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Abstract

Analytical modelling and optimization of a thermal convective microfluidic gyroscope

S. Vosloo

Department of Mechanical and Mechatronical Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Mech)

March 2010

This thesis deals with the mathematical optimization of the detecting chamber of a thermal convective

microfluidic gyroscope and the comparison of several different optimization strategies.

An analytical model is developed for the gyroscope and some design considerations are discussed. Se-

quential approximate optimization strategies are explained and compared to each other by implement-

ing test problems from the literature. The optimization problem is formulated from the analytical model

and implemented using the different optimization strategies. Results are presented and compared to

find the most effective optimization strategy.

A sequential approximate optimization algorithm is implemented in MATLAB and tested using the gyro-

scope design problem and common test problems from the literature. Results and iteration history are

compared with an existing FORTRAN implementation.
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Uittreksel

Analitiese modelering en optimering van n termies-konvektiewe mikrovloeier giroskoop

(“Analytical modelling and optimization of a thermal convective microfluidic gyroscope”)

S. Vosloo

Departement Meganiese en Megatroniese Ingenieurswese

Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MScIng (Meg)

Maart 2010

Hierdie tesis handel oor die wiskundige optimering van die deteksiekamer van n termies-konvektiewe

mikrovloeier giroskoop en die vergelyking van verskeie optimeringsstrategieë.

’n Analitiese model is opgestel vir die giroskoop en verskeie ontwerpsoorwegings word bespreek. Sek-

wensiëel benaderde optimeringsstrategieë word bespreek en met mekaar vergelyk, deur dit op toet-

sprobleme uit die literatuur toe te pas. Die optimeringsprobleem is geformuleer uit die analitiese model

en geimplementeer deur gebruik te maak van verskeie optimeringsstrategieë. Resultate word getoon en

vergelyk, om die mees effektiewe optimeringsstrategie te vind.

’n Algoritme vir sekwensiëel benaderde optimeringsprobleme is in MATLAB geimplementeer. Die giroskoop

probleem, asook probleme uit die literatuur, is gebruik om resultate en iterasie geskiedenis te vergelyk

met ’n bestaande FORTRAN implementasie.
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Introduction

Inertial sensors, such as gyroscopes and accelerometers, provide us with the possibility of an automated

living and working environment. Due to the growing demand for higher accuracy and lower cost mi-

croscale sensors, the importance of research, development and fabrication has increased significantly.

Inertial sensors are intensively used in inertial navigation systems (INS) for space, military or automo-

tive applications. Given a certain initial position and single degree of freedom, an accelerometer can be

used to determine the acceleration, velocity and position of a moving object at any given time. Three

accelerometers orthogonal to each other, provides for three degrees of freedom. Adding a triaxial gyro-

scope to our system, enables us to determine the exact position of a moving object with six degrees of

freedom, at any given time.

Replacing macroscale sensors with microelectromechanical systems (MEMS) is preferable in most appli-

cations, as major size and cost reductions are possible. Sufficient accuracy can often be achieved using

MEMS gyroscopes and accelerometers to perform the same duties as their macroscale cousins.

The goal of this thesis is to provide the reader with the basic knowledge to make informed design deci-

sions regarding the design process of a microscale gyroscope and more specifically, a thermal convective

microfluidic gyroscope. Important literature is reviewed to give the reader some background informa-

tion on MEMS, its fabrication processes and available microscale gyroscope concepts. Sequential ap-

proximate optimization strategies, for the thermal convective microfluidic gyroscope, are investigated

and then compared. The optimization problem is formulated using an analytical model defined specif-

ically for this gyroscope concept. Results are presented and discussed to determine the most effective

optimization strategy for our gyroscope problem.

The thermal convective microfluidic gyroscope research field is still largely unexplored and the devel-

opment of a standardized design process is an important contribution. This thesis presents the reader

with an analytical model and optimization strategies, concerning this gyroscope, hoping that we have

advanced a step closer to standardization.

xvi



Chapter 1

Literature review

1.1 Microelectromechanical systems

Microelectromechanical systems, also known by its acronym MEMS, are small mechanical structures that

the human eye struggles to see, with some electrical interaction to either actuate it, sense it, or both. This

integration of mechanics and electronics on a silicon substrate, through means of microfabrication, is

used to create microscale sensors and actuators.

MEMS have become increasingly popular in the last ten years and is expected to become an estimated

$15.5 billion industry by the year 2012 [27]. Microsensors ready for batch processing can, for example,

achieve much lower unit cost prices than macrosensors and still maintain a sufficient level of accuracy.

This is one of the main advantages of microsystems and it is one that is very hard to compete with. An-

other would be the size of microdevices, as it can easily be integrated with microelectronics and reduce

the overall size and cost of any automation or control system.

1.2 Microfabrication

An essential study of current fabrication techniques was done to fully understand the design limitations

associated with micro structures. Available materials and their properties also play an important role in

designing for fabrication. This chapter will briefly discuss the necessary facts to understand the geomet-

rical, chemical and electrical possibilities and limitations within the fabrication process.

1.2.1 Fabrication materials

The materials used to fabricate microdevices are limited by the fabrication techniques that are currently

available. Inorganic materials, such as silicon, silicon dioxide, silicon nitride, aluminium and tungsten

1



CHAPTER 1. LITERATURE REVIEW 2

are the most commonly used in microdevices, although certain organic polymers are also popular [28].

Silicon wafers remain the most popular choice for MEMS design, as it is a cheap, easily obtained material

for which a number of standard fabrication techniques are already in place [4].

1.2.2 Techniques

Most of the techniques used to manufacture MEMS were adopted from the microelectronic fabrication

technologies whilst other techniques are specialized for MEMS fabrication. This chapter only gives a

brief overview as to what techniques are currently available and how each of them are used. For a more

in depth understanding of the technologies and how to design for the MEMS fabrication process Funda-

mentals of Microfabrication [22] and Microsystem Technology [24] will prove most helpful.

Microfabrication techniques can be classified as either surface micromachining or bulk micromachin-

ing. Bulk micromachining can be described as the process used to etch deeply into substrates, whereas

surface micromachining removes sacrificial layers from beneath thin-film structures to leave free-standing

mechanical structures [28]. One should rather not try and distinguish between surface and bulk micro-

machining when classifying the individual techniques as most techniques can be of either type.

1.2.2.1 Wafer cleaning

Any wafer subjected to high temperature processes during microfabrication must be cleaned first. Ac-

cording to Senturia [28] the standard set of wafer cleaning steps is called the RCA cleans. The RCA cleans

include the following steps:

• remove organic coatings in a strong oxidant (usually a 7:3 mixture of concentrated sulfuric acid

and hydrogen peroxide)

• remove organic residues (usually in a 5:1:1 mixture of water, hydrogen peroxide and ammonium

hydroxide)

• previous step can grow thin oxide layer and a HF etchant must be inserted in the dilute to remove

unintentional oxide layers

• remove ionic contaminants (usually in a 6:1:1 mixture of water, hydrochloric acid and hydrogen

peroxide)

1.2.2.2 Oxidation

According to Senturia [28] a high quality oxide can be thermally grown on the surface of a silicon wafer;

this being one of its many great advantages. Silicon is brought in contact with molecules of oxygen
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under very high temperatures (850°C to 1150°C) to form silicon dioxide. The oxygen molecules must

diffuse through the already formed oxide layer to reach the silicon surface. The oxidation rate therefore

depends on the rate of diffusion and decreases as the oxide layer thickens.

1.2.2.3 Doping

Doping is a process used to modify the electrical properties of a semiconductor by adding impurities

to certain areas in the material. A dopant with one valence electron more than the substrate material

is called a donor (n-type dopant) and donates an electron to the semiconductor crystal. The mobile

charge carriers are called electrons and behave like negatively charged species. A dopant with one va-

lence electron less than the substrate material is called an acceptor (p-type dopant) that receives an

electron from the semiconductor crystal. These mobile charge carriers are called holes and behave like

positively charged species [22] . A group-IV semiconductor such as silicon will typically be doped with

atoms from group-III (boron) for p-type region and atoms from group-V (phosphorus) for n-type region.

Counter-doping is a process used when an already doped region is doped with an opposite type dopant

to change the conductivity of that region. This process is critical for manufacturing of MEMS devices

[28].

Doping consists of two important steps, ion implantation and drive-in diffusion.

Ion implantation

Senturia [28] explains that ion implantation is a process in which energetic dopant atoms are directly

shot into the wafer by means of a particle accelerator. The acceleration energy and beam current is used

to accurately control the depth and dopant concentration.

Photoresist and oxides can be used as implantation masks to selectively dope surface regions. The pro-

jected range in a photoresist implant mask will be 2− 3 times the projected range in silicon [28]. The

thickness of the photoresist therefore needs to be at least three times the projected range in silicon.

Electrical conductivity is reduced due to crystal damage caused by the ion beams. Most of the damage

can be eliminated by using a high temperature (700°C - 1000°C) annealing process [22].

Drive-in diffusion

Dopant layers on the surface of the wafer is redistributed using high temperature drive-in anneals. To

prevent dopant evaporation at high temperatures, a protective oxide layer is used [28]. Diffusion is the

redistribution of dopants from a high concentration to a low concentration.
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1.2.2.4 Thin film deposition

The deposition and patterning of a thin film of material is used in most microfabrication processes. A

great variety of additive methods can be used for thin film deposition and the most commonly used ones

are explained in this section.

Physical vapor deposition

Physical vapor deposition (PVD) applies one of two methods, evaporation and sputtering. The evapora-

tion process consists of a heat source used to evaporate surface atoms from a source material (usually

metals). This process is done under high-vacuum conditions and deposit the evaporated atoms onto

the substrate [22]. Several heat sources can be used for evaporation of the source material: an incident

electron beam (e-beam) as seen in Figure 1.1a, a resistance heat source, radio frequency (RF) inductance

or laser source. The e-beam uses a magnetic field that is targeted on the source material contained in a

water-cooled hearth.

(a) Thin film deposition by evaporation using an e-
beam evaporation setup

(b) Sputtering process with RF power source

Figure 1.1: Physical vapor deposition

(Figures adapted from [22] and [23])

Sputtering occurs in a low-pressure gas environment and uses a glow discharge to ionize chemically

inert atoms. An electric field accelerates these positive ions into the negatively charged target material

(the material to be deposited). Atoms from the target material are knocked out (sputtering process) and

allowed to reach the substrate material connected to an anode [28]. Figure 1.1b shows the sputtering

process using a RF power source to ionize the atoms.
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Chemical vapor deposition

Chemical vapor deposition (CVD) uses a heated furnace to which many gases are supplied. A chemical

reaction occurs on the surface of the wafers positioned in the furnace to deposit a thin film of material.

Deposition may occur on both sides of the wafers as shown in CVD setup in Figure 1.2.

Figure 1.2: Low pressure CVD furnace with vertically positioned wafers

(Figure adapted from Memsnet [23])

Electrodeposition

Electrodeposition (also called electroplating) is an electrochemical process designed to deposit metal

ions from a solution onto a substrate. The substrate is immersed in an electrolyte and an electrical po-

tential is applied across the conductive substrate and the counter electrode as shown in Figure 1.3. A

redox reaction occurs at the surface of the substrate, resulting in the deposition of a thin layer of atoms.

Oxidation occurs at the counter electrode and usually forms small gas bubbles.

The plating uniformity depends on the uniformity of the applied current density [28]. The rates of elec-

troplating differs at the corner regions and for features with different surface areas.

Casting

Casting is a simple process in which the material that needs to be deposited is dissolved in a liquid

solvent. The solution can be applied to a substrate by one of two methods, spinning or spraying.

In spin casting, the solution is applied to a wafer and spun at a high rotational velocity. Figure 1.4 shows

the wafer with the applied solution before and after spinning. Some of the solvent is evaporated during

spinning. Baking evaporates the remaining solvent and only a thin film of the original material remains

[28].

In spray casting the solution is uniformly sprayed onto the wafer. A baking process is used to evaporate

the solvent so only a thin uniform layer of material remains.



CHAPTER 1. LITERATURE REVIEW 6

Figure 1.3: Electrodeposition setup

(Figure adapted from Memsnet [23])

Figure 1.4: Spin casting used for photoresist in lithography

(Figure adapted from Memsnet [23])

Sol-gel deposition

In the sol-gel deposition process a sol formation is formed by immersing a suitable chemical precursor

in a liquid solution [22]. The sol formation is then transform into gelatinous network or gel formation

by hydrolysis and condensation, using hydrochloric acid as catalyst. The material, in its gel state, is then

applied to a substrate by spinning, spraying or dipping. A sintering process transforms the gelatinous

layer into a glass-like layer and then silicon dioxide by densification.
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1.2.2.5 Pattern transfer

Pattern transfer consists of two parts: the first is a photo-process whereby a wafer is coated with a pho-

tosensitive film and the pattern transferred photographically; the second is either a physical or chemi-

cal process whereby material is added (additive process) or removed (subtractive process) to create the

pattern [28]. This section describes the different additive and subtractive processes used for pattern

transferring.

Optical lithography

Optical lithography is a technique used to transfer a pattern from a mask to a photosensitive material.

The photosensitive material is called photoresist and changes its physical properties when exposed to

a radiation source [28]. The mask contains clear and opaque regions to selectively expose the resist

to this radiation source and change its resistance to a certain chemical solution, called the developer

solution. The developer solution will either etch away the exposed photoresist (called positive resist) or

the unexposed photoresist (called negative resist) as seen in Figure 1.5.

Figure 1.5: Pattern transfer illustrated with positive and negative photoresist

(Figure adapted from Memsnet [23])

The photoresist is not a permanent feature, but only a way to transfer a pattern onto an oxidized sub-

strate as seen in Figure 1.6. The remaining photoresist can be compared to a stencil used to draw a pic-

ture. This stencil can be used to deposit material on the part of the substrate that is not covered by the

photoresist. This is an additive process called lift-off. Another possibility is to use an etchant to remove
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the material that is not covered by the photoresist. This is a subtractive process called etching. Etching

and lift-off will be explained in the sections that follow. Once the pattern is transferred, the photoresist

is stripped and only the intended pattern remains.

Figure 1.6: Transferring a pattern from the photoresist by etching and lift-off

(Figure adapted from Memsnet [23])

Wet etching

Wet etching is a process where a material is chemically dissolved when it comes in contact with an

etchant. A photoresist patterned substrate is typically immersed in a container filled with a suitable

etchant. The patterned photoresist serves as a masking layer to ensure selective etching. It is therefore

important to use a photoresist (or other masking layer) that does not dissolve when immersed in the

etchant, or dissolves much slower than the material to be etched.

The rate of etching and the shape of the resulting etched feature depends on many factors: the type

of substrate, the specific chemistry of the etchant, the choice of masking layer, the temperature, and

whether or not the solution is well stirred [28].

Isotropic wet etching

As the rate of isotropic wet etching is not orientation-dependant, a typically etched substrate can be seen

in Figure 1.7. The isotropic undercut with rounded edges is a characteristic feature.

The masking layer is designed to be smaller than the intended pattern on the substrate. Care has to be

taken to ensure accurate calculation of the masking layer dimensions.

Anisotropic wet etching

The rate of anisotropic etching is dependant on the orientation of the substrate. A {100} plane exposed

to an etchant, will etch away rapidly while {111} planes will etch away slowly [28]. This occurs due to the
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Figure 1.7: Isotropic wet etchings

(Figure adapted from Microsystem Design [28])

fact that atoms in the {111} planes are bounded more tightly than atoms in the {100} planes. As a result of

this phenomenon the feature in Figure 1.8 can fabricated, by etching a substrate with a (100) orientation.

Figure 1.8: Anisotropic wet etching of a silicon wafer

(Figure from Microsystem Design [28])

Dry etching

According to Madou [22], dry etching covers a family of methods by which a solid surface is etched in

the gas vapor phase. Physically it is done by ion bombardment and chemically by a chemical reaction

through a reactive species at the surface. This is a subtractive process that removes material from a

substrate usually covered by a masking layer (oxide or resist). Dry etching should only be considered if a

feature with deep side walls or better resolution is needed, as it is a costly and complex process.

Dry-etching techniques can be classified according to the specific setup method as either glow discharge

(diode setup) or ion beam (triode setup) [22]. Plasma is generated in the same vacuum chamber where

the substrate is located when using the glow discharge method. During ion beam techniques, the plasma

is generated in a separate chamber from which ions are extracted and directed towards the substrate by

a number of grids [22].

Commonly used dry etching techniques are plasma etching, reactive ion etching or ion beam etching.
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Plasma etching

Plasma Etching (PE) is a dry etching technique that ionizes gas molecules inside a chamber to form

neutral chemical species such as chlorine or fluorine atoms [22]. An electrode at the top of a chamber

emits a RF excitation which ionizes the gas molecules. The target wafer is contacted with a grounded

electrode. Due to ion movement inside the chamber, the plasma will come in contact with unmasked

wafer surfaces and react chemically to etch away the material. Etching is highly isotropic.

Reactive ion etching

Reactive ion etching (RIE) differs slightly from PE, as the top electrode is now connected to ground and

the electrode on which the wafer is positioned, emits a RF excitation. Moving electrons reach the target

wafer and reacts chemically to polarize the substrate surface negatively. A decrease of free electrons in

the plasma creates an overall positive charge and this produces an acceleration of ions from the posi-

tively charged plasma towards the negatively charged wafer surface [28]. Anisotropic etching occurs due

to physical bombardment of ions that are accelerated towards the target surface. As the ions do not strike

the sidewalls of the etch, nearly vertical sidewall features can be produced [28].

Another variant of this technique is deep reactive ion etching (DRIE) which is used for the fabrication of

high-aspect-ratio micro structures. Dry etching stations generate high plasma densities to achieve high

etch rates, while operating at low pressures [22].

Ion beam etching

Ion beam etching (IBE) or ion beam milling is a physical etching technique implemented by a triode

setup [22]. Usually this technique is very useful for etching of metals and other materials that do not

react well to chemical etching. IBE can be explained by means of Figure 1.9 where a Kaufman source

(hot filament) is used to enhance ionization.

Madou [22] explains that the plasma source is decoupled from the from the substrate and is placed on

a third electrode. The plasma source can be either an RF discharge or a DC source. In Figure 1.9 a

DC source is used. Low energy electrodes can be extracted from an auxiliary thermionic cathode (hot

filament neutralizer) to neutralize the target substrate. Electrons emitted from the hot filament can be

accelerated by a potential difference between a cathode filament and an anode. Ions are extracted from

the upper chamber by extraction grids and accelerated towards the target substrate.

Ion bombardment generates heat and with the high energy levels of triode setup, it is very likely to burn

polymer masks and etch away any other materials. The substrate should also be tilted so molecules will

have the tendency to fall rather than redeposit.
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Figure 1.9: The IBE apparatus with triode setup

(Figure adapted from Fundamentals of Microfabrication [22])

Lift off

Lift off is an additive process used with certain catalytic metals that are difficult to etch with plasmas [28].

Figure 1.10a shows the lift off process using an directional source to evaporate the metal. A photoresist

is used to pattern a substrate with the re-entrant resist profile before depositing the evaporated metal. It

is important that a discontinuity is formed in the metal deposition, to ensure that the excess metal lifts

off when the resist is stripped.

Another common application of the lift off process given by Senturia [28] is used to create the sharp

metal tip feature seen in Figure 1.10b. Evaporated metal is deposited onto the edges of a masking layer,

which gradually closes the opening. As the opening is closed the deposited feature slopes upwards to

form a very sharp tip.

1.2.2.6 Wafer bonding

Two wafers can be joined together using one of three methods used for wafer bonding: direct wafer

bonding, anodic bonding and bonding with an intermediate layer [28].
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(a) Lift off method for patterning evap-
orative metals

(b) Modified lift off process to create
sharp tips

Figure 1.10: The lift off process

(Figures adapted from [28])

Direct wafer bonding

This process is mainly used for the bonding of two silicon wafers under high temperatures and can be

seen in Figure 1.11. Firstly the wafer surfaces are cleaned and hydrated to create the smooth bonding

surfaces. Bonding will fail locally if all free particles are not removed from the bonding surfaces. Sec-

ondly, the bonding surfaces must be contacted and pressed together to create a hydrogen bond. The

wafers are then chemically fused together by placing them in a high temperature furnace [28]. The top

wafer can be machined or wet etched to form a thin top layer.

Figure 1.11: The direct wafer bonding of two silicon wafers

(Figure adapted from Microsystem Design [28])

Anodic bonding

Anodic bonding, also called field-assisted bonding, is used for the bonding of certain glasses to a con-

ductor and can be explained by means of Figure 1.12 When a conductor such as silicon is placed on glass
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and then heated to about 500°C, sodium ions will be repelled from the glass surface if a positive voltage

(300V − 700V ) is applied to the silicon surface [28]. Due to the mobility of the sodium ions in glass, a

negative charge will be created at the glass surface. The attraction force between the positively charged

silicon surface and the negatively charged glass surface will bring the two wafers in intimate contact. A

high temperature anneal will chemically fuse the two wafers together.

Figure 1.12: Anodic wafer bonding of silicon to glass

(Figure adapted from Microsystem Design [28])

Bonding with an intermediate layer

This process uses an adhesive substance to join two wafers together. When choosing a suitable adhesive,

careful consideration must be given to the thermal and cleanliness requirements for microfabrication

[28].

1.3 Scaling effects of miniaturization

Scaling down from macro to micro sizes, will introduce certain unexpected but explainable scaling ef-

fects. Certain significant properties become insignificant in micro scale and vice versa. To better explain

the scaling laws, a scaling variable s will be used, where s3, for example, corresponds to a scaling of

magnitude 103.

1.3.1 Surface area, volume and length

Miniaturization of an object changes the ratio of surface area to volume. This scaling law might be ex-

plained better by means of Figure 1.13.

A cube with a side of length 10 mm has a surface area of 600 mm2 and a volume of 1000 mm3. A smaller

cube with a side of length 1 mm has a surface area of 6 mm2 and a volume of 1 mm3. The ratio of volume

to surface area of the bigger cube is 1.6 and that of the smaller cube is 0.16. The ratio of volume to

surface has also decreased by a factor of 10, the same as the factor of miniaturization. Therefore the ratio

of volume to surface area has decreased by s1.
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Figure 1.13: The scaling effect of volume, surface and surface/volume ratio

(Figure adapted from Chollet [8])

This decrease in ratio of volume to surface area has a significant effect on certain design criteria of MEMS:

friction force (proportional to surface area) will become larger than inertia (proportional to mass, hence

volume); heat dissipation (proportional to surface area) will become larger than heat storage (propor-

tional to volume); energy coupling will become more attractive than energy storage [8].

