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Summary

This work studies the regularity (or smoothness) of continuous finitely supported refinable

functions which are mainly encountered in multiresolution analysis, iterative interpolation

processes, signal analysis, etc. Here, we present various kinds of sufficient conditions on

a given mask to guarantee the regularity class of the corresponding refinable function.

First, we introduce and analyze the cardinal B-splines Nm, m ∈ N. In particular, we

show that these functions are refinable and belong to the smoothness class Cm−2(R). As

a generalization of the cardinal B-splines, we proceed to discuss refinable functions with

positive mask coefficients. A standard result on the existence of a refinable function in

the case of positive masks is quoted. Following [13], we extend the regularity result in

[25], and we provide an example which illustrates the fact that the associated symbol to

a given positive mask need not be a Hurwitz polynomial for its corresponding refinable

function to be in a specified smoothness class. Furthermore, we apply our regularity result

to an integral equation.

An important tool for our work is Fourier analysis, from which we state some standard

results and give the proof of a non-standard result. Next, we study the Hölder regularity

of refinable functions, whose associated mask coefficients are not necessarily positive, by

estimating the rate of decay of their Fourier transforms. After showing the embedding of

certain Sobolev spaces into a Hölder regularity space, we proceed to discuss sufficient con-

ditions for a given refinable function to be in such a Hölder space. We specifically express

the minimum Hölder regularity of refinable functions as a function of the spectral radius

of an associated transfer operator acting on a finite dimensional space of trigonometric

polynomials.

We apply our Fourier-based regularity results to the Daubechies and Dubuc-Deslauriers

refinable functions, as well as to a one-parameter family of refinable functions, and then

compare our regularity estimates with those obtained by means of a subdivision-based

result from [28]. Moreover, we provide graphical examples to illustrate the theory devel-

oped.
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Opsomming

Hierdie werk bestudeer die regulariteit (of gladheid) van kontinue eindig-ondersteunde

verfynbare funksies wat meestal teëgekom word in multi-resolusie analise, iteratiewe in-

terpolasie prosesse, seinanalise, ens. Ons bied hier verskeie soorte voldoende voorwaardes

op ’n gegewe masker aan om te waarborg dat die ooreenkomstige verfynbare funksie aan

’n sekere regulariteitsklas behoort.

Eerstens stel ons voor, en analiseer ons, die kardinale B-latfunksies, Nm, m ∈ N.

In die besonder wys ons dat hierdie funksies verfynbaar is, en dat hulle aan die glad-

heidsklas Cm−2(R) behoort. As ’n veralgemening van die kardinale B-latfunksies gaan

ons dan voort om verfynbare funksies met positiewe maskerkoëffisiënte te ondersoek. ’n

Standaardresultaat oor die bestaan van ’n verfynbare funksie in die geval van positiewe

maskers word aangehaal. Soos gedoen is in [13], brei ons die regulariteitsresultaat in [25]

uit, en verskaf ons ’n voorbeeld wat die feit illustreer dat die ooreenkomstige simbool

van ’n gegewe positiewe masker nie nodig het om ’n Hurwitz polinoom te wees vir die

ooreenstemmende verfynbare funksie om aan ’n gespesifiseerde gladheidsklas te behoort

nie. Verder pas ons ons regulariteitsresultaat toe op ’n integraalvergelyking.

’n Belangrike stuk gereedskap in ons werk is Fourier analise, waarvan ons sekere stan-

daardresultate aanhaal, en die bewys van ’n nie-standaard resultaat gee. Vervolgens

bestudeer ons die Hölder regulariteit van verfynbare funksies, waarvan die ooreenstem-

mende maskerkoëffisiënte nie noodwendig positief is nie, deur middel van die afskatting

van die vervaltempo van hulle Fourier transforms. Nadat ons die inbedding van sekere

Sobolevruimtes in ’n Hölder regulariteitsruimte aangetoon het, gaan ons voort om vol-

doende voorwaardes vir ’n gegewe verfynbare funksie om in so ’n Hölderruimte te wees, te

bespreek. Spesifiek druk ons die minimum Hölder regulariteit van verfynbare funksies uit

as ’n funksie van die spektraalradius van ’n ooreenkomstige oorgangsoperator wat inwerk

op ’n eindig-dimensionele ruimte van trigonometriese polinome.

Ons pas ons Fourier-gebaseerde regulariteitsresultate toe op die Daubechies en Dubuc-

Deslauriers verfynbare funksies, asook op ’n een-parameter familie van verfynbare funksies,

en dan vergelyk ons ons regulariteitsafskattings met dié wat verkry is deur middel van

’n subdivisie-gebaseerde resultaat in [28]. Daarby verskaf ons grafiese voorbeelde ter

illustrasie van die ontwikkelde teorie.
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Preface

For more than a decade now, wavelets and subdivision have developed into important

mathematical tools in such applications as signal analysis, smoothing, digital image pro-

cessing, computer-aided graphics design (CAGD), medical imaging, solution of differential

equations, etc. Broadly speaking, a wavelet can be defined as a finitely supported func-

tion ψ whose dilations and translations {ψ(2r · −j) : r, j ∈ Z} form a basis for the space

L2(R) of all square-integrable functions on R. On the other hand, a subdivision scheme

is an iterative process in which, for a given initial control point sequence, each new point

is expressed as a linear combination of its neighbouring points, thereby generating, if

the subdivision scheme is convergent, increasingly dense point sequences converging to a

smooth limit curve Φ.

Underlying the analysis of both wavelets and subdivision schemes are the issues

of existence, uniqueness, regularity (or smoothness), and numerical evaluation of re-

finable functions; that is, functions φ which satisfy a refinement equation of the form

φ =
∑

k akφ(2 · −k), where the bi-infinite sequence a = {ak : k ∈ Z} is called the corre-

sponding mask. In fact, a wavelet ψ and the limit function Φ for a subdivision scheme

are expressible as linear combinations of the integer shifts of some refinable function φ.

Consequently, the functions ψ and Φ naturally inherit the properties of φ. In particular,

the regularity of φ is preserved by both the functions ψ and Φ. Hence the regularity of φ

substantially influences the efficiency of the associated wavelet decomposition algorithm,

as well as that of the corresponding subdivision scheme.

Since a refinable function is, in many circumstances, not known analytically, the anal-

ysis of its properties is based on the explicitly known mask. Of great practical relevance

is the case where finitely many mask coefficients are non-zero, and we shall restrict our

discussion in this thesis only to this case. In subdivision, this corresponds to finite masks

whereas in wavelet construction, it corresponds to compactly supported scaling functions

and wavelets. In this thesis, our main focus is to investigate sufficient conditions on the

mask coefficients to guarantee the global regularity of the associated refinable function.

For results about local (pointwise) regularity and their connection with fractals, we refer

to [10].

First, in Chapter 1, we motivate the introduction of a general theory of refinable

functions and their smoothness analysis by means of two simple examples. We then
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proceed to identify the cardinal B-spline Nm of orderm as a very special refinable function,

in the sense that it can be expressed explicitly in closed form, possesses positive mask

coefficients, and belongs to the regularity class Cm−2(R). Recall that, for each m ∈ N,

the piecewise polynomial Nm is a polynomial of degree ≤ (m− 1) on any integer interval

[k, k + 1), k ∈ Z, and vanishes outside the interval [0, m]. We also review the concepts

of wavelets and subdivision; here, we briefly discuss the cardinal B-spline wavelets and

the Lane-Riesenfeld subdivision scheme. Moreover, we make the observation that the

Lane-Riesenfeld subdivision scheme provides an efficient computational algorithm for the

cardinal B-spline if the initial control sequence is chosen as the delta sequence.

In Chapter 2, we study the regularity of refinable functions with positive mask co-

efficients, which can be interpreted as a generalization of the cardinal B-spline case.

Here, we extend the regularity result in [25, Theorem 2.7], which states that if a mask a

has strictly positive coefficients (or elements) and is such that its corresponding symbol

A(z) = 1
2l (1 + z)l+1C(z), where C is a Hurwitz polynomial, satisfies certain conditions,

then φ ∈ C l(R). Following [13], we argue that this regularity result remains true if we

merely demand that C be a polynomial of degree d ≥ 1, with C(1) = 1, and with the

polynomial B(z) = (1 + z)C(z) having positive coefficients, (so that B, and therefore

also C, are not necessarily Hurwitz polynomials), and, at the same time, replace the term

(1 + z)l+1 by (1 + z)
l∏

j=1

(1 + z2µj
), with {µ1, µ2, . . . , µl} denoting a sequence in Z+ satisfy-

ing specified recursive bounds. We also provide numerical and graphical illustrations to

corroborate this claim.We show that the result of Theorem 2.4 can be used to determine

the smoothness of an approximation to the solution of an integral equation which was

studied in [1].

From Chapter 3 till end of the thesis, we lay emphasis on refinable functions whose

associated mask coefficients are not necessarily positive in the support of the mask. The

main thrust of Chapters 3 and 4 is the use of Fourier analysis to study the Hölder regularity

of such refinable functions by estimating the rate of decay of their Fourier transforms. To

achieve this, we first prove in Theorem 3.10 the embedding of certain Sobolev spaces into a

Hölder space, which then leads in a natural way to the formulation and proof of a sufficient

condition for regularity of a general class of functions in Theorem 3.11. Relying on the

results of Theorems 3.10 and 3.11 in Chapter 3, we proceed to prove in Theorems 4.5 and

4.11 sufficient conditions for regularity of refinable functions. We specifically study the

Hölder regularity of refinable functions in Theorem 4.11 as a function of the spectral radius
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of an associated transfer operator acting on a finite dimensional space of trigonometric

polynomials.

In Chapter 5, we apply our regularity results of Theorem 4.5 and 4.11 to the Daubechies

orthornomal refinable functions, the Dubuc-Deslauriers interpolatory refinable functions,

as well as to a certain one-parameter family of refinable functions. Moreover, we compare

these regularity results with those obtained from a result which was proved in [28] in the

framework of subdivision.

Finally, in Chapter 6, we draw the conclusion that Fourier-based results of Theo-

rems 4.5 and 4.11 generally yield less optimal Hölder regularity results than does the

subdivision-based result of Theorem 5.3. However, the result of Theorem 4.5 is particu-

larly suitable for the investigation of the regularity of a class of refinable functions as a

function of a continuous parameter, whereas the result of Theorem 4.11 particularly en-

joys the advantage of being easier to implement on the computer than, and also compares

favourably with, the subdivision-based result of Theorem 5.3.
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Chapter 1

Introduction

The purpose of this thesis is to analyze the regularity (or smoothness) of finitely supported

continuous refinable functions. The dependence of the regularity of a given refinable

function on its associated mask has been studied recently by many authors, both with

varying motivations and definitions of regularity. In the construction of finitely supported

orthonormal or biorthogonal wavelet bases for L2(R), refinement equations are satisfied

by the scaling function of the underlying multiresolution analysis (see e.g. [7], [8]). The

wavelet is then a finite linear combination of the translates of the scaling function. When

studying the convergence properties of subdivision schemes for curve design, refinement

equations also arise in a natural way (see e.g. [11], [15], [16], [20], [24]).

Several conditions have been shown to hold in order for a given finitely supported

continuous refinable function to have continuous derivatives or to be in a specified Hölder

class. These conditions are either sufficient [10], or necessary and sufficient [6], [26], [28].

These results (except in [28]) are often formulated in terms of joint spectral properties of

two matrices defined from the mask coefficients.

By methods based on the Fourier transform, conditions that are either sufficient or

necessary for the Hölder regularity have been found e.g. in [7], [8], [11]. However, in terms

of Sobolev spaces, precise results can be obtained e.g. in [17], [32]. It was also shown in

[9] that finitely supported, infinitely differentiable refinable functions are impossible.

Before proceeding with our discussion on the general theory of refinable functions and

their smoothness analysis, we first study two basic examples. Our goal is to identify some

important features that will be studied with more details, in the general theory developed

in the subsequent chapters.
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1.1 Refinability

Consider the following two related problems of finding real-valued functions φ1 and φ2 on

R such that

φ1 = φ1(2·) + φ1(2 · −1); (1.1)

and

φ2 =
1

2
φ2(2·) + φ2(2 · −1) +

1

2
φ2(2 · −2). (1.2)

It is easy to verify that the piecewise continuous function φ1 defined by

φ1(t) =

⎧⎨
⎩ 1, t ∈ [0, 1),

0, t /∈ [0, 1),
(1.3)

satisfies (1.1), since

φ1(2t) =

⎧⎨
⎩ 1, t ∈ [0, 1/2),

0, t /∈ [0, 1/2);

and

φ1(2t− 1) =

⎧⎨
⎩ 1, t ∈ [1/2, 1),

0, t /∈ [1/2, 1).

Moreover, the continuous function

φ2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t, t ∈ [0, 1),

2 − t, t ∈ [1, 2),

0, t /∈ [0, 2),

(1.4)

solves (1.2), since

1

2
φ2(2t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t, t ∈ [0, 1/2),

1 − t, t ∈ [1/2, 1),

0, t /∈ [0, 1);

2
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(t)1
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φ
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tt
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Figure 1.1: Graphical illustration of equation (1.1).
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φ

2

2

(2t)2φ0.5
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Figure 1.2: Graphical illustration of the equation (1.2).

φ2(2t− 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2t− 1, t ∈ [1/2, 1),

3 − 2t, t ∈ [1, 3/2),

0, t /∈ [1/2, 3/2);

and

1

2
φ2(2t− 2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t− 1, t ∈ [1, 3/2),

2 − t, t ∈ [3/2, 2),

0, t /∈ [1, 2).

Graphical illustrations of (1.1) and (1.2) are shown in Figures 1.1 and 1.2.

For k ∈ {−1, 0, 1, . . .}, we write Ck(R) for the space of real-valued functions f on R

such that f (j) ∈ C(R), j = 0, 1, . . . , k, if k ≥ 0. Note that then f (0) = f and C0(R) =

3



C(R). Also, C−1(R) denotes the space of piecewise continuous functions on R. Observe

from (1.3) and (1.4) that φ1 ∈ C−1(R)\C(R), whereas φ2 ∈ C(R)\C1(R). With a finitely

supported function f : R → R defined as a function for which there exists an interval

[α, β] such that f(t) = 0, t /∈ [α, β], we note that both φ1 and φ2 are finitely supported.

In an attempt to formalize and generalize the above observations, we first introduce

the symbol M(Z) to denote the space of bi-infinite real-valued sequences, whereas the

symbol M0(Z) denotes the subspace of M(Z) where a = {aj : j ∈ Z} ∈ M0(Z) if and

only if the set {j : aj �= 0} has a finite number of elements, i.e, the sequence a is finitely

supported. We write M(R) for the space of real-valued functions on R, whereas the

symbol Mu(R) denotes the subspace of M(R) consisting of functions which are bounded

in the uniform norm; that is, f ∈ Mu(R) if and only if sup
t

|f(t)| < ∞, where we have

adopted the notation sup
t

= sup
t∈R

. We write M0(R) for the subspace of finitely supported

functions in M(R). Also, we define C0(R) := C(R) ∩M0(R), Ck
0 (R) := Ck(R) ∩M0(R)

and Cu(R) := C(R) ∩Mu(R).

A function φ ∈M(R) is called a refinable function if there exists a sequence a ∈M0(Z)

such that

φ =
∑

j

ajφ(2 · −j), (1.5)

where we have adopted the notation
∑
j

=
∑
j∈Z

. The equation (1.5) is called a refinement

equation, and the sequence a ∈ M0(Z) in (1.5) is known as the mask of the refinable

function φ. Hence, according to (1.1) and (1.3), φ1 is a refinable function in C−1
0 (R)\C(R)

with respect to the mask a ∈M0(Z) defined by

aj =

⎧⎨
⎩ 1, j = 0, 1,

0, j /∈ {0, 1},
(1.6)

whereas, according to (1.2) and (1.4), φ2 is a refinable function in C0(R)\C1(R) with

respect to the mask a ∈ M0(Z) given by

aj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
, j = 0, 2,

1, j = 1,

0, j /∈ {0, 1, 2}.
(1.7)
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1.2 Cardinal B-splines

Approximation methods based on piecewise polynomials are very important in many

applications. We consider here cardinal spline functions which are piecewise polynomials

with uniformly spaced breakpoints and satisfying a certain smoothness condition. The

specific properties of these functions make them particularly useful for both subdivision

and wavelet analysis.

Recall that our main focus is to investigate, for a given k ∈ N, the construction of

masks a ∈M0(Z) for which the corresponding refinement equation (1.5) has a solution φ

in Ck
0 (R). With a view to a partial result in this direction, we next introduce, for m ∈ N,

the space Sm(Z) of cardinal spline functions of degree (m− 1) by

Sm(Z) = {s ∈M(R) : s|[j,j+1) ∈ πm−1, j ∈ Z; s ∈ Cm−2(R)}, (1.8)

where, for any non-negative integer k, the symbol πk denotes the space of polynomials of

degree ≤ k.

Next, we introduce a finitely supported function in Sm(Z), the sequence of integer

shifts of which provides a basis for Sm(Z). To this end, we define the sequence {Nm : m ∈
N} ⊂ M(R) by

Nm =
1

(m− 1)!

m∑
j=0

(−1)j

(
m

j

)
(· − j)m−1

+ , m ∈ N, (1.9)

where the binomial coefficients

(
m

j

)
=

⎧⎪⎨
⎪⎩

m!

j!(m− j)!
, j ∈ {0, 1, · · · , m},

0, j /∈ {0, 1, · · · , m},
(1.10)

with the convention 0! = 1, and where the truncated power (·)m−1
+ ∈M(R) is defined by

tm−1
+ =

⎧⎨
⎩ tm−1, t ≥ 0,

0, t < 0,
(1.11)

with the convention 00 = 1. It is then immediately clear from (1.8), (1.9), (1.10), and

(1.11) that Nm(· − j) ∈ Sm(Z), j ∈ Z. We call Nm the cardinal B-spline of order m.
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It can be shown (see e.g. [3, Theorem 4.3]) that the cardinal B-splines Nm possess the

following properties:

(i) Nm(t) = 0, t /∈
⎧⎨
⎩ [0, 1), m = 1,

(0, m), m ≥ 2;
(1.12)

(ii) Nm(t) > 0, t ∈ (0, m), t ∈ R; (1.13)

(iii)
∑

j

Nm(t− j) = 1, t ∈ R; (1.14)

(iv) N
′
m = Nm−1 −Nm−1(· − 1), m ≥ 3; (1.15)

(v) Nm+1 =

∫ 1

0

Nm(· − x) dx; (1.16)

(vi)

∫ ∞

−∞
Nm(t) dt = 1; (1.17)

(vii) Nm(t) =
t

m− 1
Nm−1(t) +

m− t

m− 1
Nm−1(t− 1), t ∈ R, m ≥ 2; (1.18)

(viii) Nm(m− ·) = Nm, m ≥ 2, (1.19)

or, alternatively,

Nm

(m
2
− ·

)
= Nm

(m
2

+ ·
)
, m ≥ 2. (1.20)

Moreover, as proved in [25, Theorem 2.1], the integer shift space {Nm(· − j) : j ∈ Z} is,

for each m ∈ N, a basis for Sm(Z) in the sense that for each s ∈ Sm(Z) there exists a

unique sequence c = {cj : j ∈ Z} ∈ M(Z) such that

s =
∑

j

cjNm(· − j). (1.21)

Using (1.9), (1.10), and (1.11), we can now deduce that N1 = φ1, as in (1.3), whereas

N2 = φ2, as in (1.4). Furthermore, using the defining formula (1.9), or the recurrence

relation (1.18), we obtain the expressions

N3(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2
t2, t ∈ [0, 1),

1
2
(−2t2 + 6t− 3), t ∈ [1, 2),

1
2
(3 − t)2, t ∈ [2, 3),

0, t /∈ [0, 3),

(1.22)
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Figure 1.3: Plots of N3 (left) and N4 (right)

and

N4(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6
t3, t ∈ [0, 1),

1
6
(−3t3 + 12t2 − 12t+ 4), t ∈ [1, 2),

1
6
(3t3 − 24t2 + 60t− 44), t ∈ [2, 3),

1
6
(4 − t)3, t ∈ [3, 4),

0, t /∈ [0, 4),

(1.23)

as graphically illustrated in Figure 1.3.

For every m ∈ N, the cardinal B-spline Nm is, in the sense of (1.5), a refinable function

with respect to the mask a = a(m) ∈M0(Z) defined by

a
(m)
j =

1

2m−1

(
m

j

)
, j ∈ Z, (1.24)

as is immediately evident from the following identity, the proof of which is from [12,

Theorem 4.4].

Theorem 1.1 The cardinal B-splines {Nm : m ∈ N}, as defined by (1.9), satisfy the

refinement equation

Nm =

m∑
j=0

a
(m)
j Nm(2 · −j), m ∈ N, (1.25)

with the sequence a(m) = {a(m)
j : j ∈ Z} ∈M0(Z) defined by (1.24).

