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ABSTRACT 

 

Introduction and aims 

Despite the ongoing global tuberculosis (TB) problem and extensive research into 

protective immunity against this intracellular pathogen, mechanisms of protective 

immunity against Mycobacterium tuberculosis (Mtb) in humans have not been fully 

clarified. Numerous reports have addressed the potential immunological defect(s) in 

infected individuals that have developed active TB in comparison to those who have 

remained healthy in spite of infection. Markers of treatment response phenotypes are 

still elusive. The aims of this study were to define lymphocyte subsets in the 

peripheral blood of TB patients and controls, to determine intracellular interferon-γ 

(IFN-γ) and interleukin-4 (IL-4) production and to find correlations of these data 

with microbiologically-defined treatment response. 

Methods 

Whole blood tests were done on 30 HIV-negative, smear-positive pulmonary TB 

patients and 18 healthy skin test positive volunteers resident in the same community. 

Immunophenotyping was performed by flow cytometry, combined with routine 

haematology, for the enumeration of peripheral blood immune cell subtypes. Whole 

blood was also stimulated in vitro with anti-CD3 monoclonal antibody and 

intracellular IFN-γ and IL-4 determined by flow cytometry. Lymphocyte 

proliferation in response to heat-killed Mtb was determined by tritiated thymidine 

incorporation. Routine microbiological monitoring by sputum smears and culture 

was done throughout the patients’ 26 weeks of treatment.  
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Results 

Compared to healthy controls, absolute numbers of peripheral blood lymphocytes 

and lymphocyte subsets were significantly depressed in patients at diagnosis but 

normalized during treatment with the exception of natural killer (NK) cells and 

natural killer T (NKT) cells. A novel subset of the latter was found to correlate 

significantly with treatment response. IFN-γ-producing T cells after a 4-hour T cell 

receptor stimulation were significantly higher in patients at diagnosis and normalized 

during treatment. Supplementary kinetic experiments showed that IFN-γ production 

in patients at diagnosis seemed to be accelerated. Lymphocyte proliferation was 

lower in patients at diagnosis and normalized during treatment. Neither IFN-γ 

production nor lymphocyte proliferation correlated with treatment response. Low 

intracellular IL-4 production was constitutive in patients and controls, was 

insignificantly lower in patients at diagnosis than in controls and, in the slow 

responder patient group, it was significantly lower than in the fast responder group. 

High IL-4 expression was found in low numbers of T cells in patients and controls 

and supplementary experiments showed co-expression of active caspase-3 in these 

cells, which signified apoptosis. 

Conclusions 

Lymphocyte subset phenotypes associated with TB are largely abnormal only during 

active infection and only a novel subset of NKT cells showed correlation with 

treatment response. Intracellular IFN-γ production and lymphocyte proliferation is 

increased and decreased, respectively, only during active infection and does not 

correlate with treatment response. The T helper 1/T helper 2 (Th1/Th2) hypothesis 

could not be confirmed in the context of tuberculosis but instead constitutive IL-4 

production may play a role as a growth factor.  
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ABSTRAK 
 

Inleiding en Doelwit 

Tenspyte van die wêreldwye tuberkulose (TB) probleem en ekstensiewe navorsing in 

die veld van beskermende immuniteit teen Mycobacterium tuberculosis (Mtb), is die 

menslike meganisme(s) van beskermende immuniteit teen hierdie intrasellulêre 

patogeen nog nie duidelik nie. Verskeie verslae adresseer die potensïele 

immunologiese defek(te) in geïnfekteerde individue met aktiewe TB, in teenstelling 

met individue wat gesond bly tenspyte van infeksie. Geen definitiewe fenotipiese 

merkers wat uitkoms van behandeling kan voorspel is nog bekend nie. Die doelwitte 

van hierdie studie was om limfosiet subgroepe te defineer in TB pasiënte en in 

kontroles, om intrasellulêre interferon-γ (IFN-γ) en interleukien-4 (IL-4) produksie te 

bepaal en om korrelasies van hierdie data met mikrobiologies defineerde 

behandelingsresponse te vind. 

Metodes 

Heel-bloed toetse is gedoen op 30 MIV-negatief, smeer-positiewe pulmonêre TB 

pasïente en 18 gesonde veltoets positiewe vrywilliges van dieselfde woongebied. 

Immunofenotipering is gedoen deur middel van vloeisitometrie en is gekombineer 

met roetine hematologie vir die identifisering van periferie bloed immuunseltipes. 

Heel- bloed is ook in vitro gestimuleer met ‘n monoklonale anti-liggaam teen CD3 

en intrasellulêre IFN-γ en IL-4 bepaal deur vloeisitometrie. Limfosiet proliferasie is 

bepaal deur middel van getritïeerde timidien inkorporasie na blootstelling aan hitte 

geïnaktiveerde Mtb. Roetine mikrobiologiese toetse (speeksel smere en kulture), is 

vir die verloop van die 6 maande behandeling op elke pasïent gedoen. 
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Resultate 

In vergelyking met die van gesonde kontroles, was absolute perifêre bloed limfosiete 

en limfosietsubtipes beduidend onderdruk in pasïente by diagnose. Hierdie tellings 

het tydens behandeling genormaliseer, met die uitsondering van natuurlike doderselle 

en natuurlike doder T selle. ‘n Voorheen onbeskryfde subtipe van laasgenoemde 

selle het beduidend gekorrelleer met die uitkoms van behandeling. Na ‘n 4 uur 

stimulasie van die T-selreseptor, was IFN-γ produserende T-selle beduidend meer in 

pasïente by diagnose. Hierdie verskynsel het genormaliseer tydens behandeling. 

Bykomende kinetiese eksperimente het gewys dat IFN-γ produksie versnel is in 

pasïente by diagnose. Limfosiet proliferasie was laer in pasïente by diagnose en het 

genormaliseer tydens behandeling. Nie IFN-γ produksie of limfosiet proliferasie het 

gekorrelleer met die uitkoms van behandeling nie. Daar was ‘n konstante laë 

intrasellulêre IL-4 produksie in pasïente en kontroles, maar dit was nie beduidend 

laer in pasïente by diagnose in vergelyking met kontroles nie. In die pasïente wat 

stadiger gereageer het op behandeling, was intrasellulêre IL-4 produksie beduidend 

laer as in die  pasïente wat vinniger gereageer het. Hoë IL-4 uitdrukking is gevind in 

‘n klein hoeveelheid T selle in pasïente en kontroles. Bykomende eksperimente het 

getoon dat uitdrukking van aktiewe kaspase-3 in hierdie selle apoptose voorstel. 

Gevolgtrekking 

Limfosietsubtipe fenotipes, wat geassosieer word met tuberkulose, is meestal 

abnormaal slegs tydens aktiewe infeksie en slegs ‘n nuwe subtipe natuurlike doder T 

sel het ‘n korrellasie getoon met uitkoms van behandeling. Verhoogde intrasellulêre 

IFN-γ produksie en verlaagde limfosiet proliferasie is slegs waargeneem gedurende 

aktiewe infeksie en is nie geassosieer met uitkoms van behandeling nie. Die T helper 
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1/T helper 2 (Th1/Th2) hipotese kon nie bewys word in die konteks van tuberkulose 

nie, maar konstante IL-4 produksie mag ‘n moontlike rol as groeifaktor speel. 
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THE INVESTIGATION OF PERIPHERAL BLOOD 

CELLULAR IMMUNE RESPONSES DURING 

INFECTION WITH MYCOBACTERIUM TUBERCULOSIS 

 

Null hypothesis 

1. Patients with tuberculosis have normal peripheral blood immunophenotypes 

and cellular immune responses. 

2. Treatment response is not influenced by patients’ immune status at diagnosis. 

 

Alternative hypothesis 

1. Patients’ peripheral blood immunophenotypes and cell-mediated immune 

responses in peripheral blood of patients are altered during active 

tuberculosis. 

2. Treatment response is influenced by patients’ immune status at diagnosis. 

 

Aims 

1. To define lymphocyte subsets in patients’ blood by immune phenotyping at 

various time points during treatment and compare them with those of healthy 

control subjects. 

2. To define the cytokine production by patients’ and control subjects’ 

lymphocytes in response to stimulation in comparison with those of healthy 

control subjects. 
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3. To find correlations of immune parameters with routine microbiological data 

that define fast and slow responders to treatment.  
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1.  GENERAL INTRODUCTION 

 

1.1  TUBERCULOSIS AND THE IMMUNE RESPONSE 

 

TB has been a global health problem for millennia and it is estimated that a third of 

the world’s population is presently infected with Mycobacterium tuberculosis (Mtb), 

its causative organism, which was discovered by Robert Koch in 1882. Evidence for 

TB has been found in a 2400 year old mummy and was referred to in ancient Greek 

literature (http://www.state.nj.us/health/cd/tbhistry.htm). Drugs to treat TB were only 

discovered in 1944. The bacterium has defied enormous efforts to control it and still 

thrives, particularly in poorer communities, and the appearance of HIV and drug 

resistance is aggravating the problem. Deaths from TB are estimated to be 2-3 

million annually. 

For immunologists it has been of great interest that only an estimated 5-10% 

of Mtb-infected, HIV-uninfected individuals develop active disease, the remainder 

being protected from illness by their immune system. The Bacille Calmette-Guérin 

(BCG) vaccine primarily protects young children from disseminated forms of the 

disease but is not effective in protecting adults from pulmonary TB. The discovery of 

the mechanisms of the natural protective resistance would be of great benefit in the 

efforts to stop the spread of the disease and save the lives of those who become ill. 

 

1.2  THE CELLS OF THE IMMUNE SYSTEM 

 

The immune system has two arms, the innate and the adaptive immune response [1]. 

The innate immune system responds rapidly to foreign invaders, has no memory and 

http://www.state.nj.us/health/cd/tbhistry.htm
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the responding cells are the natural killer (NK) cells, neutrophils and 

monocyte/macrophages in the blood and the infected tissues. Although the 

orchestrated response of the innate immune cells plays an important part by 

engulfing and destroying micro-organisms, the main protective immune response is 

that of the adaptive immune system which responds more slowly and has a memory 

that enables it to respond faster after a re-exposure to the same foreign invader of the 

body. The adaptive immune system, in turn, has two arms, the humoral and cell-

mediated immune response. The B lymphocytes mediate the humoral response by the 

production of antibodies that bind specifically to the invader, whereas in the cell-

mediated response the players are the T lymphocytes comprising subpopulations T 

helper (Th) cells, that express the specific cluster determinant (CD) CD4, T cytotoxic 

(Tc) cells that express CD8, γδ T cells that express a T cell receptor (TCR) consisting 

of γ and δ chains instead of the usual α and β chains and NK T cells that express NK 

cell markers such as CD56 as well as the T cell marker CD3. Dendritic cells and 

monocyte/macrophages of the innate immune system act as antigen-presenting cells 

in the cell-mediated adaptive immune response. 

 

1.3  THE CELL-MEDIATED IMMUNE RESPONSE 

 

The adaptive immune response to Mtb infection has been the subject of extensive 

research because of its memory response which could be harnessed for the 

development of more effective vaccines. Although TB patients have antibodies to 

mycobacterial antigens in their circulation, these do not play an important role in the 

elimination of bacilli but the cell-mediated response and interferon-γ (IFN-γ) 

production by activated T lymphocytes is crucial [2]. This cytokine also activates 
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resident macrophages that phagocytose the bacilli in the lungs of an infected subject. 

During disease progression the mycobacteria replicate in the macrophages, resulting 

in the formation of granulomas and the attraction of lymphocytes to the perimeter of 

the granulomas in a chronic cell-mediated response. 

In a normal immune response invading micro-organisms are taken up by 

dendritic cells or macrophages, which are antigen-presenting cells that break down 

the mycobacterial antigens into peptides in the endosomes. The peptides then 

associate with major histocompatibility complex (MHC) Class II molecules and are 

transported to the cell surface where they are presented to the CD4 T helper cells [1]. 

CD4 T cells bearing the appropriate TCR recognize the presented peptides and enter 

the effector phase characterized by clonal expansion and production of cytokines 

which potentiate effector cells to eliminate the bacilli. This cytokine production 

defines the type 1 (Th1) and type 2 (Th2) helper cell responses, where IFN-γ and 

interleukin-2 (IL-2) characterize the cell-mediated Th1 response and IL-4 and IL-5 

the humoral Th2 response [3]. Many studies with mice have shown that the CD4 T 

cell subset is essential for the control of the infection (reviewed in [2]) and a cruel 

experiment of nature with humans has shown the same by the rising incidence of TB 

in patients infected with the HIV virus that kills its cellular host, the CD4 T cell 

subset (http://www.who.int/hiv/topics/tb/en/). 

The main role of IFN-γ is believed to be macrophage activation [2]. It is 

produced by CD4 and CD8 T cells and NK cells and, although insufficient alone, is 

an essential cytokine in the control of Mtb infection as shown by studies with gene 

knock-out mice (reviewed in [2]) and human subjects with defects in the IFN-γ or 

IFN-γ receptor genes are susceptible to serious infections with normally non-

pathogenic mycobacteria [4].  

http://www.who.int/hiv/topics/tb/en/
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CD8 T cells classically recognize peptide antigens derived from endogenous 

cytosolic antigens that are degraded by the proteasome and are transported to the cell 

surface in association with MHC Class I molecules. Although Mtb antigens located 

in the phagosome do not appear to have access to the MHC class I processing 

pathway, there is recent evidence that this is possible and that there is a role for CD8 

T cells in the defense against Mtb (reviewed in [2]). Activated CD8 cells also 

produce cytokines and have been subdivided into Tc1 and Tc2 cells according to 

their cytokine profiles of IL-2/IFN-γ and IL-4/IL-5 respectively, and they are also 

capable of cytolysis of the infected cells mediated by the cytotoxic granule proteins 

perforin and granulysin [2].  

A third antigen-presenting pathway involving the CD1 molecules has more 

recently been identified (reviewed in [5]), in which lipid antigens are presented. Both 

intracellular and exogenous lipid antigens, which include mycobacterial antigens, can 

be accessed by CD1 molecules and presented to CD1-restricted CD8 T cells and 

NKT cells and the effector functions are IFN-γ production and cytotoxic activity. 

Following the effector phase of expansion of the antigen-specific T cells and 

clearance of the infection is the deletion phase during which the majority of the 

expanded effector cells are removed by programmed cell death or apoptosis while a 

small number survive and persist as memory cells, capable of rapidly re-starting the 

response in the event of a repeated exposure to the antigen [1]. Apoptosis is 

accompanied by distinct morphological changes, decrease in cell volume and 

fragmentation into apoptotic bodies which are rapidly phagocytosed by 

macrophages, preventing the release of mediators of a localized inflammatory 

response [6]. 
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Two types of apoptosis occur in activated T cells that are triggered by 

different signals [7]: (1) The engagement of death receptors such as Fas which, after 

their engagement of ligands, transmit intracellular signals by the recruitment of 

adaptor molecules such as Fas-associated death domain (FADD) which in turn 

recruit cysteine proteases, first pro-caspases which become activated and in turn 

activate effector caspases that destroy cell structure and integrity. This type of 

apoptosis is also termed activation-induced T cell death. (2) Cytokine withdrawal 

which results in poorly characterized intracellular signals and their transduction via a 

mitochondrial pathway that utilizes proteins of the Bcl-2 family and cytochrome c to 

activate the pro-caspases and effector caspases. This latter process is also termed 

activated T cell autonomous death and is the major mechanism of deletion of T cells 

responding to foreign antigen [7]. 

 

1.4  TREATMENT OF TUBERCULOSIS 

 

The standard therapy for TB is in accordance with the South African National 

Tuberculosis Program and is based on World Health Organization guidelines [8]. It is 

designated directly observed treatment short course (DOTS) and is described in 

detail in Chapter 2. For drug-susceptible TB cure a combination of 3 drugs has to be 

taken for 6 months and for drug-resistant TB the treatment is even more complex. 

There is therefore an ongoing search for better drugs to improve and shorten the 

treatment to prevent the spread of the disease during the early stages of treatment and 

recurrence in treated patients. To conduct drug trials it is necessary to monitor the 

infection and the only internationally accepted method of doing this is by staining the 

acid-fast bacteria in the sputum by means of the Ziehl-Nielsen (ZN) stain and 
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culturing the bacteria, for instance with the Bactec system. Additional surrogate 

markers for the infection are still needed and the measurement of immune system 

parameters of the patients in this study was planned with this in mind.  

