gypsum or halite. However, unlike evaporating water bodies

that may be supersaturated with respect to a phase for which the kinetics of

precipitation may be slower than the rate of evaporation, the solutions used in

the present study are from equilibrated saturated paste extracts. The likelihood

of equilibration with respect to sepiolite is indicated by the fact that the samples

in which sepiolite was detected in the clay fraction have extracts that are close to

saturation with respect to sepiolite. In the equilibrated saturated paste extracts

it would therefore be expected that higher Mg levels would be correlated with a

higher soil sepiolite content.

Of all the species plotted against the chloride activity in Figure 5.1, it is the

HCO−
3 activity that most obviously distinguishes the sepiolitic- from non-sepiolitic

soils. This is reflected in the saturation index trends with pH: rather than increas-
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ing with increasing chloride activity, the saturation indices of sepiolite, calcite,

dolomite and kerolite are controlled by increasing pH (Figure 5.3). In contrast,

gypsum and halite, the two minerals which do show increasing saturation with

increasing chloride activity, display no change in saturation with pH.

Furthermore, halite and gypsum saturation are equally controlled by the concen-

tration of each of their component ions in solution, but this is not the case for

calcite, dolomite, sepiolite and kerolite (Figures 5.4 and 5.5). Sepiolite and kero-

lite saturation are independent of Mg2+ and H4SiO4 activities and depend only

on H+ activity at the magnesium and silica levels measured on the Namaqualand

coastal plain. This is consistent with the work of Deocampo (2005) concerning

the stabilities of sepiolite and kerolite during evaporation in waters of Tanzania.

Deocampo (2005) noted that “...no simple evaporatively-controlled trend is ap-

parent. In fact, pH variability is responsible for most of the observed change

in saturation state...”. As with sepiolite and kerolite, saturation with respect

to calcite and dolomite in Namaqualand soils is dependent neither on Ca2+ nor

the Mg2+ activity, but only the HCO−
3 activity over all concentrations of these

elements encountered in the soils studied.

The pH-dependence of the sepiolite and kerolite saturation indices is to be ex-

pected, since the H+ term is present in their solubility equations (equations 5.7

and 5.8, Section 5.2). The H+ term is absent in halite and gypsum solubility

equations (equations 5.1 and 5.2). Although the solubility equations of calcite

and dolomite do not contain an H+ term (equations 5.5 and 5.6), the pH de-

pendence of calcite and dolomite is due to the PHREEQC speciation equation

CO2−
3 + H+ = HCO−

3 , log K = 10.329, which uses the pH and HCO−
3 concentra-

tions input by the user to calculate the CO2−
3 concentration which is then used

in the solubility equations of calcite and dolomite (equations 5.5 and 5.6).

The implication for sepiolite genesis on the Namaqualand coastal plain is that

sepiolite precipitation is more likely to be triggered when a solution encounters

a pH barrier than by the concentration of ions through evaporation, since even

the lowest Mg-Si levels are almost sufficient for sepiolite saturation (Figures

5.1, 5.2). This is similar in principle to the ‘geochemical barriers’ discussed

by Sauer and Stahr (2004), and implies that lateral subsurface flow with no

evaporative concentration along its route could result in sepiolite precipitation.

In Namaqualand, there is evidence of lateral subsurface water movement in the
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Figure 5.5: Continued from Figure 5.4 - Variation of mineral saturation indices
(SI) with activity of component ion; saturated paste extracts. SI> 0 indicates
supersaturation, SI<0 undersaturation, and SI= 0 equilibrium with respect to a
phase. Symbols as for Figure 5.1.

form of extensive, prominent E horizons (described in Francis et al. (2007) and

Chapter 2). Evidence of pH control of sepiolite is that sepiolite is only associated

with calcareous horizons (Table 5.1 and Chapter 4) suggesting that the carbonate

buffers the pH at a sufficiently high level for sepiolite to precipitate. An additional

mechanism of pH control on the Namaqualand coastal plain may be changing

pCO2. Loss of CO2 has been cited as a factor in calcite precipitation (Netterberg,

1969; Watts, 1980; Goudie, 1983; Wright and Tucker, 1991; Rodas et al., 1994,

for example).

PHREEQC was used to calculate mineral saturation indices with the pCO2 set at

values ranging from -1 to -5. This was achieved by setting the log partial pressure
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for CO2(g) (equivalent to the target saturation index) from -1 to -5 in successive

simulations in the EQUILIBRIUM PHASES datablock of PHREEQC and using

the default initial amount of 10 moles CO2(g). None of the mineral phases were

allowed to precipitate when they reached equilibrium so that the variation in

saturation indices was only due to changing pCO2 and not changing ion ratios

due to removal from solution during mineral precipitation. The results in Figure

5.6 confirm the pCO2/pH dependence of calcite (and dolomite), and show that

both sepiolite and kerolite saturation are even more dependent on the pH/pCO2

than calcite. Figure 5.6 shows that increasing pCO2 causes a decreasing pH in

the soil solution, with a resulting undersaturation in the pH-dependent phases

kerolite, sepiolite, dolomite and calcite. Neither gypsum nor amorphous silica

are affected. This is consistent with Jones and Galan (1988), who noted (p. 664)

that both sepiolite and palygorskite require a low sediment-water pCO2, and is

identical to the trend of decreasing kerolite and sepiolite saturation indices with

increasing pCO2 found by Deocampo (2005) for waters in Tanzania.

Palygorskite is not well confined on the diagram in Figure 5.6, as it contains

Fe and Al terms that were not analysed in this study. Instead, PHREEQC was

specified to calculate Al from equilibrium with K-mica, and Fe from equilib-

rium with goethite from the phreeq.dat database distributed with the program

(Parkhurst and Appelo, 1999). The palygorskite dissolution reaction and log K

were obtained from Singer and Norrish (1974). The undersaturated position of

this mineral relative to sepiolite, however, is consistent with the XRD finding

that palygorskite is a much less prominent constituent than sepiolite.

The data in Figure 5.6 suggest that if the soil solution became equilibrated at

a higher than atmospheric pCO2 (as is typical in the soil environment) and

was subsequently exposed to a lower pCO2, equilibrium with sepiolite would be

approached more rapidly than with calcite. One of the mechanisms for kerolite

precipitation in caves in Hawaii proposed by Léveillé et al. (2000) involves CO2-

degassing.

5.3.4 Coastal sepiolite and inland palygorskite in Namaqualand

Singer et al. (1995) studied the mineralogy of Namaqualand soils from the Land

Type Survey (Land Type Survey Staff, 1987). They found that palygorskite
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dominated the soils inland of the escarpment whereas sepiolite dominated the

clay fraction of soils from the lower-lying, coastal areas. Singer et al. (1995) sug-

gested a dissolution-reprecipitation mechanism for the formation of palygorskite,

and an additional marine Mg source for sepiolite formation. This is consistent

with Chapters 1, 3, and 4, which reported that sepiolite is more prominent

than palygorskite in the XRD traces from Namaqualand coastal plain soils. The

marine-influenced elevated Mg is a likely explanation for sepiolite-dominance

at the coast, and palygorskite-dominance inland. Sepiolite is favoured to form

in an environment with a higher (Mg+Si)/Al ratio than palygorskite (Jones

and Galan, 1988). The Mg concentration in the Texas High Plains appears to
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have determined whether sepiolite-dolomite or palygorskite-calcite were formed

(McDaniel et al., 1992).

In Section 5.3.2 it was established that the coastal areas had elevated Mg com-

positions relative to continental areas, which resulted in an increasing Mg trend

with evaporation during the precipitation of sepiolite according to the Hardie-

Eugster scheme since Mg>HCO−
3 initially. Figures 5.1, 5.2 and 5.5 suggest that

even nearly the lowest Mg2+ and H4SiO4 activity is sufficient for sepiolite satura-

tion on the Namaqualand coastal plain, given an appropriate environmental pH.

The result is that after sepiolite precipitation is initiated (by an geochemical pH

barrier, see section 5.3.3), Mg levels will rise causing the increasing (Mg+Si)/Al

ratio to continue to favour sepiolite precipitation. This suggests that once sepio-

lite has begun to precipitate, the subsequent salinity with its accompanying Mg

increase makes substantial palygorskite formation unlikely to follow.

The sequence of formation of accessory amounts of palygorskite relative to sepi-

olite on the Namaqualand coastal plain remains speculative. Jones and Galan

(1988, p. 664) noted that in lacustrine closed basins or marginal continental

basins transitional to the marine, the occurrence of palygorskite appears to in-

dicate brackish water and the presence of sepiolite reflects salinity increases.

Zaaboub et al. (2005), however, showed that sepiolite would have precipitated

directly in lacustrine, playa-lake or sebka environments under alkaline conditions,

high Si and Mg and low Al activity, and arid to semiarid climate, whereas pa-

lygorskite would have formed by transformation of already existing illite and/or

smectite type aluminosilicates in solutions in equilibrium with isotopically heav-

ier and, therefore, more evaporated solutions than the sepiolite.

5.3.5 Summary of mineral genesis on the Namaqualand

coastal plain

The results presented in this Chapter allow the following general summary to be

made of secondary mineral formation in the study area.
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Halite and gypsum

Halite and gypsum approach saturation as the concentration of their compo-

nent ions in solution increases. Halite remains undersaturated at all sodium

and chloride concentrations in the saturated paste extracts. At higher chloride

concentrations, gypsum reaches saturation, and begins to remove sulfate from

solution.

Calcite

All the soils are close to saturation with respect to calcite. The HCO−
3 activity

decreases slightly with increasing Cl−. The decrease in HCO−
3 activity coupled

with a simultaneous increase in Ca2+ is consistent with calcite precipitation at

the first ‘chemical divide’ in the Hardie-Eugster model of brine evolution, and

consistent with the maritime Ca2+ >HCO−
3 initial ratio.

Calcite remains consistently close to saturation for all levels of Cl− activity (Fig-

ure 5.2). The calcite saturation index is not dependent on the Ca2+ activity,

only on the HCO−
3 activity and pH for the range of concentrations encountered

for these parameters.

Sepiolite-palygorskite

Although the sepiolitic soils are more abundant on the higher side of the Mg-Cl

trend, the degree of evaporative concentration (as reflected by Cl concentration)

in the saturated paste extracts does not distinguish sepiolitic from non-sepiolitic

soils. Even the lowest Mg2+ and H4SiO4 activity is sufficient for sepiolite sat-

uration given an appropriate environmental pH. Sepiolite remains consistently

close to saturation for all levels of Cl− activity. The sepiolite saturation index

is independent of Mg2+ and H4SiO4 and depends only on the H+ activity at the

magnesium and silica levels measured.

The HCO−
3 activity vs Cl− activity plot most effectively distinguishes the sepi-

olitic vs non-sepiolitic soils, with the sepiolitic soils generally having higher HCO−
3

activities. This is reflected in the saturation index trends with pH: rather than

increasing with increasing chloride activity, the saturation indices of sepiolite is
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controlled by increasing pH. Evidence of pH control on sepiolite precipitation

is that sepiolite is only associated with calcareous horizons suggesting that the

carbonate buffers the pH at a sufficiently high level for sepiolite to precipitate.

An additional mechanism of pH control on the Namaqualand coastal plain may

be changing pCO2, similar in principle to the loss of CO2 that has been cited as

a factor in calcite precipitation. Sepiolite precipitation is therefore more likely to

be triggered when a solution encounters a pH barrier than by the concentration

of ions as a result of evaporation, since even the lowest Mg-Si levels are almost

sufficient for sepiolite saturation.

The marine-influenced high Mg level coupled with the Hardie-Eugster model of

brine evolution provides an explanation for sepiolite dominance at the coast, and

palygorskite dominance inland. Coastal areas, unlike continental areas, have

Mg>HCO−
3 initially, which results in an increasing Mg trend with evaporation

during the precipitation of sepiolite according to the Hardie-Eugster scheme.

Even the lowest Mg2+ and H4SiO4 activity is sufficient for sepiolite saturation

on the Namaqualand coastal plain, given an appropriate environmental pH. The

result is that after sepiolite precipitation is initiated by a geochemical pH barrier,

Mg levels will rise causing the increasing (Mg+Si)/Al ratio to continue to favour

sepiolite precipitation. This suggests that once sepiolite has begun to precipitate,

the subsequent salinity with its accompanying Mg increase makes substantial

palygorskite formation unlikely to follow.

Most of the soils for which there was a positive sepiolite identification showed a

positive sepiolite saturation index, suggesting that the saturated paste extracts

were in equilibrium with sepiolite. This is in direct contrast to the findings

of Singer et al. (1995), which were that sepiolitic and palygorskitic soils in the

same region were undersaturated with respect to both these phases when using a

1:1 soil-water solution. Their interpretation, therefore, that that these minerals

were formed pedogenically in the past, but are in a state of alteration towards

a mixed layer or smectite clay as a consequence of a reduction in alkalinity

and/or Mg supply induced by climatic shifts during the Late Pleistocene and

Holocene requires revision. The data showing sepiolite equilibrium in sepiolitic

soils suggest that sepiolite can be considered a ‘precipitating mineral’ and thus

as forming in the present day. Furthermore, in Chapter 4 there was no TEM

evidence to favour a hypothesis for fibrous mineral degradation to sheet silicates.
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Silica

In the Namaqualand soil system the most likely minerals controlling the H4SiO4

solubility are sepiolite and amorphous silica/quartz. H4SiO4 activity remains

unchanged for all levels of evaporation, consistent with the behaviour of an un-

charged solute which has reached saturation with respect to the corresponding

solid phase.

pH variation and its potential to affect the genesis of calcic, sepiolitic

and duric soils

The data in Figure 5.6 suggest that decreasing the pH by 0.5 units decreases the

calcite saturation index by 0.45 units and the sepiolite saturation index by 1.9

units, while leaving the amorphous silica saturation index unchanged. The effect

of a pH change on the sepiolite saturation index is therefore > 4 times that of the

effect on calcite. The effect of pH fluctuations on calcite and silica solubilities is

important in the genesis of calcrete-silcrete intergrades in the Kalahari, Botswana

(Nash and Shaw, 1998; Kampunzu et al., 2007). The data in Figure 5.6 show that

pH affects the solubility of sepiolite even more than it does calcite. Since sepiolite

is often a significant part of arid region soils where calcite and amorphous silica

are common, the mineral solubility-pH relationships may assist in explaining the

relationships between calcic, sepiolitic and duric soils and their intergrades.

