
Automated stratigraphic classification and feature

detection from images of borehole cores

by

Stéfan Johann van der Walt

Thesis presented at the University of Stellenbosch in
partial fulfilment of the requirements for the degree of

Master of Science in Engineering

Department of Electrical and Electronic Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Study leaders:

Professor J.H. Cloete Professor B.M. Herbst

April 2005

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is
my own original work and that I have not previously in its entirety or in part
submitted it at any university for a degree.

Signature: .
S.J. van der Walt

Date: .

i

Abstract

Automated stratigraphic classification and feature detection from
images of borehole cores

S.J. van der Walt

Department of Electrical and Electronic Engineering
University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (E&E with CS)

April 2005

This thesis describes techniques proposed for analysing images of borehole
cores. We address two problems: firstly, the automated stratigraphic classifi-
cation of cores based on texture and secondly, the location of thin chromitite
layers hidden in pyroxenite cores.

Texture features of different rock types are extracted using wavelets, the
theory of which provides an intuitive and powerful tool for this purpose. A
Bayesian classifier is trained and used to discriminate between different sam-
ples.

Thin, planar chromitite layers are located using a shortest path algorithm.
In order to estimate the physical orientation of any layer found, a sinusoidal
curve is fitted.

The proposed algorithms were implemented and tested on samples taken
from photographed cores. A high success rate was obtained in rock classifica-
tion, and thin planar layers were located and characterised.

ii

Samevatting

Geoutomatiseerde stratigrafiese klassifisering en
kernmerkonttrekking vanuit beelde van boorgatkerne

S.J. van der Walt

Departement van Elektriese en Elektroniese Ingenieurswese
Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MScIng (E&E met RW)

April 2005

Verskeie tegnieke word aangebied vir die analise van boorgatkernfotos. Twee
probleme word ondersoek: eerstens, die geoutomatiseerde stratigrafiese klas-
sifikasie van kerne, gebaseer op tekstuur en tweedens, die uitkenning van dun
kromitietlagies verskuil in piroksenietkerne.

Verskillende rotstipes se tekstuurkenmerke word onttrek deur gebruik te
maak van golfies. Golfieteorie bied ’n intuïtiewe en kragtige stuk gereedskap
vir hierdie doel. ’n Bayese klassifiseerder word opgelei en gebruik om verskil-
lende rotsteksture van mekaar te onderskei.

Vlakke van dun kromitietlagies sny soms deur die boorgatkerne. ’n Kortste-
pad-algoritme word gebruik om sulke lagies te vind. Om die oriëntasie van so
’n vlak te bepaal, word ’n sinuskurwe gepas.

Die algoritmes is geïmplementeer en getoets met monsters, geneem vanuit
kernfotos. ’n Hoë sukseskoers is verkry by die uitkenning van rotstipes en dun
vlaklagies is gevind en hul eienskappe bepaal.

iii

Acknowledgements

I would like to thank the following people and institutions for their contribu-
tions to this project:

• My academic advisors, Professors J.H. Cloete and B.M. Herbst, for gen-
erously donating their time to this project.

• DefenceTek, GeoMole and the National Research Foundation for fund-
ing this project.

• The University of Stellenbosch for usage of laboratory facilities.

• My wife, Michèle, for supporting me with so much love and enthusiasm.

• My family, P.W, Elaine and Madelé, for their motivation and support.

• My in-laws, Michael, Brigitte and Tristan Janse van Rensburg, who al-
ways show much interest in what I do.

• Josef Ekkerd, Geologist, De Beers Finsch Mine, for his assistance in pho-
tographing dolomite cores.

• Karen Hunter for her insights on wavelet theory.

• My colleagues from the laboratory, Tim Sindle and Lötter Kock, for hu-
morous discourse and a pleasant working environment.

• Wessel Croukamp and Ulrich Buttner for designing and manufacturing
the “Klipspringer” camera suspension arm.

• Paul Kienzle and David Bateman, for welcoming me into the Octave
Forge community.

• My university friends, who had an uncanny understanding of what I
was going through. You cheered up many a gloomy night with interest-
ing conversation!

iv

Contents

Declaration i

Abstract ii

Samevatting iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables x

Notation xi

1 Introduction 1

2 An Overview of Wavelet Analysis 6
2.1 Introduction . 6

2.1.1 The short-time Fourier transform 7
2.1.2 Wavelets in the time-frequency plane 10

2.2 Fundamental theory . 11
2.2.1 An example filter bank . 11
2.2.2 Multi-resolution analysis 15
2.2.3 Sub-band coding and filter banks 22
2.2.4 Fitting the parts together 27

3 Texture Analysis 32
3.1 Introduction . 32
3.2 Texture representation . 33

3.2.1 Statistical . 33

v

Contents vi

3.2.2 Spectral . 35
3.3 Wavelet methods . 36

3.3.1 Why wavelets? . 36
3.3.2 Choosing the right basis 38
3.3.3 Wavelet packet bases . 39
3.3.4 Features from wavelet coefficients 43

3.4 Pattern recognition . 45
3.4.1 Introduction . 45
3.4.2 The Bayesian classifier . 47
3.4.3 Feature reduction . 49

4 Locating Thin Layers 56
4.1 Introduction . 56
4.2 Curves and parameters . 57

4.2.1 Shortest paths . 59
4.2.2 Non-linear least squares fitting 64

4.3 Finding a chromitite layer hidden in a pyroxenite core 69

5 Texture Classification of Borehole Cores 72
5.1 Introduction . 72
5.2 Photographing cores . 72

5.2.1 Configuration of equipment 72
5.2.2 Light sources . 73
5.2.3 Geometrical correction . 74

5.3 Software overview . 75
5.3.1 Numerical Simulations . 75
5.3.2 Feature Selection . 76
5.3.3 Download locations . 77

5.4 Texture Analysis . 77

6 Conclusion 83
6.1 Further research . 84

A Useful Mathematical Results A–1
A.1 The error function at infinity . A–1
A.2 Maximising the generalised Rayleigh quotient A–2
A.3 Lagrangian multipliers . A–4
A.4 The gradient of xTAx . A–5

B Code Contributions B–1

Contents vii

C Geological Logs C–1
C.1 A section of the UG2 system of the Bushveld Igneous Complex C–1

Bibliography X–1

List of Figures

1.0.1 Kilometres of core stored at the De Beers/Finsch core yard. 2
1.0.2 Cores laid out in the De Beers, Finsch core yard after classification. 3
1.0.3 A chromitite stringer visible in a pyroxenite core (fourth core from

the left, bottom). 4

2.1.1 Energy spread of a Gabor atom in the time-frequency plane. . . . 9
2.1.2 The Daubechies wavelet with 4 vanishing moments. 9
2.2.1 Frequency response of the Haar low- and high-pass filters. 13
2.2.2 Levels and scales. 16
2.2.3 The decomposition of multi-resolution spaces. 17
2.2.4 Dilation of the Daubechies 4 scaling function at different levels. . 17
2.2.5 The relationship between scaling and wavelet spaces in multi-

resolution analysis. 19
2.2.6 An example of an ideal spectrum partitioning. 23
2.2.7 Frequency response: Daubechies 8-tap low and high-pass filters. . 23
2.2.8 Reconstruction from downsampled coefficients [SN97, p. 95]. . . 24
2.2.9 Filter bank analysis and synthesis. 25
2.2.10 2-D Daubechies (4 coefficient) scaling function and wavelets. . . . 29
2.2.11 The 2D Daubechies (4 coefficient) scaling function and wavelets

in the frequency domain. 30
2.2.12 Filter bank of the separable 2D wavelet transform. 31

3.2.1 Fourier transform (inverted) of a quasi-periodic texture. 35
3.2.2 The 2-dimensional frequency plane. 36
3.2.3 Unused area in rotation invariant frequency description. 37
3.3.1 Test Images . 39
3.3.2 Pyramid-structured partitioning 39
3.3.3 Adaptive Wavelet Packet Partitioning for Lena, Rock and Curtain 40
3.3.4 4-Level wavelet decompositions of Lena, Rock and Curtain. 41
3.3.5 Inverse wavelet transform after muting channels 41

viii

List of Figures ix

3.3.6 Cumulative level energies of three wavelet transforms. 42
3.3.7 Wavelet transform and level histograms of a typical image. 43
3.3.8 Wavelet transform and level histograms of a textured image. . . . 44
3.3.9 Signature comparison . 45
3.4.1 Axes of projection for PCA (solid) and MDA (dashed). 53

4.1.1 A pyroxenite borehole core from the UG2 system of the Bushveld
Igneous Complex, containing a well hidden chromitite layer (see
the geological log in C.1). 56

4.2.1 Normal line representation. 58
4.2.2 The Hough transform applied. 59
4.2.3 A cylinder sliced by a plane. 60
4.2.4 A left-to-right path through an M ×N matrix. 62
4.2.5 Patching an image for circular shortest paths. 63
4.2.6 Chromitite layers found using shortest paths. 63
4.2.7 An artificial layer in a noisy background (left) is found to be the

shortest path (right). 63
4.2.8 A shortest path (left) and the fitted sinusoid (right). 69
4.3.1 Finding thin layers in a borehole photograph. 70

5.2.1 Camera setup for photographing cores. 73
5.2.2 Geometrical distortion is observed in a cylinder, photographed

from above (left). Using a different projection (right), the photo-
graph can be transformed to remove such distortion. 74

5.3.1 Screenshot of the image cutting software. 77
5.4.1 Three core samples from the Bushveld Igneous Complex [VvG86]

(the platinum dataset). 78
5.4.2 Three types of dolomite from the Ghaap group [Beu78, Bar98,

Ekk04] (the diamond dataset). 78
5.4.3 Accuracy and success rates as a function of the rejection threshold. 82

List of Tables

2.1 Properties of multi-resolution subspaces [Mal99, p. 221]. 17
2.2 Properties of the z-transform [PM96]. 25

3.1 Statistical texture descriptors. 34

5.1 Classifier results. 80

x

Notation

The notation corresponds to that used in [Mal99] and [SN97].

Mathematical

Z Integers.

R Real numbers.

〈f, g〉 Inner product,
∫ +∞
−∞ f(t) g(t) dt.

x∗ Complex conjugate of x, i.e. if x = Aejθ then x∗ = Ae−jθ.

L2(R) The function space of measurable, one-dimensional, finite-energy
functions f(x), so that

∫ +∞
−∞ |f(x)|2 dx <∞.

l2(Z) The vector space of all sequences c = {ck : k ∈ Z}, so that
∑+∞

k=−∞ |ck|2 <
∞.

Signals and filters

f(t) Continuous-time signal.

f(n) Discrete-time signal.

ψj,k(t) Wavelet at scale j with translation k.

φj,k(t) Scaling function at level j with translation k.

h(n) Coefficients of a discrete-time, finite impulse response filter.

Probability

X Random variable.

E[·] Expected value.

Ẽ[·] Estimated expected value based on a set of samples.

X̄ Mean or expected value of X .

η(µ, σ) Normal distribution with mean µ and standard deviation σ.

P (x) Probability mass function with P (x) ≥ 0 and
∑

x P (x) = 1.

xi

Notation xii

p(x) Probability density function with p(x) ≥ 0 and
∫ +∞
−∞ p(x)dx = 1.

Vectors and Matrices

a Scalar

a Vector

ā Complex conjugate of a (every element a+ ib becomes a− ib).

aT Transpose of a.

aH Conjugate transpose or Hermitian of a (aH = āT)

I Identity matrix

Transforms

F (ω) Fourier transform of f(t).

Sf(u, s) Windowed or short-time Fourier transform of f(t).

Wf(u, s) Wavelet transform of f(t).

f̌L,E(n) Discrete wavelet transform at levelK−L, with extension type E
(values: P (periodic), S (symmetric) and Z (zero-padding)). The
signal to be decomposed is defined at level K.

X(z) The z-transform of x(n): X(z) =
∑+∞

n=−∞ x(n)z−n.

Chapter 1

Introduction

Mining companies use stratigraphic and geotechnical models to estimate where
profitable ore may be safely extracted. In order to construct such models, bore-
holes of small diameter are drilled [Hei94]. The cores extracted from inside
these boreholes are carefully examined, and the models adjusted according to
the observed properties of the core.

Individually examining each piece of core can be a laborious and time-
consuming task. Such boreholes can reach lengths exceeding 2 km and, in
2003 alone, Anglo-Platinum produced 667 km of core [Pla]. Figures 1.0.1 and
1.0.2 show a core yard and give an indication of the enormous magnitude of
the task.

A geologist must classify the rock type according to depth and also note
any strange anomalies present. This information is often entered into a database,
from which logs similar to the one shown in Appendix C.1 can be generated.

Core scanning is becoming more commonplace, allowing permanent, high-
quality digital stratigraphic records to be stored [Pla]. With so much raw, dig-
ital data available, one inevitably wonders whether a computer can assist in
classifying cores and in finding geological features [HPGM96].

In this thesis, we discuss image processing techniques that address these
problems. Two outcomes are specified: firstly, the stratigraphic classification
of borehole cores to a given accuracy and secondly, the location and identifica-
tion of certain thin layers present. Specifically, we are interested in chromitite
stringers — thin, brittle layers that may result in the collapse of hanging walls
(roofs) of stopes and tunnels.

We want to perform stratigraphic classification based on the texture of
core images. Much research has been done on the analysis of texture [AM03,
CJ83, HSD73, HSL92, CK93, PS95, Skl78, Uns95, vdW98], but very little aimed
specifically at natural texture [CDE96] and rock texture [HPGM96]. This thesis

1

Chapter 1. Introduction 2

Figure 1.0.1: Kilometres of core stored at the De Beers/Finsch core yard.

investigates the use of more modern texture features and uses them to classify
dolomite rock samples successfully.

Locating thin layers is similar to fracture detection in oil wells. Sinusoidal
fitting [HTE94] (sometimes found using the Hough transform [THK97]) is a
popular method for addressing the problem. It works well for images where a
high contrast is observed between the fracture and the rock wall, but this is not
the case for pyroxenite cores, as is shown in Figure 1.0.3. We propose isolating
the pixels of thin layers by using a shortest path algorithm, as suggested by
Sun and Pallottino [SP03]. Sinusoidal curves can then be fitted to these pixels
in order to obtain the orientation of the plane cutting through the borehole.

We now provide a short overview of each chapter.
Wavelet analysis is a relatively recent addition to the arsenal of signal pro-

cessing tools. It is the culmination of fruitful collaboration between many dif-
ferent scientific disciplines and provides a method of analysing signals, not
only in the frequency domain, but also in the time (or spatial) domain1. CHAP-
TER 2 explores this localisation in the time-frequency domain and explains
why this is a desirable property. The tight coupling between discrete wavelets

1We use terms “time domain” and “spatial domain” interchangeably.

Chapter 1. Introduction 3

Figure 1.0.2: Cores laid out in the De Beers, Finsch core yard after classifica-
tion.

and filter banks is explained and illustrated.
The classification of rock types is based on texture analysis and recogni-

tion. Classical approaches to texture analysis are re-iterated in CHAPTER 3.
Texture descriptors are typically formed from the statistical properties of tex-
tured images. This “time-domain” approach is sometimes complemented by
spectral descriptors, which analyse the frequency content of textures. Wavelet
methods are neither “time-domain” nor “frequency-domain”, but a combina-
tion of both. It allows the representation of different texture frequencies, as
well as where they occur spatially. Wavelet families have different attributes
(associated with different filters). A short discussion is given on the appropri-
ate choice of wavelet family. The suitability of the wavelet packet transform
for texture recognition is evaluated.

A statistical classifier is used to discriminate between different texture types.
While this thesis focuses mainly on the types of texture features involved, these
features need to be evaluated experimentally. As such, the Bayesian classifier
was chosen under the assumption that the class data is normally distributed.
Of the simpler classifiers, it has been shown to give good results, provided that

Chapter 1. Introduction 4

Figure 1.0.3: A chromitite stringer visible in a pyroxenite core (fourth core
from the left, bottom).

Chapter 1. Introduction 5

the normality assumption is accurate.
While training the classifier, data scarcity proved to be a problem. The

feature vectors were too sparse in the feature space to provide accurate esti-
mates of the parameters of the normal-model. Principal component analysis
and multiple discriminant analysis were evaluated as ways of reducing the
dimensionality of the feature data. The feature vectors were thereby “com-
pressed” in the feature space, allowing more accurate training of the classifier.

CHAPTER 4 deals with the location of thin layers. The layers are often dark
and hidden in a fairly “noisy” texture background. Localised methods fail to
isolate the layers. Consequently, algorithms that analyse complete layers/paths
have to be taken into consideration. The shortest paths algorithm has proved
successful in isolating pixels of chromitite stringers, found in the UG2 system
of the Bushveld Igneous Complex (see the geological log in C.1).

A thin, planar layer cutting through a borehole is observed as a sinusoidal
pattern in the core photograph. A (non-linear) sinusoidal model is fitted to the
pixels obtained. The dip and azimuth of the plane can be calculated from the
resulting phase and amplitude.

Experimental results for the texture classification system are presented in
CHAPTER 5. The experiments are based on dolomite images, acquired from
the De Beers, Finsch diamond mine. The configuration and lighting require-
ments for photographing cores are described. After a brief overview of the
software used, we present the success rates obtained by the texture classifier.
The trade-off between accuracy and success, depending on the number of re-
jections made, is illustrated.

We refer the reader to APPENDIX A for mathematical results used through-
out the text.

Chapter 2

An Overview of Wavelet
Analysis

2.1 Introduction

“Wavelets are not based on a ’bright new idea’, but on concepts
that already existed under various forms in many different fields.
The formalization and emergence of this ’wavelet theory’ is the re-
sult of a multidisciplinary effort that brought together mathemati-
cians, physicists and engineers, who recognized that they were in-
dependently developing similar ideas. For signal processing, this
connection has created a flow of ideas that goes well beyond the
construction of new bases or transforms.”

— Stéphane Mallat [Mal99]

Petroleum geologists often use seismic waves to investigate underground struc-
tures. One such an engineer, Jean Morlet, found a special way of analysing
seismic reflection signals. He extracted signal components localised in space
and called them wavelets [M+01]. Little was he to know that, years later, the de-
velopment of a mathematical foundation describing these waves would bring
together many different disciplines of science. The culmination of the effort is
what is known today as wavelet theory.

The Fourier transform is an excellent way of examining the characteris-
tics of linear time-invariant systems, but in many applications the transient
properties of a signal are just as, if not more, important than the Fourier prop-
erties. In the case of textures, not only is it important what frequencies the
samples contain, but also where these frequency components occur spatially.

6

Chapter 2. An Overview of Wavelet Analysis 7

The Fourier transform cannot provide this information, since it considers the
signal as a whole, being defined as

F (ω) =
∫ +∞

−∞
f(t)e−jωtdt,

where ω is the radial frequency. The original signal can be perfectly recon-
structed over continuous regions, using the inverse Fourier transform:

f(t) =
1
2π

∫ +∞

−∞
F (ω)ejωtdω.

2.1.1 The short-time Fourier transform

The Fourier transform analyses the frequency content of a signal, but cannot
show where those frequencies occur. The short time Fourier transform, intro-
duced by Gabor, addresses this problem. Here, the input signal is multiplied
by a real and symmetric shifting window of finite support1 in order to localise
the transform, which then becomes

Sf(u, ξ) =
∫ +∞

−∞
f(t) g(t− u)e−jξtdt, (2.1.1)

where g(t) is the window function, ξ the radial frequency and u the translation
in time. This transform provides information about both the time and the fre-
quency content of an image. Equation (2.1.1) shows the transform in the time
domain, where it is localised around u, allowing us to narrow down the posi-
tion of transient effects in time. The window function is not an impulse and is
spread in time, and the energy of the transform is localised over an interval of
size ∆t.

