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Combinatorics — Past and Present

It is known that it is very difficult to speak about a mathematical subject to a non-

specialist audience. What is even more difficult under such circumstances is to describe

the research that one is doing oneself. While I feel that what I am doing is very exciting

for me, it might not be that for everybody else. Thus, I decided to rather give a historical

talk and to describe Combinatorics, which is my area of research, by going quickly

through the centuries.

What is Combinatorics? MathWorld has this list:

Combinatorics

• Binomial Coefficients (47)

• Bracketing (3)

• Combinatorial Identities (2)

• Combinatorial Optimization (1)

• Configurations (22)

• Covers (4)

• Designs (55)

• Enumeration (17)

• General Combinatorics (42)

• Lattice Paths and Polygons (8)

• Partitions (66)

• Permutations (71)

• Weighing (1)

The American Mathematical Society has this list (2000; before there were only

three entries):

Combinatorics

• 05Axx Enumerative combinatorics

• 05Bxx Designs and configurations. For applications of design theory, see 94C30

• 05Cxx Graph theory. For applications of graphs, see 68R10, 90C35, 94C15

• 05Dxx Extremal combinatorics

• 05Exx Algebraic combinatorics

An early example: Fibonacci numbers

The original problem that Fibonacci [The “greatest European mathematician of the

middle ages”; full name was Leonardo of Pisa] investigated (in the year 1202) was how fast

rabbits could breed in ideal circumstances.



Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits

are able to mate at the age of one month, so that at the end of its second month a female

can produce another pair of rabbits. Suppose that our rabbits never die and that the

female always produces one new pair (one male, one female) every month from the second

month on. The puzzle that Fibonacci posed was . . .

How many pairs will there be in one year?

(1) At the end of the first month they mate, but there is still only 1 pair.

(2) At the end of the second month the female produces a new pair, so now there are

2 pairs of rabbits in the field.

(3) At the end of the third month the original female produces a second pair, making

3 pairs in all in the field.

(4) At the end of the fourth month the original female has produced yet another new

pair, the female born two months ago also produces her first pair, making 5 pairs.

The Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, . . . (add the last two to get the next)

Today – there is a journal The Fibonacci Quarterly!

Euler and The Königsberg bridge problem

The Königsberg bridge problem asks if the seven bridges of the city of Königsberg,

formerly in Germany but now known as Kaliningrad and part of Russia, over the river

Preger can all be traversed in a single trip without doubling back, with the additional

requirement that the trip ends in the same place it began. This is equivalent to asking

if the multigraph on four nodes and seven edges has an Eulerian circuit. This problem

was answered in the negative by Euler (1736), and represented the beginning of graph

theory.



Kirkman’s Schoolgirl Problem

In a boarding school there are fifteen schoolgirls who always take their daily walks in

rows of threes. How can it be arranged so that each schoolgirl walks in the same row

with every other schoolgirl exactly once a week? Finding the solution of this problem is

equivalent to constructing a Kirkman triple system. The following table gives one of the

seven distinct solutions to the problem.

Sun ABC DEF GHI JKL MNO

Mon ADH BEK CIO FLN GJM

Tue AEM BHN CGK DIL FJO

Wed AFI BLO CHJ DKM EGN

Thu AGL BDJ CFM EHO IKN

Fri AJN BIM CEL DOG FHK

Sat AKO BFG CDN EIJ HLM

Biographical note about Kirkman: . . . in 1835 he entered the Church of England. He

spent five years as a curate, first in Bury, then in Lymm. By 1839 he became vicar in the

Parish of Southworth in Lancashire, a position he held for 52 years.

Ballot Problem

Suppose A and B are candidates for office and there are 2n voters, n voting for A and n

for B. In how many ways can the ballots be counted so that A is always ahead of or tied

with B? The solution is a Catalan number Cn.

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .

Catalan numbers appear in an amazing number of different contexts!

Richard Stanley keeps a list of them:

http://www-math.mit.edu/∼rstan/ec/

“Catalan addendum (Postscript or PDF) (version of 30 October

2005; 53 pages).

An addendum of new problems (and solutions) related to Catalan

numbers.

This addendum will be continually updated.

Current number of combinatorial interpretations of Cn: 135.”



This solution was first shown by M. Bertrand. Another elegant solution was provided

by André (1887) using the so-called André’s reflection method.

This enumerates the sequences that are NOT wanted, i.e. where B leads the count at

least once. The correct number comes out as

number of ALL sequences − number of UNWANTED sequences =

(

2n

n

)

−

(

2n

n + 1

)

.

