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Abstract 

Background: Targeted stem cell delivery via macrophage modification is a novel and 

relatively non-invasive therapeutic intervention. Monocytes circulate through the 

vasculature and infiltrate damaged tissue in response to chemotactic signalling. Here 

they differentiate into functionally different macrophage phenotypes - the classically 

activated pro-inflammatory (M1) or alternatively activated anti-inflammatory (M2) 

phenotypes. The M1 macrophages are able to cross endothelial barriers, while the M2 

anti-inflammatory macrophages are unable to transverse endothelium and instead 

remain tissue associated. The focus of our research was to produce M1 macrophages 

in vitro that could transverse endothelium while carrying engulfed stem cells, in order 

to deliver more stem cells in a relatively short time, to any injured tissue to facilitate 

recovery. 

Methods: Primary isolated monocytes were cultured with Granulocyte Monocyte 

Colony-Stimulating Factor, Lipopolysaccharide and Interferon gamma for 6 days to 

pre-differentiate them into M1 macrophages. Cells were treated with a Wortmannin-

Concanamycin A-Chloroquine cocktail to achieve phagosome maturation arrest and 

thus preserve ingested cells in a viable state. Preservation of engulfed stem cells 

(simulated with fluorescent latex beads covalently labelled with IgG antibody) was 

qualitatively and quantitatively determined by flow cytometry and live cell imaging, 

respectively. Bead-containing macrophages were co-cultured with HUVEC cells in a 

Transwell system, and exposed to Monocyte Chemoattractant Protein 1 (added to 

bottom well) to determine migration capacity. 

Results: Monocytes were differentiated into M1 classically activated macrophages. 

The majority of these cells (68.67±3.51%) were able to engulf opsonised beads after 
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successful induction of phagosome maturation arrest – a capacity similar to that of 

untreated cells (61.19±4.68%). Ingested beads were preserved within macrophages 

for the duration of our protocol (2 hours), determined by retained red antibody signal 

on beads and perturbed phagosome acidification. 72.86±16.0 phagosome maturation 

arrested macrophages were able to transverse a HUVEC coated membrane with 8 

µm diameter pores (simulated endothelial layer), while only 70.14±12.6 cells per well 

migrated when carrying a bead cargo. 

Conclusion: A delivery system capable of engulfing, preserving and delivering cargo 

was successfully induced. Further optimisation of this technique could lead to 

translation into a novel method for delivery of stem cells with regard to regenerative 

medicine and may even be used as a drug delivery system for the treatment of various 

malignancies.  
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Uittreksel 

Agtergrond: Geteikende stamsel aflewering via makrofaag manipulering is 'n nuwe en 

relatief nie-indringende terapeutiese intervensie. Monosiete sirkuleer deur die 

bloedvate en infiltreer beskadigde weefsel in reaksie op chemiese seine. Hier kan 

hulle funksioneel verskillende makrofaag fenotipes vorm - die klassiek-geaktiveerde 

pro-inflammatoriese (M1) of alternatiewelik geaktiveerde anti-inflammatoriese (M2) 

fenotipes. Slegs die tipe M1 makrofage is in staat om deur endoteelweefsel te beweeg, 

terwyl die M2 makrofage in weefsel geleë bly. Die fokus van ons navorsing was om 

M1 makrofage in vitro te produseer, wat endoteel kan deurdring selfs nadat dit ŉ 

stamsel ingeneem het, ten einde meer stamselle af te lewer in 'n relatief korter tydperk 

en so doende beskadigde weefselherstel aan te help. 

Metodes: Primêre geïsoleerde monosiete is vir 6 dae gedifferensieer deur hul 

kwekingsmedia aan te vul met granulosiet-monosiet kolonie-stimulerende faktor, 

lipopolisakkaried en interferon-gamma, om sodoende M1 makrofage te lewer. M1 selle 

is daarna behandel met 'n kombinasie van Wortmannin, Concanamycin A en 

Chloroquine om die proses van fagosoomverryping te verhoed en sodoende 

ingeneemde selle in 'n lewensvatbare toestand te bewaar. Bewaring van 

gefagositeerde stamselle (nageboots deur gebruik te maak van fluoreserende 

polistireen krale, gemerk met kovalent-gebonde IgG teenliggame) is kwalitatief en 

kwantitatief bepaal deur vloeisitometrie en lewende sel mikroskopie onderskeidelik. 

Makrofage met ingeneemde krale is daarna bo-op HUVEC selle in 'n dubbelput 

(Transwell) sisteem gekweek. Die kultuur is daarna aan monosiet chemo-

aantrekkingsproteïen 1 (bygevoeg in onderste put) blootgestel om migrasie kapasiteit 

te bepaal. 
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Resultate: Monosiete is suksesvol gedifferensieer na die klassiek geaktiveerde M1 

makrofaag fenotipe. Die meerderheid van hierdie selle (68,67 ± 3,51%) was in staat 

om geӧpsoniseerde krale te verswelg ná suksesvolle verkoming van phagosoom 

verryping - 'n resultaat soortgelyk aan dié van onbehandelde selle (61,19 ± 4,68%). 

Opgeneemde krale het binne makrofage behoue gebly vir die tydsduur van ons 

protokol (2 ure), soos bepaal deur die behoud van die rooi teenliggaamsein op krale. 

In terme van migrasie, was 72,86 ± 16.0 behandelde makrofage (per reaksie) in staat 

om deur 'n HUVEC-bedekte (endoteel) membraan met porieë, 8 µm in deursnee (te 

beweeg, in vergelyking met ŉ soorteglyke 70,14 ± 12.6 selle per reaksie vir die 

behandelde selle wat krale bevat het. 

Gevolgtrekking: Data bewys dat ‘n afleweringstelsel, wat in staat is om ‘n vrag in te 

neem en behoue te laat bly vir aflewering, suksesvol ontwikkel is. Die verdere 

optimalisering van hierdie tegniek kan lei tot die toepassing daarvan as 'n nuwe 

terapeutiese modaliteit in regeneratiewe medisyne, vir die aflewering van stamselle 

en/of farmaseutiese preparate, vir die behandeling van verskeie maligniteite.  
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Chapter 1: Introduction 

Broadly, stem cells are cells capable of differentiation into any cell type following 

appropriate stimulation. In the context of skeletal muscle,  the population of stem cells 

facilitating muscle regeneration are satellite cells (Parise et al. 2008). Unfortunately, 

in some cases, regeneration is inhibited under pathological conditions (such as 

myodystrophy) or due to individual genetic profiles or abnormalities (Snijders et al. 

2016). Perturbed regeneration may result from more than one cause, but most 

relevant to the current thesis, one of these contributing factors is a relative lack of 

sufficient satellite cell numbers at the site of regeneration (Dayanidhi et al. 2015). 

Therefore, therapeutic delivery of additional satellite cells to the required site should 

increase the rate and extent of regeneration. Stem cell delivery could thus beneficially 

attenuate regeneration in chronic pathological states, or recovery acutely after 

physical injuries. This technique would also utilise the donor’s own stem cells and 

monocytes. Following in vitro proliferation of these cells, this autologous stem cell 

therapy could treat chronic diseases. Although this thesis focused on application in 

skeletal muscle, if successful, this technique could be extrapolated and developed for 

broader application in a multitude of tissue areas or organs.  

Turning attention now to how such stem cell delivery could be achieved, we have 

identified leukocytes, and in particular phagocytes, as potential vehicles for delivery. 

Phagocytes – such as macrophages and neutrophils – are responsible for the initial 

recognition and destruction of invading pathogens. So effective are these phagocytes 

that nearly 95% of the animal kingdom can elicit self-protection without the need of B 

or T cells, relying only on evolutionarily conserved innate immune defence (Mills et al. 

2015). At least two characteristics of these cells make them ideally suited for this task. 
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Firstly, they are highly mobile cells, with the ability to readily cross membranes, such 

as endothelium. This affords them the uncommon cellular trait of migration across 

different body or tissue compartments to reach the site where they are required. 

Secondly, these cells have the capacity for phagocytosis. This primary anti-microbial 

weapon is an intricate process, starting with pseudopodia extension to engulf particle 

matter and ending in particle neutralization within a destructive phagolysosome. The 

fact that these two mechanisms in the “defence” response are highly conserved across 

species (Mills et al. 2015), testifies to its potency and overall importance for host 

health. However, from both the microbiology and immunology literature, it is also 

known that the process of phagocytosis is not infallible. Several papers have described 

the ability of evolved microbes, such as Mycobacterium tuberculosis (Seto et al. 2011), 

Leishmania donovani (Gogulamudi et al. 2015) and Candida glabrata (Rai et al. 2015), 

to hide from the immune system by remaining inside phagocytes without being 

digested in the phagolysosome. We believe that a lesson can be learned from these 

microbes, and harnessed to the benefit of regenerative medicine practises.  

The next chapter will provide an overview of the literature related to molecular events 

of phagosome maturation, as well as microbe-associated phagosome maturation 

arrest and experimental manipulation of these strategies. This is followed by a detailed 

report of method development regarding the manipulation of phagosome maturation 

arrest, as well as assessment of potential effects of this intervention on macrophage 

phagocytic and migratory capacities (Chapter 3). Results are presented and discussed 

in chapters 4 and 5, before the thesis is rounded off with a discussion of the practical 

applicability of this technique, additional work required and some recommendations 

for improvements or further development of the technique. 
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Chapter 2: Literature Review 

A truncated version of this literature review (please refer to Appendix A) has been 

submitted for publication to Immunology and Cellular Biology (outcome pending). 

2.1. Introduction 

In this review, we will present our hypothesis on how macrophages may be altered for 

regenerative medicine, and specifically for homologous stem cell delivery. However, 

we first present an overview of what is currently known about the molecular processes 

involved in the phagocytic process, aiming to elucidate the molecular mechanisms of 

phagosome maturation in a temporal and concise manner as to better understand this 

phenomenon. This will be followed by a discussion of phagosome maturation arrest 

and the mechanisms used by microbial agents to evade phagosomal neutralization, 

as well as similar mechanisms at play during normal cell death processes.  

2.2. Molecular Basis of Phagocytosis 

Phagocytosis involves considerable membrane and cytoskeletal rearrangements in 

order to encircle and capture (engulf) potential pathogens or matter foreign to the 

immune system – forming phagosomes – and to mature these nascent phagosomes 

into phagolysosomes (Huynh et al. 2007). Microbial material is captured inside a 

nascent phagosome that matures through events relating to the endocytic and 

autophagic pathway, where fission and fusion events allow for its destructive ability.  

In the next few sections, these intricate processes will be explained in detail, using 

macrophages as representative phagocytic immune cell. 

 

Stellenbosch University  https://scholar.sun.ac.za



4 
 

2.2.1. Recognition 

Matter is recognised as foreign – and thus as potential threat – via binding to specific 

pattern recognition receptors (PRRs) located both in the cytosol and cell surface of 

immune cells of both the innate and adaptive branch of the immune system, as well 

as on epithelial cells such as the vascular endothelium (Anderson & Wadee 2012). 

PRRs differentiate between molecules that are released by dying self-cells and foreign 

material through respectively binding to damage-associated molecular patterns 

(DAMPs) and pathogen-associated molecular patterns (PAMPs) (Abbas et al. 2014). 

Necrotic self-cells release formylated peptides like N-formylmethionine from damaged 

mitochondria (Zhang et al. 2010). These self-originating proteins (classified under 

DAMPs) can bind to formyl peptide receptors (FPRs) on monocytic cells, initiating 

chemotaxis and eventually ending in phagocytosis (Bardoel & Van Strijp 2011). 

Interestingly, these formylated peptides are also characteristic of bacterial proteins. In 

our opinion, this supports the endosymbiotic theory of mitochondrial evolution, which 

proposes that mitochondria are foreign organelles that were incorporated into 

eukaryotic cells for energy production. In this manner cells containing damaged 

mitochondria, i.e. metabolically compromised cells, are removed via recognition of 

these DAMPs, irrespective of self or non-self. Recognition of PAMPs is oriented 

toward many PRR subtypes, such as NOD-like receptors (NLRs) (recognise DAMPs 

as well), RIG-like receptors (RLRs) and Toll-like receptors (TLRs). NLRs are mainly 

associated with sterile inflammation like gout via NLRP3 associated inflammasome 

formation (Misawa et al. 2013). The membrane bound TLRs bind bacterial hallmark 

molecules both intra- and extracellularly and exhibit some target specificity.  The TLR5 

subtype typically binds to flagella, while TLR2 and TLR4 bind components of the 

bacterial cell wall like peptidoglycan and lipopolysaccharide (LPS), respectively 
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(Abbas et al. 2014). TLR2 forms a heterodimer with TLR1 or TLR6 to bind the N-

terminal cysteine modification on lipoproteins of bacteria, as illustrated in 

mycobacterium (Bardoel & Van Strijp 2011). Furthermore, this lipoprotein modification 

is uniquely conserved in over 2000 different bacterial proteins (Babu et al. 2006), 

which can all be recognised by binding of this heterodimer. Other TLRs like TLR3, 

TLR7, TLR8 and TLR9 are intracellular receptors and recognize bacterial dsRNA and 

DNA.  

TLR activation induces recruitment of adaptor proteins and activation of transcription 

factors for production and release of cytokines, adhesion molecules and costimulators 

(Abbas et al. 2014). Active TLRs indirectly regulate phagocytosis through Myeloid 

differentiation primary response gene 88 (MyD88) signalling and activation of the p38 

residue to accelerate phagocytosis (Shi et al. 2016). The newly identified mitogen-

associated protein 1S (MAP1S) autophagy-related protein (Xie et al. 2011) was also 

very recently reported to be necessary for TLR activation and effective bacterial 

phagocytosis (Shi et al. 2016), but more research is required to fully elucidate its role 

in this context. Many other receptors such as lectin, mannose, complement and RIG-

like receptors also assist with pathogen recognition, but the IgG receptors are more 

closely associated with phagocytosis.  IgG antibodies directed against specific 

pathogenic microbes can attach to bacteria to opsonise them. Opsonisation facilitates 

phagocytosis of material otherwise ‘invisible’ to macrophages. Macrophages 

recognise the constant γ heavy chain in Fc regions of IgG antibodies with Fcγ 

receptors (CD64) on their cell surface. Recognition of IgG opsonised material induces 

FcγR clustering at the site of material contact that leads to actin polymerization and 

engulfment through pseudopod extension (Swanson & Hoppe 2004). Formation of 

pseudopodia and actin polymerization is highly dependent on phosphatidylinositol 3-
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kinase (PI3k) recruitment for production of various phosphatidylinositides. The ADP 

ribosylation factor (ARF) proteins play a pivotal role in activating phosphatidylinositol 

kinase enzymes to regulate membrane modification (Nie et al. 2003). Specifically, 

ARF6 has many functions – one of which is being recruited to the tip of forming 

pseudopodia where it activates type I PI3k substrate production via activation of other 

phosphatidylinositol kinases (Honda et al. 1999). ARF6 is also essential for actin 

polymerization during pseudopod extension (Zhang et al. 1998). This collectively 

ensures particle capture and membrane fusion behind the opsonised particle to form 

a phagosome. FcγR mediated phagocytosis is the main form of phagocytosis 

simulated in experimental phagocytosis models, because engulfment does not require 

stimulation by other cells types like T cells or NK cells, explained further by Liu et al. 

(2013). 

2.2.2. Pseudopodia and Encapsulation 

Following recognition, phagocytosis is initiated with the extension of pseudopodia. 

Particle internalisation and phagosome formation is achieved within 5 min after 

introduction of the foreign agent under culture conditions (Visser & Smith, unpublished 

data). Macrophages specifically are extremely ambitious in their phagocytic ability and 

are able to engulf particles into phagosomes which are closely comparable with their 

own size (Huynh et al. 2007).  Interestingly, a form of cell suicide termed “frustrated 

phagocytosis” has been reported, where macrophages even tried to engulf the 

opsonised culture plate surfaces they were grown on (Cox et al. 1999). This 

phenomenon presented a useful model with which to investigate the mechanics of 

pseudopod formation. These “frustrated” macrophages were able to increase their 

surface area by over 20% (Cox et al. 1999). The way in which this phenomenal change 

in cell shape can be achieved, has been debated to some extent. One theory 
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postulated that the macrophage membrane is corrugated, possibly allowing a 

flattening out of the membrane during extra-large particle engulfment (Hallett & Dewitt 

2007). However, quantitative spectroscopy has shown that during healthy 

phagocytosis, membrane surface area indeed enlarges to such a degree that surface 

flattening alone cannot fully account for it (Hackam et al. 1998). In addition, portions 

of the plasma membrane are also lost from the cell surface when it forms the 

membrane of newly formed phagosomes, so that even more membrane replenishment 

is required. 

These findings raise the questions of where the extra membrane comes from and what 

controls it, since these are vital considerations in understanding the processes 

determining the efficacy and speed of phagocytosis. Specific membrane reservoirs 

have not been identified within cells, but general cellular sources are known. For 

example, in the case of osteoclasts, exocytosis of late endosomes has been shown to 

function distinctively to deliver membrane components and increase cell surface area 

during bone reabsorption (Rousselle & Heymann 2002). In the context of 

macrophages and pseudopod formation specifically, a few candidates have been 

investigated. Initially, Gagnon et al. (2002) proposed that the Endoplasmic Reticulum 

(ER) may fuse with the plasma membrane at the base of extending pseudopodia, 

forming a continuity through which the particle can slide into the ER lumen. This idea 

was supported by Becker et al. (2005) who neutralized the ER soluble N-

ethylmaleimide-sensitive factor-attachment protein (SNARE) receptor (ER SNARE), 

ERS24, with intracellular antibodies and showed that phagocytosis efficiency of large 

particles (>3μm) was reduced.  Subsequently, Hatsuzawa et al. (2006) also blocked 

ERS24 (together with syntaxin 18 and D12) and postulated a pivotal role of syntaxin 

18 during ER fusion with phagosomes after finding syntaxin 18 expression on isolated 
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phagosomes, although they acknowledged that this does not prove actual ER-

membrane fusion. Furthermore, although, many ER proteins are recruited to 

phagosomes during events such as pseudopod extension (vesicle-associated 

membrane protein 3, VAMP3) (Coppolino et al. 2001) and phagosome maturation 

(syntaxin 7 and 13) (Collins et al. 2002), this does not substantiate a direct fusion of 

the ER with phagosomes. As evidenced by several reviews on this topic, the theory of 

Gagnon and colleagues seemed to have been accepted by some groups (Garin et al. 

2001; Desjardins 2003), but not all. Several other authors have argued that the role of 

the ER during phagocytosis still needs some elucidation (Touret et al. 2005; Groothuis 

& Neefjes 2005). More recently, using a variety of techniques including immunological, 

biochemical, electron microscopy and fluorescence microscopy, Huynh et al. (2007) 

indeed could not find any evidence of the ER fusing to the plasma membrane during 

phagocytosis. Also, since phagosomes acidify during maturation via a proton gradient 

created by the vacuolar-type H+-ATPase (V-ATPase) proton pump, and the ER 

membrane is permeable to protons and devoid of V-ATPase (Paroutis et al. 2004), the 

theory of simple ER fusion is probably unlikely to fully explain the phenomenon. 

Considering all points of view and data available to us, we speculate that the ER likely 

fuses with phagosomal membranes – however, it could be in a ‘kiss and run’ or ‘kiss 

of death’ fashion, as seen during autophagosome fusion with lysosomes (Jahreiss et 

al. 2008) and cytotoxic CD8+ T cell mediated cell death (Trambas & Griffiths 2003). 

This could result in an exchange or delivery of ER localised proteins to phagosomes, 

without complete membrane exchange through fusion. Furthermore, ER engagement 

was observed during large particle uptake (>3μm) and mostly during FcγR mediated 

phagocytosis (Becker et al. 2005), meaning that ER engagement is likely size and 

receptor specific. 
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A more likely candidate is the enzyme group of PI3ks that phosphorylate the 3’ inositol 

phospholipid of inositol rings. These kinases are classified into three families based 

on their substrate used for lipid phosphorylation: types I, II and III.  

The type I PI3ks consists of four isoforms: PI3kα,β,γ and δ. All these isoforms use 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) as a substrate to generate 

phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3, or PIP3) (Hawkins & Stephens 

2015). This PI3k substrate concentration is kept at optimal level by 

phosphatidylinositol 4-phosphate 5-kinase α (PI4P-5kα) through its phosphorylation of 

phosphatidylinositol 4-phosphate (PI4P) to PI(4,5)P2 (Beemiller et al. 2006). The 

PI3kδ isoform is unique to immune cells as it is normally only expressed on lymphoid 

and myeloid cell lineages (Okkenhaug 2013).  

Botelho et al. (2000) found transiently high PI(4,5)P2 expression on extending 

pseudopodia with its disappearance shortly after phagocytic cup closure and nascent 

phagosome formation. Furthermore, type I PI3ks recruitment and subsequent PIP3 

expression has been shown to occur on extending pseudopodia during engulfment of 

antibody-opsonised particles (Marshall et al. 2001). Throughout the literature, PIP3 is 

seen as the main propagating agent during pseudopod extension. However, apart 

from the apparent steric association of PI(4,5)P2 to PI3ks – necessary for its 

phosphorylation to PIP3 – PI(4,5)P2 itself seems to have an equally important role in 

pseudopod formation. Active ARF6 induces PI(4,5)P2 production through activation of 

PI4P-5kα during phagocytosis (Honda et al. 1999). The produced PI(4,5)P2 can then 

recruit WASP/N-WASP proteins to facilitate actin polymerization during phagocytosis 

(Miki et al. 1996). More recently, Scott et al. (2002) presented supporting findings that 

inhibition of PI(4,5)P2 hydrolysis or overexpression thereof, prevented actin 

disassembly (required for successful material engulfment). The 3’ phosphorylated 

Stellenbosch University  https://scholar.sun.ac.za



10 
 

inositols, PIP3 and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), are known to 

regulate actin polymerization in a G-protein coupled manner, resulting in changes in 

cell shape, cell movement and phagocytosis itself (Mazaki et al. 2012).  However, 

previously mentioned findings support a role of PI(4,5)P2 together with its alternatively 

3-position phosphorylated homologues during actin regulation, even if only in 

disassembling actin by its disappearance. This highlights the independent role of 

PI(4,5)P2 (by extension also ARF6 and PI4P-5kα) as an engulfment regulator and not 

only a type I PI3k substrate for PIP3 production. The role of type I PI3ks was further 

elucidated by Vieira et al. (2001) who postulated, via antibody mediated type I PI3ks 

inhibition, that this type of PI3ks together with its substrate (PI(4,5)P2) and product 

(PIP3) were essential for pseudopod formation around relatively large particles (>3μm 

in diameter) and their subsequent ingestion, but not for the further maturation of 

phagosomes.  

The Type II PI3ks are not well described but current evidence points to the notion that 

this enzyme family produces either PI(3,4)P2 or phosphatidylinositol 3-phosphate 

(PI3P) on endosomal or plasma membranes (Falasca & Maffucci 2012; Posor et al. 

2013) by either of their three isoforms: PI3kC2α, C2β, C2γ. Thus, type II PI3ks, could 

contribute to production of PI(3,4)P2 on extending pseudopodia for actin regulation 

and additional membrane, or it could facilitate phagosome maturation through 

production of PI3P on phagosomes.  

The last PI3k family is the type III PI3ks that consist of only one catalytic subunit, 

VPS34, in humans: hVPS34. Type III PI3ks phosphorylate phosphatidylinositol (PI) to 

PI3P on endosomes and autophagosomal structures (Backer 2008). Formation of 

PI3P is accompanied by the closure of the phagocytic cup and subsequent 

disappearance of PI(4,5)P2 (Botelho et al. 2000) that lead to and are essential for 
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maturation of newly formed phagosomes (Vieira et al. 2001). Thus the function of PI3P 

is centred more around phagosomal/endosomal maturation than as a source of extra 

membrane during engulfment. Additionally, PI3P expression could be negatively 

regulated during maturation by the (FYVE domain containing protein) PI 5’-kinase, 

PIKfyve, via phosphorylation at the 5-position to produce phosphatidylinositol 3,5-

bisphosphate (PI(3,5)P2) (Hazeki et al. 2012).  

From the literature consulted, it seems that the origin of these relatively large amounts 

of “extra” membrane is most likely the phosphoinositides produced by PI3k enzymes. 

In support of this, non-specific inhibition of the PI3ks enzyme superfamily (which 

induced drastically decreased PIP3, PI(3,4)P2 and PI3P synthesis during 

phagocytosis), prevented treated cells from producing the 20% surface area increase 

usually observed during suicidal “frustrated phagocytosis” (Cox et al. 1999). This 

suggests that PI3ks activity is one of the chief sources of membrane during 

pseudopodia extension and phagocytosis. Additionally, a significant amount of 

membrane could also be supplied by recycling endosomes and sorting nexins (SNX), 

which collect membrane and other phagocytic components from endosomes and 

newly formed phagosomes called nascent phagosomes. Interestingly, this recycling 

machinery is also dependent on PI3P expression for docking onto intracellular 

structures (Fairn & Grinstein 2012), further supporting our notion of PI3ks as important 

role player in this context. Not all engulfed material is destined for degradation and 

subsequently need to be recycled by the recycling endosomes and SNX mentioned 

above. Recycling endosomes, partly identified by the Rab11 superfamily, is 

responsible for pinching off reusable cargo during the nascent phagosomal stage 

(Lemmon & Traub 2000). One of three Rab11 isoforms, Rab11a, is expressed on the 

nascent phagosome itself and facilitates phagosome fusion with early endosomes and 
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Golgi-derived vesicles (Fairn & Grinstein 2012). Rab11a also has a crucial role in 

proinflammatory signalling as it delivers TLR4, responsible for detection of 

lipopolysaccharide such as E. coli LPS, to maturing phagosomes (Husebye et al. 