5.4 Conclusions

PHREEQC is an adequate tool with which to perform speciation calculations

for Na-Cl dominated soils of the Namaqualand Coastal Plain system, since the

ionic strength of the samples falls in the range of 0.004 to 0.76, with most of the

samples being well below the concentration of seawater. The variation in activity

of all the ions with Cl− is consistent with a seawater dilution line.

The equilibrated saturated paste extracts were ranked in order of their Cl− con-

tent as a proxy for degree of evaporative concentration in the field. The data

trends when all the “closed system” saturated pastes were considered together

are consistent with the predictions of the Hardie-Eugster model for closed-system
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evaporating brines, as well as with experimental and simulated evaporations of

solutions with similar initial ratios as the saturated paste extracts. The Hardie-

Eugster model of brine evolution in closed basin brines can therefore be applied

generally to the soil system in Namaqualand.

The Namaqualand coastal plain, like other maritime areas, generally shows a

trend of decreasing pH, increasing Ca and increasing Mg with increasing evap-

oration. This can be explained by their marine-influenced initial ratios and is

consistent with the ‘chemical divides’ of the Hardie-Eugster model of brine evo-

lution. K+, Ca2+ and Mg2+ increase with increasing evaporation but at a slope

less than that for the conservative solutes Na+ and Cl−, and suggests removal

mechanisms such as mineral precipitation, sorption, or degassing which operate

over the full range of evaporative concentration.

Considering the formation of minerals in the arid soil environment in the same

terms as the geochemical evolution of brines has helped to refine the model of

mineral formation on the Namaqualand coastal plain. Halite remains undersatu-

rated at all concentrations in the saturated paste extracts. At higher concentra-

tions, gypsum reaches saturation, and sulfate is removed from solution. H4SiO4

activity remains unchanged for all levels of evaporation or pH. Calcite remains

close to saturation, and is only dependent on the HCO−
3 activity and pH for

the range of Cl− activity encountered. Most of the soils for which there is a

positive sepiolite identification show a positive sepiolite saturation index. The

sepiolite saturation index is independent of Mg2+ and H4SiO4 and only increases

with increasing pH. Sepiolite precipitation is therefore more likely to be triggered

when a solution encounters a pH barrier than by the concentration of ions by

evaporation. Evidence of the pH control on sepiolite saturation is that sepiolite

is commonly associated with calcareous horizons. The effect of a pH change on

the sepiolite saturation index is much greater than its effect on calcite.

The marine-influenced high Mg level coupled with the Hardie-Eugster model of

brine evolution offers an explanation for sepiolite-dominance at the coast, and

palygorskite-dominance inland. Coastal areas, unlike continental areas, have

Mg>HCO−
3 initially, which results in an increasing Mg trend with evaporation

during the precipitation of sepiolite according to the Hardie-Eugster scheme.

The result is that after sepiolite precipitation is initiated by a geochemical pH-

barrier, Mg levels will rise causing the increasing (Mg+Si)/Al ratio to continue
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to favour sepiolite precipitation. This suggests that once sepiolite has begun to

precipitate, the subsequent salinity with its accompanying Mg increase makes

substantial palygorskite formation unlikely to follow.
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Chapter 6

Micromorphology, mineralogy

and genesis of soils associated

with a Namaqualand ‘heuweltjie’

6.1 Introduction

‘Heuweltjies’ (Afrikaans for small hills) occur throughout Namaqualand and

along the western and southern Cape coasts (Picker et al., 2007). They are

thought to be termitaria of the harvester termite Microhodotermes viator (Moore

and Picker, 1991), with a debated contribution from mole rats (Lovegrove and

Siegfried, 1986; Cox et al., 1987; Lovegrove and Siegfried, 1989; Laurie, 2002;

Midgley and Hoffman, 1991) and other animals (Milton and Dean, 1990). Midg-

ley et al. (2002) obtained δ14C ages of 25 000 to 30 000 years B.P. for calcrete

associated with heuweltjies in the Clanwilliam and Elands Bay areas, similar the

32 100 ± 720 years B.P. for the nearly identical fossilised nests from Clanwilliam

presented by Coaton (1981).

Heuweltjies are distinguishable in the field as circular features (diameter usually

10 to 20 m) showing a different vegetation pattern and a slightly raised (1 to 2.5

m) surface, presenting what Laurie (2002) referred to as an “ostrich leather” tex-

ture on aerial photographs. When using Google Earth (http://earth.google.com/)

to observe the study area, between Papendorp and Strandfontein, the heuweltjies

become discernable as green circular features at an eye altitude of 2 to 5 km.
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They represent zones of denser vegetation because of the nutrient cycling into

the heuweltjie (Midgley and Musil, 1990; Midgley and Hoffman, 1991) and higher

base status of on-mound compared to off-mound soils (Ellis, 2002). A good ex-

ample of heuweltjie-modified soils influencing vegetation patterns is evident at

the location 31◦ 44′ 10′′ S, 18◦ 14′ 20′′ E, just north of Strandfontein and a little

south of the heuweltjie in the present study, where the greener vegetation pat-

tern of heuweltjies in this region has persisted through subsequent ploughing and

cropping. Similar examples can been seen throughout their zone of occurrence

along the western and southern Cape coasts.

Ellis (2002) noted that there seems to be a direct relationship between hardpan

occurrence and termite activity: where the rainfall is at its lowest, termite ac-

tivity is presently relict and mounds are characterized by a central petrocalcic

to petroduric hardpan, and a petroduric over petrocalcic horizon towards the

outer edge and in the surrounding inter-mound areas. In the higher rainfall zone

(250 to 450 mm) the general tendency is that limited termite activity is present

though only in the centre of most mounds but absent on certain, apparently

the oldest, mounds. Where termites are still active, the areas of activity have

hypocalcic to hypercalcic horizons with petroduric or petrocalcic horizons on

the perimeter of the mound, even when no hardpans occur in surrounding soils.

With increasing rainfall, age and relict termite activity, a broken hardpan and/or

more base-rich soil material is found on the mounds. In these latter cases the

soils of the inter-mound areas have moderate to low base status without any of

the above-mentioned hardpans.

Since the publication of the work by Ellis (2002), it was noticed that the fibrous

clay minerals sepiolite and/or palygorskite are commonly associated with the cal-

crete in the heuweltjies. Palygorskite tends to occur more in heuweltjies in inland

areas, consistent with the sepiolite-palygorskite distribution in Namaqualand

(Singer et al. (1995) and Chapter 5). Sepiolite and palygorskite are often re-

ported from arid region soils and are commonly found in calcretes (Vanden

Heuvel, 1964; Singer and Norrish, 1974; Yaalon and Wieder, 1976; Elprince

et al., 1979; Hay and Wiggins, 1980; Watts, 1980; Singer and Galan, 1984; Singer,

1989; Blank and Fosberg, 1991; Monger and Daugherty, 1991; Verrecchia and Le

Coustumer, 1996; Singer, 2002; Neaman and Singer, 2004; Owliaie et al., 2006).

The hardpan horizon of the heuweltjie commonly grades from a petrocalcic in the

centre through a ‘sepiolitic’/‘petrosepiolitic’ horizon (as defined in Chapter 1),
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to the petroduric horizon on the edges. In the heuweltjie soils, the petrocal-

cic horizon is commonly ‘sepiolitic’ as defined by Chapter 1. Usually there are

abundant sepiolite cutans (up to a few millimetres thick) around the nodules

of calcrete. These cutans are generally white, non-calcareous, adhere strongly

to the wetted tongue and react with methyl orange to change it from orange

to pink/purple, indicating sepiolite (Mifsud et al., 1979). Personal observations

showed that both pure calcite, and calcrete in which sepiolite is only detectable

when the clay fraction is concentrated and examined by XRD, react negatively

to the methyl orange test (Chapter 1). In contrast, most of the calcrete in the

centre of the heuweltjies react positively to the methyl orange test, suggesting

substantial concentrations of sepiolite. In an area like Worcester, for example,

these horizons are only associated with the heuweltjies and are not present in

the inter-heuweltjie areas.

Heuweltjies are sometimes described as Mima-like mounds (for example Cox

et al., 1987; Lovegrove and Siegfried, 1986; Milton and Dean, 1990; Lovegrove

and Siegfried, 1989). Horwath and Johnson (2006), (2007) summarised the char-

acteristics of Mima and Mima-like mounds. Horwath and Johnson (2006) noted

that the term ‘Mima mound’ comes from Mima Prairie, a tract in the Puget

Sound lowlands south of Olympia, Washington. Mima-like mounds elsewhere,

although they may bear resemblances to the type locality, differ in height, diam-

eter, texture, internal composition and structure, and in the elevations at which

they occur. Numerous theories for the origins of Mima-mounds have been pro-

posed (Washburn, 1988; Reider et al., 1996; Horwath and Johnson, 2006, and

references therein). These can be grouped into five main genetic categories: ero-

sional, depositional, fossorial (burrowing) animals (usually rodents), periglacial,

and seismic origins (Horwath and Johnson, 2006). The heuweltjie soils show

some similarities to Mima(-like) mounds, particularly their raised surfaces, silica

and/or calcium carbonate hardpans and clay-accumulation horizons (Spackman

and Munn, 1984; Hobsan and Dahlgren, 1998), as well as their organic mat-

ter (nitrogen) enrichment (Midgley and Musil, 1990; Litaor et al., 1996; Hobsan

and Dahlgren, 1998). They differ in that the clay mineralogy of the Mima(-

like) mounds does not contain sepiolite or palygorskite, only smectite, kaolinite

(Hobsan and Dahlgren, 1998) and illite (Spackman and Munn, 1984), and we

have not observed in heuweltjies the plug or central pipe that was noted in

Mima-like mounds by Spackman and Munn (1984) and Reider et al. (1996).
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Most of the previous heuweltjie work has focused on biogenic aspects, such as

their spacing, origin and age, but even though the heuweltjie is in fact a soil

feature there have been few published studies done on the soil forming processes

within the heuweltjie (Van der Merwe, 1940; Slabber, 1945; Ten Cate, 1966;

Burgers, 1975; Ellis et al., 2001; Ellis, 2002). There has been some work done

on the soil properties (such as Watson, 1962) and micromorphology of termite

mounds (for example Stoops, 1964; Mermut et al., 1984; Lobry de Bruyn and

Conacher, 1990), but these did not include heuweltjies. We therefore aimed to

use soil micromorphology and the principles of brine evolution from Chapter 5 to

help explain the soil formation within the heuweltjie, particularly the relationship

between the petrocalcic, ‘(petro)sepiolitic’ (Chapter 1) and petroduric horizons,

and to refine Ellis’ (2002) model of hardpan formation in heuweltjies in the

light of the new data. Since this is the first published account of thin section

descriptions through a heuweltjie, the detailed descriptions, photographs and

terminology that were used are included in full to allow for easier comparison in

future studies.

6.2 Materials and methods

Heuweltjies were sampled from Papendorp–Strandfontein (1 heuweltjie), Stellen-

bosch (1 heuweltjie), Oudtshoorn (1 heuweltjie), and Worcester (2 heuweltjies)

The locations are shown in Figure 6.1.

Figure 6.1: Location of Papendorp–Strandfontein, Stellenbosch, Oudtshoorn,
and Worcester, where heuweltjies were sampled for this study. Modified from
Pether et al. (2000).
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Seven samples of the calcrete horizons and the associated sepiolite/palygorskite

cutans were sampled in the Oudtshoorn and Worcester heuweltjies to confirm

the presence of palygorskite and/or sepiolite, after field tests with methyl orange

were positive for sepiolite (methyl orange shows a purple-pink colour, Mifsud

et al., 1979). Bulk samples were ground with an agate pestle and mortar with

distilled water and sedimented onto glass slides for XRD analysis (machine setup

as for the Papendorp heuweltjie detailed below).

The main focus of this study was the Papendorp heuweltjie. It is located at 31◦

42′ 32′′ S, 18◦ 13′ 32′′ E, elevation 60 m a.m.s.l., on the south side of the Olifant’s

River mouth, on a road-cut along the R362 between the towns of Papendorp

and Strandfontein (Figure 6.1), on an undulating coastal plain, sea-facing (west)

in natural (grazed) veld. Mean annual rainfall for the Papendorp/Strandfontein

area is < 150 mm. Samples were taken of the hardpan horizons and their over-

lying loose horizons through a cross-section of the heuweltjie from the centre to

the edge (Figure 6.2).

Approximately 2 kg bulk sample was taken of each horizon of the Papendorp

heuweltjie, as well undisturbed, vertically orientated material for the preparation

of thin sections. Section dimensions are given in Section 6.3.4 (Table 6.2). Thin

sections for optical microscopy from the Papendorp heuweltjie were impregnated

with a polyester resin and ground without water, and left uncovered on one side

to allow for etching and SEM-EDX work. Fine grained calcite was identified by

effervescence in 1M HCl under the optical microscope. Calcite was distinguished

from calcium oxalate by its insolubility in 2M acetic acid, since both calcium

carbonate and calcium phosphate are soluble (Post, 1985). Slaking tests were

based on the WRB (1998) definition of petroduric, petrocalcic and fragic hori-

zons. An intact fragment a few centimetres in diameter was submerged in water,

5M HCl or 6M NaOH and gently heated on a waterbath for four days. Uncoated

fragments and thin sections were observed before and after etching in 1M HCl

using low vacuum SEM-EDX with a Philips Xl30 ESEM. High vacuum SEM was

done on Au-coated fragments using a Leo 1430VP SEM-EDX system. For XRD

analysis of the clay fraction, the bulk samples were air-dried, crushed and passed

through a 2 mm sieve. The <2 µm fraction was separated from the bulk samples

by dispersion (shaking briefly by hand, raising the pH to approximately 10 with

Na2CO3) and settling. The clay suspension was flocculated by addition of MgCl2

after lowering the pH to 5 to 7 with HCl to prevent the precipitation of brucite
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and/or clay destruction. The clay suspension was then Mg-saturated, concen-

trated by centrifugation, and sedimented (or smeared, many of the sepiolite-rich

samples developed ‘mudcracks’) onto a glass slide. XRD analyses were done

with a stepsize of 0.05 degrees and steptime of 40 seconds, using a Bruker DD8

Advance Powder Diffractometer with a graphite monochromator, 40 kV and 40

mA. Ethylene glycol was sprayed lightly onto the surface of the Mg-saturated

sample slides. TEM-EDAX analyses were performed on the clay fractions using

a Philips CM120 Biotwin equipped with EDAX detector.