Let us consider as an example this sequence of votes: AABABABBBBABAAAAABABBB
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(0,−2)

(22, 0)

So the enumeration of the unwanted sequences is reduced to the enumeration of the

(unrestricted) sequences, starting in (0,−2), ending in (2n, 0), which is easy.

We have just seen a bijective method!

Desiré André was a mathematician, a professor in a Parisian lycée. He had written his

thesis, but was never able to obtain a position at the University of Paris.

Until 1965, say, we had the following:

• Famous mathematicians like Euler, Cayley or Polya worked on combinatorial

problems, but this was not their main activity.

• Talented amateurs worked on some problems, which often had a recreational

character.

• There were some problems from probability theory which were of an intrinsically

combinatorial nature.



Gian-Carlo Rota

Rota received the Steele Prize from the American Mathematical Society in 1988. The

Prize citation singles out the 1964 paper On the Foundations of Combinatorial

Theory as:

. . . the single paper most responsible for the revolution that incorporated

combinatorics into the mainstream of modern mathematics.

This paper was the first of a series of ten papers with this main title; all ten have

subtitles (for example, the first one was subtitled Theory of Möbius functions) and all the

remaining nine have between one and three additional co-authors. Papers two to nine were

all published between 1970 and 1974, with the tenth being published in 1992.

Symbolic methods

George Polya. He is also famous for his quotations. Here are two of them: “I am

too good for philosophy and not good enough for physics. Mathematics is in between.” —

“John von Neumann was the only student I was ever afraid of.”

In how many ways can an amount of 100 Rand be changed into coins of 1 Rand, 2 Rand,

5 Rand?

All configurations can be described as
(

∅ + 1 + 11 + 111 + · · ·
)(

∅ + 2 + 22 + 222 + · · ·
)(

∅ + 5 + 55 + 555 + · · ·
)

This is translated into a generating function, taking the value of the coin into account:
(

1 + z1 + z2 + z3 + · · ·
)(

1 + z2 + z4 + z6 + · · ·
)(

1 + z5 + z10 + z15 + · · ·
)

=

=
1

(1 − z)(1 − z2)(1 − z5)

In this function, we must look at the coefficient of z100, from which we get the answer 541.

(This number is totally uninteresting, but the concept is important!)

If we live in an ideal country, where coins of any type 1, 2, 3, . . . are available, then we

get as a straight-forward generalisation the generating function

P (z) =
1

(1 − z)(1 − z2)(1 − z3) . . .
=

∏

k≥1

1

1 − zk
.

This is the celebrated partition generating function. The coefficient of zn in P (z) is called

p(n); it is the number of partitions of a natural number n.



Partitions can be graphically represented as Ferrers diagrams.
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A partition of 20

with different parts 7, 6, 4, 3

number of parts is even

Transformed into
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A partition of 20

with different parts 6, 5, 4, 3, 2

number of parts is odd

Another instance:
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A partition of 24

with different parts 8, 7, 6, 3

number of parts is even

Transformed into
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A partition of 24

with different parts 9, 8, 7

number of parts is odd

For “almost” all partitions into distinct parts, exactly one of the two transformation rules

is applicable. This leads to a combinatorial proof of Euler’s pentagonal theorem (not stated

here). This bijection is due to Fabian Franklin, and is the first mathematical achievement

of an American!



Ramanujan

Srinivasa Aiyangar Ramanujan (1887–1920) was an Indian mathematician and one of

the most esoteric mathematical geniuses in the twentieth century. Nicknamed “the man

who knew infinity,” he had uncanny mathematical manipulative abilities. He excelled

in number theory and modular functions. He also made significant contributions to the

development of partition functions and summation formulas involving constants such as π.

A child prodigy, he was largely self-taught in mathematics and had compiled over 3,000

theorems by the year 1914, when he moved to Cambridge. Often his formulæ were stated

without proof and were only later proven to be true. His results have inspired a large

amount of research and many mathematical papers. In 1997 the Ramanujan Journal

was launched to publish work “in areas of mathematics influenced by Ramanujan.”

Hardy and Ramanujan studied p(n), the number of partitions of the natural number n.

This was an ideal collaboration of the well-trained analyst Hardy and Ramanujan, with

his incredible intuition.

Partitions belong to number theory and combinatorics!

Mathematical formulæ are not the best idea for a talk to non-specialists, but I cannot

resist mentioning (one of the) Rogers-Ramanujan identities:

∑

n≥0

qn2

(1 − q)(1 − q2) . . . (1 − qn)
=

∏

k≥0

1

(1 − q5k+1)(1 − q5k+4)
,

which could be interpreted as an identity for the functions, valied for |q| < 1, but a

combinatorialist would rather see both of them representing the series 1 + q + q2 + q3 +

2q4+2q5+3q6+3q7+4q8+5q9+6q10+· · · (and give a meaning to the numbers [coefficients]

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, . . . in two different ways).