 

1.5  FLOW CYTOMETRY AS AN INVESTIGATIVE TOOL IN THE  

       EVALUATION OF THE IMMUNE RESPONSE 

 

Flow cytometry is the detection of cells in suspension that have bound specific 

antibodies tagged with fluorochromes. The flow cytometer passes the labelled cell 

suspension through the beam of a laser that excites the relevant fluorescent dyes and 

the emitted light is measured by photomultipliers. The dedicated software calculates 

accurate and objective statistics. Two types of cell labelling are used:  

(1) Extracellular in which fluorochrome-labelled antibodies, usually monoclonal 

antibodies (mAb), are simply allowed to react with molecules expressed by the cells 

on the cell membrane. This method is used to identify and quantify lymphocyte 

subsets in immunophenotyping and is quick and very reproducible. (2) Intracellular 

labelling in which molecules inside the cells, such as cytokines, are detected with the 

specific antibodies. As living cells do not allow macromolecules like 

immunoglobulins to pass through the intact cell membrane, the cells have to be 

effectively killed to make the plasma membrane permeable to the antibodies. There 

are many different ways of achieving this permeabilization which is also dependent 

on the intracellular localization of the molecule of interest. This method is therefore 

subject to much greater variation in the results obtained [9]. When investigating 

molecules that are not constitutively expressed, such as cytokines, and have to be 

induced by a stimulus, additional variables come into play, namely the in vitro 
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culture conditions and the time after the stimulus at which the measurements are 

made which are like a “snapshot” taken of a short time span in the cells’ response. 

These variables have to be taken into consideration when interpreting the results. 

 

2.  STUDY SETTING, DESIGN AND SUBJECTS 

 

2.1  SETTING 

 

This study was done in the Ravensmead/Uitsig epidemiological field site in 

metropolitan Cape Town, where the incidence of new smear and/or culture-positive 

TB was on average 313/100 000 population/year from 1993-1998 [10]. More 

recently, the number of cases of TB reported in Cape Town in 2005 was 874/100 000 

population/year (http://www.capegateway.gov.za/Text/2006/5/tb_stats_2006.pdf). 

 

2.2  PATIENTS AND CONTROLS 

 

The study was approved by the Ethics Committee of the Faculty of Health Sciences 

at Stellenbosch University (reference number 99/039) and written, informed consent 

was obtained from all participants. Inclusion criteria included: age 18-65, sputum 

culture-positive for Mtb, HIV-negative, not pregnant; and for follow-up: no multi-

drug resistance, and taking at least 80% of prescribed dosages during the intensive 

phase of treatment. The presence of helminth infection or atopy in the patient group 

was not known. Twenty-one patients with first-time TB were enrolled and studied 

throughout treatment whereas 9 were only studied at diagnosis. Blood samples were 

taken at diagnosis prior to initiation of treatment and for follow-up at weeks 1, 5, 13, 
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and 26 after start of treatment (the last blood sample being taken on the last day of 

chemotherapy). Sputum smears and Bactec cultures were done on day 1 and 3, and 

week 1, 2, 4, 8, 13 and 26 after start of treatment. A total white cell count (WCC) and 

differential blood count was done on all blood samples using a Bayer Advia 120.  

The patients received standard therapy in accordance with the South African 

National Tuberculosis Program (based on WHO guidelines). Therapy consisted of a 

fixed drug combination (depending on body weight) containing isoniazid (320-

400mg/day), rifampicin (480-600mg/day), ethambutol (800-1200mg/day) and 

pyrazinamide (1000-1250mg/day) during the intensive phase (8 weeks) followed by 

rifampicin and isoniazid during the continuation phase (the remaining 18 weeks) 

under direct observation. Postero-anterior and lateral chest X-rays (CXR) were taken 

at commencement of treatment allowing a four week time window on either side of 

diagnosis. The chest radiographs were evaluated using a standardized method [11] by 

a physician who had no prior knowledge of the patient’s condition. The extent of 

disease was estimated using a one-dimensional view of the upright posterior-anterior 

radiograph and by using the right upper lobe as reference area.  

One blood sample was taken from each of 18 healthy HIV-negative, PPD skin 

test-positive (>15mm) volunteers resident in the same community to serve as 

controls. These participants had no clinical or radiological signs of active TB. 

 

2.3  PROCESSING OF SPUTUM SAMPLES FOR ZIEHL-NEELSEN SMEAR 

       AND CULTURE 

 

Sputum samples were processed for culture using standard methods [12], which 

included decontamination according to the Bactec 460TB System Procedure Manual 
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(Becton Dickinson, Maryland, USA) before inoculation into a Bactec 12B vial. The 

vials were incubated at 37 °C and the growth index (GI) was read daily. Sputum 

smears, direct and concentrated, were examined for acid-fast bacilli using the Ziehl-

Neelsen (ZN) stain and evaluated using the scoring system of the International Union 

against Tuberculosis and Lung Disease [13]. If multiple smears were done the smear 

with the highest grade was recorded for that time point. 

 

2.4  DEMOGRAPHIC DATA OF STUDY POPULATION 

 

The 21 patients that were followed up were all cured after 26 weeks of standard 

DOTS therapy. Three patients were infected with an Isoniazid-monoresistant strain 

of mycobacteria. After 8 weeks of treatment 15 patients were smear-negative and 6 

were smear-positive while only 8 were culture-negative and 13 culture-positive (two 

of these were Isoniazid-monoresistant). The week 8 Bactec culture was therefore 

used as the more sensitive indicator of early treatment response. No significant 

differences between fast and slow responders in CXR findings at diagnosis were 

found (including extent of disease and presence, number or size of cavities). The age 

and sex distribution of patients and their responder status is given in Table 2.1.  
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Table 2.1: Age and sex data of patients and controls

 Patients  Controls 

 Fast respondersa Slow responders  

Total (no.) 8 13 14 

Male (no.) 3 9 3 

Female (no.) 5 4 11 

Age (years) 18-51 19-50 20-56 

aas defined by negative sputum culture at week 8 

 

 

The time to positivity (TTP) is the number of days that the sputum cultures were 

incubated until they became positive for Mtb growth and is an indication of the 

bacterial load of the patient at time of diagnosis. The change in TTP’s after initiation 

of treatment is shown in Fig. 2.1. At week 13 only one patient was still culture-

positive. 
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Figure 2.1 
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Figure 2.1:  Time to positivity in days of sputum cultures of from diagnosis (Dx) 

to week (Wk) 13.  

Each dot represents data from one patient. The lines are at the median values for each 

time point. 
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3.  CHANGES IN LEUKOCYTE AND LYMPHOCYTE SUBSETS 

DURING TUBERCULOSIS TREATMENT; PROMINENCE 

OF CD3dimCD56+ NKT CELLS IN FAST TREATMENT 

RESPONDERS 

 

3.1  INTRODUCTION 

 

To clarify the mechanisms of protective immunity against Mycobacterium 

tuberculosis (Mtb) infection and disease in humans many reports have addressed the 

potential immunological defect(s) by comparing immune phenotypes in actively 

diseased patients to those with latent infection. Most of these investigations have 

focused on T lymphocyte subsets, particularly CD4+ and γδ T cells, generally 

reporting depressed CD4+ T cells in peripheral blood of TB patients [14-16] but 

results are discrepant for γδ T cells, where both elevated [17,18] and normal [19,20] 

numbers have been found. Only a few but inconclusive reports of B-lymphocyte and 

NK cell numbers in TB patients exist [14,16,21,22] and NKT cells have, to my 

knowledge, not been investigated in TB patients. Generally, contributors to TB 

susceptibility remain unclear and follow-up data during therapy are scanty.  

The aim of this study was to investigate immune parameters during therapy and 

this chapter describes a systematic follow-up of leukocyte counts and lymphocyte 

subsets in TB patients for the entire 26 week treatment period. Furthermore, due to 

the fact that the identification of high risk patients for slow response to chemotherapy 

would have important clinical implications, peripheral blood immunophenotypes 
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were analyzed as potential surrogate markers of early TB treatment response and a 

multivariate classification technique applied to identify fast and slow responders to 

treatment by immunophenotype at diagnosis. 

 

3.2  MATERIALS AND METHODS 

 

3.2.1  Reagents 

 

Fluorochrome-labelled mAbs anti-CD45-peridinin chlorophyll (PerCP), CD3-

phycoerythrin (PE), CD3-PerCP, CD4-fluorescein isothiocyanate (FITC), CD8-

FITC, CD19-FITC, CD56-FITC, γδTCR-FITC, IFN-γ-PE, IL-4-PE and rabbit anti-

active caspase-3-FITC were from BD-Bioscience. A rabbit FITC control antibody 

was not available from the manufacturer. OKT3 anti-CD3 antibody was spent 

hybridoma medium. The hybridomas were from ATCC. Vα24-PE was purchased 

from Beckman Coulter, saponin from Sigma and polyethylene glycol 4000 (PEG)  

from Merck. For the locations of the suppliers see Appendix (p.118).  

 

3.2.2  Immunophenotyping by flow cytometry 

 

Whole blood (50µl per test), anti-coagulated with sodium heparin, was washed once 

with phosphate-buffered saline (PBS). The cells were suspended in 100µl of 0.1% 

bovine serum albumin (BSA) in PBS and added to the required antibody mixtures. 

After 20 minutes at 4°C, cells were washed and red blood cells (RBCs) lysed at the 

same time by diluting with 3-4ml cold PBS containing 0.05% saponin and 3% PEG 

(lyse/wash buffer; saponin was chosen as lysing agent because it was noticed by a 
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colleague previously (J. Adams, personal communication) that RBCs in whole blood 

from TB patients frequently failed to lyse when treated with commercial lysing 

solution. The addition of 3% w/v PEG to the saponin buffer prevented damage and 

clumping of cells in blood obtained at diagnosis and also enhances the formation of 

antigen/antibody complexes [23]). After centrifugation at 700g the cell pellets were 

fixed in 4% formaldehyde in PBS and stored at 4°C in the dark until flow cytometric 

analysis in a Becton-Dickinson FACS Calibur® using CellQuest software®. 

Lymphocytes were gated in a CD45-PerCP (FL3) versus Side Scatter plot (10 000 

events in this gate were acquired) and these were further analyzed for expression of 

CD3 and CD4 (or CD8, CD19, CD56, γδTCR) in the FL1 and FL2 channels 

respectively. The lymphocyte sums calculated were all between 95 and 100%. 

Isotype control antibodies were not routinely used as the background cell surface 

staining of ex vivo blood lymphocytes is very low (not shown). 

 

3.2.3  Intracellular cytokine labelling 

 

This method is described in more detail in Chapter 4. Briefly, whole heparinized 

blood was mixed 1:1 with RPMI 1640 medium in polypropylene tubes and incubated 

at 37°C with or without 0.1µg/ml OKT3 antibody for 4 hours, with 10µg/ml 

Brefeldin A (BFA) present during the last 3 hours. After incubation the blood was 

diluted with cold lyse/wash buffer, centrifuged in the cold at 700g, and the cells in 

the pellet were labelled with mAbs in the above buffer containing 0.1% BSA for 20 

minutes in the cold. After one wash with cold lyse/wash buffer, the cell pellets were 

fixed in 4% formaldehyde in PBS and analyzed in the flow cytometer. 
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3.2.4  Classification of patients into treatment response groups 

 

In order to find possible differences between fast and slow responders to treatment, 

patients were divided into two responder groups according to Bactec culture status at 

week 8 after start of treatment. Of the 21 enrolled patients 8 were culture-negative 

(fast responders) and 13 culture-positive (slow responders) (Table 2.1). 

 

3.2.5  Statistical analysis 

 

Data for patients at diagnosis and at the end of treatment were analyzed for 

significant differences from those for healthy subjects by means of the Mann-

Whitney test. The Friedman test with Dunn’s post test was used to analyze 

longitudinal changes in parameters with respect to the diagnosis time point values.  

(* or #: p=0.01-0.05, ** or ##: p=0.001-0.01, *** or ###: p<0.001; asterisks refer to 

the Mann-Whitney test and hashes to the Friedman test). The Pearson Chi-square test 

and Fisher’s exact test were used to analyze categorical CXR data. 

To find the best combination of variables at diagnosis that may have potential for 

the prediction of early treatment response, as defined by the week 8 Bactec sputum 

culture, a Support Vector Machines analysis was performed, a multivariate 

discriminant classification technique that has received much attention in the 

statistical literature in the past few years [24]. Combinations of up to a maximum of 

5 variables were analyzed and, using the variables included in the optimal 

classification model, a leave-one-out cross validation table was constructed. 
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3.3  RESULTS 

 

3.3.1  Longitudinal changes in total and differential white cell count  

 

The total white cell count (WCC) and absolute neutrophil counts were significantly 

elevated in patients at diagnosis relative to controls (Fig. 3.1A, B) but returned to 

normal levels by the end of treatment. The absolute monocyte counts were also 

significantly elevated at diagnosis but then dropped dramatically to significantly 

depressed levels at week 26 (Fig. 3.1C). The absolute lymphocyte count of patients 

at diagnosis was significantly depressed at diagnosis but counts were no longer 

significantly different from controls at the end of treatment (Fig. 3.1D). 
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Figure 3.1:  Absolute leukocyte counts of healthy controls and TB patients. 

Counts were calculated from the total white cell count and differential blood count. 

A: Total WCC, B: neutrophils, C: monocytes, D: lymphocytes. The boxes extend 

from the 25th to the 75th percentile with a line at the median and the whiskers show 

the highest and lowest values. Data for patients at diagnosis (Dx) and at the end of 

treatment at week (Wk) 26 were analysed for significant differences from those for 

healthy subjects by means of the Mann-Whitney test (* p<0.05, ** p<0.01, 

*** p<0.001). The Friedman test with Dunn’s post test was used to analyze changes 

in parameters during the patients’ follow-up with respect to values at diagnosis 

(# p<0.05, ## p<0.01, ### p<0.001). 
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3.3.2  Lymphocyte subsets 

 

Percentages of T lymphocytes and NK cells were not significantly different from 

those of controls at diagnosis or at week 26 while percentages of B lymphocytes 

were depressed in patients at diagnosis (p<0.05) and recovered during treatment (not 

shown). The absolute lymphocyte subset counts were calculated from the subset 

percentages and absolute lymphocyte counts (Fig. 3.2). The absolute CD3+ T cell and 

absolute CD19+ B cell counts were significantly depressed in patients at diagnosis 

but at week 26 these were not significantly different from those of control subjects 

(Fig. 3.2A, B). Absolute CD56+/CD3─ NK cell counts at diagnosis showed a trend 

towards lower numbers (p=0.06) and remained depressed until week 26 (p<0.05, Fig. 

3.2C).  
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Figure 3.2 
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Figure 3.2:  Absolute lymphocyte subset counts of healthy controls and TB 

patients. 

Counts were calculated from the absolute lymphocyte counts and the percentages of 

subsets determined by flow cytometric immunophenotyping. A: T lymphocytes 

(CD3+), B: B lymphocytes (CD19+), C: NK cells (CD3-CD56+). Box and Whisker 

plots and statistical analyses as for Fig. 3.1 (Mann-Whitney test * p<0.05, ** p<0.01, 

*** p<0.001, Dunn’s post-test # p<0.05, ## p<0.01, ### p<0.001). 
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3.3.3  T lymphocyte subsets 

 

The percentages of CD4+, CD8+ and γδ T cells and the CD4:CD8 ratio at diagnosis 

and at week 26 were not significantly different from those of control individuals and 

only small fluctuations were detected during follow-up. Two populations of NKT 

cells were detected that differed in their levels of expression of CD3: a CD56+ cell 

population which expressed CD3 levels comparable to conventional T cells 

(CD3bright/CD56+ NKT cells) and one that expressed reduced levels (CD3dim/CD56+ 

NKT cells). The percentages of CD3bright/CD56+ NKT cells in patients at diagnosis 

and at week 26 were not significantly different from those of controls (not shown) 

and CD3dim/CD56+ NKT cells are described in detail below. Absolute numbers of T 

cell subsets, calculated from the absolute lymphocyte count and the percentages 

determined by immunophenotyping are illustrated in Fig. 3.3. CD4+ T cell numbers 

(Fig. 3.3A) were significantly depressed at diagnosis relative to control subjects 

(p<0.01) and, while numbers increased significantly during treatment, they were still 

lower at week 26 than in controls (p=0.06). CD8+ T cell counts (Fig. 3.3B) showed 

no significant differences or variation and γδ T cell counts were significantly 

depressed (Fig. 3.3C, p<0.05) at diagnosis but recovered during treatment to normal 

levels at week 26. Absolute numbers of CD3bright/CD56+ NKT cells were lower at 

diagnosis (p=0.06) and at the end of treatment (p<0.05, Fig. 3.3D). 
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Figure 3.3 
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Figure 3.3:  Absolute T cell subset counts of healthy controls and TB patients. 

The subset counts were calculated from the absolute T cell counts and the 

percentages of the subsets determined by flow cytometric immunophenotyping. A: 

CD4+ T cells, B: CD8+ T cells, C: γδTCR+ T cells, D: CD3bright/CD56+ NKT cells. 

