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Abstract 

 

The photosynthetic protist Euglena gracilis synthesizes a storage carbohydrate named 

paramylon, a glucan consisting only of β-(1-3)-glycosidic linkages. The enzyme that 

produces paramylon is a glycosyltransferase commonly known as paramylon synthase 

(EC 2.4.1.34; UDP-glucose: 1,3-β-D-glucan 3-β-D-glucosyl transferase). This enzyme uses 

UDP-glucose as its main substrate. In 2001, Bäumer et al. isolated and partially purified 

paramylon synthase, but never presented any sequence information. Hence, the main aim of 

this project was to isolate and characterize the gene(s) coding for the paramylon synthase.  

 

Different approaches were taken in order to isolate and characterize the gene(s). In the first part of 

the study molecular techniques were used to try and identify the gene. The two methods 

used were library screening and PCR amplification. Different libraries were screened using 

either functional staining or an affinity probe. The second method concentrated on the use of 

degenerate oligonucleotides, based on the amino acid sequences of conserved regions from 

known β-(1-3)-glucan synthase genes from various organisms, to PCR amplify the gene 

sequence from Euglena. These approaches were not successful in the isolation of the 

gene(s). 

 

In the second part of the study protein purification techniques were used in an attempt to 

obtain de novo protein sequence from the purified paramylon synthase enzyme. Several 

protein purification techniques were tried with the most successful being preparative ultra 

centrifugation followed either by sucrose density centrifugation or product entrapment 

(a type of affinity purification). These resulted in partial purification of the paramylon 

synthase protein. The partially purified proteins were separated using polyacrylamide gel 

electrophoresis, and the polypeptides able to bind the precursor, UDP-glucose, were 

identified using a radiolabeled isotope of UDP-glucose. These polypeptides were subjected 

to LC-MS-MS in order to obtain sequence information from them. One tryptic fragment 

showed high homology to β-(1,3)-glucan synthase genes from different yeasts. 

 

 

 iv



Opsomming 

 

Die fotosinterende protist Euglena gracilis sintetiseer ‘n bergings koolhidraat bekend as 

paramylon, ‘n glukaan wat slegs uit β-(1-3)-glikosidiese verbindings bestaan. Die ensiem 

wat paramylon produseer is ‘n glikosieltransferase algemeen bekend as paramylon sintase 

(EC 2.4.1.34; UDP-glukose: 1,3-β-D-glukaan 3-β-D-glukosiel transferase). Die ensiem 

gebruik UDP-glukose as hoofsubstraat. In 2001 het Bäumer et al. die paramylon sintase 

geïsoleer en gedeeltelik gesuiwer, maar geen geenvolgorde is uit die werk verkry nie. 

Daarom was die hoofdoel van die projek om die geen/gene wat kodeer vir paramylon sintase 

te isoleer en te karaktiseer. 

 

Verskillende benaderings is gevolg om die geen/gene te isoleer en te karaktiseer. In die 

eerste deel van die studie is gekonsentreer op molekulere tegnieke in poging om die geen te 

identifiseer. Die twee metodes wat hier gebruik is die biblioteek keuring en PKR 

amplifikasie. Verskillende biblioteke is gekeur deur die gebruik van of funksionele kleuring 

of affiniteits probes. Die tweede metode was deur die gebruik van degeneratiewe 

oligonukleotiede, gebasseer op die aminosuur volgorde van gekonserveerde streke van 

bekende β-(1-3)-glukaan sintase gene van verskeie organismes, om die geenvolgorde te 

PKR amplifiseer vanuit Euglena. Die benadering was nie suksesvol in die isolasie van die 

geen/gene nie. 

 

In die tweede deel van die studie is gebruik gemaak van proteïensuiweringstegnieke in 

poging om die de novo proteïenvolgorde van die gesuiwerde paramylon sintase te bekom. 

Verskeie proteïensuiweringstegnieke is probeer en die suksesvolste was preparatiewe 

ultrasentrifugering gevolg deur sukrosedigtheidsgradiëntsentrifugering of produkbetrapping 

(‘n tipe affiniteitsuiwering). Dit het die gedeeltelikke suiwering van die paramylon sintase 

proteïen tot gevolg gehad. Die gedeeltelik gesuiwerde proteïene is geskei met behulp van 

poliakrielamied gel elektroforese en die polipeptiedes wat oor die vermoë beskik om die 

voorganger, UDP-glukose, te bind is geïdentifiseer met behulp van ‘n radiogemerkte isotoop 

van UDP-glukose. Die polipeptiedes is onderhewig aan LC-MS-MS gestel om die volgorde 

informasie te bekom. Een triptiese fragment het homologie getoon aan β-(1,3)-glukaan 

sintase gene van verskillende giste. 
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Chapter 1 

Introduction 
 
 
 

 

The South Africa health industry has shown rapid growth over the last few years and a wide 

variety of nutritional supplements are today available on the market. Supplements are used 

by a wide variety of people, such as those leading an active and demanding lifestyle, those 

with illnesses or with poor eating habits, and the health conscious. Supplements are even 

available to growing, young animals.  

 

One of these supplements, although not yet popular in South Africa but available in the 

United States of America and United Kingdom, is β-(1,3)-glucan, named simply ‘glucan’ or 

‘β-glucan’. This has been found to be one of the most exciting discoveries in the field of 

nutritional supplements. Earlier in vitro studies have shown that macrophages have a 

specific receptor for β-(1,3)-glucans and that when the glucan binds to this receptor it 

stimulates a cascade of events leading the production of cytokines, soluble factors secreted 

by the cells of the lymphoid system that act as signals to other lymphoid cells (Czop, 1985; 

DiLuzio, 1983). Later, Wyde (1989) showed that orally administered β-(1,3)-glucans are 

also effective in stimulating the same response. The systemic effect of β-(1,3)-glucans can, 

therefore, be described as non-specific immune stimulation. In addition, β-(1,3)-glucans 

increase the effectiveness of antibiotics and reduces the low density lipoprotein (LDL) 

cholesterol level in the body (Kogan, 2000; Stone and Clarke, 1992). The mechanism behind 

this effect is not yet fully understood and probably depends on many physical factors, such 

as the specific molecular structure of the glucan, its solubility in water, the molecular 

weight, branching, the presence of charged residues and conformational features (Freimund 

et al., 2003; Yadomae and Ohno, 1996).  

 

The β-(1,3)-glucans used for nutritional supplements are currently obtained from baker’s 

yeast (Saccharomyces cerevisae), but in nature β-(1,3)-glucans are widespread, being found 

in higher plants, bacteria, fungi, and algae. In plants β-(1,3)-glucans are  part of the cell wall 

and are usually synthesized as a wound response. Some fungi and algae, on the other hand, 
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produce β-(1,3)-glucans as storage carbohydrates, and in bacteria they are usually excreted 

as exopolysaccharides.  

 

Over the past years, efforts have been directed towards the characterization of the properties 

and functions of β-(1,3)-glucan synthases from these organisms. β-(1,3)-glucan synthase has 

been extensively studied to date because of its ubiquity in higher plant tissues (Lawson 

et al., 1989). Most of the β-(1,3)-glucan synthases are membrane-associated complexes and 

are difficult to purify and characterize due to their inherent instability after solubilization 

from their native membrane environment (Drake et al., 1992). The protein complexes in 

which β-(1,3)-glucan synthases are usually present are very large, consisting of several 

protein subunits.  

 

All of the enzyme complexes producing β-(1,3)-glucans in plants, bacteria and yeast are 

known to be present in the plasma membrane and secrete the β-(1,3)-glucans either into the 

cell wall, or outside the cell. Their utilization by the biotechnology industry is, therefore, 

difficult as such proteins are often only active when present within a membrane rather than 

when in the soluble fraction. The protist Euglena gracilis, however, manufactures an 

intracellular granular reserve β-(1,3)-glucan in high amounts (Barsanti et al., 2001). Because 

this reserve carbohydrate is granular it might be expected (in analogy with the plant granular 

carbohydrate storage polysaccharide starch) that the enzymes synthesizing it would be 

soluble, rather than present in a membrane. If this were the case, then these glucan synthases 

would be easier to use from a biotechnological point of view. They could be expressed in 

microorganisms and the carbohydrate isolated after growth in bio-reactors, or they could be 

used to manufacture transgenic plants that would then manufacture β-(1,3)-glucans in their 

cytosol.   

 

The most detailed recent study on the biosynthesis of paramylon was performed in 2001 by 

Bäumer and co-workers. This group isolated and partially purified paramylon synthase from 

Euglena gracilis. They found that, like other β-(1,3)-glucan synthases, it was present in a 

large complex with several subunits, of which two were shown to have the ability to bind 

UDP-glucose. What was also demonstrated, however, was that the enzymes present within 

this complex were bound into granula membranes. The primary aim of this study, therefore, 

was to isolate the paramylon synthase gene from E. gracilis and by doing so confirm the 

localization of the enzyme complex. 
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In Chapter 2 an overview of the protist E. gracilis is given, as well as purification techniques 

used in isolating the β-(1,3)-glucans synthase protein from different organisms. In this study, 

as an initial attempt cDNA libraries were screened for the cDNAs that code for paramylon 

synthase (Chapter 3). Secondly, by means of protein purification it was further attempted to 

purify paramylon synthase in order to obtain de novo protein sequence from this synthase 

(Chapter 4). 
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Chapter 2 

Review of Literature 
 
 
 
 

2.1. Introduction 

 

Since the 1980’s various attempts have been made to study β-glucan synthases in different 

organisms, from higher plants to yeast, protists and bacteria. Much progress has been made 

in identifying the genes coding for these synthases, especially those that manufacture 

β-glucans as a component of cell walls. Far less progress has been made, however, in 

studying their activities. The reason for this is that the β-glucan synthases are often present 

in membranes, and are part of larger protein complexes. As such they are extremely difficult 

to purify in their native state. The protist Euglena gracilis is unusual as it accumulates a pure 

β-(1,3)-glucan in granular form that acts as a storage carbohydrate and is commonly known 

as paramylon. Very little is known about paramylon synthesis in E. gracilis, as the genes 

coding for the synthases have not been identified.  

 

Apart from a brief overview on the taxonomy and morphology of the protist E. gracilis, this 

overview discusses the difficulty of isolating membrane-bound enzyme complexes and the 

development of novel techniques that enable the isolation of these complexes while 

maintaining their function. In addition, the methods used to isolate these enzyme complexes 

from different organisms, including E. gracilis, will be described. 

 

 

2.2. Euglena gracilis 

 

2.2.1. Genus 

 

The first cells of the family Euglena were discovered by C.G. Ehrenberg (1795 - 1876) in 

1830. Euglena is a group of single-celled organisms and belongs to the kingdom Protista 

that includes unicellular algae, simple fungi and protozoa. This genus demonstrates some 
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plant-like, as well as animal-like characteristics, and presented a taxonomy problem to early 

scientists. Cavalier-Smith (1993) decided to classify Euglena in a separate phylum, 

Euglenozoa, to avoid further confusion. Phylogenetically Euglena was found to be closely 

related to Trypanosoma (Cavalier-Smith, 1993) although with a very different metabolism. 

Apparently an evolutionary ancestor of Euglena acquired chloroplasts, probably from an 

endosymbiotic relationship with algae. All known species of Euglena live in fresh water 

environments and reproduce asexually. 

 

Felski (2004) has reported that, to date, a total of 250 different Euglena species have been 

described. However, the possibility exists that the total number of species is smaller because 

the size and form of a species can depend on different factors such as nutritional conditions, 

the cells growth phase, and environmental factors. It is also possible, therefore, that some of 

the described species are only variations of others.   

 

2.2.2. Euglena gracilis  

 

E. gracilis was one of the first photosynthetic, eukaryotic microorganisms used for 

laboratory purposes. The reason for this is that Euglena is easily cultivated under laboratory 

conditions. The genus was found to be biochemically, physiologically and morphologically 

flexible. The fact that it is also easily studied under a light or electron microscope added to 

its popularity (Felski, 2004).  

 

The Euglena cell can vary in size from 10 µm to almost 500 µm in length and is normally 

elongated and cylindrical, with most cells having a spindle-like shape (Figure 1). Euglena 

cells have a pellicle surrounding them and no cell wall. This pellicle is quite flexible, so its 

shape changes considerably during euglenoid movement. For its movement, Euglena has a 

striking flagellum that is continually mobile from base to tip, and is held either in front, or 

laterally, of the moving cell. An eyespot (stigma) is present in most euglenoids, ensheathing 

the neck of the reservoir, and contains β-carotene derivatives and other carotenoid pigments. 

Unlike plant cells that contain an eyespot, the eyespot in euglenoids is not a specialized 

region containing chloroplasts. E. gracilis does contain chloroplasts, however, and they 

contain chlorophylls a and b, β-carotene, antheroxanthin, neoxanthin, and small amounts of 

other carotenoids and quinones (Leedale, 1967). Despite this, many other characteristics 

indicate that the euglenoids are not closely related to the land plants. 

 5



  

Figure 1. Schematic diagram of Euglena gracilis showing typical structures (Adapted from Buetow, 

1999). 
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2.2.3. Growth conditions of E. gracilis  

 

Members of the family Euglena are widespread in nature. The species are free-living and 

settle in fresh water washbasins, storage tanks and seas. No saltwater forms have yet been 

discovered, even though Euglena is found in the marine sediment. Euglena species are 

generally aerobic, but some tolerate anaerobic conditions under unfavourable conditions. 