Proof: Let m ∈ N. From (1.8), we see that s ∈ Sm(Z) implies s( ·
2
) ∈ Sm(Z); hence,

Nm ∈ Sm(Z) implies Nm( ·
2
) ∈ Sm(Z). But then, from (1.21), there exists a unique se-
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quence a(m) ∈M(Z) such that

Nm

( ·
2

)
=
∑

j

a
(m)
j Nm(· − j), (1.26)

or, equivalently,

Nm =
∑

j

a
(m)
j Nm(2 · −j). (1.27)

It now remains to show that the sequence a(m) = {a(m)
j : j ∈ Z} is indeed given by the

formula (1.24). To prove (1.24), we first fix m ∈ N, and use (1.26) and (1.16) to deduce

that, for t ∈ R,

∑
j

a
(m+1)
j Nm+1(t− j) = Nm+1

(
t

2

)

=

∫ 1

0

Nm

(
t

2
− x

)
dx

=

∫ 1

0

[∑
j

a
(m)
j Nm(t− 2x− j) dx

]

=
∑

j

a
(m)
j

[∫ 1

0

Nm(t− 2x− j) dx

]

=
∑

j

a
(m)
j

[∫ 1
2

0

Nm(t− 2x− j) dx+

∫ 1

1
2

Nm(t− 2x− j) dx

]

=
1

2

∑
j

a
(m)
j

[∫ 1

0

Nm(t− j − x) dx+

∫ 1

0

Nm(t− j − 1 − x) dx

]

=
1

2

∑
j

a
(m)
j [Nm+1(t− j) +Nm+1(t− j − 1)]

=
1

2

∑
j

a
(m)
j Nm+1(t− j) +

1

2

∑
j

a
(m)
j−1Nm+1(t− j)

=
∑

j

1

2

[
a

(m)
j + a

(m)
j−1

]
Nm+1(t− j).

Thus

∑
j

{
a

(m+1)
j − 1

2

[
a

(m)
j + a

(m)
j−1

]}
Nm+1(t− j) = 0, t ∈ R, m ∈ N, (1.28)

from which, together with the the fact that the sequence c in (1.21) is unique, it follows
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that the sequence {a(m)
j : j ∈ Z, m ∈ N} satisfies the recursion formula

a
(m+1)
j =

1

2

[
a

(m)
j + a

(m)
j−1

]
, j ∈ Z. (1.29)

Since N1 = φ1, as given by (1.3), we see from (1.1) and (1.25) that (1.24) holds for

m = 1. Suppose next that (1.24) holds for a fixed m ∈ N. Then, by virtue of the standard

combinatorial identity

(
m

j − 1

)
+

(
m

j

)
=

(
m+ 1

j

)
, j ∈ Z, m ∈ Z+, (1.30)

and (1.29), we get, for j ∈ Z,

a
(m+1)
j =

1

2

[
1

2m−1

(
m

j

)
+

1

2m−1

(
m

j − 1

)]

=
1

2m

[(
m

j

)
+

(
m

j − 1

)]

=
1

2m

(
m+ 1

j

)
.

The general validity of (1.24) follows by mathematical induction.

So far, we have therefore identified the refinable functions φ1 and φ2 in (1.3) and (1.4)

as the first two members of the family {Nm : m ∈ Z} of cardinal B-splines. Moreover, we

have shown that the function φ = Nm satisfies the refinement equation (1.5) if the mask

a ∈ M0(Z) is chosen as a = a(m), as defined by (1.24). Observe also that, by virtue of

(1.8) and the fact Nm(· − j) ∈ Sm(Z), j ∈ Z, we have

φ = Nm ∈ Cm−2(R), m ∈ N; (1.31)

that is, the regularity (smoothness) of φ increases with m. A natural question is therefore:

in general, which class of masks a ∈M0(Z) has a corresponding refinable function φ in a

prescribed smoothness class? We shall investigate this question in subsequent chapters.

Before introducing, in Section 1.4, the concepts of wavelets and subdivision, in the

course of which the significance of the smoothness class of a refinable function with respect

to a given mask a ∈M0(Z) will become evident, we first consider the issues of the existence

and uniqueness of refinable functions for the case of a positive mask sequence a.
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1.3 Existence and Uniqueness of Refinable Functions

We shall focus our attention in this chapter and the next on refinable functions with

masks a ∈M0(Z) satisfying, for a given integer n ≥ 2, the conditions

aj = 0, j /∈ {0, 1, . . . , n}; (1.32)

aj > 0, j ∈ {0, 1, . . . , n}; (1.33)

∑
j

a2j =
∑

j

a2j+1 = 1. (1.34)

Define, for a given mask a ∈M0(Z), the Laurent polynomial A as given by

A(z) =
∑

j

ajz
j , z ∈ C\{0}. (1.35)

Then, A(z) is referred to as the mask symbol corresponding to the mask a in (1.5). Note

that, if aj = 0, j < 0, as is, for example, the case when (1.32) holds, the mask symbol

is in fact a polynomial. Also, observe in particular that the choice a = a(m) ∈ M0(Z),

as appearing (1.24) and (1.25), satisfies the conditions (1.32) and (1.33) with n = m.

Moreover, from (1.35) and (1.24), we find that the corresponding symbol A = A(m) is

given by

A(m)(z) =
∑

j

a
(m)
j zj =

1

2m−1
(1 + z)m, z ∈ C. (1.36)

Note from (1.36) that

2 = A(m)(1) =
∑

j

aj =
∑

j

a2j +
∑

j

a2j+1,

and

0 = A(m)(−1) =
∑

j

aj(−1)j =
∑

j

a2j −
∑

j

a2j+1,

and thus, ∑
j

a
(m)
2j =

∑
j

a
(m)
2j+1 = 1,

which shows that the mask a = a(m) also satisfies the condition (1.34). Hence the con-

ditions (1.32), (1.33), and (1.34) characterise a class of masks containing the cardinal

B-spline mask a = a(m) as a special case.
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For a given mask a ∈ M0(Z) satisfying conditions (1.32), (1.33), and (1.34), a con-

structive existence theorem for a corresponding refinable function φ ∈ C(R) is based on

the cascade operator Ta : M(R) → M(R) as defined by

Taf =
∑

j

ajf(2 · −j), f ∈M(R).

We now introduce the cascade algorithm which, for a given initial function ψ ∈ M(R),

generates the sequence {φr : r ∈ Z+} ⊂M(R) recursively by means of

φ0 = ψ, φr+1 = Taφr =
∑

j

ajφr(2 · −j), r ∈ Z+, (1.37)

where we use the symbol Z+ to denote the set of non-negative integers. Recall that Cu(R)

is a Banach space with respect to the norm ||f ||∞ = sup
t

|f(t)|, f ∈ Cu(R).

The following convergence and existence result appears in [13, Theorem 2.2].

Theorem 1.2 For an integer n ≥ 2, suppose the mask a ∈M0(Z) satisfies (1.32), (1.33),

and (1.34). If, for m ∈ {2, 3, . . . , n}, we choose ψ = Nm in the cascade algorithm (1.37),

then the resulting sequence {φr : r ∈ Z+} converges uniformly on R, and at a geometric

rate, to a solution φ ∈ C0(R) of (1.5), in the sense that, with the positive number ρ = ρ(a)

defined by

ρ =
1

2
sup

{∑
l

|aj−2l − ak−2l| : j, k ∈ Z

}
, (1.38)

we have
1

2
≤ ρ ≤ 1 − min{a0, a1, . . . , an} < 1, (1.39)

and

||φ− φr||∞ ≤ ρr

1 − ρ
→ 0, r → ∞. (1.40)

Regarding the properties of the refinable function φ of Theorem 1.2, the following

result was proved in [25, pp.76-83].

Theorem 1.3 Let φ be as in Theorem 1.2. Then

φ(t) = 0, t /∈ (0, n); (1.41)

φ(t) > 0, t ∈ (0, n); (1.42)

11



∑
j

φ(t− j) = 1, t ∈ R; (1.43)

∫ ∞

−∞
φ(t) dt = 1. t ∈ R. (1.44)

Note in particular that, for m ≥ 2, the properties (1.12), (1.13), (1.14), and (1.17) of the

(refinable) cardinal B-spline Nm correspond to, respectively, the properties (1.41), (1.42),

(1.43), and (1.44) above of φ. The following uniqueness result for the refinable function φ

of Theorem 1.2 was proved in [25, pp.80-81].

Theorem 1.4 In Theorem 1.2, the function φ is the unique solution in C0(R) of (1.5)

such that (1.43) also holds.

1.4 Refinable Functions, Wavelets and Subdivision

We now proceed to briefly discuss the fundamental role played by refinable functions in

both wavelet and subdivision analysis.

1.4.1 Wavelets

As defined in the standard textbooks on wavelets (see e.g. [3], [4], [8]), a wavelet ψ, for

some integer k ∈ {−1, 0, 1, 2, . . .}, is a function in Ck
0 (R) such that, for every f ∈ M(R)

satisfying
∫∞
−∞[f(t)]2 dt < ∞, there exists a sequence {d(r) : r ∈ Z} ⊂ M(Z), with∑

j

[d
(r)
j ]2 <∞, r ∈ Z, satisfying

f =
∑

r

∑
j

d
(r)
j ψ(2r · −j). (1.45)

The right hand side of (1.45) is then called the wavelet series of f, whereas the sequence

{d(r)
j : j, r ∈ Z} is called the discrete wavelet transform of f, and provides localised

information on f at different resolution levels r. The multiresolution analysis (MRA)

method of constructing a wavelet ψ uses as main building block a given refinable function

φ ∈ C0(R), and proceeds as follows.

For a given refinement mask a ∈M0(Z), suppose that φ ∈ C0(R) satisfies (1.5), (1.43),

as well as the Riesz-stability condition according to which there exists a positive constant
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K such that ∫ ∞

−∞

[∑
j

cjφ(t− j)

]2

dt ≥ K
∑

j

c2j (1.46)

for every sequence c ∈ M(Z) with
∑
j

c2j < ∞, and where K is independent of the choice

of the sequence c. Such a function φ is called a scaling function. A wavelet ψ can then

be constructed from the function φ by finding the sequence q ∈ M0(Z) of the smallest

possible support such that the function ψ defined by

ψ =
∑

j

qjφ(2 · −j), (1.47)

satisfies the orthogonality condition

∫ ∞

−∞
φ(t− j)ψ(t)dt = 0, j ∈ Z.

The simplest example of a wavelet is the Haar wavelet, namely ψH = χ[0,1/2) −χ[1/2,1),

where χE denotes the characteristic function of the set E. The associated Haar scaling

function is φ = φH = χ[0,1), and the basis {ψH(2j · −k), j, k ∈ Z} determined by ψH is

called the Haar system. Although the Haar system has the desirable property that the

wavelet ψH is finitely supported, the fact that ψH is discontinuous limits its usefulness.

An important issue in wavelet theory is therefore the construction of smooth, finitely

supported wavelets. By (1.47), it suffices to construct smooth, finitely supported scaling

functions. To this end, we briefly discuss here, out of the many such wavelets that appear

in the literature, the cardinal B-spline wavelets.

For any integer m ≥ 2, the mth order cardinal B-spline wavelet is given by

ψm =
3m−2∑
k=0

qm,kNm(2 · −k), (1.48)

where

qm,k =
(−1)k

2m−1

m∑
l=0

N2m(k − l + 1), k = 0, 1, . . . , 3m− 2.

The values N2m(k − l + 1) can be computed by applying the recursive formula (1.18),

together with the condition

N2(k) = δk,1, k ∈ Z,
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Figure 1.4: Plots of the cardinal B-spline wavelets ψm for m = 2, 3, 4, and 5

as is obtained from (1.4) and the fact that N2 = φ2.

Illustrating graphs of the cardinal B-spline wavelets ψm for m = 2, 3, 4, and 5 are

shown in Figure 1.4. Using (1.48) and (1.12), we find that ψm(t) = 0, t /∈ (0, 2m − 1),

whereas (1.20) can be used to prove that ψm is symmetric if m is even, and antisymmetric

if m is odd, with respect to its centre t = tm = 2m−1
2
. Observe in particular from (1.48)

and (1.31) that ψm ∈ Cm−2(R). For details on the construction and other properties of

cardinal B-spline wavelets, we refer to [3] and [4].

1.4.2 Subdivision

Next, recall that, in subdivision, we are given a sequence of data or control points in

the plane from which we compute a denser sequence of new control points by means

of repeated applications of a rule which expresses each new control point as a linear

combination of the initial control points. Such a rule is known as a subdivision scheme.

The general subdivision scheme (see e.g [25]) is given, for a given mask a ∈ M0(Z), and
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an initial sequence c ∈M(Z), by

c(0) = c, c
(r+1)
j =

∑
k

aj−2kc
(r)
k , j ∈ Z, r ∈ Z+. (1.49)

Out of the many subdivision schemes, we shall consider here particularly the Lane-

Riesenfeld subdivision scheme, which, for a given sequence {cj : j ∈ Z} ∈M(Z), provides

an efficient computational algorithm for the cardinal spline Φ ∈ Sm(Z) defined by

Φ =
∑

j

cjNm(· − j). (1.50)

For m ∈ N, and for a given initial sequence c = {cj : j ∈ Z} ∈ M(Z), the Lane-

Riesenfeld subdivision scheme recursively generates the sequence {c(r) : r ∈ N} ⊂ M(Z)

by means of

c(0) = c, c
(r+1)
j =

1

2m−1

∑
k

(
m

j − 2k

)
c
(r)
k , j ∈ Z, r ∈ Z+. (1.51)

Observe also from (1.49) and (1.51) that the Lane-Riesenfeld subdivision scheme has the

mask a = a(m) as defined by (1.24), and with corresponding mask symbol A(z) = A(m)(z)

as given by (1.36). Recall also that the Lane-Riesenfeld mask a = a(m) satisfies the

conditions (1.32), (1.33), and (1.34).

A natural question which now arises is whether the sequence {c(r) : r ∈ Z+} of

sequences in M(Z) are increasingly dense sets of points as r increases, and in the process

approaches some smooth limit function. The result of Theorem 1.5 below aptly addresses

this question.

First, however, we need to introduce the following notation and definitions. Let the

backward difference operator 
 : M(Z) →M(Z) be defined, for a given sequence c =

{cj : j ∈ Z} ∈ M(Z), by (
c)j = cj − cj−1, j ∈ Z. Also, let l∞(Z) denote the subspace

{c : sup
j

|cj| < ∞, j ∈ Z} ⊂ M(Z), and write 
∞(Z) for the subspace of M(Z)

consisting of bi-infinite sequences c which are such that 
c ∈ l∞(Z).

We say that the subdivision scheme (1.49) is convergent on a subset M of M(Z) if,

for every initial sequence c ∈M, we have

c(r) ∈ 
∞(Z), r ∈ Z+, (1.52)
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with

|| 
 c(r)||∞ → 0, r → ∞;

and there exists a function Φ ∈ C(R) such that

Φ
( ·

2r

)
− c(r) ∈ l∞(Z), r ∈ Z+, (1.53)

with

||Φ
( ·

2r

)
− c(r)||∞ → 0, r → ∞.

Here, we have used the norm || · ||∞ : l∞(Z) → R as defined by

||c||∞ = sup
j

|cj|, c ∈ l∞(Z).

The function Φ is called the limit function of the subdivision scheme (1.49). We can now

state the following convergence result (see e.g. [12, Theorem 5.3]) for the Lane-Riesenfeld

subdivision scheme .

Theorem 1.5 The Lane-Riesenfeld subdivision scheme (1.51) is convergent on 
∞(Z),

with limit function Φ given by (1.50), and where

||Φ
( ·

2r

)
− γ(r)||∞ ≤ m− 2

2r+1
|| 
 c||∞, r ∈ Z+, (1.54)

with

γ
(r)
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c
(r)
j−k, m = 2k,

k ∈ N, j ∈ Z, r ∈ Z+.

c
(r)
j−k−1, m = 2k + 1,

(1.55)

Observe in particular from (1.50) that the limit function Φ has the same regularity as the

refinable function Nm, so that, from (1.8), Φ ∈ Cm−2(R); i.e. the degree of smoothness of

Φ increases with m. A special case of Theorem 1.5 is obtained if we choose c ∈M(Z) as

c = δ = {δj,0 : j ∈ Z}, (1.56)

where δj,k is the Kroneker delta defined by
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δj,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = k,

j, k ∈ Z.

0, j �= k,

(1.57)

But then, from (1.56) and (1.57), we have

(
c)j = (
δ)j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = 0,

−1, j = 1,

0, j /∈ {0, 1},
(1.58)

and thus c = δ ∈ 
∞(Z), with

|| 
 c||∞ = || 
 δ||∞ = 1. (1.59)

Moreover, we observe from (1.50), (1.56), and (1.57) that Φ = Nm, so that, from (1.54)

and (1.59), we get

||Nm

( ·
2r

)
− γ(r)||∞ ≤ m− 2

2r+1
, r ∈ Z+.

Hence, the Lane-Riesenfeld scheme provides an efficient computational algorithm for com-

puting Nm at the dyadic numbers { j
2r : j ∈ Z, r ∈ Z+}, which are dense in R.

For the convergence of the subdivision scheme (1.49) when the mask a is positive, we

quote the following result from [12, Theorem 6.8].

Theorem 1.6 For a given n ≥ 2, the subdivision scheme (1.49) corresponding to the

mask a of Theorem 1.2 is convergent on 
∞(Z), with limit function Φ ∈ C(R) defined by

Φ =
∑

j

cjφ(· − j), (1.60)

where

||Φ
( ·

2r

)
− c(r)||∞ ≤ || 
 c||∞ρr → 0, r → ∞, (1.61)

and with φ and ρ as in Theorem 1.2.

Observe that Theorem 1.5 is a special case of Theorem 1.6, but with the geometric

constant ρ in (1.61), as bounded in (1.39), replaced in (1.54) by the lower bound 1
2

in

17



(1.39).

As is the case for the special case of the cardinal B-spline Nm in the context of the

Lane-Riesenfeld subdivision, we see that a refinable function φ can be computed efficiently

by choosing cj = δj,0 as defined in (1.56) and (1.57), and then employing the subdivision

scheme (1.49). Hence, we have established in Theorem 1.6 that the refinable function

φ plays a fundamental role in subdivision, in the sense that the limit curve Φ has the

explicit representation (1.60) in terms of φ. Moreover, the formula (1.60) shows that Φ

belongs to the same smoothness class as φ. We therefore proceed in the rest of the thesis

to establish sufficient conditions on a given mask a ∈M0(Z) which guarantee a prescribed

regularity class for φ.
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Chapter 2

Regularity Results for Positive

Masks

In this chapter we study how, for a given positive mask a ∈M0(Z), the properties of the

corresponding positive mask symbol A(z) control the regularity (or degree of smoothness)

of the associated refinable function φ. Moreover, we show that our regularity result can

be used to investigate the regularity of the approximation to the solution of an integral

equation. First, however, we introduce the following important concept.

2.1 Preliminaries

A polynomial p ∈ πn as given by

p(z) = anz
n + an−1z

n−1 + · · · + a0, z ∈ C, (2.1)

with an �= 0, is called a Hurwitz polynomial if all its zeros have strictly negative real part;

i.e. if z0 ∈ C is such that p(z0) = 0, then Re(z0) < 0.

The coefficients a0, a1, · · · , an of a Hurwitz polynomial p are necessarily of the same

sign. In particular, as proved in [12, Proposition 7.5], if p in (2.1) is a Hurwitz polynomial

with p(1) > 0, then aj > 0, j = 0, 1, . . . , n. It should be noted that the converse of this

result is not necessarily true; as we will soon see, there does indeed exist a polynomial p,

with aj > 0, j = 0, 1, . . . , n, and such that p is not a Hurwitz polynomial.

Next, we establish the following equivalent formulation of the condition (1.34) on the

mask a in terms of the corresponding mask symbol A(z) as defined by (1.35).
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Proposition 2.1 Let a ∈ M0(Z) denote a mask, and suppose the corresponding mask

symbol A(z) is defined by (1.35). Then (1.34) holds if and only if

A(1) = 2, (2.2)

and

A(−1) = 0. (2.3)

Proof: From (1.34) we obtain

A(1) =
∑

j

aj =
∑

j

a2j +
∑

j

a2j+1,

and

A(−1) =
∑

j

aj(−1)j =
∑

j

a2j −
∑

j

a2j+1,

from which it follows that (1.34) holds if and only if (2.2) and (2.3) are satisfied.

Hence, the mask symbol A(z) corresponding to the mask a of Theorem 1.2 has a

zero at −1. Observe from (1.36) that the cardinal B-spline mask symbol A = A(m) is in

accordance with this result.