Mallat [Mal99, p. 3] also examines the window in the frequency domain,
showing a similar localisation here. The transform is obtained by correlating
the signal with a modulated window or atom, gu,ξ(t), translated in time and
frequency and defined as

gu,ξ(t) = g(t− u)ejξt. (2.1.2)

The short time Fourier transform is then

Sf(u, ξ) =
∫ +∞

−∞
f(t) g∗u,ξ(t)dt =

∫ +∞

−∞
f(t) g(t− u) e−jξtdt. (2.1.3)

1Support: the interval centred around u where f(t− u) is non-negligible.

Chapter 2. An Overview of Wavelet Analysis 8

Parseval’s theorem [PZP01, A. 3] states that

∫ +∞

−∞
f1(t) f∗2 (t) dt =

1
2π

∫ +∞

−∞
F1(ω)F ∗2 (ω) dω,

which allows (2.1.3) to be written as

Sf(u, ξ) =
1
2π

∫ +∞

−∞
F (ω)G∗µ,ξ(ω) dω. (2.1.4)

Here, the Fourier transform of the atom is

Gu,ξ(ω) =
∫ +∞

−∞
g(t− u)ejξte−jωtdt

=
∫ +∞

−∞
g(t− u)e−j(ω−ξ)tdt

=
∫ +∞

−∞
g(v)e−j(ω−ξ)(v+u)dv

= G(ω − ξ)e−j(ω−ξ)u

and the complex conjugate becomes

G∗u,ξ(ω) = G(ω − ξ)ej(w−ξ)u.

The atom is centred in the frequency domain around ξ. The atom is not an
impulse in the frequency domain, but is spread, so that the transform energy
is localised over an interval of size ∆f . According to Gabor’s interpretation of
the uncertainty principle [Gab46, p. 432],

∆t∆f ≥ 1
2
.

The product ∆t∆f is minimum when the window g(t) is Gaussian, in which case
gu,ξ is known as a Gabor atom.

Now, rewrite the transform (2.1.4) in terms of frequency as

Sf(u, ξ) =
1
2π

∫ +∞

−∞
F (ω)G(ω − ξ) eju(ω−ξ) dω.

The transform energy is localised over an interval of size ∆f in the frequency
domain and, as shown earlier, over an interval of size ∆t in the time domain.

The short time Fourier transform thus has a fixed, finite time-support ∆t
centred around u, and a fixed, finite frequency spread ∆f centred around ξ

(see a representation of the atom energy spread in Figure 2.1.1). This enables

Chapter 2. An Overview of Wavelet Analysis 9

0

ω

t

∆t

∆ω

u

ξ

Figure 2.1.1: Energy spread of a Gabor atom in the time-frequency plane.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

ψ

Figure 2.1.2: The Daubechies wavelet with 4 vanishing moments.

the short-time Fourier transform to point out transient effects in both the time
and frequency domains. The transform is not perfect, however. It would
make more sense to have atoms with varying time and frequency support,
depending on their positions in the time-frequency plane. An atom at a low
frequency, for example, should have longer time support (and then necessarily
has smaller frequency spread). The wavelet transform achieves this.

Chapter 2. An Overview of Wavelet Analysis 10

2.1.2 Wavelets in the time-frequency plane

Figure 2.1.2 shows a typical wavelet, ψ. An (orthogonal) wavelet is a signal
whose dilations and translations form an orthogonal basis of L2(R), as ex-
plained later. For now, simply note that the wavelet is localised in time, with a
zero average, i.e.

ψ(t) = 0 |t| > T,∫ +∞

−∞
ψ(t)dt = 0.

This wavelet is scaled by a scaling factor s and translated in time by u, to form
the atom

ψu,s(t) =
1√
s
ψ

(
t− u

s

)
. (2.1.5)

The wavelet atom’s Fourier transform is calculated in a way similar to that
used with the Gabor atom. The atom in the frequency domain is

Ψu,s(ω) =
∫ +∞

−∞

1√
s
ψ

(
t− u

s

)
e−jωtdt,

which can be simplified using the substitution v = t−u
s , so that it becomes

Ψu,s(ω) =
∫ +∞

−∞

√
sψ (v) e−jω(sv+u)dv

= e−jωu√s
∫ +∞

−∞
ψ(v)e−j(ωs)vdv

= e−jωu√sΨ(ωs).

The wavelet transform is obtained by correlating a function with the wavelet
atom, ψu,s(t), and is

Wf(u, s) =
∫ +∞

−∞
f(t)ψ∗u,s(t) dt =

∫ +∞

−∞
f(t)

1√
s
ψ∗

(
t− u

s

)
dt, (2.1.6)

which can be written in terms of frequency, using Parseval’s theorem, as

Wf(u, s) =
1
2π

∫ +∞

−∞
F (ω)Ψ∗

u,s(ω) dω =
1
2π

∫ +∞

−∞
F (ω) e−jωu√sΨ(ωs) dω.

(2.1.7)
From (2.1.6) and (2.1.7) it can be seen that the energy of the wavelet transform
is, like in the case of the short time Fourier transform, more or less localised
in time and frequency. The time-support ∆t increases in proportion to the

Chapter 2. An Overview of Wavelet Analysis 11

scale s, while the frequency spread is inversely proportional to s. This makes
intuitive sense: time support should be long for low frequencies and short for
high frequencies.

Orthogonal wavelet bases

Both the short time Fourier and the wavelet transforms discussed in Section
2.1.2 are highly redundant. This redundancy stems from the correlation of the
signal with an atom, as the atom is shifted over all time. The set of all atoms,
shifted over all time and scaled by all factors,

{ψu,s(t)}u,s∈R2 ,

does not form an orthogonal basis of the function space L2(R). We define a
new set of atoms (or a family of wavelets), translated by integer values of n, as

{
ψj,n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}

(j,n)∈Z2

.

If ψ(t) is chosen carefully, this family does form an orthonormal basis of L2(R)
[Mal99, p. 220]. A signal can then be expressed as a linear combination of the
orthogonal wavelets — an idea central to the discrete wavelet transform.

2.2 Fundamental theory

2.2.1 An example filter bank

A filter bank is a set of parallel, discrete-time filters through which a signal
is fed. The wavelet decomposition is implemented by means of such filter
banks, as is shown in Section 2.2.2. Here, we give a short overview of filters
and demonstrate filter banks by means of the Haar wavelet.

Examine the filter with the Haar coefficients

h0(n) =
[

1√
2

1√
2

]
.

The result of filtering a discrete signal x, using h0, is

y(n) =
+∞∑

k=−∞
h0(k)x(n− k), (2.2.1)

Chapter 2. An Overview of Wavelet Analysis 12

or, expressed as a convolution2,

y(n) = (h0 ∗ x)(n).

If both x(n) and h0(n) are zero for n < 0, the filter response, y(n), is too.
Any realisable filter is causal: in other words, it cannot produce a result before
receiving an input. Since the filter has a limited number of coefficients, T , the
filter response to an input of length N is also zero for n > N + T − 1 — it
is a finite impulse response or FIR filter. This means that, for a limited number
of input values, the output will have a limited number of non-zero values as
well.

It follows from (2.2.1) that the discrete Fourier transform of a convolution
is equivalent to

Y (ω) =
∞∑

n=−∞
y(n)e−jωn =

∞∑
n=−∞

+∞∑

k=−∞
h0(k)x(n− k)e−jωn

=
∞∑

k=−∞

+∞∑
u=−∞

h0(k)x(u)e−jω(u+k)

= H0(ω)X(ω).

The frequency response H0(ω) of the filter is the discrete Fourier transform of
h0(n),

H0(ω) =
+∞∑

n=−∞
h0(n)e−jnω

= h0(0) + h0(1)e−jω

=
1√
2
(1 + e−jω). (2.2.2)

This can be rewritten as

H0(ω) =
1√
2
(ejω/2 + e−jω/2)e−jω/2

=
√

2 cos
(ω

2

)
e−jω/2.

The filter frequency response is that of a low-pass filter (over 0 ≤ ω ≤ π), with
a magnitude of zero at ω = π,

√
2 at ω = 0 and with a linear phase response of

2A convolution between a(n) and b(n) is defined as y(n) = (a∗b)(n) =
P+∞

n=−∞ a(k)b(n−k).

Chapter 2. An Overview of Wavelet Analysis 13

Low-pass
High-pass

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 π

Fi
lt

er
A

m
pl

it
ud

e

π
2

Radial Frequency

Figure 2.2.1: Frequency response of the Haar low- and high-pass filters.

−ω/2. It can be shown in the same way that the filter

h1(n) =
[

1√
2

− 1√
2

]

is a high-pass filter: the response is a mirrored image of H0(ω) around π
2 , as

shown in Figure 2.2.1.
Filtering a signal by h0, we obtain a low-pass version of that signal — an

approximation of the signal, with higher frequencies (or detail) removed. The
opposite is true when using h1: here we remove low frequencies (or slowly
changing parts of the signal) in order to obtain the details removed by the
low-pass filter. As we will show later, low-pass filters produce scaling functions,
while high-pass filters produce wavelets.

Define the input vector

x =
[

0 0 1 1 0.75 0.5 0.25 0.0
]T
.

The responses of x when filtered by h0 and h1 are

x ∗ h0 =
[

0 0 0.707 1.414 1.237 0.884 0.53 0.177 0
]T

(2.2.3)

x ∗ h1 =
[

0 0 0.707 0 −0.177 −0.177 −0.177 −0.177 0
]T

(2.2.4)

Notice how the detail coefficients, x ∗ h1, are generally smaller than the low-
pass approximation coefficients, x ∗ h0, since they only describe changes in the

Chapter 2. An Overview of Wavelet Analysis 14

signal. Because the elements have smaller values, they can be represented us-
ing fewer bits, which is useful for signal compression. Also, the signal has been
split into an approximation and a detail sub-signal, which is useful for analy-
sis. If the signal is to be represented this way, there remains one problem: x(n)
consists of 8 elements, while the resulting combination of coefficients comprise
18 elements, more than twice the original number.

For each result, examine the vector consisting of the last 8 elements. Down-
sample this vector (denoted by (↓ 2)) by discarding every second element. The
coefficients then become

(↓ 2)x ∗ h0 =
[

0 1.414 0.884 0.177
]T

(↓ 2)x ∗ h1 =
[

0 0 −0.177 −0.177
]T
.

Now there are 8 elements in total, the same number as in original input. The
first level wavelet decomposition is

x̌1,P =
[

0.0 1.414 0.884 0.177 0.0 0.0 −0.177 −0.177
]T
,

which can also be written in the matrix form3

x̌1,P = Ax =

[
H0

H1

]
x =

1√
2

1 1
1 1

1 1
1 1

−1 1
−1 1

−1 1
−1 1

0
0
1
1

0.75
0.5
0.25
0

=

0
1.414
0.884
0.177

0
0

−0.177
−0.177

.

The transform would be of little use if the original signal x can not be recovered
from these coefficients. Since A can be shown to be orthonormal (A−1 = AT),

3Notation: all elements with a value of zero are left blank.

Chapter 2. An Overview of Wavelet Analysis 15

we note that

AT x̌1,P = ATAx =
1√
2

1 −1
1 1

1 −1
1 1

1 −1
1 1

1 −1
1 1

0
1.414
0.884
0.177

0
0

−0.177
−0.177

=

0
0
1
1

0.75
0.5
0.25
0

= x.

Perfect reconstruction! The multiplication byAT has the same effect as upsam-
pling4 (2.2.3) and (2.2.4), filtering by the synthesis filters g0 and g1 respectively
and then adding the results. Thus,

(↑ 2)(↓ 2)x ∗ h0 =
[

0 0 1.414 0 0.884 0 0.177
]T

(↑ 2)(↓ 2)x ∗ h1 =
[

0 0 0 0 −0.177 0 −0.177
]T
,

is filtered by

g0 =
[

1√
2

1√
2

]

g1 =
[
− 1√

2
1√
2

]
,

and the resulting vectors added.
This simple example shows that it is possible to decompose a signal to ob-

tain an orthogonal wavelet representation of the same length. It is also possi-
ble to reconstruct the original signal from such a wavelet representation. How
are these filters related to wavelets? The next section proceeds to answer this
question, after which Section 2.2.3 describes the filters involved in more detail.

2.2.2 Multi-resolution analysis

The discrete wavelet transform is intuitively described in terms of multi-re-
solution analysis. Mallat outlines this approach to wavelet theory in [Mal89],
describing the very important interaction between multi-resolution signal ap-
proximation and that of conjugate digital filters (also see Section 2.2.3).

The resolution at which an image is viewed determines the attributes that

4Upsampling by 2, denoted by (↑ 2), means inserting a zero after every element except the
last.

Chapter 2. An Overview of Wavelet Analysis 16

j
Scale 2j

Level j

j = K − 1 j = Kj = K − 3 j = K − 2

Figure 2.2.2: Levels and scales.

become visible. Examining a coarse version of an image emphasises large ob-
jects and slowly changing frequencies, whereas the finer detail becomes ap-
parent only at higher resolutions. There are two main reasons why images
are decomposed into different resolutions: to obtain invariance of distance,
or to discriminate between objects of different sizes. The first, for example,
occurs when an object needs to be recognised from images taken at different
distances. The second, when trying to extract differently sized attributes from
a fixed point-of-view.

In either scenario, it is necessary to artificially scale an image by projecting
it to lower resolutions. A resolution step of 2 is chosen for ease of computation.
Thus, an image at scale 2K (also levelK, see Figure 2.2.2) is projected to the scale
2K−1 , such that the image resolution is halved.

When viewing (continuous) signals at multiple resolutions, it is useful to
think of a function space Vj that contains all signals at a certain level j. Con-
sider a signal defined in the higher resolution space Vj+1. A low resolution
approximation of this signal at level j exists in the function space Vj . But the
low resolution approximated signal also exists in all higher resolution spaces,
Vk where k ≥ j. The spaces are nested, i.e.

Vj ⊂ Vj+1.

Bases must be found for these spaces in order to express signals at different
levels. While not a requirement, we are interested in orthonormal bases which
simplify the theory.

The difference between a signal approximation at level j and j + 1 is con-
tained in a wavelet space, Wj (see Figure 2.2.3). Again, for simplicity, we

Chapter 2. An Overview of Wavelet Analysis 17

· · ·
· · ·

VN−2

WN−2

VN

WN−1

VN−1

Figure 2.2.3: The decomposition of multi-resolution spaces.

Table 2.1: Properties of multi-resolution subspaces [Mal99, p. 221].

For all j ∈ Z and k ∈ Z:

1 f(x) ∈ Vj ⇔ f(x− 2−jk) ∈ Vj

2 Vj ⊂ Vj+1

3 f(x) ∈ Vj ⇔ f (2x) ∈ Vj+1

4 limj→−∞Vj =
⋂+∞

j=−∞Vj = {0}
5 limj→+∞Vj = Closure

(⋃+∞
j=−∞Vj

)
= L2(R)

There exists a scaling function φ(t) such that {φ(t− n)}n∈Z is an orthonormal
basis for V0.

Sc
al

in
g

fu
nc

ti
on

Time

Level K-2

Level KLevel K-1

0

00

Level K-3

0

Figure 2.2.4: Dilation of the Daubechies 4 scaling function at different levels.

would like Wj to be the orthogonal complement of Vj in Vj+1. This is useful
in feature extraction, where wavelet coefficients of different levels should not
carry the same information.

A complete list of properties required of Vj to be a multi-resolution space
is given in Table 2.1.

Chapter 2. An Overview of Wavelet Analysis 18

We base the rest of the discussion on the following principles and assump-
tions:

• A multi-resolution space V0 exists, with orthonormal basis functions
{φ(t − n)}n∈Z (see Table 2.1). As such, any function in V0 can be ex-
pressed as

f0(t) =
∑

n

a0(n)φ(t− n).

The dilated scaling function , φ(2t), exists in V1 and its shifts

{
√

2φ(2t− n)}n∈Z

form an orthonormal basis for that space (see Table 2.1, properties 1 and
3 and Figure 2.2.4).

• The wavelet space W0 is the orthogonal complement of V0 in V1, thus
V0 ∩W0 = {∅}. The shifted wavelets ψ(t − n) form a basis of W0, so
that any function in the wavelet space can be expressed as

fW0(t) =
∑

n

b0(n)ψ(t− n).

• Any function in V1 can be expressed as a linear combination of wavelet
and scaling functions. We denote this with the notation V1 = V0 ⊕W0

(see Fig 2.2.5). Therefore,

f1(t) =
∑

n

a0(n)φ(t− n) +
∑

n

b0(n)ψ(t− n).

We first examine the relationship between the scaling functions at different
levels. Any function that exists in V0 (including the scaling function φ(t)), also
exists in V1. Given coefficients c(n), the scaling function can be expressed in
terms of the basis functions of V1 (shifted, dilated scaling functions) as stated
by the dilation equation

φ(t) =
√

2
∑

n

c(n)φ(2t− n). (2.2.5)

A shifted scaling function becomes

φ(t− k) =
√

2
∑

n

c(n)φ(2t− 2k − n)

=
√

2
∑

l

c(l − 2k)φ(2t− l). (2.2.6)

Chapter 2. An Overview of Wavelet Analysis 19

W0

V1 = V0 ⊕W0

V0

Figure 2.2.5: The relationship between scaling and wavelet spaces in multi-
resolution analysis.

This shows that any function in V0 can also be expressed in V1 in terms of the
basis functions

{φ(2t− l)}l∈Z.

The scaling function φ(t) is characterised by the coefficients c(n), and can be
found by applying the dilation equation recursively. It only converges for
certain c(n), but we will not discuss the conditions for convergence here (see
[SN97, p. 240]). The wavelet can be found directly from the scaling function
(not recursively5), using the coefficients d(n). The wavelet is given by

ψ(t) =
√

2
∑

n

d(n)φ(2t− n),

where d(n) is the alternating flip of c(n),

(−1)nc(N − n).

It can be shown that this choice of d(n) ensures that Wj ⊥ Vj .
The coefficients c(n) have a valuable property: they are orthogonal over

double shifts [SN97, p. 182]. Multiply the dilation equation (2.2.5) by
√

2φ(2t−
m) on both sides and integrate to obtain c(m):

∫ +∞

−∞
φ(t)φ(2t−m)dt =

∫ +∞

−∞

∑
c(n)φ(2t− n)φ(2t−m)dt

= c(m).

5While the scaling function spaces are nested, the wavelet spaces are not. A wavelet in W0

is not present in W1, but rather exists in V1.

Chapter 2. An Overview of Wavelet Analysis 20

The product of c(n) with any double shift c(n− 2m) is then

∑
n

c(n)c(n− 2m) =
∫ +∞

−∞
φ(t)φ(2t− n)dt

∫ +∞

−∞
φ(t)φ(2t− n+ 2m)dt = δ(m),

since the integrals both evaluate to one only whenm = 0. This property proves
to be useful later, when these coefficients are used in an orthogonal filter bank.

The part of a signal f(t) that resides in Vj is expressed in terms of coeffi-
cients aj(n) as

fj(t) = 2j/2
∑

n

aj(n)φ(2jt− n).

The coefficients form the discrete approximation of f in Vj . What is the con-
nection between the coefficients aj+1(n) and aj(n)? Consider a0(n), the coeffi-
cients which describe the orthogonal projection of f(t) in V0. Here

a0(n) = 〈f(t), φ(t− n)〉

=
∫ +∞

−∞
f(t)φ(t− n)dt,

which, using (2.2.6), can be written as

a0(n) =
∫ +∞

−∞
f(t)

√
2

∑

l

c(l − 2n)φ(2t− l)dt

=
√

2
∑

l

c(l − 2n)
∫ +∞

−∞
f(t)φ(2t− l)dt

=
√

2
∑

l

c(l − 2n) 〈f(t), φ(2t− l)〉 .