E. gracilis can survive extreme conditions such as temperatures ranging from 1 up to 38 °C 

(Felski, 2004) and pH values ranging from 2.3 to 11 (Felski, 2004; Yamane et al., 2001). 

 

Several factors are important in determining the rate of cell growth in Euglena. One of these 

is the history of the cells. The previous nutritional conditions influence the rate of adaptation 

of Euglena when transferred to a new medium (Yaden, 1965). If cultivation took place under 

favourable conditions, and the cells were not stressed, they will adapt fast when transferred 

to a new medium. From this point the growth phase and the external carbohydrate source 

will determine the cultivation rates of the cells (Pringsheim, 1955).  

 

Another factor determining growth rate is the cultivation method of the cells. It was shown 

that Euglena could grow photoautotrophically, using light and CO2 as the inorganic carbon 

source, heterotrophically using various organic carbon sources, or mixotrophically in the 

presence of light and organic carbon (Ogbonna et al., 1998). In the past E. gracilis cells have 

been grown successfully on different carbon sources, including glutamate / malate, 

DL-lactate, D-glucose, and ethanol (Jasso-Chávez et al., 2003). During growth it was shown 

that E. gracilis could only utilize the energy from available light in the presence of an 

organic carbon source (Yamane et al., 2001).  

 

In a comparative study of carbon sources, glucose was found to be the best in terms of cell 

growth under heterotrophic conditions (Ogbonna et al., 1998). The glucose concentration in 

the medium plays an important role in the successful growth of E. gracilis, with glucose 

concentrations of less than 0.2% [w/v] no growth can be determined, but with the 

concentration increased to 3% [w/v] growth can be observed (Barras and Stone, 1965). 

Furthermore, Ono et al. (1995) showed that Euglena also has the unique ability to produce 

carbohydrates from ethanol. It was shown that the content of the carbohydrate paramylon in 

the cells increased as the ethanol is utilized from the medium. Hence, Euglena could 
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efficiently use ethanol for the generation of ATP in conjunction with the electron transport 

chain on the mitochondrial inner membrane.  

 

Studies showed that the pH value plays another important role when glucose is used as the 

carbon source for cell growth. Glucose is easily utilized when pH values are around 4.5, but 

not when the pH value is raised to between 6.8 and 7.0 (Cook and Heinrich, 1965; Hurlberg 

and Rittenberg, 1962; Barry, 1962). Euglena gracilis can grow under extremely low pH 

conditions such as pH 2.5 – 3.5 (Yamane et al., 2001) and when glucose and (NH4)2SO4 are 

used as respective carbon and nitrogen sources the media becomes further acidified to as low 

as pH 1.8 – 2.0 due to the SO4
2- accumulation caused by the ammonium uptake (Yamane 

et al., 2001). Under these conditions, high growth rate and yield can be obtained despite the 

heavily acidic pH throughout the culture period. Yamane et al. (2001) observed that these 

conditions were found to lead to a 15% increase in growth obtained under mixotrophic 

conditions in comparison with the heterotrophic conditions.  

 

2.2.4. The reserve carbohydrate  

 

The carbohydrate reserve product formed in E. gracilis cells is the linear β-(1,3)-glucan, 

paramylon. Gottlieb (1850) was the first to isolate the paramylon granules and showed that 

they were composed of a carbohydrate that did not stain by iodine, although being isomeric 

with starch.  

 

 

Figure 2.  β-(1,3)-linkages of glucose molecules. One part of a paramylon molecule 

ww.lsbu.ac.uk/water/images/curdlan.gif). (w
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Later studies showed that the β-(1,3)-linkages of paramylon (Figure 2), in comparison with 

renoids, can be massed together, or be few but large and be located in 

 fairly constant position (Barsanti et al., 2001). E. gracilis can accumulate large quantities 

of paramylon when grown in the presence of an utilizable carbon source under both light 

and dark conditions. 

 

the α-(1,4) and α-(1,6)-linkages present in starch, was the reason for this observation (Booy 

et al., 1981; Clarke and Stone, 1960; Kreger and Meeuse, 1952). 

 

In Euglena paramylon is synthesized as a storage carbohydrate in granular form with a 

highly crystalline and complex fibrillar structure that is surrounded by a single membrane 

(Bäumer et al., 2001). Paramylon granules can be distributed widely in the cytoplasm, can 

form cups over the py

a

 
 
 
Figure 3. Outline of the reactions leading to the synthesis of paramylon (Barras and Stone, 1965). 

Through the action of hexokinase, glucose is converted to glucose-6-phosphate (G-6-P) with the 

reduction of one adenosintriphosphate (ATP) to adenosindiphosphate (ADP). Glucose-1-phosphate 

(G-1-P) is subsequently formed and converted to UDP-glucose by the enzyme uridinetriphosphate 

TP): glucose-1-phosphate uridylyl transferase. Then, through the action of the UDP-glucose (U

(UTPG): β-(1,3)-glucan glycosyltransferase the insoluble β-(1,3)-glucan is formed from 

UDP-glucose. 
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Very little is known about the synthesis of paramylon, even though some aspects of its 

iochemistry and biology are well understood. In Figure 3 the outline of the reactions 

leading to paramylon synthesis according to our present understanding is shown.  

igher plants, as well as yeasts, protists and bacteria, contain β-glucans. These 

or 

all-associated structures (Verma and Hong, 2001). It is also synthesized rapidly, in 

ovalently 

ith other wall polymers, particularly polysaccharides such as cellulose (Bulone et al., 

hessault and Deslandes, 1979). These 

-(1,3)-glucans are usually water insoluble but a few water soluble β-(1,3)-glucans have 

b

 

 

2.3. β-(1,3)-glucans 

 

H

polysaccharides can serve as structural scaffolds in a similar way to cellulose in plants and 

chitin in animals, or as storage carbohydrates like in algae (Freimund et al., 2003).   

 

In plants, the glucan callose is a linear β-(1,3)-glucan with some (1,6)-branches and is 

synthesized in several locations within the plant, forming part of specialized walls 

w

response to wounding, pathogen attack and mechanical pressure and it is deposited locally to 

form a protective barrier in association with other components (Stone and Clarke, 1991).  

 

Prokaryotic organisms synthesize a variety of polysaccharides that include β-(1,3)-glucans, 

β-(1,2)-glucans, and cellulose (Stone and Clarke, 1992). Glucans containing (1,3)-glucosidic 

linkages are important components of cell walls in fungi like Saprolegnia (Bulone et al., 

1990). They are often present as an inner wall layer and sometimes associated c

w

1990). Curdlan, produced as an exopolymer in species from the bacterium genera 

Agrobacterium and Alcaligens, also consists of β-(1,3)-glucan chains (Lee, 2004).  

 

β-(1,3)-glucans serve as a storage carbohydrate in brown algae (laminarin), euglenoids 

(paramylon), chrysophytes (leucosin) and fungi (cellulin, mycolaminarin, pachyman) (Stone 

and Clarke, 1992). Because of their high crystallinity (approaching 90%), paramylon 

granules are unique among the carbohydrate storage products in plants and algae. The high 

level of crystallinity is comparable to that of Valonia cellulose, the most crystalline 

cellulosic material yet known (Baker et al., 1997; Marc

β
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been reported. Interestingly, these soluble β-(1,3)-glucans contain some (1,6)-linkages or a 

annitol residue on each chain (Howard et al., 1976). 

conducted in order to 

f labeled glucose from UDP-glucose into a water insoluble 

er, later identified as the β-(1,3)-glucan, callose (Delmer, 1987; 1999). β-(1,3)-glucan 

itant hypersensitivity to the chitin synthase inhibitor nikkomycin Z. The 

to FKS1 and ETG1. 

m

 

 

2.4. Glucan synthases 

 

The synthesis of β-(1,3)-glucans in vivo is catalyzed by the enzyme β-(1,3)-glucan synthase 

(EC 2.4.1.34: UDP-glucose: (1→3)-β-glucan 3-β-D-glucosyl transferase) and this is the 

glycosyl transferase that has been the most extensively studied (Lawson et al., 1989). 

 

The earliest investigations of in vitro β-glucan synthesis were 

elucidate cellulose synthesis in plants, but protein preparations from different plants 

catalyzed the incorporation o

polym

synthases have been characterized in a number of plant species including Lolium 

multiflorum, Gossypium hirsutum, Daucus carota, Beta vulgaris, Pisum sativum, in the 

fungi Caulerpa simpliciuscula and Aspergillus nidulans and the bacterium Agrobacterium 

tumefaciens, amongst others. 

 

Initial genetic approaches led to the discovery of genes necessary for glucan synthesis but 

not coding for catalytic enzymes, these being either nuclear factors (Enderlin and 

Selitrennikoff, 1994) or enzymes which modify the synthases post-translationally (Inoue 

et al., 1999; Díaz et al., 1993). More recently, putative glucan synthase genes of 

Saccharomyces cerevisiae were identified using genetic approaches. The first of these was 

Douglas et al. (1994), who showed that a mutation in FKS1 conferred hypersensitivity to the 

immunosuppressants FK506 and cyclosporin A, while mutations in ETG1 conferred 

resistance to the cell wall-active echinocandins (inhibitors of glucan synthase) and found, in 

some cases, concom

FKS1 and ETG1 genes were cloned by complementation of these phenotypes and were 

found to be identical. After disruption of this gene, significant reduction in in vitro 

β-(1,3)-glucan synthase activity, amongst other phenotypic changes, was observed. In a 

different study, Ram et al. (1995) cloned the gene CWH53 which was found to be identical 
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The biochemical approach followed by Inoue et al. (1995) provided more information about 

the protein. After purification a 200 kDa protein was obtained and the sequencing 

formation was used to clone two genes that showed homology to ETG1/FSC1/CWH53. 

) pointed out that, in these cases, the glucan synthases are apparently 

tegral transmembrane enzymes, which makes purification difficult. This fact, coupled with 

e observation that in many cases the enzyme is not a single polypeptide but rather is 

composed of several components, has made purification by monitoring enzyme activity even 

mplexes to 

omogeneity never succeeded. The purification of β-(1,3)-glucans synthases from all 

onsequently, several different approaches have been taken toward identification of the 

polypeptides that comprise the enzyme complex. With the use of dissociating agents, like 

non-ionic (e.g. digitonin, Triton X and Tween) and/or zwitterionic detergents (e.g. CHAPS 

(Figure 4) and CHAPSO), the complex is released from the membrane. 

 

in

Hydropathy profiles of both proteins suggest that these genes encode integral membrane 

proteins that can be assumed to have approximately 16 transmembrane domains 

(Inoue et al., 1995). 

 

Selitrennikoff (1995

in

th

more challenging.  

 

 

2.5. Purification methods for glucan synthases 

 

Membrane bound glucan synthases have proven difficult to purify since these enzymes are 

very unstable (Bulone et al., 1990). In all cases the first attempt to purify these co

h

organisms, using membrane dissociating agents followed by chromatography and 

electrophoresis proved to be insufficient (Meikle et al., 1991), since all these attempts 

resulted in a significant loss of activity during the consecutive purification steps.  

 

C

 12



 
 

Figure 4. Chemical structure of the detergent CHAPS used for β-glucan synthase solubilization 

(Luis, A., 2002). 

 

 

 

After solubilization with these dissociating agents the enzymes retain high activity, and 

normally up to 50% of the total enzymatic activities were recovered in the soluble fraction 

(Bulone et al., 1990). Hence these methods were found to be effective as initial purification 

teps for polysaccharide synthases and this allows for further purification and the study of 

these enzyme complexes.  

duct is concentrated by low-speed centrifugation 

s

the polypeptides, their molecular masses, and functions as well as the catalytic subunits. 

 

Two methods that gained widespread popularity during isolation of β-(1,3)-glucans 

synthases are gradient density centrifugation and product entrapment. Both methods, with or 

without a combination of other protein purification techniques, have made the work 

somewhat easier when it came to isolation of 

 

Gradient density centrifugation is an effective method for the separation of β-(1,3)-glucan 

synthases from the bulk of solubilized membrane proteins. In density gradient centrifugation 

the proteins pass through the gradient and are separated according to their different 

sedimentation coefficients. Bulone et al. (1990), however, found that during the gradient 

density centrifugation of a β-(1,3)-glucan synthases activity was lost, something that should 

be kept in mind during experimental design. 

 

Product entrapment was first described by Kang et al. (1984) and is a type of affinity 

purification in which the affinity matrix is generated by the synthase itself. The solubilized 

enzyme preparation is incubated with its substrates and effectors, and the synthase 

associated with the insoluble reaction pro
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and recovered. Later Wu and co-workers (1991) incubated the preparation with an 

nzyme-assay mixture that differed from the medium in which the enzymes were solubilized 

and demonstrated that the enzyme was released from the pellet after centrifugation.  This 

om the assay mixture without 

rmation of the product. One disadvantage of this, however, is the non-specific 

ttempts to isolate β-(1,3)-glucan synthases were supplemented by photoaffinity labelling of 

e polypeptides that might be involved in the synthesis of the glucan. Photoaffinity analogs 

e

demonstrates that it is possible to precipitate the enzyme fr

fo

precipitation of proteins during the course of the product entrapment reduces the degree of 

purification obtained (Frost et al., 1990). 

 

 

2.6. Polypeptides from β-(1,3)-glucan synthase complexes 

 

Glucan synthases have been shown to be organized as large complexes (> 450 kDa) and that 

these complexes all consist of different subunits of which several may be involved in glucan 

synthesis (Bulone et al., 1990; Lin et al., 1990; Eiberger and Wasserman, 1987; Read and 

Delmer, 1987).  