2.2 Sufficient Conditions for Regularity

As regards the regularity of the refinable function φ of Theorem 1.2, the result of The-

orem 2.2 below, as proved in [25, Theorem 2.7], shows that, with further restrictions on

the mask a, the minimum smoothness class of φ increases with the order of zero at −1 of

the mask symbol A(z).

Theorem 2.2 For an integer n ≥ 3, suppose that the mask a ∈ M0(Z) is such that the

conditions (1.32), (1.33) and (1.34) are satisfied. Moreover, suppose that there is an

integer l, with 1 ≤ l ≤ n − 2, such that the corresponding symbol A(z), as defined by

(1.35), and for which (2.2) and (2.3) hold, satisfies

A(z) =
1

2l
(1 + z)l+1C(z), z ∈ C, (2.4)
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where C(z) is a Hurwitz polynomial. Then the refinable function φ of Theorem 1.2 satisfies

φ ∈ C l
0(R).

Note from (1.35) and (1.32) that the mask symbol A(z) in Theorem 2.2 is a polynomial

of degree n; hence, from (2.4), we deduce that the polynomial C(z) is of degree (n−l−1) ≥
[n− (n− 2) − 1] = 1. Thus the conditions of Theorems 1.2 and 2.2 imply the inequality

deg(C) ≥ 1. Also, observe that the hypothesis in Theorem 2.2 that C(z) is a Hurwitz

polynomial imply, together with (2.4), that A(z) is also necessarily a Hurwitz polynomial.

Observe furthermore that (2.2) in Proposition 2.1, together with (2.4), imply the condition

C(1) = 1. (2.5)

As a special case of Theorem 2.2, we can therefore choose C(z) = 1+z
2
, z ∈ C, which is a

Hurwitz polynomial of degree 1, and such that (2.5) holds. Also, if we choose the integer

l in Theorem 2.2 as l = n− 2, then, from (2.4), we have A(z) = 1
2n−1 (1 + z)n, z ∈ C. But

then, replacing the symbol n by m, we see from (1.36) that A(z) = A(m)(z), z ∈ C; i.e.

the mask a ∈M0(Z) in Theorem 1.2 is given by a = a(m), with the corresponding (unique)

refinable function φ = Nm. According to Theorem 2.2, and since l = n − 2 = m − 2, we

have φ = Nm ∈ Cm−2(R), which is consistent with the fact that Nm ∈ Sm(Z) ⊂ Cm−2(R),

from the definition (1.8).

We now proceed to illustrate Theorem 2.2 graphically in Figures 2.1, 2.2, and 2.3 by

means of the refinable functions φ0, φ1, and φ2, corresponding, respectively, to the mask

symbols given, for z ∈ C, by

(i) A0(z) = (1 + z)

(
z2 + 4z + 1

6

)
=

1

6
(1 + 5z + 5z2 + z3), (2.6)

(ii) A1(z) =
1

2
(1 + z)2

(
z2 + 4z + 1

6

)
=

1

12
(1 + 6z + 10z2 + 6z3 + z4), (2.7)

(iii) A2(z) =
1

4
(1 + z)3

(
z2 + 4z + 1

6

)
=

1

24
(1 + 7z + 16z2 + 16z3 + 7z4 + z5). (2.8)

In all of the graphical examples in this and subsequent chapters, the refinable function

φ is computed by means of the cascade algorithm, as described in Theorem 1.2, and with

m = 2, whereas the derivative functions φ
′

and φ
′′

are, respectively, approximated by
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Figure 2.1: φ0, with A = A0 as in (2.6)
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Figure 2.2: φ1 (left) and φ
′
1 (right), with A = A1 as in (2.7)
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Figure 2.3: φ2 (top left), φ
′
2 (top right), and φ

′′
2 (bottom left), with A = A2 as in (2.8)
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using the difference quotients

φ
′
(t) ≈ φ(t+ h) − φ(t)

h
, h �= 0,

φ
′′
(t) ≈ φ(t− h) − 2φ(t) + φ(t+ h)

h2
, h �= 0,

for an appropriately small positive value of the step size h.

Observe in particular that the polynomial (z2 + 4z + 1)/6, z ∈ C, as chosen in (2.6),

(2.7) and (2.8), is a Hurwitz polynomial. It follows from Theorems 1.2 and 2.2 that

φk ∈ Ck
0 (R), k = 0, 1, 2. (2.9)

The graphs in Figures 2.1, 2.2, and 2.3 clearly suggest that (2.9) does indeed hold.

Following [13, Lemma 4.1 and Theorem 4.2], as well as [12, Theorem 7.3], we next

extend the regularity result of Theorem 2.2 by showing that result φ ∈ C l(R) remains

true if we merely demand that C(z) be a polynomial of degree d ≥ 1 satisfying (2.5),

and with the polynomial B(z) = (1 + z)C(z) having positive coefficients, (so that B, and

therefore also C, are not necessarily Hurwitz polynomials), and, at the same time, replace

the term (1 + z)l+1 in Theorem 2.2 by a more general term of the form

(1 + z)

l∏
j=1

(1 + z2µj
),

with {µ1, µ2, . . . , µl} denoting a sequence in Z+ satisfying specified recursive upper bounds.

The following result is fundamental for the proof of our main result in Theorem 2.4

below. We shall, in particular, rely on the uniqueness result of Theorem 1.4.

Theorem 2.3 Suppose C is a polynomial, with deg(C) = d ≥ 1, and satisfying (2.5). Let

b ∈M0(Z) denote the mask with corresponding symbol B(z) =
∑
j

bjz
j =

d+1∑
j=0

bjz
j , z ∈ C,

where

B(z) = (1 + z)C(z), z ∈ C, (2.10)

and suppose that bj > 0, j = 0, 1, . . . , d + 1. Furthermore, let ψ denote, according to

Theorems 1.2, 1.3 and 1.4 (with n = d+ 1), the unique function in C0(R) satisfying

ψ =
∑

j

bjψ(2 · −j), (2.11)
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and ∑
j

ψ(· − j) = 1. (2.12)

Let µ ∈ Z+ be such that

µ ≤ log2(d+ 1), (2.13)

and denote by a ∈ M0(Z) the mask with corresponding symbol A(z), as given by (1.35),

where

A(z) =
1

2
(1 + z)(1 + z2µ

)C(z), z ∈ C. (2.14)

Also, denote by φ, according to Theorems 1.2, 1.3 and 1.4 (with n = d + 2µ + 1), the

unique function in C0(R) satisfying (1.5) and (1.43). Then

φ(t) =
1

2µ

∫ 2µ

0

ψ(t− x) dx, t ∈ R. (2.15)

[Observe in particular from (2.13) and (2.14), together with the fact that the polyno-

mial B(z) has positive coefficients, that (1.33) holds with n = d+ 2µ + 1].

Proof: According to Theorem 1.4, the desired result (2.15) would follow if we can show

that the function θ ∈ C0(R) defined by

θ(t) =
1

2µ

∫ 2µ

0

ψ(t− x) dx, t ∈ R, (2.16)

satisfies the properties

θ =
∑

j

ajθ(2 · −j), (2.17)

and ∑
j

ajθ(· − j) = 1. (2.18)

To prove (2.17), we first observe from (2.10) and (2.14) that, for z ∈ C,

A(z) =
∑

j

ajz
j

=
1

2
(1 + z)(1 + z2µ

)C(z)

=
1

2
(1 + z2µ

)B(z)

=
1

2
(1 + z2µ

)
∑

j

bjz
j
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=
1

2

[∑
j

bjz
j +

∑
j

bjz
j+2µ

]

=
1

2

[∑
j

bjz
j +

∑
j

bj−2µzj

]

=
∑

j

1

2
(bj + bj−2µ)zj ,

and thus,

aj =
1

2
(bj + bj−2µ), j ∈ Z. (2.19)

Now, using (2.16), (2.19), and (2.11), we obtain, for t ∈ R,

∑
j

ajθ(2t− j) =
∑

j

1

2
(bj + bj−2µ)

(
1

2µ

∫ 2µ

0

ψ(2t− j − x) dx

)

=
1

2µ+1

∑
j

(bj + bj−2µ)

∫ 2µ

0

ψ(2t− x− j) dx

=
1

2µ+1

(∫ 2µ

0

∑
j

bjψ(2t− x− j) dx+

∫ 2µ

0

∑
j

bj−2µψ(2t− x− j) dx

)

=
1

2µ+1

(∫ 2µ

0

∑
j

bjψ(2t− x− j) dx+

∫ 2µ

0

∑
j

bjψ(2t− 2µ − x− j) dx

)

=
1

2µ+1

(∫ 2µ

0

ψ(t− x

2
) dx+

∫ 2µ

0

ψ(t− 2µ−1 − x

2
) dx

)

=
1

2µ

(∫ 2µ−1

0

ψ(t− x) dx+

∫ 2µ

2µ−1

ψ(t− x) dx

)

=
1

2µ

∫ 2µ

0

ψ(t− x) dx = θ(t),

thereby yielding (2.17).

To prove (2.18), we note from (2.16) and (2.12) that, for t ∈ R,

∑
j

θ(t− j) =
1

2µ

∑
j

∫ 2µ

0

ψ(t− j − x) dx

=
1

2µ

∫ 2µ

0

∑
j

ψ(t− x− j) dx

=
1

2µ

∫ 2µ

0

dx = 1,
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thereby completing the proof of the Theorem.

Note that if, in Theorem 2.3, we choose, for an integer m ≥ 2, the polynomial C(z) =

1
2m−1 (1 + z)m−1, z ∈ C, so that C(1) = 1 and d = m − 1 ≥ 1, and if we choose

µ = 0 ≤ log2(d+ 1), so that (2.13) is also satisfied, then, from (2.10) and (2.14), we have

B(z) =
1

2m−1
(1 + z)m, z ∈ C,

and

A(z) =
1

2m
(1 + z)m+1, z ∈ C.

But then,

bj =
1

2m−1

(
m

j

)
= a

(m)
j , j ∈ Z,

and

aj =
1

2m

(
m+ 1

j

)
= a

(m+1)
j , j ∈ Z,

and it follows from (1.27) and (1.14), together with the uniqueness result of Theorem 1.4,

that ψ = Nm and φ = Nm+1. It then follows from (2.15) in Theorem 2.3 that

Nm+1(t) =

∫ 1

0

Nm(t− x) dx, t ∈ R,

which is precisely the property (1.16) of cardinal B-splines.

Our main result is now as follows.

Theorem 2.4 Suppose in Theorem 1.2 we have n ≥ 3, and let the polynomial C be as

in Theorem 2.3. If, for an integer l ∈ N, there exists a sequence {µ1, µ2, . . . , µl} ⊂ Z+

satisfying

µ1 ≤ µ2 ≤ . . . ≤ µl, (2.20)

and

µ1 ≤ log2(d+ 1), µr+1 ≤ log2

(
d+ 1 +

r∑
j=1

2µj

)
, r = 1, 2, . . . , l − 1, (2.21)

such that the corresponding mask symbol A(z) defined by (1.35) is given by

A(z) =
1

2l
(1 + z)

l∏
r=1

(1 + z2µr
)C(z), z ∈ C, (2.22)
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then φ ∈ C l
0(R).

Proof. Note from (2.2) in Proposition 2.1, together with (2.22), that the condition

C(1) = 1 in Theorem 2.3 necessarily holds. Hence, noting also (2.22), we can apply

Theorem 2.3 with the choice µ = µ1 to deduce that

φ1(t) =
1

2µ1

∫ 2µ1

0

φ0(t− x) dx =
1

2µ1

∫ t

t−2µ1

φ0(x) dx, (2.23)

with φ0 and φ1 denoting, as in Theorem 2.3, the refinable functions with respect to the

masks corresponding to the symbols given, respectively, by B0 and B1, where

B0(z) = (1 + z)C(z), z ∈ C,

and

B1(z) =
1

2
(1 + z)(1 + z2µ1 )C(z), z ∈ C.

Since φ0 ∈ C0(R) from Theorem 1.2, it then follows from (2.23), together with the fun-

damental theorem of integral calculus, that φ1 ∈ C1
0 (R). Repeating the above proce-

dure by successively setting µ = µj, j = 2, . . . , l in Theorem 2.3, and noting that

the inequalities (2.21) imply that the corresponding masks have positive coefficients at

each step, we construct a sequence {φj : j = 1, 2, . . . , l} of refinable functions with

φj ∈ Cj
0(R), j = 1, . . . , l, and where

∑
k

φk(t − k) = 1, t ∈ R, j = 1, . . . , l. Hence,

from the uniqueness result of Theorem 1.4, we eventually obtain φ = φl ∈ C l
0(R).

Remarks

(a) Observe that if we choose µ1 = µ2 = · · · = µl = 0 in Theorem 2.4, then the result

is exactly the same as that of Theorem 2.2.

(b) Note also that the choice

µr = r, r = 1, 2, . . . , l,

satisfies the condition (2.21), since then, using the fact that d ≥ 1, we have

µ1 = 1 = log2 2 ≤ log2(d+ 1),
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whereas, for r ≥ 1,

µr+1 = r + 1

= log2(2
r+1)

= log2

(
2 +

r∑
j=1

2j

)

≤ log2

(
d+ 1 +

r∑
j=1

2j

)
.

Next, we illustrate graphically the result of Theorem 2.4 by increasing the value of l for

a given polynomial A(z) in (2.22) with positive coefficients. To this end, we consider, for

z ∈ C, the following mask symbols:

(i) A0(z) = (1 + z)

(
1 + z + z2

3

)
=

1

3
(1 + 2z + 2z2 + z3); (2.24)

(ii) A1(z) =
1

2
(1+z)(1+z2)

(
1 + z + z2

3

)
=

1

6
(1+2z+3z2 +3z3 +2z4 +z5); (2.25)

(iii) A2(z) =
1

4
(1 + z)(1 + z2)(1 + z4)

(
1 + z + z2

3

)

=
1

12
(1 + 2z + 3z2 + 3z3 + 3z4 + 3z5 + 3z6 + 3z7 + 2z8 + z9). (2.26)

The graphs in Figures 2.4, 2.5 and 2.6 clearly suggest that φk ∈ Ck
0 (R), k = 0, 1, 2, all of

which are consistent with Theorems 1.2 and 2.4.

The following example, the graphical illustration of which is shown in Figure 2.7,

illustrates the fact that in spite of A(z) not being a Hurwitz polynomial (as demanded in

Theorem 2.2) we still have (according to Theorem 2.3) that φ ∈ C1
0(R). The particular

illustrating mask symbol A chosen here is given, for z ∈ C, by

A(z) =
1

50
(10 + 22z + 19z2 + 16z3 + 17z4 + 12z5 + 4z6)

=
1

50
(1 + z)2(10 + 2z + 5z2 + 4z3 + 4z4)

=
1

50
(1 + z)2(2 + 2z + z2)(5 − 4z + 4z2). (2.27)
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Figure 2.4: φ0 with A = A0 as in (2.24)
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Figure 2.5: φ1 (left) and φ
′
1 ( right) with A = A1 as in (2.25)
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Figure 2.6: φ2 (top left), φ
′
2 (top right), and φ

′′
2 (bottom left), with A = A2 as in (2.26)
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Figure 2.7: φ (left) and φ
′
(right), with A(z) as in (2.27)

So far in this chapter, we have shown that the existence of every irreducible factor of

the kind (1 + z2µ
) in a symbol A(z) corresponding to a positive mask a, with µ denoting

a non-negative integer satisfying a mild condition, and always including the case µ = 0,

guarantees an additional degree of smoothness in the corresponding refinable function φ.

If at least one of the mask coefficients aj is non-positive, then we cannot appeal to

Theorems 2.2 and 2.4 to determine the regularity of the associated refinable function. In

Chapters 3 and 4, we shall develop a regularity theory for refinable functions associated

with masks of arbitrary sign.

2.3 Application to an Integral Equation

Refinement equations appear as approximation of certain integral equations. We show in

this section that the result of Theorem 2.4 can be used to determine the regularity of an

approximation to the solution of the integral equation which was studied in [1]. To this

end, consider the problem of finding a solution f ∈ C(R) of the integral equation

f
(x

2

)
= 2

∫ x

x−1

f(t)dt, x ∈ R. (2.28)

Now, recall that the trapezoidal rule for n subintervals for any integral

∫ b

a

y(x)dx is given

by

h

2

[
y(a) + y(b) + 2

n−1∑
j=1

y(tj)

]
, (2.29)

where h = b−a
n
, tj = a + jh or tj = b − jh, j = 0, 1, . . . , n. Thus, applying (2.29) to

the integral in (2.28), we consider the possibility of constructing, for n ∈ N, n ≥ 2, an
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approximate solution g = gn of (2.28), in the sense that g satisfies the equation

g
(x

2

)
=

1

n

[
g(x) + g(x− 1) + 2

n−1∑
j=1

g

(
x− j

n

)]
, x ∈ R. (2.30)

Setting x =
t

n
and φ(t) = g

(
t

n

)
in (2.30), we get

φ

(
t

2

)
=

1

n

[
φ(t) + φ(t− n) + 2

n−1∑
j=1

φ(t− j)

]
, t ∈ R. (2.31)

Recalling that the refinement equation (1.5) has the equivalent form φ( ·
2
) =

∑
j

ajφ(·−j),

we find that (2.31) is a refinement equation with mask coefficients given by

aj =

⎧⎨
⎩

1
n
, if j ∈ {0, n},

2
n
, if j ∈ {1, 2, . . . , n− 1}.

Hence, the corresponding mask symbol A is given, for z ∈ C, by

A(z) =
1

n

[
(1 + zn) + 2

n−1∑
j=1

zj

]

=
1

n
[1 + 2z + 2z2 + 2z3 + · · ·+ 2zn−1 + zn],

and thus,

A(z) =
1

n

(1 + z)(1 − zn)

(1 − z)
, z ∈ C\{1}. (2.32)

In the special case n = 2k, k ∈ Z+, one gets

A(z) = Ak(z) =
1

2k

(1 + z)(1 − z2k
)

(1 − z)
, z ∈ C\{1}. (2.33)

Now, using the identity

(1 − z2k

) = (1 − z)(1 + z)(1 + z2)(1 + z22

) · · · (1 + z2k−1

), k ∈ N,

as can be proved inductively, we find that (2.33) yields, for z ∈ C,

Ak(z) =
1

2k
(1 + z)2(1 + z2)(1 + z4) · · · (1 + z2k−1

)
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=
1

2k−1
(1 + z)

k−1∏
r=1

(1 + z2r

)

[
1 + z

2

]
. (2.34)

Recalling also Remark (b) after the proof of Theorem 2.4, we observe that the mask

symbol in (2.34) satisfies the conditions of Theorem 2.4, with l = k − 1, µr = r, r =

1, . . . , k − 1, and C(z) =
1 + z

2
, z ∈ C. Thus, appealing to Theorem 2.4, we find that

the associated refinable function φk satisfies φk ∈ Ck−1
0 (R). Note also that, for each

k, φk(t) = 0, t /∈ (0, 2k), and φk(t) > 0, t ∈ (0, 2k).

It seems reasonable to conjecture that there exists a function f ∈ C∞(R) such that

||f − φk||∞ → 0, k → ∞,

and with f satisfying the integral equation (2.28). We do not pursue this particular issue

further here.
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Chapter 3

A General Regularity Theory based

on Fourier Transforms

Henceforth, we investigate the regularity of refinable functions with respect to masks

that do not necessarily satisfy the condition that the non-zero mask coefficients are all

positive, as was demanded in the first two chapters (see e.g (1.33)). For the existence of

continuous refinable functions associated with such masks, we refer to e.g. [1], [3], [7],

[8], [9], [11], [14], [18], [24] . To develop our regularity theory, we shall employ Fourier

transform techniques to show the dependence of the minimum regularity class of functions

f ∈ C0(R) on the decay rate of their Fourier transforms. First, we present results from

Fourier analysis as will be needed in the rest of the chapter.

3.1 Results from Fourier Analysis

In what follows, we extend the definitions of the spacesM(R),M0(R),Mu(R), C(R), C0(R)

and Cu(R) to include also functions f : R → C. For p ∈ [1,∞), we define the linear space

Lp(R) =

{
f ∈M(R) :

∫ ∞

−∞
|f(t)|p dt <∞

}
, (3.1)

where the integral is taken in the sense of Lebesgue. Then Lp(R) is a Banach space with

respect to the norm

‖f‖p =

(∫ ∞

−∞
|f(t)|p dt

) 1
p

, (3.2)
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whereas L2(R) is also a Hilbert space with respect to the inner product

〈f, g〉 =

∫ ∞

−∞
f(t)g(t) dt. (3.3)

The Fourier transform f̂ ∈ M(R), as also denoted by Ff, of a function f ∈ L1(R) is

defined by

f̂(ω) = (Ff)(ω) :=

∫ ∞

−∞
e−iωtf(t) dt, ω ∈ R. (3.4)

The operator F is called the Fourier transform operator. Fourier transforms satisfy the

following properties, the proof of which can be found in [3, Chapter 2].