1.3.2 Surface tension

The mass of a liquid scales proportional to volume s3, whereas surface tension scales proportional to the

length s1. Therefore the weight of the fluid decreases more rapidly than surface tension and it becomes

more difficult to flow in micro scale.

1.3.3 Heating and cooling

Miniaturization of an object has a profound effect on the time it takes to heat up or cool down. The

heating or cooling time constant is given as

τ= ρcpV

h As
, (1.3.1)

where As is surface area, V is volume, cp is the specific heat capacity and h is the heat transfer coefficient

at the surface [22].

The time constant scales proportional to ratio of volume to surface area also denoted as s1. Therefore

the smaller an object gets, the faster it heats up and cools down.
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1.3.4 Strength-to-weight ratio

The strength-to-weight ratio scales as s−1 (or l 2/l 3), as strength scales proportional to area l 2 and weight

proportional to volume l 3. Therefore it can be assumed that small things are relatively stronger [22]. The

strength-to-weight ratio scaling law explains the known fact that an ant can carry almost 10 - 50 times its

own weight. Humans can carry approximately one times its own body weight.

1.3.5 Inertia effect

Moment of inertia is one the highest order scaling laws with a scaling of s5. To prove this statement,

moment of inertia can be given as

I =
∫

r 2dm, (1.3.2)

where r is the radius of a circular disk and m is the mass. Mass scales proportional to volume l 3 and r 2

scales proportional to the area l 2 of the disk. Therefore inertia scales proportional to l 2 × l 3 = l 5.

1.3.6 Microfluidics

Microfluidics introduce a number of important scaling laws. The first is that the flow in capillaries or

micro tubes is often laminar. The Reynolds number can be given as

Re = ρvmLc

µ
, (1.3.3)

where ρ is the fluid density, vm is the mean velocity, Lc is the characteristic length and µ is the dynamic

viscosity of the fluid.

One has to assume a Reynolds number of far less than 100 and often Re < 1 due to the dimensions of

micro structures. Flow only becomes turbulent at a Reynolds number of about 2000.

Another important scaling law is the domination of viscous forces for Reynolds numbers less than unity,

compared to the inertial forces. Take the Navier-Stokes equation

∂ρ

∂t
+∇(ρ−→vg ) = 0, (1.3.4)

where ρ is the density of the gas, t is time and −→vg is the velocity vector of the gas.

For Re < 1 the inertia terms will be dominated by the part of the equation containing viscous forces and

can be neglected. The equation now becomes
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∇p =µ∇−→vg . (1.3.5)

1.4 MEMS and microfluidic gyroscopes

1.4.1 Introduction

A gyroscope is an inertial sensor that measures the angular rotation or velocity of a rotating mass about

one or several axes. Curey [9] suggests that there are three main types of gyroscopes: Spinning wheel

gyros (macro scale), Sagnac effect gyros (macro and micro scale) and Coriolis vibratory gyros (micro

scale). This section will focus mainly on the Coriolis vibratory gyroscope, with the exception of one

microfluidic gyroscope.

Most macro- and micromachined gyroscopes use the Coriolis principle for operation. The Coriolis prin-

ciple may be explained by means of Figure 1.14 where a person rolls a ball from the center of a frictionless

rotating disk with a constant velocity vr . Beeby [4]explains that the person standing in the rotating frame

will observe the ball with a curved trajectory. This is due to the Coriolis acceleration that is proportional

to the angular velocity of the disk and the radial velocity of the ball.

Figure 1.14: A ball rolling from the center of a rotating disk is subjected to a Coriolis acceleration and
hence shows a curved trajectory

(Figure adapted from MEMS Mechanical Sensors [4])

The tangential velocity vang increases radially and therefore the constant Coriolis acceleration is in-

evitable. The Coriolis acceleration ac gives rise to the Coriolis force Fc which can be given as

Fc =−2m
−→
Ω ×−→vr , (1.4.1)
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where m is the mass of the ball, Ω is the angular velocity of the disk and vr is the radial velocity of the

ball.

Macro scale gyroscopes, using the Coriolis principle as the operating approach, usually consists of some

inertial rotor that spins at a high angular velocity. The rotor is supported by three gimbals which gives the

system three degrees of freedom. The outer gimbal is fixed to some platform and rotates with it. The two

inner gimbals, seen in Figure 1.15, will rotate with respect to the outer gimbal and the inertial rotor will

remain in its original position due to the conservation of momentum theory. By measuring the rotation

of the gimbals, the rotation of the platform can be calculated.

Figure 1.15: Dual-axis macro scale mechanical gyroscope

Beeby [4] explains that no high quality micro scale bearings can be manufactured as the scaling laws are

very unfavorable where friction is concerned. Therefore the same approach as in macro scale gyroscopes

cannot be used for MEMS gyroscopes. Another innovative approach for MEMS gyroscopes, the MEMS

vibratory gyroscope, can be explained by means of Figure 1.16.

Nearly all MEMS gyroscope concepts consists of a vibrating structure that couples energy from a forced

primary oscillation mode to a secondary sensing oscillation mode using the Coriolis force [4]. The proof

mass in Figure 1.16 is excited along the primary axis or x-axis with a constant frequency and amplitude

(usually driven at resonance). An angular velocity about the z-axis couples energy into an oscillation

along the secondary axis or the y-axis as a result of the Coriolis force.

1.4.2 Classification

Quite a few MEMS gyroscope concepts have been proposed in the past and they can be classified accord-

ing to four main criteria: the gyroscope configuration, the modulation principle, the actuation technique

and the sensing technique.
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Figure 1.16: MEMS vibratory gyroscope principle

(Figure adapted from MEMS Mechanical Sensors [4])

1.4.2.1 Gyroscope configurations

It is an impossible task to list every known configuration of MEMS vibratory gyroscopes introduced in

the literature. Many variations of the same concept exists with only a few modifications of the original

configuration. This section gives an overview of the basic configuration concepts and further research

opportunities.

Tuning fork vibratory gyros

The tuning fork gyroscope consists of at least one pair of tines and a supporting torsional structure as

seen in Figure 1.17. The forced primary oscillation is applied to the first pair of tines. These tines vibrate

at an equal constant frequency and amplitude along the x-axis, but in opposing directions. In other

words, for the primary mode the tines vibrate in antiphase (180° out of phase) so that no force results on

the supporting torsional structure.

Rotation about the z-axis creates two opposing Coriolis forces that couples energy from the primary

mode into secondary oscillations along the y-axis. The vibration of the secondary mode is orthogonal to

the vibration of the primary mode and its amplitude is proportional to the angular rate of the rotation.

This vibration also occurs in antiphase and will be seen in the second pair of tines (or if only one pair

exists, it can be seen in the same pair of tines).

One of the main advantages of the tuning fork configuration, is that it is suitable for batch-processing.
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Figure 1.17: Classic tuning fork gyroscope configurations

Although more complex variations do exist, the geometry is fairly simple and easily fabricated from sili-

con. Another advantage is its symmetrical possibility and stable center of gravity [2].

Vibrating beams

This group of vibratory gyroscopes is a little more diverse than the tuning fork gyroscope. A vibrating

beam gyroscope can be a simple resonating elastic beam structure or a beam mass structure.

Figure 1.18 shows the rectangular elastic vibrating beam structures driven by piezoelectric film. Pa-

pers were found on triangular beam (Murata’s Gyrostar), cylindrical tube [20] and rectangular beam [35]

structures.

Figure 1.18: Elastic vibrating beam structure driven by piezoelectric film

(Figure adapted from [35])
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A piezoelectric film is bonded to the elastic beam structures as shown in Figure 1.18. The beam is excited

into primary oscillation by the piezoelectric film. Rotation about the z-axis subjects the elastic structure

to the Coriolis effect and a secondary oscillation occurs orthogonal to the vibration of the primary mode.

The angular rate of the rotation can be sensed by piezoelectrically detecting the secondary mode.

Yang [35] suggests that greater resonance is possible with the piezoelectric beam gyroscope, which sug-

gests greater sensitivity.

An example of beam mass structures that act as vibrating beam gyroscopes can be seen in Figure 1.19.

Once again the first beam pair is excited into primary oscillation by some actuation technique (in this

case by electrostatic comb drives). Rotation about the z-axis subjects the mass to the Coriolis effect and

couples energy into a secondary vibration orthogonal to the first. The angular rate can be sensed by

detecting the secondary mode vibration.

Figure 1.19: Beam mass structure example using comb drive for excitation and detection

(Figure adapted from [1])

An advantage of the beam mass structures is the possibility of symmetry and matched resonant fre-

quencies of primary and secondary modes. This relates to amplified sensitivity (resolution) with the

mechanical quality factor.

Vibrating plates

A dual axis vibrating plate gyroscope consists of an inertial rotor suspended by four torsional spring

structures as seen in Figure 1.20. The rotor is driven at angular resonance about the z-axis representing

the primary mode. Rotation of the platform about the x-axis will result in a rotation of the circular disk

about the y-axis due to the Coriolis effect. Similarly, a rotation about the y-axis will result in a rotation

about the x-axis. Usually the angular rate is measured by a change in capacitance between the rotor plate

and four quarter circle electrodes.

The explained vibrating plate gyroscope can sense angular rate about two axis. Depending on the ge-

ometry both single and dual axis gyroscopes are possible. Figure 1.21 shows a single axis vibrating plate

from earlier days.
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Figure 1.20: A dual axis vibrating plate gyroscope

Figure 1.21: A single axis vibrating plate gyroscope

(Figure adapted from MEMS Mechanical Sensors [4])

The vibrating plate gyroscope can sense the angular rate about the two axis orthogonal to the rotor ro-

tation. Vibrating plate gyroscopes can be classified as either angular disk, linear disk or linear plate

depending on their geometry [2].

Vibrating ring

The vibrating ring gyroscope consists of a ring anchored in the center by a number curved springs as seen

in Figure 1.22. Electrodes are positioned around the periphery of the ring to electrostatically excite the

primary mode. The ring is excited to vibrate in-plane and the primary mode vibration has an elliptical

shape. Upon rotation about the z-axis, a secondary vibration is excited due to the Coriolis effect. The

secondary mode vibration also has an elliptical shape and is offset 45° from the primary mode. The

angular rate can be measured by detecting the vibration of the secondary mode capacitively with the

positioned electrodes.

Various papers on single axis vibrating ring gyroscopes can be found by scientists such as Najafi [26],

Esmaeili [12] and Ayazi [3]. Papers on tri-axial gyroscopes were published by Gallacher [14].
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Figure 1.22: A single axis vibrating ring gyroscope

(Figure adapted from MEMS Mechanical Sensors [4])

According to Ayazi [3] the vibrating ring gyroscope holds many advantages. The first is its balanced

symmetry that is less sensitive to unwanted vibrations. It is also less sensitive to temperature, since both

flexural modes are equally affected by temperature. Electronic tuning is possible, which yields better

accuracy.

A disadvantage of this gyroscope concept is its complex and time consuming microfabrication DRIE

process. This is however still one of the few MEMS gyroscope concepts that can be developed into a

three axial gyroscope.

Thermal convective microfluidic gyroscope

The microfluidic gyroscope consists of a jet pump that periodically circulates a gas through a number of

chambers and use the principle of hot-wire anemometry for detection. Zhou and co-workers [36] named

the following chambers that can be found in the gyroscope: vibrating chamber, collecting chamber, de-

tecting chamber and tail gas chamber. The thermal convective microfluidic gyroscope can be explained

by describing what happens in each of these chambers as seen in Figure 1.23.

The vibrating chamber expands and contracts to periodically circulate the gas through the chambers. As

the chamber contracts, pressure builds up and the gas is ejected through the micro jet pump nozzles into

the collecting chamber. When the chamber expands again, the pressure in it decreases and gas is drawn

from the tail gas chamber into the vibrating chamber. Most of the gas drawn back into the chamber

comes from the tail gas chamber and not the nozzle of the micro jet pump, due to the inertia of the

moving gas at the nozzles.

The gas in the detecting chamber exhibits a perfect laminar velocity flow profile. According to the hot

wire anemometry theory the resistance of the two hot wires are equal (they dissipate heat at the same

rate) during laminar flow and zero angular rate [36], as the flow profile is still symmetric.
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Figure 1.23: A Microfluidic Angular Rate Sensor

(Figure adapted from [36])

If the microfluidic gyroscope is rotated about its sensitive axis, the flow profile changes due to the Coriolis

effect, as seen in Figure 1.24. The gas velocity differs at the two hot wires and a change in resistance

can be detected using a Wheatstone bridge of resistors. This change in resistance can be used to sense

angular rate.

Figure 1.24: Detection theory with hot-wire anemometry

(Figure adapted from [36])

Single axis microfluidic gyroscope models were presented by scientist such as Dau [11] and Zhou [36] to

name a few. Dau [10] also developed a dual-axis model of this microfluidics sensor.

The microfluidic gyroscope has a few advantages above the conventional MEMS vibratory gyroscope.

The main one being that it has no vibrating mass and therefore can endure more fatigue. It has a longer
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life and greater durability.

1.4.2.2 Modulation principles

MEMS vibratory gyroscopes can be either amplitude modulated, phase modulated or direct frequency

output (DFOVG) gyroscopes.

Amplitude modulation is the most popular technique and most of the gyroscope configurations intro-

duced in this chapter probably rely on this principle. A primary oscillation is actuated and the Coriolis

force couples energy into a secondary oscillation normal to the first. The amplitude of the secondary

oscillation will be proportional to the angular velocity for some linear range.

The phase modulation principle is described in a paper by Yang [34], where vibrations are excited in both

the x and y-directions and the angular rate is found by detecting the phase difference between the the

two vibration signals.

A DFOVG gyroscope proposed by Moussa [25] consists of two drive oscillators that excite two modes

of vibration simultaneously, one in and one out of plane. The two electrodes that detect the vibration

modes, are connected to the drive oscillators, as a sort of feedback to the oscillator. Due to the Coriolis

effect, the resonance frequencies of the two modes of vibration will vary with the applied angular rate.

The operating frequencies of the oscillators will vary accordingly, as a result of the feedback from the

detection electrode. The difference in operating frequencies is proportional to the angular velocity input

for some linear range.

1.4.2.3 Sensing and actuation techniques

A MEMS vibratory gyroscope typically needs a method by which to excite a primary vibration in some

beam, plate or membrane and detect a secondary Coriolis induced vibration.

Electrostatic

Electrostatic actuation uses the principle where two plates of opposite charge will attract each other

[4]. It is most commonly used (for vibratory gyroscope) in comb-drives, where a number of electrodes

are interconnected to form the comb fingers and an inner comb can be actuated by applying a voltage

across them. Similarly, a vibration or displacement can be sensed by detection electrodes positioned

strategically.
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Piezoelectric

Applying a voltage across a piezoelectric material will result in a deformation proportional to that volt-

age. Similarly, a deformation of the material will result in a proportional voltage. This unique property is

favourable, as a vibration can be both excited and sensed using piezoelectric materials.

Thermal

Thermal actuation is possible when bonding two materials, with different thermal coefficients of expan-

sion, also called thermal bimorphs. Applying heat to a thermal bimorph material will result in thermal

stresses at the bond surface, which will bend the structure [4].

Electromagnetic

A conductor with an electrical current, placed in a magnetic field, will induce an electromagnetic force

perpendicular to both the current and the magnetic field. Permanent magnetic materials, that are com-

patible with microfabrication, are limited and the magnetic fields are usually generated externally [4].

Both sensing and actuation are possible using a magnetic field.

Piezoresistivity

Piezoresistivity is the effect exhibited by materials to show a change in resistivity due to an applied pres-

sure [4]. This is not really a popular sensing technique due to low manufacturability, as the positioning

of resistors require very high accuracy.



Chapter 2

Problem statement

In this thesis, a thermal convective microfluidic gyroscope will be investigated and the detecting cham-

ber will be optimized for sensitivity. This chapter briefly outlines the project objectives and the approach

taken to satisfy them.

2.1 The general thermal convective microfluidic gyroscope concept

Consider the thermal convective microfluidic gyroscope proposed by Zhou and co-workers [36]. Figure

2.1 shows the four chambers (vibrating, collecting, detecting and tail gas) described in Section 1.4.2.1.

Figure 2.1: A Microfluidic Angular Rate Sensor

(Figure adapted from [36])
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A voltage is applied across the terminals of a piezoelectric disc that displaces a membrane periodically.

The membrane displacement causes the vibrating chamber to expand and contract and periodically

pump the gas through the micro jet pump nozzles, following the collecting chamber into the detecting

chamber and finally into the tail gas chamber. This action is repeated to circulate the gas through the

chambers.

A perfect laminar flow profile is maintained in the detecting chamber at zero angular velocity and the hot

wire resistances are equal. A Coriolis acceleration due to an angular velocity will deflect the flow profile

proportional to that angular velocity and the hot wire resistances will change accordingly. A Wheatstone

half bridge output voltage will represent the change in hot wire resistances, which can be used to calcu-

late the angular velocity.

The main advantage of this concept is its robustness and long life, due to the fact that it has few moving

parts. This is a characteristic that might prove very useful in most applications.

2.2 Existing concepts and shortcomings

Only a few microfluidic gyroscopes have been presented in the literature thus far and Table 2.1 compares

some sensor characteristics from them. "—" implies not determined. It is clear that this is a relatively new

field of study and the standardization of the thermal convective microfluidic gyroscope design process

is an important contribution.

Table 2.1: Characteristics from existing thermal convective microfluidic gyroscopes

Prototype Single/ Size Resolution Linear range Sensitivity Impact Power
Dual (axis) [mm] [deg/sec] [deg/sec] [mV/deg/sec] × g [mW]

Dau [11] Single 14×25 0.04 — 0.15 3000 5.5
Zhou [36] Single — — — — — —
Dau [10] Dual 14×25 0.05 3000 0.107 ; 0.102 — 2.45

Fabrication and testing is essential for development in any field, as it yields valuable experimental re-

sults. The standardization of the analytical models and optimization techniques will simplify the design

process and encourage fabrication and testing in the future.

2.3 Thesis objectives

This thesis will present the reader with an analytical model for the thermal convective microfluidic gyro-

scope, in Chapter 3, as well as some important design considerations. Different sequential approximate

optimization strategies will be investigated and compared with one another in Chapters 4 and 5. An
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existing implementation of the sequential approximate optimization strategy in FORTRAN will be inves-

tigated and a similar implementation will be done using MATLAB.

The mathematical optimization problem will be formulated, in Chapter 5, to optimize the detecting

chamber of the microfluidic gyroscope for sensitivity. This problem will be solved using both the FOR-

TRAN and MATLAB implementations of the sequential approximate optimization algorithm.



Chapter 3

Analytical model for a thermal convective

microfluidic gyroscope

In this chapter a set of design considerations is documented for a thermal convective microfluidic gyro-

scope. Furthermore, an analytical model is presented for the general gyroscope concept (refer to Section

2.1) and optimization tactics are pointed out.

3.1 Design consideration

A few obvious but important design considerations are:

• A gas must be used for the gyroscope, as a liquid’s inertia in micro scale is insignificant when com-

pared to the viscous term in the Navier-Stokes equation.

• The Reynolds number of gasses tends to be higher than those of fluids and laminar flow cannot

always be assumed (as in most fluids). The gyroscope should however be designed for laminar

flow.

• A gas with increased thermal conductivity will increase the sensitivity of the device, although the

density and viscosity of the gas should also be considered.

• The deflection or perturbation of the flow profile will decrease when the velocity across the hot

wire increases. Larger deflection means greater sensitivity. Deflection increases with angular rate

and the length of the sensitive element from the nozzle.

• Sensitivity, however, increases with the variance of velocity flow between the two hot wires. The

variance increases with the gradient of the velocity flow profile which naturally increase with ve-

locity. Careful consideration must therefore be given when choosing the velocity range.

29
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• The position of the two hot wires needs to be carefully selected to ensure sensing the linear part of

the velocity flow profile.

• Hot wires must not interfere with the flow profile of the gas, but must also be able to withstand the

drag force from the flow.

• Power consumption must be kept at a minimum as these microdevices will most likely be mounted

on a circuit board and powered by microelectronic components.

• It is important to manage pressure differences throughout, to maintain a desired flow rate.

• Surface roughness in micro scale may become a significant issue.

3.2 Fluid modelling

There are typically two ways to model a flow field of a fluid: the first is to model the fluid as a collection

of molecules, which it really is, and the second is to model the fluid as a continuum (where matter is

assumed to be continuous and indefinitely divisible) [13]. The latter is preferred as it is less complicated

than the first and will be described in this chapter.

The Knudsen number Kn can be given as a function of the Mach number M a, the Reynolds number Re

and the specific heat ratio (cp /cv ) γ,

Kn =
√
πγ

2

Ma

Re
, (3.2.1)

and validates the continuum approach when it is less than 0.1 [13]. The different Knudsen number

regimes are summarized in Table 3.1 [13].

Table 3.1: Knudsen number regimes

Euler equations (neglect molecular diffusion) Kn → 0(Re →∞)
Navier-Stokes equations with no-slip boundary condition Kn < 10−3

Navier-Stokes equations with slip boundary condition 10−3 ≤ Kn < 10−1

Transition regime 10−1 ≤ Kn < 10
Free-molecule flow Kn ≥ 10

The Reynolds number Re is the ratio of inertial forces to viscous forces and is given by

Re = vmLc

ν
, (3.2.2)

where vm is the mean velocity of the fluid, Lc is the characteristic length and ν is the kinematic viscosity

of the fluid.
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The Mach number Ma is the ratio of inertial forces to elastic forces and can be used as a measure of

compressibility. The Mach number is given by

Ma = vm

a0
, (3.2.3)

where a0 is the speed of sound. A compressible fluid, such as air, can generally be treated as an incom-

pressible fluid when Ma < 0.3.

3.3 Flow through a rectangular microfluidic channel

In order to simplify the design problem, it will be assumed that flow is always laminar (Re < 2100), the

fluid is incompressible (density does not change with time and Ma < 0.3), the fluid is a Newtonian fluid

(µ is constant) and flow is subjected to the no-slip boundary condition (fluid velocity at the channel walls

is zero).To validate these assumptions, the gas flow must be designed for Kn < 10−3. In the optimization

problem (refer to Chapter 5), these conditions are enforced as constraints.