Box and Whisker plots and statistical analyses as for Fig. 3.1 
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3.3.4  A CD3dim/CD56+ NKT cell subset was more prominent in patients 

 

An unusual subset of lymphocytes was detected more frequently in patients (9 of the 

21 patients had ≥2% at diagnosis) than in controls (2 of 14 had ≥2%). In the flow 

cytometric analyses, of which Fig. 3.4 is an example, these cells were weakly CD3+ 

(CD3dim), CD4–, weakly CD8+ or CD8–, and CD56+, shown in region R2 in Fig. 

3.4D, and also γδTCR– (not shown). The number of cells in region R2, as illustrated 

in Fig. 3.4, expressed as a percentage of the cells in the CD45 gate, was determined 

for all blood samples. Fig. 3.5A shows increased percentages of CD3dim/CD56+ NKT 

cells in patients at diagnosis relative to control subjects although this was not 

statistically significant (p=0.23). Very low or undetectable numbers remained so 

during follow-up while higher numbers persisted and sometimes increased after start 

of treatment (shown for fast and slow responders in Fig. 3.5C); the highest recorded 

was 20.3% at week 1.  
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Figure 3.4 

100 101 102 103 104

CD45- PerCP 

R1 

CD4-FITC

R2

A B 

C D 

Si
de

 sc
at

te
r 

C
D

3-
PE

 

C
D

3-
PE

 
C

D
3-

PE
 

CD8 -FITC CD56-FITC

400 

800 

0 
100 101 102 103 104

104

100

101

102

103

100 101 102 103 104 100 101 102 103 104

104

100

101

102

103

104

100

101

102

103

 

 



 29

Figure 3.4:  A representative lymphocyte subset analysis of flow cytometric data 

from a patient with a prominent CD3dim/CD56+ NKT cell population.  

A: Gating of the CD45bright low side scatter total lymphocyte population.  

B, C, D: The gated lymphocytes analyzed for CD3 and CD4, CD8 and CD56 

expression, respectively. Region R2 in Fig. 4D contains the CD3dim/CD56+ NKT 

cells. 
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Figure 3.5 
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Figure 3.5:  CD3dim/CD56+ NKT cell percentages in the lymphocyte gate.  

A: Controls and patients at diagnosis compared with the Mann-Whitney test.  

B: Patients at diagnosis grouped into slow responders to treatment (culture(+) at 

week 8) and fast responders (culture(-) at week 8), compared with the Mann-Whitney 

test. C: Mean percentages of CD3dim/CD56+ NKT cell counts with standard deviation 

error bars in the slow and fast responder patient groups from diagnosis to end of 

treatment.
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3.3.5  Differences between treatment response groups 

 

When percentages and absolute numbers of each cell type at diagnosis in fast 

responders were compared to those at diagnosis of slow responders with a Mann-

Whitney test, the percentage and absolute count of CD3dim/CD56+ NKT cells at 

diagnosis were the only single variables that correlated significantly with treatment 

response – they were significantly higher at diagnosis in fast responders (p=0.01, Fig. 

3.5B). The percentages of CD3dim/CD56+ NKT cells did not change significantly 

during follow-up and are shown for the fast and slow responding patients in Fig. 

3.5C. 

As the CD3dim/CD56+ NKT cell numbers at diagnosis did not correlate with 

treatment response in all patients, a multivariate classification technique was used to 

find combinations of variables that may more accurately classify patients into fast 

and slow responders. Differences between early response phenotypes were most 

prominent at diagnosis and the variables at diagnosis that were used for the analysis 

were the absolute numbers of leukocyte, lymphocyte and T cell subsets. The Support 

Vector Machines discriminant analysis showed that the best classification of patients 

into the two treatment response groups could be obtained with just two variables 

(Fig. 3.6): absolute CD3dim/CD56+ NKT cells and absolute NK cells which correctly 

classified all 13 slow responders and 5 of 8 fast responders in a leave-one-out cross 

validation. Absolute NK cell counts at diagnosis alone did not correlate with 

treatment response (not shown).  
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Figure 3.6 
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Figure 3.6:  Support Vector Machines analysis of phenotyping variables for the 

prediction of treatment response as defined by week 8 sputum culture. 

The graph shows the overall prediction accuracy versus the number of variables 

included in the analysis. The two variables that gave a prediction accuracy of 0.85 

were absolute CD3dim NKT cells and absolute NK cells. The analysis was performed 

by Dr Martin Kidd. 
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3.3.6  CD3dim/CD56+ NKT cells produce IFN-γ and IL-4 

 

To assess functional aspects of CD3dim/CD56+ NKT cells an analysis was done of 

flow cytometric data of intracellular IFN-γ and IL-4 measurements in saponin-

permeabilized T cells after a 4-hour stimulation of whole blood with anti-CD3 mAb, 

described in detail in Chapter 4. In samples from patients with a prominent 

CD3dim/CD56+ NKT cell population these cells were discernible in the CD3-PerCP 

versus side scatter plots used for gating the T lymphocytes. The CD3dim and CD3bright 

cells were analyzed separately in all diagnosis blood samples that had high numbers 

of CD3dim T cells. A CD56 mAb was not routinely used in the intracellular cytokine 

determinations but was included on two occasions and these analyses showed that 

approximately 90% of the CD3dim  T cells were CD56+. IFN-γ was only produced by 

some of the patients and the CD3dim and CD3bright cells produced comparable low 

levels of this cytokine (Fig. 3.7B,C). All patients showed IL-4 production by both 

stimulated and unstimulated T cells and this tended to be higher in CD3dim  T cells 

(Fig. 3.7D,E). The CD3dim population contains more cells that express active  

caspase-3, an indicator of apoptosis, and this expression correlates with higher levels 

of intracellular IL-4 (Fig. 3.7F,G). It is however not known if these cells are also 

CD56+. 
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Figure 3.7 

 

Figure 3.7 

Figure 3.7 

 
 
 

104 

100 101 102

10 0 101 102

R1 R2

10 0 10 1 102 100 101 102

10 0 10 1 102

100 101 10210 0 10 1 102

Caspase- 3 - FITC

CD3-PerCP

SSC 

CD3dim CD3bright

4.77% 1.11%

C
ou

nt
s 

IFN - γ - PE 

IL
-4

-P
E 

IL - 4 - PE 

100 

104

100

0 0

00

150 500

150 550

0 

1000 A

B C

D E

F G



 37

Figure 3.7:  Intracellular cytokine analysis of permeabilized lymphocytes from 

whole blood. 

Blood from two patients at diagnosis was incubated for 4 hours with or without 

stimulation with 0.1µg/ml anti-CD3 and the lymphocytes were permeabilized with 

saponin and labelled with mAbs as described in Materials and Methods of Chapter 4. 

A: Gating of CD3dim (R1) and CD3bright (R2) T cells in a CD3-PerCP versus SSC plot 

of leukocytes from the first patient. B-E: Histograms of the gated cells showing IFN-

γ (B, C) and IL-4 (D, E) expression. Overlaid histograms are:  (▬) stimulated, 

specific antibody, (·····) unstimulated, specific antibody, (----) stimulated, control 

antibody. F-G: Dot plots of similarly gated unstimulated T cells from the second 

patient showing co-expression of caspase-3 and IL-4. The position of the quadrant 

markers was determined by a PE-labelled control antibody (not shown). 
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3.4  DISCUSSION 

 

The data in this chapter show significant changes in absolute numbers of neutrophils, 

monocytes and lymphocyte subsets during active TB. That these changes occur 

already during the first weeks of treatment is important as it strongly suggests that 

TB patients tested at different time points during their treatment should not be 

grouped together in the analysis of results. A CD3dim/CD56+ subset of NKT cells was 

found to be more prominent in TB patients and correlates with a faster treatment 

response. A multivariate classification technique identified CD3dim/CD56+ NKT 

cells, in combination with NK cells, at diagnosis as variables indicating the 

likelihood of culture conversion early during TB treatment. NKT cells have, to my 

knowledge, not been reported in the context of TB disease and the reported findings 

support the future inclusion of these cells in the search for surrogate markers for 

treatment response.  

The interesting subset of NKT cells that was detected expressed CD56 and 

reduced levels of CD3 and was either double negative (DN) or weakly CD8+. NKT 

cells, which express CD3 and to a variable degree the NK cell markers CD56, CD57 

and CD161 [25-27], are a heterogeneous population in mice and humans with several 

subsets that differ in phenotype, TCR repertoire, MHC restriction and cytokine 

profile, as reviewed in [27]. “Classical” NKT cells express an invariant TCR with 

Vα24 (Vα14Jα281 in the mouse, now Vα14-Jα18), are CD1d restricted and express 

the NK cell marker CD161 or NKR-P1A. Two subsets of non-classical NKT cells do 

not express this invariant TCR. Human CD56+ NKT cells are abundant in the liver, 

are predominantly CD8+ or DN and Vα24 TCR-negative, have cytotoxic capacity 

and produce Th1 and Th2 cytokines when stimulated in vitro [28].  
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As the detection of the CD3dim/CD56+ NKT cells was unexpected, a Vα24 

antibody was not routinely included in the panel but some additional phenotyping 

with this antibody indicated that these cells did not express the invariant TCR (not 

shown). The possibility of artefactual CD3dim staining of NK cells due to non-

specific binding to Fc receptors must be considered but this is unlikely as the 

antibodies to CD4, CD19 and γδTCR were of the same (IgG1) isotype and did not 

stain the cells. Furthermore, NK cells do not express the high affinity Fcγ receptors 

CD32 and CD64 and can be seen as a clearly CD3-negative population in Fig. 4D. 

The reduced expression of CD3 could be the result of TCR downregulation 

[29] and the CD3dim/CD56+ NKT cells could be an activated subset of 

CD3bright/CD56+ NKT cells, but only a weak inverse correlation between the 

percentages of these NKT cell subsets (Spearman correlation coefficient -0.34, not 

shown) was found. Takayama et al [30] demonstrated that a CD122+  subset of 

human CD8+ T cells with intermediate TCR expression in the peripheral blood that 

produce high levels of IFN-γ and are also potently cytotoxic.  

Peripheral blood CD56+ T cells are increased during the early phase of 

Plasmodium falciparum or Plasmodium vivax infections in humans [31], suggesting 

an important role in the immune response to intracellular pathogens. Slifka et al. [32] 

found that 90% of virus-specific CD8+ and CD4+ T cells from choriomeningitis 

virus-infected mice co-express one or more NK cells markers for more than 500 days 

post-infection. In the patients of our study not much variation was found in the 

percentages of CD3dim/CD56+ NKT cells over time and they could represent a similar 

persistent population specific for mycobacterial antigens. 

The observation of the often higher numbers and percentages of 

CD3dim/CD56+ NKT cells in patients indicates that this cell population is expanded in 
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the blood of some TB patients, and that these patients are able to clear the infection 

more efficiently after the initiation of chemotherapy. As CD3dim/CD56+ NKT cells 

appear to produce variable IFN-γ and IL-4, it can be postulated that they are cells 

that have been activated, as could be indicated by their reduced CD3 expression, and 

are at variable stages between activation and apoptosis. This is supported by the 

finding that they contain a higher percentage of cells expressing active caspase-3 and 

that they produce more intracellular IL-4. Previous findings have associated 

intracellular IL-4 expression in lymphocytes with mitochondrial apoptosis markers 

[33]. Therefore CD3dim/CD56+ NKT cells could be indicators of an active immune 

system in TB patients and would accelerate clearance of the infection by antibiotics. 

The other variable that, together with CD3dim/CD56+ NKT cells, had 

predictive value according to the multivariant discriminative analysis, was the 

absolute NK cell count. Interestingly, a higher NK cell count is partially indicative of 

a slow response to treatment. A higher NK cell count in the peripheral blood may be 

the result of an inability of these cells to migrate into infected tissues. In humans NK 

cells are present in tuberculous pleural effusions [34] and in mice infected with Mtb 

NK cell numbers in the lung increase over the first 21 days of infection although 

their removal does not affect host resistance. A role of NK cells in the control of TB 

has been suggested by the results of in vitro studies with human NK cells and Mtb-

infected monocytes [35-37]. 

Monocytes/macrophages are important components of the innate immune 

response to mycobacterial infections and the dramatic change in the absolute 

monocyte counts in the patients between diagnosis and week 26 should be noted. The 

surprising finding here is that their numbers are significantly depressed in fully 
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treated patients and it is unknown what causes this depressed absolute monocyte 

count. 

To determine whether the depressed absolute monocyte, NK cell and 

CD3bright/CD56+ NKT cell counts at the end of treatment could contribute to 

increased susceptibility to TB relapse [10], phenotyping needs to be performed on 

larger numbers of blood samples taken after cessation of antibiotic treatment with 

subsequent long-term clinical follow up.  

A drawback of this study is that the patient numbers in the two treatment 

response groups are small and therefore the accuracy of the statistical classifications 

is limited. It is also not optimal that, for logistical reasons, the week 26 blood 

samples were taken on the day of the last dose of antibiotics and not after cessation 

of drug therapy. It is unknown whether drug treatment directly affects cell counts. 

In summary, peripheral blood white cell counts change rapidly during 

treatment and some counts at diagnosis hold promise as surrogate markers of 

treatment response. Further prospective studies with larger numbers of patients are 

now needed to evaluate the role of immunophenotyping in general and of 

CD3dim/CD56+ NKT cells specifically, including their functional characterization. 

The role of these cells in predicting differential outcomes at month six and the 

development of recurrence after cure needs to be assessed. 
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4.  CHANGES IN THE KINETICS OF INTRACELLULAR IFN-γ 

PRODUCTION IN TB PATIENTS DURING TREATMENT 

 

4.1  Introduction 

 

Despite the ongoing global TB problem and extensive research into protective 

immunity against this intracellular pathogen, mechanisms of protective immunity 

against Mycobacterium tuberculosis (Mtb) in humans have yet to be fully clarified. 

Immunological parameters that contribute to TB susceptibility remain unclear and 

markers of treatment response phenotypes are still elusive. 

Numerous reports have addressed the potential immunological defect(s) in 

infected individuals that have developed active TB in comparison to those who have 

remained healthy in spite of infection. As IFN-γ is required for a Th1 immune 

response to Mtb infection, this cytokine has been measured ex vivo in serum [38], 

bronchoalveolar lavage fluids [39] and pleural effusions of TB patients [40] or in 

culture supernatants of lymphocytes isolated from these body fluids and stimulated in 

vitro with mycobacterial antigens. In the majority of the latter studies secreted IFN-γ 

was measured by ELISA, less frequently by ELISPOT, and in some cases 

intracellular IFN-γ was measured by flow cytometry (FC). The results of these 

studies have varied considerably. Of 33 such studies using mycobacterial antigen 

stimulation of isolated lymphocytes or whole blood, 13 found that patients produced 

less IFN-γ than controls, 13 found that they produced more, and 7 found no 

difference (summarized with assay variables in Tables 4.1-3). Another paradox is 

added by findings of high IFN-γ levels in serum [38], pleural fluids [40,41] and lungs 
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[39] of TB patients. There is therefore still a need for more work to clarify these 

discrepant results. 

 

 

Table 4.1: Reports that found IFN-γ production lower in patients compared to 

controls 

Reference Assay Stimulant Incubation Serum  Endotoxin
[42] ELISA Mtb 4 days human   ? 
[43] ELISA Mtb 10,30,38, 

65kDa Ag 
4 days human  50pg/ml 

[44] ELISA 30kDa Mtb Ag 48 hrs FCS ? 
[45] FC Mtb 48 hrs human  ? 
[46] ELISA H37Ra Mtb 4 days FCS <10pg/ml 
[47] FC 

ELISA 
PPD,Mtb Ag85 4 days FCS ? 

[48] ELISA Mtb 30,32kDa Ag 4 days FCS <1.5pg/ml 
[49] ELISA Mtb 4 days human  ? 
[50] ELISPOT Mtb 4 days human  ? 
[51] ELISA PPD 4 days FCS <0.1pg/ml 
[52] FC BCG 6 days autologous 

plasma 
? 

[38] ELISA Mtb 5 days human ? 
[53] ELISA CFP10 5 days whole blood ? 
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Table 4.2: Reports that found IFN-γ production higher in patients compared to 

controls 

Reference Assay Stimulant Incubation Serum  Endotoxin
[54] ELISA ESAT-6 

PPD 
5 days human  ? 

[55] ELISPOT ESAT-6  
H37Ra lysate 

48 hrs ? ? 

[56] ELISA Mtb sonicate 4 days human  ? 
[57] ELISPOT ESAT-6  12 hrs FCS ? 
[58] ELISA ESAT-6, 

PPD 
24 hrs whole blood ? 

[59] ELISA ESAT-6  5 days  autologous 
plasma 

? 

[60] FC 30kDa Mtb Ag 6 days FCS ? 
[61] ELISA TB27.4 Mtb Ag 4 days human  <1pg/ml 
[62] ELISPOT ESAT-6 1 and 6 

days 
autologous 
plasma 

? 

[63] ELISPOT PPD 24 hrs calf serum ? 
[64] FC ESAT-6 6 hrs whole blood ? 
[65] ELISPOT ESAT-6 

peptides 
40 hrs FCS ? 