 

Compared to other β-(1,3)-glucan synthase complexes with known or estimated molecular 

masses, the paramylon synthase complex from E. gracilis is the largest reported to date, 

being in the order of 670 kDa (Bäumer et al., 1991). This and other examples across species 

are presented in Table 1, which is by no means complete. The examples in Table 1 also 

indicate that β-(1,3)-glucan synthase complexes across species always consist of a number 

of polypeptides.  

 

A

th

of UDP-glucose have been utilized in the study of plant, fungal, bacterial and yeast 

β-(1,3)-glucan synthases. The major advantage of photoaffinity labelling is that the size of 

the subunits involved in the glucan synthesis can be determined without them being first 

purified to homogeneity (Drake and Elbein, 1992).  
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Drake et al. (1992) gave the basic criteria that have to be met to demonstrate the 

effectiveness of photoaffinity labelling: 1) saturation of active site photo-incorporation; 2) 

inhibition of photo-incorporation by the natural substrate; and 3) demonstration of specific 

hoto-incorporation in crude enzyme preparations. 

se was used in 

conjunction with UV irradiation (Bäu er photoaffinity labelling with 

α -UDP-gl äum t al. (2001) identified two proteins of sizes 37 and 54 kDa 

that were likely to be the UDP-glucose binding polypeptides of the paramylon synthase 

complex.

 

 

T mpl -(1,3)-glucans rom , fung  and protist species showing the presence of 

m pep ithin the β-(1, -gl can synthas cross species 

  olypeptides 

p

 

For direct photolabelling of UDP-glucose-binding polypeptides for callose synthases 

(Delmer et al., 1990) and paramylon synthases, α-[32P]-UDP-gluco

mer et al., 2001). Aft

-[32P] ucose, B er e

  

able 1. Exa es of β  f  plant us

ultiple poly tides w 3) u e complex a

    P     
  omplex inding olypeptides in   

e complex 

ants 

C  b P
Source β-glucan size UDP-glucos Literature 

Pl      
Beta vulgaris callose >500 kDa   Sloan et al. (1986) 

   57 kDa  Frost et al.(1990) 
    27,29/31,35,43,57,70,83,92 kDa Wu et al. (1991) 

Gossypium callose   26,29,34,46,52,58,66,84 kDa Delmer et al. (1991) 
   34,35 kDa  Shin et al. (1995) 

10

   52 kDa  Li et al. (1993) 
Pisum sativum callose  55 kDa  Dhugga et al. (1991) 
Daucus carota callose   43,57,150 kDa Lawson et al. (1989) 
Fungi      
Saprolegnia β-(1,3)-glucan   25,30,32,34,48,50,80,90, 0 kDa Bulone et al. (1990) 
Protist      
Euglena gracilis paramylon 670 kDa 34, 54 kDa  Bäumer et al. (2001) 
            

 

 

 

Delmer et al. (1991) and Li et al. (1993) showed that the labelling of developing Gossypium 

bre callose synthase resulted in a 52 kDa subunit likely to be the catalytic subunit for fi

β-(1,3)-glucan synthase. Interaction with the labelled probe requires Ca2+, a specific 

activator for callose synthases, which is known to lower the Km of higher plant callose 

synthases for the substrate UDP-glucose (Hayashi et al., 1987). It is interesting to note that 
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the polypeptides were labelled by incubation of solubilized membrane proteins with MgCl2 

and [14C]-UDP-glucose, but that these same polypeptides did not label with 

[32P]-UDP-glucose. This possibly means that the polypeptides labelled with 

[14C]-UDP-glucose serve only as acceptors of the glucose moiety (Delmer et al., 1991).  

 

Shin and Brown (1995) also identified and characterized polypeptides involved in β-(1,3) 

nd β-(1,4)-glucan synthesis from Gossypium after purification and subsequent photoaffinity 

(1989) 

howed that in Daucus carota, polypeptides of sizes 43, 57 and 150 kDa were labelled after 

ith the use of photoaffinity labelling, the polypeptides involved in β-glucan synthesis have 

ange of species during the past years. Photoaffinity 

belling is valuable tool for identifying UDP-glucose binding proteins, especially when the 

 

a

labelling with azido-[32P]-UDP-glucose. Two polypeptides of sizes 34 and 35 kDa were 

enriched by product entrapment. Photoaffinity studies showed that these two polypeptides 

bind UDP-glucose in vitro. Amino acid analysis of these two polypeptides showed that they 

have a conserved sequence domain identical to plant annexins, implying calcium-regulated 

membrane-binding properties of the 34 and 35 kDa polypeptides in vivo. This suggested that 

these two polypeptides could function as regulators of cellulose and callose synthesis in 

cotton fibre (Shin and Brown, 1995). 

 

Other photoaffinity analogs of UDP-glucose have also been used. Lawson et al. 

s

photoaffinity labelling with 5-azidouridine 5’-β-[32P]-diphosphate glucose 

(5N3[32P]-UDP-glucose). It is suspected that the 57 or 150 kDa or both subunits are 

responsible for binding UDP-glucose. The UDP-binding polypeptides of callose synthase 

from Beta vulgaris was identified by Frost et al. (1990), also using the photoaffinity probe 

5N3[32P]-UDP-glucose. A 57 kDa polypeptide was a strong candidate for the UDP-glucose 

binding polypeptide. The 57 kDa UDP-glucose binding subunit does not seem to be unique 

to beetroot, since the same was observed in plasma membrane fractions from carrots. 

 

W

been identified and characterized over a r

la

binding pattern can be shown to correlate with kinetic properties and enrichment of enzyme 

activities upon purification. After these studies there is still no evidence that these 

UDP-glucose binding polypeptides from β-(1,3)-glucan synthase complexes are structurally 

or functionally related, thus meaningful comparisons must await availability of their amino 

acid sequences (Meikle et al., 1991). 
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2.7. Kinetics of β-1,3-glucan synthases 

 

Hayashi et al. (1987) studied β-(1,3)-glucan synthases from mung bean and cotton. A 

 production of β-(1,3)-glucan.  

, inhibited enzyme 

activity at a concentration of 1 mM. The pH optimum was found to be 7.5, which falls into 

the pH range in which Bäumer et al. (2001) found paramylon synthases to be most active. 

 

It is clear from this that all β-(1,3)-glucan synthases show similar qualities. All 

β-(1,3)-glucan synthases are activated by Ca2+ with Km values of UDP-glucose in the 

millimolar range (Hayashi et al., 1987). Interestingly, β-(1,4)-glucan synthases in higher 

plants are Mg2+ dependent and not Ca2+ dependent (Delmer et al., 1991).  

stimulation of synthase activity was observed after the addition of micromolar 

concentrations of Ca2+ and millimolar concentrations of β-glycosides. These effectors act by 

raising the Vmax of the enzyme and by lowering the Km for UDP-glucose from just over 

1 millimolar to 0.2 and 0.3 millimolar. It was found that Mg2+ enhances the affinity of the 

mung bean enzyme for Ca2+, but not for β-glycoside. Saturated Ca2+ and Mg2+ concentrations 

resulted in only a slight stimulation in the further

 

For paramylon synthase (Bäumer et al., 2001) the pH optimum was reported as being 

between 7.4 and 8.0, while the temperature optimum was found to be 20 ºC. It was found 

that 1 mM Ca2+ also led to an activation of the enzyme. The Km value for the substrate 

UDP-glucose was found to be 12.5 μM and the Vmax value for the β-(1,3)-glucan formation 

can reach 0.24 nmol.min-1 protein. Immunological detection of the paramylon synthase 

complex confirmed the activity measurements.  

 

In another example, Morrow and Lucas (1986) isolated and solubilized β-(1,3)-glucan 

synthases from sugar beet petiole tissue. Activity was also stimulated by Ca2+ and it was 

found that activation was nearly saturated at 100 μM. Enzyme activity was also activated by 

β-glycosides and digitonin. The fluorochrome from aniline blue, sirofluor
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Chapter 3 

Attempts to Isolate cDNAs Coding for Paramylon Synthases 
 
 
 
 

3.1. Introduction 

 

The protist Euglena gracilis produces a storage carbohydrate that consists entirely of 

β-(1,3)-linkages. It is present as granules within the cell of the Euglena, and is known as 

paramylon. Although genes coding for β-(1,3)-glucan synthase proteins have been identified 

from many species, the ones coding for proteins responsible for synthesizing paramylon 

have yet to be identified. It might be possible to identify these cDNAs by screening a 

Euglena cDNA library using a heterologous DNA probe coding for a β-(1,3)-glucan 

synthase from another species. However, given the evolutionary distance between Euglena 

and the other species from which such cDNAs have been identified it was decided that these 

probes might not have sufficient homology to allow such an approach to succeed and 

therefore it was decided to also try and establish other screening methods. In this chapter an 

approach will be described for identifying the paramylon synthase cDNAs by utilizing 

E. gracilis cDNA libraries in a variety of screens based on the function of the protein.  

 

All eukaryotic β-(1,3)-glucan synthase genes identified to date code for proteins which are 

targeted to the plasma membrane where they produce β-(1,3)-glucan either for inclusion in 

the cell wall, or to be excreted. The cDNAs coding for these enzymes generally do not 

produce active proteins when expressed in E. coli as the proteins are unlikely to be targeted 

to membranes, which would be necessary for them to be active. Since paramylon is 

produced in the cytosol, it was hoped that the enzymes that produce this β-(1,3)-glucan are 

soluble. If that is the case then it is more likely that if a cDNA coding for paramylon 

synthases is expressed in E. coli, it will produce an active protein and this could be used to 

identify the cDNA coding for it. This would be done by transforming the library into E. coli 

and identifying colonies that manufacture β-(1,3)-glucans by using dyes which specifically 

stain β-(1,3)-glucans. One problem with this approach could be that if the dye cannot enter 

the bacterium it would not be able to stain for the β-(1,3)-glucan.  
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One other property of paramylon synthases that might allow for a screen to be developed to 

isolate their cDNAs from a cDNA library is that, like other β-(1,3)-glucan synthases, they 

bind UDP-glucose (Bäumer et al., 2001). Radiolabelled UDP-glucose has been used to 

examine the molecular size of various β-(1,3)-glucan synthases, including paramylon 

synthase. As a second approach, then, a phage cDNA library could be used to infect E. coli 

cells. The bacteria could be allowed to grow in top agar containing glucose as the carbon 

source. Plaques where the paramylon synthase is expressed might transfer glucose onto the 

paramylon leading to an extension in the chain length. Plaque lifts will allow the transfer of 

protein from the library, and if the membranes are then incubated with radiolabeled 

UDP-glucose it should be bound by the paramylon synthases that are present on the 

membrane and this could be detected using autoradiography. 

 

In a different strategy, PCR oligonucleotides, some degenerative and some not, were 

designed against known β-(1,3)-glucan synthase sequences. It has been shown that 

degenerate oligonucleotides are useful for amplifying homologous sequences and the hope 

was that this approach would help to identify the paramylon synthase from Euglena. 

Regions were identified in aligned known sequences and from this oligonucleotides, some 

with low degeneracy, were designed. 

 

The two different approaches described here are the molecular techniques that were used to 

attempt to identify the paramylon synthase genes. The advantages of using these approaches 

are that they are relatively quick, and that they have a good chance of leading to the isolation 

of a full-length cDNA clone or amplification of the target sequence. Difficulties could be 

encountered, however, if the protein is not active in the screens described, either because it 

is not present within a membrane, or because other proteins from Euglena are necessary for 

its activity. Further difficulties could be encountered if the paramylon synthase gene does 

not contain the homologous sequences that the oligonucleotides are designed for. 
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3.2. Materials 

 

3.2.1. Organisms 

 

3.2.1.1. Euglena gracilis 

 

Euglena gracilis strain Z Klebs SAG 1224-5/25 was obtained from the Algensammlung, 

Göttingen, Germany. 

 

3.2.1.2. Escherichia coli strains 

 

SOLR™ strain:  e14–(McrA–) Δ(mcrCB-hsdSMR-mrr)171 sbcC recB recJ uvrC umuC::Tn5 

(Kanr) lac gyrA96 relA1 thi-1 endA1 λR [F´ proAB lacIqZΔM15] Su– (nonsuppressing), 

(Stratagene). 

 

XL1-Blue MRF´ strain: Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)], (Stratagene). 

 

DH5α strain: F'/endA1 hsdR17(rk
-mk

+) supE44 thi-1 recA1 gyrA (Nalr) relA1 Δ(lacZYA-

argF) deoR (Φ80dlacΔ(lacZ)M15), (Promega). 

 

3.2.2. Chemicals and Kits 

 

All chemicals, enzymes and kits were obtained from Sigma (St. Louis, Missouri, USA), 

Roche Diagnostics (Mannheim, Germany), Promega (Madison, Wisconsin, USA), 

Stratagene (La Jolla, California, USA), Invitrogen (Carlsbad, California, USA), CalBiochem 

(Merck Biosciences, Darmstadt, Germany), or QIAGEN (Hilden, Germany). 

 

3.2.3. Plasmids 

 

Uni-ZAP® XR: Insertion vector that allows for the in vivo excision of the pBluescript® 

phagemid that includes an ampicillin resistance gene (Stratagene). 
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3.2.4. cDNA library 

 

Euglena gracilis cDNA library was obtained from Dr Meike Hoffmeister (Institut für 

Botanik III, Heinrich-Heine-Universität, Düsseldorf, Germany). 