A fluid flows through a microchannel due to a pressure difference across the channel. Usually flow occurs

from a high pressure to a low pressure, hence a negative pressure gradient ∂p
∂z . The symmetrical flow

profile is depicted in Figure 3.1.

Figure 3.1: Symmetrical flow through a rectangular microchannel

Flow through a microchannel can be described by two governing equations. The first is the conservation

of mass equation, also known as the continuity equation

∂ρ

∂t
+∇(ρ−→vg ) = 0, (3.3.1)

where ρ is the density of the gas, t is time and −→vg is the velocity vector of the gas.
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The second equation is the equation for conservation of momentum derived from Newton’s second law

F = ma. The conservation of momentum equation, better known as the Navier-Stokes equation, for an

incompressible fluid can be given as

∂−→vg

∂t
+ (−→vg∇)−→vg =− 1

ρ
∇p +−→g +ν∇2−→vg , (3.3.2)

where −→g is gravitational acceleration, p is pressure and ν is the kinematic viscosity of the gas.

By assuming incompressible flow, the first term of (3.3.1) becomes zero and the continuity equation can

be simplified to

∇−→vg = 0. (3.3.3)

The velocity in the y-direction will be a function of only x and z. Therefore by substituting (3.3.3) into

(3.3.2) and assuming flow is completely horizontal, the Navier-Stokes equation can be reduced to

1

ρ

∂p

∂y
= ∂2v

∂x2 + ∂2v

∂z2 − ∂v

∂t
. (3.3.4)

3.3.1 Equivalent electrical circuit modelling

Using the e → V convention described by Senturia [28], an equivalent circuit model can be created to

effectively model Poiseuille flow through a rectangular microchannel.

The effort (across) variable represents the variable responsible for the work done in the system. In an

electrical system voltage is the effort variable. In the microfluidic system the effort variable is the pres-

sure difference ∆p.

The flow (through) variable represents the rate at which work can be done by the effort variable. Current

is the flow variable in an electrical system, but in microfluidics the flow variable is volume flow rate Q.

The equivalent layer resistance of the microchannel can be calculated by

Rl ayer =
effort

flow
= ∆p

Q
. (3.3.5)

3.4 Sensitive element

A relationship can be found between the perturbation of the flow profile due to an applied angular ac-

celeration and the difference in resistance measured across two hot-wires. The section explains and
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contributes to a model developed by Zhou et al. [36].

3.4.1 Perturbation of flow profile due to inertia

The Coriolis acceleration vector −→a ωz can be given as

−→a ωz =−2−→ω z ×−→v , (3.4.1)

where −→v is the velocity vector and −→ω is the angular rate vector.

The velocity in the direction of deflection can be found by integration of (3.4.1)

−→v ωz =
∫ −→a ωz d t =

∫
−2−→ω z ×−→v d t . (3.4.2)

Solving (3.4.1) at the position of the hot-wires, yield

vωz =−2ωz v t , (3.4.3)

where t is the time it takes one gas particle to travel from the nozzle exit to the sensing element.

The deflection of the velocity flow profile in the direction orthogonal to the direction of flow, can be

calculated by the double integration of (3.4.1) and is given by

δx =−ωz v t 2, (3.4.4)

or

δx =−ωz
Lch

2

v
, (3.4.5)

where Lch is the length of the channel that the particle has to travel [11].

3.4.2 Flow velocity sensed by hot-wire anemometry

A hot wire is immersed in the gas and heated by an electrical current. The convective heat transfer of the

gas flow across the hot wire can be used as a measure of gas flow velocity.

One of two methods can be used to calculate the steady state output response from the two hot wires,

CCR (constant current response) or TCR (constant temperature response). The CCR method is used in

this design and described below.
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3.4.2.1 The CCR method

The CCR method is usually the choice for thermal convective gyroscopes, as the circuitry is simple and

electronic parts can be minimized. A schematic drawing of the of the CCR circuit is given in Figure 3.2.

Figure 3.2: Constant current circuit

(Figure adapted from [7])

The amount of heat generated by each hot wire can be calculated using Joule’s law (assuming heat trans-

fer is at equilibrium)

P = I 2Rhw = h Ahw (Thw −Tg ), (3.4.6)

where I is the input current, Rhw is the resistance of the hot wire, h is the heat transfer coefficient, Ahw

is the surface area of the hot wire and Thw and Tg is the temperatures of the wire and the gas respectively

[7].

Assuming natural convection is negligible, the heat transfer coefficient h can be calculated from

h = k

Lc
Nu, (3.4.7)

where k is the thermal conductivity of the fluid, Lc is the characteristic length (the characteristic length

for a flat plate can be taken as the width of the plate) and Nu is the dimensionless parameter called the

Nusselt number [6].

The Nusselt number can be calculated once the Reynolds and Prandtl numbers are known. The Reynolds

number can be calculated from

Re = vmLc

ν
, (3.4.8)

where vm is the mean fluid velocity and ν is the kinematic viscosity of the fluid [6].
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The Prandtl number is calculated from

Pr = cpµ

k
, (3.4.9)

where cp is the specific heat(at constant pressure) and µ is the dynamic viscosity [6].

Once these two dimensionless parameters are known, the Nusselt number can be calculated as

Nu = 1.1C RenPr 0.31, (3.4.10)

where C and n are empirical constants whose values vary with the Reynolds number [11].

The heat transfer coefficient h varies with the velocity of the gas v and can be written in the form

h = a +bvc , (3.4.11)

where a, b and c are coefficient obtained by calibration [36]. The coefficient a accounts for some natural

convection. As forced convection will dominate natural convection, we will assume that a is negligible.

Substituting (3.4.7) and (3.4.10) into (3.4.11) an approximation for the coefficients a, b and c in (3.4.11)

can be found analytically:

a = 0

b = 1.1kC Lc
n−1Pr 0.31

νn

c = n (3.4.12)

The resistance of the hot wires at a reference temperature, Tg , can be given as

R0 =λr
Lhw

Ac
(1+α(Tg −20)), (3.4.13)

where λr is the resistivity of the hot wire material, Lhw and Ac is the length and cross-sectional area of

the hot wire and α is the temperature coefficient of resistance (PPM/°C) [5].

The temperature of the two hot wires vary with the velocity gradient across them, due to increased ther-

mal convection with an increased velocity. The change in temperature results in a change in hot wire

resistances due to the thermoresistive effect [36]:

Rhw = R0(1+α(Thw −Tg )) (3.4.14)
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When zero angular rate is applied, the gas flow profile is symmetric about the center of the tube and the

hot wire resistances are equal (Rhw1 = Rhw2 = Rhw ). Equal hot wire resistances result in a zero voltage

output by the Wheatstone half-bridge shown in Figure 3.2. An applied angular rate will perturb the flow

profile and resistances will change linearly (Rhw1 = Rhw +∆R and Rhw2 = Rhw −∆R). The voltage output

of the Wheatstone half-bridge becomes a function of the change in resistance ∆R between the two hot

wires

Vout = I∆R, (3.4.15)

where Vout is the voltage output and ∆R is the change in resistance.

Substituting (3.4.6) and (3.4.14) we can derive a second equation for the heat transfer coefficient

h = I 2Rhw

Ahw (Thw −Tg )
= αI 2Rhw R0

Ahw (Rhw −R0)
. (3.4.16)

The hot wire resistance Rhw then becomes

Rhw = h Ahw R0

h Ahw −αI 2R0
. (3.4.17)

Substituting (3.4.11) into (3.4.17) gives the hot wire resistance Rhw to be

Rhw = (a +bvc )Ahw R0

(a +bvc )Ahw −αI 2R0
. (3.4.18)

The change in resistance ∆R can be found by solving the derivative of (3.4.18) and simplifying:

dRhw

d v
= −αAhw I 2R0

2bcvc−1

[Ahw (a +bvc )−R0I 2α]2 (3.4.19)

∆R = −αAhw I 2R0
2bcvc−1

[Ahw (a +bvc )−R0I 2α]2∆v (3.4.20)

Since the velocity of the gas flow across the hot wire will change proportional to an angular velocity, we

can say that

∆v = κω, (3.4.21)

where κ is a constant [36]. For the purposes of optimization, discussed in Chapter 5, it is important to

write the change in velocity as a function of deflection. It is also evident from (3.4.5) that the deflection,

δ, is proportional to angular velocity and can also be given proportional to the change in velocity
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∆v = κδ, (3.4.22)

where κ is still a proportionality constant and must be found numerically.

Substituting (3.4.20), (3.4.5) and (3.4.22) into (3.4.15) gives the output voltage of the Wheatstone half-

bridge in terms of angular velocity ω

Vout = αAhw I 3R0
2bcvc−1

[Ahw (a +bvc )−R0I 2α]2κ(
ωLch

2

vm
). (3.4.23)

3.4.2.2 Amplifier circuit

The output voltage from the Wheatstone half-bridge needs to be amplified in order to increase the sen-

sitivity of the gyroscope. The single differential operational amplifier (op amp) circuit used to amplify

the signal is shown in Figure 3.3.

Figure 3.3: Single differential op amp circuit

The amplifier gain for the circuit in Figure 3.3 can be given as

Gain = R2

R1
= Vo

Vout
, (3.4.24)

where Vo is the amplified voltage output and Vout is the output voltage from the Wheatstone half-bridge

in (3.4.23).

For an ideal op amp, the circuit can be design to give a maximum output, Vo,max =Vcc , at the maximum

Wheatstone half-bridge output voltage, Vout ,max , corresponding to the maximum angular velocityωmax .
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3.4.2.3 Wheatstone half-bridge power consumption

Power consumption is an important consideration in any design and it will most likely limit the sensitiv-

ity of the gyroscope.

Power consumption Phw can be given as a function of the source voltage Vi n and source current Ii n in

Figure 3.2

Phw =Vi n Ii n , (3.4.25)

where

Vi n = 2I Rhw (3.4.26)

and

Ii n = Vi n

2R0
+ I . (3.4.27)

3.5 Micropump

3.5.1 Piezoelectric actuation

The volumetric displacement of a circular piezoelectric disc is described by Tay [33] as

Vtot al =
∫ b

0

∫ 2π

0
w I r dθdr +

∫ a

b

∫ 2π

0
w I I r dθdr, (3.5.1)

where r is the radial distance in polar coordinate and θ is the angle in radians. Parameters w I and w I I

describe the deflection of the membrane and the piezoelectric disc respectively. The formulation of

parameters w I and w I I is described in Appendix A.

3.6 Structural analysis

It is an impossible task to analyze the entire structure without the help of a FEM solver. The sensitive

element was identified as the area where failure is likely to occur first and will be analyzed.

There are two factors contributing to failure at the sensitive elements: stresses due to drag force from the

fluid flow and insufficient impact resistance.

Assuming a thin flat plate in the flow path, the drag force can be calculated as

FD = 1

2
ρv2 AobsCD , (3.6.1)
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where Aobs is the area of the obstacle in the flow path and CD is the drag coefficient [6]. For a thin flat

plate the drag coefficient, CD , is equal to the friction coefficient, C f , as the pressure drag will be zero [6].

Due to gyroscope applications, they need to have a great impact or shock resistance. Impact resistance

can be calculated as an acceleration

ai mp = σmax An

mhw
, (3.6.2)

where mhw is the mass of the hot wire, ai mp is the impact acceleration the structure can withstand, An

is the area normal to the force of impact and σmax is the maximum stress the material can withstand.

3.7 Performance analysis

Some important parameters can be analyzed to measure the overall performance of the thermal convec-

tive microfluidic gyroscope. A few of these are mentioned in this section.

Gyroscope sensitivity, S in [mV.s/deg], can be calculated as

S = Vout

ω
, (3.7.1)

where Vout is the Wheatstone bridge output voltage andω is the angular rate at which the output voltage

is measured.

The performances of different sensors are typically compared to each other in the form of performance

factors. The performance factor of the microfluidic gyroscope is given as

S

Vi n
= 1

2

α∆T

ω
, (3.7.2)

where ∆T is the mean temperature differences of the hot wires due to an angular velocity input ω, Vi n is

the voltage input and α is the temperature coefficient of resistance of the hot wires [10].

The resolution of a gyroscope is the smallest step in angular velocity that can be measured or picked up

by the gyroscope. The resolution of a gyroscope typically relies on its sensitivity and the analog equip-

ment used for signal conditioning.

The linear range of a gyroscope is that range of angular velocities for which a proportional relationship

can be found between the angular velocity and the voltage output form the Wheatstone half-bridge.

This completes the analytical model of the thermal convective microfluidic gyroscope; we will now pro-

ceed to the mathematical optimization of this gyroscope concept.
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Sequential approximate optimization

essentials

Sequential approximate optimization (SAO) techniques are algorithmic options for solving non-linear

optimization problems by constructing successive approximate analytical functions, called subprob-

lems [15]. These subproblems are constructed at successive approximations x {k} to the solution x∗ and

can be used with any suitable optimization algorithm.

The optimal point of the current subproblem x{k∗}, becomes the starting point of the next subprob-

lem x{k+1}. This process is repeated until the optimal solution of the current subproblem x{k∗} becomes

equal to the optimal solution of the next subproblem x{(k+1)∗}, meaning that the solution x{k}, where

k = 1,2,3, · · · , converges to an optimal solution x∗.

Sampling the real objective and constraint functions during the optimization process will be more accu-

rate than sampling the approximated functions, but this is an expensive and time consuming method.

The success and accuracy of SAO depends on the formulation of a suitable approximation to the objec-

tive and constraint functions.

4.1 The non-linear optimization problem

The nonlinear inequality-constrained optimization problem is given by

min f0(x)

subject to f j (x) ≤ 0, j = 1,2, . . . ,m, (4.1.1)

x̌i ≤ xi ≤ x̂i , i = 1,2, . . . ,n,

40
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where f0(x) is the objective function, f j (x) represents m inequality-constraint functions and x = {x1, x2, · · · ,

xn}T ∈ Rn represents n real design variables, while x̌i and x̂i respectively represent the lower and upper

bounds of xi [16].

4.2 Primal approximate subproblem

For an ordinary nonlinear optimization problem, a suitable approximate continuous subproblem can

be generated,

minimize f̃ {k}
0 (x)

subject to f̃ {k}
j (x) ≤ 0, j = 1,2, . . . ,m, (4.2.1)

x̌i ≤ xi ≤ x̂i , i = 1,2, . . . ,n, (4.2.2)

where k is the current iteration value and fα
{k}(x),α = 0,1,2, . . . ,m is the function value at the current

iteration point x{k} [16].

4.3 Approximations

Several approximations were identified and will be introduced in this section.

4.3.1 MMA approximation

Svanberg’s well known MMA (method of moving asymptotes) approximation [31] to the objective and

constraint functions in (4.1.1) is given as

f̃ {k}
j (x) =

n∑
i=1

 p{k}
j i

u{k}
i −xi

−
q {k}

j i

xi − l {k}
i

+ r {k}
j , j = 0,1, . . . ,m, (4.3.1)

where

p{k}
j i =

(
u{k}

i −x{k}
i

)2
{[

∂ f j

∂xi

(
x{k}

)]+
+κ{k}

j i

}
q {k}

j i =
(
x{k}

i − l {k}
i

)2
{[

∂ f j

∂xi

(
x{k}

)]−
+κ{k}

j i

}
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r {k}
j = f j (x{k})−

n∑
i=1

 p{k}
j i

u{k}
i −x{k}

i

−
q {k}

j i

x{k}
i − l {k}

i


x̌{k}

i = max{x̌i ,0.9l {k}
i +0.1x{k}

i }

x̂{k}
i = min{x̂i ,0.9u{k}

i +0.1x{k}
i }

l {k}
i =

{
x{k}

i −0.5(x̂i − x̌i ) if k = 1,2

x{k}
i −γ{k}

i (x{k−1}
i − l {k−1}

i ) if k ≥ 3

u{k}
i =

{
x{k}

i +0.5(x̂i − x̌i ) if k = 1,2

x{k}
i +γ{k}

i (u{k−1}
i −x{k−1}

i ) if k ≥ 3

γ{k}
j i =


0.7 if (x{k}

i −x{k−1}
i )(x{k−1}

i −x{k−2}
i ) < 0

1.2 if (x{k}
i −x{k−1}

i )(x{k−1}
i −x{k−2}

i ) > 0

1 if (x{k}
i −x{k−1}

i )(x{k−1}
i −x{k−2}

i ) = 0

κ{k}
j i = 10−3

∣∣∣∣∂ f j

∂xi
(x{k})

∣∣∣∣+ 10−6

u{k}
i − l {k}

i

, i = 1, . . . ,n and j = 0,1, . . . ,m. (4.3.2)

4.3.2 Incomplete series expansion approximations

Groenwold and Etman [16] derived a number of approximations based on their so-called incomplete

series expansions (ISE). These approximation functions will briefly be summarized for direct, reciprocal

and exponential intervening variables. It will also be shown how a diagonal quadratic approximation to

these approximations can be constructed and provide the user with a wide selection of approximations

to the objective and constraint functions.

4.3.2.1 Intervening variables

Direct design variables

The ISE approximation in terms of direct design variables xi can be given as

f̃α(x) = fα(x{k})+
n∑

i=1

(
∂ fα
∂xi

){k}

(xi −x{k}
i )+

p̄∑
p=2

1

p !

n∑
i=1

c {k}
piα

∣∣∣xi −x{k}
i

∣∣∣p
, (4.3.3)

where α= 0 represent the objective function approximation and α= 1,2, . . . ,m represents the inequality

constraint function j approximation [16].

A diagonal quadratic approximation can be constructed using (4.3.3) and substituting p̄ = 2, as higher

order approximation usually require immense computational effort and are often unnecessary. This

quadratic approximation is given as
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f̃α(x) = fα(x{k})+
n∑

i=1

(
∂ fα
∂xi

){k}

(xi −x{k}
i )+ 1

2

n∑
i=1

c {k}
2iα

(
xi −x{k}

i

)2
, (4.3.4)

where α= 0,1,2, . . . ,m and i = 1,2, . . . ,n [16].

Reciprocal intervening variables

To find the approximation in terms of reciprocal intervening variables, (4.3.3) is written in terms of yi , i =
1,2, . . . ,n. A simple reciprocal term,

yi = 1

xi
, i = 1,2, . . . ,n, (4.3.5)

is substituted and the reciprocal approximation becomes

f̃Rα = fα(x{k})+
n∑

i=1

(
xi −x{k}

i

)(
x{k}

i

xi

)(
∂ fα
∂xi

){k}

+
p̄∑

p=2

n∑
i=1

c {k}
piα

p !

∣∣∣∣∣ 1

xi
− 1

x{k}
i

∣∣∣∣∣
p

, (4.3.6)

when written in terms of the original design variables xi , i = 1,2, . . . ,n [16].

Higher order reciprocal approximations are hardly ever used, as they would require unnecessary com-

putational effort. A first order linear approximation can be constructed using (4.3.6) and substituting

p̄ = 0. The approximation now becomes

f̃Rα = fα(x{k})+
n∑

i=1

(
xi −x{k}

i

)(
x{k}

i

xi

)(
∂ fα
∂xi

){k}

. (4.3.7)

Exponential intervening variables

To find the approximation in terms of exponential intervening variables, (4.3.3) is written in terms of

yi , i = 1,2, . . . ,n. A simple exponential term,

yi = xai

i , i = 1,2, . . . ,n, (4.3.8)

is substituted and the exponential approximation becomes

f̃Eα(x) = fα(x {k})+
n∑

i=1

(
xi

x{k}
i

)a{k}
iα

−1

 x{k}
i

a{k}
iα

(
∂ fα
∂xi

){k}

+
p̄∑

p=2

n∑
i=1

c {k}
piα

p !

∣∣∣∣∣xa{k}
iα

i −
(

x
a{k}

iα

i

){k}
∣∣∣∣∣

p

, (4.3.9)

when written in terms of the original design variables xi , i = 1,2, . . . ,n [16].
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Again, higher order exponential approximations are hardly ever used, as they would require unnecessary

computational effort. A first order linear approximation can be constructed using (4.3.9) and substituting

p̄ = 0. The approximation now becomes

f̃Eα(x) = fα(x {k})+
n∑

i=1

(
xi

x{k}
i

)a{k}
iα

−1

 x{k}
i

a{k}
iα

(
∂ fα
∂xi

){k}

. (4.3.10)

4.3.2.2 Diagonal quadratic approximations

The diagonal quadratic approximation from (4.3.4) contains an unknown term c {k}
2iα

which represents the

curvature component of the approximation or the approximate Hessian terms. The approximation is

convex if this curvature component c {k}
2iα

≥ 0 for all i [18].

To obtain strictly convex dual subproblems, ck
2iα

= max(εn > 0,ck
2iα

)∀ı is enforced for α = 0, and ck
2iα

=
max(0,ck

2iα
)∀ı is enforced for α> 0, with εn arbitrarily selected as 10−5 [18].

Based on the approximation of c {k}
2iα

, several ISE based diagonal quadratic approximations are now pos-

sible and we will briefly introduce those implemented in this project.

1. A spherical quadratic approximation based on function values

The spherical quadratic approximation based on function values can be constructed using (4.3.4) and

selecting c {k}
2iα

≡ c {k}
2α

∀ i [18]. The single unknown term, c {k}
2α

may be obtained by enforcing the condition

fα(x{k−1}) = f̃α(x{k−1}), (4.3.11)

which implies that

fα(x{k−1}) = fα(x{k})+∇∇∇T fα(x {k})(x {k−1} −x {k})+
c {k}

2α

2
(x {k−1} −x {k})

2

c {k}
2α

= 2[ fα(x {k−1})− fα(x {k})−∇∇∇T fα(x {k})(x {k−1} −x {k})]

‖x {k−1} −x {k}‖2
2

, (4.3.12)

where α= 0,1,2, . . . ,m [18].