[66] ELISA Mtb 9.8,39A,40 
Ag85B 

6 days human <5pg/ml 

 

 

Table 4.3: Reports that found no difference in IFN-γ production in patients and 

controls 

Reference Assay Stimulant Incubation Serum  Endotoxin 
[67] ELISPOT Mtb extract 4 days FCS ? 
[59] ELISA PPD, Mtb Ag85 5 days autologous 

plasma 
? 
 

[60] ELISA 30kDa Mtb Ag, 
Mtb extract 

6 days FCS ? 

[68] ELISA ESAT-6   
and peptides 

3 days human ? 

[69] ELISA 10, 30, 85A, 
85B Mtb Ag 

5 days autologous 
plasma 

negative 

[65] ELISPOT ESAT-6 40 hrs FCS ? 
[66] ELISA Mtb culture 

filtrate, cell wall 
6 days human ? 
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4.2  MATERIALS AND METHODS 

 

4.2.1  Patients and controls 

 

The same 21 patients described in Chapter 3 were followed up at the same time 

points and compared to the same controls. Bloods from an additional 6 HIV-negative 

patients at diagnosis and 4 HIV-negative, skin test-positive additional controls were 

used for the IFN-γ kinetics experiments 

 

4.2.2  Reagents 

 

Fluorochrome-labelled mAbs CD3-PerCP, CD8-FITC, and IFNγ-PE (clone 4S.B3) 

were from BD-Bioscience. Anti-CD3 mAb for stimulation was OKT3 in the form of 

hybridoma medium (hybridomas obtained from ATCC), diluted in tissue culture 

medium; the concentration of mouse immunoglobulin determined by ELISA. RPMI 

1640 medium was from Gibco-BRL, saponin and Brefeldin A from Sigma, 

polyethylene glycol 4000 from Merck and purified protein derivative (PPD) was 

from Weybridge Veterinary Institute (UK). A stock solution of 2mg/ml in PBS 

(endotoxin <0.125EU/ml) was diluted in RPMI 1640 for adding to cultures to a final 

concentration of 3µg/ml. Heat-killed Mtb for stimulation was prepared from H37Rv 

strain of Mtb cultured in 7H9 medium. The bacteria were washed twice in 0.01% 

Tween 80 in saline, resuspended in Tween/saline, heated in a heating block 

preheated to 101°C for 20 minutes and frozen at -80°C in aliquots. After thawing the 

stock was diluted in RPMI 1640 medium and added to cultures to give a final 

concentration of 5x105 cfu/ml. 
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4.2.3  Intracellular cytokine determination  

 

In a pilot study and subsequent optimization experiments for this study clumping of 

cells was consistently observed in whole blood from patients at diagnosis after 

stimulation with live Mtb or PPD in overnight culture. The light scatter properties of 

the leukocytes in these cultures were abnormal, the cell number being reduced and 

cell debris increased compared to those of control individuals and patients that had 

received treatment (not shown). These observations suggested that there may be 

rapid cell death in blood cultures from patients at diagnosis when stimulated with 

mycobacterial antigen and possible loss of the very cells that were to be analyzed by 

flow cytometry. Soluble anti-CD3 mAb was therefore used as stimulus and 

intracellular IFN-γ production could be detected in T cells after a four-hour 

stimulation with no change in light scatter or clumping of cells obtained from 

patients at diagnosis. 

Blood was collected in sodium heparin tubes and processed within 3 hours of 

venesection. For the stimulation, 750µl of whole blood was mixed with 750µl RPMI 

1640 with bicarbonate, 25mM HEPES, penicillin/streptomycin and 50µM 2-

mercaptoethanol (RPMI+) in 12ml round-bottom polypropylene tubes. After 30mins 

in a 37°C water bath, OKT3 mAb was added to a final concentration of 0.1µg/ml. 

Incubation was continued for another 4 hours, with 10µg/mL Brefeldin A (BFA) 

present during the last 3 hours to stop secretion of cytokines. 

As commercial RBC lysing solution was previously found to be ineffective 

with blood from TB patients at diagnosis and the commercial intracellular cytokine 

labelling kit protocol was too long for the restricted working conditions in the 

category 3 containment TB laboratory, a rapid method without fixation of cells was 
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used, based on a method described by Holmes et al [70] for the labelling of 

intracellular antigens. It was modified for use with whole blood and simultaneous 

cell surface staining by reducing the saponin concentration from 0.3% to 0.05% and 

by the addition of 3% w/v PEG 4000 to the saponin buffer to prevent clumping and 

loss of leukocytes in TB patients’ diagnosis blood samples. As this concentration of 

PEG has also been shown to enhance the formation of antigen/antibody complexes 

[23], it did not interfere with the labelling of cellular antigens with monoclonal 

antibodies. 

After incubation/stimulation the blood was diluted to 20ml with cold PBS 

containing 0.05% saponin, and 3% PEG (lyse/wash buffer) and centrifuged in the 

cold at 700g after RBC lysis was complete. The cell pellet was resuspended in 500µl 

of 0.1% bovine serum albumin (BSA) in lyse/wash buffer, 100µl aliquots of the 

suspension were added to premixed antibodies (CD3-PerCP, CD8-FITC and IFNγ-

PE (or control mAb)) and left for 20 minutes in ice water. After one wash with 

lyse/wash buffer at 4oC, the cell pellets were suspended in cold, freshly diluted 4% 

formaldehyde in PBS and stored at 4°C in the dark until flow cytometric analysis the 

following day on a Becton-Dickinson (BD) FACS Calibur® with CellQuest 

software®.  

T lymphocytes were gated in a CD3-PerCP versus SSC plot (50 000 events in 

this gate were acquired) and CD8-positive and –negative cells were then gated in a 

CD3-PerCP versus CD8-FITC plot of the T cells. In separate plots of IFNγ-PE 

versus CD8-FITC the percentage of cytokine-positive cells in the CD8-positive and 

CD8-negative population (assumed to be CD4+ and henceforth referred to as CD4 T 

cells) were obtained from the quadrant statistics. Because the staining of the negative 

cells with the isotype control antibody was slightly different to that of the specific 
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antibody (see Fig. 4.1), the quadrant marker was first placed in the plot for the 

unstimulated cells and the same position was used for the plot of the stimulated cells.  

 

4.2.4  Lymphocyte proliferation 

 

A whole blood lymphocyte proliferation test with mycobacterial antigens as stimulus 

was performed in parallel with intracellular IFN-γ. These assays were done as part of 

the same study by Ilse Crous and Shweta Brahmbhatt, two colleagues in the 

Department of Biomedical Sciences at the University of Stellenbosch Faculty of 

Health Sciences, and the results are included here for the sake of completeness. 

Whole blood was diluted 1 in 10 with RPMI+. Aliquots of 180µl were dispensed into 

wells of 96-well round-bottom tissue culture plates with 20µl of the stimulants PPD 

(3µg/ml final concentration) or heat-killed Mtb (5x105cfu/ml final concentration) and 

incubated for 6 days at 37°C in 5% carbon dioxide. Tritiated (3H) thymidine was then 

added at 0.5µCi/well and the plates incubated for another 6 hours before harvesting 

with a custom-built harvester onto glass fibre discs which were counted in a 

scintillation counter. The medians of quadruplicate counts per minute (cpm) of 

unstimulated cultures were subtracted from the medians of stimulated cultures. 

 

4.2.5  Statistical analysis 

 

Data for patients at diagnosis and at the end of treatment were analyzed for 

significant differences from those for healthy subjects by means of the Mann-

Whitney test. The patients were divided into two groups according to whether they 

were sputum culture-positive (slow responders) or -negative (fast responders) after 8 
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weeks of treatment and data for patients in these two groups were also compared by 

means of the Mann-Whitney test. The Spearman correlation coefficient was 

determined to test for correlation between two data sets (*: p=0.01-0.05, 

**: p=0.001-0.01, ***: p<0.001). 

 

4.3  RESULTS 

 

4.3.1  Intracellular IFN-γ 

 

The unstimulated blood samples mostly contained insignificant numbers of IFNγ-

positive T cells at or near background staining which varied around approximately 

50 events or 0.2%. These insignificant percentages were not subtracted from those in 

the stimulated cultures. Irrelevant mouse monoclonal antibody (hybridoma 

supernatant) did not stimulate IFN-γ production and was not routinely added to 

unstimulated control cultures. Fig. 4.1 is a representative flow cytometric analysis 

plot of the lymphocytes in the blood from a patient at diagnosis, labelled with mAbs 

to IFN-γ, CD3 and CD8. 
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Figure 4.1 
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Figure 4.1:  Representative flow cytometric data of intracellular IFN-γ staining 

of leukocytes from whole blood. 

T lymphocytes gated in a CD3-PerCP versus SSC plots (region R1) and the CD8-

FITC and IFN-γ-PE staining of the gated cells is shown. To obtain the percentages of 

IFN-γ+ cells in the CD8 and CD4 subpopulations, the cells were gated further as 

described in Materials and Methods (not shown). The quadrant markers of the 

unstimulated cells were used as a reference for demarcating IFN-γ-negative and  

-positive cells in the stimulated samples. 
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Patients’ blood samples at diagnosis contained very variable percentages (up 

to 13%) of CD8  IFN-γ-producing T cells (Fig. 4.2A), which were significantly 

higher than in control subjects (p<0.001). In the week 1 blood samples the 

percentages of IFN-γ-producing cells were already reduced and decreased to normal 

levels at week 26 when treatment was completed. 

Numbers of IFN-γ+ CD4 T cells were lower (Fig. 4.2B) but there was still a 

significant difference (p<0.01) between the percentages in patients’ blood at 

diagnosis and control subjects and the numbers in patients decreased from week 1 

onwards similar to those in the CD8 population and at week 26 there was no 

significant difference between the percentages in patients and controls. There was a 

significant correlation between the percentages of IFN-γ+ cells in the CD4 and CD8 

T cell populations at diagnosis (Spearman correlation coefficient 0.6149, p<0.01, not 

shown). The decrease in the percentage of IFN-γ+ CD4 and CD8 T cells over time 

mirrored that of the decrease in bacterial load in the patients as indicated by the 

increase in time to positivity (TTP) of their sputum cultures (Fig. 2.1). 
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Figure 4.2 
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Figure 4.2:  Intracellular IFN-γ expression in T cells of TB patients and healthy 

skin test-positive control subjects after 4 hours stimulation of whole blood with 

anti-CD3 mAb.  

IFN-γ+ CD8 T cells (A) and IFN-γ+  CD4  T cells (B), expressed as % of gated CD8 

and CD4 cells respectively. The gating is described in Materials and Methods. Time 

points for patients are in weeks from diagnosis until treatment end at week 26. 

Horizontal lines represent median values for each set of data. Percentages in control 

subjects and patients at diagnosis were compared by means of a Mann-Whitney test 

(*: p=0.01-0.05, **: p=0.001-0.01, ***: p<0.001) 
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4.3.2  Kinetics of IFN-γ production 

 

The above findings of non-antigen-specific increased IFN-γ production during active 

TB are in agreement with those of others who have reported increased  

IFN-γ production in response to stimulation with various mycobacterial antigens by 

means of ELISA, ELISPOT or flow cytometry (FC), as shown in Table 4.2. 

However, a large number of studies have found the opposite or no difference (Table 

4.1 and 4.3 respectively).  

One of the reasons for this discrepancy could be the kinetics of the IFN-γ 

production. For logistical reasons, and to avoid in vitro artefacts, a short incubation 

of 4 hours with stimulant was chosen, whereas most other protocols used overnight 

or longer incubations. If the kinetics of IFN-γ production in patients at diagnosis 

were faster than in control subjects, measurement and comparison of IFN-γ 

production at different time points would lead to markedly different results. 

Increasing production in one group may coincide with declining levels in another 

group. To substantiate this hypothesis, blood of patients and controls was stimulated 

for 4 hours and 8 hours with anti-CD3 antibody and intracellular IFN-γ production 

was determined at both time points. BFA was added to both cultures for the last 3 

hours of incubation. Patients’ bloods taken at week 26 after completion of treatment 

were tested as well, although the patients tested at diagnosis and at week 26 were not 

the same individuals. 

The results (Fig. 4.3A) show a substantial drop in IFN-γ+ CD8 T cells from 4 

hours to 8 hours in 5 of the 7 patients tested at diagnosis. In the blood samples taken 

at week 26 and in healthy controls no clear kinetic pattern was observed. IFN-γ 

production in healthy controls could not be determined after overnight or longer 
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stimulation due to severe down regulation of CD3, which would prevent gating of T 

cells. The kinetics of IFN-γ production by CD4 T cells (Fig. 4.3B) was variable, with 

percentages of IFN-γ+ cells higher after 8 hours than after 4 hours in half the patients 

tested at diagnosis. Fig. 4.3 shows that there is variation in the kinetics of IFN-γ 

production not only between groups of patients and controls but also between 

individuals in each group and the results obtained would therefore depend on the 

chosen stimulation time. 



 57

 

Figure 4.3 
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Figure 4.3:  Kinetics of IFN-γ production by CD8 and CD4 T cells in TB 

patients and controls during the first 8 hours of stimulation. 

Whole blood was stimulated for 4 hours or 8 hours with anti-CD3 mAb, of which the 

last 3 hours was in the presence of BFA, and intracellular IFN-γ was labelled as in 

Materials and Methods. Kinetics in patients at diagnosis are compared with those in 

patients at the end of treatment (not the same individuals) and with healthy skin test-

positive controls in CD8 T cells (A) and CD4 T cells (B). 
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4.3.3  Lymphocyte proliferation 

 

These tests were performed by Ilse Crous and Shewta Brahmbhatt as part of this 

study and I gratefully include them here as the results help to explain the other 

findings.  

3H-thymidine uptake of lymphocytes stimulated in whole blood with heat-

killed Mtb was significantly depressed in patients at diagnosis relative to controls 

(Fig. 4.4A, p<0.05). Patients’ counts then increased rapidly to above normal during 

weeks 5-13 of treatment, when they generally became sputum culture-negative, and 

again fell to normal levels at the end of treatment. As this assay was a whole blood 

assay and it was also found that patients’ lymphocyte counts were depressed at 

diagnosis relative to control subjects (Chapter 3) the 3H-thymidine uptake of 20µl 

blood was normalized to 2x104 T cells, calculated from the total white cell count, 

differential count and CD3 immunophenotyping. The normalized counts followed a 

similar pattern during the follow-up period (not shown) but the difference in counts 

between control subjects and patients at diagnosis was no longer significant 

(p=0.083). Overall, while lymphocyte proliferation increased during treatment the 

percentages of IFN-γ-producing T cells decreased (as shown in Fig. 3.2), together 

with the reduction of bacterial load as indicated by a longer TTP (Fig. 2.1). In 

individual patients there was no significant inverse correlation between lymphocyte 

proliferation and intracellular IFN-γ but the TTP at week 4 correlated significantly 

with lymphocyte proliferation at the week 5 time point (Fig. 4.4B). This correlation 

was significant when 3H-thymidine uptake was expressed as median cpm per 20µl of 

blood (Spearman r=0.4455, p< 0.05) or as cpm normalized to 2x104 T cells 

(r=0.4576, p< 0.05). When PPD was used as stimulant in the cultures, there was no 
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difference in 3H-thymidine uptake between patients at diagnosis and control subjects 

and very little change in the counts during the follow-up period (not shown). 
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Figure 4.4 
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Figure 4.4:  3H-thymidine uptake after 7 days incubation of whole blood with 

heat-killed Mtb in TB patients and healthy skin test-positive controls.  

A: Median cpm for controls and patients at diagnosis and time points (weeks from 

diagnosis) during treatment. Horizontal lines represent median values for each set of 

data. Counts in control subjects and patients at diagnosis were compared by means of 

a Mann-Whitney test (*: p=0.01-0.05, **: p=0.001-0.01, ***: p<0.001). 

B: Correlation of time to positivity (TTP) of patients’ sputum cultures at week 4 with 

lymphocyte proliferation at week 5. TTP in days is plotted against median cpm and 

the Spearman correlation coefficient (r) is calculated. 
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4.3.4  Correlation with treatment response 

 

In order to find possible correlations of intracellular IFN-γ production or lymphocyte 

proliferation with treatment response, the patients were divided into two groups 

according to whether they were sputum culture-positive (slow responders) or  

-negative (fast responders) after 8 weeks of treatment, as in Chapter 3. There was no 

difference between CD8 or CD4 IFN-γ production or 3H-thymidine uptake at 

diagnosis in the two groups of patients.  

 

4.4  DISCUSSION 

 

Previously reported findings of IFN-γ production in vitro by stimulated lymphocytes 

of patients with TB have been contradictory and are summarized in Tables 4.1-3. 