 

3.2.5. Web-based programs 

 

A list of bioinformatics tools used in the analysis of different sequences coding for 

β-(1,3)-glucan synthases is given in Table 2.   

 

 

Table 2. Web-based bioinformatics tools used in sequence analysis 

Search 
Engine/Database http Site Reference 

   
Block Maker bioinformatics.weizmann.ac.il/blocks/blockmkr/www/make_blocks.html Henikoff et al. (1995) 
CLUSTALW www2.ebi.ac.uk/clustalw Thompson et al. (1994) 
CODEHOP bioinformatics.weizmann.ac.il/blocks/codehop.html Rose et al. (1998) 
DNASIS www.oligo.net/dnasis.htm - 
Euglena EST database tbestdb.bcm.umontreal.ca/searches/organism.php?orgID=EL O'Brien et al. (2007) 
ExPasy Tools www.expasy.ch/tools - 
NCBI BLAST www.ncbi.nlm.nih.gov/BLAST/  Altschul et al. (1990) 
Pfam database www.sanger.ac.uk/Software/Pfam/ Finn et al. (2006) 
Primer3 frodo.wi.mit.edu/ Rozen et al. (2000) 
      

 

 

 

3.2.6. Oligonucleotides 

 

Details of oligonucleotides designed from conserved regions in fungal and yeast 

β-(1,3)-glucan synthase sequences are given in Tables 3 and 4.  
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Table 3. Oligonucleotides designed against conserved regions in fungal β-(1,3)-glucan synthase 

sequences 

Name Sequence 5´→ 3´ 
  

1-3 GS Fw1 GGGACTCCATGCGAAATATG 
1-3 GS Rev1 TCTGAATGAGAGTGGCAACG 
1-3 GS Fw2 AAGTCTGCCGCTCCTGAATA 
1-3 GS Rev2 GATACGACCACCTCGAAGGA 

    
 

 

 

Table 4. Degenerate oligonucleotides designed against conserved regions in the Saccharomyces 

cerevisae sequences 

Name Sequence 5´→ 3´ 
  

PM Deg Rev1 GGTTGAAGAAGTCGGGGTGNCCRTA 
PS Deg Rev2 GGTTGAAGCCCACGTCGSKNCCYTTN 
PM Deg Fw1 CGACGGCAAGCCCGANAAYCARAA 

    
N = G, A, T or C;  R = A or G;  S = C or G;  K = G or T;  Y = C or T. 

 
 
 

3.3. Methods 

 

3.3.1. Screening of cDNA library on aniline blue-containing media 

 

As a first attempt in obtaining the cDNA for the β-(1,3)-glucan synthase, a Euglena gracilis 

cDNA library was obtained and mass excision was performed according to the method 

outlined in the ZAP-cDNA synthesis kit (Stratagene). The required volume of titered phage 

was combined with 200 μL SOLR™ cells and 100 μL was plated out on LB agar plates 

containing 1% [w/v] aniline blue. These were incubated overnight at 37 ˚C and blue staining 

colonies were used to inoculate an overnight culture in LB media. Plasmid DNA was 

isolated from the culture using the GenElute™ Plasmid Miniprep kit (Sigma) and was then 

subjected to sequencing (section 3.3.17.) from both ends using the T3 and T7 

oligonucleotide primers.  
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3.3.2. Euglena gracilis cultures 

 

3.3.2.1. Growth in liquid medium 

 

Euglena gracilis was grown for 2 weeks in the dark at RT in media containing (per L) 1.0 g 

NaAc, 1.0 g beef extract, 2.0 g tryptone, 2.0 g yeast extract, 0.2 g KNO3, 0.01 g 

(NH4)2HPO4, 0.01 g CaCl2  and 20.0 g glucose. 

 

3.3.3. Total RNA extraction and purification 

 

Total RNA was extracted at RT according to a method modified from Bugos et al. (1995). 

Cells were centrifuged at 5000 g for 10 min and the supernatant was discarded, after which 

10 mL of homogenization buffer (0.1 M Tris-HCl, pH 7.5; 1 mM EDTA; 0.1 M NaCl; 1% 

[w/v] SDS) and 10 mL of 25:24 [v/v] phenol : chloroform was added. Cells were 

homogenized using a vortex mixer at high speed for 1 min. After the addition of 700 μL 3 M 

NaAc (pH 5.2), cells were further homogenized for 30 s followed by incubation on ice for 

15 min. After centrifugation at 12000 g for 15 min at 4 ˚C, the upper aqueous phase was 

transferred to a new tube containing 3 volumes of ethanol and 0.1 volumes of 3 M NaAc in 

order to precipitate the RNA. The tube was incubated for 2 h at - 20 ˚C and then centrifuged 

at 10 000 g for 10 min to recover the precipitated RNA. The supernatant was discarded and 

the RNA pellets were washed with 70% [v/v] ethanol, centrifuged at 10 000 g for 5 min and 

then dried. After resuspension in 500 μL double distilled water, any remaining insoluble 

material was removed by centrifugation at 10 000 g for 5 min at 4 ˚C and the supernatant 

transferred into a fresh microfuge tube. RNA was treated with RQ1 RNase-Free DNase 

(Promega) to remove genomic DNA contamination. RNA was stored at – 80 ˚C. 

 

3.3.4. Messenger RNA isolation 

 

Messenger RNA (mRNA) was isolating by utilizing the PolyATtract® mRNA Isolation 

System (Promega) according to the manufactures guidelines. 
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3.3.5. RNA quantification and purity determination 

 

Concentrations of RNA were calculated from spectrophotometric absorbance measurements 

at 260 nm (Power wavex microplate scanning spectrophotometer, Bio-Tek Instruments, 

Winooski, Vermont, USA). RNA purity was expressed as the ratio of absorbance 

measurements (260:280 nm) and confirmed by agarose gel electrophoresis on a 1% agarose 

gel and run in TE buffer. 

 

3.3.6. Synthesis of α-[33P]-UDP-glucose 

 

In order to synthesize α-[33P]-UDP-glucose, 250 μCi α-[33P]-UTP (PerkinElmer Life 

Sciences, Boston, MA, USA), was dried in a Speed Vac® Plus SC110A (Savant Instruments, 

Inc., Holbrook, NY, USA) and then resuspended in 250 μL of 50 mM HEPES-KOH 

(pH 7.3), 8 mM MgCl2, 0.8 mM EDTA, 13 mM glucose-1-phosphate, 3.5 U UDP-glucose 

pyrophosphorylase, and 4 U pyrophosphatase. Following incubation for 30 min at 30 ºC the 

synthesized α-[33P]-UDP-glucose was stored at - 20 ºC. 

 

3.3.7. Generation of cDNA library 

 

The ZAP-cDNA synthesis kit (Stratagene) was utilized to produce cDNA according to the 

manufactures guidelines. Synthesized cDNA was fractionated using the drip column 

provided and subsequently ligated into the UNI-ZAP XR vector, according to the 

manufacturer’s instructions. 

 

3.3.8. In vitro packaging of ligated cDNA 

 

The ligated DNA was packaged using the Packagene® Lambda DNA Package System 

(Promega) according to the manufacturer’s guidelines. 

  

3.3.9. Screening of the phage library  

 

Escherichia coli XL1-Blue cells suspended in 10 mM MgSO4 (OD600 0.5) were infected 

with titered Lambda ZAP phage (Stratagene) and plated out in top agar (LB with 0.7% 

agarose) on LB plates. The plates were incubated at 37 ˚C until the phage lysed the bacterial 
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lawn to form plaques. Before performing plaque lifts, nitrocellulose membranes were soaked 

in 10 mM IPTG and then air-dried over Whatman paper (chromatography paper). The 

nitrocellulose membranes were laid onto the plates and incubated for another 4 h at 37 ˚C, 

after which the plates were chilled to 4 ˚C in order to prevent the agar from peeling off upon 

lifting. After removal from the plates, the membranes were incubated with shaking in 10 mL 

250 mM Tris-HCl buffer containing 10 μL α-[33P]-UDP-glucose (produced as described in 

Section 3.3.6.) for 1 h and then air-dried on Whatman paper. The membranes were then 

placed in a sealed plastic bag and exposed overnight on a Supersensitive Cyclone Phosphor 

screen (Packard). The hybridization was visualized by means of a phosphorimager (Cyclone 

TM Storage Phosphor System, Packard Instrument Co., Meriden, USA). Plaques appearing 

to bind UDP-glucose were isolated from the agar plate and transferred to 250 μL of SM 

buffer containing 20 μL of chloroform. The tube was centrifuged to ensure the agar piece 

was suspended and then stored at 4 ˚C until retransformation was performed. Steps were 

repeated for the second and third rounds of screening. 

 

3.3.10. Amplification and mass excision of cDNA library 

 

The library was amplified followed by a mass excision with Ex Assist helper phage 

according to the method provided in the ZAP-cDNA synthesis kit (Stratagene). The 

amplified library was titered before mass excision and contained 5.1 x 109 pfu/mL. The 

excised phagemids were titered each time before usage. 

 

3.3.11. Functional screen of cDNA library 

 

After titering, phagemids were combined with 200 μL of SOLR™ E. coli cells and incubated 

for 15 min at 37 ˚C. These were plated out in top agar on LB plates supplemented with 1% 

[w/v] glucose. The bacterial library was allowed to grow at RT for a week before it was 

subjected to staining. Colonies were stained with either 0.5% [w/v] Fluorescent Brightener 

28 (Calcofluor) or 1% [w/v] aniline blue for 10 min, followed by destaining with 1 M NaCl 

for 30 min. Colonies staining darkly or that were fluorescing were picked and streaked out 

on a LB plate containing IPTG and X-Gal and incubated at 37 ˚C overnight. The colonies 

that contained inserts were cultured in LB medium overnight. To confirm positive staining, 

the experiment was repeated using plasmid DNA obtained from the GenElute™ Plasmid 
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Miniprep kit (Sigma) according to the manufactures guidelines. The plasmid DNA was 

transformed into E. coli DH5α and the staining was repeated as described. 

 

3.3.12. Extraction of RNA and cDNA synthesis 

 

RNA extraction was performed as described in Section 3.3.3. and quantified as described in 

Section 3.3.5. Superscript III Reverse Transcriptase (Invitrogen) was utilized to generate 

single stranded cDNA fragments from total RNA. Before cDNA synthesis, mRNA was 

diluted to 5 μg/μL with RNase free water. 

 

3.3.13. Design of PCR oligonucleotides 

 

Several available β-(1,3)-glucan synthase sequences from fungal species 

(GenBank accession numbers XM716336.1; D88815.1; AF102882.1; AF027295.1; 

AY254574.1) were aligned using the web-based bio-informatics tool, DNASIS (Hitachi 

Software Engineering Co., Yokohama, Japan). Oligonucleotides were designed from the 

consensus sequence using the web-based program Primer3. 

 

A β-(1,3)-glucan synthase motif is present in the web-based Pfam database 

(Finn et al., 2006). To design degenerate oligonucleotides all 123 β-(1,3)-glucan motif 

sequences present in the Pfam database were converted into blocks using the web-based 

Block Maker program (Henikoff et al., 1995). The blocks were used to design degenerate 

oligonucleotides by the web-based program, CODEHOP (Rose et al., 1998), using Euglena 

codon usage.  

 

3.3.14. PCR 

 

The PCR conditions were as follows: 3 min denaturation at 94 °C; 35 cycles of 45 s at 

94 °C, 30 s at 55 °C, 90 s at 72 °C; final elongation step of 72 °C for 10 min. 
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3.3.15. DNA purification from agarose gels 

 

Following electrophoresis in agarose gels (Section 3.3.5.), DNA bands were excised from 

the gel and DNA purification was performed using QIAquick® Gel Extraction Kit 

(QIAGEN) according to the manufacture’s guidelines. 

 

3.3.16. Cloning of PCR products 

 

The DNA was ligated into the pGEM®-T Easy vector (Promega) according to the 

manufacturer’s guidelines. Inserts were confirmed after transformation of competent E. coli 

DH5α cells by blue / white colony screening. The colonies that contained inserts were used 

to grow overnight cultures in LB and these were then subjected to plasmid DNA isolation 

using GenElute™ Plasmid Miniprep kit (Sigma) according to the manufacturer’s guidelines.  

 

3.3.17. DNA sequencing 

 

DNA was sequenced by the DNA sequencing facility (Central Analytical Facilities, 

Stellenbosch University, Stellenbosch, South Africa) with an Applied Biosystems ABI 

Prism 373 Genetic Analyser using an ABI BigDye™ terminator cycle sequencing ready 

reaction kit according to the manufacturer’s guidelines (Perkin-Elmer, Boston, 

Massachusetts, USA). 

 

 

3.4. Results and Discussion 

 

3.4.1. Construction of cDNA library 

 

Euglena gracilis cultures were grown in a liquid media supplemented with glucose for 3 to 4 

weeks before RNA was extracted. Different RNA extraction methods were evaluated, with 

the protocol described above providing the best quality RNA. Good quality mRNA was 

obtained and used for the construction of the cDNA library. Restriction analysis of randomly 

selected clones showed that around 50% of the clones contained inserts and showed a good 

distribution of the various insert sizes. Sizes ranged from 900 - 1 980 bp, with the average 
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insert being 1 000 bp. Thus, assuming 1 400 bp as the coding sequence for an average length 

protein (Makalowski and Boguski, 1998) this library is a good representation of the RNA 

present in the E. gracilis culture at the time of isolation.  
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Figure 5. Restriction enzyme analysis of 35 clones to determine insert size. In total 17 of the 35 

selected clones contained inserts. pBluescript SK- was cut with KpnI and SacI that cut on both sides 

of the multiple cloning site on the vector. pBluescript SK- is 3 000 bp in size and this is clearly 

visible after restriction analysis of the vector. The smallest fractions on both gels were 900 and 1 700 

bp, respectively. DNA marker Lambda (λ) digested with PstI was used (Promega). 

