
Structure-from-motion for enclosed environments

a thesis

submitted to the department of applied mathematics

of the university of stellenbosch

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Henri Hakl

December 2007

Supervised by:

Prof Ben Herbst

Dr Karin Hunter



Copyright c©2007 Stellenbosch University

All rights reserved

ii



Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original

work and has not previously in its entirety or in part been submitted at any university for a

degree.

Signature: . . . . . . . . . . . . . . . . . . Date: . . . . . . . . . . . . . . . . . .

iii



Abstract

A structure-from-motion implementation for enclosed environments is presented. The various

aspects covered include a discussion on optimised luminance computations—a technique to

compute an optimally weighted luminance that maintains a greatest amount of data fidelity.

Furthermore a visual engine is created that forms the basis of data input for reconstruction

purposes; such an inexpensive solution is found to offer realistic environments along with precise

control of scene and camera elements. A motion estimation system provides tracking informa-

tion of scene elements and an unscented Kalman filter is used as depth estimator. The elements

are combined into an accurate reconstructor for enclosed environments.
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Abstrak

’n Struktuur-deur-beweging implementasie vir geslote omgewings word beskryf. Optimisieerde

luminasie word beskryf, dit is ’n metode om optimale gewigte vir luminasie berekeninge te vind

sodat so veel as moontlik inligting behoue bly. ’n Virtuele omgewings simulator word voorgestel

wat die basis vorm vir rekonstruksie data. Die metode is goedkoop en kan omgewings realisties

en met ’n groot mate van kontrolle bereken. ’n Unscented Kalman filter word gebruik om diepte

te bereken.
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Chapter 1

Introduction

To suppose that the eye with all its inimitable contrivances for adjusting the focus to

different distances, for admitting different amounts of light, and for the correction

of spherical and chromatic aberration, could have been formed by natural selection,

seems, I confess, absurd in the highest degree.

Charles Robert Darwin

The release of “On the origin of species by natural selection” by Charles Darwin in 1859

could be described as the intellectually most profound landmark of the industrial revolution.

The theory forwarded by Darwin was not unique1, nor novel, but it was presented at a time

when the metaphoric scientific soil was fertile and the idea was well received. The theory is of

great significance in the field of biology—but, more profoundly, it represents the culmination

of scientific awakening in that it achieved the separation of church and science.

The theory of evolution, though, is a theory, and as such is subject to constant scrutiny

by those who oppose the principles held forth by it. This text does not attempt to involve

itself in the debate on the merits of evolutionary theory. Instead it recognizes that a point of

contention between supporters and detractors of the theory is the biological miracle of the eye.

Evolutionary theorists hail the eye as one of the greatest achievements of natural selection—yet

those that attempt to demean the theory extol the eye as the perfect exhibit to demonstrate

the implausibility of reinforced chance creating such a finely tuned and highly complex organ.

Credit, though, should not only fall to the eye but also the brain, which in conjunction with

the eye allows the collected data from light rays to be processed into identifiable entities and
1Equal credit on the theory of evolution should be given to both Charles Darwin (1809—1882) [26] and Alfred

Wallace (1823—1913) [122] who both independently developed what is known as the theory of evolution—now
commonly referred to as the Darwin-Wallace Theory of Evolution. Additionally, the work by Jean Baptiste
Lamarck (1744—1829) [65] contributed significantly to the development of evolutionary theories. Though
Lamarck’s work was discredited during his lifetime his plausible theories anticipate, and in places even su-
percede, the work done by Darwin and Wallace.

1



CHAPTER 1. INTRODUCTION 2

allows depth to be perceived. The faculty to infer spatial relation and recognition of features is

deeply profound to the existence of highly complex organisms such as mammals, and is likely

to be one of the early contributors to increasing complexity and size of the cerebral cortex.

Mathematically the problem of emulating the eye for purposes of creating an artificial system

of spatial and feature recognition is formidable, yet tractable. The consequences of formulating

such a system successfully would be varied and far reaching, finding applications in many forms

and fields—including, though not limited to intelligent security systems, safety assessment

equipment, motion-capture systems, medical topographic systems, and autonomous robotics

such as humanoid androids and robots used to explore hostile environments.

Different attempts have been made to formulate a solution to the problem of depth perception.

A biologically inspired approach is that of stereoscopic systems—which uses two cameras to

model two eyes [9]. The small discrepancies in perception due to the slight displacements of the

cameras may be used to infer the depth of objects. Structure-from-motion solutions [8, 126] only

use one camera; however, they make use of time-variant data in image sequences to reconstruct

depth. A third approach is known as shape-from-shading [127]: in it single images are used to

deduce depth parameters; this is accomplished through analysing feature relations and shading

of objects.

Two more approaches are known as shape-from-focus [80] and shape-from-silhouette [20]. The

former, shape-from-focus, primarily finds application in microscopic reconstruction of depth

information. At very large magnification the depth of focus of optical microscopes is not

sufficient to convey a sharp image of non-planar samples. Usually the solution proposes to

acquire a series of images with a constant change in focus—the final image is computed by

creating a collage of the sharp regions in each image.

Shape-from-silhouette is a conceptually simple approach to generate three-dimensional mod-

els from images. Each image is taken from a different viewpoint and the object’s silhouette on

an image represents a conic volume in object space. By intersecting each of the conic volumes

a three-dimensional model of the object can be generated.

The purpose of this study is to advance understanding and insight into

using structure-from-motion techniques to successfully reconstruct depth-

information from image sequences for architectural environments.

To state the intention less succinctly: the structure-from-motion problem possesses many

facets that are related to each other, yet still differ significantly. For example, reconstructing

an object from an image sequence is similar to reconstructing an environment from an image

sequence. However, the former benefits from a larger set of simplifying assumptions that allow

the problem to be solved using simpler means. In the later case the assumptions need to be

more universal, requiring ever more complex and robust solutions to yield strong results.
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The ideal solution to the structure-from-motion problem would emulate the biological eye-

brain duo and be able to recognize and correlate depth data in unrestricted environments in the

presence of partially transparent and deformable entities, as well as arbitrary dynamic motion

and lighting. This feat is well beyond the scope of this text. Instead, this text presents an

approach to gain structure-from-motion data for static, fully enclosed environments—such as,

for example, the inside of a building.

The difficulty herein is twofold. Firstly, only a part of the environment is exposed to the

reconstruction process at any given moment in time. As the source of perception moves new

parts of the environment become visible and others become occluded or leave the field of view.

Secondly, the data density is increased tremendously compared to the problem of object re-

construction. To yield a structurally sound and meaningful representation of a reconstructed

environment it may not be sufficient to identify key features and analyse their depth compo-

nents. The approach adopted in this text makes use of a dense optical flow that yields a good

structural indication of the environment that is reconstructed.

1.1 Previous work

The problem of reconstructing environments is difficult but has a large number of real-world

applications. Therefore it is not surprising to find that extensive work has been done on

the problem. A related problem to structure-from-motion reconstruction is known as SLAM

(simultaneous localisation and mapping)—the problem of an autonomous robot navigating an

unknown environment requires the robot to be able to perform environmental mapping and

localisation of itself within that environment.

An early solution is offered by Kristensen and Christensen [64] who describe an autonomous

robot navigation system for indoor environments that makes use of two reconstruction systems:

stereoscopic based reconstruction to provide a broad overview of the environment and aided by

a depth-from-focus system that resolves depth queries in areas where potential occlusion are

detected.

Bohn and Thornton [15] make use of a Laser Range Finder, in conjunction with geometric

transforms and artificial neural networks to reconstruct enclosed environments. The data is

subsequently laser sculpted using a spatial data structure called an octree.

Nedevschi et al [81] present a method to reconstruct three-dimensional environment data

using a trinocular system—in other words they extend normal stereoscopic reconstruction to

include a third camera. Their implementation makes use of optimised code to process data in

parallel using SIMD2 instructions such as the MMX and SSE2 instruction sets.
2Single Instruction, Multiple Data—CPU instructions that allow processing of several data inputs and pro-

ducing multiple outputs in a single instruction
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Clark et al [23] make use of a single video camera along with positional equipment to perform

environment reconstruction in both sparsely furnished room interiors as well as urban environ-

ments. The interior variant makes use of an inertial measurement unit to determine transla-

tional and rotational properties, whereas the exterior version makes use of GPS information.

Both motion systems are supplemented by an extended Kalman filter to estimate corrections

to the information provided by the motion tracking systems. The environment is reconstructed

sparsely using a MAPSAC (Maximum A Posteriori SAmple Consensus) framework.

A comprehensive solution was presented by Dissanayake et al [28, 29] that made use of sev-

eral existing strategies that addressed the indivual problems in reconstruction and combined

them into a single complete system. Their contributions emphasize efficient construction, ma-

nipulation, management and storage of scene maps.

Abuhadrous et al [3] forward a solution that consists of a robot equipped with a laser scanner

to map the environment as well as GPS, INS and odometer to determine the location and

orientation of the robot within its environment. An internal estimator derives an estimate of

the current robot state using the various sensors it is equipped with.

Weingarten and Siegwart [123] describe an improvement on an extended Kalman filter based

SLAM solution. Their system makes use of a laser scanner to generate a point cloud from

which planar features are extracted using stochastic means; subsequently, as the robot moves,

the map and localisation is updated incrementally by estimating its motion and pose using an

extended Kalman filter.

Recently Panzieri et al [84] suggested a simplified form of applying the interlaced extended

Kalman filter to the SLAM problem. The interlaced Kalman filter is actually a set of filters

that each estimate a different aspect of the system: camera modeling and structural modeling.

Their suggestion achieves a better balance between computational load and precision.

Considerable effort has been made with structure-from-motion solutions as well. These will

be presented in Chapter 6 Structure from motion.

1.2 Contributions

Let us take a moment to recap. The general goal of this thesis is to develop a system to

reconstruct 3D objects from 2D images. More precisely, to densely reconstruct interior envi-

ronments such as the interior of a room. As we have seen in the previous section a number

of options exist, some of them available commercially. The available options include, but are

not limited to, laser scans, stereo vision utilising structured lighting, shape-from-silhouette,

photoconsistency, and so forth. All of these find important applications but also suffer from

certain limitations. Laser scans are expensive, so is stereo vision utilising structured lighting.

In addition stereo vision requires calibrated cameras, or some automated calibration procedure.
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Shape-from-silhouette only reconstructs the convex hull and is not suitable for the reconstruc-

tion of interior environments. Photoconsistency also needs some kind of calibration procedure

and again is less suitable for the reconstruction of interior scenes [49].

That brings us to the approach investigated in this thesis, namely structure-from-motion. Of

course this is not a new idea, more detail about that follows in a moment. Let us first note

some of the advantages of using structure-from-motion for dense reconstruction of specifically

interior environments. Imagine a scenario where a robot, equipped with a video camera, enters

an unknown environment inaccessible to humans. The idea is to build a full 3D environment

from the video stream recorded by the camera. Note the modest requirements if the structure-

from-motion route is followed—a single camera, attached to a robot. And the latter, or an

equivalent devise, is required for all 3D reconstructions. The fact that the camera does not

need to be calibrated increases the robustness of the procedure. Although the same results may

be obtained if the robot is equipped with two calibrated cameras, since the robot is moving

through the environment, it means that the cameras need to be calibrated and synchronised.

A loss of either the calibration or synchronisation can be catastrophic for the reconstruction.

This is not the case for structure-from-motion. Therefore, even in situations where stereo

vision is possible, even preferable, it is still a good idea to confirm the stereo reconstruction

using structure-from-motion. In fact, this is exactly how structure-from-motion is employed

at iThemba Laboratories where patients undergoing fixed-beam proton therapy are positioned

using stereo vision. Structure-from-motion is used as a safeguard against accidental loss of

calibration, see [118].

Perhaps rather surprisingly, but to the best of our knowledge structure-from-motion has not

been extensively investigated as a means for densely reconstructing interior environments. In

this thesis the limits and limitations of structure-from-motion are investigated.

One limitation is immediately apparent—for indoor environments structured lighting can-

not be used, not even for stereo reconstruction. This is because reference points are lost the

moment the camera (and structured light source) changes position. This means that recognis-

able features in the environment are required—for a dense reconstruction, dense features are

required. Even if sufficient texture is available, the limitation on accuracy is unclear, as is the

computational complexity and need to be investigated.

In order to explore the accuracy of the reconstruction, a ground-truth is required. For this

purpose a virtual environment is developed. This is then used to thoroughly test the limitations

of the approach. For example, the reconstruction is based on the unscented Kalman filter, to

the best of our knowledge, first used by Venter in the structure-from-motion context [119]. It

has been observed that the unscented Kalman filter takes about 100 frames to converge, but

the effect of the frame-rate has not been investigated. The virtual environment provides a

convenient setting for changing the frame-rate, and allows a detailed investigation of this issue.

In the course of developing the system, numerous detailed problems needed to be addressed

and solutions provided. These are detailed in the text. Let one example suffice for now. The full
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reconstruction is done in a piecewise fashion and the whole then reassembled from the different

pieces. Commercial applications using structured lighting typically use a manually provided

reference markers. We do not have this luxury. Instead the relation of the reconstructed

pieces is inferred from the camera motion which in general be monitored and controlled for

robot-mounted cameras.

Let us finally list some of the specific contributions that, to the best of our knowledge, are

new.

1. Optimal luminance space. Since structure-from-motion is performed on gray scale images,

a conversion from colour space is required. The conversion is not unique and there is

a danger that information can be lost in the transformation process. The conversion

parameters that are generally used, work well for general scenes. In Chapter 2 the idea

of an optimal luminance space, optimised for a specific image, is introduced. It is fast to

compute and is designed to preserve more information as compared to normal luminance

conversion.

2. Using structure-from-motion for the dense reconstruction of interior scenes. This needs

to be qualified. Structure-from-motion has been used for 3D reconstructions in some form

or another, for a long time. However, we are not aware of any detailed study exploring its

potential for the dense reconstruction of interior scenes. Stereo reconstruction and laser

scans are typically used instead. Shape-from-silhouette is popular for the reconstruction

of 3D objects, and is often used in conjunction with stereo reconstruction. Since it relies

on views of the silhouettes of objects, it is not suitable for the reconstruction of interior

scenes. Even the term dense reconstruction needs to be qualified. Since we rely on the

availability of features inherent in the scene, the reconstruction can only be as dense as the

number of available features. However, we explore in depth the potential of the approach

in those cases where dense features are available as it is important to understand how the

problem scales with an increase in the number of features.

3. Performing structure-from-motion within the context of a fully controlled virtual environ-

ment. Again it is necessary to qualify the statement. Virtual environments or artificial

data is commonly used, even for structure-from-motion. In the earliest study of structure-

from-motion at this institution, for example, Venter [117] tested his scheme on virtual

objects. In this thesis however, we are more ambitious. A full interior virtual environment

was developed that provides full control over the camera motion and environment, includ-

ing texture, camera motion, structural complexities, etc. Since it provides a ground-truth,

it becomes a useful, if not an indispensable, tool for a detailed study of the limitation of

structure-from-motion.

4. Reconstruction of the environment from smaller pieces using information inferred from

camera motion. It is common practice to divide large computational tasks into smaller

pieces, simply because computational complexity scales non-linearly with size. In our ap-

plication, the environment is not visible from a single viewpoint and it is therefore quite
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natural, and computationally more efficient, to do a piecewise reconstruction and then

assemble the different pieces into a coherent reconstruction of the total scene. Usually

such methods make use of reference points that relate the different pieces to each other.

These reference points may be derived automatically from the scene itself, and are there-

fore prone to misalignment (requiring further processing such as the RANSAC algorithm

to identify miss-alignments), or the reference points are manually super-imposed onto the

scene (some applications require little stickers to be pasted on the objects to be recon-

structed). In this thesis a complementary approach is developed where the relationships

between the different pieces are inferred from controlled camera motion. As is always the

case in Computer Vision, a combination of independent, complementary approaches lead

to increased robustness.

The structure of the thesis is as follows. In the next chapter optimal luminance space is

discussed. The 3D virtual environment developed for this thesis is described in Chapter 3.

Motion estimation, including the dense and sparse optical flow procedures used in this thesis

are described in Chapter 4. Chapter 5 discusses the unscented Kalman filter, followed by a

chapter where the integration and implementation of the different parts are discussed. Chapter

7 gives the experimental results, and is followed by a chapter where we draw various conclusions.

In whatever manner God created the world, it would always have been regular and

in a certain general order. God, however, has chosen the most perfect, that is to

say, the one which is at the same time the simplest in hypothesis and the richest in

phenomena.

Gottfried Wilhelm von Leibniz



Chapter 2

Color space and data retention

Der Fortschritt ist eine gute Sache—sofern man sich über die Richtung einig ist.

Albert Schweitzer

To phrase Albert Schweitzer’s words in English: “Progress is a good thing—provided one

is agreed on the direction.” In any venture, however, it is not uncommon when occasional

aberrations bend the intended path into wholly unexpected directions.

This chapter presents such an aberration from the intended path of structure-from-motion

research: the concept of optimised luminance space. Luminance space is a color space that

describes the brightness of image elements; in simplest terms it describes a gray-scaled version

of an image—which may be interpreted as a weighted average of its color components. In this

thesis the notion of an optimised luminance space refers to adjusting the weights of the weighted

average in such a manner as to retain the largest possible amount of information.

Like many chance discoveries, the concept of optimised luminance space is a by-product of

research of an entirely different nature. Digital image processing techniques often rely on color

space conversions and color sub-spaces to create particularly efficient algorithms. For example,

many motion estimation approaches make use of luminance space for increased computational

efficiency.

Luminance space contains all the essential data relevant for motion estimation techniques.

Typically only eight data bits per pixel are used in luminance space, compared to twenty-

four bits in raw RGB color space. This does not directly affect the theoretical computational

complexity, but in terms of practical implementation the decrease in per-pixel data size al-

lows applications to process data considerably faster. Such advances in speed are especially

relevant in real-time or resource intensive systems such as, for example, motion estimation

and image/video compression. Structure-from-motion solutions benefit from optimised lumi-

nace through the increase in accuracy that can be achieved in motion tracking with the use of

8
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optimised luminance.

As the remainder of this chapter will demonstrate, a good estimate to optimised luminance

space can be computed more efficiently than normal luminance space; furthermore, a signif-

icant increase in information is observed in optimised luminance space compared to normal

luminance.

The following sections will introduce optimised luminance space and its background, as well as

various implementations which attempt to make use of the concept. To illustrate the significance

the research results are demonstrated and concluded with a discussion on relevance to current

developments in the field of computing.

Definitions

Intensity, or brightness, of a color is a measure of the flow of power that is radiated by that color

over some interval. In the case of a light wave it can be understood as the amplitude of that

wave. On digital systems the intensity of a color simply refers to its digital value, typically 0

indicates complete absence of intensity and 255 refers to highest intensity. Brightness perception

is a complex phenomenon and is, in the context of this thesis, simplified to luminance: the

weighted average of color components.

Hue, or chromaticity, describes color; in other words red, green, brown, purple, and so on.

In terms of a light wave it can be understood as the dominant wavelength of that wave. On

digital systems the hue is usually described using three color components: RGB.

Saturation refers to the relative bandwidth of the visible output from a light source. As

more wavelengths of color are present the apparent color becomes more faded and approaches

white. A color possesses a high saturation if that color is pure, meaning it shares little or no

bandwidth with other wavelengths of light.

2.1 Background

Human perception of colors is remarkably complex. Two primary types of sensory nerves exist

in the human eye: rods and cones. Rods are able to respond to minute intensities of light—thus

facilitating night-vision—and cones are able to respond to color stimuli.

According to Hecht [42] experiments indicate that three types of cones exist in the human eye

that are responsible for sensing colors: cones that react to red, green and blue color hues. The

overall palette of colors perceived by the human mind is then a fusion of the stimuli received

over these nerves.

This insight led to the realization that mathematically a triplet of values could be used
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to uniquely describe a color. Three parameters, in turn, are then a sufficient and minimal

description to completely describe color sensation—the concept of color space.

One of the earliest mathematically defined color spaces is the CIE XYZ color space, sometimes

referred to as CIE 1931. It was created by the International Commission on Illumination (CIE)

in 1931.

The CIE 1931 color space was originally derived from work by David Wright [125] and John

Guild [40]. Their work was at first merged into the CIE RGB color space, from which CIE

XYZ was developed shortly afterwards.

Numerous other color spaces have since then been defined. Their properties vary, some

are suitable to certain applications—others are suited to different applications. For example,

computers commonly make use of RGB color space as a conceptually simple and efficient model

to control visual hardware components. Color spaces such as CIE L∗a∗b∗ [74], on the other

hand, attempt to offer a complete and device-independent description of all the colors visible

to the human eye.

The concept of device dependence or independence is relevant in color spaces. Independent

models such as L∗a∗b∗ describe a color absolutely, whereas a simple RGB color space does not

guarantee the same appearance of a particular set of values across different devices.

This may lead to some confusion when attempting to convert an image described in a device-

dependent color space to an independent one, or vice versa. For example, to convert an image

from generic RGB space to L∗a∗b∗ space requires the converter to know or assume an absolute

reference1—as there is no direct relation between absolute and non-absolute color spaces.

CIE L∗a∗b∗ is conceptually simple to understand. The components a and b refer to the

hue—that is to say the chromatic component—of the color. The first component, L, is the

luminance and refers to the brightness of a given color, shades of gray ranging from complete

black to bright white.