Stimulation of lymphocytes in culture is subject to a large number of variables in the 

methodology. For example, the use of foetal calf serum (FCS), human AB serum or 

autologous plasma could have an effect, or the type of culture plates. Only 7 of the 

33 cited studies specify the endotoxin levels in the stimulants used. Endotoxin 

contamination in pg/ml concentrations could stimulate the monocytes in whole blood 

and in isolated PBMC’s and this could have secondary effects on the lymphocytes. 

The time in culture is another variable, which is examined in the present study. 

The data reported here, which show that stimulated lymphocytes from TB 

patients at diagnosis make significantly more intracellular IFN-γ than those from 

healthy controls after 4 hours of stimulation, agree with the cited studies in Table 4.2 

which used mycobacterial antigens as stimulus. Similar to our work, another study 

reported the use of soluble anti-CD3 mAb [71] and found similar results. These 
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authors assayed IFN-γ in the medium of 4-day lymphocyte cultures and showed 

increased levels in cultures from TB patients relative to healthy controls although 

they did not give comparative statistics. The focus of their study was the comparison 

of TB with pulmonary disease caused by non-tuberculous mycobacteria. 

Some explanation of the discrepant results of previous studies may be 

provided by the kinetic studies included in this thesis which have shown that 

patients’ CD8 lymphocytes at diagnosis are able to produce IFN-γ rapidly but that 

this production is short-lived and wanes after 8 hours. One could therefore postulate 

that, if IFN-γ levels were measured in culture supernatants after several days, the 

overall production would be low whereas in cultures from healthy subjects with a 

later onset of production, sustained for longer, it would be higher. It was shown here 

that IFN-γ kinetics show large inter-individual variation within each subject group 

and that the kinetics and the measured IFN-γ production change during treatment.  

The lack of correlation between lymphocyte proliferation and intracellular 

IFN-γ that was found here supports previous findings [67]. The overall depressed 

lymphocyte proliferation of patients’ lymphocytes at diagnosis in response to Mtb 

stimulation that was found by my colleagues in this study is associated with 

increased IFN-γ production measured after 4 hours of stimulation. These results can 

be explained if one postulates that the kinetics of the response to mycobacterial 

antigens is also accelerated, like that to non-specific TCR stimulation with anti-CD3 

mAb. In that case some stimulated lymphocytes would already have gone into 

apoptosis by day 7, when the cell cultures are pulsed with 3H-thymidine, and 

incorporation of the label would be reduced. This view is supported by my 

observations during optimization experiments of cell clumping in patients’ blood at 

diagnosis in the presence of mycobacterial antigens in overnight culture. The finding 
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of increased 3H-thymidine uptake with increased TTP, i.e. lower bacterial load, at 

week 4 could also indicate that there is reduced cell death in vitro with the clearance 

of the infection.  

Increased apoptosis of T cells in TB patients has been reported previously 

[45,46]. Hirsch et al  [46] found an inverse correlation between increased apoptosis 

of CD4+ and CD4─ T cells induced by Mtb in patients at diagnosis and IFN-γ in 

culture supernatants after 96 hours of culture, but there was no significant difference 

between treated patients and controls. Another study found a loss of IFN-γ positive 

CD4+ and CD4─ T cells in 40 hour Mtb-stimulated PBMC cultures from of TB 

patients relative to controls and a concomitant decrease of IFN-γ in culture 

supernatant as well as increased apoptosis [45]. These studies and ours suggests that 

pre-activated T cells are present in the peripheral blood of patients with active TB 

which is also supported by the finding of increased numbers of CD4 T cells 

expressing the activation marker CD38 in the peripheral blood of patients with active 

TB relative to cured patients and healthy, skin test-positive controls [15]. The 

presence of significant numbers of IFN-γ+ T cells in some of the skin test-positive 

control subjects in this study may be an indication that they have been recently 

infected with Mtb but have remained asymptomatic. However, because anti-CD3 is a 

non-specific stimulus, it could also mean that the T cells have been activated by 

another infectious agent. 

In summary, the data in this chapter have shown that T lymphocytes of 

patients with active TB proliferate below normal levels in response to stimulation 

with mycobacterial antigens and have the capacity for rapid production of IFN-γ 

after TCR stimulation. However, the kinetics of the response tends to be accelerated 

relative to controls and cured patients, but not sustained. As there was wide inter-
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individual variation in the kinetics of cytokine production in each group, it is difficult 

to recommend a single optimal time point for analysis of IFN-γ production. The 

detailed follow-up results also show that the measured parameters are affected by the 

bacterial load of the patients and change rapidly within the first weeks of treatment. 

The implications of the increased rapid intracellular IFN-γ responses during active 

mycobacterial infection need to be investigated as it is presently unclear whether this 

is a beneficial reaction or whether it indicates a brief and non-sustained and therefore 

inadequate effector mechanism. 

 

5.  INTRACELLULAR INTERLEUKIN-4 IN LYMPHOCYTES 

FROM PATIENTS WITH TUBERCULOSIS – EVIDENCE 

NECESSITATING A REVIEW OF ITS ROLE IN THE 

IMMUNE RESPONSE 

 

5.1  INTRODUCTION 

 

The Th1/Th2 Hypothesis postulates two different types of lymphocyte responses to 

stimulation with environmental or bacterial antigens that are defined by the cytokine 

production of the stimulated cells [3]. The Th1 response, characterized by, amongst 

other cytokines, IFN-γ production, is required in microbial infections while the Th2 

response, characterized by IL-4, IL-5, IL-10, IL-13 and others, is associated with 

humoral responses to helminth infections and allergens. The two responses are 

thought to have a reciprocally inhibitory effect on each other and an imbalance could 

cause inappropriate immune responses. In the context of TB in humans it has been 
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postulated that excessive IL-4 production may inhibit the required Th1 response to 

the microbial infection, which has been shown experimentally in mice infected with 

Leishmania parasites [72]. 

IL-4 is a pleiotropic growth factor produced by T cells, mast cells and 

activated basophils but protein and/or mRNA has also been reported to be produced 

by neutrophils [73], alveolar macrophages [74], dendritic cells [75], and human 

lymphoid and myeloid cell lines [76].  IL-4 receptors have been detected  on many 

cell types, including T and B lymphocytes, monocytes, granulocytes, fibroblasts, 

epithelial and endothelial cells [77] and IL-4 could be an autocrine/paracrine growth 

factor for these cells. Raised levels of IL-4 have been detected in cultures of T and B 

cells from patients with chronic lymphocytic leukaemia (CLL) thus maintaining the 

leukaemic cells’ extended viability in culture and in vivo (reviewed by Kay [78]). 

Levels of secreted IL-4 in cultures of stimulated T cells are low and 

notoriously difficult to measure in supernatants of stimulated PBMC’s. Some studies 

have attempted to do so in the context of TB but have not been able to detect it in 

significant concentrations [42-44,47], whereas others have found no difference in 

patients and controls [68], or higher levels in patients [56,67]. Intracellular IL-4 

measured by flow cytometry was found to be no different in patients and controls 

[64], lower in patients [47], higher in patients’ CD8 T cells [52] or CD4 T cells [45]. 

The Th1/Th2 hypothesis has thus not been confirmed in the context of human 

pulmonary TB and this study attempted to find additional evidence for its validity. 

As the findings could not be explained with the Th1/Th2 hypothesis, some 

supplementary in vitro experimental work was conducted to find an alternative 

explanation for the results. 

 



 68

5.2  MATERIALS AND METHODS 

 

5.2.1  Patients and controls 

 

The 21 patients for the follow-up study and 14 healthy controls for comparison were 

described in Chapter 3. Blood from three additional patients at diagnosis and two 

additional healthy control subjects was used for the supplementary experiments. 

  

5.2.2  Reagents 

 

Fluorochrome-labelled mAbs anti-CD3-PerCP, CD8-FITC, IL-4-PE (clone 8D4-8), 

HLA-DR-FITC, HLA-DR-allophycocyanin (APC) and rabbit anti-active caspase-3-

FITC were from BD-Biosciences. A rabbit control-FITC Ab is not supplied by the 

manufacturer. Anti-CD3 mAb for stimulation was OKT3 as in Chapter 4. RPMI 

1640 medium was from Gibco-BRL, saponin, BFA, lipopolysaccharide (LPS) and 

protease inhibitor cocktail from Sigma. The high sensitivity IL-4 ELISA kit was 

from R&D Systems and the Jurkat E6.1 T cell line was from ATCC. Recombinant 

IL-4 was a gift from Prof Bernard Ryffel of the University of Cape Town. 

 

5.2.3  Intracellular cytokine determination:  

 

The stimulation of whole blood with anti-CD3 antibody and the intracellular 

cytokine labelling has been described in Chapter 4. 

For the supplementary experiments with Jurkat cells and T cells, neutrophils 

and monocytes in whole blood incubated overnight with BFA, the labelling method 
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was modified to include a fixation step before the saponin treatment for the 

preservation of the light scatter of the cells: Jurkat cells or cultured whole blood was 

washed once with PBS and suspended in 0.1% BSA in PBS. An equal volume of 1% 

formaldehyde in PBS was added and after 15 minutes at room temperature the cell 

suspension was diluted with cold 0.1% BSA in lyse/wash buffer (see Appendix). 

When RBC lysis was complete, the samples were centrifuged, the supernatant 

aspirated and the pellet resuspended in the residual buffer. The cells were then 

labelled with mAbs as in Chapter 4. In the analyses of the flow cytometric data T 

lymphocytes were gated in a CD3-PerCP versus SSC plot (50 000 events in this gate 

were acquired). The IL-4 expression was bimodal and strongly IL-4-positive cells 

(IL-4high) were determined in the conventional way, using quadrant markers as for 

the IFN-γ expression (Chapter 4). The weakly IL-4-positive cells (IL-4low) were 

analysed by gating T cells as above and then CD8-positive and –negative cells in a 

CD8-FITC versus IL-4-PE plot. The IL-4+ cells in these gates were then plotted as 

histograms. The histogram of the cells labelled with control-PE antibody was 

overlaid on that of the IL-4 labelled cells and scaled to the same number of gated 

cells. Using the dedicated software, the control histogram was subtracted from the 

IL-4 histogram and the number of cells in the subtracted histogram was obtained 

from the histogram statistics after placement of an appropriate marker. 

 

5.2.4  Culture of Jurkat cells and preparation of cell lysate. 

 

Jurkat cells were cultured in RPMI 1640 medium with 5% FCS and penicillin and 

streptomycin at 106/ml with 1µg/ml BFA or the equivalent concentration of the 

solvent dimethyl sulphoxide (DMSO) overnight. After a sample was removed for 
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flow cytometry they were centrifuged and the cell pellets resuspended at 30x106/ml 

in cold lysis buffer consisting of 1.75% v/v Triton-X100 in 0.15M NaCl, 20mM 

sodium phosphate buffer pH 7.4 and 1% v/v protease inhibitor cocktail. After 30mins 

on ice the lysates were microfuged in the cold and the supernatants frozen at -80°C. 

Before testing in the IL-4 ELISA the lysates were diluted with an equal volume of 

lysis buffer without Triton-X. 

 

5.2.5  Statistical analysis 

 

Data for patients at diagnosis and control subjects were analyzed for significant 

differences from those for healthy subjects by means of the Mann-Whitney test 

whereas the Wilcoxon matched pairs test was used for the analysis of data for 

patients at diagnosis and at the end of treatment as well as data for stimulated and 

unstimulated cells (*: p=0.01-0.05, **: p=0.001-0.01, ***: p<0.001). 

  

5.3  RESULTS 

 

5.3.1  Intracellular IL-4 expression in T lymphocytes of TB patients. 

 

T cells and their CD8-positive and negative subsets were gated as in Fig. 5.1A. A 

small but a distinct strongly IL-4 positive T cell population was detected in blood 

from patients and healthy controls which could be accurately separated from the 

negative population (IL-4high, shown in Fig. 5.1B). The labelling was specific as it 

could be inhibited by pre-incubation of the mAb with recombinant IL-4 (comparable 

to that with isotype control-PE mAb, not shown). Background labelling with control 
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antibody was low, usually less than 50 events or 0.2% (Fig. 5.1B). The numbers of 

IL-4high cells in the CD8 population were mostly not significant, i.e. less that 100 

events, and were not analyzed. Significant numbers were however found in the CD8-

negative population, referred to as CD4 T cells, as they would comprise mainly 

CD4+  T cells but could also include some double-negative and NKT cells. When 

comparing the IL-4 antibody-labelled cells with the control antibody-labelled cells, it 

was apparent that all cell samples contained a large population that expressed low 

levels of IL-4 (IL-4low, shown in Fig. 5.1B) and overlapped with the negative 

population. Accurate percentages of these cells could not be obtained by the 

conventional method of analysis i.e. copying the quadrant marker from the control 

sample into the test sample, as the placement of the marker is subjective and small 

variations lead to large differences in the percentages of cells obtained. Therefore 

histogram subtraction according to the BD flow cytometry user manual was used to 

analyze these cells as described in Materials and Methods and shown in Fig. 5.1C. 

This mathematical method is absolutely objective and the results are only subject to 

some inaccuracy due to biological variation relating to the variable binding of the 

control antibody to different cell samples, which was greater in patients than in 

controls. 
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Figure 5.1 
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Figure 5.1:  A representative flow cytometric analysis showing the bimodal 

 hours 

expression of intracellular IL-4 by T cells from a TB patient at diagnosis. 

Whole blood was diluted 1:1 with RPMI+ medium prior to stimulation for 4

with anti-CD3 mAb at 0.1µg/ml, with BFA present for the last 3 hours. Labelling of 

intracelluar IL-4 and cell surface CD3 and CD8 was performed as described in 

Materials and Methods. The gating of CD3 T cells and CD8-positive and  

–negative subsets is shown in A and the IL-4high and IL-4low T cells in B. The 

histogram subtraction described in Materials and Methods, which was used to 

determine percentages of IL-4low CD4 and CD8 T cells, is illustrated in C where the 

shaded histogram represents the result of subtracting the control histogram (dotted 

line) from the IL-4 histogram (solid line). As the IL-4 histogram is bimodal and the 

control histogram unimodal, the subtracted histogram coincides almost exactly with 

the second peak of the IL-4 histogram. 
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Significant numbers of IL-4high CD4 T cells were not only found in the 

stimulated blood cultures but also in the unstimulated cultures of both patients and 

controls (shown for patients in Fig. 5.2A) and the percentages in the stimulated blood 

were significantly lower than in the unstimulated samples (p<0.05, Wilcoxon 

matched pairs test). In TB patients at diagnosis the percentages in unstimulated blood 

were higher (not significantly) than those in unstimulated blood of controls (Fig. 

5.2B) and there was a significant decrease in IL-4high CD4 T cells in patients between 

diagnosis and end of treatment at week 26 (p<0.01, Wilcoxon matched pairs test). 

Numbers of IL-4high  cells in the CD8 subset were mostly below the detection limit of 

the assay. 
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Figure 5.2 
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Figure 5.2:  High level IL-4 expression in the CD4 T cell subset. 

Expression in stimulated blood of patients at diagnosis is compared with that of 

unstimulated blood in Fig. 5.2A. The higher percentages in unstimulated blood are 

compared in controls, patients at diagnosis and at treatment end in Fig. 5.2B. 
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The percentages of IL-4low T cells in the CD4 T cell subset (Fig. 5.3A and B) 

and CD8 subset (C and D) were slightly higher or no different in stimulated 

compared to  unstimulated blood from patients and controls (shown for patients in A 

and C). Percentages of IL-4low CD4 T cells were lower than normal in stimulated 

blood from patients at diagnosis but at week 26 they were comparable to normal (B) 

whereas in CD8 T cells they were lower than normal in patients at diagnosis and at 

week 26 (D). Percentages in unstimulated blood were similar and are not shown. The 

differences were not statistically significant but p values close to 0.05 are given. 
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Figure 5.3 

CD4 - IL4low - Patients at Dx

Stimulated Unstimulated
0

10

20

30

40

50

60

70

80
p=0.10

IL
4+  (%

 o
f C

D
4)

CD4 - IL-4low - Stimulated

Controls Dx Week 26
0

10

20

30

40

50

60

70

80
p=0.12 p=0.10

IL
-4

+
(%

 o
f C

D
4)

CD8 - IL-4low - Patients at Dx

Stimulated Unstimulated
0

10

20

30

40

50

60

70

80

90

100

IL
-4

+  (%
 o

f C
D

8)

CD8 -  IL-4low - Stimulated

Controls Dx Week 26 
0

10

20

30

40

50

60

70

80

90

100
p=0.057

IL
-4

+  (%
 o

f C
D

8)

A B

C D

 



 79

Figure 5.3:  Low level IL-4 expression determined by histogram subtraction. 

