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Summary 

Storing soil organic carbon (SOC) is a possible way of reducing atmospheric 

CO2 and potentially mitigating the effects of global warming. This study looks 

at soil carbon stocks, the sampling methodology and modelling of soil organic 

carbon in indigenous forests, wetlands, grasslands and pine plantations in 

Woodbush in the North-Eastern escarpment of Limpopo Province, South 

Africa. Dominant Pine species planted in Woodbush are Pinus patula, Pinus 

elliotti and Pinus taeda. Woodbush plantation was selected as study area 

because it provided easy access to all the ecosystems that were to be 

studied. All ecosystems in Woodbush are located in such a way that it was 

easy to compare them, as they existed under similar environmental and 

climatic conditions. The climatic conditions of Woodbush promote 

accumulation of SOC due to relatively higher precipitation and cooler 

temperatures than most parts of Limpopo Province. 

Five transects were made: two in indigenous forests and three in plantations. 

Only the surface (0-7 cm) layer was sampled with a distance of 20 m between 

sampling points. Transects were not made in grasslands and wetlands 

because of the patchy occurrence of these ecosystems. In addition to 

transects, eight 1ha plots, two in each ecosystem, were sampled. Surface (0-

7 cm depth) samples were collected on a grid of 20 x 20 m in each sampling 

plot. Two soil profile pits were sampled in each sampling plot, with samples 

being taken at 5, 10, 15, 20 30, 40, 50 60, 75 and 100 cm depth. 

The average carbon stocks per hectare of land to a soil depth of 100 cm were 

as follows: 71 t.ha-1 in wetlands, 28 t.ha-1 in grasslands, 64 t.ha-1in indigenous 
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forests, and 46 t.ha-1 in pine plantations. Although wetlands sequestered large 

amounts of SOC per hectare, their relative contribution to carbon 

sequestration was low because of the relatively small area (87.2 ha) they 

occupy in the study area (and in South Africa).  

Prediction models for vertical distribution of SOC were developed using 

STATISTICA 6.0 for each ecosystem in order to estimate the carbon stocks to 

a depth of 100 cm based on SOC content and soil bulk density of the surface 

samples. These models were developed from observed values in soil profiles 

for each ecosystem.  

SOC content and carbon stocks were analyzed using GIS (ARCVIEW). The 

GIS analysis was aimed at assessing the effect of topography, elevation, soil 

type, and vegetation on accumulation and distribution of SOC stocks. Most 

shallow Inanda soils were distributed at elevations between 1545 m and 

1777 m, and on a gentle slope in the Northern aspect of the mountain. Deep 

Inanda soils were found mostly in the lower elevation range of 967 m and 

1545 m on moderate slopes. Deep and shallow Inanda soils were found on 

the southern aspect.  

Deep Kranskop soils are evenly distributed and mostly found at an elevation 

range of between 1080 and 1430 m on gentle slopes, while at an elevation 

range of between 1430 and 1780 m, they were found on moderate slopes. 

Deep soils had higher SOC stocks than shallow soils and soils in the southern 

aspects had higher SOC stocks than in the northern aspects. 
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Opsomming 

Die berging van grond organiese koolstof is ‘n moontlike manier om 

atmosferiese koolsuurgas (CO2) te verminder en dus om die invloed van 

globale verwarming te versag. In hierdie studie was die grond-koolstof 

voorraad bestudeer, asook die metodologie van die monsterneming en 

modellering van organiese grond-koolstof van inheemse woude, vleie, 

grasvelde en denneplantasies. Die studie was uitgevoer op Woodbush 

plantasie gele  op die Noord-Oosterlike platorand van die Limpopo Provinsie, 

Suid-Afrika. Die algemeenste dennespesies in Woodbush is Pinus patula, 

Pinus elliotti en Pinus taeda.  Die Woodbush plantasie was gekies as 

studiegebied omdat dit oor al die ekosisteme wat bestudeer moet word, 

beskik.  Die ekosisteme in Woodbush is naby mekaar en dus maklik 

vergelykbaar want die omgewings- en klimaatstoestande is eenders.   Die 

klimaatstoestande van Woodbush bevorder die akkumulasie van grond 

organiese koolstof omdat die reënval hoër en die temperature laer is as in die 

meeste ander dele van die Limpopo Provinsie. 

Vyf dwarssnitte was gemaak, twee in inheemse woude en drie in plantasies.  

Monsters was net uit die grondoppervlak laag geneem (7 cm) met 20 m 

tussen monsterpunte.  Dwarssnitte was nie in grasvelde en vleie gemaak nie 

want hierdie sisteme is te gelokaliseerd.  Monsters was ook geneem in agt 1 

ha persele, twee in elke ekosisteem.  Oppervlakmonsters (tot ‘n diepte van 

7 cm) is op ‘n ruitnet van 20 x 20 m uit elke perseel versamel.  Monsters was 

verder ook geneem uit twee profielgate per perseel,  op dieptes 5, 10, 15, 20, 

30, 40, 50, 60, 75 en 100 cm.  
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Die gemiddelde koolstof voorraad per hektaar, op ‘n gronddiepte van 100 cm, 

was as volg:   71 t.ha –1 in vleie, 28 t.ha-1 in grasvelde, 64 t.ha-1 in inheemse 

woude en 46 t.ha-1 in denneplantasies.  Alhoewel vleie groot hoeveelhede 

grond organiese koolstof akkumuleer, is hulle bydrae tot koolstof akkumulasie 

laag want hulle beslaan ‘n klein oppervlak binne die studiegebied (87.2 ha) 

asook klein oppervlaktes binne Suid-Afrika.   

Voorspellingsmodelle vir die vertikale verspreiding van grondkoolstof was met 

die gebruik van STATISTICA 6.0 ontwikkel ten einde te skat wat die 

koolstofvoorrraad op ‘n diepte van 100 cm was.  Die skattings was gebaseer 

op organiese grondkoolstofinhoud en die gronddigtheid van 

oppervlakmonsters.  Hierdie modelle was ontwikkel vanaf die waargenome 

waardes van grondprofiele vir elke ekosisteem.  

Die organiese koolstofinhoud van die grond en die koolstofvoorraad is ontleed 

met behulp van GIS (ARCVIEW). Die GIS ontleding was daarop gemik om die 

effek van topografie, hoogte bo seespiëel, grondtipe en plantegroei, op die 

akkumulasie en verspreiding van organiese grondkoolstof, te beraam.  Die 

meeste vlak Inanda grondvorms kom voor tussen 1545 m en 1777 m bo 

seespiëel, asook op effens steil hellings op die Noordelike berghang.  Die 

diep Inanda grondvorms is geleë op laer hoogtes bo seespiëel, gewoonlik 

tussen 967 en 1545 m, op effens steil hellings.  Beide diep en vlak Inanda 

gronde word gevind op die suidelike berghang. 

Diep Kranskop gronde is eweredig versprei en word gewoonlik tussen 1080 

en 1430 m bo seespiëel, op effens steil hellings, gevind. Dit kom ook voor op 

matig steil hellings, tussen 1430 en 1780 m bo seespiëel. Daar is meer 
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organiese koolstof in diep grond as in vlak grond en meer in gronde teen die 

suidelike hang as op die noordelike hang. 
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1. Introduction 

Commercial afforestation began in South Africa at the end of the 19th century 

(Donald and Ellis, 1992), and plantations have over the years increased in 

importance. The production of industrial wood was a common goal, but 

planted trees are also used for domestic wood, shelter and other amenities in 

rural communities.  

South Africa has a total land area of 122.3 million hectares (Keletwang and 

Semelane, 1998). About 300 000 hectares are protected forest areas of which 

58% are in the state forest and 42% in other legally protected areas. About 

1.48 million hectares are industrial plantations managed for sustainable 

production. The plantations in South Africa are located where climatic 

conditions are suitable for afforestation. About 41% of plantations are found in 

Mpumalanga, 37% in Kwazulu Natal, 11% in the Eastern Cape and 6% in the 

Western Cape. There are afforested areas in Limpopo Province that are small 

in scale and were not included by Keletwang and Semelane (1998) in their 

report and that make up the remaining 5%. 

The South African case study by Christie and Scholes (1995) showed that 

new afforestation stored approximately 2.54 Tg C in 1990, and storage in 

forest products accounted for an additional 1.15 Tg C. Together, these two 

activities offset approximately 3.8% of the carbon dioxide emissions from 

South Africa. These estimations do not take into account the contributions 

made by the soils under the plantations. However, according to some 

estimates (Lal et al., 1998), in tropical forests almost half of the total 

ecosystem carbon is stored in the soil and it is important to include this pool in 
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the carbon accounting system, provided a reliable monitoring method is 

available. Forestry is recognized as one of the main land use options for 

carbon sequestration and the South African forestry industry may benefit from 

it through the proposed carbon budget. 

Soil organic carbon stocks vary widely, depending on bioclimatic and 

topographic conditions and may be influenced by land use practices over 

time. The nature of the variation resulting from these factors at a large scale is 

largely reported and documented, but the precision of these estimates may be 

insufficient for local monitoring of SOC at forestry level. 

Current maps and databases available in the South African forestry industry 

provide detailed information on soils. However, it might be difficult to use this 

information for detailed carbon estimation other than for site classification, 

because the estimation of SOC done in the field is guided by laboratory 

results from limited soil samples taken from different landscape positions and 

aspects. Soil classification in the South African forestry is aimed at serving as 

a basis for productivity prediction, nutrient management, sensitivity analysis 

and other various applications. The main soil properties that are used for such 

decisions are among others, total soil depth, effective soil depth, estimation of 

soil organic matter content, structure and texture.  

The amount of soil organic carbon is only visually estimated in the top soil and 

recorded semi quantitatively as extremely high, very high, high, medium to 

high, medium, medium to low, and low. Limited soil samples are collected and 

sent to the laboratory for organic carbon analysis. As a result, the databases 

have insufficient information on organic carbon and its spatial distribution. 
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A map (Figure 1.1) of organic carbon distribution was created using SAFCOL 

soil database for Woodbush plantation in which the data was estimated in the 

field for soil organic carbon based on laboratory results.  

The field estimations focus on soil colour that results from organic matter 

decomposition, landscape position, soil texture, the depth of organic matter 

and the laboratory results from collected samples. Figure 1.1 showed no 

spatial variation in SOC distribution over a large area. The organic matter 

distribution down the profile is also not possible to estimate from the data 

because the database contains topsoil organic carbon estimates. Therefore, 

SAFCOL database cannot be fully exploited in terms of its potential to become 

a valuable resource for carbon monitoring unless a model is developed that 

will use available information from the database to estimate and show spatial 

variation of organic carbon in some SA forest soils that have a database 

similar to that of SAFCOL. The total soil depth, texture and other soil 

properties and environmental factors that influence soil organic matter content 

recorded in the database need to be included in developing a model that will 

make a better estimation of soil organic carbon.  

The North-eastern escarpment of South Africa is a timber producing area in 

the Limpopo Province and therefore contributing to the economy of the 

province. Furthermore, indigenous forests and forest plantations, occurring in 

the escarpment contribute to carbon sequestration, but there is no adequate 

documented evidence that quantifies the amounts of carbon stored and the 

potential storage under plantation forests and adjacent ecosystems. 
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Figure 1.1. Organic carbon content distribution in Woodbush created from 
SAFCOL database 
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To clearly see the need for accurate soil carbon estimation and monitoring, 

which could be used in monitoring the changes in carbon status of forestry 

soils over time, one has to keep in mind the bigger picture of the global 

climate change (GCC). 

The relative contribution of soils under pine plantations, indigenous forests, 

and on a smaller scale under wetlands and grasslands, to carbon 

sequestration, and the amount of the organic carbon stored in these soils is 

not known and this study seeks to provide answers by answering the following 

questions: 

1. What kind of relationship exists between SOC, soil bulk density, and soil pH 

within each ecosystem of the Woodbush? 

2. Can a model be developed that describes vertical distribution of soil organic 

carbon versus depth and be used to estimate carbon stocks in soil profiles? 

3. Is the model applicable to an existing database to estimate carbon stocks? 

4. Are geostatistical methods and GIS applicable in assessing and describing 

spatial variations of SOC? 

The results of this study could be used to conduct soil organic carbon 

inventories using the approach developed and tested for the Woodbush 

forestry area. The accuracy of models can be tested in other areas and be 

validated to form part of SOC inventories in South Africa. 
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2. Global economy vs. global warming: Carbon 

emission and sequestration – A review 

2.1. Environment and global warming 

A growing interest in studying the organic carbon cycle was triggered by the 

classic works of Arrhenius (1896) at the end of the 19th century and by 

Callendar’s vision (1938) of the anthropogenic CO2 impact on the temperature 

regime of the earth. 

Carbon dioxide contributes 50% of the anthropogenic greenhouse gases and 

with an annual rise of 0.5%, will lead to a mean temperature rise of 4°C and at 

least 1m eustatic sea level rise (Scharpenseel, 1997).  

Carbon dioxide (CO2) that is removed from the atmosphere and stored as 

carbon in a stable form like humus in the soil and CaCO3 in the ocean may be 

considered to be sequestered in terms of the United Nation Framework 

Convention on Climate Change (Christie and Scholes, 1995). In general 

terms, therefore, carbon sequestration can be defined as the removal of 

carbon dioxide from the atmosphere and stored as carbon in other pools. A 

sink refers to any natural (soils, ocean) or artificial bodies (timber, homes, 

furniture) that can store carbon in a stable condition preventing or retarding its 

release back into the atmosphere. The removal of carbon dioxide from the 

atmosphere mainly occurs through the process of photosynthesis, where CO2 

is converted into other carbon compounds like starch and carbohydrates and 

stored in plant tissues.  
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Ecosystem responses to environmental factors such as water availability, 

temperature, and nutrient availability, have considerable spatial variability. 

The exertion of limitations to production and decomposition by one or more 

factors will depend on climate-ecosystem interrelationships (Strain, 1986; 

Pastor and Post, 1988; Schimel et al., 1989). Water and nutrient availability, 

reduction-oxidation conditions, soil structure, pH, and other soil factors play an 

important role in determining organic matter stabilization, soil flora and fauna 

distribution, and periods of active production or consumption of biogenic trace 

gases. 

Land use patterns are also important factors in determining ecosystem 

dynamics throughout the world. Land management practices such as fire, 

grazing and cultivation affect ecosystem composition, cycling of nutrients and 

of organic matter, and other factors, which influence rates of net trace gas 

influx. Global change can affect land use patterns, and in turn, land use 

changes may be an important factor in affecting global change by modifying 

land surface characteristics and the net greenhouse gas emissions. 

2.2. Carbon sequestration and carbon sinks 

The US National Energy Technology Laboratory (NETL) defines carbon 

sequestration as “the removal of CO2 from man-made emissions or the 

atmosphere and the safe, essentially permanent storage as CO2 or other 

carbon compounds, or the reuse of CO2 through chemical or biological 

conversion to value-added products” (Lee, 1999). 

There are different ways to sequester carbon, including separation and 

capture, storage in terrestrial ecosystems, sequestration of CO2 in geologic 
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formations, ocean sequestration, and conversion and utilization. Separation 

and capture is a process to capture CO2 from power plants and other energy 

systems before it is emitted to the atmosphere. However, the cost is still high. 

According to NETL, using currently available technology, separation and 

capture would increase energy costs by 50% or more. Terrestrial ecosystems, 

which are made up of vegetation and soils, are considered as important sinks 

for sequestrating CO2. 

Geologic sequestration is an approach to store CO2 in geological formations. 

Three major types of geological formations have already been identified as 

potential long-term storage sites for CO2: active and depleted oil and gas 

reservoirs, deep coal seams and coal-bed methane formations, and saline 

formations. Scientists have also shown that geologic sequestration in active 

and depleted oil and gas reservoirs and unmineable coal seams can enhance 

the recovery of fossil resources. Some oil fields have been injecting CO2 for 

enhanced oil recovery. However, it remains uncertain how effectively and how 

long CO2 can remain in geologic formations (Lee, 1999). 

The ocean is another large potential sink for CO2. Ocean sequestration 

includes two possible methods. The first method is to inject CO2 into the 

oceans. Under this approach, CO2 generated by power plants is injected 

directly into the ocean, and the injected CO2 may become trapped in ocean 

sediments. The second method is to enhance the ocean’s CO2 uptake from 

the atmosphere through a method such as iron fertilization, which will increase 

phytoplankton productivity. There are also studies focusing on the biological 

and ecological responses and impacts from this approach. 
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Conversion and utilization is to convert CO2 into fuels, useful products, or 

benign solids. This approach focuses on improving the speed and energy 

efficiency of CO2 conversion processes and identifying conversion processes 

that produce useful by-products.  

2.3. Terrestrial carbon sinks 

The storage of organic carbon in terrestrial sediments may be more important 

than previously recognized (Sarmiento and Wofsy, 1999), as more disastrous 

events associated with global warming continue to destroy the normal lives of 

humans in the form of heavy floods and drought. The terrestrial carbon sink 

consists of the biosphere and pedosphere. The biosphere consists of plants 

and animals that play a very important role in the carbon cycle within the 

biosphere and linking the pedosphere and atmosphere. The carbon storage in 

different vegetation types varies according to the type and climatic conditions 

that prevail. This is due to the amount of organic matter produced by different 

vegetation types and different decomposition rates that result from climatic 

conditions. The carbon storage in soil depends on the vegetation type, soil 

type, climate and other factors controlling the soil-forming processes.  

The pedosphere (soil) lies at the interface between the lithosphere (rock) and 

the atmosphere (Lal et al., 1998), making it a very important link for the 

carbon cycle between the two spheres. It is a layer of about two metres deep 

(and is likely to be deeper in the tropics). The pedosphere supports biotic 

activity within the terrestrial ecosystems and interacts with the atmosphere 

through ion exchange processes. The interactive processes with the 

atmosphere through the biosphere lead to gaseous and energy exchanges 
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between the soil and the atmosphere. Mechanisms of interaction between the 

lithosphere and pedosphere include leaching of nutrients and new soil 

formation due to weathering. Elemental cycling and pedoturbation (due to soil 

fauna activities) are interactive between the pedosphere and the biosphere. 

The exchange of water between pedosphere and atmosphere plays a vital 

role in the local, regional, and global hydrological cycle (Lal et al., 1998), 

which in the process redistributes the carbon that is dissolved. In addition to 

interactive linkages with the pedosphere, there are several crucial 

pedospheric processes linking all five predominant spheres as indicated in 

Figure 2.1, and in Figure 2.2. 

 

Figure 2.1 Interactive processes linking pedosphere with 
atmosphere, biosphere, hydrosphere and lithosphere (Source: 
Lal et al., 1998) 



 11

 

Figure 2.2 Principal pedospheric processes affecting soil organic 
carbon content (Source: Lal et al., 1998) 

Carbon in the atmosphere dissolved in the hydrosphere to form H2CO3, 

interacts with the lithosphere through runoff, seepage, and ground water 

recharge. The hydrosphere interacts with the atmosphere through 

precipitation – evaporation cycle. Photosynthesis and respiration are the 

predominant processes linking the atmosphere and the biosphere. However, 

the interactive processes that play a major role in the global carbon cycle are 

those between the pedosphere, the atmosphere and the biosphere (Lal et al., 

1998). 

There are two types of carbon pools in the soil (pedosphere), soil organic 

carbon (SOC) and soil inorganic carbon (SIC). The SOC pool in the world 

soils was estimated to be 1500 Pg (Eswaran et al., 1995). The soil organic 
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carbon pool was about 2.1 times that of the atmosphere pool and about 2.7 

times that of the biotic pool comprising land plants (Lal et al., 1998). Estimates 

of the soil inorganic carbon pool are more tentative than those of the SOC 

pool, but may be about 12% more than those of the SOC pool (Schlesinger, 

1991; Grossman et al., 1995). Most of the SIC pool comprises carbonates, 

which occur in the soils of the semi – arid regions.  

The pedosphere has played a significant role in influencing the gaseous 

composition of the atmosphere (Lal et al., 1998). However, the magnitude of 

the total contribution to the atmospheric pool and the past and current rates of 

C flux between the pedosphere and the atmosphere are gradually increasing.  

Little is known about the dynamics of the SIC pool in relation to land use (Lal 

et al., 1998). However, soil scientists are beginning to understand the 

dynamics of SOC, environmental and anthropogenic factors affecting it. 

Dominant pedospheric processes that affect SOC dynamics may be grouped 

into two categories: (¡) SOC enhancing and (ii) SOC degrading processes as 

illustrated in Figure 2.2. Processes that enhance SOC content are plant 

biomass production, humification, aggregation, and sediment deposition. 

Processes that degrade SOC content are soil erosion, leaching and soil 

organic matter decomposition. It is the net balance between these SOC 

aggrading and degrading processes, as influenced by land use and 

anthropogenic factors that determines the net SOC pool of the pedosphere 

(Lal et al., 1998). An increase in SOC, through C sequestration into the 

pedosphere, has two notable positive effects to the soil, the enhancement of 

soil quality, and the improvement in the soil’s environmental regulatory 

capacity (Lal et al., 1998) (Figure 2.3). 
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Figure 2.3. Soil organic carbon impact on soil and 
environmental quality (Source: Lal et al., 1998) 

 

These positive effects form the basis of strategies for sustainable 

management of the soil and water resources. The soil quality effects of SOC 

are related to several strongly interacting edaphological factors including soil 

structure, rooting depth and solum properties, available water capacity or least 

limiting water range (Thomasson, 1978; Letey, 1985; da Silva et al., 1994), 

soil biodiversity, and elemental cycling and nutrient reserves.  

The environmental effects of SOC are due to its impact on water quality and 

the gaseous composition of the atmosphere. The water quality effect is related 

to soil structure, its resistance to forces of wind and water, and transmission of 

water and solutes through the soil solum. The gaseous composition of the 

atmosphere is influenced by emissions of radioactively – active gases from 

the soil to the atmosphere, i.e., CO2, CH4, NO, etc (Lal et al., 1998). The SOC 

and its effect on soil structure, soil moisture regime, element cycling, and 
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transformations are important determinants of gaseous emissions from soil to 

the atmosphere. 

The major mechanism for the terrestrial system to sequester carbon is 

through the process of photosynthesis. The vegetation absorbs carbon from 

the atmosphere in the form of CO2 to produce organic compounds, which are 

later stored in the soil as organic matter after the death of plants or as parts of 

a plant deposited in the soil as litter. The process of transferring organic 

compounds from the plants into the soil involves macro and microorganisms, 

which are the key role players in decomposition. 