Thin sections were made through exit towers and frass from the surface of an

active heuweltjie in Stellenbosch, to assist in the recognition of the fossil termite

features in the Papendorp heuweltjie. The excrement samples were collected

loose and randomly oriented on the section (3 x sections, 20 x 40 mm diameter;

thickness 30 µm). Two 2 termite exit towers were sampled (approximately 10

Centre

Edge

14 cm

Orthic
(ochric)  A, 
sample 2.1

~50 cm deep

Neocutanic 
(cambic)  B, 
sample 2.2

10 cm

15 cm

~14 m 

Dorbank (petroduric), sample 1.3 ‘Sepiolitic’ pedocutanic (argic), sample 2D

Calcrete
samples 2A-2C

4 cm

Hardpan / soft
carbonate 
(petro/hypercalcic)

Figure 6.2: Photographs of sample locations within heuweltjie. White cutans
in the calcrete and sepiolitic’ pedocutanic (argic) horizons react positively with
methyl orange in the field, suggesting sepiolite.
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cm high, diameter 8 to 10 mm), both of which were orientated in cross-section

on the thin section (20 x 40 mm diameter; thickness 30 µm). Thin sections

were impregnated with an epoxy resin under vacuum and ground without wa-

ter. The Stellenbosch heuweltjie is located on the south side of Papegaaiberg

(Stellenbosch) above the graveyard in a pine plantation. Parent material is non-

calcareous, yellow-brown apedal soil formed on granite. Mean annual rainfall for

the Stellenbosch area is >650 mm.

6.3 Results and discussion

6.3.1 Profile descriptions

The heuweltjie (pictured in Figure 6.2 with the sample locations) is typical of

those in the arid western parts of South Africa described by Ellis (2002). Termite

activity is presently low, increasing after rainfall. It has a petrocalcic horizon in

the centre of the mound and a petroduric horizon at the edges. Between the two

is a ‘sepiolitic’ argic horizon. The landscape is otherwise free of calcrete.

Profile descriptions through a cross-section of the heuweltjie are given in Table

6.1. The calcrete horizon is ‘sepiolitic’ (as defined by Chapter 1), similar to

heuweltjies from widely spread localities such as the Knersvlakte, Oudtshoorn

and Worcester (Figure 6.3). It contains sepiolite cutans that are generally white,

non-calcareous, adhere strongly to the wetted tongue and react with methyl

orange to change it from orange to pink/purple (Mifsud et al., 1979). Towards the

centre of the heuweltjie the calcrete is more laminar, and then grades outwards

and downwards into a more nodular texture. The sepiolite cutans are much more

abundant on the nodular peds. Between the petrocalcic at the centre and the

dorbank (petroduric) at the edge of the heuweltjie is a hard but friable horizon

that is composed of brown non-calcareous nodular, clay-rich peds that are covered

by white sepiolite cutans and sepiolite coating cracks in the peds (Figure 6.2).

Based on these cutans I classified this pedocutanic (argic) horizon (sample 2D)

as ‘sepiolitic’ (Chapter 1). The cutans are not present in the dorbank at the edge

of the heuweltjie (Figure 6.2).
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Figure 6.3: XRD traces of white palygorskite/sepiolite cutans and associated
calcrete from the centre of heuweltjies from Worcester and Oudtshoorn. Bulk
samples ground with agate pestle and mortar and sedimented onto glass slides.
Diff.: diffuse; paly.: palygorskite. Quartz and calcite peaks cropped.

6.3.2 Clay mineralogy

Calcrete in centre of heuweltjie: samples 2A, 2B, 2C

XRD analyses of the clay faction (Figure 6.4), shows a strong 1.28 or 1.33 nm

peak for the calcrete (samples 2A to 2C) in the centre of the heuweltjie. Hay

and Wiggins (1980) found a 1.26 nm peak for sepiolite in some calcretes of the



154

southwestern United States. SEM images of a calcrete fragment from sample

2A showed a fibrous clay mineral resembling sepiolite or palygorskite (Figure

6.13(f)). Sepiolite is associated with ‘non-heuweltjie’ calcrete from Namaqualand

(Chapters 3, 4) and other southern African calcretes (Netterberg, 1969; Watts,

1980). Palygorskite was not evident in the heuweltjie calcrete, consistent with

previous findings for the Namaqualand coastal region (Singer et al. (1995) and

Chapters 1, 3, 4). With the exception of mica, the peaks of the overlying neocu-

tanic (cambic) B horizon are not as well defined.

‘Sepiolitic’ pedocutanic (argic) 7.5 m from centre of heuweltjie: sample

2D

The clay mineralogy of this sample 2D is less clear: it adhered to the wetted

tongue, but the darker colour (Table 6.1) meant that the methyl orange test was

only clear on the white, non-effervescent cutans (Figure 6.2), where it turned

purple suggesting sepiolite. It did not show as clear a sepiolite peak as the

calcrete samples 2A to 2C in the centre of the heuweltjie, and the ‘sepiocrete’

described in Chapter 1. Figure 6.4 shows the major clay peak of 2D to be broader

than in the calcrete samples 2A to 2C, and centred around 1.4 to 1.5 nm. The

1.28 nm peak became more apparent on glycolation. Hay and Wiggins (1980)

also found a broad 1.26 to 1.4 nm peak for clay minerals in sepiolite-rich calcretes

of the southwestern United States. TEM images (Figure 6.5) of the clay fraction

from sample 2D showed acicular minerals to be present, confirming the presence

of sepiolite and possibly palygorskite. Acicular minerals were not the dominant

morphology over the entire prepared TEM grid, however.

Dorbank (petroduric) at edge of heuweltjie

The rise in the background of the dorbank trace at around 0.4 nm (6.4) is con-

sistent with the silica cement suggested by full slaking only in NaOH (Table

6.1). The dorbank horizon (sample 1.3) and the overlying neocutanic (cambic)

B horizon (sample 1.2) show poorly defined clay peaks. These broad clay peaks

were also observed in some dorbank horizons from other parts of Namaqualand

(Chapter 1), and could be a function of disordered siliceous coatings masking the

clay minerals in dorbank horizons (Flach et al., 1969; Blank and Fosberg, 1991).
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(a) (b)

Figure 6.5: TEM image of the same clay fractions from the XRD traces in Figure
6.4. (a) Fibrous clay in < 0.08 µm fraction from ‘sepiolitic’ pedocutanic (argic)
sample 2D. Scale bar 500 nm. (b) < 2 mm fraction from dorbank (petroduric)
sample 1.3, fibrous minerals possibly developing from mica (arrowed). Scale
bar 1 µm. EDAX analysis showed the large platy crystals to have a biotite
composition.

In one instance (Figure 6.5(b)) the morphology suggests the development of fi-

brous clay minerals from a mica-like structure, similar to the palygorskite fibres

observed developing from an illite by Suarez et al. (1994).

6.3.3 Micromorphology of excrement and exit towers: Stel-

lenbosch heuweltjie

In addition to examining thin sections through the heuweltjie near Papendorp,

material was sampled from the surface of an active, non-calcareous heuweltjie

in Stellenbosch, to assist in the recognition of the fossil termite features in the

Papendorp heuweltjie. Thin sections of loose, fresh termite excrement and a

cross-section through a termite exit tower (approximately 10 cm high and 1 cm

diameter) are pictured in Figures 6.6 to 6.7.

The excrement samples were collected loose and randomly oriented on the sec-

tion. They are non-calcareous ellipsoids (0.8 x 0.4 mm) or spherical (0.3 to

0.4 mm diameter). Each has a massive microstructure, a c/f5µm ratio of 1:20,

which is considerably finer than any of the samples from the heuweltjie near

Papendorp (Table 6.2), and an open porphyric c/f-related distribution. The
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Photomicrographs of termite excrement composed of very fine quartz
and organic matter from the surface of an active, non-calcareous heuweltjie from
Papegaaiberg (Stellenbosch). (a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-
SE: termite excrement (collected loose, random orientation) set in resin. (d)–
ppl, (e)–xpl, (f)–λ-plate, fast-direction NW-SE: magnification of (a)–(c) showing
spherulite with pseudo-negative interference figure in termite excrement. Note
the perpendicular arrangement of acicular grains in (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Photomicrographs of cross-section through termite exit towers, com-
posed of subrounded quartz particles in a clay-organic matrix. Collected on the
surface of an active heuweltjie on Papegaaiberg (Stellenbosch). Inward side of
exit towers indicated. Termite excrement pellet (arrowed) within wall of exit
tower. (a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-SE, (d)–ppl, (e)–xpl,
(f)–λ-plate, fast-direction NW-SE.
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coarse material mostly comprises < 30 µm, angular, acicular-prolate fragments

likely to be quartz. There are occasional 4 mm spheroidal quartz particles. The

micromass appears to be an organic-clay mixture, and has an undifferentiated

to stipple-speckled b-fabric. The excrement contains spherulites 8 to 15 µm

diameter, non-effervescent with cold 10% HCl, with pseudo-negative uniaxial

interference colours (Figure 6.6).

The termite exit towers (Figure 6.7) have a 6 to 7 mm internal diameter. The

wall is 3 to 5 mm thick and has a massive microstructure. They contain consid-

erably more coarse material (c/f5µm ratio 3:1 and a close porphyric c/f-related

distribution). The coarse material comprises angular, predominantly spheroidal

quartz fragments 0.3 mm to 20 µm diameter. There is no apparent change

in composition (clay, organic material) on either inner- or outer wall surfaces.

They are non-calcareous. The micromass appears to be organic matter- clay

mixture with an undifferentiated b-fabric. They resemble the material shown

by Jungerius et al. (1999, p. 355). The wall includes one ellipsoid excrement

(0.85 x 0.3 mm), identical to the material in the excrement sample. The only

spherulite (with pseudo-negative uniaxial interference colours) observed in both

of the towers sectioned occurred within this excrement.

The spherulites are similar to the spherulites in herbivore dung described by

Canti (1998). According to Canti (1997), spherulites in herbivore dung are 5-15

µm diameter, compared to the 8 to 15 µm diameter for those observed in the

Stellenbosch heuweltjie frass (Figure 6.6). The spherulites did not effervesce in

cold 10% HCl. No reaction with HCl was observed by Brochier et al. (1992)

either. However, Canti (1997) noted that the gas bubbles (but usually only one

per spherulite) were clearly evolved, appearing almost immediately on wetting,

and so could only be observed by allowing a front of HCl to advance onto dry

spherulites in the field of view at high power magnification. This method was

employed in this study but produced no effervescence.

6.3.4 Micromorphology of the heuweltjie at Papendorp

Full thin sections descriptions through a cross-section of the Papendorp heuweltjie

are presented in Table 6.2, with the corresponding pedofeatures pictured in Fig-

ures 6.13 to 6.23. These are the first micromorphological data presented for

South African heuweltjie soils.
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Table 6.2: Thin section descriptions of samples from Table 6.1. Abbreviations:
c/f: coarse/fine; diam.: diameter; incl.: including; max.: maximum; occ.: oc-
casional; OIL: oblique incident light; PPL: plane polarised light; XPL: cross
polarised light.

Heuweltjie centre; Orthic (Ochric) A (sample 2.1, 20 cm deep).
Vertical section; size 40 x 100 mm; thickness 30 - 40 µm. See Figure 6.8(a).
Micro-
structure:

Bimodal ped size distribution: 1) peds 2 to 3 cm diam.: moderately separated suban-
gular blocky to subrounded microstructure; 20% of section; 2) highly separated sub-
rounded spheroidal crumb microstructure. Interped areas (40% voids) not as densely
packed as peds.

Groundmass
c/f limit: 5 µm
c/f ratio: 9:1
c/f-related
distribution:

Coarse monic to fine chitonic (better expressed in OIL, grains coated by amorphous
Fe-oxides incl. hematite (red in OIL)).

Coarse
Material:

Mostly subrounded-subangular quartz, coated with fine hematite (red OIL). Bimodal
size distribution: 0.4–0.8 mm diam. (15%) and 0.05–0.1 mm (70% in peds; 30%
between). Also orthopyroxene, garnet, zircon, opaques (metallic lustre in OIL). Some
altered organic material.

Micromass: Very little fine material. Mostly amorphous Fe-oxides, incl. hematite (red in OIL).
Some amorphous organic material, in one case linearly concentrated along the top of
a ped. Undifferentiated b-fabric.

Pedofeatures: Nodules
Few moderately impregnated Fe (hydr)oxides.
Coatings
Sand and silt particles coated with red (OIL) Fe oxides.
Channels
Some vertical channels which may have originated from water movement, and channels
around peds.

Heuweltjie centre; hardpan carbonate (petrocalcic) sample 2A.
3 x vertical sections; size 40 x 55 mm; thickness 30–35 µm. See Figures 6.8–6.11.
Micro-
structure:

Weak to moderately separated granular microstructure dominant. Granules (‘peloids’;
‘ooids’) 0.3–0.03 mm diam. Channels, chambers (together 10%). Some (5%) thin
planar voids (0.6 mm x 3 cm), some of which contain fine roots in handspecimen
and define larger scale moderately separated subangular blocky microstructure (2 cm
diam. peds).

Groundmass
c/f limit: 5 µm
c/f ratio: 1:8
c/f-related
distribution:

Double-spaced to open porphyric, chitonic.

Coarse
Material:

Mostly subrounded-subangular very fractured quartz. Max. diam. 0.5 mm, common
0.4 mm, and also 0.04 mm diam. Opaques, generally rounded, garnet, orthopyroxene,
occ. zircon, and also mica(?). Tissue residue.