2010).   The Rab11 superfamily seems necessary for engulfment itself as well, since 

Cox et al. (2000) reported that prevention of Rab11 GDP/GTP cycling by mutant 

alleles, inhibited particle internalization. Furthermore, the GTPase, ARF6, also 

controls trafficking of recycling endosomes to the membrane (van Ijzendoorn 2006) 

and inhibition thereof resulted in a block in pseudopod extension (Niedergang, F. et 

al. 2003), suggesting that recycling endosomes serve as an additional reservoir for 

plasma membrane during pseudopod extension. The greater part of cargo retrieval 

and sorting is done in the early phagosomal stage because most of the machinery is 

dependent on PI3P for docking (Fairn & Grinstein 2012), supporting the findings of 

Cox et al. (1999) previously mentioned. However, some of the SNX can form higher 

order structures with Vps26, Vps29 and Vps35 – these are called retromers (Cullen & 

Korswagen 2011). These retromers function in the presence of PI3P, but also active 

Rab7, giving them a limited time gap to recycle cargo between early stage and late 

stage phagosome maturation (between Rab5 to Rab7 transitioning), discussed below. 

This is in no doubt a finely tuned, complex process that merits further research in order 

to be fully elucidated.  

2.2.3. Nascent Phagosomal Stage 

This stage can be structurally distinguished from the pseudopod extension/engulfment 

stage by phagocytic cup closure behind the engulfed material of interest. Pseudopod 

closure is highly dependent on type I PI3k together with expression of PIP3 and 

PI(4,5)P2. Inhibition of PI3k with the nonspecific protein inhibitor, LY294002, 
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prevented successful antibody opsonized particle engulfment due to unsuccessful 

pseudopod closure (Beemiller et al. 2006).  

In contrast to pseudopod formation, the process of phagosome formation and 

maturation is relatively well described, although some controversies remain. 

Successfully engulfed material is encapsulated into nascent phagosomes 

characterized by Rab5 GTPase expression (Fairn & Grinstein 2012). Rabex-5, a 

guanine nucleotide-exchange factor (GEF), is initially recruited to newly formed 

endosomes by the already present Rab22a (Zhu et al. 2009) and functions to activate 

Rab5 (Horiuchi et al. 1997). Active Rab5 then recruits endosomal early antigen 1 

(EEA1) (Scott et al. 2002) and the type III PI3k, hVPS34, (Kinchen et al. 2008) to the 

nascent phagosome. hVPS34 generates PI3P on the cytosolic face of nascent 

phagosomes that serve as docking station for a variety of maturation effectors. The 

FYVE domain of EEA1 can then dock onto PI3P to ensure later EEA1-mediated 

tethering and fusion of phagosomes with late endosomes for further maturation (Vieira 

et al. 2002). EEA1 thus seems to play a central role in phagosome maturation, as 

postulated by Fratti et al. (2001), after they illustrated that intracellular antibodies 

against EEA1 arrested phagosome maturation. However, around the same time as 

this study, Vieira et al. (2001) reported a dominant negative mutant of EEA1 which did 

not induce maturation arrest. They suggested that other FYVE domain containing 

proteins could be involved in PI3P binding that lead to subsequent maturation. Zinc 

finger FYVE domains, present in proteins like EEA1 and PIKfyve, recognize the 

hydrophilic head of PI3P on the cytosolic leaflet and allow binding of these proteins 

with substantial specificity to PI3P, resulting in this docking (Patki et al. 1998). These 

contradicting findings on the necessity of EEA1 could be explained by its tendency for 

complex formation with other proteins. EEA1 has been reported to form a 
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macromolecular complex with Rabaptin-5, Rabex-5 and N-ethylmaleimide-sensitive 

factor (NSF) that interacts with syntaxin 13 (another SNARE) to facilitate membrane 

fusion (McBride et al. 1999). NSF disassembles these SNARE complexes via ATP 

hydrolysis after membrane fusion, blocking further action (Jahn & Scheller 2006). This 

could mean the maturation inhibition reported by Fratti et al. (2001) was achieved 

through the inability of antibody-bound EEA1 to form a macromolecular complex (likely 

due to steric hindrance), but the dominant negative form of EEA1 could, thus resulting 

in unperturbed phagosome maturation. 

2.2.4. Late Phagosomal Stage 

Transition to the late phagosomal stage is marked by GTPase-activating protein 

(GAP)-mediated Rab5 inactivation/dissociation (Fairn & Grinstein 2012) and Rab7 

recruitment, together with late endosome fusion and expression of other markers such 

as mannose-6-phosphate receptor (MPR), lysobisphosphatidic acid (Fratti et al. 2001) 

and lysosome-associated membrane proteins (LAMP) (Desjardins 1995). It is also 

during this stage that PI3P is incorporated and degraded inside the phagosomal lumen 

via inward budding of the limiting membrane (Gillooly et al. 2000). Briefly, the PI 3’-

phosphotase (PTEN) and PIKfyve eliminate PI3P via hydrolysis to PI and 

phosphorylation to PI(3,5)P2, respectively (Hazeki et al. 2012). Elimination of PI3P is 

likely necessary for the removal of nascent phagosomal effector proteins dependent 

on PI3P expression, such as EEA1 and other FYVE domain containing proteins. The 

late phagosomal stage initiates about 10-30 min after nascent phagosome formation, 

at least under in vitro conditions (Fratti et al. 2001). This is in accordance with the 

disappearance of PI3P about 10 min after its formation (Vieira et al. 2001).  
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Rab7 is expressed on both late endosomes/late phagosomes and lysosomes 

(Meresse et al. 1995). This expression profile allows Rab7 to regulate membrane 

trafficking between early endosome/nascent phagosomes and late endosomes as well 

between late endosome/late phagosomes and lysosomes (Press et al. 1998). The 

fusion between nascent phagosomes and late endosomes may allow the close 

proximity of Rab7 and PI3P that facilitates SNX retromer functioning reported by 

Cullen & Korswagen (2011), as mentioned in section 2.2.2. In this manner, the SNX 

retromers possibly recycle cargo between nascent phagosomes and late 

phagosomes, rather than nascent phagosomes and recycling endosomes, as hinted 

at earlier. This Rab7 GTPase accelerates maturation to the phagolysosome 

biogenesis stage with the help of Rab7-interacting-lysosomal-protein (RILP) (Harrison 

et al. 2003). The Rab7 associated proteins RILP and oxysterol-binding protein related-

protein 1 (ORP1L) together link phagosomes to dynein (Johansson et al. 2007), which 

centripetally moves these late phagosomes along microtubules toward lysosomes for 

fusion (Harrison et al. 2003). Johansson et al. (2005) reported that ORP1L 

preferentially binds to active, GTP-Rab7 and that this association seems to sustain the 

GTP-bound state of Rab7. This prolonged activation could be required for successful 

dynein linkage. Dynein mediated fusion with lysosomes seems to be dependent on 

the HOPS complex as well as Rab7 (Akbar et al. 2011). HOPS is a tethering protein 

responsible for keeping phagosomes in close proximity to lysosomes, a function 

parallel to that of EEA1 (Hickey & Wickner 2010). Furthermore, disassembly of the 

microtubular network with nocodazole ablated centripetal movement of phagosomes, 

suggesting a dependency of macrophages to dynein for maturation (more detail 

provided in section 2.4.3.).  
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2.2.5. Phagolysosome Biogenesis Stage 

Phagosome fusion with lysosomes is the last stage of maturation and is referred to as 

phagolysosome biogenesis (Seto et al. 2011). This stage was reported to occur about 

1h after nascent phagosome formation under in vitro conditions (Jahraus et al. 1998). 

Our unpublished data indicate this stage is initiated closer to 30 min after nascent 

phagosome formation; however, it is important to keep in mind the nature of the 

internalised particle as this will influence progression to further stages and subsequent 

digestion. Fusion is mediated by the SNARE proteins (syntaxin 7, syntaxin 8, VAMP7 

and VAMP8) (Becken et al. 2010) and provides the phagolysosome with the needed 

proteases (e.g. cathepsin D), reactive nitrogen species (RNS) and reactive oxygen 

species (ROS) with which to neutralize the ingested particle. Lysosome fusion also 

increases LAMP expression and effectuates an acidic phagosomal environment 

(Jahraus et al. 1994). 

It may seem that Rab5 and Rab7 are the chief GTPases regulating endosomal and 

phagosomal maturation, as discussed in the previous section, but research has 

discerned significant roles for some other Rab proteins as well. For example, Rab10 

has been shown to regulate sufficient recycling of proteins back to the plasma 

membrane and is present on nascent phagosomes even before Rab5 (Cardoso et al. 

2010). Also, phagolysosomal protein degradation is hugely dependant on proteases 

like cathepsin D, delivered from the Golgi. Delivery is controlled by the trans-Golgi 

network-localised Rabs (22b, 32, 34,38 and 43) (Ng et al. 2007) that were shown to 

have various association and dissociation kinetics with the maturing phagosome (Seto 

et al. 2011). Blockage of cathepsin D delivery via dominant–negative Golgi-localized 

Rab alleles resulted in arrested phagosome maturation. Rab34 has also been 

implicated in phagolysosome biogenesis through its association with RILP (Wang & 
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Hong 2002). Another ER-localized Rab, Rab20, was shown to co-localize with V-

ATPase on the phagosome, suggesting an involvement in phagosome acidification 

and maintenance thereof (Curtis & Gluck 2005). Seto et al. (2011) more recently 

reinforced this finding by reporting that dominant negative alleles of Rab20 and Rab39 

prevent phagosomal acidification.  

Phagocytosis has seemingly evolved from an endocytic nutrient gathering process in 

almost all eukaryotic cells to a specialized mechanism of self-defence conserved 

uniquely to professional phagocytes. In this manner a certain degree of redundancy 

exists in phagocytosis, most likely in order to be “fool proof”. However, as seen in the 

literature, at least some pathogens are able to adapt in order to escape degradation 

and neutralisation by phagocytosis to ensure their own survival. The most effective 

mechanisms employed by these microbes entail phagosome maturation arrest. 

Interestingly, these pathogens do not evade being transported into the phagocytic cell 

– rather they use the host cell as nutrient supply, so that they not only survive, but 

thrive. 

2.3. Pathogenic Phagosome Maturation Arrest 

Pathogenic phagosome maturation arrest is a hallmark of bacterial and viral host 

immune evasion. Many intracellular pathogens like Mycobacterium tuberculosis, 

Candida glabrata, HIV-1 and Leishmania donovani have evolved divergent 

mechanisms to modulate phagocytic digestion (Thi et al. 2012). Well characterized 

mechanisms of phagosome maturation arrest include (a) interference with PI3k 

function and PI3P biogenesis (M. tuberculosis & C. glabrata; Rai et al. 2015), (b) 

perpetuation of Rab5 expression (L. pneumophila, Clemens et al. 2000), (c) prevention 

of centripetal movement of nascent phagosomes (M. tuberculosis & HIV-1; Dumas et 
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al. 2015), (d) blocking of fission and fusion with lysosomes and endosomal organelles 

(M. tuberculosis & L. donovani; Gogulamudi et al. 2015), (e) raising pH levels by 

causing phagosomal acid leakage (C. neoformans; Tucker & Casadevall 2002), (f) 

lysis of  the phagosomal membrane to escape digestion (Salmonella spp.; Fairn & 

Grinstein 2012) and even (g) active macrophage killing (filamentous C. albicans; Gaur 

et al. 2013). Although the mechanisms by which these pathogens evade phagocytosis 

have been identified, they are not well understood and only a few have been 

sufficiently studied in the context of phagocytosis.  For the sake of brevity, we limited 

ourselves here to a very brief overview of the mechanisms most relevant to this review. 

2.3.1. Inhibition of Phagosome Maturation 

M. tuberculosis survive intracellularly mainly by working against PI3ks, secreting the 

acid PI 3’-phosphatase (SapM) to dephosphorylate PI3P, thus preventing EEA1 from 

docking onto the phagosome (Vergne et al. 2005). Mycobacterial phagosomes also 

retain the tryptophan-aspartate containing coat (TACO) protein, expressed on the 

cytosolic leaflet of the plasma membrane involved in intracellular membrane 

trafficking, cytokinesis and cytoskeletal remodelling (Gogulamudi et al. 2015). TACO 

retention causes prolonged Rab5 expression - although some maturation effectors 

can still bind the phagosome, this occurs in relative absence of PI3P, so that the FYVE 

domain mediated binding of EEA1 is greatly perturbed (Simonsen et al. 1998), which 

largely prevents lysosome fusion (Ferrari et al. 1999) to ensure a more alkaline and 

hydrolase deficient phagosome (Clemens et al. 2000).  

In contrast, the survival mechanisms of C. glabrata are largely dependent on active 

PI3ks. C. glabrata encodes the enzyme PI3k and (similar to the type III PI3ks, hVPS34) 

produces fungal PI3P through phosphorylation of PI (Strahl & Thorner 2007). In this 
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manner, the PI3P content of phagosomes could increase during the early stages of 

maturation where PI3P has not yet come into play. This could then lead to a PI3P rich 

phagosome being identified as already partly matured due to its PI3P phenotype, thus 

halting further maturation processes. Deletion of the two functional subunits of fungal 

PI3k (CgVps15 and CgVps34), led to alleviated phagosomal maturation arrest with 

greatly reduced fungal survival (99% of fungus died) and virulence in phorbol 12-

myristate 13-acetate (PMA) differentiated THP-1 macrophages (Rai et al. 2015), 

providing evidence for its importance.   

In addition, HIV-1 invasion is associated with inhibited phagosome formation as well 

as phagosome maturation arrest through microtubule perturbations. Several viral role 

players have been implicated here, such as the viral negative factor (Nef) (Mazzolini 

et al. 2010) and the regulatory viral protein (Vpr) (Dumas et al. 2015). Although we 

could not find a study to specifically implicate PI3k in these mechanisms, it is highly 

likely that these mechanisms are also PI3k related, since both Nef and Vpr (as well as 

Tat) have been shown to achieve several other effects, such as Regulated on 

Activation, Normal T Cell Expressed and Secreted (RANTES) production and down-

regulation of the ARF6 endocytic pathway, via PI3k-dependent routes 

(Blagoveshchenskaya et al. 2002; Zhu et al. 2009; Gangwani et al. 2013; Nookala et 

al. 2013). 

2.3.2. Interference with Phagosome Acidification 

Hydrolase deficiency and retarded acidification are mainly brought about in two ways 

by M. tuberculosis. Firstly, hydrolysis is exacerbated by limited expression of Rab7. 

This GTPase has been shown to transiently localise to mycobacterial phagosomes, 

preventing needed RILP recruitment, but also limiting cathepsin D protease delivery 
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(Seto et al. 2010). Secondly, mycobacteria also stimulate dissociation of the V-ATPase 

associated Rab20, preventing phagosomal acidification (Seto et al. 2011).  

2.3.3. Prevention of Lysosome Fusion 

Leishmania promastigotes are phagocytosed into phagosomes that retain TACO, 

blocking fusion with lysosomes and ensuring a neutral pH environment in which this 

parasite can multiply and differentiate into its amastigote stage (Mukkada et al. 1985; 

Ferrari et al. 1999). However, after differentiation, this parasite allows phagosome 

fusion with lysosomes to achieve an acidic environment in which the amastigotes can 

thrive. Interestingly, these phagosomes then also exhibit low expression of late 

phagosomal/endosomal markers such as LAMP, V-ATPase and Rab7 (Vinet et al. 

2009) 

In addition to preventing lysosome fusion, Leishmania further protects itself by 

inhibited recruitment of nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase to the phagosome, resulting in perturbed ROS production (Moradin & 

Descoteaux 2012). Similarly, M. tuberculosis was reported to stimulate release of 

Tumour Necrosis Factor α (TNF-α) and interleukin 10 (IL-10) by infected macrophages 

(Sendide et al. 2005), resulting in a deactivation of ROS and NOS release from these 

macrophages (Redpath et al. 2001) to inhibit their microbicidal effect. IL-10 specifically 

also down-regulates secretion of pro-inflammatory cytokines like interferon gamma 

(INF-γ) and TNF-α (Redpath et al. 2001) and results in a shift toward a Th2-type cell 

expansion in the alveoli (de Almeida et al. 2012) with a shift towards an alternatively 

activated, anti-inflammatory, M2 macrophage phenotype (Smith et al. 2008). 

These studies illustrate quite clearly that pathogens are able to manipulate the 

phagocytic process in various different ways. In doing so, they ensure not only their 
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survival, but also their propagation and distribution through the host. However, in our 

opinion, it is also this manipulability of the phagocytic process that makes it ideal for 

use in regenerative medicine. 

2.4. Harnessing the Phagocytic Process for Medicine 

The current detailed understanding of the exact molecular mechanisms governing 

phagocytosis as well as perturbations achieved by pathogenic mechanisms, allows 

exploitation of this process for therapeutic purposes. After thorough study of the 

relevant literature, we have formulated a hypothesis on the use of this knowledge for 

potential therapeutic application in regenerative medicine and possibly other clinical 

fields as well.  

Macrophages can engulf particles seemingly endless in size if one takes into account 

the suicidal “frustrated phagocytosis” reported by Cox et al. (1999). This suggests that 

they are able to engulf the majority of pathogenic microbes and almost all host somatic 

cells. Other factors influence phagocytosis, such as bacterial receptor ligands and 

macrophage co-stimulation by T-cells or other innate immune cells (e.g. NK cells) (Liu 

et al. 2013). Fortunately, the innate immune system has evolved to ensure 

macrophage target affinity and specificity together with the capacity to reach isolated 

tissue areas to neutralise hidden pathogens (Mills et al. 2015). Unfortunately, 

pathogen evolution alongside macrophages has equipped them with mechanisms to 

elude host defence, many of which are centred on perturbing phagocytosis to 

sustaining the pathogen inside macrophages. Though unwanted and detrimental to 

the host in the presence of pathogens, we believe that these modulations that 

pathogens can elicit on the process of phagocytosis, may be exploited for gain. We 

hypothesise that by inducing phagosome maturation arrest in a manner similar to that 
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of pathogens, but without pathogen involvement, the highly motile macrophages may 

be modified to render them useful as shuttles to carry “cargo” to specific areas within 

the host. The nature of this cargo could range from drugs to be delivered, to live stem 

cells, depending on the therapeutic aim. Of all potential options, the idea of a 

macrophage carrying a live stem cell – for example to increase muscle regenerative 

capacity in patients suffering from myodystrophy – is most enticing. 

Let us consider for a moment what this would practically entail. Fundamentally, these 

macrophages would have to be isolated from patient blood and modified in vitro in 

order for it to maintain an ingested stem cell in a viable state within its phagosomes 

after autologous reinfusion. To achieve this, we propose induction of “artificial” 

phagosome maturation arrest. This will have to be achieved in a manner that will not 

compromise macrophage capacity for particle ingestion. A variety of methods by which 

this may be achieved have been unknowingly uncovered by researchers elucidating 

the details of phagosome maturation. Below, we evaluate the feasibility of these 

methods in terms of safety for in vivo application. 

2.4.1. Macrophage IL-10 Enrichment 

IL-10 is used by M. tuberculosis as a powerful inhibitor of phagosome maturation, 

discussed earlier. This is also supported by O’Leary et al. (2011) who found that 

macrophages containing killed M. tuberculosis produced less IL-10 than cells infected 

with live M. tuberculosis, showing that M. tuberculosis upregulates IL-10 production to 

protect itself against destruction. As this anti-inflammatory and anti-microbicidal 

cytokine is produced in vivo one can argue that it is a promising agent to use for 

therapeutic phagosome maturation arrest, although some problems do exist.  
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As shown previously, the IL-10-mediated maturation inhibiting effect of M. tuberculosis 

is also dependent on MAPKp38 activation in human macrophages (Song et al. 2003). 

This is supported by data reported by O’Leary et al. (2011), who significantly restored 

phagosome maturation by inhibiting MAPKp38 in M. tuberculosis-containing 

macrophages. Subsequent addition of rIL-10 to these cells resulted in the 

reoccurrence of maturation arrest, testifying to the plasticity of this technique. 

However, O’Leary et al. (2011) reported that the IL-10-induced maturation arrest 

occurs both in the presence of viable and non-viable M. tuberculosis, but not in its 

absence, suggesting that M. tuberculosis infection is necessary for IL-10 to induce 

maturation arrest. This problem can probably be overcome by identification of the 

essential bacterial component, which – if not antigenic or pathogenic itself – can be 

administered as co-treatment. A more problematic fundamental flaw to this approach 

is the phenotypic change that IL-10 effects in macrophages. IL-10 is known to polarize 

macrophages towards the alternatively activated (M2) phenotype (Chazaud et al. 

2009; Mia et al. 2014). Although the anti-inflammatory phenotype is desired in terms 

of resolution of inflammation and wound healing, M2 macrophages do not readily cross 

endothelial barriers (Arnold et al. 2007). This would significantly inhibit the actual 

delivery of the ingested stem cell to the intended target tissue. This complication 

however highlights the need for another step in the process – macrophages will have 

to be polarised towards the M1 phenotype, to ensure sufficient mobility. 

2.4.2. Brefeldin A Treatment 

The fungal antibiotic, Brefeldin A (BFA), inhibits a subtype of Golgi associated GEFs 

(ARF-GEFs) that facilitate the GDP/GTP cycling of ARF family proteins (Donaldson et 

al. 1992). These ARF-GEFs express a Sec7 domain that Brefeldin A recognises and 

inhibits by direct binding to it (Shin & Nakayama 2004). ARFs play a central role in 
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regulating plasma membrane traffic (Zhang et al. 1998), actin polymerization and 

activating phosphatidylinositol kinases for phosphatidylinositol production. Active ARF 

mediated membrane trafficking is controlled via coat proteins expressed on cellular 

transport vesicles (Kreis et al. 1995). ER and Golgi bilaterally traveling transport 

vesicles are coated with proteins such as calnexin and coat protein complex type I 

(COPI) and type II (COPII) (Letourneur et al. 1994). COPI is recruited to phagosomes 

and contributes to recycling of phagosomal components (Berón et al. 2001). Active 

ARF1 is necessary for this COPI recruitment and inhibited COPI expression has been 

shown by Berón et al. (2001) to partly perturb phagosomal recycling events. Thus, 

because BFA sensitive ARF-GEFs control ARF1 activity that in turn allows COPI 

recruitment, BFA treatment could potentially induce phagosome maturation arrest by 

preventing sufficient recycling of phagosomal components. However, Beemiller et al. 

(2006) found BFA-mediated inhibition of ARF-GEFs did not lead to subsequent 

inactive ARF1 expression on phagosomes. This suggests that the cells adapted to 

ARF-GEF inhibition by recruiting GEFs that are insensitive to BFA treatment. In 

addition, dual specificity of ARF was reported for BFA: ARF1 and ARF5, but not ARF6 

– the main ARF implicated in encapsulation – was reported to be sensitive to BFA 

(Zeeh et al. 2006). The effect of BFA on phagosome maturation thus remains largely 

unknown.  

2.4.3. Microtubule or Dynein Inhibition 

As mentioned earlier, dynein is vital for centripetal and centrifugal delivery of 

phagosomes to lysosomes for fusion. The dynactin complex has been shown to 

facilitate cargo binding to dynein for centripetal movement (Blocker et al. 1997), while 

the Rab5 GTPase regulates motility of endosomes (Nielsen et al. 1999), likely through 

a phosphoinositide and EEA1 dependent manner. It is widely accepted that 
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microtubule disruption negatively influences phagosome centripetal movement and 

coinciding maturation. In regard to this, Blocker et al. (1996) has shown inhibition of 

phagosome movement via microtubule disassembly after nocodazole treatment. 

Nocodazole could thus induce phagosome maturation arrest, but the associated 

microtubule disassembly could perturb pseudopod extension via inhibited PI3k 

delivery, thereby inhibiting uptake of stem cells into macrophages. Furthermore, it is 

possible that nocodazole induced microtubule disassociation could block cellular 

motility and chemotactic reactivity, ablating the very characteristic of macrophages we 

intend to exploit.  

Thus, placing focus on dynein motor inhibition could pose a more viable solution. 