The brightness of image colors is generally refered to as the luminance of the image. The color

range described by the L component of the CIE L∗a∗b∗ standard may therefore be interpreted

as a color subspace, commonly referred to as luminance space. Opposed to luminance space is

chroma space consisting of the set of the remaining two components a and b—chroma describes

the hue of a particular color. A simple conceptual illustration of these different spaces is

represented in Figure 1, on page 11:

Luminance and chroma spaces are not merely of mathematical interest, they possess distinct

properties with regard to human perception. To illustrate: human perception is optimised to

react to changes in light intensity, thus the human visual system is more sensitive to changes

in luminance than to chromatic changes.
1Among others, Hewlett-Packard and Microsoft Corporation have proposed such an absolute color space for

the RGB color model. It is known as standard RGB or simply sRGB.
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(a) Luminance space (b) Chroma space

(c) Normal image: Union of luminance
and chrome components

Figure 1: Illustration of luminance, chroma and normal color space

This knowledge is applied in various fields such as, for example, video compression: video

sequences depicting intense and rapid action scenes are best compressed with a bias towards

luminance data, whereas slow and still sequences are biased towards chromatic data. Though

the overall data density remains unchanged, human perception rates the quality of the video

sequences as higher using such an approach compared to using no bias.

As described previously many algorithms, such as motion tracking [108], make use of lumi-

nance space. It is well suited for processing purposes due to its compact nature and it offers a

good estimate of the image in spite of the lower data density.

Technically, the computation of luminance from RGB data on modern computing systems is

a simple process—luminance (Y ) is the weighted sum of red (R), green (G) and blue (B) color

components [87]:

Y = 0.2125R + 0.7154G + 0.0721B .

The weights are chosen in a manner to optimally stimulate the perception of brightness in the
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human visual system. Older systems make use of different coefficients, corresponding to the

phosphors typical in monitors during the inception of NTSC television in 1953:

Y = 0.299R + 0.587G + 0.114B .

The apparently odd choice of coefficients reflects differences in perceived brightness in human

vision—if three light sources (red, green and blue respectively) were to radiate equally brightly,

then human perception would make them appear to have different brightnesses. Green light

would be considered brightest, followed by red, and blue would be rated darkest of all.

A consequence of the small factor blue plays in computing brightness is that images with

extensive blue areas and images with primarily blue hues will possess visible contours due to

low data discrimination, as demonstrated in Figure 2: Each color bar—red, green and blue—is

shown with uniformly increasing intensity from least to most prominent in 2a. However, in the

corresponding luminance image 2b the blue bar appears to be nearly uniformly black due to

the low discrimination of blue data in luminance space.

The following section addresses this observation and introduces optimised luminance space.

This concept is intended to optimise the data retention in luminance space and thereby improve

computational accuracy in motion estimation, video compression and other applications making

use of luminance space as a compact representation of image data.

(a) Original image (b) Luminance image

Figure 2: Loss of data fidelity due to luminance coefficients

2.2 Optimised luminance

The diminished data retention in images when converting from normal color space to luminance

space is not just a problem in pathological cases. Images, or sub-sections of images, with

predominantly blue, red and purplish hues can suffer a considerable loss of detail.

For the purposes of this text, data fidelity in an image is loosely defined as the richness

of information within the image—this can be likened to how well such an image compresses

without loss of information. Correspondingly, a monochromatic image possesses a low data
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fidelity and an image of white noise possesses a high data fidelity. Figure 3 illustrates this

phenomenon.

(a) Full color image (b) Blue hue image

(c) Luminance of full color image (d) Luminance of blue hue image

Figure 3: Histogram data illustrating loss of data fidelity

Each image has its corresponding color distribution histogram superimposed. The vertical

axis represents the frequency of occurence and the horizontal axis represents the brightness of

colors from least to most intense.

The images demonstrate how an image with predominantly blue hues suffers a considerable

loss of detail when transformed into luminance space: the histogram in 3c displays a far greater

diversity of intensities across the image than the histogram in 3d. The diversity of intensities

in 3c, when compared to 3d, indicates that the image possesses a greater degree of information

and can thus be analysed more accurately with algorithms such as motion estimation.

Conversely, in images with predominantly blue hues the probability of errors increases when

making use of corresponding luminance data. For example, motion estimation algorithms may

fail to find correct motion vectors due to the lack of sufficiently distinct features in the data.

The problem, however, is not purely confined to the reduction of significant bits in image
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data. In practise many problems suffer from a certain amount of noise, be it from measurement

error or background noise innate to the process in question.

Such contamination of image data can often be tolerable in color space. However, if the loss

of data fidelity is prominent when converting to luminance space (such as in areas of the image

with predominantly blue color tones), then the presence of generic noise may cause algorithms

to become unreliable as the signal to noise ratio may decrease.2

It follows that if luminance space is used purely due to the resultant compact data size, then

in general a more optimal choice of compact space could be used. Such an optimally chosen

compact space will be referred to as optimised luminance space in this text. The term may be

misleading as it creates the impression that some form of luminance is chosen that optimally

stimulates human perception—whereas the intention is actually to choose a luminance that can

be optimally perceived by artificial systems, such as computers.

The idea of computer-based perception is apt: mathematically there is no loss in information

(apart from chromatic information) when computing luminance space out of color space—all

that changes is data emphasis. The loss of information is a result of storing the computed

luminance data in integer form—truncation and rounding errors are responsible for the loss of

information. Thus distinct color intensities may be mapped onto the same luminance intensity:

a many-to-few mapping that results in a loss of information.

In principle the computed luminance data could be stored in 32-bit floating-point number

format. This would ensure a high data precision and would practically eliminate loss of in-

formation as a source of computational inconsistencies. However, computationally the cost of

processing 32-bit floating-point numbers is several times higher than the processing of 8-bit in-

tegers. For each 32-bit floating-point number, four 8-bit values could be computed in parallel.

This computational efficiency of 8-bit data outweighs the relatively small loss in data fidelity

when computing the weighted RGB averages.

Mathematically any choice of coefficients αr, αg, and αb (corresponding to the coefficients for

red, green and blue hues respectively) is suitable to compute the average weighted luminance

such that

Y = αrR + αgG + αbB

provided that

αr + αg + αb = 1 (1)

0 ≤ αr ≤ 1

0 ≤ αg ≤ 1

0 ≤ αb ≤ 1

holds.
2It should be noted that noise is not always a problem as occasionally it may actually aid perceived accuracy.

For example, a fine noisy grain applied to poor digital video footage can improve the perceived quality of the
media [2].
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At this point the question is raised: which values of αr, αg, and αb are such that the

information of the luminance data is maximised? To make meaningful statements in this

regard a mathematically rigorous metric is required against which different solutions for the

coefficients can be compared and declared more or less optimal. Depending on which metric is

chosen, different solutions and computational strategies present themselves.

For the purposes of this text the choice of metric is based on histogram equilibrium. The

histogram equilibrium is sometimes referred to as histogram variance, or simply variance in

this thesis. A given solution for luminance coefficients is rated more optimal if it produces

a histogram with a more even distribution of colors. Mathematically histogram equilibrium

is computed by the summation of absolute differences between incidence of colors and the

expected incidence of colors given a uniformly random distribution of pixels in the image:

h =
n−1∑
i=0

|ci − ce|

where h is the computed histogram variance, n indicates the number of colors that could be

used in the image, ci represents the frequency of the ith color and ce is the number of expected

occurences of a color in the image. Given additionally that p is the total number of pixels in

the image then the expected incidence of colors is simply:

ce =
p

n
.

A lower histogram equilibrium h means that the image possesses a more even distribution of

colors—and therefore more information.

This is illustrated with a simple example: the histogram equilibrium of Figure 4 is computed.

The image is four pixels wide and three pixels high. Furthermore it possesses a 2-bit color depth,

corresponding to four different colors that could be used in the image (the example image makes

use of only three of these four colors).

The expected incidence of colors in the image is:

ce =
p

n

=
wh

n

=
4× 3

4
= 3 .
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(a) Magnified image

expected incidence

(b) Histogram of image

Figure 4: Example image to compute histogram variance

The histogram variance in the image is:

h =
n−1∑
i=0

|ci − ce|

=
3∑

i=0

|ci − 3|

= |6− 3|+ |2− 3|+ |0− 3|+ |4− 3|
= 8

The result of “8” does not convey much information in itself; however, it is a valuable measure

when compared to the variance of a different image. Lower values of histogram variance suggest

a more even distribution of colors and hence are considered more optimal in this study.

The next section introduces the approaches that were considered and implemented to com-

pute optimised luminance. Demonstrative results are included that illustrate the gain in his-

togram variance.

2.3 Optimised luminance implementations

To achieve insight into the nature of optimised luminance space a simple naive algorithm was

implemented to compute the optimal coefficients using brute force. The algorithm is listed

below in Program 1.

The program is simple to understand: bestH indicates the current best rating for tested R, G

and B values, and resolution specifies the granularity of tested values. Two conditional loops

are used to iterate through all possible unique combinations of R, G and B that satisfy the
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Program 1 Naive Optimal Coefficients

bestH = +infinity
resolution = 0.01
R = 0
while R <= 1.0 do begin

G = 1 - R
while G >= 0.0 do begin
B = 1 - R - G
curH = GetH( GetWeightedLuminance(image, R, G, B) )
if curH < bestH then begin
bestR = R
bestG = G
bestB = B
bestH = curH

end
G = G - resolution

end
R = R + resolution

end

constraints, (1), shown on page 14. These coefficients are then used to compute the weighted

luminance data and the histogram variance is computed. This is compared to the current best

rating and, if necessary, the best R, G, B and bestH are updated.

Such a naive approach is tremendously expensive computationally, and will only find the

best solution afforded by the resolution—or granularity—of the search. This implies that in

arbitrary images it is wholly plausible, and for that matter likely, that a slightly better solution

can be found by using a smaller resolution parameter.

The computational complexity of “Naive Optimal Coefficients” can easily be demonstrated

to be O(n2), where n specifies the resolution of the search: the algorithm iterates through a

loop that in turn passes through another loop. The iteration count for each of these loops is

determined by the resolution parameter—in other words it possesses a computational expense

of order resolution × resolution.

Generally the most time-consuming part of the algorithm on each loop iteration is the com-

putation of the functions GetH and GetWeightedLuminance. However, for the purposes of

evaluating the computational complexity of “Naive Optimal Coefficients” they are considered

to resolve in constant time.

The images in Figure 5 illustrate the results of the algorithm. Figure 5a is the original image,

for comparison Figure 5b illustrates normal luminance space for the image, Figure 5c repre-

sents the image in optimal luminance space, and finally Figure 5d demonstrates the coefficient

solution space.



CHAPTER 2. COLOR SPACE AND DATA RETENTION 18

(a) Original image

(b) Normal luminance

(c) Optimal luminance

(d) Histogram variance distribu-

tion (tri-color diagram)

Figure 5: Example of results of Naive Op-

timal Coefficients algorithm

Figure 5d is sometimes referred to as a tri-color

diagram in this text and is a representation of the

coefficient solution space. Darker areas denote

lower values and brighter areas denote higher val-

ues of histogram equilibrium. A lower histogram

variance is considered more optimal, so darker ar-

eas indicate a more optimal choice of coefficient

than lighter areas. The figure illustrates clearly

that in this particular case green is a poor choice

to predominate the coefficients of the luminance

computation. Instead, blue or red make good co-

efficients to give a lot of weight to, but they should

not receive equal weight.

The best coefficients, according to the algo-

rithm, are given by R = 1.0, G = 0.0 and B =

0.0. These correspond to a histogram variance of

25368; the histogram variance of the normal lu-

minance image is computed as 27901—which falls

short of the optimal luminance balance by a mar-

gin of approximately 10%.

It is tempting to compare optimal luminance

to histogram equalization, which is a technique to

adjust image contrast by spreading out histogram

data. However, it is important to distinguish

between them. Optimal luminance attempts to

compute a luminance image that retains as much

information as possible from the original image;

histogram equalization, on the other hand, artifi-

cially enhances images by changing information.

Histogram equalization aids human perception,

but it does so through falsifying information in

an image. In some cases such falsification is not

detrimental and can aid applications, such as fea-

ture detectors. In such cases it is still possible to

first use optimal luminance followed by histogram

equalization to achieve a greater degree of accu-

rate information compared to normal luminance

computations.
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When comparing the images for normal luminance (Figure 5b) and optimal luminance (Fig-

ure 5c) even casual observation suffices to verify that the optimal luminance image emphasizes

differences in data more than the normal luminance image. The histogram equilibrium for

normal and optimal luminance images confirm the increase in data fidelity—this implies that

processes such as motion estimation can be computed more accurately and more efficiently on

the optimal luminance image than on the normal luminance image.

The increase in accuracy is afforded by the greater amount of information which allows a

more accurate detection of features and patterns. The increase in computational efficiency is

indirect: due to the increase in accuracy it is possible to use smaller sub-images for feature and

pattern matching, and this in turn allows computations to be resolved quicker.

The primary drawback of this approach to computing optimal luminance is the high com-

putational cost of calculating the optimal luminance coefficients. A modern desktop can be

expected to require several seconds to compute the optimal weights. For example, the image in

Figure 5a (256×256×24 at a resolution of 0.01) requires approximately 5 seconds of processing

time on a 2Ghz desktop system to resolve the implementation of “Naive Optimal Coefficients”

used throughout this text. Although there is room for improvement in the implementation, it

cannot be expected to meet the expectations of high performance or real-time applications.

At this point some results presented later in this chapter are preempted to allow the intro-

duction of a faster algorithm to compute optimal variance. The results displayed in Section 2.4

illustrate three significant features of the optimal luminance solution space:

Optimal coefficients are nearly always found along the edge of the tri-color diagram.

Histogram equilibrium varies continuously throughout the tri-color diagram. A tri-

color diagram may possess multiple local optima.

Intuitively, and according to the Lambertian model [83], it makes sense that optimal coeffi-

cients would tend to be found along the edges of the solution space. The reason for this is that

the majority of image data is duplicated to some extent throughout the color channels—by

giving equal weight to each color the amount of information that is stored per color is reduced,

which in turn decreases the amount of information.

The continuous variation of histogram variance indicates that a greedy strategy could be used

in an algorithm to solve for optimal luminance weights. However, as Figure 12b on page 25

demonstrates, images may possess a highly varied and complex optimal luminance solution

space. The presence of local optima implies that a greedy algorithm is not guaranteed to find

the most optimal solution.

Program 2, below, stipulates a heuristic algorithm that can be used to compute optimal

luminance weights. The heuristic used is twofold. Firstly, only solutions along the edges of the

tri-color diagram are considered. Secondly, a greedy approach is used, in spite of the inability

to guarantee the best possible solution.
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Program 2 Heuristic Optimal Coefficients

function GetHeuristicWeights

Takes input image and search resolution and returns near-optimal weights
and variance along red-green, green-blue and red-blue borders

input : image, res
output : (αr, αg, αb), h

begin
sr = GetH( GetWeightedLuminance(image, 1, 0, 0) )
sg = GetH( GetWeightedLuminance(image, 0, 1, 0) )
sb = GetH( GetWeightedLuminance(image, 0, 0, 1) )

rg = GetRecursiveHeuristic(image, res, 1, 0, 0, sr, 0, 1, 0, sg)
gb = GetRecursiveHeuristic(image, res, 0, 1, 0, sg, 0, 0, 1, sb)
rb = GetRecursiveHeuristic(image, res, 1, 0, 0, sr, 0, 0, 1, sb)

return best solution based on rg, gb, rb
end

function GetRecursiveHeuristic

Takes input image, search resolution, starting point, starting variance,
end point, and end variance—returns near optimal weights and variance
along start and end points

input : image, res, (wr, wg, wb), wh, (vr, vg, vb), vh
output : (αr, αg, αb), h

begin
tr = 0.5 * (wr + vr)
tg = 0.5 * (wg + vg)
tb = 0.5 * (wb + vb)
th = GetH( GetWeightedLuminance(image, tr, tg, tb) )

if max( abs(wr - tr), abs(wg - tg) ) < resolution then begin
return best solution based on wh, th, vh

end else begin
if wh < vh then begin
GetRecursiveHeuristic(image, res, wr, wg, wb, wh, tr, tg, tb, th)

end else begin
GetRecursiveHeuristic(image, res, tr, tg, tb, th, vr, vg, vb, vh)

end
end

end
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The second heuristic requires a slightly more elaborate justification. The heuristic considers

that an optimal solution can produce the best possible histogram variance; however, finding

such an optimal solution may require extensive processing time. A sub-optimal solution falls

short of the best solution; however, the heuristic assumes that the sub-optimal solution is near

the optimal solution and still offers a considerable improvement in histogram balance. To

summarise, the heuristic trades accuracy of solution in favor of higher execution speed.

The “Heuristic Optimal Coefficients” algorithm makes use of recursion to compute the result.

The GetHeuristicWeights function makes use of the recursive function GetRecursiveHeuristic

to compute the best solution along each of the three edges of the tri-color diagram, and then

returns the best of the three solutions.

The GetRecursiveHeuristic function receives two coordinates (start- and end-point) on the

tri-color diagram, along with an evaluation of the variance at those points. It then computes

the mid-point between the starting and ending coordinates and evaluates the variance at that

location. If the distance between start-point and end-point is less than the search resolution the

recursion is halted and the best current solution is returned, otherwise the recursion proceeds

between start-point and mid-point or mid-point and end-point—depending on whether the

starting or ending coordinates possess a more optimal variance.

The computational complexity of “Heuristic Optimal Coefficients” is of the order O(lnn),

where n specifies the resolution of the search. To see that it has a logarithmic complexity

consider that it computes three sets of points through recursion, where each recursive call

halves the search space until the resolution condition is met.

The following section illustrates the results of optimal luminance experiments. Additionally

comparative data on the “Naive Optimal Coefficients” and “Heuristic Optimal Coefficients” is

provided.

2.4 Optimal luminance results

A set of different images with varying color properties was used to test the efficiency of “Naive

Optimal Coefficients” and “Heuristic Optimal Coefficients” in maximising data fidelity. Each

image is accompanied by a histogram variance rating for each of these algorithms, as well as a

rating based on normal luminance computations.

The format will present the original image and a tri-color diagram for luminance weights, as

well as the normal and the optimal luminance images. The histogram data of both the normal

and optimal luminance are presented along with a summarizing table. Note that it is possible

for the heuristic algorithm to find solutions that are more optimal than the naive algorithm as

they do not consider the same set of points. They merely share a common resolution parameter

that indicates to what degree a solution is searched for.
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 6: Image - Cape

Weights Red Green Blue Variance

Naive 1.000 0.000 0.000 25368

Heuristic 1.000 0.000 0.000 25368

Luminance 0.299 0.587 0.114 27901

Gain from Naive algorithm 9.08%

Gain from Heuristic algorithm 9.08%

Luminance Naive Optimal

Figure 7: Histographs - Cape
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 8: Image - Hikaru

Weights Red Green Blue Variance

Naive 0.000 0.000 1.000 11798

Heuristic 0.000 0.030 0.970 11663

Luminance 0.299 0.587 0.114 19486

Gain from Naive algorithm 39.45%

Gain from Heuristic algorithm 40.15%

Luminance Naive Optimal

Figure 9: Histographs - Hikaru
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 10: Image - Girls

Weights Red Green Blue Variance

Naive 0.980 0.020 0.000 14319

Heuristic 1.000 0.000 0.000 14462

Luminance 0.299 0.587 0.114 19509

Gain from Naive algorithm 26.60%

Gain from Heuristic algorithm 25.87%

Luminance Naive Optimal

Figure 11: Histographs - Girls
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 12: Image - Cars

Weights Red Green Blue Variance

Naive 0.970 0.000 0.030 11555

Heuristic 0.970 0.000 0.030 11555

Luminance 0.299 0.587 0.114 12885

Gain from Naive algorithm 10.32%

Gain from Heuristic algorithm 10.32%

Luminance Naive Optimal

Figure 13: Histographs - Car
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 14: Image - Hut

Weights Red Green Blue Variance

Naive 0.000 0.000 1.000 26440

Heuristic 0.000 0.000 1.000 26440

Luminance 0.299 0.587 0.114 31139

Gain from Naive algorithm 15.09%

Gain from Heuristic algorithm 15.09%

Luminance Naive Optimal

Figure 15: Histographs - Hut
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 16: Image - Scryed

Weights Red Green Blue Variance

Naive 0.990 0.010 0.000 26170

Heuristic 0.990 0.010 0.000 26170

Luminance 0.299 0.587 0.114 40532

Gain from Naive algorithm 23.17%

Gain from Heuristic algorithm 23.17%

Luminance Naive Optimal

Figure 17: Histographs - Scryed
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 18: Image - Sung

Weights Red Green Blue Variance

Naive 0.330 0.000 0.670 33874

Heuristic 0.250 0.000 0.750 33862

Luminance 0.299 0.587 0.114 34444

Gain from Naive algorithm 1.65%

Gain from Heuristic algorithm 1.69%

Luminance Naive Optimal

Figure 19: Histographs - Sung
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 20: Image - Test

Weights Red Green Blue Variance

Naive 0.000 0.580 0.420 63078

Heuristic 0.010 0.000 0.990 63078

Luminance 0.299 0.587 0.114 63139

Gain from Naive algorithm 0.10%

Gain from Heuristic algorithm 0.10%

Luminance Naive Optimal

Figure 21: Histographs - Test
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(a) Original image (b) Tri-color diagram

(c) Normal luminance (d) Optimal luminance

Figure 22: Image - War

Weights Red Green Blue Variance

Naive 0.960 0.020 0.020 9538

Heuristic 0.940 0.060 0.000 9548

Luminance 0.299 0.587 0.114 17804

Gain from Naive algorithm 46.42%

Gain from Heuristic algorithm 46.37%

Luminance Naive Optimal

Figure 23: Histographs - War



CHAPTER 2. COLOR SPACE AND DATA RETENTION 31

The results on the previous pages demonstrate that in nearly all cases optimal coefficients

are found along the edges of tri-color diagrams. The only exception is found in Figure 23 on

page 30, and even in that case the optimal solution is near the edges of the tri-color diagram.

The examples are certainly not conclusive, but they do allow the formulation of a heuristic

which produces results comparable to the “Naive Optimal Coefficients” approach.