Micromass: Micrite interspersed with clay. PPL: Yellow to brown, speckled. XPL: crystallitic
b-fabric dominant (micrite), also granostriated (clay; micrite).

continued...
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Table continued from previous page

Pedofeatures: Nodules
i) Clay-quartz compound fragments (Figures 6.8(e)-(h)): rounded, generally spherical
1 cm to 0.7 mm diam. clay aggregates, distinguishable also in handspecimen. Less
calcite than matrix, darker in PPL, more Fe (hydr)oxides, and have a granostriated
b-fabric; not crystallitic like matrix . These clay nodules contain quartz grains (coated
with oriented clay coatings) and cross-cutting micrite veins. The entire nodule often
has a micrite hypocoating (banded, speckled).
ii) Limpid yellow clay nodules (1 to 0.04 mm) (Figures 6.9, 6.10(a)–(e), 6.11): suban-
gular, very low 1st order interference colours, often concentric-striated b-fabric, also
cross-striated. Some coated with micrite hypocoatings giving the appearance of an
‘ooid’ (Figure 6.9(a)), larger ones have Mn(?), and Fe accumulations. Some have
concentric dark rings and core, possibly oxides. Some nodules have an internal radial
and concentric orientation (Figure 6.10(c)). The limpid cores often show pseudo-
negative uniaxial interference figures, and one seems to be overgrown from the centre
by micrite (Figures 6.10(d)–(e)).
iii) Micrite nodules (granules, resembling ‘peloids’) Figure 6.9, likely mixed with clay,
0.35 mm diam. One shows a pseudo-positive interference figure, some seem to be
combined radial/concentric orientation, but generally the orientation not clear, pos-
sible due to the small size of the particles. These seem related to ii) above, it may be
that the section does not pass through the core.
iv) Opaque Localised moderate to strongly impregnated Fe (hydr)oxide nodules (dark
in PPL, yellowish-green in OIL), and accessory dendritic and dispersed Mn oxides
(10% section, effervesces in cold H2O2) .
Coatings
i) Quartz and orthopyroxene grains coated with red (in OIL) Fe (hydr)oxides (as in
sample 2.2) (Figures 6.8(c)–(f), 6.9(a)) many of which are in turn coated by micrite
(mixed with clay) hypocoatings (‘ooids’), and some by acicular calcite (radial orien-
tation). The micrite hypocoatings are spherical, even when coating an elongate grain
(Figure 6.8(e)). In some cases grain is coated by a limpid orange oriented (length-
slow grain-parallel and perpendicular) clay coating (Figures 6.10(h)–(j)), which can
in turn coated by a micrite hypocoating. Sometimes fibro-radial orientation can be
discerned.
ii) Limpid clay nodules coated with micrite (‘ooids’), but not coated with hematite
as the quartz and orthopyroxene grains (as in i) above). Instead there is generally
a dark boundary (oxides?) between the nodule and the micrite coating (Figures
6.9), 6.10(d), (e), 6.11). Sometimes fibro-radial orientation can be discerned. Quite
common is pseudo-negative limpid core zoning out to pseudo-positive micrite (Figure
6.9(c)), and in one case a second generation of micrite causes the ‘ooid’ to zone back
to pseudo-negative (Figure 6.10(e)).
iii) Vughs coated by micrite.
iv) Some micrite (+clay) seems to form laminar coatings of larger clay aggregates,
resembles pendents but not restricted to the lower part (Figures 6.8(e)–(h).
Channels
i) Filled with limpid yellowish clay with cross-striated b-fabric, some channels are
mixed with micrite and have a crystallitic b-fabric.
ii) Coated by dark amorphous organic matter (Figures 6.8(b)–(d)). Some are contin-
uously filled with more loosely packed matrix material, possibly ellipsoid mineralo-
organic excrements, some contain tissue residue.
Phytoliths
i) 0.6 x <0.1 mm with some square cells (0.1 x 0.05 mm) which are colourless in PPL,
have 4th order green/pink interference colours, and are composed of calcite not Ca-
oxalate (dissolve in 2N acetic acid) (Figures 6.10(f)-(g)). Covered by matrix micrite
in some places.
ii) Silica phytolith (isotropic).

continued...
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Table continued from previous page

Excrement
Ellipsoidal, dark, speckled, 0.02 mm diam. (Figures 6.8(c)-(d))

HCl
etching:

Limpid yellow clay nodules become clearer, orientation easier to see. They appear
to be oriented clay. b-Fabric is concentric striated. Quartz fractures show less relief
(Figure 6.11).

2m from heuweltjie centre; hardpan carbonate (petrocalcic) sample 2B. 3 x vertical
sections; size 40 x 55 mm; thickness 30–35 µm. See Figures 6.14–6.17.
Micro-
structure:

Weakly separated granular microstructure. Granules (‘peloids’; ‘ooids’) 0.3 - 0.03 mm
diam.

Groundmass
c/f limit: 5 µm
c/f ratio: 1:8
c/f-related
distribution:

Double-spaced to open porphyric; chitonic.

Coarse
Material:

Mostly subrounded-subangular very fractured quartz, 0.5 - 0.04 mm diam., commonly
0.4 mm. Opaques, generally rounded, garnet, cpx, occ. zircon.

Micromass: Micrite (less abundant than 2A) interspersed with clay and oxides. PPL: Yellow to
brown, speckled, with Fe (hydr)oxides (dark PPL, yellowish-green OIL), and accessory
dendritic or dispersed Mn oxides (effervesces cold H22O2) in 40% section - more
abundant than 2A. XPL: speckled b-fabric dominant, also granostriated.

Pedofeatures: Nodules
i) Clay-quartz compound fragments (Figures 6.14): Rounded, generally spherical 0.7
mm diam. clay aggregates, distinguishable also in handspecimen. Very similar to
the matrix, but have less calcite, and have a grano-circular-striated b-fabric, not
crystallitic. They contain quartz grains (coated as the matrix), (granostriated) clay,
opaque material, and what appears to be altered organic remains. One clay aggregate
(Figure 6.17(b)–(d)) has low birefringence (sepiolite?) and contains quartz grains and
needles. The clay forms spherical coatings on the angular quartz grains and needles
that are aggregated to form the nodule.
ii) Opaque Localised moderate to strongly impregnated Fe (hydr)oxide nodules (dark
in PPL, yellowish-green in OIL), and accessory dendritic or dispersed Mn oxides
(effervesces cold H2O2) in 40% section - more abundant than 2A. The nodules appear
to have less calcite than the matrix, some have cross-cutting micrite veins.
iii) Limpid yellowish clay nodules (300 - 70 µm) (Figures 6.15, 6.16): subangular to
rounded, with a cross-striated b-fabric and very low (first order) interference colours,
occasionally will show pseudo-negative uniaxial interference colours, may zone out-
wards to pseudo-positive (commonly in the micrite coating); sometimes fibro-radial
orientation can be discerned. Some have concentric dark narrow rings which may be
oxides, or a dark core.
iv) Micrite nodules (granules, resembling ‘peloids’) (e.g. Figure 6.15) likely mixed
with clay, 0.35 mm diam. One shows a pseudo-positive interference figure, some seem
to be combined radial/concentric, but generally the orientation not clear, possible due
to the small size of the particles.
v) Digitate calcite nodule 0.2 mm diam.
Coatings
i) Quartz and orthopyroxene grains coated by red (OIL) Fe (hydr)oxides (as in samples
2.2, 2A), in turn coated by micrite (mixed with clay) and sepiolite (Figure 6.15).
ii) Limpid clay nodules occasionally coated with hematite and/or other oxides (Figure
6.16), but most commonly only by micrite.
iii) Some micrite and sepiolite coating larger clay aggregates (Figures 6.14, 6.17(b)–
(d)), micrite coating is thicker around the angular parts of the nodule to give a
spherical ooid-like structure.

continued...
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Table continued from previous page

Altered grains
Generally elongated, 3 x 0.6 mm, speckled orange-brown, have a circular striated
b-fabric (Figure 6.16).
Pendents and cappings
Large scale (cm’s) micrite laminations (mixed with clay(?)) (for example Figures
6.17(e)-(f)).
Excrement
Rounded, 0.05 mm diam., ellipsoidal, dark, micritic, appears to be contained in plant
tissue residue (Figure 6.17(a)). A lot of tissue residue seems altered to micrite, and
is associated with more clay rich fragments.
Channels
i) Filled with limpid yellowish clay with cross-striated b-fabric and very low interfer-
ence colours (sepiolite), some channels are mixed with micrite and have a crystallitic
b-fabric.

3.2 m from heuweltjie centre; hardpan carbonate (petrocalcic) sample 2C. 3 x vertical
sections; size 40 x 25 mm; thickness 30–35 µm. See Figures 6.18–6.19.
Micro-
structure:

Weakly separated granular to massive microstructure. Granules (‘peloids’; ‘ooids’)
0.3 - 0.03 mm diam.

Groundmass
c/f limit: 5 µm
c/f ratio: 1:8
c/f-related
distribution:

Double-spaced to open porphyric; chitonic.

Coarse
Material:

Mostly subrounded-subangular very fractured quartz. 0.5–0.04 mm diam., commonly
0.4 mm. Opaques, generally rounded, garnet, orthopyroxene, occ. zircon.

Micromass: Micrite interspersed with clay. PPL: Yellow to brown, speckled. XPL: speckled b-
fabric dominant, also granostriated.

Pedofeatures: Nodules
i) Clay-quartz compound fragments (Figures 6.18(a), (b): Rounded, generally spheri-
cal (also angular) 0.7 mm diameter clay aggregates, distinguishable also in handspec-
imen. Very similar to matrix, but have less calcite. Micrite veins cross cutting, and
micrite hypocoatings (banded, speckled). They are darker in PPL, contain more Fe
(hydr)oxides than the matrix, and have a granostriated b-fabric, not crystallitic. They
contain quartz grains (Fe-, clay coated) , (granostriated) clay, and opaque material.
ii) Limpid yellow clay nodules (Figures 6.19(a)–(c): subangular (300 - 70 µm) which
have a cross-striated b-fabric and low first order interference colours, occasionally
show pseudo-negative uniaxial interference figures, and may be coated with micrite
and acicular calcite (radial orientation). Some have concentric dark narrow rings,
which could be oxides and is suggestive of multistage growth. One has a light-coloured
core (quartz?) (Figure (d)), in contrast to the dark cores usually observed in samples
2A–2B.
Coatings
i) Quartz and orthopyroxene particles coated with red (OIL) Fe (hydr)oxides (as in
samples 2.2, 2A, 2B), in turn coated by acicular calcite (radial orientation, Figures
6.19(f), (h), easier to see than in samples 2A-B), and also by grain-parallel oriented
clay that is revealed on etching in HCl (Figures 6.19(g), (i)).
ii) Limpid yellow clay nodules have oxide coatings, covered by radially oriented calcite
(Figures 6.19(a), 6.19(d)).
Channels; excrement
Filled with 0.05 mm diam. spheres (‘peloids’), which appear to be excrement and
have the same b-fabric (speckled, micrite) as matrix (Figures 6.18(e), (f)). Matrix
and excrement both dissolved during HCl-etching. Some channels have chambers and
most have fine, dark (hypo)coatings that appear to be organic matter.

continued...
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Pendents
Large scale (cm’s) micrite laminations (Figures 6.18(a)–(d)).

HCl
etching:

Figures 6.19(d)-(i) Limpid yellow clay nodules (spherulites and concentric nodules)
become clearer, orientation easier to see, and concentric dark rings are less prominent.
Appear to be clay with low interference colours. Fractures in silicate grains show less
relief. Micrite matrix (‘peloids’) dissolved.

7.5 m from heuweltjie centre; ‘sepiolitic’ pedocutanic (argic) (sample 2D). 2 x vertical
sections; size 20 x 15 mm; thickness 20 to 25 µm. See Figures 6.20, 6.21, 6.22.
Micro-
structure:

Weakly separated vughy to massive microstructure.

Groundmass
c/f limit: 5 µm
c/f ratio: 1:2
c/f-related
distribution:

Single-spaced porphyric; chitonic.

Coarse
Material:

Mostly subrounded to subangular very fractured quartz. 0.5 to 0.04 mm diam., com-
monly 0.4 mm. Opaques, generally rounded, occ. zircon, feldspar.

Micromass: PPL: Pale yellow-brown, mostly limpid clay (and silica?). XPL: Grano- and circular
striated b-fabric.

Pedofeatures: Nodules
i) Clay-quartz compound fragments: Angular compound fragments comprising either
1) quartz grains and clay nodules with granostriated b-fabric (caused by oriented clay
coatings) set in a darker, more speckled matrix than the surrounding matrix, and the
entire fragment is coated with clay oriented parallel to the edges. Along one side of
one fragment there is a zone of clay with very low interference colours, consisting of
interwoven domains of oppositely oriented fibres (perpendicular and parallel to the
nodule) which appear to be sepiolite (Figure 6.21), or 2) comprising quartz grains set
in a fibrous matrix (Figure6.22) that is consistent with sepiolite.
Coatings
Quartz particles coated with red (OIL) Fe (hydr)oxides (as in samples 2.2, 2A to C),
which is in turn coated by oriented clay coatings (Figure 6.20). Clay nodules not
coated with hematite.

Heuweltjie edge (8 m from 2D); dorbank (petroduric), sample 1.3. 1 x vertical section;
size 45 x 90 mm; thickness 35 to 40 µm. See Figure 6.23.
Micro-
structure:

Vughy microstructure

Groundmass
c/f limit: 5 µm
c/f ratio: 2:1
c/f-related
distribution:

Chito-gefuric to close porphyric.

Coarse
Material:

Mostly subrounded-subangular very fractured quartz grains 0.4 to 0.03 mm diam.
coated with fine hematite (red in OIL). Some larger grains have embayments (0.02
mm) filled with hematite (Figure 6.23(a)). Occ. orthopyroxene, garnet, opaques,
zircon.

Micromass: Silica and clay and Fe oxides. PPL: Orange-brown, mostly speckled. XPL: Granos-
triated b-fabric.

