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Abstract 

A strategy for the design of an effective, practically feasible, robust, computationally efficient 
autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is 
presented. The core feature of the strategy is the design of attitude independent inner loop 
acceleration controllers. With these controllers implemented, the aircraft is reduced to a point 
mass with a steerable acceleration vector when viewed from an outer loop guidance 
perspective. Trajectory generation is also simplified with reference trajectories only required 
to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and 
disturbance rejection at an acceleration level. 

The detailed design and associated analysis of the inner loop acceleration controllers is carried 
out for the case where the airflow incidence angles are small. For this case it is shown that 
under mild practically feasible conditions the inner loop dynamics decouple and become 
linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional 
and normalised non-dimensional time variants of the inner loop controllers are designed and 
their respective advantages highlighted. Pole placement constraints that arise due to the 
typically weak non-minimum phase nature of aircraft dynamics are developed. 

A generic, aircraft independent guidance control algorithm, well suited for use with the inner 
loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft 
about a kinematically feasible reference trajectory. A number of fundamental basis trajectories 
are presented which are easily linkable to form complex three dimensional manoeuvres. 
Results from simulations with a number of different aircraft and reference trajectories illustrate 
the versatility and functionality of the autopilot. 

Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, 
Aircraft guidance, Trajectory tracking, Manoeuvre flight control. 

 

 



 

 

 

Opsomming 

’n Strategie vir die ontwerp van ’n effektiewe, prakties haalbaar, robuuste, rekenkundig 
effektiewe outoloods vir drie dimensionele maneuver vlugbeheer van onbemande vliegtuie 
word voorgestel. Die kerneienskap van die strategie is die ontwerp van oriëntasie-onafhanklike 
binnelus-versnellingbeheerders. Hierdie beheerders stel die navigasie buitelus in staat om die 
voertuig as ’n puntmassa met ’n stuurbare versnellingsvektor te beskou. Trajekgenerasie is ook 
vereenvoudig deurdat verwysingstrajekte slegs kinematies haalbaar hoef te wees. Robuustheid 
word verkry deur onsekerhede en versteuringsverwerping op ’n versnellingsvlak te hanteer. 

Die gedetaileerde ontwerp en saamhangende analise van die binnelus versnellingsbeheerders 
word uitgevoer vir die geval waar die invalshoeke klein is. Dit word aangetoon dat, onder 
praktiese omstandighede, die binnelus dinamika ontkoppel kan word en lineêr word, wat die 
afleiding van geslotevorm poolplasingoplossings toelaat. Dimensionele en genormaliseerde, 
nie-dimensionele tydvariante van die binnelusbeheerders word ontwerp en hul onderskeidelike 
voordele word uitgewys. Poolplasing beperkings, wat ontstaan as gevolg van die tipiese 
geringe nie-minimum fasegedrag van voertuigdinamika, word ontwikkel. 

’n Gepaste generiese, voertuig onafhanklike navigasiebeheer algoritme vir gebruik saam met 
die binnelus-versnellingsbeheerders word voorgestel. Die voertuig word om ’n kinematies 
haalbare verwysingstrajek deur hierdie navigasie algoritme gereguleer. ’n Aantal fundamentele 
trajekte word voorgestel wat maklik gekombineer kan word om komplekse drie dimensionele 
maneuvers te vorm. Die veelsydigheid en funksionaliteit van die outoloods word deur 
simulasieresultate met ’n verskeidenheid voertuie en verwysingstrajekte gedemonstreer. 

Sleutelwoorde: Vliegtuigbeheer, Outonome voertuie, Onbemande vliegtuig vlugbeheer, 
Versnellingsbeheer, Trajekvolging, Maneuver vlugbeheer. 
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Chapter 1  

Introduction 

 

This chapter begins by providing background information relating to the research presented in 
this thesis. After a brief history of Unmanned Aerial Vehicles (UAVs) is presented, motivation 
for the design of a manoeuvre autopilot is provided together with a description of how this 
type of research fits in with previous research conducted at Stellenbosch University. A 
literature study investigating manoeuvre autopilot design strategies precedes a brief 
description of the novel design strategy presented in this thesis. The chapter concludes with an 
overview of the thesis structure. 

1.1 Background 
1.1.1 History of UAVs 

Depending on the exact definition of UAVs, it is difficult to pinpoint the precise date of their 
inception. Unmanned balloons loaded with bombs date back long before the Wright Brothers 
introduced manned flight [1]. However, most historical texts credit the Sperry “Flying Bomb” 
and the “Kettering Bug” developed during World War One, as the first ‘real’ UAVs [1-3]. 
These simple UAVs were gyroscope stabilised biplanes programmed to fly a predetermined 
distance before diving to the earth and exploding. 

After World War One, UAV development was quiet until the 1930’s when fear of a second 
world war once again spurred on development. However, this time UAVs were developed 
primarily for target practice. These “Target Drones” were typically remotely piloted and thus 
are more commonly referred to as Remotely Piloted Vehicles (RPVs). The most prominent and 
feared UAV during World War Two was the German V-1 Buzz Bomb, a small, pulse-jet 
powered drone pre-programmed to hold a certain altitude and direction before detonation [3]. 
The USA also operated UAVs during the Second World War in the form of modified B-17s 
loaded with explosives [4]. 

The 1950’s and 1960’s saw significant technological advances in aircraft control systems and 
in turn the development of the legendary Firebee UAV [1,3]. This UAV was used very 
effectively as a target drone as well as for surveillance during the Cold War and Vietnam. 
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While USA investments into UAVs slowed after Vietnam, developments in other countries 
around the world started to rise. Most particularly, the 1970’s and 1980’s saw Israel pioneer 
the development of several new UAVs and successfully and effectively integrate these aircraft 
into their Air Force [1]. This success spurred other countries to emulate Israel’s use of UAVs 
and many of today’s modern UAVs such as Hunter, Pioneer and Seeker (South African) are 
direct derivatives of Israeli Systems [3]. 

Recent conflicts in Iraq and Afghanistan have provided UAVs and their applications with 
widespread media coverage. UAVs such as the US Air Force’s Predator and Global Hawk, the 
US Navy’s Pioneer (to be replaced by the Fire Scout) and the US Army’s Hunter (to be 
replaced by the Shadow) are all well know. The 1990’s also saw the rise of civil applications 
for UAVs, initially for the purpose of research and now too for government and commercial 
applications. Typical civil applications include maritime surveillance, law enforcement, search 
and rescue, and fire monitoring to name but a few. 

Recent UAV developments include the introduction of tactical and combat unmanned aerial 
vehicles (TUAVs and UCAVs respectively). These UAVs are expected to display high levels of 
autonomy and manoeuvrability for weapons delivery and avoidance of enemy fire. Current 
UCAV and TUAV programmes include among others Boeing’s X-45 technology demonstrator, 
EADS’s Barracuda and the French Dassault Neuron. For an overview of current and future 
mainstream UAV programs see [5]. 

According to [1], there are estimated to be between 200 and 300 models of UAVs in existence 
worldwide (depending on the definition of a UAV), operating in at least 41 countries. South 
Africa’s contribution to UAVs is primarily through Denel Aerospace’s Seeker II surveillance 
system and their high speed target drone SKUA, as well as ATE’s (Advanced Technologies 
and Engineering) Vulture system used to perform target detection, localisation and artillery fire 
adjustment. 

1.1.2 Motivation for a manoeuvre autopilot 

From a military perspective, according to [4], UAVs are best suited to “dull, dirty and 
dangerous” missions. Dull missions are those that are long and tedious, where human pilot and 
aircrew fatigue play a significant role. Dirty missions refer to those that involve investigation 
of hazardous sites such as after nuclear or chemical fallout. Dangerous missions are those 
where the risk of loosing a pilot’s life is high, such as during suppression of enemy air 
defences. From a civil perspective UAV missions typically involve surveillance and 
reconnaissance of some form to serve a particular government or commercial need. 