Some may note that in some cases, such as Figure 8, the heuristic outperforms the naive

solution. This is due to the fact that the two algorithms do not consider the exact same sample

points—the naive algorithm linearly considers all samples within a resolution parameter, while

the heuristic approach uses a divide-and-conquer recursion. These differences cause the two

algorithms to consider different samples and it is thus possible for the heuristic to slightly

improve on the naive approach.

The heuristic, however, can be simplified further by noting that optimal results are not

only found along the edges of tri-color diagrams, but more specifically near their vertices. This

simplification allows applications to only consider the existing red, green and blue color channels

to determine a compact image representation with high data fidelity.

The simplified heuristic allows implementations to save the processing time of computing

the luminance of an image, in favor of a quicker analysis of the histogram balance of the red,

green and blue color channels. Such an analysis requires less computing time than a luminance

computation, and the resulting optimal luminance generally possesses a higher data fidelity

than the corresponding standard luminance.

Table 1 summarizes the results of this chapter and illustrates the near optimal nature of

color-channel-only optimal luminance.

Image Standard Naive Optimal Optimal Naive Optimal Channel
Luminance Coefficients Channel Gain % Gain %

Cape 27901 25368 25368 9.08 9.08
Hikaru 19486 11798 11798 39.45 39.45
Girls 19509 14319 14462 26.60 25.87
Cars 12885 11555 11724 10.32 9.01
Hut 31139 26440 26440 15.09 15.09

Scryed 40532 26170 26170 35.43 35.43
Sung 34444 33874 33913 1.65 1.54
Test 63139 63078 63078 0.10 0.10
War 17804 9538 9613 46.42 46.01

Table 1: Summary of optimal luminance results

The last section of this chapter presents closing thoughts on optimal luminance. Suggestions

for additional work, as well as an alternative approach to achieve high data fidelity are presented.
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2.5 Closing thoughts and suggestions for further work

This chapter presented findings on optimal luminance computations, a method for achieving

greater data fidelity in compact space. The solution presented in this chapter utilizes a metric

that considers histogram balance in an image as an indicator to data fidelity.

It is possible to define alternative metrics that emphasize other image properties to maintain

a high data fidelity. One such alternative is to keep the existing histogram variance metric,

but refine it to sub-images of the graphic data. For example, typically motion estimation

at a particular point only considers a small subset of the full image data when performing

estimations—it is therefore possible to use the histogram variance metric localized to the current

region to ensure high data fidelity for that particular subset.

On the other hand, it is possible to approach the problem of computing a compact represen-

tation of the image data that maintains a high threshold of information from a different angle.

For example, it is possible to use the method of histogram equalization on a normal luminance

image to ensure that data subsets of the image can be easily differentiated. Such a method is

suitable for some computational problems, but not all, as the histogram equalization process

typically introduces new data to the image. This can lead to falsification of results.

The following chapter presents the visual environment used during the research process. It

describes the strengths and weaknesses of the representation and offers a short account on its

development.

Basic research is like shooting an arrow into the air and, where it lands, painting a

target.

Homer Burton Adkins



Chapter 3

Visual Environment

A rock pile ceases to be a rock pile the moment a single man contemplates it, bearing

within him the image of a cathedral.

Antoine De Saint-Exupery

The words of Antoine De Saint-Exupery remind us that perception is greater than the sum

of individual visual stimuli—the questions of intent and potential are part of the considerations

on perception. Two questions that present themselves in the field of structure-from-motion are

what is to be reconstructed and how is the data to be reconstructed obtained.

The reconstruction process under consideration for this thesis is that of fully enclosed, static

environments. Thus not individual objects are processed; but instead immersive, continuous

environments such as the inside of a building are taken into account. To draw the comparison

to the preceding quote: the reconstruction should not reproduce a model of a cathedral as seen

from the outside, but instead produce a model of the depths perceived while traversing the

rooms and halls inside of a cathedral.

More precisely, the reconstruction process considers input data that is within the boundaries

defined by the following assumptions:

• The visual data represents a fully enclosed environment. This implies that all of the

visual data at each point in time represent only the environment to be reconstructed. An

example of an environment that is not fully enclosed is that of a room with an open door

that permits sight onto the horizon.

• The environment is static. This implies that the environment is rigid and undergoes

no changes. A door opening and closing is an example of dynamic data in an enclosed

environment.

33
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• The environment consists entirely of opaque elements that possess no light reflective or

refractive properties. Correspondingly, no partially transparent, reflective or refractive

entities, such as a pool of water, are present in the environment.

• The environment is perceived through a simple perspective camera model. This ensures

that the visual data mimics the data perceived by the human eye. However, unlike the

human eye, the perspective camera model does not distinguish objects through depth

focus. All entities perceived are clearly in focus.

• The input data is free of all forms of distortions. This implies that the perceived data is

not geometrically transformed through lens refraction, chromatically transformed due to

lighting conditions, nor is the data contaminated with visual artifacts such as lens glare

or environmental hueing. The human eye, in contrast, changes its perceptive qualities

depending on the brightness and ambient-hue of the environment, as well as the distance

of objects relative to the eye.

It is not strictly necessary to perfectly adhere to these restrictions. Slight deviation from the

restrictions above do not cause the reconstruction process to fail—it merely tarnishes the quality

of the results slightly. For example, distortion in the input data may produce a distortion in the

resulting three-dimensional model; the degree of the distortion in the input determines whether

the final results are acceptable.

The visual environment that serves as input to the reconstruction process is, for the purposes

of this thesis, generated in real time using a virtual three-dimensional environment. Some

experiments are performed using real samples, but the majority are computed from virtual

models.

The advantages of a virtual, simulated environment are numerous. It is a simple matter

to ensure that all the assumptions regarding input data are met. Precise control over cam-

era motion and camera properties can be exerted. Furthermore the true structure and the

reconstructed structure data can be easily correlated and compared. A virtual environment

allows the easy reproduction of input data, as well as affecting slight variation in input data

for experimental purposes. Allowing the virtual environment to run in real-time allows inter-

active control over the visual input. Finally, the use of a virtual environment is exceptionally

cost-effective—expenses for quality camera equipment as well as precise positioning machinery

and software are eliminated.

The following section will present the background and current development of interactive

virtual environments. Section 3.2 will describe and illustrate the virtual environment developed

for this study.
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3.1 Background and current development

Virtual environments have evolved at a staggering pace in the last two decades. The range of

implementations include both military, industrial, educational and research applications—as

well as the gaming products of the electronic entertainment industry.

The entertainment industry is the dominant driving force in the development of new algo-

rithms and hardware in the quest to create ever more immersive and complete virtual envi-

ronments. This should come as no surprise, as the market for electronic entertainment has

increased rapidly in the last decade. The growth in recent years has allowed the industry to

exceed even Hollywood in annual earnings [89].

Early efforts were primarily made as proof of concept demonstrations by dedicated groups of

enthusiasts in a digital-based subculture known as the Demoscene [105]. The Demoscene evolved

from small graphical and musical demonstrations that were used by crackers as signatures in

the early 1980’s.

Typically a gaming company attempts to produce products that are stable and possess the

desired features necessary to the game. In contrast, demosceners are concerned foremost with

the mastery of advanced special effects and excellence of artistic representation. Traditionally

a demo programmer would go to great lengths to find ways to exploit undocumented hardware

features to allow his effects to excel.

Arguably the most influential demo group in the history of the Demoscene is the Future Crew.

They have a surprisingly small selection of releases, but each was a technical masterpiece. Their

demo “Second Reality”, released in 1993, could be described as pivotal in that it shaped content

and production standards of demo releases for years to come.1

One of the earliest commercially successful fully immersive virtual environments was encap-

sulated by the Freescape Solid 3D engine developed by Incentive Software2. The engine served

as the basis for a series of games such as “Driller” (1987), “Total Eclipse” (1988) and “Castle

Master” (1990).

The breakthrough for virtual reality gaming began with “Wolfenstein 3D” in 1992. It was

developed by id Software and served as their first three-dimensional gaming milestone. However,

it was the release of “Doom” in 1993 that completely opened the floodgates to first-person

perspective gaming. Finally “Quake” (1996) initiated a trend into completely three-dimensional

immersive environments.

id Software went on to develop both the Doom and Quake franchises. Though each id Soft-

ware product is a financial success, the company is primarily known for producing outstanding
1Quite a substantial number of demosceners have made their passions a career. For example, some of the

various members of Future Crew have parted ways and formed companies such as FutureMark (known for its
3DMark series—programs to benchmark graphics hardware) and Remedy Entertainment (known for popular
gaming titles such as Max Payne).

2The company changed its name to Superscape in 1991.
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gaming engines that are licensed out to other companies. Typically after an engine reaches five

years of age id Software releases it under the GNU GPL, essentially placing the engine into the

public domain.

The progress of virtual reality systems has in recent years reached an exceptionally high stan-

dard of immersion. Environments are, visually, near photo-realistic, complex physics systems

allow natural interaction with objects in the world, and environmental, positional audio cues

complete the immersive illusion.

A side-effect of this ever more complete and realistic representation of the real world in

a virtual environment is the development of non-photorealistic rendering methods. Modern

graphics hardware supports the use of shaders that can control how vertices and pixels are

processed by the rendering pipeline. Such shaders can be used to create both realistic effects—

such as modelling light glare—as well as non-natural, artistic effects—such as cel-shading3; as

demonstrated in Figure 24.

Figure 24: Example of cel-shading

The following section describes the virtual environment adopted for the thesis. Additionally

it describes its development as well as the mechanisms involved.
3Cel-shading is a rendering technique that creates cartoon-like shading of objects.
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3.2 Virtual environment

The Quake 3 engine has been a popular foundation for several entertainment titles and has

proven itself as an exceptional rendering tool for indoor and enclosed environments. Addi-

tionally several free fan-made applications exist to create custom environments and maps for

the engine. These features make the Quake 3 environment an effective tool for virtual reality

application—correspondingly the virtual reality environment used in context of this thesis is

an in-house graphics application capable of loading and interactively rendering Quake 3 map

files.

The Quake 3 engine and its source was placed under GNU GPL in August 2005 [45], allowing

free public domain access to use and learn from the sources. Numerous websites on the internet

offer tutorials and explanations on the various functions, features, formats and file specifications

used by the Quake 3 engine. Given the extensive online documentation of the engine it is a

relatively simple task to implement a Quake 3 map file loader and renderer.

Algorithmically, the most significant aspect of an enclosed environment renderer is the occlu-

sion and visibility determination. In the case of Quake 3 these are achieved primarily through

binary space partitioning trees (BSP trees) and potentially visible sets (PVSs)—the remainder

of this section introduces the background and theory of these abstract data structures.

3.2.1 Binary space partitions

Binary space partitions were first formulated by Fuchs [32] in 1980. They were initially intended

as a solution to the problem of depth-sorting polygons and resolving special cases: as illustrated

in Figure 25a it is impossible to determine which polygon is in front of the other as each polygon

is partially in front of and partially behind the other. A BSP solves this problem by dividing

the polygons, so that the smaller polygons can then each be accurately classified as in front of

or behind the others. However, since their inception, the applications of binary space partitions

have increased substantially.

(a) Which polygon is deeper? (b) BSP solution

Figure 25: Depth conflict and resolution
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Binary space partitions are used to accelerate a wide variety of occlusion related problems,

for example: Chin and Feiner [21] who presented their approach to using BSP trees to efficiently

compute shadow volumes in 1989; as well as Bittner et al [14] who use BSP trees as a scene

representation to accelerate tests on an occlusion tree—a hierarchy of shadow frusta. The

interested reader is referred to Wade [120] who maintains an excellent online FAQ on binary

space partitions.

A binary space partition can be likened to a binary tree, applied not to numbers but to

geometrical space—it sorts polygons into a logical tree. Similar to a binary tree the height—

meaning the length of the path from root to its furthest leaf—of a balanced BSP tree is of the

order of log n, where n is the number of polygons in the tree.

A given node represents a logical plane that passes through the geometric space and divides

all entities in the space into two subsets: that part of space that is in front of the dividing plane

and that part of space that is behind the dividing plane. The child nodes of their respective

parent nodes in turn divide the remaining subset of geometric space into an in front and a

behind space. Figure 26 below demonstrates the process—the example chooses to create a

binary space partition where dividing planes are chosen based on existing polygons, though

this is not necessary for BSP trees in general. Furthermore, a leaf is not further refined if the

set of polygons in it describe a concave space, instead the leaf contains a pointer to the set of

polygons—as illustrated in Figure 27.

(a) Initial world space (b) First division (c) Final division

Figure 26: Binary space partition creation

The choice of dividing plane impacts the quality of the binary space partition. At first glance

the best choice of the dividing plane is one which separates the space into two equally sized

subsets. However, if a dividing plane passes through a polygon, that polygon needs to be

replaced with two polygons that describe the original polygon as well as the cut made by the



CHAPTER 3. VISUAL ENVIRONMENT 39

dividing plane.

This process implies that the number of polygons to be sorted into a BSP tree can increase

considerably during its creation, depending on the choice of dividing plane. Therefore it is

paramount to choose a plane that divides the world into relatively equal subsets, while possess-

ing a bias towards producing as few as possible additional polygons.

Figure 27: Binary space partition result

The requirements to choose a dividing plane that both produces a balanced tree, as well as the

fewest possible polygon splits, are mutually exclusive. The problem of creating an optimal BSP

tree is NP-complete [120]; in practice heuristics are used that are biased towards the intended

use of the binary space partition: if the rendering context is emphasized then polygon splitting

is minimised as the rendering performance is a function of the contents of the entire BSP tree.

In contrast, in applications where the BSP trees are primarily used to apply algorithms on the

spatial divisions of the tree, a balanced tree is favored.

The advantages of applying algorithms to binary space partitions is that in many cases

the order of computational complexity can be reduced considerably [120]. Problems that would

require operations in the order O(n) when applied to the full geometric set of a world are reduced

to O(log n), and problems that are solved in the order of O(n2) are reduced to O(n log n).

The reason for these improvements is that when a particular node can be excluded from

consideration, its children also fall away from consideration. Examples of problems that can

be accelerated using BSP trees are: collision detection, light mapping, shadow computation,

physics computation, and frustum culling.

Although binary space partitions are effective structures for spatial operations, they are not

commonly used in their original function as an ordering mechanism to solve the problem of

visible surface determination4. Particularly advances in graphics hardware have solved many

rendering difficulties that required extensive coding as little as two decades ago. In the case of

BSP trees the key advance that makes binary space partitions obsolete as a rendering vehicle

is the use of hardware Z-buffering.
4The problem of determining which polygons, and parts thereof, are visible. Practically equivalent to the

problem of hidden surface removal—the problem of determining which polygons are not visible.
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A Z-buffer is conceptually simple to understand and implement—especially on graphics hard-

ware. The algorithm solves the problem of visible surface determination by storing the depth

value of computed pixels and drawing a pixel only when it passes the Z-buffer test, in other

words, it renders a pixel only if its corresponding depth value is nearer than the relevant Z-

buffer entry. The development of the Z-buffer is generally credited to Edwin Catmull [19]5,

though the first to publish the idea of the Z-buffer was Wolfgang Straßer [102].

Modern advances in graphics hardware make binary space partitioning trees unnecessary in

terms of their rendering properties, however, Z-buffers and other hardware accelerations alone

are not sufficient to meet the requirements of high-end interactive virtual reality environments.

The next subsection briefly examines potentially visible sets (PVSs) as an additional algorithm

for visible surface determination.

3.2.2 Potentially visible sets

Potentially visible sets are precomputed data sets that specify which parts of a graphics scene

are visible from other parts of the scene. For example, in BSP trees, typically a PVS considers

BSP leafs and stores a list of all other leafs that are visible from them.

When rendering a scene from a binary space partition, the rendering algorithm parses into the

BSP tree to locate the leaf in which the camera is currently positioned. Then it references the

potentially visible set of that leaf and uses the list of potentially visible leafs to render the scene.

Typically some additional culling of potentially visible leafs is performed, for example, the

bounding boxes of potentially visible leafs is compared with the view frustum of the camera—

any leafs rejected from this culling step are not rendered.

A B C

FE

D

G

Figure 28: Example of potentially visible set

5Edwin Catmull is possibly the most celebrated academic figure in the field of computer graphics. His
research output includes not only the Z-buffer, but also texture mapping and bi-cubic patches. Dr Catmull is
the president, and co-founder, of Pixar Animation Studios—he was the lead developer of Renderman, rendering
software which is responsible for a wide range of computer animated clips and movies such as Toy Story and
Finding Nemo.
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Figure 28 illustrates the idea of potentially visible sets. Room E is used as source leaf for

the demonstration and the potentially visible rooms are B, C, F and G. Thus rooms A and D

are not considered for rendering. Figure 29 below depicts the corresponding stab graph.

E

F

B

C

G

Figure 29: Stab graph of potential visibility from room E

Stab graphs can be used in conjunction with view frustum culling. If a particular node can

be eliminated, then all its children fall away as well. To illustrate, consider Figure 30: in the

stab graph above, if room B is determined to be outside the view frustum, then it and all its

children (room C) are culled as well, even though room C may be within the view frustum.

A B C

FE

D

G

Figure 30: View frustum culling

Potentially visible sets are a common preprocessing step in many algorithms. For example,

Airey [4] as well as Teller and Séquin [107] detail the use of such sets to perform occlusion

culling.

Potentially visible sets are also used in other environments, for example Stewart [101] proposes

the use of potentially visible sets for terrain rendering. However, typically a PVS is used in

urban and indoor environments which are populated with many large occluders that allow

efficient culling of graphics data.

A prominent problem in the use of potentially visible sets is that of PVS data storage.
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Complex scenes, by their nature, require a great number of convex sections, sometimes known

as cells, which form the basis of potentially visible tests. This implies that for n cells an order

of n2 potentially visible pairings need to be considered.

Different strategies exist to resolve the problem of PVS data size. For example, Gotsman et

al [39] make use of a hierarchical visibility classification scheme to reduce data volume. Koltun

et al [62] achieve a similar effect through the definition of a virtual occluder—a view-dependent

object that is occluded from any point within the current cell; also by the same authors is a

hardware accelerated attempt at computing relevant PVS information in real time [63]. The

idea of real-time PVS computation is not entirely new. It is reminiscent of an earlier approach

by Luebke and Georges [70] which makes use of cells and connecting portals to perform an

on-demand PVS computation.

For this thesis the method adopted, by default, is the one used by the Quake 3 engine. It

is elegant in its simplicity: each cell is uniquely identified by a cell identification number, the

potentially visible data is a sequence of booleans such that the first boolean indicates whether

cell number one is visible, the second boolean refers to the second cell, and so forth. The actual

boolean information for particular cell visibility can be stored in a single bit, and thus the PVS

data is represented as a continuous bitstream.

The model that is described is usually an indoor or urban environment, meaning large parts

of the scene are typically occluded from cells. Thus the resulting potentially visible data consists

of predominantly 0’s—indicating that corresponding cells are not visible—as well as occasional

clusters of PVS data with higher complexity. The Quake 3 engine efficiently stores this data

using zero run-length encoding, which reduces the required storage space by approximately two

orders of magnitude.

The following subsection briefly discusses alternative virtual environments that could be

considered as visualisation tools. Additionally, in closing, it presents images from the visual

environment used for this study.

3.2.3 Alternatives

Instead of a custom-made Quake 3 map renderer, it is possible to consider a host of alternate

options to serve as a visualisation tool. These can be roughly divided into external libraries

and custom made libraries.

A custom visualisation engine could be created from first principles, and can thus, in the-

ory, reach any desired complexity. However, in practice creating a suitably advanced virtual

environment requires a considerable investment in time and extensive expertise in the field

of graphics. Furthermore the basic rendering engine needs to be supplemented with content

creation tools that allow importing and exporting of various formats, as well as creation and

editing of maps and materials.
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Often, when creating a custom visualisation tool, it is prudent to pick an existing rendering

package and implement its specifications. This normally limits the features available to those

implemented by the relevant source engine. However, it reduces research and programming time

and offers considerable pre-existing infrastructure in the form of meta-applications to design

and edit content, as well as online forums, mailing lists and support groups dedicated to the

engine.

Most popular entertainment titles have online documentation of the relevant formats used

in maps and models, as well as third party tools that allow customization of content. Popular

examples include the series of Quake engines, as well as Battlefield [7], Half-Life and Half-Life

Source [112]. Often it is not necessary to code a custom engine based on an existing one, but

to make use of its custom content creation tools—such as the custom modification Source SDK

that is based on the Half-Life Source engine [113]. Such solutions can make use of tools such

as Fraps6 to export the output from the renderer to video or image sequences [12]. In principle

Fraps allows the use of any existing visual environment tool to function as the basis for video

sequences.

Instead of creating a custom engine it is possible to use existing rendering engines. Depend-

ing on the requirements it is possible to licence commercial libraries, such as the cutting edge

Doom 3 engine, which are sometimes made available at a sizable discount when used for aca-

demic purposes. Alternatively a host of free real-time rendering libraries is available, including

high profile candidates such as Irrlicht [35], OGRE [103], and Genisis3D [31].

Figure 31: Visual environment

6A real-time video capturing tool.
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Additional alternatives include the use of VRML (Virtual Reality Modeling Language) [25],

CAD (Computer Aided Design) programs, and naturally the use of a video camera. VRML is

readily accessible to computer users as it requires little programming and graphics knowledge.

CAD programs, such as 3D Studio Max [1], require no programming skills—though creating

complex 3D sequences may require considerable artistic effort. Finally, making use of a video

camera is perhaps the easiest method of creating realistic video sequences to serve as recon-

struction input. However, it is difficult to ensure accurate perspective and motion parameters

and it is hard to produce controlled experimental variation for real world video.

In closing, Figure 31 above illustrates the capabilities of the graphics engine utilized in the

thesis. The following chapter describes the motion estimation techniques used in conjunction

with the renderer.

Because of the nature of Moore’s law, anything that an extremely clever graphics

programmer can do at one point can be replicated by a merely competent programmer

some number of years later.