Ciliobrevin D is a dynein motor blocker that inhibits the GTPase activity of dynein 

(Chou et al. 2011). Ciliobrevin D is also a dynein specific inhibitor and does not affect 

kinesin-1 and 5 ATPase activity (Firestone et al. 2012), making this compound a 

promising unidirectional inhibitor of centripetal movement only. Furthermore, 

Ciliobrevin D does not disrupt microfilament structure (Misawa et al. 2013). Moreover, 

Sainath & Gallo (2014) found that Ciliobrevin D inhibited bidirectional mitochondria, 

lysosome and Golgi-derived vesicle transport. Ciliobrevin D has recently been 

suggested as modulator of lysosome mechanics (Lin et al. 2015) and has been used 

in autophagy studies (Li et al. 2016). It has further been utilised to elucidate the 

formation of NLR pyrin domain containing 3 (NLRP3) mediated inflammasome 

formation in bone marrow derived macrophages (Misawa et al. 2013), but its effects 

on phagosome maturation have not been reported. This compound seems to be 

promising for the purpose of inducing phagosome maturation arrest and should be 

further investigated in this context.  
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2.4.4. Wortmannin 

This fungal steroid metabolite is a known potent, selective and irreversible inhibitor of 

all three PI3k subtypes (Vieira et al. 2001) via covalent binding (Yuan et al. 2007). A 

subsequent study by Vieira et al. (2003) reported virtually complete elimination of 

phagosome fusion with late endosomes and lysosomes after Wortmannin treatment. 

These inhibitory roles for Wortmannin suggest it to be an ideal candidate for our 

purposes. However, not all effects of Wortmannin are equally desired. For example, 

PI3K-inhibition by Wortmannin was reported to enhance TLR-mediated inducible 

nitric-oxide synthase (iNOS) expression, to activate NF-κB and to up-regulate cytokine 

mRNA production (Hazeki et al. 2006), suggesting a pro-inflammatory role. In addition, 

Wortmannin treatment was also shown to prevent large particle (>3μm) engulfment 

through inhibiting PI3P formation (Cox et al. 1999). Together these data suggest that 

the use of Wortmannin for macrophage modification will require a finely optimised 

protocol, to ensure maximal phagosome maturation arrest, without compromising the 

encapsulation process or eliciting an inflammatory response.  

2.4.5. Concanamycin A 

Concanamycin A is a plecomacrolide that specifically inhibits the V-ATPase proton 

pump. This enzyme is responsible for energizing the membranes of eukaryotic cells, 

both intracellular and plasma membranes (Huss et al. 2002). V-ATPase is also 

expressed on the late phagosome and ensures an acidic pH during phagosome 

maturation. The V-ATPase consists of two complexes, the catalytic V1 located on the 

cytosolic side of membranes and the translocating V0 unit bound to the membrane 

(Huss & Wieczorek 2012). Concanamycin A covalently binds to the subunit c of the 

translocating V0 complex (Huss et al. 2002), thereby preventing proton influx into 
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phagosomes, resulting in an alkaline pH of about 7.5 (Yates et al. 2005). 

Concanamycin A is commonly used in experimental models for its inhibition of 

autophagy (e.g. Yano et al. 2016). 

2.4.6. Chloroquine 

Chloroquine is a 4-aminoquinoline that indirectly prevents acidification of intracellular 

vacuoles (Akpovwa 2016). This weak base accumulates within vacuoles or 

phagosomes via ion trapping and reduces the pH to about 6.5 if used at 10μM (Weber 

et al. 2000). This compound is readily used as an anti-malarial drug and was very 

recently suggested as a possible Ebola drug, since its alkalinizing action would prevent 

intracellular viral replication, provided that its concentration can be maintained at 

effective dose (Akpovwa 2016).  The fact that chloroquine is a known medication is a 

benefit, since its safety for human consumption has been established. Similar to 

Concanamycin A, chloroquine has proven efficacy in the context of (auto)phagosome 

maturation arrest. 

From this information, we conclude that a number of potential treatments may be 

considered as candidate treatments with which to achieve macrophage modification 

for the purpose of hosting one or more live stem cells, increasing the feasibility of our 

hypothesis. 

2.4.7. Additional Factors to Consider 

Of course, although the maintenance of the stem cell inside the macrophage is a major 

consideration and an important problem to solve, it is not the only one.  In order for 

the stem cells to be ingested by the modified macrophage, they will have to be 

opsonised, especially since autologous cells will ideally be used for this technique, to 
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minimise side-effects. Furthermore, the opsonisation process should not interfere with 

stem cell function after delivery at the site earmarked for regeneration. However, we 

believe that this can be overcome using advanced technology and a multidisciplinary 

approach. Recently, great advances have been made in the field of abiotic membrane-

active polymers that can coat cell membranes whilst maintaining cell viability (Marie 

et al. 2014). These polymers can be “decorated” with an opsonin to enhance 

encapsulation, after which the polymer can be deconstructed by e.g. slight 

temperature change or vibration.  

Another question is whether the number of stem cells ingested should be limited. From 

the frustrated phagocytosis model, it is known that macrophages have an exceptional 

capacity for membrane “extension”, so that several stem cells can theoretically be 

ingested by an individual macrophage. Indeed, this was the case in preliminary studies 

in our lab (Visser & Smith, unpublished data). However, we believe that the number of 

stem cells ingested per macrophage can be limited by optimising the time allowed for 

engulfment. Alternatively, flow cytometry sorting could be employed to sort for cells 

with optimal number of ingested stem cells. 

Once reinfused, macrophages should naturally migrate to sites requiring regeneration. 

Of course, in order to achieve maximal benefit, the chemotactic signal could also be 

manipulated, and the known vast array of exciting tracking methods may be employed 

to track the final destination of the modified macrophages. These processes are, 

however, not within the scope of this review, which is focused on modification of the 

macrophage itself. 

The final consideration to include in this review is the release of the stem cell at the 

appropriate destination site. A plethora of mechanisms exist to induce cell death or 

Stellenbosch University  https://scholar.sun.ac.za



29 
 

exocytosis. One example is Brefeldin A. Although it has doubtful application for 

phagosome maturation arrest, BFA may prove useful in later stages of cell cargo 

delivery, by inducing apoptosis in the macrophage. BFA can induce ER stress (Tseng 

et al. 2014) through inhibited anterograde protein trafficking between the ER and Golgi 

(Alvarez & Sztul 1999).  Prolonged BFA treatment can cause chronic ER stress and 

subsequent mobilization of the compensatory unfolded protein response (UPR). If the 

UPR is unable to resolve ER stress, this compensatory mechanism shifts from pro-

survival to pro-death and mobilizes cell death responses like apoptosis (Hetz 2012). 

Apoptosis is achieved under chronic treatment conditions (15h – 40h) (Alvarez & Sztul 

1999), which allows sufficient time for the processes of engulfment, reinfusion and in 

vivo transportation to be completed. A favourable consideration in this context is that 

BFA does not affect engulfment capacity of large (3μm) or small (0.8μm) particles, 

despite its ER traffic inhibitory effects (Becker et al. 2005), possibly due to the 

insensitivity of ARF6 to BFA mentioned earlier. Of course, as with all other phases, 

other candidate methods – such as targeted exocytosis – should also be considered 

and optimised. Leishmania donovani promastigotes multiply and differentiate into 

amastigotes inside arrested phagosomes (Moradin & Descoteaux 2012). These 

amastigotes then escape the macrophage to continue their life cycle. This poorly 

understood phenomenon could be exploited to induce exocytosis in stem cell carrying 

macrophages.  

2.5. Summary 

In summation, modern science has substantially increased our understanding of 

molecular role players not only in the phagocytic process, but also in regenerative 

medicine. We firmly believe that by pooling resources across multiple disciplines, the 
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remaining obstacles can be overcome to achieve the therapeutic technique we 

outlined here. If phagosome maturation could be arrested, these macrophages could 

be used as an in vivo delivery system for phagocytosed “cargo”. 

Delivery of laboratory-enhanced or conditioned stem cells, using an autologous 

physiologically relevant vehicle, will be a significant step forward in terms of 

individualised medicine, and especially in disease states where no current mainstream 

therapy has proven effective.  

2.6. Hypothesis 

The scope of this thesis was to address the first steps in creating such a delivery 

system. We hypothesised that macrophage phagosome maturation arrest could be 

experimentally induced by in vitro treatment with a Wortmannin, Concanamycin A and 

Chloroquine cocktail, without limiting phagocytic engulfment capacity or 

transendothelial migratory capability of macrophages.  

2.7. Objectives 

In order to test our hypothesis, we formulated the following objectives:  

1. Isolation of a pure population of primary monocytes 

2. Culturing and polarisation of peripheral human monocytes to induce a classically 

activated (M1) macrophage phenotype 

3. Inducing M1 phagosome maturation arrest by acute administration of a 

combination of Wortmannin, Concanamycin A and Chloroquine.  

4. Developing a model to qualitatively and quantitatively assess phagocytic and 

digestive capacity. 
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5. Determination of relative migration capacity of M1 macrophages after phagosome 

arrest treatment. 
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Chapter 3: Materials and Methods 

This chapter deviates from the typical format of a thesis methods chapter. Since 

method development was a big part of my research topic, it is (in my opinion) important 

to also present the process followed. Therefore, apart from the optimised method, 

various technical considerations and the process through which the final protocol was 

derived, will also be presented. Methods are presented chronologically, to illustrate 

the sequence of multiple steps which all had to be synchronised to achieve a result. 

3.1. Cell Type Selection 

Primary isolated human monocytes were chosen above immortalised cells lines for a 

number of reasons. Firstly, it was decided that, given the multi-stepped complexity of 

the process and the numerous role players involved when manipulating a 

physiological, and specifically an immunological, process, the in vitro work should 

resemble the in vivo situation as closely as possible. In this way, the transfer from in 

vitro to eventual in vivo application should progress more smoothly -  practical 

translation of results for human therapeutics was an important consideration in the 

design of this study. Secondly, and related to the applicability of data to in vivo 

situations, repeated exposures to low temperatures or DMSO (as is common practise 

in cell culture maintenance) may result in anomalies in these cells that may affect 

assessments made. Just one example of such a change is the perturbation in 

cytochrome P-450 activity after exposure to 0.1% DMSO (Busby et al. 1999). Thirdly,  

established immune cell lines  such as THP-1 cells were originally isolated from 

unhealthy donors, in this case acute monocytic leukaemia (Tsuchiya et al. 1980), but 

not all abnormalities of these cells have been recorded, so that it is not possible to 

ascertain normality of the cell mechanics that we proposed to investigate here. Lastly, 
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in our experience, although primary macrophages are notoriously adherent, 

commercial macrophage lines are considerably less adherent in culture. This suggests 

an alteration in adhesion molecule expression in these cells and given the importance 

of cell adhesion in cell migration, this is perhaps the most clear-cut reason for our 

choice to opt for using primary cells.  

3.2. Ethical Considerations 

Ethical clearance exemption for isolation of human monocytes from purposely donated 

blood was obtained from the Subcommittee C Human Research Ethics Committee 

(HREC) of Stellenbosch University (Reference # X15/05/013). 

3.3. Monocyte Isolation 

Buffy coats were collected specifically for our study by the Western Province Blood 

Transfusion Service (WPBTS), using donors between the age of 18 – 25 years. 

Donors were informed of the study and consent were obtained from all donors, by the 

WPBTS. Monocytic population isolation was performed within 8 hours of each 

donation. A double gradient centrifugation protocol was employed, as this protocol is 

more widely used in blood cell separation and avoids possible confounding and/or 

undesired effects, such as possible inactivation of CD14 surface complexes 

(associated with antibody binding), which is commonly associated with positive 

Magnetic-Activated Cell Sorting (MACS) and Fluorescence-Activated Cell-Sorting 

(FACS) (Tomlinson et al. 2013).  

Briefly, buffy coats – containing all circulating leukocytes together with residual 

erythrocytes and platelets – were layered onto Histopaque 1.077 g/ml (Sigma-Aldrich, 

#10771) at a 2:1 ratio and centrifuged at 400 x g for 30 min at 23°C. Peripheral Blood 
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Mononuclear Cells (PBMCs) were collected with a plastic Pasteur pipette and washed 

twice in PBS-EDTA (1x Phosphate Buffered Saline containing 0,5 M 

Ethylenediaminetetraacetic acid) (Sigma-Aldrich, #P4417 + #E9884) at 300 x g for 10 

min at 23°C. Purified PBMCs were resuspended in RPMI 1640 without phenol red 

(Sigma-Aldrich, #R0883), containing 10% FBS (Fetal Bovine Serum) (Sigma-Aldrich, 

#12003C) and layered onto a 42.56% iso-osmotic 1.131 g/ml percoll (Sigma-Aldrich, 

#E0414) solution at a 1.25:1 ratio. The iso-osmotic percoll solution consisted of 48.6% 

advanced RPMI 1640 with phenol red (Life Technologies, #12633-020), 42.56% 

percoll, 5.4% FBS and 3.44% 10x PBS. Separation of monocytes from PBMCs was 

achieved at 550 x g for 30 min at 23°C. Monocytes were collected with a plastic 

Pasteur pipette and washed once in PBS-EDTA at 400 x g for 10 min at 23°C. 

Monocytes were then resuspended in Complete Monocyte Media (CMM). 

3.4. Culture Conditions 

Complete Monocyte Media consisted of advanced Roswell Park Memorial Institute 

medium (RPMI) 1640 with phenol red containing 10% Human Serum from AB patient 

(Sigma-Aldrich, #H4522), 100 U/mL Penicillin-Streptomycin (PenStrep) (Life 

Technologies, #15140148) and 2 mM Glutamax (Life Technologies, #35050-061). 

Monocytes were seeded at 4x106 cells/well (2x106 cells/ml) onto Nunc UpCell™ plates 

(AEC-Amersham, #174901) or 35 mm culture dishes (Bio-Smart Scientific, #20035) 

and cultured with CMM. Images of cell monolayers were taken at time points 24 hours, 

96 hours and 144 hours to assess differentiation. In order to promote differentiation 

into M1 type macrophages, 50 ng/ml GM-CSF (Granulocyte Macrophage Colony-

Stimulating Factor) (Sigma-Aldrich, #SRP3050) was added to each well directly after 

seeding (Mia et al. 2014). Similar, 50 ng/mL M-CSF (Macrophage Colony-Stimulating 
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Factor) (Sigma-Aldrich, #SRP3110) was added to each well to promote M2 type 

macrophage differentiation, when appropriate. Growth factors were added after every 

media change. Cells were allowed to adhere for 24 hours after which media was 

aspirated, cell monolayers washed with warm PBS and fresh media introduced. 

Thereafter media was changed every 72 hours. Cells were cultured for a total of 6 

days. Incubator conditions were kept at 37°C with an 80% humidified environment and 

5% CO2.  

3.5. Pre-differentiation and Polarisation 

Following pre-differentiation with GM-CSF and M-CSF as described earlier, 

macrophages were polarised to M1 phenotype via pre-treatment with 50 ng/ml LPS 

(Lipopolysaccharide) (Sigma-Aldrich, #L2762) and 20 ng/ml IFN-γ (Interferon-gamma) 

(Sigma-Aldrich, #I3265) for a period of 24 hours (Liu & Yang 2013). Similarly, M2 

macrophage polarisation was done with 20 ng/ml each of IL-4 (Interleukin 4) (Sigma-

Aldrich, #SRP4137), IL-10 (Interleukin 10) (Sigma-Aldrich, #SRP3071) and TGF-β 

(Transforming Growth Factor beta) (Sigma-Aldrich, #SRP3171) for a period of 24 

hours. A M1 and M2 population was cultured to better determine induction of M1 

phenotype when expressed against the opposite, M2 phenotype. This is a better 

representation than an unpolarised population, defined as M0, but likely consisting of 

a mixed population of M1 and M2 macrophages, expressed in scatter plots as a double 

signal peak for M1 markers (as shown in Section 4.1, Figure 4.2). The pro-

inflammatory M1 phenotype was specifically used in this study for its transendothelial 

migratory capability (Arnold et al. 2007) that fit the delivery requirements of this project. 

Furthermore, despite controversial reports of GM-CSF treatment promoting M1 

phenotypic differentiation (Mia et al. 2014), other reports led to the choosing of this 
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cytokine for our study purposes. For example, a recent paper claimed increased 

migration and chemotaxis after treatment with this cytokine (Dabritz et al. 2015), which 

would further promote cell migratory capacity. Additionally, the phagocytic capacity or 

engulfment capacity of macrophages has been shown to increase after treatment with 

this cytokine (Eischen et al. 1991). This is important for our study because the 

engulfment aspect of phagocytosis needs to be maintained after phagosome 

maturation arrest. The arrest inducing agent, Wortmannin, has been shown to prevent 

engulfment of large (>3 µm) particles (Vieira et al. 2001). In this regard, GM-CSF 

treatment was used to maintain engulfment capacity. 

Macrophage differentiation was also recorded over time using a phase contrast 

DSZ5000X inverted biological microscope (Lasec, South Africa) with ScopeTek 

software and DCM-510, 5 mega pixel camera. A representative population was 

imaged 24 hours, 96 hours and 144 hours after isolation at 20x magnification. This 

was done to evaluate morphological changes during differentiation. 

3.6. Culture Detachment 

Monocytic cells are notoriously adherent, which poses some technical difficulties when 

cultures have to be maintained for a number of days. Cells used in the transmigration 

assay were seeded and harvested from Nunc UpCell™ plates. To save costs, cells 

designated for analysis using live cell imaging and flow cytometry were seeded, 

maintained and harvested from 35mm culture dishes using Accutase® (Sigma-Aldrich, 

#A6964) cell detachment solution. Macrophages were challenged against antibody 

opsonised polystyrene bead (AbsBeads) after being harvested with either method. 

The ability of both UpCell™ and Accutase® methods to allow AbsBeads phagocytosis 

directly after reseeding, was similar, indicating well preserved functionality with both 
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methods for the purposes of this study. The next paragraphs will provide some more 

specific detail on these two culture methods. 

3.6.1. Nunc UpCell™ Plates 

UpCell™ plates are coated with a temperature responsive polymer called poly(N- 

isopropylacrylamide) (PIPAAm). This dynamic polymer is capable of cycling between 

hydrophobic and hydrophilic states, depending on ambient temperature. PIPAAm is 

hydrophilic at 20˚C, causing hydration and extension of the polymer. The hydrophilicity 

of the surface interferes with protein adsorption and subsequently results in cell 

detachment (Collier et al. 2001). The turning point of PIPAAm between hydrophilicity 

and hydrophobicity is 32˚C; this point is defined as the lower critical solution 

temperature. At 37˚C the hydrophobic polymer is dehydrated, causing contraction of 

PIPAAm. The hydrophobic surface is capable of stronger binding to the interior of cell 

surface proteins, compared to hydrophilic surfaces, leading to cell adhesion (Lampin 

et al. 1997). Accordingly, UpCell™ plates were placed onto warmed (37˚C) gel packs 

when removed from the incubator to change media or introduce growth factors, in 

order to maintain the hydrophobic state. Cell detachment was achieved by removing 

UpCell™ plates from the incubator, aspirating media and replacing with advanced 

RPMI 1640 at a temperature of only 10˚C. Plates were then incubated at 10˚C. Similar 

to Collier et al. (2001), we found that primary macrophages optimally detached when 

incubated for 60 min. Cell viability was maintained after this incubation period. In order 

to limit exposure time to low temperature, plates were only incubated for 30 min at 

10˚C after which the cell monolayer was carefully scraped off with a cell scraper. This 

adaption increased total cell yield, but had no noticeable effect on viability. Thus 60 

min incubation was used to limit mechanical stress associated with handling cells. 
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3.6.2. 35mm Culture Dish with Accutase® Method 

A pilot study using 8-chamber slides with glass culture surfaces (which was required 

to facilitate live cell imaging and reduce reagent turnover) revealed a reluctance of 

primary monocytes to adhere to glass. Conversely, monocytes potently adhered to 

polystyrene surfaces of 35mm culture dishes. These dishes were also compatible with 

confocal live cell imaging. Harvesting primary monocytes with trypsin broke down 

surface pseudopodia resulting in cell death. Accordingly, macrophages were 

harvested with Accutase® cell detachment solution. Media was aspirated, cell 

monolayer washed with 23˚C PBS and 1 ml Accutase® injected onto dishes. Cells 

were incubated at 23˚C for 10 min after which dishes were swirled and another 1 ml 

Accutase® added for further incubation of 10 min at 23˚C. Cells were collected and 

centrifuged at 400 x g for 5 min at 37˚C. Accutase® cell detachment solution auto-

inhibits at 37˚C eliminating the need to neutralise with media. 

3.7. Macrophage Phenotype Analysis 

After pre-differentiation and macrophage M1/M2 polarisation, macrophage phenotype 

was quantitatively confirmed by flow cytometry (BD FACSAria Cell Sorter, Becton 

Dickinson, USA), using BD FACSDiVa v6.1.3 software. Single stain and multiple stain 

solutions were prepared by mixing appropriate amounts of fluorescent antibody 

markers with 1 ml PBS. Media was aspirated from culture dishes and replaced with 

appropriate 1 ml single stain or multiple stain PBS solution. Antibody binding was 

facilitated at 37˚C for 10 min before PBS was removed and cells harvested with 

Accutase®. Harvested populations were centrifuged at 400 x g for 5 min at 37˚C and 

resuspended in warm PBS. Populations were filtered, relocated to flow cytometry 

tubes and immediately analysed. Unstained samples were prepared to determine 
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background fluorescence. Single stain samples (containing only one marker) were 

used for fluorescent signal optimisation and compensation for potential spill-over 

between fluorophores. Multiple stain samples were used for data collection and 

labelled with the following fluorescent antibody markers: Alexa Fluor 647 Rabbit Anti-

Human CD274 (PD-L1) (640/665nm) (Cell Signalling, #15005S), BB515 Mouse Anti-

Human CD86 (490/515nm) (BD Bioscience, #564544) and V450 Mouse Anti-Human 

MHCII (HLA-DR) (405/448nm) (BD Bioscience, #561359). The appropriate lasers 

were used to excite fluorophores and emission was captured using appropriate band 

pass filters. Data collection was done by recording 3x105 events for every donor in 

triplicate and thresholds were set up by recording 8x106 events. After appropriate 

training in the technical flow cytometry procedures by a staff member of the Central 

Analytical Facility (CAF) at Stellenbosch University, I was able to perform these 

analyses independently. 

3.8. Modulating Macrophage Phagosome Maturation 

Phagosome maturation arrest was induced in order to preserve the “cargo” to be 

delivered by macrophages within M1 macrophages. Briefly, cells were pre-treated with 

10 μM Chloroquine (Sigma-Aldrich, #C6628) from 1h before initiation of phagocytosis, 

followed by 100 nM Wortmannin (Sigma-Aldrich, #W1628) at 30 min prior to 

phagocytosis and 100 nM Concanamycin A (Sigma-Aldrich, #C9705) immediately 

before initiation of phagocytosis. Macrophages were incubated in an 80% humidified 

environment at 37˚C with 5% CO2 throughout this period. Chloroquine is a weak base 

capable of permeating cell membranes. Exposure to this compound specifically leads 

to its accumulation in lysosomes, causing alkalinisation thereof and preventing fusion 

with phagosomes (Yang et al. 2013). This agent also non-specifically increases the 
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pH of phagosomal as well as other vacuolar cell structures, such as autophagosomes. 

Similarly, Concanamycin A contributes to a less acidic phagosomal lumen by specific 

inhibition of V-APase proton pump. Covalent binding to this enzyme prevents proton 

influx into phagosomes (Huss et al. 2002). The higher alkalinity induced by these 

agents functionally contribute to phagosome maturation arrest by preventing protein 

degradation. Conversely, Wortmannin directly contributes to the induction of 

phagosome maturation arrest by covalently binding to PI3ks (Vieira et al. 2001). 

Binding inhibits production of PI3P and other phosphatidylinositols chiefly needed for 

phagosome maturation.  

3.9. Visualisation of Ingested “Cargo” Using Fluorescent Beads 

(AbsBeads)  

Blue fluorescent carboxylate modified polystyrene beads (either 4.5 μm or 6 μm in 

diameter) (Polysciences, #18340-5 + #19102-2) were used as a stem cell model. The 

4.5 µm diameter beads were chosen for their similar size to skeletal muscle satellite 

cells and served as representation during transmigration assays. Furthermore, the 6 

µm beads were used to determine the phagocytic capacity of phagosome maturation 

arrested macrophages compared to digestive macrophages, since Wortmannin 

treatment was previously reported to limit the size capacity of phagocytosis (Vieira et 

al. 2001).  Since normal digestive phagosomes are unable to break apart polystyrene 

beads, beads were coated with a digestible IgG protein in order to facilitate 

visualisation of intraphagosomal digestion. (The carboxylate modification on these 

microspheres can be activated to allow covalent binding to proteins.) Fluorescent 

Alexa Fluor 647 Goat Anti-Human IgG (Life Technologies, #A21445) was chosen as 

protein coating. The antibody coating allowed visualisation and identification of beads 
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in maturation arrested phagosomes in comparison to those in digestive phagosomes. 

A loss in red fluorescent signal would be suggestive of digestion – irrespective of the 

reason for the signal loss, which could be antibody protein degradation, conjugated 

fluorophore inactivation or breakage of covalent bonds between antibody and bead. 