Pedofeatures: Nodules:
i) Spherulites, some of which show pseudo-negative uniaxial interference figures, some
appear to have an isotropic core. Others show concentric banding.

continued...
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Table continued from previous page

ii) Aggregates (Figures 6.23(a)–(c)) containing quartz grains with red Fe coatings,
cemented by silica (mixed with clay and Fe to give a limpid orange colour). The
aggregates contain more interstitial silica and fewer quartz grains than the matrix.
Coatings:
i) Quartz particles coated with red (OIL) Fe (hydr)oxides (as in 2.2, 2A to D). Some
larger grains have embayments (0.02 mm) filled with hematite (Figures 6.23(a), (g)
to (f)).
ii) Laminated (in places) orange-brown, generally limpid, compound clay and silica
coating a) spherical, rounded peds 0.5 to 1 cm diam., b) an elongated channel(?) 3
x 0.5 cm, and c) large irregular (5 cm) peds. In one instance the amorphous silica is
clearly on the outer part (Figure 6.23(d) to (f)).
iii) Silica and Fe-stained clay compound coatings around channels and vughs. The
silica is in places transparent in PPL but in other places seems to be coloured by
iron and mixed with clay. In some cases the silica is clear, and occurs on the void-
side of the coating (6.23(g) to (h)). In one case it can be discerned as edge-parallel
length-slow (Figure 6.23(i)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.8: Photomicrographs from centre of heuweltjie. Way-up is top of page.(a) Orthic
A horizon (sample 2.1, 20 cm deep), v: void, ppl. (b)-(g) Calcrete (sample 2A) underlying
sample 2.2. (b) Tunnel lined with organic matter, ppl. (c) Chamber and tunnel lined
with organic matter; excrement in nodule; quartz grain coated with red Fe, ppl. (d) xpl.
(e)–ppl, (f)–xpl, (g)–λ-plate, fast-direction NW-SE: clay nodule with micrite hypocoating,
internal ooid-like structures form granostriated b-fabric. Note thinning of micrite coating
around an angular hematite-coated quartz grain to form spherical ooid (arrowed in (e).)(h)
Clay nodule fractured by micrite, ppl.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Photomicrographs from calcrete (2A) in the centre of heuweltjie.
Way-up is top of page.(a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-SE: ori-
ented granules (arrowed top-left), unoriented granules/‘peloids’(arrowed centre),
limpid oriented core with an oriented micrite coating (arrowed right); quartz
grains coated with red Fe. (d)–ppl, (e)–xpl, (f)–λ-plate, fast-direction NW-SE:
limpid oriented nodule with thin unoriented micrite coating (arrowed top), ori-
ented micrite nodule (arrowed centre), quartz grain with oriented micrite coating
(arrowed bottom-left), oriented limpid nodule undergoing “micritization” from
the centre (arrowed bottom-right).
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 6.10: Photomicrographs from calcrete (2A) in centre of heuweltjie. Way-up is
top of page. (a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-SE: radial and concen-
tric orientation in layers of nodule.(d)–ppl, (e)–λ-plate, fast-direction NW-SE: limpid
pseudo-negative core (C) surrounded by pseudo-positive (M1) and pseudo-negative (M2)
micrite.(f)–ppl, (g)–xpl: calcite (which dissolved in 2N acetic acid) phytolith.(h)–ppl, (i)–
xpl, (j)–λ-plate, fast-direction NW-SE: Fe, clay coatings: note perpendicular orientations.
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(a) Scale 0.1 mm, ppl. Qtz: quartz. (b) Same view as (a); etched in 1M HCl.

(c) Same view as (a); xpl. (d) Same view as (b); etched in 1M HCl.

(e) Same view as (a); λ-plate, fast-direction
NW-SE.

(f) Same view as (b); λ-plate, note that fast
direction is opposite to (e).

Figure 6.11: Photomicrographs: HCl etching of peloids and a coated limpid
nodule with pseudo-negative uniaxial interference figure (sample 2A, calcrete in
centre of heuweltjie). Way-up is top of page.
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(a) Scale 0.1 mm, ppl,
magnified in (d) to (i).

(b) Same as (a), xpl. (c) Same as (a), λ-plate,
fast-direction NW-SE.

(d) Magnification of (a), scale bar 100 µm. (e) Magnification of (a), scale bar 50 µm.

(f) Magnification of (e), sepiolite (grey
mesh), radial calcite (white). Scale 5 µm.

(g) Magnification of (a), scale bar 50 µm.

(h) Magnification of (g), radial orientation
of needle fibres. Scale 5 µm.

(i) Magnification of (g), radial orientation of
needle fibres. Scale 5 µm.

Figure 6.12: Photomicrographs and corresponding ESEM images from calcrete
(2A) in centre of heuweltjie. Calcite is white; grey colours are lower atomic
numbers such as Mg or Si. Way-up is to the right.
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(a) ‘Ooid’ composed of radial acicular
calcite. EDAX suggests sepiolite present in
lesser amounts. Scale 10 µm.

(b) Radial, acicular calcite coating silicate
grain. EDAX suggests sepiolite present in
lesser amounts. Scale 5 µm.

(c) Fragment: micrite nodules (ooids), note
hollow centres, and fungal filament. Scale 2
µm.

(d) Fragment showing radial orientation of
acicular calcite in nodules. Area magnified
in (e) arrowed. Scale 10 µm.

(e) Magnification of (d), MB rod arrowed
(after Verrecchia and Verrecchia (1994)).
Scale 2 µm.

(f) Sepiolite fibres in the same fragment.
Scale 2 µm.

Figure 6.13: ESEM images of fragments and thin sections from calcrete (2A) in
centre of heuweltjie.
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(a)

(b) (c)

Figure 6.14: Photomicrographs from calcrete (2B), 2 m from centre of heuweltjie.
Way-up is top of page. (a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-SE:
quartz-clay aggregate with sepiolite (S) coating covered by micrite (M) coating.
Note thickening of micrite coating to give spherical ooid-like structure (arrowed
in (a)). This pattern is also present around the quartz grain on the left. Dispersed
opaques in nodule and matrix are Mn and Fe (hydr)oxides.
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(a)

(b)

Figure 6.15: Continued - photomicrographs from calcrete (2B), 2 m from centre of
heuweltjie. Way-up is top of page. (a)–ppl, (b)–xpl: sepiolite nodule and layered
calcite-sepiolite grain coatings in a micrite-clay matrix.
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(a)

(b)

(c)

Figure 6.16: Continued - photomicrographs from calcrete (2B), 2 m from centre of
heuweltjie. Way-up is top of page. (a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction
NW-SE: limpid clay nodules (pseudo-negative and unoriented), with oriented
(pseudo-positive) micrite coatings.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Continued - photomicrographs from calcrete (2B), 2 m from centre
of heuweltjie. Way-up is top of page. (a)–ppl: calcified, excrement-filled or-
gan residue. (b)–ppl, (c)–xpl, (d)–λ-plate, fast-direction NW-SE: sepiolite clay-
quartz nodule containing organ residue (needle, arrowed) in oxide-rich matrix.
Quartz grains coated by red Fe oxides. Needle and grain above it are coated by
clay, giving the appearance of spherical ‘ooids’. Lower part of the nodule shows
grain-parallel clay orientation. (e)–ppl, (f)–xpl: micrite capping ped (arrowed),
in a more oxide-rich matrix (m).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Photomicrographs from calcrete (2C), 3.2 m from centre of
heuweltjie. Way-up is top of page. (a)–ppl, (b)–xpl: calcite pendent below clay-
quartz compound fragment. (c)–ppl, (d)–xpl: calcite pendent associated with
an organic matter-lined tunnel. (e)–ppl, (f)–xpl: micrite-containing excrement
in tunnel.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6.19: Continued - photomicrographs from calcrete (2C), 3.2 m from centre
of heuweltjie. Way-up is top of page. (a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction
NW-SE: fibro-radial calcite coating a limpid clay nodule. (d)–ppl, (e)–ppl, HCl-
etched, (f)–xpl, (g)–xpl, HCl-etched, (h)–λ-plate, fast-direction NW-SE, (i)–λ-
plate, HCl-etched: fibro-radial calcite and grain-parallel clay coating a quartz
grain; 2-generations of clay oriented around quartz fragment forming an ooid-
like structure with a pseudo-negative interference figure.
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(a) (b)

(c)

(d)

Figure 6.20: Non-calcareous ‘sepiolitic’ pedocutanic (argic) (2D), 7.5 m from
centre of heuweltjie.(a) SEM image of fragment, showing smooth coatings of
grains. Scale 10 µm. (b)–ppl, (c)–xpl, (d)–λ-plate, fast-direction NW-SE, way-up
is top of page: photomicrographs of grain-parallel, aligned clay and dominating
granostriated b-fabric. Section is thinner than 2A to 2C.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.21: Continued - photomicrographs of non-calcareous ‘sepiolitic’ pedocu-
tanic (argic) (2D), 7.5 m from centre of heuweltjie. Way-up is top of page.(a)–ppl,
(b)–xpl, (c)–λ-plate, fast-direction NW-SE: clay capping on a (rotated) quartz-
clay aggregate. (d)–ppl, (e)–xpl, (f)–λ-plate, fast-direction NW-SE: magnifica-
tion of clay capping showing interwoven fibre domains.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Continued - photomicrographs of non-calcareous ‘sepiolitic’ pedo-
cutanic (argic) (2D), 7.5 m from centre of heuweltjie. Way-up is top of page.(a)–
ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-SE: Aggregate with sepiolite matrix.
(d)–ppl, (e)–xpl, (f)–λ-plate, fast-direction NW-SE: magnification of fibrous se-
piolite matrix showing fibre domains.
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 6.23: Photomicrographs of non-calcareous dorbank (petroduric, sample 1.3), 8 m from sample 2D. Way-
up is top of page.(a)–ppl, (b)–xpl, (c)–λ-plate, fast-direction NW-SE: aggregate (top-left) in granostriated matrix
of Fe-coated quartz grains cemented by limpid-orange silica mixed with clay and Fe. (d)–ppl, (e)–xpl, (f)–λ-plate,
fast-direction NW-SE: silica-rich (Si) over clay-rich (Cl) capping on ped. Voids in ped contain silica. (g)–ppl, (h)–xpl,
(i)–λ-plate, fast-direction NW-SE: Fe coating quartz grain (Q); silica (length-slow arrowed in (i)) lining voids (v).
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Biological activity

Evidence of biological activity could only be found in the calcrete in the centre

of the heuweltjie (samples 2A to 2C). Neither the ‘sepiolitic’ pedocutanic (argic;

sample 2D) halfway to the edge, nor the dorbank (petroduric; sample 1.3) at

the edge exhibited such evidence. This is consistent with observations that the

centre of the heuweltjie is where the termite activity is concentrated. Tunnels

and chambers were lined with organic matter (Figures 6.8(b) to (d); 6.18(c) to

(d)). The dark ellipsoid (0.8× 0.4 mm) just above the tunnel in Figures 6.18(c)

to (d) and in the ped in Figures 6.17(e) to (f) appear to be termite excrement,

based on the morphology of the termite excrement from the active heuweltjie in

Stellenbosch (Figures 6.6 to 6.7). Smaller excrement particles in the form of 0.1

to 0.05 mm diameter calcareous spheres are also abundant: in one case within

what appears to be termite excrement (Figures 6.8(c) to (d)); in calcified plant

organ residue (Figures 6.17(a)); and in a tunnel (Figures 6.18(e) to (f)). Plant

remains are present, some of which appear to be fresh (such as Figure 6.8(c) to

(d)), some that seem to be needles that have been coated in clay (Figure 6.17(b)

to (d)), and some (most commonly) that appear to have been calcified (Figures

6.17(a), 6.10(f) to (g)). Highly birefringent phytoliths such as that pictured in

Figures 6.10(f) to (g) are composed of calcite and not calcium oxalate, since they

dissolved completely in 2N acetic acid. Rectangular silica phytoliths (isotropic)

are also present.

Horizon over calcrete in the heuweltjie centre

The horizon is non-calcareous and has very little clay (Figure 6.8(a)). Interped

areas and some voids surrounding the peds have much less of the fine (50 to

100 µm) material. Some of the coarser (0.4 to 0.8 mm) material seems wedged

in vertically elongated voids (planes, ped margins, channels). The bleached A

horizon (Table 6.1) is also consistent with clay dispersion and leaching (Ellis,

1988; Francis et al., 2007). The lack of clay and presence of hematite coatings

suggest a well-drained environment, and is consistent with its lower-pH and the

tonguing nature of the transition to hardpan carbonate (petrocalcic) horizon

below (Table 6.1).
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Calcrete in the heuweltjie centre

The calcrete contains much fewer sand grains (10-20% vs 60% for the overlying

orthic (ochric) A horizon), and virtually no void space (compare Figure 6.8(a)

with Figure 6.15, for example). The calcite is mostly micrite, possibly a result of

the high clay content of the matrix (Wieder and Yaalon, 1974, 1982, in Wright

and Tucker 1991). Hay and Reeder (1978) also noted that porosity appeared to

control the micrite distribution for ooids formed by replacement of clay coatings.

Calcic pendants and cappings (Figures 6.17(e) to (f), 6.18(a) to (d)) suggest

remobilisation of calcite, consistent with the more acidic, well-drained overlying

horizons and tonguing transition to the calcrete. This tonguing transition on the

heuweltjie crest resembles the karstic processes that operated on the anticline

crests in folded Miocene limestones in the Madrid Basin (Sanz, 1996, in Alonso-

Zarza, 2003).

Calcareous ooids and peloids

The terms ‘peloid’ and ‘ooid’ are applied descriptively to carbonate sedimentary

rocks, usually marine limestones. They were not used in Stoops’ (2003) soil

micromorphological description scheme; they are included instead in the concepts

of ‘granular microstructure’ and micrite ‘(hypo)coatings’. Boggs (1995, p. 199)

defined ‘ooid’ as a general name for coated carbonate grains (0.02 to 2 mm in

size) containing a nucleus (commonly a shell fragment, pellet or quartz grain)

surrounded by thin coatings of fine calcite or aragonite. Most ooids display

an internal structure consisting of concentric layers, but some show a radial

structure.

Boggs (1995, p. 201) defined ‘peloid’ as a nongenetic term for carbonate grains

composed of micro- or cryptocrystalline calcite/aragonite that do not display

distinctive internal structures, which are generally smaller than ooids (0.03 to

0.1 mm). Peloids may be: 1) Fecal pellets, the most common kind of peloid,

produced by organisms that ingest calcium carbonate muds and generally contain

enough organic matter to make them appear dark or opaque. 2) Formed by the

micritization of small ooids or rounded skeletal fragments, due to boring activities

of certain organisms (boring algae) which convert the original grains into a nearly

uniform homogeneous mass of micrite. 3) Very small, well rounded intraclasts

formed by reworking of semiconsolidated mud or mud aggregates (Boggs, 1995).
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Peloids and ooids are not restricted to limestones of marine origin. Wright

and Tucker (1991) noted that these are a very common feature of many cal-

cretes. Siesser (1973) referred to them as ‘diagenetic ooids/intraclasts’ to distin-

guish them from their marine counterparts, and noted that Quaternary calcretes

contain the only known ooids/intraclasts in any South African Cretaceous or

Cenozoic rocks. Ooids and peloids have also been recorded from pedogenic cal-

cretes in northern Tanzania (Hay and Reeder, 1978); in the southwestern United

States (Hay and Wiggins, 1980); Tarragona, northeastern Spain (Calvet and Ju-

lia, 1983); calcretes developed in the Old Red Sandstone of Scotland (Wright

et al., 1993); the Kalahari valley (Nash and McLaren, 2003); and calcretes con-

taining bee nests on the Eastern Canary islands (Alonso-Zarza and Silva, 2002).