Percentages of IL4low T cells is shown for the CD4 subsets (A and B) and CD8 

subset (B and C). The differences between stimulated and unstimulated cells (shown 

for patients at diagnosis in A and C) are not significant (Wilcoxon matched pairs 

test). The percentages in stimulated blood of controls, patients at diagnosis and at 

week 26 are compared in B and D and are not significant (Mann-Whitney test). Near- 

significant p values close to 0.05 are shown. 
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When the patients were divided into fast and slow responder groups 

according to sputum culture positivity at week 8 (as in the previous chapters), and 

their IL-4low percentages compared, the fast responders had more IL-4low cells that 

the slow responders, both in the CD4 and CD8 subset (Fig. 5.4 A and B respectively) 

and the difference in the CD4 subset was significant (p<0.05, Mann-Whitney test). 
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Figure 5.4 
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Figure 5.4:  Low level IL-4 expression in fast and slow responder patients. 

IL-4low expression in stimulated T cells is compared by means of the Mann-Whitney 

test in fast responder and slow responder patients, defined by negative or positive 

sputum culture at week 8 respectively, in the CD4 T cell subset (A) and CD8 subset 

(B).  
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If the Th1/Th2 hypothesis were true for the cellular immune response to TB, 

patients’ T cells should produce more IL-4 in response to TCR stimulation than those 

of controls. Instead, constitutive bimodal intracellular IL-4 expression was found in 

both patients and controls in this study and the results were not explicable in this 

context. An alternative explanation had to be considered and is possibly offered by a 

previous report of an association of intracellular IL-4 expression with apoptosis of 

human lymphocytes [33]. This report showed co-labelling of cells with antibody to 

IL-4 and the apoptosis-related molecules Apo2.7 and Bcl-2. The authors did not 

investigate or postulate a mechanism of this IL-4 co-expression. If intracellular IL-

4high expression was an indicator of apoptosis this could explain the higher 

percentages of IL-4high cells in patients compared to controls as an increase in 

apoptotic cells has been found in the circulation of TB patients [45,46]. The present 

study has found, by kinetic studies and intracellular IFN-γ labelling after anti-CD3 

stimulation (Chapter 4) that TB patients at diagnosis have more pre-activated T cells 

in the circulation than controls. These cells, when cultured in vitro, would have a 

shorter lifespan and would go into apoptosis sooner than T cells from uninfected 

donors. Re-stimulation of these pre-activated cells could prolong their lifespan and 

this could explain why lower numbers of IL-4high T cells were found in the stimulated 

cultures. To substantiate this thinking, unstimulated blood from 3 new TB patients at 

diagnosis was labelled for IL-4 and active caspase-3, the main effector caspase in 

apoptosis, using the same 4-hour culture conditions and labelling method as for the 

main study. This showed that most of IL-4high T cells co-expressed active caspase-3 

(shown for one patient in Fig. 5.5).  
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Figure 5.5 
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Figure 5.5:  Co-expression of IL-4high  and active caspase-3 in T cells from a TB 

patient at diagnosis.  

Whole blood was incubated for 4 hours without stimulation as in Materials and 

Methods. CD3-PerCP expression was used to gate the T cells of which the IL-4-PE 

(or control-PE) co-labelling with caspase-3-FITC is shown. The quadrant marker 

from the control-PE plot was copied into the caspase-3-FITC versus IL-4-PE plot. 
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To obtain additional evidence for the association of IL-4 expression with 

apoptosis induced by in vitro culture, whole blood from a healthy laboratory staff 

volunteer was diluted 1:1 with RPMI+ medium as in the tests of patients, but was 

incubated at 37°C in 5% carbon dioxide overnight in the presence of 5µg/ml BFA, 

which has been shown to induce apoptosis in the Jurkat T cell line [79], or the 

solvent dimethyl sulphoxide (DMSO). The leukocytes were then labelled for 

intracellular IL-4 and active caspase-3, using the method that includes a fixation step 

to obtain better flow cytometric separation of lymphocytes from neutrophils and 

monocytes by light scatter characteristics. As shown in Fig. 5.6, the T cells, gated by 

their low side scatter and CD3 expression, showed a clear population that co-

expressed IL-4 and caspase-3. 
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Figure 5.6 
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Figure 5.6:  Induction of apoptotic T cells by prolonged culture with BFA. 

Whole blood from a healthy volunteer was diluted 1:1 with RPMI+ medium and was 

incubated in polypropylene tubes for 24 hours at 37°C and 5% CO2 in the presence 

of 5µg/ml BFA (DMSO for the control). Leukocytes were then labelled for IL-4 and 

active caspase-3 as described in Materials and Methods, using the method that 

includes a fixation step. The gating according to low side scatter and CD3 expression 

is shown in A and IL-4 and caspase-3 co-expression in B. As a negative control for 

the specificity of the IL-4 labelling, 5µg recombinant IL-4 was added to the IL-4 

antibody 15 minutes before the addition to the cells. The quadrant marker from this 

plot was copied into the other two plots in B. 
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5.3.2  Co-expression of intracellular IL-4 and active caspase-3 in Jurkat cells 

 

To find further evidence of the association of IL-4 with apoptosis, the Jurkat T cell 

line was chosen for supplementary experiments. It has been shown that apoptosis is 

readily induced in these cells by low concentrations of BFA [79]. After incubating 

the cells with BFA at 1µg/ml for 24 hours the cells were labelled for IL-4 and active 

caspase-3. Live and apoptotic cells were gated in light scatter dot plots as shown in 

Fig. 5.7A. Co-expression of high levels of IL-4 and active caspase-3 is shown in Fig. 

5.7B where 40.9% of BFA-treated cells  and only 1.5% of the control cells, treated 

with only the solvent DMSO, co-expressed these molecules. The quadrant marker 

was copied from the plot showing the IL-4 labelling inhibited by the addition of 

recombinant IL-4. The BFA-treated cells that expressed only caspase-3 could be in a 

more advanced stage of cell death. 

An alternative method of inducing apoptosis in cells is culture in medium 

containing low concentrations of serum. Jurkat cells were cultured overnight in 

medium containing 0.5% FCS instead of the normal 5% and labelled for IL-4 and 

caspase-3 (Fig. 5.7C). The number of IL-4+ cells was 3% in 0.5% serum and 0.9% in 

5% serum and the majority of the IL-4+  cells co-expressed active caspase-3. 
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Figure 5.7 
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Figure 5.7:  Expression of intracellular IL-4 and active caspase-3 in Jurkat cells. 

The cells were gated in a light scatter plot shown in (A) to include both the high FSC 

viable cells and the low FSC apoptotic cells. The IL-4/caspase-3 co-expression is 

shown in (B) for cells treated for 24 hours with BFA at 1µg/ml and control cells 

treated with DMSO. The addition of recombinant IL-4 to the IL-4 antibody before 

addition to the cells abolished the labelling, confirming the specificity of antibody 

binding. In (C) the co-expression of IL-4 and caspase-3 is shown in Jurkat cells 

incubated for 24 hours in 0.5% FCS and control cells grown in 5% FCS. 
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To confirm the findings in Jurkat cells an alternative method, i.e. ELISA, was 

chosen to show the IL-4 production by these cells. Jurkat cells were incubated for 24 

hours in the presence of 1µg/ml BFA or an equivalent concentration of DMSO and 

approximately 1ml of the spent culture supernatants saved. Detergent lysates of the 

cells were prepared which were subsequently tested by means of a high sensitivity 

IL-4 ELISA kit. A sample of the cells was also labelled for flow cytometry and the 

results were comparable to those shown in Fig. 5.7. The ELISA showed just 

detectable levels of secreted IL-4 of 0.30pg/ml in the control supernatant but not in 

the cell lysate. In the BFA-treated culture secreted IL-4 was undetectable 

(<0.25pg/ml) but in the cell lysate 1.55pg/ml IL-4 was detected, thus confirming the 

intracellular staining results (summarized in Table 5.1). A repeat experiment gave 

similar results.  

 

 

Table 5.1: Parallel tests for IL-4 in Jurkat cells by flow cytometry and ELISA 

 Flow cytometry 

(% IL-4high  cells) 

ELISA (pg/ml) 

  Supernatant Lysate 

Control 1.8 0.30 <0.25 

BFA 50.6 <0.25 1.55 

 

 

5.3.3  Expression of intracellular IL-4 by apoptotic neutrophils 

 

During the flow cytometric data acquisition of the whole blood samples it was 

apparent that a subset of neutrophils, which die rapidly when cultured in vitro, were 
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labelled by the IL-4 antibody. The expression of IL-4 in neutrophils has been 

reported before [73] and it has also been shown that BFA increases the constitutive 

apoptosis of human neutrophils [80]. To investigate if the co-expression of IL-4 and 

caspase-3 holds true for neutrophils as well, whole blood was diluted with an equal 

volume of RPMI+ medium in polypropylene tubes as for the main study but was 

incubated in a 37° incubator with 5% carbon dioxide overnight in the presence of 

5µg/ml BFA (as for Fig. 5.6). The blood cells were labelled for flow cytometry using 

the method with a fixation step to preserve the light scatter characteristics of the 

neutrophils and monocytes for gating as shown in Fig. 5.8A. Monocytes in cultured 

blood have similar light scatter to neutrophils which were separated from monocytes 

by their lack of DR expression. The number of IL-4high cells, which co-expressed 

active caspase-3, was increased in the BFA-treated cells and a smaller population 

expressed only caspase-3 (Fig. 5.8B). The addition of recombinant IL-4 to the anti-

IL-4 antibody before reaction with the cells inhibited the antibody binding, thus 

confirming the specificity of the labelling. The quadrant marker in this plot was 

copied into the other plots of Fig. 5.8B.  
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Figure 5.8 
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Figure 5.8:  Expression of intracellular IL-4 and active caspase-3 in peripheral 

blood neutrophils. 

Whole heparinized blood from a healthy control was diluted 1:1 with RPMI+ 

medium and incubated 24 hours with 5µg/ml BFA in polypropylene tubes. 

Intracellular IL-4, active caspase-3 and cell surface HLA-DR were labelled as 

described in Materials and Methods with the inclusion of a fixation step to preserve 

the light scatter characteristics of neutrophils and monocytes. Neutrophils were gated 

as shown in A by their high SSC and lack of HLA-DR-APC binding and then 

analyzed for IL-4 and caspase-3 co-expression (B). For the control IL-4 labelling was 

inhibited by the addition of recombinant IL-4. The quadrant marker from the control 

plot was copied into the other plots. 
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5.3.4  Expression of intracellular IL-4 by apoptotic monocytes 

 

As Pouliot et al [74] demonstrated IL-4 protein and mRNA expression in alveolar 

macrophages of all their normal test subjects and asthma patients, peripheral blood 

monocytes were included in the analysis of whole blood incubated in the presence of 

5µg/ml BFA for 24 hours. Monocytes in the high side scatter population were 

separated from neutrophils by their DR expression (Fig. 5.9A) and labelled for IL-4 

and caspase-3 (Fig. 5.9B). In the DMSO control most monocytes produced low 

levels of IL-4 and a low percentage produced high levels and co-expressed  

caspase-3. In the BFA-treated blood the IL-4high cells co-expressed caspase-3  and 

there was also a significant  population that expressed caspase-3 only. The quadrant 

marker in the control plot, where IL-4 labelling was inhibited by recombinant IL-4, 

was copied into the other plots in Fig. 5.9B. 
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Figure 5.9 
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Figure 5.9:  Expression of IL-4 and active caspase-3 by peripheral blood 

monocytes. 

Heparinized whole blood from a healthy control was incubated with BFA and 

labelled with mAbs as for Fig. 5.8. Monocytes were gated by their high SSC and 

HLA-DR expression as shown in A and then analyzed for IL-4 and caspase-3 co-

expression with the control as in Fig. 5.8. DR expression is down regulated in 

apoptotic monocytes but still sufficient for gating. 
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5.3.5  Stimulation of neutrophils and monocytes decreases IL-4high  expression 

 

As lipopolysaccharide (LPS) is known to save neutrophils from apoptosis [81], IL-4 

expression in neutrophils and monocytes in whole blood treated with 50pg/ml LPS 

overnight was compared with that in untreated cells, shown in Fig. 5.10. As for Figs 

5.8 and 5.9, the high SSC cells were separated into neutrophils and monocytes by 

their DR expression. The percentage of IL-4high  neutrophils and monocytes, shown 

in the relevant quadrants, was markedly lower in the LPS-treated blood than in the 

control suggesting that stimulation of these cells delays their apoptosis in vitro. 
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Figure 5.10 
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Figure 5.10:  Inhibition of intracellular IL-4 expression in neutrophils and 

monocytes by stimulation with LPS. 

Heparinized whole blood from a healthy control was diluted 1:1 with RPMI+ 

medium in polypropylene tubes and stimulated overnight with 50pg/ml LPS. 

Leukocytes were labelled with IL-4-PE and HLA-DR-FITC using the method with a 

fixation step. Monocytes and neutrophils in the high SSC population were gated 

according to whether they expressed HLA-DR or not, respectively, and the 

percentages of IL-4+ cells compared. Active caspase-3 was not labelled in these cells. 
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5.4  DISCUSSION 

 

As outlined in the introduction, attempts to prove the Th1/Th2 hypothesis in the 

clinical setting of tuberculosis have not been very conclusive which may, in part, be 

due to the fact that many cells express IL-4 receptors and IL-4 secreted by cells into 

the medium during in vitro culture may be consumed by the same or other cells in an 

autocrine or paracrine manner. The detection of mRNA for IL-4 does not necessarily 

indicate that the cytokine is expressed and secreted, as was shown in human B 

lymphocytes and lymphoid cell lines [76]. An additional confounding factor is the 

existence of an alternatively spliced form of IL-4, IL-4δ2 [82], that acts as a 

competitive antagonist binding to the α chain of the IL-4 receptor and cannot be 

distinguished from IL-4 by currently available antibodies. 

Secreted IL-4 has been detected by ELISA in the medium of PHA- or 

PMA+ionophore-stimulated PBMCs [76], Mtb sonicate-stimulated and unstimulated 

PBMCs [56], and PBMCs stimulated with Mtb recombinant antigens and peptides 

[68], as well as by ELISPOT in Mtb antigen-stimulated PBMCs [67]; IL-4 mRNA 

could also be detected in ex vivo unstimulated PBMCs [45,46,83]. In a recent report 

it was shown that IL-4 acts as an autocrine growth factor in dendritic cells [75]. The 

authors detected very low levels in the cells by means of an amplification step in 

their labelling protocol and rarely detected it in the medium as a result of its binding 

to cell surface receptors. 

With the methods used here such low level secretion could just be detected in 

spent medium of Jurkat cells with a very sensitive ELISA assay, and for the detection 

of intracellular IL-4 by flow cytometry a specially optimized labelling protocol was 
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used in which the addition of 3% PEG to the buffers achieved additional sensitivity 

when compared to buffers without PEG (not shown). Intracellular IL-4 was also 

detected in unstimulated T cells as did Dlugovitzky et al [56] in unstimulated 

supernatants. A comparison of labelled peripheral blood lymphocytes from a patient 

in ex vivo blood with those in 4-hour stimulated blood showed the presence of IL-

4low  but not  IL-4high T cells in the ex vivo blood (not shown), suggesting that the low 

intracellular IL-4 levels are steady-state levels of IL-4 whereas  IL-4high T cells are 

cells that are induced by in vitro culture. The percentages of IL-4low T cells in 

patients tested at diagnosis in this study were lower than in control subjects and 

lower than in the patients at the end of treatment. They were also lower in the 

patients that responded more slowly to treatment. This suggests that this IL-4 

production is an advantage and would confirm a growth factor function for IL-4 in 

the response to Mtb infection.  

The bimodal expression of intracellular IL-4 has, to my knowledge, not been 

reported before but IL-4 has been associated with apoptosis [33]. Apoptosis is cell 

death that occurs naturally during tissue turnover and after activation in the terminal 

phase of the cell-mediated immune response. In lymphocytes it is triggered by either 

the engagement of death receptors, such as Fas, or by cytokine withdrawal (reviewed 

in [7]). Signals from death receptors are transmitted via an intracellular signalling 

complex involving adaptor molecules while cytokine withdrawal initiates stress-

induced signals within the cell that are transmitted via the mitochondria and the Bcl-

2 family proteins. Both these pathways lead to the activation of caspases, with 

caspase-3 being a key player in the effector phase and the loss of cell integrity.  

The demonstrated co-expression of high levels of IL-4 with active caspase-3 

in a subset of peripheral blood T lymphocytes, neutrophils and monocytes and in 
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Jurkat cells indicates that these cells are in the process of apoptosis. This is in 

agreement with the findings of Stein et al [33] who demonstrated the co-expression 

of IL-4 and the apoptosis-associated molecule Apo2.7 in PBMC, the T cell line 

MOLT-4 and the monocytic line THP-1 after inducing apoptosis with a variety of 

drugs. Like these authors, it was found here that the kinetics of the co-expression of 

IL-4 and caspase-3 vary in the different cell types, the co-expression in lymphocytes 

being longer than in neutrophils or monocytes, with a greater likelihood of detecting 

it at the end of the culture period. 