Carbon storage through erosion may sequester carbon if significant amounts 

of eroded carbon are stored in sediments where they will decompose slowly, 

and if regrowth of vegetation on eroded lands replaces the lost carbon 

(Sarmiento and Wofsy, 1999).  

The preoccupation with soils as a source of greenhouse gases rather than a 

sink is directly linked to the present day dramatic changes in the land use over 

large areas. As a result of these changes in land use, soil changes from a 

generally low – level CO2 sink to a high level CO2 source (van Breeman and 

Feijtel, 1990). 

The land use change includes the change in vegetation cover, removal of 

vegetation and reducing or increasing the vegetation. Grasslands and 

wetlands are known to sequester organic carbon in higher volumes than 

forests (Scharpenseel, 1993). The soils under grass tend to store more 

carbon than a forest due to a growth rate that is high and because a large 

biomass in grass is stored below ground in the form of roots. The 14C dating 
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by Scharpenseel (1993) has shown that the C residence time in the soil 

organic matter of grassland commonly exceeds that of C in woodlands, where 

both exist in similar edaphic environments. However, the carbon is easily lost 

to the atmosphere if cultivation or fire destroys the vegetation. 

The improvement of soil structure through the formation of organo-mineral 

complexes is an important mechanism of carbon sequestration in soils 

(Oades, 1988). Aggregation plays an important role in the global carbon 

cycling “the union of mineral and organic matter to form organo-mineral 

complexes is a synthesis as vital to the continuance of life as, and less 

understood than, photosynthesis” (Jacks, 1963). Microbial by-products form 

an important cementing material that strengthens bonds and stabilizes 

aggregates (Lynch and Bragg, 1985). Formation of stable aggregates 

provides physical protection to SOC against microbial decomposition 

(Powlson, 1980; Oades and Waters, 1991; Hassink et al., 1993). 

The wetlands of the world comprised the largest organic carbon pool of 

640 Pg C (Twilley et al., 1993), with about 130 million hectares of wet 

Riceland containing about 12 Pg of carbon (Neue et al., 1991). Forests 

ecosystems have also been regarded as potential organic carbon sinks due to 

the relatively high amounts of carbon stored in the biomass rather than in the 

soil. However, their potential is limited by several factors like veld fires, land 

use change and the use of forests as a source of wood products like paper 

that is easily decomposed. Most studies have indicated that a large amount of 

organic carbon is reserved in the biomass of the forests and the organic 

matter addition to the soil is mainly from litter fall as leaves and twigs and die 

back of fine roots (Bouwman, 1990).  
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2.3.1. Soil Organic Carbon (SOC) Pool 

The SOC content plays an important role in enhancing soil fertility (Tiessen et 

al., 1994), and in sustainable management of tropical agro-ecosystems 

(Sanchez et al., 1989). Similar to vegetation and soils, SOC pool is highly 

variable. Soils of the wet lowland tropical rainforest (TRF) regions usually 

contain more SOC than those of the moist or dry ecoregions (Lal, 1998). 

Landscape position, through its effect on soil depth and moisture regime, can 

also have a drastic effect on SOC. Differences in SOC content are primarily 

due to the total biomass pool, especially with regard to the litter fall and the 

root biomass. The above ground biomass production, rate of litter fall and root 

biomass also vary widely depending on soil and other edaphic factors.  

2.3.2. Mechanisms of SOC accumulation 

Soil organic carbon is composed of a heterogeneous mixture of chemical 

structures, often in association with soil minerals (Janzen et al., 1998). These 

diverse forms can be broadly categorized into three groups: 

Plant litter – consists of photosynthetically assimilated materials, minimally 

affected by decomposition, with cellular structures still recognizable. This 

fraction may originate from the residues and roots of vegetation grown at the 

site, or from organic amendments imported from elsewhere.  

Inert SOC – consists of decomposition products which, because of chemical 

configuration or association with soil minerals, are essentially inaccessible to 

agents of biological decay (Hsieh, 1992, 1993). Carbon in this fraction 

typically has a turnover time of more than 1000 years (Campbell et al., 1967; 
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Harrison et al., 1993; Scharpenseel and Becker-Heidman, 1994), and is 

largely unaffected by management practices imposed on the soil.  

Dynamic SOC – consists of photosynthetically reduced C in various stages of 

transition from plant litter to CO2 (or inert SOC). This fraction includes any 

SOC, which is inherently decomposable. By definition, therefore, it includes C 

in faunal or microbial biomass, most of which originated in plant litter. Various 

names have been assigned to describe portions of this fraction, including ‘light 

fraction’ OM (Gregorich and Janzen, 1996), particulate OM (Cambardella and 

Elliott, 1992), macro-organic matter (Gregorich and Ellert, 1993), 

mineralizable C (Campbell, 1978), coarse OM (Tiessen et al., 1994), and OM 

in macroaggregates (Buyanovsky et al., 1994; Angers and Giroux, 1996). 

These fractions typically have a turnover time ranging from a few years to 

several decades. For example, light fraction OC typically has a half-life of 

about 10 years (e.g., Gregorich et al., 1995c, 1996b). 

2.3.3. Changes in Inert SOC 

From the standpoint of atmospheric CO2 removal, the ideal reservoir for C 

gains is the inert SOC. By definition, however, the size of this pool changes 

only very slowly. Furthermore, the rate and magnitude of its change more 

likely to be influenced by inherent soil (mostly clay content) and climatic 

conditions than by agronomic practices (Janzen et al., 1998). Consequently, 

the potential for adopting management practices that favour significant inert 

SOC gains over a time scale of several years or decades may be limited. 

While the importance of inert C accumulation is highly significant from the 

perspective of soil genesis, its rate is likely to be too slow to offset 

atmospheric CO2 concentration materially. 
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2.3.4. Changes in dynamic SOC 

A more probable repository for C gains in the short term is the dynamic SOC 

pool. As indicated earlier, this pool includes C in transition between plant litter 

and CO2 (and inert SOC). Assuming that the rate of inert SOC formation is 

negligible over the course of several decades, then dynamic C can be viewed 

simply as an intermediate in the reaction of plant litter decomposition to 

produce CO2 as the end product.  

The size of the dynamic SOC pool, therefore, depends on the relative rate of 

two processes: rate of plant litter C input (kp) and rate of CO2 formation (kd). 

The rate of plant litter input in agro-ecosystems is closely related to crop yield 

or productivity. Numerous studies have shown strong correlations between 

crop residue inputs and SOC contents (e.g., Campbell and Zentner, 1993; 

Biederbeck et al., 1994; Nyborg et al., 1995; Gregorich et al., 1996a). Many of 

the SOC gains in response to improved management practices can be directly 

linked to higher yields arising from better crop nutrition, more efficient water 

utilization, and higher yielding crops (Janzen et al., 1998). In part, the variable 

response of SOC to a given management change depends on whether the 

new practice draws out a yield response. For example, under the semi - arid 

conditions of western Canada, adoption of no-tillage can maintain or enhance 

crop yields (Lafond et al., 1992) because of greater moisture retention, 

thereby favoring higher SOC (Campbell et al., 1995). Under humid conditions 

like those in eastern Canada, however, reduced tillage may have little yield 

advantage and therefore elicit only limited gains in SOC (Angers et al., 1995; 

Anger and Carter 1996). 
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Plant litter input is determined not only by the crop yield, but also by the 

proportion returned to the soil after harvest. For example, production of corn 

for silage, where most of the aboveground portion is harvested, returns few 

residues, resulting in loss of SOC (Angers et al., 1995). Higher return of plant 

litter can also explain the benefits to SOC of straw retention (Nyborg et al., 

1995) and use of perennial forages, which usually have a higher proportion of 

plant C below ground. 

But amount of plant litter alone cannot explain all of the management effects 

on SOC storage. At least as important as the amount of C added to the soil is 

the rate at which it decomposes to CO2. Any practice that suppresses the rate 

of decomposition lengthens the turnover time of dynamic SOC, thereby 

increasing its content in the soil. Suppression of decomposition rate can be 

achieved through one or two general mechanisms; Suppression of biological 

activity; and Physical protection. Because decomposition is a biological 

process, any practice that reduces moisture content, temperature, or aeration 

and low pH will favour the accumulation of dynamic SOC (Janzen et al., 

1998). For example, frequent use of summer fallow results in SOC loss, in 

part because it creates moisture and temperature conditions conducive to 

biological activity (Janzen et al., 1992; Bremer et al., 1995; Janzen et al., 

1997a). Similarly, application of fertilizer can retard decomposition by 

enhancing plant growth and desiccating the soil (Paustian et al., 1992). 

Placement of plant residue may affect decomposition by altering the physical 

environment. Under arid conditions, for example, no-till practices may slow 

decomposition by retaining residue on the soil surface where they remain 

desiccated (Janzen et al., 1998). The suppression of decomposition, by 
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adoption of practices that retard biological activity, results in the accumulation 

of dynamic SOC which has little inherent stability against further breakdown. 

Consequently, it remains highly susceptible to decomposition should that 

practice be discontinued. For example, adoption of a fallow-wheat system in a 

semi - arid environment resulted in rapid depletion of light fraction C within a 

decade, relative to that under continuous cropping (Bremer et al., 1995). 

Reducing biological activity, however, may not be the only way of suppressing 

decomposition. Accumulation of SOC may also be favoured by practices that 

encourage the formation of aggregates that limit accessibility to 

decomposition (Gregorich et al., 1989; Angers and Carter, 1996; Gregorich et 

al., 1997; Carter and Gregorich, 1996). For example, reduction in tillage 

intensity can increase soil aggregation and the amount of SOC stored within 

aggregates (Carter, 1992; Angers et al., 1992, 1993c; Franzluebbers and 

Arshad, 1996a). Aggregation is also favoured by reduction in fallow frequency 

(Campbell et al., 1993a, b) and by the use of perennial forages (Campbell et 

al., 1993b), though different species may have variable effects (Carter et al., 

1994).  

The C stored in aggregates represents a temporary storehouse of SOC, less 

susceptible to rapid depletion than ‘free’ dynamic SOC, but still subject to 

gradual turnover. Using 13C analyses, Gregorich et al. (1997) found that the 

half-life of ‘protected’ light fraction OC was about 2-fold that of ‘free’ light 

fraction OC. Some findings have suggested that SOC stored within 

microaggregates is more effectively ‘sequestered’ than SOC within 

macroaggregates (Gregorich et al., 1989; Carter, 1996). Others, however, 
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have shown little apparent difference in SOC breakdown among aggregates 

of various sizes (Gregorich et al., 1994). 

2.3.5. Limits to SOC gain 

Under relatively constant conditions, SOC eventually approaches a 

equilibrium-state concentration at which the rate of C input is balanced by CO2 

loss via respiration (Janzen et al., 1998).  An increase in SOC is prompted by 

adoption of a practice that disrupts this equilibrium-state, suppressing 

decomposition relative to C input. With the accumulation of SOC, however, 

rate of decomposition will eventually again converge upon C input, at which 

time the SOC approaches a new equilibrium-state. Thus an increase in SOC 

in response to a new management practice can occur only during the 

transition from one equilibrium-state to another, and is therefore limited to a 

certain duration (Janzen et al., 1998). Losses of SOC upon adoption of a 

degradative cropping system are limited and approach zero after several 

decades (e.g., Bremer et al., 1995). The duration of SOC gains responds to 

improved practices, however, has not been firmly established (Janzen et al., 

1998). Campbell et al. (1995) showed that SOC upon adoption of improved 

management in an arid soil approached a maximum after only six years. 

Angers (1992), from the study under humid conditions, also suggested a new 

SOC plateau within 5 years of seeding perennial forage. These studies 

support the view that most of the SOC gains in response to adoption of 

improved management or practices may occur within several years, and that 

gains may subside within a decade. The potential SOC gain may also vary 

widely among agro-ecosystems, depending on a range of factors. Among the 

most important, perhaps, is the potential primary production (C input), as 
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dictated by climatic constraints. Thus, soils in areas with severe constraints on 

productivity (e.g., aridity) may have limited potential for SOC gains. Another 

variable is the SOC status prior to the adoption of a new management 

practice. If the dynamic SOC is already at a high level for its environment, 

then there may be limited potential for further gains. 

The soil’s capacity for ‘protecting’ recent C inputs, whether directly by 

association with minerals or within aggregates, or indirectly by suppressing 

biological activity, is another factor that determines the potential SOC gains. 

2.3.6. Decomposition of SOM and soil aggregation 

During decomposition in soil, organic residues and their decomposition 

products become closely associated with the mineral phase and, 

simultaneously, their chemical composition changes. Both processes are 

believed to provide recalcitrancy to further decomposition; however, their 

respective importance is difficult to determine (Angers and Chenu, 1998). The 

most direct evidence of the role of soil structure in protecting SOM from 

decomposition probably comes from the observation that when soil 

aggregates are disrupted, an increase or flush in C mineralization is observed 

relative to undisrupted aggregates (Rovira and Greacen, 1957; Powlson, 

1980; Elliott, 1986; Gupta and Germida, 1988). Further, Beare et al. (1994) 

have shown that the level of physical protection varies with soil management 

practices with apparently more aggregate protection in no-till than in cultivated 

soils.  Further support that the location of SOM in the soil matrix influences its 

decomposition is provided by isotopic tracer studies. In a cultivation 

sequence, Besnard et al. (1996) found that, upon cultivation, much more C 

was lost from the particulate organic matter (POM) fraction than from the 
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occluded POM (located within aggregates). Physical transfers of POM from 

outside to inside aggregates or vice-versa, with aggregate formation or 

disruption could not completely account for this observation. Further, after 35 

years of cultivation, the 50 to 200 µm microaggregates were relatively 

enriched in POM –C derived from the initial forest vegetation, as compared to 

macroaggregates or to nonaggregated soil. Gregorich et al. (1996) separated 

the light (<1.6 g cm-3) particulate organic matter occluded within soil 

aggregates from the free light fraction (LF) and determined its relative age 

using 13C natural abundance. Although LF is most often perceived as a labile 

SOM fraction, they found that most of free LF was of recent corn origin. These 

differences in relative accumulation were either due to difference in the 

chemical composition of SOM in different locations or to physical protection 

provided by the microaggregates. The fate of SOM located within aggregates 

will depend upon its intrinsic decomposability and on the persistence of the 

aggregates. The protective capacity of soil aggregates should, therefore, be 

related to their stability against water and other mechanical stresses, although 

there is as yet no direct evidence of such a relationship. On the other hand, 

SOM contributes to the stability of aggregates and increases their life 

expectancy. SOM, therefore, indirectly contributes to “self-protection” against 

biodegradation 

.
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3. Materials and methods 

3.1. Site selection 

 

Figure 3.1. Location of Woodbush Plantation in Limpopo Province 

Woodbush plantation, which occupies about 10515 ha in the Drakensberg 

Escarpment area in Limpopo Province, was selected as research site (Figure 

3.1). The town of Tzaneen is located approximately 10 km east of the eastern 

boundary of Woodbush plantation.  

Indigenous forests, pine plantations, grasslands and wetlands were chosen 

and their soil carbon stocks estimated to quantify their respective contribution 

to carbon sequestration. Woodbush plantation was selected as study location 

Woodbush 

Limpopo 

Republic of South Africa 
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because it provided easy access to all the ecosystems that were to be 

studied. All ecosystems in Woodbush were located in such a way that it was 

easy to compare them, as they existed under similar environmental and 

climatic conditions. The afforested portion (3702 ha) of Woodbush area lies 

between latitudes of 23o43‘  to 23o 54‘and longitudes of 29o57‘ to 30o04‘ .  

The most prominent physiographic feature of this region is the Drakensberg 

Escarpment stretching in a North-South direction. The high - lying Woodbush 

section has an altitude range of 1400 to 1880 m (Strydom et al., 1997). 

The Broederstroom River mostly drains the areas situated to the West of the 

escarpment that include Woodbush in a Southerly direction and 

Broederstroom River catchment was selected as the study area. This 

catchment was selected as the study area because it provided more data than 

the Koedoes River catchment. The indigenous forest, wetlands and grassland 

of Woodbush were not sampled by SAFCOL and there was no data on these 

sites. However, Broederstroom catchment is dominated by plantation 

compartment more than indigenous forest, while Koedoes catchment is 

dominated by indigenous forest. The tributaries of the Koedoes River drain a 

small portion in the northerly direction. More gentle slopes of approximately 

35% characterize these areas. 

The physiographic features of the whole area of Woodbush have a great 

influence on meso-climatic patterns. These climatic patterns, the topographic 

variation and the parent material have a great influence on soil properties 

such as depth, drainage and nutrient cycling.  
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3.2. Climate 

Woodbush plantation is characterized by marked gradients in temperature 

and rainfall due to the variability in altitude and the physiographic nature of the 

area. The physiography of the area is also responsible for a prominent south 

easterly orographic effect in the rainfall pattern, leading to high falls on the 

south eastern side of prominent physiographic barriers and resultant rain 

shadows on the north western side (Strydom et al., 1997). The areas of 

Woodbush plantation above 1200 m altitude are in the mist belt, where fog 

conditions occur during summer. The altitude, aspect variation and slope 

strongly influence the temperature and these complex patterns form an 

integral part of the site classification of Woodbush plantation (Strydom et al., 

1997). 

The long term mean annual rainfall ranges from approximately 1050 to 

1938 mm, with the highest rainfall occurring on the high-lying plateau areas. 

Approximately 90% of the annual rainfall occurs during the wettest half of the 

year, which is from October to March, resulting in a long dry season. The 

mean annual temperature ranges between 15.3ºC and 19.2ºC with the high 

temperatures at the lower lying areas and the north facing aspects. The 

lowest temperatures are found at the foot slopes and the valley bottoms, 

falling as low as 2.8ºC, because of the strong inversion of cold air during the 

winter months (Strydom et al., 1997). 

3.3. Geology and soils 

 

The Woodbush area is underlain by a complex of granite and gneiss biotites, 

which are intersected by a network of diabase dykes. The boundary between 
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the granite and gneiss biotites is not clear in the field due to the similarities in 

the nature of the weathering products in terms of texture, chemical properties 

and mixing through colluviation. The granite component makes up the 

dominant lithology (Strydom et al., 1997). The intense weathering conditions, 

leaching and good internal drainage have resulted in the formation of deep, 

red apedal soils. 

The saprolite of granite is well and deeply weathered. A gradual transition 

from the solum to saprolite is usually a typical feature. Some deep soils are 

also found in some ridge top positions while soil profiles of about 3 – 4 m deep 

are common especially in lower lying areas of the De Hoek area of Woodbush 

plantation.  

Soils formed from granite are usually well- to excessively drained. The topsoil 

horizons have a low water holding capacity. This is mainly due to the high 

medium to coarse sand content and a strong aggregation of clay particles into 

water-stable micro – aggregates resulting in a high frequency of macro pores 

(Strydom et al., 1997).  

Hydromorphic soils are found in the bottomland positions on gentle slopes. 

The high moisture content in these positions results in the formation of non-

calcareous G horizon underlying Orthic topsoil (Katspruit 1000), Westleigh 

mostly with luvic B1 horizon and Tukulu with unbleached A horizon and luvic/ 

non-luvic non-red B horizon (Soil Classification Working Group, 1991). 

Indigenous forests and wetlands, however, cover most of the hydromorphic 

soils. 
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The subsoils derived from granite parent material are conspicuously red, 

mostly with hues of 2.5YR or 5 YR. Hutton soil form with leached luvic/non-

luvic B1 horizon dominates the low-lying areas. At altitudes above 1100 m, 

humic topsoil is often dominant, mostly in the southern aspects and along the 

drainage lines, resulting in the formation of Inanda and Kranskop soil forms 

with thin (30 cm) and thick (60 cm) humic A horizon overlying luvic B1 horizon.  

Magwa with thin humic A horizon over luvic B1 horizon and Sweetwater with 

thin and thick A horizon overlying non-red luvic B1 horizon (Strydom et al., 

1997) are also found in small areas.  

All the red soils with luvic B-horizons fall into the order of Ultisols (USDA, 

1999), mainly udic and ustic suborders. The hydromorphic soils of the flood 

plain fall into the order of entisols (USDA, 1999). The suborder of fluvents 

shows the alluvial nature of the material from which they were formed. 

3.4. Soils in relation to Vegetation 

The vegetation of the study area (Figure 3.2), described in great detail by 

Scheepers (1978), represents three main types: indigenous Afromontane 

forest, Afromontane grasslands and scrub forest, and localized wetlands 

including riparian zones.  
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Figure 3.2. A view of the study area where sampling sites were 
located 

Forest plantations have mainly replaced grasslands and scrub forest areas. 

Considering the possible close link between vegetation type and soil organic 

matter content, attempts were made to analyze the soils of the area within the 

respective vegetation context and to conduct the comparison between 

different ecosystems. 
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3.4.1 Indigenous forests 

Figure 3.3. Kranskop soil form 
with thin topsoil under 
indigenous Afromontane 
forest 

Indigenous forests occupy the largest 

part of Woodbush, about 6305 ha. A 

sampling site was selected in the 

indigenous forest North of G7a 

compartment, which is north-East of 

Dap Naude dam. The litter layer, 

composed of dead leaves, was 5 cm 

thick on average, supplying 

reasonable amounts of organic matter 

to the topsoil. 

Dark colours resulting from organic 

matter decomposition characterized 

the topsoil. The humic-A horizon had 

a crumby structure with a relatively 

firm consistence.  

 

The topsoil was a thin humic A horizon, underlain by a luvic B1 horizon. The 

subsoils of indigenous forest sites were mainly red apedal B (Inanda 

Highlands) and yellow–brown apedal B (Kranskop Dargle). The red apedal B-

horizon is underlain by a red saprolite derived from granitic rocks. According 

to field observations, the clay content increases with soil depth from an 

average of 26% in the A horizon to about 34% in the underlying B-horizon. 

The A horizon, about 27 cm deep, gradually merges into a 100 cm B horizon 

that has developed from granite saprolite (Table 3.1).  As expected under 
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indigenous forests, there was an abundance of roots and evidence of soil 

organism’s activity in the topsoil, which decreased with soil depth. Profile 

descriptions are presented in Appendix A.4. 