Since the inner product 〈f(t), φ(2t− l)〉 gives the coefficients a1(l),

a0(n) =
∑

l

√
2c(l − 2n)a1(l).

This is a very important result. It shows that the scaling function coefficients
at level j − 1 are related to those at level j by the coefficients c(l). In fact, the
double shifts of c(l) are used, which were shown earlier to be orthogonal. If
we define a filter h0(n) as

h0(n) =
√

2c(N − n),

(where N is the length of c) the coefficients a0(n) can be written as the convo-

Chapter 2. An Overview of Wavelet Analysis 21

lution

a0(n) = (a1 ∗ h0)(2n) =
+∞∑

n=−∞
a1(l)h0(2n− l).

The coefficients are obtained by filtering a1(l) with h0(l) and then downsam-
pling the resulting vector by 2. Once a continuous signal has been written in
terms of coefficients aK(n) at level K, the coefficients for any lower level can
be calculated by filtering operations.

In practice, we often work with sampled signals. The continuous signal
f(t) is never seen, but the coefficients f(nT) (where T is the sampling interval)
can be used as aK(n). Strictly speaking, this approach is incorrect, since it
assumes an underlying function

f(t) = 2K/2
∑

n

f(nT)φ(2Kt− n).

Strang discusses this “wavelet crime” in [SN97, p. 232] and recommends that
samples f(nT) be pre-filtered before being used as coefficients. Still, this is
seldom done in practice — it is much easier to simply use the sampled values
directly as coefficients.

In the same way that a0(n) is related to a1(n), the wavelet coefficients b0(n)
are related to b1(n) by

b0(n) = (a1 ∗ h1)(2n) =
+∞∑

n=−∞
b1(l)h1(2n− l)

where h1 is a filter of length L and is the alternating flip of h0,

h1(l) = (−1)lh0(L− l).

The discrete signal a1(n) can now be reconstructed from the scaling and wavelet
coefficients at level 0. It is

a1(l) =
∑

n

a0(n)c(l − 2n) +
∑

n

b0(n)d(l − 2n).

Chapter 2. An Overview of Wavelet Analysis 22

This is clear from the reconstruction of f1(t):

f1(t) =
∑

n

a0(n)φ(t− n) +
∑

n

b0(n)ψ(t− n)

=
∑

n

a0(n)
∑

l

√
2c(l)φ(2t− l) +

∑
n

b0(n)
∑

l

√
2d(l)φ(2t− l)

=
√

2
∑

l

[∑
n

a0(n)c(l − 2n) +
∑

n

a0(n)d(l − 2n)

]
φ(2t− l)

=
√

2
∑

l

a1(l)φ(2t− l).

Summary

We discussed the coefficients c and d which link the function spaces V0 and
V1, or, in general, Vj and Vj+1. It was shown that a1(n) can be decomposed
into the scaling and wavelet coefficients a0(n) and b0(n), and that these coeffi-
cients can be combined to reconstruct a1(n). Generally, a signal has a discrete
approximation aK(n) at level K. The approximation aK−1(n) at a lower level
K − 1 can be obtained by simply filtering these coefficients. The wavelet co-
efficients bj(n) can be found in a similar manner, with a different filter. The
coefficients aK(n) at level K can be reconstructed from aK−1(n) and bK−1(n).

2.2.3 Sub-band coding and filter banks

As shown in Section 2.2.2, the wavelet decomposition can be implemented by
means of filter banks. These filter banks implement a technique known as
sub-band coding, whereby a signal is split into different frequency bands before
being coded. Normally data signals have more energy in the lower frequency
bands (or channels). Coding the channels separately allows for more accu-
rate quantisation in these regions [PM96]. Further, the bands can be examined
individually to extract features.

The signal spectrum can be split in different ways, some more convenient
than others. Any such division of the spectrum must be complete: the recom-
bination of all channels must be able to yield the original signal. Typically, the
spectrum is split equally into a low- and high-pass band. The splitting process
is then repeated recursively for the low-pass band, creating channels of rapidly
decreasing bandwidth. This scheme is shown in Figure 2.2.6 for an ideal fil-
ter. In reality, there is always overlap between the low and high-pass filters,
as shown in Figure 2.2.7. Since the bandwidth is halved with every split, it is
possible to downsample the resulting signals by 2 without losing any informa-

Chapter 2. An Overview of Wavelet Analysis 23

|X(ω)|

ππ
2

π
4

π
8

0
ω

Figure 2.2.6: An example of an ideal spectrum partitioning.

|G(ω)|

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
od

ul
us

A
m

pl
it

ud
e

Normalised Frequency

|H(ω)|

Figure 2.2.7: Frequency response: Daubechies 8-tap low and high-pass filters.

tion. After downsampling, the combined length of the filter output signals is
the same as that of the original signal — the signal is still critically sampled.

Figure 2.2.9 illustrates the concept underlying filter banks [SN97]. The filter
h0(n) is a low-pass and h1(n) a high-pass filter. A perfect reconstruction of x
can be obtained if the filter coefficients h0 and h1 are carefully chosen. Next,
we examine the signal as it moves through the filter bank.

Chapter 2. An Overview of Wavelet Analysis 24

z−1

z−1

↓ 2

↓ 2 ↑ 2

↑ 2

x(n)

x(n− 1)

Delay

Delay

Figure 2.2.8: Reconstruction from downsampled coefficients [SN97, p. 95].

Downsampling and upsampling in the frequency domain

The downsampling operator selects all even elements from a sequence x(n).
The upsampling operator inserts a 0 after each element, except the last. Down-
sampling and then upsampling is equivalent to a point-wise multiplication by
the Dirac-comb,

δp =
[

1 0 1 0 · · ·
]

or equivalently

δp(n) =
1
2

(1 + (−1)n) .

The discrete Fourier transform of u(n) = (↑ 2)(↓ 2)x(n) = δp(n)x(n) is

U(ω) =
∑

n

1
2

(1 + (−1)n)x(n)e−jnω

=
1
2

[∑
n

x(n)e−jnω +
∑

n

x(n)e−jn(w+π)

]

=
1
2

[X(ω) +X(ω + π)] . (2.2.7)

When X(ω) and X(ω+ π) overlap, aliasing takes place. By downsampling, we
are effectively halving the sampling rate, which destroys the original signal.
It is still sometimes possible to combine two such downsampled signals to
obtain the original, as shown in Figure 2.2.8.

The z-transform is defined as

X(z) =
+∞∑

n=−∞
x(n)z−n.

The equivalent of down- and upsampling in the z-domain (derived directly
from (2.2.7) and Table 2.2) is

U(z) =
1
2

(X(z) +X(−z)) ,

Chapter 2. An Overview of Wavelet Analysis 25

Table 2.2: Properties of the z-transform [PM96].

Property Time Domain z-Domain
Notation x[n] X(z)
Time shifting x[n− k] z−kX(z)
Scaling in the z-domain anx[n] X(a−1z)
Time reversal x[−n] X(z−1)

↑ 2↓ 2

x

↓ 2 ↑ 2h0

h1

f0

f1

a0

a1

y0

y1

Analysis Synthesis

x̃

Figure 2.2.9: Filter bank analysis and synthesis.

where X(−z) is the aliasing term.

The road to perfect reconstruction

During the analysis step (see Figure 2.2.9), the signal is filtered by h0 and h1 to
obtain

A0(z) = H0(z)X(z) and A1(z) = H1(z)X(z).

The last step in analysis is downsampling, followed by the first step of synthe-
sis: upsampling. The results are

Y0(z) =
1
2
(H0(z)X(z) +H0(−z)X(−z))

Y1(z) =
1
2
(H1(z)X(z) +H1(−z)X(−z)).

Chapter 2. An Overview of Wavelet Analysis 26

Finally, y0 and y1 are filtered by f0 and f1. The results are combined in an
attempt to reconstruct x as

X̃(z) = F0(z)Y0(z) + F1(z)Y1(z)

=
1
2
[F0(z)H0(z) + F1(z)H1(z)]X(z) +

1
2
[F0(z)H0(−z) + F1(z)H1(−z)]X(−z).

There are two conditions for perfect reconstruction. The first is that the aliasing
term must be zero,

F0(z)H0(−z) + F1(z)H1(−z) = 0.

The second is that the filter bank must introduce no distortion — the output
must be a delayed version of the input [VH92], in other words,

X̃(z) = z−lX(z),

which implies that

F0(z)H0(z) + F1(z)H1(z) = 2z−l.

Designing filters for perfect reconstruction

It is easy to take care of aliasing by choosing

F0(z) = H1(−z)
F1(z) = −H0(−z).

The previous section also hinted at the fact that some high-pass filters can be
derived from their low-pass counterparts. A common choice is the alternating
flip

H1(z) = −z−NH0(−z−1),

or (see also Table 2.2)
h1(k) = (−1)kh0(N − k).

It can then be shown that perfect reconstruction is possible when the product
filter P (z) = H0(z−1)H0(z) is a “halfband filter” [SN97, p. 107], in other words

P (z) + P (−z) = 2.

Chapter 2. An Overview of Wavelet Analysis 27

It is easy to show that, if h0 is a low-pass filter, then h1 is a high-pass filter.
Examine the amplitude of the frequency response of h1, which is

|H1(ω)| =

∣∣∣∣∣
∑

k

(−1)kh0(N − k)e−jkω

∣∣∣∣∣

=

∣∣∣∣∣
∑

k

h0(N − k)e−jk(ω+π)

∣∣∣∣∣

=

∣∣∣∣∣
∑

n

h0(n)e−j(N−n)(ω+π)

∣∣∣∣∣
= |H0(−ω − π)| = |H0(ω + π)| .

This shows that the response of h1 is simply a mirrored version of that of h0.
If h0 is a low-pass filter, then h1 is a high-pass filter.

Further techniques involved in filter design are described in [SN97].

2.2.4 Fitting the parts together

There are many paths to understanding wavelets and while this makes it acces-
sible to many disciplines, it also makes it easy to get lost. The previous sections
attempted to provide an answer to a basic question: how do multi-resolution
analysis and filter banks tie together to form a foundation for discrete wavelet
analysis?

The low-pass filter h0 is chosen to have certain properties and to satisfy cer-
tain conditions, described in the literature mentioned. When satisfying these
conditions, it can be used to generate scaling functions. From h0 we derive
the high-pass filter h1, which generates the wavelet functions. These functions
are the basic building blocks of function spaces in multi-resolution analysis.
The principles by which the filters are chosen are determined by the theory
of conjugate mirror filters; the filter banks that combine them lead to perfect
reconstruction.

Wavelets in two dimensions

The signals used in this thesis are mostly gray-level images: two-dimensional
signals of light intensity. In order to apply the wavelet transform to these sig-
nals, we must know how the one-dimensional wavelet transform is extended
to two dimensions. For a transform in two dimensions, two-dimensional wavelets
and scaling functions are needed.

For simplicity, it would be ideal to rewrite the two-dimensional transform

Chapter 2. An Overview of Wavelet Analysis 28

in terms of the one dimensional transform. An example of such a separable
transform is the two-dimensional fast Fourier transform (FFT), which is calcu-
lated by simply applying the one dimensional FFT to the rows and then to the
columns of an image. It turns out that the same can be done for the wavelet
transform, given that the scaling functions and wavelets form an orthonormal
basis of L2(R).

Given such a scaling function φ(t) and a wavelet ψ(t), the separable, two-
dimensional scaling function is

φ(x, y) = φ(x)φ(y)

and the three wavelets are the tensor products [Mal99, A.5]

ψV (x, y) = ψ(x)φ(y)

ψH(x, y) = φ(x)ψ(y)

ψD(x, y) = ψ(x)ψ(y).

The subscripts H , V and D refer to the horizontal, vertical and diagonal di-
rections along which these wavelets measure variation [GW01, p. 386]. This
can be seen by examining the wavelets, shown in Figure 2.2.10. Notice how
each wavelet has a peak and a dip in the specified direction. When used as a
filter, this combination is essentially a subtraction and has a high-pass effect.
The scaling function, on the other hand, does not have a dip —- it leads to
smoothing in the horizontal and vertical directions. The Fourier transform of
2-dimensional Daubechies wavelets are shown in Figure 2.2.11. Note that the
low-frequency area of the frequency-plane is covered by the scaling function.
Also note the orientation of the areas covered by the respective wavelets.

The discrete (orthogonal) wavelet transform is implemented by the filter
bank shown in Figure 2.2.12. The input image at level j is decomposed into its
approximation at level j − 1 (Aj−1), and its horizontal, vertical and diagonal
wavelet components, DH

j−1, DV
j−1 and DD

j−1.

Chapter 2. An Overview of Wavelet Analysis 29

-0.2 0 0.2 0.4 0.6 0.8

Scaling Function

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

Wavelet Vertical

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

Wavelet Horizontal

-1 -0.5 0 0.5 1

Wavelet Diagonal

Figure 2.2.10: 2-D Daubechies (4 coefficient) scaling function and wavelets.

Chapter 2. An Overview of Wavelet Analysis 30

(a) φ̂ (b) ψ̂V

(c) ψ̂H (d) ψ̂D

(e) Combined

Figure 2.2.11: The 2D Daubechies (4 coefficient) scaling function and wavelets
in the frequency domain.

Chapter 2. An Overview of Wavelet Analysis 31

↓ 2

↓ 2

h0h0

↓ 2

↓ 2

↓ 2

↓ 2

h0

h0

h1

h1

h1

DH
j−1

Columns

Rows

DV
j−1

Aj−1

DD
j−1

Aj

Figure 2.2.12: Filter bank of the separable 2D wavelet transform.

Note that the filters are applied either across rows or columns, as indicated. The high-
pass filter h1 emphasises edges in the direction applied, hence the “vertical”, “hori-
zontal” and “diagonal” wavelet coefficients.

Chapter 3

Texture Analysis

3.1 Introduction

While texture is an intuitive concept, it is not easy to provide a formal defini-
tion1. The human concept of texture is closely linked to the sensations of touch
and sight. Touching an object provides a sense of its physical smoothness,
while the patterns and colours on the surface can only be observed visually.
When processing photographs, there is no direct information available about
the smoothness of the photographed object (although it sometimes can be re-
lated to or deduced from visible attributes) and the observed patterns must be
used to describe the texture.

Methods for characterising texture fall into three categories: statistical (spa-
tial), structural and spectral methods [GW01, p. 665]. Structural methods are
especially useful for texture synthesis but require a model of the underlying
structure. For rock types, no simple structural models are available, or can be
built from the photo, which renders this class of methods less useful. Statisti-
cal and spectral methods are later described in more detail (see Section 3.2), as
well as the wavelet transform (Section 3.3) which belongs to both the spatial
and the spectral categories.

In order to classify an unknown texture, we must have prior knowledge
of known texture classes. This information is used to train a classifier, which
is then able to assign textures, with a certain accuracy, to known classes. A
simple and effective classifier is the Bayesian classifier, which is described in
Section 3.4.2.

1Attempts have been made. “An image region has a constant texture if a set of local statistics
or other local properties of the picture function are constant, slowly varying or approximately
periodic. One may view a textured object as a structure constructed by a machine, or an algo-
rithm, whose major parameters remain approximately constant or vary slowly throughout the
process of construction.” [Skl78]

32

Chapter 3. Texture Analysis 33

3.2 Texture representation

3.2.1 Statistical

The variance of image intensity values can be linked intuitively to the underly-
ing texture. It indicates the spread of data around the mean — a high variance
(many values differing notably from the mean) suggests a coarse texture. Vari-
ance is but one of a range of moments used to describe texture. The nth central
moment for an image Z with gray-levels 0 . . . L− 1 is defined as

µn = E
[
(Z − Z̄)n

]
=

L−1∑

l=0

(l − Z̄)nfZ(l)

where

Z̄ =
L−1∑

l=0

l fZ(l)

and fZ(l) is the probability of gray level l occurring in Z [PZP01]. For discrete
signals, fZ(z) is a normalised histogram. The nth moment can be estimated in
terms of the image values, Z(x, y), as

µn =
1

M ×N

M∑

x=0

N∑

y=0

[
Z(x, y)− Z̄

]n

where

Z̄ =
1

M ×N

M∑

x=0

N∑

y=0

Z(x, y)

and M and N are the number of rows and columns respectively.
Table 3.1 shows other often used statistical texture descriptors [GW01].

Gray level co-occurrence matrices

Another popular method of characterising texture examines the statistical prop-
erties of the gray-level co-occurrence matrix. This 4-dimensional histogram,
P = f(i, j, d, θ), describes the number of times that the gray level i occurs at a
distance d and at an angle θ in relation to the gray level j. Different statistics
of the co-occurrence matrix can be calculated as discussed in [NS93].

Due to computational complexity, this method is ineffective when exam-
ining large images. For any histogram P of D independent dimensions, the

Chapter 3. Texture Analysis 34

Table 3.1: Statistical texture descriptors.

Moment about origin mn =
L−1∑

x=0

xnfX(x)

Central moment µn =
L−1∑

x=0

(x− X̄)nfX(x)

Mean X̄ = m1

Variance σ2 = µ2

Roughness R = 1− 1
1 + σ2

Uniformity U =
L−1∑

x=0

f2
X(x)

Entropy [bits] e = −
L−1∑

x=0

fX(x) log2 fX(x)

minimum number of calculations required to produce P is

Smin =
∑

P =
∑

d1

∑

d2

. . .
∑

dD

f(d1, d2, . . . , dD),

which is the number of elements represented — each of which must have been
examined at least once. If θ is limited to K directions so that θ ∈ {nπ/K |
n = 0 . . .K − 1}, d is limited to D pixels and the gray levels are quantised
to L levels, the size of the co-occurrence matrix is L2DK. For each pixel in
the image, the surrounding area of radius D is examined at the angles in θ,
leading, for an image containing N pixels, to Smin ≈ NDK calculations. If
D is much smaller than N , the computational complexity of the algorithm is
O(N), whereas if D is almost as large as N , it is O(N2).

If D is limited to a small number, the co-occurrence matrix describes local
texture — a concession that unfortunately has to be made in order to be able
to calculate the histogram efficiently.

Statistics of the co-occurrence matrix: Features are generated by calculating
different statistical properties of the co-occurrence matrix [GW01, p. 669]. Har-
alick et al. [HSD73] proposed 14 such features, but it has been noted [HSL92]
and experienced that not all of these statistics are appropriate for natural tex-
ture discrimination. It seems that, in the presence of noise, the co-occurrence

Chapter 3. Texture Analysis 35

(a) Curtain (b) Fourier transform

Figure 3.2.1: Fourier transform (inverted) of a quasi-periodic texture.

matrix is, in fact, a very unreliable source.

3.2.2 Spectral

Spectral representations describe the frequency contents of a texture image.
This is especially useful when the texture is semi-periodic, i.e. has repetitive
surface patterns. Localised spatial methods struggle to find these spread pat-
terns which deliver such strong responses in the frequency domain (see Figure
3.2.1).

The two-dimensional Fourier transform of an M ×N image, f(x, y), is

F (u, v) =
1

MN

M−1∑

x=0

N−1∑

y=0

f(x, y)e−j2π(ux/M+vy/N).

The two-dimensional frequency plane is shown in Figure 3.2.2 along with two
paths, Cθ and CR. When Cθ is followed, the frequency remains constant. An
annulus placed around this path would describe a certain frequency band,
and a pie-slice placed around CR describes frequency components that lie in a
certain range of directions.