Antibodies were coated onto beads using a protocol obtained from Life Technologies 

(Invitrogen 2001). After adaptation of this protocol, antibody coating was achieved by 

dissolving 2 mg/ml IgG solution in 50 mM MES (2-(N-morpholino)ethanesulfonic acid) 

buffer (Sigma-Aldrich, #M5287) and adding 5 ml of 4.5 μm or 6 μm bead suspension 

to the solution. The solution was incubated at 23°C for 30 min to allow for antibody 

coating. EDAC (1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide) (Sigma-Aldrich, 

#E2247) was added to a final concentration of 0.4 mg/ml and thoroughly vortexed. The 

pH was adjusted to 6.5 ± 0.2 using dilute NaOH and placed on an orbital shaker to 

incubate overnight at 23°C. The addition of EDAC and increase in pH serves to 

prevent bead agglomeration during overnight incubation. Glycine (Sigma-Aldrich, 

#G7126) was added to a final concentration of 100 mM and solution was incubated at 

23°C for 1h. Beads were pelleted by centrifuging at 4000 x g for 20 min at 23˚C and 

washed three times with 50 mM PBS at the same centrifugal velocity. Beads were 

resuspended for storage in 50 mM PBS containing 2 mM sodium azide at 2.89x107/ml 

stock. According to the supplier, these antibody coated beads, hereafter referred to as 

AbsBeads, retained the IgG coating for up to 17 months when stored at 4˚C.  

Noteworthy, false positives can be yielded from passive adsorption (not absorption) of 

positively charged particles to the external surface of the cell membrane (Thiele et al. 

2001). However, this is not applicable to our study as the negatively charged 

carboxylate modified beads used, do not tend to do this. Flow cytometric analysis also 
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served to distinguish between free bead populations and beads ingested into 

macrophages (Appendix C), averting this problem.  

3.10. Phagocytosis 

Macrophage recognition and engulfment of foreign material is achieved in vivo through 

secondary stimulation by other cell types such as CD4+ T-cells and NK cells (Liu et al. 

2013). In the absence of these supportive cells in vitro, engulfment is possible through 

Fcγ receptor engagement with IgG opsonised material, as shown in numerous studies 

(Vieira et al. 2001; Hazeki et al. 2012; Segawa et al. 2014). However, this is only 

achieved if IgG opsonin is of same-species origin or if the FcγR possesses cross-

species reactivity to foreign IgG. Specifically, a lack of human neonatal Fc receptor 

(FcRn) cross-reactivity to sheep, rat, mouse and bovine IgG has been reported (Ober 

et al. 2001). This antibody scavenging FcRn did however possess rabbit and guinea 

pig cross reactivity. These findings can be extrapolated to other FcR subtypes such 

as FcγR. Therefore, the cross reactivity of macrophage FcγR to goat IgG was 

addressed in the present study. The Alexa Fluor 647 Goat Anti-Human IgG used to 

coat and opsonise AbsBeads was not recognised by primary M1 macrophages, 

expanding on previous FcRn-cross-reactivity data. Thus, the AbsBeads required 

additional IgG opsonisation to induce engulfment by human macrophages, and 

therefore, AbsBeads were incubated in serum obtained from a healthy (O+) donor. 

Experimentally-induced perpetually activate unbound carboxylate modifications on 

AbsBeads allowed nonspecific binding of serum proteins, resulting in macrophage 

recognition and engulfment.  

AbsBeads solution was incubated with serum at a 1:1 ratio for 24h. AbsBeads were 

then introduced into M1 macrophage population at 1.156x106 AbsBeads/well, marking 
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the initiation of phagocytosis. Phagocytosis and particularly phagosome maturation 

arrest was assessed over a 2h period. 

3.10.1. Live Cell Imaging of Phagocytosis 

Visual representation of phagocytosis was recorded with a Carl Zeiss LSM780 

confocal microscope with ELYRA S.1 Superresolution platform (Carl Zeiss, Germany) 

using ZEN 2011 imaging software. This allowed qualitative analysis of digestive 

capacity as well as cell viability, motility and pseudopod extension during recognition 

and engulfment. Monocytes were appropriately cultured into a M1 macrophage 

population after which phagosome maturation arrest was induced in treatment groups 

and AbsBeads introduced into arrest-treatment as well as control groups. Time lapse 

images were taken for 2 hours from initiation of phagocytosis. Cells were imaged in a 

humidified environment at 37˚C in the presence of 5% CO2. CellMask™ Orange 

Plasma Membrane Stain (554/567nm) (Life Technologies, #C10045) was used to label 

macrophages. CellMask™ non-specifically binds phospholipid bilayers with its 

hydrophobic anchoring tail and fluorescently labelled hydrophilic head. Fluorescent 

labelling of conventional membrane markers such as CD14 or CD45 was avoided as 

antibody binding to these membrane proteins could influence phagocytosis resulting 

in a statistical false negative. The pH sensitive pHrodo® Green E. coli BioParticles® 

(509/533nm) (Life Technologies, #P35366) were introduced onto cells to distinguish 

acidic phagosomes. This marker is fluorescent in acidic pH (<6.0) while non-

fluorescent in physiological pH. Acidic phagosomes are present in unaffected control 

samples where phagocytosis is unaltered, while phagosome maturation arrested 

macrophages exhibit more alkaline pH (>6.0) values. pHrodo® was introduced at a 

final concentration of 1 mg/ml immediately before the initiation of phagocytosis. 

AbsBeads were introduced into control as well as treated groups at 1.156x106 
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cells/well. Indigestible blue fluorescent beads distinguished cells devoid of cargo due 

to digestion thereof from cells devoid of cargo due to not participating in phagocytosis. 

Similarly, digestible red IgG distinguished cells capable of cargo degradation from 

phagosome maturation arrested macrophages. Appropriate tracks were set up with 

optimal individual laser intensities. A random field of view was chosen as 

representative for the population and imaged at 20x magnification with minimal cycle 

time between images. 

3.10.2. Flow Cytometric Quantification of Phagocytosis 

Macrophage engulfment and digestive capacity was quantified with BD FACSAria Cell 

Sorter flow cytometer using BD FACSDiVa v6.1.3 software. Monocytes were 

appropriately cultured into M1 population after which phagosome maturation arrest 

was induced in treated groups. Similar to live cell imaging, AbsBeads and pHrodo® 

were introduced into media and phagocytosis allowed to commence for 2 hours. No 

CellMask™ was used to label cells. Media was then aspirated and cells harvested with 

Accutase®. Harvested populations were centrifuged at 400 x g for 5 min at 37˚C and 

resuspended in warm PBS. Populations were filtered, relocated to flow cytometry 

tubes and immediately analysed. Unstained samples consisting only of macrophages 

were prepared to determine background fluorescence. One single stain sample 

consisted of only AbsBeads with no cells while the second was only pHrodo® treated 

macrophages. These samples were used in fluorescent signal optimisation and 

compensation for possible spill-over between fluorophores. Multiple stain samples 

were used for data collection and consisted of AbsBeads at 1.156x106 cells/well and 

pHrodo® at 1 mg/ml final concentration. The appropriate lasers were used to excite 

fluorophores and emission was captured using appropriate band pass filters. Data 

collection was done by recording 3x105 events (in this case both cells and beads will 
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be counted as events) for every donor in triplicate and thresholds were set up by 

recording 8x106 events. 

3.11. Transmigration System 

The transendothelial migratory capacity of cargo-carrying macrophages was assessed 

in a co-culture model using BD Falcon Cell Culture Inserts and Companion Plates. 

The transmigration complex consisted of inserts with membranes at the bottom which 

were placed into accompanying wells of 24-well plates. Migration through these inserts 

toward a chemotactic agent was indicative of in vivo diapedetic capacity. Inserts had 

a transparent polyethylene terephthalate (PET) membrane with pore sizes of either 3 

µm or 8 µm (BD Bioscience, #353096 + #353067). Inserts were coated with Human 

Umbilical Vein Endothelial Cells (HUVEC) to better simulate the in vivo environment 

for migration. Reasons for this are; under in vivo conditions chemokines bind 

proteoglycans exposed on endothelial cells, which directs the movement of migrating 

leukocytes, and effective migration entails movement of macrophages through an 

endothelial cell layer (Imhof & Aurrand-Lions 2004). Proteoglycan binding maintains 

access to the leukocyte chemokine receptor binding site on the chemokine (Proudfoot 

et al. 2000). This allows presentation of the proteoglycan bound chemokine to 

leukocytes on the luminal side of endothelium. Leukocyte recognition via its G-protein-

coupled receptor induces a prompt integrin-activation signal that culminates in 

migration from circulation into tissue (Imhof & Aurrand-Lions 2004).  

Additionally, we simulated different cellular environments under which to test migration 

efficiency. Firstly, endothelial exposure to LPS and IFN-γ are characteristic of inflamed 

tissue. This being the tissue type M1 macrophages infiltrate, it is of importance to 

ascertain the effect thereof on cargo carrying phagosome maturation arrested 
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macrophages. Secondly, GM-CSF was also added along with the chemokine to 

appropriate groups. GM-CSF is argued to promote macrophage differentiation more 

strongly toward a M1 phenotype than M2 (Jaguin et al. 2013). In part, the reason 

therefore is its production in inflamed tissue areas where monocytes predominantly 

differentiate to M1, compared to the presence of M-CSF in circulation before migration 

has occurred (Mia et al. 2014). Additionally, GM-CSF was reported to promote 

migration and chemotaxis in macrophages (Dabritz et al. 2015) as well as recruitment 

of undifferentiated monocytes to tissue areas, due to local production of GM-CSF by 

resident macrophages (Shi et al. 2006). Taken together, these reports could have a 

profound effect on migration of macrophages into tissue areas expressing this 

cytokine. 

3.11.1. Fibronectin Coating 

Human Umbilical Vein Endothelial Cells (HUVECs, gifted from University of Cape 

Town) are unable to adhere to culture plate surfaces without the appropriate coating. 

For this reason, HUVECs were cultured on fibronectin-coated surfaces. Briefly, prior 

to introducing HUVECs, tissue culture flasks as well as transmigration insert-well 

complexes were coated with 1 µg/cm2 fibronectin (Sigma-Aldrich, #F0895). The 

appropriate amount, according to growth area, of 1 mg/ml fibronectin stock was mixed 

with enough 1x PBS to cover the entire growth area. Flasks or plates were incubated 

at 37˚C for 1 hour to allow coating before the fibronectin-PBS solution was removed 

and containers left to dry in a laminar flow hood under UV light overnight. Culture 

containers were placed in resealable sterile bags to preserve sterility. These coated 

surfaces maintained fibronectin expression and adherence capacity when stored for 

up to 2 months at room temperature. 
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3.11.2. HUVEC Cell Culture 

HUVEC cells of passage 3 (P3) were thawed from liquid nitrogen-stored cryo vials and 

injected directly onto fibronectin coated T25 flasks, without centrifugation. DMSO used 

in freezing was diluted by the addition of 4 ml Complete HUVEC Media (CHM). CHM 

was made up with Endothelial Cell Growth Medium (EBM) containing 2% FBS, 0.4% 

Bovine Brain Extract (BBE), 0.1% human Epidermal Growth Factor (hEGF), 0.1% 

Ascorbic Acid, 0.1% GA (30 µg/ml Gentamicin and 15 µg/ml Amphotericin) and 0.1% 

Hydrocortisone. EBM was obtained from Lonza (#CC-3121) and the additional 

compounds were bought as supplementary unit from Lonza (#CC-4133). Media was 

replaced 24 hours after seeding and there after every 48 hours until 90% confluency. 

Media was aspirated and HUVEC cells harvested by washing with warm PBS and 

introducing 0.25% Trypsin (Celtic Diagnostics, #L0931-500). Cell monolayers were 

incubated at 37˚C for 5 min in shaking incubator to allow for cell detachment. Trypsin 

was neutralised with EBM and cell suspension centrifuged at 1500 RPM for 3 min at 

23˚C. Supernatant was removed and cell pellet resuspended in appropriate media for 

seeding in appropriate flask or inserts. 

For the transmigration assay, HUVECs were seeded onto fibronectin-coated 

transmigration inserts at 1x105 cells/insert (2x104 cells/ml) with 200 µl CHM in the 

insert as well as 700 µl CHM in the well, to prevent fluid loss through the insert 

membrane. These HUVECs were cultured for 3 days prior to the start of the 

transmigration assay to allow formation of a continuous cell monolayer. For migration 

protocols simulating potential pro-inflammatory physiological conditions, HUVEC cells 

were also pre-treated with either 50 ng/ml LPS or 20 ng/ml IFN-γ for 24 hours before 

the start of transmigration assay. 
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3.11.3. Transmigration Assay 

Macrophages were prepared and after a total of 2 hours (UpCell™ harvesting is 

another 1 hour) AbsBeads-exposed macrophages were collected, centrifuged at 400 

x g for 5 min at 23˚C and resuspended in Transmigration Media devoid of Chemokine 

(TM-C) – the latter was prepared with EBM containing 2% FBS, 0.4% BBE and 0.1% 

Ascorbic acid. Macrophages were introduced onto inserts at 3x105 cells/insert (6x104 

cells/ml) and TM-C media filled up to 200 µl in total for each insert. For this part of the 

experiment, macrophages were resuspended in EBM media (and not RPMI) in order 

to prevent adverse effects on the HUVEC monolayer. Hydrocortisone was removed 

from this step because it is immunosuppressive due to its glucocorticoid nature and 

could therefore cause a false negative during migration analysis. The hEGF facilitates 

HUVEC cell proliferation, and because endothelial cells are not proliferative during 

migration in vivo it could influence signalling pathways and hinder chemokine 

presentation to macrophages, thus it was also omitted from experimentation. 

Furthermore, since the transmigration step was only 2:30 hours in duration, there was 

no need for addition of antibiotics such as GA.  

Transmigration Media with Chemokine (TM+C) was injected into the bottom well of 

the insert-well complex at 700 µl final volume for every well. TM+C consisted of 100 

ng/ml Monocyte Chemoattractant Protein 1 (MCP-1) (Sigma-Aldrich, #SRP3109) 

together with the same compounds and concentrations as TM-C. Where appropriate, 

TM+C also contained 50 ng/ml GM-CSF. LPS and IFN-γ was not added to TM+C. 

These compounds were used to treat HUVECs and was added to CHM in the upper 

insert, 24h prior to experimentation, at 50 ng/ml and 20 ng/ml, respectively. MCP-1 

was chosen as chemokine for its specificity for monocytes/macrophages, as well as 

because previous research done in our group has shown it to be effective in a co-
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culture setup (Africa & Smith 2015). The MCP-1 protein is relatively large, with a molar 

mass of 8600 g/mol (8.6kDa), making it susceptible to protein denaturation when made 

up in solution in the absence of a stabilising agent. Bovine serum albumin (BSA) can 

be used to stabilize MCP-1 in solution. However, this was not deemed suitable for our 

purposes, as stabilisation could affect its tertiary structure and interfere with 

endothelial cell or macrophage recognition and binding to the chemokine (Imhof & 

Aurrand-Lions 2004).  

The transmigration complex was placed in a 80% humidified environment at 37˚C with 

5% CO2 and cells were left to migrate for 2:30 hours. At the end of this period, cells 

were fixed by addition of pre-warmed 4% paraformaldehyde directly into each well and 

insert, at a volume equal to that of the media in each well. (Fixative was added directly 

to culturing media to maintain the initial number of cells that could otherwise be 

washed away if media was removed before fixating).  After 10 minutes, the fixative 

was removed and replaced with 1x PBS. Data acquisition was done using a phase 

contrast DSZ5000X inverted biological microscope (Lasec, South Africa) using 

ScopeTek software and DCM-510, 5 mega pixel camera. The entire macrophage 

population on the bottom of all outer wells were counted at 10x magnification using a 

cell counter and in the presence of trypan blue (Sigma-Aldrich, #T8154) at a final 

concentration of 0.014%. Trypan blue was not added to illuminate viable cells (as 

intact cell membranes are also permeable to trypan blue after fixing), but to increase 

phase contrast and facilitate counting. 

To further simulate in vivo conditions, HUVECs were pretreated with IFN-γ and LPS 

for 24 hours. Treatment of macrophages with IFN-γ has been shown to reduce 

migratory capacity in response to MCP-1 stimulation via inhibited actin remodelling 

(Hu et al. 2008). However, this study was done under static in vitro conditions and the 

Commented [KV2]: The candidate writes MCP-1 is susceptible 
to protein degradation and that the use of BSA was not suitable to 
stabilize MCP-1, as stabilization could affect the tertiary structure 
etc. This part of the methodology is not clear. How was the 
likelihood of protein degradation addressed/overcome? – 
Africander 
Kan Prof bietjie hier help? Moet ons eerder die deel uitlos en net sê 
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het, het dit gewerk? Want om die ‘degradation’ rationale te behou 
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cytokine-effect on macrophages was determined, not endothelial cells. IFN-γ induced 

displacement of the tight junction protein, junctional adhesion molecule (JAM)-A, to 

the luminal surface of endothelial cells has a negative effect on macrophage migration 

under static conditions, but no significant effect under simulative blood flow conditions 

(Imhof & Aurrand-Lions 2004). Furthermore, IFN-γ was reported to induce secretion 

of macrophage migration inhibitory factor (MIF) in tubular epithelial cells (Rice et al. 

2003). The MIF cytokine upregulates macrophage migration, despite its convoluting 

name, by promoting expression of adhesion molecules such as intercellular adhesion 

molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 on vascular 

endothelium (Cheng et al. 2010). MIF also acts in a paracrine and autocrine fashion 

to initiate MCP-1 secretion from these endothelial cells, resulting in greater migration 

into tissue (Kasama et al. 2010). Thus, the effect of IFN-γ on static transmigration 

following pretreatment of HUVECs with this endigenous pro-inflammatory cytokine 

was examined. On the other hand, LPS release from gram negative bacteria is 

associated with inflammation and induced adhesion molecule expression on 

endothelial cells (Abbas et al. 2014). Although the study at hand focused on 

macrophage infiltration into damaged tissue areas to facilitate regeneration, 

phagosome maturation arrested macrophages could infiltrate both these IFN-γ and 

LPS associated inflammatory sites in response to adhesion molecule expression.  

A pilot transmigration study, identical to the one described above, was done using 

adherent monocytes (i.e. not macrophages) polarized with 50 ng/ml LPS and 20 ng/ml 

IFN-γ directly after isolation for 24 hours prior to assessment. This was carried out to 

investigate the possibility of shortening the preparation time of primary macrophages 

by using monocytes - aiming toward a possible translational application for the 

treatment for more acute conditions where preparation time is limited. Monocytes were 
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capable of sufficient AbsBeads uptake after 1h challenge. However, no cell migration 

was found at experimental end point in any group, including control groups devoid of 

AbsBeads (data not shown). Thus, in the results section, we will report only the results 

obtained in macrophages. 

3.12. Statistical Analysis  

All statistical analysis was done using Graph Pad Prism 5. All data are presented as 

means ± SEM. Student’s t-test and one-way analysis of variants (ANOVA) were 

conducted where appropriate. A p-value of <0.05 was considered statistically 

significant.  
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Chapter 4: Results 

All experiments were conducted at least in duplicate and repeated a minimum of 

three times. For all experiments with an intervention component, suitable controls 

were included with every run.  

4.1. Monocyte Differentiation and Polarization 

 

 
Figure 4.1: Monocyte differentiation into macrophages. Monocytes were cultured under standard 

conditions in 35mm culture dishes and imaged with a phase contrast microscope at 20x magnification 
for all images. (A) imaged 24h, (B) 96h and (C) 144h after isolation. 

 

Images were taken of the isolated monocytic cells in culture at different time points 

from initiation of the GM-CSF-driven pre-differentiation to evaluate general 

morphological changes during differentiation of monocytes into macrophages. 

Representative images (Figure 4.1) of cells cultured on polystyrene surfaces show a 

A B 

C 
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striking increase in cell size over time. A gradual increase in cell size, across a 72-

hour period, can be seen by comparing frame B (96 hours after isolation) to frame A 

(24 hours), followed by a seemingly more drastic change, as seen in frame C (144 

hours). Across this last 48-hour period, cells exhibited greater increases in size and 

notably developed morphological changes characterized by surface pseudopodia and 

cell flattening, when compared to the initial 72-hour period. 

A 

 
B 

 
C 

 
 
 
 
Figure 4.2: Flow cytometry analysis of macrophage differentiation. Cells were assessed after 144-

hour (6-day) culture period with fluorescent antibodies against CD86, MHCII and CD274. Panel (A) 
indicates a M0 population while (B) indicates M1 and (C) M2. Vertical lines indicate fluorescence 
thresholds, with cell populations to the left staining negative, and those to the right positive for the 
particular fluorescent label. 
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To quantitatively support findings shown in figure 4.1, flow cytometry was done to 

determine the efficacy of the M1 polarisation, by phenotyping of differentiated cells 

using M1 membrane markers.   

The M1 polarisation protocol (GM-CSF, LPS and IFN-γ treatment) clearly resulted in 

an M1 phenotype, with high expression of M1 markers CD86, MHCII and CD274 

(Figure 4.2 panel B), when compared to the much lower M1 membrane protein 

expression in cells polarised using the M2 (M-CSF, IL-10, IL-4 and TGF-β treatment) 

protocol (panel C). Panel C in fact illustrates no expression of M1 markers, since only 

background fluorescence (below threshold) was detected. The undifferentiated M0 

population expressed a lower and combined fluorescent signal, indicated by double 

signal peaks on threshold values (panel A).  

4.2. Phagocytosis Model Validation 

 
Figure 4.3: Antibody dispersion off of ingested AbsBeads. Enlarged confocal microscope images 

of a control cell showing red antibody dispersion off of AbsBeads into the cell. Frames taken at 10 min 
(A) and 60 min (B) after introduction of AbsBeads. Arrow indicates dispersion of antibody. Time lapse 
images taken at 20x magnification. 

 

A B 
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Representative images show a cell not treated for phagosome maturation arrest at 

high magnification (Figure 4.3). Frame A shows the cell in the process of engulfment 

at 10 min. The same cell is shown in frame B at 60 min with red antibody signal 

expression inside the cell. This illustrates that at this time point, the antibody coating 

was removed from AbsBeads and was dispersed throughout the phagosome 

(indicated by arrow), before its complete degradation and accompanying loss of red 

signal (not shown here). This visually validates our model and confirms that an 

antibody coating around these beads can be used as a model for phagosomal 

digestion studies. Note that pHrodo® was not used in figure 4.3 for the sake of clarity, 

as doing so would have obscured the intracellular signal which indicates the antibody 

digestion from the bead. 

 
Figure 4.4: Acidification of cellular compartments. Time lapse images of a live control cell showing 

AbsBeads ingestion coinciding with acidification. Frames captured at 10 min (A) and 60 min (B) after 
AbsBeads challenge. Arrows indicate individual acidic compartments within the cell. Images taken at 
20x magnification. 

 

Having validated the use of AbsBeads to indicate phagosomal digestion, the next 

validation step was to illustrate that digestion coincides with phagosome acidification. 

Similar to figure 4.3, ingestion of AbsBeads by a representative control cell occurred 

A B 
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10 min after challenge (Figure 4.4 frame A). At this time some lysosome or 

phagosome acidification can already be seen (indicated by white arrows). Frame B 

shows the same cell at 60 min after challenge with green signal expression around 

two AbsBeads as well as dispersed throughout the cell. This represents unaffected 

phagosome maturation and acidification during phagocytosis. Additionally, individual 

green acidic compartments can be distinguished at magnifications as low as 20x, 

supporting the visual power of pHrodo® as a marker of acidification. 

This phagocytic model is completely novel with regard to the quantitative as well as 

qualitative assessment thereof, and established materials have never before been 

used in conjunction or for the study of phagocytosis in the context of similar projects. 

4.3. Intervention: Phagosome Maturation Arrest 

Having sufficiently validated and characterised the model in terms of time course of 

events and efficacy of markers, the phagosome maturation arrest protocol was 

implemented. Phagosome maturation arrest is required to preserve the cargo taken 

up by macrophages, in this case AbsBeads.  
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Figure 4.5: Time lapse images of live macrophages. Control cells (panel: A, B, C) and phagosome 
maturation arrested cells (panel: D, E, F). Frames taken at 10 min, 60 min and 120 min after AbsBeads 
challenge. Representative cells are indicative of phagocytic capacity (white circles). Loss in red antibody 
signal is indicated by blue arrows. Green digestive cells with acidic phagosomes showing a loss in red 
antibody signal are indicated by yellow arrows. Pseudopod extension, cell motility and red antibody 
preservation are indicated with white arrows. Lighter background shade (D, E, F) is due to phase 
contrast signal, used to visualise pseudopodia. Images taken at 20x magnification. 
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Time lapse images of a representative macrophage populations are shown in figure 

4.5. The right hand side panel (phagosome maturation arrested cells: D, E, F) shows 

maintained red antibody signal throughout the 2-hour imaging period, with the absence 

of green acidic signal (indicated by white arrows). Compared to control cells on the left 

hand side panel (A, B, C) showing green acidification (indicated by yellow arrows) as 

well as loss in red antibody signal (blue arrows) over the same time period. This 

illustrates successful induction of phagosome maturation arrest and maintenance 

thereof for up to 2 hours. White arrows (Frames D, E, F) indicate cells that initiated 

phagocytosis as early as 10 min after AbsBeads challenge (Frame D) and actively 

moved toward a bead to achieve ingestion at 60 min (Frame E). Noteworthy, 

preserved cell motility and pseudopod extension is seen throughout the treated panel, 

also indicated by white arrows. (Pseudopodia extension likely serves to sample the 

surrounding environment and it is possible that the cell indicated with a white arrow at 

the bottom of frame E and F, attempted to ingest the nearby bead.) 