John Carmack



Chapter 4

Motion estimation

Colors answer feeling in man; shapes answer thought; and motion answers will.

John Sterling

Though taken well out of context, the words by John Sterling echo the basic stratagems em-

ployed in motion estimation techniques: motion estimation is, at heart, performed by tracking

the flow of colors in image sequences, or—in more resource intensive approaches—tracing the

motion of shapes.

The task of accurate and fast motion estimation is a crucial cornerstone for a great number

of applications including, though not limited to, surveillance and navigation tasks as well as

image and video compression. Mitiche and Bouthemy [77] provide a useful overview of the

problems inherent in motion estimation, and Beauchemin and Barron [11] offer a survey and

classification of motion estimation techniques.

This chapter introduces the motion estimation solution employed in this thesis. The following

sections outline the existing work on motion estimation, as well as the solution and optimization

processes employed for the purposes of this study.

4.1 Background

The taxonomy of motion estimation is hard to discuss without making reference to motion

compensation. These two fields are traditionally closely linked—often techniques employed

in solving either motion estimation or motion compensation are interchangeably utilized in

the other as well. Nonetheless, the two fields of motion estimation and motion compensa-

tion attempt to achieve different goals and therefore require the underlying paradigms to shift

emphasis.

45
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Motion estimation is concerned with the detection of changes in an image sequence that is

due to the motion of image objects relative to the camera. Motion compensation, on the other

hand, attempts to predict pixel values in a particular image frame from the pixel intensities

in other frames; the purpose of motion compensation is to eliminate inter frame (or temporal)

redundancy in image sequences.

Motion estimation primarily focuses on the accuracy of results, whereas motion compensation

typically emphasizes how well the data in image sequences can be compressed. It is relatively

easy to compare different motion compensation techniques based on the compression gain that

is afforded by the techniques, however, motion estimation algorithms cannot easily be evaluated

as they require comparison with known real world motion data to make meaningful statements

on respective accuracy and efficiency. As a consequence, motion estimation techniques often

have to rely on qualitative evaluation or evaluation based on artificially generated data1.

Most solutions to both motion estimation and compensation can be divided into two cat-

egories: Feature correspondence and differential methods, also referred to as correlation and

pixel-recursive methods. The following subsections will detail how features may be chosen,

feature correspondence methods, differential methods, and the Kanade-Lucas-Tomasi tracking

algorithm.

4.1.1 Feature selection

Some, though not all, motion tracking methods rely on identifying strong features that can be

easily discerned. This begs the question how such suitable features can be found.

A popular method [99] relies on image gradients: given an image that is described through its

pixel intensities I(x, y) and a window W that defines the feature under consideration, compute

a gradient g such that

g = ∇IW =

[
gx

gy

]
where gx is the derivative of intensity at an image point in the horizontal direction and gy is

the derivative in the vertical direction. Using g, define the product

ggT =

[
g2

x gxgy

gxgy g2
y

]
,

and then the integral Z is given by integrating over area W such that

Z =
∫∫

W

[
g2

x gxgy

gxgy g2
y

]
ω dxdy (2)

where ω is a weighting function. Choosing ω(x, y) = 1 places equal emphasis on all parts of

the feature window, though other choices are common as well. For example, some applications
1Well-known examples of artificial sequences are the Translating Tree [68] and Diverging Tree [10].
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choose a Gaussian weighting function to emphasize feature elements in the centre of the window.

A centre-biased weighting function is particularly relevant in applications where scenes may

undergo complex and unpredictable transformations.

The 2 × 2 matrix Z contains purely textural data that can be analysed to detect feature

edges, corners and intersections within W . Typically the eigenvalues of Z are considered.

The eigenvalues are small for uniform intensity patterns within W . One small and one large

eigenvalue indicate the presence of a unidirectional change in intensity, and two large eigenvalues

correspond to a bidirectional change in intensity—strong changes in two directions—in other

words a readily trackable feature within W .

A common problem is defining when eigenvalues are sufficiently large to be classified as a

viable feature for tracking purposes. The magnitude of the eigenvalues of the most prominent

trackable features in one image may differ significantly from the magnitude of the eigenvalues

in another image.

The problem is typically solved by accepting a minimum threshold that eigenvalues need to

achieve before being classified as trackable features. Alternatively, some approaches compute

the feature viability of a complete image and choose the most prominent set of features from

that analysis.

A popular measure is the Harris cornerness function, originally presented by Harris and

Stephens [41]. Large values of this function indicate the presence of a corner: the larger the

value, the stronger the corner. The function is defined as

R = detZ− k(trace Z)2

with
detZ = λ1λ2 = Z11Z22 − 2Z12

trace Z = λ1 + λ2 = Z11 + Z22

where λ1 and λ2 are the eigenvalues of Z, and k is a constant. Usually k is chosen to be equal

to 0.04, which yields optimal results according to Harris and Stephens [41].

The Harris cornerness function makes intuitive sense if the two terms are considered inde-

pendently: the determinant of Z is simply the product of its eigenvalues and, as indicated

previously, larger eigenvalues in Z indicate more reliably tracked features.

g

g
r

x

y

Figure 32: Significance of the trace term



CHAPTER 4. MOTION ESTIMATION 48

To appreciate the significance of the second term, consider the case where only a single pixel

is considered, in other words no integration step is required

Z =

[
g2

x gxgy

gxgy g2
y

]
.

It follows that the trace in the second term is computed as trace Z = g2
x + g2

y. In other words

the trace of Z can be interpreted as the square of the hypotenuse, r, as shown in Figure 32.

Note that if gx + gy is constant, then the values for r in the equation r2 = g2
x + g2

y possess

a global minimum when gx = gy. The magnitude of the hypotenuse is smaller the more alike

the values of gx and gy are. Since the second term is subtracted from the first term it follows

that a smaller r results in a larger R. Although the above description uses a special case to

illustrate the significance of the second term, the conclusion applies to all Z—in other words

the second term creates a bias towards equivalent gradients.

This concludes the description of feature identification techniques. The following section

presents the class of motion estimation techniques known as feature correspondence methods.

4.1.2 Feature correspondence

Feature correspondence, or correlation, methods attempt to match patches of a particular frame

with the most similar patch in other frames. The underlying assumption of these approaches is

that, locally, pixel motion is uniform—therefore pixels may be grouped into small patches and

their motion may be considered collectively.

Similarity measures

It is possible to define some form of similarity metric for such pixel patches and search for the

best matching patches in subsequent or prior image frames. Most commonly such similarity

metrics are defined as the per-pixel sum of a comparison function:

D =
n−1∑
x=0

n−1∑
y=0

f (I(x, y, t), I(x + u, y + v, t + Δt))

where D is the measure of similarity, n is the length of the square pixel patch considered, f is

the comparison function, and I(x, y, t) is the pixel intensity at position (x, y) in frame t. The

displacement vector (u, v) is used to search for the pixel patch in the next frame t + Δt that

yields the greatest similarity to the reference patch.

Good initial definitions for the comparison function are the absolute difference, f(a, b) =

|a − b|, the squared difference, f(a, b) = (a − b)2, or the correlation coefficient, f(a, b) = ab.

These definitions for f are often used in motion compensation problems, though for the purposes

of motion estimation these functions have subtle flaws.
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Both the absolute and squared difference functions are sensitive to uniform intensity variation

in patches—such as changes in ambient lighting—and the correlation coefficient is sensitive

to changes in intensity magnitude—as may be caused by localised lighting. In the problem

of motion compensation these sensitivities can benefit the analysis. The motion estimation

problem, however, prefers to emphasize the texture of pixel patches—that is to say, it favors

sensitivity to perceived shapes.

The generally preferred solution for motion estimation is the normalized correlation function.

It makes use of the basic correlation coefficient function with adjustments to eliminate the effects

of pixel intensities. For a given square pixel patch of size n define:

h(x, t) = I(x, t)− Īt ,

where I(x, t) is the intensity of the pixel at position x = (x, y) in frame t, and Īt denotes the

mean intensity of the pixel patch in frame t. Furthermore define the search location y as the

sum of the position vector x and the displacement vector u, and the search frame s as the sum

of the reference frame t and a frame delta Δt:

y = x + u

s = t + Δt .

Based on these definitions the normalized correlation coefficient function is given as:

fNCC =
∑

h(x, t)h(y, s)

[
∑

h2 (x, t)
∑

h2 (y, s)]
1
2

,

where the summation is performed over x, the pixels inside the pixel patch.

It is possible to define other forms of correlation functions, for example: instead of performing

a similarity measure based on direct pixel intensities the class of ordinal metrics ranks pixel

patches according to individual pixel intensities and performs similarity computations based on

these ranks. The rank data is then compared in the same manner that intensity data is usually

compared. Figure 33 demonstrates such a ranking.

12 44 32

27 11 14

(a) Intensities

1 5 4

3 0 2

(b) Rank matrix

Figure 33: Ordinal ranking

Bhat and Nayar [13] demonstrated the application of such ordinal methods in the problem

of stereo matching. Based on their work it is known that ordinal methods are robust against
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single pixel variations (see Figure 34)—as the associated rank matrices with and without the

single-pixel variation differ insubstantially. However, it is sensitive to Gaussian noise, espe-

cially in image regions with subtle variation in intensity. In contrast, direct intensity based

approaches, such as the normalized correlation coefficient function, are prone to errors in single

pixel variation and robust to Gaussian noise.

12 44 32

99 11 14

(a) Intensities

1 4 3

5 0 2

(b) Rank matrix

Figure 34: Single pixel variation

Pixel patch size

The methods described up to now in this section assumed a fixed, square, pixel patch, or zone,

that serves as reference to perform motion estimation. Typically 8x8 or 16x16 pixel blocks

are used in practice. However, patch-matching techniques are not limited to square, or even

fixed-size pixel regions—any shape, constant or dynamically changing could serve as the basis

for matching algorithms.

It is well known that the size of pixel patches affects the sensitivity to motion [33, 59,

73]. Smaller pixel regions are sensitive to noise, while bigger regions are insensitive to fine

motion. Several approaches attempt to compensate by adapting pixel patch sizes to underlying

requirements, adaptively increasing size when the variation in local pixel intensity is low and

decreasing in size when it is high. For example, according to Seferidis and Ghanbari [97] quad-

tree segmentation is a typical solution to variable-sized pixel zones, as it offers an efficient

balance between quad-tree refinement and representational complexity.

Several criteria exist for selecting suitable segmentation sizes. Kanade and Okutomi [59]

present a method that determines patch size according to local pixel intensities and disparities.

Seferidis and Ghanbari [97] make use of the absolute temporal difference; defined as the sum of

absolute differences between matched blocks in subsequent frames.

Malo et al [73] classify such approaches as either based on prediction error, or based on a

measure of the entropy of the resulting encoding. They note that refinement criteria do not

always take into account the encoding method, for example, MPEG-1 compression transforms

blocks into the frequency domain, and consequently basic prediction error metrics give a poor

indication of compression performance. In such cases, according to Malo et al, it is prudent to
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adapt a suitable metric to determine pixel patch refinement. In the case of MPEG-1 encoding

they suggest a metric based on the spectral entropy of frame differences.

Apart from pixel patch size, the shape of the pixel region may also vary over time. This

allows a more accurate tracking of specific motion events—at the cost of increased complexity

since optimal transformation and translocation parameters need to be calculated. Examples

of such work are found in Seferidis and Ghanbari [96, 97] who allow dynamically changing

quadrilaterals of any convex shape.

Search methods

The final point of consideration in feature correspondence is that of search methods. Recall the

use of a displacement vector (u, v) in similarity measures,

D =
n−1∑
x=0

n−1∑
y=0

f (I(x, y, t), I(x + u, y + v, t + Δt)) .

The displacement vector is used to search a region of an image frame for the best matching

pixel patch for a given reference block. This begs the question how the set of search vectors

should be determined.

The simplest approach is to exhaustively search all potential locations in the target frame;

though typically this approach is made more efficient by assuming that there is a maximum

velocity that needs to be considered—as features usually move relatively slowly. This velocity

refers to motion in image space, rather than real space, thus allowing motion tracking to only

consider displacements up to a particular radius. This naive approach is known as the full

search algorithm, Figure 35 below illustrates the process.

Such a search strategy requires a computational complexity of O(n2), where n is the search

radius—to show that the complexity if O(n2) consider that the matching block is matched

to every pixel patch of the same size in the search region. It is not surprising that such an

approach possesses relatively large computational cost, and is therefore unsuited for real-time

applications. Several algorithms have been suggested that improve on the basic full search

algorithm. Such alternatives either attempt to eliminate unlikely search vectors, or reduce the

complexity of the search space by only considering subsections.

As an example of the latter, assume that the similarity increases monotonically the closer

the search vector is to the optimal match [48]. Such an assumption implies that a greedy

approach to block matching can effectively reduce the search complexity to the order of O(log n).

Unfortunately in most cases the assumption does not hold, implying that local optima exist

that distort the search for the global optimum.

Nonetheless many search algorithms are willing to accept a loss of accuracy for a gain in

execution speed. The most well-known of these greedy approaches was presented by Koga
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Figure 35: Example search of radius 4 for a 3× 3 block

et al [61] and is known as the three-step-search, which makes use of a search pattern that

recursively refines the motion estimate. Several improvements have been made on the basic

three-step-search. Li et al [67], for example, note that typically motion vectors are biased

towards no motion and thus present a centre-biased version of the algorithm known as the

new-three-step-search. The four-step-search [86], discussed by Po and Ma, nearly reaches the

accuracy of the former approaches, but achieves this result at a lower computational cost.

In some applications, though, the assumption that similarity decreases monotonically with

increasing distance from the best match does not hold, causing local minima to falsify the

results from greedy searches. Decroos et al [27] demonstrate that it is possible to maintain the

order of execution of greedy search methods in such applications by introducing a search region

that exceeds the immediate neighbourhood.

4.1.3 Differential approaches

Differential, or pixel recursive, algorithms for motion estimation underlie the basic assumption

that perceived pixel motion over moving areas is based on translation, or stated in terms of

equations:

0 = I(x, y, t)− I(x−Δx, y −Δy, t−Δt)

=
∂I

∂t

where I(x, y, t) is the intensity of the pixel at (x, y) and time t, also u = (u, v) = (Δx, Δy) is

the translation of the pixel, and Δt is the frame time difference. Define:

EM =
∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
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where EM is known as the motion gradient constraint, sometimes also referred to as the optical

flow constraint.

The motion gradient constraint actually describes a line in velocity space. This implies

that solutions to the constraint lie on a line, rather than at a particular point—this limitation

is known as the aperture problem. The physical interpretation of this limitation, shown in

Figure 36, is that if an edge can only be observed locally, then only its motion components

normal to that edge can be determined.

(a) Initial position (b) Translated position

(c) Actual motion vector (d) Possible perceived motion vectors

Figure 36: Aperture problem

Additional constraints are required to allow the motion estimation to specify a single point,

rather than a line. Different pixel recursive techniques primarily differ in their choice of addi-

tional constraints. The simplest constraint is to pick the shortest possible translation—though

it is a poor choice in practice, as this choice makes no provision for the actual underlying

motion.

Horn and Schunck [43] proposed the smoothness constraint, ES , that assumes that motion

varies slowly over the image. It is defined as,

ES =
(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

.



CHAPTER 4. MOTION ESTIMATION 54

It allows the determination of the motion field by minimizing the error function

E = E2
M + λES

with λ a parameter to control the relative weighting of the motion and smoothness constraints.

Some differential algorithms, such as the one forwarded by Uras et al [111], solve the aper-

ture problem by assuming that the second order derivatives of the motion constraint are also

constant. Symbolically this is stated as follows:

∇EM = 0

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

][
u

v

]
= −

[
∂2I
∂x∂t
∂2I
∂y∂t

]

where the matrix on the left-hand side is the Hessian H of I. Provided H can be inverted, there

exists a unique solution to u and v such that:

u =

(
∂2I

∂x2

∂2I

∂y2
−
(

∂2I

∂x∂y

)2
)−1(

∂2I

∂y2

∂2I

∂x∂t
− ∂2I

∂x∂y

∂2I

∂y∂t

)

v =

(
∂2I

∂x2

∂2I

∂y2
−
(

∂2I

∂x∂y

)2
)−1(

− ∂2I

∂x∂y

∂2I

∂x∂t
+

∂2I

∂x2

)
.

Uras et al make use of numerical techniques to approximate the partial derivatives to de-

termine H, then solve for u and v by finding its inverse. Though the algorithm is susceptible

to noise, the errors can be controlled by smoothing the image intensities and making use of

pruning techniques that identify and discard erroneous values.

4.1.4 Kanade-Lucas-Tomasi tracking

The Kanade-Lucas-Tomasi tracking algorithm is widely used for feature tracking. It is based

on early work by Lucas and Kanade [69] in 1981, fully developed a decade later by Tomasi and

Kanade [108]. Shi and Tomasi presented a clear and complete paper [99] in 1994 that serves as

the primary reference for the algorithm.

The algorithm itself straddles the line between feature correlation and differential-based ap-

proaches. It makes use of feature identification based on examining the eigenvalues of Z, as

defined by Equation (2) in Section 4.1.1 on page 46. Features are tracked between two search

windows by minimizing the error between them.

Similar to differential methods, the basic premise of the Kanade-Lucas-Tomasi tracking al-

gorithm is that

I(x, y, t) = I(x −Δx, y −Δy, t + Δt) .
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In other words the intensity of a point in frame t is the same as the intensity in frame t + Δt,

though the point is translated by (Δx, Δy). This displacement is defined as d = (Δx, Δy) and

the purpose of the tracking algorithm is to find the best choice for d.

To simplify the notation the time term is dropped such that the image frames are defined as

x = (x, y)

B(x) = I(x, y, t)

A(x− d) = I(x − d, t + Δt)

= I(x −Δx, y −Δy, t + Δt)

so that the relationship between the images is given as

B(x) = A(x − d) + n(x)

where n(x) is a noise term to compensate for errors due to observation inaccuracies and intensity

distortions due to light scattering and other ambient factors.

Given a feature window area W an error function can be defined. The error function, also

referred to as the residual function, is the surface integral of the weighted squared differences

between A and B,

ε(d) =
∫∫

W

[A(x − d)−B(x)]2 ω dx

where ω is a weighting function. Typically the bias is chosen as ω ≡ 1, though occasionally a

center-biased or application specific weighting function is used.

The task at hand is to find a displacement vector d such that ε(d) is minimised. Assuming

that the displacement d is sufficiently small, a first-order Taylor expansion may be applied to

yield

A(x − d) = A(x)− gTd

where g refers to the gradient vector defined in Section 4.1.1 on page 46. Thus the error function

becomes

ε(d) =
∫∫

W

[
A(x)−B(x)− gTd

]2
ω dx .

To minimize the error function the derivative of ε with respect to d is set to zero, yielding

∇ε =
∫∫

W

[
A(x)−B(x)− gTd

]
gω dx .

Furthermore, by noting the identity (gTd)g = (ggT)d it is possible to rearrange the equation

above to produce (∫∫
W

ggTω dx
)

d =
∫∫

W

[A(x)−B(x)] gω dx . (3)

Equation (3) is known as the Kanade-Lucas-Tomasi tracking equation. It can be written as

Zd = e
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where

Z =
∫∫

W

ggTω dx and e =
∫∫

W

[A(x)−B(x)]gω dx .

It is obvious that to solve for d it is essential that Z be invertible. For Z to be invertible the

region at A(x− d) must contain gradient information in both the x and y direction. Provided

that features are chosen appropriately—by making use of the feature acquisition techniques

discussed in Section 4.1.1—it is ensured that Z is invertible.

4.1.5 Higher order motion estimation

Although the motion estimation techniques described above are efficient and accurate in the

context of reasonably tractable problems, some complex motion analysis problems require more

sophisticated algorithms to produce acceptable results. Problems that require the use of higher

order solutions may, for example, require tracking of a particular entity among a set of can-

didates in the presence of dynamically varying partial or complete obfuscation of objects. A

suitable real-world analogy is the tracking of a particular individual in a crowded area.

An implementation of Kalman filters for motion tracking is a popular choice for higher order

motion estimation. The intrinsic process and measurement models used by the Kalman filters

serve to describe the behavior of tracked objects and the limitations of the observations. This

allows Kalman filters to integrate Newtonian motion models, contour transitions, or other

processes to improve the estimate of the motion. Examples of such work include Gennery [37]

as well as Rehg and Kanade [91].

The primary limitation of Kalman filters is that they function best in linear problem spaces,

though the various improvements of the Kalman filter (such as the extended Kalman filter and

the unscented Kalman filter) offer good solutions for weakly non-linear problems. However,

for highly irregular, non-linear problems even the most advanced Kalman filters fail to offer

consistently accurate results.

A solution that is robust in even the most non-linear cases was forwarded by Isard and

Blake [47] in 1998. The algorithm, dubbed Condensation, is a variant of the class of particle

filter solutions known as Sampling Importance Resampling filters and extends the earlier work

performed by the same authors in 1996 [46]. Condensation is a fusion of the terms “conditional

density propagation”.

The algorithm relies on probabilistic weights to randomly select pixels. The weights describe

the density distribution of the tracked objects—meaning the odds that the pixel is part of the

tracked object. Subsequent observations adjust the weights of the sampled pixels, which in

turn describes the sampling space from which new random pixels are selected.

In practice only a relatively small set of sample pixels is required for Condensation to yield

good results. As few as 100 samples per frame have been shown to offer good performance
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and accuracy. Typically, though, between 500 and 1000 samples are used in highly cluttered

problems.

Such intricate solutions to motion estimation well exceed the requirements of this thesis; but

nonetheless it proves useful to be aware of these algorithms. Both Kalman filters and particle

filters will be discussed in greater detail in Chapter 5.