The typical UAV mission types described above, with the possible exception of the 
“dangerous” military missions, all involve very relaxed flight path trajectories and demand 
little manoeuvring from the aircraft. As such, classic linearised straight and level flight type 
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autopilots provide a sufficient degree of autonomy for most UAV missions. In cases where the 
flight range needs to be extended in altitude and airspeed, simple control techniques such as 
gain scheduling can be effectively employed without influencing the design strategy. Present 
day UAVs conducting “dangerous” missions also do not display high levels of autonomous 
manoeuvrability and are instead either considered disposable (e.g. HARPY by Israel Aircraft 
Industries) or can be remotely operated by a human pilot in dangerous situations (e.g. 
Predator).  

Future TUAVs and UCAVs are however expected to be highly manoeuvrable and highly 
autonomous. Furthermore, from a civil perspective, if UAVs are ever to become fully 
integrated into the lives of humans, they will need to operate autonomously with at least the 
degree of precision and manoeuvrability offered by a human pilot. This level of autonomy 
would provide UAVs with the ability to navigate in constrained environments such as 
over/through complex terrain and even between buildings. Furthermore, high levels of 
autonomy would also improve safety by allowing UAVs to take evasive action faster and 
recover from large disturbances that would otherwise have placed them outside of their 
traditional domain of convergence. Thus it can be seen that there is a very strong drive towards 
higher levels of flight control autonomy in UAVs. 

The desire to significantly improve the flight control autonomy levels of UAVs calls for the 
design of what will be referred to in this dissertation as a manoeuvre autopilot. A manoeuvre 
autopilot should be capable of adequately guiding an aircraft through precision manoeuvres 
such as landing approaches, high bank angle turns, aggressive climbs and aerobatic 
manoeuvres. This capability would allow the UAV to navigate effectively in three dimensional 
(3D) space and in so doing make better use of the airframe and allow tasks to be completed 
more efficiently. From a military perspective this type of autopilot would for example allow a 
UCAV to avoid threats by performing standard aerobatic type evasive manoeuvres. Improved 
levels of safety, capability, precision and efficiency would also make UAVs an even more 
attractive technology for civil applications. 

1.1.3 Manoeuvre autopilot research at Stellenbosch University 

To place this research in context with the ongoing UAV research at Stellenbosch University 
(SU), a short review of SU’s UAV activities is provided with the focus steered towards work 
done on manoeuvre autopilot design. 

SU’s UAV activities formally began in 2001 with a project aimed at automating the hover 
flight of a small electrically powered unmanned helicopter [6]. The following year research 
into autonomous flight of a methanol powered fixed wing aircraft began [7,8]. Helicopter, 
fixed wing and the associated modelling, simulation and avionics systems research continued 
over the years [9-15] together with a new branch of research into control of experimental 
aircraft. These experimental aircraft include a tail-sitter Vertical Takeoff and Landing (VTOL) 
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aircraft [16,17] and a coaxial, counter rotating, thrust vectored ducted fan [18]. 

On the fixed wing side, after practical autonomous waypoint navigation was demonstrated in 
[7,8], the conventional flight autopilot was successfully extended to handle automatic takeoff 
and landing too [11,12]. A second branch of fixed wing UAV research began in 2004 with the 
aim of advancing the state of the art in flight control through the design of an autopilot capable 
of performing aerobatic manoeuvres. Research by [13] lead to the successful practical 
demonstration of autonomous aileron roll, loop and Immelmann manoeuvres. However, the 
controller designed in [13] involved Receding Horizon Predictive Control (RHPC) of the 
linearised aircraft model about the reference trajectory and as such was very computationally 
demanding. Furthermore, the use of an optimisation based control algorithm made the 
selection of appropriate weights in the cost function particularly difficult. Fine tuning of these 
weights was required for each trajectory. Trajectory design was also complicated by having to 
find a reference trajectory for every single state for a particular manoeuvre. The generation of 
mathematically feasible reference trajectories then became an optimal control task of its own 
with a potential complexity greater than that of the regulation problem itself. This complexity 
was avoided in [13] by using near feasible trajectories and considering trajectory errors as 
disturbances to be rejected by the regulation control law. 

With regard to the history of UAV research at SU, the manoeuvre autopilot research presented 
in this thesis stems from the desire to advance the state of the art in UAV flight control. More 
specifically, it is desired to develop a flight control algorithm capable of guiding a UAV 
through the full kinematic flight envelope while at the same time addressing outstanding issues 
such as controller complexity, computational burden, ease of reference trajectory generation 
and robustness. The results presented in this thesis are seen to adequately address all of these 
issues and provide an effective, elegant solution to the 3D manoeuvre flight control problem 
for a very wide class of UAVs. 

1.2 Manoeuvre autopilot discussion 
Given the desire to design a manoeuvre autopilot, this section begins by providing a literature 
review on the subject of manoeuvre autopilot design strategies. Thereafter, a brief description 
of the novel manoeuvre autopilot design strategy of this thesis is presented. 

1.2.1 Literature study 

The design of autopilots for conventional flight UAVs is a mature field of research with a 
myriad of published control system design strategies [8,19-24]. However, common to most of 
these design strategies is linearisation about a trim flight condition and the use of basic steady 
state near trim flight kinematic relationships to simplify control law design [19,20]. To ensure 
stability this class of controllers typically imposes significant limitations on the aircraft’s 
allowable attitude, velocity and altitude deviations. 
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Gain scheduling is a commonly used method to expand the airspeed and altitude flight 
envelopes of aircraft without changing the control system design strategy above [19,25]. Gain 
scheduling involves linearisation of the plant model at a number of different operating points 
and interpolation of the feedback gains for flight conditions between these points. Variations 
exist on the number of operating points to use and the interpolation methods to employ [25]. 
Operating points are however usually limited to different airspeed and altitude combinations 
since these two variables change slowly relative to the aircraft’s flight dynamics i.e. a 
timescale separation exists. 

It is however also feasible to linearise the aircraft model about more complex manoeuvre 
trajectories and again apply gain scheduling. This is equivalent to converting a problem 
involving control of a nonlinear plant to one involving control of a Linear Time Varying (LTV) 
one. Great care needs to be taken when using gain scheduling in this manner since ensuring 
that the linearised system’s poles remain within the left half of the s-plane at all times is not a 
sufficient condition for stability of a LTV system [26]. Thus, although gain scheduling is 
desirable from a simplicity of design point of view, the time consuming nature of the design 
and the fact that it is typically only useful at extending the airspeed and altitude flight 
envelopes, make it neither an effective nor elegant method for the design of a manoeuvre 
autopilot. 

Dynamic inversion [26] has recently become a popular design strategy for manoeuvre flight 
control of UAVs and manned aircraft [27-30]. However, when directly applied, this promising 
strategy suffers from two major drawbacks. Firstly, due to the open loop nature of the 
inversion and the uncertainty associated with aircraft dynamics, controller robustness is a 
concern. This concern is explicitly addressed in [30] and [31], through the design of a 
structured singular value synthesis outer loop controller. The second drawback arises due to 
the slightly Non-Minimum Phase (NMP) nature of most aircraft dynamics. In this case, direct 
application of dynamic inversion not only results in an impractical controller with large 
counterintuitive control signals [30,32], but also in undesired internal dynamics whose 
stability must be investigated explicitly [26]. Although techniques to address these issues have 
been developed [32,33], dynamic inversion may not necessarily provide a very practical 
solution to the 3D flight control problem and should ideally only be used in the presence of 
relatively certain minimum phase dynamics. 

Receding Horizon Predictive Control (RHPC) has also been theoretically applied to the 
manoeuvring flight control problem [34-36], and similarly to missile control [37]. This control 
approach involves solving for the control input that minimises a cost function of state and 
control errors (actual relative to feasible reference trajectory provided) over a finite time 
horizon while adhering to any constraints. The optimal control input is then utilised for a finite 
time period (typically far less than the horizon) before the process is repeated again. Feedback 
is incorporated into the controller by beginning each optimisation from the aircraft’s 
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measured/estimated state. The controller thus allows all aircraft and kinematic nonlinearities to 
be taken into account including hard constraints such as actuator clipping and slew rates limits. 