Theorem 3.1 Let the Fourier transform of a function f ∈ L1(R) be as defined in (3.4).

Then we have the following:

(i) f̂ is uniformly continuous on R, with

f̂ ∈ Cu(R), and ‖f̂‖∞ ≤ ‖f‖1; (3.5)

(ii) the inversion formula: if f̂ ∈ L1(R), then

f(t) = (F−1f̂)(t) :=
1

2π

∫ ∞

−∞
eitωf̂(ω) dω (3.6)

at every point t where f is continuous;

(iii) the Parseval identity: if f, g ∈ L1(R) ∩ L2(R), then

〈f, g〉 =
1

2π

〈
f̂ , ĝ

〉
, (3.7)

and thus,

‖f‖2 =
1√
2π

‖f̂‖2; (3.8)

(iv) the Riemann-Lebesgue Lemma:

f̂(ω) → 0, |ω| → ∞. (3.9)

The operator F−1 defined in (3.6) is called the inverse Fourier transform.
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In our analysis, we give specific attention to the subspace A of L1(R) as defined by

A = {f ∈M(R) : f ∈ L1(R) ∩ C(R); f̂ ∈ L1(R)}. (3.10)

Also, we define A0 = A∩M0(R).

Proposition 3.2 The space A in (3.10) satisfies A ⊂ L2(R).

Proof. Suppose f ∈ A. Then f ∈ L1(R) ∩ C(R), which implies that |f(t)| → 0,

|t| → ∞. But, since |f(t)|2 ≤ |f(t)| for all t ∈ R in the set {t ∈ R : |f(t)| ≤ 1}, it follows

that f ∈ L2(R).

The following proposition was established in [18, Theorem 1.1] and [29, Theorem 2.1].

Proposition 3.3 The Fourier transform operator F is a one-to-one map of A onto itself,

where the inverse Fourier transform F−1 is defined as in (3.6).

Proof. We first show that F : A → A is injective. Since, from (3.5) and (3.10), f ∈ A
implies f̂ ∈ L1(R) ∩ C(R), we have to show that

F f̂ ∈ L1(R), f ∈ A. (3.11)

Suppose therefore that f ∈ A. Then, using (3.4) and (3.6), one obtains

(F f̂)(t) =

∫ ∞

−∞
e−iωtf̂(ω) dω = 2πf(−t), t ∈ R,

and thus, ∫ ∞

−∞
|(F f̂)(t)| dt = 2π

∫ ∞

−∞
|f(−t)| dt = 2π

∫ ∞

−∞
|f(t)| dt,

and it follows that (3.11) holds, since f ∈ A ⊂ L1(R). Hence, F maps A into itself.

It remains to show that, for a given g ∈ A, there exists a unique f ∈ A such that

f̂ = g. To this end, we define the function g− : R → C by g−(t) := g(−t), t ∈ R. Then,

since g ∈ A, and since it can easily be verified from (3.4) that ĝ−(ω) = ĝ(−ω), ω ∈ R,

we also have g− ∈ A. Hence, if we define f = 1
2π
ĝ−, we also have f ∈ A. Moreover, (3.4)

and (3.6) yield

f̂(t) =
1

2π

∫ ∞

−∞
e−itω ĝ−(ω) dω = g−(−t) = g(t), t ∈ R,

35



and thus, f̂ = g. To prove the uniqueness of f, suppose the function h ∈ A is such that

ĥ = g. Then, with the function u defined by u = f − h, we get u ∈ A and û = f̂ − ĥ = 0,

and thus ‖û‖2 = 0. Hence, by (3.8), and keeping in mind also Proposition 3.2, we get

‖u‖2 = 0, so that u = 0; that is, f = h.

We shall rely on the following immediate consequence of Proposition 3.3 and the

inversion formula in Theorem 3.1(ii).

Corollary 3.4

f(t) =
1

2π

∫ ∞

−∞
eitωf̂(ω) dω, t ∈ R, f ∈ A. (3.12)

3.2 The Cardinal B-spline Case

As a special case of the function f in Section 3.1, we calculate here the Fourier transform

of the function f = Nm, the cardinal B-spline of order m, as introduced in Section 1.2,

and we investigate the decay rates of |N̂m(ω)| as |ω| → ∞.

Proposition 3.5 For m ∈ N, we have

(a) N̂m(ω) =

⎧⎪⎨
⎪⎩

(
1 − e−iω

iω

)m

, ω ∈ R\{0},

1, ω = 0.

(3.13)

(b) |N̂m(ω)| =

⎧⎪⎨
⎪⎩

∣∣∣∣sin (ω/2)

ω/2

∣∣∣∣
m

, ω ∈ R\{0},

1, ω = 0.

(3.14)

(c) |N̂m(ω)| ≤ 22m

(1 + |ω|)m
, ω ∈ R. (3.15)

(d) |N̂m(ω)| ≤ (2
√

2)m

(1 + ω2)
m
2

, ω ∈ R. (3.16)

(e) Nm ∈ A if and only if m ≥ 2.

Proof. (a) First, since N1 = φ1 as given by (1.3), we have from (3.4) that

N̂1(ω) =

∫ 1

0

e−iωt dt, ω ∈ R,
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which yields (3.13) for m = 1.

Suppose now that the first line of (3.13) holds for a fixed m ∈ N. Then (3.4), (1.12),

and (1.16) give, for ω ∈ R,

N̂m+1(ω) =

∫ m+1

0

e−iωtNm+1(t) dt,

=

∫ m+1

0

e−iωt

[∫ 1

0

Nm(t− x) dx

]
dt,

=

∫ 1

0

[∫ m+1

0

e−iωtNm(t− x) dt

]
dx,

=

∫ 1

0

[∫ m+1−x

−x

e−iω(t+x)Nm(t) dt

]
dx,

=

∫ 1

0

e−iωx

[∫ ∞

−∞
e−iωtNm(t) dt

]
dx,

=

[∫ 1

0

e−iωx dx

]
N̂m(ω),

thereby completing the inductive proof of (3.13).

(b) Since

∣∣∣∣1 − e−iω

iω

∣∣∣∣ =
2

|ω|
∣∣∣∣eiω/2 − e−iω/2

2i

∣∣∣∣ = 2
| sin (ω/2)|

|ω| , ω ∈ R\{0}, (3.17)

we see that that (3.13) implies (3.14).

(c) The second line of (3.14) shows that (3.15) holds for ω = 0. If |ω| ∈ (0, 1], we use the

inequality

| sin x| ≤ |x|, x ∈ R, (3.18)

to deduce from the first line of (3.14) that

|N̂m(ω)| ≤ 1 ≤ 2m ≤ 22m

(1 + |ω|)m
,

whereas if |ω| ∈ (1,∞), then the first line of (3.14) gives

|N̂m(ω)| ≤ 2m

|ω|m ≤ 22m

(1 + |ω|)m
,

thereby completing the proof of (3.15).

(d) The proof of (3.16) is similar to the proof of (3.15).

(e) Suppose first that m ≥ 2. Then Nm ∈ C0(R) ⊂ C(R)∩L1(R). Also, the bound (3.15)
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shows that N̂m ∈ L1(R). Hence, Nm ∈ A. If m = 1, then we have N1 /∈ C(R). Also, (3.14)

and (3.15) show that |N̂1| /∈ L1(R), and therefore N̂1 /∈ L1(R). Thus, N1 /∈ A.

Observe from (3.15) that N̂m(ω) → 0, |ω| → ∞, which is in accordance with the

Riemann-Lebesgue Lemma (3.9).

3.3 A Sufficient Condition for Hölder Regularity

Our regularity theory in this chapter will be formulated in terms of the following linear

spaces. For β ∈ (0, 1], we say that a function f ∈ M(R) is Lipschitz continuous (or

Lipschitz regular) of order β if and only if there exists a non-negative number c such that

|f(t+ h) − f(t)| ≤ c|h|β, t, h ∈ R, (3.19)

where c is independent of t and h. The linear space of all such functions is denoted by

Lβ(R). We define Lβ
u(R) = Lβ(R)∩Mu(R), whereas Lβ

0 (R) = Lβ(R)∩M0(R). For k ∈ Z+,

we also define

Ck
u(R) = {f : f (j) ∈ Cu(R), j = 0, 1, · · · , k}.

The following inclusions then hold.

Proposition 3.6

C1
u(R) ⊂ Lα

u(R) ⊂ Lβ
u(R) ⊂ Cu(R), 0 < β ≤ α ≤ 1. (3.20)

Proof. The inclusion Lβ
u(R) ⊂ Cu(R) is an immediate consequence of (3.19). To prove,

for 0 < β ≤ α ≤ 1, the inclusion Lα
u(R) ⊂ Lβ

u(R), suppose f ∈ Lα
u(R). It follows that

there exists a non-negative constant k such that

|f(t+ h) − f(t)| ≤ k|h|α ≤ k|h|β, t ∈ R, |h| ≤ 1. (3.21)

Since f ∈ Lα
u(R) ⊂ Cu(R), we also have

|f(t+ h) − f(t)| ≤ 2||f ||∞ ≤ 2||f ||∞|h|β, t ∈ R, |h| ≥ 1. (3.22)
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It follows from (3.21) and (3.22) that (3.19) holds with c = max{k, 2||f ||∞}, and thus

f ∈ Lβ
u(R).

Finally, to prove the inclusion C1
u(R) ⊂ Lα

u(R), suppose f ∈ C1
u(R). Then the Mean-

Value Theorem gives

|f(t+ h) − f(t)| ≤ ||f ′||∞|h| ≤ ||f ′||∞|h|α, t ∈ R, |h| ≤ 1, (3.23)

whereas (3.22), with β replaced by α, also holds in this case. Hence, the Lipschitz condi-

tion (3.19) is satisfied with c = max{||f ′||∞, 2||f ||∞}, and thus f ∈ Lα
u(R).

Note that C1
u(R) ⊂ Lα

u(R) is a proper inclusion for α ∈ (0, 1], since, for example, the

linear cardinal B-spline N2 belongs to the set L1
u(R)\C1

u(R). Next, for α ∈ [0,∞), and

with the definition k := �α�, β := α− k, we define the linear spaces Cα(R) and Cα
u (R) by

Cα(R) =

⎧⎨
⎩ Ck(R), α = k ∈ Z+,

{f : f ∈ Ck(R); f (k) ∈ Lβ(R)}, α ∈ R+\Z+;
(3.24)

Cα
u (R) =

⎧⎨
⎩ Ck

u(R), α = k ∈ Z+,

{f : f ∈ Ck
u(R); f (k) ∈ Lβ

u(R)}, α ∈ R+\Z+.
(3.25)

If f ∈ Cα(R), α ∈ R+\Z+, then we say that f is Hölder continuous of order α. Also, we

define Cα
0 (R) := Cα(R) ∩M0(R). Observe that Cα

0 (R) ⊂ Cα
u (R), and

Cα(R) = Lα(R)

Cα
u (R) = Lα

u(R)

⎫⎬
⎭ , α ∈ (0, 1).

It follows immediately from Proposition 3.6 that the definition (3.25) yields the fol-

lowing inclusion.

Corollary 3.7 For α, γ ∈ [0,∞), we have

Cα
u (R) ⊂ Cγ

u(R), 0 ≤ γ ≤ α. (3.26)
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For p ∈ [1,∞) and q ∈ [0,∞), we define the subspace Hp,q(R) of L1(R) by

Hp,q(R) =

{
f ∈ L1(R) :

∫ ∞

−∞
(1 + |ω|p)q|f̂(ω)|p dω <∞

}
. (3.27)

The space Hp,q(R) is sometimes referred to as a Sobolev space. The following inclusion

holds.

Proposition 3.8 For p ∈ [1,∞), we have

Hp,q(R) ⊂ Hp,r(R), 0 ≤ r ≤ q <∞. (3.28)

Proof. Let 0 ≤ r ≤ q <∞ and suppose f ∈ Hp,q(R). Since q ≥ r, we have

(1 + |ω|p)r ≤ (1 + |ω|p)q, ω ∈ R,

and thus ∫ ∞

−∞
(1 + |ω|p)r|f̂(ω)|p dω ≤

∫ ∞

−∞
(1 + |ω|p)q|f̂(ω)|p dω <∞.

Hence f ∈ Hp,r(R).

The result of Proposition 3.8 can now be used to prove the following inclusion.

Proposition 3.9

H1,q(R) ∩ C0(R) ⊂ A0, q ∈ [0,∞). (3.29)

Proof. For q ∈ [0,∞), suppose f ∈ H1,q(R)∩C0(R). We see from the definition (3.27)

that f ∈ L1(R) ∩ C0(R). Moreover, since (3.28) yields H1,q(R) ⊂ H1,0(R), we also have

f̂ ∈ L1(R), so that, from (3.10), we have f ∈ A, and thus also f ∈ A0.

Our main result of this section, as given by Theorem 3.10 below, states that, for

p ∈ {1, 2}, and for a given q ∈ [0,∞), we have the embedding result

Hp,q(R) ∩ C0(R) ⊂ Cα
0 (R) (3.30)

for α ∈ Iq, where Iq is an interval that has zero as its left endpoint, and where the length

of Iq grows linearly with q. Keeping in mind also the inclusion result of Corollary 3.7, our

eventual regularity theory will therefore be based on the principle of, for a given function
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f ∈ C0(R), and for p ∈ {1, 2}, finding the largest possible positive number q such that

f ∈ Hp,q(R).

Our fundamental embedding result is as follows.

Theorem 3.10 The embedding result (3.30) holds for

α ∈
⎧⎨
⎩ [0, q], if p = 1, q ∈ (0,∞),

[0, q − 1
2
), if p = 2, q ∈ (1

2
,∞).

(3.31)

[Our proof below is based on those given in [3, Lemma 7.21] and [21, p. 105], but we

provide here considerably more details.]

Proof of Theorem 3.10. Suppose f ∈ H1,q(R) ∩ C0(R), with q ∈ N. We shall prove

inductively that

f (j) ∈ C0(R), j = 0, 1, . . . , q, (3.32)

with

f (j)(t) =
1

2π

∫ ∞

−∞
(iω)jeiωtf̂(ω) dω, t ∈ R, j = 0, 1, . . . , q, (3.33)

which will then, according to the first line of (3.24) (or (3.25)), yield the first line of (3.31)

for integer values of q.

First, observe from Proposition 3.9 that f ∈ A0, so that the inversion formula (3.12)

in Corollary 3.4 gives (3.33) for j = 0. Hence, (3.32) and (3.33) hold for j = 0. Suppose

therefore that (3.32) and (3.33) hold for a fixed j ∈ {0, 1, . . . , q − 1}. Now fix t ∈ R and

let h �= 0. Then, from (3.33), we have

f (j)(t+ h) − f (j)(t)

h
=

1

2π

∫ ∞

−∞
(iω)j e

iω(t+h) − eiωt

h
f̂(ω) dω. (3.34)

As in (3.17), we have

∣∣∣∣eiω(t+h) − eiωt

h

∣∣∣∣ =

∣∣∣∣eiωh − 1

h

∣∣∣∣ = 2
|sin (ωh/2)|

|h| , ω ∈ R, (3.35)

and thus, from (3.35) and (3.18),

∣∣∣∣eiω(t+h) − eiωt

h

∣∣∣∣ ≤ |ω|. (3.36)
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It follows from (3.36) that

∣∣∣∣(iω)j e
iω(t+h) − eiωt

h
f̂(ω)

∣∣∣∣ ≤ |ω|j+1|f̂(ω)| ≤ (1 + |ω|)q|f̂(ω)|, ω ∈ R, (3.37)

since j ≤ q − 1. Since f ∈ H1,q(R), we know that

∫ ∞

−∞
(1 + |ω|)q|f̂(ω)| dω <∞.

Hence we may appeal to the Lebesgue Dominated Convergence Theorem (see e.g. [27,

Theorem 8.11]) to deduce from (3.34) and (3.37), together with the limit

lim
h→0

eiω(t+h) − eiωt

h
=

d

dt
(eiωt) = (iω)eiωt,

that f (j) is differentiable at t, with

f (j+1)(t) =
1

2π

∫ ∞

−∞
(iω)j+1eiωtf̂(ω) dω, t ∈ R. (3.38)

Thus, (3.33) is true with j replaced by (j + 1).

Next, from (3.38), we see, for a fixed t ∈ R and h �= 0, that

f (j+1)(t+ h) − f (j+1)(t) =
1

2π

∫ ∞

−∞
(iω)j+1

[
eiω(t+h) − eiωt

]
f̂(ω) dω. (3.39)

Note as in (3.35) that

∣∣eiω(t+h) − eiωt
∣∣ = 2

∣∣∣∣sin ωh2
∣∣∣∣ ≤ 2, ω ∈ R,

which gives, for ω ∈ R,

∣∣∣(iω)j+1
[
eiω(t+h) − eiωt

]
f̂(ω)

∣∣∣ ≤ 2|ω|j+1|f̂(ω)|
≤ 2(1 + |ω|)j+1|f̂(ω)|
≤ 2(1 + |ω|)q|f̂(ω)|,
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since j ≤ q − 1. As before, we may appeal to the Lebesgue Dominated Convergence

Theorem to deduce from (3.39) that

lim
h→0

[
f (j+1)(t+ h) − f (j+1)(t)

]
=

1

2π

∫ ∞

−∞
(iω)j+1eiωt lim

h→0

(
eiωh − 1

)
f̂(ω) dω = 0.

Hence, f (j+1) ∈ C(R). Also, since f (j) ∈ A0 ⊂ C0(R), we have f (j+1) ∈ C0(R), so that also

(3.32) holds with j replaced by j + 1, thereby completing our inductive proof of (3.32)

and (3.33) for q ∈ N.

Next, suppose f ∈ H1,q(R)∩C0(R), with q /∈ N, and define k := �q�, β := q−k, so that

β ∈ (0, 1). Since k < q, it follows from (3.28) in Proposition 3.8 that f ∈ H1,k(R)∩C0(R),

and thus, since the first line of (3.31) has been shown to hold if q ∈ N, we know that

f ∈ Ck
0 (R). From (3.25) and (3.26), it therefore remains to prove that f (k) ∈ Lβ(R). To

prove this, we shall rely on the inequality

| sinx| ≤ |x|β, x ∈ R, (3.40)

which is proved by noting that if |x| ≤ 1, then (3.18) gives

| sin x| ≤ |x| ≤ |x|β,

whereas, if |x| ≥ 1, we have

| sin x| ≤ 1 ≤ |x|β.

Now, use (3.33), with j = k, together with (3.35) and (3.40) to obtain, for t, h ∈ R,

∣∣f (k)(t+ h) − f (k)(t)
∣∣ =

1

2π

∣∣∣∣
∫ ∞

−∞
(iω)k

[
eiω(t+h) − eiωt

]
f̂(ω) dω

∣∣∣∣
≤ 1

π

∫ ∞

−∞
|ω|k

∣∣∣∣sin ωh2
∣∣∣∣ |f̂(ω)| dω

≤ 1

π

∫ ∞

−∞
|ω|k

∣∣∣∣ωh2
∣∣∣∣
β

|f̂(ω)| dω

=

[
1

2βπ

∫ ∞

−∞
|ω|q|f̂(ω)| dω

]
|h|β

≤
[

1

2βπ

∫ ∞

−∞
(1 + |ω|)q|f̂(ω)| dω

]
|h|β,
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and it follows that (3.19) holds with

c =
1

2βπ

∫ ∞

−∞
(1 + |ω|)q|f̂(ω)| dω <∞,

from the fact that f ∈ H1,q(R). Hence f (k) ∈ Lβ(R).

It remains to prove the second line of (3.31). To this end, suppose that f ∈ H2,q(R)∩
C0(R) for some fixed q ∈ (1

2
,∞). Since (1 − |ω|)2 ≥ 0, ω ∈ R, it follows that

(1 + |ω|)2 ≤ 2(1 + ω2), ω ∈ R,

and thus

(1 + |ω|)2q ≤ 2q(1 + ω2)q, ω ∈ R. (3.41)

Now, choose ε ∈ (0, q − 1
2
). Using the Cauchy-Schwarz inequality, together with (3.41),

we obtain

∫ ∞

−∞
(1 + |ω|)q− 1

2
−ε|f̂(ω)| dω =

∫ ∞

−∞
(1 + |ω|)− 1

2
−ε
[
(1 + |ω|)q|f̂(ω)|

]
dω

≤
[∫ ∞

−∞
(1 + |ω|)−1−2ε dω

]1
2
[∫ ∞

−∞
(1 + |ω|)2q|f̂(ω)|2 dω

] 1
2

=
1√
ε

[∫ ∞

−∞
(1 + |ω|)2q|f̂(ω)|2 dω

] 1
2

≤ 2
q
2√
ε

[∫ ∞

−∞
(1 + ω2)q|f̂(ω)|2 dω

]1
2

<∞, (3.42)

since f ∈ H2,q(R). It follows from (3.42) that f ∈ H1,q− 1
2
−ε(R), ε ∈ (0, q − 1

2
), which,

together with the first line of (3.31), implies the second line of (3.31).