4.2 Implementation

Structure-from-motion methodologies rely on a source of relative motion data to perform re-

construction. Motion tracking is a common source of such motion data and is utilised in this

thesis. This section describes the motion tracking solution used.

The requirements of a given task mould the tools that may be used to accomplish that task. In

the case of structure-from-motion problems the intended result dictates the nature of the motion

data utilised. Some applications, such as the reconstruction research by Rautenbach [90],

rely on a sparse solution making use of feature tracking to accurately depict depth details in

reconstructed objects.

The intention of this thesis, however, is to reconstruct a complete and immersive closed

environment. This shifts the emphasis away from detail-based reconstruction, suggesting that

a dense optical flow solution is better suited to the task at hand.

Classically a dense optical flow solution is ill-suited for reconstruction purposes, as dense

flow solutions do not follow a particular feature point. Instead the optical flow is determined

at pre-set locations. This severely limits the accuracy of reconstruction attempts of iterative

techniques, such as the Kalman filter that is used within this thesis.

It follows that a compromise between dense and sparse flow solutions may serve as a suitable

vehicle to accomplish the motion tracking needed for reconstruction purposes. This thesis

utilises a solution that simulates a dense optical flow by densely covering the sample space

with features that should be tracked. This dense feature set is divided into smaller groups that

are monitored across image sequences in a manner similar to the tracking employed in sparse

optical flow methods. This yields a large field of accurate motion data over a long period of

time, sufficient to allow the Kalman filter to converge to a solution.

The motion estimation utilised in this thesis makes use of feature correspondence; in other

words it is a block matching solution to motion tracking. The scene is densely covered in tracked

features—these features are not selected using a feature selector but instead are designated

statically: the scene is evenly divided into 360 vertical sections and each of these sections is

divided into an even distribution of 32 features. These values were chosen as they provided a

suitably dense reconstruction of the environment.
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This ensures a dense set of features that allows an accurate reconstruction of the environment.

The feature set has the advantage that the fixed rules describing the feature locations allow an

easy correspondence of the relation between features: each point is connected to its neighbouring

points.

However, since features are not chosen using a measure of feature prominence, as described

in Section 4.1.1, it is harder to ensure that features can be accurately tracked. It is hoped that

by making use of a block matching algorithm that the large blocks, rather than the specific

feature points, possess sufficient textural detail to be readily trackable.

The implementation of motion estimation is designed to offer a high degree of accuracy whilst

maintaining an acceptable rate of computation. The implementation chooses to forego heuristic

searching algorithms in favor of a more accurate full search algorithm. The matching process is

accelerated by the assumption that camera motion is confined to horizontal translation; which

reduces the search space from O(n2) to O(n) without loss of accuracy.

The choice to limit camera motion to the horizontal plane is precipitated by design decisions

detailed in Section 6.2.1. By imposing a structure on dense feature selection and camera motion

it is possible to ensure that features are not lost prematurely and that depth cues are maximised.

The motion estimation subproblem benefits from these design choices by allowing optimisations

and simplifications to be used in the implementations.

It is important to note that the choice to limit camera motion and motion tracking to a single

axis is purely intended to expedite computation. The algorithm for depth reconstruction via

the unscented Kalman filter used in this study places no limitations on the camera motion and

makes no assumptions regarding the nature of the motion present in input data.
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(a) Step 1—pixel accurate estimate
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(b) Step 2—refine estimate using sub-
pixel testing

Figure 37: Motion estimation procedure

The estimation process is performed in two steps—a coarse search and a fine search. The first

step makes use of highly optimised block matching routines that are hand-assembled in SIMD2

code to perform rapid pixel-accurate block matching. The estimated point results from this

first step are used in a localised matching search that only considers the immediate sub-pixel
2Single Instruction, Multiple Data—CPU instructions that allow processing of several data inputs and pro-

ducing multiple outputs in a single instruction
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neighbourhood around that point to find the optimal match, as illustrated in Figure 37.

It is common to choose a pixel patch size of 8× 8 or 16× 16 pixels in general purpose block

estimators. The implementation used within this thesis uses a patch size of 16 × 3 pixels for

coarse block matching, and 16× 1 for sub-pixel matching. These sizes prove to be sufficient for

the purposes of this thesis and offer an additional improvement to the execution speed of the

motion estimation system.

An unexpected problem that materialised in this study is the accurate tracking of selected

features. The dense flow methodology assumes no inherently characteristic features in the

samples chosen for motion estimation. This implies that the accurate location of a particular

sample cannot be verified against a particular reference block—the technique is limited to

determining the best matching pixel patch to the current reference.

Pixel accuracy
Sub-pixel accuracy
True motion

10

20

30

D
is

ta
nc

e 
in

 p
ix

el
s 

fro
m

 tr
ue

 m
ot

io
n

Tested pixels

Figure 38: Pixel accuracy versus sub-pixel accuracy

At first glance, this appears to be sufficient to trace the motion of a pixel block; however, the

problem becomes prominent over successive frames due to aliasing of data. The error in motion

estimation across several frames can accumulate—progressively over- or under-estimating the

position of the desired pixel region. This, in turn, changes the reference block that is being

tracked to such an extent that over time it shares no common real-world features with the

original reference block.

It is possible to make reference to the initial pixel block throughout the motion estimation

process. Such a solution, however, severely restricts the range of applications of the motion

estimation, as scene-transforms and camera motion over time may change the features of a

reference block.
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Instead, the solution adopted within the thesis is that of sub-pixel interpolation. Instead of

matching the reference block to the pixels in the search patch a sub-pixel patch is computed: the

colors of neighbouring pixels are linearly interpolated to emulate the effect of aliasing. These

sub-pixel patches are then matched to the reference block. It was found that for the purposes

of this study a sub-pixel interval of 0.1 is sufficient to track pixel patch motion. Figure 38

on page 59 compares the relative accuracy of the two approaches during experimentation. It

is clear from the graph that the pixel-based tracker is considerably less accuate and sub-pixel

tracker.

4.3 Discussion

Up to this point the basic elements in motion estimation, and the implementation in this study,

were discussed. Now follow several additional topics that are relevant to motion tracking and

that will be briefly discussed in this section, namely

• dense vs sparse optical flow,

• feature tracking and validation,

• hierarchical approaches,

• multi-solution approaches,

• accuracy-efficiency trade-off, and

• sub-pixel resolution of motion.

Dense vs sparse optical flow

Tracking of individual features does not allow a detailed analysis of full scene motion. This is

known as sparse optical flow and is commonly used in applications where specific scene elements

need to be identified and accurately tracked, such as surveillance cameras that automatically

follow moving entities and object tracking systems used in sporting events.

On the other hand, some applications—such as the encoding of video data—require full scene

motion data. Instead of tracking specific features, dense flow solutions attempt to estimate the

motion of regions [5]—thus the motion of a specific element is approximated as the motion of

the region that it is part of. In other words, dense optical flow models are less accurate, but

provide a motion estimate for every single scene element.
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Feature tracking and validation

Feature tracking through sparse flow methods can take advantage of increased processing time

compared to dense flow methods, as they generally require small portions of the full image

scene to be searched. However, the increased processing time that is available is offset by the

increased accuracy required by feature trackers and the need to verify tracked features.

Feature verification, or validation, attempts to ensure that features tracked with motion

estimation techniques are in fact the features desired. Verification methods typically employ

the assumption that tracked objects possess some set of characteristic properties that can be

evaluated and tested. Objects may be assumed to go through a limited set of possible transfor-

mations, and correspondingly the feature state perceived in scenes is continuously monitored

to validate that tracked objects transform in a manner appropriate to their expected behavior.

For example, a soccer ball will always be expected to appear roughly spherical; when a trian-

gle is found where an oval was expected then the feature validator has successfully falsified a

tracked feature estimate.

Hierarchical approaches

Motion in scenes tends to occur on a variety of scales. It follows then that it is possible to track

motion on coarse scales, and use the information gained to seed search estimates at finer scales

or, alternatively, use results of fine-grained search to determine coarse motion parameters.

Such hierarchical considerations can be applied to both correlation and differential motion

estimation methods. Examples include Glazer et al [38] who present a hierarchical imple-

mentation of Horn and Schunck’s [43] differential approach that makes use of low resolution

computations of the image scene to determine coarse motion vectors. Similarly Anandan [6]

proposes a framework for a top-down approach to motion estimation that refines coarser results

into fine results. Anandan makes use of correlation based methods, but notes that the approach

is easily applied to differential techniques as well. The Kanade-Lucas-Tomasi algorithm may

be adapted for hierarchical implementation as well; see for example Wagener [121].

Hierarchical approaches, sometimes also known as pyramidal implementations, find use in a

variety of ways; for example the DivX [2] technology video codec3 has parameters to make use

of global motion compensation for encoding purposes. Global motion compensation allows the

codec to more optimally encode video sequences that have extensive global motion—such as

camera panning, common in nature documentaries.
3codec—encoder/decoder
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Multi-solution approaches

The field of motion estimation has brought forth a wide range of motion estimation techniques,

each effective for a particular class of image scenes—but none is known to outperform all others

under all conditions. Given such a scenario it is not surprising that multi-solution strategies

emerge.

Peacock [85], for example, makes use of information fusion strategies that combines the results

of several algorithms to achieve a more accurate overall result. Specifically Peacock makes use

of the methods presented by Camus [18], Horn and Schunck [43], and Uras et al [111]. Fusion

strategies can intelligently distinguish between high speed and high accuracy requirements,

allowing any desired balance (within the confines of the algorithms involved) to be used.

Accuracy-efficiency trade-off

The question of accuracy versus efficiency is prominent in motion estimation. As a general rule

it is possible to achieve greater accuracy at the cost of slower execution speed, or to increase

the computational efficiency at the cost of loss of accuracy.

Liu et al [68] characterise the trade-off using an accuracy-efficiency curve—indicating a mea-

sure of the estimation error on the X-axis against the run-time required on the Y-axis. The

performance with respect to accuracy and efficiency of algorithms can be compared on such a

graph, though this requires the algorithms to run on comparable computational resources and

on image sequences with accurately known real-world motion vectors.

Sub-pixel resolution of motion

A final point of interest is that of sub-pixel accuracy in motion estimation. Since only a limited

number of positions are searched for matching purposes it follows that correlation techniques

are typically discrete. The expected order of accuracy is usually given as 1 pixel per frame

considered. Methods that compute motion estimates using several frames, such as the algorithm

forwarded by Camus [18], may increase the precision to 1/n pixels per frame, where n is the

number of frames evaluated.

It is possible to increase the accuracy of motion estimates to sub-pixel level on single-frame

evaluations by making use of interpolation techniques to compute pixel values at points between

pixels. This is viable as it mimics the aliasing effect common in digital media, as portrayed

in Figure 39: since a moving feature within an image does not always perfectly align with the

pixels of that image it is common that a pixel is not fully covered by that feature. In such cases

the final color of that pixel is a blend of all the colors that share that pixel. As was previously

discussed in Section 4.2 on page 59 of this chapter, the motion tracking algorithm employed in

this study utilizes linear interpolations to achieve the necessary accuracy of motion estimates.
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(a) Initial position of object (b) Translated position object

(c) Digital perception initially (d) Digital perception after transla-
tion

Figure 39: Anti-aliasing

This concludes the chapter on motion estimation. The following chapter details the Kalman

filter, which serves as the computational tool for the structure-from-motion process.

All motion is cyclic. It circulates to the limits of its possibilities and then returns

to its starting point.

Robert Collier



Chapter 5

Kalman filter

Kalman filters are about as sweet a method as you can find in applied mathematics.

Dana Mackenzie

Dana Mackenzie’s words, published in a SIAM article on meteorological modelling [71], might

not be the most eloquent words uttered in favor of Kalman filters—but they certainly echo the

sentiments of many that have applied the filter to their problem. This chapter is dedicated to

the primary tool utilised in the structure-from-motion problem within this thesis.

Rudolph Emil Kalman is the inventor of the Kalman filter—an efficient, recursive filter

that can estimate the state of a dynamic system in the presence of noise and incomplete

measurements. Surprisingly, his seminal paper [57], published in 1960, was initially met with

scepticism and only several years later found the attention it deserved when Stanley Schmidt

at the NASA Ames Research Center made use of the filter to solve the problem of trajectory

estimation, which was subsequently utilised in the Apollo program.

Since the pioneering work in the 1960’s the Kalman filter has evolved into various guises and

has seen use in a wide variety of applications. These applications include, but are not limited

to, navigational systems, guidance and tracking systems, seismic processing, meteorological

modelling, nuclear reactor instrumentation, motion capture, audio reconstruction and, more

recently, structure-from-motion modelling.

Credit for the development of the Kalman filter may be jointly attributed to Peter Swer-

ling [104], Rudolph Kalman [57], and Richard Bucy [58]. The original Kalman filter, also

refered to as the Simple or Linear Kalman filter, has produced a great number of variants de-

signed to apply to different types of problems, such as the extended Kalman filter, by Stanley

Schmidt [95], and the unscented Kalman filter, by Simon Julier and Jeffrey Uhlmann [52, 54].

The remainder of this chapter describes three useful implementations of the Kalman filter:

the Linear Kalman filter, the extended Kalman filter and the unscented Kalman filter. The

64
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emphasis is placed on the unscented Kalman filter, as it serves as the non-linear estimator

for solving the structure-from-motion problem within this thesis. Additionally a section is

dedicated to the description of particle filters—a class of filter that is useful in highly non-

linear problems.

5.1 Linear Kalman filter

The original Kalman filter is now often referred to as the Linear or Simple Kalman filter and,

as the name suggests, applies to linear problems. The Linear Kalman filter is described first

as it offers a relatively simple introduction into the Kalman process. The ideas presented for

the Linear Kalman filter generally map to the more complex non-linear counterparts with little

effort.

Generally speaking all Kalman filters are minimum mean-square error estimators. They

have the distinct advantage that they achieve this result iteratively, taking into account new

measurements and observations. This has the advantage that the filter does not need to refer

to all prior measurements to maintain the accuracy of estimates.

5.1.1 Problem definition

The Kalman filter estimates the state x at time step i of a dynamic system in the presence of

observation y. More fully the state of a system is given as

xi = Fi−1xi−1 + Bi−1ui−1 + μi−1 (4)

and the observation is given as

yi = Hixi + νi (5)

where F, B and H are matrices describing the underlying models for the system, control

input and measurements, u is an external control vector, and μ and ν represent state and

measurement noise respectively.

The problems considered in this study do not need the control term; it is omitted in subse-

quent discussion.

5.1.2 Assumptions and notation

The underlying assumption of a typical Kalman filter is the adherence to a first order Markov

process—implying that the current state only depends on the previous state, so that

p(xi|xi−1,xi−2, . . . ,x0) = p(xi|xi−1) .
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Additionally the current observation only depends on the current state:

p(yi|xi,xi−1, . . . ,x0) = p(yi|xi) .

Kalman filters make use of Gaussian probability distributions, specifically:

• normal distribution,

• additive,

• white—thus E(μiμ
T
j ) = 0 and E(νiν

T
j ) = 0 provided i �= j,

• zero-mean—thus E(μ) = 0 and E(ν), and

• uncorrelated—thus E(μνT ) = 0 .

Since the problems solved by the linear Kalman filter are linear, the Gaussian distributions

map onto Gaussian distributions, thus allowing the filter to iterate.

The following notation applies:

xi|i−1 = E(xi|y1, . . . ,yi−1)

where xi|i−1 is the predicted state mean which is the expected value of xi given observations

y1, . . . ,yi−1. On the same basis

yi|i−1 = E(yi|y1, . . . ,yi−1)

indicates that yi|i−1 is the expected value of yi given the observations y1, . . . ,yi−1. Addition-

ally, note that μ ∼ N (0,Q) and ν ∼ N (0,R) signify that μ and ν are drawn from a zero-mean

Gaussian probability density function N with covariance matrices Q and R respectively.

The notation utilised in algorithmic representation largely ignores subscripts in favor of a

presentation that mimics the flow of program execution. Although the algorithmic presentation

requires a slight increase in interpretation of details, it is considerably easier on the eye and

contributes to the understanding of the conceptual flow of the computational process: Following

the nature of variable assignments in computer programs, unless otherwise indicated the most

recent value of a variable is used. Additionally, assignment variables are always shown in italics.

For example the symbolic representation

xi = f(xi−1)

xi+1 = g(xi)

is equivalent to the algorithmic representation

x ←− f(x)

x ←− g(x)
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5.1.3 Kalman process

The basic Kalman process that underlies the majority of Kalman filters, including the extended

and unscented Kalman filters, is shown in Figure 40 and can be described as follows:

The state of the system is predicted given the best prior estimate, which allows the observation

to be predicted. These form the basis to compute the Kalman gain (defined below), which in

turn allows the correction of the predicted state using the difference between observed and

predicted measurements.

Predict state Obtain Kalman gain

Correct state
prediction using

actual observation

Predict observation

Initial state

Figure 40: Kalman process

The basic state transition and observation transforms are respectively given as

xi = Fi−1xi−1 + μi−1

yi = Hixi + νi .

These form the basis to predict the current state of the system

xi|i−1 = Fixi−1|i−1

Pxi|i−1 = FiPxi−1|i−1F
T
i + Qi

as well as predict the observation

yi|i−1 = Hixi|i−1

Pyi|i−1
= HiPxi|i−1H

T
i + Ri .

The predicted state and observation allow the computation of the Kalman gain, given as

Ki = Pxi|i−1H
T
i P−1

yi|i−1

which in turn allow the evaluation of the corrected state for the current time step:

xi|i = xi|i−1 + Ki(ỹi − yi|i−1)

Pxi|i = (I−KiHi)Pxi|i−1

where ỹi represents the actual observation at time i. Program 3 summarises the process in

algorithmic notation.
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Program 3 Linear Kalman algorithm

State transition
x ←− Fx + μ

Observation transform
y ←− Hx + ν

Predict state
x ←− Fx

Px ←− FPxFT + Q

Predict observation
y ←− Hx

Py ←− HPxHT + R

Kalman gain

K ←− PxHTP−1
y

Corrected state (where ỹ are actual observations)

x ←− x + K(ỹ− y)

Px ←− (I−KH)Px

5.2 Extended Kalman filter

The extended Kalman filter is the obvious extension of the linear Kalman filter to apply to

non-linear problems. As the problems solved by extended Kalman filters are non-linear it

follows that the Gaussian distributions used to describe the system do not necessarily map

onto Gaussian distributions. The extended Kalman filter solves this by linearizing the problem

using a Taylor series expansion to approximate the system and observation models.

In practice the filter is more appropriately called the first order extended Kalman filter, as it

makes use of a first order Taylor series expansion. However, although higher order expansions

are certainly possible they are rarely used—thus the first order variant has become known as

the extended Kalman filter. Symbolically the extended Kalman filter is described using the

state transition and observation transforms:

xi = f(xi−1) + μi−1

yi = f(xi) + νi .

These form the basis to predict the current state of the system

xi|i−1 = f(xi−1|i−1)

Pxi|i−1 = FiPxi−1|i−1F
T
i + Qi

as well as predict the observation
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yi|i−1 = h(xi|i−1)

Pyi|i−1
= HiPxi|i−1H

T
i + Ri ,

where Fi and Hi are the Jacobians

Fi =
∂f(x)

∂x
|x=xi|i−1

Hi =
∂h(x)

∂x
|x=xi|i−1 .

The predicted state and observation allow the computation of the Kalman gain, given as

Ki = Pxi|i−1H
T
i P−1

yi|i−1

which in turn allow the evaluation of the corrected state for the current time step:

xi|i = xi|i−1 + Ki(ỹi − yi|i−1)

Pxi|i = (I−KiHi)Pxi|i−1

where ỹi represents the actual observation at time i. Program 4 displays the algorithmic form.

Program 4 Extended Kalman algorithm

State transition
x ←− f(x) + μ

Observation transform
y ←− h(x) + ν

Predict state
x ←− f(x)

F ←− ∂f(x)
∂x

Px ←− FPxFT + Q

Predict observation
y ←− h(x)

H ←− ∂h(x)
∂x

Py ←− HPxHT + R

Kalman gain

K ←− PxHTP−1
y

Corrected state (where ỹ are actual observations)

x ←− x + K(ỹ− y)

Px ←− (I−KH)Px
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5.3 Unscented Kalman filter

Although the extended Kalman filter is a reasonable tool to accommodate nonlinear models,

its linearization method only achieves good predictions in weakly nonlinear problems. The

unscented Kalman filter was introduced by Simon Julier et al in 1995 and 1996 [52, 56] to

address the inadequacies of the extended Kalman filter and has since been refined in a series of

publications led by Julier [50, 51, 53, 54, 55]. The unscented Kalman filter is able to make good

estimates even in moderately nonlinear problems. However, it still fails in highly nonlinear

problems.

To appreciate the need for a better alternative to the extended Kalman filter, consider Fig-

ure 41: the extended Kalman filter fails to account for the non-linearity of the system and

predicts the state along the trajectory’s tangent. Subsequently the mean and covariance need

to be corrected to accommodate the true covariance, however, this compensation requires the

covariance to be adjusted to an unreasonable degree. The unscented Kalman filter, in contrast,

better estimates the behavior of the system.

Surprisingly, according to Rudolph van der Merwe and Eric Wan [116, 117], the extended and

unscented Kalman filters possess comparable computational complexities of O(n3) to perform

a state estimate. Additionally, the unscented Kalman filter implementations may be improved

to execute in the order of O(n2) if only parameter estimation is required—as is the case in

certain applications, such as artificial neural network training.

Unscented prediction

Extended prediction (corrected)

Extended prediction

Figure 41: Predictions of extended and unscented Kalman filters
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As would be expected from a first order estimator, the extended Kalman filter can model the

first order moments of a Gaussian probability distribution function. In contrast, the unscented

Kalman filter can model up to third order moments. In essence, the unscented Kalman filter

has made the extended Kalman filter obsolete.