Although this strategy is conceptually very promising and has been successfully practically 
applied to the slower dynamics plants of the process control industry [38,39], it is less popular 
in the field of aircraft control due to the associated computational burden. This is particularly 
so in the field of low cost UAV automation where processing power is limited. In [13], a 
RHPC algorithm was investigated for guidance of a low cost UAV through a number of 
aerobatic manoeuvres. It was found that only a 0.2s prediction horizon could be achieved 
using the aircraft’s onboard Pentium-3 300MHz processor when the control was executed at 
50Hz. Although much can be done to improve the computational performance of this type of 
system and thereby lengthen the horizon, it does clearly illustrate the potential computation 
burden associated with RHPC type controllers. This fact is again highlighted in [36] where 
computationally feasible prediction horizons of 0.1s and 1.0s were used and compared. For 
this reason, and so as not to exclude low cost UAVs from the benefits of a manoeuvre 
autopilot, RHPC is also not considered an ideal design strategy for the task. 

1.2.2 A novel approach 

In light of the above discussion, a novel strategy for the design of a manoeuvre flight control 
system is presented in this thesis. The design strategy does not make use of novel, 
fundamentally different mathematical methods for design of the control system. Rather, the 
complexity of the manoeuvre autopilot design is reduced by appropriately formulating the 
aircraft dynamics and carefully selecting the states to be controlled. In this way, the 
complexity of the manoeuvre autopilot design is dramatically reduced and existing control 
system design techniques can be applied to elegantly, efficiently and robustly solve the 
manoeuvre control problem. 

The core of the control strategy involves the design of attitude independent inner loop 
acceleration controllers. Although acceleration controllers are commonly used in missile 
applications [19], the attitude independence extension of this type of controller and its 
application to aircraft manoeuvre flight control is novel. The attitude independence of the 
controllers means that the same set of acceleration controllers can be used throughout the 
entire 3D flight envelope. It is for the design of these attitude independent acceleration 
controllers that the appropriate formulation of the aircraft dynamics is crucial. 

With the acceleration controllers in place the aircraft is then reduced to a point mass with a 
steerable acceleration vector from a guidance perspective. This in turn greatly simplifies 
control at this level, allowing for aircraft independent guidance. Furthermore, reference 
trajectory generation is simplified enormously since trajectories need only be kinematically 
feasible and not dynamically feasible as in most other manoeuvre autopilot designs. 
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In terms of attributes, the control system architecture is argued to be inherently robust due to 
the inner loop regulation at an acceleration level. Regulation at this level means that all aircraft 
specific uncertainty will remain encapsulated behind the typically high bandwidth acceleration 
controllers. Thus, the effect of such uncertainty on the rest of the dynamics will be greatly 
reduced. Furthermore, with disturbance rejection also at an acceleration level, control action 
can be taken before disturbances manifest themselves into position, velocity and attitude 
errors. Practical feasibility and computational efficiency will also be seen later in this thesis to 
be attributes of a manoeuvre autopilot based on this design strategy. 

It must be noted that in [40] an acceleration based control algorithm was also employed for 
manoeuvre flight control. However, there are several fundamental differences between the 
strategy presented in this thesis and that of [40]. Firstly, in [40] the method of transforming the 
desired inertial acceleration to body axes is iterative whereas a closed form solution is 
presented here. From a computational intensity point of view an iterative solution is 
undesirable. Secondly and most importantly, given the desired acceleration coordinates in 
body axes, the actuator commands are generated in an open loop fashion through inversion of 
the aircraft specific dynamics. Although feedback control of the measured accelerations is 
enforced, the damage of the open loop inversion through uncertain dynamics is already done. 
It is thus expected that the performance of this control technique will be very sensitive to the 
accuracy of the aircraft parameters. In contrast, the strategy presented in this thesis makes use 
of feedback control at all times when uncertainty is present. Desired accelerations are thus 
presented as reference commands to acceleration controllers that in turn command the 
actuators. Finally, in [40] the use of Euler 3-2-1 angles for attitude parameterisation will result 
in singularity problems during some manoeuvres. In contrast, a generalised attitude 
parameterisation with no singularities is employed in this thesis. 

The few paragraphs above are intended only to provide a brief conceptual overview of the 
autopilot design strategy and its inherent attributes. The concepts and arguments presented 
above will be thoroughly addressed and expanded upon in the body of the thesis and then 
concisely summarised in the conclusion. The precise layout of this thesis is the topic of the 
following section. 

1.3 Thesis overview 
In Chapter 2 the manoeuvre autopilot design strategy is formally presented and 
mathematically supported. To maintain generality no specific form is assigned to the aircraft’s 
force and moment model e.g. linear aerodynamics, thrust profiles etc. Only typical 
dependencies are made use of to illustrate the general applicability of the design strategy. 
Chapter 3 continues by enforcing an appropriate structure to the aircraft’s aerodynamic and 
thrust models for the case when the incidence angles are small. This structure allows further 
detailed analysis of the open loop system and shows that under mild conditions the dynamics 
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for the acceleration controller designs decouple and become linear. 

The detailed acceleration controller designs and their associated analyses are carried out in 
Chapters 4 and 5. The analysis focuses on conditions for practical application of the 
controllers. Normalised, non-dimensional time variants of the acceleration controllers are also 
presented and contrasted with their dimensional counterparts. Chapter 6 discusses a number of 
possible guidance strategies to interface with the acceleration controllers of the previous 
chapters. A novel closed form guidance control system particularly suited for use with the 
acceleration controllers is presented in detail. 

The topic of reference trajectory generation is handled in Chapter 7 and a number of building 
block reference trajectories are created to reduce the parameter space when designing complex 
trajectories. These trajectories are used in the simulation examples of Chapter 8. Here, the 
manoeuvre autopilot is applied to a number of example aircraft, each with very different 
mission profiles and/or flying qualities. The purpose of this chapter is to illustrate the range of 
aircraft and trajectories that the autopilot can handle. 

The thesis concludes with Chapter 9. The fundamental results are summarised and the novel 
contributions of this thesis to the field of aircraft dynamics, control and guidance are 
highlighted. Potential future research that stems directly from the results presented is also 
discussed. 
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Manoeuvre Autopilot Architecture 

 

This chapter describes the general architecture of the manoeuvre autopilot to be designed. It 
begins with an initial discussion describing the fundamental thoughts that shape the autopilot 
architecture. It then moves on to develop the six degree of freedom equations of motion in a 
form that provides an appropriate mathematical hold on the aircraft dynamics for the effective 
design of a manoeuvre autopilot. The force and moment models are kept general to illustrate 
that the architecture of the autopilot can be applied to a wide class of aircraft under a set of 
practically feasible conditions. The chapter concludes by highlighting the many advantages of 
the manoeuvre autopilot architecture. 

2.1 Initial discussion and fundamental thoughts 
For most UAV autopilot design purposes, an aircraft is well modelled as a six degree of 
freedom rigid body with specific and gravitational forces and their corresponding moments 
acting on it. The specific forces typically include aerodynamic and propulsion forces and arise 
due to the form and motion of the aircraft itself. On the other hand the gravitational force is 
universally applied to all bodies in proportion to their mass, assuming an equipotential 
gravitational field. The sum of the specific and gravitational forces determines the aircraft’s 
total acceleration. It is desirable to be able to control the aircraft’s acceleration as this would 
leave only simple outer control loops to regulate further kinematic states. 