4.3.1. Digestive Capacity 

Representative quantitative flow cytometry scatter plots are presented in Figure 4.6. 

Scatter plots illustrate macrophage degradative capacity expressed as red antibody 

fluorescent signal over number of AbsBeads per cell. Control samples show a loss in 

red signal after the 2-hour phagocytosis endpoint, indicated with a red circle. This 

“degradation tail” represents cells capable of removing the red antibody coating 

around beads and subsequently digesting the IgG itself or inactivating the IgG 

fluorescent label. These outcomes were jointly classified as representatives of 

digestion. In these representative plots for example, an untreated control population 

was analysed and yielded 5.88% macrophages, capable of sufficient protein 

degradation to achieve signal loss below the threshold. Conversely, 55.93% of this 
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population maintained antibody coating in the absence of arresting agents. This 

discrepancy is likely due to a relatively short experimental period. The nature of 

ingested material directly affects digestive tempo, thus, utilization of an extended 

phagocytic period would yield greater degradation. Nevertheless, this 55.93% yield is 

overshadowed by 79.22% of a phagosome maturation arrested population expressing 

sufficient signal after the same period. More importantly, only 0.66% of treated cells 

contained inviable cargo, compared to a 5.88% control yield. This phenomenon was 

evident in all samples tested, as supported by statistical analysis showing significant 

cargo degradation in 1.23 ± 0.26% of cells after treatment, compared to 7.52 ± 0.98% 

of untreated cells (p<0.0001) (Figure 4.7). 

 
Figure 4.6: Representative flow cytometry scatter plot of macrophage digestion with intensity 
clusters. Antibody signal intensity (y-axis) expressed over number of AbsBeads per cell (x-axis). 3x105 

events collected. 

 

Scatter plots (Figure 4.6) also present a linear relationship between the number of 

beads per cell and the antibody expressed on each bead. This is represented by the 

red intensity regions indicated with arrows and is shown more clearly in the “treated” 

scatterplot. These are clusters of cells expressing similar fluorescent signal for both 
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beads and antibodies. Additionally, the most prominent region of degradation, 

indicated by a degradation tail, is found in clusters expressing a lower density of beads. 

Thus, it can be derived that the degree of digestion is correlated to number of beads 

in the cell i.e. the nature of the material is dependent on time needed to degrade it. 

 
Figure 4.7: Statistical analysis of macrophage digestive capacity. Measured by loss in red antibody 

signal intensity of cells containing AbsBeads. Cells were analysed with flow cytometry. Values 
expressed as percentages from scatter plots and presented as mean ± SEM (n=3). ### = p<0.0001 vs 
control. 

 

4.3.2. Engulfment Capacity 

Macrophage engulfment capacity, defined as the number of cells containing any 

number of beads after 2 hours, was determined. A representative bead positive 

population, shown in figure 4.6 scatter plots, yielded 61.81% (55.93% + 5.88%) under 

control conditions, whereas 79.88% (79.22% + 0.66%) of phagosome maturation 

arrested cells contained beads. This is supported when inversely determining 

engulfment i.e. assessing the number of cells unable to ingest material, represented 

by populations negative to both beads and antibody, from control and treatment 

conditions (Figure 4.6). Representative phagocytically uninvolved macrophages 

constituted 36.91% and 19.04% with and without phagosome maturation arrest, 

respectively (Figure 4.6). Statistical analysis of all populations (Figure 4.8) indicated 

maintained engulfment capacity. The non-significant difference is represented as 
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68.67 ± 3.51% of treated cells containing beads while 61.19±4.68% of cells were 

capable of engulfment in control groups (p=0.207). Considering these findings, it 

seems phagosome maturation arrest had no effect on engulfment capacity. This is 

also seen in figure 4.5 were the number of AbsBeads ingested is not notably affected 

under control or treatment conditions, respectively (indicated by white circles). 

 

 
Figure 4.8: Statistical analysis of macrophage engulfment capacity. Measured as the percentage 

of cells containing any number of ingested AbsBeads. Cells were analysed with flow cytometry. Values 
expressed as percentages from scatter plots and presented as mean ± SEM (n=3). p=0.207 vs control. 

 

4.3.3. Acidification 

Macrophage degradative capacity and phagosome maturation is dependent on 

phagosome acidification (Fairn & Grinstein 2012). For this reason, fluorescent 

antibody signal was plotted over pHrodo® fluorescence intensity (Figure 4.9). 

Representative cells under control conditions achieved phagocytosis to near 

completion as indicated by a collective acidity signal of 94.39% (54.47% + 39.92%) 

above threshold. Taking into account that this figure represents the same cell 

population assessed in figure 4.6, one can extrapolate that almost all cells were 

phagosomally mature and in the process of digestion, however, were not allowed 

sufficient time to completely degrade antibody. Conversely, the phagocytic process 
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was interrupted in phagosome maturation arrested cells. These cells maintained a 

more alkaline (pH >6) intracellular environment, presented by 95.42% (76.50% + 

18.92%) of cells with insufficient signal intensity. Only a small cell population of 4.59% 

(3.84% + 0.75%) achieved phagosomal acidification after treatment, compared to 

94.39% under control conditions. Phagosome inability to acidify was also statistically 

significant with 29.17 ± 8.40% acidic cells after treatment, compared to 92.09±1.09% 

under control conditions (p<0.0001) (Figure 4.10). This acidification is also visually 

presented in figure 4.4 indicated by white arrows, as well as in figure 4.5 indicated by 

yellow arrows. 

 
Figure 4.9: Representative flow cytometry scatter plots of macrophage acidification with 
intensity clusters. Antibody signal intensity (y-axis) expressed over acidic pHrodo® signal intensity (x-

axis). 3x105 events collected. 

 

The control population of 39.92% (Figure 4.9) represent acidic cells expressing no 

antibody signal. This population can be defined in two ways. Firstly, this population 

could have ingested AbsBeads or only residual antibody and degradation thereof was 

completed before cells were assessed, however, insufficient time was available to 

regain homeostatic pH at >6.0 before the 2-hour time point. Secondly, the ingestion of 
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pHrodo® BioParticles® into these cells could have induced acidification in an attempt 

to degrade this marker, leading to cells devoid of antibody but still acidic. Additionally, 

autophagy could also play a role in representing a false degradative phagosome or 

acidic autophagosome. Due to the above reasons these plots were used for statistical 

assessment of acidification only and not degradation directly.  

 
Figure 4.10: Statistical analysis of macrophage acidification. Measured by green fluorescence 

signal intensity. Cells were analysed with flow cytometry. Values expressed as percentages from scatter 
plots and presented as mean ± SEM (n=3). ### = p<0.0001 vs control. 

 

4.4. Macrophage Migration 

Arrested macrophages exposed to a MCP-1 chemokine gradient significantly migrated 

through HUVEC coated membranes with 8 µm pores (72.86 ± 16.0 cells per well) 

compared to arrested control samples (22.43 ± 3.60 cells per well), not exposed to 

MCP-1 (p < 0.01) (Figure 4.11). This verifies a significant induction of migration in 

response to chemokine stimulation as opposed to a passive migration, driven by 

gravity. Additionally, phagosome maturation arrested macrophages maintained ability 

to transverse endothelial barriers in response to MCP-1. Macrophages containing 4.5 

µm AbsBeads maintained migration capacity, as indicated by 70.14 ± 12.6 migrated 

cells per well when compared to cells without AbsBeads (72.86 ± 16.0 cells per well) 

However, migration of these AbsBeads containing macrophages was still significantly 
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more when compared to control (22.43 ± 3.60 cells per well, p < 0.005). Of note, 

migrated cells were frequently inviable and presented as perforated cell membranes 

containing AbsBeads. The likely cause of this reduced viability, is uncontrolled 

AbsBeads engulfment causing membrane shattering during attempted migration 

through pores with insufficient size. 

 
Figure 4.11: Statistical analysis of migratory capacity of phagosome maturation arrested 
macrophages. Macrophages were incubated with Control; 100 ng/ml monocyte chemoattractant 

protein-1 (MCP-1);1.156x106 AbsBeads/ml and MCP-1 (AbsBeads); 50 ng/ml GM-CSF, AbsBeads and 
MCP-1 (AbsBeads + GM-CSF); 20 ng/ml IFN-γ 24 hours before assessment, AbsBeads and MCP-1 
(AbsBeads + IFN-γ); 50 ng/ml LPS 24 hours before assessment, AbsBeads and MCP-1 (AbsBeads + 
LPS). Migration allowed for 2:30 hours. Cells were analysed with phase contrast microscopy. Values 
expressed as absolute cell count and presented as mean ± SEM (n=7). ## = p<0.01 vs control.  

 

The influence of potentially confounding in vivo factors was also determined (Figure 

4.11). The GM-CSF cytokine was added to MCP-1 containing media. Although 

notsignificant, there seemed to be a trend for reduction in migration, with 63.57 ± 11.3 

migrated cells in this group. However, migration was still significantly increased when 

compared to control (p < 0.005). Noteworthy, the addition of cytokine did not diminish 

MCP-1 stimulated migration (p = 0.704) compared to AbsBeads group. However, the 
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slight reduction in migration is contradictory to previous reports that presented an 

exposure to GM-CSF upregulated migration and chemotaxis (Dabritz et al. 2015).  

No significant outcome after treatment with either LPS (72.14 ± 15.3) or IFN-γ (63.43 

± 12.8) was found, compared to AbsBeads group. However, the somewhat lower trend 

in migrated cell population following IFN-γ pretreatment could be argued as a result of 

prior macrophage polarisation together with IFN-γ induced displacement of JAM-A, as 

our assay was also done under static conditions (previously discussed in section 

3.11.3.).  
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Chapter 5: Discussion 

The aims of this study were met with the development of a modified, non-destructive 

macrophage population capable of engulfment and transmembrane movement. This 

was achieved by re-evaluation of previous findings in the literature regarding 

phagosome maturation arrest and application of this knowledge in a novel context. By 

combining subdisciplines in physiology, these customarily detrimental effects in the 

context of immune cell function, were used in a manner and setting which may bring 

about therapeutic outcome. More specifically, the known positive effects of 

macrophage infiltration on tissue healing – or more specifically muscle healing and 

regeneration (Arnold et al. 2007) – was manipulated to achieve a vehicle for the 

delivery of  therapeutic modalities such as stem cells or even pharmaceuticals. 

Since the development of an in vivo delivery system is by nature a complex, multi-

stepped process, the entire process was outside of the scope of a single MSc thesis. 

Therefore, this thesis focused on the manipulation of macrophages to render them 

incapable of digestion of engulfed “cargo”, while maintaining their capacity for 

engulfment and transendothelial migration. We report on the successes achieved in 

this more limited context. 

5.1. Macrophage Polarisation 

Monocytes were cultured and exposed to GM-CSF for 144 hours as well as LPS and 

IFN-γ for 24 hours, in order to polarise them into a M1 macrophage phenotype (Mia et 

al. 2014). This phenotype was necessary for the purpose of our study, as this is the 

only phenotype previously shown to migrate endothelial barriers after differentiation 

(Arnold et al. 2007; Chazaud et al. 2009). The M1 phenotype is also capable of particle 

engulfment and digestion as this is the main phenotype to which inflammatory 
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monocytes are differentiated (Imhof & Aurrand-Lions 2004; Freeman & Grinstein 

2014). This being said, the main function of circulating undifferentiated monocytes are 

tissue infiltration during inflammation. In an attempt to circumvent extended culture 

periods, we assessed the migratory capacity of phagosome maturation arrested 

monocytes containing AbsBeads. Unfortunately, no migration was seen (section 4.4). 

Our data thus confirms that only differentiated macrophages, and not peripheral 

monocytes, would be suitable carrier cells. 

In terms of the pre-differentiation step, there are two major results to interpret: the size 

increase of cells, and changes in their expression of macrophage markers. Successful 

differentiation into macrophages was evident from the images shown in Figure 4.1, 

which illustrates a striking increase in cell size over the 6-day culture period. A time 

dependent increase in proximity between cells, allowing cytokine or paracrine 

production to effectively influence differentiation (Silverthorn 2010; Freeman & 

Grinstein 2014), was considered as an inducive effect to cell enlargement. However, 

cell proximity was not noticeably increased and the number of cells did, in fact 

decrease, in relation to enlargement. Therefore, cell enlargement can be attributed to 

experimentally introduced GM-CSF that acts both as a cytokine and growth factor to 

increase cell adherence (represented in figure 4.1 as cell flattening) and also cell 

enlargement (Dabritz et al. 2015). This can be applied to cell enlargement seen in 

frame A to B (24 hours and 96 hours after isolation, respectively), however, does not 

sufficiently explain the considerable cell enlargement, over a relatively shorter time 

period (48 hours of elapsed time), seen when comparing frames C and B. The 

experimental concentration of GM-CSF remained constant throughout. However, 

differentiated macrophages could have sufficiently matured to locally produce 
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additional GM-CSF by this time point (Shi et al. 2006), which could explain this abrupt 

cell enlargement (Abbas et al. 2014).  

Interestingly, the reduction in cell number observed (Figure 4.1) could be as a result 

of repeated media changes and PBS washes, but seeing as monocyte/macrophages 

are particularly adherent in vitro (Collier et al. 2001), this is unlikely. A more feasible 

explanation could simply  be  the relatively short lifespan of monocytes in circulation 

(10-20 hours) (Guyton & Hall 2011). Monocyte in vivo extravasation is needed to 

induce differentiation into resident tissue macrophages. This process ensures a 

prolonged lifespan by providing a protective and nutrient- and chemokine-rich extra-

circulatory environment which augments cell survival. In contrast, under in vitro 

conditions, monocytes were unable to infiltrate tissue and was forced to differentiate 

under relatively unprotected and chemokine-poor conditions. The absence of tissue 

infiltration, exposed cells to possible apoptotic and/or autophagic inducers that would 

normally be attenuated in tissue niches. Thus, macrophages were kept in a circulatory 

environment as opposed to tissue and likely underwent some degree of apoptotic cell 

death throughout this time. However, this should be seen as an artefact of the in vitro 

nature of cell culture models, rather than a confounding factor in this study.  

In terms of evidence for macrophage polarisation, the flow cytometry signal intensity 

graphs show monocyte differentiation as well as successful polarisation to achieve 

macrophage M1 phenotype in the majority of cells (Figure 4.2). This marker profile is 

in accordance with published studies on this topic (Mia et al. 2014; Ka et al. 2014) and 

confirms that our protocol successfully polarised primary peripheral monocytes into 

M1 macrophages, which should have high capacity for transendothelial migration 

(Arnold et al. 2007; Chazaud et al. 2009). Interestingly, changes in MHCII expression 

are used for identification of both M1 and M2 populations in the literature. Since M1 

Stellenbosch University  https://scholar.sun.ac.za



69 
 

polarisation is associated with elevated MHCII expression (Mia et al. 2014) and 

exposure to IL-10 (used during our M2 polarisation protocol) is known to down-

regulate MHCII expression (Abbas et al. 2014), MHCII is (in our opinion) a particularly 

useful marker with which to assess macrophage phenotype polarisation in our context.  

5.2. Manipulating Phagosome Maturation  

Previous research has been centred around microbial and parasitic immune evasion 

with ensuing reports linking phagosome maturation arrest as part of pathogenesis, 

throughout. A plethora of interventions is employed to achieve immuno-protection, 

including interference with PI3ks, Rab5, Rab7, EEA1, V-ATPase, endosomal and 

lysosomal fusion events and recruitment of digestive proteases (Rai et al. 2015; 

Clemens et al. 2000; Seto et al. 2011; Vergne et al. 2003; Puri et al. 2013; Ghigo et 

al. 2002). Manipulation of these detrimental aspects has never before been attempted 

in the context of regeneration or drug delivery. As no previous research has focussed 

on intentional induction of phagosome maturation arrest, notwithstanding previous 

studies into autophagy modulation, no literature exists with which to compare current 

data. Similarly, the viability of mammalian proteins after phagosome maturation or 

arrest thereof has never before been determined and previous work in this context has 

focused on viability and immunogenicity of microorganisms, which is not relevant to 

the current study design, although it may provide some hints for interpretation of 

current data in terms of the efficacy with which digestion was inhibited.  

In the current study, Concanamycin A and Chloroquine treatment was employed to 

block phagosome acidification. The rationale therefore is underpinned by observations 

gathered from two microorganisms capable of blocking phagosome acidification and 
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inducing phagosome maturation arrest in that manner: Mycobacterium tuberculosis 

and the Leishmania superfamily.  

Concanamycin A is a selective V-ATPase inhibitor that directly affects phagosomal 

acidification by preventing formation of a proton gradient (Huss et al. 2002). It 

simulates a situation similar to Leishmania that prevents recruitment of the V-ATPase. 

Chloroquine, on the other hand, is a weak base able to alkalinise phagosomes that 

leads to a block in lysosome fusion due to this raised phagosomal pH (Akpovwa 2016). 

This in turn then simulates the block in endosome/lysosome fusion seen under 

conditions of TACO retention. In our study, blocked phagosome acidification was 

represented by a reduction or absence of green pHrodo® signal in treated cell 

populations (Figures 4.5, 4.9, 4.10).   

We also utilized the PI3k inhibitory effect of Wortmannin to prevent formation of PI3P 

on maturing phagosomes (Vieira et al. 2001; Hawkins & Stephens 2015). Wortmannin 

is a steroidal fungal metabolite that non-specifically inhibits subtype I, II and III PI3ks 

by covalent binding to lysine residue in the catalytic unit of this enzyme (Wymann et 

al. 1996; Liu et al. 2005). Supported by previous studies (Nakanishi et al. 1995; Yano 

et al. 1993; Jackson et al. 2004), Wortmannin has shown prolonged effective inhibition 

of PI3ks, resulting in phagosome maturation arrest.  

An interesting point for discussion, given the ultimate goal for in vivo application, is the 

fact that the 20 position carbon (C20) of Wortmannin is highly reactive with 

nucleophiles in solution, resulting in an extremely short half-life of 0.99 min (59.4 

seconds) in culture media (Yuan et al. 2006). Therefore, a Wortmannin paradox was 

proposed and investigated by Yuan and colleagues (Yuan et al. 2007) to determine 

the relative effectiveness of this metabolite in vivo and in vitro against its highly reactive 
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nature. Briefly, investigation found that Wortmannin resides within cell culture solution 

under various C20 amino acid derivatives that undergo dynamic transitioning between 

different nucleophile donors to form other derivatives, while also reverting to 

unmodified Wortmannin. These derivatives vary in their capability to inhibit PI3ks. 

Noteworthy, of the nucleophiles tested, the C20-lysine derivative was the weakest 

PI3k inhibitor and also the most stable, forming a physiologically irreversible binding 

that yields negligible Wortmannin reformation. We extrapolated from this that 

Wortmannin cycles between C20 derivatives until exposure to lysine, found free within 

cell culture or contained in the PI3k catalytic unit. The resultant irreversible covalent 

binding induces prolonged inhibition, however, due to steric hindrances in the catalytic 

unit, Wortmannin is vulnerable to intramolecular attack by its C6 position hydroxyl 

group (responsible for the reversibility of C20 derivatives to reform Wortmannin and 

other compounds after binding to different nucleophiles (Yuan et al. 2007)). 

Subsequently, the bond can be broken and PI3k regains fractional activity until 

repeated binding with C20 derivatives. Together, this poses an explanation for why 

macrophages in this study readily engulfed 6 µm as well as 4.5 µm AbsBeads, 

contradictory to previous reports of Wortmannin-induced haltering of phagocytosis (at 

the same concentration), in a size dependant manner and an inability to engulf 

particles larger than 3 µm (Cox et al. 1999; Vieira et al. 2001). A possible additional 

reason for the discrepancy in reports could also be altered adhesion molecules of the 

immortalised cells (RAW264.7) used by Vieira and colleagues. This alteration could 

have negatively influenced phagocytosis and prevented large particle engulfment, 

which was not observed during our study with use of primary cells.  
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5.3. Maintenance of Engulfment Capacity and Migration 

The capacity for engulfment of AbsBeads was maintained in macrophages after 

treatment to induce phagosome maturation arrest. This engulfment capacity of primary 

differentiated macrophages has never before been assessed after experimental 

induction of phagosome maturation arrest. Previous studies touching on this aspect, 

focus on absolute engulfment as maintained or blocked, rather than determination and 

quantification of the extent to which engulfment was mediated. For this reason, no 

data exists to which our findings can be compared – in the artificial bead ingestion 

context as well as microbiology context. The most applicable research done in this 

context, was that of Vieira et al. (2001) who treated RAW264.7 with Wortmannin and 

reported an inability to engulf larger particles (this topic was already discussed above). 

Similarly, Cox et al. (1999) reported an abortive form of “frustrated phagocytosis” 

where macrophages attempted to engulf the culture plate they were grown on (section 

2.2.2.). Furthermore, the almost limitless capacity for engulfment is supported by 

findings of membrane enlargement via stretching and “ruffling” out of grooves (Hallett 

& Dewitt 2007) as well as de novo membrane production (Huynh et al. 2007), which 

enables engulfment of particles similar in size to the macrophages themselves. Thus, 

the number of ingested particles is unlikely to be a limiting factor in migration capacity. 

In order to support this interpretation, further studies can more directly determine 

whether the number of ingested particles affects migration. Aside from these few 

reports, no other studies have quantified the capacity for phagocytosis and none exist 

on migration of cells containing extensive phagosomal content. Nevertheless, current 

data indicates that phagosome maturation arrest does not affect engulfment capacity 

or migration capacity in primary cells. Importantly, our results obtained in primary cells, 

stresses the importance of study design to minimise confounding factors (in this case 
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e.g. changes in adhesion molecule expression in primary vs. immortalised cells), to 

allow for most accurate data yield and data interpretation. 

5.4. Bioactivity and in vivo Translation 

Turning attention to considerations related to in vivo application, it is important to 

consider feasible time frames within which our model could function, as this would 

dictate conditions that could benefit from this particular model. Despite the known, very 

short physiological half-life for Wortmannin (59.4 seconds) (Yuan et al. 2006), it is 

known to elicit prolonged perturbation (Jackson et al. 2004), as discussed earlier. 

Notwithstanding research into this “Wortmannin paradox”, no time dependant studies 

have determined bioactivity of this compound. Similarly, Concanamycin A has been 

used in numerous studies to determine the role of V-ATPase and its associated 

processes in vitro, however, research has not elucidated the period of V-ATPase 

inhibition by Concanamycin A – irrespective of concentration. Nonetheless, 

Chloroquine was recently proposed as a possible therapeutic treatment for Ebola due 

to its pH elevating effect (Akpovwa 2016). As proposed by Akpovwa, one problem 

regarding the feasibility of Chloroquine as an Ebola treatment is un-perpetuated 

bioactivity. Thus, the bioactivity of these compounds have not been determined. 

Currently our knowledge on the modulation for maturation arrest as employed in the 

current study, only extends to 2 hours, and drug-interaction was not comprehensively 

assessed. The combination of drugs could potentially augment activity of one or more 

of the other drugs used, or even create some redundancy. Future studies should 

investigate drug-interactions and assess more doses of the three compounds in 

isolation or in combination. Also, the effective time frame limits of our maturation 

arresting cocktail should be investigated to further optimise the intervention protocol 
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with the aim of in vivo therapeutic application.  For example, should a longer period be 

required for effective treatment than achieved with the current protocol, a possibility is 

to coat the AbsBeads/cargo with the arrest inducing cocktail to initiate phagosome 

maturation arrest only after engulfment, so as to prolong effectiveness without 

increasing dosage of the treatment and by releasing compounds in a delayed-release 

fashion.  

Time constraints of the current working model of this delivery system are a key 

consideration for therapeutic application. Currently, preparation time from isolation of 

stem cells and monocytes, culturing and reintroduction into host is ±7 days. To shorten 

this period, a pilot transmigration study was done using phagosome maturation 

arrested monocytes activated and cultured for a total of 24h (Section 4.4). As 

mentioned earlier, although sufficient uptake of AbsBeads was recorded – providing 

proof for engulfment capacity – these cells failed to transverse endothelium. 

Explanations for this outcome could be insufficient cell maturation to allow a M1 

phenotype (also not assessed during pilot) that has been shown to transmigrate in 

vitro (Arnold et al. 2007; Chazaud et al. 2009). Additionally, these unmatured 

monocytes could be less robust, compared to M1 macrophages, and their exposure 

to the arrest inducing cocktail could have had adverse effects. Thus, taken all of these 

data and literature into consideration, this model is probably not suitable for acute 

application. Rather, it should be applied to chronic pathological conditions where more 

effective regeneration would improve prognosis, such as in myodystrophy.   
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Chapter 6: Conclusions and Recommendations for Future Studies 

In conclusion, this thesis describes a novel technique with which successful 

phagosome maturation arrest was achieved in pre-differentiated and polarised M1 

macrophages. The intervention cocktail was shown to result in satisfactory 

preservation of intra-phagosomal cargo after engulfment, without negatively affecting 

engulfment capacity or macrophage migratory capacity.  