5.3.1 Unscented transform

Rather than linearizing the problem as with the extended Kalman filter, the unscented Kalman

filter ensures that Gaussian distributions are maintained by making use of a set of points known

as sigma points1. To understand the significance of the sigma points consider Figure 42.

f
x y

Figure 42: Many samples describing the nonlinear function y = f(x)

The graphs show a distribution of samples, x, that are mapped to y using the nonlinear

function f = x2 − x + 1; in general any arbitrary f may be used. Given that the mean x and

covariance Px are known, what are y and Py?

Monte Carlo methods, such as the particle filters discussed in Section 5.4, make use of a large

cloud of n randomly sampled points {xi}. These samples are transformed using the nonlinear

model itself to yield {yi} = f(xi) and subsequently the mean and covariance are calculated as

y = 1
n

∑
i yi and Py = 1

n

∑
i(yi − y)(yi − y)T.

f
x y

Figure 43: Sigma points describing the nonlinear function y = f(x)

1For this discussion we rely on notes that B. Sherlock has generously made available [98].
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The Monte Carlo approach to the problem is effective, but it is not efficient. Often thousands

of samples need to be evaluated before a good estimate is found. The unscented transform

attempts to offer an efficient solution: instead of making use of thousands of random samples

it makes use of a small set of carefully selected points, known as sigma points, as shown in

Figure 43.

The sigma points {xi} are chosen such that the sample mean of {xi} is x and the sample

covariance of {xi} is Px. Similar to the Monte Carlo method the sigma points are transformed

using the nonlinear model such that {yi} = {f(xi)}. The posterior mean and covariance are

then given as y = 1
n

∑
i yi and Pi = 1

n

∑
i(yi − y)(yi − y)T.

Typically about 2n + 1 sigma points are used for n-dimensional problems. To determine the

sigma points it is necessary to compute S, the matrix square root of Px, such that Px = SST.

In this study Choleski decomposition is used to compute S, but any matrix square root works.

For 1 ≤ i ≤ n the sigma points are then given as

x0 = x

xi = x +
√

n + κS(i)

xi+n = x−√n + κS(i)

where S(i) denotes column number i of matrix S and κ is used to scale sigma points towards or

away from the mean. Furthermore the sigma points are weighted when computing the posterior

mean and covariance as follows

w0 =
κ

n + κ

wi =
1

2(n + κ)
, i �= 0

y =
2n∑
i=0

wiyi

Py =
2n∑
i=0

wi(yi − y)(yi − y)T .

According to Sherlock [98] the greatest accuracy for Gaussian distributions is achieved at

κ = 3−n. However, for n > 3 this implies that κ < 0 and thus that w0 is negative. A negative

w0, in turn, implies that Px might not be positive definite. This is a significant problem as the

matrix square root only exists for matrices that are positive definite, and also, covariances are

supposed to be positive definite. To overcome this problem the scaled unscented transform was

developed.

5.3.2 Scaled unscented transform

The scaled unscented Kalman filter, presented by Julier [55], defines three parameters that

control the scaling of sigma points: α, β and κ. The first, α, is constrained within 0 ≤ α ≤ 1



CHAPTER 5. KALMAN FILTER 73

and exerts influence on the spread of sigma points around the mean. It it defaulted to α = 1

and only changed when the filter needs to cope with extreme non-linearity.

The second parameter, β, affects higher order moments by adding or reducing the weight of

the mean. β satisfies β ≥ 0 and both Julier [52] and Van der Merwe et al [115] recommend

β = 2 for Gaussian distributions. Finally, κ is used to ensure positive semi-definiteness. It

satisfies κ ≥ 0 and Sherlock [98] recommends κ = 0, which is the value used in this study.

The scaling parameters control two sets of weights that act on computed sigma points. The

weights are defined through vectors v and w as

v0 =
λ

n + λ

w0 =
λ

n + λ
+ (1− α2 + β)

vj = wj =
1

2(n + λ)
, j = 1, 2, . . . , 2n

λ = α2(n + κ)− n

where n is the dimension of the problem. The scaled sigma points are now given as

x0 = x

xi = x + α
√

n + κS(i)

= x +
√

α2(n + κ)S(i)

= x +
√

λ + nS(i)

xi+n = x− α
√

n + κS(i)

= x−
√

α2(n + κ)S(i)

= x−√λ + nS(i)

for i = 1, 2, . . . , n. The resulting sample mean and covariance are computed with the scaling

weights such that

y =
2n∑
i=0

viyi

Py =
2n∑
i=0

wi(yi − y)(yi − y)T .

5.3.3 Unscented Kalman filter algorithm

Although it is not necessary, it is common to define input to the filter through super states of

the estimate and covariance matrices by concatenating the state and covariances respectively

into a and A, defined below. This condenses the notation and hence is used in the description

below. Furthermore, note that the computation of the sigma points yields matrix A which can
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be viewed as the augmentation of three matrices

A =

⎡⎢⎢⎣
X
Q
R

⎤⎥⎥⎦
where X is the sigma point state matrix, V is the sigma point state uncertainty matrix, and N
is the sigma point observation uncertainty matrix. Given these conventions the scaled unscented

Kalman filter is described symbolically as:

• Augmented structures

a = [x 0 0]T

A =

⎡⎢⎢⎣
P 0 0

0 Q 0

0 0 R

⎤⎥⎥⎦
• Calculation of sigma points

A(0)
i−1|i−1 = ai−1|i−1

A(k)
i−1|i−1 = ai−1|i−1 +

√
(n + λ)Ai−1|i−1

(k)

k = 1, 2, . . . , n

A(k)
i−1|i−1 = ai−1|i−1 +

√
(n + λ)Ai−1|i−1

(k−n)

k = n + 1, n + 2, . . . , 2n

where A(k) denotes column number (k+1) of matrix A. This is followed by the prediction

of the state

X i|i−1 = f(X i−1|i−1, Qi−1)

xi|i−1 =
2n∑

j=0

wjX (j)
i|i−1

Pxi|i−1 =
2n∑

j=0

wj

[
X (j)

i|i−1 − xi|i−1

] [
X (j)

i|i−1 − xi|i−1

]T
• the observation prediction

Yi|i−1 = f(X i−1|i−1, Ri−1)

yi|i−1 =
2n∑

j=0

vjY(j)
i|i−1

Pyi|i−1
=

2n∑
j=0

wj

[
Y(j)

i|i−1 − yi|i−1

] [
Y(j)

i|i−1 − yi|i−1

]T
• computation of the Kalman gain

Pxyi|i−1 =
2n∑

j=0

wj

[
X (j)

i|i−1 − xi|i−1

] [
Y(j)

i|i−1 − yi|i−1

]T
Ki = Pxyi|i−1P

−1
yi|i−1
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• and finally the corrected states

xi|i = xi|i−1 + Ki|i−1(ỹi − yi|i−1)

Pxi|i = Pxi|i−1 −Ki|i−1Pyi|i−1K
T
i

where ỹi is the actual observation at time i. The algorithmic representation of the un-

scented Kalman filter is given below in Program 5.

Program 5 Unscented Kalman algorithm

Structure augmentation

a ←− [x 0 0]T

A←−
⎡⎣ P 0 0

0 Q 0
0 0 R

⎤⎦
Sigma point computation

A←−
[
a, a±

√
(n + λ)A

]
State transition

X ←− f(X , V)

x ←−
2n∑

j=0

vjX (j)

Px ←−
2n∑

j=0

wj

[
X (j) − x

] [
X (j) − x

]T
Observation transform

Y ←− f(X , R)

y ←−
2n∑

j=0

vjY(j)

Py ←−
2n∑

j=0

wj

[
Y(j) − y

] [
Y(j) − y

]T
Kalman gain

Pxy ←−
2n∑

j=0

wj

[
X (j) − x

] [
Y(j) − y

]T
K ←− PxyP−1

y

Corrected state (where ỹ are actual observations)

x ←− x + K(ỹ− y)

Px ←− Px −KPyKT
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Before closing this section, a brief note regarding the computation of the posterior error

covariance: the results shown in the linear, extended and unscented Kalman filters only apply

if the optimal Kalman gain is used. The more numerically stable posterior error covariance is

given as

Pxi|i = (I−KiHi)Pxi|i−1(I−KiHi)T + KiPyi|i−1
KT

i . (6)

Given that the optimal Kalman gain is used the above simplifies to the expressions used in this

chapter. If the application is suffering from poor numeric stability, or a non-optimal Kalman

gain is used, then the simplified equations do not hold and the above formula (6) should be

used [36].

5.4 Beyond the Kalman filter

The Kalman filter successfully estimates the solutions to a wide variety of problems. Unfortu-

nately, though, they are unable to cope with severe nonlinearities; thus there are some problems

which cannot be solved effectively using these filters.

In some cases a sufficient degree of linearity can be restored to the problem by allowing the

Kalman filter to act using smaller intervals of time. In such cases Kalman filters can offer an

adequate solution to highly non-linear problems. Such a technique is, however, not univer-

sally applicable as practical considerations of many problems make it unfeasible to perform

observations in sufficiently small steps of time.

Previously, in Section 4.1.5, an example of such a non-linear problem was mentioned: tracking

of entities in a complex scene. The section proceeded to describe the Condensation algorithm

which offers a robust solution to the problem. Although developed independently the Conden-

sation algorithm and particle filters are considered to be the same. Particle filters themselves

are also referred to as Sequential Monte Carlo methods—indicating that they are a subset of

the more general Monte Carlo methods. This section will expand on the theory and application

of such particle filters.

Particle filters may be likened to a form of mathematical simulation: they solve problems

not deterministically, but through stochastic means—that is to say they make use of random

samples and estimate the solution to a problem by observing the behavior of those samples

using the underlying probabilistic model that describes the problem.

One of the earliest successes of this form of solution estimation was performed by Enrico

Fermi in the 1930’s. He used a random sampling method to calculate the properties of the

newly discovered neutron as well as perform the simulations necessary to develop the Manhattan

Project [66].

The nature of Monte Carlo methods, however, makes them arduous to use in manual cal-

culations: the many repetitive computations required are laborious to perform by hand and
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thus are particularly suited for electronic evaluation. The advent of computers has elevated

Monte Carlo methods, and thus particle filters, to a popular tool for a wide variety of problems.

Examples of applications of particle filters include cooperative localization of multiple robotic

entities [92], multiple object tracking [44], and abnormality detection [79].

A thorough discussion on particle filters is given by Ristic, Arulampalam and Gordon in the

book “Beyond the Kalman filter: particle filters for tracking applications” [93], or alternatively

refer to Doucet et al ’s treatise “On Sequential Monte Carlo sampling methods for Bayesian

filtering” [30]. This text, in contrast, will only outline the basic methodology of particle filters.

Particle filters, similar to Kalman filters, assume the problem can be described using two

models—a process model and an observation model:

xk = f(xk−1, νk)

yk = g(xk, ωk)

where xk describes the estimated state at time k, f is a known process modeling function, and

ν is the noise inherent in the system; furthermore yk is the observation at time k, g is a known

observation modeling function, and ω represents measurement noise.

Particle filters then use samples that are propagated using the process and observation models

to implicitly describe the probability density function of the solution. An example of such an

approach is the variant known as the Sampling Importance Resampling filter, which will be

described in greater detail at this point as a representative for particle filtering methods in

general.

Sampling Importance Resampling filters require knowledge of the process and observation

models, f and g, a means to draw samples from both the prior state estimates and the process

noise distributions, as well as a likelihood function p(yk|xk) (required to be accurate up to

proportionality) which denotes the probability of observation yk given state estimate xk.

Assume that a set of N samples from the posterior distribution p(xk−1|y1, . . . ,yk−1) with

k > 0 is available. Denote that set as {xi
k−1 : i = 1, . . . , N}. Then a set of predicted prior

samples can be computed as follows:

xi
k = f(xi

k−1, ν
i
k−1)

where νi
k−1 is an independent instance of system noise. These prior samples form a represen-

tation of the prior probability density function p(xk|y1, . . . ,yk−1).

The prediction step is followed by an update step that integrates the most recent observations

into the solution estimate. The first part of the update step is the computation of a set of weights

corresponding to samples in the predicted prior set, yielding

ŵi
k ∝ p(yk|xi

k) .
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These weights are then normalised for all i = 1, . . . , N to sum to unity

wi
k =

ŵi
k∑N

n=1 ŵn
k

.

Finally a set of posterior samples, xi
k, is created from the set of prior samples, xi

k. Each

element of the posterior set is selected from the prior set randomly. The probability of picking

a particular sample is equal to its normalised weight. The same sample may be selected multiple

times—the probability of picking a sample is not changed. The process of picking samples is

repeated N times, thus forming a posterior set that contains as many elements as the prior set.

In other words the prior samples xi
k are resampled, with replacement, according to the

normalised weights to produce a new set of samples {xi
k : i = 1, . . . , N} such that

Pr(xi
k = xj

k) = wj
k ∀i, j = 1, . . . , N .

The computed posterior samples describe the probability density function p(xk|y1, . . . ,yk).

The posterior samples may serve as input to compute the system at the next time step—thus

a cycle of the algorithm is complete.

Numerous variations of particle filters exist which differ in the selection of samples, weight

computation, choice of resampling methods, and other details. Problems that are addressed

to varying degrees in different particle filtering methods include degeneration of sample space,

sensitivity to noise, and efficiency.

An important aspect of particle filters is a good choice of initial sample set. It is not un-

common to make use of extended or unscented Kalman filters to compute a viable initial set of

samples which can be used to initialise a particle filtering method.

Some approaches create an even more prominent interaction between Kalman and particle

filters. For example, Van der Merwe et al [114] proposed the unscented particle filter which

replaces the simple prediction step of a standard particle filter with a full unscented Kalman

evaluation. The resulting filter exceeds both pure Kalman filters and pure particle filters in

accuracy, robustness and insensitivity to extremes.

This concludes the discussion on Kalman filters. The following chapter details the structure-

from-motion solution adopted in this thesis.

It is said that the present is pregnant with the future.

Voltaire



Chapter 6

Structure from Motion

Nothing that I can do will change the structure of the universe.

Albert Einstein

Though the universe may be immutable—it is certainly possible to discern some of its struc-

ture. This chapter presents a brief overview of the structure-from-motion problem, as well as

an explanation of the methodologies employed in the solution adopted in the context of this

thesis.

The structure-from-motion problem is ill-posed and sensitive to noise. Consequently a wide

range of solutions exists that attempt to address a particular subset of the problem. However,

as Oliensis described in his critique of structure-from-motion algorithms: “[...] any one SfM

algorithm is unlikely to perform well in all situations” [82]. The following section outlines some

of the approaches that have been followed.

6.1 Background

Informally, solutions to the structure-from-motion problem can be divided into two primary

approaches: sequential and batch processing. Sequential—or fusion—solutions attempt to infer

depth through an iterative procedure. When new data is obtained it is used to update existing

estimates. Sequential solutions are not as robust or accurate as batch solutions, but they have

the distinct advantage that they are suited to real-time applications.

Batch solutions, on the other hand, compute structural data once all measurements are

available. Such batch solutions are, by their nature, computationally expensive—but they are

more resistant to noise than sequential algorithms and generally lead to better results due to

relying on a more robust large data set. Chiuso et al [22] offer a good example of a batched

79
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structure-from-motion algorithm.

Oliensis [82] details the relative advantages and drawbacks of both batch and sequential meth-

ods. Although somewhat dated, his report captures and describes the majority of structure-

from-motion algorithms and is recommended as a thorough overview into the background of,

and issues concerning, the structure-from-motion problem.

Sequential solutions come in a variety of flavors, depending on the emphasis their respective

authors placed on the methodologies and solution space. Many real-time, or near real-time,

approaches make use of variants of the Kalman filter, for example Azarbayejani and Pentland [8]

as well as Yao and Calway [126], Rautenbach [90], Malan [72] and Venter [119] who made use of

the unscented Kalman filter that also forms the basis of structure estimation within this thesis.

Examples of non-Kalman based solutions include the work by Morita and Kanade [78] as well

as Tomasi and Kanade [109]. Both of these make use of factorization methods in conjunction

with orthographic projection to estimate shape parameters. The orthographic camera model is

a special case of the more general perspective projection model that has the property that the

structure-from-motion problem becomes linear, allowing it to be solved with the use of matrix

factorization.

While most methods presuppose static environments or rigid objects, some algorithms are

designed to cope with more general scenes such as multi-body or segmented-body reconstruc-

tors. Segmented structures, sometimes also referred to as articulated structures, consist of a

single entity that consists of multiple bodies that can move independently—but are constrained

by rules that describe the relation between bodies.

Consider, for example, how the human body consists of several parts that can move indepen-

dently of each other, but are confined within particular relative motion parameters. Scheffler et

al [94] and Taycher et al [106] are examples of solutions that can recover articulated structural

data. Such solutions, that make use of some parametric model to describe the laws that govern

the underlying motion, are also known as model-based methods.

The n-view problem is a subset of the structure-from-motion problem that considers scenes

with more than one independently moving body. Solving such scenes is a formidable task and

solutions require robust probabilistic analysis to determine which scene elements are associated

with independent objects. These objects do not have to restrict their motion to some rule.

Instead, they may move in any arbitrary manner. The solution methodologies for structural

estimates is identical to single-object methods; however, an additional layer of complexity is

needed to determine which parts of projected images correspond to which object. Costeira and

Kanade [24], as well as Kanatani [60], present methods which can cope with such problems.

Some solutions to the structure-from-motion problem relax the requirement to consider only

rigid objects, making use of elastic objects which may deform freely instead. The only con-

straint placed on such objects is that their deformation must exhibit some form of continuity.
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Ullman [110] described a method for recovering depth data from “rubbery motion” as early as

1984, and Meyer et al [75] is a more recent addition to research performed in this subfield.

Model-based methods, as mentioned previously, make use of a parametric model that de-

scribes what range of motion is possible for a set of objects. Such solutions are particularly

suitable for certain tasks such as human motion capture, but are less common outside scenarios

in which particular motion characteristics may be presupposed.

Bregler and Malik [17], for example, assume the human skeletal structure as the underlying

kinetic model for the purposes of human motion capture and reconstruction. On the other

hand, Gavrila and Davis [34] initialize their solution by manually allocating limb and joint

parameters, then reconstruct subsequent motions using twists and exponential maps. 1

However, model-based paradigms may be applied to general solutions as well, as exemplified

by Qian et al [88]. Qian et al make use of traditional structure-from-motion parameters of

translation and rotation, and fuse them with a model of inertial kinematics. The resulting

solution is particularly apt at reconstructing scenes containing natural motion.

The various efforts in the field of structure-from-motion have in common that they may

cope well with a particular set of problems. However, they do not perform universally well

over all scenarios. It might be supposed that information fusion strategies would excel in this

situation, but unfortunately that is not yet the case: there are no consistently reliable structure-

from-motion solutions for particularly difficult scenarios, let alone most real-world scenarios.

Examples of such difficult scenarios include infering the structure of a body that undergoes

unknown transformations and infering the structure of an object that is partially transparent

or reflective.

The following section details the methods employed within this study for reconstructing dense

enclosed environments.

6.2 Implementation

The previous chapters of this study outlined various issues related to the solution implemented

in this study. These issues form the basis on which reconstruction can be performed. This

section elaborates on the implementation of the solution. The following subsections will describe

the reconstructive process, input state definition, as well as the adopted observation- and the

process-models.
1Exponential maps are a compact representation of a motion matrix, much like quaternions describe a

rotation matrix.
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6.2.1 Reconstruction process

The overall reconstructive process can take many forms. In relatively straightforward situations

the object can be chosen and its features tracked over time—these serve as input to a Kalman

filter which estimates the depth parameters. In more complex situations features may be gained

and lost over time, requiring dynamic adaptation during the reconstruction process.

In the structure-from-motion problem implemented in this thesis, two important issues in-

fluence the reconstruction process. Firstly, only a small subset of the enclosed environment is

visible at any one moment in time. Secondly, a very large feature set must be evaluated to

produce an accurate scene reconstruction.

Both these issues are addressed simultaneously: the scene is divided into small subsections.

These pieces are reconstructed independently and recombined into a complete scene construc-

tion afterwards. In other words a piecewise reconstruction is performed.

Camera motion and each piece are defined in such a manner as to allow a complete re-

construction of the piece within the confines of the observational limits. Thus each piece is

reconstructed without losing track of features—in other words this approach also eliminates

the need to explicitly cater for gain and loss of feature points. Additionally a piecewise recon-

struction greatly reduces the number of features that need to be considered at one point in

time. This is an important consideration, as the order of execution of the unscented Kalman

filter is of the same complexity as matrix multiplication. Computing several smaller batches

can be performed significantly faster and with a smaller memory overhead, compared to a single

large batch.2

The drawback of such an approach is that different piecewise reconstructions need to be

recombined into a single overall reconstruction. Since only a scale, rather than absolute,

reconstruction is possible there is the issue of compatibility between different parts of the

reconstruction—as it is possible for different pieces to be reconstructed to different scales or

with varying degree of distortions. Figure 51 on page 91 illustrates this issue: each vertical

line in the wireframes represents a reconstructed piece, note the disjunct reconstruction in the

typical model in comparison to the clear and well-defined reconstruction in the enhanced model.

Initial experiments using a typical observation model suggested that reconstructed pieces

suffered from considerable incompatabilities. An improved observation model has been devised

(detailed in Section 6.2.3) that produces experimental results that exhibit a high degree of

compatibility—provided the Kalman filter acts on the piecewise inputs for an equivalent amount

of time (meaning each input is processed until a fixed number of iterations is reached, as opposed

2A n × n matrix requires at least n2 accesses to read each entry, hence the theoretically fastest matrix
multiplication can be performed in O(n2) time. Typically the trivial O(n3) algorithm is used for matrices with
relatively small n, and may be replaced by the Strassen algorithm, O(n2.807), for greater n (no consensus has
been reached on what values of n are sufficient to warrant a transition to Strassen’s algorithm, with values cited
in the literature ranging from 45 to 128). The current best solution is the Coppersmith-Winograd algorithm,
O(n2.376), however, it it is impractical for implementation and largely of theoretical interest, providing time-
bounds on other algorithms.
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Figure 44: Piecewise reconstruction through slivers.

to processing until some degree of confidence is reached).