The granular microstructure that is most strongly developed in the center of

the heuweltjie (Table 6.2) comprises 0.3 to 0.03 mm diameter granules that re-

semble ‘peloids’, and abundant micrite-coated grains that resemble ‘ooids’ (for

example, Figures 6.9, 6.10(a) to (e), 6.11). They were not observed in a calcrete

described in Chapter 3, which is a ‘non-heuweltjie’ calcrete farther north on the

Namaqualand coastal plain near Kleinzee. Pellets have been described in soils

associated with termites by Stoops (1964) and Mermut et al. (1984).

The ooids in the Papendorp heuweltjie often have a core of limpid yellowish

clay/silica with low birefringence, usually rimmed with a dark layer under the

micrite (Figures 6.9(a) to (c); 6.10(d) to (e), 6.11; 6.16). Less common is a

nucleus of Fe-coated quartz grains (top of Figures 6.8(c) to (d); bottom-right of

Figures 6.8(e) to (f); bottom-left of Figures 6.9(d) to (f)). In some cases the

core seems to be hollow (Figures 6.13(a), (c)). In most cases the coatings are

composed of radially oriented acicular calcite, which also commonly forms thin

coatings on much larger detrital grains (Figures 6.13(a), (b), (d), 6.19), similar

in principle to the ‘pseudo-ooids’ of Hay and Reeder (1978). In many cases the

radial acicular calcite is contained within concentric envelopes, to form successive

layers of differently-oriented and/or oppositely-elongated calcite (Figures 6.10(a)

to (e), 6.12(e) to (i)). Etching in HCl to remove a radial calcite coating on a

detrital grain revealed a concentrically-oriented, length-slow coating that appears

to be clay (Figures 6.19(d) to (i)).

According to Siesser (1973), the formation of diagenetically formed ooids and

intraclasts in South African coastal calcretes takes place as rain water percolates
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through an unlithified calcareous sand deposit, dissolving carbonate along its

downward path. This carbonate-laden water is eventually checked in its descent

and drawn upward somewhat by capillary action. Evaporation and soil suction

in the uppermost zones of the sediment body cause precipitation of a concentric

coating of carbonate mud around individual grains (incipient ooids) or compos-

ites of grains (incipient intraclasts). As this dissolution-precipitation cycle is

repeated, the micritic coatings thicken and locally push grains apart.

Davies et al. (1978) found that ooids synthesised in quiet-water conditions had a

radial orientation of carbonate crystals (as observed in the heuweltjie), whereas

the ooids that formed in agitated conditions has a prevalently tangential orien-

tation due to the grain collisions which inhibited any crystal growth other than

tangential. The most important parameters in quiet-water ooid formation were

high molecular weight organic components, the presence of Mg in addition to

Ca, the presence of carboxylic groups (for example solutions containing humic

acids), and a capacity to participate in hydrophobic/hydrophilic interactions.

These parameters were critical to membrane formation, and it was the forma-

tion of the hydrophilic high molecular-weight membranes that was important in

the formation of ooids. These membranes formed concentric shells which acted

as growth surfaces for carbonate, and also induced periodicity in carbonate pre-

cipitation. There is much literature on the possible mechanisms involved in the

formation of rounded calcite aggregates, spheres, spherulites and peloids, deal-

ing particularly with the question of whether biotic or abiotic processes were

the cause (for example, Tracy et al., 1998a; Tracy et al., 1998b; González-Muñoz

et al., 2000; Raz et al., 2000; Braissant et al., 2003; Bosak et al., 2004; Fernández-

Dı́az et al., 2006). The mechanism proposed by Davies et al. (1978) for the forma-

tion of quiet-water ooids is the best explanation for the formation of ooids in the

heuweltjie soils, in view of the number of parallels between the quiet-water ooid-

forming processes described by Davies et al. (1978) and conditions in the calcrete

of the Papendorp heuweltjie. The heuweltjie ooids are closely associated or cored

with sepiolite (Figures 6.4, 6.12(e) to (f), 6.13(f)) with its strongly hydrophilic

character (Alvarez, 1984), and its high Mg content. The induced periodicity in

carbonate precipitation described by Davies et al. (1978) explains the successive

acicular layers seen in the ooids, particularly the successive sepiolite (hydrophilic

and therefore a precipitational substrate) and micrite/acicular calcite layers in

the coatings (Figures 6.10(a) to (e), 6.12(g) to (i), 6.15 (arrowed), 6.16 (arrowed

middle)).
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Further support for the hydrophilic/hydrophobic membrane theory of Davies

et al. (1978) is that the organic material in the Namaqualand soils impart a

strongly hydrophobic character (Francis et al. (2007) and Chapter 2). In the

Papendorp heuweltjie, it took longer for a drop of water to penetrate the sandy

non-cemented A horizon than the cemented subsurface horizons (Table 6.1).

The ooids in this heuweltjie are also closely associated with organic/biogenic

material: fungal filaments (Figure 6.13(c)) and biogenic calcite (MA and MB

rods of Verrecchia and Verrecchia (1994), Figure 6.13(e)). Alonso-Zarza and Silva

(2002) noted organic material and organic films associated with ooids formed in

calcrete containing bee nests in the Canary Islands. They concluded this favoured

the precipitation of calcite and the adhesion of clays (mostly palygorskite).

Limpid nodules

Pseudo-negative uniaxial ‘spherulites’

Somewhat of an enigma are limpid yellow nodules 300 to 70 µm in diameter,

with pseudo-negative uniaxial interference figures, usually with a dark round-

or dumbbell-shaped core, and a dark rim between them and the matrix calcite

(Figures 6.9(a) to (c), 6.11, 6.16). Canti (1997) defined spherulites as “crystal

aggregations with an approximately circular outline and a permanent cross of ex-

tinction in crossed polarized light”. Although the samples do show a permanent

uniaxial extinction cross under crossed-polars, they do not show the same neo-

formed radial crystallitic texture that characterises calcite spherulites commonly

observed on laminar calcretes (for example Verrecchia et al., 1995; Mees, 1999).

Canti (1998) acknowledged this problem while defining fecal spherulites: since

true spherulitic crystallization consists essentially of constrained dendritic growth

from the spherulite centre, all spherulites sensu stricto are radial. However, if

that was taken as part of a definition, petrographers and micromorphologists

would be unable to classify spherical bodies with an extinction cross because of

the impossibility of determining the often microcrystalline layout purely mor-

phologically. Canti (1998) therefore used the term “spherulite” to describe all

objects displaying the basic extinction cross. The limpid yellow nodules with

pseudo-negative uniaxial interference figures pictured in Figures 6.9(a) to (c),

6.11, 6.16 superficially resemble the fecal spherulites found in herbivore dung
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(Canti, 1997; Canti, 1998) and in fresh termite frass (Figure 6.6, described in

Section 6.3.3). They are similar in their pseudo-negative interference figures,

dark core and lack of effervesce in cold 10% HCl, but differ in being considerably

larger than the 5 to 15 µm calcite spherulites that commonly occur in herbi-

vore dung (Canti, 1997). Seong-Joo and Golubic (1999) noted similar dumbbell-

shaped, dark centres in 30 to 500 µm spherulites formed in silicified stromatolites

(carbonates) in China, and noted (p. 194) that the texture is reminiscent of that

produced by the process of diagenetic granularization or condensation of organic

matter as discussed by Knoll et al. (1988). This is consistent with the termite

activity which concentrates organic matter in heuweltjies. In addition, some

process akin to the ‘granularization or condensation of organic matter’ may also

occur in the termite gut, producing a dark core like those seen in the termite

fecal spherulites (section 6.3.3 and Figure 6.6).

Possible Other Morphological Forms

The limpid yellow nodules with pseudo-negative uniaxial interference figures pic-

tured in Figures 6.9(a) to (c), 6.11, 6.16 appear to be the same material that

also forms (a) the limpid nodules with a cross-striated b-fabric and low first or-

der interference colours (top, Figures 6.9(d) to (f), Figures 6.19(a) to (c)). This

material also appears to form (b) unoriented coatings (interpreted as sepiolite in

Figures 6.14, 6.15) juxtaposed with micrite. Sometimes it appears to form (c)

oriented coatings around grains (Figures 6.10(h) to (j)), some of which seem to

have formed in more than one stage (Figures 6.19(d) to (i), left).

Some of the nodules seem to have undergone ‘micritization’ which gives them

a highly birefringent crystallitic b-fabric in the centre and which ESEM shows

to be acicular calcite and micrite (Figures 6.9(d) to (f), 6.12, top-left of Figure

6.16).

It is unclear whether they are the same material as the ‘clay-quartz compound

fragments’ in Table 6.2, which occur in the ‘sepiolitic’ pedocutanic (argic) sam-

ple 2D as well as the calcrete horizons 2A to 2C. The ‘clay-quartz compound

fragments’ are somewhat darker in PPL but have a matrix that is strongly gra-

nostriated, and the granostriations are commonly oriented in a ‘pseudo-negative

uniaxial’ pattern (Figures 6.8(e) to (g), 6.14, 6.17(b) to (d), 6.18(a) to (b)). In

the ‘sepiolitic’ pedocutanic (argic) horizon (sample 2D) it appears to form the

fibrous capping as well as the coatings (Figures 6.21, 6.22).
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Composition

The nodules do not react with cold 10% HCl. After etching the thin section

in HCl, most of the matrix micrite is removed, and the spherulites show much

clearer pseudo-negative uniaxial interference figures (Figures 6.11, 6.19(d) to (i)).

This suggests that while some may have been ‘micritized’, they are not primarily

composed of calcite. Their low Ca, high Mg, and high Si contents (SEM-EDAX

analysis such as in Figure 6.12) coupled with their low birefringence argue against

them being composed of chalcedony or other carbonate minerals which have a

tendency to form “true” spherulites (aragonite, dolomite and vaterite, for ex-

ample). Also, in the Papendorp heuweltjie samples, the limpid yellow nodules

are always pseudo-uniaxial negative under crossed-polars, whereas the calcite

coatings are generally oriented pseudo-positive (Figures 6.9(a) to (c), top-left;

compare to the pseudo-negative limpid nodule coated by a pseudo-positive mi-

crite coating on the right), but Figures 6.10(d) to (e) show the variability.

In addition to the 1.2 nm sepiolite peak in the calcrete samples 2A to 2C, they

and the silica-cemented dorbank sample 1.3 all show a broad rise in the back-

ground at around 0.4 nm (Figure 6.4), consistent with amorphous silica (Drees

et al., 1989). However, the fibrous nature (particularly Figure 6.12(f) and its ac-

companying EDAX analyses) suggests that they are composed of sepiolite rather

than (amorphous) silica. The EDAX analyses in Figure 6.12(d) and 6.12(f) have

molar Mg/Si ratios of 0.64 to 0-68, consistent with the molar Mg/Si of 0.667

for sepiolite (Stoessell, 1988). Also, where orientation can be discerned it seems

to be concentric rather than radial (Figure 6.11), suggesting it is a length-slow

mineral like sepiolite (Phillips and Griffen, 1981). Summerfield (1983b, Plate

3.1(h)) noted that length-fast chalcedony occurs predominantly as spherulites

with pseudo-uniaxial extinction crosses in southern African silcretes. Summer-

field (1983a), however, noted that length-slow chalcedony formed in the presence

of Mg2+ and SO4− by replacement (rather than void-fill) in carbonate and evapor-

ite host materials. ‘Spherulites’ with pseudo-negative uniaxial interference figures

were also present in a dorbank horizon overlying a ‘sepiocrete’ (‘petrosepiolitic’)

horizon in the Knersvlakte (Chapter 1, Figure 1.9).

Although the low birefringence of the nodules is consistent with the other ev-

idence for sepiolite rather than (amorphous) silica, silica (opal-CT) has been

reported to show weak anisotropy in soils. In Figure 6.23(h), for example, the
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anisotropic void coating was interpreted as silica. Broadly similar pedofeatures

(although in a massive rather than oriented form) were noted in Sardinia, Italy

in >2.7 Ma buried paleosols (Usai and Dalrymple, 2003). They suggested that

the “milky pedofeatures” as they were termed, were made of different phases of

silica such as inorganic opal-A, opal-C and opal-CT, but mainly composed of

opal-C. They noted that slight and local birefringence in colourless white-milky

pedofeatures had been previously described for opal-CT by Drees et al. (1989).

Although silica was the main constituent of the “milky pedofeatures” (reaching

67% of the total weight), the remaining constituents were around 25% Al2O3,

5% MgO, 2 to 4.6% Fe2O3 and 2% CaO, which they attributed either to im-

purities chemisorbed to silica (Drees et al., 1989) or to analytical inaccuracy.

Gutiérrez-Castorena et al. (2006) described weak anisotropy in opaline coatings

on channels and fissures in the strongly alkaline sediments of the former Texcoco

Lake (Mexico City). They suggested that the weak anisotropism could be related

to an initial crystallisation of the opal-A to opal-CT (anisotropic domains), or

to the presence of fine clay particles oriented according to the flow direction of

the colloids (parallel anisotropic streaks).

A possible explanation for these limpid nodules may be a process similar to the

pseudomorphic replacement of sepiolite by opal in deposits in the Madrid Basin,

Spain (Bustillo and Bustillo, 2000; Bustillo and Alonso-Zarza, 2007). The Madrid

Basin typically consists of carbonates, high magnesium clays and opaline cherts.