2. A spherical quadratic approximation based on error norm of the gradients

The spherical quadratic approximation based on the error norm of the gradients can be constructed us-
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ing (4.3.4) and selecting c {k}
2iα

≡ c {k}
2α

∀ i [18]. The single unknown term, c {k}
2α

may be obtained by minimizing

the least squares error with regard to c {k}
2α

[19]. The least squares error is given by

E {k}
α = (∇∇∇ f̃ {k}

α (x{k−1})−∇∇∇ fα(x{k−1}))
T

(∇∇∇ f̃ {k}
α (x{k−1})−∇∇∇ fα(x{k−1})), (4.3.13)

where

∇∇∇ f̃α(x{k−1}) =∇∇∇ fα(x {k})+ c {k}
2α

(x{k−1} −x{k}). (4.3.14)

Substituting (4.3.14) into (4.3.13), the least squares error becomes

E {k}
α = (∇∇∇ fα(x{k})+ c {k}

2α
(x{k−1} −x{k})−∇∇∇ fα(x{k−1}))

T

(∇∇∇ fα(x{k})+ c {k}
2α

(x{k−1} −x{k})−∇∇∇ fα(x{k−1})). (4.3.15)

Minimizing the least squares error with regard to c {k}
2α

gives

dE {k}
α

dc {k}
α

= (∇∇∇ fα(x{k})+ c {k}
2α

(x{k−1} −x{k})−∇∇∇ fα(x{k−1}))
T

(x{k−1} −x{k})+

(x{k−1} −x{k})
T

(∇∇∇ fα(x{k})+ c {k}
2α

(x{k−1} −x{k})−∇∇∇ fα(x{k−1})) = 0, (4.3.16)

which leads to

c {k}
2α

= (x{k−1} −x{k})T (∇∇∇ fα(x{k−1})−∇∇∇ fα(x{k}))

(x{k−1} −x{k})T (x{k−1} −x{k})
, (4.3.17)

where α= 0,1,2, . . . ,m [19].

3. A nonspherical approximation based on the components of the gradients

The nonspherical diagonal quadratic approximation based on the components of gradients can be con-

structed using (4.3.4) and obtaining the n unknown terms, c {k}
2iα

by means of enforcing the condition

∇∇∇ fα(x{k−1}) =∇∇∇ f̃α(x{k−1}), (4.3.18)

which implies that
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∇∇∇ fα(x{k−1}) = ∇∇∇ f̃α(x{k−1})

= ∇∇∇ fα(x{k})+ c {k}
2iα

(x{k−1}
i −x{k}

i )

c {k}
2iα

= ∇∇∇ fα(x{k−1})−∇∇∇ fα(x{k})

(x{k−1}
i −x{k}

i )
, (4.3.19)

where i = 1,2, . . . ,n [18].

4. The quadratic Taylor series expansion to the reciprocal approximation

The quadratic Taylor series expansion to the reciprocal approximation can be constructed using (4.3.4)

and finding the n unknown terms, c {k}
2iα

.

The second order partial derivatives c {k}
2iα

for (4.3.7) are obtained as

c {k}
2iα

= ∂2 f̃Rα

∂x2
i

(
x{k}

)
=

−2
(
∂ fα
∂xi

){k}

x{k}
i

, (4.3.20)

where i = 1,2, . . . ,n and α= 0,1,2, . . . ,m [17].

5. The quadratic Taylor series expansion to the exponential approximation

The quadratic Taylor series expansion to the exponential approximation can be constructed using (4.3.4)

and finding the n unknown terms c {k}
2iα

and a{k}
iα

.

The second order partial derivatives c {k}
2iα

for (4.3.10) are obtained as

c {k}
2iα

= ∂2 f̃Eα

∂x2
i

(
x{k}

)
=

(
a{k}

iα
−1

)
(
x{k}

i

) (
∂ fα
∂xi

){k}

, (4.3.21)

where i = 1,2, . . . ,n and α= 0,1,2, . . . ,m [17].

The unknown exponential terms a{k}
iα

may be obtained by enforcing

∇∇∇ f̃Eα(x {k−1}) =∇∇∇ fα(x {k−1}), (4.3.22)

using the exponential approximation (4.3.10) [17]. This results in
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a{k}
iα

= 1+ ln

{(
∂ fα
∂xi

){k−1}

/

(
∂ fα
∂xi

){k}
}

/ln
{(

x{k−1}
i

)
/
(
x{k}

i

)}
, i = 1,2, · · · ,n, (4.3.23)

where α= 0,1,2, . . . ,m and ln(·) indicates the natural logarithm [17].

To ensure that (4.3.10) is convex, we enforce a{k}
i ≤ 1 if the derivatives ∂ f /∂xi are negative [17].

6. The quadratic Taylor series expansion to the MMA approximations of Svanberg

The quadratic Taylor series expansion to the MMA approximation of Svanberg can be constructed by

using (4.3.4) and finding the n unknown terms c {k}
2iα

.

The MMA approximation of Svanberg contains reciprocal-like variables

yi =
(
xi −L{k}

i

)−1
if

∂ f {k}
α

∂xi
< 0, (4.3.24)

or

yi =
(
U {k}

i −xi

)−1
if

∂ f {k}
α

∂xi
> 0, (4.3.25)

where L{k}
i and U {k}

i are the lower and upper movable asymptotes respectively [17] and can be calculated

by (4.3.2).

For the MMA intervening variables, the second order partial derivatives c {k}
2iα

are obtained by

c {k}
2iα

=
(
∂2 f̃MMAα

∂x2
i

){k}

= −2(
x{k}

i −L{k}
i

) (
∂ fα
∂xi

){k}

> 0, for ∂ f {k}
α /∂xi < 0, (4.3.26)

or

c {k}
2iα

=
(
∂2 f̃MMAα

∂x2
i

){k}

= 2(
U {k}

i −x{k}
i

) (
∂ fα
∂xi

){k}

> 0, for ∂ f {k}
α /∂xi > 0, (4.3.27)

where i = 1,2, . . . ,n and α= 0,1,2, . . . ,m [17].

4.3.3 Comparison between approximations

FORTRAN implementations of the MMA approximation [31] and the ISE approximations [15] to the sub-

problem in (4.2.1) were constructed by their authors. These FORTRAN algorithms will be implemented,

compared and further discussed in Chapter 5. An algorithmic implementation of SAO, using the ISE



CHAPTER 4. SEQUENTIAL APPROXIMATE OPTIMIZATION ESSENTIALS 48

approximations, will also be coded in MATLAB and the results will be compared to existing FORTRAN

implementations.

4.4 Duality

The primal approximate subproblem in (4.2.1) can be developed into a dual approximate subproblem,

using the Lagrangian method to convert an inequality-constrained problem into an unconstrained prob-

lem. The Lagrangian can be constructed as

L {k}(x,λ) = f̃ {k}
0 (x)+

m∑
j=1

λ j f̃ {k}
j (x), (4.4.1)

where λ j , j = 1,2, . . . ,m represents the Lagrangian multipliers and gives and indication of the sensitivity

of L {k}(x,λ) to the constraint j [16].

If the primal approximate subproblem (4.2.1) is strictly convex, the global minimizer x{k∗} of the approx-

imate subproblem is define by the stationary saddle point (x{k∗},λ{k∗}) [16].

The Karush-Kuhn-Tucker (KKT) stationary conditions are defined for problems that are strictly convex

and need to be satisfied at the point x∗, which represents the global minimizer of the primal subproblem

in (4.2.1). The KKT conditions that need to be satisfied are given as

f̃ j (x∗) ≤ 0, j = 1,2, . . . ,m,

λ∗
j f̃ j (x∗) = 0, j = 1,2, . . . ,m,

λ∗
j ≥ 0, j = 1,2, . . . ,m,

∂ f̃0

∂xi
(x∗)+

m∑
j=1

λ∗
j

∂ f̃ j

∂xi
(x∗) = 0, i = 1,2, . . . ,n,

(4.4.2)

and require fα(x),α= 0,1,2, . . . ,m to be at least once continuously differentiable for all α [16].

If the primal subproblem is strictly convex and separable, the saddle point (x∗,λ∗) may be found using

the Falk dual [16]

max
λ

min
x

{L {k}(x ,λ) : x̌i ≤ xi ≤ x̂i } = max
λ

γ(λ). (4.4.3)

which is defined over a set of bound constraints.

The dual approximate subproblem is formulated by maximizing the Lagrangian over the dual variables

(or Lagrangian multipliers)
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max
λ

γ(λ) = f̃0(x(λ))+
m∑

j=1
λ j f̃ j (x(λ)) (4.4.4)

subject to λ j ≥ 0, j = 1,2, . . . ,m. (4.4.5)

and f̃α(x(λ)),α = 0,1,2, . . . ,m can be represented by any suitable approximation. In using the diagonal

quadratic approximations, described in Section 4.3, we can obtain γ(λ) as

γ(λ) = f0(x {k})+
n∑

i=1

∂ f {k}
0

∂xi
(xi (λ)−x{k}

i )+ 1

2

n∑
i=1

c {k}
2i0

(xi (λ)−x{k}
i )2

+
m∑

j=1
λ j

 f j (x {k})+
n∑

i=1

∂ f {k}
j

∂xi

(
xi (λ)−x{k}

i

)
+ 1

2

n∑
i=1

c {k}
2i j

(xi (λ)−x{k}
i )2

 .

(4.4.6)

An analytical relationship can be found between the design variables xi and the dual variables λ j in

order to satisfy the stationary KKT conditions for strictly convex problems

∂ f̃0

∂xi
(x∗)+

m∑
j=1

λ∗
j

∂ f̃ j

∂xi
(x∗) = 0 (4.4.7)

where i = 1,2, . . . ,n,. The design variables xi are found in terms of the dual variables λ j

xi (λ) =


βi (λ) if x̌i <βi (λ) < x̂i

x̌i if βi (λ) ≤ x̌i

x̂i if βi (λ) ≥ x̂i

(4.4.8)

and can be used to solve the dual approximate subproblem (4.4.5), where

βi (λ) = x{k}
i −

(
c {k}

2i0
+

m∑
j=1

λ j c {k}
2i j

)−1
∂ f {k}

∂xi
+

m∑
j=1

λ j

∂ f {k}
j

∂xi

 , (4.4.9)

for i = 1,2, . . . ,n and p̄ = 2 [16].

An algorithmic optimization solver, such as BFGS or the conjugate gradients method, is used to solve the

dual approximate subproblem. These are further discussed in Section 4.7.
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4.5 Conservatism and its effect on convergence

Conservatism is a method for enforcing convergence to an optimal solution x∗, if a feasible descent step

cannot be made [18]. An iterate k is defined conservative if f̃ {k∗}
j ≥ f {k∗}

j , for j = 0,1,2, . . . ,m [17]. This

means that the approximate function values f̃ {k∗}
j are always larger than, or equal to, the true function

values f {k∗}
j , for a conservative iterate.

In the ISE based approximations, a positive curvature component, c {k}
2iα ≥ 0 for all i , will ensure strictly

convex approximations. If the approximate diagonal curvatures c {k}
2iα are increased, the conservatism of

the approximations will also be increased and vice versa [18]. Larger curvatures or greater conservatism

will increase the computational effort to converge to an optimal solution. In using larger curvatures,

the optimal solution of the curvature at the current iterate will be closer to the optimal solution at the

previous iterate and more iterates will be necessary for convergence.

In the MMA approximation, conservatism is manipulated by adjusting the movable asymptotes and this

ensures that the approximations always remain convex. Again, the more the asymptotes are tightened,

the greater the computational effort.

In both the FORTRAN implementations of Groenwold and Svanberg an inner SAO loop is introduced to

adjust conservatism and thereby force convergence. During the inner loops, Groenwold increases the

curvatures [17] and Svanberg tightens the asymptotes of all approximations until the conservatism re-

quirements are satisfied.

Algorithmic implementation to ensure a conservative approximation

Consider the algorithm used by Groenwold and co-workers [18] to ensure that the approximations are

conservative.

Taken verbatim from the paper by Groenwold and co-workers [18]:

Given an initial point x {0}, a conservative algorithm based on convex separable diagonal

quadratic approximations proceeds as follows (using a FORTRAN-like pseudo-language):

1. Initialization: Select positive constants ε1, ε2, εx , k̂, χ1 > 1, χ2 > 1. Set k := 0, l := 0.

2. Simulation and sensitivity analysis: Compute f j (x {0}), ∇∇∇ f j (x {0}), j = 0,1,2, · · · ,m.

3. Construct the approximate curvatures: Calculate the initial outer curvatures c {k}
2i0

> 0

and c {k}
2i j

≥ 0, j = 1,2, · · · ,m.

4. Approximate optimization: Construct local approximate subproblem PD [k] at x {k}.

Solve this subproblem to arrive at (x {k∗},λ{k∗}).

5. Simulation analysis: Compute f j (x {k∗}), j = 0,1,2, · · · ,m.

6. Test if x {k∗} is acceptable:
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a) test if x {k∗} represents a feasible descent step: IF f0(x {k∗}) < f0(x {(k−1)∗}) for k > 0,

AND max{ f j (x {k∗})} ≤ 0, j = 1,2, · · · ,m, GOTO Step 8,

b) test if x {k∗} represents a conservative step: IF f̃0(x {k∗}) ≥ ( f0(x {k∗}) − ε1), AND

f̃ j (x {k∗}) ≥ ( f j (x {k∗})−ε2), j = 1,2, · · · ,m, GOTO Step 8.

7. Initiate an inner loop to effect conservatism:

a) Set l := l +1.

b) IF f̃0(x {k∗}) < ( f0(x {k∗})−ε1), set c {k}
2i0

:=χ1c {k}
2i0

.

c) IF f̃ j (x {k∗}) < ( f j (x {k∗})−ε2), set c {k}
2i j

:=χ2c {k}
2i j

, j = 1,2, · · · ,m.

d) GOTO Step 4.

8. Move to the new iterate: Set x {k+1} := x {k∗}.

9. Convergence test: IF ‖x {k+1} −x {k}‖ ≤ εx , OR k = k̂, STOP.

10. Simulation sensitivity analysis: Compute ∇∇∇ f j (x {k+1}), j = 0,1,2, · · · ,m.

11. Initiate an additional outer loop: Set k := k +1 and GOTO Step 3.

4.6 Scaling

Any optimization algorithm will struggle to converge to the true optimal solution, due to extreme dis-

tortion of the objective function contours as a results of poor scaling [29]. During formulation of the

optimization problem, care must be taken to ensure that design variables are more or less of the same

order of magnitude. Step length selection and calculation of numerical gradients often introduce diffi-

culties if the design variables are not properly scaled.

It also becomes necessary to scale the constraint functions if they differ by large magnitudes. Normal-

ization is a popular method of scaling the constraint function and proves to be quite effective in primal

algorithms. This is not necessarily true for dual algorithms, as the magnitudes of the Lagrangian multi-

pliers are unknown.

4.7 Optimization solvers

Line search descent algorithms for unconstrained minimization of general functions require some initial

estimate x0 to the optimum point x∗. From this initial point the algorithm searches in the direction

of descent to determine the next point. The algorithm repeats itself to generate successive solutions,

x0,x1,x2, . . . ,x∗ until a local minima is reached and ∇∇∇ f (x) = 0.

The direction of descent at current iterate x{k}, denoted by u{k+1}, must be selected to satisfy a negative

directional derivative
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d f (x{k})

dλ
|u{k+1} =∇∇∇T f (x{k})u{k+1} < 0, (4.7.1)

to ensure descent in the direction u{k+1} at the iterate x{k}. A first order line search method uses the

first order gradient vector ∇∇∇ f (x) to determine the direction of descent, while second order methods use

Newton’s methods for solving ∇∇∇ f (x) = 0 iteratively [29].

Two popular line search methods used for solving unconstrained minimization problems will be dis-

cussed in this section, the first order conjugate gradient (CG) method and the second order Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method.

4.7.1 Conjugate gradient method

The conjugate gradient method will converge exactly in a finite number of iterations, when applied to

a positive-definite quadratic function [29]. This method will also perform well near a local minima for

other non-quadratic functions, as many show the quadratic form near the local minima [29].

The Fletcher-Reeves conjugate gradient algorithm for general functions [29] is given as follows:

1. Choose initial estimate to the optimum point x0 and positive tolerances ε1, ε2 and ε3.

2. Compute ∇∇∇ f (x0) and set u1 =−∇∇∇ f (x0).

3. For k = 1,2, . . . ,n do:

a) Set x{k} = x{k−1}+λ{k}u{k}, where λ{k} is such that f (x{k−1}+λ{k}u{k}) = minλ f (x{k−1}+λ{k}u{k})

(line search).

b) Compute ∇∇∇ f (x{k}).

c) Test if convergence criteria is satisfied:

if ∥ x{k}−x{k−1} ∥< ε1, or ∥ ∇∇∇ f (x{k}) ∥< ε2, or | f (x{k})− f (x{k−1}) |< ε3, then STOP and x∗ ∼= x{k},

else go to Step 3d.

d) Compute new descent direction: if 1 ≤ k ≤ n −1, then u{k+1} =−∇∇∇ f (x{k})+β{k}u{k} with β{k}

given by

β{k} = ∥∇∇∇ f (x{k}) ∥2

∥ ∇∇∇ f (x{k−1}) ∥2

else β{k} = 0.

4. Set x0 = xn and go to Step 3 (restart).
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4.7.2 BFGS method

Second order line search methods are not always convergent, but are quadratically convergent when

they do converge [29]. These methods require the evaluation of the Hessian matrix H(x) at each iteration

step, which requires great computational effort [29]. The BFGS algorithm (as all Quasi-Newton meth-

ods) use approximations to the Hessian matrix H(x) and these are updated and re-evaluated after each

iteration step [29].

The BFGS algorithm for general functions [29] is given as follows:

1. Choose initial estimate to the optimum point x0 and positive tolerances ε1, ε2 and ε3.

2. Set G0 = I, where G0 is the initial approximation to the Hessian matrix H(x).

3. Do for iteration k = 1,2, . . . ,n:

a) Set x{k} = x{k−1} + λ{k}u{k}, where u{k} = −G{k−1}∇∇∇ f (x{k−1}) and λ{k} is such that f (x{k−1} +
λ{k}u{k}) = minλ f (x{k−1} +λ{k}u{k}),λ{k} ≥ 0 (line search).

b) Test if convergence criteria is satisfied:

if ∥ x{k}−x{k−1} ∥< ε1, or ∥ ∇∇∇ f (x{k}) ∥< ε2, or | f (x{k})− f (x{k−1}) |< ε3, then STOP and x∗ ∼= x{k},

else go to Step 3c.

c) Set v{k} =λ{k}u{k} and set y{k} =∇∇∇ f (x{k})−∇∇∇ f (x{k−1}).

d) Compute G{k} used for new descent direction:

G{k} = G{k−1} +
[

1+ y{k}T G{k−1}y{k}

v{k}T y{k}

][
v{k}v{k}T

v{k}T y{k}

]
−

[
v{k}y{k}T G{k−1} +G{k−1}y{k}v{k}T

v{k}T y{k}

]
.

4. Set x0 = xn and G0 = I. Go to Step 3 (restart).

4.8 Algorithmic implementation of SAO in MATLAB

Based on the algorithmic implementation using conservatism in FORTRAN (refer to Section 4.5), the SAO

algorithm was implemented in MATLAB. A BFGS solver (projbfgs.m implemented by C.T. Kelley [21]) is

called to solve for the dual variables.

ISE based approximations, described in Section 4.3.2, were implemented in order to have a thorough

comparison of implementations and a variety of optimization techniques to test for.

A flow diagram is given in Figure 4.1 and MATLAB code is documented in Appendix C.
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Figure 4.1: Flow diagram of algorithmic implementation of SAO using conservatism in MATLAB
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4.9 Test problems

To see how the approximation functions and optimization solvers compare to one another, the FOR-

TRAN implementations of Svanberg [31] and Groenwold [15] were applied to two popular test problems

proposed by Svanberg. These test problems will also be solved using the MATLAB implementation of

SAO, with the BFGS solver, and a comparison of the results will be an indication of the accuracy of the

implementation.

Abbreviations describing each approximation, are listed in Table 4.1 and will be used from here on.

Table 4.1: Approximation abbreviations

Abbreviation Approximation
SQ1 Spherical quadratic approximation based on function values
SQ2 Spherical quadratic approximation based on error norm of the gradients
NSQ Nonspherical approximation based on components of the gradients
T2:reciprocal Quadratic Taylor series expansion to the reciprocal approximation
T2:exponential Quadratic Taylor series expansion to the exponential approximation
T2:MMA Quadratic Taylor series expansion to the MMA approximation
MMA MMA approximation of Svanberg

4.9.1 Svanberg’s 5-variate cantilever beam

A standard weight minimization problem was proposed by Svanberg [30], with sizing design variables,

subject to a single displacement behavior constraint. This problem may analytically be expressed as

min
x

f0(x) =c1

5∑
i=1

xi ,

subject to f1(x) = 61

x3
1

+ 37

x3
2

+ 19

x3
3

+ 7

x3
4

+ 1

x3
5

− c2 ≤ 0,

0 < xi , i = 1,2, . . .5,

with c1 = 0.0624 and c2 = 1.0. Results comparing several different approximations, with existing FOR-

TRAN implementations, are presented in Table 4.2 and the convergence histories are depicted in Figure

4.2.

The number of iterations used for this problem, should be almost equal for BFGS and CG algorithms.

Small differences occur due to rounding, tolerances and machine precision.

The MATLAB implementation, using a BFGS solver, compares well to the FORTRAN implementation and

Table 4.3 compares the function values and iteration history.
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Table 4.2: Cantilever beam problem results using several different approximations

Approximation Solver f {∗} Maximum Outer Inner KKT
constraint Iterations Iterations residual

SQ1 BFGS 1.3399564 −0.74×10−11 11 19 3.21×10−7

SQ1 CG 1.3399564 −0.37×10−12 12 19 3.92×10−7

SQ2 BFGS 1.3399564 0.259×10−11 12 18 2.44×10−7

SQ2 CG 1.3399564 0.127×10−11 12 18 2.44×10−7

NSQ BFGS 1.3399564 −0.41×10−10 8 19 3.36×10−9

NSQ CG 1.3399564 −0.28×10−10 8 19 3.36×10−9

T2:reciprocal BFGS 1.3399564 −0.68×10−10 9 12 2.24×10−7

T2:reciprocal CG 1.3399564 0.387×10−11 9 11 5.21×10−13

T2:exponential BFGS 1.3399564 −0.12×10−8 10 4 2.46×10−7

T2:exponential CG 1.3399564 −0.94×10−16 10 4 2.46×10−7

T2:MMA BFGS 1.3399564 0.377×10−9 19 15 7.57×10−7

T2:MMA CG 1.3399564 0.706×10−10 19 15 7.57×10−7

MMA Combination 1.3399564 0.769×10−11 18 18 1.7×10−7

Figure 4.2: Convergence histories of the cantilever beam problem using several different approximations

In theory, using SAO with a BFGS solver should result in iteration sizes equal for both MATLAB and FOR-

TRAN implementations of the same algorithm. Small inaccuracies occur due to the fact that two different

compilers are being used to solve the optimization problem and two different implementations of the
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BFGS algorithm are used. Outer iterations compare better than inner iterations, which also suggests that

inaccuracies occur at a solver level.