The distinction between processing time and confidence is important in this study. The

reason for this is that a confidence value is specific to the features that are being reconstructed;

neighbouring feature sets converge at approximately the same rate, but the confidence in the

convergence depends on the complexity of the underlying structure.

Both the typical and improved observation models are discussed in greater detail in Sec-

tion 6.2.3.
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Figure 45: Combining slivers

Figure 44 demonstrates the choice of piecewise reconstruction: typically a complete environ-

ment requires reconstruction through 360 degrees. The reconstruction process utilised in this

thesis divides the environment into slivers, much like a cake, and independently estimates the

depth cues of each sliver. The estimates are reassembled into a complete reconstruction once

all slivers are computed, as shown in Figure 45. The figures show a series of pieces, or slivers,
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that contain points representing structural estimates—the pieces are then recombined into a

single reconstruction by aligning them correctly into a coherent scene.

Within this thesis each sliver spans an arc of one degree. When reconstruction is initiated

a sliver is placed along the left-most edge of the field-of-view and features are uniformly dis-

tributed along the sliver, as shown in Figure 46—the dots in the figure represent features. Once

the depth estimate of the sliver is completed the field-of-view is restored to the initial position

and orientation, and then rotated to achieve the initial orientation for the subsequent sliver.

Camera translation

Initial sliver placement and
feature distribution

Figure 46: Inital sliver placement, feature choice, and camera translation.

Reconstruction of the sliver is performed through horizontal translation of the camera. The

choice of feature points and the limitation of camera motion to the horizontal plane is done

deliberately:

To enable the tracking of a dense set of features over a prolonged period of time it is prudent

to impose a structure on features chosen for tracking as well as imposing limits on the possible

camera motion. These two factors ensure that features are not lost prematurely and that

significant information can be gained from their motion.

In structure-from-motion problems, translations of feature points due to camera motion pro-

duces depth cues that are interpreted to gain an estimate of the underlying structure. Smaller

camera motion produces less pronounced depth cues and greater distortion due to noise—

conversely greater camera motion offers more accurate depth cues which are less prone to

distortion through noise.

By choosing a dense feature set that is uniformly distributed along the left-most edge of the

field-of-view, and confining the motion of the field-of-view to the horizontal plane, the complete

dense feature set can be tracked over the largest possible displacement from its initial location.

This process produces depth cues that satisfy the demands on reconstruction for both a dense

feature set and high accuracy without the need to rely on computationally expensive tracking

methods or on error-prone algorithms that cater for feature loss and reacquisition.
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A final note on fusion of reconstructions: each reconstruction creates an accurate three-

dimensional reconstruction of the enclosed environment based on observations from a particular

central point. Such a reconstruction, though useful in its own right, is not likely to fully

reconstruct a complex enclosed environment. For example, separate rooms are usually not, or

only partially, reconstructed as the initially chosen point of view may have no, or only limited,

visual access to it.

Fortunately this is not generally a problem. The technique employed in this thesis allows

the independent reconstruction from various locations. Given that the relative location from

one center of observation to another is known, it is readily possible to combine the separate

reconstructions into a single model using constructive solid geometry.3

This concludes the description of the reconstruction process. The following subsection defines

the input state to the unscented Kalman filter used in this thesis.

6.2.2 Input state definition

The input state to the unscented Kalman filter used in this thesis consists of the following:

• Quaternion—describes the current camera orientation4, 4 components

• Vector—describes the current angular velocity of the camera, 3 components

• Vector—describes the current translation of the camera, 3 components

• Vector—describes the current translational velocity of the camera, 3 components

• List—a list of current depth estimates, 1 component per feature

It is clear that the input to the Kalman filter is divided into two sections. The first part

describes the dynamic part of the scene camera, catering for orientation and position, as well

as change in orientation and change in position. The second part is a list of values representing

the current depth estimates for the scene.

The initial camera orientation is initialized as (1, 0, 0, 0)—where (1, 0, 0) represents the vec-

tor part and the final 0 represents the scalar part of the quaternion. The angular velocity,

translation and translational velocity are all initialized as (0, 0, 0)—the camera is thus initially

estimated to be stationary. The initial depth estimates are given as (1, 1, 1, ..., 1) in other words

the scene is initially estimated as a flat surface. Note that only the depth parameter of the

structural estimate is given, since the other parameters are implicit in the reconstruction.
3Constructive solid geometry is a popular technique in computer science for the binary manipulation of

geometric objects. Typically constructive solid geometry defines three operations (union, intersection and dif-
ference) which can be applied to sets of geometric data.

4Quaternions are a useful 4-component representation of rotations. For a full description of their properties
refer to the excellent online article by Weisstein [124].
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The following subsection describes the observation model, along with the enhancement em-

ployed within this thesis. The observation model, along with the process model, describes the

underlying visual characteristics that enable the Kalman filter to perform depth estimation.

6.2.3 Observation model

In this study, observations assume that the visual cues underlie a linear perspective projection.

In other words, if an image plane is defined to be at the origin of a coordinate system with

normal vector parallel to the z-axis, and given a point p where

p =

⎡⎢⎢⎣
px

py

pz

⎤⎥⎥⎦
and given that the center of projection lies on the z-axis at z = −f , then y is the linear

perspective projection of p onto the image plane such that

y =

[
yx

yy

]
=

[
px

py

](
1

1 + pz

f

)
.

This projection is illustrated in Figure 47 below:

y

p

-f

y

x

z

image plane

Figure 47: Linear perspective projection of p onto y in image plane with a focal length of f

The inverse process is of interest for reconstruction purposes. The equation is given as:

p =

⎡⎢⎢⎣
yx(1 + pz

f )

yy(1 + pz

f )

pz

⎤⎥⎥⎦ . (7)

This indicates that it is sufficient to know the focal length f , the projected image coordinates

yx and yy, as well as the depth parameter pz to fully reconstruct p. For the purposes of this
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thesis the focal length is assumed to be constant. Furthermore, the image point coordinates

are obtained from image data and motion estimation—thus the only unknown that is required

is the depth pz of p.

-f

y
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b
c

z

x

-f 12

Figure 48: Different points a, b and c yield the same observation y. Similarly different focal
lengths f1 and f2 can yield the same observation.

Unfortunately, as Figure 48 demonstrates, depth parameters cannot be uniquely estimated

but only relative to the depth of other points. This implies that a reconstruction of a set of

points from an image sequence is only accurate up to a scaling factor. This is not a detrimental

flaw in itself, as for many applications it is sufficient to reconstruct a scaled model of the scene.

Nonetheless, if at least one absolute reference point is known, then the appropriate scaling

factor can be computed and applied to the set of reconstructed points to yield an accurate

reconstruction.

When performing three-dimensional reconstruction it is important to distinguish between the

camera coordinate space (ccs) and object coordinate space (ocs). The above equations describe

observations in camera coordinate space; however, for reconstruction purposes it is necessary to

compute results in object coordinate space. Consider Figure 49 below. It indicates the relation

between object and camera coordinate space.

y

p

-f

y

x

z

CCS

OCS

Figure 49: Camera and object coordinate spaces



CHAPTER 6. STRUCTURE FROM MOTION 88

Given that the origins of the two coordinate systems are displaced through the vector t and

that the orientation of the object coordinate system is related to the camera coordinate system

through the rotation matrix R, then the conversion from object coordinate space to camera

coordinate space is given by the equation

pccs = Rpocs + t

and conversely the inverse relationship is given by

pocs = R−1(pccs − t)

= R−1

⎡⎢⎢⎣
yx(1 + pz

f )− tx

yy(1 + pz

f )− ty

pz − tz

⎤⎥⎥⎦ (8)

where we substitute (7) for pccs.

The relative orientations of the coordinate systems may change over time; however, the

initial reference rotation may be chosen freely. Given that any initial choice will suffice, the

most prudent choice is to align the two coordinate spaces with each other:

R−1
0 = I

Furthermore, the translation vector t0 is initialised based on the initial observations of feature

points

t0 =

⎡⎢⎢⎣
yx,0

yy,0

0

⎤⎥⎥⎦
where y0 is the mean of initial two-dimensional observations. This is reasonable as the sample

mean can be expected to approximate the distribution mean.

Finally, by adding the initial conditions into (8) and writing it in time-dependent form, the

perspective projection camera model is derived:

pocs
i = R−1

i

⎡⎢⎢⎣
yx,0(1 + si

f )− yx,0

yy,0(1 + si

f )− yy,0

si

⎤⎥⎥⎦ (9)

where si = pccs
z,i .

Typical observation model

Equation (9) serves as the typical observation model for the unscented Kalman filter. During

each cycle of the Kalman filter the observation model iterates through each projected sigma

point and applies the camera and structural data local to that sigma point to the observation

model. Each sigma point represents a sample, a variation of the full system state—similar but
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slightly displaced from the mean; Figure 50 illustrates this concept: the dots represent states,

the striped bars indicate the actual values of the state. As the figure shows the sigma points

are variations on the original state.

Figure 50: The progression from single state description to a sigma point description of a system

Each sigma point, with its associated state, possesses a local variation of the motion state

of the system. The typical observation model makes use of this localised data to compute

depth cues. However, the localised motion states can describe slightly different estimates of the

local camera which may produce smaller or larger variations in the final structural estimate.

Program 6 summarises the idea.

Program 6 Typical observation model

m = number_of_sigma_states
n = number_of_points_in_sigma_state

i = 0
while i < m do begin

camera = extractCameraFromSigmaState(i)
j = 0
while j < n
result[j, i] = computeStructuralEstimate(j, i, camera)
j = j + 1

end
i = i + 1

end

Normally this does not pose a problem, as only a single reconstruction is made and any slight

shifts due to localised camera variation are averaged into the structure. However, in this thesis

a piecewise reconstruction is performed where individual pieces are computed independently

of each other; as a result it is important that individually reconstructed pieces are compatible

to ease the reintegration into a unified structure. Figure 51 demonstrates the difference in
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Program 7 Enhanced observation model

m = number_of_sigma_states
n = number_of_points_in_sigma_state
camera = null

i = 0
while i < m do begin

camera = camera + extractCameraFromSigmaState(i)
i = i + 1

end
camera = camera / i

i = 0
while i < m do begin

j = 0
while j < n
result[j, i] = obtainStructuralEstimate(j, i, camera)
j = j + 1

end
i = i + 1

end

reconstruction from the typical and the enhanced observation models.

Enhanced observation model

The enhanced model is a relatively simple extension of the typical observation model. It was

developed from the realization that the Kalman filter consists of two distinct modeling steps, a

process prediction step and an observation prediction step. The information that is manipulated

in each of these steps is distinct: the prediction step models the motion of the system, leaving

the structural data untouched. The observation step makes use of the predicted motion state

and the measurements obtained from the system to estimate the structure of the system without

changing the predicted motion state.

The motion state of the system remains unchanged during the observation step. Furthermore,

each sigma point may possess a distinct camera model. After the observation step a Kalman

gain is computed and an improved prediction of the system’s state is produced. During this

final step the sigma point states are collapsed into a single state again which represents the

best estimate of the system at that point in time.

There is, however, no need to adhere strictly to this sequence of events—in fact, before the

Kalman gain is computed, the best estimate for the camera model is not the localised motion

state of individual sigma points. The best estimate is a fusion of known local motion models

across all sigma points.
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(a) Typical observation model—High view (b) Typical observation model—Side view

(c) Improved observation model—High view (d) Improved observation model—Side view

Figure 51: Poor and good piecewise compatability

In other words, the enhanced observation model proceeds to compute a premature estimate

of the system’s motion model as an initialization step. This estimate is computed as the mean

of the individual sigma point motion models. The enhanced observation model then proceeds

to compute the depth estimates of sigma point states similarly to the typical observation model,

though it makes use of the averaged motion model rather than local motion models. Program 7

on page 90 illustrates the algorithmic flow of the enhanced observation model.

6.2.4 Process model

Typically the process model adopted in a structure-from-motion Kalman filter describes the

underlying structure and motion characteristics used in the reconstruction process. Usually the

majority of data filtered describes the structural estimates, whilst the remaining data models

the translation, translational-velocity, orientation and angular velocity of the camera—this

thesis utilizes such a structure and camera model.

As described in Section 6.2.1, the environment is assumed to be static. This implies that

specific structural process modeling is unnecessary—instead the Kalman filter employed in this
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thesis acts purely on depth and camera data. In other words, the motion model declares that

the current structural estimate is the best estimate—making changes to the estimate would

lessen the quality of the estimate. Accordingly, given that the structural input data is defined

as s, such that

s = [s0, s1, . . . , sk, . . . , sm−1]
T

where m indicates the number of features considered and sk = pocs
z,k , then the state transition

for the structure is given simply as

si = si−1 + Qi−1

where Q is the process covariance.

Along with the structural part of the process model is a second part that describes camera

motion in the system. The camera system utilized makes use of a simple dynamics model that

incorporates position, orientation, velocity and angular velocity, such that:

vi = vi−1 + Qv
i−1

pi = pi−1 + viΔt + Qp
i−1

ai = ai−1 + Qa
i−1

Ai = Ai−1 + 0.5×Ai−1 × ãT
i + QA

i−1

where t represents the timestep, v is the velocity, p is the position, a is the angular velocity,

and A is the orientation. ã denotes the skew matrix of a. v, p and a are vectors, A is a

quaternion. Program 8 details the process model.

The combination of the reconstruction process using slivers, along with the underlying ob-

servation and process models used by the Kalman filter, enable the reconstruction of depth

estimates in a scene. The experimental results of these reconstructions are presented in the

following chapter.

To put it boldly, it is the attempt at a posterior reconstruction of existence by the

process of conceptualization.

Albert Einstein
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Program 8 Process model

m = number_of_sigma_states

i = 0 % structural update
while i < m do begin

result.struc[i] = current.struc[i] + current.strucQ[i]
i = i + 1

end

i = 0 % velocity update
while i < m do begin

result.vel[i] = current.vel[i] + current.velQ[i]
i = i + 1

end

i = 0 % position update
while i < m do begin

result.pos[i] = current.pos[i] + result.vel[i] + current.posQ[i]
i = i + 1

end

i = 0 % angular velocity update
while i < m do begin

result.angvel[i] = current.angvel[i] + current.angvelQ[i]
i = i + 1

end

i = 0 % orientation update
while i < m do begin

result.orient[i] = current.orient[i] + current.orientQ[i]
normalize(result.orient[i])
skew = obtainSkewMatrix(result.angvel[i])
result.orient[i] = result.orient[i] + 0.5 * result.orient[i] * skew
normalize(result.orient[i])
i = i + 1

end
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Results

Results! Why, man, I have gotten a lot of results. I know several thousand things

that won’t work.

Thomas A. Edison

Edison is a man who did indeed know several thousand things that would not work. Nonethe-

less his career as an inventor is blessed with well in excess of a thousand patents in the United

States of America, and several more in the United Kingdom, France and Germany.

This chapter offers a description of experimental findings produced by the structure-from-

motion algorithm for enclosed environments developed in this thesis. The chapter is structured

to present specific and detailed results for a cuboidal room, allowing reconstructed properties

to be clearly identified; the next section covers complex reconstructed environments, demon-

strating feasibility of the approach for scenes with varying properties. This is followed by a

discussion on limitations of the environment reconstruction showcased. Finally a section is

presented that demonstrates the reconstructor’s ability to infer depth data from a real sample.

7.1 Cuboidal room

The first, and most thorough, test of the structure-from-motion paradigm presented in this

thesis uses a simulated cuboidal room. Such a room offers significant advantages for the purpose

of evaluating the reconstructed scene: it showcases the algorithm’s ability to estimate depth

parameters along

• flat surfaces,

• parallel and orthogonal surfaces,

• and sudden transitions between surfaces.

94
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These geometric characteristics are particularly taxing to estimate accurately and results

may be readily inspected visually—as the human eye is well trained to spot abberrations in flat

surfaces and right angles. Figure 52, below, captures a sample of the scene that is reconstructed.

Reconstruction is limited to approximately a quarter of the full scene—as results can be more

readily interpreted and the computational time required before results are available is signifi-

cantly reduced. This allows faster testing and validation of results, which in turn allows testing

of a greater diversity of parameters. Experimental results from such a partial reconstruction

can be extended to a complete reconstruction without loss of generality. To ease understanding

of the methods and parameters used in the reconstruction process a short summary is presented

below that lists all primary reconstruction elements:

• The raw input data consists of a simulated virtual environment that makes use of Quake

3 maps for rendering purposes as described in Chapter 3.

• The raw input data is motion tracked using a block-matching algorithm described in

Section 4.2.

• The overall reconstruction is performed using many smaller reconstructions. The recon-

structed pieces—vertical slivers—are combined into a single reconstruction afterwards, as

described in detail in Section 6.2.1.

• Compatibility between slivers is ensured by using an enhanced observation model (Sec-

tion 6.2.3), as well as performing the same amount of reconstruction (same number of

frames) for each piece and maintaining the same visual and motion parameters for the

camera during the reconstruction of each piece.

• Camera motion is limited to horizontal translation. This ensures that features tracked are

not lost prematurely. Furthermore the constrained motion allows the greatest possible

displacement from initial the position which aids depth estimation (page 84).

• Each piece to be reconstructed is tracked for 60 frames—the horizontal speed of the

camera is selected such that no features are lost from sight within those 60 frames.

• The unscented Kalman filter is initialized with an initial camera motion estimate of

(1, 0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0); the camera orientation, angular velocity, position and

translational velocity respectively. The initial structure is initialized as (1, 1, 1, ..., 1, 1).

Recall that only one parameter per feature is required (see Section 6.2.2).

• The covariance matrices are initialized as diagonal matrices with a constant value along

the main diagonal as follows: state covariance 0.0005, model covariance 0.001, and obser-

vation covariance 0.0001.

• Each reconstructed piece consists of 32 feature points. In the wireframe images that are

presented in this chapter each vertical reconstructed line represents such a piece. The hor-

izontal connection between these pieces follows a simple rule that matches neighbouring

points with each other.
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Figure 52: Screenshot of original scene

It should be noted that the texture data in the scene is repetitive and offers only a limited

degree of distinct features for the purposes of a dense optical flow solution—as dense flow models

do not have the freedom to choose feature rich sections of the texture such as T-junctions. The

texture data, however, possesses adequate localised variation to allow tracking of arbitrary

points at a sufficient degree of accuracy for the purposes of depth reconstruction.

Figures 53a and 53b respectively display close and distanced screenshots of the reconstructed

scene. The scenes are re-textured by projecting an environmental map onto structural estimates.

The environmental map is generated during a scene traversal by accumulating pixel-sized slivers

of observation and compiling the results into textural data sets. Figure 54 displays part of such

an environment map.

7.1.1 Application of texture

Mapping the textural environment onto the reconstructed structure is straightforward, as it

merely requires a radial application of texture coordinates to structure coordinates. However,

the technique of creating an environment map and projecting it onto the structural estimate

offers only limited accuracy. The texture portrays the scene reasonably well when observed

from the source of reconstruction. As Figure 55 demonstrates, however, the texture may exhibit

distortions and poor alignment when viewed from alternate viewing angles.

An optimal texturing solution would perform a piecewise re-texturing of the scene using only
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(a) Close-up

(b) Distanced

Figure 53: Screenshots of reconstructed scene
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Figure 54: Partial environment map

Figure 55: Poor texture alignment and distortion
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orthogonal texture data and distortion-free projection onto the structure. Such a process is

arduous and generally requires a human operator to achieve good results.

(a) Plan view

(b) Level

Figure 56: Accurate floor and ceiling estimates

7.1.2 Floor and ceiling

Figures 56a and 56b demonstrate a high degree of accuracy in the estimation of floor and ceiling

sections. The top-down plan view of the ceiling in Figure 56a displays an even distribution of

reconstructed points with only subtle noise introduced by a couple of deviations from the norm.

Figure 56b reinforces that impression with a leveled view of the ceiling which shows no obvious

reconstruction errors. The nearly perfectly planar surface of the ceiling lends testimony to the

accuracy of the reconstruction process.

The high accuracy of ceiling and floor sections may be attributed to the surfaces being parallel

to the viewing direction: individual flaws and noise in depth estimates are less obvious as the

errors present themselves in shifts in depth. Since both the floor and ceiling are parallel to



CHAPTER 7. RESULTS 100

the depth axis it is to be expected that their reconstructed counterparts are perceived to be

accurate.

Features reconstructed along planes that are parallel to the viewing axis are, subjectively,

less prone to errors as the errors present themselves in shifts along the viewing axis. In other

words, although the reconstruction is not inherrently stronger in such planes, the results appear

more accurate as the errors are less obvious.

This interpretation of accuracy is demonstrated in Figure 57, which displays a section of a

wall—orthogonal to the depth axis. The reconstruction of the wall segment is good; however,

compared to floor and ceiling, the estimates suffer from some degree of noise, sufficient to

be readily perceived by inspection. Assuming that noise is evenly distributed along all areas

of reconstruction this confirms that depth estimates are perceived as more or less accurate

depending on their angle towards the depth/viewing axis.

Figure 57: Slightly erratic reconstruction of wall segments orthogonal to the depth axis

It should be noted that the perceived accuracy of depth estimates is inversely proportional

to the perceived accuracy of texture data. Consider Figure 53: errors in texture alignment and

distortion are most obvious in floor and ceiling segments and least prominent in wall sections.

The relationship between perceived error in depth estimate and texture data serves to emphasize

that errors exist in all scene sections that are reconstructed; however, the perception of these

errors—or the way they are expressed—may vary.