 

 

 

3.4.2. Library screening methods  

 

For screening purposes, two cDNA libraries were used.  One E. gracilis library was 

manufactured as described above, whilst the other was donated by Dr Meike Hoffmeister. 

The libraries were screened by two separate methods.  
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3.4.2.1. Functional screen 

 

In an attempt to clone the cDNA(s) that encode β-(1,3)-glucan synthase from E. gracilis, a 

phage cDNA library was obtained. In addition, a similar phage library was produced using 

RNA isolated from Euglena. These were converted to plasmid libraries and transformed into 

E. coli. Firstly, several rounds of screening were performed on LB plates that contained the 

β-(1,3)-glucan specific stain, aniline blue. Aniline blue was added to the medium at 1% 

[w/v] and some colonies were obtained that showed a faint blue colour. 

 

Staining for β-(1,3)-glucan activity is very useful since it is sensitive and easy to perform. 

The organisms can be grown within or on agar at high densities and the substrate can be 

incorporated into the growth medium or applied in the top agar. Staining can be performed 

at any time once the cells have grown sufficiently. The β-(1-3)-glucans specifically bind the 

triphenylmethane dye, aniline blue (Nakanishi et al. 1974), and to a benzophenone 

fluorochrome found in the dye (Evans et al. 1984). Fluorescent Brightener 28 (Calcofluor) 

and Congo Red also bind to β-(1,3)-glucans and induce fluorescence, but these dyes are not 

specific for β-(1,3)-glucans (Nakanishi et al. 1974).  

 

All the colonies seem to take up some of the blue dye and all had a faint blue colour to them. 

Some colonies did in fact seem “bluer” and were bigger in every case when compared to the 

other colonies on the plate. These were then subjected to plasmid DNA isolation and 

subsequently sequenced. BLAST results indicted that these clones never contained the 

cDNA of interest. A summary of the nucleotide sequences that showed homology to the 

various clones is presented in Table 5. 

 

In further attempts, a cDNA library was constructed as described and screened. Screening 

was repeated several times with the different stains. Initially, aniline blue was the only stain 

that produced a visual difference in the staining of colonies. Colonies that stained positive 

for the production of paramylon were subjected to blue / white screening and it seemed that 

almost half of these did not contain any inserts. Only those colonies that were shown to 

contain inserts were analyzed further. 
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Table 5. Nucleotide sequences found to produce significant alignments with clone sequences 

isolated during functional screening of the cDNA library 

GenBank  
Accession no. Name 
  
ATH5682 Arabidopsis thaliana mRNA for inositol 1,4,5-trisphosphate 5-phosphatase 
NTY14032 Nicotiana tabacum mRNA for ferrodoxin-NADP reductase 
MARIREDM2 M.auratus mRNA for ribonucleotide reductase M2 subunit 
AJ901879.1 Trichoderma atroviride mRNA for for Epl1 protein (epl1 gene), clone 
MMPHEREC2 Mus musculus mRNA for pheromone receptor 2 
PFL17188 Platichthys flesus Ki-ras gene (exons 1 to 4) 
PFL17187 Platichthys flesus Ki-ras gene (exons 1, 2, 3, and 4b) 

    
 

 

 

The insert size of those plasmids that contained inserts was determined and had an average 

insert size of 1 000 bp. After subsequent retransformation into E.coli DH5α, the newly 

transformed cells were streaked out next to the empty vector and no differences in staining 

were observed. Some selected colonies were still sequenced from both 5’ and 3’ ends, but 

after running a BLAST search, no significant homologies were found at either the nucleotide 

or amino acid levels. Since this staining method has previously been used successfully in our 

laboratory, it would appear that the problem might lie with the use of E. coli SOLR™ in the 

initial screening steps. The E. coli SOLR™ strain is normally used for phage infection, 

whereas E. coli DH5α is normally used for cloning and amplification. It is possible that a 

polymer present in the E. coli SOLR™ cell wall accounts for the blue staining and is 

therefore responsible for producing the false positive results.  

 

Screening did not lead to the identification of the paramylon synthases from E. gracilis and 

several factors could have contributed to this lack of success. Firstly, it is possible that the 

donated library was partly degraded during transport and therefore decreasing the chances of 

isolating the paramylon synthase. A second possibility is that the cDNA for paramylon 

synthase was not present in either of the libraries used. If RNA was extracted under 

conditions where the paramylon synthase was not active, the cDNA would possibly not be 

present. Once again this cannot be confirmed for the donated cDNA library, but care was 

taken when constructing the second library to grow the E. gracilis culture under conditions 

conducive to the production of paramylon synthase. Thirdly, if the cDNA for the paramylon 
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synthase was present in the libraries, the possibility exists that the enzyme requires specific 

metabolites or modifying enzymes, such as protein kinases, to be active. These might not 

have been present in E. coli and therefore the enzymes would not be active, even if present. 

Finally, if the paramylon synthase is membrane bound it is possibly not targeted to the right 

part of the E. coli cell. Once again, this leads to the enzyme being inactive and might 

therefore explain the unsuccessful screening attempts. 

 

3.4.2.2. Phage plaque screening  

 

Another approach to identify cDNAs coding for paramylon synthesizing enzymes using the 

phage cDNA library was also attempted.  An E. coli culture was infected with phage and, 

following cell lysis, plaque lifts were performed using nitrocellulose membranes. The 

membranes were then incubated with α-[33P]-UDP-glucose. This is the substrate for the 

paramylon synthase reaction and it has been demonstrated by Bäumer et al. (2001) that it 

becomes bound to the synthase. The primary screening procedure of approximately 500 000 

plaques yielded 46 potentially positive signals. Another round of screening was performed 

in order to purify the clones further (Figure 6), so during the next round of screening 21 

positive colonies from the first round were used and more positive staining was observed. 

Both positive and negative plaques from each plate were selected and used in the next round 

of screening. The negative plaques were considered as a negative control. At this point it 

became clear that there was a great deal of non-specific binding, with similar numbers of 

positive plaques on the negative control plates as on the positive plates. The screening 

procedure was, therefore, abandoned. 

 

3.4.3. Amplification of paramylon synthase through PCR 

 

Several oligonucleotides were designed for conserved regions within known β-(1,3)-glucan 

synthase sequences. Following DNA amplification with the different oligonucleotides under 

varying conditions no PCR products could be obtained.  
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A B    C 

 

Figure 6. Three nitrocellulose membranes from the second round of screening after hybridization 

and visualization on a phosphoimager. All three membranes were from plates that contained positive 

plaques from the first round of screening. During the second round of screening A gave no positive 

signals, some signals showed up on B, but was eliminated and C gave definite positive signals. 

 

 

 

The non-degenerate oligonucleotides were designed from the β-(1,3)-glucan synthase 

sequences available from fungal species. To test these oligonucleotides, DNA amplification 

was performed using cDNA from the fungus Aspergillus niger (donated by Dr Ibo Eduardo, 

Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch, South Africa). 

Following sequencing, it was confirmed that the PCR product obtained was the 

β-(1,3)-glucan synthase from Aspergillus niger. The lack of amplification from the Euglena 

gracilis cDNA suggests that fungi and protists are evolutionarily too distant from each other 

and that the conserved regions were not present in the Euglena β-(1,3)-glucan synthase 

sequence. 

 

The degenerate oligonucleotides derived from Saccharomyces cerevisae sequences also did 

not yield any glucan synthase sequences. High level of degeneracy was built into the 

oligonucleotides, which could lead to lower affinity of the oligonucleotide primers for the 

DNA template.  

 

Other reasons why this screening attempt may not have resulted in the β-(1,3)-glucan 

synthase being identified are that the PCR conditions were probably not correct, or that the 
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cDNA did not contain the gene of interest. It could also mean that the β-(1,3)-glucan 

synthase genes, even though they have a similar function, do not contain the same conserved 

domains. With the genetic information about glucan synthesis that has been generated from 

Saccharomyces cerevisae and some fungi, specific genetic probes can be designed in order 

to assist with the identification of these genes in other species and possibly in Euglena. This 

information could also be combined with EST sequences in the future in order to identify 

genes involved in glucan synthesis. 
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Chapter 4 

Identification of the UDP-glucose: 

β-(1-3)-glucan (Paramylon) Synthase from Euglena gracilis 
 
 
 
 

4.1. Introduction 

 

The β-(1,3)-glucan synthases are usually membrane-bound enzyme complexes which utilize 

UDP-glucose as their substrate. Such complexes have been found in many diverse species, 

from higher plants to yeasts, protists and bacteria. In the classes of Heterokontophyta, 

Phaeophyceae, Chrysophyceae and Euglenidae β-(1,3)-glucans was found to serve as 

storage carbohydrates (Kiss and Triemer, 1998; Hoek et al., 1995; De Madariaga, 1992; 

Kreeger and Van der Veer, 1970). On the other hand, all green algae store starch, a storage 

carbohydrate containing mostly α-(1,4)-linkages (Van den Hoek et al. 1995). 

 

One of the objectives in the study of paramylon synthases is to isolate and characterize the 

polypeptides of this enzyme complex that are responsible for the synthesis of the glucan, 

paramylon. Many protein subunits are present within the paramylon synthase complex, and 

two have been demonstrated to bind UDP-glucose (Bäumer et al., 2001). These subunits 

could be priming molecules, in analogy to glycogenin, the reversibly glycosylated protein 

essential for glycogen biosynthesis, or they might be responsible for synthesizing the glucan. 

This second hypothesis seems highly likely, given that UDP-glucose binding subunits have 

been partially purified and shown to demonstrate synthetic activity (Bäumer et al., 2001). 

 

As a second approach in this study, classical protein purification methods as well as other 

published methods were utilized in an attempt to purify the paramylon synthase protein from 

Euglena gracilis.  
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4.2. Materials 

 

4.2.1. Organisms 

 

4.2.1.1. Euglena gracilis 

 

Euglena gracilis strain Z Klebs SAG 1224-5/25 was obtained from the Algensammlung, 

Göttingen, Germany. 

 

4.2.1.2. Escherichia coli strains 

 

DH5α strain: F'/endA1 hsdR17(rk
-mk

+) supE44 thi-1 recA1 gyrA (Nalr) relA1 Δ(lacZYA-

argF) deoR (Φ80dlacΔ(lacZ)M15), (Promega). 

 

4.2.2. Chemicals and Kits 

 

All chemicals, enzymes and kits were obtained from Sigma (St. Louis, Missouri, USA), 

Roche Diagnostics (Mannheim, Germany), Promega (Madison, Wisconsin, USA), 

Stratagene (La Jolla, California, USA), Invitrogen (Carlsbad, California, USA), CalBiochem 

(Merck Biosciences, Darmstadt, Germany), or QIAGEN (Hilden, Germany). 

 

4.2.3. Plasmids 

 

pGEM®-T Easy: Vector for cloning PCR products in E. coli (Promega). 
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4.2.4. Web-based programs 

 

 

Table 6. Web-based bioinformatics tools used in sequence analysis 

Search 
Engine/Database http Site Reference 

      
Euglena EST database tbestdb.bcm.umontreal.ca/searches/organism.php?orgID=EL O'Brien et al. (2007) 
Mascot www.matrixscience.com/ Hirosawa et al. (1993) 

NCBI BLAST www.ncbi.nlm.nih.gov/BLAST/  Altschul et al. (1990) 

      
 

 

 

4.2.5. Oligonucleotides 

 

 

Table 7. Degenerate and non-degenerate oligonucleotides designed from the obtained protein 

sequence 

Name Sequence 5´→ 3´ 
  

Para Deg FWD CGATGTGCTTYACNCARGG 
Para NonDeg FWD ATGTGCTTTACCCAAGGGTACT 

   
N = G, A, T or C;  R = A or G;  S = C or G;  K = G or T;  Y = C or T. 

 

 

 

Table 8. Oligonucleotides designed for cDNA cloning and 3’ RACE 

Name Sequence 5´→ 3´ 
  

cDNA cloning  GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTTV 
3’ RACE  GGCCACGCGTCGACTAGTAC 
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4.3. Methods  

 

4.3.1. Culture conditions  

 

4.3.1.1. Growth on solid medium 

 

Euglena gracilis was grown at RT in Petri dishes on media containing (per L): 15.0 g 

bacteriological agar, 1.0 g NaAc, 1.0 g beef extract, 2.0 g tryptone, 2.0 g yeast extract, 0.2 g 

KNO3, 0.01 g (NH4)2HPO4, 0.01 g CaCl2 and 20.0 g glucose. Every two weeks cells were 

transferred to a new Petri dish with a wire loop under aseptic conditions. Stock plates were 

kept at RT and used to inoculate liquid media. 

 

4.3.1.2. Growth in liquid medium 

 

For growth in liquid media, the same recipe as for solid medium was used, but with the agar 

omitted. Cultures were grown in the dark and supplemented once a week with 2% [w/v] 

glucose per L. 