Table 4.3: Comparison of FORTRAN and MATLAB implementations applied to the cantilever beam prob-
lem

FORTRAN MATLAB

Approximation f {∗} Outer Inner Outer Inner
Iterations Iterations Iterations Iterations

SQ1 1.3399564 11 19 13 6
SQ2 1.3399564 12 18 12 5
NSQ 1.3399564 8 19 9 6
T2:reciprocal 1.3399564 9 12 9 10
T2:exponential 1.3399564 10 4 10 4
T2:MMA 1.3399564 19 15 19 14

4.9.2 Svanberg’s snake problem

Svanberg proposed the snake problem [32] for anyone who wants to test a new method of nonlinear

optimization. This problem may analytically be expressed as

min
x

f0(x) =
d∑

i=1
(xi cosψi +xd+i sinψi −0.1x2d+1)

subject to
d∑

i=1
(x2

d+i +x2
i ) ≤ d

−2 ≤ gi (x)+ gi (x)7 ≤ 2, i = 1,2, . . . ,d

−2 ≤ hi (x)+hi (x)7 ≤ 2, i = 1,2, . . . ,d

−2 ≤ x j ≤ 2, j = 1,2, . . . ,3d , (4.9.1)

with

ψi = (3i −2d)π

6d
, gi (x) = x2

i +x2
d+i −1

δs
and hi (x) = x2d+i −2xi xd+i

δs
. (4.9.2)

Let d be a given positive integer, selected d = 10 and let δs be a small positive real number, selected

δs = 0.1. The initial values to the problem are given as
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x{0}
i = cos(ψi + π

12
), x{0}

d+i = sin(ψi + π

12
) and x{0}

2d+i = sin(2ψi + π

6
), (4.9.3)

where i = 1,2, . . . ,d .

Results comparing several different approximations are presented in Table 4.4 and the convergence his-

tories are depicted in Figure 4.3.

Table 4.4: Snake problem results using several different approximations

Approximation Solver f {∗} Maximum Outer Inner KKT
constraint Iterations Iterations residual

SQ1 BFGS −10.02298 0.1588×10−5 51 355 5.57×10−6

SQ1 CG −10.02298 0.3122×10−12 53 356 1.02×10−7

SQ2 BFGS −10.02298 0.4248×10−5 42 321 3.71×10−6

SQ2 CG −10.02298 0.1037×10−10 48 356 4.68×10−6

NSQ BFGS −10.02298 0.9827×10−6 395 11378 7.61×10−5

NSQ CG −10.02298 0.5192×10−10 260 7234 1.99×10−2

T2:MMA BFGS −10.02298 0.1170×10−4 91 1228 5.47×10−4

T2:MMA CG −10.02298 0.6240×10−11 109 1143 3.47×10−6

MMA Combination −10.02298 0.7286×10−6 76 481 3.91×10−7

This optimization problem is far more difficult to solve than the previous one and the inaccuracies oc-

curring in the number of iterations, become more significant.

The MATLAB implementation, using a BFGS solver, compares well to the FORTRAN implementation and

Table 4.5 compares the function values and iteration history. Iteration inaccuracies are becoming more

significant as the problem difficulty increases. The optimal function values and design variables remain

accurate throughout all test problems.

Both MATLAB and FORTRAN implementation call the BFGS algorithm to solve for the optimal dual vari-

ables. The BFGS implementation differs for MATLAB and FORTRAN code and would yield small incon-

sistencies in tolerances, rounding and logic. Machine precision would differ for MATLAB and FORTRAN

compilers and would also have a significant impact on dual variables.
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Figure 4.3: Convergence histories of the snake problem using several different approximations

Table 4.5: Comparison of FORTRAN and MATLAB implementations applied to the snake problem

FORTRAN MATLAB

Approximation f {∗} Outer Inner Outer Inner
Iterations Iterations Iterations Iterations

SQ1 −10.02298 51 355 105 1504
SQ2 −10.02298 42 321 134 1306
NSQ −10.02298 395 11378 129 1577
T2:MMA −10.02298 91 1228 89 1176



Chapter 5

Mathematical optimization and design

In this chapter, the analytical model presented in Chapter 3 is used to formulate the optimization prob-

lem for the detecting chamber of the microfluidic gyroscope.

Sequential approximate optimization will be used to solve the optimization problem, through means of

the MATLAB and FORTRAN implementations of MMA and ISE-based approximations studied in Chapter

4.

5.1 Objective function and variables to be optimized

To optimize the gyroscope for sensitivity, the output voltage Vout from Figure 3.2 needs to be maximized.

The objective function to be minimized can therefore be taken as

f0 =−Vout , (5.1.1)

where Vout is given in (3.4.23).

Figure 5.1: Detecting chamber and hot wire circuit, illustrating the design variables

60
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In this problem, eight design variables were identified, n = 8, and need to be optimized. These are given

in Table 5.1 and illustrated in Figure 5.1.

Table 5.1: Design variables needed for optimization

Variable Description Short
x(1) Constant current across hot wires [µA] Iccr

x(2) Length of the hot wire [mm] Lhw

x(3) Height of the hot wire [mm] hhw

x(4) Width of the hot wire [mm] whw

x(5) Channel width [mm] wch

x(6) Mean velocity across hot wires [mm/s] vm

x(7) Length from nozzle to hot wire [mm] Lch

x(8) Channel height [mm] hch

5.2 Bounds

Reasonable upper and lower bounds were selected based on the simulations done by Dau and co-workers

[11].

The bounds and initial approximation values of the design variables are given in Table 5.2.

Table 5.2: Bounds and initial approximations of design variables

Variable Lower bound Upper bound Initial approximation
x(1) 1 100 30
x(2) 100×10−3 1000×10−3 400×10−3

x(3) 1×10−3 100×10−3 2.5×10−3

x(4) 5×10−3 100×10−3 10×10−3

x(5) 1 50 25
x(6) 0.1×103 10×103 3.5×103

x(7) 1 30 7.5
x(8) 1 50 25

5.3 Constraint functions

The in-equality constraint functions fα, considered in this optimization problem, are briefly discussed

in this section. Note that fα ≤ 0, α= 1,2, . . . ,m and m = 10.

The first three constraint functions, f1, f2 and f3, are necessary for general fluid modelling (refer to Sec-

tion 3.3). A compressible fluid can generally be treated as an incompressible fluid when M a < 0.3
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f1 = M a −0.3, (5.3.1)

K n < 0.01 validates the continuum approach

f2 = K n −10−3, (5.3.2)

and Re f < 2100 describes laminar flow

f3 = Re f −2100. (5.3.3)

Constraint function f4 is a precautionary measure to ensure a sufficient inertia to viscosity ratio,

f4 = 100−Re f (5.3.4)

and in this design problem, inertia will be a hundred times larger than viscosity.

Constraint functions f5 and f6 describe the structural limitations due to failure (refer to Section 3.6). The

gyroscope is designed to withstand an impact acceleration of 15000g

f5 = 15000(9.81×103)−ai mp , (5.3.5)

and the stress due to the drag force should not exceed the maximum stress of the hot wire material

f6 =QD −Qmax . (5.3.6)

Power consumption of the hot wires is limited to 1 mW by means of constraint function f7,

f7 = Phw −106 (5.3.7)

and the reader is referred to Section 3.4.2.3 for more detail.

Constraint function f8 limits the hot wire resistances to positive values Rhw > 0

f8 =αI ccr 2R0 −h Ahw , (5.3.8)

and f9 describes the dead zone between the two hot wires
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f9 = 3Lhw −wch . (5.3.9)

Constraint function f10 limits the deflection of the flow profile to center of the hot wire

f10 = δ−0.5(wch −Lhw ). (5.3.10)

It might become necessary to adjust this term later on when a better analytical relationship is found

between the deflection of the flow profile and the velocity gradient across the hot wire. At this point in

time we design for a maximum linear range and assume the deflection produced by half the maximum

angular velocity should be in the center of the hot wire.

Scaling of the constraint functions is a challenging task, as we are dealing with a dual algorithm (refer

to Section 4.6) and the Hessian is ill-conditioned. By means of trial and error, the normalization of con-

straint functions fα,α= 1,2, . . . ,7, proved successful. After scaling of the constraint functions, (5.3.10) to

(5.3.10) becomes

f1 = M a

0.3
−1

f2 = K n

10−3 −1

f3 = Re f

2100
−1

f4 = 1− Re f

100

f5 = 1− ai mp

15000(9.81×103)

f6 = QD

Qmax
−1

f7 = Phw

106 −1

f8 = αI ccr 2R0 −h Ahw

f9 = 3Lhw −wch

f10 = δ−0.5(wch −Lhw ), (5.3.11)

and these are used in the FORTRAN implementations.



CHAPTER 5. MATHEMATICAL OPTIMIZATION AND DESIGN 64

5.4 Gradients

In order to calculate the first order derivatives d fα
d xi

, we first need to find all functions fα in terms of the

design variables xi , where α= 0,1,2 . . . ,m and i = 1,2, . . . ,n.

The objective function, in terms of the design variables, is given as

f = −Vout

= αAhw I 3R0
2bcvc−1[

Ahw bvc −R0I 2α
]2κδ

= α2Lhw (whw +hhw ) I 3(λr Lhw (1+5α))2 (
1.1kC Lcn−1Pr 0.31

)
nvn−1

(νn) (hhw whw )2
[

2Lhw (whw +hhw )
((

1.1kC Lcn−1Pr 0.31

νn

)
vn

)
−

(
λr Lhw (1+5α)

hhw whw

)
I 2α

]2κδ

= 2.2α (whw +hhw ) I 3λr
2Lhw

3(1+5α)2kC whw
n−1Pr 0.31nvn−1

νn
(
h2

hw whw
)2

[(
(whw+hhw )2.2Lhw kC whw

n−1Pr 0.31vn

νn

)
−

(
λr Lhw (1+5α)I 2α

hhw whw

)]2κδ

= 2.2α (whw +hhw ) I 3λr
2Lhw

3(1+5α)2kC whw
n−1Pr 0.31nvn−1

νn(hhw whw )2
[

((whw+hhw )2.2Lhw kC whw
n−1Pr 0.31vn (hhw whw )−λr Lhw (1+5α)I 2ανn)2

(hhw whw )2ν2n

]κδ
= 2.2α (whw +hhw ) I 3λr

2Lhw
3(1+5α)2kC whw

n−1Pr 0.31nvn−1νn[
2.2(whw +hhw )whw hhw Lhw kC whw

n−1Pr 0.31vn −λr Lhw (1+5α) I 2ανn
]2

−Lch
2

v
κω

= −2.2x7
2α (x3 +x4) x1

3λr
2x2(1+5α)2kC x4

n−1Pr 0.31nx6
n−2νn[

2.2(x3 +x4)x3kC x4
nPr 0.31x6

n −λr (1+5α) x1
2ανn

]2 κω. (5.4.1)

The non-zero objective function derivatives are given as

d f0

d x1
= −κω6.6x7

2α (x3 +x4) x1
2λr

2x2(1+5α)2kC x4
n−1Pr 0.31nx6

n−2νn[
2.2(x3 +x4)x3kC x4

nPr 0.31x6
n −λr (1+5α) x1

2ανn
]2 −

8.8κωα2x7
2 (x3 +x4) x1

4λr
3x2(1+5α)3kC x4

n−1Pr 0.31nx6
n−2ν2n[

2.2(x3 +x4)x3kC x4
nPr 0.31x6

n −λr (1+5α) x1
2ανn

]3

d f0

d x2
= −κω(

2.2x7
2α (x3 +x4) x1

3λr
2(1+5α)2kC x4

n−1Pr 0.31nx6
n−2νn

)[
2.2(x3 +x4)x3kC x4

nPr 0.31x6
n −λr (1+5α) x1

2ανn
]2

d f0

d x3
= −κω(

2.2x7
2αx1

3λr
2x2(1+5α)2kC x4

n−1Pr 0.31nx6
n−2νn

)[
2.2(x3 +x4)x3kC x4

nPr 0.31x6
n −λr (1+5α) x1

2ανn
]2 +

κω (9.68)(2x3 +x4) x7
2α (x3 +x4) x1

3λr
2x2(1+5α)2k2C 2x4

2n−1Pr 0.62nx6
2n−2νn[

2.2(x3 +x4)x3kC x4
nPr 0.31x6

n −λr (1+5α) x1
2ανn

]3
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d f0

d x4
= −κω(

(x3 +x4) (n −1) x4
n−2 +x4

n−1
)
2.2x7

2αx1
3λr

2x2(1+5α)2kC Pr 0.31nx6
n−2νn[

2.2(x3 +x4)x3kC x4
nPr 0.31x6

n −λr (1+5α) x1
2ανn

]2 +

κω(9.68)
(
(x3 +x4)nxn−1

4 +xn
4

)
x3x2k2C 2Pr 0.62x7

2α (x3 +x4) x1
3λr

2(1+5α)2x4
n−1nx6

2n−2νn[
2.2(x3 +x4)x3kC x4

nPr 0.31x6
n −λr (1+5α) x1

2ανn
]3

d f0

d x6
= −κω (2.2) x7

2α (x3 +x4) x1
3λr

2x2(1+5α)2kC x4
n−1Pr 0.31n (n −2) x6

n−3νn[
2.2(x3 +x4)x3kC x4

nPr 0.31x6
n −λr (1+5α) x1

2ανn
]2 +

κω (9.68) x3x7
2α(x3 +x4)2x1

3λr
2(1+5α)2k2C 2x4

2n−1Pr 0.62n2x6
2n−3νn[

2.2(x3 +x4)x3kC x4
nPr 0.31x6

n −λr (1+5α) x1
2ανn

]3

d f0

d x7
= −4.4x7α (x3 +x4) x1

3λr
2x2(1+5α)2kC x4

n−1Pr 0.31nx6
n−2νn[

2.2(x3 +x4)x3kC x4
nPr 0.31x6

n −λr (1+5α) x1
2ανn

]2 κω. (5.4.2)

Constraint function f1 and its non-zero derivatives:

f1 = M a

0.3
−1

= v

0.3ao
−1

= x6

0.3ao
−1 (5.4.3)

d f1

d x6
= 1

0.3ao
(5.4.4)

Constraint function f2 and its non-zero derivatives:

f2 = K n

10−3 −1

=
√
πγ

2

M a

(10−3)Re
−1

=
√
πγ

2

vν

(10−3)ao vDch
−1

=
√
πγ

2

ν(hch +wch)

(2×10−3)ao wchhch
−1

=
√
πγ

2

ν(x5 +x8)

(2×10−3)ao x5x8
−1 (5.4.5)

d f2

d x5
=

√
πγ
2 2aoν(x5 −x8 −x5)

(4×10−3)ao
2x8

2x5
2

=
−

√
πγ
2 ν

(2×10−3)ao x5
2
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d f2

d x8
=

√
πγ
2 2aoν(x8 −x8 −x5)

(4×10−3)a2
o x8

2x5
2

=
−

√
πγ
2 ν

(2×10−3)ao x8
2 (5.4.6)

Constraint function f3 and non-zero derivatives:

f3 = Re f

2100
−1

= vDch

2100ν
−1

= 2v wchhch

2100ν(hch +wch)
−1

= 2x5x6x8

2100ν(x5 +x8)
−1 (5.4.7)

d f3

d x5
= 2νx6x8(x8 +x5 −x5)

2100ν2(x5 +x8)2

= 2x6x8
2

2100ν(x5 +x8)2

d f3

d x6
= 2x5x8

2100ν(x5 +x8)
d f3

d x8
= 2x5x6ν(x5 +x8 −x8)

2100ν2(x5 +x8)2

= 2x2
5 x6

2100ν(x5 +x8)2 (5.4.8)

Constraint function f4 and its non-zero derivatives:

f4 = 1− Re f

100

= 1− 2v wchhch

100ν(hch +wch)

= 1− 2x5x6x8

100ν(x5 +x8)
(5.4.9)

d f4

d x5
= − 2x6x8

2

100ν(x5 +x8)2

d f4

d x6
= − 2x5x8

100ν(x5 +x8)

d f4

d x8
= − 2x2

5 x6

100ν(x5 +x8)2 (5.4.10)



CHAPTER 5. MATHEMATICAL OPTIMIZATION AND DESIGN 67

Constraint function f5 and its non-zero derivatives:

f5 = 1− ai mp

15000g

= 1− Qmax hhw whw

15000gρhw Lhw whw hhw

= 1− Qmax

15000gρhw Lhw

= 1− Qmax

15000gρhw x2
(5.4.11)

d f5

d x2
= Qmax

15000gρhw x2
2 (5.4.12)

Constraint function f6 and its non-zero derivatives:

f6 = QD

Qmax
−1

= 0.5ρhw v2CD

Qmax
−1

= 0.5ρhw x2
6CD

Qmax
−1 (5.4.13)

d f6

d x6
= ρhw x6CD

Qmax
(5.4.14)

Constraint function f7 and its non-zero derivatives:

f7 = Phw

106 −1

= Vi n Ii n

106 −1

= 4I 2Rhw
2(

2×106
)

R0
+ 2I 2Rhw

106 −1

= 4I 2h2 Ahw
2R0

2(
2×106

)
R0

(
h Ahw −αI 2R0

)2 +
((

2×10−6
)
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Constraint function f8 and its non-zero derivatives:
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Constraint function f9 and its non-zero derivatives:

f9 = 3Lhw −wch

= 3x2 −x5 (5.4.19)
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= −1 (5.4.20)

Constraint function f10 and its non-zero derivatives:
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The gradients calculated analytically in this section, were compared to gradients calculated with a finite

difference method and the maximum error did not exceed 10−4.

5.5 Fluid and material properties

Due to a lack of resources, manufacturing and testing of the gyroscope was not possible and it is impor-

tant to have some means by which to verify the results. A similar gas and hot wire material, as used in

the gyroscope of Dau and co-workers [11], was chosen in order to have some comparative aspects.

Inert Neon gas properties at 1 atmospheric pressure and T = 25°C are given in Table 5.3 below:

Hot wire material and amplifier circuit properties are given in Table 5.4 below:



CHAPTER 5. MATHEMATICAL OPTIMIZATION AND DESIGN 71

Table 5.3: Inert Neon gas properties

Property Description Value
µ Dynamic Viscosity [kg/mm.s] 3142×10−11

cp Specific Heat (constant pressure)[nJ/kg.C] 1030×109

cv Specific Heat (constant viscosity)[nJ/kg.C] 618×109

k f Thermal conductivity of the fluid [nW/mm.K] 49.1×103

ρ Density [kg/mm3] 0.846×10−9

a0 Velocity of sound in fluid [mm/s] 435×103

Table 5.4: Hot wire material and circuit properties

Variable Description Value
λ Resistivity [kΩ.mm] 0.35×10−2

α Thermal coefficient of resistance [1/°C] 6000×10−6

ρ Hot wire density [kg/mm3] 2300×10−9

Qmax Maximum stress for Silicon [kPa] 63.9×106

CD Drag force coefficient 0.9
C Empirical constant 0.56
n Empirical constant 0.8

5.6 Input

As previously explained (refer to Section 5.3), the angular velocity is proportional to the output voltage

from the Wheatstone half-bridge Vout and its only influence on the optimization problem is the linear

range that is designed for. Assuming constraint function 10 is a reasonable one, the angular velocity

input ω should be equal to half the linear range ωmax /2 that is designed for.

In this problem a linear range of 300 deg/s is assumed and the angular velocity input ω will be taken as

ω= 150 deg/s.

The proportionality constant κ (refer to Section 3.4.2.1) has no influence on the optimal solution and is

assumed to be 1. This constant can only be obtained numerically and influences the objective function

value proportionally.

5.7 Results

FORTRAN implementations of the ISE based approximations by Groenwold [16] and the MMA approx-

imation from Svanberg [31] were implemented and compared (see Appendix B for setup). Function

values and computational effort, using both BFGS and CG solvers, are compared for the different ap-

proximations discussed in Section 4.3. The goal is to find the most suitable solver-approximation com-

bination for this specific gyroscope problem.
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Results using a MATLAB implementation, discussed in Chapter 4.8, are compared to the FORTRAN results

in order to establish the accuracy of our implementation.

5.7.1 Optimal function values for different approximations and solver algorithms

Results are presented in Table 5.5 and the optimal solution is found to be f {∗} =−0.31809192×104. "—"

implies not converged within 5000 iterations.

Table 5.5: Results using several different approximations and solver algorithms

Approximation Solver Optimal solution, Maximum Outer Inner KKT
f {∗} constraint Iter Iter residual

SQ 1 BFGS — 0.1590×10−1 5000 — —
SQ 1 CG −0.31809192×104 −0.708×10−15 46 209 1.46×10−8

SQ 2 BFGS — 0.1606×10−1 5000 — —
SQ 2 CG −0.31809192×104 0.3456×10−11 43 189 3.99×10−7

NSQ BFGS — −0.641×10−5 5000 — —
NSQ CG −0.31809192×104 0.9431×10−10 45 172 2.26×10−4

T2:reciprocal BFGS −0.31809192×104 −0.624×10−8 50 18 3.23×10−5

T2:reciprocal CG −0.31809192×104 0.1309×10−11 52 7 4.50×10−9

T2:exponential BFGS −0.31809192×104 0.2572×10−7 68 20 1.92×10−4

T2:exponential CG −0.31809192×104 −0.164×10−12 71 7 5.17×10−5

T2:MMA BFGS −0.31809192×104 0.3529×10−9 31 343 2.42×10−5

T2:MMA CG −0.31809192×104 0.3823×10−13 21 77 4.08×10−4

MMA Combination −0.31809192×104 0.2840×10−11 17 68 4.15×10−6

The BFGS solver is clearly not suitable for this optimization problem as convergence cannot be accom-

plished for three of the six quadratic approximations (refer to Figure 5.2 for the convergence curves).

This solver algorithm terminated on the maximum number of steps for quadratic approximations 1, 2

and 3, which is an obvious implication that the optimal solution f {∗} has not been found and those re-

sults should be ignored. The algorithm terminated on x-norm for the rest of the approximations, which

implies convergence to the optimal solution, f {∗} =−0.31809192×104.