Figure 58 depicts a corner section of the scene, note the corner in the upper right. The

reconstruction accurately captures the abrupt angle transition as two wall sections and the

ceiling meet—indicating the ability of the estimator to compensate for acute transitions in

scenes. In contrast, the estimation of wall sections is not perfectly straight but follows a gentle

curve, as shown in Figure 59 along the top. Figure 60 displays a full view of the reconstruction.
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Figure 58: Corner—abrupt and accurate transition between wall, ceiling and floor elements

Figure 59: Curvature along wall segment as viewed from above

Figure 60: Wireframe of reconstructed scene
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7.1.3 Objective accuracy

The discussion of reconstructive accuracy to this point has emphasised subjective and perceived

accuracy. However, making use of a virtual environment has several advantages—one of which

is that accurate structural data is known and can be compared to the reconstruction. This

subsection offers an objective measure of accuracy for the reconstruction of the cuboidal room.

The cuboidal room has the benefit that true and estimated structure can readily be compared.

For this purpose the reconstructed data is rotated to align its principle axis with that of

the display, as shown in Figure 61. This is not an essential step, but it makes subsequent

comparisons simpler.

Figure 61: Relative error computation, aligning reconstruction by rotation

Only wall elements are taken into account for the objective accuracy results. Floor and

ceiling are omitted as they are structurally nearly perfectly accurate—whereas walls display

the greatest deviation from the desired norms. The reconstruction method used only allows

estimation upto a scaling constant. To compensate for this, the error computation computes a

relative error by dividing the observed deviations by the diagonal of the reconstructed model,

as illustrated in Figure 62.

D

d
relative error  =  

d
D

Figure 62: Relative error computation
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The objective reconstruction error graph is presented in Figure 63 below:

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

mean = 0.0034

Figure 63: Relative error graph

The horizontal axis represents an element of each of the 360 reconstructed sections along with

its relative error. It is readily apparent that the reconstruction is of an exceptional quality:

the mean deviation from the true value is as little as 0.34%. The largest error is 2.25% of the

diagonal of the whole scene.

7.2 Other scenes

This section demonstrates the estimator in a variety of scenes. These scenes showcase enclosed

environments of a complex nature and illustrate the ability of the reconstruction process to

infer depth in scenes of quasi real-world complexity. The scenes are shown in two parts: a

re-textured, in-perspective image showing the scene from the position of the camera and an

off-perspective wireframe. The wireframed images are displayed from a displaced perspective

that allows the wireframes to emphasize the structure of the reconstructed scene. A collage of

reference images is shown in Figure 69.

It should be noted that the re-textured scene is not as fully detailed and accurate as the

images may suggest—the texture itself contains many visual cues that the human eye is trained

to interpret. Nonetheless, when comparing the wireframe with the textured environment it is
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(a) Textured

(b) Wireframe

Figure 64: Egyptian temple
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(a) Textured

(b) Wireframe

Figure 65: Wall with Lion
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(a) Textured

(b) Wireframe

Figure 66: Arching Wall
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(a) Textured

(b) Wireframe

Figure 67: Entrance with Stairs
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(a) Textured

(b) Wireframe

Figure 68: Room with Depth Details
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Figure 69: Reference images from the virtual environment renderer
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clear that considerable structural detail has been recovered from the input stream.

• Figure 64 demonstrates reconstruction in an environment rich in depth contrast.

• Figure 65 is an example of the estimator’s ability to determine subtle depth variations.

• Figure 66 shows the reconstructor’s capacity to extract smooth and curved transitions

from input data.

• Figure 67 exemplifies indistinct and poorly lit environments.

• Figure 68 reconstructs a scene with diverse depth features.

7.3 Rate of reconstruction

This section describes the speed at which different aspects of reconstruction are computed. Two

primary concerns exist in this regard: the time required to compute one frame of reconstruction

and the number of frames required for the Kalman filter to converge.

All references to execution speed are relative to the workstation used for experiments in this

thesis, an AMD Athlon64 3200 clocked at 2GHz and equipped with 1GB of memory.

7.3.1 Per frame

The bulk of computational time while processing a frame is spent within three systems:

• Virtual environment rendering and acquisition of render results

• Motion tracking of render data

• Reconstruction motion data using a Kalman filter

Table 2 summarises the computational times required for a complete cycle:

Time in ms Percentage
Rendering and acquisition 10.993 10.5
Motion tracking 66.118 63.2
Reconstruction 27.580 26.3

Table 2: Summary of time spent in reconstruction processes

It is clear that motion tracking requires the largest amount of computational resources

whereas the actual reconstruction is fast. The Kalman filter used in this study only processes

a relatively small set of features during each frame due to piecewise reconstruction—typical

Kalman-based reconstructors make use of a larger amount of feature points and correspond-

ingly spend more time performing reconstruction computations.
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7.3.2 Convergence
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Figure 70: Depth estimates over time, z-coordinate in object coordinate system

As Figure 70 demonstrates, the reconstruction model rapidly converges after an initial period

of uncertainty. The graph depicts the convergence paths of four features from a reconstruction

process.

7.3.3 Convergence rate: frames vs displacement

In Figure 70 a good early estimate for the final convergence of features is around frame 100.

This is not a surprise as this appears to be typical for Kalman filter based structure-from-motion

solutions. See for example Rautenbach [90].

The use of a virtual rendering environment, however, allows great flexibility in reconstruction

experiments; and a series of such experiments suggests that the observation that it takes Kalman

filter-based approaches around 100 frames to reach a good estimate is an artifact of a deeper

insight.

Observe the graphs in Figure 71. Each subfigure demonstrates the estimate convergence for

the same scene using varying frame rates. The frame rate determines the horizontal translation

of the camera between successive frames. The total translation of the camera in each of the

graphs in Figure 71 is the same.

It is important to note that the convergence of the estimate proceeds the fastest in Figure 71a.

The first indication of this is the maxima of the graphs: in each graph from 71a to 71e the
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(a) Reconstruction with step size 2.5
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(b) Reconstruction with step size 1.25

0 50 100 150 200 250
0

4

8

12

16

Number of frames

E
st

im
at

e

(c) Reconstruction with step size 0.5
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(d) Reconstruction with step size 0.25
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(e) Reconstruction with step size 0.125

Figure 71: Convergence using different displacements
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maximum is achieved at a later frame number, as early as frame 23 in 71a and as late as 160

in 71e.

A casual glance would suggest that the last graph, 71e, has achieved the most accurate overall

convergence—as would be expected from the experiment that had the largest number of frames

available to achieve convergence. However, a more thorough investigation reveals that each of

the experiments depicted by the graphs has approximately achieved the same final estimate.

Figure 72 overlays the graphs of Figure 71 into a single graph and connects the endpoints of

the individual graphs to demonstrate that their final estimate—for the number of frames under

consideration—is quasi-equivalent.
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Figure 72: Near equivalent convergence

The above experiments serve to emphasize the role that inter-framerate of displacement plays

in aiding the Kalman filter to achieve rapid convergence of reconstruction. To summarise, the

result can be interpreted as follows: a larger number of frames provides the Kalman filter with

more information with which to achieve convergence; however, a larger displacement between

frames offers the Kalman filter richer information, that is to say, information that makes it

easier to distinguish features and therefore accelerates the convergence of the reconstructive

process.
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7.4 Limitations

The reconstruction method described in this study offers good depth estimating capabilities for

environment reconstruction. However, it should be noted that the reconstructor has limits in

the amount of details that can be reconstructed, an inability to recover from feature loss, and

only considers single viewpoint reconstruction.

7.4.1 Detail reconstruction

Although Figure 65 shows good detail in the reconstruction of the lion’s head embedded in the

wall, the detail in the input stream exceeds the ability of the estimator to recover depth details.

This particular limitation can be overcome by increasing the resolution of reconstruction, in

other words increasing the number of features tracked.

There is, however, a diminishing return: increasing the number of features significantly

increases the computational time required to reconstruct a scene. Furthermore it is not possible

to have more features than the number of pixels available. Finally—in the case of sparse

trackers such as Kanade-Lucas-Tomasi that track the best features found—the confidence in

the accuracy of the tracked features decreases as less optimal features must be chosen.

This limitation is not unique to the algorithm presented in this text, but is common to all

reconstruction methods that are subjected to noise. No generic solutions exist; however, it is

usually possible to increase the definition of input data and use better motion tracking to find

a level of reconstruction that is deemed acceptable to the application in question.

7.4.2 Feature loss

The methods employed in the reconstruction algorithm presented in this text are designed

to minimize feature loss during reconstruction. Unfortunately feature loss cannot be entirely

eliminated without dynamically adapting camera motion whenever the motion estimator reports

loss of feature points, or implementing a method to recognize feature loss and recover from it

if features are recovered at a later stage.

The former solution cannot be employed in all applications—the latter, however, could be

implemented generically. A viable option would be to make use of a particle filter-based motion

tracking solution. Such solutions have been shown to be able to recover lost features in tracking

applications [46, 47].

Although such a solution would be able to recover lost feature points, the method is itself

subject to limitations: features that are lost must actually reappear in the input stream at

a later stage for the method to be useful, and features that reappear should not be distorted

beyond the ability of the motion tracker to recognise them.
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(a) Initial view

(b) Distortion

Figure 73: Distortion due to loss of features
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Figure 73, above, illustrates the problem of fatal feature loss. During reconstruction the

camera sweeps sideways to such an extent that the entrance to the passage obscures scene

elements further down the passage. Features inside the passage are lost in the process and are

thus poorly reconstructed. This is particularly evident in the erratic reconstruction of the stairs

in the scene.

7.4.3 Single viewpoint reconstruction

The implementation used for the algorithm described in this text settles for the reconstruction

of the input scene from a single viewpoint. This implies that the reconstructed scene cannot

recover structural data of scene elements that are obscured by other scene elements.

Such limits to the reconstruction are evident in, for example, the wireframe of Figure 68: the

stretched triangles in the mid-left and far right of the image typically indicate the presence of

scene sections that are not visible from the current viewpoint. For example, the stretched trian-

gles in the mid-left of Figure 68 represent the continuation of the stairs-passage that is partially

visible in the textured image. The solution has been outlined previously, in Section 6.2.1: re-

constructions from multiple viewpoints are computed and merged into a single structure using

constructive solid geometry.

7.5 Real samples

Before concluding the results chapter we present two short demonstrations of the Kalman filter

performance on real samples. The first sample features a portion of a bedroom; the video shows

how the view changes as the camera slowly moves sideways. The second sample features a small

Lego structure; the video shows how the structure is moved by hand.

Unlike the simulated, virtual environment examples, the motion tracking performed in the

real samples makes use of the Kanade-Lucas-Tomasi tracker as implemented by the Open

Computer Vision library [100]—an open-source solution to a variety of vision related algorithms.

The reason for this is that the video quality in both real samples is poor, and therefore an

accurate dense tracking of motion is not viable.

7.5.1 Bedroom

Figure 74 below displays frames from a short video clip captured with a web camera. The

image quality of the footage is rather poor and contains large featureless sections such as the

walls and floor. The image sequence contains a significant amount of noise and abrubt changes

in ambient hue. Furthermore the clip contains only 56 frames.



CHAPTER 7. RESULTS 117

(a) Frame 00 (b) Frame 05 (c) Frame 10

(d) Frame 15 (e) Frame 20 (f) Frame 25

(g) Frame 30 (h) Frame 35 (i) Frame 40

(j) Frame 45 (k) Frame 50 (l) Frame 55

Figure 74: Bedroom sample
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The motion data from the sample was input to the Kalman reconstructor that is used within

this thesis. The resulting structural data possess little correlation and cannot be readily merged

into a single structural frame. Instead each point is independent of all other points making it

difficult to visualise the resulting three-dimensional reconstruction.

This makes it difficult to confirm the quality of the reconstruction using images—nonetheless

Figure 75 below attempts to demonstrate the quality of the reconstruction by comparing tracked

and reconstructed features in the initial and final frames. Figure 75 is intended to show the

correlation of features as their position changes from the initial to the final frame. Figures 76

and 77 magnify the information shown in Figure 75 to allow easier observation of individual

features.

(a) Initial frame with true features (b) Initial frame with results superimposed

(c) Final frame with true features (d) Final frame with results superimposed

Figure 75: Comparative images of reconstruction, first and final frame

A single image pair comparing real—meaning true features—and superimposed—meaning

reconstructed—data does not truly convey any meaningful data regarding the quality of the

reconstruction; it is necessary to make use of at least two independent viewpoints to discern

the relative displacement of tracked and reconstructed features. That is why two image sets

are provided, corresponding to the initial view and the final view respectively.



CHAPTER 7. RESULTS 119

(a) Initial frame with true features

(b) Initial frame with results superimposed

Figure 76: Comparative images of reconstruction, initial frame
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(a) Final frame with true features

(b) Final frame with results superimposed

Figure 77: Comparative images of reconstruction, final frame
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The figures demonstrate the quality of the reconstruction—the superimposed reconstructed

points match the real features well and visually the result matches expectations. Comparing

Figures 76 and 77, the reconstructed features accurately follow the displacement of the real

features. Figure 75 shows a more compact form of the prior two figures to allow an easier

appreciation of the way displaced features are matched.

The quality of the reconstruction is noteworthy when compared to the same reconstruction

using the typical observation model (Figure 78). It is immediately obvious that the typical

model has only barely begun to differentiate between the depth cues of the scene, whereas the

enhanced model (Figure 75) has already achieved a very good estimate of the scene.

(a) Real initial frame (b) Superimposed initial frame (typical model)

Figure 78: Comparative images of reconstruction using typical model
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7.5.2 Lego

Figure 79 shows selected frames from a short image sequence depicting a Lego structure that is

pushed across a table top. Similar to the bedroom sample the image quality of the Lego sample

is poor. The video clip contains 111 individual frames.

(a) Frame 00 (b) Frame 10 (c) Frame 20

(d) Frame 30 (e) Frame 40 (f) Frame 50

(g) Frame 60 (h) Frame 70 (i) Frame 80

(j) Frame 90 (k) Frame 100 (l) Frame 110

Figure 79: Lego sample

The motion data generated from the Lego sample was input to the Kalman filter used in this

thesis. Unlike the bedroom sample the quality of the resulting structural information can be

readily confirmed by inspection, as the resulting structure is easily identified.
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Figures 80 and 81 below showcases the results obtained. The first figure demonstrates the

correspondence between tracked and reconstructed features, and the second figure shows a front

and top-down view of the reconstructed structure.

(a) Tracked features (b) Superimposed reconstructed features

Figure 80: Correspondence between tracked and reconstructed features

(a) Front view (b) Top-down view

Figure 81: Front and top-down views of reconstructed structure

A miracle is a portent that is not contrary to nature, but contrary to our knowledge

of nature.

Augustinus
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Conclusion

Do not say a little in many words but a great deal in a few.

Pythagoras

This study has presented a method for the reconstruction of enclosed environments from

image sequences. The method consists of a variety of elements, each of which addresses an

aspect relevant to the problem of depth reconstruction from image sequences.

The first of these elements was the introduction of optimal luminance space in Chapter 2. The

need for optimal luminance space follows from the fact that normal luminance computations

cater to human perception rather than digital perception. This is an important point to consider

as luminance space is often used in applications such as motion tracking that rely on accurate

data. The chapter on optimal luminance space describes a metric for evaluating the amount of

information in an image and presents an efficient heuristic for the computation of the optimal

luminance space of an image. The heuristic presented was shown to retain a significantly larger

amount of information than a normal luminance image and the approximation of optimal

luminance was shown to be more efficient than a normal luminance computation.

In Chapter 3 the study proceeded to present a visual rendering tool based on the Quake 3

framework. This rendering tool served as the basis for the creation of scenes that are input to

the reconstructor. Such an artificial environment renderer has significant advantages over real

world samples: modern computational hardware and graphics algorithms are a flexible and cost-

effective means for the acquisition of realistic environments. A virtual environment renderer

allows the free manipulation of scene elements and camera motion—which offers substantial

aid to experimentation and insight. For example, the use of a virtual environment led to the

realization that feature displacement is a significant factor in the reconstruction of depth data

from image sequences. It also allows the testing of the limits of the reconstruction algorithm

in isolation of other issues such as tracker accuracy.

124
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The text proceeded to describe the principles of motion estimation in Chapter 4, with specific

reference to the implementation used in the study: a block-matching algorithm. This was

followed by a chapter on Kalman filters, with an in-depth discussion of the unscented Kalman

filter. It is shown that the type of nonlinearities encountered in this thesis are easily handled

by the unscented Kalman filter.

Chapter 6 detailed the structure-from-motion framework adopted in this text. The primary

problems that needed to be addressed in this study to successfully reconstruct enclosed en-

vironments were twofold: each image in the image sequence describing the environment only

partially exposes the full scene that is being reconstructed, and a large data set needs to be

reconstructed to create a meaningful representation of arbitrary environments.

These problems were solved by making use of a piecewise reconstruction whereby the en-

vironment is divided into vertical slivers that are reconstructed individually. The final scene

is reconstructed by combining the results obtained from individual sliver reconstruction. This

approach has the advantage that it addresses both the problems mentioned above; however,

it introduces the new problem of ensuring compatibility between individual reconstruction ele-

ments.

This new problem was resolved by the introduction of a novel observation model. The en-

hanced observation model not only resolves the problem of compatibility between individual

slivers, it additionally has the advantage that it is both more efficient and more accurate than

the previously employed typical observation model—it achieves this result by unifying the dif-

fering camera estimates in individual sigma points into a single camera during the computation

of the observation model.

Finally, empirical results were presented and analyzed. Several artificial scenes were suc-

cessfully reconstructed using the methods described in this study—furthermore two real world

samples were presented that demonstrated the ability of the reconstructor to cope with real

world data. Additionally a series of experiments noted the significance of feature displacement

to achieve convergence of the estimated structure; this is a significant insight as it moves the

emphasis away from the number of frames required until convergence is achieved and instead

places the focus on the displacement of features in image space.

Future work can capitalize on the insights described in this study: the solution provided is

robust and can be implemented relatively cost effectively; however, the primary weakness of the

structure-from-motion algorithm developed in this study is its reliance on good motion tracking

data that can accurately track the motion of features as described in Section 6.2.1.

As the environment to be reconstructed is static it should be readily possible to make use

of a light projection system to artificially increase the detail in scenes that have poor or no

discernible features. Such an approach can be expected to yield good results in any enclosed

real world environment.
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A useful extension of the results offered in this study is the development of a constructive

solid geometry system. Such a system can create an overall reconstruction from the depth

data computed at a variety of locations, thereby allowing the reconstruction of complex and

articulated structures.

In this study reconstructed data is textured using environment maps that are generated from

the input provided by the virtual environment renderer. A promising avenue of research is

investigating alternative texturing methods that may be able to improve on this solution.

This concludes the study of structure-from-motion for enclosed environments.

Begin thus from the first act, and proceed; and, in conclusion, at the ill which thou

hast done, be troubled, and rejoice for the good.

Pythagoras



Appendix A: Software

The implementation of the structure-from-motion solution developed in this study consists of

a number of applications. This appendix describes the programming environment and details

the individual applications that were implemented. All applications were developed in Borland

Delphi 2005 [16]. Three-dimensional graphics components made use of the DirectX 9 API [76].

Motion Estimation

Figure 82: Motion Estimation

The first application implemented focussed on motion tracking. The application possesses a

main image and can cycle through a variety of distorted images. A feature window on the main

image can be selected and the application estimates the location of the feature window on the

distorted image using a block matching algorithm.

127
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Figure 83: Image Space

Image Space

Experiments with the Motion Estimation application led to the realization that the concept

of optimal luminance space might be worthwile exploring. The Image Space application was

developed in response to this idea to investigate the properties of optimal luminance space.

The code makes provision for a variety of classic and experimental image space transforms,

including histogram equalization and weighted luminance computations.

Motion Data

Figure 84: Motion Data

A dedicated test application was developed to create and compare different pixel matching

routines. The best routine implemented makes use of MMX instructions.
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Cube Remake

Figure 85: Cube Remake

A structure-from-motion implementation was developed for the Delphi programming lan-

guage. The Cube Remake application code represents the basic Kalman filter implementation

for this study.

BSP Render

Figure 86: BSP Renderer

An important step was the implementation of the Quake 3 BSP Renderer. The code gener-

ated for this application forms the visualization code for the virtual environment used in the

Reconstruction application.
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Reconstruction

Figure 87: Reconstruction

The Reconstruction application represents the primary testing environment in this study. It

includes a full implementation of the structure-from-motion system described in this thesis. It

performs the following tasks: virtual environment rendering, motion tracking, and reconstruc-

tion of the structure from motion data. It is also possible to read in motion data from text

files and perform structure-from-motion analysis using this data—this was used to perform the

reconstruction of real samples.

Recon Viewer

Figure 88: Recon Viewer
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The Reconstruction application outputs a text file with resulting data—this data is inter-

preted by the Recon Viewer. The Recon Viewer generates a mesh of the reconstructed data

and renders it.

Real Sphere

Figure 89: Real Sphere

Since the features tracked in real samples are chosen by the Kanade-Lucas-Tomasi feature

tracker there is no readily available correlation between the reconstructed data points. The Real

Sphere application was written to render the results of real samples; it does so by rendering

orange spheres. Optionally an image can be loaded and blended into the background, this

allows the manual correlation of the rendered spheres with the background image.
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PhD thesis, Technische Universität Berlin, 1974.

[103] Steve Streeting. OGRE. http://www.ogre3d.org/.

[104] Peter Swerling. First order propagation in a stagewise smoothing procedure. Annals of

Mathematical Statistics, 29(2):585–588, 1958.

[105] Lassi Tasajärvi, Bent Stamnes, and Mikael Schustin. Demoscene: the Art of Real-Time.

Even Lake Studios, 2004.

[106] Leonid Taycher, John W. Fisher III, and Trevor Darrell. Recovering articulated model

topology from observed motion. In Advances in Neural Information Processing Systems,

pages 1311–1318, 2002.
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