As mentioned in the introduction section of the thesis in Chapter 1, this study is the 

first step in a much bigger endeavour. Thus, many more studies are required before 

arriving at a feasible therapeutic option for clinical application. Minor optimisation steps 

have already been touched on in the discussion section. However, in addition, several 

follow-up studies are envisaged. For example, probably the first step would be to 

replace AbsBeads with stem cells in order to assess viability of ingested cells via 

assessment of physiological indicators of viability. Since traditional XTT or propidium 

iodide staining is not feasible for a cell-in-cell situation, we propose assessment of 

markers of cell survival, apoptosis and/or autophagy using immunocytochemical 

staining of permeabilised cells. Pilot studies are already under way to investigate the 

feasibility of coating these stem cells with a protective co-block polymer, which could 

contribute to cell survival.  

A second study could use a more physiologically relevant in vitro model, such as the 

SynVivo microfluidics system, to simulate capillary networks with which to evaluate 

macrophage migration capacity under physiologically accurate sheer flow rates.  

At this point, the first in vivo study can be considered. Importantly, the specificity of 

migration to only the intended areas for regeneration has to be assessed, in order to 

prevent cargo delivery and thus undesired tissue growth in unwanted tissue areas. 
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Current literature in the context of stem cell therapy by infusion into circulation, suggest 

that this is probably not a problem, since progression of stem cells to more 

differentiated forms is largely determined by the cellular environment. However, this 

has to be confirmed as a safety precaution. We propose labelling macrophages or 

stem cells with a suitable marker and to assess the migratory path and speed of 

macrophages in live, sedated rodents, using a whole body visualisation system, such 

as the IVIS (in vivo Imaging System) already accessible to us.  

In order to optimise macrophage mobility in vivo, it is also important to consider 

physical limits of cells in an in vivo environment, i.e. whether there should be a limit to 

the number of consecutive engulfments and thus number of stem cells contained in 

any single macrophage. Macrophages containing too many stem cells may physically 

not be able to migrate through the smaller blood vessels, or have difficultly migrating 

across endothelium. To address this, fluorescence activated cell sorting (FACS) can 

be used to optimise the migrating macrophage population in terms of phagosomal 

contents/number, to ascertain optimal migration capacity. By using similar 

interventions as used in this study to quantify digestion and engulfment, one can 

separate single or double bead/cell containing macrophages via setting up a threshold 

and polarizing cells in real time for sorting according to attraction to voltage gates.  

Finally, induced release of macrophage cargo has to be achieved after tissue 

infiltration. The aim is to design the co-block polymer coating of stem cells so that it 

could assist with the release of the satellite cell. For example, these polymers can be 

designed to break-down in response to specific externally applied stimuli, such as 

infrared light or vibration at specific frequency (given the superficial nature of skeletal 

muscle, this is a feasible option). In this scenario, the inner layer of the polymer could 

be decorated with an agent inducing macrophage cell lysis or even apoptosis, to 
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facilitate release of the stem cell. However, this step is still some time off and the 

processes by which this may be achieved is less clearly defined at this point. 

Although many more steps are required in the development of this delivery system, an 

autologous delivery system such as this has immense translational applicability, not 

only in the context of regenerative medicine for stem cell delivery but also delivery of 

therapeutic compounds. For example, the anthracycline Doxorubicin, is currently 

being researched and used to treat an array of cancerous tissue growths. Regrettable, 

current administrative methods are focussed on a ‘saturation’ approach, as with the 

greater embodiment of medicine. This approach results in the exposure of non-target 

or non-cancerous tissue to drugs. In the case of Doxorubicin specifically, cardiotoxicity 

is a major problem brought about in this manner. Thus, if successful, a delivery system 

such as the one proposed here, could be adapted also for application here.  
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Abstract 

Macrophages and neutrophils are evolutionarily equipped for host defence, mainly as a result of their 

high capacity for phagocytosis and diapedesis. The fact that these processes are highly conserved 

across species - nearly 95% of the animal kingdom is devoid of both B and T cells - testifies to its 

effectiveness in neutralising invaders. Despite this, these processes are also manipulated and 

exploited by bacteria and viruses for their own pathogenic propagation. Perturbation of phagocytosis 

for intracellular pathogen survival is generally achieved through phagosome maturation arrest. This 

prevents phagosome acidification, recruitment of enzymes or even modulation of phagocyte killing 

capacity. In order to understand the complexities of phagocytic evasion, one first needs to appreciate 

the equally complex and redundant process that is phagocytosis. In this review, the molecular aspects 

of phagocytosis, from initial recognition and pseudopod extension to successful neutralization and 

degradation of foreign material is concisely discussed in a temporal manner. This is followed by recent 

information from the literature related to pathogenic evasion, with focus on specific bacteria and 

viruses such as Mycobacterium tuberculosis and HIV, to illustrate how these pathogens manipulate 

the phagocytic process.  After conveying our understanding of these processes, a hypothesis for an 

unorthodox approach to regenerative medicine is formulated: that of experimental modification of 

phagocytes to achieve maturation arrest, to render these cells capable of internalising and 

transporting cargo such as live stem cells or therapeutic drugs, to specific tissues, without damage to 

this cargo while in transit.   
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Introduction 

Phagocytes, such as macrophages and neutrophils, are responsible for non-specific recognition and 

destruction of invading pathogens. At least two characteristics of these cells make them ideally suited 

for this task. Firstly, they are highly mobile cells, with the ability to readily cross membranes, such as 

endothelium. This affords them the uncommon cellular trait of migration across different body or 

tissue compartments to reach sites where they are required. Secondly, these cells have the capacity 

for phagocytosis – an intricate process, starting with pseudopodia extension to engulf particle matter 

and ending in particle neutralization within a destructive phagolysosome. The fact that these two 

mechanisms are highly conserved across species1 testifies to its potency and overall importance for 

host health. However, it is also known that the process of phagocytosis is not infallible. Several papers 

have described the ability of evolved microbes, such as Mycobacterium tuberculosis2, Leishmania 

donovani3 and Candida glabrata4, to hide from the immune system by remaining inside phagocytes 

without being digested in the phagolysosome.  

We believe that a lesson can be learned from these microbes, and harnessed to the benefit of 

regenerative medicine practises. In this review, we will present our hypothesis on how this may be 

achieved. However, we first present an overview of what is currently known about the molecular 

processes involved in the phagocytic process, aiming to elucidate the molecular mechanisms of 

phagosome maturation in a temporal and concise manner as to better understand this phenomenon. 

This will be followed by a discussion of phagosome maturation arrest and the mechanisms used by 

microbial agents to evade phagosomal neutralization, before we will elaborate on the potential for 

application of this knowledge in an unorthodox, novel approach to regeneration. 

 Molecular basis of phagocytosis 

Phagocytosis involves considerable membrane and cytoskeletal rearrangements in order to encircle 

and capture (engulf) potential pathogens or matter foreign to the immune system – forming 
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phagosomes – and to mature these nascent phagosomes into phagolysosomes5. Microbial material is 

captured inside a nascent phagosome that matures through events relating to the endocytic and 

autophagic pathway, where fission and fusion events allow for its destructive ability.  In the next few 

sections, these intricate processes will be explained in detail, using macrophages as representative 

phagocytic immune cell. 

Recognition 

Matter is recognised as foreign – and thus as potential threat – via binding to specific pattern 

recognition receptors (PRRs) located both in the cytosol and cell surface of immune cells of both the 

innate and adaptive branch of the immune system, as well as on epithelial cells such as the vascular 

endothelium6. PRRs differentiate between molecules that are released by dying self-cells and foreign 

material through respectively binding to damage-associated molecular patterns (DAMPs) and 

pathogen-associated molecular patterns (PAMPs) (ref. 7). Necrotic self-cells release formylated 

peptides like N-formylmethionine from damaged mitochondria8. These self-originating proteins 

(classified under DAMPs) can bind to formyl peptide receptors (FPRs) on monocytic cells, initiating 

chemotaxis and phagocytosis9. Interestingly, these formylated peptides are also characteristic of 

bacterial proteins. In our opinion, this supports the endosymbiotic theory of mitochondrial evolution, 

which proposes that mitochondria are foreign organelles that were incorporated into eukaryotic cells 

for energy production. In this manner, cells containing damaged mitochondria, i.e. metabolically 

compromised cells, are removed via recognition of these DAMPs, irrespective of self or non-self. 

Recognition of PAMPs is oriented toward many PRR subtypes, such as NOD-like receptors (NLRs) 

(recognise DAMPs as well), RIG-like receptors (RLR) and Toll-like receptors (TLRs). NLRs are mainly 

associated with sterile inflammation via NLRP3-inflammasome activation10. The membrane bound 

TLRs bind bacterial hallmark molecules both intra- and extracellularly and exhibit some target 

specificity.  The TLR5 subtype typically binds to flagellae, while TLR2 and TLR4 bind components of the 

bacterial cell wall like peptidoglycan and lipopolysaccharide (LPS), respectively7. TLR2 forms a 
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heterodimer with TLR1 or TLR6 to bind the N-terminal cysteine modification on lipoproteins of 

bacteria, as illustrated in mycobacterium9. This lipoprotein modification is uniquely conserved in over 

2000 different bacterial proteins11, which can all be recognised by binding of this heterodimer. Other 

TLRs like TLR3, TLR7, TLR8 and TLR9 are intracellular receptors and recognize bacterial dsRNA and 

DNA.  

TLR activation induces recruitment of adaptor proteins and activation of transcription factors for 

production and release of cytokines, adhesion molecules and costimulators7. Active TLRs indirectly 

regulate phagocytosis through MyD88 signalling and activation of the p38 residue to accelerate 

phagocytosis12. The newly identified mitogen-associated protein 1S (MAP1S) autophagy-related 

protein was also very recently reported to be necessary for TLR activation and effective bacterial 

phagocytosis12, but more research is required to fully elucidate its role in this context. Many other 

receptors including lectin, mannose, complement and RLRs also assist with pathogen recognition, but 

the IgG receptors are more closely associated with phagocytosis, where IgG-binding opsonises 

bacteria to facilitate phagocytosis of material otherwise ‘invisible’ to phagocytes. Macrophage Fcγ 

surface receptors (CD64) recognise the constant γ heavy chain in Fc regions of the IgG, which induces 

FcγR clustering at the site of material contact that leads to actin polymerization and engulfment 

through pseudopod extension13. Formation of pseudopodia and actin polymerization is highly 

dependent on phosphatidylinositol 3-kinase (PI3k) recruitment for production of various 

phosphatidylinositides. The ADP ribosylation factor (ARF) proteins play a pivotal role in activating 

phosphatidylinositol kinase enzymes to regulate membrane modification14. Specifically, ARF6 has 

many functions, such as being recruited to the tip of forming pseudopodia where it activates type I 

phosphatidylinositol 3 kinase (PI3k) substrate production via activation of other phosphatidylinositol 

kinases15, and activation of actin polymerization during pseudopod extension16. This collectively 

ensures particle capture and membrane fusion to form a phagosome. FcγR mediated phagocytosis is 

the main form of phagocytosis simulated in experimental phagocytosis models, because engulfment 

does not require stimulation by lymphoid cells, as explained further by Liu17. 
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Pseudopodia and encapsulation 

Following recognition, phagocytosis is initiated with the extension of pseudopodia. Particle 

internalisation and phagosome formation is achieved within 5 min after introduction of the foreign 

agent under culture conditions (Visser and Smith, unpublished data). Macrophages specifically are 

extremely ambitious in their phagocytic ability and are able to engulf particles which are closely 

comparable with their own size5.  Interestingly, a form of cell suicide termed “frustrated phagocytosis” 

has been reported, where cultured macrophages attempted to engulf opsonised tissue culture plate 

surfaces, increasing cell surface area by over 20% (ref. 18). This phenomenon presented a useful model 

with which to investigate the mechanics of pseudopod formation, and the mechanism(s) by which this 

phenomenal change in cell shape are achieved has been debated to some extent. One theory 

postulated that the macrophage membrane is corrugated, possibly allowing a flattening out of the 

membrane during extra-large particle engulfment19. However, quantitative spectroscopy has shown 

that during healthy phagocytosis, membrane surface area indeed enlarge to such an extent that 

surface flattening alone cannot fully account for it20.  

This raises the questions of where the extra membrane comes from. Specific membrane reservoirs 

have not been identified within cells, but general cellular sources exist. For example, in osteoclasts, 

exocytosis of late endosomes has been shown to deliver membrane components and increase cell 

surface area during bone reabsorption. Also in the context of macrophage pseudopod formation, a 

few candidates have been investigated. Initially, Gagnon21 proposed that the ER may fuse with the 

plasma membrane at the base of extending pseudopodia, forming a continuity through which the 

particle can slide into the ER lumen. This idea was supported by Becker22, who reported that 

phagocytosis efficiency of large particles (>3μm) was reduced after neutralization of the ER soluble N-

ethylmaleimide-sensitive factor-attachment protein (SNARE) receptor, ERS24. The theory of Gagnon 

and colleagues21 was however not accepted by all, as others have argued that the role of the ER during 

phagocytosis still needs some elucidation23. More recently, using a variety of techniques including 
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immunological, biochemical, electron microscopy and fluorescence microscopy, Huynh5 indeed could 

not find any evidence of the ER fusing to the plasma membrane during phagocytosis. Also, since 

phagosomes acidify during maturation via a proton gradient created by the vacuolar-type H+-ATPase 

(V-ATPase) proton pump, and the ER membrane is permeable to protons and devoid of V-ATPase (ref. 

24), the theory of simple ER fusion is probably unlikely to fully explain the phenomenon. We speculate 

that the ER likely fuses with phagosomal membranes – however, it could be in a ‘kiss and run’ or ‘kiss 

of death’ fashion, as seen during autophagosome fusion with lysosomes25 and cytotoxic T cell-

mediated cell death26. This may result in an exchange or delivery of ER localised proteins to 

phagosomes, without complete membrane exchange through fusion. Furthermore, since ER 

engagement was observed during large particle uptake (>3μm) and mostly during FcγR mediated 

phagocytosis22, ER engagement is likely size- and receptor-specific. 

A more likely candidate is the enzyme group of phosphatidylinositol 3 kinases (PI3k) that 

phosphorylate the 3’ inositol phospholipid of inositol rings. These kinases are classified into three 

families based on their substrate used for lipid phosphorylation: types I, II and III. The type I 

PI3ksconsists of four isoforms, PI3kα,β,γ and δ, which all use phosphatidylinositol 4,5-bisphosphate 

(PI(4,5)P2) as substrate to generate phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3, or PIP3) from 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (ref. 27). This PI3k substrate concentration is kept 

at optimal level by phosphatidylinositol 4-phosphate 5-kinase α (PI4P-5kα) through its 

phosphorylation of phosphatidylinositol 4-phosphate (PI4P) to PI(4,5)P2 (ref. 28). The PI3kδ isoform 

is unique to immune cells as it is normally only expressed on lymphoid and myeloid cell lineages29.  

Botelho30 found transiently high PI(4,5)P2 expression on extending pseudopodia with its 

disappearance shortly after phagocytic cup closure and nascent phagosome formation. Furthermore, 

type I PI3ks recruitment and subsequent PIP3 expression has been shown to occur on extending 

pseudopodia during engulfment of antibody-opsonised particles31. Throughout the literature, PIP3 is 

seen as the main propagating agent during pseudopod extension. However, apart from the apparent 
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steric association of PI(4,5)P2 to PI3ks – necessary for its phosphorylation to PIP3 – PI(4,5)P2 itself 

seems to have an equally important role in pseudopod formation. Active ARF6 induces PI(4,5)P2 

production through activation of PI4P-5kα during phagocytosis15. PI(4,5)P2 then recruit WASP/N-

WASP proteins to facilitate actin polymerization in a G-protein coupled manner during phagocytosis32.  

The role of type I PI3ks was further elucidated by antibody mediated type I PI3ks inhibition, which 

illustrated that type I PI3ks – together with its substrate (PI(4,5)P2) and product (PIP3) – were essential 

for ingestion of large particles (>3μm in diameter), but not for phagosome maturation33. 

The Type II PI3ks are not well described but current evidence points to the notion that this enzyme 

family produces either PI(3,4)P2 or phosphatidylinositol 3-phosphate (PI3P) on endosomal or plasma 

membranes34 by either of their three isoforms: PI3kC2α, C2β, C2γ. Thus, type II PI3ks, could contribute 

to production of PI(3,4)P2 on extending pseudopodia for actin regulation and additional membrane, 

or it could facilitate phagosome maturation through production of PI3P on phagosomes.  

The last PI3k family is the type III PI3ks that consist of only one catalytic subunit, VPS34, in humans: 

hVPS34. Type III PI3ks phosphorylate phosphatidylinositol (PI) to PI3P on endosomes and 

autophagosomal structures35. Formation of PI3P is accompanied by the closure of the phagocytic cup 

and subsequent disappearance of PI(4,5)P2 (ref. 30), which lead to and are essential for maturation of 

newly formed phagosomes33. Thus the function of PI3P is centred more around 

phagosomal/endosomal maturation than as a source of extra membrane during engulfment. 

Additionally, PI3P expression could be negatively regulated during maturation by the (FYVE domain 

containing protein) PI 5’-kinase, PIKfyve, via phosphorylation at the 5-position to produce PI(3,5)P2 

(ref. 36).  

From the literature consulted, it seems that the origin of these relatively large amounts of “extra” 

membrane is most likely the phosphoinositides produced by PI3k enzymes. In support of this, non-

specific inhibition of the PI3ks enzyme superfamily (which induced drastically decreased PIP3, PI(3,4)P2 

and PI3P synthesis during phagocytosis), prevented production of the 20% increased surface area 
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usually observed in the “frustrated phagocytosis” model mentioned earlier. This suggests that PI3ks 

activity is one of the chief sources of membrane during pseudopodia extension and phagocytosis. 

Additionally, a significant amount of membrane could also be supplied by recycling endosomes and 

sorting nexins (SNX), which collect membrane and other phagocytic components from endosomes and 

newly formed phagosomes called nascent phagosomes. Interestingly, this recycling machinery is also 

dependent on PI3P expression for docking onto intracellular structures37, further supporting our 

notion of PI3ks as important role player in this context.  Not all engulfed material is destined for 

degradation and subsequently need to be recycled by the recycling endosomes and SNX mentioned 

above. Recycling endosomes, partly identified by the Rab11 superfamily, is responsible for pinching 

off reusable cargo during the nascent phagosomal stage38. One of three Rab11 isoforms, Rab11a, is 

expressed on the nascent phagosome itself and facilitates phagosome fusion with early endosomes 

and Golgi-derived vesicles37. Rab11a also has a crucial role in pro-inflammatory signalling as it delivers 

TLR4, responsible for detection of lipopolysaccharide such as E.coli LPS, to maturing phagosomes39. 

The Rab11 superfamily seems necessary for engulfment itself as well, since Cox40 reported that 

prevention of Rab11 GDP/GTP cycling by mutant alleles, inhibited particle internalization. 

Furthermore, the GTPase, ARF6, also controls trafficking of recycling endosomes to the membrane 

and inhibition thereof resulted in a block in pseudopod extension41, suggesting that recycling 

endosomes serve as an additional reservoir for plasma membrane during pseudopod extension. The 

greater part of cargo retrieval and sorting is done in the early phagosomal stage because most of the 

machinery is dependent on PI3P for docking37, supporting the findings of Cox and colleagues18,40 

mentioned previously. However, some of the SNX can form higher order structures with Vps26, Vps29 

and Vps35 – these are called retromers42. These retromers function in the presence of PI3P, but also 

active Rab7, giving them a limited time gap to recycle cargo between early stage and late stage 

phagosome maturation (between Rab5 to Rab7 transitioning), discussed below. This is in no doubt a 

finely tuned, complex process that merits further research in order to be fully elucidated. 

Nascent phagosomal stage 
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This stage can be structurally distinguished from the pseudopod extension/engulfment stage by 

phagocytic cup closure behind the engulfed material – a process highly dependent on type I PI3k (ref. 

28).  

In contrast to pseudopod formation, the process of phagosome formation and maturation is relatively 

well described, although some controversies remain. Successfully engulfed material is encapsulated 

into nascent phagosomes characterized by Rab5 GTPase expression37. Rabex-5, a guanine nucleotide-

exchange factor (GEF), is initially recruited to newly formed endosomes by the already present Rab22a 

(ref. 43) and functions to activate Rab5 (ref. 44). Active Rab5 then recruits endosomal early antigen 1 

(EEA1) (ref. 45) and hVPS34 (ref. 46) to the nascent phagosome. hVPS34 generates PI3P on the 

cytosolic face of nascent phagosomes that serve as docking station for a variety of maturation 

effectors. The FYVE domain of EEA1 can then dock onto PI3P to ensure later EEA1-mediated tethering 

and fusion of phagosomes with late endosomes for further maturation47. Inhibition of EEA1 reportedly 

arrest phagosome maturation48, but a dominant negative mutant of EEA1 which did not induce 

maturation arrest has also been reported33, suggesting that other FYVE domain containing proteins 

could be involved in PI3P binding that lead to subsequent maturation. Zinc finger FYVE domains, 

present in proteins like EEA1 and PIKfyve, recognize the hydrophilic head of PI3P on the cytosolic 

leaflet and may allow binding of these proteins with substantial specificity to PI3P, resulting in this 

docking49. These contradicting findings on the necessity of EEA1 could be explained by its tendency 

for complex formation with other proteins. EEA1 has been reported to form a macromolecular 

complex with Rabaptin-5, Rabex-5 and N-ethylmaleimide-sensitive factor (NSF) that interacts with 

syntaxin 13 (another SNARE) to facilitate membrane fusion50. NSF disassembles these SNARE 

complexes via ATP hydrolysis after membrane fusion, blocking further action51. This could mean that 

the maturation inhibition reported by Fratti48 was achieved through the inability of antibody-bound 

EEA1 to form a macromolecular complex (likely due to steric hindrance), while the dominant negative 

form of EEA1 can, thus resulting in unperturbed phagosome maturation. 
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Late phagosomal stage 

Transition to the late phagosomal stage is marked by GTPase-activating protein (GAP)-mediated Rab5 

inactivation/dissociation37 and Rab7 recruitment, together with late endosome fusion and expression 

of other markers such as mannose-6-phosphate receptor (MPR), lysobisphosphatidic acid48 and 

lysosome-associated membrane proteins (LAMP) (ref. 52). During this stage, PI3P is incorporated and 

degraded inside the phagosomal lumen via inward budding of the limiting membrane53. Briefly, the PI 

3’-phosphotase (PTEN) and PIKfyve eliminate PI3P via hydrolysis to PI and phosphorylation to 

PI(3,5)P2, respectively36. Elimination of PI3P is likely necessary for the removal of nascent phagosomal 

effector proteins dependent on PI3P expression, such as EEA1 and other FYVE domain containing 

proteins. The late phagosomal stage initiates about 10-30 min after nascent phagosome formation, at 

least under in vitro conditions48. This is in accordance with the disappearance of PI3P about 10 min 

after its formation33.  

Rab7 is expressed on both late endosomes/late phagosomes and lysosomes54. This expression profile 

allows Rab7 to regulate membrane trafficking between early endosome/nascent phagosomes and late 

endosomes as well between late endosome/late phagosomes and lysosomes55. The fusion between 

nascent phagosomes and late endosomes may allow the close proximity of Rab7 and PI3P that 

facilitates SNX retromer functioning reported by Cullen & Korswagen42. In this manner, the SNX 

retromers possibly recycle cargo between nascent phagosomes and late phagosomes, rather than 

nascent phagosomes and recycling endosomes, as hinted at earlier. This Rab7 GTPase accelerates 

maturation to the phagolysosome biogenesis stage with the help of Rab7-interacting-lysosomal-

protein (RILP) (ref. 56). The Rab7 associated proteins RILP and oxysterol-binding protein related-

protein 1 (ORP1L) together link phagosomes to dynein57, which centripetally moves these late 

phagosomes along microtubules toward lysosomes for fusion56. Johansson58 reported that ORP1L 

preferentially binds to active, GTP-Rab7 and that this association seems to sustain the GTP-bound 

state of Rab7. This prolonged activation could be required for successful dynein linkage. Dynein 
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mediated fusion with lysosomes seems to be dependent on the HOPS complex as well as Rab7 (ref. 

59). HOPS is a tethering protein responsible for keeping phagosomes in close proximity to lysosomes, 

a function parallel to that of EEA1 (ref. 60). Furthermore, disassembly of the microtubular network 

with nocodazole ablated centripetal movement of phagosomes, suggesting a dependency of 

macrophages to dynein for maturation (more detail later).  

Phagolysosome biogenesis stage 

Phagosome fusion with lysosomes, or phagolysosome biogenesis, is the last stage of maturation and 

was reported to occur ≈1h after nascent phagosome formation under in vitro conditions61. Fusion is 

mediated by the SNARE proteins (syntaxin 7, syntaxin 8, Vesicle-associated membrane protein (VAMP) 

7 and VAMP8) (ref. 62) and provides the phagolysosome with the needed proteases (e.g. cathepsin 

D), reactive nitrogen species (RNS) and reactive oxygen species (ROS) which neutralized the ingested 

particle. Lysosome fusion also increases LAMP expression and effectuates an acidic phagosomal 

environment63. Alhtough Rab5 and Rab7 are the chief GTPases regulating endosomal and phagosomal 

maturation, research has discerned significant roles for other Rab proteins too. For example, Rab10 

regulates recycling of proteins back to the plasma membrane and is present on nascent phagosomes 

even before Rab5 (ref. 64). Also, phagolysosomal protein degradation is hugely dependant on 

proteases like cathepsin D, which is delivered from the Golgi under control of the trans-Golgi network-

localised Rabs (22b, 32, 34,38 and 43) (ref. 65) that were shown to have various association and 

dissociation kinetics with the maturing phagosome2. Rab34 has also been implicated in 

phagolysosome biogenesis through its association with RILP (ref. 66), while the ER-localized Rab20 

was shown to co-localize with V-ATPase on the phagosome, suggesting an involvement in phagosome 

acidification67. Seto2 more recently reinforced this finding by reporting that dominant negative alleles 

of Rab20 and Rab39 prevented phagosomal acidification.  