The CG solver is quite suitable for this problem as the function value converges to an optimal solution

within a reasonable number of iterations for all approximations (refer to Figure 5.2 for the convergence

curves). This solver algorithm was terminated on x-norm for all approximations, which implies that

‖x {k+1} −x {k}‖ ≤ εx .

The MATLAB implementation, using a BFGS solver, compares well to the FORTRAN implementation and

Table 5.6 compares the function values and iteration history.
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Figure 5.2: Convergence histories for the gyroscope optimization problem using several different ap-
proximations

Table 5.6: Comparison of FORTRAN and MATLAB implementations applied to the gyroscope problem

FORTRAN MATLAB

Approximation f {∗} Outer Inner Outer Inner
Iterations Iterations Iterations Iterations

T2:reciprocal −0.31809192×104 50 18 51 6
T2:exponential −0.31809192×104 68 20 70 8
T2:MMA −0.31809192×104 31 343 383 2661

5.7.2 Design variables and constraint function

All approximation and solver combinations that converged to an optimal solution, f {∗} =−0.31809192×
104, yield the same optimal design variables. The optimal design variable set x∗ is presented in Table 5.7.

Four of the design variables reached their lower bounds and one reached its upper bound. Adjusting

some of these bounds might result in greater sensitivity and it is up to the designer to select reasonable

bounds for each gyroscope magnitude. These bounds were selected to compare the results to existing

designs.

The influence of the constraint functions are presented in Table 5.8. A non-zero dual variable represents
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Table 5.7: Optimal design variables

Variable Lower bound Upper bound Initial approximation Optimal value
x(1) 1 100 30 18.7484
x(2) 100×10−3 1000×10−3 400×10−3 100×10−3

x(3) 1×10−3 100×10−3 2.5×10−3 1×10−3

x(4) 5×10−3 100×10−3 10×10−3 5×10−3

x(5) 1 50 25 50
x(6) 0.1×103 10×103 3.5×103 0.1×103

x(7) 1 30 7.5 4.07840
x(8) 1 50 25 29.5416

Table 5.8: Influence of constraint functions

Constraint Function value Dual variable
f1 −0.999 0
f2 −0.996 0
f3 −0.952 0
f4 −0.819×10−5 0
f5 −0.186×107 0
f6 −0.100×101 0
f7 −0.283×10−10 0.3731×104

f8 −0.512×102 0
f9 −0.497×102 0
f10 −0.164×10−12 0.1275×103

an active constraint.

It is clear that two out of the ten constraints are active and the sensitivity of the gyroscope will most

likely be influenced by these constraints. As expected, a significant choice needs to be made between

the power consumption and the sensitivity of the gyroscope.

5.7.3 Discussion of findings

In reviewing results from Table 5.5 to find the most suitable approximation for this specific optimization

problem, we need to consider the deciding factors. Inner iterations are almost as expensive as the outer

iterations, as the optimal dual variables need to be solved every time curvature components are adjusted.

This implies that the sum of all iterations, inner and outer, would most accurately represent the cost of

simulation. Interpreting results using this logic, imply that Groenwold’s Taylor series expansion to the

reciprocal and exponential approximations [15] proved most efficient and inexpensive.

This logic did not prove as simple when comparing the two solver algorithms. The sum total of iterations

for the CG solver were lower with all approximations, but simulation time remained less with the BFGS

solver. BFGS solvers use the Hessian matrix, which contains second order derivatives, to find the next
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optimal point. This algorithm will prove faster than a first order linear algorithm, such as the CG solver,

but requires the subproblem to be continuously differentiable twice. This condition is not true for dual

subproblems and therefore the algorithm will not always converge. This was the case for three of the six

approximations.

A BFGS solver is preferred for this optimization problem, but convergence cannot always be guaranteed.

The CG solver would be a safer choice, although generally more expensive per iteration. It seems the key

to low simulation time, is finding the right solver-approximation combination and neither one can be

favored over the other.

The MATLAB implementation compared well to the FORTRAN implementation, when considering the

number of iterations. Unfortunately, simulation time is inefficiently high when using a MATLAB compiler

and should be considered as a last resort.

The resulting objective function value, f {∗} =−0.31809192×104, is not the true voltage output from the

Wheatstone bridge. The proportionality constant κ (refer to Section 5.6) is assumed to be 1, and it has

no influence on the optimal solution. To determine the real voltage output, the proportionality constant

should be found by means of numerical simulation.

In reviewing the optimal design variables in Table 5.7, it is clear that the bounds of the channel height

and width should be limited relative to other dimensions. More accurate constraints would be possi-

ble when incorporating the effect of chamber dimensions on cross-sensitivity, flow profile and pressure

differences into the analytical model. Limiting the chamber dimensions by reducing the values of the

upper bounds, would not necessarily solve the problem. Optimal values would continue to reach the

upper bounds and this only shows that the analytical model needs to be defined more accurately.

The length from the nozzle exit to the hot-wires was found to be 4.1mm. This value would also be influ-

enced when defining the analytical model for cross-sensitivity, length of fully developed flow and limit-

ing the height and width of the channel.

The design variables might be optimal for the objective and constraint functions in this model, but it is

clear that numerical simulation is needed to find the maximum velocity gradient across the hot wires.

The width and height of the detecting chamber will have an influence on the velocity gradient across the

hot wires and this has not been taken into account.
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Conclusion

6.1 Findings and accomplishments

This thesis presented the reader with an analytical model for a thermal convective microfluidic gyro-

scope that can be used to formulate an optimization problem and introduced some sequential approxi-

mate optimization essentials to apply to the gyroscope.

For the optimization of the detecting chamber of the thermal convective microfluidic gyroscope, several

approximations to the objective and constraint functions were compared and two different subproblem

solvers were investigated. The CG solver showed an overall better performance and convergence to an

optimal solution was always possible. The single best performance, however, was found using the BFGS

solver and quadratic Taylor series expansion to the reciprocal and exponential approximations. This

showed that the CG solver is a safe choice, but the solver-approximation combination is the key to low

simulation time.

The SAO algorithm, using the conservatism principle and a BFGS solver, was implemented in MATLAB

and compared to existing implementations. Results compared well for less complex problems, whilst

more significant iteration inaccuracies occurred for complex optimization problems. These inaccura-

cies can be explained by compiler and solver-implementation differences. Using the MATLAB compiler

to solve for optimization problems proved time consuming and inefficient. Although a MATLAB imple-

mentation of SAO might be sought after, it is not recommended for use with complex problems whenever

C-compiler options are available.

6.2 Difficulties

Numerical simulation is a priority in the design process of a thermal convective microfluidic gyroscope.

It is unfortunate that very few software packages available are able to simulate the effect of the Coriolis

76
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force due to an angular rotation on a moving fluid. Due to limited resources and access to sufficient

software packages, numerical simulation was not a possibility in this thesis.

The impact on our results are obvious. The proportionality constant κ (refer to Section 5.6) was assumed

to be 1, and was assumed to have no influence on the optimal solution. This constant can only be de-

termined numerically and it does influence the voltage output from the Wheatstone bridge. Without a

true output value, the performance of this gyroscope could not be determined and compared to existing

gyroscope characteristics.

Scaling of the constraint functions and design variables were necessary, due to the horrendous curva-

tures produced for this problem and large order of magnitude differences in the design variables.

6.3 Suggestions and future development

Since analytical models for a thermal convective microfluidic gyroscope were not abundantly found in

the literature, our optimization model still needs to be developed further into a usable, standardized

model.

A better analytical relationship between the velocity gradient, the chamber width and height, the hot

wire positions and the deflection of the flow profile, will be a major contribution to the analytical opti-

mization of this detecting chamber. The only parameter currently limiting the length from the nozzle

exit to the hot wires, is constraint function 10 (refer to Section 5.7.2, Table 5.8), which is only an over

simplified design assumption and should be defined better. Other factors that would better define the

constraints on the distance between the nozzle exit and the hot-wires is the length it would take to reach

fully developed flow and cross-sensitivity would increase with this distance.

The fixed structure between the hot wires is currently assumed to have no effect on the fluid flow and no

parameter limits its size. The area around the hot wires should be defined more accurately.

Further development to optimize the entire gyroscope, and not just the detecting chamber, will con-

tribute to the standardization of this design process. This gyroscope concept can easily be converted to

a dual-axis gyroscope and once a standardized single-axis model is in place, it can be expanded into a

dual-axis model.

The hot wire material and fluid properties can be adjusted in order to experiment with several different

materials and fluids to find the most suitable combination. The upper and lower bounds can also be

experimented with, in order to compare several different order of magnitude gyroscopes with each other.

Numerical simulation and optimization should be integrated with our analytical optimization model, as

it is an integral part of the design process.
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A. Deflection of a membrane by means of

piezoelectric actuation

The volumetric displacement of a circular piezoelectric disc is described by Tay [33] as

Vtot al =
∫ b

0

∫ 2π

0
w I r dθdr +

∫ a

b

∫ 2π

0
w I I r dθdr, (.0.1)

where r is the radial distance in polar coordinate and θ is the angle in radians. Parameters w I and w I I

describe the deflection of the membrane and the piezoelectric disc respectively. They can be given as

w I = L3
tm

4
(b2 − r 2)U + tm ab

2

C4L3

L2
(
C3L2

C4
−L1)U (.0.2)

and

w I I = tm
ab

2

C4L3

L2
(
C3L2

C4
−L1)U +L3

tm
b

2
F1Ur − tm

b

2a2

C4L3

L2
F2Ur 3, (.0.3)

where C E
p is the Young’s modulus of the piezoelectric disc at constant electric field, d31 is the piezoelectric

constant, tm is the thickness of the membrane, U is the voltage applied across the piezoelectric disc, a is

radius of the membrane (distance from the center to supports), b is the radius of the piezoelectric disc

and υ is Poisson’s ratio.

The constants C3, C4, L1, L2 and L3 are given as:
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C3 = 1+υ
2
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a
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b

a
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b
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The functions F1 and F2 are given by:

F1 = 1+υ
2

b

r
ln(

r

b
)+ 1−υ

4
(

r

b
− b

r
)
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r
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)+ (

b

r
)2 −1}〈r −b〉0 (.0.5)



B. FORTRAN implementation of SAO

algorithm using ISE based approximations

Setup in FORTRAN: Initialize.f

subroutine INITIALIZE (n, ni, x, x_lower, x_upper)

implicit none

include ’CommonStuff.cmn’

integer nseg,npres,meshmult,ns,ns1,nd ! problem specific

integer i,j,n,ni

double precision x(nmax),x_lower(nmax),x_upper(nmax)

double precision pres(250),alphai ! problem specific

c----------------------------------------------------------------------c

c The author of this subroutine is Surika Vosloo: gyro problem

c----------------------------------------------------------------------c

approx_f = 1 ! select approx_f (see the manual)

approx_c = 1 ! select approx_c (see the manual)

force_converge = 1 ! enforce convergence? 0=No; 1=Yes

solver_dual = 1 ! 1=bfgs, 2 = cg-descent

!

xtol = 1.d-5 ! specify the x-tolerance

outermax = 5000 ! the number of outer loops allowed

innermax = 100 ! the number of inner loops allowed

dml_infinity = 1.d0 ! the infinity move limit

biglam = 1.d8 ! upper bound on the dual variables

ksubmax = 100000 ! max no. of subproblem evaluations

tlimit = 100000.d0 ! max time allowed per subproblem

feaslim = 1.d-8 ! feasibility limit

!

deltx = 1.d-8 ! finite difference increment
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finite_diff = .false. ! use finite differences?

!

atol = 1.0d-6 ! min curvature of the objective func

btol = 1.0d-6 ! min curvatures of constraint funcs

allow_f = .true. ! allow escape from conservative loop

allow_c = .true. ! allow escape from conservative loop

random_start = .false. ! use random starting point?

!

n = 8

ni = 10

!

x(1) = 30.d0 ! Iccr [uA]

x(2) = 400.d-3 ! L_hw [mm]

x(3) = 2.5d-3 ! h_hw [mm]

x(4) = 10.d-3 ! w_hw [mm]

x(5) = 25.d0 ! w_ch [mm]

x(6) = 3.5d3 ! vm [mm/s]

x(7) = 7.5d0 ! L_ch [mm]

x(8) = 25.d0 ! h_ch [mm]

x_lower(1) = 1.d0 ! Iccr

x_lower(2) = 100.d-3 ! L_hw

x_lower(3) = 1.d-3 ! h_hw

x_lower(4) = 5.d-3 ! w_hw

x_lower(5) = 1.d0 ! w_ch

x_lower(6) = 0.1d3 ! vm

x_lower(7) = 1.d0 ! L_ch

x_lower(8) = 1.d0 ! h_ch

x_upper(1) = 100.d0 ! Iccr

x_upper(2) = 1000.d-3 ! L_hw

x_upper(3) = 100.d-3 ! h_hw

x_upper(4) = 100.d-3 ! w_hw

x_upper(5) = 50.d0 ! w_ch

x_upper(6) = 10.d3 ! vm

x_upper(7) = 30.d0 ! L_ch

x_upper(8) = 50.d0 ! h_ch

!

return

end subroutine INITIALIZE
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Setup in FORTRAN: Functions.f

subroutine FUNCTIONS (n,ni,x,f,c)

!----------------------------------------------------------------------!

! Compute the objective function f and the inequality constraint !

! functions c(j), j=1,ni !

!----------------------------------------------------------------------!

implicit none

integer i, j, n, ni, np

double precision f, x(n), c(ni)

include ’CommonStuff.cmn’

double precision kinv, dynu, rho, cp, cv, kf, ao, gamma, mypi

double precision Ro, alpha, Ahw, Lc, D_ch, L_hw, w_hw, h_hw,resis

double precision Kn, Ref, Ma, Pr, Rehw, h, b, Cre, nre, prop

double precision vm, Kappa, wr, dv, w_ch, gap, L_ch, defl, h_ch

double precision Qmax, m_hw, a_imp, An, Aobs, CD, FD, QD, rho_hw

double precision Vout, Vin, Iin, Iccr, Phw, Rhw, dR

!

np=ni ! for old times sake

c----------------------------------------------------------------------c

c The author of this subroutine is Surika Vosloo: gyro problem

c----------------------------------------------------------------------c

mypi = 3.1415926d0

! --------------------

! Variables to be optimized

! --------------------

Iccr = x(1) ! Constant current across hw [uA]

L_hw = x(2) ! Length of hot wire [mm]

h_hw = x(3) ! Height of hot wire [mm]

w_hw = x(4) ! Width of hot wire [mm]

w_ch = x(5) ! Width of chamber [mm]

vm = x(6) ! Mean velocity across hwire [mm/s]

L_ch = x(7) ! Length from nozzle to hw [mm]

h_ch = x(8) ! Height of chamber[mm]

! -------------------

! Inert Neon gas properties : Neon @ 1atm pressure, T = 25 degC

! -------------------

dynu = 3142.d-11 ! Dynamic viscocity [kg/mm.s]

cp = 1030.d9 ! Specific heat pressure [nJ/kg.C]
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cv = 618.d9 ! Specific heat viscocity [nJ/kg]

kf = 0.0491d6 ! Thermal conductivity [nW/mm.K]

rho = 0.846d-9 ! Density [kg/mm^3]

ao = 435.d3 ! Speed of sound in the gas [mm/s]

kinv = dynu/rho ! Kinematic viscocity [mm^2/s]

! --------------------

! Hot wire properties: Doped Si thermistor

! --------------------

Ahw = (2.d0*L_hw*w_hw)+(2.d0*L_hw*h_hw)

!Surface area of Hot wire [m^2]

D_ch = (2.d0*w_ch*h_ch)/(h_ch + w_ch)

! Chamber hydraulic diameter p.422

resis = 0.35d-2 ! Resistivity [kohm.mm]

alpha = 6000.d-6 ! Thermal coef of R [1/degC]

Ro = resis*L_hw*(1.d0 + alpha*5.d0)/(h_hw*w_hw)

! Reference resistance [ohm]

! ---------------------

! Rotation modeling

! ---------------------

wr = 150.d0 ! Angular rotation [deg/s] --

defl = (wr*L_ch**2)/vm ! Deflection of flow profile [mm]

prop = 1.d0 ! Proportionality constant

dv = -prop*defl ! Delta_v eq. 3.5.17

! ---------------------

! Fluid modeling assumptions

! ---------------------

gamma = cp/cv ! Specific heat ratio

Ref = (vm*D_ch)/kinv ! Reynolds no.: gas flow in chamber

Ma = vm/ao ! Mach Number

Kn = dsqrt(mypi*gamma/2.d0)*(Ma/Ref) ! Knudsen Number

! --------------------

! CCR

! --------------------

Pr = (cp*dynu)/kf ! Prandtl number

Cre = 0.56d0 ! Empirical constant varying with Re

nre = 0.8d0 ! Empirical constant varying with Re

b = (1.1d0*kf*Cre*w_hw**(nre-1)*Pr**0.31)/(kinv**nre)

! Empirical value calculated from Nu

h = b*vm**nre ! Heat Transfer Coefficient [W/m^2]
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! --------------------

! Structural analysis

! --------------------

rho_hw= 2330.d-9 ! Density of hw material [kg/mm^3]

Qmax = 63.9d6 ! Maximum stress for Silicon [kPa]

a_imp = Qmax/(rho_hw*L_hw) ! Impact accelration [m/s^2]

CD = 0.9d0 ! Drag force coefficient(p372)

QD = 0.5d0*rho*CD*vm**2 ! Drag force [kPa]

! --------------------

! Amplifier circuit and Power consumption

! --------------------

Rhw = h*Ahw*Ro/(h*Ahw - alpha*Iccr**2*Ro) ! Hw res@dv=0 [ohm]

Vin = Iccr*(2.d0*Rhw) ! Source Voltage [V]

dR = (-alpha*Ahw*Iccr**2*Ro**2*b*nre*vm**(nre-1)*dv)

& /((Ahw*b*vm**nre - Ro*Iccr**2*alpha)**2)

! Resistance diffential[ohm]

Iin = Vin/(2.d0*Ro) + Iccr ! Source current[A]

Phw = Vin*Iin ! Power consumption[W]

! --------------------

! Objective function and constraints

! --------------------

f = dR*Iccr

f = -f ! Maximize Amplified Vout [mV]

c(1) = Ma/0.3d0 - 1.d0 ! Ma < 0.3 for incompressibility

c(2) = Kn/1.d-3 - 1.d0 ! Kn < 10^-3 for Navier-Stokes flow

c(3) = Ref/2100.d0 - 1.d0 ! Ref < 2100 for laminar flow

c(4) = 1.d0 - Ref/100.d0 ! Ref > 100 for sufficient inertia

c(5) = 1.d0 - a_imp/(15000.d0*9.81d3) ! Impact acc > 15000g

c(6) = QD/Qmax - 1.d0 ! Stress due to drag < Qmax

c(7) = Phw/1.d6 - 1.d0 ! Power < 1mW

c(8) = alpha*Iccr**2*Ro - h*Ahw ! Ensure Vin > 0

c(9) = 3.d0*L_hw - w_ch ! Gap >0

c(10) = defl - 0.5d0*(w_ch - L_hw) ! Defl in center of hw

!

return

end subroutine FUNCTIONS
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Setup in FORTRAN: Gradients.f

subroutine GRADIENTS (n,x,ni,gf,gc)

!----------------------------------------------------------------------!

! Compute the gradients of the objective f, and the inequality !

! constraints c, w.r.t. the variables x(i) !