 

Table 3.1. Average soil texture and classification for the selected sites 
 

Ecosystem Horizon Clay % Silt % Sand % Diag. Horizon Soil form Soil family 
Wetlands A 20.0 25.4 54.6 Orthic A Tukulu 2120 
 B1 36.0 24.0 40.0 Neocutanic B   
 G    G   
Forests A 26.0 29.0 45 Humic A Kranskop 1200 
 B1 34.0 15.7 50.3 Yellow Brown 

apedal B 
  

 B2 36.0 17.0 47.0 Red apedal B   
Plantations A 18.0 23.8 48.2 Humic A Inanda 1200 
 B 34.5 17.8 47.7 Red apedal A   
 C    Unspecified 

material 
  

Grasslands A 23.7 21.5 54.8 Humic A Kranskop 1200 
 B1 30.8 19.6 49.6 Yellow Brown 

apedal B 
  

 B2 31.0 18.0 51.0 Red apedal B   

 

A transect was made through indigenous forest sites, and two 1-ha plots and 

four profiles were also sampled (Fig. 3.4 a). The second transect through 

indigenous forest was made on the west of compartment F1 (Fig. 3.4b).  
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Figure 3.4 (a). Location of sampling sites and transects in 
Woodbush. 

A 

B 
A – Intensive plots site 
B – Transects site 
 

Broederstroom catchment 
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Figure 3.4 (b). Surface and transects near Dap Naude 
dam 

Figure 3.4 (c). Transects in F1 compartment 
and the adjacent indigenous forest 
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3.4.2. Pine plantations  

Several species of pine (P.patula, P. taeda, P. elliottii) and eucalypt (E. 

grandis) are grown in Woodbush and cover an area of about 3582 ha. The 

pine trees in selected compartments were Pinus taeda in G7a, F1 and F21c 

and were 24yrs, 32yrs and 23yrs old respectively, while 23 yrs old Pinus 

elliottii were in compartment F23 at the time of sampling. 

 

Figure 3.5. Inanda 
Highlands soil profile in 
G7a compartment 

Plantations were established 

mainly on deep, well-drained 

Inanda soils. A description of all 

the soil profiles is presented in 

Appendix A4. The litter layer 

composed mainly of pine needles 

and it was about 12 cm deep at 

the time of sampling. The humic A 

overlies a relatively deep red 

apedal B horizon, with the clay 

content increasing in the B1-

horizon. The Inanda Highlands 

soils are mostly found on southern 

aspects and Hutton Kelvin on 

northern aspects.   

 

The Southern aspect topsoil is moister than the northern aspect topsoil and 

organic matter seems to be higher in the southern than in the northern aspect. 
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The G7a, F23, F21c and F1 compartments were sampled under pine 

plantations. The G7a compartment is situated approximately one kilometer 

North - East of the Dap Naude Dam, and covers an area of 6.3 hectares. The 

compartment is dominated by well-drained, deep Inanda soils. Two intensive 

sampling plots and one transect were made in G7a compartment. The second 

transect was made in the F23 compartment through to F21c compartment. 

Both F23 and F21c compartments are situated across the river, to the South 

of G7a compartment. The third transect was made in compartment F1 (Figure 

3.4). 

3.4.3. Afromontane grasslands 

The grasslands occupy a very small portion (134.14 ha) of Woodbush 

Plantation. They are mostly used as annually burnt firebreaks and pastures. 

Grasslands are largely left unplanted on slopes above the river terrace 

adjacent to wetlands or riparian zones and develop temporarily in the currently 

unplanted compartments.  
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Figure 3.6. Stony Inanda 
Highlands soil profile 
under Afromontane 
grasslands 

The grass species vary widely 

because of annual burning. Some of 

the grasses that survive those annual 

fires are Eragrostis curvula, 

Cymbopogon validus and Eragrostis 

racemosa, (Scheepers, 1978).  

The grasses grow mainly on Inanda 

Highlands soils, which are relatively 

shallow (0 – 60 cm), compared to 

similar soils under indigenous forests 

(0 – 100+ cm).  

 

The grassland soils are similar to those of indigenous forests; however, the 

topsoil depth is shallower than the humic topsoils under indigenous forests. 

Soil profile descriptions are presented in Appendix A4. With a thin litter layer 

and shallow topsoil, grasslands soils are relatively low in soil organic material 

compared to soils under indigenous forests. The B-horizon extends down to 

84cm and merges into hard rock. Grasslands within the study site were mainly 

found on Inanda Highlands (1200) soils. 

The selected grassland site is situated South of G7a compartment, on a 

relatively steep slope (35 – 50%). Shallow soils and steep slopes make 

growing and harvesting pine trees difficult and as a result, such areas are left 

to native vegetation (grasslands and indigenous forests). 
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3.4.4. Wetlands 

Wetlands occupy the smallest area of Woodbush, about 87 ha and mostly 

along the river terraces, in riparian zones, and around the dams and 

reservoirs. Wetlands are separated from grasslands by terrain change and 

moisture supply. The selected wetland site is situated to the South of the 

grassland site, and less than a kilometer east of the Dap Naude Dam (Figure 

3.4). Over the years, growing trees in riparian zones has been discouraged 

and even prohibited for environmental reasons and due to the poor 

performance of most commercial species on wet sites. 

 

Figure 3.7. Tukulu covered 
with 10cm layer of 
deposits from floods of 
year 2000 

Soils in wetlands are formed on 

material transported from higher-

lying areas and deposited by 

colluvial and alluvial processes. 

Description of all the soil profiles is 

presented in Appendix A4. The 

sampled topsoil was on average 

40 cm deep, with a thin (3 cm) layer 

of organic litter on the surface 

(Figure 3.7). The topsoil was sandy 

loam; clay content increased from 

20% in A to 36% in the B-horizon 

(Table 3.3). 
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The Neocutanic B horizon has yellow colours of 7.5 YR5/6. From a depth of 

100 cm, the soil was saturated with water. Most roots were found in the first 

20 cm of the topsoil and very few were found in B-horizon.  

3.5. Sampling approach 

Sampling strategy was aimed at estimating the content of organic carbon in 

the four ecosystems. A grid system was used when sampling topsoil so that 

geo-statistical analysis could be applied to assess spatial variation of SOC in 

the topsoil. Geo-statistical software VARIOWIN was used for spatial data 

analysis in two dimensions, and to develop variograms and spatial variation 

models. The model parameters generated with VARIOWIN were applied in 

the GSLIB software to produce location maps with a two-dimensional kriging 

procedure. Two sampling approaches were applied in this study: 

Intensive plots – for micro-scale variation assessment and  

Transects – a traditional method of soil reconnaissance. 

Two soil profiles were opened in each plot. In each profile a maximum of 10 

samples were collected, depending on the depth of the profile. Samples were 

taken at 5, 10, 15, 20, 30, 40, 50, 60, 75 and 100 cm depth. These sampling 

depths were strategically done at different depths in order to assess SOC 

variation pattern with an assumption that SOC variation is very high in the top 

20 cm, hence 5 cm depth increments, gradually decreases between 20 cm 

and 60 cm (10 cm increments), and is low at depths below 60 cm (15 cm and 

25 cm increments). In total four profiles were opened within each ecosystem. 

The profiles were aimed at assessing vertical distribution and variation of 

SOC.  The dominant soil types and their main characteristics described in the 
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field are summarized for all four ecosystems in Table 3.1. Soil texture was 

determined by the pipette method and results were statistically analyzed using 

STATISTICA 6.0 

3.5.1. Intensive sampling plots 

Eight 1-ha plots (two per ecosystem) were sampled in grasslands, indigenous 

forests, wetlands and plantations. Surface (0 – 7 cm deep) samples were 

collected on a 20 m grid with bulk density (Db) core auger in each sampling 

plot. A total of 25 surface samples were collected in each plot. The intensive 

sampling approach was aimed at assessing amount, spatial variation and 

distribution of surface (0 – 7 cm) SOC in different ecosystems in short 

distances between the sampled points. Spatial analysis was done using 

kriging in different directions. 

3.5.2. Transects  

Five transects were made, two in indigenous forests and three in pine 

plantations. One transect was made in indigenous forests adjacent to 

compartment F1 and the second transect in forests adjacent to compartment 

G7a. Spatial analysis in transects was possible only in one direction. The first 

transect in pine plantations was made across compartments F23 and F21c, 

the second transect in compartment G7a and the third was made in 

compartment F1. 

Only the topsoil (0 – 7 cm deep) was sampled with Db core auger in all five 

transects, with 20 m distance between sampled points. Transects were 

sampled from the middle slopes to foot slope. The upper slopes were very 

steep and inaccessible for sampling. Transect sampling was aimed at 
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assessing the effect of topography and aspect on spatial variation and 

distribution of SOC down the slope and to complement the intensive sampling 

approach by increasing the number of surface samples and the distance of 

sampling to estimate long-distance variation. 

 

3.6. Model approach 

Two approaches were used in generating the estimation model equations for 

carbon stocks. The first approach was the average model that was generated 

by averaging observed SOC content values of all profiles in each ecosystem. 

This model only estimates the average SOC content in each soil depth and as 

a function of soil depth (d). Because the average model only used soil depth 

to estimate SOC in different soil depths and the topsoil SOC is an average 

value throughout the ecosystem, it failed to capture the spatial variation in the 

topsoil. With this approach, it implies that vertical distribution of SOC 

throughout the ecosystem is the same. 

The second approach was the normalization of averaged observed SOC 

content values of all profiles in each ecosystem. Normalization is done by 

dividing average observed SOC content values of all profiles in each soil 

depth by the observed SOC content value (Cs) of the topmost sample of that 

profile. Normalization approach was necessary to include spatial variation in 

the topsoil SOC in the model. This model uses both topsoil SOC and soil 

depth as estimating factors.   

Samples were analyzed for pH in water and KCl (1:2.5); organic carbon by the 

colometric method (Baker, 1976) and soil bulk density using bulk density core 
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auger (389cm3) (Detailed methods are given in Appendix A.1, A.2 and A.3) 

and soil texture using the pipette method. Soil structure, consistency, litter 

layer thickness, moisture status, stones, roots, and soil colour were recorded 

in the field. 
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Pine Plantation
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Grasslands
C =Cs(-1.50+exp(0.967-0.657))*d
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Wetlands
C=Cs(0.104+exp(0.225-3.98))*d
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4. Results and Discussion 

4.1. Vertical distribution of SOC 

Soil organic carbon content decreased with increasing soil depth in all 

ecosystems (Figure 4.1). The relationship was more evident under pine 

plantations and less evident in grasslands.  The raw data for the properties 

plotted in this and subsequent figures are presented in appendix B. 

 

Figure 4.1. SOC relative to that in the surface as a function of soil 
depth for all four ecosystems  
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Arrouays and Pelissier (1994) found a similar relationship in humic loamy 

temperate forest soils of France, where SOC content declined progressively 

with depth over the entire profile.  

 The relationship between soil organic carbon content and soil depth in all 

ecosystems was best fitted by an exponential function. The relationship was 

weaker in grasslands than the other ecosystems with an r2 value of 0.7. The 

graph looks like a linear function; however, the linear relationship was poorer 

than the exponential relationship.  

Indigenous forests 

Under indigenous forests profiles 1, 3 and 4, the r2 values were equal to 0.8 

and profile 2 had an r2 of 0.25 due to low SOC in the topsoil. The SOC content 

distribution pattern is determined by organic carbon sources and interactive 

processes linking pedosphere with atmosphere, biosphere, hydrosphere and 

lithosphere as illustrated in Figure 2.2. SOC content distribution from the 

topsoil to deep layers of the pedosphere is through leaching and ground water 

recharge (Lal et al., 1998). The two processes carry low amounts of SOC to 

deep soil layers especially in clayey subsoils and high SOC content is 

recycled by soil fauna and flora on the top layers of the soil profile. The less 

permeable subsoil restricts plant root penetration and limits soil fauna 

activities to the upper layers of the soil profile. 

Profile 2 in indigenous forest had a low amount of SOC content in the topsoil 

(0 - 7 cm depth). No specific factor was identified or observed in the field that 

might have resulted in such SOC spatial variation. However, several factors 

such as soil compaction, pedoturbation and wind throw can be possible 
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causes of the SOC hiatus found in profile 2. Some studies highlighted the 

impact of these factors on SOC vertical distribution. 

Brevik et al (2002) found a significant decrease in SOC content in compacted 

soil. A compacted soil layer altered the soil carbon pool by limiting additions of 

organic matter to the soil, therefore limiting vegetative production. However, 

soil compaction in protected indigenous forests like in Woodbush, rarely 

occurs because of limited human activities in the forests. 

 Pedoturbation is possibly the most influential factor for the low amounts of 

SOC observed in profile 2. Wild animals like bushbuck and wild or bush pigs 

are found in Woodbush and have a distinct burrowing impact on soil cover as 

they dig for roots and in the process disturb the natural sequence of soil 

layers. They can dig out large quantities of low SOC subsoil and bring it to the 

top. A large quantity of earthworms was observed in soils under indigenous 

forests but they were not counted or recorded. Earthworms can significantly 

alter the spatial distribution of SOC where they occur in large numbers. 

Earthworms were found to have significantly increased average soil organic 

carbon content and also changed spatial distribution from uniform to patchy 

(Shuster et al., 2001). Lal et al (1998) found that pedoturbation played a role 

in redistribution of SOC and that resulted in spatial variation of SOC.  

An average value of SOC content was calculated for every soil depth from a 

combined data set of three profiles (Appendix B5) under indigenous forests 

and used to develop a general estimating equation (4.1).  Profile 2 was not 

included in the data set used to develop equation 4.1 because of the poor 

relationship between SOC content and soil depth. The general estimating 

equation (4.1) had an r2 value of 0.92.  
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Indigenous Forest
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    C = (1.12+exp -2.11)*d (4.1) 

Where C is the average SOC content and d is soil depth. 

The same data set was normalized (Figure 4.2) and an average value of SOC 

content was calculated for every soil depth and used to develop a normalized 

prediction equation that is a function of soil depth and SOC content in the 

topsoil (7 cm depth).  

 

Figure 4.2. SOC distribution under indigenous forests 

 

The general equation (4.2) had an r2 value of 0.92.  
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C = Cs(0.20+exp -4.3)*d (4.2) 

An analysis was done to assess the accuracy of the estimating equation for 

indigenous forests. A graph of residuals against depth was made. The 

estimation equation can be applied to a maximum depth of 100 cm. The 

estimated values can be high by at most 6% or low by at most 9% than the 

actual SOC content. 

 

Pine plantations 

An exponential relationship between SOC content and soil depth was found 

under pine plantations. Profiles 1, 2 and 3 had r2 values of 0.8 and profile 4 

had an r2 value of 0.6. The SOC distribution pattern in plantation profiles is 

summarized in Figure 4.3.  

The relationship found was attributed to the low spatial variation of SOC 

content in pine plantations. The low spatial variation of SOC content in 

plantations might have resulted from less species diversity, uniform soil type 

and uniform terrain slope. In each plantation compartment, only one species is 

planted and litter quality is likely to be the same throughout the compartment.  

The selected compartment (G7a) was on a convex slope and it was planted to 

Pinus taeda.  Soil organic carbon distribution is a function of species diversity, 

species type, environment variation, moisture regime and soil type. If all 

factors are the same throughout the compartment, the rate of litter production 

and decomposition is likely to be the same. This results in a uniform spatial 

distribution of SOC content (Obbágy, 2000).  
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Pine Plantation
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Figure 4.3. SOC distribution under pine plantations 

SOC distribution variability also resulted from the ratio of above ground 

biomass production to below ground biomass production of species. The SOC 

accumulation under tree plantations is species-dependent as some species 

produce and accumulate more litter or roots than others. These differential 

rates of organic matter production eventually influence SOC stocks (Lugo and 

Brown, 1993). In at least for two plantation species, pines and mahogany, the 

rate of root production is lower, and the rate of litter production is higher than 

that of secondary forests of similar age growing in similar climatic and edaphic 

conditions at locations with similar land use history (Lugo and Brown, 1993). 

The amount of organic matter in the form of litter layer under pine plantations 

could be the larger source of SOC than roots.  
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The high amount of fine roots in the topsoil contributes to SOC content in the 

topsoil. A high level of fine roots is usually found in the top layers (0 – 10 cm) 

of the soil where there is a high level of plant nutrients (Gautam et al., 2002). 

Dames et al (2002) found large nutrient reserves within the litter layer and a 

predominance of feeder roots distributed within the layer. The short lifespan of 

fine roots, which on average is 166 days (King at al., 2002), contributed to the 

high amount of SOC found in topsoil layers (0 – 10 cm). The fine roots form 

the initial component of SOC, which is plant litter and when they die back, 

they contribute to dynamic SOC (Janzen et al., 1998). 

There might be less mixing of organic matter with mineral soil under pine 

plantations compared to soil under indigenous forests. This could be due to 

lower root production and low soil organisms in plantations. Thus, litter 

accumulates on the surface and takes longer to be incorporated into mineral 

soil. 

An average value of SOC content was calculated for every soil depth from the 

combined data set of three profiles under plantations and used to develop a 

general equation (4.3), which had an r2 value of 0.9. Profile 4 was not included 

in the data set because of a poor relationship between soil organic carbon 

content and soil depth, compared to the other three profiles. 

              C = (0.52+exp -11.7)*d 4.3 

The same data set was normalized and an average value of SOC content was 

calculated for every soil depth and used to develop a normalized prediction 

equation (4.4), which is a function of soil depth and average SOC in the 
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topsoil (7 cm depth). The normalized estimation equation (4.4) had an r2 value 

of 0.9.  

C = Cs (0.24+exp -12.35)*d  (4.4) 

The estimated values can be higher than the actual value by more than at 

most 7% or less than the actual value by at most 16%. 

 

Grasslands 

Under grasslands, high spatial variation was found compared to under 

indigenous forests, plantations and wetlands. In profile 3 and 4 an exponential 

function best fitted the relationship between SOC and soil depth, while in 

profile 1 a linear function fitted best when excluding point C3 on the basis that 

it is an outlier. Profiles 3 and 4 had r2 values of 0.81 and 0.64 respectively. 

Profiles 2 had very few data points to draw a sound conclusion on the type of 

relationship that exists between SOC and soil depth due to the shallow soil 

depth and high volume of stones. 

 The high variation in organic carbon distribution in grasslands was attributed 

largely to terrain, stoniness, slope shape, shallow soil depth and regular 

disturbance of vegetation through annual burning. Pennock et al (2002) found 

that below-ground biomass in grasslands increased down the slope. The 

upper level and convex shoulder elements had the lowest below-ground 

biomass, while low elevation level and high catchments – area foot slope 

elements had the highest below-ground biomass. Hoa et al (2002) found a 

higher SOC pool at lower slope position than at middle and upper positions. A 

high volume of stones reduced aggregate stability because of the reduced 
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amount of clay in the soil. Dominy et al (2002) attributed the high organic 

matter content and aggregate stability maintained in Hutton soil sites mainly to 

clay content that was 68% as compared to 18% in Glenrosa soil (water 

holding capacity). The relationship between SOC and soil depth under 

grasslands is shown in Figure 4.4. 

Grasslands
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 Figure 4.4. SOC distribution under grasslands 

 

It should be noted that the grasslands in this study were not on Glenrosa soils, 

but the stones could have reduced water holding capacity. Annual burning of 

grasslands also affected amounts and distribution of SOC. Krishnaswamy and 

Richter (2002) found that reduced SOC was statistically associated with 
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changes in the percentage of water–stable aggregates, which were affected 

by burning. 

An average value of SOC content was calculated for every soil depth from 

combined data set of three profiles under grasslands and used to derive a 

general estimating equation (4.5).  

               C = (-2.28+exp 0.72)*d 4.5 

Profile 3 and 4 were used to develop the general equation because they 

showed less SOC spatial variation and the exponential relationship between 

SOC and soil depth in these profiles was found in both plantations and 

indigenous forests. The general estimating equation (4.5) in grasslands had 

an r2 value of 0.77.  

The same data set was normalized and an average value of SOC content was 

calculated for every soil depth and used to develop a normalized prediction 

equation that is a function of both soil depth and SOC values in the topsoil (7 

cm depth). The normalized estimation equation (4.6) had an r2 value of 0.77 

C = Cs (1.50+exp 0.31)*d (4.6) 

 

Wetlands 

Under wetlands, all profiles showed an exponential relationship between SOC 

and soil depth (Figure 4.5). All profiles had r2 values of more than 0.8. The 

SOC distribution was similar to that found in indigenous forests, plantations 

and grasslands profiles. Brettar and Höfle (2002) found an exponential 

distribution of SOC in the upper Rhine floodplains of France. Several factors 
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that influenced SOC distribution in wetlands are: water, soil fauna activities, 

litter decomposition rate and below-ground biomass. SOC dissolved in water 

is redistributed to deeper soil layers (Lal et al., 1998). Soil fauna influences 

the rate of decomposition and is sensitive to the type of organic matter inputs.   

Wetlands
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 Figure 4.5. SOC distribution under wetlands 

 Organic matter that is less favorable to soil fauna remains undecomposed for 

long periods. Favorable organic material like leaves provide the most bio – 

available source of carbon to soil fauna, while bark may be more important as 

a habitat for invertebrates and other fauna (Francis and Sheldon, 2002). 

A decrease in litter decomposition rate results in high level of SOC. Kelley and 

Jack (2002) compared decomposition rates of litter in submerged and dry 

sites and found that total mass and carbon declined more rapidly in fully 
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submerged sites than in dry sites. Kelly and Jack’s findings explain why there 

is a decrease in SOC content as the soil depth and moisture content increase.  

The difference in decomposition rate results in high SOC content in the drier 

topsoil. Contrary to Kelly and Jack’s findings, Clawson et al (2002) found 

below-ground biomass is greater in the somewhat poorly drained than in the 

intermediate and well-drained soils. 

An average value of SOC content was calculated for every soil depth from a 

combined data set of all four profiles under wetlands and used to develop a 

general equation (4.7), which had an r2 value of 0.79.  

            C =(0.403+exp -2.41)*d (4.7) 

The same data set was normalized and an average value of SOC % was 

calculated for every soil depth and used to develop a normalized prediction 

equation (4.8) that is a function of both soil depth and SOC values in the 

topsoil. The normalized estimation equation (4.8) had an r2 value of 0.79. 

C = Cs (0.104+exp -3.75)*d (4.8) 

 

SOC data for all ecosystems were statistically analyzed and the SOC means 

of all ecosystems are tabled in Table 4.1. They were analyzed statistically for 

differences between ecosystems. There was no significant difference in SOC 

mean at 7 cm depth between plantations and grasslands. This suggest that 

although grasslands experience annual burning, the rate at which SOC build 

up is much faster than in plantations or alternatively the fire does not have a 

huge effect on SOC. The annual burning of grass affected the builds up of soil 

organic carbon in grasslands to such an extent that it was comparable to SOC 
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under plantations.  Grasslands generally store organic carbon faster than 

plantations due to their intensive root system, however, the annual burning 

interrupt normal growth. 