 

4.3.2. Enzyme isolation and solubilization 

 

Cells were harvested from the cultures and all further steps were carried out at 4 ºC. Cells 

were centrifuged at 5 000 g for 10 min, washed twice with distilled H2O, and resuspended in 

buffer A (Bäumer et al., 2001) consisting of 50 mM Tris-HCl (pH 7.4), 250 mM sucrose, 

3 mM EDTA, 0.04% [v/v] β-mercaptoethanol and modified with 1 mM PMSF instead of 

Pefabloc SC. Following sonication, the disrupted cells were centrifuged at 1 500 g for 5 min. 

The pellet was washed three times with buffer A, centrifuged again at 1 500 g for 5 min, and 

then resuspended in buffer B (Bäumer et al., 2001) consisting of 25 mM Tris-HCl (pH 7.4), 

20% [w/v] sucrose, and 1 mM β-mercaptoethanol. The detergent CHAPS was added to a 

final concentration of 0.15% [w/v] and glycerol added to a final concentration of 15% [v/v]. 

The paramylon synthase was solubilized overnight at 4 ºC with shaking. The enzyme extract 

was stored at – 80 ºC, with only minor loss of activity being observed over time. 
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4.3.3. β-(1,3)-glucan synthase activity measurements 

 

4.3.3.1. [14C]-UDP-glucose assay 

 

The incorporation of radioactivity from [14C]-UDP-glucose into an acid-insoluble product 

was measured according to the method of Bäumer et al. (2001). Standard incubation mixture 

contained (in 70 μL): 16.8 mM Tris-acetate (pH 8.0), 1 mM CaCl2, 1 μM 

[14C]-UDP-glucose (20 μCi/mL), 2 μL 0.8% [w/v] paramylon as primer, and 50 μL enzyme 

extract or 50 μL heat inactivated enzyme extract as control. The mixture was incubated at 

25 ºC for 15 min, after which 0.5 mL 5% [v/v] TCA was added to terminate the reaction. 

This was followed by heating to 100 ºC for 1 min and the addition of 1.5 mL 98% [v/v] 

ethanol and precipitated overnight at 4 ºC. The mixture was centrifuged at 3 000 g for 3 min 

and the pellet washed four times with 70% [v/v] ethanol. The precipitate was resuspended in 

1 mL 100% [v/v] ethanol.  Following transfer to a scintillation vial, 5 mL scintillation fluid 

was added and the radioactivity was measured in a Tri-Carb® Scintillation Analyzer 

(PerkinElmer Life Sciences, Boston, MA, USA). 

 

4.3.3.2. In gel assay 

 

Electrophoresis was performed under native conditions as described in section 4.3.8.2.. For 

detection of in situ enzyme activity, the method of Thelen and Delmer (1986) was used with 

some modifications. Following electrophoresis, gels were rinsed in buffer containing 10 mM 

Tris-HCl (pH 7.5) for 30 min with one change of buffer. Gels were incubated for enzyme 

activity at RT with shaking in 50 mM Tris-acetate (pH 8.0), 5 mM CaCl2, 5 mM 

UDP-glucose, and 200 μL of 0.8% [w/v] paramylon as primer for 18 to 42 h. After this time, 

gels were transferred to 50 mL of 0.1% [w/v] Fluorescent Brightener 28 (Calcofluor) and 

incubated in the dark with shaking for 30 min at RT. This was followed by 2 h in 10 mM 

Tris-HCl (pH 7.5) for destaining. Gels were left shaking in distilled H2O, if necessary, until 

the background staining had disappeared. 

 

4.3.4. Solubilization of paramylon 

 

Paramylon granules were purchased from Fluka (Sigma) and dissolved according to the 

method of Trudel et al. (1998). Dissolved paramylon was used as a primer in assays. One 
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gram of paramylon was dissolved in 100 mL of 0.5 M NaOH. This was precipitated with 

2 volumes of cold 98% [v/v] ethanol and recovered by centrifugation at 12 000 g for 10 min 

at 4 ºC. The pellet was dissolved in 40 mL of distilled H2O. This was again precipitated by 

cold 98% [v/v] ethanol and the pellet resuspended in 30 mL of distilled H2O. The pH was 

adjusted to 7.0 with 2 M HCl. The volume was brought to 100 mL with distilled H2O. From 

1 g of starting material it was predicted that 20% was lost during dissolving process and, 

hence, the final concentration was estimated to be closer to 0.8 g per 100 mL. Dissolved 

paramylon was stored at 4 ºC.  

 

4.3.5. Renaturing of proteins in gel 

 

SDS-PAGE was performed as described in Section 4.3.8.1., with slight modifications. The 

CHAPS-solubilized protein extracts to be loaded onto the gel were either denatured at 95 ºC 

or were not denatured at all. Following separation, the gel was incubated in 100 mL of 

25 mM Tris-HCl (pH 7.4) and 1% [v/v] Triton X-100 for 24 h with 5 changes of buffer. 

Gels were further treated as described for the in gel assay in Section 4.3.3.2., being first 

incubated with UDP-glucose and then the stained with Fluorescent Brightener 28 

(Calcofluor). 

 

4.3.6. Protein purification 

 

4.3.6.1. Ammonium sulfate precipitation 

 

Ammonium sulfate precipitation was performed overnight at 4 ºC using different 

concentrations of ammonium sulfate, ranging from 25 - 100% [w/v] in 25% increments. The 

protein pellets obtained after centrifugation were resuspended in 25 mM Tris-HCl (pH 7.4) 

and 1 mM β-mercaptoethanol, or in Laemmli loading buffer for separation on PAGE gels. 

When necessary the enzyme activity was determined afterwards as described in Section 

4.3.3.. 

 

4.3.6.2. Anion exchange chromatography 

 

Chromatography on a preparative scale was carried out using a DEAE anion exchange 

Hi Trap 20 mL column on an ÄKTAprime FPLC-system (Amersham Biosciences, Uppsala, 
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Sweden). The CHAPS-solubilized protein extract was loaded onto a column equilibrated 

with buffer A (50 mM Tris-HCl (pH 8.0); 1 mM EDTA; 5 mM MgCl2). The column was 

then washed with 25 mL of buffer A. Elution of the active fraction was carried out using a 

75 mL gradient up to 1 M KCl in buffer B (50 mM Tris-HCl (pH 8.0); 1 M KCl) and a flow 

rate of 0.3 mL/min. Elution of proteins was monitored using UV absorbance at 280 nm. Five 

millilitre fractions were collected and paramylon synthase activity was estimated as 

described in Section 4.3.3. The fractions containing the enzyme activity were pooled for 

further purification and activity measurements.  

 

4.3.6.3. Size exclusion chromatography 

 

A 10 mL Sephadex G-200 column was prepared in buffer containing 

25 mM Tris-HCl (pH 7.4) and 1 mM β-mercaptoethanol. One millilitre of 

CHAPS-solubilized protein extract was loaded onto the column and the proteins eluted 

using the column buffer. Fractions of 0.5 mL were collected and paramylon synthase 

activity was estimated as described in Section 4.3.3. 

 

4.3.6.4. Ultra-centrifugation 

 

Ultra-centrifugation of the CHAPS-solubilized protein extract was performed at 140 000 g 

for 2 h at 4 ºC in a Beckman Preparative Ultra-centrifuge (Beckman Instruments, Palo Alto, 

California, USA). The subsequent pellet was resuspended in 25 mM Tris-HCl (pH 7.4) and 

1 mM β-mercaptoethanol. This was subjected to protein content and activity measurements 

as described in Sections 4.3.7. and 4.3.3., respectively. When necessary the pellet was used 

in further purification methods as described below. 

 

4.3.6.5. Sucrose density gradient centrifugation 

 

Linear sucrose gradients of 20 – 55% [w/v] sucrose were poured on a 65% sucrose bed. All 

sucrose solutions were prepared with buffer containing 25 mM Tris-HCl (pH 7.4) and 1 mM 

β-mercaptoethanol with the addition of 0.15% [w/v] CHAPS. Approximately 1 - 2 mL of the 

CHAPS-solubilized protein extract or protein from other purified pools was layered on top 

of the gradient and ultra-centrifuged at 140 000 g for 18 h at 4 ºC. After centrifugation, 

0.5 mL aliquots were collected from the top of the gradient. Fractions were assayed for 
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protein content and paramylon synthase activity as described in Sections 4.3.7. and 4.3.3., 

respectively. 

 

4.3.6.6. Product entrapment 

 

The CHAPS-solubilized protein extract or protein from other purified pools (200 μL) was 

incubated with 16.8 mM Tris-acetate (pH 8.0), 1 mM CaCl2, 1 mM UDP-glucose, and 15 μL 

0.8% [w/v] paramylon for 30 min at RT, followed by 60 min on ice. The synthesized 

paramylon, containing the entrapped protein, was collected by centrifugation at 4 000 g for 

30 min at 4 ºC. The pellet was resuspended in 50 μL buffer containing 25 mM Tris-HCl 

(pH 7.4), 1 mM CaCl2, and 1 mM β-mercaptoethanol. Entrapped proteins were assayed for 

protein content and paramylon synthase activity as described in Sections 4.3.7. and 4.3.3., 

respectively. 

 

4.3.7. Protein determination 

 

Protein content was determined by the method of Bradford (1976). BioRad protein assay 

reagent was used with Bovine Serum Albumin (BSA) as the standard. Absorbance was 

measured at 595 nm with a Power wavex microplate scanning spectrophotometer (Bio-Tek 

Instruments, Winooski, Vermont, USA). 

 

4.3.8. Electrophoresis  

 

4.3.8.1. SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

 

The method of Laemmli (1970) was used to separate proteins. Gels were usually poured to a 

size of 7 x 11 cm and 0.75 mm thickness, using a BioRad Protean minigel apparatus 

(Bio-Rad Laboratories GmbH, Munich, Germany). Liquid samples to be analyzed by 

SDS-PAGE were mixed with 0.25 volumes of 5x Laemmli loading buffer (5 ml glycerol, 1 g 

SDS, 2.56 ml β-mercaptoethanol, 2.13 ml 0.5 M Tris-HCl (pH 6.8), trace of bromophenol 

blue). Pellets to be analyzed were resuspended in 1x Laemmli loading buffer. All the 

samples were denatured for 5 min at 95 °C and loaded onto the gel. Electrophoresis was 

performed at RT and run with 1x SDS-PAGE running buffer (5x buffer: 30 g/L Tris, 

 41



144 g/L glycine, 10 g/L SDS) at 120 V. Pre-stained protein marker (SDS 7B2, Sigma) was 

used as standard. 

 

4.3.8.2. Native polyacrylamide gel electrophoresis (Native PAGE) 

 

Native PAGE was performed as for SDS-PAGE (Section 4.3.8.1.), but without the addition 

of SDS in the gels and buffers. Additionally, samples were not denatured at 95 ºC and the 

gels were run at 4 ºC. 

 

4.3.9. Staining of PAGE gels 

 

4.3.9.1. Colloidal Blue staining 

 

Gels were stained with the Colloidal Coomassie Blue Staining Kit (Invitrogen) according to 

the manufacturer’s guidelines and subsequently destained in distilled H2O. 

 

4.3.9.2. Silver staining 

 

Gels were stained with the PlusOne™ Silver Staining Kit (Amersham Biosciences) according 

to the manufacturer’s guidelines. 

 

4.3.10. Identification of UDP-glucose binding polypeptides 

 

4.3.10.1. Synthesis of α-[33P]-UDP-glucose 

 

In order to synthesize α-[33P]-UDP-glucose, 250 μCi α-[33P]-UTP (PerkinElmer Life 

Sciences, Boston, MA, USA) was dried in a Speed Vac® Plus SC110A (Savant Instruments, 

Holbrook, NY, USA) and then resuspended in 250 μL of 50 mM HEPES-KOH (pH 7.3), 

8 mM MgCl2, 0.8 mM EDTA, 13 mM glucose-1-phosphate, 3.5 U UDP-glucose 

pyrophosphorylase, and 4 U pyrophosphatase. Following incubation for 30 min at 30 ºC the 

synthesized α-[33P]-UDP-glucose was stored at - 20 ºC. 
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4.3.10.2. Photoaffinity-labelling α-[33P]-UDP-glucose 

 

Samples were incubated, in a reaction mixture of 70 μL, with 

16.8 mM Tris-acetate (pH 8.0), 1 mM CaCl2, and 10 μL α-[33P]-UDP-glucose, for 20 min at 

4 ºC under illumination of UV light (254 nm) in a cross-linker (Ultra Lum, Carson, 

California, USA). Before separation on SDS-PAGE, the samples were concentrated using 

the methanol-chloroform-water precipitation method described by Wessel and Flügge 

(1984).  

 

4.3.11. In gel tryptic digestion of proteins and sequencing 

 

The Proteo extract All-in-One Trypsin Digestion Kit (CalBiochem) was used to digest 

proteins into peptides for sequencing by LC-MS-MS (Central Analytical Facilities, 

Stellenbosch University, Stellenbosch, South Africa). 

 

4.3.12. Extraction of RNA and cDNA synthesis 

 

RNA extraction was performed as described in Section 3.3.3 and was quantified as 

described in Section 3.3.5. Superscript III Reverse Transcriptase (Invitrogen) was used to 

generate single stranded cDNA fragments from total RNA according to manufacturer’s 

guidelines. Before cDNA synthesis, mRNA was diluted to 5 μg/μL.  