Combinatorial Identities

Typical quantities in combinatorics are factorials

n! = 1 × 2 × 3 × · · · × n

and binomial coefficients (aka Pascal’s triangle)
(

n

k

)

=
n!

k!(n − k)!
.

They satisfy various relations; an example is Vandermonde’s convolution
(

2n

n

)

=

(

n

n

)(

n

0

)

+

(

n

n − 1

)(

n

1

)

+ · · · +

(

n

0

)(

n

n

)

=

n
∑

k=0

(

n

k

)2

.

Proving such identities was considered to be an art, and the lists of formulæ by Gould

and Riordan (independently) are worthwhile mentioning.



John Riordan: Combinatorial identities (1968)

He was a successful combinatorialist, and one of the rare cases of a researcher without

a PhD! Along with Leonard Carlitz (. . . certainly one of the most prolific mathematical

researchers of all time) Riordan was a pioneer in combinatorics in the 20th century. But

his view was a bit extreme:

Combinatorialists use recurrence, generating functions, and such transfor-

mations as the Vandermonde convolution; others, to my horror, use contour

integrals, differential equations, and other resources of mathematical analysis.

Odlyzko wrote a monograph on “Asymptotic enumeration methods” (1995). He says:

Analytic methods are extremely powerful and, when they can be used, they often

yield estimates of unparalleled precision.

Asymptotics means the following: We want to replace an ungainly expression (such as

n! = 1 × 2 × · · · × n) by something “simpler” that has the same “growth behaviour.”
For instance,

50! = 30414093201713378043612608166064768844377641568960512000000000000,

approximation = 30363445939381558207983726752112093959052599802286296951906806786.885 . . . ,

which does not look too impressive, but is accurate to within 99%.

Hypergeometric functions. People like Askey, Andrews and others realised that

hypergeometric functions are the right way of expressing combinatorial identities. The

“classical” hypergeometric function is due to Gauss:

F (a, b; c; x) = 1 +
ab

c
x +

a(a + 1)b(b + 1)

c(c + 1)

x2

2!
+

a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

x3

3!
+ · · ·

When translated into this “language,” most identities, which previously looked quite

different, now turn out to be the same, and only a few identities (Euler, Gauss, Kummer,

Dixon, Watson, . . . ) do the job!



Zeilberger’s algorithm

Shalosh B. Ekhad

Short Proofs of Two Hypergeometric Summation Formulas of Karlsson

Proceedings of the American Mathematical Society, vol. 107, No. 4 (Dec.

1989), pp. 1143–1144

Abstract.

Karlsson [2] gave elegant proofs of two hypergeometric summation formulas

conjectured by Gosper, which were mentioned in [1]. Here I give new proofs

that are much shorter, but less elegant.

Shalosh B. Ekhad is Doron Zeilberger’s computer!

Everybody can create (via Maple and Zeilberger’s algorithm) a mathematical paper.

> zeilpap(binomial(n, k)2, k, n);'

&

$

%

A PROOF OF A RECURRENCEa

By Shalosh B. Ekhad, Temple University, ekhad@math.temple.edu

Theorem: Let, F (n, k), be given by
(

n

k

)2

and let, SUM(n), be the sum of, F (n, k), with respect to, k

SUM(n), satisfies the following linear recurrence equation

(−4n − 2)SUM(n) + (n + 1)SUM(n + 1) = 0.

PROOF: We cleverly construct,

G(n, k) :=
(−3n − 3 + 2k)k2

(−n − 1 + k)2

(

n

k

)2

with the motive that

(−4n − 2)F (n, k) + (n + 1)F (n + 1, k) = G(n, k + 1) − G(n, k),

(Check!)

and the theorem follows upon summing with respect to, k, . QED.

aComputer-generated text!

Shalosh B. Ekhad has published 27 papers and would qualify in this way for a chair in

a mathematics department!



The On-Line Encyclopedia of Integer Sequences

You type in your (obscure?) sequence of numbers: 1, 1, 2, 4, 9, 21, 51, 127, 323, 835

And you get

A001006 Motzkin numbers: number of ways of drawing any number of non-

intersecting chords among n points on a circle. (Formerly M1184 N0456)

(Creative) Guessing is nowadays incorporated in computer algebra systems

such as Maple or Mathematica. For instance, the program Gfun (Generating

functions) does this for you:

> guessgf([1, 1, 2, 3, 5], z);

And your answer is
1

1 − z − z2
,

as it should be.
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