 

Table 4.1. Mean SOC % in all ecosystems and standard deviations 
 

Indigenous 
Forests 

Plantations Wetlands Grasslands 

SOC StDev SOC StDev SOC StDev SOC StDev 

0 –5 4.47 1.37 1.82 1.21 3.85 0.69 1.95 0.51 

5 – 10 4.67 1.02 1.17 0.32 3.89 1.08 1.74 0.66 

10 – 15 4.53 0.57 0.87 0.27 3.08 0.39 2.16 1.23 

15 – 20 3.36 0.85 0.74 0.27 3.60 0.75 1.47 0.47 

20 – 30 2.36 0.40 0.62 0.27 2.00 1.04 0.97 0.29 

30 – 40 1.71 0.57 0.59 0.23 0.38 0.24 1.18 0.30 

40 – 50 1.94 0.48 0.54 0.27 0.27 0.11 0.74 --- 

50 – 60 1.62 0.42 0.44 0.33 0.71 0.93   

60 – 75 1.61 0.70 0.56 0.34 1.76 2.43   

75 – 100 1.29 0.36 0.44 0.64 0.37 0.38   

There was no significant difference in SOC mean at 0 – 7 cm depth between 

indigenous forests and wetlands. The reason why there is no significant 

difference in SOC between indigenous forests and wetlands at the surface is 

not known. One would suspect a difference in decomposition rate between the 

two ecosystems. Organic matter in wetlands always has enough moisture 

conducive to rapid decomposition by soil organisms than in indigenous 

forests, therefore restricting SOC build up in the topsoil. The means of 

indigenous forests and wetlands means were significantly different from those 

of plantations and grasslands at 0 – 7 cm soil depth. The SOC mean was 
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significantly higher under indigenous forests than under all other ecosystems 

at 50 – 100 cm depth interval. This difference could be the result of higher soil 

fauna activity in indigenous forests than in the other three ecosystems. Their 

ability to carry organic material to deeper horizons and to mix soil redistributed 

organic carbon. The high moisture content in deep horizon in wetlands 

restricted the movement of soil fauna and plant roots to the top layers. 

Redistribution of SOC in grassland was restricted by a high volume of stones, 

which might have also restricted root growth to deeper horizons. 

 Table 4.2 gives a summary of estimating equations for SOC content using the 

normalized approach and r2 in each ecosystem. SOC content is estimated as 

a function of soil depth (d) measured in meters and SOC content (%) in the 

topsoil (Cs).  

 

Table 4.2. Exponential equations for SOC estimation and R2 values 
 

Ecosystem SOC % estimation equation R2 Equation no. 

Forests  C =Cs*(0.25+exp -4.3)*d 0.92 4.2 

Plantations C =Cs*(0.28+exp -12.35)*d 0.98 4.4 

Grasslands C=Cs*(1.50+exp 0.31)*d 0.77 4.6 

Wetlands C =Cs*(0.10+exp -3.75)*d 0.79 4.8 

 

4.2. SOC content and Soil bulk density (Db) 

Very low soil bulk density values were measured at the soil surface in all 

ecosystems. This was due to the abundance of tree roots (a mat in indigenous 

forest) and stones that were removed before measuring the total mass. Roots 

were removed from the bulk sample for SOC analysis, and thus, their 
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influence is not reflected in the SOC content values. Soil bulk density 

increased with soil depth in all ecosystems (Figure 4.5). Vertical distribution of 

bulk density was similar under indigenous forests, plantations and wetlands 

where soil depth was more than 100cm, while grasslands showed high 

variation.  

The relationship between bulk density and soil depth in all ecosystems was 

best fitted with a logarithmic curve. Soil bulk density was affected mainly by 

soil texture, especially the clay content, and soil organic carbon content. Bulk 

density increased with clay content in all ecosystems while soil organic carbon 

decreased. Low bulk density is associated with high organic carbon content 

(Figure 4.6) and the relationship was best fitted by an exponential function.  

The SOC content seemed to have more influence on bulk density in the 

topsoil, while clay content was a major influence in the subsoil.  

Under indigenous forests, soil bulk density distribution with soil depth showed 

very strong correlation in profiles 1 (r2 = 0.94), 2 (r2 = 0.91), 4 (r2 = 0.92), and 

less strong in profile 3 (r2 = 0.86). The overall logarithm function (4.9) used to 

estimate soil bulk density under indigenous forests had an r2 = 0.93. 

Db = 0.42Ln(d) + 1.59 (4.9) 
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Figure 4.6. Relationship between bulk density and soil organic 
carbon content 

Soil bulk density had a stronger relationship with SOC content than soil pH. 

This relationship is shown by high regression coefficient values for the three 

profiles under indigenous forests except in profile 2, which was affected by 

pedoturbation.  The relationship was best fitted by an exponential function. 

Regression coefficient values for the individual profiles are higher than 

regression coefficient values for the overall generalized prediction equation. 
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Soil bulk density distribution with soil depth under pine plantations showed 

very strong correlation in all profiles, profile 1 (r2 = 0.97), 2 (r2 = 0.96), 3 (r2 = 

0.98), and profile 4 (r2 = 0.97). The overall logarithm function (4.11) used to 

estimate soil bulk density under pine plantations had an r2 = 0.99. 

Db = 0.4Ln(d)+1.99 (4.11) 

All profiles showed a strong exponential relationship between bulk density and 

SOC content. Profiles 1 and 4 also showed a strong exponential relationship, 

with r2 values of 0.92 and 0.7 respectively, while profile 2 and 3 had an r2 

value of 0.96. An average value of Db was calculated for every soil depth from 

a combined data set of all four profiles under pine plantations and was used to 

develop a general equation (4.12). 

Db = (0.7+exp -1.0)*C (4.12) 

Soil bulk density distribution with soil depth under grasslands showed very 

strong correlation in all profiles, profile 1 (r2 = 0.99), 2 (r2 = 0.99), 3 (r2 = 0.86), 

and profile 4 (r2 = 0.84). The overall logarithm function (equation 4.13) used to 

estimate soil bulk density under grasslands had an r2 = 0.86. 

Db = 0.48Ln(d)+1.79 (4.13) 

There was a very poor exponential relationship between bulk density and 

SOC content in profile 1 and the r2 value of 0.03, and a moderate linear 

relationship in profile 2 with an r2 value of 0.65 in grasslands. A strong 

relationship was found in profile 3 with an r2 value of 0.8 and a moderate one 

in profile 4 with an r2 value of 0.7. An average value of Db was calculated for 
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every soil depth from a combined data set of all four profiles under grasslands 

and used to develop a general equation (4.14). 

Db = (0.43+exp -0.17)*C (4.14) 

The source of variation in estimating the Db in grasslands was determination 

of soil volume (estimation of Db in appendix A.1). Although the same Db 

estimation method was applied to all ecosystems, grasslands were more 

affected because of large volumes of stones. It was difficult to sample properly 

in grasslands because the core auger could not easily cut through the stones 

and clods. Stones easily fell out of the core auger, which created a big error.  

The soil volume was determined by subtracting stone volume from total strata 

volume and the bulk density was estimated using soil texture. Huntington et al 

(1989) found that the greatest source of variation in estimating Db by the pit 

method was in the determination of soil volume as is estimated by subtracting 

rock volume from total strata volume. The method of estimating Db by 

subtracting rock volume from total strata volume creates high calculation 

error. A sensitivity analysis by Huntington et al (1889) demonstrated that as 

rock volume increased the potential error in calculation of Db associated with 

errors in estimation of rock volume increased rapidly. The error that 

underestimated rock volume resulted in proportionately larger errors in the 

calculation of Db than overestimation of the same magnitude (Huntington et 

al., 1889). Rawls (1983) showed that soil textural classes and organic carbon 

could be used to predict soil bulk density. The relationship among C, organic 

matter, Db and soil depth were frequently used for estimating soil C pools 

(Huntington et al., 1989). 
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Soil bulk density distribution with soil depth under wetlands showed very 

strong correlation in all profiles, profile 1 (r2 = 0.97), 2 (r2 = 0.95), 3 (r2 = 0.97), 

and profile 4 (r2 = 0.96). The overall logarithm function (4.15) used to estimate 

soil bulk density under wetlands had an r2 = 0.96. 

Db = 0.42Ln(d)+1.46 (4.15) 

An exponential relationship between bulk density and SOC content was found 

in profile 1, 3 and 4 with r2 values of 0.74, 0.7 and 0.72 respectively. In profile 

2, however, a weak exponential relationship with an r2 value of 0.2 was found. 

An average value of Db was calculated for every soil depth from a combined 

data set of all four profiles under wetlands and used to develop a general 

equation (4.16). 

Db = (-4.2+exp 1.7)*C (4.16) 

 

4.3. Soil organic C content and soil pH 

SOC content increased with a decrease in soil pH in all ecosystems (Figure 

4.7). In every ecosystem, there were one or two profiles that showed a strong 

or moderate relationship between SOC content and soil pH.  

Under indigenous forests, profile 3 showed a strong linear relationship 

between SOC content and soil pH with an r2 value of 0.8, while a moderate 

linear relationship was found in profile 4 with an r2 value of 0.6. A very weak 

linear relationship was found in profile 2 and no relationship was found in 

profile 1.  
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Soil pH distribution was attributed to organic matter content, organic matter 

quality and the amount of organic acids released during organic matter 

decomposition processes. It has been found that many of the low molecular 

weight organic acids found in soils are intermediary products of metabolism of 

plants and microorganisms (Hayes, 1991). Organic acids have more effect on 

the topsoil layers where they are initially produced from litter than in subsoil 

layers. The quality of decomposed organic matter also plays an important role 

in determining the effectiveness of organic acids produced. Humic substances 

provide overwhelming abundance of acidic functional groups (Perdue, 1985), 

and acidic polysaccharides that can make significant contributions to the acid 

functional groups (Hayes, 1991). 
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Figure 4.7. The relationship between SOC and soil pH (KCl) 

 

The relationship between SOC content and soil pH under plantations was best 

fitted by an exponential function. In profile 1 a weak relationship with an r2 – 

value of 0.4 was found, while in profiles 2 and 4 a relationship with an r – 

value of 0.6 in both profiles was found. A strong relationship was found in 

profile 3, which had an r – value of 0.9. The strong relationship between SOC 

and soil pH found especially in profile 3 was possibly due to litter quality and 

decomposition products. 
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It has been found that organic matter from pine plantations litter (pine needles 

in particular) has a tendency to be acidic and produces an acidic leachate 

(Parfitt et al., 1997; Raven et al., 1999; Sugarman, 1999). Plantations litter 

was likely to have different amounts of soluble sugars and lignin content from 

that of indigenous forests. Pine plantations litter decomposes slowly due to 

lignin content, which represents a recalcitrant fraction in soil and litter 

(Minderman, 1968; Guggenberger et al., 1995). The soil buffering capacity is 

also enhanced by high organic matter and aluminum. It was suggested by 

Sugarman (1999) that the buffering mechanism in soils under pine plantations 

is controlled by the exchangeable Al (aluminosilicate surfaces) and hydroxo-Al 

compounds because of organic matter‘s strong affinity for cation binding 

especially its bonding with Al (Brady and Weil, 1999).  Aluminum has a 

greater affinity for organic matter compared to other cations (Ross et al., 

1991). The bonding of Al to organic matter reduces the potential of basic 

cations to attach to ligand groups on the organic matter (Sugarman, 1999). 

Because of the increased buffering capacity due to Al – organo compounds 

especially in the topsoil (because of high organic matter content), pH increase 

through an increase in basic cations is likely to be higher in subsoil than in 

topsoil.  

 Under grasslands, a negative linear relationship between SOC content and 

soil pH was found. In profile 1 and 4, relationship had r2 values of 0.7 and 0.6 

respectively. In profile 2, the number of data points was not enough to draw 

any conclusion. Profile 3 had an r2 value of 0.4. 

The distribution pattern was similar to that in indigenous forests and pine 

plantations, where the topsoil had lower pH than the subsoil. Although the pH 
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range was not wide, possibly due to soil buffering mechanism and uniformly 

distributed organic carbon in the shallow profiles, the distribution pattern was 

well shown by the fitted curve (except in profile 2).  Average soil pH in 

grasslands was higher than in all ecosystems. Sugarman (1999) compared 

soil pH under grasslands and adjacent pine plantations and found similar 

results where soil pH was higher under grasslands than under pine 

plantations.  

Under wetlands, a linear relationship was found between SOC content and 

soil pH in profile 1. The r2 value in profile 1 was 0.01. In profiles 2 and 3, a 

moderate linear relationship was found and there was an r2 value of 0.6 for 

both profiles. A strong linear relationship was found in profile 4 and it had an r2 

value of 0.8. Average soil pH was lower in wetlands than in grasslands, but 

higher than in pine plantations and indigenous forests. Wetlands have the 

highest SOC per ha than the other three ecosystem and with the relationship 

between SOC and pH, one would expect wetland to be more acidic than the 

three ecosystems. This could suggest that the quality of organic matter is 

more influential in determining soil pH than the SOC amount. 

 

4.4. Statistical analysis of SOC content, Db and pH in intensive 

sampling plots 

SOC content per ha in the topsoil (0 - 7 cm) differed significantly among the 

four ecosystems (Table 4.3). Wetlands had the highest SOC content, followed 

by indigenous forests, then grasslands and pine plantations. There was also a 

high variation of organic carbon content within indigenous forests and 
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wetlands. The variation within indigenous forests was attributed to species 

diversity, which adds diversity of litter that has different decomposition rates. 

The variation in wetlands was attributed to different organic materials 

deposited by water and those from wetland vegetation. These organic 

materials have different decomposition rate due to their nature (whether it is a 

leaf or a bark), moisture content variation within wetland and organic matter 

quality (lignin content, organic acids). 

There was no difference between the means of pine plantations and 

grasslands but the variation was fractionally higher in grasslands than in pine 

plantations. Soil factors such as moisture content and soil texture and 

vegetation type played an important role in influencing the accumulation and 

variation of SOC content in the topsoil. 

Table 4.3. SOC content variation among the ecosystems 
 

Ecosystems No. Samples Sum/ha (%) Average (%) Variance Depth (cm) 

Pine plantations 46 77.2 1.7 0.3 0 - 7 

Indigenous 

forests 

46 137.4 3.0 0.9 0 - 7 

Grasslands 46 81.4 1.7 0.4 0 - 7 

Wetlands 46 166.2 3.6 1.2 0 - 7 
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Source of Variation SS Df MS F P-value F crit 

Among Ecosystems 123.5 3 41.2 58.2 2.36E-26 2.65 

Within Ecosystems 127.3 180 0.7 

Total 250.9 183  

 

 

The soil bulk density (Db) at the surface differed significantly among the four 

ecosystems (Table 4.4). Pine plantations had the highest Db, followed by 

grasslands and then indigenous forests, while the lowest Db was found in 

wetlands. The high soil bulk density correlates well with low soil organic 

carbon in both pine plantations and grasslands as both ecosystems have an 

average SOC content of 1.7%. On other hand, low soil bulk density values in 

indigenous forests and wetlands correlated well with the relatively high values 

of soil organic carbon content in the same ecosystems. 

Table 4.4. Soil bulk density (g/cm3) variation among the ecosystems and 
within each ecosystem 
 
Ecosystems No. Samples Sum Average Variance Soil depth 

(cm) 
Pine plantations 46.0 32.67 0.71 0.04 0 - 7 
Indigenous forests 46.0 20.04 0.44 0.01 0 - 7 
Grasslands 46.0 27.66 0.60 0.01 0 - 7 
Wetlands  46.0 16.43 0.36 0.00 0 - 7 
 
Source of Variation SS df MS F P-value F crit 
Among Ecosystems 3.5 3 1.17 85.58 1.87444E-34 2.65 
Within Ecosystems 2.5 180 0.01    
Total 6.0 183     
 

Unlike soil organic carbon content, there was little Db variation within each 

ecosystem. This low variation was attributed largely to soil clay content.  
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There was a significant soil pH difference between the ecosystems. 

Grasslands had the highest soil pH followed by wetlands and pine plantations 

and indigenous forest had the lowest soil pH (Table 4.5). There was little soil 

pH variation within pine plantations due the relatively similar type of vegetation 

and plant litter that is deposited on the surface, which is the source of organic 

acids influencing soil pH at the topsoil. 

Table 4.5. Soil pH (KCl) variation among the ecosystems and within each 
ecosystem 
 
Ecosystems No. Samples  Average Variance Soil depth 

(cm) 
Pine Plantations 46.0  4.73 0.06 0 - 7 
Indigenous Forests 46.0  4.44 0.29 0 - 7 
Grasslands 46.0  5.42 0.20 0 - 7 
Wetlands 46.0  5.23 0.14 0 - 7 

      
Source of 
Variation 

SS Df MS F P-value F crit 

Among 
Ecosystems 

28.1 3 9.38 54.73 3.42E-25 2.65 

Within Ecosystems 30.8 180 0.17    
Total 59.0 183     
 

The highest soil pH variation within the ecosystem was found in indigenous 

forests and grasslands. This is likely to be the result of vegetation diversity 

within each ecosystem, which deposits litter that adds a variety of organic 

acids to the soil.  

Organic carbon content in surface (0 - 7 cm) samples of all ecosystems 

showed a poor correlation with soil pH and soil bulk density. However, there 

was a clear correlation between ecosystem and Db, and ecosystem and soil 

pH. Soils under plantations were more acidic, followed by soils under 

indigenous forests and grasslands and the wetlands (Table 4.5). Higher soil 
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bulk density values were found in plantations, by followed indigenous forests 

and grasslands. 

4.5. Geo-statistical modelling of SOC distribution on the surface 

(7cm) 

A geo-statistical approach was applied aimed at developing spatial models to 

reduce the number of samples to be collected, but still providing results that 

can be achieved by intensive sampling strategy. Variograms were developed 

from the data set of carbon content in topsoil (0 – 7 cm), samples using 

Variowin (Yvan Pannatier, 1996). 

 The model used for developing variograms in all ecosystems was spherical. 

The indigenous forests model was derived from omni directional variograms 

(angular tolerance = 90º) illustrated in Figure 4.8. 

(a). Direction 90°                                                         (b). Direction 0° 

Figure 4.8. Indigenous forests variograms 

The model range was about 74 m along the drainage line or stream (East-

West, 0º direction) and 46 m across the drainage line (North-South, 90º). This 

meant that two sampled points that were more than 74 m apart along the 
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stream were spatially independent and there was high variation, such that 

SOC from the two sampled points was likely to be significantly different, while 

two sampled points within the range had a relatively low variation such that 

the difference was likely to be insignificant. In simple terms, when collecting 

samples along the stream (0º direction) in indigenous forests, it was 

necessary to collect a sample in every 74 m at most. In indigenous forests, 

there was a very strong directional distribution pattern of SOC. 

 The model range for pine plantations was 65 m at direction 75º with an 

angular tolerance of 25º, and 47 m at direction 165º with angular tolerance of 

50º (Figure 4.9). 

 

Figure 4.9. Pine plantations variograms 

 

This meant that under plantations SOC content of two samples that are more 

than 65 m apart in the 75º direction and more than 47 m apart in the direction 

perpendicular to 75º were likely to be significantly different. 
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The grasslands had a much lower range than indigenous forests and pine 

plantations. With a model range of 31 m at direction 0º, and 24 m at direction 

140º (Figure 4.10), grasslands showed a higher spatial variation than any 

other ecosystem. When sampling in grasslands, it was necessary to collect a 

sample every 31 m in the direction parallel to the stream and 24 m in the 

direction crossing the stream. This implies that more samples will be required 

in grasslands than in plantations and indigenous forests per ha to get a good 

representative batch of samples for SOC estimation purposes.  

(a). Direction 0°                                                                   (b) Direction 140° 

Figure 4.10. Grasslands variograms 

 

The wetlands had a model range of 45 m along the river (at direction 90º) and 

a range of 38 m across the river at direction 0º (Figure 4.11). There was, 

however, a slight directional impact towards the river because of increasing 

moisture content. 
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 The model range (distance between two sampling points) can only be applied 

in one direction. A change in direction will require a different model range 

because the slope changes and that will result in a different SOC distribution 

pattern. 

 

(a). Direction 90°                                                         (b). Direction 0° 

Figure 4.11. Wetlands variograms 

 

The value of the model range depends on spatial variation of SOC within the 

ecosystem. This spatial variation of organic carbon results from the factors 

influencing the organic carbon content, like slope, root distribution and 

vegetation type, soil type etc. However, there is a limitation in the model. The 

model range cannot be longer than the longest distance between two 

sampled points that were used in developing the estimation model.  

This means that if the intensive sampling plot used to develop the variogram 

from which the model is developed was 100 m2, the model range can’t be 

more than 100 m. The angular tolerance defines the width with which the 
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interpolation is applied in order to include or exclude points in the 

interpolation. For example, if the angular tolerance is set at 25º, the maximum 

number of points for interpolation is eight and only six points are covered by 

the angle, and the interpolation will include only six points covered by the 

angle despite the maximum number of points being eight. 

The difference between the model ranges in the two directions in pine 

plantations was small compared to that of indigenous forests indicating a 

more uniform (less variation) SOC distribution in pine plantations.  

Figure 4.12 shows SOC spatial variation within each ecosystem in an area of 

50 m2. This variation resulted from different site characteristics such as slope, 

species diversity and soil type. 
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Figure 4.12. Spatial distribution of SOC content in the topsoil 

Organic carbon distribution under indigenous forests, pine plantations and 

grasslands was strongly directionally orientated. Soil organic carbon 

distribution was correlated to soil moisture patterns and this was reflected by 

high organic carbon content found in areas with high moisture content. High 

spatial variance was found in grasslands, followed by wetlands, indigenous 

forests and plantations. Low spatial variability in plantations was attributed to 

human activities and their influence on species diversity and distribution. Soil 

carbon variability is greater in less disturbed than in more disturbed soils 

(Conant et al., 2003). Several different factors contributed to the spatial 

variance found in all ecosystems. 
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The high spatial variation found in grasslands was attributed to stones (their 

effect on Db), slope and soil moisture. Wang et al (2002) found that spatially 

structured variance (variance due to the location of sampling site) accounted 

for a large proportion of the value variance for elevation (99%), Db (90%), 

SOC (68%), aspect (56%) and soil moisture (44%). The short model range of 

31 m at 140º and 24 m at 40º found in grasslands is an indication of high 

spatial variability and discontinuity of SOC distribution. Yanai et al (2002) 

found that the ranges of spatial dependence were approximately 20 – 30 m for 

total C, total N and exchangeable Na.  