 

4.3.13. PCR 

 

The polymerase chain reaction was used to amplify cDNA using custom-made 

oligonucleotides. The cDNA cloning oligonucleotide was used to attach a homopolymeric 

tail to the cDNA template. The oligonucleotides designed against the obtained 

β-(1,3)-glucan sequence were each used in conjunction with the 3’ RACE oligonucleotide. 

The “hot-start” PCR protocol from the Taq DNA polymerase (Promega) was used. The PCR 

conditions were as follows: 3 min denaturation at 94 °C; 30 s at 80 °C; 35 cycles of 45 s at 

94 °C, 30 s at 55 °C, 90 s at 72 °C; final elongation step of 72 °C for 10 min. Annealing 

temperatures ranging from 50 – 60 ºC were used in following PCRs. 

 

 43



4.3.14. DNA purification from agarose gels 

 

After visualizing the DNA in an agarose gel, the band to be purified was excised from the 

gel and DNA purification was performed using QIAquick® Gel extraction kit (QIAGEN) 

according to the manufacturer’s guidelines. 

 

4.3.15. Ligation of PCR products 

 

The DNA was ligated into the pGEM®-T Easy vector (Promega) according to the 

manufacturer’s guidelines. Colonies containing inserts were grown overnight in LB media 

and these were then subjected to plasmid DNA isolation using GenElute™ Plasmid Miniprep 

kit (Sigma) according to the manufacturer’s guidelines.  

 

4.3.16. DNA sequencing 

 

DNA was sequenced by the DNA sequencing facility (Central Analytical Facilities, 

Stellenbosch University, Stellenbosch, South Africa) with an Applied Biosystems ABI 

Prism 373 Genetic Analyser using an ABI BigDye™ terminator cycle sequencing ready 

reaction kit according to the manufacturer’s guidelines (Perkin-Elmer, Boston, 

Massachusetts, USA). 

 

 

4.4. Results and Discussion 

 

4.4.1. Enzyme isolation 

 

Cells were harvested from dark-grown cultures by centrifugation. Following sonication, 

paramylon granules were separated from the cell debris by low speed centrifugation. It was 

found that, under these conditions, paramylon granules would stick to the side of the 

centrifugation tube. After the removal of the supernatant, the granules were washed from the 

sides without disturbing the pellet. The paramylon synthase activity was solubilized by 

incubation of the granules with CHAPS, however the activity was found to vary between 
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experiments. Consequently, before further purification was attempted the presence of 

activity was normally first determined by native gel electrophoresis and activity staining. 

 

 

B A 

  

Figure 7. Electrophoresis of CHAPS solubilized enzyme extracts under native conditions. On the 

10% PAGE gel all the lanes contain the same volume of the CHAPS-solubilized enzyme extract. The 

gel on the right (B) was stained with Coomassie Colloidal Blue and the gel on the left (A) with 

Fluorescent Brightener 28. It is clear from the gel that the bigger enzyme complexes aggregate at the 

top of the resolving gel. This is also where the product is formed, visible after the in gel assay as 

seen in gel A. 

 

 

 

4.4.2. Detection of glucan synthase activity 

 

Following solubilization of the glucan synthase activity, two methods were used to detect 

the activity, either by a solution assay or by an in gel assay. By using [14C]-UDP-glucose, 

the incorporation of radioactivity into the product can be measured according to the method 

by Bäumer et al. (2001). This is a relatively accurate way to measure activity. For the in gel 

assay, it was shown that glucan synthases remain active in the gel for an extended period of 

time (Thelen and Delmer, 1986) and can be detected by characterization of the product 

(Figure 7). As found previously (Kudlicka and Brown, 1997; Shin and Brown, 1995), glucan 

synthase activity is concentrated at the top of the separating gel and sometimes can also be 

found in the loading well. Therefore this seems to follow a trend across species. This method 
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is not sensitive to low levels of enzyme activity, but it is an easy way to analyze a large 

number of samples quickly without using radioactivity. 

 

It has been demonstrated that membrane-bound enzymes of higher plants synthesize callose, 

a β-(1,3)-glucan, in response to wounding, physiological stress, or infection (Delmer, 1987). 

Callose synthase is activated by micromolar levels of Ca2+ (Delmer, 1987; Delmer et al., 

1991). It was also found that the enzyme requires Ca2+ for its activity in vitro (Bulone et al., 

1999). In the previous study by Bäumer et al. (2001) it was found that Ca2+ is also essential 

for paramylon synthase activity in E. gracilis and it was therefore included in all assays.  

 

β-glucosides are reported to be activators of Ca2+-dependent callose synthase (Delmer, 

1991). They have also been shown to activate other glucan synthases, however the reason 

for this dependence are not clear. Cellobiose was not included in the paramylon synthase 

assay, but rather dissolved paramylon. Therefore in further work it might be useful to test 

the effect of cellobiose on paramylon synthase activity, since this was not assessed. Since, in 

these experiments, solubilized paramylon was used as a primer a more in depth look at the 

effect of paramylon on the synthase itself should follow.  

 

4.4.3. Renaturation of proteins in gel 

 

As initial studies on the paramylon synthase complex, attempts were focused on the 

identification of the UDP-glucose-binding polypeptides of the complex. As an initial 

approach, CHAPS-solubilized enzyme extracts were first separated on an SDS-PAGE gel, 

followed by renaturation with Triton-X. The protein samples were either denatured by 

heating at 95ºC, or by incubation at RT for 10 min. The gels were then incubated with 

UDP-glucose and paramylon in order to see how many polypeptides retain paramylon 

synthase activity. Gel staining was performed by Fluorescent Brightener 28 (Calcofluor) that 

specifically stains β-(1,3)-glucans. This demonstrated that four definite activity bands were 

present and that possibly all these polypeptides are involved in paramylon synthesis. 
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Figure 8. Renaturing of CHAPS-solubilized proteins in an SDS-PAGE gel. In the 10% gel all the 

lanes contain the same volume of the CHAPS-solubilized enzyme extract. Lanes A – B were 

denatured at 95 °C and lanes C – E were not heat denatured. After renaturing of proteins with Triton-

X the gel was incubated with UDP-glucose to allow for paramylon formation. Four definite bands 

were visible in lanes A and B, indicated here by arrows 1 to 4. 

 

 

 

The fact that the sample that was not subjected to heat denaturing did not show these four 

bands cannot be explained at this moment. With the fluorescent stain no marker was visible 

on the gel and the sizes of these bands cannot be confirmed. It can be speculated that bands 

3 and 4 are the same bands showed by Bäumer et al. (2001) to bind UDP-glucose. These 

bands were reported to be of sizes 37 and 54 kDa. The two bands (1 and 2) at the top might 

be denatured protein or the same proteins as the bottom two (3 and 4) with other proteins 

still attached. From this data, it may be concluded that the paramylon synthase complex 

consists of different subunits, of which at least two have the ability to bind UDP-glucose.  
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4.4.4. Protein purification 

 

Different strategies for protein purification were attempted for the solubilized paramylon 

synthase of E. gracilis. Some classic biochemical approaches, such as anion exchange, 

showed no increase in activity and were therefore abandoned as purification methods.  A 

similar result was observed by Bäumer et al. (2001). Other methods such as sucrose density 

gradient centrifugation led to good protein purification.  

 

4.4.4.1. Ammonium sulfate precipitation 

 

In order to evaluate ammonium sulfate precipitation as a method for concentrating and 

partially purifying glucan synthase activity, precipitation experiments were performed. 

Ammonium sulfate precipitation was performed in 25% increments and stirred overnight at 

4 ºC. The pellets from 25, 50, 75 and 100% [w/v] ammonium sulfate were subjected to 

radioactive activity measurements and it was found that the highest paramylon synthase 

activity was obtained after precipitation with 50% ammonium sulfate. The activity was 

twice that from the 75% [w/v] pellet, but this was found not to be much higher than the 

activity obtained in the 25% [w/v] pellet. Ammonium sulfate fractions were also subjected 

to in gel activity measurements and this confirmed the results. During these initial 

experiments, the protein concentration was not determined and should be determined before 

considering this method as a protein concentration method in future studies. It may be 

expected that, in conjunction with other purification methods, this method may be suitable 

for concentration of proteins with little loss of activity. 
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Figure 9. Paramylon synthase activities following ammonium sulfate concentration of the CHAPS-

solubilized protein extract. Highest activity was obtained after precipitation with 50% ammonium 

sulfate and the second highest activity was obtained in the 25% ammonium sulfate fraction. 

 sulfate concentration of the CHAPS-

solubilized protein extract. Highest activity was obtained after precipitation with 50% ammonium 
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4.4.4.2. Anion exchange chromatography 4.4.4.2. Anion exchange chromatography 

  

Proteins bind to ion exchange resin by electrostatic forces between protein surface charges 

and charged groups on the exchanger resin. Anion exchangers have positively charged 

groups and therefore attract negatively charged groups on the protein. Elution from the resin 

is performed by increasing the ionic strength and weakening the electrostatic interaction 

between the protein and adsorbent. In the first anion exchange experiment, protein detection 

by UV showed two large peaks of protein eluting. The corresponding fractions where pooled 

into 11 samples and the activities were measured with the results shown in Figure 10. It is 

clear from this that the proteins corresponding to paramylon synthase were concentrated in 

samples 2 (fraction 16 and 17) and 3 (fraction 18 and 19). However, it was not possible to 

demonstrate any activity in the individual fractions following these measurements, probably 

because enzyme activity was lost during storage of the fractions. Further attempts at anion 

exchange in order to separate the proteins always resulted in the loss of activity. These first 

results were, therefore, not reproducible and it can be concluded that this method is not a 

valuable purification step. 

Proteins bind to ion exchange resin by electrostatic forces between protein surface charges 

and charged groups on the exchanger resin. Anion exchangers have positively charged 

groups and therefore attract negatively charged groups on the protein. Elution from the resin 

is performed by increasing the ionic strength and weakening the electrostatic interaction 

between the protein and adsorbent. In the first anion exchange experiment, protein detection 

by UV showed two large peaks of protein eluting. The corresponding fractions where pooled 

into 11 samples and the activities were measured with the results shown in Figure 10. It is 

clear from this that the proteins corresponding to paramylon synthase were concentrated in 

samples 2 (fraction 16 and 17) and 3 (fraction 18 and 19). However, it was not possible to 

demonstrate any activity in the individual fractions following these measurements, probably 

because enzyme activity was lost during storage of the fractions. Further attempts at anion 

exchange in order to separate the proteins always resulted in the loss of activity. These first 

results were, therefore, not reproducible and it can be concluded that this method is not a 

valuable purification step. 
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Figure 10. Activity measurements of the fractions obtained after anion exchange of the CHAPS- 

solubilized protein extract. Activity was found concentrated in the first samples, but could not be 

confirmed. 

r anion exchange of the CHAPS- 

solubilized protein extract. Activity was found concentrated in the first samples, but could not be 

confirmed. 

  

  

  

4.4.4.3. Size exclusion chromatography 4.4.4.3. Size exclusion chromatography 

  

Size exclusion chromatography separates proteins on the basis of their molecular size and 

shape and since the paramylon protein complex was estimated at 670 kDa (Bäumer et al., 

2001) it would be expected to be separated from smaller enzyme complexes following 

passage through a Sephadex G-200 column. As a positive control, CHAPS-solubilized 

protein extracts were used and the first eight fractions obtained were separated out on a 

native gel and in gel activity measurements performed as in Section 4.3.3.2.. None of the 

expected paramylon synthase activity was observed in these expermiments. During the 

initial chromatography experiments the protein concentration of the individual fractions was 

not determined. If protein concentration had been determined, it would have helped to shed 

some light on why these almost always resulted in a loss of activity. 

Size exclusion chromatography separates proteins on the basis of their molecular size and 

shape and since the paramylon protein complex was estimated at 670 kDa (Bäumer et al., 

2001) it would be expected to be separated from smaller enzyme complexes following 

passage through a Sephadex G-200 column. As a positive control, CHAPS-solubilized 

protein extracts were used and the first eight fractions obtained were separated out on a 

native gel and in gel activity measurements performed as in Section 4.3.3.2.. None of the 

expected paramylon synthase activity was observed in these expermiments. During the 

initial chromatography experiments the protein concentration of the individual fractions was 

not determined. If protein concentration had been determined, it would have helped to shed 

some light on why these almost always resulted in a loss of activity. 
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Figure 11. Native gel electrophoresis of CHAPS-solubilized paramylon synthase after size exclusion 

chromatography. The product, paramylon, was stained by the use of Fluorescent Brightener 28 

(Calcofluor). From left to right: Lanes 1 and 2 (labelled +) contain the positive controls, the rest of 

the lanes contain fractions 1 to 8 as collected from the column.  

 

 

 

Size exclusion chromatography was performed and, technically, the glucan synthase activity 

should elute in the void volume. Bäumer et al. (2001) demonstrated this previously for the 

paramylon synthase complex. It is known that other glucan synthases are composed of large 

multi-subunit complexes, which was also shown for paramylon synthase by Bäumer et al. 

(2001). Size exclusion did not result in purification, but it is advised for future studies to 

determine the protein concentration and to do the radioactive assay which is a more sensitive 

assay for paramylon synthase activity. It can then be decided if this method is suitable as a 

pre-purification step. One problem is that the loading capacity of the column is very low 

and, therefore, only a small amount of the sample can be loaded onto the column.  It might 

be more valuable in future to attempt other methods of size exclusion, such as spin columns. 