The result of Theorem 3.10 can now be used to prove our main result of this chapter,

which yields the following sufficient condition for regularity.

Theorem 3.11 Suppose f ∈ C0(R). If, for p ∈ {1, 2}, there exist a number α ∈ (1,∞)

and a non-negative number k such that

|f̂(ω)|p ≤ k

(1 + |ω|p)α
, ω ∈ R, (3.43)
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and with k independent of ω, then

f ∈ Cγ
0 (R), γ ∈ (0, α− 1). (3.44)

Proof. Suppose first p = 1 and let q ∈ (0, α− 1). Then, from (3.43), we have

(1 + |ω|)q|f̂(ω)| ≤ k

(1 + |ω|)α−q
, ω ∈ R,

which, together with the definition (3.27) for p = 1 and the fact that α − q > 1, shows

that

f ∈ H1,q(R) ∩ C0(R), q ∈ (0, α− 1). (3.45)

It follows from (3.45) and the first line of (3.31) that

f ∈ Cγ
0 (R), γ ∈ [0, q], q ∈ (0, α− 1), (3.46)

which immediately yields (3.44).

Next, suppose (3.43) holds for p = 2 and let q ∈ (1/2, α − 1/2). Then we see from

(3.43) and (3.41) that, for ω ∈ R,

(1 + ω2)q|f̂(ω)|2 ≤ k

(1 + ω2)α−q
≤ k2α−q

(1 + |ω|)2α−2q
, (3.47)

But then, q ∈ (1/2, α − 1/2) also implies that 2α − 2q > 1, which, together with (3.47)

and the definition (3.27) for p = 2, shows that

f ∈ H2,q(R) ∩ C0(R), q ∈ (1/2, α− 1/2). (3.48)

Observe now from (3.48) and the second line of (3.31) that

f ∈ Cγ(R), γ ∈ (0, q − 1/2), q ∈ (1/2, α− 1/2), (3.49)

from which, since also f ∈ C0(R), it then follows that (3.44) holds.

Observe from (3.15) and (3.16) that, for m ≥ 2, the function Nm ∈ C0(R) satisfies the

condition (3.43) with α = m for both p = 1 and p = 2. Hence, according to Theorem 3.11,

we have Nm ∈ Cγ
0 (R), γ ∈ (0, m−1), which is consistent with the facts thatNm ∈ Sm(Z) ⊂
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Cm−2(R), and the derivative N
(m−2)
m is a piecewise linear continuous function on R. We

proceed in Chapter 4 to apply the regularity results of Theorems 3.10 and 3.11 to the

case when f is a refinable function.
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Chapter 4

The Hölder Regularity of a Refinable

Function

In this chapter, we study the Hölder regularity of a given refinable function φ using the

regularity results of Theorems 3.10 and 3.11. In particular, we shall, for the case p = 2,

rely on a special operator called the transfer operator. First, however, we discuss the

Fourier transform of φ and some of its properties.

4.1 The Fourier Transform of a Refinable Function

Throughout this chapter, we shall assume that

[A] the sequence a = {aj : j ∈ Z} is a mask in M0(Z) such that

∑
k

a2k =
∑

k

a2k+1 = 1, (4.1)

or, equivalently, in terms of the corresponding mask symbol

A(z) =
∑

k

akz
k, z ∈ C\{0}, (4.2)

and according to Proposition 2.1, such that

A(1) = 2, A(−1) = 0; (4.3)
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[B] there exists a non-trivial solution φ ∈ C0(R) of the corresponding refinement equation

φ =
∑

k

akφ(2 · −k). (4.4)

To simplify our notation, we introduce the trigonometric polynomial Q ∈M(R) by means

of the definition

Q(ω) =
1

2
A(e−iω) =

1

2

∑
k

ake
−iωk, ω ∈ R, (4.5)

in terms of which we note that our assumption in (4.3) is equivalent to

Q(0) = 1, Q(π) = 0. (4.6)

Since φ ∈ C0(R) implies φ ∈ L1(R), we know that the Fourier transform φ̂ exists. The

following identity then holds.

Proposition 4.1

φ̂(ω) =

[
j∏

k=1

Q(ω/2k)

]
φ̂(ω/2j), ω ∈ R, j ∈ N. (4.7)

Proof. Using (3.4), (4.4), and (4.5), we obtain, for ω ∈ R,

φ̂(ω) =

∫ ∞

−∞
e−iωt

[∑
k

akφ(2t− k)

]
dt

=
∑

k

ak

[∫ ∞

−∞
e−iωtφ(2t− k) dt

]

=
1

2

∑
k

ak

[∫ ∞

−∞
e−iω (t+k)

2 φ(t) dt

]

=
1

2

[∑
k

ake
−iωk/2

]∫ ∞

−∞
e−iωt/2φ(t) dt

= Q(ω/2)φ̂(ω/2), (4.8)

and thus also

φ̂(ω) = Q(ω/2)Q(ω/4)φ̂(ω/4) = · · · =

[
j∏

k=1

Q(ω/2k)

]
φ̂(ω/2j), j ∈ N.

Using Proposition 4.1, we can now prove the following property of φ̂.
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Proposition 4.2

φ̂(2jπ) = 0, j ∈ Z\{0}. (4.9)

Proof. Since (4.6) gives Q(π) = 0, and since (4.5) gives

Q(ω + 2πj) = Q(ω), j ∈ Z, ω ∈ R, (4.10)

we find that

Q((2j + 1)π) = 0, j ∈ Z. (4.11)

Let j ∈ N. Then, there exist integers l ∈ N and r ∈ Z+ such that 2j = 2l(2r + 1). Now

use (4.7) with j = l to obtain

φ̂(2jπ) = φ̂(2l(2r + 1)π) =

[
l∏

k=1

Q
(
2l−k(2r + 1)π

)]
φ̂((2r + 1)π) = 0,

since Q((2r + 1)π) = 0 by virtue of (4.11).

If j ∈ Z\{0} is such that −j ∈ N, we write −2j = 2l(2r + 1) for l ∈ N, r ∈ Z+, and

again use (4.7) with j = l to obtain

φ̂(2jπ) =

[
l∏

k=1

Q
(−2l−k(2r + 1)π

)]
φ̂(−(2r + 1)π) = 0,

since Q(−(2r+1)π) = Q((2(−r−1)+1)π) = 0, from (4.11), after having noted also that

−1 − r ∈ Z.

Observe from (3.13) that N̂m(2jπ) = 0, j ∈ Z\{0}, which is consistent with (4.9)

above.

We next show that the Fourier transform φ̂ can be formulated explicitly in terms of

an infinite product.

Theorem 4.3 Suppose a ∈ M0(Z) and φ ∈ C0(R) are such that the conditions [A] and

[B] are satisfied. Then the infinite product

∞∏
k=1

Q
( ω

2k

)
(4.12)
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converges for each fixed ω ∈ R. Moreover,

φ̂(ω) =

[ ∞∏
k=1

Q
( ω

2k

)]
φ̂(0), ω ∈ R, (4.13)

with

φ̂(0) =

∫ ∞

−∞
φ(t) dt �= 0. (4.14)

Proof. Let ω ∈ R be fixed. Suppose first that there exists an integer J ∈ N such that

Q
( ω

2J

)
= 0. (4.15)

Then the infinite product (4.12) trivially converges to zero. Also, choosing j = J in (4.7),

we find that φ̂(ω) = 0. Hence the result (4.13) holds with both sides equal to zero.

Suppose next that there does not exist an integer J ∈ N such that (4.15) holds, i.e,

Q
( ω

2k

)
�= 0, k ∈ N, (4.16)

which is equivalent to ∣∣∣Q( ω
2k

)∣∣∣ > 0, k ∈ N. (4.17)

Next, we use (4.5) and (4.1), as well as (3.17) and (3.18), to obtain

|Q(ω) − 1| =
1

2

∣∣∣∣∣
∑

k

ak(e
−iωk − 1)

∣∣∣∣∣
≤ 1

2

∑
k

|ak|
∣∣e−iωk − 1

∣∣
=

∑
k

|ak| |sin(ωk/2)|

≤ 1

2

∑
k

|ak||ωk|

=

[
1

2

∑
k

|kak|
]
|ω| = c|ω|, (4.18)

where c = 1
2

∑
k |kak|. It then follows from (4.18) that

∣∣∣∣∣∣Q( ω
2k

)∣∣∣− 1
∣∣∣ ≤ ∣∣∣Q( ω

2k

)
− 1

∣∣∣ ≤ c|ω|
2k

, k ∈ N, (4.19)
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which implies
∣∣Q (

ω
2k

)∣∣ → 1, k → ∞, so that there exists an integer M ∈ N such that

∣∣∣∣∣∣Q( ω
2k

)∣∣∣− 1
∣∣∣ ≤ 1

2
, k ≥M, (4.20)

and thus, ∣∣∣Q( ω
2k

)∣∣∣ ≥ 1

2
, k ≥M. (4.21)

Next, we use (4.17), (4.18) and (4.21) to obtain, for k ≥ M,

∣∣∣ln ∣∣∣Q( ω
2k

)∣∣∣∣∣∣ =

∣∣∣∣∣
∫ |Q( ω

2k )|
1

1

t
dt

∣∣∣∣∣
≤ 1

min{1, ∣∣Q (
ω
2k

)∣∣}
∣∣∣∣∣∣Q( ω

2k

)∣∣∣− 1
∣∣∣

≤ 2
∣∣∣Q( ω

2k

)
− 1

∣∣∣
≤ c|ω|

2k−1
. (4.22)

Since (4.22) gives ∣∣∣ln ∣∣∣Q( ω
2k

)∣∣∣∣∣∣ ≤ (c|ω|) 1

2k−1
, k ≥M,

and since
∞∑

k=1

1

2k−1
(= 2) is a convergent series, we deduce that the series

∞∑
k=1

ln
∣∣∣Q( ω

2k

)∣∣∣ (4.23)

is absolutely convergent, and therefore also convergent. For K ∈ N, we therefore have

K∏
k=1

∣∣∣Q( ω
2k

)∣∣∣ = exp

(
ln

[
K∏

k=1

∣∣∣Q( ω
2k

)∣∣∣
])

= exp

(
K∑

k=1

ln
∣∣∣Q( ω

2k

)∣∣∣
)

→ exp

( ∞∑
k=1

ln
∣∣∣Q( ω

2k

)∣∣∣
)
<∞, K → ∞,

since the exponential function exp(x) is continuous on R, and (4.23) is a convergent series.

Hence the infinite product (4.12) also converges if (4.16) holds, and therefore converges

for every fixed ω ∈ R. Also, we know from (3.5) in Theorem 3.1 that φ̂ ∈ C(R). Hence, by

letting j → ∞ in the right hand side of (4.7) in Proposition 4.1, we find that the formula
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(4.13) is satisfied.

Finally, suppose φ̂(0) = 0. Then (4.13) gives φ̂ = 0. But the zero function 0 belongs to

the set A, so that we may appeal to the inversion formula (3.12) in Corollary 3.4 to deduce

that φ = 0, which contradicts the assumption [B], according to which φ is non-trivial.

Hence, (4.14) holds true.

Observe from Theorem 1.1 that the choice φ = Nm satisfies the assumptions [A] and

[B], with A(z) = 1
2m−1 (1 + z)m, z ∈ C. Thus, we can combine the results of Proposi-

tion 3.5 and Theorem 4.3, together with the fact that (3.4) and (1.17) give N̂m(0) = 1, to

obtain the following result on which we shall later rely.

Corollary 4.4

|N̂m(ω)| =

∣∣∣∣∣
∞∏

k=1

(
1 + e−iω/2k

2

)m∣∣∣∣∣ ≤
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

22m

(1 + |ω|)m
,

ω ∈ R, m = 2, 3, . . .

(2
√

2)m

(1 + ω2)m/2
,

(4.24)

4.2 Applying the Case p = 1 of Theorem 3.11

Noting the condition A(−1) = 0 in (4.3), we denote by N ∈ N the order of the zero at

−1 of A(z). It follows that there exists a Laurent polynomial B such that

A(z) =
1

2N−1
(1 + z)NB(z), z ∈ C\{0}, (4.25)

where

B(1) = 1, B(−1) �= 0, (4.26)

since also A(1) = 2 from (4.3).

With the trigonometric polynomial R ∈M(R) defined by

R(ω) = B(e−iω), ω ∈ R, (4.27)

it follows from (4.5), (4.25), and (4.26) that

Q(ω) =

(
1 + e−iω

2

)N

R(ω), ω ∈ R, (4.28)
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with

R(0) = 1, R(π) �= 0. (4.29)

The following regularity result (see e.g.[8, Lemmas 7.1.1 and 7.1.2]) for φ is based on the

case p = 1 of Theorem 3.11. Our proof is considerably more detailed than the one given

in [8].

Theorem 4.5 Suppose a ∈ M0(Z) and φ ∈ C0(R) are such that the conditions [A] and

[B] of Section 4.1 are satisfied. For N ∈ N, let the mask symbol A be given by (4.25) and

(4.26). If, moreover, there exists an integer l ∈ N such that

Ml := sup
ω∈R

l−1∏
k=0

∣∣∣R( ω
2k

)∣∣∣ < 2l(N−1), (4.30)

then

φ ∈ Cγ
0 (R), γ ∈

(
0, N − 1 − 1

l
log2Ml

)
. (4.31)

Remark

Since R(0) = 1 from (4.29), we see that
l−1∏
k=0

|R(0)| = 1, l ∈ N, which, together with (4.30),

shows that

0 ≤ 1

l
log2Ml < N − 1, l ∈ N. (4.32)

Proof of Theorem 4.5. Since the conditions [A] and [B] are satisfied, we may appeal to

Theorem 4.3, together with (4.28), to deduce that

φ̂(ω) =

⎡
⎣ ∞∏

k=1

(
1 + e−iω/2k

2

)N
⎤
⎦[ ∞∏

k=1

R
( ω

2k

)]
φ̂(0), ω ∈ R. (4.33)

Substituting the first line of (4.24) into (4.33) then yields the bound

|φ̂(ω)| ≤ 22N

(1 + |ω|)N

∞∏
k=1

∣∣∣R( ω
2k

)∣∣∣ |φ̂(0)|, ω ∈ R. (4.34)

According to the case p = 1 of Theorem 3.11, if we can show that there exists a non-

negative number K such that

∞∏
k=1

∣∣∣R( ω
2k

)∣∣∣ ≤ K(1 + |ω|) 1
l
log2 Ml, ω ∈ R, (4.35)
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and with K independent of ω, then (4.34) and (4.35) would imply (3.43) with f = φ, k =

22NK|φ̂(0)|, p = 1, and α = N − 1
l
log2Ml, and it follows from (3.44) in Theorem 3.11

that the desired result (4.31) holds.

To prove (4.35), we introduce the notation B(z) =
∑
j

bjz
j , z ∈ C\{0}, and use (4.26),

(4.27), (3.17) and (3.18) to deduce, analogous to the proof of (4.18), that, for ω ∈ R,

|R(ω) − 1| = |
∑

j

bj(e
−iωj − 1)|

≤
∑

j

|bj||1 − e−iωj |

= 2
∑

j

|bj | |sin (ωj/2)|

≤
∑

j

|jbj||ω| = c′|ω|, (4.36)

where c′ =
∑
j

|jbj |.
Next, using (4.36) and the inequality 1 + x ≤ ex, x ≥ 0, we obtain, for ω ∈ R,

|R(ω)| = |1 + (R(ω) − 1)|
≤ 1 + |R(ω) − 1|
≤ 1 + c′|ω| ≤ ec′|ω|. (4.37)

Suppose now that ω ∈ R\{0}, and denote by r the (unique) integer such that

2r ≤ |ω| < 2r+1. (4.38)

Let Jl ∈ N be such that Jl ≥ l� r
l
� + 1, and observe that

Jl∏
k=1

∣∣∣R( ω
2k

)∣∣∣ =

⎡
⎣� r

l
�∏

k=1

l∏
j=1

∣∣∣R( ω

2(k−1)l+j

)∣∣∣
⎤
⎦ Jl∏

k=l� r
l
�+1

∣∣∣R( ω
2k

)∣∣∣ . (4.39)

Using (4.30) and (4.38), and keeping in mind also the fact that log2Ml ≥ 0, as noted

before in (4.32), we obtain

� r
l
�∏

k=1

l∏
j=1

∣∣∣R( ω

2(k−1)l+j

)∣∣∣ =

� r
l
�∏

k=1

l−1∏
j=0

∣∣∣R( ω

2(k−1)l+j+1

)∣∣∣
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=

� r
l
�∏

k=1

l−1∏
j=0

∣∣∣∣R
(
ω/2(k−1)l+1

2j

)∣∣∣∣
≤ (Ml)

� r
l
�

= 2�
r
l
� log2 Ml

≤ 2
r
l
log2 Ml

= (2r)
1
l
log2 Ml

≤ |ω| 1l log2 Ml

< (1 + |ω|) 1
l
log2 Ml . (4.40)

Next, we use (4.37) and (4.38) to obtain

Jl∏
k=l� r

l
�+1

∣∣∣R( ω
2k

)∣∣∣ ≤
Jl∏

k=l� r
l
�+1

exp

(
c′|ω|
2k

)

= exp

⎛
⎝c′|ω| Jl∑

k=l� r
l
�+1

1

2k

⎞
⎠

= exp

⎛
⎝ c′|ω|

2l� r
l
�+1

Jl−l� r
l
�−1∑

k=0

1

2k

⎞
⎠

< exp

(
c′2r−l� r

l
�

∞∑
k=0

1

2k

)

= exp(c′2r−l� r
l
�+1). (4.41)

Since there exist (unique) integers q and s, with 0 ≤ s ≤ l − 1, such that r = ql + s,

we get

r − l
⌊r
l

⌋
= ql + s− l

⌊
q +

s

l

⌋
= ql + s− lq = s ≤ l − 1.

Also, r − l�r
l
� ≥ r − l( r

l
) = 0, so that the inequality

0 ≤ r − l
⌊r
l

⌋
≤ l − 1 (4.42)

holds. It follows from (4.41) and (4.42) that

Jl∏
k=l� r

l
�+1

∣∣∣R( ω
2k

)∣∣∣ < e2
lc′ . (4.43)
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Combining (4.39), (4.40), and (4.43) then gives

Jl∏
k=1

∣∣∣R( ω
2k

)∣∣∣ ≤ e2
lc′(1 + |ω|) 1

l
log2 Ml, ω ∈ R\{0}, Jl ≥ l

⌊r
l

⌋
+ 1.

and thus,
∞∏

k=1

∣∣∣R( ω
2k

)∣∣∣ ≤ e2
lc′(1 + |ω|) 1

l
log2 Ml, ω ∈ R\{0}. (4.44)

Since, moreover, (4.29) gives R(0) = 1, so that

∞∏
k=1

∣∣∣R( ω
2k

)∣∣∣ = 1 if ω = 0, (4.45)

we deduce from (4.44) and (4.45) that the desired result (4.35) holds with K = e2
lc′,

which is a positive number independent of ω.

Before discussing the Hölder regularity of φ for the case p = 2, we first proceed to

introduce some results from linear algebra, and also the transfer (or transition) operator,

all of which we shall rely on in the remaining part of this chapter.

4.3 Results from Linear Algebra

Let V denote an n-dimensional normed linear space, with basis S = {v1, v2, . . . , vn} ⊂
V, and suppose L : V → V is a linear operator. If u =

n∑
k=1

ckvk, we write [u]S =

(c1, c2, . . . , cn)t ∈ Rn for the co-ordinate (column) vector of u with respect to the basis S.

Then the n× n matrix ML defined by

ML = ([Lv1]S | [Lv2]S | · · · | [Lvn]S) (4.46)

gives

Lu =
n∑

k=1

(ML[u]S)k vk, u ∈ V, (4.47)

and is called the matrix of the operator L. The spectrum σ(L) of L is defined by

σ(L) = {λ ∈ C : λ is an eigenvalue of L}, (4.48)
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in terms of which the spectral radius ρ(L) of L is defined by

ρ(L) = max
λ∈σ(L)

|λ|. (4.49)

For a square matrixM, the spectrum σ(M) and the spectral radius ρ(M) ofM are defined,

respectively, as in (4.48) and (4.49), with L replaced by M. We then have σ(L) = σ(ML),

so that, in particular,

ρ(L) = ρ(ML). (4.50)

Observe from (4.49) that

ρ(αL) = |α|ρ(L). (4.51)

Since L is a linear operator on a finite dimensional space V, we know from a standard

result (see e.g. [22, pp. 92,96]) that L is a bounded operator in sense that

||L|| := sup

{ ||Lu||
||u|| : u ∈ V, u �= 0

}
= sup{||Lu|| : u ∈ V, ||u|| = 1} <∞.