In some applications, for example, rotation invariance is required. A clas-
sic technique, then, is to divide the frequency plane into several annuli shaped
around Cθ at different offsets. The frequency bands contained within encom-
pass all angles and statistics calculated on the area are rotation invariant. Note
that by using these annuli the image is effectively filtered using an ideal band-
pass filter in an attempt to focus on certain frequency bands — a process which
resembles a filter bank, only with the different bands spaced linearly and with

Chapter 3. Texture Analysis 36

High FrequenciesHigh Frequencies

High Frequencies High Frequencies

Cθ

CR

θ

Low Frequencies

Figure 3.2.2: The 2-dimensional frequency plane.

over-simplified filters2. There is a trade-off here: if the annuli are constant in
area, their bandwidths differ, while if their bandwidths are constant, the num-
ber of coefficients brought into calculation differs.

Figure 3.2.3 shows the outline of the largest annulus that fits inside a square
image. Roughly 21% of the image remains unused, which can become a prob-
lem when working with small images, where every pixel is valuable. It is
possible to work around the problem by using all the coefficients outside of
the outer annulus as an extra frequency band, but this solution is less than op-
timal, as the frequency range in this band would be larger than those covered
by the other annuli.

3.3 Wavelet methods

3.3.1 Why wavelets?

When examining an image purely in the frequency domain, all localisation in
the time domain is lost. There is no way to determine where certain frequencies
occur in an image. For regularly spaced (synthetic) textures this does not pose
a problem, since the frequency content is constant over the whole image. That
is certainly not true for natural texture images!

2A filter with a very sharp cutoff in the frequency domain causes severe rippling in the time
domain.

Chapter 3. Texture Analysis 37

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Figure 3.2.3: Unused area in rotation invariant frequency description.

Section 3.2.2 shows how the frequency information in an image can be
quantified, by examining annuli that cover different frequency bands. This
task becomes much simpler and more flexible in the wavelet domain. Here,
the frequency bands are available at the different decomposition levels3, with-
out any need of artificial separation.

Each level of the decomposition contains unique information (since Wj is
the orthogonal complement of Vj in Vj+1), aiding in the creation of uncorre-
lated feature vectors. Because of the compact support of the wavelets, they are
well adapted to describing finite signals — like images.

All in all, wavelet analysis fits this specific application like a glove.

Why not Gabor filters?

Gabor filters are finely adjustable. In order to apply these filters, detailed
knowledge of the underlying problem is needed, so that the optimal filter pa-
rameters can be calculated. In fact, certain parameters cause the Gabor filters
to become a wavelet family. Unfortunately, there is no easy way to determine
the best parameters for a specific problem. It is also not easy to intuitively see
how small changes in the problem should influence the choice of parameters
[PS95].

The filters are also highly orientation specific. This is a useful attribute
when discriminating between synthetic textures, but natural textures are not
as sensitive to direction. Indeed, some authors claim that Gabor filters are bet-
ter than wavelets for the purpose of texture discrimination [AM03], but these
trials compare the dyadic wavelet transform to a frame-like Gabor wavelet ap-
proach, which also has a much higher computational cost. The outputs of the
Gabor filter banks are not mutually orthogonal, which may result in correla-

3This analogy is not strictly accurate, due to the overlap of the low- and band-pass filters.

Chapter 3. Texture Analysis 38

tion between texture features [Uns95].
The dyadic wavelet transform severely restricts the choice of filter parame-

ters. Rather than adjusting these parameters, emphasis is placed on the choice
of wavelet family, which should correspond to the underlying problem.

3.3.2 Choosing the right basis

A signal can be seen as being constructed of fundamental building blocks:
short, finitely supported signals. The correct combination of the right building
blocks assures a compact signal representation. The “best” blocks differ for
each and every signal and their exact shapes are unknown. We want to find a
wavelet family that closely resembles these elementary units.

The wavelet family that leads to the smallest fine-scale wavelet coefficients
is considered the best representation, having concentrated the signal energy in
as few levels possible. The regularity of the signal influences this, as does the
number of vanishing moments and length of support of the wavelet [Mal99,
p. 254].

Jawerth and Sweldens [JS94] list the following important wavelet proper-
ties to consider:

• Orthogonality leads to much simplified algorithms.

• Compact support wavelets are associated with finite impulse response
filters.

• Dyadic coefficients lead to very fast hardware implementations.

• Symmetry allows for linear phase filters.

• The smoothness of the wavelet is important when compressing images,
or when the signal is highly regular. Smooth functions lead to better
frequency localisation.

• The number of vanishing moments dictate the degree of polynomials
that can be approximated at any level.

• Analytic expressions of the scaling function and wavelets are useful in
theoretic and simulated experiments.

• If the wavelets interpolate data on a grid, none of the original data points
are lost.

Chapter 3. Texture Analysis 39

(a) Lena (b) rock (c) Curtain

Figure 3.3.1: Test Images

Horizontal
Coefficients

Vertical
Coefficients

Diagonal
Coefficients

Scaling
Coefficients

Figure 3.3.2: Pyramid-structured partitioning

All wavelets have different properties — the goal is to find a family with a set
of properties best suited to the application. Villasenor, Belzer and Liao [VBL95]
develop several filters and present ways to evaluate them. After considering
the criteria above and the analysis given by Villasenor et al., we choose their
“Filter Number 3” for texture analysis.

3.3.3 Wavelet packet bases

The standard pyramid-structured wavelet transform decomposes a signal into
a series of frequency channels (see Figure 3.3.2). The channels associated with
lower frequencies have smaller bandwidths, allowing higher frequency reso-
lution. This is only an effective decomposition when the bulk of the signal en-

Chapter 3. Texture Analysis 40

Figure 3.3.3: Adaptive Wavelet Packet Partitioning for Lena, Rock and Curtain

ergy is concentrated in the lowest frequency bands, which is indeed the case
with most images. Texture images, however, tend to be quasi-periodic with
the information concentrated in the middle-to-low frequency bands [CK93].

Coifman, Meyer and Wickerhauser [RBC+92] proposed a more flexible de-
composition where partitioning is done according to the significance of a chan-
nel. This decomposition, known as the wavelet packet transform, allows for
the iterative filtering of the detail coefficients and creates new partitions sim-
ilar to those shown in Figure 3.3.3 [GW01, p. 396]. The most intuitive way
to determine the significance of a channel is to calculate the l2-norm signal4

energy, i.e.

e(x) =
1
N
‖x‖2 =

1
N

N∑

i=1

|xi|2,

where N is the length of x. If a channel contains much less energy than others
in the same level, it does not need to be decomposed any further.

The wavelet packet transform comes at a slight cost — for a signal of length
N it has an order complexity of O(N logN) compared to the O(N) for the fast
wavelet transform.

Figure 3.3.1 shows three test images (256× 256 pixels in size): the first rep-
resents a typical photo (Lena), the second a rocky texture (Rock) and the third a
quasi-periodic texture (Curtain). Is the rocky texture also periodic to some ex-
tent? The answer is hidden in the standard wavelet decomposition. Examine
the wavelet coefficients shown in Figure 3.3.4 — the inside bands of Curtain
respond strongly, indicating the presence of middle frequencies. Whether this
also occurs in Rock, however, is still hard to see since there are no strong edges
for the eye to follow.

To further investigate how much information the middle-level coefficients
carry, the image is reconstructed after setting all other levels to 0 as indicated

4If we are only interested in the element-values of anM×N image, and not in their positions,
we also refer to the image as a signal f(n), 0 < n < MN − 1.

Chapter 3. Texture Analysis 41

Figure 3.3.4: 4-Level wavelet decompositions of Lena, Rock and Curtain.

Figure 3.3.5: Inverse wavelet transform after muting channels

in Figure 3.3.5. Curtain clearly resembles the original closely with Lena looking
badly out of shape. The quality of Rock is hard to judge, but appears to be
somewhere between that of Lena and Curtain.

In an effort to explain this behaviour, a cumulative energy graph is shown
in Figure 3.3.6 (note that the starting energy percentages differ — we are inter-
ested only in the shape of the energy curve). This graph shows how the energies
of the different levels add to form the complete signal. The curves suggest a
different distribution in each image. Lena has a very strong lower frequency
response, while Curtain has more energy distributed through the middle fre-
quencies. Rock, on the other hand, has energy almost linearly distributed in
both bands.

Chapter 3. Texture Analysis 42

92

93

94

95

97

98

99

100

87654

Pe
rc

en
ta

ge
of

Si
gn

al
En

er
gy

Level

97.5

98

98.5

99

99.5

100

87654

Pe
rc

en
ta

ge
of

Si
gn

al
En

er
gy

Level

Rock

99.4

99.5

99.6

99.7

99.8

99.9

100

87654

Pe
rc

en
ta

ge
of

Si
gn

al
En

er
gy

Level

Curtain

96

91 97 99.3

Lena

Figure 3.3.6: Cumulative level energies of three wavelet transforms.

It should be noted that high levels of signal energy do not necessarily imply
the presence of useful information. In Curtain, the highest energies occur in
the lowest level (more than 99% of the total signal energy), but this level (with
its low-pass coefficients) contains almost no descriptive information about the
texture itself!

Examine the partitioning of the adaptive wavelet packet decompositions (Symm-
let 8), as shown in Figure 3.3.3. Densely partitioned portions indicate pockets
of concentrated energy and intuitively confirms the frequency distributions
discussed. Lena has an almost pyramidal decomposition, while Curtain is
nearly fully decomposed.

[CK93] rightly claims that the average synthetic texture contains much in-
formation in the middle bands, visible as regularly spaced patterns as is of-
ten caused by synthetic fabrication. These quasi-periodic signals are therefore
not perfectly suited to the standard pyramidal wavelet transform. It is then
interesting to see that the typical rocky texture investigated here is not quasi-
periodic, but contains a lot of information in the middle as well as the lower fre-
quency bands. It is therefore well suited to the standard wavelet partitioning.

Chapter 3. Texture Analysis 43

Figure 3.3.7: Wavelet transform and level histograms of a typical image.

The histograms have been scaled — their shapes and not the exact values they repre-
sent are important here. The peaks of the wavelet coefficients visible in the histograms
are centred near zero.

3.3.4 Features from wavelet coefficients

A signal is constructed out of fundamental building blocks, or wavelets. The
wavelet coefficients form the building plans, showing the amplitude and po-
sition of each wavelet. We would like to characterise texture in an image, by
examining these wavelet coefficients.

A wavelet decomposition of a typical image (having a foreground object
and a background) is shown in Figure 3.3.7. Keeping this in mind while exam-
ining the wavelet decomposition, note the multi-modal shape of the scaling
function coefficients. The wavelet decomposition represents the original im-
age as a smoother, low-resolution image augmented by sharp wavelets, which
fill in the missing detail. In the image ofT the cat, the low resolution is a fairly
good representation of the cat, but large wavelet corrections need to be made
to render the fur, the beard, and so forth.

For texture, on the other hand, more corrections of much smaller amplitude
need to be made, since the textured image is like a noisy surface superimposed
on a smooth background (see Figure 3.3.8). The histogram of coefficients is
more widely spread than for the picture of the cat.

Histograms of wavelet coefficients also differ for different textures. While
smoother textures, consisting of many small coefficients, have histograms with
wide main modes, scratchy surfaces are constructed from a mixture of very
large and very small coefficients and have sharper main modes. The “sharp-
ness” of the histogram is therefore strongly associated with the properties of
the texture involved.

Chapter 3. Texture Analysis 44

Figure 3.3.8: Wavelet transform and level histograms of a textured image.

Mallat [Mal89] modeled texture histograms with the function

h(u) = Ke−(|u|/α)B
.

This model perfectly fits the coefficients of the image of the cat, but performs
less well on the smoother histogram of textures in general. The main advan-
tage of the model is that the histogram can be characterised by two parameters,
the wavelet signature [vdW98] α and β, but these are difficult to calculate.

By experimentation, it has been found that the simple Gaussian distribu-
tion fits the histogram as well as or better (in the case of natural texture) than
the wavelet signature. This distribution

h(u) = Ke−(x−µ)2/2σ2

also has two parameters, the mean, µ, and the variance, σ, which characterise
the distribution. Wavelet signatures are only applicable to centred histograms,
as illustrated in Figure 3.3.9. The signature is especially well suited to very
sharp histograms.

The two parameters of the normal distribution are much easier to esti-
mate than the wavelet signature and provides similar results. To characterise
a texture, we then do an N -level standard wavelet decomposition of the im-
age. Each level is separated into horizontal, vertical and diagonal coefficients,
which are then used to calculate sets of the parameters (µ, σ). For an N -level
decomposition, 2× 3×N parameters are available, which are used in the tex-
ture feature vector.

In Section 3.3.3 the cumulative energy graph is shown (Figure 3.3.6). The

Chapter 3. Texture Analysis 45

Wavelet Signature Normal Distribution

C
en

tr
ed

ar
ou

nd
ze

ro
U

nc
en

tr
ed

Figure 3.3.9: Signature comparison

shape of the energy curve also provides some information as to the underlying
texture. A third degree polynomial is fitted to the curve and all the coefficients,
except for the constant offset, are included in the texture feature vector. We call
this the wavelet energy signature.

3.4 Pattern recognition

3.4.1 Introduction

Given an unknown sample, a classifier’s task is to assign it to some class. It
discriminates between these different classes of data, using previously known
or a priori evidence. The process of gathering this evidence is known as feature
extraction, with the features being stored in a feature vector f ∈ Rd (d being
the number of features measured). Section 3.3.4 discusses the features used in
representing textures specifically.

By analyzing the features extracted from a training set of data, the classifier

Chapter 3. Texture Analysis 46

is provided with an estimated statistical model of the data to be analysed. If
the statistical model is a good description of the underlying data, it should be
possible to classify unknown samples with high accuracy — given, of course,
that discrimination is possible based on the available features.

If enough data is available, the classifier can be used to classify samples
from a validation set after which the classifier parameters are modified to pro-
duce the best results. The final step in evaluating the classifier and the statisti-
cal model is to classify data from a test set. These results are then an indication
of how well the classifier would perform in practice.

The classifier has the freedom to reject samples which do not seem to be-
long to any known class. The success rate is the percentage of all samples cor-
rectly identified. The accuracy, in contrast, is the percentage of correctly clas-
sified samples of those not rejected. The accuracy is therefore greater or equal
to the success rate.

If many different features are extracted from a small data set, the features
space Rd is sparsely populated. This makes it difficult to accurately estimate
the underlying statistical model parameters. Also, these features increase the
number of calculations needed for training and classification. A way is needed
to reduce the dimensionality of the feature vectors, so that the space Rk, k < d

is more densely populated.
This can be achieved in three ways [DHS01, p. 113]: redesign the feature

extractor, make a selection from the available features or combine the features
in some way. While we carefully choose the features to extract, knowing which
would be best for discrimination is not always easy. We therefore rather extract
too many features than too few. This makes the last option all the more attrac-
tive: combine all the features in some way (linearly, if possible) and thereby
densely populate a feature space of lower dimension. Two methods of doing
this is discussed in Section 3.4.3.

We make the assumption that, for each class, feature vectors are random
variables, drawn from some Gaussian distribution. This assumption may not
be strictly accurate, but what we lose in the accuracy of the model, we gain in
the simplicity of the classifier implementation (see Section 3.4.2). The Gaussian
distribution is appropriate for describing samples disturbed by a large num-
ber of random processes. Imagine any class as being represented by an ideal
feature vector, and that any measured feature is a randomly corrupted version
of it.

We base our classifier on Bayesian decision theory, as explained in the next
section.

Chapter 3. Texture Analysis 47

3.4.2 The Bayesian classifier

Bayesian decision theory

As an example, imagine that we would like to design a classifier to distinguish
between two classes of human beings: male and female. The classes are de-
noted by the symbols ω1 and ω2 respectively. We know beforehand the a priori
probabilities of the two classes: that the world population is 50.25% male and
49.75% female (i.e., P (ω1) = 0.5025). If asked to tell the sex of the next human
being we were about to meet, the best guess would therefore be “male”.

A seamstress now provides us with measurements of people’s circumfer-
ences and heights, asking us to classify the clients accordingly. These measure-
ments form two-dimensional feature vectors

x =
[

circumference height
]
.

Building a classifier now becomes slightly more involved, since much more
information is available. Not only do we have measurements, but we can
also make an educated guess as to the statistical distribution of these mea-
surements. It is often shown in biology textbooks [ST03, p. 189] that student
lengths are normally distributed. The mean and variance of the distribution is
different for male and female students, but the underlying model is the same.
We assume that this also holds for circumference, so that a bivariate normal
probability density function describes each class.

The probability of a measurement belonging to class ωi and having the
feature vector x is

p(ωi,x) = P (ωi | x)p(x) = p(x | ωi)P (ωi)

which leads to the Bayes formula [DHS01, p. 24]

P (ωi | x) =
p(x | ωi)P (ωi)

p(x)
.

This means that, given a feature vector x, we can calculate the posterior prob-
ability that the vector belongs to class ωi. All we need to know is, for each
class, the statistical distribution p(x | ωi) and the prior probability P (ωi). The
evidence p(x) merely scales the posterior probability, and is given by

p(x) =
∑

i

p(x | ωi)P (ωi).

Chapter 3. Texture Analysis 48

We can now classify the tailor’s clients by deciding on male (ω1) whenever

p(x | ω1)P (ω1) > p(x | ω2)P (ω2).

In general, decide on ωi whenever

gi(x) > gj(x) ∀j 6= i (3.4.1)

where
gi(x) =p(x | ωi)P (ωi).

Discriminant functions for multivariate Gaussian distributions

Any monotonically increasing function can be applied to the decision criterion
without changing the outcome. In other words,

ln gi(x) > ln gj(x) ∀j 6= i

is equivalent to (3.4.1). We assumed earlier that, for each class, the underlying
statistical model is the N -dimensional multivariate Gaussian distribution, i.e.

p(x | ωi) =
1

(2π)N/2 |Σi|1/2
exp

[
−1

2
(x− µi)

TΣ−1
i (x− µi)

]

where Σi is the covariance matrix and µi the mean for the distribution of class
i. Applying the log transform, our discrimination function becomes

ln gi(x) = lnP (ωi)− N

2
ln 2π − 1

2
ln |Σi| − 1

2
[
(x− µi)

TΣ−1
i (x− µi)

]
. (3.4.2)

Since the second term is independent of i, we drop it to obtain the final dis-
crimination function

di(x) = lnP (ωi)− 1
2

ln |Σi| − 1
2

[
(x− µi)

TΣ−1
i (x− µi)

]
. (3.4.3)

If the prior probabilities are equal, the first term can also be neglected.
Given an unknown feature vector x, classification is done by evaluating

di(x) for all classes, and picking the class associated with the largest value.
Discrimination based on (3.4.3) requires fewer calculations, whereas (3.4.2) has
the advantage that it allows rejection of certain samples when their posterior
probabilities are less than a given threshold.

Chapter 3. Texture Analysis 49

3.4.3 Feature reduction

Given a large set of data with a certain statistical distribution, it is often not
difficult to estimate the underlying parameters of the distribution. The accu-
racy of the estimates depends heavily on the number of data points available5.
For example, examine the random variable X from the normal or Gaussian
distribution

fX(x) =
1√

2πσ2
X

e−(x−µX)2/2σ2
X , (3.4.4)

with mean µX and variance σ2
X . Since fX(x) is a probability density function

(PDF), the value of its probability distribution function is 1 at infinity ([Pap65],
also see Appendix A.1), ∫ +∞

−∞
fX(x)dx = 1. (3.4.5)

For mean µX = 0 and variance σ2
X = 1

2 , (3.4.4) becomes

fX(x) =
1√
π
e−x2

.