Of the total force vector only the specific force component is controllable, with the 
gravitational force component acting as a well modelled bias on the system. Thus, with a 
predictable gravitational force component, control of the total force vector can be achieved 
through control of the specific force vector. Modelling the specific force vector as a function 
of the aircraft states and control inputs is an involved process that introduces almost all of the 
uncertainty into the total aircraft model. Thus, to ensure robust control of the specific force 
vector a pure feedback control solution is desirable. As a result, regulation techniques such as 
dynamic inversion, which although typically also make use of outer feedback loops, are 
avoided due to the open loop nature of the inversion and the uncertainty associated with the 
specific force model. 
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Considering the specific force vector in more detail the following important observation is 
made from an autopilot design simplification point of view. Unlike the gravitational force 
vector which remains inertially aligned (or varies slowly with position depending on the exact 
distribution of the gravitational field in inertial space), the components that make up the 
specific force vector tend to remain aircraft aligned. This alignment is a consequence of the 
specific force arising as a result of the form and motion of the aircraft itself. For example, the 
aircraft’s thrust vector acts along the same aircraft fixed action line at all times while the lift 
vector tends to remain close to perpendicular to the wing depending on the specific angle of 
attack. The observation is thus that the coordinates of the specific force vector in a body fixed 
axis system are independent of the gross attitude of the aircraft. Thus, if the specific force 
coordinates in body axes could also be measured independently of the aircraft’s gross attitude 
then the design of attitude independent specific force controllers would be possible. Of course, 
appropriately mounted accelerometers provide just this measurement, normalised to the 
aircraft’s mass, thus practically enabling the control strategy through specific acceleration 
instead. 

With gross attitude independent specific acceleration controllers in place, the remainder of a 
full 3D manoeuvre flight autopilot design is greatly simplified. From a guidance perspective 
the aircraft reduces to a point mass with a steerable acceleration vector. Due to the acceleration 
interface, the guidance dynamics will be purely kinematic and the only uncertainty present 
will be that associated with gravitational acceleration. The highly certain nature of the 
guidance dynamics thus allows amongst others, techniques such as dynamic inversion and 
RHPC to be effectively implemented at a guidance level. 

In addition to the associated autopilot simplifications, acceleration based control also provides 
for a robust autopilot solution. All aircraft specific uncertainty will remain encapsulated 
behind a wall of high bandwidth specific acceleration controllers. Furthermore, high 
bandwidth specific acceleration controllers would be capable of providing fast disturbance 
rejection at an acceleration level, allowing action to be taken before the disturbances manifest 
themselves into attitude, velocity and position errors. 

To take advantage of the potential of regulating the specific acceleration independently of the 
aircraft’s gross attitude, requires the equations of motion to be written in an appropriate form 
that provides a mathematical hold on the problem. The motion of the aircraft needs to be split 
into the motion of a reference frame relative to inertial space, that captures the gross attitude of 
the vehicle, and the superimposed motion of the aircraft relative to the reference frame. With 
this mathematical split, it is expected that the specific acceleration coordinates in the reference 
and body frames will remain independent of the attitude of the reference frame. An obvious 
and appropriate choice for the reference frame is the commonly used wind axis system as 
defined in Appendix A. With this choice, the aircraft’s motion is split into a gross point mass 
motion with a superimposed rotational motion relative to the wind axes (velocity vector). 
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In section 2.2 the detailed mathematics of this split dynamics modelling process will be 
presented. A general aircraft force and moment model will be introduced to complete the six 
degree of freedom aircraft dynamics. Then, with the appropriate mathematical foundation 
developed and available to support further arguments, the precise architecture and the 
accompanying advantages of the proposed manoeuvre autopilot will be discussed in section 
2.3, with concluding remarks in section 2.4. 

2.2 Six degree of freedom equations of motion 
This section develops the six degree of freedom equation of motion for a rigid body in a form 
that explicitly highlights the ideas presented in the previous section. The strategy is to describe 
the total motion of the body as the superposition of the body’s point mass motion and its rigid 
body rotational motion. The point mass motion is maintained through the position and attitude 
of the wind axis system over time. The total rigid body motion of the aircraft is then described 
by maintaining the attitude of the body axis system with respect to the wind axis system. 

It should be noted that the final form of the equations of motion derived in this section (or at 
least one very similar to it) can be found in the literature [41]. However, in the literature this 
particular form is not derived with the manoeuvre autopilot concepts of the previous section in 
mind and thus is simply presented as another of the many forms of the equations of motion. 
Deriving this particular form within the context of the proposed acceleration based manoeuvre 
autopilot architecture provides a novel perspective on the form, explicitly highlighting the 
numerous autopilot design advantages associated with it. 

Finally, note that the notation standards used in the mathematics to follow are described in 
Appendix A. 

2.2.1 Point mass dynamics 

This section investigates the dynamics of the aircraft’s centre of mass. There is a kinematic 
relationship between the acceleration, velocity and position of the aircraft’s centre of mass 
with respect to inertial space ( I ). Since by definition the origin of the wind axis system (W ) 
corresponds with the aircraft’s centre of mass the kinematic relationships can be written as 
follows, 

 
I

d
dt

=WI WIP V  (2.1)

 
I

d
dt

=WI WIV A  (2.2)

where, WIA , WIV  and WIP  are the acceleration, velocity and position vectors of the wind axis 
system with respect to inertial space respectively. There is a kinetic relationship between the 
aircraft’s linear momentum ( L ) and the applied resultant force vector ( F ), 
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I I I

d d dm m m
dt dt dt

= = = =WI WI WIF L V V A  (2.3)

where it has been assumed that the mass ( m ) is a time invariant parameter. Substituting for the 
acceleration vector into equation (2.2) gives, 

 1

I

d
dt m

=WIV F  (2.4)

For the purposes of illustrating the manoeuvre autopilot design concepts introduced in the 
previous section, it is more desirable to work with the velocity magnitude and the attitude of 
the wind axis system when describing the velocity vector. Thus, the derivative of the velocity 
vector in equation (2.4) is converted to a derivative with respect to wind axes by making use 
of equation (A.20) in Appendix A, 

 1

W

d
dt m

= − × +WI WI WIV ω V F  (2.5)

Here WIω  is the angular velocity of the wind axis system with respect to inertial space. The 
angular velocity vector is defined by equation (A.18) in Appendix A. Since use has been made 
of the wind axis system it is necessary to maintain its attitude with respect to inertial space. By 
definition, the angular velocity vector is related to the time rate of change of the wind axis 
system basis vectors ( , , W W Wi j k ) with respect to inertial space. Equation (A.41) of Appendix A 
summarises the vector relationship in a matrix form and is restated below for the wind-inertial 
axis system case, 

 
I

d
dt
   = ×   
W W W WI W W Wi j k ω i j k  (2.6)

Equations (2.1), (2.5) and (2.6) are vector equations describing the position, velocity and 
attitude dynamics of the wind axis system with respect to inertial space. Coordinating all of 
the vectors except those involved in the position dynamics into wind axes, and using the 
relationships of equations (A.25) and (A.37) in Appendix A gives, 

 T
 =  

WI WI WI
I WP DCM V  (2.7)

 1m−= − +WI
W

WI WI
W W Wω

V S V F  (2.8)

 d
dt
   = −   WI

W

WI WI
ω

DCM S DCM  (2.9)

with, 

 T T
     = =     

WI IW W W W
I I IDCM DCM i j k  (2.10)
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and the attitude kinematics constraint equation from equation (A.29), 

 T
    =   

WI WIDCM DCM I  (2.11)

The S  matrix above implements a cross product and is defined in equation (A.10). Equations 
(2.7), (2.8) and (2.9) are the point mass dynamics in coordinate vector form. They are provided 
in expanded form below, 
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 (2.12)
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 (2.14)

and generate the two algebraic constraint equations, 

 1W W

W W

Q Z
R YmV

−   
=   

   
 (2.15)

Note that V  is the velocity magnitude and is the only non-zero coordinate of the velocity 
vector in wind axes. The attitude of the wind axis system with respect to inertial space is 
maintained through Direction Cosine Matrix (DCM) parameters ( ( )

WIe ⋅ ) at this stage to keep the 
analysis general. The attitude and the attitude dynamics could be simplified using any common 
attitude parameterisation as discussed in Appendix A. WP , WQ  and WR  are the roll, pitch and 
yaw rates of the wind axis system with respect to inertial space, while WX , WY  and WZ  are the 
axial, lateral and normal coordinates of the force vector in wind axes. xP , yP  and zP  are the 
position coordinates of the wind axis system in inertial space. 