Observe also that

||Lu|| ≤ ||L|| ||u||, u ∈ V. (4.52)

We shall later rely on the following result from [23, pp. 617-618].

Theorem 4.6 If ρ(L) < 1, then ||Lk|| → 0, k → ∞.

4.4 The Transfer Operator

Let the space of 2π-periodic continuous complex-valued functions on R be denoted by

C2π(R); that is,

C2π(R) := {f ∈ C(R) : f = f(· + 2π)}. (4.53)

For n ∈ Z+, define the (2n+1)-dimensional linear space Qn of trigonometric polynomials

by

Qn =

{
f ∈M(R) : f(ω) =

n∑
k=−n

cke
−iωk, ω ∈ R, ck ∈ C

}
. (4.54)
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Observe that Qn is a subspace of C2π(R). For N ∈ N, let the Laurent polynomials A and

B be as in (4.25) and (4.26). Also, for the trigonometric polynomial R in (4.27), define

P (ω) = |R(ω)|2, ω ∈ R, (4.55)

where

R(ω) = B(e−iω) =
∑

k

bke
−iωk, ω ∈ R. (4.56)

Then the following result holds.

Proposition 4.7 Let N ∈ N, and suppose a ∈ M0(Z) is the mask sequence associated

with the mask symbol A in (4.25). Also, denote by µ, ν ∈ Z the (unique) integers such

that

aj = 0, j /∈ {µ, µ+ 1, . . . , ν}, (4.57)

with aµ �= 0, aν �= 0. Then P ∈ Qτ , where τ = ν − µ−N, and P (ω) = P (−ω), ω ∈ R.

Proof. For ω ∈ R, we have, from (4.55), (4.56), (4.57), and (4.25),

P (ω) = |R(ω)|2 = R(ω)R(ω)

=
∑

j

bje
−iωj

∑
k

bke
iωk

=
∑

j

bj
∑

k

bke
−iω(j−k)

=
∑

j

bj
∑

k

bj−ke
−iωk

=
∑

k

(∑
j

bjbj−k

)
e−iωk, (4.58)

and thus,

P (ω) =

τ∑
k=−τ

(
ν−N∑
j=µ

bjbj−k

)
e−iωk, ω ∈ R,

which implies P ∈ Qτ .

Also, for ω ∈ R, we deduce from (4.58) that

P (−ω) =
∑

k

(∑
j

bjbj−k

)
eiωk
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=
∑

k

(∑
j

bjbj+k

)
e−iωk

=
∑

k

(∑
j

bj−kbj

)
e−iωk = P (ω).

Next, define the operator T : Qτ → C2π(R) by

Tf = P
( ·

2

)
f
( ·

2

)
+ P

( ·
2

+ π
)
f
( ·

2
+ π

)
, f ∈ Qτ . (4.59)

The operator T as defined in (4.59) is called the transfer operator corresponding to P ; it

is also known as the Perron-Frobenius operator or the transition operator in the literature.

The following result can now be established.

Proposition 4.8

Tf ∈ Qτ , f ∈ Qτ .

Proof. Let {c−τ , . . . , cτ} and {d−τ , . . . , dτ} be complex-valued sequences such that

f(ω) =

τ∑
k=−τ

cke
−iωk, ω ∈ R, (4.60)

P (ω) =
τ∑

k=−τ

dke
−iωk, ω ∈ R, (4.61)

and define ck = dk = 0, |k| ≥ τ + 1. Then, for ω ∈ R, we have, from (4.59), (4.60) and

(4.61),

(Tf)(ω) =
∑

k

dke
−i ω

2
k
∑

j

cje
−i ω

2
j +

∑
k

dke
−i(ω

2
+π)k

∑
j

cje
−i(ω

2
+π)j

=
∑

k

dk

∑
j

cje
−i ω

2
(j+k) +

∑
k

dk

∑
j

cje
−i(ω

2
+π)(j+k)

=
∑

k

dk

∑
j

cj−ke
−i ω

2
j +

∑
k

dk

∑
j

cj−ke
−i(ω

2
+π)j

=
∑

j

[∑
k

cj−kdk

]
e−i ω

2
j +

∑
j

(−1)j

[∑
k

cj−kdk

]
e−i ω

2
j

=
∑

j

[1 + (−1)j]

[∑
k

cj−kdk

]
e−i ω

2
j
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= 2
∑

j

[∑
k

c2j−kdk

]
e−iωj , (4.62)

and thus,

(Tf)(ω) = 2
τ∑

j=−τ

[
τ∑

k=−τ

c2j−kdk

]
e−iωj , ω ∈ R,

which implies Tf ∈ Qτ .

Since, according to Proposition 4.8, the linear operator T maps the finite dimensional

trigonometric polynomial space Qτ into itself, we proceed next to calculate the corre-

sponding (2τ + 1) × (2τ + 1) matrix of the operator T.

Theorem 4.9 The (2τ +1)× (2τ +1) matrix MT = [Mj,k : −τ ≤ j, k ≤ τ ] of the transfer

operator T is given by

Mj,k = 2
∑

l

blbl+j−2k, −τ ≤ j, k ≤ τ. (4.63)

Proof. Let f be as in (4.60), and suppose {q−τ , . . . , qτ} is the complex-valued sequence

such that

(Tf)(ω) =
τ∑

k=−τ

qke
−iωk, ω ∈ R. (4.64)

Then, setting qk = 0, |k| ≥ τ + 1, we use (4.64), (4.62), and (4.58) to obtain, for ω ∈ R,

∑
k

qke
−iωk = 2

∑
k

[∑
j

c2k−j

(∑
l

blbl−j

)]
e−iωk

=
∑

k

[
2
∑

l

bl
∑

j

bl−jc2k−j

]
e−iωk

=
∑

k

[
2
∑

l

bl
∑

j

bl+j−2kcj

]
e−iωk

=
∑

k

[∑
j

(
2
∑

l

blbl+j−2k

)
cj

]
e−iωk,

and thus,

qk =
τ∑

j=−τ

(
2
∑

l

blbl+j−2k

)
cj , k = −τ, . . . , τ,

thereby completing the proof of the theorem.
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The matrix MT in (4.63) is called the transfer matrix (or transition matrix) associated

with the operator T.

We shall need the following result.

Proposition 4.10 Let the trigonometric polynomial P be defined as in (4.55). Then we

have ∫ 2rπ

−2rπ

r∏
j=1

P
( ω

2j

)
dω ≤ 2π||T r||∞, r ∈ N. (4.65)

Proof. Following [8, Lemma 7.1.10], we show that

∫ 2rπ

−2rπ

[
r∏

j=1

P
( ω

2j

)]
f
( ω

2r

)
dω =

∫ π

−π

(T rf)(ω) dω, r ∈ N, f ∈ Qτ . (4.66)

The desired result (4.65) would therefore follow immediately by first choosing f ∈ Qτ in

(4.66) as f(t) = 1, t ∈ R, and then using the inequality (4.52).

Our proof of (4.66) is by induction. First, from the definition (4.59), together with

the fact that Proposition 4.7 gives P ∈ Qτ ⊂ C2π(R), we obtain, for f ∈ Qτ ,

∫ π

−π

(Tf)(ω) dω =

∫ π

−π

[
P
(ω

2

)
f
(ω

2

)
+ P

(ω
2

+ π
)
f
(ω

2
+ π

)]
dω

= 2

∫ π/2

−π/2

[P (ω)f(ω) + P (ω + π)f(ω + π)] dω

= 2

∫ π/2

−π/2

P (ω)f(ω) dω+ 2

∫ 3π/2

π/2

P (ω)f(ω) dω

= 2

∫ 3π/2

−π/2

P (ω)f(ω) dω

= 2

∫ π

−π

P (ω)f(ω) dω

=

∫ 2π

−2π

P
(ω

2

)
f
(ω

2

)
dω,

which proves that (4.66) holds for r = 1. Suppose now that (4.66) holds for a fixed r ∈ N.

Then, once again from (4.59), and exploiting also the facts that T rf ∈ Qτ ⊂ C2π(R),

from Proposition 4.8, and P ∈ C2π(R), we obtain

∫ π

−π

(T r+1f)(ω) dω =

∫ π

−π

(T rTf)(ω) dω

=

∫ 2rπ

−2rπ

[
r∏

j=1

P
( ω

2j

)]
(Tf)

( ω
2r

)
dω
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= 2r+1

∫ π/2

−π/2

[
r∏

j=1

P (2r+1−jω)

]
(Tf)(2ω) dω

= 2r+1

∫ π/2

−π/2

[
r∏

j=1

P (2r+1−jω)

]
[P (ω)f(ω) + P (ω + π)f(ω + π)] dω

= 2r+1

[∫ π/2

−π/2

[
r∏

j=0

P (2jω)

]
f(ω) dω +

∫ 3π/2

π/2

[
r∏

j=1

P (2j(ω − π))

]
P (ω)f(ω) dω

]

= 2r+1

∫ 3π/2

−π/2

[
r∏

j=0

P (2jω)

]
f(ω) dω

= 2r+1

∫ π

−π

[
r∏

j=0

P (2jω)

]
f(ω) dω

=

∫ 2r+1π

−2r+1π

[
r∏

j=0

P
( ω

2r+1−j

)]
f
( ω

2r+1

)
dω

=

∫ 2r+1π

−2r+1π

[
r+1∏
j=1

P
( ω

2j

)]
f
( ω

2r+1

)
dω.

so that (4.66) also holds with r replaced by r + 1, and thereby completing our inductive

proof of (4.66) .

4.5 Applying the Case p = 2 of Theorem 3.10

We proceed in this section to prove a Hölder regularity result for φ based on the case

p = 2 of Theorem 3.10. Here, our approach relies on the calculation of the spectral radius

of the associated matrix, called the transfer matrix, of the transfer operator defined in

the previous section.

Our result is as follows.

Theorem 4.11 Suppose a ∈ M0(Z) and φ ∈ C0(R) are such that the conditions [A] and

[B] of Section 4.1 are satisfied. For N ∈ N, let the mask symbol A be given by (4.25)

and (4.26). If the spectral radius ρ(MT ) of the matrix MT in Theorem 4.9 satisfies the

inequality

1 < ρ(MT ) < 4N−1/2, (4.67)

then

φ ∈ Cγ
0 (R), γ ∈ (0, N − 1/2 − log4 ρ(MT )). (4.68)
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Proof. We shall prove that

φ ∈ H2,q(R), q ∈ (0, N − log4 ρ(T )), (4.69)

which, together with the case p = 2 of Theorem 3.10 and (4.50), will then yield the desired

result (4.68).

To this end, we choose ε > 0, and define the linear operator Lε : Qτ → Qτ by

Lε = T
ρ(T )+ε

, with T denoting the transfer operator defined by (4.59). Then (4.51) implies

ρ(Lε) =
[

1
ρ(T )+ε

]
ρ(T ) < 1. It therefore follows from Theorem 4.6 that

||T r||∞
(ρ(T ) + ε)r

= ||Lr
ε||∞ → 0, r → ∞.

Hence there exists a number K > 0 such that

||T r||∞
(ρ(T ) + ε)r

= ||Lr
ε||∞ ≤ K, r ∈ N,

or equivalently,

||T r||∞ ≤ K(ρ(T ) + ε)r, r ∈ N, (4.70)

with K independent of r.

Since the conditions [A] and [B] of Section 4.1 are satisfied, we may appeal to The-

orem 4.3 to deduce that (4.13) holds. But then (4.28) and (4.13) yield (4.33), which,

together with the second line of (4.24), gives

|φ̂(ω)|2 ≤ 8N

(1 + ω2)N

∞∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 |φ̂(0)|2, ω ∈ R. (4.71)

Let r be fixed, and suppose ω ∈ R\{0} is such that (4.38) is satisfied. Then we can argue

as in the steps (4.36) to (4.39) and (4.41) to (4.43), with l = 1 in the proof of Theorem 4.5,

to obtain ∞∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 ≤ e4c′
r∏

k=1

∣∣∣R( ω
2k

)∣∣∣2 . (4.72)

where c′ =
∑
j

|jbj |. Noting that (4.67) implies log4 ρ(T ) = log4 ρ(MT ) < N − 1/2 < N,

we now let q ∈ (0, N − log4 ρ(T )), so that also q ∈ (0, N), since (4.50) and (4.67) imply
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that log4 ρ(T ) = log4 ρ(MT ) > 0. It follows that

1

(1 + ω2)N−q
<

1

ω2N−2q
≤ 1

4r(N−q)
, (4.73)

from (4.38). By inserting (4.72) and (4.73) into (4.71), we obtain the inequality

(1 + ω2)q|φ̂(ω)|2 < 8Ne4c′ |φ̂(0)|2
(4N−q)r

r∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 , r ∈ N. (4.74)

Then, with the definition C = 8Ne4c′ |φ̂(0)|2, we have, from (4.74) and (4.38), and for

r ∈ N,

∫ 2r+1

2r

(1 + ω2)q|φ̂(ω)|2 dω <
C

(4N−q)r

∫ 2r+1

2r

r∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 dω
<

C

(4N−q)r

∫ 2rπ

−2rπ

r∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 dω, (4.75)

having used also the fact that π > 2, and similarly

∫ −2r

−2r+1

(1 + ω2)q|φ̂(ω)|2 dω <
C

(4N−q)r

∫ −2r

−2r+1

r∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 dω
<

C

(4N−q)r

∫ 2rπ

−2rπ

r∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 dω. (4.76)

Next, we combine the bound (4.65), in Proposition 4.10, and (4.70) to deduce that

∫ 2rπ

−2rπ

r∏
k=1

∣∣∣R( ω
2k

)∣∣∣2 dω ≤ 2πK(ρ(T ) + ε)r, r ∈ N, (4.77)

which, together with (4.75) and (4.76), yields

∫ 2r+1

2r

(1 + ω2)q|φ̂(ω)|2 dω < 2πCK

(
ρ(T ) + ε

4N−q

)r

, r ∈ N, (4.78)

and ∫ −2r

−2r+1

(1 + ω2)q|φ̂(ω)|2 dω < 2πCK

(
ρ(T ) + ε

4N−q

)r

, r ∈ N. (4.79)

Since q ∈ (0, N − log4 ρ(T )), we have log4 ρ(T ) < N − q, and thus ρ(T ) < 4N−q. It follows
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that if we choose ε = 1
2
[4N−q − ρ(T )], we get ε > 0 and

0 < β :=
ρ(T ) + ε

4N−q
=

1

2

(
1 +

ρ(T )

4N−q

)
< 1. (4.80)

Hence, from (4.78) and (4.80), we have, for p ∈ N,

∫ 2p+1

2

(1 + ω2)q|φ̂(ω)|2 dω =

p∑
r=1

∫ 2r+1

2r

(1 + ω2)q|φ̂(ω)|2 dω

< 2πCK

p∑
r=0

βr

< 2πCK

∞∑
r=0

βr =
2πCK

1 − β
,

so that

∫ ∞

2

(1 + ω2)q|φ̂(ω)|2 dω = lim
p→∞

∫ 2p+1

2

(1 + ω2)q|φ̂(ω)|2 dω ≤ 2πCK

1 − β
<∞. (4.81)

Similarly, from (4.79) and (4.80), we get

∫ −2

−∞
(1 + ω2)q|φ̂(ω)|2 dω = lim

p→∞

∫ −2

−2p+1

(1 + ω2)q|φ̂(ω)|2 dω ≤ 2πCK

1 − β
<∞. (4.82)

Furthermore, since φ̂ ∈ Cu(R), from Theorem 3.1(i), we also have

∫ 2

−2

(1 + ω2)q|φ̂(ω)|2 dω <∞. (4.83)

The desired result (4.69) then follows from (3.27), (4.81), (4.82), and (4.83).

Remarks

(i) The use of transfer operator to study the smoothness of a refinable function appears

in [5], [8], [17], [21], and [32]. Our proof of Theorem 4.11 above builds rigorously on

the ideas from these references.

(ii) Note that one could define the transfer operator T by means of the trigonometric

polynomial |Q(ω)|2 (instead of |R(ω)|2) so that the associated transfer matrix MT

is then determined by mask sequence a ∈M0(Z). This option would, however, lead

to the less efficient numerical procedure of having to compute the spectral radius of

a larger matrix.
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(iii) The equation (4.33) plays an essential role in the proof of both Theorems 4.5 and

4.11. It is therefore clear that our determination of the smoothness of φ is based on

our ability to control the growth of the infinite product
∞∏

k=1

|R(2−kω)|p as |ω| → ∞,

for p = {1, 2}.

(iv) Note that, whereas we proved Theorem 4.5 by using the case p = 1 of Theorem 3.11,

our proof of Theorem 4.11 appealed directly to the fundamental embedding result

for p = 2 in Theorem 3.10. We have not investigated the possibility of proving

Theorem 4.11 by using the case p = 2 of Theorem 3.11.
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Chapter 5

Application to Specific Refinable

Functions

In this chapter, we apply the results of Theorems 4.5 and 4.11 to the Daubechies and

Dubuc-Deslauriers refinable functions, as well as to a one-parameter family of refinable

functions. Moreover, we compare our Fourier-based regularity results with a subdivision-

based regularity result derived in [28].

5.1 Daubechies Refinable Functions

Recall (see e.g [3], [7], [8]) that the Daubechies refinable function φD
N ∈ C0(R) of order

N ≥ 2 satisfies the following properties:

(i) φD
N(t) = 0, t /∈ (0, 2N − 1);

(ii) φD
N =

∑
j

aN,jφ
D
N(2 · −j) =

2N−1∑
j=0

aN,jφ
D
N(2 · −j),

where, in the notation

AD
N(z) =

∑
j

aN,jz
j , z ∈ C,

we have that (4.25) – (4.29) are satisfied with A = AD
N , B = BD

N , Q = QD
N , and R =

RD
N ;

(iii)
〈
φD

N(· − j), φD
N(· − k)

〉
= δj,k, j, k ∈ Z,

i.e., φD
N is an orthonormal refinable function.

Moreover,

|RD
N (ω)|2 = fN

(
sin2 ω

2

)
, ω ∈ R, (5.1)
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where the polynomial fN of degree N − 1, as given explicitly by the formula

fN(z) =
N−1∑
k=0

(
N − 1 + k

k

)
zk, z ∈ C, (5.2)

is the unique polynomial in πN−1 satisfying the Bezout identity

zNfN (1 − z) + (1 − z)NfN (z) = 1, z ∈ C. (5.3)

For the cases N = 2 and N = 3, the graphs of φD
N are shown in Figures 5.1 and 5.2, and

the explicit formulas for RD
2 and RD

3 are given, for ω ∈ R, by

RD
2 (ω) =

1

2
[(1 +

√
3) + (1 −

√
3)e−iω], (5.4)

RD
3 (ω) =

1

4

[
1 +

√
10 +

√
5 + 2

√
10 + 2(1 −

√
10)e−iω + (1 +

√
10 −

√
5 + 2

√
10)e−2iω

]
.

(5.5)

Using (5.4), (5.5), (4.25), (4.28) and (4.5), we obtain the mask sequences

a2,0 =
1 +

√
3

4
,

a2,1 =
3 +

√
3

4
,

a2,2 =
3 −√

3

4
,

a2,3 =
1 −√

3

4
,

a2,k = 0, k /∈ {0, 1, 2, 3};

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

and

a3,0 =
1 +

√
10 +

√
5 + 2

√
10

16
,

a3,1 =
5 +

√
10 + 3

√
5 + 2

√
10

16
,

a3,2 =
10 − 2

√
10 + 2

√
5 + 2

√
10

16
,

a3,3 =
10 − 2

√
10 − 2

√
5 + 2

√
10

16
,

a3,4 =
5 +

√
10 − 3

√
5 + 2

√
10

16
,

a3,5 =
1 +

√
10 −

√
5 + 2

√
10

16
,

a3,k = 0, k /∈ {0, 1, 2, 3, 4, 5}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.7)
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Figure 5.1: The refinable function φD
2 .
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Figure 5.2: The refinable function φD
3 .

Note that a2,3 < 0 and a3,3, a3,4 < 0, so that Theorem 2.4 is not applicable in these

cases. In fact, according to [8, p. 195], the positivity condition (1.33), with n = 2N − 1,

does not hold for the Daubechies mask sequence aN for 2 ≤ N ≤ 10. Observe also

in particular that the conditions [A] and [B] of Section 4.1 are satisfied by the mask

sequence a = aN ∈ M0(Z), and by the refinable function φ = φD
N ∈ C0(R), so that we

may appeal to Theorems 4.5 and 4.11 to investigate the regularity of φD
N .