Comparison between plots showed that the highest values were observed in 

wetlands, followed by indigenous forests, where high values occurred more in 

moister areas than in topographic depressions. Midslopes had less moisture 

content and SOC in topsoil than foot slopes. The moisture content and SOC 

increased towards river terraces. The distribution pattern was more 

pronounced under indigenous forests than in pine plantations. Plots in 

indigenous forests with low SOC fell in a moderate slope, while relatively high 

SOC was mainly in a gentle slope (Table 4.6). 

  

Table 4.6. Slope classes from the FSD guidelines version 1.2 
 
Class Percent Description 
1 0 – 12 Level 
2 13 – 20 Gentle 
3 21 – 35 Moderate 
4 35 – 50 Steep 
5 > 50 Very steep 
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Although all indigenous forests profiles were relatively deep, shallow soils 

found in ridges and convex slopes had low SOC and low moisture content. 

SOC under pine plantations was spatially uniform; and no major directional 

patterns were observed in the selected sites, probably because of the uniform 

slope, less species diversity and uniform moisture content. The sampled 

compartment G7a had a gentle slope and the soil type was relatively uniform, 

mainly Inanda 1200 soil families. 

A high SOC content under grasslands was observed only in small patches of 

grass between drainage lines. In general, SOC within the grass tufts was high.  

Wetlands showed a spatial variation in SOC distribution and a directional SOC 

distribution pattern.  The slope found in wetlands was class 1 (0 - 12%), with a 

small slope gradient towards the Dap Nuade Dam, which resulted in a 

directional moisture and SOC distribution pattern. There was a generally high 

SOC content in wetter sites as indicated by reddish colours (Figure 4.12) and 

some indication of low SOC levels shown as bluish colours.  

There was a noticeable variation in organic matter distribution in wetlands. 

Near the river, there was high organic matter content that had not completely 

decomposed and away from the river, organic matter had decomposed and 

homogenously mixed with mineral soil. There were more species with broad 

leaves and vigorous growth near the river, while less vigorous growth, and 

fewer broad-leafed species were found away from the river. 

Several factors might have contributed to the difference in SOC spatial 

variation between ecosystems, factors such as topography, climatic 

conditions, soil properties and soil organisms. Homann et al (1995) found that 
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SOC increased with annual temperature, annual precipitation, actual evapo-

transpiration, clay, and available water-holding capacity and decreased with 

slope angle. Lugo and Brown (1993) found that in a mature tropical forest in 

Costa Rica, variability and upper limit in SOC increased with increasing water 

availability. 

Organic matter in upper slopes was likely to be eroded by water down to the 

river terrace. Depending on the steepness of the slope and the amount of 

vegetation cover on the soil, varying amounts of organic matter may be 

gradually deposited down the slope. The areas with gentle slopes had high 

organic carbon content because of higher soil moisture content. The slope 

gradient causes a shift in organic carbon content from steep slope areas to 

gentler slope areas, the same way moisture content is distributed.  

Results from the study of Weaver et al (1987; in Lugo and Brown, 1993) 

concerning spatial distribution of SOM with landforms and percent slopes 

showed different accumulation of soil organic matter in different landforms and 

slopes. Middle slopes had higher organic matter content than ridges and 

convex slopes as well as concave slopes and bottoms. Slopes of 0 –25% had 

higher soil organic matter than 26 – 45% and > 45% slopes.  

The diversity of species constituting each ecosystem also affected the 

distribution pattern as the decomposition rate of litter from different species 

and root distribution varied. SOC distribution variability also resulted from the 

ratio of above ground biomass production to below ground biomass 

production of species. The SOC accumulation in tree plantations is species-

dependent as some species produced and accumulated more litter or roots 
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than others and these differential rates of organic matter production eventually 

influenced SOC stocks (Lugo and Brown, 1993). 

At least for two plantation species, pines and mahogany, the rate of root 

production was lower, and the rate of litter production was higher, than that of 

secondary forests of similar age growing in similar climatic and edaphic 

conditions at locations with similar land use history (Lugo and Brown, 1993). 

The soil types and moisture content further increased the variation of species 

within the same area, as some species are adapted to sandy soil, and the 

moisture requirement varied. With uniform slope, uniform soil type and very 

little variation in litter type deposited to the soil, there was no major variation in 

terms of distribution.  

Soil organism’s activities also influence the spatial variation of SOC. Soil 

fauna such as earthworms significantly increase average soil organic carbon 

content and also change the spatial distribution from uniform to patchy 

(Shuster et al., 2001). Pennock and Corre (2001) found that significant 

transfers of SOC and surface soil from the convex shoulder units to lower 

slope positions has occurred over the past 90 years. With the slope class 4 

(35% - 50%) in grasslands sites, water speed was high and small tracks were 

formed around and between grass tufts, eroding high amounts of organic 

matter to river terraces and lower lying areas. The slope also adversely 

affected soil depth and, as a result, three profiles in grasslands were very 

shallow, hence low organic carbon content (in terms of volume) was found. 

The slope gradient also affected species diversity through its effect on soil 

moisture distribution. As water availability increases, there is a greater 
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diversity of possible plant and geo-morphological associations, each with a 

particular SOC content (Lugo and Brown, 1993). 

SOC spatial variation in wetlands, which had model ranges of 45º at 0º and 

38º at 90º, was attributed to soil moisture and organic matter. Soil moisture 

content and organic matter quality affect the rate of decomposition. Organic 

matter components such as bark and branches decompose at a slower rate 

compared to leaves and fine roots (Francis and Sheldon, 2002). Wang et al 

(2002) found that SOC varied closely with elevation and soil moisture 

depending on the distance between samples. In indigenous forests, relatively 

less (compared to wetlands and grasslands) variability was found in the 

northern direction (0º). A drainage depression in the sampled plot was found 

along the same direction and it suggested that SOC variation was determined 

mainly by soil moisture and slope.  

The high (compared to plantations) variability in indigenous forests was 

attributed to species diversity and soil fauna activities (earthworms in 

particular). Li Xu Yong et al (2002) found that earthworm activity stimulated 

the activity of soil microorganisms, probably by enhancing organic C 

availability via processing and mixing of litter. Plantations had relatively less 

variability compared to indigenous forests. Its model ranges that were longer 

to both perpendicular directions were a good indication of this low variation. 

The less variation found in plantations was attributed to species diversity and 

relatively uniform slope that affected soil moisture gradient. Because of 

human influence on species diversity and vegetation distribution, organic 

matter and SOC were influenced in their spatial distribution. 
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4.6. GIS analysis of soil associations, elevation and slope 

SOC content and stocks were analyzed using ARCVIEW GIS. The digital map 

of Woodbush with data on soil characteristics, vegetation, roads, loading 

tracks, rivers and streams, water bodies and fire points, and contour lines was 

provided by SAFCOL. The GIS analysis was aimed at assessing the effect of 

topography, elevation, soil type, and vegetation on the accumulation and 

distribution of SOC stocks. 

 Images of SOC distribution (at depth 0 – 7 cm) that were created with GSLIB 

were geo-referenced, projected and overlaid with indigenous forests theme, 

plantations theme, wetlands theme, grasslands theme and contours to 

establish a relationship between the elevation and distribution patterns shown 

on the images (Figure 4.13).  

 

Figure 4.13. Kriged maps of SOC within the intensive sampling 
plots overlying topography and drainage lines 

Levels of SOC  

1630 m 

1570 m 
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The combined kriged map (Figure 4.13) shows spatial variation of soil organic 

carbon content with terrain change in each ecosystem.  

The images were overlaid with rivers and streams to establish a relationship 

between moisture content and SOC distribution. The highest values of SOC 

and highest degree of variation were observed in wetlands along 

watercourses, where micro drainage depressions and pools formed during 

floods in the year 2000, were important factors. 

The magnitude of this variation covered the whole spectrum from low to very 

high SOC content. The least variation was observed in plantations, where all 

trees were of the same age and SOC contribution from other species was 

minimal. In indigenous forests increased SOC was associated with drainage 

lines in the form of depression in the sampling plot. Grasslands were strongly 

affected by slope and subsequently, ESD that resulted in a high spatial 

variation. 

During sampling, the positions of the sampled points within plots, transects 

and profiles were recorded. These points were geo-referenced and projected 

to the same projection as SAFCOL data so that they can be overlaid on other 

GIS layers. Plantations, indigenous forests, grasslands, and wetlands data 

were separated from each other and themes of those vegetation types were 

created. A theme of soil types was created to determine the different types of 

soil in Woodbush and the sizes of areas they occupied. Within the soil type 

theme, themes for soils with different depths in different slopes were created 

and overlaid with each other to assess the effect of soil depth and slope 

degree on SOC distribution within each soil type in each ecosystem.  
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A grid of contours was created from the contour theme and themes of soil 

types were overlaid with the contour grid to establish a relationship between 

elevation and distribution of soil types together with soil depth. A contour grid 

was also overlaid with vegetation themes to establish a relationship between 

elevation and distribution of vegetation, although vegetation distribution was 

influenced by human activities. 

GIS provided a different analytical approach in understanding and describing 

SOC distribution patterns both vertically and horizontally. The contours theme 

showed the topology and aspect that prevails in Woodbush. The soil theme 

showed different soil types that were found in the study area (Figure 4.14) and 

their distribution throughout Woodbush. The contour grid was overlaid with 

soil types and showed a soil distribution pattern in relation to altitude.  

Most shallow (root limiting factor within 90 cm) Inanda soils were distributed at 

elevations between 1545 m and 1777 m, and on a gentle slope in the 

Northern aspect of the mountain. Deep (root limiting factor beyond 90 cm) 

Inanda soils were found mostly in lower elevation range of 967m and 1545 m 

(Figure 4.14.) on moderate slopes. Deep and shallow Inanda soils were found 

on the southern aspect.  

The deep Kranskop soils are evenly distributed and mostly found at an 

elevation range of between 1080 and 1430 m on gentle slopes, while at an 

elevation range of between 1430 and 1780 m, they were found on moderate 

slopes.
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Figure 4.14. Distribution of soil organic carbon in relation to soil 
type and soil depth in the Broederstroom River catchment 
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4.7. Analysis of SOC content, Db and soil pH in transects 

The three transects made in plantations (compartment G7a, F1 and F23/21d) 

and two transects in indigenous forests were compared to assess the 

influence of aspect and sampling method on the surface (0 – 7 cm), and the 

results of transects in plantations are presented in Table 4.7. 

Table 4.7. SOC content variation in transects through plantations 
 

Compartment Count  Average Variance   
F23/F21d  16  0.97 0.24   
G7a  16  1.10 0.22   
F1  16  0.86 0.09   

  
 
 

     

Source of Variation SS Df MS F P-value F crit 
Among Compartments 0.46 2.0 0.23 1.21 0.31 3.20 
Within Compartments 8.45 45.0 0.19    
Total 8.91 47.0     

 

The SOC content means in all three compartments were compared to assess 

the influence of aspect on spatial variation of SOC. There was no significant 

difference in surface SOC content means between transects through 

Compartment F1 and G7a. This could mean that the accumulation of SOC 

content was not significantly affected by aspect. Similar results were found 

between compartment F23/21d and compartment G7a. There was high SOC 

content variation within G7a, F23/F21d, and little variation in F1 (Table 4.7). 

Comparison of soil bulk density means was also done to assess the effect of 

aspect in the three transects made in the above-mentioned compartments. 

There was a significant difference in surface bulk density between transects 
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through compartment F1 and G7a. The difference in bulk density could be 

attributed to soil texture rather than soil organic carbon as SOC content was 

not significantly different between the two transects. There was also a 

significant difference in surface Db between transects through F23/F21d and 

G7a. Within each transect, there was little soil bulk density spatial variation 

(Table 4.8). 

 

Table 4.8. Soil bulk density (g/cm3) variation in transects through 
plantations 
 

Compartment Count  Average Variance   
F23/F21d 16  0.69 0.05   
G7a  16  0.57 0.03   
F1  16  0.78 0.02   

       
Source of Variation SS Df MS F P-value F crit 
Among 
Compartment  

0.36 2 0.18 5.28 0.01 3.20 

Within Compartment 1.51 45 0.03    
Total 1.87 47     

 

There was a significant difference in soil pH between transects through 

compartments F23/F21d and G7a. There was also significant difference in soil 

pH between transects through G7a and F1. High soil pH spatial variation was 

found in transects through G7a and F1 (Table 4.9). Soil temperature of these 

two compartments might be the main factor influencing decomposition rate 

and that can further influence the decomposition products and soil pH. 
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Table 4.9. Soil pH (KCl) variation in transects through plantations 
 

Compartment Count Average Variance   
F23/F21d 16 4.22 0.07   
G7a  16 3.68 0.11   
F1 16 4.10 0.11   

      
Source of Variation SS MS F P-value F crit 
Among Compartment 2.55 1.28 13.58 0.00 3.20 
Within Compartment 4.23 0.09    
Total 6.78     

 

Transect samples from compartment G7a were compared to surface plot 

samples (0 - 7 cm) in the same compartment to assess the effect of sampling 

methods. There was a significant difference in SOC content between 

transects and surface plot samples in compartment G7a. There was a higher 

spatial variation in transects than within plots (Table 4.10). 

 

Table 4.10. Comparisons of SOC content (%) between transect and plot 
sampling methods in pine plantations 

 
Sampling Method Count  Average Variance   

Transect 16  3.68 0.11   
Plot 16  4.68 0.04   

       
Source of Variation SS Df MS F P-value F crit 
Between Methods 7.99 1 7.99 108.30 0.00 4.17 
Within Method 2.21 30 0.07    
Total 10.20 31     

 

There was a significant difference in soil bulk density between transects and 

plots. Soil bulk density in plots is significantly higher than in transects. 

However, Db spatial variation in both sampling methods was low (Table 4.11). 
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Table 4.11. Comparisons of Db (g/cm3) between transect and plot 
sampling methods in pine plantations 
Method Count  Average Variance   
Transect 16  0.57 0.03   
Plot 16  0.78 0.02   

       
Source of Variation SS Df MS F P-value F crit 
Between Methods 0.34 1 0.34 14.19 0.00 4.17 
Within Method 0.73 30 0.02    
Total 1.07 31     

 

Soil pH in plots was significantly higher than that of transect samples. There 

was a higher soil pH spatial variation in transects than in plots (Table 4.12). 

SOC content Db and soil pH in transect samples were significantly lower than 

values found in surface plot samples. 

Table 4.12. Comparisons of soil pH (KCl) between transect and plot 
sampling methods in pine plantations 
Method Count Average Variance   
Transect 16 3.68 0.11   
Plot 16 4.68 0.04   

      
Source of 
Variation 

SS MS F P-value F crit 

Between Methods 7.99 7.99 108.30 0.00 4.17 
Within Method 2.21 0.07    
Total 10.20     

 

A comparison was done on transects made in indigenous forests on opposite 

aspects to assess the effect of aspect on SOC content. 
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Table 4.13. SOC content (%) variation in transects through indigenous 
forests 
 
Compartment Count  Average Variance   
Forest G7a 16  1.67 0.05   
Forest F1 16  1.61 0.13   

       
Source of Variation SS Df MS F P-value F crit 
Between 
Compartments 

0.03 1 0.03 0.31 0.58 4.17 

Within Compartments 2.66 30 0.09    
Total 2.69 31     

 

There was no significant difference in SOC content between transect samples 

collected in indigenous forests adjacent to compartment F1 and transect 

samples collected in indigenous forests adjacent to compartment G7a. 

Therefore, southern and northern aspects in this case did not have a 

significant effect on the accumulation of SOC. There was a higher spatial 

variation in transects adjacent to compartment G7a than in transect adjacent 

to compartment F1.  

Table 4.14. Soil bulk density (g/cm3) variation in transects in indigenous 
forests 

Compartment Count  Average Variance   
Forests G7a 16  0.41 0.01   
Forests F1 16  0.47 0.01   

       
Source of Variation SS df MS F P-value F crit 

Between 
Compartments 

0.03 1 0.03 3.60 0.07 4.17 

Within Compartments 0.21 30 0.01    
Total 0.24 31     

 

There was no significant difference in soil bulk density between transect 

adjacent to G7a and transect adjacent to F1. There was little spatial variation 
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within each transect (Table 4.14). Similar analysis was done on soil pH for the 

same transects and the results are presented in Table 4.15. 

Table 4.15. Soil pH (KCl) variation in transects in indigenous forests 
Compartment Count Average Variance   
Forest G7a 16 4.19 0.11   
Forest F1 16 4.09 0.18   

      
Source of Variation SS MS F P-value F crit 
Between 
Compartments 

0.08 0.08 0.52 0.48 4.17 

Within Compartments 4.47 0.15    
Total 4.55     

 

There was also no significant difference between the two transects. However, 

spatial variation was slightly higher in transect adjacent to F1 than in transect 

adjacent to G7a. The effect of sampling strategy was assessed by analyzing 

statistically the mean difference in SOC content, Db and soil pH between 

transect samples and plot samples. There was a significant difference in SOC 

between transects samples and plot samples. Plot samples had a higher SOC 

content than transect samples. There was higher spatial variation in plots than 

in transects (Table 4.16). 

Table 4.16. Comparisons of SOC content (%) between transect and plot 
sampling methods in indigenous forests 

 
Method Count Sum Average Variance   

Plot 16 47.35 2.96 0.98   
Transect 16 26.69 1.67 0.05   

       
Source of Variation SS df MS F P-value F crit 
Between Methods 13.34 1 13.34 25.95 0.00 4.17 
Within Method 15.42 30 0.51    
Total 28.76 31     
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There was no significant difference in soil bulk density between transect 

samples and plot samples. There was little variation within both transects and 

plots (Table 4.17). 

Table 4.17. Comparisons of Db (g/cm3) between transect and plot 
sampling methods in indigenous forests 

Method Count  Average Variance   
Transect 16  0.41 0.01   
Plot 16  0.41 0.01   

       
Source of Variation SS Df MS F P-value F crit 
Between Methods 0.00 1 0.00 0.01 0.91 4.17 
Within Method 0.16 30 0.01    
Total 0.16 31     

 

Soil pH, however, was higher in transect samples than in plot samples. Spatial 

variation within transects was also higher than in plot samples (Table 4.18). 

Table 4.18. Comparisons of soil pH (KCl) between transect and plot 
sampling methods in indigenous forests 

Method Count Average Variance   
Plot 16 4.13 0.02   
Transect 16 4.19 0.11   

 
 

     

Source of Variation SS MS F P-value F crit 
Between Methods 0.03 0.03 0.51 0.48 4.17 
Within Method 2.00 0.07    
Total 2.03     

 

It is also interesting to note that average values of SOC content obtained from 

transects were substantially (and statistically) significantly lower compared to 

average values received from intensive sampling plots, both in pine 
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plantations and indigenous forests. This phenomenon can only be explained 

by the natural tendency of a sampler to choose intuitively a “representative” 

spot during random sampling along transect, when a person subconsciously 

avoids spots that may be “abnormally” rich or poor in organic matter. It may 

also simply be a choice of the most accessible route with the least dense 

ground cover. 

This tendency resulted in the positioning of both transects and plots in the 

landscape. In pine plantations (compartment G7a), transects were made 

along the areas with low SOC content and these areas are indicated with 

greenish colour in Figure 4.14, while the plot covered low and high SOC 

areas. Transects in pine plantations had high spatial variation because they 

covered a long distance that was not covered in plots along the crest of the 

drainage depression that had low SOC content (Figure 3.4). 

In indigenous forests, transects were made in low SOC areas illustrated in 

Figure 4.13. However, SOC spatial variation was high in plots despite the 

small area they covered. The direction of transect was the same as the 

drainage depression illustrated in Figure 4.12 represented by green colours 

with yellow spots. However, transect was on the blue area in Figure 4.13. 

Plots covered both high (green & yellow) and low (blue) areas, which resulted 

in high variation. 

4.8. SOC Stocks of Woodbush 

SOC stocks were estimated using predicting functions developed using fitted 

curves that best described SOC and soil bulk density (Db) distribution down 

the profile for each ecosystem. The SOC amount was estimated at different 



 91

soil layers and then multiplied by Db at the same depth. SOC stocks were 

calculated using the standard approach of calculating carbon stock as 

SOC%*Db*d, where SOC content is the concentration of carbon in the layer of 

depth increment d, and Db is soil bulk density within the (d) depth increment. 

In this case SOC content was calculated as Cs*f (d) and Db as F (d). Soil 

organic carbon stocks were estimated using equation 4.17. The equations that 

were used to estimate SOC content are listed in Table 4.2. Soil bulk density 

estimation was tested using observed SOC content values. 

ddFdfCsSOC **)(*
100

0

)(∫=
 

(4.17) 

This approach of Db estimation was recommended by Huntington (1989), 

where organic matter was used to estimate bulk density for use in the 

calculation of SOC stocks. The correlation between SOC and Db was poorer 

than that of Db and soil depth, therefore soil depth was used to predict soil 

bulk density.  

The profile approach of estimating SOC stocks based on SOC content and Db 

applied in this study, was previously applied by Batjes (1996) to estimate total 

carbon and nitrogen in the soils of the world. Schwartz and Namri (2002) used 

a similar approach in mapping the total organic carbon in soils of the Congo. 

The SOC stock estimation equations of indigenous forests, plantations and 

wetlands did not include the coarse fragment component as described by the 

equation of Batjes (1996) because little fragments were found in soils under 

these ecosystems. Fragments were included in grasslands equation only to 

cater for the stones found in the soil. Schwartz and Namri (2002) did similar 
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simplifications by making the coarse fraction of soils less important in mapping 

the total organic carbon in soils of the Congo. Subsequently, a finite integral 

was resolved numerically to yield a reliable assessment of SOC stock to the 

depth of one meter. A similar integration to 20 cm was conducted to assess 

topsoil stocks. Cherkinsky and Brovkin (1993) applied the same technique 

successfully to estimate the SOC turnover rates based on 14C data. When 

total soil depth was less than 100 cm, the integral was calculated to soil depth 

instead. Total Soil Depth was adjusted to Effective Soil Depth (ESD) by 

subtracting the percentage of stones in each layer, if stones were present. 

This adjustment was made for depth (d) value. 

Integration was conducted at d = 5 cm increments to the depth of 20 cm, and 

the value of d increased to 10 cm increments to a depth of 60 cm, and to 

15 cm and 25 cm increments since increased integration intervals at greater 

depth had less effect on the error of stocks estimation because of less 

variation in deeper soil layers. The integral value was obtained as a sum of 

values for all depth increments. 

This approach allowed accurate assessment for soils of variable depth, which 

was particularly important in the mountainous environments. Another 

advantage of the suggested technique was that only topsoil sampling was 

required at directionally unequal intervals for accurate evaluation of carbon 

stocks.  