Finally, note how the point mass equations of motion accept the coordinates of the force vector 
in wind axes ( , , W W WX Y Z ) together with the roll rate of the wind axis system with respect to 
inertial space ( WP ) as inputs. 

2.2.2 Rigid body rotational dynamics 

The equations of motion developed thus far govern the motion of the aircraft’s centre of mass 
through inertial space. The motion of the centre of mass was maintained by maintaining the 
motion of the wind axis system over time. However, with the aircraft modelled as a rigid body, 
there can also be rotational motion of the body axis system relative to the wind axes as a result 
of the point of application of the total force vector. This section investigates the equations of 
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motion that govern the rigid body rotational dynamics of the aircraft. These dynamics together 
with the point mass dynamics then completely describe the six degree of freedom motion of 
the aircraft. 

The rotational motion arises due to the point of application of the force vector i.e. the moment 
applied to the aircraft about its centre of mass. As shown in Appendix A, there is a kinetic 
relationship between this applied external moment vector (M ) and the aircraft’s angular 
momentum about the centre of mass ( H ), 

 
I

d
dt

=M H  (2.16)

where, 

 ( )
V

dm= × ×∫ dmB BI dmBH P ω P  (2.17)

and BIω  is the angular velocity of the body axis system ( B ) with respect to inertial space. The 
vector dmBP  is the position of an arbitrary mass element dm , relative to the centre of mass 
(origin of the body axis system), within the volume of the rigid body V . The angular 
momentum vector takes on its simplest form when coordinated into body axes since the 
moment arms to all mass elements are fixed and independent of other motion variables. 
Applying the vector derivative relationship of equation (A.20) to equation (2.16) yields, 

 
B

d
dt

= + ×BIM H ω H  (2.18)

Substituting equation (2.17) into equation (2.18), coordinating all vectors into body axes and 
assuming the aircraft inertia properties remain constant gives the rearranged coordinate vector 
differential equation, 

 ( )= − +BI
B

BI -1 BI
B B B B Bω

ω I S I ω M  (2.19)

Here BI  is the moment of inertia matrix referenced to the body axis system defined in equation 
(A.89). The above equation governs the angular velocity (rotational motion) of the body axis 
system with respect to inertial space as a function of the applied moment vector. However, the 
rotational motion of the body axis system can be thought of as the superposition of the angular 
velocity of the wind axis system with respect to inertial space and the angular velocity of the 
body axis system with respect to the wind axes ( BWω ). Mathematically, this can be written as 
follows, 

 = +BI BW WIω ω ω  (2.20)

Note that the angular velocity of the body axis system with respect to the wind axis system is 
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constrained, since by definition the wind axis system’s normal unit vector must lie in the 
aircraft’s plane of symmetry at all times. The constraint can be written mathematically as 
follows, 

 0⋅ =W Bk j   t∀  (2.21)

where Bj  is the body axis system lateral unit vector. Because this condition must hold for all 
time ( t ), the time derivative of equation (2.21) must also be zero. The derivative of a scalar 
quantity can be taken with respect to an axis system of choice. Taking the time derivative with 
respect to wind axes simplifies the result, 

 

0
W

W W

B

d
dt

d d
dt dt

d
dt

⋅ =

= ⋅ + ⋅

 
= ⋅ + × 

 
 = ⋅ × 

W B

W B W B

W B BW B

W BW B

k j

k j k j

k j ω j

k ω j

 (2.22)

The above constraint only holds when BWω  takes on the following form, 

 a b= +BW B Wω j k  ,a b∈  (2.23)

Equation (2.23) implies that BWω  must lie in the two dimensional plane spanned by the basis 
vectors Bj  and Wk . This constraint is enforced by the appropriate selection of the variable WP  
which was shown in section 2.2.1 to be a free input into the point mass dynamics. By 
definition, the angle of attack (α ) and angle of sideslip ( β ) are related to the parameters a  
and b  of equation (2.23) as follows, 

 
a
b

α
β

= +

= −
 (2.24)

Combining equations (2.20), (2.23) and (2.24) yields,  

 α β= − +BI B W WIω j k ω  (2.25)

Analysing the above equation in body axes gives, 

 
α β
α β

= − +

= − +

BI B W WI
B B B B

B 2 3 W 2 3 WI
B α -β W α -β W

ω j k ω

j T T k T T ω
 (2.26)

where the transformation matrices ( T ) used in the above equation are defined in Appendix A. 
Expanding equation (2.26) gives, 
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 (2.27)

where P , Q  and R  are the roll, pitch and yaw rate of the body axis system with respect to 
inertial space respectively. Making α , β  and WP  the subject of the equation and substituting 
for WQ  and WR  from the algebraic constraint of equation (2.15) gives, 
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Q
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 (2.28)

Note that the first two dynamic equations above arise as a result of the kinematic relationship 
between the angular velocity and attitude of the body axis system with respect to the wind axis 
system. The third equation is a constraint on WP  that ensures that equation (2.21) holds for all 
time. Expanding equation (2.19) and combining it with equation (2.28) gives the rigid body 
rotational dynamics, 
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sin 0 cos 0 1
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 
− −        = +        −         

 (2.29)

 

1
0

0
0

xx xy xz xx xy xz

xy yy yz xy yy yz

xz yz zz xz yz zz

P I I I R Q I I I P L
Q I I I R P I I I Q M
R I I I Q P I I I R N

−       − − − − −     
           = − − − − − − +           
           − − − − −           

 (2.30)

with, 

 [ ] [ ]1cos sec 0 sin sec tan 0 W
W
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Z

P Q
YmV

R
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 
  = + −       

 (2.31)

The dynamics above are seen to maintain the attitude of the body axes with respect to the wind 
axes over time (α  and β ), as a function of the applied moment vector coordinates in body 
axes ( , , L M N ) and the lateral and normal force vector coordinates in wind axes. 

2.2.3 Forces and moments 

In this section, models for the force and moment vectors are investigated. However, no formal 
structure is applied to the force and moment model. Instead the model is kept very general 
with only typical dependencies highlighted. This is done to allow the general applicability of 
the manoeuvre autopilot architecture to be illustrated in the sections that follow. Note, to 
simplify the discussions below, only the forces acting on an aircraft will be considered since 
moments simply arise as a function of a force’s action point. 
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The total force vector can be written as the sum of a specific force component ( ΣF ) and a 
gravitational force component ( GF ), 

 = +Σ GF F F  (2.32)

The specific force component can again typically be divided into two parts i.e. aerodynamic 
( AF ) and propulsion forces ( TF ). The aerodynamic forces are typically a function of the 
dynamic pressure, the attitude of the body axis system with respect to the wind axis system, 
the angular velocity of the body axis system with respect to inertial space and the aerodynamic 
control actuator inputs [42]. This relationship can be written mathematically as follows, 

 ( )( ), , , , , , ,P Q R Vα β δ ρ⋅=A AF f  (2.33)

where ρ  is the air density and ( )δ ⋅  represents the various aerodynamic actuators. Depending on 
the complexity of the propulsion source, the propulsion force vector can be dependent on a 
number of state and control variables. Typical variables include the velocity magnitude, air 
density and thrust command ( CT ). This can be written mathematically as follows, 

 ( ), ,CT V ρ=T TF f  (2.34)

Combining the aerodynamic and propulsion dependencies, the typical specific force vector 
dependencies can be written as follows, 

 
( )( ), , , , , , , ,CP Q R T Vα β δ ρ⋅

= +
= +

=

Σ A T

A T

Σ

F F F
f f

f

 (2.35)

Assuming an equipotential gravitational field over the volume of the aircraft, the gravitational 
force vector is a function only of the aircraft’s mass and can be written as follows, 

 ( )m=G GF f  (2.36)