5.1.1 Applying the case l = 1 of Theorem 4.5

We first investigate the regularity of φD
N by means of the case l = 1 of Theorem 4.5. To

this end, we observe from (5.1) and (5.2) that

sup
ω∈R

|RD
N(ω)| =

√
fN(sin2 π

2
) =

√√√√N−1∑
k=0

(
N − 1 + k

k

)
. (5.8)
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Since, moreover,

N∑
k=0

(
N + k

k

)
=

(
2N

N

)
+

N−1∑
k=0

(
N + k

k

)

=

(
2N

N

)
+

N−1∑
k=0

[(
N + k − 1

k

)
+

(
N + k − 1

k − 1

)]

=

(
2N

N

)
+

N−1∑
k=0

(
N + k − 1

k

)
+

[
N∑

k=0

(
N + k

k

)
−
(

2N

N

)
−
(

2N − 1

N − 1

)]
,

we get the identity
N−1∑
k=0

(
N + k − 1

k

)
=

(
2N − 1

N − 1

)
,

which, together with (5.8), yields

sup
ω∈R

|RN(ω)| =

√(
2N − 1

N − 1

)
,

so that, in the notation of Theorem 4.5, we have

M1 =

√(
2N − 1

N − 1

)
. (5.9)

It follows from the case l = 1 of Theorem 4.5, together with (5.9), that if the inequality

√(
2N − 1

N − 1

)
< 2N−1 (5.10)

is satisfied, then

φD
N ∈ Cγ

0 (R), γ ∈
(

0, N − 1 − 1

2
log2

(
2N − 1

N − 1

))
. (5.11)

Hence we need to investigate the function

g(N) = N − 1 − 1

2
log2

(
2N − 1

N − 1

)
, N = 2, 3, . . . , (5.12)

or, equivalently,

g(N) = N − 1 − ln
(
2N−1
N−1

)
ln 4

, N = 2, 3, . . .
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Figure 5.3: The plot of the function g, as defined by (5.12).

The following two properties are obtained.

Proposition 5.1

g(N + 1) > g(N), N ∈ N, (5.13)

g(N + 1) − g(N) → 0, N → ∞. (5.14)

Proof. We see from (5.12), that, for N ∈ N,

g(N + 1) − g(N) = 1 +
1

2
log2

((
2N−1
N−1

)
(
2N+1

N

)
)

=
1

2

[
1 + log2

(
N + 1

2N + 1

)]
.

Now the function h : R+ → R defined by

h(x) =
x+ 1

2x+ 1
, x ≥ 0,

satisfies h(0) = 1,

h′(x) = − 1

(2x+ 1)2
< 0, x ≥ 0,

and

h(x) =
1 + 1/x

2 + 1/x
→ 1

2
, x→ ∞,

from which we then deduce that (5.13) and (5.14) hold.

Since g(2) = 1 − log2

√
3 > 0, it is clear from (5.13) that g(N) > 0, N ≥ 2; that is,
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Table 5.1: φD
N ∈ Cγ(R), as obtained from (5.11)

N 2 3 4 10 20 21 100
γ < 0.2075 0.3390 0.4354 0.7524 0.9979 1.0152 1.5747

the inequality (5.10) holds for all N ≥ 2, so that we may indeed appeal to Theorem 4.5,

with l = 1. The graph of g is shown in Figure 5.3, whereas Table 5.1 lists some minimum

regularity results for φD
N , as obtained from (5.11). It follows from Table 5.1, together with

(5.13), that φD
N ∈ C1

0(R), N ≥ 21.

5.1.2 Applying the case l = 2 of Theorem 4.5

Next, we investigate the regularity of φD
N by means of the case l = 2 of Theorem 4.5.

First, observe from (5.1) that

|RD
N(ω)RD

N(ω/2)|2 = fN

(
sin2 ω

2

)
fN

(
sin2 ω

4

)
, ω ∈ R,

and thus, from (4.30),

(M2)
2 = sup

ω∈R

[
fN

(
sin2 ω

2

)
fN

(
sin2 ω

4

)]
. (5.17)

Since also

sin2 ω

2
=
(
2 sin

ω

4
cos

ω

4

)2

= 4 sin2 ω

4

(
1 − sin2 ω

4

)
, ω ∈ R, (5.18)

it follows from (5.17) and (5.18) that

(M2)
2 = max

0≤x≤1
[fN (x)fN(4x(1 − x))] . (5.19)

We shall need the following result from [8, Lemma 7.1.4].

Proposition 5.2 The polynomial fN , as defined by (5.2), satisfies the following proper-

ties:

(i) y−N+1fN(y) ≤ x−N+1fN(x), 0 ≤ x ≤ y; (5.20)

(ii) fN(x) ≤
⎧⎨
⎩ 2N−1, 0 ≤ x ≤ 1

2
,

22N−2xN−1, 1
2
≤ x ≤ 1.

(5.21)
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Proof. (i) To prove (5.20), suppose 0 ≤ x ≤ y. Then, xN−1−k ≤ yN−1−k, k =

0, . . . N − 1, and thus,

y−N+1fN (y) =

N−1∑
k=0

(
N − 1 + k

k

)
y−(N−1−k)

≤
N−1∑
k=0

(
N − 1 + k

k

)
x−(N−1−k) = x−N+1fN(x).

(ii) Next, to prove (5.21), observe that since fN satisfies the Bezout identity (5.3), we find,

by setting z = 1
2

in (5.3), that fN(1
2
) = 2N−1. Thus, if 0 ≤ x ≤ 1

2
, then we get fN(x) ≤

fN(1
2
) = 2N−1, since (5.2) shows that fN is increasing for x ≥ 0, and thereby proving the

first line of (5.21). If x ≥ 1
2
, then it follows from (5.20) that fN(x) ≤ xN−12N−1fN(1

2
),

thereby completing the proof of (5.21).

We proceed to bound the positive number M2 by using Proposition 5.2 (ii). First,

observe that the polynomial h defined by h(x) = 4x(1 − x), x ∈ R, satisfies

0 ≤ h(x) ≤ 1

2
, x ∈

[
0,

2 −√
2

4

]
∪
[

2 +
√

2

4
, 1

]
, (5.22)

and
1

2
≤ h(x) ≤ 1, x ∈

[
2 −√

2

4
,
2 +

√
2

4

]
, (5.23)

where also

0 <
2 −√

2

4
<

1

2
<

2 +
√

2

4
< 1. (5.24)

It follows from (5.21), (5.22), (5.23), and (5.24) that

fN(x)fN (4x(1 − x)) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

22N−2, 0 ≤ x ≤ 2−√
2

4
,

25N−5[x(1 − x)]N−1, 2−√
2

4
≤ x ≤ 1

2
,

26N−6[x2(1 − x)]N−1, 1
2
≤ x ≤ 2+

√
2

4
,

23N−3xN−1, 2+
√

2
4

≤ x ≤ 1.

(5.25)

Thus, since for the polynomials p and q defined by p(x) = [x(1 − x)]N−1, x ∈ R, and

q(x) = [x2(1 − x)]N−1, x ∈ R, we have

max
2−√

2
4

≤x≤ 1
2

p(x) = p(1/2) = 2−2N+2, (5.26)
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and

max
1
2
≤x≤ 2+

√
2

4

q(x) = q(2/3) =
22N−2

33N−3
, (5.27)

we can now substitute (5.26) and (5.27) into (5.25) to obtain

fN(x)fN (4x(1 − x)) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

22N−2, 0 ≤ x ≤ 2−√
2

4
,

23N−3, 2−√
2

4
≤ x ≤ 1

2
,

28N−8

33N−3 ,
1
2
≤ x ≤ 2+

√
2

4
,

23N−3, 2+
√

2
4

≤ x ≤ 1.

But,
28N−8

33N−3
> 23N−3 > 22N−2, N ≥ 2,

and thus,

fN (x)fN(4x(1 − x)) ≤ 28N−8

33N−3
, 0 ≤ x ≤ 1, (5.28)

which, together with (5.19), yields the bound

M2 ≤ 24(N−1)

33(N−1)/2
. (5.29)

It follows from (5.29) that the choice l = 2 in Theorem 4.5 will be applicable if the

inequality
24(N−1)

33(N−1)/2
< 22(N−1) (5.30)

holds, for then the inequality (4.30) does indeed hold for l = 2.

But, (5.30) is equivalent to the inequality

4N−1 < (33/2)N−1, N ≥ 2,

which holds, since 33/2 � 5.2 > 4. Hence we may use the case l = 2 of Theorem 4.5 to

deduce that

φD
N ∈ Cγ

0 (R), γ ∈
(

0, N − 1 − 1

2
log2

[
24(N−1)3−3(N−1)/2

])
, (5.31)
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Table 5.2: φD
N ∈ Cγ(R), as obtained from (5.32)

N 2 3 4 5 6 7 8 9 10
γ < 0.189 0.378 0.566 0.755 0.943 1.132 1.321 1.510 1.698

having also used (5.29). Now observe in (5.31) that

1

2
log2

[
24(N−1)3−3(N−1)/2

]
=

1

2

[
4(N − 1) − 3

2
(N − 1) log2 3

]

= (N − 1)

[
2 − 3

4
log2 3

]

so that (5.31) can be rewritten as

φD
N ∈ Cγ

0 (R), γ ∈
(

0,

(
3

4
log2 3 − 1

)
(N − 1)

)
. (5.32)

In (5.32), we have 3
4
log2 3 − 1 � 0.1887.

We see from Table 5.2 that φD
N ∈ C1

0(R) for N ≥ 7, which is a significant improvement

on the regularity results for φD
N shown in Table 5.1. In fact, it was shown in [33] that

lim
N→∞

γN/N = 1 − log4 3 � 0.2075, where γN is the optimal Hölder regularity of φD
N .

5.1.3 Applying Theorem 4.11 for 2 ≤ N ≤ 10

Next, we apply the result of Theorem 4.11 to the Daubechies refinable functions of order

2 ≤ N ≤ 10. Since, in Proposition 4.7, we have here µ = 0, ν = 2N − 1, and therefore

τ = N − 1, it follows that the corresponding transfer matrix MT is a (2N − 1)× (2N − 1)

matrix. Using (4.56), (4.63), (5.4), and (5.5), we obtain

MT =

⎛
⎜⎜⎜⎝

1 1 0

0 4 0

0 1 1

⎞
⎟⎟⎟⎠ , N = 2, (5.33)
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Table 5.3: φD
N ∈ Cγ(R), as obtained from (5.35)

N 2 3 4 5 6 7 8 9 10
γ < 0.500 0.915 1.275 1.596 1.888 2.158 2.415 2.661 2.902
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Figure 5.4: The refinable function φD
4 (left) and its derivative (right)

and

MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.75 9.5 0.75 0 0

0 −4.5 −4.5 0 0

0 0.75 9.5 0.75 0

0 0 −4.5 −4.5 0

0 0 0.75 9.5 0.75

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, N = 3, (5.34)

etc, where, due to their (2N − 1) × (2N − 1) size, we do not display the matrices MT

for 4 ≤ N ≤ 10 here. Our numerical results show that the condition (4.67) holds for

2 ≤ N ≤ 10, so that, from Theorem 4.11, we have

φD
N ∈ Cγ

0 (R), γ ∈ (0, N − 1/2 − log4 ρ(MT )) , 2 ≤ N ≤ 10. (5.35)

From Table 5.3, we see that the regularity results for φD
N as obtained with Theorem 4.11

improve on those in Tables 5.1 and 5.2, as obtained from respectively the cases l = 1 and

l = 2 of Theorem 4.5. Observe in particular from Table 5.3 that φD
N ∈ C1

0(R), 4 ≤ N ≤ 10.

The plots of φD
4 and its derivative are shown in Figure 5.4, and numerically illustrate the

fact that φD
4 ∈ C1

0 (R).
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5.2 Dubuc-Deslauriers (DD) Refinable Functions

As was proved in [24] (see also [18, Theorem 4.2]), the Dubuc-Deslauriers (DD) refinable

function φDD
N ∈ C0(R) of order N ≥ 1 satisfies the following properties:

(i) φDD
N (t) = 0, t /∈ (−2N + 1, 2N − 1);

(ii) φDD
N =

∑
j

dN,jφ
DD
N (2 · −j) =

2N−1∑
j=−2N+1

dN,jφ
DD
N (2 · −j);

(iii) φDD
N (j) = δj, j ∈ Z;

(iv)
∑
j

φDD
N (t− j) = 1, t ∈ R.

The associated DD symbol A = DN is defined by

DN(z) =
∑

j

dN,jz
j , z ∈ C \ {0}, (5.36)

where, for a given N ∈ N, the corresponding DD mask a = dN = {dN,j : j ∈ Z} is given

by

dN,2j = δj , j ∈ Z,

dN,1−2j =
N

24N−3

(
2N − 1

N

)
(−1)j+1

2j − 1

(
2N − 1

N − j

)
, j ∈ {−N + 1, · · · , N},

dN,j = 0, |j| ≥ 2N.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.37)

For example, using (5.36) and (5.37), we obtain, for z ∈ C \ {0}, the formulas

D1(z) =
1

2
(z−1 + 2 + z); (5.38)

D2(z) =
1

16
(−z−3 + 9z−1 + 16 + 9z − z3); (5.39)

D3(z) =
1

256
(3z−5 − 25z−3 + 150z−1 + 256 + 150z − 25z3 + 3z5). (5.40)

Note from (5.37) that the mask coefficients {dN,j : j ∈ Z} are symmetric in the sense

that dN,j = dN,−j. Moreover, according to [18, Eqn (5.28)], the DD mask coefficients

{dN,1−2j : j = −N + 1, . . . , 0} alternate in sign; that is, the regularity results for positive

masks are not applicable here.
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It is shown in [31] that the Daubechies trigonometric mask symbol Q = QD
N and the

DD trigonometric mask symbol Q = QDD
N are related by

|QDD
N (ω)| = |QD

N(ω)|2, ω ∈ R. (5.41)

Also, as shown in [18], Q = QDD
N satisfies (4.28) with N replaced by 2N. In particular,

for N ∈ {2, 3}, we can use (5.39), (5.40), (4.5) and (4.28) to obtain the formulas

QDD
2 (ω) =

(
1 + e−iω

2

)4(−1 + 4e−iω − e−2iω

2e−3iω

)
, ω ∈ R, (5.42)

and

QDD
3 (ω) =

(
1 + e−iω

2

)6(
3 − 18e−iω + 38e−2iω − 18e−3iω + 3e−4iω

8e−5iω

)
, ω ∈ R. (5.43)

Observe in particular that the conditions [A] and [B] of Section 4.1 are satisfied by the

mask sequence a = dN ∈ M0(Z) and by the refinable function φ = φDD
N ∈ C0(R), so that

we may appeal to Theorems 4.5 and 4.11 to investigate the regularity of φDD
N .

5.2.1 Applying the case l = 1 of Theorem 4.5

By virtue of (5.41), we find that the smoothness analysis of φDD
N based on Theorem 4.5

is quite similar to that of φD
N . To apply Theorem 4.5 for l = 1, we first note, from (5.9),

and since (5.41) implies |RDD
N (ω)| = |RD

N(ω)|2, ω ∈ R, we have in (4.30), for the case

φ = φDD
N , that

M1 =

(
2N − 1

N − 1

)
, N ∈ N. (5.44)

It follows from the case l = 1 of Theorem 4.5, together with (5.44), and the fact that QDD
N

satisfies (4.28) with N replaced by 2N, that if the inequality

(
2N − 1

N − 1

)
< 22N−1 (5.45)

is satisfied, then

φDD
N ∈ Cγ

0 (R), γ ∈
(

0, 2N − 1 − log2

(
2N − 1

N − 1

))
. (5.46)

Hence, analogous to the situation in the Daubechies case, we need to investigate the
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Table 5.4: φDD
N ∈ Cγ(R), as obtained from (5.46)

N 2 3 4 5 6 7 8 9 10
γ < 1.415 1.678 1.871 2.023 2.148 2.255 2.348 2.431 2.505

function

g̃(N) = 2N − 1 − log2

(
2N − 1

N − 1

)
, N = 2, 3, . . . ,

or, equivalently,

g̃(N) = 2N − 1 − ln
(
2N−1
N−1

)
ln 2

, N = 2, 3, . . . (5.47)

Note from (5.12) and (5.47) that

g̃(N) = 1 + 2g(N), N = 2, 3, · · ·

so that (5.13) and (5.14) in Proposition 5.1 hold, with g replaced by g̃. Thus, since

g̃(2) = 3− log2

√
3 > 0, it is clear from (5.13), with g replaced by g̃, that g̃(N) > 0, N ≥ 2;

that is, the inequality (5.45) holds for all N ≥ 2, so that we may indeed appeal to

Theorem 4.5, with l = 1. Table 5.4 lists some minimum regularity results for φDD
N , as

obtained from (5.46). It follows from Table 5.4 that φDD
N ∈ C1

0 (R), N ≥ 2, whereas

φDD
N ∈ C2

0 (R), N ≥ 5.

5.2.2 Applying the case l = 2 of Theorem 4.5

To apply the case l = 2 of Theorem 4.5 to the DD refinable function φDD
N , we first observe

from (5.29), together with the fact that (5.41) and (4.28) imply |RDD
N (ω)| = |RD

N(ω)|2, ω ∈
R, that here

M2 ≤ 28(N−1)3−3(N−1). (5.48)

It follows from (5.48) that the choice l = 2 in Theorem 4.5 will be applicable if the

inequality
28(N−1)

33(N−1)
< 22(2N−1), N ≥ 2, (5.49)

holds, for then the inequality (4.30) does indeed hold for l = 2.
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Table 5.5: φDD
N ∈ Cγ(R), as obtained from (5.51)

N 2 3 4 5 6 7 8 9 10
γ < 1.377 1.755 2.132 2.510 2.887 3.265 3.642 4.020 4.397

But, (5.49) is equivalent to the inequality

(
16

27

)N−1

< 4, N ≥ 2,

which holds, since 16/27 < 1. Hence we may appeal to the case l = 2 of Theorem 4.5 to

deduce that

φDD
N ∈ Cγ

0 (R), γ ∈
(

0, 2N − 1 − 1

2
log2

[
28(N−1)3−3(N−1)

])
, (5.50)

having also used (5.48). Now observe in (5.50) that

2N − 1 − 1

2
log2

[
28(N−1)3−3(N−1)

]
= 2N − 1 − 1

2
[8(N − 1) − 3(N − 1) log2 3]

= N + (N − 1)

[
3

2
log2 3 − 3

]

=

(
3

2
log2 3 − 2

)
N +

(
3 − 3

2
log2 3

)
� 0.3774N + 0.6226,

and thus,

φDD
N ∈ Cγ

0 (R), γ ∈
(

0,

(
3

2
log2 3 − 2

)
N +

(
3 − 3

2
log2 3

))
, (5.51)

from which we deduce that φDD
N ∈ C1

0(R) for N ≥ 2, which agrees with the result from

(5.46), whereas φDD
N ∈ C2

0(R), N ≥ 4, which improves on (5.46). Table 5.5 shows the

regularity results for φDD
N using Theorem 4.5 with l = 2.Observe that these results improve

on those obtained in Table 5.4, as were obtained from the case l = 1 of Theorem 4.5.

5.2.3 Applying Theorem 4.11 for 2 ≤ N ≤ 10

We next apply the result of Theorem 4.11 to the DD refinable functions φDD
N of orders

2 ≤ N ≤ 10. Since, in Proposition 4.7, we have here µ = −2N + 1, ν = 2N − 1, and
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Figure 5.5: Plots of the refinable function φDD
2 (left) and its derivative (right).

Table 5.6: φDD
N ∈ Cγ(R), as obtained from (5.52)

N 2 3 4 5 6 7 8 9 10
γ < 1.941 2.675 3.293 3.844 4.362 4.863 5.353 5.835 6.311

therefore τ = (2N −1)− (−2N +1)−2N = 2N−2, having recalled also that Q = QDD
N is

given by (4.28) with N replaced by 2N, it follows that the corresponding transfer matrix

is a (4N − 3) × (4N − 3) matrix. Using (4.56), (4.63), and (5.42), we obtain

MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 9 0.5 0 0

0 −4 −4 0 0

0 0.5 9 0.5 0

0 0 −4 −4 0

0 0 0.5 9 0.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, N = 2,

etc, where, due to their (4N − 3)× (4N − 3) size, we do not display the matrices MT for

3 ≤ N ≤ 10 here. Our numerical results show that the condition (4.67) of Theorem 4.11,

which in this case, since N is replaced by 2N in (4.28), is given by 1 < ρ(MT ) < 42N−1/2,

does indeed hold for 2 ≤ N ≤ 10. Hence, we may appeal to Theorem 4.11 to obtain the

regularity result

φDD
N ∈ Cγ

0 (R), γ ∈ (0, 2N − 1/2 − log4 ρ(MT )) . (5.52)

From Table 5.6 we find, just as in the Daubechies case, that the regularity results for

φDD
N as obtained with Theorem 4.11 improve on those in Tables 5.4 and 5.5 obtained
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Figure 5.6: Plots of φDD
3 (top left) and its first (top right) and second (bottom left) deriva-

tives.

with, respectively, the cases l = 1 and l = 2 of Theorem 4.5. In particular, we see

that φDD
N ∈ C2

0(R), 3 ≤ N ≤ 10. The facts that φDD
2 ∈ C1

0 (R) and φDD
3 ∈ C2

0(R) are

graphically illustrated in Figures 5.5 and 5.6 respectively.