Equation (3.4.5) then shows that

∫ +∞

−∞
e−x2

dx =
√
π. (3.4.6)

The mean value of a random variable X is given by

E[X] =
∫ +∞

−∞
xfX(x)dx (3.4.7)

and is, in the case of the normal distribution,

E[X] =
1√

2πσ2
X

∫ +∞

−∞
xe−(x−µX)2/2σ2

Xdx.

5Earlier, we discussed the Bayesian classifier based on the Gaussian distribution. Such clas-
sifiers need to estimate covariance matrices based on the samples in the different classes. An
accurate estimation can only be made if enough samples are available, otherwise different meth-
ods should be used to improve the estimate [TGF04].

Chapter 3. Texture Analysis 50

Making the substitution v = x−µX√
2σX

, this becomes

E[X] =
1√
π

∫ +∞

−∞
(
√

2σXv + µX)e−v2
dv

= σX

√
2
π

∫ +∞

−∞
ve−v2

dv +
1√
π

∫ +∞

−∞
µXe

−v2
dv.

Because v and e−v2
are odd and even functions respectively, the first term of

the sum is zero. Using (3.4.6), the expected value then is

E[X] = X̄ = µX .

In a similar fashion, the variance can be calculated as

E[(X − X̄)2] = σ2
X .

In practice, we often work with a set of N samples, xi (where i = 1, 2, . . . , N),
generated from an unknown underlying probability density function. If we
assume that the underlying PDF is Gaussian, we can easily estimate the sample
mean and variance.

First, we generate a histogram p(z) of the samples xi. Here, z denotes theK
distinct values of x and p(z) is the number of occurrences of value z in xi. The
sample mean is then analogous to (3.4.7). Assuming that there are K different
values of x, it is

Ẽ[X] = ˜̄XN =
K−1∑

i=0

zip(zi)

=
1
N

N−1∑

n=0

xn.

Similarly the (biased) variance can be estimated by

Ẽ[(X − X̄)2] =
K−1∑

i=0

(zi − ˜̄XN)2p(zi)

=
1
N

N−1∑

n=1

(xn − ˜̄XN)2.

The estimated parameters of the underlying model converge to the actual pa-
rameters asN →∞ [PZP01, p. 165]. On the other hand, asN becomes smaller,
the accuracy of the estimation decreases.

Chapter 3. Texture Analysis 51

In practice, it often happens that only a small set of data is available. It is
therefore impossible to accurately estimate the parameters of the underlying
statistical model. We handle this problem by projecting the data onto a space
of lower dimensionality. In this space, the data is less sparse and the model
parameters can be estimated with greater confidence.

Principal component analysis (PCA)

An n-dimensional vector can be expressed as a linear combination of n or-
thonormal basis vectors, so that

x = y1u1 + y2u2 + . . .+ ynun.

The vector can then be approximated in a lower dimension as

x̂ = y1u1 + y2u2 + . . .+ ymum

=
(
xTu1

)
u1 +

(
xTu2

)
u2 + . . .+

(
xTum

)
um, (3.4.8)

where m < n. The aim of principal component analysis is to choose such a set
of basis vectors, {u1 . . .um}, that minimises the least square error between the
approximated and the original vector. For any single vector x, the error is

x− x̂ =
m∑

j=n+1

yjuj

and we aim to minimise |ε|2 = |x− x̂|2 over all vectors in a data set.
From (3.4.8) it follows [Cas98] that

E[ε] = E
[
|x− x̂|2

]

= E
[
(x− x̂)T (x− x̂)

]

=
n∑

j=m+1

E
[(

xTuj

)T (
xTuj

)]

=
n∑

j=m+1

E
[
uT

j xxTuj

]

=
n∑

j=m+1

uT
j Auj (3.4.9)

where A is the correlation matrix E
[
xxT

]
. Seeking to minimise E[ε] conditional

to the constraint uT
j uj−1 = 0, we construct the Langrange multiplier function

Chapter 3. Texture Analysis 52

(see Appendix A.3)

f(um+1,um+2, . . . ,un) =
n∑

j=m+1

(
uT

j Auj − λjuT
j uj

)
,

find the gradient (see Appendix A.4) and set it to zero (a necessary condition
for E[ε] to be a minimum):

∂f

∂uj
= 2 (Auj − λjuj) = 0, j = m+ 1,m+ 2, . . . , n.

We recognise the eigenvalue problem, where the different uj are eigenvectors
of the matrix A, corresponding to the eigenvalues λj . If the data is centred,
these eigenvectors correspond to those of the scatter matrix S.

The scatter matrix of a set of ni feature vectors Xi, belonging to class i with
a sample average of mi, is defined as

Si =
∑

x∈Xi

(x−mi)(x−mi)T ,

which is proportional to the covariance matrix. We see that

S = E
[
(x−m) (x−m)T

]

= E
[
xxT

]−mmT

= A−mmT ,

where m is the mean or expected value of x (over all data).
Using (3.4.9), the error term E[ε] can be expressed in terms of the eigenval-

ues of A as

E[ε] =
n∑

j=m+1

λj ,

since
ujAuj = λj .

This expression is minimised by choosing {λm+1 . . . λn} as the set of smallest
eigenvalues. The basis vectors {um+1 . . .un} are therefore the eigenvectors as-
sociated with the smallest eigenvectors of the scatter matrix S, provided that
the data is centred. Because S is symmetric, these eigenvectors are orthonor-
mal and form a basis [Str93, p. 273].

Principal component analysis projects an n-dimensional dataset onto the
eigenvectors associated with the m largest eigenvalues of the scatter matrix.

Chapter 3. Texture Analysis 53

Figure 3.4.1: Axes of projection for PCA (solid) and MDA (dashed).

This projection minimises the least-squares error between the original data in
n dimensions and projected data in m dimensions.

Multiple discriminant analysis (MDA)

Principal component analysis projects a set of data onto the axes of maximum
variation, reducing the number of dimensions if required. When presenting
data for visual inspection, this is ideal, but it is not necessarily the best space
for discrimination [DHS01, p.1̃17]. Figure 3.4.1 shows a set of data and the
axes calculated for PCA. Projecting the data onto the main axis of variation is
clearly not a good choice for discrimination — the projected data will some-
times overlap. A better approach to calculating the projection is multiple dis-
criminant analysis, a generalisation of Fisher’s linear discriminant functions,
described below.

When considering a dataset comprising C different classes, we recall our
earlier definition of the scatter matrix and define the within-class scatter matrix
as

SW =
C∑

i=1

Si

Chapter 3. Texture Analysis 54

and the between-class scatter matrix is

SB =
C∑

i=1

ni(mi −m)(mi −m),

with mi and m being the sample averages of samples in the i-th class and of
the pooled data respectively.

A linear transform, W, is applied to the feature vectors, mapping the space
Rd → Rk and thereby reducing the dimensionality from d to k. The resulting
within-class and between-class scatter matrices are WTSWW and WTSBW

respectively. To improve discrimination between classes, the ratio of the deter-
minants of the between-class to the within-class scatter matrices,

J(W) =

∣∣WTSBW
∣∣

|WTSWW| , (3.4.10)

can be maximised (here, the determinants are used as a scalar measure of scat-
ter). Intuitively, this makes sense: the data should ideally be widely spread
in the feature space, yet each class needs to be concentrated. We are there-
fore interested in finding the argument W that maximises J(W). Examine the
simpler vector problem

arg max
w

J(w) = arg max
w

wTSBw
wTSWw

,

which has the solution
J(w)SWw = SBw. (3.4.11)

This is the generalised eigenvalue problem,

SBw = λSWw, (3.4.12)

which can be solved using the QZ algorithm [MS73, PTVF03, GvL83]. The
vector w that maximises J(w) is the eigenvector corresponding to the largest
eigenvalue of S−1

W SB (see Appendix A.2). The solution to (3.4.10) is similar
and is given [DHS01] by

W =
[

wλ1 wλ2 . . . wλk

]
,

where the columns of W are the eigenvectors in (3.4.11) corresponding to the
largest eigenvalues. The feature vectors can now be transformed, using W, so

Chapter 3. Texture Analysis 55

that
y = WTx.

For the resulting data set, the ratio of the determinants of the between-class to
the within-class scatter matrices is maximised. The feature vectors are now in
a space ideal for discrimination.

Chapter 4

Locating Thin Layers

4.1 Introduction

Thin layers are of interest to geologists because they often point to special
stratigraphic circumstances. Chromitite layers, for example, are very brit-
tle and their presence raises warning signs. Mining underneath such layers
can cause the hanging walls (roofs) of stopes and tunnels to collapse, endan-
gering the lives of workers. Can these layers, which are difficult enough to
find by eye, be located automatically, given a photograph (see Figure 4.1.1) of
a diamond-drill borehole core (or, equivalently, of the inside of a borehole)?
[Hei94] We present a method that shows promising results.

Two algorithms are used: shortest-path extraction and non-linear least squares
fitting. Examine, for example, Figure 4.1.1 and note the thin chromitite layer
visible near the right-hand side of the photo. To locate this layer, a window
is shifted over the image in overlapping steps. At each step, the shortest-path
algorithm is applied to extract possible chromitite pixels.

The shortest-path algorithm always delivers a path — whether or not chromi-
tite is present. When does such a path run along a chromitite stringer? Any
thin planar layer will project a sinusoidal shape, because of the way a plane
cuts a cylinder (see Section 4.2). If the path conforms to this shape, it is likely

Figure 4.1.1: A pyroxenite borehole core from the UG2 system of the Bushveld
Igneous Complex, containing a well hidden chromitite layer (see the geologi-
cal log in C.1).

56

Chapter 4. Locating Thin Layers 57

to be representative of such a layer. One period of a sinusoid (with variable
phase and amplitude) is fitted to the pixels on the path. The mean-square
error between the pixels and the sinusoid, as well as the path cost, is then a
measure of fit, and of whether the path points to a chromitite layer. If it does,
the dip and azimuth can be established from the amplitude and phase of the
fitted sinusoid.

4.2 Curves and parameters

Thin layers can be difficult to see, since they are often dark and hidden in
noise-like surface texture. Localised methods, like edge detection, are there-
fore not effective in isolating these artifacts. Methods that produce a measure
of likelihood based on a complete possible path are less prone to be influenced
by noise and are more successful in this context.

The Hough transform is an example of such a method. Define a curve C in
two dimensions, with N variable parameters, as

C(x) = f(x | p1, p2, . . . , pN).

Given an image Z(x, y) containing a curve visually similar to C (call it C ′), our
goal is to identify the parameters {p1 . . . pN} that will allow C to approximate
C ′ as closely as possible. First, the pixel positions of C ′ are isolated, using
thresholding or more sophisticated methods (noisy images, for example, can-
not be thresholded easily). The parameters {p1 . . . pN} are varied to modify
the trajectory of C. Depending on how well C approximates C ′, the parame-
ters are rated; in the case of the Hough transform, according to the number of
overlapping pixels between C and C ′. We are looking for a set of parameters
that maximises a certain measure of fit.

In the case of a a straight line, the curve is

C(x) = mx+ d,

with parameters m (gradient) and d (offset). For near-vertical lines, the gradi-
ent m grows very large and therefore the curve is often rather expressed in the
normal representation (see Figure. 4.2.1)

x sin θ + y cos θ = ρ,

Chapter 4. Locating Thin Layers 58

(x,y)

y

x

ρθ

Figure 4.2.1: Normal line representation.

or
C(x) =

ρ

cos θ
− x tan θ,

which causes the parameters to fall in a more limited range. To determine
which parameters achieve the best fit, all sets in the parameter space must
be evaluated. In other words, for every combination {θ, ρ}, a line C must be
calculated and compared to C ′. We can do slightly better by examining the
whole range of angles and, for every non-zero pixel in the image, deriving
the value of ρ. For θ = {−90◦ . . . 90◦}, the total number of calculations are
then ≤ 180×M ×N . The resulting Hough transform is shown in Figure 4.2.2
(the curve was “isolated” by simple thresholding). The maxima of the Hough
transform point to the parameter sets {θ, ρ} that produce the best fitting lines.

While the Hough transform works well enough for straight lines, it is com-
putationally intensive. The curves of importance here are those generated
when a rock layer cuts through a borehole (see Figure 4.2.3), which can be
described as

C(x) = d+A sin
(

2πx
P

+ θ

)
,

where P is the number of pixels in a picture matrix row. We assume that the
thin layer is only one pixel thick. An approach similar to the straight line
Hough transform now becomes very expensive, since there are 3 different pa-
rameters to consider: d, A and θ. Instead, we opt for a non-linear least squares
fitting of C ′(x) to the model C(x) (Section 4.2.2). The pixels belonging to the
curve C ′(x) are identified using shortest paths, as shown in Section 4.2.1. The
mean-squared error between the model and the observed pixels is a measure of
the goodness-of-fit, and an indication of whether the pixels belong to a chromi-
tite layer (Section 4.3).

Chapter 4. Locating Thin Layers 59

π

ρ

−π

255

0

θ

Figure 4.2.2: The Hough transform applied.

(Left top) The original image. (Left middle) Thresholded image. (Left bottom) The
lines found superimposed on the original. (Right) Hough transform. The location of
the parameters corresponding to the lines found are indicated.

4.2.1 Shortest paths

A path is an ordered series of connected nodes or elements. Every connection
has an associated cost. The cost or length of a path is the sum of the costs
of all its connections. If the type of cost is chosen correctly, the shortest path
will travel along the thin, dark layers we are looking for. Figure 4.2.4 shows a
typical path in a regular grid or matrix.

One of the simplest measures of cost is the difference between the values
of two connected nodes, A and B,

CAB = |B −A| .

This measure is the absolute value of the gradient of the path between the two
nodes. Such a path of minimum length is therefore close to a contour path.

Chapter 4. Locating Thin Layers 60

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Unfolded Section View

Front View

Top View

Thin Layer

A

z
-a

xi
s

β

Figure 4.2.3: A cylinder sliced by a plane.

When working with images, the nodes are pixels, and the node values are
pixel intensities or grey-levels.

Provided with such an image, I(i, j), the shortest path algorithm (see Al-
gorithm 4.2.1) provides cost and path matrices, C(i, j) and P (i, j), while the
backtracking algorithm (see Algorithm 4.2.2) delivers the shortest path, s(j).
The form of the algorithm listed here is applicable to matrices and produce
left-to-right paths.

Chromitite layers are always dark in colour, a property we incorporate into
the cost-measure:

CAB = wd |B −A|+ wiB.

The cost is now a weighted sum of the magnitude of the path intensity-gradient
and of the path intensity itself. This measure favours dark contour paths. As
previously shown in Figure 4.2.3, a plane cutting through a cylinder like a
borehole projects a sinusoidal shape onto a photograph. This sinusoid has ex-
actly one period, and starts at the same image row at which it ends. The short-
est paths we seek should also have this property, and we restrict the search to
such circular shortest paths.

The backtracking algorithm can easily be modified to return only paths

Chapter 4. Locating Thin Layers 61

Algorithm 4.2.1: Shortest path algorithm [BY97].

Given an image, I(x, y), calculate the cost and path matrices.

1. Create an M × N cost matrix, C and an M × N path matrix, P . Here,
C(i, j) is the cost of the shortest path to pixel I(i, j). The element that
came before I(i, j) in such a path is stored in P (i, j).

2. Set the elements of the first column of C and the first column of P to 0.

3. Move on to the next column (j = j+1). For each element i of the column,
examine the connections to each of the p closest elements in the previous
column (j − 1). Pick the connection and element, I(k, j − 1), associated
with the smallest cost.

4. Update the cost matrix: C(i, j) = C(k, j − 1) + Cij = C(k, j − 1) +
|I(i, j)− I(k, j − 1)|.

5. Update the path matrix: P (i, j) = k.

6. Repeat steps 2 through 5 until the last column has been processed (j =
N + 1).

Algorithm 4.2.2: Backtracking algorithm [BY97].

Given an M × N cost matrix C and an M × N path matrix P , determine the
shortest path s(j).

1. Start with the last column of the cost matrix (j = N).

2. Pick the smallest cost C(k,N) and set the last path element, s(N) = k.

3. Move one column to the front (j = j − 1).

4. Update the path: s(j) = P (s(j + 1), j).

5. Repeat steps 3 through 4 until s is complete (j = 0).

Chapter 4. Locating Thin Layers 62

A

B

C

D E

N

M

Figure 4.2.4: A left-to-right path through an M ×N matrix.

conforming to this criterion. During execution, this unfortunately requires
backtracking every element of the last column of the path matrix. A com-
putationally more effective method [SP03] is to patch the image before apply-
ing the algorithm (without limiting the search to circular paths). Figure 4.2.5
shows how the image is patched by appending the first columns to the last
and by prepending the last columns to the first. The shortest path algorithm
is then likely to favour circular paths (in the original and not in the patched
image), even though the path obtained is not guaranteed to be circular.

The measure of cost determines the shape of the shortest paths obtained,
as well as the route followed. We chose the cost so the paths would be dark
contours, similar to thin chromitite layers. The parameter p to the shortest path
algorithm (Algorithm 4.2.1) determines how many rows the path may jump at
any connection. To follow a path with a high gradient, this value needs to be
set high — but this also means that very thin paths are less likely to be found.
As a compromise, we chose p = 5, which allow the path to veer two pixels up-
or downwards.

Figure 4.2.6 shows two experimental results. In these examples, a borehole
core was photographed from the top. That means that only 180◦ of the core is
visible and therefore the patching algorithm could not be applied. A human
finds it difficult to distinguish the chromitite layer in the second image, but
the computer has a keen eye for contours! This is all the more apparent in the
third example, shown in Figure 4.2.7.

Chapter 4. Locating Thin Layers 63

Figure 4.2.5: Patching an image for circular shortest paths.

Figure 4.2.6: Chromitite layers found using shortest paths.

Figure 4.2.7: An artificial layer in a noisy background (left) is found to be the
shortest path (right).

Chapter 4. Locating Thin Layers 64

4.2.2 Non-linear least squares fitting

A shortest path can be seen as a collection of coordinates,

(xi, yi) for 1 ≤ i ≤ N.

We model the path as

y(xi) = d+A sin
(

2πxi

P
+ θ

)

and need to find the parameters A, d and θ for which y best approximates yi.
A linear least-squares solution is not applicable, since the function cannot be
written as a linear combination of its basis functions,

y(x) =
M∑

i=1

aifi(x).

Note that a linear least-squares solution would still have been appropriate for
the case in which one or more of the basis functions fi(x) were non-linear.

Let us examine a more general case of this non-linear problem, where we
have an M -parameter model

y = y(xi | p1 . . . pM).

We will assume that every measurement yi is a randomly corrupted version
of its model value y(xi) and that the error, yi − y(xi), is normally distributed1

around 0. The expected value of a measurement yi is y(xi) and therefore the
likelihood of it occurring is

p(yi) =
1√

2πσ2
i

e−(yi−y(xi))
2/2σ2

i .

If the measurement errors are statistically independent, the likelihood of a
complete path, y1 . . . yN , occurring is

P =
N∏

i=1

1√
2πσ2

i

e−(yi−y(xi))
2/2σ2

i

1We make this assumption based on the central limit theorem, which states that the prob-
ability distribution function of the sum of a large number of random variables approaches a
Gaussian distribution [PZP01, p. 125]. The topic is discussed in detail in [PTVF03, p. 664],
where the authors point out that errors not conforming to the normal distribution (i.e. outlier
points) can severely skew a least-squares fit.

Chapter 4. Locating Thin Layers 65

or, in log form,

lnP =
N∑

i=1

[
ln

(
1√
2π

)
+ lnσ−2

i − 1
2

(
yi − y(xi)

σi

)2
]
.