Considering the dependencies of the externally applied moment vector, it is firstly noted that 
because the moment vector is referenced to the aircraft’s centre of mass, it is only contributed 
towards by the specific force vector. The moment vector thus simply arises due to the action 
point of the specific force vector. It therefore is dependent on the same state and control 
variables as the specific force vector, 

 ( )( ), , , , , , , ,CP Q R T Vα β δ ρ⋅= MM f  (2.37)

The equations of motion derived in sections 2.2.1 and 2.2.2 require the force vector 
coordinated in wind axes and the moment vector coordinated in body axes. Since transforming 
between these two axis systems involves only the angle of attack and the angle of sideslip, no 
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further dependencies are added to the specific force and moment vectors when coordinated 
into their respective axis systems. Thus, the total force and moment vectors coordinated in 
wind and body axes respectively can be written as follows, 

 ( ) ( )(), , , , , , , ,CP Q R T V mα β δ ρ  = + = +  
Σ G Σ WI G

W W W W IF F F f DCM f  (2.38)

 ( )(), , , , , , , ,CP Q R T Vα β δ ρ= M
B BM f  (2.39)

Note that as previously argued in section 2.1, the coordinates of the specific force and moment 
vectors above are not a function of the gross attitude of the aircraft. This is because the 
specific force vector arises due to the form and motion of the aircraft itself and thus moves 
with the aircraft. However, the typically inertially fixed (or slowly inertially varying) 
gravitational force vector is seen to be a function of the gross attitude of the aircraft when 
coordinated into wind axes. This issue will need to be addressed in the manoeuvre autopilot 
formulation. 

2.2.4 Summary of equations of motion 

The dynamic equations developed in the previous sections are summarised below in a slightly 
modified form that explicitly reveals the manoeuvre autopilot design concepts promoted in 
section 2.1. The total acceleration vector has been divided into a specific acceleration 
component ( Σ ) and a gravitational acceleration component (G ) and related to the total force 
vector using equation (2.32) as follows, 

 ( )m= + = +Σ GF F F Σ G  (2.40)

Working with the specific and gravitational accelerations instead is important because it allows 
the mass parameter to be removed from the point mass dynamics, leaving these dynamics 
purely kinematic. The motivation for writing the equations of motion in the form provided 
below will be fully clarified in the following section. 

Rigid body rotational dynamics: 
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 (2.41)
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 (2.42)

with, 
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Point mass kinematics: 
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with, 

 1 1z
W WW

y
W WW

Q Cg
R BV Vg

− −   
= +    

    
 (2.49)

 
11 12 13

21 22 23

31 32 33

x WI WI WI
W
y WI WI WI

W
z WI WI WI
W

g e e e
g e e e
g e e e

   
   =   
      

IG  (2.50)

2.3 Development of the manoeuvre autopilot architecture 
In section 2.1 it was argued that because the specific acceleration vector moves with the 
aircraft, feedback from aircraft fixed accelerometers to aircraft fixed control surfaces would 
allow the specific acceleration vector to be controlled independently of the aircraft’s gross 
attitude. Furthermore, it was argued that with the specific acceleration controlled, all further 
dynamics would be purely kinematic, thus allowing for simple outer loop controllers to be 
designed based on highly certain dynamics. These arguments led to the development of a 
specific form of the equations of motion in section 2.2. This form is summarised in section 
2.2.4 and depicted graphically in Figure 2.1 below. 
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Figure 2.1 – Block diagram of the six degree of freedom equations of motion in a 
form well suited for the design of a manoeuvre autopilot 

The complete mathematics of section 2.2 and the corresponding diagram of Figure 2.1 indicate 
that the initial arguments of section 2.1 were in fact correct but that some subtleties still need 
to be addressed. These subtleties are addressed in the initial formulation of the manoeuvre 
autopilot discussed in the subsection to follow. The formulated autopilot architecture is based 
on a few assumptions which are addressed in section 2.3.2. In section 2.3.3 issues concerning 
the feedback signals required by the autopilot are addressed. Finally, section 2.3.4 summarises 
the manoeuvre autopilot architecture. The proposed manoeuvre autopilot architecture forms 
the primary contribution of this dissertation to the field of aircraft flight control. 

It must be noted that the arguments presented in this section are qualitative of nature, 
particularly those justifying the practical feasibility of the assumptions required by the 
manoeuvre autopilot in section 2.3.2. The analysis is forced to remain qualitative while the 
force and moments models remain general functions of the aircraft states. The purpose of the 
arguments in this section is to describe the general structure of the manoeuvre autopilot and 
illustrate qualitatively that the autopilot is practically feasible for a large class of aircraft. In 
Chapter 3, the force and moment models will be structured which in turn will allow a thorough 
theoretical analysis of the manoeuvre autopilot for that specific structure. 

2.3.1 Initial formulation of the manoeuvre autopilot 

Considering the summarised aircraft dynamics of section 2.2.4 and the corresponding block 
diagram of Figure 2.1, it is clear that the aircraft dynamics can be split into two sections. On 
the right hand side of the border in Figure 2.1 (dash-dotted vertical line), are the point mass 



CHAPTER 2– MANOEUVRE AUTOPILOT ARCHITECTURE 

 

21

kinematics which describe the gross motion of the aircraft. As expected, these dynamics are 
completely aircraft independent and are driven by the coordinates of the specific acceleration 
vector in wind axes ( WA , WB , WC ) as well as the roll rate about the velocity vector ( WP ). The 
only inherent uncertainty in this section of the dynamics is that introduced through the 
gravitational acceleration model. However, as previously argued, the gravitational acceleration 
model is usually of a high fidelity, thus introducing very little uncertainty. 

On the left hand side of the border are the rigid body rotational dynamics. These dynamics 
contain all of the aircraft specific parameters and thus all of the aircraft specific uncertainty. It 
is thus clear that by writing the equations of motion in the form presented in section 2.2.4, a 
natural split along an uncertainty boundary is revealed in the aircraft dynamics. Furthermore, 
as expected, the specific force and moment models are largely a function of the rigid body 
rotational dynamics states and are independent of the gross attitude of the vehicle. However, it 
is clear that the wind axis system attitude couples kinematically into the rigid body rotational 
dynamics via gravitational acceleration. If this feedback connection could be blocked, then the 
ideal of designing attitude independent specific acceleration controllers could be realised. 

Upon further consideration of the dynamics, it is clear that the only other point mass 
kinematics states that couple back into the rigid body rotational dynamics are the velocity 
magnitude and air density (altitude). These terms couple back into the rigid body rotational 
dynamics because they play a direct role in determining the magnitude of the specific forces 
and moments. If the dynamic effect of these feedback connections could also be blocked or 
ignored, then the rigid body rotational dynamics would be completely dynamically 
independent of the point mass kinematics. Assuming all states were available for feedback, 
this would then allow for a single set of inner loop controllers to be designed to regulate the 
four signals that drive into the point mass kinematics with an invariant dynamic response for 
all point mass kinematics states. With these ‘virtual actuators’ and their invariant dynamic 
responses, all further outer control loops would then be completely aircraft independent, 
thereby greatly decreasing the remaining complexity of the manoeuvre autopilot design. 

Further to decreasing the complexity of the autopilot design, these typically high bandwidth 
controllers would encapsulate all of the aircraft specific uncertainty. This wall of inner loop 
controllers would thus serve to desensitise the point mass kinematics to the adverse effects of 
uncertainty in the aircraft model. Thus, the point mass kinematics would retain their highly 
certain nature and model dependent control techniques such as dynamic inversion and RHPC 
could be practically applied at a guidance level. The control architecture also provides 
enormous potential for disturbance rejection since the inner control loops would provide 
regulation at an acceleration and angular rate level. Thus, disturbance rejection would take 
place before disturbances even manifested themselves into attitude, velocity and position 
errors. 
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2.3.2 Addressing the conditions required by the autopilot 

The controller architecture discussed above requires the dynamic coupling from the point mass 
kinematics back into the rigid body rotational dynamics to be negated. This section analyses 
the conditions under which these couplings can be ignored. It argues that the conditions are 
practically feasible and can be met by a large class of aircraft. 