!----------------------------------------------------------------------!

implicit none

integer i, j, n, ni, np

double precision x(n), gf(n), gc(ni,n)

double precision dfdx(ni*n)

double precision kinv, dynu, rho, cp, cv, kf, ao, gamma, mypi

double precision Ro, alpha, Ahw, Lc, D_ch, L_hw, w_hw, h_hw,resis

double precision Kn, Ref, Ma, Pr, Rehw, h, b, Cre, nre, prop

double precision vm, Kappa, wr, dv, w_ch, gap, L_ch, defl, h_ch

double precision Qmax, m_hw, a_imp, An, Aobs, CD, FD, QD, rho_hw

double precision Vout, Vin, Iin, Iccr, Phw, Rhw, dR

!

include ’CommonStuff.cmn’

np=ni ! for old times sake

c----------------------------------------------------------------------c

c The author of this subroutine is Surika Vosloo: gyro problem

c----------------------------------------------------------------------c

c Constants imported from Functions

c---------------------------------------c

mypi = 3.1415926d0

dynu = 3142.d-11 ! Dynamic viscocity [kg/m.s]

cp = 1030.d9 ! Specific heat pressure [J/kg.C]

cv = 618.d9 ! Specific heat viscocity [J/kg]

kf = 0.0491d6 ! Thermal conductivity [W/m.K]

rho = 0.846d-9 ! Density [kg/m^3]

ao = 435.d3 ! Speed of sound in the gas [m/s]

kinv = dynu/rho ! Kinematic viscocity [m^2/s]

resis = 0.35d-2 ! Resistivity [ohm.m]

alpha = 6000.d-6 ! Thermal coef of R [1/degC]

wr = 150.d0 ! Angular rotation [deg/s]

Cre = 0.56d0 ! Empirical constant varying with Re

nre = 0.8d0 ! Empirical constant varying with Re

gamma = cp/cv ! Specific heat ratio
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prop = 1.d0 ! Proportionality constant

rho_hw= 2330.d-9 ! Density of hw material [kg/m^3]

Qmax = 63.9d6 ! Maximum stress for Silicon [Pa]

CD = 0.9d0 ! Drag force coefficient

c-------------------------c

c Gradients

c-------------------------c

gf(1) =-(33.D0/10.D0*alpha*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))*x(1)**2

& *resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)**2*kf

& *Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*nre*

& x(6)**(nre-1)*prop*wr*x(7)**2/x(6)/(11.D0/10.D0*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(

& 2.d0*x(2)*x(3)+2.d0*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(

& 1.d0+5.d0*alpha)/x(3)/x(4))**2+22.D0/5.D0*alpha**2*(2.d0*

& x(2)*x(3)+2.d0*x(2)*x(4))*x(1)**4*resis**3*x(2)**3*(1.d0+

& 5.d0*alpha)**3/x(3)**3/x(4)**3*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*wr*x(7)

& **2/x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4)

& )-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**

& 3) !

gf(2) =-((11.D0/10.D0*alpha*(2*x(3)+2*x(4))*x(1)**3*resis**2*x(2)

& **2*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)**2*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*

& prop*wr*x(7)**2/x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(

& cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*

& x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/

& x(3)/x(4))**2)+(11.D0/5.D0*alpha*(2*x(2)*x(3)+2*x(2)*x(4)

& )*x(1)**3*resis**2*x(2)*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)

& **2*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*

& nre*x(6)**(nre-1)*prop*wr*x(7)**2/x(6)/(11.D0/10.D0*kf*

& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2.d0*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)

& *(1.d0+5.d0*alpha)/x(3)/x(4))**2-11.D0/5.D0*alpha*(2*x(2)

& *x(3)+2.d0*x(2)*x(4))*x(1)**3*resis**2*x(2)**2*(1.d0+5.d0

& *alpha)**2/x(3)**2/x(4)**2*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*wr*x(7)**2/

& x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha
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& *x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**3*(

& 11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2.d0*x(3)+2.d0*x(4))-alpha*x(1)**2*

& resis*(1.d0+5.d0*alpha)/x(3)/x(4)))) !

gf(3) = -((11.D0/5.D0*alpha*x(2)**3*x(1)**3*resis**2*(1.d0+5.d0*

& alpha)**2/x(3)**2/x(4)**2*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*wr*x(7)**2/

& x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4)

& )-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**

& 2)+(-11.D0/5.D0*alpha*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))*

& x(1)**3*resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)**3/

& x(4)**2*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*nre*x(6)**(nre-1)*prop*wr*x(7)**2/x(6)/(11.D0/10.D0*

& kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)

& **nre*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))-alpha*x(1)**2*resis

& *x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2-11.D0/5.D0*alpha*(

& 2.d0*x(2)*x(3)+2.d0*x(2)*x(4))*x(1)**3*resis**2*x(2)**2*(

& 1.d0+5.d0*alpha)**2/x(3)**2/x(4)**2*kf*Cre*x(4)**(nre-1)*

& (cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*wr*

& x(7)**2/x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*x(2)

& *x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4))**3*(11.D0/5.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*x(2)+alpha*x(1)**2*resis*x(2)*(

& 1.d0+5.d0*alpha)/x(3)**2/x(4)))) !

gf(4) = -((11.D0/5.D0*alpha*x(2)**3*x(1)**3*resis**2*(1.d0+5.d0*

& alpha)**2/x(3)**2/x(4)**2*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*wr*x(7)**2/

& x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2-

& 11.D0/5.D0*alpha*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))*x(1)**3*

& resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)**3*kf*

& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)

& **(nre-1)*prop*wr*x(7)**2/x(6)/(11.D0/10.D0*kf*Cre*x(4)**

& (nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*

& x(2)*x(3)+2.d0*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+

& 5.d0*alpha)/x(3)/x(4))**2)+(11.D0/10.D0*alpha*(2.d0*x(2)*
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& x(3)+2.d0*x(2)*x(4))*x(1)**3*resis**2*x(2)**2*(1.d0+5.d0*

& alpha)**2/x(3)**2/x(4)**3*kf*Cre*x(4)**(nre-1)*(nre-1)*(

& cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*wr*

& x(7)**2/x(6)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*x(2)

& *x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4))**2)+(-11.D0/5.D0*alpha*(2.d0*x(2)*x(3)+2.d0*x(2)*

& x(4))*x(1)**3*resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)

& **2/x(4)**2*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*nre*x(6)**(nre-1)*prop*wr*x(7)**2/x(6)/(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))-alpha*x(1)

& **2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**3*(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(nre-1)/x(4)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*x(2)*

& x(4))+11.D0/5.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*x(2)+alpha*x(1)**2*resis*x(2)*

& (1.d0+5.d0*alpha)/x(3)/x(4)**2))) !

gf(5) = 0.d0 !

gf(6) = -((11.D0/10.D0*alpha*(2*x(2)*x(3)+2*x(2)*x(4))*x(1)**3*

& resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)**2*kf*

& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)

& **(nre-1)*(nre-1)/x(6)**2*prop*wr*x(7)**2/(11.D0/10.D0*kf

& *Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))-alpha*x(1)**2*resis*

& x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2)+(-11.D0/10.D0*alpha

& *(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))*x(1)**3*resis**2*x(2)**2

& *(1.d0+5.d0*alpha)**2/x(3)**2/x(4)**2*kf*Cre*x(4)**(nre-1

& )*(cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)**(nre-1)*prop*

& wr*x(7)**2/x(6)**2/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0

& *x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/

& x(3)/x(4))**2-121.D0/50.D0*alpha*(2.d0*x(2)*x(3)+2.d0*x(2)

& *x(4))**2*x(1)**3*resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/

& x(3)**2/x(4)**2*kf**2*Cre**2*(x(4)**(nre-1))**2*(cp*dynu/

& kf)**(31.D0/50.D0)/(kinv**nre)**2*nre**2*x(6)**(nre-1)*

& prop*wr*x(7)**2/x(6)**2/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)

& *(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)

& +2.d0*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*
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& alpha)/x(3)/x(4))**3*x(6)**nre)) !

gf(7) =-(11.D0/5.D0*alpha*(2.d0*x(2)*x(3)+2.d0*x(2)*x(4))*x(1)**3*

& resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)**2*kf*

& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*nre*x(6)

& **(nre-1)*prop*wr*x(7)/x(6)/(11.D0/10.D0*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*

& x(2)*x(3)+2.d0*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+

& 5.d0*alpha)/x(3)/x(4))**2) !

gf(8) = 0.d0 !

!

gc(1,1) = 0.d0 !

gc(1,2) = 0.d0 !

gc(1,3) = 0.d0 !

gc(1,4) = 0.d0 !

gc(1,5) = 0.d0 !

gc(1,6) = 1.d0/(ao*0.3d0) !

gc(1,7) = 0.d0 !

gc(1,8) = 0.d0 !

!

gc(2,1) = 0.d0 !

gc(2,2) = 0.d0 !

gc(2,3) = 0.d0 !

gc(2,4) = 0.d0 !

gc(2,5) = (-dsqrt(0.7074237631354954D16)*dsqrt(cp/cv)/ao/x(5)**2/

& x(8)*(x(8)+x(5))*kinv/134217728.d0+dsqrt(

& 0.7074237631354954D16)*dsqrt(cp/cv)/ao/x(5)/x(8)*kinv/

& 134217728.d0)/1.d-3 !

gc(2,6) = 0.d0 !

gc(2,7) = 0.d0 !

gc(2,8) =(-dsqrt(0.7074237631354954D16)*dsqrt(cp/cv)/ao/x(5)/x(8)

& **2*(x(8)+x(5))*kinv/134217728.d0+dsqrt(

& 0.7074237631354954D16)*dsqrt(cp/cv)/ao/x(5)/x(8)*kinv/

& 134217728.d0)/1.d-3 !

!

gc(3,1) = 0.d0 !

gc(3,2) = 0.d0 !

gc(3,3) = 0.d0 !

gc(3,4) = 0.d0 !

gc(3,5) = (2.d0*x(6)*x(8)/(x(8)+x(5))/kinv-2.d0*x(6)*x(5)*x(8)/(
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& x(8)+x(5))**2/kinv)/2100.d0 !

gc(3,6) = (2.d0*x(5)*x(8)/(x(8)+x(5))/kinv)/2100.d0 !

gc(3,7) = 0.d0 !

gc(3,8) = (2.d0*x(6)*x(5)/(x(8)+x(5))/kinv-2.d0*x(6)*x(5)*x(8)/(

& x(8)+x(5))**2/kinv)/2100.d0 !

!

gc(4,1) = 0.d0 !

gc(4,2) = 0.d0 !

gc(4,3) = 0.d0 !

gc(4,4) = 0.d0 !

gc(4,5) =(-2.d0*x(6)*x(8)/(x(8)+x(5))/kinv+2.d0*x(6)*x(5)*x(8)/(

& x(8)+x(5))**2/kinv)/100.d0 !

gc(4,6) = (-2.d0*x(5)*x(8)/(x(8)+x(5))/kinv)/100.d0

gc(4,7) = 0.d0 !

gc(4,8) =(-2.d0*x(6)*x(5)/(x(8)+x(5))/kinv+2.d0*x(6)*x(5)*x(8)/(

& x(8)+x(5))**2/kinv)/100.d0 !

!

gc(5,1) = 0.d0 !

gc(5,2) = (Qmax/rho_hw/x(2)**2)/(1500.d0*9.81d3) !

gc(5,3) = 0.d0 !

gc(5,4) = 0.d0 !

gc(5,5) = 0.d0 !

gc(5,6) = 0.d0 !

gc(5,7) = 0.d0 !

gc(5,8) = 0.d0 !

!

gc(6,1) = 0.d0 !

gc(6,2) = 0.d0 !

gc(6,3) = 0.d0 !

gc(6,4) = 0.d0 !

gc(6,5) = 0.d0 !

gc(6,6) = (rho*x(6)*CD)/Qmax !

gc(6,7) = 0.d0 !

gc(6,8) = 0.d0 !

!

gc(7,1) = ((11.D0/5.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))*resis*x(2)

& *(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/10.D0*kf*Cre*x(4)**

& (nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)
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& *x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*

& alpha)/x(3)/x(4))*(11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)

& *(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+

& 2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4)

& )-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))+

& x(1)))+(22.D0/5.D0*x(1)**2*kf*Cre*x(4)**(nre-1)*(cp*dynu

& /kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*

& x(4))*resis**2*x(2)**2*(1.d0+5.d0*alpha)**2/x(3)**2/x(4)

& **2/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2

& *(11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(

& 11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*

& x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))+x(1))*

& alpha)+((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre)*((2*x(2)*x(3)+2*x(2)*

& x(4))*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*

& resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*kf

& *Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**

& (nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)

& *x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*

& alpha)/x(3)/x(4))+11.D0/5.D0*x(1)**2*kf*Cre*x(4)**(nre-1

& )*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+

& 2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4)

& )-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))

& **2*alpha*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)+1))))

& /1.d6 !

gc(7,2) = ((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*(2*x(3)+2*x(4))*resis*x(2)*(

& 1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/10.D0*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*

& x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*
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& alpha)/x(3)/x(4))*(11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)

& *(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2

& *x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4)

& )-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))+

& x(1)))+(11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf

& )**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))*

& resis*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/10.D0*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(

& 2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+

& 5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*x(1)*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*

& x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)

& *x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4))+x(1)))+(-11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)

& *x(4))*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*

& resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2*(11.D0/10.D0*

& x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre

& *x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre

& *x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0

& +5.d0*alpha)/x(3)/x(4))+x(1))*(11.D0/10.D0*kf*Cre*x(4)**

& (nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(3)

& +2*x(4))-alpha*x(1)**2*resis*(1.d0+5.d0*alpha)/x(3)/x(4)

& ))+((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre )*((2*x(2)*x(3)+2*x(2)*x(4))*

& resis*x(2)*(1.d0+5.d0*alpha))*(1/x(3)/x(4)/(11.D0/10.D0*

& kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)

& **nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)

& *(1.d0+5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(3)+2*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)

& *x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4))-11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)
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& **(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(

& 11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)

& **2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2*(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2*x(3)+2*x(4))-alpha*x(1)**2*resis*(1.d0+

& 5.d0*alpha)/x(3)/x(4))))))/1.d6 !

gc(7,3) = ((22.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*x(2)**2*resis*(1.d0+5.d0*alpha

& )/x(3)/x(4)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4)

& )-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))*

& (11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(

& 11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)

& **2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))+x(1)))+(-

& 11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31

& )/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))*resis*

& x(2)*(1.d0+5.d0*alpha)/x(3)**2/x(4)/(11.D0/10.D0*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(

& 2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+

& 5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*x(1)*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*

& x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)

& *x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4))+x(1)))+(-11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)

& *x(4))*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*

& resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2*(11.D0/10.D0*

& x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre

& *x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre

& *x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0

& +5.d0*alpha)/x(3)/x(4))+x(1))*(11.D0/5.D0*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*x(2)+
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& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)**2/x(4))

& )+((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre)*((2*x(2)*x(3)+2*x(2)*x(4))*

& resis*x(2)*(1.d0+5.d0*alpha))*(1/x(3)/x(4)/(11.D0/10.D0*

& kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)

& **nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)

& *(1.d0+5.d0*alpha)/x(3)/x(4))*(11.D0/5.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& x(2)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))-

& 11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(

& 11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)

& **2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))**2*(11.D0/

& 5.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre

& *x(6)**nre*x(2)+alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*

& alpha)/x(3)**2/x(4))))))/1.d6 !

gc(7,4) =((((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(nre-1)/x(4)**2*

& (cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*

& x(2)*x(4))*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*

& resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*

& x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre

& *x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre

& *x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0

& +5.d0*alpha)/x(3)/x(4))+x(1)))+(22.D0/5.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& x(2)**2*resis*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/10.D0*

& kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)

& **nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)

& *(1.d0+5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre

& -1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*

& x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*
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& alpha)/x(3)/x(4))+x(1))))-11.D0/5.D0*x(1)*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*

& x(3)+2*x(2)*x(4))*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)

& **2/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))*(

& 11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(

& 11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)

& **2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))+x(1)))+

& (-11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))*

& resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/10.D0*kf*

& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*

& (1.d0+5.d0*alpha)/x(3)/x(4))**2*(11.D0/10.D0*x(1)*kf*

& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)

& **(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*

& x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+

& 5.d0*alpha)/x(3)/x(4))+x(1))*(11.D0/10.D0*kf*Cre*x(4)**

& (nre-1)*(nre-1)/x(4)*(cp*dynu/kf)**(0.31)/kinv**nre*

& x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))+11.D0/5.D0*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& x(2)+alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4)**2))+((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*

& dynu/kf)**(0.31)/kinv**nre*x(6)**nre)*((2*x(2)*x(3)+2*

& x(2)*x(4))*resis*x(2)*(1.d0+5.d0*alpha))*(1/x(3)/x(4))*

& (1/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)))*

& ((11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(nre-1)/x(4)*(

& cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*

& x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*

& x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/

& x(4)))+(11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*x(2)/(11.D0/10.D0*kf*
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& Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*

& (1.d0+5.d0*alpha)/x(3)/x(4))-11.D0/10.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)

& *x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*

& alpha)/x(3)/x(4))**2*(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*

& (nre-1)/x(4)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(

& 2*x(2)*x(3)+2*x(2)*x(4))+11.D0/5.D0*kf*Cre*x(4)**(nre-1

& )*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*x(2)+alpha*

& x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)**2)))))/

& 1.d6!

gc(7,5) = 0.d0 !

gc(7,6) = ((11.D0/5.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**

& (0.31)/kinv**nre*x(6)**nre*nre/x(6)*(2*x(2)*x(3)+2*x(2)*

& x(4))*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*

& resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))*(11.D0/10.D0*

& x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre

& *x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre

& *x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*

& (2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0

& +5.d0*alpha)/x(3)/x(4))+x(1)))+(-121.D0/50.D0*x(1)*kf**2

& *Cre**2*(x(4)**(nre-1))**2*(cp*dynu/kf)**(31.D0/50.D0)/(

& kinv**nre)**2*(x(6)**nre)**2*(2*x(2)*x(3)+2*x(2)*x(4))**

& 2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)/(11.D0/10.D0*kf

& *Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**

& nre*(2*x(2)*x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(

& 1.d0+5.d0*alpha)/x(3)/x(4))**2*(11.D0/10.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(

& 2*x(2)*x(3)+2*x(2)*x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-

& 1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)

& +2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)

& /x(3)/x(4))+x(1))*nre/x(6))+((11.D0/5.D0*x(1)*kf*Cre*

& x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre)*

& ((2*x(2)*x(3)+2*x(2)*x(4))*resis*x(2)*(1.d0+5.d0*alpha)/

& x(3)/x(4)/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)
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& **(0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))*(

& 11.D0/10.D0*x(1)*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*nre/x(6)*(2*x(2)*x(3)+2*x(2)*

& x(4))/(11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(

& 0.31)/kinv**nre*x(6)**nre*(2*x(2)*x(3)+2*x(2)*x(4))-

& alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4))-

& 121.D0/100.D0*x(1)*kf**2*Cre**2*(x(4)**(nre-1))**2*(cp*

& dynu/kf)**(31.D0/50.D0)/(kinv**nre)**2*(x(6)**nre)**2*(

& 2*x(2)*x(3)+2*x(2)*x(4))**2/(11.D0/10.D0*kf*Cre*x(4)**(

& nre-1)*(cp*dynu/kf)**(0.31)/kinv**nre*x(6)**nre*(2*x(2)

& *x(3)+2*x(2)*x(4))-alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*

& alpha)/x(3)/x(4))**2*nre/x(6)))))/1.d6 !

gc(7,7) = 0.d0 !

gc(7,8) = 0.d0 !

!

gc(8,1) = 2.d0*alpha*x(1)*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4) !

gc(8,2) = alpha*x(1)**2*resis*(1.d0+5.d0*alpha)/x(3)/x(4)-11.D0/

& 10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/kinv**

& nre*x(6)**nre*(2.d0*x(3)+2.d0*x(4)) !

gc(8,3) = -alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)**2/x(4)

& -11.D0/5.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*x(2) !

gc(8,4) = -alpha*x(1)**2*resis*x(2)*(1.d0+5.d0*alpha)/x(3)/x(4)**2

& -11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(nre-1)/x(4)*(cp*dynu/

& kf)**(0.31)/kinv**nre*x(6)**nre*(2.d0*x(2)*x(3)+2.d0*

& x(2)*x(4))-11.D0/5.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)

& **(0.31)/kinv**nre*x(6)**nre*x(2) !

gc(8,5) = 0.d0 !

gc(8,6) = -11.D0/10.D0*kf*Cre*x(4)**(nre-1)*(cp*dynu/kf)**(0.31)/

& kinv**nre*x(6)**nre*nre/x(6)*(2*x(2)*x(3)+2*x(2)*x(4))!

gc(8,7) = 0.d0 !

gc(8,8) = 0.d0 !

!

gc(9,1) = 0.d0 !

gc(9,2) = 3.d0 !

gc(9,3) = 0.d0 !

gc(9,4) = 0.d0 !

gc(9,5) = -1.d0 !
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gc(9,6) = 0.d0 !

gc(9,7) = 0.d0 !

gc(9,8) = 0.d0 !

!

gc(10,1) = 0.d0 !

gc(10,2) = 1.D0/2.D0 !

gc(10,3) = 0.d0 !

gc(10,4) = 0.d0 !

gc(10,5) = -1.D0/2.D0 !

gc(10,6) = -wr*x(7)**2/x(6)**2 !

gc(10,7) = 2.d0*wr*x(7)/x(6) !

gc(10,8) = 0.d0 !

!

return

end subroutine GRADIENTS



C. MATLAB implementation of SAO

algorithm using ISE based approximations

Setup in MATLAB: SAO.m

% Authors: S. Vosloo, A.A. Groenwold

% University of Stellenbosch, South Africa

% Date: 05/05/2009

% Implementing SAO algorithm, using BFGS-solver coded by C.T. Kelley

%-------------------------------------------------------------------%

close all;

clear all;

clc;

profile on;

%-------------------------------------------------------------------%

% USER DEFINED OPTIMIZATION PARAMETERS %

%-------------------------------------------------------------------%

%% INITIALIZATION

%% 1. GROENWOLD TEST PROBLEM INITIALIZATION

% n = 2; % Number of design variables

% m = 2; % Number of constraint functions

%

% % Initialize design variables x, with row vectors of size n

% x_i = [1.5,0.5]; % Initial values

% x_l = [0.2,0.1]; % Lower bounds

% x_u = [4.0,1.6]; % Upper bounds

%% 2. GYROSCOPE PROBLEM INITIALIZATION
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n = 8; % Number of design variables

m = 10; % Number of constraint functions

% Initialize design variables x, with row vectors of size n

x_i = [30, 400e-3, 2.5e-3, 10e-3, 25, 3.5e3, 7.5, 25]; % Initial values

x_l = [1, 100e-3, 1e-3, 5e-3, 1, 0.1e3, 1, 1]; % Lower bounds

x_u = [100, 1000e-3, 100e-3, 100e-3, 50, 10e3, 30, 50]; % Upper bounds

%% 3. SVANBERG’S SNAKE PROBLEM INITIALIZATION

%

% nd = 10;

% n = nd*3; % Number of design variables

% m = nd*4+1; % Number of constraint functions

%

% % Initialize design variables x, with row vectors of size n

% x_i = zeros(1,n);

% x_l = zeros(1,n);

% x_u = zeros(1,n);

% for i = 1:nd % Initial values

% alphai = ((3*i - 2*nd)*pi)/(6*nd);

% x_i(i) = cos(alphai+pi/12);

% x_i(i+nd) = sin(alphai+pi/12);

% x_i(i+2*nd) = sin(2*alphai+pi/6);

% end

% for i = 1:n

% x_l(i) = -2; % Lower bounds

% end

% for i = 1:n

% x_u(i) = 2; % Upper bounds

% end

%% 4. SVANBERG’S CANTILEVER BEAM PROBLEM INITIALIZATION

% n = 5; % Number of design variables

% m = 1; % Number of constraint functions

%

% % Initialize design variables x, with row vectors of size n

% x_i = zeros(n);

% x_l = zeros(n);

% x_u = zeros(n);
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% for i=1:n

% x_i(i) = 5; % Initial values

% end

% for i = 1:n

% x_l(i) = 1; % Lower bounds

% end

% for i = 1:n

% x_u(i) = 10; % Upper bounds

% end

%% THE NONLINEAR OPTIMIZATION PROBLEM

%% Identify function which defines non-linear optimization problem

% opt_func = @fg; % Function fg.m defines objective and contraint functions

opt_func = @fg_gyro;

% opt_func = @fg_snake;

% opt_func = @fg_cantilever;

%% FILE HANDLING

file_name = fopen(’Gyro_fc1_curv4.txt’,’w’); %Output file name

fheading = ’Gyroscope problem: forced convergence - curvature 4’;

%% OPTIMIZATION PARAMETERS

%% Maximum number of iterations allowed

kmax = 1000; % Maximum number of iterations

lmax = 1000; % Maximum iterations for conservative loop

dualiter = 100000; % Maximum iterastions for dual subproblem evaluation

%% Define optimization tolerances

eps_x = 1e-5; % Convergence tolerance for design variables

eps1 = 0; % Appproximation-fo tolerance

eps2 = 0; % Appproximation-fc tolerance

epsno = 1e-6; % Minimum curvature of objective function

epsnc = 1e-6; % Minimum curvature of constraint functions

dualtol = 1e-9; % Convergence tolerance for dual variables

feaslim = 1e-8; % Printing tolerance for feasibility

dml_infinity = 0.2; % Global infinity move limit, 0 < dml < 1
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%% Define upper boudaries of lambda matrix

lambda_max = 1e8;

%% Define implementation of convergence

% [force_converge = 0]: Convergence not enforced

% [force_converge = 1]: Convergence forced by using conservatism

force_converge = 1;

xs1 = 2; % Factor to increase conservatism of fo

xs2 = 2; % Factor to increase conservatism of fc

%% Define the approximation curvature components

% [curv=1]: Spherical quadratic approximation based on function values

% [curv=2]: Spherical quadratic approximation based on error norm of the gradients

% [curv=3]: Nonspherical approximation based on the components of the gradients

% [curv=4]: Quadratic Taylor series expansion to the reciprocal approximation

% [curv=5]: Quadratic Taylor series expansion to the exponential approximation

curv = 4;

%-------------------------------------------------------------------%

% SAO ALGORITHM %

%-------------------------------------------------------------------%

%% INITIALIZATION

k = 0; % Number of iterations

l = 0; % Iterations for conservative loop

ltot = 0; % Total conservative loop iterations

% Initialize design variables x and related vectors

x = x_i;

x_kopt = zeros(1,n);

x_prev = x;

x_u0 = x_u;

x_l0 = x_l;

% Initialize fo, fc, dfo, dfc, fo_c2, fc_c2

[fo,fc,dfo,dfc] = feval(opt_func,n,m,x);

[fo_c2, fc_c2,Ui_prev,Li_prev] = curvinit(n,m,epsno,epsnc,curv,x,x_l,x_u,dfo,dfc);
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% Initialize lambda vectors, lambda_i, lambda_l, lambda_u

lambda_i = zeros(1,m);

lambda_l = zeros(1,m);

lambda_u = ones(1,m);

lambda_u = lambda_max*lambda_u;

fprintf(file_name,’%s \n\n’,fheading);

fprintf(file_name,’------------------------------------------------------ \n’);

fprintf(file_name,’k l fo(x) x \n’);

fprintf(file_name,’------------------------------------------------------ \n’);

%% MAIN ALGORITHM

for k = 1:kmax % start outer loop for k

% Calculate the move limits

dml_inf = dml_infinity.*(x_u0 - x_l0);

x_l = max(x - dml_inf,x_l0);

x_u = min(x + dml_inf,x_u0);

% Inner conservatism loop to enforce convergence

if (force_converge == 1)

l = -1;

while (l < lmax)

l = l+1;

% For an unconstrained optimization problem, where m = 0

if (m == 0)

% Calculate x^{k*}

x_kopt = x - dfo./fo_c2;

x_kopt = max(x_l,min(x_kopt,x_u));

% Compute objective, constraint and approx functions, with x^{k*}

[fo_kopt,fc_kopt,dfo_kopt,dfc_kopt]= feval(opt_func,n,m,x_kopt);

[approx_fo,approx_fc] = approxfunc(x_kopt,x,fo,fc,dfo,dfc,fo_c2,..