5.3 A One-parameter Family of Refinable Functions

In this section, we investigate the regularity of refinable functions with respect to the

one-parameter family of mask symbols given, for an integer N ≥ 2, and for α /∈ {−1, 0},
by

A(z) = AN(z|α) =
∑

j

aN,j(α)zj =
2

1 + α

(
1 + z

2

)N

(z + α), z ∈ C. (5.53)

Note that the mask sequence aN(α) = {aN,j(α) : j ∈ Z} then satisfies

aN,j(α) = 0, j /∈ {0, . . . , N + 1}.

According to a recent result in [14], the cascade algorithm can be used as in Theo-
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rem 1.2 to prove that, for the parameter range

α ∈ I := (−∞,−3) ∪ (−1/3, 0) ∪ (0,∞), (5.54)

there exists a refinable function φ = φN(·|α) ∈ C0(R) with respect to the mask symbol

A = AN (·|α) as defined by (5.53), and where

φN(·|α) =
∑

j

aN,j(α)φN(2 · −j|α). (5.55)

This result thus extends the existence result for α > 0, for which (1.33) holds, with

n = N + 1, as obtained from Theorem 1.2. We henceforth, in this section, assume that

(5.54) holds, since then the conditions [A] and [B] of Section 4.1 are satisfied, and we may

appeal to our regularity results of Chapter 4 to study the regularity of the corresponding

refinable functions.

5.3.1 Applying Theorem 4.5

From (5.53) and (4.28), we find that here

Q(ω) =
1

1 + α

(
1 + e−iω

2

)N

(e−iω + α), ω ∈ R, α ∈ I,

so that

|R(ω)| =

∣∣∣∣α + e−iω

α + 1

∣∣∣∣ =

√
1 + α2 + 2α cosω

|α + 1| , ω ∈ R, α ∈ I. (5.56)

It follows from (5.56) that if α > 0, then

sup
ω∈R

|R(ω)| = |R(0)| ≤
√

(α + 1)2

|α + 1| = 1,

whereas, if α ∈ (−∞,−3) ∪ (−1/3, 0), then

sup
ω∈R

|R(ω)| = |R(π)| ≤
√

1 + α2 − 2α

|α + 1|

=

√
1 + α2 + 2|α|
|α+ 1|

=

√
(|α| + 1)2

|α+ 1| =
|α| + 1

|α + 1| .
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Hence, we have, in the notation of (4.30) in Theorem 4.5, that

M1 =

⎧⎪⎨
⎪⎩

|α| + 1

|α + 1| , α ∈ (−∞,−3) ∪ (−1/3, 0),

1, α > 0.

(5.57)

Also, noting that sup
ω∈R

|R(ω)R(ω/2)| = sup
ω∈R

|R(ω)R(2ω)|, we obtain, for ω ∈ R and α ∈ I,

|R(ω)R(2ω)| =
|(α + e−iω)(α + e−2iω)|

(1 + α)2

=

√
(1 + α2 + 2α cosω)(1 + α2 + 2α cos 2ω)

(1 + α)2

=

√
(1 + α2 + 2α cosω)(1 + α2 + 2α(2 cos2 ω − 1))

(1 + α)2

=

√
(1 + α2 + 2α cosω)(1 − 2α + α2 + 4α cos2 ω)

(1 + α)2

=

√
(1 + α2 + 2α cosω)((1 − α)2 + 4α cos2 ω)

(1 + α)2
. (5.58)

It follows from (5.58) that if α > 0, then

sup
ω∈R

|R(ω)R(2ω)| = |R(0)|2 = 1,

whereas if α ∈ (−∞,−3) ∪ (−1/3, 0), then

sup
ω∈R

|R(ω)R(2ω)| = max
−1≤x≤1

√
(1 + α2 + 2αx)((1 − α)2 + 4αx2)

(1 + α)2

≤
[

max
−1≤x≤1

√
1 + α2 + 2αx

|1 + α|

][
max

−1≤x≤1

√
(1 − α)2 + 4αx2

|1 + α|

]

=

[√
(1 − α)2

|α + 1|

][√
(1 − α)2

|α+ 1|

]

=

(
1 − α

|α+ 1|
)2

=

( |α| + 1

|α+ 1|
)2

,

and thus

M2 ≤
( |α| + 1

|α+ 1|
)2

, α ∈ (−∞,−3) ∪ (−1/3, 0)

M2 = 1, α > 0.

⎫⎪⎬
⎪⎭ (5.59)
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Now observe from (5.57) and (5.59) that, for both the cases l = 1 and l = 2, the condition

(4.30) of Theorem 4.5 is satisfied if, for N ≥ 2,

|α| + 1

|α+ 1| < 2N−1, α ∈ I. (5.60)

If α > 0, then we see that (5.60) holds, since then

|α| + 1

|α + 1| = 1 < 2N−1.

Suppose next that α ∈ (−1/3, 0), for which (5.60) is given by

1 − α

1 + α
< 2N−1. (5.61)

Since for the function u defined by

u(x) =
1 − x

1 + x
, x ∈ R\{−1}, (5.62)

we have

u′(x) =
−2

(1 + x)2
< 0, x ∈ R\{−1},

we deduce that
1 − x

1 + x
< u(−1/3) = 2 ≤ 2N−1, α ∈ (−1/3, 0),

since N ≥ 2. Hence (5.61), and therefore (5.60), is satisfied for α ∈ (−1/3, 0).

Finally, if α ∈ (−∞,−3), then the inequality (5.60) is given by

1 − α

1 + α
> −2N−1. (5.63)

But then,
1 − α

1 + α
> u(−3) = −2 ≥ −2(N−1),

since N ≥ 2, so that (5.63), and therefore also (5.60), holds for α ∈ (−∞,−3). We

have therefore proved that the inequality (5.60), and therefore also the condition (4.30) of

Theorem 4.5, is satisfied for all α ∈ I. Hence, noting also the fact that
|α| + 1

|α + 1| = 1, α > 0,

we conclude from Theorem 4.5 that the refinable function φN(·|α) corresponding to the

85



mask symbol AN (·|α) in (5.53) satisfies

φN ∈ Cγ
0 (R), γ ∈ (0, γ∗N(α)) , α ∈ I, (5.64)

where

γ∗N(α) = N − 1 − log2

( |α| + 1

|α + 1|
)
, α ∈ I. (5.65)

It then follows from (5.64) and (5.65) that

φN ∈ Cγ
0 (R), γ ∈ (0, N − 1), α > 0. (5.66)

Note that, according to (1.36), AN(·|1) = A(N+1), the mask symbol for the cardinal

B-spline of order N + 1, and thus φN(·|1) = NN+1 ∈ CN−1
0 (R). Moreover, if α > 0,

then we can appeal to Theorem 2.4 with C(z) =
α + z

α + 1
, z ∈ C, to deduce that φN(·|α) ∈

CN−1
0 (R), α > 0, which is a slight improvement on the regularity result (5.66), as obtained

from Theorem 4.5. Hence the more significant part of the regularity result (5.64) is for

α ∈ (−∞,−3) ∪ (−1/3, 0); i.e, when there is at least one negative mask coefficient.

From (5.64), (5.65), and the analysis above of the function u as defined by (5.62), we

deduce that the regularity exponent γ∗N(α) in (5.64) satisfies

γ∗N(α) → (N − 1)−, α→ 0−, γ∗N(α) → (N − 2)+, α→ −1/3+;

γ∗N(α) → (N − 2)+, α→ −3−, γ∗N(α) → (N − 1)−, α → −∞;

⎫⎬
⎭ (5.67)

where all the arrows indicate strictly monotone behaviour. Observe from (5.67) that

γ∗N(α) ∈ (N − 2, N − 1), α < 0. (5.68)

5.3.2 Applying Theorem 4.11

We next apply Theorem 4.11. From Proposition 4.7, we have here µ = 0, ν = N + 1, so

that τ = 1, and the transfer matrix MT is a 3 × 3 matrix in this case. Using (4.63) and

(5.53), we find that the corresponding MT is given by

MT =
2

(1 + α)2

⎛
⎜⎜⎜⎝

α α 0

0 α2 + 1 0

0 α α

⎞
⎟⎟⎟⎠ , α ∈ I,
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with eigenvalues

λ1 = λ2 =
2α

(α + 1)2
, λ3 =

2(α2 + 1)

(α + 1)2
,

so that ρ(MT ) = ρ(α) = 2(α2+1)/(α+1)2, after having noted that α2−α+1 > 0, α ∈ R,

and thus 2(α2 + 1) > 2α, α ∈ I. Hence the condition (4.67) of Theorem 4.11 is given by

1 <
2(α2 + 1)

(α + 1)2
< 4N−1/2. (5.69)

To investigate whether the inequality (5.69) holds, we define the function

w(x) =
2(x2 + 1)

(x+ 1)2
, x ∈ R\{−1},

for which

w′(x) =
4(x2 − 1)

(x+ 1)4
, x ∈ R\{−1}.

Hence

w′(x)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

> 0, x < −1,

< 0, −1 < x < 1,

= 0, x = 1,

> 0, x > 1.

(5.70)

Since also ρ(α) = w(α), α ∈ I, we therefore have

lim
α→−∞

ρ(α) = 2, ρ′(α) > 0, α ∈ (−∞,−3),

lim
α→−3−

ρ(α) = w(−3) = 5, lim
α→−1/3+

ρ(α) = w(−1/3) = 5,

ρ′(α) < 0, α ∈ (−1/3, 0), lim
α→0−

ρ(0) = w(0) = 2,

lim
α→0+

ρ(0) = w(0) = 2, ρ′(α) < 0, α ∈ (0, 1), ρ′(1) = 0,

ρ(1) = w(1) = 1, ρ′(α) > 0, α ∈ (1,∞),

lim
α→+∞

ρ(α) = 2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.71)

and thus, for N ≥ 2, we get

1 < ρ(α) ≤ 5 < 8 ≤ 4N−1/2, α ∈ I\{1}. (5.72)

As noted before, φN(·|1) = NN+1 ∈ CN−1
0 (R). By (5.72), we deduce from Theorem 4.11
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that

φN ∈ Cγ
0 (R), γ ∈ (0, γ̃N(α)) , α ∈ I, (5.73)

where

γ̃N(α) = N − 1/2 − log4 ρ(α) = N − 1 − log4

(
α2 + 1

(α + 1)2

)
, α ∈ I, (5.74)

from which, together with (5.71), we deduce that the regularity index γ̃N(α) satisfies

γ̃N(α) → (N − 1)−, α→ −∞,

γ̃N(α) → (N − log4 10)+ � (N − 1.661)+, α→ −3−,

γ̃N(α) → (N − log4 10)+ � (N − 1.661)+, α→ −1/3+,

γ̃N(α) → (N − 1)−, α→ 0−, γ̃N(α) → (N − 1)+, α→ 0+,

γ̃N(α) → (N − 1/2)−, α → 1−, γ̃N(α) → (N − 1/2)−, α→ 1+,

γ̃N(α) → (N − 1)+, α→ +∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.75)

where all the arrows indicate strictly monotone behaviour. We see from (5.75) that

γ̃N(α) ∈ (N − log4 10, N − 1/2) � (N − 1.661, N − 1/2), α ∈ I. (5.76)

By comparing (5.68) and (5.76), we see that Theorem 4.11 improves on Theorem 4.5. As

noted before in Section 5.3.1, an application of Theorem 2.4 to the positive mask case

α > 0 yields the regularity result φN(·|α) ∈ CN−1
0 (R), α > 0. But, according to (5.71),

we have ρ(α) ∈ [1, 2), α > 0, and thus

N − 1/2 − log4 ρ(α) > N − 1, α > 0.

We therefore deduce from (5.74) that (5.73) actually improves on the result φN(·|α) ∈
CN−1

0 (R), α > 0, as obtained from Theorem 2.4, in the sense that

φ
(N−1)
N (·|α) ∈ Lβ

0 (R), α > 0,

where β ∈ (0, 1/2 − log4 ρ(α)) =

(
0, log4

(
(α + 1)2

α2 + 1

))
, α > 0.

For α < 0, our results (5.73), (5.74), and (5.75) only guarantee that φ2(·|α) ∈ C0(R),

and not φ2(·|α) ∈ C1
0 (R). Hence, our regularity results for α < 0 are better illustrated
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Figure 5.7: Plots of γ̃3(α) for α ∈ I\(−∞,−50) ∪ (50,∞) and −1/3 < α < 0
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Figure 5.8: Plots of φ3(·| − 1/4) (left) and φ′
3(·| − 1/4) (right)
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Figure 5.9: Plots of φ3(·| − 31/10) (left) and φ′
3(·| − 31/10) (right)
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with N ≥ 3, since (5.73) and (5.76) imply that φ3(·|α) ∈ C1
0 (R), α < 0. Figure 5.7 shows

the graphs of γ̃3(α). If we set N = 3, α = −1/4 in (5.53), then we obtain the mask

sequence

a3,0(−1/4) = −1/12,

a3,1(−1/4) = 1/12,

a3,2(−1/4) = 9/12,

a3,3(−1/4) = 11/12,

a3,4(−1/4) = 1/3,

a3,k(−1/4) = 0, k /∈ {0, 1, 2, 3, 4},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.77)

whereas N = 3, α = −31/10 yield the mask sequence

a3,0(−31/10) = 31/84,

a3,1(−31/10) = 83/84,

a3,2(−31/10) = 63/84,

a3,3(−31/10) = 1/84,

a3,4(−31/10) = −5/42,

a3,k(−31/10) = 0, k /∈ {0, 1, 2, 3, 4}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.78)

Observe from (5.77) and (5.78) that a3,0(−1/4) < 0 and a3,4(−31/10) < 0. Figures 5.8

and 5.9 graphically suggest that both φ3(·| − 1/4) and φ3(·| − 31/10) have continuous

derivatives, which are confirmed by the regularity results φ3(·| − 1/4) ∈ C1.54
0 (R) and

φ3(·| − 31/10) ∈ C1.37
0 (R), from (5.73) and (5.74).

5.4 Comparison with a Subdivision-based Regularity

Result

Generally speaking, the Hölder regularity results obtained through the Fourier transform

techniques above are not optimal. A result which does yield optimal Hölder regularity

results for refinable functions which are Riesz-stable in the sense of (1.46), but whose

proof is beyond the scope of this thesis, was proved by Rioul in [28, Theorem 11.1] in

the framework of subdivision. In this section, we proceed to quote the said result and

compare its Hölder regularity estimates with those obtained through Fourier analysis. To

this end, suppose the symbol A is as in (4.25); that is, for N ≥ 2,
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A(z) =
1

2N−1
(1 + z)NB(z), z ∈ C\{0},

where

B(1) = 1, B(−1) �= 0.

Now define

Br(z) =
∑

j

b
(r)
j zj =

r∏
j=1

B(z2j−1

), z ∈ C\{0}, r ∈ N,

and

βr = −1

r
log2

[
max

0≤j≤2r−1

∑
k

|b(r)j+2rk|
]
, r ∈ N,

and let

β = sup
r
βr.

Then the following result holds.

Theorem 5.3 Suppose that a ∈ M0(Z) and φ ∈ C0(R) satisfy conditions [A] and [B] of

Section 4.1. If there exists an integer r ∈ N such that N + βr > 0, then φ ∈ CN+βr

0 (R),

and therefore

φ ∈ Cγ
0 (R), γ ∈ (0, N + β). (5.79)

Moreover, (5.79) is the optimal regularity result for φ if φ is Riesz-stable in the sense of

(1.46).

Since both the Daubechies and the DD refinable functions have been shown to be Riesz-

stable in [12, p. 131] and [18, Theorem 4.2], respectively, we proceed to apply the result

of Theorem 5.3 to them. Tables 5.7 and 5.8 show the Hölder regularity results obtained

for the Daubechies and DD refinable functions respectively. Observe from Tables 5.7

and 5.8 that the subdivision-based results improve on the Fourier-based results. For

instance, whereas the subdivision-based approach reveals that φD
3 ∈ C1

0 (R), as illustrated

in Figure 5.10, the same result was not obtained through Fourier analysis. However,

the estimates obtained by means of Theorem 4.11 compare more favourably with the

subdivision-based results of Theorem 5.3 than do those obtained with Theorem 4.5. It is

particularly remarkable, from Table 5.8 and Figure 5.6, that φDD
3 ∈ C2

0(R), a result which

Theorem 4.5 could not guarantee.
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Figure 5.10: Plots of the refinable function φD
3 (left) and its derivative (right).

Table 5.7: A comparison of the regularity results γ for φD
N

N Thm 4.5, l = 1, γ < Thm 4.5, l = 2, γ < Thm 4.11, γ < Thm 5.3, γ <
2 0.207 0.189 0.500 0.550
3 0.339 0.378 0.915 1.083
4 0.435 0.566 1.275 1.606
5 0.511 0.755 1.596 1.942
6 0.574 0.943 1.888 2.164
7 0.628 1.132 2.158 2.434
8 0.674 1.321 2.415 2.735
9 0.715 1.510 2.661 3.043
10 0.752 1.698 2.902 3.310

Table 5.8: A comparison of the regularity results γ for φDD
N

N Thm 4.5, l = 1, γ < Thm 4.5, l = 2, γ < Thm 4.11, γ < Thm 5.3, γ <
2 1.415 1.377 1.941 2.000
3 1.678 1.755 2.675 2.830
4 1.871 2.132 3.293 3.551
5 2.023 2.510 3.844 4.194
6 2.148 2.887 4.362 4.777
7 2.255 3.265 4.863 5.315
8 2.348 3.642 5.353 5.829
9 2.431 4.020 5.835 6.323
10 2.505 4.397 6.311 6.805
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Table 5.9: A comparison of the regularity results γ for φ3(·|α) for some values of α ∈ I

α Thm 4.5, l = 1, γ < Thm 4.5, l = 2, γ < Thm 4.11, γ < Thm 5.3, γ <
-1/10 1.711 1.711 1.841 1.848
-1/5 1.415 1.415 1.650 1.678
-1/4 1.263 1.263 1.541 1.585

-31/10 1.035 1.035 1.367 1.560
-27/4 1.569 1.569 1.753 1.912
-76/5 1.810 1.810 1.899 1.975

Note also from Table 5.8 that φDD
2 is “almost” in C2

0(R) in the sense that its first

derivative satisfies (3.19) with |h|β replaced by |h log |h||, according to a result which was

proved in [15] (see also [11]). In fact, Daubechies and Lagarias proved in [10], using a

completely different but more rigorous approach, that the first derivative of φDD
2 is not

differentiable at the dyadic rationals in its support. Observe from Figure 5.5 that φDD
2 ,

looks mostly “smooth,” but that its derivative exhibits “bumps” which repeat themselves

at different scales. With the same method, they also obtained the regularity result 0.55

in Table 5.7 for φD
2 , and showed that this result is optimal.

Table 5.9 shows the regularity results for the refinable functions φ3(·|α) associated with

the mask symbols A3(·|α) in (5.53), for some selected negative values of α ∈ I. Observe

from Table 5.9 that, as in the Daubechies and DD cases, the subdivision-based results

improve on the Fourier-based results. However, we cannot guarantee the optimality of

the subdivision-based results in this case, since we did not investigate the Riesz-stability

of φ3(·|α) for each fixed α.
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Chapter 6

Conclusions

In this thesis, our main focus has been on the global regularity as opposed to the local

(pointwise) regularity of a given refinable function. We achieved this through one of

the three major techniques that appear in the literature namely, the Fourier transform

technique. Although the Fourier-based Hölder regularity results are not as sharp as their

subdivision-based counterparts, we find, unlike the subdivision-based results which are

indeed computationally expensive, that the Fourier-based results discussed in this thesis

lend themselves to simple calculations. Furthermore, the spectral result in Theorem 4.11

yields Hölder regularity estimates which compare favourably with those obtained through

a subdivision technique. We also note that the Fourier-based results of Theorems 4.5 and

4.11 can often be applied to analyze a continuum of masks e.g. the one-parameter family

of masks as discussed in Section 5.3. This is difficult, if not impossible, with Theorem 5.3,

since βr is not expressible in terms of a parameter.

Apart from the Fourier transform and subdivision techniques, the third major ap-

proach is the matrix method. Here, the regularity of a refinable function is studied by

computing the joint spectral radius (see e.g. [19] and [30]) of two square matrices defined

from the mask coefficients. In practice, this technique becomes quickly impractical if the

length of the mask is not small. However, if carefully implemented, it yields optimal reg-

ularity results like the subdivision technique, and can also be used to investigate the local

regularity of refinable functions. For details of this method, we refer to [10]. It should be

noted that the use of matrices to study the regularity of refinable functions first appeared

in [26]. Other recent articles on the topic include [2] and [6].
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