Considering the velocity magnitude and air density feedback couplings first. The velocity 
magnitude bandwidth will be determined by the outer loop velocity magnitude control system. 
For all practical purposes this bandwidth need not be exceptionally high since aircraft, due to 
their streamlined nature, are not particularly susceptible to axial disturbances and attitude 
induced axial accelerations can be compensated for through feed-forward. The maximum rate 
of change of the air density is determined by the aircraft’s maximum velocity and the change 
in air density with altitude. Given the very slow change in air density with altitude, this rate of 
change is low. 

For typical aircraft parameters, the states involved in the rigid body rotational dynamics 
operate on a much shorter timescale than the controlled velocity magnitude and air density 
states do. Furthermore, if the aircraft parameters result in rigid body rotational dynamics that 
do not operate at a high enough bandwidth, then their natural bandwidth can be increased 
through feedback control. A timescale separation argument can thus be used to handle the 
dynamic coupling of the velocity magnitude and air density terms into the rigid body 
rotational dynamics. With a significant timescale separation between the dynamics, the 
velocity magnitude and air density can be considered parameters in the rigid body rotational 
dynamics instead of states. This is equivalent to saying that over the timescales of interest in 
the rigid body rotational dynamics, the velocity magnitude and air density must remain very 
close to constant. 

Placing a timescale separation condition between the rigid body rotational dynamics and the 
velocity magnitude and air density dynamics is not in general a practically limiting condition. 
The condition is often naturally met and can otherwise be enforced through feedback. The 
upper bandwidth of the rigid body rotational dynamics is of course limited by practical factors 
such as actuator saturation and structural limitations. A further consideration is the speed of the 
axial specific acceleration dynamics. Since the propulsion source is often significantly 
bandwidth-limited (referred to as band-limited from this point forward), the bandwidth of the 
axial specific acceleration dynamics can often not be increased to the point where a timescale 
separation condition holds. However, it will be shown in the following chapter that there need 
not exist a timescale separation between the axial specific acceleration dynamics and the 
velocity magnitude dynamics for the velocity magnitude and air density to be regarded as 
parameters in the rigid body rotational dynamics. Finally, the designer also has the option of 
limiting the velocity magnitude bandwidth and maximum rate of climb/descent with outer 
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control loops to ease the minimum bandwidth constraints on the rigid body rotational 
dynamics. 

Before continuing, it should be noted that the border in Figure 2.1 not only represents a 
separation of uncertainty in the aircraft model but as previously argued, for typical aircraft 
parameters also highlights a natural timescale separation of the dynamics. Thus, the dynamic 
coupling of the wind axis system attitude into the rigid body rotational dynamics could also be 
argued away through a timescale separation argument. However, although the wind axis 
system attitude parameters will have slower dynamics than the rigid body rotational dynamics, 
it is desirable for the manoeuvre autopilot to be capable of guiding the aircraft through gross 
attitude changes in short time periods. Furthermore, an aircraft can typically roll about its 
velocity vector very quickly implying that the attitude parameters quantifying the direction of 
the wind axis system normal and lateral unit vectors will have fast dynamics. Thus, placing a 
timescale separation condition between the rigid body rotational dynamics and the point mass 
kinematics attitude parameters would require the rigid body rotational dynamics to operate at 
speeds that could only be realised by a very limited class of aircraft. 

To keep the manoeuvre autopilot’s architecture applicable to a very general class of aircraft, an 
alternative method of negating the wind axis system’s attitude coupling is sought. The wind 
axis system attitude parameters couple into the rigid body rotational dynamics via the typically 
well modelled gravitational acceleration vector. Since the coupling is well modelled, its effect 
on the rigid body rotational dynamics could be cancelled via dynamic inversion if it is 
assumed that high bandwidth actuators exist that are capable of performing the inversion. 
Equations (2.41) and (2.45) show that the wind axis system attitude parameters only couple 
back into the rigid body rotational dynamics through accelerations normal to the velocity 
vector. Thus, there need only be high bandwidth actuators capable of either directly producing 
or dynamically inducing  accelerations in the plane normal to the velocity vector to perform 
the dynamic inversion. For reasonable angles of attack and sideslip, this is not a practically 
limiting assumption since standard aerodynamic actuators would suffice. 

Adopting the approach of dynamic inversion over timescale separation to block the dynamic 
coupling of the wind axis system attitude parameters keeps the architecture of the manoeuvre 
autopilot applicable to a wide class of aircraft. It does however, require knowledge of the wind 
axis system orientation (i.e. gross attitude) to perform the inversion and thus would be 
dependent on attitude estimation accuracies in practice. Furthermore, since dynamic inversion 
is an open loop process, the effectiveness of the inversion is dependent on the accuracy of the 
aircraft model. However, the objective of the inversion is to remove the bulk of the coupling 
such that the inner loop controllers can be designed without regard for it. It thus forms only a 
small part of an otherwise purely feedback based inner loop control system, which will also 
naturally reject any remaining coupling, particularly given the timescale separation arguments 
above. 
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2.3.3 Estimation of the states required by the autopilot 

Although throughout this thesis it will be assumed that all states are available for feedback, it 
is prudent to briefly investigate the feasibility of estimating the signals that will typically be 
required by the manoeuvre autopilot. This is important from the perspective of designing 
dynamically invariant inner loop controllers. Furthermore, from a future research perspective, 
it will be highlighted how the split in the aircraft dynamics depicted in Figure 2.1 can be used 
to potentially reduce the computational burden of estimating the aircraft’s state vector. 

The proposed inner loop controllers require feedback from the specific acceleration 
coordinates in wind axes and the roll rate about the velocity vector. Typical sensors available 
to measure inner loop states are angular rate gyroscopes and accelerometers. Appropriately 
mounted angular rate gyroscopes are capable of directly measuring three of the rigid body 
rotational dynamics states. As previously discussed, accelerometers mounted at the aircraft’s 
centre of mass are capable of measuring the specific acceleration coordinates in body axes. 
These coordinates are related to the coordinates in wind axes through a transformation 
involving the angle of attack and angle of sideslip, both of which are states of the rigid body 
rotational dynamics. One possible estimation technique for the rigid body rotational dynamics 
is thus to adapt equation (2.41) slightly to accept the easily measurable angular rate and 
specific acceleration coordinates in body axes as follows, 
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 (2.51)

If the velocity magnitude and wind axis system attitude parameters could be obtained (this will 
be addressed in the next paragraph) then a purely kinematic rigid body rotational dynamics 
based estimator could be designed to estimate the angles of attack and sideslip. These 
estimates could be used to convert the body coordinated measurements of angular rate and 
specific acceleration to wind axes as desired. Although a number of other rigid body rotational 
dynamics state estimators could be designed, including aircraft specific model based 
estimators, the above argument serves to illustrate the feasibility of estimating the signals 
required in a computationally efficient manner. 

At a point mass kinematics level, a standard Global Positioning System (GPS) receiver is 
capable of providing inertially coordinated (albeit in a polar form), position and velocity 
vector information directly. Thus, with reference to the definition of the wind axis system, 
only the orientation of the normal and lateral unit vectors in the plane perpendicular to the 
velocity vector cannot be directly sensed. However, a point mass kinematics based estimator 
could be designed to estimate the wind axis system attitude. This estimator would accept 
estimates of specific acceleration and roll rate from the rigid body rotational dynamics 
estimator and use GPS and magnetometer measurements to bound propagated state estimates. 
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Note that this outer estimator would then in turn be responsible for providing the rigid body 
rotational dynamics estimator with velocity magnitude and wind axis system attitude 
information. The timescale separation between the two estimators would allow this split in 
design. 

The discussion above makes it clear that practically feasible options do exist for estimating the 
states required by the manoeuvre autopilot and that the split dynamics of Figure 2.1 in fact 
reveal further estimation potential. As previously stated however, the estimation problem will 
not be pursued further in this thesis and instead all states will be considered available for 
feedback. 