The findings of this study have led me to postulate that IL-4 is produced as an 

autocrine/paracrine growth factor in various cell types and that the secretion ceases at 

the onset of apoptosis as a result of a stimulus or lack of a stimulus which could be 

either a soluble factor or a ligand(s) on the surface of other cells. Intracellular 

accumulation of IL-4 then takes place during the apoptotic process until cell death. 

The neutrophils labelled for IL-4 shown in Fig. 5.10 were not treated with BFA to 

stop secretion of the cytokine which would support this view. Whether the 

accumulated intracellular IL-4 is released into the medium by dead cells before their 

engulfment by phagocytic cells is unknown. If IL-4 is an essential growth factor, my 

finding that T cells with constitutive low level production of IL-4 were reduced in 

TB patients at diagnosis when compared to those from healthy controls, may indicate 

impaired function. The higher numbers of apoptotic cells that express higher levels 

of IL-4 in patients is in line with previous findings of increased numbers of apoptotic 

T cells in the blood TB patients [45,46]. 

In summary, the presented data relating to intracellular IL-4 expression and 

the conflicting large volume of published data of IFN-γ production by T cells of TB 

patients (reviewed in Chapter 4) suggests that a reconsideration of the role of IL-4 is 
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warranted and that a continued search for other defects of cell-mediated immunity in 

these patients is needed. 

 

6.  GENERAL DISCUSSION 

  

The findings of this thesis have pointed out several important aspects in the study of 

immune parameters during active TB disease which have to be taken into 

consideration when performing similar investigations.  

The immune cells of the TB patients are in an abnormal state and accurate 

comparisons of test results for patients at or soon after diagnosis, when the bacterial 

load is high, cannot be made with those from healthy subjects. The results of tests 

performed in this study changed rapidly within the first few weeks of treatment and 

if groups of patients are tested, this has to be done at accurately matched time points 

after start of treatment. In this study, with the exception of the absolute monocyte, 

NK and NKT cells counts, the parameters in patients at treatment end were 

comparable to normal subjects.  

The immunophenotyping was found to be an accurate and reproducible test 

and the detection of a novel NKT cell subset should be confirmed and their 

significance investigated in larger number of patients. Phenotyping is also a 

relatively low cost and quick assay and may therefore be more useful in large scale 

applications. 

The stimulation of patients’ blood in in vitro culture and the measurement of 

cytokine production and proliferation is complicated by the abnormal immune status 

of the patients in that they seem to have relatively large numbers of cells previously 

activated by mycobacterial antigens which, when re-activated, rapidly progress 
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towards apoptosis, after which no more functional assays can be done on them. The 

obvious cell clumps in blood of TB patients at diagnosis stimulated with live Mtb or 

PPD that I observed in optimization experiments for this study pointed out this 

problem. This was also shown experimentally in vitro by Soruri et al [84] who 

produced PPD-activated T cells in culture and then re-activated them. They found 

that re-activation with PPD caused apoptosis in a concentration-dependent manner 

and the authors postulate that this happens in vivo in caseous tuberculous granulomas 

in the lungs. To my knowledge, the variation in the kinetics of IFN-γ production has 

not been shown before, and could partially explain the extremely variable results and 

paradoxes that characterize the investigations of this essential cytokine, illustrated in  

Tables 4.1, 4.2 and 4.3 (pages 43-44) compiled from my literature search. The results 

of this study indicate that the intracellular IFN-γ assay after a short stimulation of 

approximately 6 hours may be helpful in the identification of Mtb-infected 

individuals. 

The role of IL-4 in the context of the Th1/Th2 hypothesis, analogous to its 

role in the mouse, but not proved in human TB, could not be confirmed in this study. 

On the contrary, the results point to a beneficial and normal function of  

IL-4 as a growth factor and an interesting mechanism of secretion or retention of this 

cytokine in various cell types in response to apoptosis-inducing conditions. The 

demonstration of high levels of intracellular IL-4 expression after a relatively short 

exposure to BFA leads one to cautious interpretation of results of assays that measure 

the intracellular expression of this cytokine in which BFA is usually added to 

cultures to prevent the secretion of the cytokine. 

In summary, regarding the hypothesis formulated for this study, point (1) of 

the alternative hypothesis can be said to be true for patients at diagnosis when their 
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immune responses were found to be abnormal. At the end of treatment, when there 

was no evidence of infection, they were essentially normal. The exceptions of the 

low absolute monocyte, NK and CD3bright NKT cell counts at the end of treatment 

could be an effect of the treatment itself. Point (2) of the alternative hypothesis was 

found not to be true for the conventional immune parameters but was true for a 

newly described NKT cell subset and possibly constitutive production of IL-4 by T 

cells of patients at diagnosis. Both these are, to my knowledge, new findings and 

would have to be confirmed by more investigations on larger numbers of patients. 
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8.  APPENDIX 

 

8.1  SUPPLIERS OF REAGENTS 

 

BD-Biosciences (Erembodegem, Belgium).  

ATCC (Rockville, MD, USA) 

Gibco-BRL (Paisley, Scotland), 

Sigma (Kempton Park, South Africa).  

R&D Systems (Minneapolis, US)  

Beckman Coulter (Johannesburg, South Africa),  

Merck (Cape Town, South Africa). 

 

8.2  SOLUTIONS 

 

Phosphate-buffered saline (PBS):  

NaCl    8.0g 

KCl    0.2g 

Na2HPO4.2H2O  1.44g  per litre 

KH2PO4    0.24g 

NaN3    0.5g 

 

Lyse/wash buffer:  

PBS containing 0.05% saponin and 3% PEG 4000 
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RPMI+ 

RPMI 1640 medium (Gibco) with GlutaMAX, bicarbonate and 25mM HEPES, to 

which 100µg/ml Streptomycin, 100U/ml Penicillin and 50µM 2-Mercaptoethanol is 

added just before use. The same medium, but without HEPES, was used for the 

overnight incubations, the culture of Jurkat cells and the lymphocyte proliferation.  
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Summary

 

The immune responses against pulmonary tuberculosis are still poorly
defined. This study describes changes in leucocyte and lymphocyte subsets
during treatment to find reliable immunological markers for the disease and
treatment response. Flow cytometric peripheral blood immune phenotyping,
routine haematology and sputum microbiology were performed on 21 HIV-
negative adult tuberculosis (TB) patients with positive sputum cultures dur-
ing therapy in comparison with 14 healthy purified protein derivative (PPD)-
positive volunteers. Patients at diagnosis showed high absolute neutrophil
and monocyte counts which fell during treatment but low lymphocyte subset
counts which increased [except natural killer (NK) and NK T cells]. High
counts of a population of CD3

 

dim

 

/CD56

  

++++

 

 NK T cells at diagnosis correlated sig-
nificantly with negative sputum culture after 8 weeks of treatment. A multi-
variate classification technique showed improved correlation when NK cells
were taken into account. In conclusion, peripheral blood white cell counts
change significantly during treatment and counts at diagnosis, especially
CD3

 

dim

 

/CD56

  

++++

 

 NK T cells, hold promise in predictive models of TB treatment
response.

 

Keywords:

 

 immunophenotyping, NK T cells, treatment response, tuberculosis 

 

Introduction

 

The mechanisms of protective immunity against 

 

Mycobacte-
rium tuberculosis

 

 (Mtb) infection and disease in humans
have not been fully clarified. Many reports have addressed
the potential immunological defect(s) by comparing
immune phenotypes in actively diseased patients to those
with latent infection. Most of these investigations have
focused on T lymphocyte subsets, particularly CD4

 

+

 

 and 

 

γδ

 

T cells, generally reporting depressed CD4

 

+

 

 T cells in periph-
eral blood of tuberculosis (TB) patients [1–3], but results are
discrepant for 

 

γδ

 

 T cells, where both elevated [4,5] and nor-
mal [6,7] numbers have been found. Only a few but incon-
clusive reports of B lymphocyte and natural killer (NK) cell
numbers in TB patients exist [1,3,8,9] and NK T cells have, to
our knowledge, not been investigated in TB patients. Gener-
ally, contributors to TB susceptibility remain unclear and
follow-up data during therapy are scanty.

The aim of our study was to investigate immune param-
eters during therapy and this report describes a systematic
follow-up of leucocyte counts and lymphocyte subsets in
TB patients for the entire 26-week treatment period.

Furthermore, due to the fact that the identification of high-
risk patients for slow response to chemotherapy would have
important clinical implications, we analysed peripheral
blood immunophenotypes as potential surrogate markers of
early TB treatment response and applied a multivariate clas-
sification technique to identify fast and slow responders to
treatment by immunophenotype at diagnosis.

 

Materials and methods

 

Setting

 

This study was conducted in an epidemiological field site in
metropolitan Cape Town, where the incidence of new smear
and/or culture-positive TB was on average 313/100 000
population/year (1993–98) [10].

 

Patients and controls

 

The study was approved by the Ethics Committee of the Fac-
ulty of Health Sciences at Stellenbosch University and writ-
ten, informed consent was obtained from all participants.
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Twenty-nine new smear-positive pulmonary TB patients
were screened for this study. Inclusion criteria included:
sputum culture-positive for Mtb, no multi-drug resistance,
HIV-negative, taking at least 80% of prescribed doses during
the intensive phase of treatment. Eight patients were
excluded for the following reasons: non-compliance, multi-
drug-resistant TB, negative sputum culture, refusal of HIV
testing or incomplete follow-up visits. Twenty-one patients
with first-time TB were enrolled and studied throughout
treatment. Blood samples were taken at diagnosis prior to
initiation of treatment and at weeks 1, 5, 13, and 26 after start
of treatment (the last blood sample being taken on the last
day of chemotherapy). Sputum smears and Bactec cultures
were performed on days 1 and 3, and weeks 1, 2, 4, 8, 13 and
26 after start of treatment. A total white cell count (WCC)
and differential blood count was performed on all blood
samples using a Bayer Advia 120. The patients received stan-
dard therapy in accordance with the South African National
Tuberculosis Program [based on World Health Organization
(WHO) guidelines]. Therapy consisted of a fixed drug com-
bination (depending on body weight) containing isoniazid
(320–400 mg/day), rifampicin (480–600 mg/day), ethambu-
tol (800–1200 mg/day) and pyrazinamide (1000–1250 mg/
day) during the intensive phase (8 weeks) followed by
rifampicin and isoniazid during the continuation phase (the
remaining 18 weeks) under direct observation. Posterior–
anterior and lateral chest X-rays (CXR) were taken at com-
mencement of treatment allowing a 4-week time window on
either side of diagnosis. The chest radiographs were evalu-
ated using a standardized method [11] by a physician who
had no prior knowledge of the patient’s condition. The
extent of disease was estimated using a one-dimensional
view of the upright posterior–anterior radiograph and by
using the right upper lobe as reference area.

One blood sample was taken from each of 14 healthy HIV-
negative, purified protein derivative (PPD) skin test-positive
(

 

>

 

 15 mm) volunteers resident in the same community to
serve as controls. These participants had no clinical or radio-
logical signs of active TB.

 

Processing of sputum samples for Ziehl–Nielsen smear 
and culture

 

Sputum samples were processed for culture using standard
methods [12], which included decontamination according
to the Bactec 460TB System Procedure Manual (Becton
Dickinson, Sparks, MD, USA) before inoculation into a
Bactec 12B vial. The vials were incubated at 37

 

°

 

C and the
growth index (GI) was read daily. Sputum smears, direct
and concentrated, were examined for acid-fast bacilli using
the Ziehl–Nielsen (ZN) stain and evaluated using the scor-
ing system of the International Union against Tuberculosis
and Lung  Disease  [13].  If  multiple  smears  were
performed  the smear with the highest grade was recorded
for that time-point.

 

Reagents

 

Fluorochrome-labelled monoclonal antibodies (mAb) anti-
CD45-peridinin chlorophyll (PerCP), CD3-phycoerythrin
(PE), CD3-PerCP, CD4-fluorescein isothiocyanate (FITC),
CD8-FITC, CD19-FITC, CD56-FITC, 

 

γδ

 

 T cell receptor
(TCR)-FITC, interferon (IFN)-

 

γ

 

-PE, interleukin (IL)-4-PE
and rabbit anti-active caspase 3-FITC were from BD-
Bioscience (Erembodegem, Belgium). A rabbit FITC control
antibody was not available from the manufacturer. OKT3
anti-CD3 antibody was spent hybridoma medium. The
hybridomas were from the American Type Culture Collection
(ATCC, Rockville, MD, USA). V

 

α

 

24-PE was purchased from
Beckman Coulter (Johannesburg, South Africa), saponin
from Sigma (Kempton Park, South Africa) and polyethylene
glycol 4000 (PEG) from Merck (Cape Town, South Africa).

 

Immunophenotyping by flow cytometry

 

Whole blood (50 

 

µ

 

l per test), anti-coagulated with sodium
heparin, was washed once with phosphate-buffered saline
(PBS), suspended in 100 

 

µ

 

l of 0·1% bovine serum albumin
(BSA), 0·05% sodium azide in PBS and added to the
required antibody mixtures. After 20 min at 4

 

°

 

C, cells were
washed and red blood cells (RBCs) lysed at the same time
by diluting with 3–4 ml cold PBS containing 0·05% sapo-
nin, 0·05% sodium azide and 3% PEG. (We have noted pre-
viously that RBCs in whole blood from TB patients
frequently failed to lyse when treated with commercial lys-
ing solution and therefore used saponin as alternative lysis
solution. The addition of 3% w/v PEG to the saponin buffer
prevents damage and clumping of cells  in blood obtained
at diagnosis and also enhances the formation of antigen/
antibody complexes [14]). After centrifugation at 700 

 

g

 

 the
cell pellets were fixed in 4% formaldehyde in PBS and
stored at 4

 

°

 

C in the dark until flow cytometric analysis in a
Becton-Dickinson fluorescence activated cell sorter
(FACS)Calibur using CellQuest software. Lymphocytes were
gated in a CD45-PerCP 

 

versus

 

 side scatter plot (10 000
events in this gate were acquired) and these were analysed
further for expression of CD3 and CD4 (or CD8, CD19,
CD56, 

 

γδ

 

TCR) in the FL1 and FL2 channels, respectively.
The lymphocyte sums calculated were all between 95 and
100%. Isotype control antibodies were not used routinely as
the background cell surface staining of 

 

ex vivo

 

 blood lym-
phocytes is very low (not shown).

 

Intracellular cytokine labelling

 

Briefly, whole heparinized blood was mixed 1 : 1 with RPMI-
1640 medium with antibiotics in polypropylene tubes and
incubated at 37

 

°

 

C with or without 0·1 

 

µ

 

g/ml OKT3 antibody
for 4 h, with 10 

 

µ

 

g/ml Brefeldin A present during the last 3 h.
After incubation the blood was diluted with cold PBS con-
taining 0·05% saponin, 0·05% sodium azide and 3% PEG
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(lyse/wash buffer), centrifuged in the cold at 700 

 

g

 

, and the
cells in the pellet were labelled with mAbs in the above buffer
containing 0·1% BSA for 20 min in the cold. After one wash
with cold lyse/wash buffer, the cell pellets were fixed in 4%
formaldehyde in PBS and analysed in the flow cytometer.

 

Classification of patients into treatment response groups

 

In order to find possible differences between fast and slow
responders to treatment, patients were divided into two
responder groups according to Bactec culture status at week
8 after start of treatment. Of the 21 enrolled patients eight
were culture-negative (fast responders) and 13 culture-
positive (slow responders).

 

Statistical analysis

 

Data for patients at diagnosis and at the end of treatment
were analysed for significant differences from those for
healthy  subjects  by  means  of  the  Mann–Whitney  test.
The Friedman test with Dunn’s post-test was used to analyse
longitudinal changes in parameters with respect to the
diagnosis  time-point  values  (*  or  #:  

 

P

 

 

 

=

 

 0·01–0·05,  **  or
##: 

 

P

 

 

 

=

 

 0·001–0·01, *** or ###: 

 

P

 

 

 

<

 

 0·001; asterisks refer to
the Mann–Whitney test and hashes to the Friedman test).
The Pearson 

 

χ

 

2

 

 test and Fisher’s exact test were used to
analyse categorical CXR data.

To find the best combination of variables at diagnosis that
may have potential for the prediction of early treatment
response,  as  defined  by  the  week  8  Bactec  sputum
culture,  a support vector machines analysis was performed,
a multivariate discriminant classification technique that has
received much attention in the statistical literature in the past
few years [15]. Combinations of up to a maximum of five
variables were analysed and, using the variables included in
the optimal classification model, a leave-one-out cross-
validation table was constructed.

 

Results

 

Demographic data of study population

 

The 21 patients were all cured after 26 weeks of standard
directly observed treatment short course (DOTS) therapy.
Three patients were infected with an Isoniazid-monoresis-
tant strain of mycobacteria. After 8 weeks of treatment 15
patients were smear-negative and six were smear-positive,
while only eight were culture-negative and 13 culture-
positive (two of these were Isoniazid-monoresistant). The
week 8 Bactec culture was therefore used as the more sensi-
tive indicator of early treatment response. No significant dif-
ferences between fast and slow responders in CXR findings at
diagnosis were found (including extent of disease and pres-
ence, number or size of cavities). The age and sex distribu-
tion of patients is given in Table 1.