We wish to maximise P (or lnP), which is equivalent to minimising the figure-
of-merit function

χ2 =
N∑

i=1

[
yi − y(xi)

σi

]2

,

or, explicitly stating the dependence on the parameters p = p1 . . . pN ,

χ2(p) =
N∑

i=1

[
yi − y(xi | p)

σi

]2

.

We seek the parameter vector p that minimises the Chi-square function.
Sufficiently close to its minimum, g = χ2 can be approximated in quadratic

form. First, expand the function as a Taylor series around the point r [PTVF03,
p. 418], to give

g(p) = g(r) +
N∑

i=1

∂g

∂pi

∣∣∣∣
r

(pi − ri) +
1
2

∑

i,j

∂2g

∂pi∂pj

∣∣∣∣
r

(pi − ri)(pj − rj) + · · ·

and then drop higher order terms to obtain the quadratic approximation

g(p) ≈ g(r) +∇g(r) · (p− r) +
1
2
(p− r)TA(p− r),

where

Aij =
∂2g

∂pi∂pj

∣∣∣∣
r

.

The gradient of the quadratic function (see Appendix A.4) is

∇g(p) = ∇g(r) + A(p− r).

The function g has a minimum where this gradient is zero. Thus, in the region
of the current point in the parameter space pcur, we have

A(pmin − pcur) = −∇g(pcur)

Since g is known, so is the matrix A (the second partial derivative or Hessian
matrix) and the gradient. A direct estimate of the parameters minimising the

Chapter 4. Locating Thin Layers 66

function can be made:

pmin = pcur −A−1∇g(pcur).

This estimate is accurate only if the quadratic approximation is good at pcur.
If this is not the case, the above method cannot be used and we have to step
down the gradient in order to move closer to the minimum. The method of
steepest gradient descent can be expressed as

pnext = pcur −K · ∇g(pcur).

The Hessian matrix

In order to use either of the above methods, we need to calculate the gradient
and the Hessian matrix. In general form, the function is

χ2(p) =
N∑

i=1

[
yi − y(xi | p)

σi

]2

,

of which the gradient is found, using the chain and product rules, to be

∂χ2

∂pk
= −2

N∑

i=1

[
yi − y(xi | p)

σ2
i

]
∂y(xi | p)

∂pk
, k = 1, 2, . . . ,M.

The second partial derivative matrix becomes

∂2χ2

∂pk∂pl
= 2

N∑

i=1

1
σ2

i

[
∂y(xi | p)

∂pk

∂y(xi | p)
∂pl

− [yi − y(xi | p)]
∂2y(xi | p)
∂pk∂pl

]
.

Assuming that the function is relatively smooth, the second derivative can be
neglected. For a discussion as to why this is a good idea, refer to [PTVF03,
p. 688]. The term multiplying the second derivative, yi − y(xi | p), should
roughly sum to zero over all i near the minimum and is therefore likely to be
much smaller than the first term. In general, modifying the Hessian slightly
still leads to convergence, even if it may take slightly longer. For our model,

y = d+A sin(x+ θ),

we have

p =

d

A

θ

 .

Chapter 4. Locating Thin Layers 67

The gradient is

∇χ2(p) = −2
N∑

i=1

yi − y(xi | p)
σ2

i

[
1 sin(xi + θ) A cos(xi + θ)

]T
,

and the Hessian matrix is

A|p =
N∑

i=1

2
σ2

i

1 A21 A31

sin(xi + θ) sin2(xi + θ) A32

A cos(xi + θ) 1
2 sin(2xi + 2θ) A2 cos2(xi + θ)

 .

The values of the variances σi are unknown and set to 1 in the implementation.

Levenberg-Marquardt method

Two methods were listed in the previous section for finding the parameter set
that minimises χ2, namely

Direct estimate : pnext = pcur −A−1∇χ2(pcur) (4.2.1)

or

Gradient descent : pnext = pcur −K · ∇χ2(pcur). (4.2.2)

The steepest descent should be taken when we are far away from the func-
tion minimum, while a direct estimate should be made once we are close.
The Levenberg-Marquardt algorithm makes a smooth transition between these
two approaches. The mathematical detail of the algorithm is discussed in
[Mar63] and two methods of implementation are detailed in [HZ03, p. 600]
and [PTVF03, p. 688]. We discuss the simpler of the two methods to illustrate
the concept.

The idea behind the algorithm is to merge the two methods in (4.2.1) and
(4.2.2), which is accomplished by

(A + λI)δp = −∇χ2(pcur) (4.2.3)

where
δp = (pnext − pcur).

When λ is very small, (4.2.3) becomes

Aδp = −∇χ2(pcur)

Chapter 4. Locating Thin Layers 68

Algorithm 4.2.3: The Levenberg-Marquardt algorithm [PTVF03, p. 689].

1. Choose λ small, i.e. λ = 0.001 and make an initial guess of the parameter
vector, p.

2. Compute χ2(p).

3. Calculate δp using (4.2.3) and compute χ2(p + δp).

4. If χ2(p + δp) ≥ χ2(p), multiply λ by 10 and repeat from step 2.

5. If χ2(p+δp) < χ2(p), divide λ by 10, update p to p+δp and repeat from
step 2.

The algorithm is iterated until χ2(p) decreases by less than a certain small
factor, say 0.01.

which is the direct estimate. On the other hand, when λ is very large, (4.2.3)
becomes roughly

δp = −∇χ
2(pcur)
λ

.

The factor λ therefore provides a smooth transition between the gradient de-
scent approach, which always guarantees movement closer to the function
minimum, and the direct estimate, which is only applicable near the function
minimum.

Algorithm 4.2.3 outlines the Levenberg-Marquardt method.
A sinusoid, fitted to a shortest path as obtained in the previous section,

is shown in Figure 4.2.8. Are we guaranteed that this is the best possible fit?
Unfortunately not, as the parameters might correspond to a local minimum in
χ2. It is therefore worthwhile making a good initial parameter estimate2.

Given the shortest path pixels belonging to a chromitite stringer, the pa-
rameters d, A and θ of the fitted sinusoid are related to the location and ori-
entation of the thin planar layer. It cuts through the cylindrical borehole core
with main axis z. The parameter d gives the offset along this axis, while the
amplitude A describes the angle of the plane with the horizon. The phase θ
determines its rotation around z.

2A method like simulated annealing can be used to improve the chances of finding a mini-
mum. Here, the parameter vector p is disturbed to see if the algorithm converges to the same
minimum. If it does, it is likely that a global minimum has been found.

Chapter 4. Locating Thin Layers 69

Figure 4.2.8: A shortest path (left) and the fitted sinusoid (right).

4.3 Finding a chromitite layer hidden in a pyroxenite
core

Given a photograph of a pyroxenite core, a way is sought to locate thin chromi-
tite layers. The only predetermined knowledge is that they are dark in colour
and roughly sinusoidal in shape. They are often hidden in very “noisy” sur-
face textures. Isolating such paths then becomes harder: any localised method
(like the Sobel operator) immediately fails and thresholding is not applicable.
The only option left is to consider the whole path and not only parts of it. Two
intuitive approaches to the problem are now evaluated.

The previous section outlined a way of fitting a sinusoidal model to the
pixels of a thin layer, obtained using the shortest paths algorithm. This algo-
rithm returns a shortest path for any section of the borehole photograph. It is
not expected for such a path to be sinusoidal unless a thin layer is present. The
root-mean-square (RMS) error between the path pixels and the model,

ε =
√
χ2(p) =

N∑

i=1

[yi − y(xi | p)]2 ,

is a measure of the goodness-of-fit of the sinusoidal model. If this error is high,
it is unlikely that a path is present. Yet, it was found in practice that, when no
layers were present, the shortest path often turned out to be a straight line,
very well represented by the sinusoidal model with zero amplitude. The RMS
error cannot be trusted to be low only when a chromitite layer is present.

The second approach is to examine the cost of the shortest path. For a dark
contour to exist, the cost must be low. Shift a window over the borehole pho-
tograph, each window overlapping the previous by half. The window must

Chapter 4. Locating Thin Layers 70

Window Width

N
or

m
al

is
ed

C
os

t

Layer Found

Threshold

0

0.2

0.4

0.6

0.8

1

0 100 200 400 500 700 800 900300 600

Figure 4.3.1: Finding thin layers in a borehole photograph.

Finding thin layers in a borehole photograph. A rectangular window moves across
the image from left to right, as indicated by the three red boxes. At each step, the
shortest path and associated cost (shown as a blue line) is calculated. When the cost
is lower than a certain threshold (green line), a chromitite layer might be present.

be large enough to easily cover any chromitite layer. At each step, the shortest
path and its associated cost, ci, is obtained. Set a threshold to a factor of the
average cost,

T = λE[c],

where the factor is low (typically 0.2). Wherever the error εi is lower than this
threshold, a chromitite layer is likely to be present in window i. The factor λ
can be varied: a high value leads to increased sensitivity, but also to decreased
accuracy. Figure 4.3.1 illustrates the process and a typical result.

Varying intensity

The procedure outlined above makes the implicit assumption that the image
intensity remains nearly constant over the borehole photograph. If it does not,
the path cost will be influenced, with the threshold method possibly failing.
To prevent this problem, some pre-processing of the cost vector c is done. The

Chapter 4. Locating Thin Layers 71

mean intensity value of each block i is subtracted from the cost ci as a simple
corrective measure.

Chapter 5

Texture Classification of
Borehole Cores

5.1 Introduction

A borehole televiewer is an instrument used to photograph the inside of a
borehole. During the evaluation of the algorithms presented, we did not have
access to such equipment, or to any in-hole photographic data. Fortunately,
we were able to photograph core trays (containing dolomite [Beu78]) at the
De Beers Finsch Mine near Kimberley [Bar98]. The classifier performance dis-
cussed below is based on results obtained using this data.

One never has perfect control over measurements. In photographing the
cores, obtaining a constant, equally illuminating yet diffuse light source proved
difficult. While this probably influenced the experimental results, no correc-
tions were made or preprocessing (other than selection) done on the data. If
the algorithms perform well under these circumstances, we can safely infer
that the results will be at least as good on higher quality data.

5.2 Photographing cores

5.2.1 Configuration of equipment

A camera is positioned directly over a core tray as shown in Figure 5.2.1. The
distance to the lens is h, the camera’s field of view is 2θ and the width of the
picture taken is W . The camera maps the physical length W to D discrete
pixels.

The Nyquist sampling theorem states that a band-limited continuous-time
signal of bandwidth B can be uniquely recovered from its samples, provided

72

Chapter 5. Texture Classification of Borehole Cores 73

θ

D

h

W

Figure 5.2.1: Camera setup for photographing cores.

that the sampling rate Fs ≥ 2B samples per second. The bandwidth of a core
photograph depends on the texture involved and is considered to be the high-
est frequency found over all rock samples. The higher frequencies are visible
in attributes such as the “spottiness” or the number of sharp ridges. As long
as these features are clearly discernible, the sampling frequency is sufficiently
high. According to observation, a pixel density of 130 dots per inch (or roughly
one pixel every 0.2mm) is adequate.

A typical digital camera has a field of view of around 2θ = 50◦ and can
take pictures at resolutions of more than 3 megapixels. A 3-megapixel photo
has 1536× 2048 pixels. At a height of 1.2 metres the photograph width is

W = 2h tan(θ) ≈ 1 m.

This is mapped onto 2048 pixels, which produces a density of roughly 50 dpi.
With a zoom lens, the photograph width can be decreased to 30 cm, which
results in a satisfactory density of 150 dpi.

5.2.2 Light sources

Core samples have dull, rough surfaces, caused by grinding of the diamond
borehole drill bit against the stone. In order to hide the rough outer layer
and to emphasise the underlying rock texture, the cores need to be wetted.

Chapter 5. Texture Classification of Borehole Cores 74

2R πR

Figure 5.2.2: Geometrical distortion is observed in a cylinder, photographed
from above (left). Using a different projection (right), the photograph can be
transformed to remove such distortion.

Unfortunately, the water applied causes specular reflection and special care
must be taken to use a diffuse light source for photography.

The samples were placed in a room, lit brightly by the sun shining onto
closed blinds. A shadow was then cast onto the core samples (assuring that no
direct light reached their surfaces) and the photographs taken, using a slightly
extended exposure time (1

6s) to compensate for the shadow. The film sensitiv-
ity was set to a minimum to reduce noise levels.

5.2.3 Geometrical correction

The cylindrical cores are photographed from above, causing geometrical dis-
tortion of the surface texture in the photograph (see Figure 5.2.2). The dis-
tortion can be corrected by a simple trigonometric transformation, yet such a
correction is highly sensitive to the exact core radius and position of the central
axis. If only the central strip of each core photograph is used, the deformation
does not present a problem to feature extracting algorithms (this is especially
true for the way in which the wavelet coefficients are characterised: not indi-
vidually, but by the statistical parameters of their distribution). The levels of
geometrical distortion involved do not have a notable effect on the error rate
obtained by the classifier.

Chapter 5. Texture Classification of Borehole Cores 75

5.3 Software overview

5.3.1 Numerical Simulations

The algorithms described in this thesis were implemented in GNU Octave, a
high-level language for numerical computations, developed by John W. Eaton
(University of Wisconsin-Madison) and the Octave community. Octave is free
software (free as in free speech) and can be distributed or modified under the
terms of the GNU General Public License as published by the Free Software
Foundation.

Octave is extended by Octave Forge — a large collection of algorithms pro-
vided by the Octave community and released either under GPL-compatible
licenses or in the public domain.

WaveLab was developed at Stanford University and implements the wavelet
transform and other wavelet-related algorithms.

Extending Octave in C++

Octave is an interpreter and, under certain circumstances, lacks the execu-
tion speed required by image processing algorithms. To address this issue,
modules written in C++ can be hooked into the interpreter. Algorithms can
be rapidly developed in the vector and matrix oriented Octave language and
translated to C++ if necessary.

Octave provides a C++ library for the handling of structures like matrices
and vectors. As a trivial example, examine the module or dynamically linked
function for creating the matrix

A(i, j) = i+ j.

Listing 5.1: An example Octave extension.
#include <octave/oct.h>

DEFUN_DLD(example , args , , " A simple demonstration ") {

Matrix m(3,3);

for (int i = 0; i < 3; i ++) {

for (int j = 0; j < 3; j ++) {

m(i , j) = i + j ;

}

}

Chapter 5. Texture Classification of Borehole Cores 76

return octave_value (m);

}

This function exhibits the following behaviour in Octave:

octave:1> help example

example is the dynamically-linked function from the file

/home/stefan/thesis/example.oct

A simple demonstration

octave:2> a = example()

a =

0 1 2

1 2 3

2 3 4

The library overrides certain operators, like the indexing braces “()”, which
allow the C++ code to be similar in form to the scripted code.

Contributed functions

Please see Appendix B for a listing of functions contributed to the Octave
Forge.

5.3.2 Feature Selection

As discussed in Section 5.2, only the central section of each core is used for fea-
ture extraction. Unfortunately, the cores produced by the mining process are
not always intact. Some means was needed to extract the usable central, intact
parts from photographs for further processing. A screenshot of the program
written to achieve this goal is shown below (Figure 5.3.1).

The program was written in Python, with graphical user interface and im-
age loading routines from the wxPython library. A core photograph is loaded,
after which translucent blue rectangles (256×256 pixels) are placed and moved
across the picture to mark suitable pieces of rock. The marked blocks can then
be exported to separate images, ready for further processing. The positions
of the blocks can also be saved in a text file for usage in Octave, or for later
reloading and manipulation in the program itself.

Chapter 5. Texture Classification of Borehole Cores 77

Figure 5.3.1: Screenshot of the image cutting software.

5.3.3 Download locations

Package URL
GNU Octave http://www.octave.org
Octave Forge http://octave.sourceforge.net
WaveLab http://www-stat.stanford.edu/~wavelab
Python http://www.python.org
wxPython http://www.wxpython.org

5.4 Texture Analysis

Two sets of data are used to set up the classifier. The first set, of which three
samples are shown in Figure 5.4.1, is used to establish the ideal combination
of feature vectors for good texture recognition. The second, shown in Figure
5.4.2, is used to test the classifier performance and to obtain an estimated error
rate.

The two datasets (platinum and diamond) are broken up into two groups
of samples each; the first, consisting of two thirds of the samples, is used for

Chapter 5. Texture Classification of Borehole Cores 78

(a) Type A (b) Type B (c) Type C

Figure 5.4.1: Three core samples from the Bushveld Igneous Complex [VvG86]
(the platinum dataset).

(a) Stromatolitic (b) Ripple-laminated (c) Siliceous

Figure 5.4.2: Three types of dolomite from the Ghaap group [Beu78, Bar98,
Ekk04] (the diamond dataset).

training while the second, containing the remainder of the samples, is used in
evaluating (or testing) the classifier. It is to be noted that the platinum dataset
(Figure 5.4.1) is much smaller than the diamond dataset; it also consists of three
classes, but these were chosen to differ significantly in their texture properties.
The diamond data set, on the other hand, is used as a whole — no samples were
rejected beforehand to benefit discrimination.

The platinum set (with its training and testing samples) is firstly used to train
and evaluate the classifier. Based on the outcome, adjustments are made to the
system; most often, this involves changing the combination of the different
types of features used. The tuning procedure is repeated, until the classifier
performance is satisfactory. The system parameters are then fixed, not to be mod-

Chapter 5. Texture Classification of Borehole Cores 79

ified for the rest of the evaluation.
The diamond set is now used to train and evaluate the system, based on the

choice of features obtained from trials under the platinum dataset. The error
rate thus obtained is then an indication of the overall ability of the classifier to
discriminate between different rock types.

Training

The texture features used are described in detail in Section 3.3.4. A three-level
wavelet decomposition is done on each sample. At each of the three levels,
the variance and mean of the horizontal, vertical and diagonal coefficients are
calculated as features. A full wavelet decomposition is done, after which the
wavelet energy signature is calculated as another feature. Together, the fea-
tures form a feature vector — there is one vector per sample.

A Bayesian classifier (see Section 3.4.2) is trained using features from the
training set. Based on this training, the classifier is asked to classify each fea-
ture vector from the testing set. It is also allowed to reject samples, based on
the likelihood of their occurrance in all of the classes. The number of correct,
incorrect and unclassified samples are noted. Two important quantities are
calculated: the accuracy and the success rate. The accuracy is the number of
successes as a percentage of all samples classified (and not rejected). The suc-
cess rate is calculated the same way, but includes rejected samples. The error
rate is the number of failures as a percentage of all samples.

Classification

We can view this experiment as a Bernoulli trial, assuming that no rejections
take place (which is easy to achieve, by setting the rejection threshold to a low
value). Each sample classification has one of two outcomes: success or failure.
We repeat the procedure M times, once for each sample in the dataset. The
binomial distribution models such situations.

The classification experiment produces the results shown in Table 5.1.
The actual classifier error rate τ differs from the estimated error rate ε. We

would like to be able to predict the error rate of the classifier for future trials
— it might be slightly higher, or lower, than the current estimate. To do this, a
95% confidence interval (τa, τb) is calculated, so that

P (τa < τ < τb | ε) = 0.95.

Chapter 5. Texture Classification of Borehole Cores 80

Table 5.1: Classifier results.

Class of Dolomite Correct Incorrect Unclassified
Stromatolitic 17 8 0

Ripple-laminated 26 0 0
Siliceous 26 1 0

Number of samples M = 78
Correct classifications w = 69

Misclassifications m = 9
Rejection threshold T = 40% (certainty)

Estimated classifier error rate ε = 11.54%
Estimated classifier success rate S = 88.46%

The binomial probability density function (PDF) for N trials is defined as

fX(x) =
N∑

k=0

(
N

k

)
pk(1− p)N−kδ(x− k)

where p is the probability of success (per trial), (1−p) the probability of failure
and where (

N

k

)
=

N !
k!(N − k)!

is the binomial coefficient. Accordingly, the probability of exactly m misclassi-
fications taking place in M trials, given the true error rate τ is

P (m | τ,M) =
M !

m!(M −m)!
τm(1− τ)M−m.