Carbon stocks were calculated for each ecosystem (Table 4.19) from 

intensive sampling and transect data for topsoil SOC content, using the 

equations in Tables 4.20 and 4.21. 
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Table 4.19. The average carbon stocks (ton) per hectare  

 
Vegetation SOC % St.Dev SOC at 0.2 m St.Dev SOC at 1m St.Dev 
Plantations 1.36 0.71 13 3 46 20 
Forests 1.83 0.70 24 8 64 23 
Grasslands 1.70 0.67 13 5 28 11 
Wetlands 3.85 0.69 33 9 71 19 

Integral (equation 4.17) was calculated by step-integration illustrated in Figure 

4.16. Values for grasslands were also adjusted by the average percentage of 

stones observed in soil profiles excavated within the intensive sampling plots. 

 

Figure 4.15. Example of integration for carbon stock 
estimation with SOC% and depth for pine plantations 

 

Table 4.20. Prediction model equation used in the different ecosystems 
and their r2 values 

 
Ecosystem Prediction model R2 Equation 

no. 
Indigenous 
forests 

C = Cs*(0.24+exp -4.3)*d 
0.92 (4.2) 

Pine plantations C = Cs*(0.28+exp -12.35)*d 0.98 (4.4) 
Grasslands C = Cs*(1.50+exp 0.31)*d 0.77 (4.6) 
Wetlands C = Cs*(0.10+exp -3.75)*d 0.79 (4.8) 

C = normalized SOC; Cs = surface SOC; d = soil depth (m) 
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Table 4.21. Prediction model equations for Db at depth <= 1m used in the 
different ecosystems and their r2 values 
 
Ecosystem  Prediction model R2 Equation 

no. 
Indigenous forests Db = 0.42Ln(d)+1.59 0.93 (4.9) 
Pine plantations Db = 0.40Ln(d)+1.99 0.99 (4.11) 
Grasslands Db = 0.48Ln(d)+1.79 0.86 (4.13) 
Wetlands Db = 0.42Ln(d)+1.46 0.96 (4.15) 

Db = Soil bulk density; d = Soil depth (m). 

 

Wetlands had the highest carbon stocks per hectare compared to other 

ecosystems. With an average of 33 t/ha within the top 20 cm depth (Table 

4.19.), wetlands were significant high sinks of organic carbon per hectare. 

However, wetlands occupy a very small area in Woodbush forestry, lying only 

along rivers, dams and swamps. The average soil carbon stocks per hectare 

at one-meter depth in wetlands were also very high, but their contribution to 

carbon sequestration in Woodbush might be low compared to indigenous 

forests and pine plantations due to limited occurrence of wetlands.  

Since soils under grasslands do not reach one-meter depth, an appropriate 

comparison was made between the four ecosystems using stocks values in 

the top 20 cm. 

Total SOC stocks per hectare were low in grasslands, and it’s difficult to 

predict the levels of carbon storage in deep soils, since the estimation function 

derived from the data may not be applicable to a soil depth greater than 

60 cm. Furthermore, grasslands were annually burnt as a fire control 

measure, so the build up of organic matter was annually disturbed. The 

storage within 20 cm depth was lower than in pine plantations, with an 

average of 13 t/ha.  
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Soils under indigenous forests stored higher carbon stocks in tons per hectare 

than plantations. They had second highest organic carbon stocks per hectare 

after wetlands and cover a large area in Woodbush because they occupy a 

large accessible area as well as most inaccessible steep slopes. Indigenous 

forests had larger average carbon stocks per hectare at 20 cm and one meter 

soil depth compared to pine plantations.  

Low soil carbon stocks in pine plantations were possibly due to the age of 

plantations compared to the age of indigenous forests. Maps of SOC content 

on the surface (7 cm), carbon stocks in the top 20 cm and 100 cm depths 

were created for each ecosystem. The maps for the whole plantation were 

developed using modified SAFCOL data set. 

Table 4.22. The influence of sampling method on evaluation of carbon 
stocks estimation for the main land use types in Woodbush 
 

Type of   SOC  at  5cm 
C stocks  
at 20 cm C stocks, 1m Ratio 

Land use Survey Obs Mean St.Dev Mean StDev Mean StDev C20/C100 
Plantations Profiles 3 1.23 0.33 18 4 48 13 36.3% 
 Transects 59 0.98 0.44 11 2 35 13 32.1% 
 Area 46 1.83 0.71 15 3 59 20 26.0% 
 Combined 105 1.36 0.71 13 3 46 20 28.6% 
Forests Profiles 4 4.12 0.67 52 1 121 30 43.5% 
 Transects 35 1.40 0.86 18 3 48 9 37.3% 
 Area 52 1.96 0.86 28 9 75 24 37.1% 
 Combined 87 1.83 0.70 24 8 64 23 37.2% 
Wetlands Profiles 4 3.85 0.69 32 4 73 14 43.4% 
 Areas 51 3.60 1.09 33 9 71 19 46.6% 
Grasslands Profiles 4 1.95 0.51 23 2 36 13 64.0% 
 Areas 47 1.70 0.67 13 5 28 11 45.7% 

Where Obs = Number of observations 

The prediction model was applied to the soil organic carbon content database 

complied by Strydom (1997) for SAFCOL to estimate SOC stocks in 

Woodbush under pine plantations. The symbols used in SAFCOL database to 
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estimate organic carbon content in the topsoil were substituted by values in 

Table 4.23. The model required SOC and soil bulk density in the topsoil.  

 

Table 4.23. Classes of topsoil carbon used in the SAFCOL database 
(source: Strydom et al., 1997) 
Description Symbols Organic carbon 
Extremely high (eh) > 1.8%  
High (h) >1.4 - <1.8%  
Medium to high (m – h) 1 – 1.8% 
Medium (m) 0.7 – 1%  
Low to medium (l – m) 0.3 – 0.6%  
Low (l) <0.3%  

The database was modified, and values in Table 4.23 were added instead of 

descriptive data and used to calculate carbon stocks at 20 cm and 100 cm soil 

depths using estimation equation 4.6. Since a considerable number of topsoil 

samples contained more than 1.8% organic carbon content, descriptive 

statistics were used to define a value for this data range to be used in 

calculations (Figure 4.16). The derived average value of 2.42% was used for 

stock estimations with the SAFCOL database. 

This value did not contribute substantially to overall stock estimations, due to 

very limited number of observation points with “extremely high” carbon content 

values in SAFCOL database. 
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Figure 4.16. Frequency histogram for topsoil organic carbon 
content in excess of 1.8% in samples from pine plantations 

Due to lack of soil bulk density data in SAFCOL database, an average soil 

bulk density of the topsoil was calculated from the study site data and applied 

to SAFCOL data. However, other methods of calculations were also 

assessed.  

Estimation of Db from soil texture recorded in the field according to look-up 

Table 4.24. (McKenzie et al., 2000) 

Estimation of Db with logarithmic equation for pine plantations (Table 4.21.) 

This was combined with two methods of carbon content estimation. 

Extrapolation of carbon content estimated in the field to the whole A horizon 

and assigning a value of 0.5 to B-horizon – a look-up method. 

Exponential estimation of carbon content at depth increments of 10 cm. 
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Table 4.24. Look-up table for bulk density estimation from soil texture 
Calculated from K.E. Saxton et al. (1986) 

 
20 25 30 35 40 45 50 55 Clay% 

BD 1.43 1.39 1.36 1.33 1.31 1.28 1.25 1.23 

60 

1.22 

 

The results of these estimations are summarized in Table 4.25 together with 

estimations based on experimental observations in soil profiles, where stocks 

were calculated directly at every depth increment, as well as extrapolations to 

the combined set of transect and intensive sampling points of topsoil sampling 

using exponential equation in Table 4.20. 

Table 4.25. Impact of estimation method on assessment of carbon 
stocks under pine plantations in Woodbush 

Estimation 
Bulk 
density  SOC at 5cm 

C stocks 
at 20 cm 

C stocks 
 at  1m 

Ratio 
(%) 

Method estimation Obs* Mean St.Dev Mean StDev Mean StDev C20/C100 

Horizon 
Lookup 
table 4.24 1643 1.56 0.18 44 3 92 16 47.4 

 linear 1643 1.56 0.40 35 3 82 14 42.8 
 Ln* 1643 1.56 0.40 32 3 72 12 44.6 
Curve Linear 1643 1.56 0.40 22 2 47 5 46.3 
 Ln 1643 1.56 0.40 19 2 45 5 43.0 
Experimental Profiles 3 1.23 0.33 18 4 48 13 36.3 
 Plantation 105 1.36 0.71 13 3 46 20 28.6 

Obs* is the number of observations and Ln* is logarithm 

As shown in Table 4.25, the results of predictions using exponential SOC 

curve and logarithmic Db curve yielded on average, similar results for 

experimental profiles, and predicted stocks for the complete data set of topsoil 

sampling points, and for the plantation as a whole with values ranging from 45 

to 48 t/ha within 1-m soil depth. These results also showed that linear Db 

estimations combined with exponential curve of SOC distribution also 
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produced results within the above range. All estimations based on values for 

individual soil horizons and their thickness were much higher, mainly due to 

the fact that organic carbon content within these horizons was not uniformly 

distributed, but followed the same exponential curve, as can be seen from the 

analysis of individual soil profiles. These observations fall in line with results 

obtained by use of Century model for prediction of carbon stocks (Motavalli et 

al., 1994). 

Subsequently, maps of organic carbon content and calculated carbon stocks 

over the Broederstroom catchment were produced as Arcview shape files. 

Additional fields were inserted into the auguring point’s database for values of 

SOC content and SOC stocks. The resulting map of SOC content (Figure 

4.17) represented the distribution of soils with medium, high, and extremely 

high carbon content as reflected in results of the soil survey.   
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Figure 4.17. Map of SOC content derived from the Woodbush 
database 

The auguring points with predicted values of SOC stocks were interpolated 

within the boundaries of the forest to produce a grid showing the distribution of 

SOC stocks in the area (Figure 4.18).  



 101

 

Figure 4.18. Map of SOC stocks (t/ha) derived from the 
Woodbush database. 

The resulting map differed from the map of SOC content mainly due to 

variation in soil depth reflected by the survey within relatively uniform blocks of 

SOC content. The rock outcrops stand out distinctively, while spatial variation 

with topography is not seen. This may be attributed either to insufficient 

resolution of the survey or simply to lack of analytical data and inaccuracy of 

field estimations of SOC content recorded during the field survey. 
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The map of standard deviations from mean value of organic C % (1.6 %) 

(Figure 4.19) shows bands of high (3 %) to low (< -3 %) organic matter 

content reflecting in broad terms the impact of topography and elevation. It 

corresponded well to the soil map of the area in Figure 4.14. 

 

Figure 4.19. Point map of standard deviations from the mean 
(1.6 %) in estimations of SOC content. 
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Wetlands were found to have high SOC stocks, followed by indigenous 

forests, plantations and grasslands. The soil moisture seemed to be the most 

determining factor in accumulation of SOC stocks. Schwartz and Namri (2002) 

found similar trends of SOC stocks accumulation in soils of the Congo where 

the largest stocks where found in hydromorphic soils. They attributed high 

SOC stocks to excess water in the soils that led to slow mineralization of fresh 

organic matter. Van Noordwijk et al (1997) attributed high SOC reserves 

found in wetlands to conditions like high pH, low temperatures and high silt 

and clay.  

Indigenous forests were second to wetlands in SOC stocks. They had higher 

SOC stocks than plantations and grasslands. Sparling and Schipper (2002) 

found an overall tendency for SOC to be greater in pasture and indigenous 

forests than in cropland and plantation forests, while Krishnaswamy and 

Richter (2002) found SOC under pasture to be less than that of the forests. 

The high SOC stocks in indigenous forests were attributed to soil aggregate 

stability. Six et al (2002) found aggregation and SOC content to be higher in 

forests than in agric ecosystem. 

Plantations had the second lowest amount of SOC stocks after grasslands. 

Several factors were associated with SOC stocks level found in plantations. 

Plantations were found on gentler slopes than grasslands and that resulted in 

more soil moisture in plantations than in grasslands. Plantation age (24 yrs) 

might have improved the level of SOC stocks. Davis and Condron (2002) 

found that SOC stocks under plantations were similar to those of grasslands 

after 20 yrs. After initial losses of SOC during initial stages of afforestation 

(Davis and Condron, 2003), plantations are capable of recovering SOC lost 



 104

and accumulate high SOC amounts if left to maturity. Davis et al (2003) found 

that SOC in all pools peaked in 125-year-old stands and declined as the 

stands matured after more than 150 years. However, as mentioned earlier, 

plantations had less SOC stocks than wetlands and indigenous forests. The 

soil moisture partly explained the variation. Soil moisture was higher in 

wetlands and in indigenous forests than in plantations. Less species diversity 

in plantations also explained the lower SOC stocks found in plantations as it 

affected the litter quality and the rate of organic matter decomposition. Wit and 

Kwindesland (1999) found SOC stocks in mineral soils to be the lowest in 

pure forests while mixed forests had the highest SOC stocks. 
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5. Conclusions 

There are several options of sequestering organic carbon that promise to 

have the potential to reduce atmospheric carbon dioxide and global warming. 

As much as ocean disposal and other proposed ways of sequestering 

anthropogenic carbon in the atmosphere are promising, there is still much to 

be understood before the rate of carbon absorption in aquatic systems is 

increased. The only option that seems practical currently is the terrestrial sink, 

with soil as part of the terrestrial system. However, more effective sampling 

and estimation methods for organic carbon in soils are necessary to gather 

information on the contribution of soil to global carbon sequestration. 

Several factors (climate, topography, vegetation and land use) play a role in 

developing accurate models for estimating the amount of organic carbon in 

the soil. Understanding the contribution of these factors is the basic limitation 

to a broader application of several models already developed, and models 

specific to certain areas and environments are required to effectively and 

accurately estimate the amount of soil organic carbon. 

The model developed in this study not only helps to estimate the organic 

carbon stocks in Woodbush, but also constitutes a basic approach in 

developing models that can be applied under different ecosystems and in 

estimating the concentration of other elements in the soil. The fact that the 

model uses surface (0 – 7 cm) samples collected at a certain distance apart to 

estimate SOC down to a metre deep reduces the cost and time needed for 

sampling and laboratory analysis. The approach needs to be tested in other 
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places of similar environmental conditions and vegetation to confirm its 

accuracy and reliability. 

The following outcomes of this study should be noted specifically: 

1. Vertical distribution of soil organic carbon and bulk density for calculation of 

carbon stocks in pine plantations and adjacent ecosystems of Woodbush 

forestry was successfully modeled. 

1.1. Soil carbon content throughout the profiles of texturally-differentiated soils 

in the Woodbush forestry area (Hutton, Inanda and Kranskop soil forms) is 

not uniformly distributed within the thickness of individual horizons. 

Instead, SOC may rather be accurately predicted (R2= 0.90) from values of 

topsoil concentrations with a set of exponential functions relating 

normalized carbon content to depth. Introduction of other easily measured 

variables, such as bulk density and soil pH did not improve the quality of 

predictions. This approach will allow the reduction, by almost a half, of the 

number of samples and analytical costs required for predictions by models 

such as “Century” (Natural Resource Ecology Laboratory, 2001). 

1.2. The successful derivation of vertical distribution functions for SOC vs. 

depth from experimental observations was achieved by normalizing carbon 

content at each soil depth with respect to the value of SOC in the surface 

sample. This procedure overcame the influence of variation in absolute 

values of SOC resulting from environmental conditions such as parent 

material, slope and aspect. 

1.3. Since all the soils in the Woodbush forestry area are texturally similar with 

a high clay content, a simple logarithmic regression proved to be the most 
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suitable equation (R2=0.99) for predicting soil bulk density at any depth up 

to 1 m under the canopy of pine plantations. A more complicated, multiple 

regression, relating bulk density to carbon content at a specific depth, 

proved to be less accurate judging from the values of the regression 

coefficient (R2=0.92). In other ecosystems it may be best to use the 

existing relationship between carbon content and bulk density of soil 

although the precision of the prediction still has to be improved 

substantially to make use of these equations in practice. 

1.4. The use of equations derived for forestry areas compares favourably with 

other methods of carbon stock estimation. It was shown that rough 

assessments per soil horizon using bulk density values derived from 

textural class and carbon content values per soil horizon tend, in the 

context of the Woodbush forestry area, to overestimate the actual stocks. 

On the other hand, the error of using linear regression for Db vs. depth 

results in a rather small error of under 10%, and subsequently, in other 

areas linear estimates may be made for bulk density distribution vs. depth 

within the depth limit of observations. This may be justified by cost saving 

(using only two experimental points to derive the function) with little loss of 

accuracy. 

2. Soils of the Woodbush forestry area are characterized by a rather high 

degree of spatial variation in SOC content at the soil surface and, 

consequently, in calculated carbon stocks.  

2.1. The variography of intensive sampling plots has shown strong directional 

dependence on SOC values. The derived variograms can successfully 
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predict the values of SOC at distances of some 54 m along the slope and 

some 40 m across in all four of the studied ecosystems. 

 2.3. A high degree of spatial variation in SOC and carbon stocks in soils will 

require large data sets for carbon inventory purposes.   

2.4. It is also interesting to note that average values of SOC obtained from 

transects were substantially (and statistically) significantly lower compared 

to average values received from intensive sampling plots, both in 

plantations and indigenous forest. This phenomenon can only be explained 

by the natural tendency of a sampler to intuitively choose a 

“representative” spot during random sampling along transect, when a 

person subconsciously avoids spots that may be “abnormally” rich or poor 

in organic matter. It may also simply be a choice of the most “passable” or 

accessible route with the least dense ground cover. 

3. The analysis of soil profiles and intensive survey plots has shown that all 

the major ecosystems in the Woodbush forestry region form a gradient of 

carbon stocks: Grasslands < Pine Plantations < Indigenous Forest < 

Wetlands. 
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Appendix A. Field and analytical methods 

A.1. Soil Bulk density 

Soil samples were collected into a polyethylene bag using a core auger that 

has a volume of 289cm3. All surface (7cm) and profile samples at depth levels 

5, 10, 15, 20, 30, 40, 50, 60, 75, 100 cm were first air dried and then dried in a 

oven at a temperature of 105oc for 48 hours. Roots, organic material and 

stones were removed in all soil samples before they were dried in the oven. 

The mass was then measured, and the bulk density was calculated as mass / 

volume. The removal of roots, organic material and stones from soil samples 

resulted in low mass and hence the low bulk density values. 

A.2. pH 

Soil pH was measured in both H2O and KCl using the 744 Metrohm pH meter 

at 25:1 (H2O /KCl) soil ratio.  1g of soil was mixed with 25 ml of water, shaken 

for 10 minutes and left to settle for 30 minutes and pH was measured. 1g of 

the same soil was mixed with 25 ml of 1MKCl, shaken for 10 min and allowed 

to settle for 30 min and pH was measured. 

A.3. Organic carbon determination 

Total organic carbon was determined using the colometric method by Baker 

(1976). The organic carbon was analyzed in the fine fraction (soil passing 

through 105um sieve before grinding) and in the whole sample (soil passing 

105um sieve after grinding). 
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About 15g of sucrose was dried at 105oc for two hours and allowed to cool in 

a desiccator. A mass of 11.886g of dried sucrose was then dissolved in water 

and made up to the mark in a volumetric flask. This made a 50g/ml C solution. 

From the stock solution, 0,5,10,15,20,25 ml were transferred into labeled 

100ml volumetric flasks using pipette, made to the mark with water and mixed. 

These working standards contained 0, 2.5, 5.0, 7.5, 10.0, 12.5   mg/ml of 

carbon concentrations. A volume 2.0 ml of each working standard was 

transferred into a labeled 100ml digestion tubes and dried at 105oc. These 

tubes finally contained 0, 5.0, 10.0, 15.0, 20.0 25.0 mg C. Standards were 

prepared for every batch of soil samples. 

About 1.0g of grind soil (< 0.15mm) was weighed into a labeled 100 ml 

digestion tube. Depending on the darkness of the soil or the site, the soil mass 

ranged between 1.0g and 0.25g in this case. 2ml of water was added to the 

sample followed by 10.0ml of 5% potassium dichromate solution and allowed 

to completely wet the sample. 5ml of concentrated H2SO4 was slowly added 

to the tube and the mixture gently swirled. The tube was then heated at 150ºC 

in a digestion block for 30 minutes. The tube was then cooled down, and 50ml 

of 4% barium chloride was added, and swirled to mix thoroughly and left to 

stand overnight to leave a clear supernatant solution. 

Finally, an aliquot of the supernatant solution was transferred into a colometer 

cuvette, and the sample absorbance was measured at 600nm. The same 

procedure applies to the standards. 
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A.4. Qualitative profile description. 

Indigenous Forests 
Profile no.:     1                                                                                               Water table :                  None           
Latitude :        23º48,999'                                                                               Occurrence of flooding: Nil 
Longitude:      29º58,152'                                                                               Surface rockiness :         None 
Soil form :      Kranskop                                                                                Surface stoniness:           None 
Soil family :   1200 (Dargle)                                                                         Erosion:                           Gully, class 1      
Altitude  :      1612.72  m                                                                              Land use:                         Conservation 
Terrain unit : Middle slope                                                                           Underlying material:       Granite-Gneiss 
Slope:            3 %                                                                                                       
Slope shape: Convex                                                                                         
Aspect :        South east                                                                                          
 
 
 
Horizon depth                                                           Description                                    Diagnostic Horizon 
 
0 – 300         Dry, dark brown 10YR3/3, weak blocky, SaClLm, firm, few clay cutans                     Humic A 
                     No gravel, root abundant, abundant soil fauna, litter layer 50 mm, clear 
                     transition. 
 
300 – 600    moist, brown 7.5YR4/3, apedal, SaCl, friable, few stones, few soil fauna               Yellow brown apedal B 
                    and a lot of roots. 
 
600 – 1100+    Moist, Strong brown 7.5YR4/6, apedal, SaCl, friable.                                        Red apedal B 
  
 
Geology: Granite-Gneiss 
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Indigenous Forests 
 
Profile no.:   2                                                           Water table:                     None           
Latitude:      23º48,947'                                             Occurrence of flooding:  Nil 
Longitude:   29º58,145'                                             Surface rockiness:           None 
Soil form:    Kranskop                                               Surface stoniness:           None 
Soil family: 1200 (Dargle)                                        Erosion:                           Gully, class 2    
Altitude:      1652.76 m                                             Land use:                         Conservation 
Terrain unit: Middle slope                                        Underlying material:       Granite-Gneiss 
Slope:           3%                                                                   
Slope shape: Convex                                                   
Aspect:         South east                                                                                 
 
Horizon depth (mm)                                                           Description                                                Diagnostic Horizon 
 
0 – 300        Dry, dark yellowish brown 10YR3/4, SaClLm, weak blocky, firm, few clay cutans            Humic A 
                    No gravel, root abundant, abundant soil fauna, litter layer 48 mm, 
                    clear transition. 
 