Phagocytosis seem to have evolved from an endocytic nutrient gathering process in almost all 

eukaryotic cells, to a specialized mechanism of self-defence conserved uniquely to professional 
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phagocytes. A certain degree of redundancy exists in phagocytosis, most likely in order to be “fool 

proof”. However, as seen in the literature, at least some pathogens are able to arrest phagosome 

maturation to ensure their own survival. Interestingly, these pathogens do not evade being 

transported into the phagocytic cell – rather they use the host cell as nutrient supply, so that they not 

only survive, but thrive. 

Pathogenic modulation  

Pathogenic phagosome maturation arrest is a hallmark of bacterial and viral host immune evasion. 

Many intracellular pathogens like Mycobacterium tuberculosis, Candida glabrata, HIV-1 and 

Leishmania donovani have evolved divergent mechanisms to modulate phagocytic digestion2–4. Well 

characterized mechanisms of phagosome maturation arrest include (a) interference with PI3k function 

and PI3P biogenesis, (b) perpetuation of Rab5 expression, (c) prevention of centripetal movement of 

nascent phagosomes, (d) blocking of fission and fusion with lysosomes and endosomal organelles, (e) 

raising pH levels by causing phagosomal acid leakage, (f) lysis of the phagosomal membrane to escape 

digestion and even (g) active macrophage killing. Of these, only a few have been sufficiently studied 

in the context of phagocytosis.  For the sake of brevity, we limited ourselves here to a very brief 

overview of the most relevant mechanisms. 

Inhibition of phagosome maturation 

M. tuberculosis survive intracellularly mainly by dephosphorylating PI3ks and thus preventing EEA1 

docking onto the phagosome68. Mycobacterial phagosomes (and also those containing Leishmania) 

also retain the tryptophan-aspartate containing coat (TACO) protein, which causes prolonged Rab5 

expression. Although some maturation effectors can still bind the phagosome, absence of PI3P and 

EEA1 largely prevents lysosome fusion, resulting in a more alkaline, hydrolase deficient phagosome69. 

In addition to the PI3P-dependent pathway, M. tuberculosis also effects hydrolase deficiency and 
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retarded acidification via limiting expression of Rab7 and Rab20, as well as limiting delivery of 

cathepsin D protease2,70.  

In contrast, the survival mechanisms of C. glabrata are largely dependent on active PI3ks. C. glabrata 

encodes the enzyme PI3k and produces fungal PI3P through phosphorylation of PI (ref. 71), increasing 

PI3P content of phagosomes during the early stages of maturation where PI3P has no role yet. 

However, this early increase elicits endogenous negative feedback which halts maturation, as recently 

illustrated by deletion of two functional subunits of fungal PI3k in infected THP-1 macrophages4.   

HIV-1 invasion is associated with inhibited phagosome formation as well as phagosome maturation 

arrest through microtubule perturbations, for which several viral role players have been implicated, 

e.g. viral negative factor (Nef) (ref. 72) and regulatory viral protein (Vpr) (ref. 73). Although we could 

not find a study to specifically implicate PI3k here, these mechanisms are likely also PI3k related, since 

both Nef and Vpr (as well as Tat) achieve several other effects, such as RANTES production and down-

regulation of the ARF6 endocytic pathway, via PI3k-dependent routes74,75. 

Modulation of killing capacity 

Another similarity between Mycobacteria and Leishmania is that both result in perturbed ROS 

production, although via different pathways76,77 which inhibits macrophage microbicidal effect.  

These studies illustrates quite clearly that pathogens are able to manipulate the phagocytic process 

to ensure their survival, propagation and distribution through the host. In our opinion, it is also this 

manipulability of the phagocytic process that makes it ideal for use in regenerative medicine. 

Harnessing phagocytosis for medicine 

The relatively detailed understanding of molecular mechanisms governing phagocytosis, as well as 

perturbations achieved by pathogenic mechanisms, allows for therapeutic exploitation of this process. 
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We have formulated a hypothesis on the use of this knowledge in regenerative medicine and possibly 

other clinical fields as well.  

Firstly, macrophages seem able to engulf particles seemingly endless in size (considering the 

“frustrated phagocytosis” model), suggesting that they have the capacity to engulf the majority of 

pathogenic microbes and almost all host somatic cells. Secondly, pathogens evolving alongside 

macrophages have acquired mechanisms to elude host defence - many of which involve perturbation 

of phagocytosis.  Based on these facts, we hypothesise that by inducing phagosome maturation arrest 

(without pathogen involvement), the highly motile macrophages may be modified to useful shuttles 

for carrying “cargo” to specific areas within the host. The nature of this cargo could range from drugs 

to live stem cells, depending on the therapeutic aim. Of all potential options, the idea of a macrophage 

carrying a live stem cell – for example to increase muscle regenerative capacity in patients suffering 

from myodystrophy – is most enticing. 

Let us consider what this would practically entail. Fundamentally, these macrophages would have to 

be isolated from patient blood and modified in vitro in order for it to maintain an ingested stem cell 

in a viable state within its phagosomes after autologous reinfusion. We propose induction of 

phagosome maturation arrest, but in a manner that will not compromise particle ingestion capacity. 

A variety of methods by which this may be achieved have been unknowingly uncovered by research 

on phagosome maturation. Below, we evaluate the feasibility of these methods in terms of safety for 

in vivo application. 

Macrophage IL-10 enrichment 

IL-10 is used by M. tuberculosis as a powerful inhibitor of phagosome maturation, as discussed earlier. 

Since IL-10 is synthesised endogenously, it seems a promising agent to use.  However, IL-10-mediated 

maturation arrest was demonstrated to be dependent on presence of a bacterial component78. Ethical 

complexities aside, this problem may be overcome by identification of the essential bacterial 
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component, which – if not antigenic or pathogenic – could be administered as co-treatment. A greater 

issue here is the phenotypic change that IL-10 effects in macrophages, polarizing macrophages toward 

the alternatively activated (M2) phenotype79,80. Although this anti-inflammatory phenotype is desired 

in terms of resolution of inflammation and wound healing, M2 macrophages do not readily cross 

endothelial barriers81. This would significantly inhibit the actual delivery of the ingested stem cell to 

the intended target tissue. This complication however highlights another requirement – only M1 

macrophages should be used, to ensure sufficient mobility. 

Brefeldin A treatment 

The fungal antibiotic Brefeldin A (BFA), inhibits a subtype of Golgi associated GEFs (ARF-GEFs) that 

facilitate the GDP/GTP cycling of ARF family proteins82. These ARF-GEFs express a Sec7 domain that 

BFA recognises and inhibits by direct binding to it83. ARFs play a central role in regulating actin 

polymerization and activating phosphatidylinositol kinases for phosphatidylinositol production16, as 

well as plasma membrane traffic via coat proteins expressed on cellular transport vesicles84. ER and 

Golgi bilaterally traveling transport vesicles are coated with proteins such as calnexin and coat protein 

complex type I (COPI) and type II (COPII) (ref. 85). COPI is recruited to phagosomes and contributes to 

recycling of phagosomal components86. Active ARF1 is necessary for this COPI recruitment and 

inhibited COPI expression has been shown by Berón86 to partly perturb phagosomal recycling events. 

Thus, because BFA-sensitive ARF-GEFs control ARF1 activity that in turn allows COPI recruitment, BFA 

treatment could potentially induce phagosome maturation arrest by preventing sufficient recycling of 

phagosomal components. However, Beemiller28 found BFA-mediated inhibition of ARF-GEFs did not 

lead to subsequent inactive ARF1 expression on phagosomes. This suggests that the cells adapted to 

ARF-GEF inhibition by recruiting GEFs that are insensitive to BFA treatment. In addition, dual specificity 

of ARF was reported for BFA: ARF1 and ARF5, but not ARF6 – the main ARF implicated in encapsulation 

– was reported to be sensitive to BFA (ref. 87). The effect of BFA on phagosome maturation thus 

remains largely unknown.  
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Dynein inhibition 

As mentioned, dynein is vital for centripetal and centrifugal delivery of phagosomes to lysosomes for 

fusion. The dynactin complex has been shown to facilitate cargo binding to dynein for centripetal 

movement88, while the Rab5 GTPase regulates motility of endosomes89, likely through a 

phosphoinositide and EEA1 dependent manner. It is widely accepted that microtubule disruption (e.g. 

by nocodazole) negatively influences phagosome centripetal movement and coinciding maturation. 

However, the microtubule disassembly associated with nocodazole administration could perturb 

pseudopod extension via inhibited PI3k delivery, thereby inhibiting uptake of stem cells into 

macrophages, and may block cellular motility and chemotactic reactivity, ablating the very 

characteristic of macrophages we intent to exploit.  

In the same context, Ciliobrevin D is a dynein motor blocker that inhibits the GTPase activity of dynein 

specifically90 without affecting kinesin-1 and 5 ATPase activity91 or microtubule structure10, making 

this compound a more promising inhibitor of centripetal movement only. Recently, Ciliobrevin D was 

suggested as modulator of lysosome mechanics92 and was utilised to elucidate the formation of NLR 

pyrin domain containing 3 (NLRP3) mediated inflammasome in bone marrow-derived macrophages10. 

Its effects on phagosome maturation remain to be further elucidated.  

Wortmannin 

This fungal steroid metabolite is a known potent, selective and irreversible inhibitor of all three PI3k 

subtypes via covalent binding, virtually eliminating phagosome fusion with late endosomes and 

lysosomes93. However, not all effects of Wortmannin are equally desired. For example, PI3K-inhibition 

by Wortmannin was reported to enhance TLR-mediated inducible nitric-oxide synthase (iNOS) 

expression, to activate NF-κB and to up-regulate cytokine mRNA production94, suggesting a pro-

inflammatory role. In addition, Wortmannin treatment was also shown to prevent large particle 

(>3μm) engulfment through inhibiting PI3P formation18. Together these data suggest that the use of 
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Wortmannin for macrophage modification will require a finely optimised protocol, to ensure maximal 

phagosome maturation arrest, without compromising the encapsulation process or eliciting an 

inflammatory response.  

Concanamycin A 

Concanamycin A is a plecomacrolide that specifically inhibits the V-ATPase proton pump. This enzyme 

is responsible for energizing the membranes of eukaryotic cells, both intracellular and plasma 

membranes95. V-ATPase is expressed on late phagosomes and ensures an acidic phagosomal pH. 

Concanamycin A covalently binds to the subunit c of the translocating V0 complex of V-ATPase (ref. 

95), thereby preventing proton influx into phagosomes and maintaining an alkaline environment 

around pH 7.5 (ref. 96) which inhibits progression of autophagy, making Concanamycin A a candidate 

worthy of exploration in this context. 

Chloroquine 

Chloroquine is a 4-aminoquinoline that indirectly prevents acidification of intracellular vacuoles97. This 

compound is readily used as an anti-malarial drug and was very recently suggested as a possible Ebola 

drug, since its alkalinizing action would prevent intracellular viral replication, provided that its 

concentration can be maintained at effective dose97.  The fact that chloroquine is a known medication 

is a benefit, since its safety for human consumption has been established. Similar to concanamycin A, 

chloroquine has proven efficacy in the context of (auto)phagosome maturation arrest. 

From this information, we conclude that positive basic data exist for a number of potential treatments 

that may be used for macrophage modification, but that more research is required for optimisation 

of single-compound or cocktail doses. 

Additional factors to consider 
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Although maintenance of stem cell viability inside phagosomes is a major consideration and an 

important problem to solve, it is not the only one.  In order for the stem cells to be ingested by the 

modified macrophage, they will also have to be opsonised, especially since autologous cells will ideally 

be used for this technique. Importantly, opsonisation should not interfere with stem cell function after 

its delivery. We believe that this can be over the best solution here is using advanced technology and 

a multidisciplinary approach. Recently, great advances have been made in the field of abiotic 

membrane-active polymers that can coat cell membranes whilst maintaining cell viability98. These 

polymers can be “decorated” with an opsonin to enhance encapsulation; the polymer can be 

deconstructed by e.g. slight temperature change or vibration, releasing a largely unaffected stem cell.  

Another question is whether the number of stem cells ingested should be limited, to ensure that 

physical size of macrophages does not hamper migration. It is known that macrophages have an 

exceptional capacity for membrane “extension”, so that several stem cells can theoretically be 

ingested by an individual macrophage. Indeed, this was the case in preliminary studies in our lab 

(Visser and Smith, unpublished data). However, we believe that the number of stem cells ingested per 

macrophage can simply be optimised via altering the time allowed for engulfment. Alternatively, flow 

cytometry sorting could be employed to sort for cells with an optimal number of ingested stem cells. 

Once reinfused, macrophages should naturally migrate to sites requiring regeneration. Of course, in 

order to achieve maximal benefit, the chemotactic signal could also be manipulated, and the known 

vast array of exiting tracking methods may be employed to track the final destination of the modified 

macrophages. These processes are however not within the scope of this review, which is focused on 

modification of the macrophage itself. 

The final consideration to include in this review is the release of the stem cell at the appropriate 

destination site. A plethora of mechanisms exist to induce cell death or exocytosis. One example is 

Brefeldin A. Although it has doubtful application for phagosome maturation arrest, BFA may prove 

useful in later stages of cell cargo delivery, by inducing apoptosis in the macrophage99. Apoptosis was 
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reported under chronic treatment conditions (15h – 40h) (ref. 100), which allows sufficient time for 

the processes of engulfment, reinfusion and in vivo transportation to be completed. A favourable 

consideration in this context is that BFA does not affect engulfment capacity of large (3μm) or small 

(0.8μm) particles, despite its ER traffic inhibitory effects22, possibly due to the insensitivity of ARF6 to 

BFA mentioned earlier. Of course, as with all other phases, other candidate methods – such as 

targeted exocytosis – should also be considered and optimised. Again we may take lessons from 

microbes: Leishmania donovani promastigotes multiply and differentiate inside maturation arrested 

phagosomes, before escaping the macrophage to continue their life cycle76. This poorly understood 

phenomenon could potentially be exploited to induce exocytosis of stem cells from macrophages.  

Conclusion 

In conclusion, modern science has substantially increased our understanding of molecular role players 

not only in the phagocytic process, but also in regenerative medicine. We firmly believe that by pooling 

resources across multiple disciplines, the remaining obstacles can be overcome to achieve the 

therapeutic technique we outlined here. Delivery of laboratory-enhanced or conditioned stem cells, 

using an autologous physiological vehicle, will be a significant step forward in terms of individualised 

medicine, and especially in disease states where no current mainstream therapy has proven effective.  
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Appendix B: S.O.P.s 

 

Ethical Exception 

Ethical exemption for isolation of human monocytes from donated blood (buffy coats) was 

received from the Health Research Ethics Committee (HREC) of Stellenbosch University on 

8 July 2015 (Ethics Reference #: X15/05/013). 

  

Obtaining O+ Buffy coats 

 

1. Contact Hayley at the Western Province Blood Transfusion Service: 

haylay@wpbts.org.za 

2. Request information to obtain ethical clearance, if needed. 

3. Contact Kashief at kashief@wpbts.org.za to arrange a pick up time for buffy coats. 

4. Note: Fresh blood takes about a day to be processed so the buffy coats will only be 

available for pick up from 4pm. 

5. Arrange with Kashief to look up the ages of the patients (this is a favour). 

6. Take a blood transport container with two cold ice packs to keep buffy coats cold and 

prevent cell clumping. 

7. Buffy coats need to be processed as soon as possible to ensure a viable population of 

cells are gathered. 

8. Note: Cells clump and die if not isolated as soon as possible. 

 

Monocyte Isolation 

To facilitate balancing of the centrifuge, it is recommended to process two buffy coats in 

parallel. However, take care to use separate materials for each donor and not to mix the 

cells. 

1. Carefully disinfect the plastic bags containing the buffy coats and transfer the contents of 
each donor buffy coat to a 50mL tubes. 

 
2. For each buffy coat fill two 50mL tubes with 16mL Ficoll/Histopaque solution (1.077 

g/mL). The Ficoll/Histopaque should be at room temperature for the preparation. 
 
3. Mix 22mL buffy coat blood with 10mL cold RPMI to facilitate layering. 
 
4. Layer this 32mL buffy/RMPI mixture on top of the Ficoll/Histopaque solution for the first 

density gradient. Be careful to do this slowly and carefully in order to prevent mixing both 
layers. 

 
5. Centrifuge at 400 x g without brake for 30 min at 23˚C. 
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6. For each gradient collect the white ring of peripheral blood mononuclear cells (PBMCs) 
which is located between the two phases with a plastic Pasteur pipette and transfer to a 
50mL tube. 

 
7. Fill each tube with 1mM PBS-EDTA up to the 45mL mark. 
 
8. Centrifuge at 300 x g for 10 min without brake at 23˚C. 
 
9. Aspirate supernatant and wash pellet again with 45mL PBS-EDTA. 
 
10. For each donor pool the pellets in 20mL RPMI-1640 without phenol red containing 10% 

FBS. 
 
11. Prepare the iso-osmotic Percoll solution for the second density gradient: For two donors 

mix 23.13mL Percoll solution (density: 1.131 g/mL) in a 50mL tube with 1.87mL 10x PBS. 
Then transfer 23mL of this solution to a new 50mL tube and add 27mL RPMI-1640 with 
phenol red containing 10% FBS to obtain a 42.56% iso-osmotic Percoll solution. The 
Percoll should be at room temperature for the preparation. 

 
12. For each donor transfer 24.4mL of the prepared Percoll solution to a 50mL tube and 

layer the PBMC solution prepared in step 10 on top of the Percoll solution. Be careful to 
do this very slowly and carefully, both layers tend to mix easily. If done correctly the two 
phases can be distinguished due to their difference in colour. 

 
13. Centrifuge at 550 x g without brake for 30 min at 23˚C. 
 
14. For each gradient collect the white ring of monocytes which is located between the two 

phases with a plastic Pasteur pipette and transfer to a 50mL tube. 
 
15. Fill each tube with PBS-EDTA up to the 45mL mark. 
 
16. Centrifuge at 400 x g for 10 min without brake at 23˚C. 
 
17. Aspirate the supernatant and resuspend the pellets in the needed amount of Complete 

Monocyte media or FBS to seed or freeze cells, respectively. 

 

EDTA Stock Preparation 

 
1. Make up 0.5M stock 

2. Stir 186.1 g EDTA (372.24 g/mol) into 800 ml ddH₂O.  
3. Add NaOH solution to adjust the pH to 8.0. The EDTA will slowly go into solution as the 

pH nears 8.0. 
4. After EDTA has dissolved, top up the solution to 1L with ddH₂O. 
5. Filter the solution with filter paper or through a 0.5μm filter. 
6. Dispense into containers as needed and sterilize in an autoclave. 
 

PBS-EDTA (1mM) Preparation 

 

 Mix 1mL prepared EDTA (0.5M, 8.0 pH) with 500mL sterile PBS (0.1M, 1x).   
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Culture Conditions 

Monocytes 

 Note: Monocytes struggle to adhere to glass. Recommended alternatives are Crystal-
grade polystyrene, Gamma sterilized, Non pyrogenic 35mm culture dishes or Nunc 
UpCell plates. 

35mm Culture Dish 

1. Suspend monocytes in Complete Monocyte media for counting and seeding. 
2. Seed viable cells at 2x106 – 3x106 cells/ml (4x106 – 6x106 cells/well).  
3. Add Complete Monocyte media to get final volume of 2mL. 
4. Immediately treat with appropriate concentration of GM-CSF or M-CSF (discussed under 

“Pre-differentiation and polarisation of Monocytes into M1 and M2 Macrophages”). 
5. Allow monocytes to adhere to culture plate for 24h.  
6. Aspirate media and wash with warm 1x PBS. 
7. Refresh media with only 1mL Complete Monocyte media and treat with appropriate 

cytokine. 
8. Refresh media every 3rd day and treat with cytokine. 
9. Optimal assessment time is 6 days after seeding, do not culture for more than 10 days. 

 

Nunc UpCell Plates 

1. Work on hot ice pack or at least 6 tissue papers. 
2. Place plate on ice pack or tissues and seed monocytes at 2x106 – 3x106 cells/mL (4x106 

– 6x106/well). 
3. Repeat step 3. + 4. stated above. 
4. UpCell plates are hydrophobic (cell adherent) above 32°C and hydrophilic (cell repellent) 

below 32°C. 
5. Place plate on warm (>32˚C) surface when changing media 
6. Repeat steps 5. – 9. stated above. 

 

Complete Monocyte media 

 Advanced RPMI-1640 

 10% Human serum form AB patient (Sigma-Aldrich) 

 100 U/ml Penicillin Streptomycin. 

 2 mM Glutamax. 
 

Human serum preparation 

1. Use Human serum from AB patient obtained from Sigma-Aldrich. 

2. Heat inactivate this serum to inactivate compliment and remove fibrin by incubating at 
56°C for 30min. 

3. Filter serum if not already done by Sigma-Aldrich. 

4. Make working aliquots and store at -20˚C. 
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Preparing Human Serum from AB Donor 

1. In the event of import restrictions preventing the buying of serum, serum can be 
harvested from healthy AB donor. 

2. Keep in mind only 38.8% of peripheral blood will yield serum if collected with SST 
(Serum Separation Tubes). 

3. Invert tube ±5 times. 
4. Allow blood to clot for 1h or more if sufficient clotting has not occurred. 
5. Centrifuge at 1200 x g for 10 mins at 23°C. 
6. Remove top layer of serum with P1000 or Pasteur pipette. 
7. Note: Be careful not to touch the separating gel with pipette tip. 
8. Incubate serum at 56°C for 30min to inactivate compliment and remove fibrin. 
9. Filter serum. 
10. Store at 4°C or make working aliquots to store at -20°C. 

 

HUVECs 

1. Have one T25 culture flask coated with 1 μg/cm2 fibronectin ready for use (explained 

under “Transmigration System”). 

2. Thaw cryo vial, remove content and inject into T25. 

3. Note: Do not centrifuge HUVECs before seeding into flask. 

4. Fill T25 up to 3mL with warm Complete EBM media and place in incubator. 

5. Refresh media and wash with warm 1x PBS after 24h. 

6. Hereafter cells are washed with warm PBS and media replaced every 48h. 

7. Culture cells until 90% confluent. 

8. Split cells (explained under “Culture Detachment”). 

9. Divide cells evenly into 3x T75 coated with 1 μg/cm2 fibronectin. 

10. Note: HUVECs rapidly proliferate after 5 days, keep in mind to minimize passages. 

11. Fill up T75 to 8 mL in total with Complete EBM media. 

12. Change media and wash after 24h. 

13. Culture until 90% confluent and freeze down or use in experiments. 

Complete EBM media 

 Use EBM BulletKit from Lonza to make up HUVEC media. 

 Do not mix all compounds into EBM (Endothelium Basal Media) when receiving the 

BulletKit as this may reduce shelf life and functioning of media. 

 Aliquot all compounds into Eppendorfs. 

 Store all compounds at -20°C, store EBM at 4°C. 

  Complete EBM media 

o EBM 

o 2% FBS 

o 0.4% BBE (Bovine Brain Extract) 

o 0.1% hEGF (human Epidermal Growth Factor) 

o 0.1% GA (Gentamicin/Amphotericin) 

o 0.1% Ascorbic acid 

o 0.1% Hydrocortisone 

 Media has to be warm before injecting onto HUVECs. 
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 Note: Hydrocortisone solution is volatile. To prevent incorrect concentrations, it is 

recommended to aliquot out a known amount into 200µL Eppendorfs that corresponds to 

a known amount of media. In this way the loss of volume would not affect hydrocortisone 

concentration in Complete EBM media. 

 

Freezing Conditions 

Monocytes 

NOTE: This is not recommended for primary monocytes  

1. Counting viable monocytes with Countess. 
a. Resuspend cells in 1mL human serum. 
b. Make a 0.1% solution of Trypan Blue by diluting with PBS. 
c. Mix 10µL Trypan Blue and 10µL serum cell suspension. 
d. Inject 10μL of this mixture into each chamber of a Countess counting slide. 
e. Ensure Countess is calibrated for cell population.  
f. Insert slide into Countess to allow counting of each chamber. 
g. Note: The number of cells is given as cells/mL, i.e., the initial resuspension volume 

will affect this concentration. 
h. Work out the mean from the two chambers. 