Bustillo and Alonso-Zarza (2007) suggested that the preferential silicification of

the sepiolite deposits is due to the fibrous structure and high absorption capacity

of sepiolite, which helped to retain interstitial fluids, and the fact that sepiolite

and opal are stable under relatively similar geochemical conditions. Bustillo and

Alonso-Zarza (2007) proposed that the replacement of sepiolite by opal took

place via an initial silicification, which resulted in an atypical, porous opal. In

thin section this showed striated birefringence, as a consequence of the sepiolite

fibrous structure. When the silicification progressed the fibres became joined

and cemented together to form blades, resulting in a compact structure in which

the inherited striated birefringence could still be observed. In a later phase,

compact and isotropic opal may have formed due to the loss of the inherited

sepiolite structure. In some cases, noted Bustillo and Alonso-Zarza (2007), it is

difficult to distinguish Mg clay fibres from their imprints on the opal.
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‘Sepiolitic’ pedocutanic (argic) midway to edge of heuweltjie (sample

2D)

The clay mineralogy of non-calcareous (Table 6.1) sample 2D is somewhat of an

enigma (see discussion in Section 6.3.2). It appears that the cutans are sepiolite,

and the matrix is dominated by a 1.4 to 1.5 nm non-expanding mineral. The

micromorphology is consistent with this interpretation: the quartz grains coated

by strongly oriented clay with low first-order interference colours which appears

to be illuvial in origin. This clay is distinct from the interwoven fibre domains

of the clay forming cappings and the matrix of nodules (Figure 6.20 to 6.22).

The origin of fibrous coating on the side of the clay nodule in 2D (Figure 6.21)

is unclear. It may be part of a crust that has been buried by bioturbation, since

the clay aggregate fragment to which it is attached seems discordant with the

surrounding material, or it may be a sepiolite cutan, many of which are evident

in the field (Figure 6.2). In Figure 6.22 it appears to form the matrix of a nodule

that is discordant with the rest of the matrix. The interwoven, length-slow fibres

with low birefringence occur in domains similar to those described by Stahr et al.

(2000) for a palygorskite-cemented hardpan in Portugal. While the illuviation

of clay in the matrix is indicated by the strongly oriented grain coatings, the

interwoven nature of most of the sepiolite occurrences suggest that the sepiolite

is neoformed. Singer and Norrish (1974) noted neoformed palygorskite cutans in

otherwise palygorskite-free soils in Australia. Sample 2D was therefore classified

as a ‘sepiolitic’ (Chapter 1) pedocutanic (Soil Classification Working Group,

1991) or argic (WRB, 1998) horizon.

Sample 2D differs from the calcrete samples 2A to 2C only by its lack of calcifica-

tion. It contains the same quartz-clay aggregates, the same clay coatings oriented

so strongly that it gives the appearance of a pseudo-negative interference figure,

and the same limpid yellow clay nodules, some of which show pseudo-negative

uniaxial interference figures. There are no signs of calcite leaching (pendants) in

2D. This suggests that the calcrete horizons 2A to 2C formed via the calcification

of a pedocutanic (argic) horizon similar to 2D.
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Dorbank (petroduric) at heuweltjie edge; sample 1.3

This dorbank is similar to others in southern Africa (see, for example, Chapter

1). There is a strong grano-, poro- and circular striated pattern to the matrix

( Figures 6.23(a) to (c)), suggesting the illuviation of clay and silica has been a

prominent process in the horizons formation.

The quartz grains are coated with hematite, as in the overlying neocutanic (cam-

bic) B horizon, the calcrete and the sepiolitic pedocutanic (argic) horizons of the

heuweltjie. The matrix does not show the same red colour, and appears to be

composed of amorphous Fe (hydr)oxides mixed with amorphous silica and clay.

The clay- and/or Fe-enriched coatings appear to have formed before the silica

coatings: in one instance, the silica is concentrated on the outside of clay capping

a ped (Figures 6.23(d) to (f)), and also silica is generally (but not exclusively)

concentrated on the void side of the clay coatings (Figures 6.23(g) to (i)), similar

to that described by Litchfield and Mabbutt (1962) for red-brown hardpans in

Western Australia. These observations are consistent with Summerfield (1983b,

p. 80), who noted that slow movement of silica-saturated pore waters is required

for the shift towards supersaturation and subsequent precipitation to take place,

and that silica will only precipitate where the presence of other constituents does

not favour the formation of other silicates. This may explain the location of the

silica on the outer (void) sides of the clay and Fe-oxides (Figures 6.23(d) to (i)).

The aggregate in the top-left corner of Figures 6.23(a) to (c) contains silica

nodules but their orientation is obscured by Fe. In one case the silica coating a

void was discerned to be length-slow (Figure 6.23(i)). Neither limpid clay nodules

nor ‘spherulites’ seem to be present, unlike the calcrete samples 2A to 2C and

‘sepiolitic’ pedocutanic (argic) sample 2D. This horizon seems to be formed by

silicification of an horizon similar to the overlying neocutanic (cambic) B horizon,

similar to Figure 6.8(a).

While the calcrete horizons 2A to 2C appear to have formed via the calcification

of a pedocutanic (argic) horizon similar to 2D, the dorbank at the edge of the

heuweltjie does not. It does not contain the ‘clay-quartz compound fragments’

which occur in both the calcrete and the ‘sepiolitic’ pedocutanic (argic) 2D, and

has a closer resemblance to the overlying neocutanic (cambic) horizon than the

pedocutanic (argic) horizon in which the calcrete formed.
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6.3.5 Heuweltjie formation

Organic matter as a source of ions for calcrete formation

The calcrete occurs only in the centre of the heuweltjie mounds, a feature which

is common in many heuweltjie landscapes such as the Worcester-Robertson area.

The concentration of calcite in termite mounds in otherwise calcite-free soils has

been noted before: Watson (1962), for example, noted calcareous soil below a

non-active termite mound in otherwise calcite-free ferrallitic soils in what is now

Zimbabwe. Monger and Gallegos (2000, p. 278 to 280) suggested that termites

could be mining carbonate from depth, obtaining the calcite from the plants they

consumed, and/or biomineralising calcite internally. Ellis (2002) proposed that

the petrocalcic horizon at the centre of the mound formed as the concentration of

plant material by termite activity led to the build-up of bases (especially Ca) and

silica in the heuweltjies over time. This is consistent with the nutrient cycling

into heuweltjie soils noted by authors such as Midgley and Hoffman (1991) and

Midgley and Musil (1990). The heuweltjie at Papendorp shows abundant mi-

cromorphological evidence of the accumulation of organic matter (plant remains

and calcite phytoliths, tunnels lined with organic matter, see Section 6.3.4) that

is associated only with the calcrete in the centre of the heuweltjie (samples 2A

to 2C). Evidence of organic matter accumulation is absent from both ‘sepiolitic’

pedocutanic (argic) sample 2D and dorbank sample 1.3 on the periphery. The

presence of many calcite phytoliths (which dissolved completely in 2N acetic

acid) in the calcrete further argues for the plant matter–calcite association.

Data from Midgley and Musil (1990) showed that foliar Ca for plants associated

with heuweltjies in the Worcester-Robertson valley ranges from 853.29 mmol/kg

(3.42%) for on-mound Ruschia caroli to 256.48 mmol/kg (1.03%) for off-mound

Euphorbia burmannii. This is higher than the 0.67 to 1.14% foliar Ca and 0.83

to 1.36% stem Ca in Brunia albiflora found by Poole (1999) in the Western Cape

coastal zone (Rooi Els, Kleinmond, Grabouw). It is even twice that of Cornus

florida, the calcium ”pump” known for its high foliar Ca levels, which has 1.73%

foliar Ca (data from Jenkins et al., 2007; published in Holzmueller et al., 2007).

This calcite mineralisation in the centre of heuweltjies in an otherwise non-

calcareous landscape bears some resemblance to the calcite mineralisation in

Iroko trees (Milicia excelsa) and surrounding soil in the Ivory Coast and Cameroon
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(Braissant et al., 2004; Cailleau et al., 2005, and references therein). These trees

contain significant calcium carbonate accumulations within their tissues and are

associated with calcium carbonate in their surrounding soils, even though they

grow on non-calcareous orthox soils which normally have a pH of 4.3 to 6.0.

Braissant et al. (2004) and Cailleau et al. (2005) showed that the calcium car-

bonate mineralisation in the trees and their surrounding soils is caused by soil

bacteria, which oxidise the Ca oxalate that is present in the living tissues of M.

excelsa, the wood-rot fungi, decaying wood and their surrounding soils.

Braissant et al. (2002) studied the growth of bacteria in a medium containing

potassium oxalate. They used Ralstonia eutropha (syn: Alcaligenes eutrophus)

and Xanthobacter autotrophicus, which are ubiquitous and most easily found in

oxalate-rich litters such as those associated with Oxalis, Rumex, Rheum and

Eucalyptus (Braissant et al., 2002). Much of the plant material available to

the foraging termites in Namaqualand is enriched in oxalate (A. Milewski, pers.

comm., 2007), for example ‘vygies’ (Mesembryanthemum spp.), Oxalis spp and

Rumex spp (VetPath Veterinary Pathologists, 2004). Braissant et al. (2002)

found that the growth of R. eutropha and X. autotrophicus showed a rapid

consumption of oxalate associated with a continuous increase in pH. The final

pH after 7 days of incubation was >9.5, from an initial pH of 7, and consistent

with the theoretical pH of 9.55±0.05 after total oxalate consumption (Braissant

et al., 2002).

Castanier et al. (1999, p. 20) noted that “carbonate precipitation always appears

to be the response of heterotrophic bacterial communities to enrichment of the

environment in organic matter”. Given the high nitrogen content as a result

of the accumulation of organic matter by termites and its subsequent degrada-

tion (Midgley and Musil, 1990), the passive carbonatogenesis induced by several

metabolic pathways of the nitrogen cycle described by Castanier et al. (1999) may

also be relevant to calcite genesis within the heuweltjie. These induce production

of carbonate and bicarbonate ions, and as a metabolic end-product, ammonia,

which induces pH increase (Castanier et al., 1999).
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Source of ions for sepiolite/palygorskite formation

Chapter 5 showed that most of the measured Mg and Si levels on the Namaqualand

coastal plain were sufficient for sepiolite saturation given an appropriate envi-

ronmental pH, and concluded that sepiolite precipitation is more likely to be

triggered when a solution encounters a pH barrier (such as a calcic horizon) than

by the concentration of ions by evaporation. This suggests that after the calcite

has precipitated in the centre of the heuweltjie, it buffers the pH sufficiently high

allowing for the precipitation of sepiolite.

In addition to the coastal proximity of the Papendorp heuweltjie causing high soil

Mg levels (Chapter 5), data from Midgley and Musil (1990) showed that foliar Mg

is high in plants associated with heuweltjies in the Worcester-Robertson valley:

the foliar Mg ranges from 888.52 mmol/kg (2.16%) for on-mound Ruschia caroli

to 259.98 mmol/kg (0.63%) for off-mound Euphorbia burmannii. It seems likely

therefore that termite concentration of plant material, in addition to raising

the Ca-levels, also raises the Mg levels to allow for sepiolite (and palygorskite)

precipitation within heuweltjies.

Leaching and redistribution of ions within the heuweltjie: zoning of

sepiolite and dorbank (petroduric)

Ellis (2002) observed that in areas of lower rainfall, CaCO3 is leached to a shallow

depth to form the (petro)calcic horizon at the centre of heuweltjie mounds where

termite activities have ceased. Pendents in the calcrete sample 2C confirm the

remobilisation of calcite within the calcrete horizon (see section 6.3.4). Spackman

and Munn (1984) used differential leaching to explain why the upper parts of a

profile in a mima-like mound in Wyoming contained more Ca2+, and the lower

parts more Mg2+and Na+.

The gradual zoning outward from sepiolitic-calcite in the centre through (petro)-

sepiolitic to silica-cement at the edges of heuweltjies (Figure 6.24) is very similar

to the calcite-palygorskite sequence developed in an alluvial fan sequence in Spain

(Rodas et al., 1994). Rodas et al. (1994) observed calcretes (with palygorskite

in the clay fraction) in the proximal part of the alluvial fan, and non-calcareous

‘palycrete’ where palygorskite formed the cementing agent in the distal parts.

Silicification was associated with both calcrete and ‘palycrete’ in the alluvial fan
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sediments, but was interpreted by Rodas et al. (1994) to be superimposed on

previous duricrust levels.
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Figure 6.24: Distribution of minerals and inferred water movement (dashed ar-
rows)through the Papendorp heuweltjie. See text for explanation. Calc.- cal-
careous. Modified from (Ellis, 2002).

In heuweltjies, Ellis (2002) noted that the highest silica mobility occurred in

the well-drained cambic and calcic horizons, and that calcic horizons, with their

higher pH, had the highest water-soluble silica concentration. Ellis (2002) sug-

gested that because the calcic horizon usually occurs near the centre of the

heuweltjie, this is likely to be the zone where most of the silica, together with

that in the cambic horizon, is generated after a rain event. The silica then moves

vertically and horizontally (Figure 6.24) to the depth where the petroduric hori-

zon is located (Ellis, 2002). The position of the silica-cemented horizons on the

edge of the heuweltjie is consistent with Ellis and Lambrechts’s (1994) observa-

tions that the extensive dorbank horizons in southern Africa usually occur on

level to slightly sloping land, and mainly on footslopes.

Rodas et al. (1994) suggested that the calcretes (with palygorskite in the clay

fraction) in the proximal part of the alluvial fan, and non-calcareous ‘palycrete’

formed during the movement of alkaline phreatic waters through the fan, as the

precipitation of calcite in the proximal part of the fan shifted the composition

of the water to a lower Ca/Mg-ratio and lower CO2−
3 in the distal parts. This is

similar in principle to the effect mineral precipitation has on the evolving com-

position of an evaporating brine (for example Hardie and Eugster, 1970; Eugster

and Hardie, 1978; Eugster and Jones, 1979). Chapter 5 concluded that the pre-
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cipitation of calcite and sepiolite on the Namaqualand coastal plain resulted in

increasing Ca and Mg and decreasing HCO−
3 trends with evaporation, due to the

initial Mg2+ >HCO−
3 and Ca2+ >HCO−

3 ratios according to the Hardie-Eugster

scheme. The movement of the Mg-Si enriched water downslope, coupled with

the decrease in HCO−
3 and increase in Mg2+ due to sepiolite precipitation, allows

for the precipitation of the ‘sepiolitic’ zone on the outer side of the calcrete.

The presence of Fe, Al and Mg in silica-rich solutions reduces the solubility of

silica, but it tends to cause clay authigenesis or the formation of other silicates

rather than the precipitation of pure silica (Summerfield, 1983b, p. 79). This is

consistent with conditions within the heuweltjie, where the enrichment of cations

such as Ca and Mg in the heuweltjie centre caused by termite foraging results in

calcite and clay authigenesis near the centre, leaving the precipitation of silica

to occur on the periphery.