..fc_c2,n,m);

% Test if x_kopt is acceptable

% Test if x_kopt represents a feasible descent step
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if (fo_kopt < fo)

break;

end

% Test if x_kopt represents a conservative step

if (approx_fo >= (fo_kopt - eps1))

break;

end

% Test if relative step size is too small

normx = sum((x - x_kopt).^2);

delta_xnorm = sqrt(normx);

if (delta_xnorm < eps_x)

break;

end

% Adjust conservatism if x_kopt is not acceptable

if (approx_fo < (fo_kopt - eps1))

fo_c2 = xs1.*max(fo_c2,1e-3);

end

% For a constrained optimization problem, where m > 0

else

% Maximize dual subproblem over lambda, using projbfgs from C.T.

% Kelley to return lambda^{k*}

[lambda_kopt,histout,costdata] = projbfgs(lambda_i’,@dual,lambda_u’,..

..lambda_l’,dualtol,dualiter,x,x_l,x_u,n,m,fo,fc,dfo,dfc,fo_c2,fc_c2);

lambda_i = lambda_kopt’;

% Calculate x^{k*} from lambda^{k*}

x_kopt = xlam(lambda_kopt,x,x_l,x_u,n,m,dfo,dfc,fo_c2,fc_c2);

% Compute objective, constraint and approx functions, with x^{k*}

[fo_kopt,fc_kopt,dfo_kopt,dfc_kopt] = feval(opt_func,n,m,x_kopt);

[approx_fo,approx_fc] = approxfunc(x_kopt,x,fo,fc,dfo,dfc,fo_c2,..

..fc_c2,n,m);

% Test if x_kopt is acceptable:

% Test if x_kopt represents a feasible descent step

if ((fo_kopt < fo) && (max(fc_kopt) <= feaslim))
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break;

end

% Test if x_kopt represents a conservative step

if ((approx_fo >= (fo_kopt - eps1)) & (approx_fc >= (fc_kopt - eps2)))

break;

end

% Test if relative step size is too small

normx = sum((x-x_kopt).^2);

delta_xnorm = sqrt(normx);

if (delta_xnorm < eps_x)

break;

end

% Adjust conservatism if x_kopt is not acceptable

if (approx_fo < (fo_kopt - eps1))

%fo_c2 = xs1.*max(fo_c2,1e-3);

fo_c2 = xs1.*fo_c2;

end

for j = 1:m

if (approx_fc(j) < (fc_kopt(j) - eps2))

for i = 1:n

%fc_c2(j,i) = xs2*max(fc_c2(j,i),1e-1);

fc_c2(j,i) = xs2*fc_c2(j,i);

end

end

end

end

end % end while loop

end

% No forced convergence

if (force_converge == 0)

% For an unconstrained optimization problem, where m = 0

if (m == 0)

% Calculate x^{k*}

x_kopt = x - dfo./fo_c2;

x_kopt = max(x_l,min(x_kopt,x_u));
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% For a constrained optimization problem, where m > 0

else

% Maximize dual subproblem over lambda, using projbfgs from C.T. Kelley

% to return lambda^{k*}

[lambda_kopt,histout,costdata] = projbfgs(lambda_i’,@dual,lambda_u’,..

..lambda_l’,dualtol,dualiter,x,x_l,x_u,n,m,fo,fc,dfo,dfc,fo_c2,fc_c2);

lambda_i = lambda_kopt’;

% Calculate x^{k*} from lambda^{k*}

x_kopt = xlam(lambda_kopt,x,x_l,x_u,n,m,dfo,dfc,fo_c2,fc_c2);

end

% Compute objective, constraint and approximated functions, with x^{k*}

[fo_kopt,fc_kopt,dfo_kopt,dfc_kopt] = feval(opt_func,n,m,x_kopt);

end

% Update fo_c2 and fc_c2 for new iteration {k+1}

[fo_c2, fc_c2,Ui_prev,Li_prev] = approxcurv(n,m,k,epsno,epsnc,curv,x,x_l,x_u,..

.. fo_kopt,fc_kopt,dfo_kopt,dfc_kopt,x_prev,fo,fc,dfo,dfc,x_kopt,Ui_prev,Li_prev);

% Update x for new iteration {k+1}

x_prev = x;

x = x_kopt;

[fo,fc,dfo,dfc] = feval(opt_func,n,m,x);

ltot = ltot + l; % Total conservative loop iterations

% Output history to text file

fprintf(file_name,’%0.0f %3.0f %10.6f’,k,l,fo_kopt);

for ii = 1:n

fprintf(file_name,’%10.6f’,x(ii));

end

fprintf(file_name,’\n’);

% Test for convergence

if (abs(x - x_prev) <= eps_x)

break;

end

end %end outer loop for k
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% Simulation sensitivity analysis

%[fo,fc,dfo,dfc] = feval(opt_func,n,m,x);

%% OUTPUT DATA

%% Output final optimization values to text file

fprintf(file_name,’\n\n’);

fprintf(file_name,’ Final optimization parameters\n’);

fprintf(file_name,’------------------------------------------------------ \n’);

fprintf(file_name,’Outer loop iterations, k: %0.0f \n’,k);

fprintf(file_name,’Inner loop iterations, l: %0.0f \n’,ltot);

fprintf(file_name,’Objective function, fo: %10.6f \n’,fo);

fprintf(file_name,’Constraint functions, fc: ’);

for j = 1:m

fprintf(file_name,’%10.6f’,fc(j));

end

fprintf(file_name,’\n’);

fprintf(file_name,’Optimal dual variables, lambda:’);

for j = 1:m

fprintf(file_name,’%10.6f’,lambda_kopt(j));

end

fprintf(file_name,’\n’);

fprintf(file_name,’Optimal design variables, x: ’);

for i = 1:n

fprintf(file_name,’%10.6f’,x(i));

end

fprintf(file_name,’\n’);

fprintf(file_name,’------------------------------------------------------ \n’);

fclose(file_name);

profile off;

profile report;

Setup in MATLAB: curvinit.m

% Authors: S. Vosloo, A.A. Groenwold

% University of Stellenbosch, South Africa

% Date: 05/05/2009
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% Function initializing the approximate curvature components at k = 1

%-------------------------------------------------------------------%

function [fo_c2, fc_c2,Ui_prev,Li_prev] = curvinit(n,m,epsno,epsnc,curv,x,..

..x_l,x_u,dfo,dfc)

% Initialize approximation curvatures 1,2,3 and 4

fo_c2 = ones(1,n);

fc_c2 = epsnc*ones(m,n);

% Initialize Quadratic Taylor series expansion to reciprocal/exponential approx

if ((curv == 4) || (curv == 5))

ao = zeros(1,n);

ac = zeros(m,n);

for ii = 1:n

ao(ii) = -1;

fo_c2(ii) = max(-abs(dfo(ii))*(ao(ii)-1)/x(ii),epsno);

for jj = 1:m

ac(jj,ii) = -1;

fc_c2(jj,ii) = max((-(ac(jj,ii)-1)*abs(dfc(jj,ii))/x(ii)),epsnc);

end

end

end

% Quadratic Taylor series expansion to the MMA approximation

if (curv == 6)

Li = x - (x_u - x_l)./2;

Ui = x + (x_u - x_l)./2;

for ii = 1:n

if (dfo(ii) <= 0)

fo_c2(ii) = -2*dfo(ii)/(x(ii)-Li(ii));

else

fo_c2(ii) = 2*dfo(ii)/(Ui(ii)-x(ii));

end

end

for jj = 1:m

for ii = 1:n

if (dfc(jj,ii) <= 0)

fc_c2(jj,ii) = -2*dfc(jj,ii)/(x(ii)-Li(ii));
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else

fc_c2(jj,ii) = 2*dfc(jj,ii)/(Ui(ii)-x(ii));

end

end

end

fo_c2 = max(fo_c2,epsno);

fc_c2 = max(fc_c2,epsnc);

Li_prev = Li;

Ui_prev = Ui;

else

Li_prev = 0;

Ui_prev = 0;

end

Setup in MATLAB: approxcurv.m

% Authors: S. Vosloo, A.A. Groenwold

% University of Stellenbosch, South Africa

% Date: 05/05/2009

% Function calculating the approximate curvature components

%-------------------------------------------------------------------%

function [fo_c2, fc_c2,Ui_prev,Li_prev] = approxcurv(n,m,k,epsno,epsnc,curv,x,x_l,..

..x_u,fo,fc,dfo,dfc,x_prev,fo_prev,fc_prev,dfo_prev,dfc_prev,x_kopt,Ui_prev,Li_prev)

% Initialization of curve matrices

fo_c2 = zeros(1,n);

fc_c2 = zeros(m,n);

% Tolerances

xtol = 1e-6;

zerotol = 1e-10;

a = 1e-3;

a_lo = -4;

a_hi = -0.1;

mma_hi = 1.2;

mma_lo = 0.7;
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% Spherical quadratic approximation based on function values

if (curv == 1)

fc_c2temp = zeros(m,1);

delta_x = zeros(1,n);

norm = 0;

nab_fo = 0;

for ii = 1:n

delta_x(ii) = x(ii) - x_kopt(ii);

norm = norm + delta_x(ii)^2;

nab_fo = nab_fo + dfo(ii)*delta_x(ii);

end

norm = max(norm,zerotol);

fo_c2temp = 2*(fo_prev - fo - nab_fo)/norm;

for jj = 1:m

nab_fc = 0;

for ii = 1:n

nab_fc = nab_fc + dfc(jj,ii)*delta_x(ii);

end

fc_c2temp(jj) = 2*(fc_prev(jj) - fc(jj) - nab_fc)/norm;

end

for ii = 1:n

fo_c2(ii) = max(fo_c2temp,epsno);

for jj = 1:m

fc_c2(jj,ii) = max(fc_c2temp(jj),epsnc);

end

end

end

% Spherical quadratic approximation based on error norm of the gradients

if (curv == 2)

fc_c2temp = zeros(m,1);

delta_x = zeros(1,n);

norm = 0;

nab_fo = 0;

for ii = 1:n

delta_x(ii) = x(ii)-x_kopt(ii);

norm = norm + delta_x(ii)^2;

nab_fo = nab_fo + (dfo_prev(ii) - dfo(ii))*delta_x(ii);

end
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norm = max(norm,zerotol);

fo_c2temp = nab_fo/norm;

for jj = 1:m

nab_fc = 0;

for ii = 1:n

nab_fc = nab_fc + (dfc_prev(jj,ii) - dfc(jj,ii))*delta_x(ii);

end

fc_c2temp(jj) = nab_fc/norm;

end

for ii = 1:n

fo_c2(ii) = max(fo_c2temp,epsno);

for jj = 1:m

fc_c2(jj,ii) = max(fc_c2temp(jj),epsnc);

end

end

end

% Nonspherical approximation based on the components of the gradients

if (curv == 3)

delta_x = zeros(1,n);

for ii = 1:n

delta_x(ii) = x(ii) - x_kopt(ii);

if (abs(delta_x(ii)) > xtol)

fo_c2(ii) = max(((dfo_prev(ii) - dfo(ii))/delta_x(ii)),epsno);

else

fo_c2(ii) = a;

end

for jj = 1:m

if (abs(delta_x(ii)) > xtol)

fc_c2(jj,ii) = max(((dfc_prev(jj,ii) - dfc(jj,ii))/delta_x(ii)),epsnc);

else

fc_c2(jj,ii) = epsnc;

end

end

end

end

% Quadratic Taylor series expansion to the reciprocal approximation

if (curv == 4)
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for ii = 1:n

fo_c2(ii) = max(abs(dfo(ii))*2/x_kopt(ii),epsno);

for jj = 1:m

fc_c2(jj,ii) = max(abs(dfc(jj,ii))*2/x_kopt(ii),epsnc);

end

end

end

% Quadratic Taylor series expansion to the exponential approximation

if (curv == 5)

ao = zeros(1,n);

ac = zeros(m,n);

for ii = 1:n

if ((x(ii)/x_kopt(ii) ~= 1) && (dfo(ii)~= 0) && (dfo_prev(ii)~= 0))

ao(ii) = 1+(log(dfo_prev(ii)/dfo(ii)))/(log(x(ii)/x_kopt(ii)));

else

ao(ii) = -1;

end

ao(ii) = max(a_lo,min(a_hi,ao(ii)));

ao(ii) = min(ao(ii),-1e-4);

fo_c2(ii) = -abs(dfo(ii))*(ao(ii)-1)/x_kopt(ii);

fo_c2(ii) = max(fo_c2(ii),epsno);

for jj = 1:m

if ((x(ii)/x_kopt(ii) ~= 1) && (dfc(jj,ii)~= 0) && (dfc_prev(jj,ii)~= 0))

ac(jj,ii) = 1+(log(dfc_prev(jj,ii)/dfc(jj,ii)))/(log(x(ii)/x_kopt(ii)));

else

ac(jj,ii) = -1;

end

ac(jj,ii) = max(a_lo,min(a_hi,ac(jj,ii)));

ac(jj,ii) = min(0,ac(jj,ii));

fc_c2(jj,ii) = -(ac(jj,ii)-1)*abs(dfc(jj,ii))/x_kopt(ii);

fc_c2(jj,ii) = max(fc_c2(jj,ii),epsnc);

end

end

end

% Quadratic Taylor series expansion to the MMA approximation

if (curv == 6)

gam = zeros(1,n);
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if (k <= 2)

Li = x_kopt - (x_u - x_l)./2;

Ui = x_kopt + (x_u - x_l)./2;

Uio = Ui;

Lio = Li;

Uic = Ui;

Lic = Li;

Uic1 = Ui;

Lic1 = Li;

Li_prev = Li;

Ui_prev = Ui;

else

test = (x_kopt - x).*(x - x_prev);

for ii = 1:n

if (test(ii) < 0)

gam(ii) = mma_lo;

elseif (test(ii) > 0)

gam(ii) = mma_hi;

else

gam(ii) = 1;

end

end

Lio = x_kopt - gam.*(x - Li_prev);

Uio = x_kopt + gam.*(Ui_prev - x);

Li_prev = Lio;

Ui_prev = Uio;

Lic1 = x_kopt - gam.*(x - Li_prev);

Uic1 = x_kopt + gam.*(Ui_prev - x);

Li_prev = Lic1;

Ui_prev = Uic1;

Lic = x_kopt - gam.*(x - Li_prev);

Uic = x_kopt + gam.*(Ui_prev - x);

end

for ii = 1:n

if (dfo(ii) <= 0)

fo_c2(ii) = -2*dfo(ii)/(x_kopt(ii) - Lio(ii));

else

fo_c2(ii) = 2*dfo(ii)/(Uio(ii) - x_kopt(ii));

end
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end

for ii = 1:n

if (dfc(1,ii) <= 0)

fc_c2(1,ii) = -2*dfc(1,ii)/(x_kopt(ii) - Lic1(ii));

else

fc_c2(1,ii) = 2*dfc(1,ii)/(Uic1(ii) - x_kopt(ii));

end

end

for jj = 2:m

for ii = 1:n

if (dfc(jj,ii) <= 0)

fc_c2(jj,ii) = -2*dfc(jj,ii)/(x_kopt(ii) - Lic(ii));

else

fc_c2(jj,ii) = 2*dfc(jj,ii)/(Uic(ii) - x_kopt(ii));

end

end

end

fo_c2 = max(fo_c2,epsno);

fc_c2 = max(fc_c2,epsnc);

else

Li_prev = 0;

Ui_prev = 0;

end

Setup in MATLAB: approxfunc.m

% Authors: S. Vosloo, A.A. Groenwold

% University of Stellenbosch, South Africa

% Date: 05/05/2009

% Function calculating the approximate functions

%-------------------------------------------------------------------%

function [approx_fo, approx_fc] = approxfunc(x1,x2,fo,fc,dfo,dfc,fo_c2,fc_c2,n,m)

delta_x = x1 - x2;

delta_x2 = delta_x.^2;

% % Approximate objective function
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sum0 = dfo.*delta_x;

sum1 = sum(sum0);

sum0 = fo_c2.*delta_x2;

sum2 = sum(sum0);

approx_fo = fo + sum1 + 0.5*sum2;

% % Approximate constraint functions

sum1 = delta_x*dfc’;

sum2 = delta_x2*fc_c2’;

approx_fc = fc + sum1 + 0.5*sum2;

% % Approximate objective function

% sum1 = 0;

% sum2 = 0;

% for ii = 1:n

% sum1 = sum1 + dfo(ii)*(x1(ii) - x2(ii));

% sum2 = sum2 + fo_c2(ii)*(x1(ii) - x2(ii))^2 ;

% end

% approx_fo = fo + sum1 + 0.5*sum2;

% % Approximate constraint functions

for jj = 1:m

sum1 = 0;

sum2 = 0;

for ii = 1:n

sum1 = sum1 + dfc(jj,ii)*(x1(ii) - x2(ii));

sum2 = sum2 + fc_c2(jj,ii)*(x1(ii) - x2(ii))^2;

end

approx_fc(jj) = fc(jj) + sum1 + (sum2/2);

end

Setup in MATLAB: dual.m

% Authors: S. Vosloo, A.A. Groenwold

% University of Stellenbosch, South Africa

% Date: 05/05/2009

% Function calculating the dual subproblem

%-------------------------------------------------------------------%



C. MATLAB IMPLEMENTATION OF SAO ALGORITHM USING ISE BASED

APPROXIMATIONS 120

function [gamma,dgamma] = dual(lambda,x,x_l,x_u,n,m,fo,fc,dfo,dfc,fo_c2,fc_c2)

% Calculate x ito lambda

x_lambda = xlam(lambda,x,x_l,x_u,n,m,dfo,dfc,fo_c2,fc_c2);

% Calculate approximations

[approx_fo, approx_fc] = approxfunc(x_lambda,x,fo,fc,dfo,dfc,fo_c2,fc_c2,n,m);

% Find gamma and dgamma ito lambda

summ = approx_fc.*lambda’;

summ = sum(summ);

gamma = approx_fo + summ;

gamma = -gamma;

dgamma = -approx_fc’;

% Find gamma and dgamma ito lambda

% summ = 0;

% for jj = 1:m

% summ = summ + approx_fc(jj)*lambda(jj);

% end

% gamma = approx_fo + summ;

% gamma = -gamma;

% dgamma = -approx_fc’;

Setup in MATLAB: xlam.m

% Authors: S. Vosloo, A.A. Groenwold

% University of Stellenbosch, South Africa

% Date: 05/05/2009

% Function to calculate x in terms of lambda

%-------------------------------------------------------------------%

function x_lam = xlam(lam,x,x_l,x_u,n,m,dfo,dfc,fo_c2,fc_c2)

% Calculate xlam vector

sum1 = lam’*fc_c2;

sum2 = lam’*dfc;
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beta = x - (dfo + sum2)./(fo_c2 + sum1);

x_lam = max(x_l,min(x_u,beta));

% Calculate xlam vector

% for ii = 1:n

% sum1(ii) = 0;

% sum2(ii) = 0;

% for jj = 1:m

% sum1(ii) = sum1(ii) + lam(jj)*fc_c2(jj,ii);

% sum2(ii) = sum2(ii) + lam(jj)*dfc(jj,ii);

% end

% beta(ii) = x(ii) - ((dfo(ii) + sum2)/( fo_c2(ii) + sum1 ));

% x_lam(ii) = max(x_l(ii),min(x_u(ii),beta(ii)));

% end
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