For a large number of trials, the binomial PDF converges to the normal PDF.
It is common practice to make use of this fact when calculating a confidence
interval. The rule of thumb by Hodges and Lehman [HL70],

Mε(1− ε) ≥ 10,

gives an indication of the size of M required to validate this assumption. In
our case,

Mε(1− ε) = 78× 0.1154× (1− 0.1154) = 7.9625 ≤ 10,

Chapter 5. Texture Classification of Borehole Cores 81

which indicates that such an approximation is indeed invalid. Rather, we make
use of the Beta distribution and the approximation formulas given in [MH96].
The 95% confidence limits are given as

τa = C −H τb = C +H

where

C = (1− 2ε)
1.96

√
0.5

M + 3
+ ε

and

H =

C if m ≤ 1

1.96
√

ε(1−ε)
M+2.5 otherwise

.

For our experiment, we therefore have the 95% confidence interval on the true
classification error as

5.88% < τ < 19.83%.

In other words, we can say with 95% confidence that the texture classifier will
not obtain a worse success rate than 80% under similar circumstances.

The accuracy of the classifier can be adjusted by setting the rejection thresh-
old. A high threshold allows the classifier to reject samples more easily, in-
creasing the accuracy but decreasing the overall success rate, as shown in Fig-
ure 5.4.3.

Chapter 5. Texture Classification of Borehole Cores 82

Success
Accuracy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rejection threshold

R
at

e

Figure 5.4.3: Accuracy and success rates as a function of the rejection thresh-
old.

Chapter 6

Conclusion

This thesis described the foundation of wavelet theory, of shortest path tech-
niques, of texture analysis and of Bayesian pattern classification.

Wavelet theory was presented in terms of multi-resolution analysis and the
link to digital filters prominently emphasised. By choosing filters carefully,
wavelets with desirable properties can be generated. Although these wavelets
may never be calculated, their shapes dictate the applications of the wavelet
transform.

Wavelet theory is truly a magnificent fusion of ideas originating in vastly
different scientific disciplines. It has proved to be especially well suited to the
problem of texture analysis. Different classical approaches to texture classifi-
cation were explained, after which a tour of more modern wavelet techniques
was given. A Bayesian classifier, chosen for its simplicity and effectiveness,
was trained using wavelet features. These features were calculated from dif-
ferent levels of wavelet coefficients, and consisted of wavelet signatures (mod-
ified to describe normal distributions) and our cumulative energy signatures.
The classifier was able to distinguish between different rocky textures (all very
much alike to the untrained human eye). The high success rate allows us to
say with confidence that the techniques (the combination of a Bayesian classi-
fier and the described wavelet features) are likely to perform well on similar
rock-texture classification problems.

In addition, we searched for thin chromitite stringers in “noisy” pyroxen-
ite rock surfaces. An algorithm was designed to locate such layers in long
borehole core photographs. The layers were isolated using shortest path tech-
niques, after which a sinusoidal curve was fitted, using a non-linear least
squares fitting. The parameters of these curves were used to determine the
orientation of the layers in space. Whole cores containing these stringers are
scarce (chromitite layers are brittle, causing the core to break), thus the al-

83

Chapter 6. Conclusion 84

gorithms were mainly evaluated using simulated data and few field samples.
Yet, these experiments were successful, suggesting that this novel combination
of techniques has merit.

In the future, we hope that more data will become available to support the
results obtained thus far. As for wavelets: they already seem to have carved a
niche for themselves in the exciting world of image processing.

6.1 Further research

Multi-scale methods are not limited to wavelets and their applications. One
example of a related field of research is that of beamlets, curvlets and other line-
integral representations, which tie in closely with graph theory. In the beam-
let domain, an image is represented as a collection of coefficients obtained by
calculating integrals along predefined line segments. These segments are de-
scribed in a dyadically organised beamlet dictionary, containing lines at differ-
ent orientations, scales and locations [DH00].

Beamlets have been successfully used to identify paths in signals with very
low signal to noise ratios. This has direct application to the location of thin
layers in borehole cores. A search for connected line segments conforming to
a predefined set of requirements can produce border descriptions for arbitrary
objects — chromitite intrusions, in the case of pyroxenite cores.

The field of wavelets is growing exponentially and this thesis does not
cover all the possible approaches to the widely defined “texture classification”
problem. The unique attributes specific to natural textures — like the inter-
esting distribution of energy at different decomposition levels discussed in
Section 3.3.3 — need to be fully explored and understood. It has been sug-
gested that Markov random field processes over wavelet coefficients would
be a good approach to texture characterisation [Mal99, p. 160]. This method
should deliver results similar to those obtained using co-occurrence statistics
[CJ83]. There are a number of fields in wavelet analysis to be further explored,
like the packet transform, multi-wavelets and wavelet frames. The edge ef-
fects caused by the periodic padding, ignored in our experiments for the sake
of simplicity, can be removed by using symmetric signal extension, or specific
boundary wavelets.

In his extensive treatment of the topic, Van de Wouwer [vdW98] suggests
the use of non-separable wavelets for texture analysis. The separable wavelets,
while easy to implement, are highly orientation specific (in the 0◦, 45◦ and 90◦

directions). Using colour textures and features are mentioned.

Chapter 6. Conclusion 85

The algorithms in this thesis were evaluated without performing prepro-
cessing on any input data. This allowed us to evaluate the robustness of
the algorithms. Also, in-borehole cameras are becoming more commonplace,
negating the need for geometric correction (but not for illumination equilisa-
tion) in photo samples. These corrections should, however, normally be ap-
plied. Sklansky [Skl78] states that “preprocessing, such as linear filtering or
histogram transformation, has significant effects on the performance of seg-
menters and feature extractors.”

For texture discrimination, we assumed that each class is distributed nor-
mally. This may or may not be true — with more data available, this aspect
can be explored and distributions like Gaussian mixture models may be con-
sidered.

Appendix A

Useful Mathematical Results

A.1 The error function at infinity

The error function [Pap65] is defined as

erf(x) = F (x) =
1√
2π

∫ x

0
e−y2/2dy.

We wish to calculate the value of the error function at infinity. Start by squaring
F (∞) [Her04].

F 2(∞) =
1
2π

∫ ∞

0
e−y2/2dy

∫ ∞

0
e−v2/2 dv

=
1
2π

∫ ∞

0

∫ ∞

0
e−(y2+v2)/2 dy dv.

Now write this double integral in polar coordinates as

F 2(∞) =
1
2π

∫ π/2

0

∫ ∞

0
e−r2/2 r dr dθ

=
1
4

∫ ∞

0
re−r2/2 dr.

Making the substitution u = r2/2, this becomes

F 2(∞) =
1
4

∫ ∞

0
e−udu

=
1
4

(−e−u
)∣∣∞

0

=
1
4
.

A–1

Appendix A. Useful Mathematical Results A–2

Therefore,
F (∞) =

1
2
.

A.2 Maximising the generalised Rayleigh quotient

We wish to show that a function of the form

J(w) =
wTAw
wTBw

can be written as the Rayleigh quotient when A and B are symmetric matrices
and B is a positive definite1 matrix. Symmetric positive definite matrices can
be factorised as B = PTP and therefore

J(w) =
wTAw

wTPTPw

=
wTAw

(Pw)T (Pw)
.

Let y = Pw (which implies that w = P−1y), then

J(y) =
yTP−TAP−1y

yTy

=
yTRy
yTy

. (A.2.1)

Equation (A.2.1) is in the form of a Rayleigh quotient. Note that R is symmet-
ric, since

R = P−TAP−1

= P−TSTSP−1

=
(
SP−1

)T (
SP−1

)

= QTQ

and
RT = R.

The N eigenvectors of R, {q1 . . .qN}, therefore form an orthonormal basis
[Str93, p. 275] in which y can be expressed as

y = c1q1 + c2q2 + . . .+ cNqN .

1A matrix B is positive definite if xT Bx > 0 for every non-zero vector x.

Appendix A. Useful Mathematical Results A–3

The Rayleigh quotient of (A.2.1) now becomes

J(y) =
(c1q1 + c2q2 + . . .+ cNqN)T (c1λ1q1 + c2λ2q2 + . . .+ cNλNqN)

(c1q1 + c2q2 + . . .+ cNqN)T (c1q1 + c2q2 + . . .+ cNqN)

=
c21λ1 + c22λ2 + . . .+ c2NλN

c21 + c22 + . . .+ c2N
.

The maximum value of this expression is the value of the largest eigenvalue,
λmax, since

J(y) =
c21(λmax −∆1) + c22(λmax −∆2) + . . .+ c2N (λmax −∆N)

c21 + c22 + . . .+ c2N

= λmax − c1∆1 + c2∆2 + . . .+ cN∆N

c21 + c22 + . . .+ c2N
≤ λmax.

The expression is at its maximum when y is the eigenvector of R associated
with λmax.

How are the eigenvalues of R related to A and B? Recall that

R = P−TAP−1

and that
B = PTP.

If we assume that B is non-singular, it then follows that

R = PB−1AP−1

= PMP−1

and that R is similar to B−1A = M. Similar matrices share the same eigenval-
ues and their eigenvectors are related. If x is an eigenvector of M, then Px is
an eigenvector of R.

Let vmax(R) denote the eigenvector of matrix R associated with the largest
eigenvalue. Since the value of y that maximises J(y) is

y = vmax(R) = Pvmax(B−1A),

we can now find w. We know w = P−1y and therefore

w = P−1y = vmax(B−1A).

Appendix A. Useful Mathematical Results A–4

We have therefore shown that, for the case where A and B are symmetric and
B is positive-definite and non-singular, the expression

J(w) =
wTAw
wTBw

is at a maximum when w is the eigenvector associated with the largest eigen-
value of B−1A. The case in which B is singular is discussed in [TK99, p. 163].

A.3 Lagrangian multipliers

Given a function
f(x1, x2 . . . x3) = f(x)

we seek the extremum of that function, subject to the constraint g(x) = 0. At
the extremum it is true [FT94] that

∇f(x) = λ∇g(x) (A.3.1)

and

g(x) = 0. (A.3.2)

Define the Lagrangian function [Kle] as

L(x, λ) = f(x)− λg(x)

then
∇L(x, λ) = 0 (A.3.3)

which satisfies (A.3.1) and (A.3.2), since

∂L(x, λ)
∂x

= ∇f(x)− λ∇g(x)

and
∂L(x, λ)
∂λ

= −g(x).

The solution of (A.3.3) is the constrained value of x at an extremum [DHS01,
p. 610].

Appendix A. Useful Mathematical Results A–5

A.4 The gradient of xTAx

We calculate the gradient

∇f(x) =
∂f(x)
∂x

=

∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn

where
f(x) = xTAx

and A is a symmetrical matrix. We can express f(x) as the sum

f(x) =
∑

i

∑

j

Aijxixj ,

for which
∂f(x)
∂xs

=
∂

∂xs

∑

i

∑

j

Aijxixj

holds. This is equivalent to

∂f(x)
∂xs

=
∂

∂xs

∑

i

∑

j

Aijxixj

=
∑

i

∑

j

∂

∂xs
(Aijxi)xj +

∑

i

∑

j

Aijxi
∂

∂xs
(xj)

=
∑

j

Asjxj +
∑

i

Aisxi

and because A is symmetrical, this reduces to

∂f(x)
∂xs

= 2
∑

j

Asjxj

which leads to the solution
∇f(x) = 2Ax.

Appendix B

Code Contributions

The following three algorithms were contributed to and accepted into the Oc-
tave Forge.

Listing B.1: Two dimensional convolution using the fast Fourier transform.
Copyright (C) 2004 Stefan van der Walt <stefan@sun . ac . za >

##

This program is free software ; redistribution and use in source and

binary forms , with or without modification , are permitted provided that

the following conditions are met :

##

1. Redistributions of source code must retain the above copyright

notice , this list of conditions and the following disclaimer .

2. Redistributions in binary form must reproduce the above copyright

notice , this list of conditions and the following disclaimer in the

documentation and / or other materials provided with the distribution .

##

THIS SOFTWAREIS PROVIDED BY THE AUTHORAND CONTRIBUTORS‘‘ AS IS ’’ AND

ANY EXPRESSOR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOROR CONTRIBUTORSBE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES(INCLUDING, BUT NOT LIMITED TO, PROCUREMENTOF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVERCAUSEDAND ON ANY THEORYOF LIABILITY , WHETHERIN CONTRACT, STRICT

LIABILITY , OR TORT (INCLUDING NEGLIGENCEOR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

FFTCONV2Convolve 2 dimensional signals using the FFT.

##

usage : fftconv2 (a, b[, shape])

fftconv2 (v1 , v2 , a, shape)

##

B–1

Appendix B. Code Contributions B–2

This method is faster but less accurate for large a, b. It

also uses more memory. A small complex component will be

introduced even if both a and b are real .

##

see also : conv2

Author : Stefan van der Walt <stefan@sun . ac . za >

Date : 2004

function X = fftconv2 (varargin)

if (nargin < 2)

usage (" fftconv2 (a, b[, shape]) or fftconv2 (v1 , v2 , a, shape) ")

endif

shape = " full " ;

rowcolumn = 0;

if ((nargin > 2) && ismatrix (varargin {3}))

usage : fftconv2 (v1 , v2 , a[, shape])

rowcolumn = 1;

v1 = varargin {1}(:)’;

v2 = varargin {2}(:);

orig_a = varargin {3};

if (nargin == 4) shape = varargin {4}; endif

else

usage : fftconv2 (a, b[, shape])

a = varargin {1};

b = varargin {2};

if (nargin == 3) shape = varargin {3}; endif

endif

if (rowcolumn)

a = fftconv2 (orig_a , v2);

b = v1 ;

endif

ra = rows (a);

ca = columns (a);

rb = rows (b);

cb = columns (b);

A = fft2 (impad (a, [0 cb -1], [0 rb -1]));

B = fft2 (impad (b, [0 ca -1], [0 ra -1]));

Appendix B. Code Contributions B–3

X = ifft2 (A.* B);

if (rowcolumn)

rb = rows (v2);

ra = rows (orig_a);

cb = columns (v1);

ca = columns (orig_a);

endif

if strcmp (shape , " same")

r_top = ceil ((rb + 1) / 2);

c_top = ceil ((cb + 1) / 2);

X = X(r_top : r_top + ra - 1, c_top : c_top + ca - 1);

elseif strcmp (shape , " valid ")

X = X(rb : ra , cb : ca);

endif

endfunction

%!# usage : fftconv2 (a, b,[, shape])

%!shared a, b

%! a = repmat (1:10, 5);

%! b = repmat (10:-1:3, 7);

%!assert (norm(fftconv2 (a, b)- conv2 (a, b)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (b, a)- conv2 (b, a)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (a, b, ’ full ’)- conv2 (a, b, ’ full ’)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (b, a, ’ full ’)- conv2 (b, a, ’ full ’)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (a, b, ’ same’)- conv2 (a, b, ’ same’)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (b, a, ’ same’)- conv2 (b, a, ’ same’)), 0, 1 e6* eps)

%!assert (isempty (fftconv2 (a, b, ’ valid ’)));

%!assert (norm(fftconv2 (b, a, ’ valid ’)- conv2 (b, a, ’ valid ’)), 0, 1 e6* eps)

%!# usage : fftconv2 (v1 , v2 , a[, shape])

%!shared x, y, a

%! x = 1:4; y = 4:-1:1; a = repmat (1:10, 5);

%!assert (norm(fftconv2 (x, y, a)- conv2 (x, y, a)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (x, y, a, ’ full ’)- conv2 (x, y, a, ’ full ’)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (x, y, a, ’ same’)- conv2 (x, y, a, ’ same’)), 0, 1 e6* eps)

%!assert (norm(fftconv2 (x, y, a, ’ valid ’)- conv2 (x, y, a, ’ valid ’)), 0, 1 e6* eps)

%!demo

%! ## Draw a cross

%! N = 100;

%! [x, y] = meshgrid (- N: N, - N: N);

%! z = 0* x;

%! z(N,1:2* N+1) = 1; z(1:2* N+1, N) = 1;

%! imshow (z);

Appendix B. Code Contributions B–4

%!

%! ## Draw a sinc blob

%! n = floor (N/10);

%! [x, y] = meshgrid (- n: n, - n: n);

%! b = x.^2 + y.^2; b = max(b(:)) - b; b = b / max(b(:));

%! imshow (b);

%!

%! ## Convolve the cross with the blob

%! imshow (real (fftconv2 (z, b, ’ same’)* N))

Listing B.2: The straight line Hough transform.
/* Copyright (C) 2004 Stefan van der Walt <stefan@sun . ac . za >

Redistribution and use in source and binary forms , with or without

modification , are permitted provided that the following conditions are

met :

1. Redistributions of source code must retain the above copyright notice ,

this list of conditions and the following disclaimer .

2. Redistributions in binary form must reproduce the above copyright

notice , this list of conditions and the following disclaimer in the

documentation and / or other materials provided with the distribution .

THIS SOFTWAREIS PROVIDED BY THE AUTHOR‘‘ AS IS ’’ AND ANY EXPRESSOR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIESOF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORBE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES(INCLUDING, BUT NOT LIMITED TO, PROCUREMENTOF SUBSTITUTE

GOODSOR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVERCAUSEDAND ON ANY THEORYOF LIABILITY , WHETHER

IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCEOR

OTHERWISE) ARISING IN ANY WAYOUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */

#include <octave/oct.h>

DEFUN_DLD(houghtf , args , , " \

\

usage : [H, R] = houghtf (I [, angles]) \ n\

\ n\

Calculate the straight line Hough transform of an image .\ n\

\ n\

The image , I , should be a binary image in [0,1]. The angles are given \ n\

in degrees and defaults to -90..90.\ n\

\ n\

H is the resulting transform , R the radial distances .\ n\

Appendix B. Code Contributions B–5

\ n\

See also : Digital Image Processing by Gonzales & Woods (2 nd ed., p. 587) \ n") {

octave_value_list retval ;

bool DEF_THETA = false ;

if (args . length () == 1) {

DEF_THETA = true ;

} else if (args . length () != 2) {

print_usage (" houghtf ");

return retval ;

}

Matrix I = args (0). matrix_value ();

ColumnVector thetas = ColumnVector ();

if (! DEF_THETA) {

thetas = ColumnVector (args (1). vector_value ());

} else {

thetas = ColumnVector (Range(-90,90). matrix_value ());

}

if (error_state) {

print_usage (" houghtf ");

return retval ;

}

thetas = thetas / 180 * M_PI;

int r = I . rows ();

int c = I . columns ();

Matrix xMesh = Matrix (r , c);

Matrix yMesh = Matrix (r , c);

for (int m = 0; m < r ; m++) {

for (int n = 0; n < c; n++) {

xMesh(m, n) = n+1;

yMesh(m, n) = m+1;

}

}

Matrix size = Matrix (1, 2);

size (0) = r ; size (1) = c;

double diag_length = sqrt (size . sumsq()(0));

int nr_bins = 2 * (int) ceil (diag_length) - 1;

RowVector bins = RowVector (Range(1, nr_bins). matrix_value ()) - (int) ceil (

nr_bins /2);

Appendix B. Code Contributions B–6

Matrix J = Matrix (bins . length (), 0);

for (int i = 0; i < thetas . length (); i ++) {

double theta = thetas (i);

ColumnVector rho_count = ColumnVector (bins . length (), 0);

double cT = cos (theta); double sT = sin (theta);

for (int x = 0; x < r ; x++) {

for (int y = 0; y < c; y++) {

if (I (x, y) == 1) {

int rho = (int) round (cT* x + sT* y);

int bin = (int)(rho - bins (0));

if ((bin > 0) && (bin < bins . length ())) {

rho_count (bin)++;

}

}

}

}

J = J. append (rho_count);

}

retval . append (J);

retval . append (bins);

return retval ;

}

/*

%!test

%! I = zeros (100, 100) ;

%! I (1,1) = 1; I (100,100) = 1; I (1,100) = 1; I (100, 1) = 1; I (50,50) = 1;

%! [J, R] = houghtf (I) ; J = J / max(J(:)) ;

%! assert (size (J) == [length (R) 181]) ;

%!