6.4 Conclusions

Biological activity was only evident in the calcrete in the centre of the heuweltjie

(samples 2A to 2C), and neither in the ‘sepiolitic’ pedocutanic (argic; sample 2D)

halfway to the edge, nor the dorbank (petroduric; sample 1.3) at the edge. This

is consistent observations that the centre of the heuweltjie is where the termite

activity is concentrated.

The pedogenesis of the hardpans in the heuweltjie is proposed to be as follows: en-

richment of cations such as Ca and Mg in the heuweltjie centre caused by termite

foraging results in calcite and clay authigenesis in the centre of the heuweltjie,

leaving the precipitation of silica to occur on the periphery. The decaying organic

matter concentrated in the centre of the mound by the termites is sufficient to

supply the components for calcite precipitation in the centre of the heuweltjie.

Following calcite precipitation, the pH is suitable for sepiolite precipitation. The

movement of the Mg-Si enriched water downslope, coupled with the predicted

decrease in HCO−
3 and increase in Mg2+ due to sepiolite precipitation, allows for

the precipitation of the ‘sepiolitic’ zone on the outer side of the calcrete, and

extend beyond the calcrete in some heuweltjies.

Further work to confirm the extent to which the (a) passive bacterial precipitation
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of calcium carbonate in the nitrogen cycle and (b) the bacterial decomposition of

plant oxalates are likely to contribute to the formation of calcic horizons in the

heuweltjie. Oxalates are particularly common in Namaqualand plant species and

so this avenue of research may be a fundamental link in the organic matter-calcite

relationship in heuweltjies.
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General summary of findings and

recommendations for further

work

Although some ‘sepiocrete’ horizons superficially resemble silica-cemented hori-

zons in their hardness, they are different to both dorbank/duripan/petroduric

and silcrete horizons. The ‘sepiocrete’ horizons do not meet the slaking require-

ments of dorbank/duripan/petroduric horizons. They contain less total SiO2

than either a typical dorbank, or a ‘silcrete’. Sepiolite appears to form the matrix

areas, whereas the silica is localised. The interlocking, subparallel morphology

of sepiolite may contribute to the induration, although the degree to which silica

and sepiolite dominate seems to vary even within the same horizon. It seems

most probable that both sepiolite and silica contribute to the structural proper-

ties of the horizon. The timing and precise mechanism of silica precipitation in

the ‘sepiocrete’ is difficult to resolve. It seems unlikely that silica precipitation

was caused by the initial precipitation of sepiolite depleting the solution in Mg,

since XRF analysis of the clay fractions showed Mg is present in excess of the

amount of silica required to form sepiolite. This is consistent with other data

from the Namaqualand coastal plain that show Mg levels to be high, possibly

as a result of the marine influence. Etched quartz grains in both ‘sepiocrete’

profiles suggests the localised dissolution and redistribution of silica. Evidence

of calcite mobilisation indicates a complex evolutionary history. It could be that

the ‘sepiocrete’ resulted from the (partial) silicification of what was originally

a sepiolite-rich calcic/petrocalcic horizon, but the horizon no longer contains

enough calcite to be classified as a petrocalcic.



199

While the ‘-crete’ terminology provides a useful expression of the cemented nature

of the horizon, to fit the existing soil classification schemes the terms ‘sepiolitic’

and ‘petrosepiolitic’ (in the same sense as ‘calcic’ and ‘petrocalcic’) would be

more appropriate. The terms ‘sepiolitic’ and ‘petrosepiolitic’ have the advantage

over the ‘-crete’ terminology that they can be more easily be applied as adjectives

to other hardpans where sepiolite is significant but not necessarily cementing,

such as ‘sepiolitic petrocalcic’. This is particularly relevant since sepiolite is

closely associated with calcite in Namaqualand soils, and is a common mineral

in the clay fraction of calcretes.

The term ‘sepiolitic’ is appropriate for horizons which contain sepiolite in amounts

great enough for it to be detected by XRD in the bulk soil, peds (a fractured

surface and not just the cutan) cling strongly to the wetted tongue, and methyl

orange turns from orange to purple-pink over most of a fragmented surface. If

the horizon is in addition to the above criteria cemented to such a degree that it

will slake neither in acid (so cannot be classified as petrocalcic) nor in alkali (and

so cannot be classified as petroduric) then the term ‘petrosepiolitic’ would be ap-

propriate. The ‘sepiolitic’ criteria distinguish the ‘petrosepiolitic’ horizon from

a ‘silcrete’, a silica-cemented horizon which does not fit slaking requirements of

a petroduric horizon.

Sepiolite has a high water holding capacity. Its high plasticity affects the geotech-

nical usefulness of the soil, but many effects of large quantities of sepiolite in a

soil still need to be quantified. The high water-holding capacity would directly

affect the water-availability to plants growing in sepiolite-rich soils, which in turn

affects the ecosystem of arid regions. It also indirectly causes a decrease in the

rate of the carbonation process in lime mortars, as a decrease in the free water

content in the porous system of the mortar impedes CO2 dissolution, which is

a rate-controlling step of the carbonation process. This effect on soils may be

similar to the effect of evapotranspiration and CO2 loss on calcite precipitation.

The usefulness of a soil survey, therefore, would be increased by indicating the

presence of large quantities of sepiolite in a soil using the terms ‘sepiolitic’ or

’petrosepiolitic’. When sepiolite is present in sufficient quantity, the bulk soil ad-

heres to the wetted tongue, and methyl orange turns from orange to purple-pink.

In combination, the field tests can be quite diagnostic, and only a few samples

need to be verified by XRD.
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Although the volume of literature on calcrete is now very large, there is very

little detailed information on the Namaqualand coastal plain calcretes. Their

examination formed only a part of the larger Namaqualand soils investigation,

and so there is still a lot of detail that is unresolved. This includes the micromor-

phological aspects of sepiolite/palygorskite occurrences in calcrete, particularly

their relationship to other clay minerals, calcite, and biogenic features; as well as

a full comparison to “heuweltjie calcrete”. This study has, however, resolved two

main points: i) Deformation (pseudo-anticlines) in the calcrete appear to result

primarily from the displacive effect of calcite crystallization. Although evidence

of shrink/swell behaviour is present, this does not appear to be as volumetrically

significant as displacive calcite. Clay minerals are closely associated with the

displacing calcite, suggesting that clay neoformation/illuviation may contribute

to displacement and folding, but calcite crystallization seems to be mainly re-

sponsible for opening fractures. ii) Both biotic and abiotic factors contributed

to calcrete formation. Abiotic alpha-fabric seems dominant in mature calcrete

horizons, whereas biogenic beta-fabric is dominant in calcareous nodules in a

calcic B horizon above calcrete.

This study confirmed the prominence of pedogenic sepiolite in the clay fraction

of calcareous coastal plain soils. The <0.08 µm fraction was the only size fraction

where palygorskite could be detected before acetate treatment. There was no

conclusive evidence for or against the presence of kerolite in the clay fraction.

There was no TEM evidence of fibrous mineral degradation to sheet silicates,

nor for the evolution of mica laterally to a fibrous mineral. SEM analyses show

that much of the sepiolite/palygorskite occurred as fringed sheets, but higher

magnification often revealed these sheets to be composed of fibres. These are

found coating (rather than evolving from) mica/illite particles, as free-standing

mats, and were common on the grain-side of cutans. One TEM image revealed

what appeared to be acicular crystals developing from an amorphous phase,

although well crystalline sepiolite was also present. The abundance of sepiolite

in the calcic soils of the coastal plain (in some horizons it comprises nearly 100%

of the clay fraction) makes it ideal for further work on the formation of sepiolite.

The sepiolite and calcite saturation indices are only dependent on pH, for the

Mg, Si and pH ranges that were encountered on the Namaqualand coastal plain.

In contrast, amorphous silica remained saturated regardless of the pH or con-

centration. Sepiolite precipitation is therefore more likely to be triggered when
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a solution encounters a pH barrier than by the concentration of ions by evap-

oration. Evidence of the pH control on sepiolite saturation is that sepiolite is

commonly associated with calcareous horizons. The effect of a pH change on the

solubility of sepiolite is even greater than its effect on calcite solubility. Since

sepiolite is often a significant part of arid region soils where calcite and amor-

phous silica are common, the mineral solubility-pH relationships may assist in

explaining the relationships between calcic, sepiolitic and duric soils and their

intergrades.

The marine-influenced high Mg coupled with the Hardie-Eugster model of brine

evolution provides an explanation for sepiolite-dominance at the coast, and paly-

gorskite-dominance inland. Coastal areas, unlike continental areas, have Mg>

HCO−
3 initially, which results in an increasing Mg trend with evaporation during

the precipitation of sepiolite according to the Hardie-Eugster scheme. The result

is that after sepiolite precipitation is initiated by an geochemical pH barrier,

Mg levels will rise causing the increasing (Mg+Si)/Al ratio to continue to favour

sepiolite precipitation. This suggests that once sepiolite has begun to precipitate,

the subsequent salinity, with its accompanying Mg increase, makes substantial

palygorskite formation unlikely to follow. Most of the soils for which there was

a positive sepiolite identification showed a positive sepiolite saturation index,

suggesting that the saturated paste extracts were in equilibrium with sepiolite.

This is a direct contrast to previous findings for Namaqualand, and previously

published interpretations relating to the alteration/disintegration of sepiolite and

palygorskite therefore require revision. The data from the present study showing

sepiolite equilibrium in sepiolitic soils suggest that sepiolite can be considered a

‘precipitating mineral’, and so forming in the present day.

This study developed a model for the formation of the calcrete, ‘(petro)sepiolitic’,

and petroduric horizons of heuweltjies. Enrichment of cations such as Ca and

Mg in the heuweltjie centre caused by termite foraging results in calcite and

sepiolite authigenesis. The decaying organic matter concentrated in the centre

of the mound by the termites is sufficient to supply the components for calcite

precipitation in the centre of the heuweltjie. Following calcite precipitation, the

pH is suitable for sepiolite precipitation. The movement of the Mg-Si enriched

water downslope, coupled with the decrease in HCO−
3 and increase in Mg2+ due

to sepiolite precipitation, allows for the precipitation of the ‘sepiolitic’ zone on

the outer side of the calcrete and extend beyond the calcrete in some heuweltjies,
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leaving the precipitation of silica to occur on the periphery. The following mecha-

nisms are likely to contribute to the formation of calcic horizons in the heuweltjie

but are as yet untested: passive bacterial precipitation of calcium carbonate in

the nitrogen cycle; and the bacterial decomposition of plant oxalates. Oxalates

are particularly common in Namaqualand plant species and so this avenue of

research may be a fundamental link in the organic matter-calcite relationship in

heuweltjies.

The Namaqualand coastal plain is well positioned for further work on its regolith,

particularly because of the mining excavations which provide excellent exposures

of well-defined layers of the regolith down to bedrock. Some of the features which

deserve further study are regular calcrete layers and fossils (marine, terrestrial)

which have the potential for dating; the abundance of pedogenic carbonates lend

themselves to techniques that could reveal whether they played a role in atmo-

spheric CO2 sequestration; evidence of deep/relict termite activity; dunefields

overlying buried and truncated soils such as the Last Glacial dunefield north of

the Swartlintjies. Soil formation and termite activity is at least as old as the Last

Interglacial, and the identification and classification of the paleosols in greater

detail may reveal subtleties in past soil forming factors and possibly offer some

constraints on the climatic conditions under which they formed. E horizons may

have formed in a wetter Last Interglacial paleoclimate, but they are still active

in the present day.
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sepiolites, Turkey, Clays and Clay Minerals 42 (1): 81–92.

Eckardt, F. D. and Schemenauer, R. S. (1998). Fog water chemistry in the Namib

Desert, Namibia, Atmospheric Environment 32: 2595–2599.

Ellis, F. (1988). Die Gronde van die Karoo, PhD thesis, University of Stellen-

bosch.

Ellis, F. (2002). Contribution of termites to the formation of hardpans in soils of

arid and semi-arid regions of South Africa. Proceedings of the 17th World

Congress of Soil Science, Bangkok, Thailand, August 2002, ABSTRACT

GeoBase-ref.

Ellis, F., de Clercq, W. P. and Engelbrecht, H. (2001). Soils associated with

microrelief features (“heuweltjies”) occurring on an ancient land surface in

the lower Berg River Valley. Paper delivered at the Soil Science Society of

South Africa Congress, Pretoria.

Ellis, F. and Lambrechts, J. J. N. (1994). Dorbank, a reddish brown hardpan of

South Africa: a proto-silcrete? Poster paper presented at the 15th World

Congress of Soil Science, Acapulco, Mexico.

Ellis, F. and Schloms, B. H. A. (1982). A note on the dorbanks (duripans) of

South Africa, Palaeoecology of Africa 15: 149–157.

Elprince, A. M., Mashhady, A. S. and Aba-Husayn, M. M. (1979). The occurrence

of pedogenic palygorskite (attapulgite) in Saudi Arabia, Soil Science 128

(4): 211–218.

Esquivel, E. V., Murr, L. E., Lopez, M. I. and Goodell, P. C. (2005). TEM

observations of a 30 million year old mountain leather nanofiber mineral

composite, Materials Characterization 54 (4-5): 458–465.



210

Eugster, H. P. and Hardie, L. A. (1978). Saline Lakes, in A. Lerman (ed.), Lakes:

Chemistry, Geology, Physics, Springer-Verlag, New York, pp. 237–293.

Eugster, H. P. and Jones, B. F. (1979). Behaviour of major solutes during closed-

basin brine evolution, American Journal of Science 279: 609–631.

Faure, G. (1992). Principles and Applications of Inorganic Geochemistry,

Macmillan Publishing Company, New York.

Faure, G. (1998). Principles and Applications of Geochemistry, second edn,

Prentice Hall, New Jersey, chapter 12: Mineral Stability Diagrams, pp. 172–

199.

Fernández-Dı́az, L., Astilleros, J. M. and Pina, C. M. (2006). The morphology

of calcite crystals grown in a porous medium doped with divalent cations,

Chemical Geology 225: 314–321.
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Appendix A

Photographs of soil profiles:

BMC and KNC

Soil profiles taken in the Buffels Marine Complex (BMC) in the Kleinzee-Port

Nolloth area, and the Koingnaas Complex (KNC) further south in the Koingnaas-

Hondeklip Bay area.

Photographs of the Knersvlakte and Strandfontein heuweltjie are in the text.
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