300 – 600    Moist, strong brown 7.5YR4/6, apedal, SaCl, friable, few stones, few soil fauna            Yellow brown apedal B 
                    lot of roots. 
 
600 – 1100+    Moist, reddish brown 5YR4/4, apedal, friable, SaCl.                                                  Red apedal B 
 
  
Geology: Granite-Gneiss 
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Indigenous Forests 
 
Profile no.:     3                                                                     Water table:                    None           
Latitude:        23º48,901'                                                       Occurrence of flooding: Nil 
Longitude:     29º58,153'                                                       Surface rockiness:          None 
Soil form:      Kranskop                                                        Surface stoniness:           None 
Soil family:  1200 (Dargle)                                                 Erosion:                           Gully, class 2    
Altitude:       1623.51 m                                                       Land use:                         Conservation 
Terrain unit: Middle slope                                                   Underlying material:       Granite 
Slope:           4%                                                                                
Slope shape: Concave                                                  
Aspect:         South east                                                                           
 
 
Horizon depth                                                           Description                                                        Diagnostic Horizon 
 
0 – 300        Dry, dark yellowish brown 10YR4/3, SaClLm, weak blocky, firm, few clay cutans             Humic A 
                    No gravel, root abundant, abundant soil fauna, litter layer 46 mm, 
                    clear transition. 
 
300 – 600    Moist, strong brown 7.5YR4/6, apedal, friable, SaCl few stones, few soil fauna,            Yellow brown apedal B 
                    lot of roots. 
 
600 – 1100+    Moist, reddish brown 5YR4/3, apedal, friable,  SaCl.                                                 Red apedal B 
  
 
Geology: Granite 
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Indigenous forests 

 
Profile no.:    4                                                                                                           Water table:                    None            
Latitude:       23º48,838'                                                                                             Occurrence of flooding: Nil 
Longitude:    29º58,179'                                                                                             Surface rockiness:          None 
Soil form:     Inanda                                                                                                   Surface stoniness:           None 
Soil family:  1200 (Highlands)                                                                                  Erosion:                          Gully, class 1 
Altitude:       1618.82 m                                                                                             Land use:                        Conservation 
Terrain unit: Middle slope                                                                                         Underlying material:      Granite  
Slope:           3%                                                                                                             
Slope shape: Convex                                                                                         
Aspect:         South east                                                                                                                   
 
 
Horizon depth (mm)                                                          Description                                                Diagnostic Horizon 
 
0 – 300        Dry, dark yellowish brown 10YR3/3, SaClLm, weak blocky, firm, few clay cutans             Humic A 
                    No gravel, root abundant, abundant soil fauna, litter layer 56 mm, 
                    clear transition. 
 
300 – 700    Moist, red 5YR4/6, apedal, friable, SaCl, few stones, few soil fauna,                               Red apedal B 
                    lot of roots. 
 
700 – 1200+    Moist, red 5YR4/3, apedal, friable, SaCl.                                                                  Red apedal B 
  
 
 
 
Geology: Granite 
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Pine Plantations 
 
Profile no.:   1                                                                                                             Water table:                    None            
Latitude:       23º48,991'                                                                                              Occurrence of flooding: Nil 
Longitude:    29º58,230'                                                                                              Surface rockiness:         None 
Soil form:     Griffin                                                                                                    Surface stoniness:         None 
Soil family:  1200 (Deelspruit)                                                                                   Erosion:                         Gully, class 1 
Altitude:       1586,85  m                                                                                             Land use:                       Agro-ecosystem 
Terrain unit: Middle slope                                                                                          Underlying material:     Granite  
Slope:           2 %                                                                                                                  
Slope shape: Convex                                                                                        
Aspect:         West                                                                                                                
 
 
 
Horizon depth (mm)                                                     Description                                            Diagnostic Horizon 
 
0 – 360                     Dry, dark brown 10YR3/3, apedal, SaClLm, firm, No gravel                            Orthic A 
                                 root abundant, few soil fauna, litter layer 10.6 mm, 
                                 clear transition. 
 
360 – 700                 Dry, strong brown 7.5YR4/6, apedal, SaCl, friable, few stones,                  Yellow brown apedal B 
                                 few of roots. 
 
700 – 1200+             Moist, red 5YR4/4, apedal, friable,  SaCl.                                                         Red apedal B 
  
 
 
Geology: Granite 
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Pine plantations 
 
Profile no.:     2                                                                                                          Water table:                    None            
Latitude:        23º48,973'                                                                                            Occurrence of flooding: Nil 
Longitude:     29º58,206'                                                                                            Surface rockiness:          None 
Soil form:      Hutton                                                                                                  Surface stoniness:          None 
Soil family:   1200 (Kelvin)                                                                                       Erosion:                         Gully, class 1 
Altitude:       1581,90 m                                                                                             Land use:                       Agro-ecosystem 
Terrain unit: Middle slope                                                                                         Underlying material:     Granite  
Slope:           2%                                                                                                                   
Slope shape: Convex                                                                                         
Aspect:         South east                                                                                                                
 
 
Horizon depth (mm)                                                        Description                                Diagnostic Horizon 
 
0 – 380        Dry, dark brown 10YR3/3, weak blocky, SaClLm, firm,                                       Orthic A 
                    fine roots abundant, few soil fauna, litter layer 123 mm, 
                    clear transition. 
 
380 – 700    Moist, red 5YR4/6, apedal, friable, few stones, few soil fauna                              Red apedal B 
                    few of roots. 
 
700 – 1100+    Moist,  red 5YR4/3, apedal, friable,  SaCl.                                                        Red apedal B 
  
 
 
 
Geology: Granite 
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Pine plantations 

 
Profile no.:   3                                                                                                     Water table:                    None            
Latitude:       23º48,904'                                                                                     Occurrence of flooding: Nil 
Longitude:    29º58,209'                                                                                     Surface rockiness:          None 
Soil form:     Kranskop                                                                                       Surface stoniness:          None 
Soil family:  1200 (Dargle)                                                                                Erosion:                         Gully, class 1 
Altitude:       1590,79 m                                                                                     Land use:                        Agro-ecosystem 
Terrain unit: Middle slope                                                                                 Underlying material: Granite/Gneiss  
Slope:           2 %                                                                                                                      
Slope shape: Convex                                                                                         
Aspect:         South east                                                                                                                 
 
 
Horizon depth (mm)                                                           Description                                Diagnostic Horizon 
 
0 – 300        Dry, dark yellowish brown 10YR3/3, SaClLm, weak blocky, firm,                     Humic A 
                    No gravel, root abundant, few soil fauna, litter layer 106 mm, 
                    clear transition. 
 
300 – 700    Moist, strong brown 7.5YR4/6, apedal, SaCl, friable, few stones                         Yellow brown apedal B 
                    few roots. 
 
600 – 1200+    Moist, red 5YR4/4, apedal, friable, SaCl.                                                          Red apedal B 
  
 
 
 
Geology: Granite/ Gneiss 



 143

 
Pine plantations 
 
Profile no.:    4                                                                                                      Water table:                    None            
Latitude:       23º48,819'                                                                                        Occurrence of flooding: Nil 
Longitude:    29º58,222'                                                                                        Surface rockiness:          None 
Soil form:     Hutton                                                                                              Surface stoniness:          None 
Soil family:  1200 (Kelvin)                                                                                   Erosion:                         Gully, class 1 
Altitude:       1592,94 m                                                                                        Land use:                       Agro-ecosystem 
Terrain unit: Middle slope                                                                                    Underlying material:     Granite  
Slope:           3 %                                                                                                                   
Slope shape: Convex                                                                                        
Aspect:         South                                                                                                                
 
 
Horizon depth (mm)                                                         Description                                       Diagnostic Horizon 
 
0 – 380        Dry, dark brown 10YR3/4, weak blocky, firm, SaClLm                                         Orthic A 
                    fine roots abundant, few soil fauna, litter layer 105 mm, 
                    clear transition. 
 
380 – 700    Moist, red 5YR4/4, apedal, SaCl,  friable, few stones, few soil fauna,                    Red apedal B 
                    few of roots. 
 
700 – 1100+    Moist, red 5YR4/3, apedal, SaCl, friable.                                                            Red apedal B 
  
 
 
 
Geology: Granite 
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Grassland 
 
Profile no.:    1                                                                   Water table :                   None           
Latitude:        23º49,047'                                                    Occurrence of flooding: Nil 
Longitude :    29º58,259'                                                    Surface rockiness :         Boulders, 1 m diameter, 75 m apart. 
Soil form :     Clovelly                                                       Surface stoniness:           Round, 0.20 m diameter, 3 m apart. 
Soil family :  1200 (Brereton)                                           Erosion:                          Gully, class 2      
Altitude  :      1563.64 m                                                    Land use:                        Conservation 
Terrain unit : Middle slope                                                Underlying material:      Granite-Gneiss 
Slope:            4 %                                                                             
Slope shape: Convex                                                
Aspect :        South east                                                                              
 
 
Horizon depth (mm)                                                           Description                                            Diagnostic Horizon 
 
0 – 300         Dry, dark brown 10YR3/3, weak blocky, SaLm, firm, few clay cutans                      Orthic A 
                      root abundant, abundant soil fauna, litter layer 50 mm, clear 
                     transition. 
 
300 – 600    moist, brown 7.5YR4/3, apedal, friable, SaCl, abundant stones, few soil fauna              Yellow brown apedal B 
                    lot of roots. 
 
600 – 700+    Moist,  Strong brown 7.5YR4/6, apedal, SaCl, friable,  abundant stones,                      Yellow brown apedal B 
                       big boulders.    
 
Geology: Granite-Gneiss 
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Grassland 
 
Profile no.:    2                                                                         Water table :                   None           
Latitude:        23º48,989'                                                          Occurrence of flooding: Nil 
Longitude :    29º58,259'                                                          Surface rockiness :        Boulders, 1 m diameter, 75 m apart. 
Soil form :     Inanda                                                                Surface stoniness:          Round, 0.20 m diameter, 3 m apart. 
Soil family :  1200 (Highlands)                                               Erosion:                          Gully, class 2      
Altitude  :      1563.37                                                              Land use:                        Conservation 
Terrain unit : Middle slope                                                      Underlying material:      Granite  
Slope:            4 %                                                                                  
Slope shape: Convex                                                 
Aspect :        South                                                 
 
 
Horizon depth (mm)                                                    Description                                                Diagnostic Horizon 
 
0 – 200         Dry, dark brown 10YR4/3, weak blocky, SaLm, firm, few clay cutans                    Humic A 
                      root abundant, abundant soil fauna, litter layer 50 mm, clear 
                     transition. 
 
200 – 400+   Moist, reddish brown 5YR4/3, apedal, friable, SaClLm, abundant stones               Red apedal B 
                      few soil fauna, few roots, big boulders. 
 
 
Geology: Granite 
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Grassland 
 
Profile no.:   3                                                                       Water table :                   None           
Latitude:       23º48,989'                                                        Occurrence of flooding: Nil 
Longitude:    29º58,259'                                                        Surface rockiness:          Boulders, 1000 mm diameter, 75 m apart. 
Soil form:     Hutton                                                              Surface stoniness:          Round, 200 mm diameter, 3 m apart. 
Soil family:  1200 (Kelvin)                                                   Erosion:                         Gully, class 2      
Altitude:       1563.37 m                                                        Land use:                       Conservation 
Terrain unit: Middle slope                                                    Underlying material:     Granite  
Slope:            4%                                                                    
Slope shape: Convex                                                 
Aspect :        South                                                                               
 
Horizon depth (mm)                                                Description                                              Diagnostic Horizon 
 
0 – 200         Dry, dark brown 10YR4/3, weak blocky, SaLm, firm, few clay cutans                  Orthic A 
                      root abundant, abundant soil fauna, litter layer 50 mm, clear 
                     transition. 
 
200 – 400+   Moist, reddish brown 5YR4/3, apedal, SaCl, friable, abundant stones                    Red apedal B 
                      few soil fauna, few roots, big boulders. 
 
Geology: Granite 
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Grassland 
Profile no.:    4                                                                          Water table:                    None           
Latitude:        23º48,846'                                                           Occurrence of flooding: Nil 
Longitude:     29º58,298'                                                           Surface rockiness:          Boulders, 1 m diameter, 75 m apart. 
Soil form:      Inanda                                                                 Surface stoniness:          Round, 0.20 m diameter, 3 m apart. 
Soil family:   1200 (Highlands)                                                Erosion:                         Gully, class 2      
Altitude:        1578.11m                                                           Land use:                        Conservation 
Terrain unit : Middle slope                                                      Underlying material:      Granite  
Slope:            4%                                                                                    
Slope shape: Convex                                                  
Aspect :        East                                                                           
 
 
Horizon depth (mm)                                                 Description                                                    Diagnostic Horizon 
 
0 – 300         Dry, dark brown 10YR3/3, weak blocky, SaClLm, firm, few clay cutans                 Humic A 
                      root abundant, abundant soil fauna, litter layer 55 mm, clear 
                     transition. 
 
300 – 700+   Moist, reddish brown 5YR4/3, apedal, SaCl, friable, abundant stones                      Red apedal B 
                      few soil fauna, few roots, big boulders. 
 
 
Geology: Granite 
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Wetlands 
 
Profile no.:   1                                                                                                  Water table:                    1 m            
Latitude:       23º49,049'                                                                                   Occurrence of flooding: Many times 
Longitude:    29º58,306'                                                                                   Surface rockiness:         None 
Soil form:     Tukulu                                                                                         Surface stoniness:         None 
Soil family:   2120 (Scheepersrus)                                                                   Erosion:                         Gully, class 1 
Altitude:       1565.41 m                                                                                    Land use:                       Conservation 
Terrain unit: Valley bottom 
Slope:           1%                                                                                                Underlying material:     Unspecified with signs of wetness 
Slope shape: Concave                                                                                                 
Aspect:         North west                                                                                        
 
 
Horizon depth (mm)                                                         Description                                                  Diagnostic Horizon 
 
0 – 400        Moist, black 10YR2/1, weak blocky, firm, SaCl, stratified,                                                   Orthic A 
                    root abundant, abundant soil fauna, litter layer 56 mm, 
                    clear transition. 
 
400 – 700    Very moist, yellow 7.5YR5/6, apedal, friable, SaClLm,  no stones, few soil fauna               Neocutanic B 
                    few roots. 
 
700 – 1000+   Wet,  yellow 7.5YR5/8, ClLm, apedal, friable,                                                  Unspecified material with signs of wetness 
  
 
 
Geology: Unspecified Material 
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Wetlands 
 
Profile no.:   2                                                                                   Water table:                    1000 mm deep            
Latitude:      23º48'97�Ý��������������������������������������������������������������������2FFXUUHQFH�RI�IORRGLQJ���0DQ\�WLPHV 
Longitude:   29º58'322Ý���������������������������������������������������������������������6XUIDFH�URFNLQHVV�����������1RQH 
Soil form:    Tukulu                                                                           Surface stoniness:           None 
Soil family:  2120 (Scheepersrus)                                                     Erosion:                          Gully, class 1 
Altitude:       1561.61 m                                                                     Land use:                        Conservation 
Terrain unit: Valley bottom                                                               Underlying material:      Unspecified material with signs of wetness                                                                                                           
Slope:           1%                                                                                                           
Slope shape: Concave                                                                                         
 
 
Horizon depth (mm)                                                         Description                                        Diagnostic Horizon 
 
0 – 420        Moist, black 10YR2/1, weak blocky, firm,  SaLm, stratified,                                 Orthic A 
                    root abundant, abundant soil fauna, litter layer 58 mm, 
                    clear transition. 
 
420 – 700    Very moist, yellow 7.5YR5/6, apedal, friable, no stones, few soil fauna               Neocutanic B 
                    SaClLm, few roots. 
 
700 – 1000+   Wet, yellow 7.5YR5/8, apedal, SaClLm, friable.                                             Unspecified material with signs of wetness 
  
 
 
Geology: Unspecified 
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Wetlands 
 
Profile no.:      3                                                                                                     Water table:                    1000 mm deep            
Latitude:         23º48'937Ý��������������������������������������������������������������������������������������2FFXUUHQFH�RI�IORRGLQJ��0DQ\�WLPHV 
Longitude:      29º58'344Ý��������������������������������������������������������������������������������������6XUIDFH�URFNLQHss:          None 
Soil form:       Tukulu                                                                                            Surface stoniness:          None 
Soil family:     2120 (Scheepersrus)                                                                      Erosion:                          Gully, class 1 
Altitude:        1570.60m                                                                                        Land use:                        Conservation 
Terrain unit:  Valley bottom                                                                                 Underlying material:       Unspecified with signs of wettness 
Slope:            1%                                                                                                                    
Slope shape:  Concave                                                                                         
Aspect:           West                                                                                                             
 
 
Horizon depth (mm)                                                         Description                                        Diagnostic Horizon 
 
0 – 360        Moist, black 10YR2/1, weak blocky, firm, SaCl, stratified,                                      Orthic A 
                    root abundant, abundant soil fauna, litter layer 58 mm, 
                    clear transition. 
 
360 – 780    Very moist, yellow 7.5YR5/6, apedal, friable, SaClLm, few soil fauna,                    Neocutanic B 
                    few roots. 
 
780 – 1000+   Wet,  yellow 7.5YR5/8, apedal, friable, SaClLm                                                    Unspecified 
 
 
 
 
Geology: Alluvium 
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Wetlands 
 
Profile no.:     4                                                                                             Water table:                   1000 mm deep            
Latitude:        23º48'869Ý������������������������������������������������������������������������������2FFXUUHQFH�RI�IORRGLQJ��0DQ\�WLPHV 
Longitude:     29º58'357Ý������������������������������������������������������������������������������6XUIDFH�URFNLness:          None 
Soil form:      Tukulu                                                                                    Surface stoniness:          None 
Soil family:    2120  (Scheepersrus)                                                             Erosion:                         Gully, class 1 
Altitude:       1572.63m                                                                                Land use:                        Conservation 
Terrain unit: Valley bottom                                                                         Underlying material:      Unspecified with signs of wetness 
Slope:           1%                                                                                                                
Slope shape: Concave                                                                                        
Aspect:         South                                                                                                               
 
 
Horizon depth (mm)                                                         Description                                Diagnostic Horizon 
 
0 – 420        moist, black 10YR2/1, weak blocky, firm, stratified                                              Orthic A 
                    root abundant, abundant soil fauna, litter layer 48 mm, 
                    clear transition SaLm. 
 
420 – 750    Very moist, yellow 7.5YR5/6, apedal, friable, no stones, SaClLm                      Neocutanic B 
                    few roots. 
 
750 – 1200+   Wet, yellow 7.5YR5/8, apedal, SaClLm, friable.                                           Unspecified 
  
 
 
 
Geology: Unspecified 
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Appendix B.  

B.1. Soil data for indigenous forests  surface samples 

Longitude (dd) Latitude (dd) Carbon 

content (%) 

Db 

(g/cm3) 

pH 

(H2O) 

pH 

(KCl) 

29.97115 -23.79964806 3.7 0.44 5.6 4.4 

29.9709375 -23.79958611 4.5 0.38 5.2 4.2 

29.97068972 -23.79948417 3.8 0.32 4.7 3.9 

29.97044611 -23.79939583 3.0 0.43 4.6 3.9 

29.97024694 -23.79933389 4.9 0.42 4.8 4.0 

29.97035333 -23.79914333 3.5 0.34 4.9 4.0 

29.9705525 -23.79924083 2.6 0.3 4.8 4.0 

29.97080917 -23.79935611 1.3 0.36 5.1 4.3 

29.97101278 -23.79944444 1.5 0.3 5.2 4.3 

29.9712475 -23.79950639 2.0 0.46 5.1 4.1 

29.97133583 -23.79935583 2.5 0.43 4.9 4.1 

29.97114111 -23.79927611 2.8 0.55 5.1 4.1 

29.97089333 -23.79918333 3.2 0.44 5.2 4.3 

29.97064111 -23.79909472 2.7 0.46 5.1 4.2 

29.9704375 -23.79898417 2.6 0.52 5.1 4.3 

29.97056139 -23.79878056 2.5 0.41 4.9 4.1 

29.97079139 -23.79882472 3.7 0.48 4.7 3.9 

29.97104833 -23.79891778 3.0 0.41 4.8 3.7 

29.97128278 -23.79900167 3.5 0.39 4.8 4.0 

29.97148639 -23.79908139 2.7 0.4 4.8 3.9 

29.97156611 -23.79890444 4.0 0.33 4.8 3.8 

29.97137361 -23.79880694 4.7 0.35 4.8 3.7 

29.97108806 -23.79869639 5.7 0.52 4.7 3.7 

29.97088444 -23.79863889 2.2 0.37 5.1 4.2 

Longitude (dd) Latitude (dd) Carbon 

content (%) 

Db 

(g/cm3) 

pH 

(H2O) 

pH 

(KCl) 

29.9707075 -23.79855917 4.5 0.47 4.0 4.0 
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29.97074278 -23.79850167 3.0 0.57 4.4 4.0 

29.97092861 -23.79858139 3.2 0.52 4.5 3.9 

29.97121639 -23.79869194 3.2 0.53 4.8 4.3 

29.97139778 -23.79876722 1.9 0.59 4.2 3.9 

29.97157056 -23.79883806 3.9 0.65 4.4 3.9 

29.9716325 -23.79867417 2.1 0.37 4.7 4.1 

29.97144667 -23.79862111 3.4 0.38 4.5 3.9 

29.9712075 -23.79854583 2.5 0.48 5.1 4.1 

29.9709775 -23.79846611 1.7 0.45 5.2 4.3 

29.97080028 -23.79833778 3.4 0.44 5.2 4.3 

29.97087111 -23.79813861 3.1 0.46 5.1 4.2 

29.97093583 -23.79821389 2.3 0.32 4.7 4.1 

29.97130056 -23.7983025 2.5 0.42 5.1 4.2 

29.97152639 -23.79836889 3.3 0.35 6.0 4.6 

29.97173 -23.79842194 2.3 0.4 5.0 4.2 

29.97181389 -23.79819611 1.6 0.54 4.8 4.1 

29.97161472 -23.7981075 2.5 0.43 5.6 4.4 

29.97139778 -23.79800139 3.1 0.49 4.7 4.3 

29.97119 -23.79791722 2.4 0.5 4.9 4.3 

29.97098194 -23.79784194 2.7 0.48 5.4 4.5 

29.97103944 -23.79770472 2.0 0.39 4.9 4.1 

29.97121194 -23.79777556 2.9 0.45 4.7 4.0 

29.97144222 -23.79785083 2.0 0.5 4.9 4.2 

29.97165028 -23.797935 2.6 0.37 4.9 4.0 

29.97187167 -23.79801028 2.4 0.48 4.3 3.9 
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B.2. Soil data for pine plantations surface samples 