%!demo

%! I = zeros (100, 150) ;

%! I (30,:) = 1; I (:, 65) = 1; I (35:45, 35:50) = 1;

%! for i = 1:90, I (i , i) = 1; endfor

%! I = imnoise (I , ’ salt & pepper ’) ;

%! imshow (I) ;

%! J = houghtf (I) ; J = J / max(J(:)) ;

%! imshow (J, bone (128) , ’ truesize ’) ;

*/

Appendix B. Code Contributions B–7

Listing B.3: Gray level co-occurrence matrices.
/* Copyright (C) 2004 Stefan van der Walt <stefan@sun . ac . za >

Redistribution and use in source and binary forms , with or without

modification , are permitted provided that the following conditions are

met :

1. Redistributions of source code must retain the above copyright notice ,

this list of conditions and the following disclaimer .

2. Redistributions in binary form must reproduce the above copyright

notice , this list of conditions and the following disclaimer in the

documentation and / or other materials provided with the distribution .

THIS SOFTWAREIS PROVIDED BY THE AUTHOR‘‘ AS IS ’’ AND ANY EXPRESSOR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIESOF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORBE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES(INCLUDING, BUT NOT LIMITED TO, PROCUREMENTOF SUBSTITUTE

GOODSOR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVERCAUSEDAND ON ANY THEORYOF LIABILITY , WHETHER

IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCEOR

OTHERWISE) ARISING IN ANY WAYOUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */

#include <octave/oct.h>

DEFUN_DLD(graycomatrix , args , , " \

\

usage : P = graycomatrix (I , levels , distances , angles) \ n\

\ n\

Calculate the gray - level co - occurrence matrix P = f (i , j , d, theta) \ n\

of a gray - level image .\ n\

\ n\

P is a 4- dimensional matrix (histogram) . The value P(i , j , d, theta) \ n\

is the number of times that gray - level j occurs at a distance ’ d’ and \ n\

at an angle ’ theta ’ from gray - level j .\ n\

\ n\

’ I ’ is the input image which should contain integers in [0, levels -1],\ n\

where ’ levels ’ indicate the number of gray - levels counted (typically \ n\

256 for an 8- bit image) . ’ distances ’ and ’ angles ’ are vectors of \ n\

the different distances and angles to use .\ n") {

// 4- dimensional histogram

// P = f (i , j , d, theta) where i and j are gray levels

// See Pattern Recognition Engineering (Morton Nadler & Eric P. Smith)

Appendix B. Code Contributions B–8

octave_value_list retval ;

if (args . length () != 4) {

print_usage (" graycomatrix ");

// ’ I ’ must be integer values [0, nr_of_levels -1]

return retval ;

}

// Input arguments

Matrix I = args (0). matrix_value ();

int L = args (1). int_value ();

ColumnVector d = ColumnVector (args (2). vector_value ());

ColumnVector th = ColumnVector (args (3). vector_value ());

if (error_state) {

print_usage (" graycomatrix ");

return retval ;

}

// Create output NDArray , P

dim_vector dim = dim_vector ();

dim . resize (4);

dim (0) = L; dim (1) = L; dim (2) = d. length (); dim (3) = th . length ();

NDArray P = NDArray (dim , 0);

// Run through image

int d_max = (int) ceil (d. max());

int cnt = 0;

for (int r = 0; r < I . rows (); r ++) {

for (int c = 0; c < I . columns (); c++) {

int i = (int) I (r , c);

for (int d_idx = 0; d_idx < d. length (); d_idx ++) {

int d_val = (int) d(d_idx);

for (int th_idx = 0; th_idx < th . length (); th_idx ++) {

double angle = th (th_idx);

int row = r + (int) round (cos (angle) * d_val);

int col = c - (int) round (sin (angle) * d_val);

if ((row >= 0) && (row < I . rows ()) &&

(col >= 0) && (col < I . cols ())) {

int j = (int) I (row , col);

Appendix B. Code Contributions B–9

if (i >= 0 && i < L && j >= 0 && j < L) {

Array <int > coord = Array <int > (4);

coord (0) = i ;

coord (1) = j ;

coord (2) = d_idx ;

coord (3) = th_idx ;

P(coord)++;

} else {

warning (" Image contains invalid gray - level ! (%d, %d)

" , i , j);

}

}

}

}

}

}

retval . append (P);

return retval ;

}

/*

%!shared a

%!test

%! a = [0 0 0 1 2;

%! 1 1 0 1 1;

%! 2 2 1 0 0;

%! 1 1 0 2 0;

%! 0 0 1 0 1];

%! squeeze (graycomatrix (a, 3, 1, - pi /4)) == [4 2 0;

%! 2 3 2;

%! 1 2 0];

%!

%!assert (size (graycomatrix (a, 3, 1:5, [0:3]*- pi /4)) , [3, 3, 5, 4])

%!demo

%!

%! # Pattern Recognition Engineering (Nadler & Smith)

%! # Digital Image Processing (Gonzales & Woods) , p. 668

%!

%! a = [0 0 0 1 2;

Appendix B. Code Contributions B–10

%! 1 1 0 1 1;

%! 2 2 1 0 0;

%! 1 1 0 2 0;

%! 0 0 1 0 1];

%!

%! graycomatrix (a, 3, 1, [0 1]*- pi /4)

%!

*/

Appendix C

Geological Logs

C.1 A section of the UG2 system of the Bushveld
Igneous Complex

Please see the logs on the following pages.

C–1

Appendix C. Geological Logs C–2

 WV171 JM

 2003/07/24 2003/08/21

 GEOLOGICAL LOG OF: Rustenburg Section - Waterval

 SECTION ID: Geologist:

 Date Started: Scale 1:100 Date Plotted:

 Sampling Dip Description

 A

 svsWAL_SAMPLING

 Page 1 of 2

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 10

 12

 12

 10

 10

 5

 9

 3

 5

 3

 45.860 - 55.850 Poikilitic Anorthosite Grainsize: Coarse
 Texture: Poikiltic Fabric: Inequigranular UG2
 Anorthosite

 55.848 - 55.850 Chromitite Grainsize: fine Texture:
 Stringers Fabric: equigranular

 55.850 - 65.440 Feldspathic pyroxenite Grainsize:
 medium Texture: Cumulate Fabric: Inequigranular
 Comments: Augite phenocrysts below triplets UG2
 Pyroxenite (below triplets)

 59.240 - 59.405 Pegmatoidal Feldspathic pyroxenite
 Grainsize: Coarse Texture: PEG Fabric:
 Inequigranular

 59.405 - 59.410 Chromitite Grainsize: fine Texture:
 Stringers Fabric: equigranular

 60.050 - 60.080 Pegmatoidal Feldspathic pyroxenite
 Grainsize: Coarse Texture: PEG Fabric:
 Inequigranular

 60.080 - 60.150 Chromitite Grainsize: fine Texture:
 Cumulate Fabric: equigranular UG2 Triplet 3

 60.225 - 60.320 Chromitite Grainsize: fine Texture:
 Cumulate Fabric: equigranular Comments: Stringers
 at base UG2 Triplet 2

 60.510 - 60.550 Chromitite Grainsize: fine Texture:
 Stringers Fabric: equigranular UG2 Triplet 1

 60.770 - 60.772 Chromitite Grainsize: fine Texture:
 Stringers Fabric: equigranular

 chromite

 chromite

 chromite

 chromite

 chromite

 chromite

Appendix C. Geological Logs C–3

 WV171 JM

 2003/07/24 2003/08/21

 GEOLOGICAL LOG OF: Rustenburg Section - Waterval

 SECTION ID: Geologist:

 Date Started: Scale 1:100 Date Plotted:

 Sampling Dip Description

 A

 svsWAL_SAMPLING

 Page 2 of 2

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 3

 15

 5

 5

 5

 10

 65.440 - 65.730 Chromitite Grainsize: fine Texture:
 Cumulate Fabric: equigranular UG2 main leader

 65.730 - 65.740 Anorthosite with chrome stringers
 Grainsize: Fine to medium Texture: Stringers Fabric:
 Inequigranular Comments: Chromite stringers

 65.730 - 67.180 Feldspathic pyroxenite Grainsize: Fine
 to medium Texture: Porphyritic Fabric: Inequigranular
 Comments: Augite phenocrysts UG2 Pyroxenite
 (below leader)

 65.880 - 66.040 Pegmatoidal Feldspathic pyroxenite
 Grainsize: Coarse Texture: PEG Fabric:
 Inequigranular

 66.900 - 66.901 Chromitite Grainsize: fine Texture:
 Stringers Fabric: equigranular CR Stringer above
 UG2 & below Leader

 67.180 - 68.020 Chromitite Grainsize: fine Texture:
 Cumulate Fabric: equigranular UG2 chromitite

 67.200 - 67.230 Feldspathic pyroxenite Grainsize: Fine
 to medium Texture: Cumulate Fabric: Inequigranular
 UG2 Main Seam Parting

 68.020 - 68.670 Pegmatoidal Feldspathic pyroxenite
 Grainsize: Coarse Texture: PEG Fabric:
 Inequigranular Pegmatoidal Feldspathic Pyroxenite
 (UG2 Footwall)

 68.670 - 78.190 Melanorite Grainsize: medium Texture:
 Cumulate Fabric: Inequigranular UG2FW

 78.190 - 78.190 End of hole

 chromite

 chromite

 chromite

Bibliography

[AM03] A. Ahmadian and A. Mostafa. An efficient texture classification
algorithm using Gabor wavelets. In Annu Int Conf IEEE Eng Med
Biol Proc, pages 930–933. Institute of Electrical and Electronics En-
gineers Inc., 2003. 1, 37

[Bar98] Wayne Peter Barnett. The structural and engineering geology of
the country rock at Finsch mine. Master’s thesis, University of
Cape Town, 1998. ix, 72, 78

[Beu78] Nicolas Johannes Beukes. Die Karbonaatgesteentes en Ysterformasies
van die Ghaap-groep van die Transvaal-supergroep in Noord-Kaapland.
PhD tesis, Randse Afrikaanse Universiteit, 1978. ix, 72, 78

[BY97] M. Buckley and J. Yang. Regularised shortest-path extraction. Pat-
tern Recognition Letters, 18(7):621–629, 1997. 61

[Cas98] Michael Anthony Casey. Auditory Group Theory with Applications
to Statistical Basis Methods for Structured Audio. PhD thesis, Mas-
sachusetts Institute of Technology, 1998. 51

[CDE96] Boaz Cohen, Its’hak Dinstein, and Moshe Eyal. Computerized
classification of color textured perthite images. In Proceedings of
the 13th International Conference on Pattern Recognition, volume 2,
pages 601–605, 1996. 1

[CJ83] George R. Cross and Anil K. Jain. Markov random field texture
models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-5(1):44–58, January 1983. 1, 84

[CK93] Tianhorng Chang and C.-C. Jay Kuo. Texture Analysis and Clas-
sification with Tree-Structured Wavelet Transform. IEEE Transac-
tions on Image Processing, 2(4):429–441, October 1993. 1, 40, 42

X–1

Bibliography X–2

[DH00] David L. Donoho and Xiaoming Huo. Beamlets and multiscale
image analysis. Technical report, Stanford University and Georgia
Institute of Technology, 2000. 84

[DHS01] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John
Wiley & Sons, New York, 2001. 46, 47, 53, 54, A–4

[Ekk04] Josef Ekkerd. The dolomites at Finsch mine. Private communica-
tions, October 2004. ix, 78

[FT94] Ross L. Finney and George B. Thomas. Calculus. Addison-Wesley
Publishing Company, 2nd edition, 1994. A–4

[Gab46] D. Gabor. Theory of communication. Journal of the IEE, 93:429–457,
1946. 8

[GvL83] Gene H. Golub and Charles F. van Loan. Matrix Computations. The
John Hopkins University Press, 1983. 54

[GW01] Rafael C. Gonzales and Richard E. Woods. Digital Image Processing.
Prentice Hall, 2nd edition, 2001. 28, 32, 33, 34, 40

[Hei94] W.F. Heinz. Diamond Drilling Handbook. W.F. Heinz, 3rd edition,
1994. 1, 56

[Her04] B.M. Herbst. The value of the error function at infinity. Private
communications, October 2004. A–1

[HL70] J.J.L. Hodges and E.L. Lehman. Basic Concepts of Probability and
Statistics. Holden-Day, Oakland, CA, 1970. 80

[HPGM96] Jonathan Hall, Marco Ponzi, Mauro Gonfalini, and Giorgio
Maletti. Automatic extraction and characterisation of geological
features and textures from borehole images and core photographs.
In 37th Annual Logging Symposium. SPWLA, June 1996. 1

[HSD73] R.M. Haralick, K. Shanugan, and I. Dinstein. Texture features for
image classification. IEEE Transactions on Systems, Man and Cyber-
netics, SMC-8(6):610–621, 1973. 1, 34

[HSL92] Ming-Huwi Horng, Yung-Nien Sun, and Xi-Zhang Lin. Texture
feature coding method for clasification of liver sonography. Com-
puterized Medical Image and Graphics, 26:33–42, 1992. 1, 34

Bibliography X–3

[HTE94] Neil F. Hurley, David R. Thorn, and Sandra L.W. Eichelberger. Us-
ing borehole images for target-zone evaluation in horizontal wells.
In AAPG Bulletin, volume 78, pages 238–246. American Associa-
tion of Petroleum Geologists, February 1994. 2

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, 2nd edition, 2003.
67

[JS94] Björn Jawerth and Wim Sweldens. An overview of wavelet based
multiresolution analysis. SIAM Review, 36(3):377–412, September
1994. 38

[Kle] Dan Klein. Lagrange multipliers without permanent scarring. In-
ternet. http://www.cs.berkeley.edu/~klein . A–4

[M+01] Dana Mackenzie et al. Wavelets: Seeing the forest — and the trees.
Beyond Discovery, http://www.beyonddiscovery.org, December
2001. 6

[Mal89] Stéphane G. Mallat. A theory for multiresolution signal decom-
position: The wavelet representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(7):674–693, July 1989. 15, 44

[Mal99] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic
Press, 2nd edition, 1999. x, xi, 6, 7, 11, 17, 28, 38, 84

[Mar63] Donald W. Marquardt. An algorithm for least-squares estimation
of nonlinear parameters. J. Soc. Indust. Appl. Math., 11(2):431–441,
June 1963. 67

[MH96] J. Kent Martin and D.S. Hirschberg. Small sample statistics for
classification error rates (ii): Confidence intervals and significance
tests. Technical Report ICS-TR-96-22, Department of Information
and Computer Science, University of California, Irvine, 1996. 81

[MS73] C. B. Moler and G. W. Stewart. An algorithm for generalized
matrix eigenvalue problems. SIAM Journal on Numerical Analysis,
10(2):241–256, April 1973. 54

[NS93] Morton Nadler and Eric P. Smith. Pattern Recognition Engineering.
John Wiley & Sons, Inc., 1993. 33

Bibliography X–4

[Pap65] Athanasios Papoulis. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, Inc., 1965. 49, A–1

[Pla] Anglo Platinum. Review of mineral reserves and resources. Inter-
net. http://www.angloplatinum.com . 1

[PM96] John G. Proakis and Dimitris G. Manolakis. Digital Signal Process-
ing. Prentice Hall, Upper Saddle River, New Jersey 07458, 3rd edi-
tion, 1996. x, 22, 25

[PS95] Devesh Patel and John Stonham. Accurate set-up of Gabor filters
for texture classification. In Proceedings of SPIE - The International
Society for Optical Engineering, volume 2501/2, pages 894–903. Soci-
ety of Photo-Optical Instrumentation Engineers, Bellingham, WA,
USA, 1995. 1, 37

[PTVF03] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C++: The Art of Scientific
Computing. Cambridge University Press, 2nd edition, 2003. 54,
64, 65, 66, 67, 68

[PZP01] Jr. Peyton Z. Peebles. Probability, Random Variables, and Random
Signal Principles. McGraw-Hill, Inc., 4th edition, 2001. 8, 33, 50, 64

[RBC+92] M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat,
Y. Meyer, and L. Raphael, editors. Wavelets and their Applications,
pages 453–470. Jones and Bartlett, 1992. 40

[Skl78] Jack Sklansky. Image segmentation and feature extraction. IEEE
Transactions on Systems, Man and Cybernetics, 8(4):237–247, April
1978. 1, 32, 85

[SN97] Gilbert Strang and Truong Nguyen. Wavelets and Filter Banks.
Wellesley-Cambridge Press, 1997. viii, xi, 19, 21, 23, 24, 26, 27

[SP03] Changming Sun and Stefano Pallottino. Circular shortest paths on
regular grids. Pattern Recognition, 36(3):709–719, March 2003. 2,
62

[ST03] C. Starr and R. Taggart. The Unity and Diversity of Life. 10th edition,
2003. 47

[Str93] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge
Press, 1993. 52, A–2

Bibliography X–5

[TGF04] C.E. Thomaz, D.F. Gillies, and R.Q. Feitosa. A new covariance esti-
mate for Bayesian classifiers in biometric recognition. IEEE Trans-
actions on Circuits and Systems for Video Technology, 14(2):214–223,
February 2004. 49

[THK97] Baskar B. Thapa, Paul Hughett, and Kenzi Karasaki. Semi-
automatic analysis of rock fracture orientations from borehole wall
images. Geophysics, 62(1):129–137, January 1997. sinusoidal fitting
by Hough transform. 2

[TK99] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern
Recognition. Academic Press, 1999. A–4

[Uns95] Michael Unser. Texture classification and segmentation using
wavelet frames. IEEE Transactions on Image Processing, 4(11):1549–
1560, November 1995. 1, 38

[VBL95] John D. Villasenor, Benjamin Belzer, and Judy Liao. Wavelet fil-
ter evaluation for image compression. IEEE Transactions on Image
Processing, 4(8):1053–1060, August 1995. 39

[vdW98] Gert van de Wouwer. Wavelets voor Multischaal Textuuranalyse. PhD
thesis, Universitaire Instelling Antwerpen, 1998. 1, 44, 84

[VH92] Martin Vitterli and Cormac Herley. Wavelets and filter banks: The-
ory and design. IEEE Transactions on Signal Processing, 40(9):2207–
2232, September 1992. 26

[VvG86] C.F. Vermaak and G. von Gruenewaldt. Introduction to the
Bushveld Complex. Mineral Deposits of Southern Africa, I and
II:1021–1029, 1986. ix, 78

	Abstract
	Samevatting
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Notation
	Chapter 1 Introduction
	Chapter 2 An Overview of WaveletAnalysis
	Chapter 3 Texture Analysis
	Chapter 4 Locating Thin Layers
	Chapter 5 Texture Classification ofBorehole Cores
	Chapter 6 Conclusion
	Appendix A Useful Mathematical Results
	Appendix B Code Contributions
	Appendix C Geological Logs
	Bibliography