 

Longitudinal changes in total and differential WCC

 

The total WCC and absolute neutrophil counts were signifi-
cantly elevated in patients at diagnosis relative to controls
(Fig. 1a,b) but returned to normal levels by the end of treat-
ment. The absolute monocyte counts were also significantly
elevated at diagnosis but then dropped dramatically to sig-
nificantly depressed levels at week 26 (Fig. 1c). The absolute
lymphocyte count of patients at diagnosis was significantly
depressed at diagnosis, but counts were no longer signifi-
cantly different from controls at the end of treatment
(Fig. 1d).

 

Lymphocyte subsets

 

Percentages of T lymphocytes and NK cells were not signif-
icantly different from those of controls at diagnosis or at
week 26, while percentages of B lymphocytes were depressed
in patients at diagnosis (

 

P

 

 

 

<

 

 0·05) and recovered during
treatment (not shown). The absolute lymphocyte subset
counts were calculated from the subset percentages and
absolute lymphocyte counts (Fig. 2). The absolute CD3

 

+

 

 T
cell and absolute CD19

 

+

 

 B cell counts were significantly
depressed in patients at diagnosis, but at week 26 these were
not significantly different from those of control subjects
(Fig. 2a,b). Absolute CD56

 

+

 

/CD3

 

–

 

 NK cell counts at diagno-
sis showed a trend towards lower numbers (

 

P

 

 

 

=

 

 0·06) and
remained depressed until week 26 (

 

P

 

 

 

<

 

 0·05, Fig. 2c).

 

T lymphocyte subsets

 

The percentages of CD4

 

+

 

, CD8

 

+

 

 and 

 

γδ

 

 T cells and the
CD4 : CD8 ratio at diagnosis and at week 26 were not sig-
nificantly different from those of control individuals and
only small fluctuations were detected during follow-up. We
detected two populations of NK T cells that differed in their
levels of expression of CD3: a CD56

 

+

 

 cell population which
expressed CD3 levels comparable to conventional T cells
(CD3

 

bright

 

/CD56

 

+

 

 NK T cells) and one that expressed reduced
levels (CD3

 

dim

 

/CD56

 

+

 

 NK T cells). The percentages of
CD3

 

bright

 

/CD56

 

+

 

 NK T cells in patients at diagnosis and at
week 26 were not significantly different from those of
controls (not shown) and CD3

 

dim

 

/CD56

 

+

 

 NK T cells are
described in detail below. Absolute numbers of T cell subsets,
calculated from the absolute lymphocyte count and the

 

Table 1.

 

Age and sex data of patients and controls.

Patients

ControlsFast responders

 

a

 

Slow responders

Total (no.) 8 13 14

Male (no.) 3 9 3

Female (no.) 5 4 11

Age (years) 18–51 19–50 20–56

 

a

 

As defined by negative sputum culture at week 8.
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percentages determined by immunophenotyping are illus-
trated in Fig. 3. CD4

 

+

 

 T cell numbers (Fig. 3a) were signifi-
cantly depressed at diagnosis relative to control subjects
(

 

P

 

 

 

<

 

 0·01) and, while numbers increased significantly during
treatment, they were still lower at week 26 than in controls
(

 

P

 

 

 

=

 

 0·06). CD8

 

+

 

 T cell counts were lower at diagnosis,
although not significantly so (Fig. 3b, 

 

P

 

 

 

=

 

 0·13) and 

 

γδ

 

 T cell
counts were significantly depressed (Fig. 3c, 

 

P

 

 

 

<

 

 0·05) but
both subsets recovered during treatment to normal levels at
week 26. Absolute numbers of CD3

 

bright

 

/CD56

 

+

 

 NK T cells
were lower at diagnosis (

 

P

 

 

 

=

 

 0·06) and were significantly low
at the end of treatment (

 

P

 

 

 

<

 

 0·05, Fig. 3d).

 

Fig. 1.

 

Absolute leucocyte counts of healthy control subjects and tuber-

culosis (TB) patients, calculated from the total white cell count and 

differential blood count. (a) Total white cell count (WCC), (b) neutro-

phils, (c) monocytes, (d) lymphocytes. The boxes extend from the 25th 

to the 75th percentile with a line at the median and the whiskers show 

the highest and lowest values. Data for patients at diagnosis (Dx) and 

at the end of treatment at week 26 were analysed for significant differ-

ences from those for healthy subjects by means of the Mann–Whitney 

test (*

 

P

 

 

 

<

 

 0·05, **

 

P

 

 

 

<

 

 0·01, ***

 

P

 

 

 

<

 

 0·001). The Friedman test with 

Dunn’s post-test was used to analyse changes in parameters during the 

patients’ follow-up with respect to values at diagnosis (#

 

P

 

 

 

<

 

 0·05, 

##

 

P

 

 

 

<

 

 0·01, ###

 

P

 

 

 

<

 

 0·001).
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Fig. 2. Absolute lymphocyte subset counts of healthy control subjects 

and tuberculosis (TB) patients, calculated from the absolute lymphocyte 

counts and the percentages of subsets determined by flow cytometric 

immunophenotyping. (a) T lymphocytes (CD3+), (b) B lymphocytes 

(CD19+), (c) natural killer (NK) cells (CD3–CD56+). Box and whisker 

plots and statistical analyses as for Fig. 1 (Mann–Whitney test *P < 0·05, 

**P < 0·01, ***P < 0·001, Dunn’s post-test #P < 0·05, ##P < 0·01, 

###P < 0·001).
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A CD3dim/CD56++++ NK T cell subset was more prominent 
in patients

We detected an unusual subset of lymphocytes more fre-
quently in patients (nine of the 21 patients had ≥ 2% at diag-
nosis) than in controls (two of 14 had ≥ 2%). In the flow
cytometric analyses, of which Fig. 4 is an example, these cells
were weakly CD3+ (CD3dim), CD4–, weakly CD8+ or CD8–

and CD56+, shown in region R2 in Fig. 4d, and also γδTCR–

(not shown). The number of cells in region R2, as illustrated
in Fig. 4, expressed as a percentage of the cells in the CD45
gate, was determined for all blood samples. Figure 5a shows
increased percentages of CD3dim/CD56+ NK T cells in
patients at diagnosis relative to control subjects, although
this was not statistically significant (P = 0·23). Very low or
undetectable numbers remained so during follow-up, while
higher numbers persisted and sometimes increased after
start of treatment (shown for fast and slow responders in
Fig. 5c); the highest recorded was 20·3% at week 1.

Differences between treatment response groups

When percentages and absolute numbers of each cell type at
diagnosis in fast responders were compared to those at diag-
nosis of slow responders with a Mann–Whitney test, the per-
centages and absolute counts of CD3dim/CD56+ NK T cells at
diagnosis were the only parameters that correlated signifi-
cantly with treatment response − they were significantly
higher at diagnosis in fast responders (P = 0·01, Fig. 5b). The
percentages of CD3dim/CD56+ NK T cells did not change sig-
nificantly during follow-up and are shown for the fast and
slow responding patients in Fig. 5c.

As the CD3dim/CD56+ NK T cell numbers at diagnosis did
not correlate with treatment response in all patients, we used
a multivariate classification technique to find combinations
of variables that may classify patients more accurately into
fast and slow responders. Differences between early response
phenotypes were most prominent at diagnosis and the vari-
ables at diagnosis that were used for the analysis were the
absolute numbers of leucocyte, lymphocyte and T cell sub-
sets. In the support vector machines discriminant analysis
the best classification of patients into the two treatment
response groups could be obtained with just two variables:
absolute CD3dim/CD56+ NK T cells and absolute NK cells
which correctly classified all 13 slow responders and five of
eight fast responders in a leave-one-out cross-validation.

CD3dim/CD56++++ NK T cells produce IFN-γγγγ and IL-4

To assess functional aspects of CD3dim/CD56+ NK T cells we
analysed flow cytometric data of intracellular IFN-γ and IL-
4 measurements in saponin-permeabilized T cells after a 4-h
stimulation of whole blood with anti-CD3 antibody. In sam-
ples from patients with a prominent CD3dim/CD56+ NK T
cell population, these cells are found in the CD3-PerCP

Fig. 3. Absolute T cell subset counts of healthy control subjects and 

tuberculosis (TB) patients, calculated from the absolute T cell counts 

and the percentages of the subsets determined by flow cytometric 

immunophenotyping. (a) CD4+ T cells, (b) CD8+ T cells, (c) γδ T cell 

receptor (TCR+) T cells, (d) CD3bright/CD56+ natural killer (NK) T cells. 

Box and whisker plots and statistical analyses as for Fig. 1 (Mann–

Whitney test *P < 0·05, **P < 0·01, ***P < 0·001, Dunn’s post-test 

#P < 0·05, ##P < 0·01, ###P < 0·001).
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versus side scatter plots used for gating the T lymphocytes.
The CD3dim and CD3bright cells were analysed separately. IFN-
γ was only produced by some patients and the CD3dim and
CD3bright cells produced comparable low levels of this cytok-
ine. All patients showed IL-4 production by both stimulated
and unstimulated T cells and this tended to be higher in
CD3dim T cells (Fig. 6). The CD3dim population contains
more cells that express active caspase 3, an indicator of apo-
ptosis, and this expression correlates with higher levels of
intracellular IL-4.

Discussion

In this study we have shown significant changes in absolute
numbers of neutrophils, monocytes and lymphocyte subsets
during active TB. Our finding that these changes occur
already during the first weeks of treatment is important, as it
suggests strongly that TB patients tested at different time-
points during their treatment should not be grouped
together in the analysis of results. We detected a CD3dim/
CD56+ subset of NK T cells that is more prominent in TB
patients and correlates with a faster treatment response. A
multivariate classification technique identified CD3dim/
CD56+ NK T cells, in combination with NK cells, at diagnosis
as variables indicating the likelihood of culture conversion
early during TB treatment. NK T cells have, to our

knowledge, not been reported in the context of TB disease
and we believe that our findings support the future inclusion
of these cells in the search for surrogate markers for treat-
ment response.

The interesting subset of NK T cells found in this study
expressed CD56 and reduced levels of CD3 and was either
double-negative (DN) or weakly CD8+. NK T cells, which
express CD3 and to a variable degree the NK cell markers
CD56, CD57 and CD161 [16–18], are a heterogeneous pop-
ulation in mice and humans with several subsets that differ
in phenotype, TCR repertoire, MHC restriction and cytok-
ine profile, as reviewed in [18]. ‘Classical’ NK T cells express
an invariant T cell receptor (TCR) with Vα24 (Vα14–Jα281
in the mouse, now Vα14–Jα18), are CD1d restricted and
express the NK cell marker CD161 or NKR-P1A. Two subsets
of non-classical NK T cells do not express this invariant TCR.
Human CD56+ NK T cells are abundant in the liver, are pre-

Fig. 4. A representative lymphocyte subset analysis of flow cytometric 

data from a patient with a prominent CD3dim/CD56+ natural killer (NK) 

T cell population. (a) Gating of the CD45bright low side scatter total 

lymphocyte population; (b,c,d) the gated lymphocytes analysed for CD3 

and CD4, CD8 and CD56 expression, respectively. Region R2 in (d) 

contains the CD3dim/CD56+ NK T cells.
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dominantly CD8+ or DN and Vα24 TCR-negative, have cyto-
toxic capacity and produce Th1 and Th2 cytokines when
stimulated in vitro [19].

As our detection of the CD3dim/CD56+ NK T cells was
unexpected, a Vα24 antibody was not included routinely in
our panel, but some additional phenotypings with this anti-
body indicated that these cells did not express the invariant
TCR (not shown). The possibility of artefactual CD3dim

staining of NK cells due to non-specific binding to Fc
receptors must be considered but this is unlikely, as all the
antibodies used were of the IgG1 isotype and the CD3dim cells
would be double-labelled with the CD4, CD19 and γδTCR
antibody as well, which was not the case and, furthermore,
NK cells do not express the high affinity Fcγ receptors CD32
and CD64 and can be seen as a clearly CD3-negative popu-
lation in Fig. 4d.

The reduced expression of CD3 could be the result of TCR
down-regulation [20] and the CD3dim/CD56+ NK T cells
could be an activated subset of CD3bright/CD56+ NK T cells,
but we found only a weak inverse correlation between the
percentages of these NK T cell subsets (Spearman’s correla-
tion coefficient −0·34, not shown). Takayama et al. [21]
demonstrated that a CD122+ subset of human CD8 T cells
with intermediate TCR expression in the peripheral blood
produce high levels of IFN-γ and are also potently cytotoxic.

Peripheral blood CD56+ T cells are increased during the
early phase of Plasmodium falciparum or P. vivax infections
in humans [22], suggesting an important role in the immune
response to intracellular pathogens. Slifka et al. [23] found
that 90% of virus-specific CD8+ and CD4+ T cells from
choriomeningitis virus-infected mice co-express one or
more NK cells markers for more than 500 days post-
infection. In our patients we did not detect much variation
in the percentages of CD3dim/CD56+ NK T cells over time and
they could represent a similar persistent population specific
for mycobacterial antigens.

Our observation of the often higher numbers and percent-
ages of CD3dim/CD56+ NK T cells in patients indicates that
this cell population is expanded in the blood of some TB
patients, and that these patients are able to clear the infection
more efficiently after the initiation of chemotherapy. As
CD3dim/CD56+ NK T cells appear to produce variable IFN-γ
and IL-4, we postulate that they are cells that have been acti-
vated, as could be indicated by their reduced CD3 expres-
sion, and are at variable stages between activation and
apoptosis. This is supported by our finding that they contain
a higher percentage of cells expressing active caspase 3 and
that they produce more intracellular IL-4. Previous findings
have associated intracellular IL-4 expression in lymphocytes
with mitochondrial apoptosis markers [24]. Therefore
CD3dim/CD56+ NK T cells could be indicators of an active
immune system in TB patients and would accelerate clear-
ance of the infection by antibiotics.

The other variable that, together with CD3dim/CD56+ NK
T cells, had predictive value according to our multivariant
discriminative analysis, was the absolute NK cell count.
Interestingly, a higher NK cell count is partially indicative of
a slow response to treatment. A higher NK cell count in the
peripheral blood may be the result of an inability of these
cells to migrate into infected tissues. In humans NK cells are
present in tuberculous pleural effusions [25], and in mice
infected with Mtb NK cell numbers in the lung increase over
the first 21 days of infection, although their removal does not

Fig. 6. Intracellular cytokine analysis of saponin-permeabilized lym-

phocytes from whole blood of two patients at diagnosis incubated for 

4 h with or without stimulation with 0·1 µg/ml anti-CD3. (a) Gating of 

CD3dim (R1) and CD3bright (R2) T cells in a CD3-PerCP versus SSC plot. 

(b–e) Histograms of the gated cells of one patient showing IFN-γ (b,c) 

and interleukin (IL)-4 (d,e) expression. Overlaid histograms are: (–) 

stimulated, specific antibody, (···) unstimulated, specific antibody, (---) 

stimulated, control antibody. (f–g) Dot plots of similarly gated unstim-

ulated T cells from another patient showing co-expression of caspase 3 

and IL-4. The position of the quadrant markers was determined by a 

phycoerythrin-labelled control antibody (not shown).
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affect host resistance. A role of NK cells in the control of TB
has been suggested by the results of in vitro studies with
human NK cells and Mtb-infected monocytes [26–28].

Monocytes/macrophages are important components of
the innate immune response to mycobacterial infections and
the dramatic change in the absolute monocyte counts in our
patients between diagnosis and week 26 should be noted.
The surprising finding here is that their numbers are signifi-
cantly depressed in fully treated patients and it is unknown
what causes this depressed absolute monocyte count.

To determine whether the depressed absolute monocyte,
NK cell and CD3bright/CD56+ NK T cell counts at the end of
treatment could contribute to increased susceptibility to TB
relapse [10], phenotyping needs to be performed on larger
numbers of blood samples taken after cessation of antibiotic
treatment with subsequent long-term clinical follow-up.

A drawback of our study is that the patient numbers in the
two treatment response groups are small and therefore the
accuracy of the statistical classifications is limited. It is also not
optimal that in our study, for logistical reasons, the week 26
blood samples were taken on the day of the last dose of anti-
biotics and not after cessation of drug therapy. It is unknown
whether drug treatment directly affects cell counts.

In summary, peripheral blood white cell counts change
rapidly during treatment and some counts at diagnosis hold
promise as surrogate markers of treatment response. Further
prospective studies with larger numbers of patients are now
needed to evaluate the role of immunophenotyping in gen-
eral and of CD3dim/CD56+ NK T cells specifically, including
their functional characterization. The role of these cells in
predicting differential outcomes at month 6 and the devel-
opment of recurrence after cure needs to be assessed.
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