 
Longitude (dd) Latitude (dd) Carbon 

content (%) 

Db (g/cm3) pH 

(H2O) 

pH (KCl)  

29.97203972 -23.80044028 2.1 0.89 4.7 3.8 

29.97214611 -23.80055556 2.1 0.81 4.6 3.8 

29.97226556 -23.80065278 1.4 0.87 4.4 3.8 

29.97237167 -23.80075028 1.7 0.85 4.7 4.0 

29.97251778 -23.80088306 1.5 0.66 4.6 3.8 

29.97265944 -23.80101139 1.6 0.80 4.9 4.1 

29.97219472 -23.80028111 1.8 0.52 4.9 3.9 

29.97237167 -23.80045361 1.6 0.97 4.7 3.8 

29.97255333 -23.8006175 0.9 0.98 5.0 4.3 

29.97273028 -23.80078556 1.7 0.83 4.8 4.0 

29.97298694 -23.80072361 1.8 0.91 4.3 3.7 

29.97280111 -23.80054667 1.0 0.72 4.6 3.9 

29.97266833 -23.80040056 0.8 0.74 5.0 3.9 

29.97251778 -23.80025889 0.8 0.78 4.8 4.0 

29.97240722 -23.800135 1.2 0.75 4.6 4.0 

29.97255778 -23.8000375 1.6 0.42 4.4 3.9 

29.972695 -23.80017028 1.3 0.73 4.6 3.8 

29.97285861 -23.80032972 1.6 0.55 4.3 3.8 

29.97303583 -23.80047583 1.3 0.33 4.9 3.9 

29.97320833 -23.80062194 1.6 0.88 4.6 3.9 

29.97337222 -23.80044028 2.0 0.71 4.3 3.7 

29.973235 -23.80033861 1.7 0.88 4.6 3.9 

29.97306222 -23.8001925 1.4 0.71 4.5 3.9 

29.97287639 -23.80001972 1.4 0.56 4.7 4.1 

29.97273917 -23.79989139 1.7 0.61 4.9 4.1 

29.97268167 -23.79975417 1.4 0.63 4.9 4.3 

29.97240278 -23.79968333 2.2 0.85 4.9 4.1 

29.97215028 -23.79962583 3.0 0.36 5.1 4.0 

29.97196444 -23.79956833 0.9 0.79 5.0 4.1 
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Longitude (dd) Latitude (dd) Carbon 

content (%) 

Db (g/cm3) pH 

(H2O) 

pH (KCl) 

29.97183611 -23.79951083 1.8 0.47 5.0 4.1 

29.9719025 -23.7993425 1.9 0.50 4.8 3.9 

29.97207083 -23.79938694 1.4 0.59 4.9 4.2 

29.97230972 -23.79947528 1.5 0.45 4.5 3.8 

29.97256194 -23.79954167 2.2 0.82 5.2 4.0 

29.97277 -23.79960389 0.2 1.10 4.9 4.1 

29.97284972 -23.79938694 2.3 0.37 5.0 4.0 

29.97261972 -23.79929833 1.6 0.69 5.2 4.0 

29.97243806 -23.7992275 2.1 0.94 4.9 4.1 

29.97218139 -23.7991125 2.2 0.70 5.0 4.2 

29.97196444 -23.7990725 2.3 0.87 4.8 4.0 

29.97204417 -23.7989 1.6 0.47 4.8 4.1 

29.97224333 -23.79895306 2.6 0.91 4.6 4.1 

29.97249111 -23.79902389 2.8 0.88 4.6 4.0 

29.97277444 -23.79908583 1.3 0.71 4.8 4.2 

29.97295167 -23.79914333 1.9 0.69 4.6 4.2 

29.97295611 -23.79901056 2.4 0.42 4.2 3.8 

29.9727125 -23.79892639 1.8 0.83 4.8 3.9 

29.97246917 -23.79885583 2.0 0.77 4.7 4.0 

29.97225667 -23.79877611 1.5 0.50 4.6 3.7 
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B.3. Soil data Grasslands surface samples 

 
Longitude 

(dd) 

Latitude (dd) Carbon content  

(%) 

Db 

(g/cm3) 

pH 

(H2O) 

pH 

(KCl) 

29.97415389 -23.80125917 1.5 0.7 5.8 4.41 

29.97385889 -23.80116194 1.5 0.5 5.8 4.35 

29.97372167 -23.80106889 1.3 0.7 5.6 4.19 

29.97358444 -23.80099361 1.3 0.6 3.8 4.29 

29.973465 -23.80090944 1.5 0.6 5.9 4.34 

29.97358889 -23.80075472 1.1 0.8 5.5 4.11 

29.97371306 -23.80085194 1.1 0.6 6 4.23 

29.97385028 -23.80095389 2.2 0.8 5.6 4.54 

29.97402722 -23.80106 1.7 0.7 5.8 4.4 

29.97420861 -23.80116639 1.8 0.5 5.6 4.23 

29.97436806 -23.80099361 2 0.6 4.4 4.37 

29.97419556 -23.80083861 1.6 0.5 5.6 4.22 

29.97403611 -23.80074139 1.8 0.5 5.3 4.26 

29.97388111 -23.80059528 1.7 0.6 5.6 4.25 

29.97376167 -23.80052 1.7 0.4 4.6 4.2 

29.97389889 -23.80035194 1.3 0.7 4.8 4.27 

29.9740625 -23.8004625 1.5 0.6 5.3 4 

29.97426639 -23.80056417 1.5 0.6 4.9 4.28 

29.97444778 -23.80068389 1 0.5 5.2 4.28 

29.97458056 -23.80079444 2.2 0.7 5.1 4.34 

29.97469111 -23.80064833 1 0.6 5.3 4.57 

29.97454056 -23.80054222 0.9 0.7 5.4 4.25 

29.97434583 -23.80041389 0.9 0.7 5.2 4.13 

29.97415556 -23.8003075 2.7 0.6 5.9 4.41 

29.97401389 -23.80021028 1.6 0.6 5.5 4.18 

29.97406694 -23.80014389 1.8 0.5 5.5 4.59 

29.97422639 -23.80025 2.3 0.6 5.5 4.41 

29.97437694 -23.80035194 3.8 0.7 5 4.56 

29.97456722 -23.80047139 2.5 0.8 5.1 4.54 
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Longitude 

(dd) 

Latitude (dd) Carbon content 

(%) 

Db 

(g/cm3) 

pH 

(H2O) 

pH 

(KCl) 

29.97477528 -23.80060417 0.6 0.6 6 5.12 

29.97485944 -23.80047139 2.1 0.6 5.9 4.52 

29.97466917 -23.80036944 1.7 0.7 5.8 4.46 

29.97448306 -23.80025444 2.2 0.7 5 4.42 

29.97427944 -23.80013944 3 0.5 5.9 4.53 

29.97412917 -23.80005083 2.1 0.7 5.8 4.3 

29.97429722 -23.79984278 2.7 0.5 5.3 4.17 

29.97446556 -23.79997556 2.6 0.6 5.8 4.4 

29.97463806 -23.80008194 1.2 0.5 5 4.53 

29.97483722 -23.8001925 1.8 0.5 5.7 4.41 

29.97500111 -23.80032972 1.9 0.4 5.1 4.55 

29.97515583 -23.80016139 1.3 0.7 5.4 4.51 

29.97501 -23.80002861 3.2 0.4 5.5 4.44 

29.9747975 -23.79987833 1.1 0.5 5.8 4.32 

29.97462472 -23.79969667 1.3 0.6 5.7 4.43 

29.97449194 -23.79959056 1.3 0.7 5.8 4.39 

29.97461583 -23.79945333 2.5 0.6 5.6 4.37 
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B.4. Soil data for wetlands surface samples 

Longitude 

(dd) 

Latitude (dd) Carbon content 

(%) 

Db 

(g/cm3) 

pH 

(H2O) 

pH 

(KCl) 

29.97477528 -23.80157806 3.4 0.4 5.3 4.5 

29.97496111 -23.80171083 5.0 0.3 4.9 4.4 

29.97516917 -23.8018525 4.0 0.3 4.7 4.3 

29.97536389 -23.80199417 2.0 0.4 5.2 4.2 

29.97551889 -23.80211806 5.4 0.5 5.3 4.4 

29.97569167 -23.80196306 5.5 0.3 4.3 4.2 

29.97551 -23.80184361 3.1 0.5 5.5 4.5 

29.97532861 -23.80168861 2.6 0.3 5.3 4.5 

29.97514722 -23.80154694 3.5 0.3 5.6 4.5 

29.97498333 -23.80141861 3.1 0.4 5.1 4.5 

29.97516472 -23.80132111 5.1 0.4 5.6 4.4 

29.97531083 -23.80141861 4.6 0.4 5.3 4.5 

29.97552333 -23.80157361 2.1 0.4 5.1 4.2 

29.97571361 -23.80167528 4.2 0.5 4.5 4.5 

29.97589083 -23.80179056 4.5 0.3 5.4 4.2 

29.97605 -23.80165333 3.3 0.3 5.1 4.6 

29.97585083 -23.801485 3.1 0.4 5.3 4.3 

29.97562528 -23.80133 5.3 0.3 5.4 4.5 

29.9754525 -23.80119722 4.8 0.5 5.4 4.4 

29.97531972 -23.8011175 3.9 0.3 5.1 4.4 

29.97544806 -23.80100694 2.4 0.4 5.7 4.5 

29.97563833 -23.80113083 3.0 0.4 5.3 4.6 

29.97584639 -23.80128139 2.1 0.5 5.9 4.3 

29.9759925 -23.80140972 4.0 0.4 5.8 4.6 

29.97617861 -23.8015425 4.1 0.3 5.3 4.4 

29.97620944 -23.80148056 5.2 0.3 6.1 4.6 

29.97602361 -23.80135222 2.9 0.4 5.9 4.4 

29.97582 -23.80119278 5.4 0.4 5.6 4.5 

29.97565167 -23.80105556 2.3 0.3 4.9 4.6 
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Longitude 

(dd) 

Latitude (dd) Carbon content 

(%) 

Db 

(g/cm3) 

pH 

(H2O) 

pH 

(KCl) 

29.97552333 -23.80095389 2.7 0.4 5.3 4.3 

29.97566056 -23.80083 1.3 0.4 5.2 4.5 

29.97581556 -23.80094944 3.0 0.5 5.2 4.2 

29.97602806 -23.80110444 3.7 0.3 4.8 4.6 

29.97622278 -23.80124167 3.4 0.3 5.2 4.4 

29.97638639 -23.8013875 4.0 0.3 5.2 4.5 

29.97656361 -23.80122389 1.5 0.3 4.8 4.6 

29.97635111 -23.80108222 3.8 0.4 5.1 4.5 

29.97614306 -23.80108222 3.7 0.4 5.3 4.4 

29.97593944 -23.80095389 4.0 0.4 4.8 4.4 

29.97583333 -23.80078111 3.2 0.4 5.4 4.4 

29.97600583 -23.80067056 3.6 0.3 5.4 4.6 

29.976205 -23.80051556 3.5 0.3 4.3 4.6 

29.9764175 -23.80061306 3.5 0.3 5.0 4.2 

29.97660333 -23.80074583 1.8 0.4 5.1 4.3 

29.97680694 -23.80090083 4.6 0.4 5.5 4.5 

29.97690889 -23.80102028 5.1 0.4 5.6 4.6 

29.97674944 -23.80078111 3.7 0.4 4.8 4.4 

29.97654139 -23.80063944 4.9 0.4 5.4 4.3 

29.97636 -23.80051111 2.4 0.4 4.8 4.5 

29.97616972 -23.80038722 2.2 0.3 5.2 4.5 

 

B. 5. Soil data for profiles all four ecosystems 

 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Forest. profile 1 0.0 - 5.0 5.1 0.5 5.0 4.5 
23º48' 999Ý 5.0 - 10.0 3.4 0.7 4.6 4.1 
29º58' 152Ý 10.0 - 15.0 3.9 0.8 4.8 4.3 

 15.0 - 20.0 3.4 0.8   4.5 
 20.0 - 30.0 2.1 1.1 4.3 4.0 
 30.0 - 40.0 1.9 1.0 5.1 4.7 
 40.0 - 50.0 1.7 1.0 5.1 4.7 
 50.0 - 60.0 1.6 1.1 5.0 4.6 
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 60.0 - 75.0 1.3 1.1 5.1 4.6 
 75.0 - 100 1.6 1.1 4.9 4.5 

 
 

 
Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Forest. profile 2 0.0 - 5.0 1.6 0.5 5.7 4.2 
23º48' 947Ý 5.0 - 10.0 2.8 0.6 5.0 4.3 
29º58' 145Ý 10.0 - 15.0 3.6 0.6 5.3 4.4 

 15.0 - 20.0 3.0 0.7 5.3 4.5 
 20.0 - 30.0 1.6 1.0 5.2 4.7 
 30.0 - 40.0 1.9 1.0 5.2 4.5 
 40.0 - 50.0 1.1 1.1 5.2 4.5 
 50.0 - 60.0 0.9 1.0 5.4 4.6 
 60.0 - 75.0 2.1 1.1 5.0 4.6 
 75.0 - 100 1.5 1.1 5.4 4.5 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Forest. profile 3 0.0 - 5.0 3.6 0.5 4.4 4.0 
23º48' 901Ý 5.0 - 10.0 3.9 0.7 4.9 4.2 
29º58' 153Ý 10.0 - 15.0 2.6 0.8 5.0 4.3 

 15.0 - 20.0 1.4 0.9 5.2 4.4 
 20.0 - 30.0 1.1 0.8 5.2 4.4 
 30.0 - 40.0 1.1 1.0 5.4 4.5 
 40.0 - 50.0 0.9 1.0 5.2 4.5 
 50.0 - 60.0 0.8 1.1 5.4 4.5 
 60.0 - 75.0 0.6 1.0 5.4 4.6 
 75.0 - 100 0.6 1.1 5.4 4.5 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Forest. profile 4 0.0 - 5.0 3.9 0.5 4.6 4.0 
23º48' 838Ý 5.0 - 10.0 3.9 0.6 4.9 4.2 
29º58' 179Ý 10.0 - 15.0 2.9 0.7 5.0 4.3 

 15.0 - 20.0 3.0 0.9 5.1 4.4 
 20.0 - 30.0 1.3 1.0 5.2 4.5 
 30.0 - 40.0 0.9 1.0 5.1 4.5 
 40.0 - 50.0 1.0 1.1 5.1 4.5 
 50.0 - 60.0 1.0 1.1 5.1 4.4 
 60.0 - 75.0 0.8 1.1 5.2 4.5 
 75.0 - 100 1.1 1.1 5.0 4.3 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Grassland profile1 0.0 - 5.0 1.2 0.6 5.6 4.5 
23º48' 226Ý 5.0 - 10.0 1.9 0.6 5.9 4.4 
29º58' 385Ý 10.0 - 15.0 4.0 0.7 5.8 4.3 

 15.0 - 20.0 1.0 0.7 5.3 4.5 
 20.0 - 30.0 0.7 0.8 6.0 4.7 
 30.0 - 40.0 1.4 0.8 5.9 4.6 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Grassland. Profile 2 0.0 - 5.0 2.0 0.5 5.1 4.4 
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23º48' 227Ý 5.0 - 10.0 0.9 0.6 5.2 4.4 
29º58' 403Ý 10.0 - 15.0 1.8 0.7 5.3 4.5 

 15.0 - 20.0 2.1 0.7 6.0 4.6 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Grassland. profile 3 0.0 - 5.0 2.4 0.5 5.8 4.5 
23º48' 501Ý 5.0 - 10.0 1.7 0.7 5.8 4.5 
29º58' 168Ý 10.0 - 15.0 1.6 0.7 5.6 4.6 

 15.0 - 20.0 1.3 0.8 5.2 4.6 
 20.0 - 30.0 1.3 1.2 5.2 4.5 
 30.0 - 40.0 1.0 1.4 5.9 4.8 
 40.0 - 50.0 0.7 1.7 5.6 4.7 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Grassland profile 4 0.0 - 5.0 2.2 0.5 5.7 4.3 
23º48' 153Ý 5.0 - 10.0 2.5 0.6 5.5 4.4 
29º58' 458Ý 10.0 - 15.0 1.2 0.7 5.5 4.4 

 15.0 - 20.0 1.4 0.8 5.5 4.6 
 20.0 - 30.0 0.9 1.0 5.3 4.6 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Plantation profile 1. 0.0 - 5.0 1.1 0.9 5.3 4.2 
 5.0 - 10.0 0.7 1.1 4.7 4.3 
 10.0 - 15.0 0.5 1.3 4.4 3.9 
 15.0 - 20.0 0.4 1.4 4.9 4.4 
 20.0 - 30.0 0.4 1.6 5.2 4.5 
 30.0 - 40.0 0.4 1.7 5.6 4.5 
 40.0 - 50.0 0.4 1.7 5.1 4.4 
 50.0 - 60.0 0.1 1.8 5.7 4.7 
 60.0 - 75.0 0.3 1.9 5.4 4.6 
 75.0 - 100 0.1 2.2 5.5 4.7 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Plantation profile 2. 0.0 - 5.0 1.6 0.9 5.0 4.2 
 5.0 - 10.0 1.1 1.0 5.4 4.3 
 10.0 - 15.0 0.9 1.0 5.3 4.3 
 15.0 - 20.0 0.6 1.1 5.0 4.4 
 20.0 - 30.0 0.4 1.1 5.0 4.4 
 30.0 - 40.0 0.4 1.1 5.1 4.4 
 40.0 - 50.0 0.4 1.1 5.2 4.5 
 50.0 - 60.0 0.4 1.2 5.3 4.5 
 60.0 - 75.0 0.3 1.2 5.2 4.5 
 75.0 - 100 0.2 1.2 5.3 4.8 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Plantation profile 3. 0.0 - 5.0 3.6 0.8 4.5 3.8 
 5.0 - 10.0 1.5 1.0 4.7 4.2 
 10.0 - 15.0 1.2 1.0 4.9 4.2 
 15.0 - 20.0 1.1 1.1 4.9 4.3 
 20.0 - 30.0 0.9 1.1 5.0 4.4 
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 30.0 - 40.0 0.9 1.1 5.0 4.3 
 40.0 - 50.0 0.9 1.2 4.8 4.3 
 50.0 - 60.0 0.9 1.2 5.0 4.5 
 60.0 - 75.0 0.9 1.2 5.0 4.4 
 75.0 - 100 1.4 1.2 4.8 4.2 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Plantation profile 4. 0.0 - 5.0 1.0 0.8 5.6 4.1 
 5.0 - 10.0 1.3 0.9 5.2 4.2 
 10.0 - 15.0 0.9 1.0 5.2 4.2 
 15.0 - 20.0 0.8 1.0 5.1 4.3 
 20.0 - 30.0 0.8 1.0 5.2 4.3 
 30.0 - 40.0 0.7 1.1 5.2 4.4 
 40.0 - 50.0 0.5 1.1 5.3 4.4 
 50.0 - 60.0 0.5 1.2 5.1 4.4 
 60.0 - 75.0 0.8 1.2 5.3 4.6 
 75.0 - 100 0.1 1.2 5.5 4.7 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Wetland profile 1 0.0 - 5.0 4.8 0.3 5.6 4.6 
23º48' 251Ý 5.0 - 10.0 2.3 0.5 5.6 4.5 
29º58' 543Ý 10.0 - 15.0 3.2 0.7 5.3 4.5 

 15.0 - 20.0 2.9 0.8 5.5 4.4 
 20.0 - 30.0 0.7 1.0 5.3 4.5 
 30.0 - 40.0 0.3 1.1 6.0 4.7 
 40.0 - 50.0 0.1 1.1 5.9 4.6 
 50.0 - 60.0 0.2 1.2 5.9 4.7 
 60.0 - 75.0 1.2 1.3 5.9 4.7 
 75.0 - 100 0.8 1.6 4.8 4.0 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Wetland profile 2 0.0 - 5.0 3.2 0.3 5.6 4.7 
23º48' 232Ý 5.0 - 10.0 4.6 0.4 5.6 4.4 
29º58 '541Ý 10.0 - 15.0 2.7 0.5 5.2 4.4 

 15.0 - 20.0 3.0 0.5 5.3 4.6 
 20.0 - 30.0 1.6 0.6 5.8 4.5 
 30.0 - 40.0 0.2 0.6 5.9 4.8 
 40.0 - 50.0 0.2 0.8 5.3 4.6 
 50.0 - 60.0 0.3 0.8 5.8 4.7 
 60.0 - 75.0 5.3 0.9 5.7 4.3 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Wetland profile 3 0.0 - 5.0 3.8 0.3 5.4 4.4 
23º48' 275Ý 5.0 - 10.0 4.0 0.5 5.7 4.6 
29º58' 422Ý 10.0 - 15.0 3.6 0.5 5.8 4.6 

 15.0 - 20.0 4.2 0.6 5.2 4.6 
 20.0 - 30.0 2.9 0.6 5.4 4.7 
 30.0 - 40.0 0.7 0.7 5.7 4.7 
 40.0 - 50.0 0.4 0.7 5.7 4.8 
 50.0 - 60.0 2.1 0.8 5.6 4.9 
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 60.0 - 75.0 0.3 0.8 5.9 5.0 
 75.0 - 100 0.1 0.9 5.6 5.1 

 
 Depth(cm) Carbon 

content (%) 
Db (g/cm3) pH(H2O) pH(KCl) 

Wetland profile 4 0.0 - 5.0 3.7 0.3 5.8 4.5 
23º48' 272Ý 5.0 - 10.0 4.6 0.4 6.1 4.5 
29º58' 447Ý 10.0 - 15.0 2.9 0.5 5.3 4.7 

 15.0 - 20.0 4.3 0.6 5.9 4.6 
 20.0 - 30.0 2.8 0.6 5.2 4.6 
 30.0 - 40.0 0.3 0.7 6.1 4.8 
 40.0 - 50.0 0.3 0.8 5.5 4.8 
 50.0 - 60.0 0.3 0.8 5.9 4.8 
 60.0 - 75.0 0.2 0.9 5.9 4.9 
 75.0 - 100 0.2 0.9 5.8 4.9 
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