2. Work on ice. 
3. Inject 200μL human serum into each cryo vial and allow to cool on ice. 
4. Add needed amount of serum cell suspension into each cryo vial to yield 5-8x106 

cells/mL. 
5. Add needed amount of serum to a final volume of 900 μl. 
6. Make 10% DMSO solution by adding 100μL DMSO to a final volume of 1mL.  
7. Place tubes in Mr Frosty with isopropanol and store at -80°C for 24hr. 
8. Remove from Mr. Frosty and store tubes in LN2. 

Thawing Monocytes 

1. Thaw cryo vial and inject content into appropriate flask or dish. 
2. To remove DMSO from solution and count cells: 

a. Mix content of cryo vial with 10mL warm PBS-EDTA. This will prevent cells from 
clumping together. 

b. Centrifuge 400 x g for 5min at 23˚C. 
c. Aspirate supernatant and resuspend pellet in 1mL Complete Monocyte media. 
d. Count viable monocytes. Primary monocytes lose 50% viability after freezing. 

 

HUVECs 

1. Suspend cells in EBM and count. 

2. Freeze HUVECs in 80% EBM, 10% FBS and 10% DMSO. 

3. Inject 200μL EBM into each vial followed by 100μL FBS. 

4. Add needed amount of cell suspension to yield 5x105 cells/mL/vial. 

5. Fill up vial to 900μL with EBM. 

6. Add 100μL DMSO to a final volume of 1mL. 

7. Place in Mr. Frosty with isopropanol and freeze at -80˚C for 24h. 

8. Remove from Mr. Frosty and store in LN2. 
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Pre-differentiation and Polarisation of Monocytes into M1 

and M2 Macrophages 

 

1. M1 Classically activated:  

a. Culture with 50 ng/mL GM-CSF throughout. 

2. M2 Alternatively activated:  

a. Culture with 50 ng/mL M-CSF throughout. 

3. Inject GM-CSF or M-CSF directly into dish every time media is changed.  

4. M1 Classically activated: 

a. Polarize with 50 ng/mL LPS and 20 ng/mL IFN- γ injected directly into dish 24h 

before assessment.  

5. M2 Alternatively activated: 

a. Polarize with 20 ng/mL IL-10, IL-4 and TGF-β injected directly into dish 24h before 

assessment. 

6. 6 days of culture with polarisation on the 5th day is optimal and recommended. 

GM-CSF Stock Preparation 

1. Centrifuge vial to ensure lyophilized powder is collected at the bottom of vial.  

2. Reconstitute 20μg contents of vial with 200μL sterile ddH2O to a concentration of 0.1 

mg/mL.  

3. Dilute this 200μL in 800μL 1x PBS to make a stock of 0.02 mg/mL. 

4. Make working aliquots of 2 μg/mL by further diluting 100μL stock in 900μL 1x PBS. 

5. Store aliquots at -20°C. 

6. Avoid repeated freeze-thaw cycles. 

M-CSF Stock Preparation 

1. Centrifuge vial to ensure lyophilized powder is collected at the bottom of vial. 

2. Reconstitute 10μg contents of vial with 100μL sterile ddH2O to a concentration of 0.1 

mg/mL. 

3. Dilute this 100μL in 900μL 1x PBS to make a stock of 0.01 mg/mL. 

4. Make working aliquots of 2 μg/mL by further diluting 200μL stock in 800 μL PBS. 

5. Store aliquots at -20°C. 

6. Avoid repeated freeze-thaw cycles. 

LPS stock preparation 

1. Reconstitute 5mg content of vial with 1mL sterile Hank’s Balanced Salt Solution (HBSS). 

2. Make sure to completely dissolve powder, do not vortex solution. 

3. Add 1.5mL sterile HBSS to make a stock of 2 mg/mL. 

4. Note: Do not make up stock solutions or working aliquots under 1 mg/mL. LPS is known 

to stick to the sides of containers. Concentrations of >1 mg/mL present negligible 

sticking. Recommended to use silanized tubes to prevent endotoxin sticking.  

5. Make up 2 µg/mL working aliquots directly before use by diluting 1µL stock in 999µL 

sterile HBSS. 

6. If necessary, working aliquots can be stored at 4˚C for 24h. 

IFN-γ stock preparation 

1. Centrifuge vial to ensure lyophilized powder is collected at the bottom of vial. 
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2. Reconstitute 100µg content of vial with 200µL sterile ddH2O to a concentration of 0.5 

mg/mL. 

3. Dilute this 200µL in 9.8mL ddH2O to make a stock of 10 µg/mL. 

4. Make working aliquots of 1 μg/mL by diluting 100μL stock in 900μL ddH2O. 

5. Store aliquots at -20°C. 

6. Avoid repeated freeze-thaw cycles. 

7. Note: It is recommended to dilute the 0.5 mg/mL solution with RPMI containing 10% 

FBS or 5% human serum albumin. However, dilution with sterile ddH2O served the 

purposes of this study. 

 

 

Culture Detachment 

Macrophages 

35mm Culture Dish 

1. Optimally harvest macrophages after 6 days of culturing. 

2. Note: Harvest cells with Accutase® cell detachment solution. Harsh passaging agents 

such as Trypsin breaks apart cell pseudopodia, leading to cell death. 

3. Remove culture media and wash with 1x PBS at 23˚C. 

4. Inject 1 ml Accutase® onto dish and incubate at 23˚C for 10-15min. 

5. Swirl dish and add another 1mL Accutase®. 

6. Incubate another 10-15min at 23˚C. 

7. Suck up Accutase® and spray back onto dish to facilitate detachment. 

8. For optimal yield gently scrape surface with cell scraper. 

9. Tilt dish and collect as many cells as possible. 

10. Cells may be spun down at 400 x g for 5 min at 37˚C and reseeded or assessed.  

11. Note: Accutase® auto-inhibits at 37˚C, eliminating the need to neutralise with media.  

UpCell Plates 

1. Optimally harvest macrophages after 6 days of culturing.  
2. Place UpCell plate on cold ice pack. 
3. Aspirate media and replace with cold 1x PBS or RPMI. 
4. Optimal detachment of human macrophages:  
Leave UpCell plate on 10°C ice pack for 1h. During this time suck up PBS or RPMI and 
spray back onto culture surface to aid detachment. 
5. For optimal yield gently scrape surface with cell scraper. 
6. Tilt plate and collect as many cells as possible. 
7. Cells may be spun down and reseeded or assessed. 
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HUVECs 

1. T25: 

a. Aspirate media and wash with 3mL 1x PBS. 

b. Treat with 5mL warm Trypsin. 

2. T75: 

a. Aspirate media and wash with 8mL 1x PBS. 

b. Treat with 7mL Trypsin. 

3. Place flask in 37°C shaking incubator for 5 min. 

4. Ensure cells have lifted and neutralize with 5mL (T25) or 7mL (T75) EBM. 

5. Centrifuge cells at 1500 RPM for 3 min at 23°C. 

6. Resuspend cells in Complete EBM media. 

 

 

 

M1/M2 Phenotyping 

Flow Cytometry 

1. Analysis is done on BD FACSAria Cell Sorter. 

2. Differentiate cell populations separately into M1 and M2 phenotypes for 6 days by 

culturing in 35mm dishes. 

3. Prepare single stain and multiple stain solutions by mixing appropriate amount of 

antibody marker with 1 ml PBS (below). 

4. Aspirate media and treat cells with 1 ml single stain or multiple stain PBS solution 

(below).  

5. Incubate dishes at 37˚C for 10 min to facilitate antibody binding. 

6. Aspirate PBS and harvest cells with Accutase® cell detachment solution. 

7. Centrifuge 400 x g for 5 min at 37˚C and resuspend pellet in warm PBS. 

8. Filter cells with filter paper and relocate to Flow Cytometry tube for immediate analysis. 

9. Use unstained samples to determine background fluorescence. 

10. Optimise fluorescent signal by adjusting voltage when analysing single stain samples.  

11. Compensate for possible fluorophore spill-over using single stain samples. 

12. Set up thresholds by recording 8x106 events per sample. 

13. Analyse samples by recording 3x105 events per group in triplicate. 

Fluorescent Antibody Markers and Setup 

1. Prepare unstained sample by only harvesting cells. 

2. Prepare single stain samples for every antibody by labelling with only one marker. 

o M1 single stain samples 

 CD274 (PD-L1) 

 CD86 

 MHCII (HLA-DR) 

o M2 single stain samples 

 CD163 

 IL-10 
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 CD206 

3. Prepare multiple stain samples to be analysed by mixing al markers together. 

o CD274 (PD-L1) conjugated with PE-Cy7 (496nm/785nm). 

 5µL per test. 

 Excitable with solid state Sapphire 488nm blue laser. 

 Detectable with 780/60nm band pass filter. 

o CD86 conjugated with APC (650nm/660nm). 

 20µL per test. 

 Excitable with HeNe 633nm red laser. 

 Detectable with 660/20nm band pass filter. 

o MHCII (HLA-DR) conjugated with APC-Cy7 (650nm/785nm). 

 5µL per test. 

 Excitable with HeNe 633nm red laser. 

 Detectable with 780/60nm band pass filter. 

 

 

Phagosome Maturation Arrest 

 Chloroquine: Pretreat 1h before onset of phagocytosis with 10μM  

 Wortmannin: Pretreat 30min before onset of phagocytosis with 100nM 

 Concanamycin A: At onset of phagocytosis, directly after addition of AbsBeads, treat 

with 100nM 

Chloroquine Stock Preparation 

1. Make up directly before use. 

2. Dissolve 0.05 g in 1mL sterile ddH2O. 

3. Vortex untill solution is clear and colourless. 

4. Dilute 10μL in 990μL sterile ddH2O to get a working concentration of 0.96255mM. 

5. Store stock at 4°C. 

6. Note: Solution cannot be stored for longer than 7 days. 

Wortmannin Stock Preparation 

1. Reconstitute 1mg content of vial with 2mL sterile DMSO to a concentration of 1.167mM. 

2. Remove 1mL from vial and store at 4°C, do not permit to freeze. 

3. Dilute the remaining 1mL in 24mL sterile DMSO to make a stock concentration of 

46.68μM. 

4. Make working aliquots of 4.668μM by diluting 100μL stock in 900μL DMSO. 

5. Store solutions at 4°C, do not permit to freeze. 
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Concanamycin A Stock Preparation 

1. Reconstitute 25μg content of vial with 4mL sterile DMSO to a stock concentration of 

7.216μM. 

2. Make working aliquots directly from stock. 

3. Store at -20°C. 

4. Avoid repeated freeze-thaw cycles. 

 

 

 

 

AbsBeads preparation 
 

1. Prepare 100mL of 50mM PBS, pH 7.4, containing 0.9% NaCl. 

 

2. Prepare 100mL of 50mM MES (2-(N-morpholino)ethanesulfonic acid) buffer, pH 6.0. 

 

3. Dissolve 4mg of Alexa Fluor 647 secondary IgG at 2 mg/ml in MES buffer in a glass 

centrifuge tube. 

 

4. Add 1.375mL of 2.5% aqueous suspension of carboxylate-modified microsphere. 

Incubate at room temperature for 30 min. 

 

5. Add 16mg of EDAC (1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide). Mix by 

vortexing. 

 

6. Adjust pH to 6.5 ± 0.2 with dilute NaOH. Incubate the reaction mixture on a rocker or 

orbital shaker overnight at 23˚C. 

 

7. Add 0.0181g glycine to give a concentration of 100mM to quench the reaction. 

Incubate 1h at 23˚C. 

 

8. Centrifuge 4000 x g for 20min to separate the protein-labeled beads from unreacted 

IgG. 

 

9. Resuspend the pellet in 2mL of 50mM PBS. Centrifuge as described in step 8. 

 

10. Repeat step 9 twice more (a total of 3 washes). 

 

11. Resuspend the IgG conjugated beads in 10mL of 50mM PBS. 

 

12. Add 1.3mg sodium azide to make a 2mM concentration. 

 

13. Store AbsBeads at 4°C. 

 

14. Note: Do not permit to freeze. 
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MES Buffer Preparation 

 Dissolve 0.98g MES powder in 100mL sterile ddH2O to make a 50mM solution. Store 

solution at 4°C for up to 6 months. 

 

 

 

Phagocytosis Assay 

1. Introduce 1.156x106 AbsBeads into macrophage culture by injecting 80µL AbsBeads/O+ 

solution into each 35mm dish or well of UpCell plate (below). 

2. Addition of AbsBeads is characterised as the onset of phagocytosis. 

3. Allow phagocytosis to commence for 2h.  

4. Note: Phagocytosis is reduced to 1h during transmigration assay. 

O+ Serum preparation 

1. Collect peripheral blood in SST tube from healthy O+ donor. 
2. Keep in mind 38.8% of peripheral blood will yield serum. 
3. Invert tube ±5 times. 
4. Allow blood to clot for 1h or more if sufficient clotting has not occurred. 
5. Centrifuge 1200 x g for 10mins at 23°C. 
6. Remove top layer of serum with P1000 or Pasteur pipette. 
7. Note: Be careful not to touch the separating gel with pipette tip. 
8. Warm up serum to 56°C and incubate for 30min to inactivate compliment and remove 

fibrin. 
9. Store at 4°C or make working aliquots to store at -20°C. 

AbsBeads incubation 

1. Mix 40μL of 2.89x107 AbsBeads/mL stock with 40μL O+ donor serum. 

2. Incubate AbsBeads in O+ serum at 4˚C for 24h. 

 

 

Live Cell Imaging 

1. Analysis is done on Carl Zeiss LSM780 confocal microscope with Super-resolution 

platforms. 

2. Treat cells with appropriate fluorophore markers for imaging (below). 

3. Cells are imaged directly after onset of phagocytosis. 

4. Ensure the incubator unit is on and CO2 tank open before initiating imaging. 

5. Place 35mm culture dish containing CellMask™, pHrodo® and AbsBeads/O+ solution on 

the appropriate microscope stage. 

6. Inject ddH2O into incubation stage to ensure a humidified environment. 
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7. Carefully place lid onto stage to ensure incubation in a humidified, 37˚C with 5% CO2 

environment. 

8. Select needed lasers to excite various markers by setting up appropriate tracks. 

9. Separately optimise individual laser intensities for each marker.  

10. Compensate for possible fluorophore spill-over. 

11. Set up time lapse imaging with smallest possible cycle time between images. 

12. Image random field of view at 20x magnification for 2h. 

13. Note: Microscope focus is lost during prolonged time lapse imaging and refocusing is 

required if automatic focus is not available.  

Fluorescent Markers 

 AbsBeads: This is the onset of phagocytosis. Treat at 1.156x105 AbsBeads per 35mm 

dish. 

 pHrodo®: Just before phagocytosis treat at 1 mg/mL. 

 CellMask™: 10 min before phagocytosis (treatment groups) treat at 1x solution (below). 

 

Setup 

1. Carboxylate modified blue fluorescent beads have excitation/emission maxima of 

306nm/407nm. 

a. Excitable with diode 405nm CW/PS (pulsed) for LSM7. 

2. Alexa Fluor 647 red fluorescent secondary IgG have excitation/emission maxima of 

650nm/668nm. 

a. Excitable with 633nm laser. 

3. pHrodo® BioParticles® green pH indicator have excitation/emission maxima of 

509nm/533nm. 

a. Excitable with Argon multiline laser 25mW at 488nm. 

4. CellMask™ orange plasma membrane stain have excitation/emission maxima of 

554nm/567nm. 

a. Excitable with 561nm laser. 

Preparing Fluorescent Markers 

pHrodo® 

1. Thaw one vial of the pHrodo® BioParticles® fluorescent particles.  

2. Pipette 200μL sterile PBS into the vial containing 2mg lyophilized pHrodo® and briefly 

vortex the solution to completely resuspend the particles at a 10 mg/mL stock solution. 

3. Transfer the suspension into an Eppendorf and sonicate for 5 minutes, until all the 

fluorescent particles are homogeneously dispersed. 

4. Store at -20°C. 

CellMask™ 

Treated groups 

1. Make up directly before use. 

2. Thaw one vial containing 1000x stock solution. 

3. Mix 1μL with 9μL warm 1x PBS to yield a 100x solution. 

4. Inject the 10μL solution into 1mL media to make a final 1x working concentration. 

5. Note: Swirl dish thoroughly in order to mix CellMask™. 

6. Incubate at 37˚C with 5% CO2 before initiating phagocytosis. 
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Control groups 

1. Repeat step 1 + 2 as stated above. 

2. Mix 1µL stock solution with 999µL warm 1x PBS to yield a 1x solution. 

3. Remove media from wells and wash with warm PBS. 

4. Treat with 1x CellMask™/PBS working solution and incubate at 37°C for 10 mins. 

5. Aspirate CellMask™/PBS solution and wash 3x with warm PBS. 

6. Replace with complete monocyte media and assess under microscope. 

 

 

Flow Cytometry Quantification 

Digestion, pH and AbsBeads Ingestion 

1. Analysis is done on BD FACSAria Cell Sorter. 

2. Treat cells with pHrodo® and AbsBeads/O+ as appropriate (“Fluorescent Markers” 

above). 

3. Note: Do not treat cells with CellMask™. 

4. Allow phagocytosis to commence for 2h. 

5. Aspirate media and wash with warm PBS. 

6. Fixate cells with by injecting 0.5 mL warm 4% Paraformaldehyde and 0.5 mL warm RPMI 

into each well or dish (1:1 ratio). 

7. Incubate at 37°C for 10 mins. 

8. Aspirate Paraformaldehyde/RPMI solution and replace with 1mL PBS. 

9. Gently scrape cells off with cell scraper and inject into 2mL Eppendorf for each culture 

dish. 

10. Filter cells with filter paper and relocate to Flow Cytometry tubes. 

11. Compensate for possible fluorophore spill-over. 

12. Set up thresholds for control and treated groups by recording 16x106 events per group. 

13. Analyse samples by recording 3x105 events per group in triplicate.  

Setup 

1. Carboxylate modified blue fluorescent beads have excitation/emission maxima of 

306nm/407nm. 

a. Excitable with 405nm violet laser. 

b. Detectable with 450/40nm band pass filter. 

2. Alexa Fluor 647 red fluorescent secondary IgG have excitation/emission maxima of 

650nm/668nm. 

a. Excitable with HeNe 633nm red laser. 

b. Detectable with 660/20nm band pass filter. 

3. pHrodo® BioParticles® green pH indicator have excitation/emission maxima of 

509nm/533nm. 

a. Excitable with solid state Sapphire 488nm blue laser. 

b. Detectable with 530/30nm band pass filter. 
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Transmigration Assay 

Preparation 

7 Days Prior to Experiment 

1. Start culturing HUVECs in fibronectin coated T75. 

2. Coat transmigration inserts and wells with fibronectin (below). 

6 Days Prior to Experiment 

1. Isolate primary macrophages from peripheral blood or buffy coats. 

3 Days Prior to Experiment 

1. Seed HUVECs onto transmigration inserts at 1x 105 cells/insert. 

2. Culture in complete EBM media with 0.7mL in bottom well and 0.2mL in insert for every 

well/insert complex used. 

1 Day Prior to Experiment 

1. Polarise macrophages to M1 with LPS and IFN-γ. 

2. Activate LPS and IFN-γ HUVEC groups with, respectively, 50 ng/mL and 20 ng/mL 24h 

before experiment. 

Experiment 

1. Make up fresh Chloroquine stock and working solutions. 

2. Make up Transmigration EBM media (only containing FBS, BBE and Ascorbic Acid). 

a. MCP-1 containing Transmigration EBM media  

i. 0.7mL EBM containing 2% FBS, 0.4% BBE, 0.1% Ascorbic acid and 100 ng/mL 

MCP-1 for each well used. This media is injected into the well underneath the 

insert. 

b. MCP-1 deficient Transmigration EBM media 

i. 0.2mL EBM containing 2% FBS, 0.4% BBE and 0.1% Ascorbic acid for each insert 

used. This media suspends the AbsBeads-containing macrophages and is injected 

onto the insets that are placed onto wells. 

c. GM-CSF and MCP-1 containing Transmigration EBM media 

i. 0.7mL EBM containing 2% FBS, 0.4% BBE, 0.1% Ascorbic acid, 100 ng/mL MCP-1 

and 50 ng/mL GM-CSF for each GM-CSF well used. This media is injected into the 

well underneath the insert. 

3. Treat macrophages with 10μM Chloroquine. 

4. Start timer at 1h. After treatment with Chloroquine, phagosome maturation arrest is set in 

motion. Phagocytosis starts when timer reaches 0min. 

5. Timer at 30min. Treat macrophages with 100nM Wortmannin. 

6. Note: Do not use 46.7μM stock, the additional DMSO in the 4.67μM working solution 

facilitate entry of Wortmannin into cells.  

7. Timer at 0min. Treat macrophages with 100nM Concanamycin A. 

8. Directly after step 7. introduce AbsBeads onto macrophage population. 

9. Swirl dish and place in incubator for 1h to allow phagocytosis of AbsBeads. 
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10. After 1h split macrophages with UpCell plates or Accutase® passaging solution. 

11. Resuspend macrophages in MCP-1 deficient Transmigration EBM media. 

12. Count macrophages with 0.4% Trypan Blue. 

13. Remove complete EBM media from transmigration well/insert complexes and wash with 

PBS. 

14. Inject 0.7mL MCP-1 containing Transmigration EBM media into appropriate wells used. 

15. Inject 0.7mL MCP-1 deficient Transmigration EBM media into appropriate wells used. 

16. Inject 0.7mL GM-CSF and MCP-1 containing Transmigration EBM media into 

appropriate wells used. 

17. Place inserts into wells containing Transmigration EBM media. 

18. Seed macrophages containing AbsBeads as well as those deficient of AbsBeads onto 

appropriate inserts at 3x105 cells/insert. 

19. Fill up media in insert to 200μL with MCP-1 deficient Transmigration EBM media. 

20. Incubate in 80% humidified, 37˚C with 5% CO2 environment for 2:30h. 

21. Fixate cells by matching the amount of media with 4% paraformaldehyde in each well or 

insert.  

22. Note: Do not remove media before fixing, this prevents loss of non-adhered cells. 

23. Place in 37˚C incubator with 5% CO2 for 10min and aspirate fixative. 

24. Inject 0.7mL 1x PBS into each well and 0.2mL 1x PBS into each insert 

25. Store at 4°C. 

Quantifying Migrated Cells 

1. Quantification is done by hand due to small number of migrating cells. 

2. Remove inserts from wells.  

3. Inject 25µL 0.4% Trypan Blue into each well containing 0.7mL PBS, this assists in 

counting. 

4. Count cells with cell counter under 20x magnification. 

5. Start counting at the top and move side to side in order to cover the entire well. 

 

MCP-1 Stock Preparation 

1. Centrifuge vial to ensure lyophilised powder is collected at the bottom of vial.  

2. Reconstitute 20μg content of vial with 200μL sterile ddH2O to a concentration of 0.1 

mg/mL. 

3. Note: Do not vortex. 

4. Dilute this 200μL in 800μL 1x PBS to make a stock solution of 0.02 mg/mL. 

5. Note: Dilution in 1x PBS containing 0.1% BSA is not advised. The BSA stabilizes the 

MCP-1, however also prevents sufficient receptor binding to induce macrophage 

transmigration. 

6. Use MCP-1 at 100 ng/mL. 

 

Fibronectin coating 

1. Culture surfaces are coated with fibronectin in order to allow HUVEC adhesion. 

2. Recommended coating density of 1 μg/cm2. 

3. 0.1% (1 mg/ml) fibronectin stock solution. 

4. To coat 1 μg/cm2 growth area:  
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a. Mix 1 μl fibronectin stock for every cm² of growth area with enough 1x PBS to cover 

the area. 

5. Growth areas with accompanying volumes: 

a. T25 = 25 cm2 (2.5 ml) 

b. T75 = 75 cm2 (6 ml) 

6. Incubate flasks at 37°C in 80% humidified incubator for 1h (applicable to all surfaces 

areas). 

7. Aspirate fibronectin/PBS solution. 

8. Remove caps from flasks and place in laminar flow hood under UV light to dry for 2 - 

24h. 

9. Store flasks in original resealable packaging to keep sterile. 

 

Transmigration Inserts Coating with Fibronectin 

1. Inserts as well as their accompanying wells are coated with fibronectin.  

2. The minimum volume in a well of a 24 multiwell transmigration plate is 0.7mL and the 

approximate growth area is 1.9cm2. 

3. The minimum volume in an insert of a 24 multiwell transmigration plate is 0.2mL and the 

approximate growth area is 0.33cm2 (rounded up to 0.5cm2). 

4. Thus, the total growth area to be coated is 2.4 cm2/insert.  

5. Mix 2.4µL fibronectin stock with 0.9mL 1x PBS for every well/insert complex coated. 

6. Inject 0.7mL fibronectin/PBS solution into each well and place insert into well. 

7. Inject 0.2mL fibronectin/PBS solution into insert. 

8. Incubate and dry as stated above. 

9. Note: Do not remove 24 multiwell plate lid when drying in laminar flow hood. 

10. Place plates in original resealable packaging to keep sterile. 
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Appendix C: Supplementary Results 

Flow Cytometric Distension of AbsBeads and Cells  

 

 

 

Differentiation between Beads and Cells containing beads, using flow cytometry. In the scatter plot 

above, bead (blue, but pink in image) fluorescent intensity (y-axis) and pHrodo® (green, but blue here) 

fluorescent intensity (x-axis) is illustrated. 
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