 

4.4.4.4. Ultra-centrifugation 

 

Preparative ultra-centrifugation is an effective method for separation of macromolecules. It 

was found that the paramylon synthase activity pelleted after 2 h of ultra-centrifugation at 

140 000 g. Compared with the CHAPS-solubilized protein extracts loaded into the 
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centrifuge tube, the pellet contained a 2.5-fold increase in β-glucan synthase activity, with 

little loss of protein. Ultr-centrifugation is, therefore, the best method tested as an initial 

purification step. 

 

In Figure 12, the purification of the paramylon synthase enzyme complex is indicated by an 

increase in activity. The cell free homogenate always showed very low activity and up to a 

50% increase could be seen by separation of the paramylon granules. CHAPS-solubilization 

of the proteins further increased the activity, clearly indicating that the enzymes are 

associated with the granule. Purification was further increased by ultra-centrifugation. 
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Figure 12.  Preparative ultra-centrifugation of CHAPS-solubilized protein extract. After paramylon 

granules were treated with CHAPS, an increase in activity was observed. This was further increased 

by ultra-centrifugation of the CHAPS-solubilized protein extracts. In total, a 2.5-fold increase in 

activity was observed with little loss of protein.  
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4.4.4.5. Sucrose density centrifugation 

 

In density gradient centrifugation, the proteins pass through the gradient and are separated 

according to their different sedimentation coefficients. Sucrose gradient centrifugation was 

performed with the CHAPS-solubilized protein extract. The specific activity of the most 

active fraction (fraction 11 on Figure 13) was increased 3-fold compared with the crude 

solubilized fraction, while the total recovery was 60%. 
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Figure 13. Sucrose gradient centrifugation of concentrated paramylon synthase obtained by 

preparative ultra-centrifugation. Activity was increased 4-fold but with low recovery of protein.  

 

 

 

4.4.4.6. Product entrapment 

 

A method successfully used in the past for the purification of glucan synthases is product 

entrapment. Product entrapment was used for the first time by Kang et al. (1984) for the 

purification of chitin synthase. The technique relies on the fact that some enzymes have 

affinity to their own product and, if the product is insoluble, the enzyme can be enriched by 

centrifugation. During this study, protein content was not determined due to the small 

volumes obtained after entrapment. Product entrapment performed with a fraction showing 

the highest activity after sucrose density centrifugation led to a 50% increase in activity. 
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This by itself was found to be insufficient as a purification step since after sucrose density 

centrifugation very little protein was recovered and activity was found to decreases with 

storage. Another reason for the instability of the enzymes could be that, after sucrose 

gradient centrifugation, other proteins and phospholipids are eliminated that might be 

needed for full enzyme activity. Preparative product entrapment was also carried out directly 

with CHAPS- solubilized protein extracts. A 50% increase in activity was also observed. 

This can therefore be considered as a purification step in future studies since protein 

recovery is expected to be very good.  
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Figure 14. Product entrapment of CHAPS-solubilized enzyme extracts. The CHAPS-solubilized 

enzyme extract were subjected to product entrapment with a great increase in activity observed. 

Another partially purified fraction obtained from the sucrose gradient was also subjected to product 

entrapment in a separate experiment and the same increase in activity was observed. In each 

experiment, activity was increased by 50% after product entrapment of the enzyme.  
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4.4.4.7. Photoaffinity labelling α-[33P]-UDP-glucose 

 

As a method to identify the UDP-glucose binding polypeptides of the glucan synthases, 

various groups have used photoaffinity labelling. A range of UDP-glucose labels were used 

and were able to identify certain UDP-glucose binding polypeptides from different 

organisms (Bäumer et al., 2001; Shin and Brown, 1995; Drake et al., 1992; 

Meikle et al., 1991; Frost et al., 1990; Delmer et al., 1990; Lin et al., 1990; Lawson et al., 

1988). The fractions obtained from the sucrose gradient showing the highest activity were 

incubated with α-[33P]-UDP-glucose as described, in order to identify the UDP-glucose 

binding subunits of the paramylon synthase complex. From Figure 12, it is clear that there 

are two subunits of sizes 37 and 54 kDa that showed affinity to the substrate. The two 

polypeptides from the paramylon synthase that bind UDP-glucose to fall into the size range 

reported for other organisms. In the wells of the gel A more labeled protein is visible, 

probably due to overloading of protein. 

 

 

 

Figure 15. Radiolabeled proteins from the sucrose gradient fraction. In the silver-stained gel (B), the 

presence of the 54 kDa polypeptide is very clear. This corresponds to the darker band visible on the 

photo obtained from the phosphoimager (A). The 37 kDa band is not as clearly visible on the silver-

stained gel and was also detected in low concentrations by the phosphoimager.  
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4.4.4.8. Peptides from protein sequencing 

 

Following separation of the protein extract that was incubated with α-[33P]-UDP-glucose, 

the 37 and 54 kDa polypeptide bands were subjected to in gel tryptic digestion. The peptides 

were sequenced by LC-MS-MS and no significant peptide sequences where obtained from 

the 54 kDa polypeptide. The top peptide sequences obtained for the 37 kDa polypeptide are 

shown in Table 9. From these peptides, one 13 amino acid peptide from the 37 kDa 

polypeptide showed homology to the β-(1,3)-glucan synthase from various yeasts (Table 9).  

 

 

Table 9. Peptide sequences from the 37 kDa polypeptide and the proteins that match these peptide 

sequences. These peptides obtained the highest scores through the Mascot web-based search engine 

(Hirosawa et al., 1993). The 13 amino acid peptide showed homology to a glucan synthase subunit 

from yeasts 

Peptide Proteins matching peptide 
  
M.EGGEEEVER.I YHR028C - Saccharomyces cerevisiae (Baker's yeast) 
R.THAHAAAVRR.D Rv0922-like protein - Mycobacterium celatum 
R.VAMAMAEK.A Similar to Cytosine/adenosine deaminases - Shewanella sp. MR-4 
R.AGPGEKAPR.I Sexual cell division-inducing pheromone - Closterium ehrenbergii 
K.MCFTQGYLEFSAR.L  CaKRE6 Candida albicans CaKRE6 Glucan synthase subunit 
       - Debaryomyces hansenii (Yeast) (Torulaspora hansenii) 
K.MCFTQGYLEFSAR.L  P32486 Saccharomyces cerevisiae YPR159w KRE6 Glucan synthase  
 subunit    - Debaryomyces hansenii (Yeast) (Torulaspora hansenii) 
    
 

 

 

Degenerate and non-degenerate oligonucleotides were designed against the one peptide (as 

described in Section 4.2.4.) showing homology to a glucan synthase subunit. At the same 

time, oligonucleotides for 3’ RACE were designed. Following 3’ RACE with the non-

degenerate oligonucleotide, a 448 bp PCR product was amplified and then following 

amplification of that 448 bp PCR product another band of 468 bp was also visible on the gel 

(Figure 16). To investigate both products obtained, both were sequenced and the nucleotide 

sequence obtained from the 468 bp product showed high homology to Euglena ferrodoxin 

(Table 10). No homology was seen for the 448 bp product. The PCRs were repeated with the 

same results. 
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Figure 16. PCR products of 448 and 460 bp obtained after 3’ RACE and amplification of the 

product respectively. 

 

 

 

Table 10. Nucleotide sequences obtained from 3’ RACE PCR product 
 

 

Accesion no: P22341  

Ferrodoxin from Euglena viridis 
 

Query  442  D*YILDAAEAAGIDLPYSXRAGACSSCTGVVKTGTVDNSDQSFLDDDQLGKGFVXTCTAY  263 

            D YILDAAE AGIDLPYS RAGACSSCTG+VK GTVD SDQSFLDDDQ+ KGF  TCT Y 

Sbjct  21   DQYILDAAEDAGIDLPYSCRAGACSSCTGIVKEGTVDQSDQSFLDDDQMAKGFCLTCTTY  80 

Query  262  PTSDCTIETXKEEDLF  215 

            PTS+CTIET KE+DLF 

Sbjct  81   PTSNCTIETHKEDDLF  96 

 

 

Accesion no: AAW79313.1  

Chloroplast ferrodoxin from Acetabularia acetabulum 
 

Query  478  DXYXXDAAEXAGXDLPYSXRAGXCSXCTGVVKXGTVDNSXQSFLXXXXLGKGFVXTXXAX  299 

            D Y  DAAE  G DLPYS RAG CS CTGVVK GT+D S QSFL    +G GFV T  A  

Sbjct  62   DVYILDAAEEEGIDLPYSCRAGSCSSCTGVVKSGTIDQSDQSFLDDDQMGNGFVLTCVAY  121 

Query  298  PTSXCXXETHKEEXL  254 

            PTS C  ETHKEE L 

Sbjct  122  PTSDCTIETHKEEEL  136 
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There are many possible reasons as to why the PCRs did not yield the glucan synthase 

cDNA. The quality of the RNA obtained and the conditions under which the cells were 

grown play the most important role. Total RNA was used for the cDNA synthesis, but 

mRNA could also have been used. The amount and quality of the cDNA yielded and the 

oligonucleotide that was designed for this reaction also play an important role. Also the 

conditions under which the PCR was performed can have a significant effect on the products 

obtained. Since degeneracy was introduced into one oligonucleotide, this would lead to a 

lower affinity of the oligonucleotide primer for the DNA template and a lack of success in 

obtaining any PCR products. It would be worthwhile to repeat the PCR experiment after 

designing new oligonucleotides. PCR can be performed under varying conditions and the 

use of nested PCRs can also be considered.  
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Chapter 5 

General discussion and conclusion 
 
 
 

 

The main aim of the work presented in this thesis was to clone the paramylon synthase 

genes from the protist Euglena gracilis. Paramylon, a linear β-(1,3)-glucan, is produced as 

the storage carbohydrate in the Euglena cells. UDP-glucose was shown to be the substrate 

for paramylon synthesis by Marechal and Goldemberg (1964). In 2001, Bäumer and 

co-workers showed that paramylon synthase was a multi-subunit enzyme complex and the 

protein was estimated at 670 kDa after partial purification. Bäumer also showed that the 

enzyme complex has two polypeptides with the ability to bind UDP-glucose. The paramylon 

synthase was, however, only partially purified and sequence information was never 

obtained.  

 

As a first attempt to clone paramylon synthase, a number of molecular biology techniques 

were utilized. Different libraries were screened, one was a cDNA library obtained from Dr 

Meike Hoffmeister and the other cDNA library was constructed for this study. This, as far as 

can be determined, was the first attempt to screen a cDNA library of E. gracilis for the 

paramylon synthase gene. Unfortunately, these attempts to clone the paramylon synthase 

cDNA from an E. gracilis library were unsuccessful. Following the functional screen of the 

libraries, results indicated that the enzyme complex might indeed be membrane-bound as 

found by Bäumer et al. (2001). More information about the properties of the paramylon 

synthase complex would also shed some light on why the screening did not work.   

 

In further attempts, oligonucleotide primers were designed against conserved regions from 

known β-(1,3)-glucan synthase sequences from Sacchoromyces cerevisae as well as fungal 

species. Even if these species contain conserved regions between their protein sequences, the 

same could not be shown in Euglena since no DNA sequence could be obtained from the 

oligonucleotides.  This might also possibly be due to incorrect PCR conditions being used. 

 

All molecular attempts were therefore unsuccessful and for this reason the focus of the 

project was shifted toward protein purification, as done by Bäumer et al. (2001), in order to 
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identify the paramylon synthase. Bäumer et al. (2001) found that classic purification 

methods were insufficient to purify paramylon synthase. The paramylon synthases were very 

unstable and activity was lost during these attempts. These findings were confirmed by 

initial studies in which classic protein purification methods like ammonium sulfate 

precipitation, anion exchange and size exclusion were tested as purification steps.  

 

The enzyme activity was pelleted by preparative ultra-centrifugation and this was a valuable 

first purification step since very little protein was lost during this step. As a second 

purification step, both sucrose density centrifugation and product entrapment showed an 

increase in activity. In the work done by Bäumer et al. (2001) ultra-centrifugation was also 

used as the intial step after solibilization, followed by sucrose density centrifugation and 

anion exchange. From this study and the work done by Bäumer et al. (2001) it was clear that 

anion exchange is not an option when purifying paramylon synthase and hence product 

entrapment is advised as a purification step.  

 

From the purification studies it became clear that the paramylon synthase complex is indeed 

associated with the granula membranes. An increase in activity was observed following the 

addition of CHAPS to the paramylon granula fraction. This detergent is normally used to 

dissociate complexes from membranes and the increase in activity observed indicates that 

the paramylon synthase activity was released from the membrane. This then confirms the 

observation made by Bäumer et al. (2001) that the paramylon synthase are localized on the 

granula membrane. It was possible to characterize other β-(1,3)-glucan synthases from 

different organisms using protein purification and knowing that the paramylon synthase is 

bound to the granula membrane it should be advised that in further attempts to purify and 

characterize this enzyme all attempts should rather be focused on protein purification.  

 

The UDP-glucose binding polypeptides of the complex were found to be 37 and 54 kDa and 

this was within the range of other β-(1,3)-glucan synthesizing subunits. Sequence 

information from these peptides did show some homology to yeast β-(1,3)-glucan subunits. 

This is then the first time that some sequence information is available for the Euglena 

gracilis β-(1,3)-glucan synthases. 

 

In conclusion, the paramylon synthase enzyme from E. gracilis was partially purified and 

some sequence information was obtained from the protein. Further studies should be 
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directed towards obtaining more sequence information in order to help with the cloning of 

paramylon synthase. 
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