2.3.4 Summary of the manoeuvre autopilot architecture 

The manoeuvre autopilot architecture has been presented over the course of the previous 
subsections and is summarised below. 

Firstly, the following assumptions about the aircraft and its dynamics are made, 

o A timescale separation exists between the rigid body rotational dynamics and the 
velocity magnitude and air density dynamics. 

o The dynamic coupling of the wind axis system attitude parameters into the rigid body 
rotational dynamics can be negated through dynamic inversion. 

In section 2.3.2 it was argued that these two assumptions are practically feasible for a general 
class of aircraft. If these two assumptions hold then the velocity magnitude and the air density 
can be treated as parameters in the rigid body rotational dynamics, and the dynamic coupling 
of the wind axis system attitude parameters into the rigid body rotational dynamics can be 
ignored. The rigid body rotational dynamics then become dynamically independent of the 
point mass kinematics. With this dynamic independence, it is then assumed that, 

o Inner loop controllers can be designed to regulate the specific acceleration coordinates 
in wind axes and the roll rate about the velocity vector with nominal closed loop 
dynamics for all point mass kinematics states. 

In general, to design dynamically invariant inner loop controllers for all point mass kinematics 
states would require the full rigid body rotational dynamics state vector to be available. 
Section 2.3.3 argued that estimating the rigid body rotational dynamics state vector was indeed 
possible with typically available sensors. 

With the specific acceleration and roll rate about the velocity vector regulated, all of the 
aircraft’s uncertainty remains encapsulated behind a wall of inner loop controllers. 
Furthermore, control at an acceleration and angular rate level will provide for good 
disturbance rejection since rejection can take place before disturbances manifest themselves 
into attitude, velocity and position errors. 
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With the nominal dynamics inner loop controllers designed, aircraft independent guidance 
level controllers can then be created to regulate the gross motion of the aircraft. Due to the 
highly certain nature of the dynamics, a number of control system design techniques could be 
employed at a guidance level, including model dependent techniques such as dynamic 
inversion and RHPC. Furthermore, the timescale separation assumption above will in many 
cases allow the nominal inner loop dynamics to simply be ignored and the signals entering the 
point mass kinematics to be treated as instantaneously commandable ‘virtual actuators’. 
Although this is not required to reap all the benefits of the manoeuvre autopilot architecture, it 
would of course greatly simplify the guidance level controllers. 

Finally, the guidance controllers mentioned above would be used to regulate the aircraft about 
a kinematically feasible trajectory. Designing a kinematically feasible reference trajectory is a 
far less demanding task than that of designing a dynamically feasible trajectory. The former 
can very often be done by hand while the latter typically involves a complex optimisation 
problem if an accurate trajectory is desired. Thus, the manoeuvre autopilot architecture is also 
seen to ease the process of reference trajectory generation. 

2.4 Conclusion 
This chapter presented the architecture of the manoeuvre autopilot, the primary contribution of 
this dissertation. It introduced the fundamental arguments that lead to the architecture and 
mathematically supported these by specifically developing a generalised aircraft model in an 
appropriate form. The form mathematically illustrated a split in the aircraft dynamics along an 
uncertainty and timescale separation boundary. Although the particular form of the six degree 
of freedom equation of motion can be found in the literature, its derivation within the context 
of the manoeuvre autopilot presented in this chapter provides a novel perspective on the form. 
With the general equations of motion in place, a set of conditions for the implementation of the 
manoeuvre autopilot architecture were derived and argued to be practically feasible for a large 
class of aircraft. The associated robustness, guidance, trajectory generation and estimation 
benefits provided by the autopilot architecture were also highlighted. 
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Small Incidence Angle Simplifications 

 

The developments up to this point have presented the general architecture of the manoeuvre 
autopilot without enforcing a particular aircraft model structure. In this chapter, a structured 
force and moment model applicable to a large class of aircraft operating at small incidence 
angles (pre-stall flight) is presented. It is important to note that although this model is only 
valid for small incidence angles, the gross attitude angles are not limited in any way. 

The structured force and moment model presented in section 3.1 allows for further detailed 
investigation of the inner loop rigid body rotational dynamics. It is shown in sections 3.2 and 
3.3 that under further mild conditions, these dynamics are linear and decouple into axial, 
normal and lateral systems. With linear decoupled dynamics, the complexity of designing 
inner loop controllers that yield dynamically invariant closed loop responses is dramatically 
reduced. Furthermore, the decoupled linear models make a more rigorous analysis of the 
resulting autopilot possible. 

Note that it will be assumed for the remainder of this document that the flight envelope of the 
aircraft is such that a flat earth reference frame is appropriate and that this reference frame can 
be considered an inertial reference frame. The greatest benefit of this assumption is the 
associated equipotential gravitational field. As was seen in the previous chapter, a flat earth 
assumption was not a necessary condition for the implementation of the manoeuvre autopilot 
architecture presented. All that was required was that the gravitational force vector be well 
modelled and at worst vary slowly in inertial space. Making use of the flat earth assumption 
thus serves primarily to reduce the complexity of the analysis to follow and avoids clutter of 
the fundamental results. 

3.1 Force and moment model 
In this section, the aerodynamic, propulsion and gravitational force and moment models 
introduced in section 2.2.3 are elaborated upon. An aerodynamic model valid for small 
incidence angles is presented along with a simple propulsion model that captures the major 
effects of typical propulsion sources. A standard flat earth gravitational force model is also 
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presented. 

3.1.1 Aerodynamic model 

In section 2.2.3 of Chapter 2, it was argued that the aerodynamic force vector is typically a 
nonlinear function of the following variables, 

 ( )( ), , , , , , ,P Q R Vα β δ ρ⋅=A AF f  (3.1)

The standard small incidence angle aerodynamic model presented below [43] provides a 
structure to the functional dependence indicated by equation (3.1) with the aerodynamic forces 
and moments modelled in wind axes. 
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 (3.3)

where, 

 21
2 aq Vρ=  (3.4)

Here, q  is the dynamic pressure, aV  the airspeed magnitude, ρ  the air density, S  the wing 
area, c  the mean aerodynamic chord and b  the wing span. The dimensionless coefficients LC , 

DC  and yC  are the lift, drag and side force coefficients respectively with lC , mC  and nC  the 
dimensionless roll, pitch and yaw moment coefficients respectively. It is common practice to 
model the aerodynamic forces in wind axes since the lift and drag forces are defined as being 
perpendicular and parallel to the velocity vector respectively. 

The dimensionless coefficients capture the specific aerodynamic properties of the aircraft. 
Under small incidence angle assumptions (both absolute and induced), the lift, side force and 
moment coefficients are well modelled as linear in the rigid body rotational dynamics states 
and their first time derivatives. The drag coefficient however is typically modelled as 
nonlinear in the rigid body rotational dynamics states, being the sum of parasitic and induced 
drag. Standard coefficient models are presented below [43]. 
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In equation (3.5), 
0DC  is the parasitic drag coefficient, A  the wing’s aspect ratio and e  the 

Oswald efficiency factor. In equations (3.6) and (3.7), 
0LC  and 

0mC  are the static lift and 
pitching moment coefficients respectively. The terms of the form, 
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with, 

 B nB′ =  (3.9)

where n  is the appropriate normalising coefficient of B , are the non-dimensional stability and 
control derivatives. The appropriate normalising coefficient for the incidence angles and the 
control deflection angles is unity while for the pitch rate it is 2 ac V  and for the roll and yaw 
rates it is 2 ab V . 

Three standard aerodynamic control actuators have been included in the model i.e. ailerons 
( Aδ ), elevator ( Eδ ) and rudder ( Rδ ). It should be noted that the control system design and 
analysis of this thesis can easily be adapted to handle a number of control surface 
configurations, provided that the control surfaces combined can generate a three dimensional 
moment vector. Furthermore, note that the stability derivatives for the first time derivative 
states have been ignored. Of the first time derivatives however, only the coefficients of α  are 
typically significant and quantify effects such as downwash lag and added mass [42]. It would 
be straightforward to incorporate these coefficients into the model and they would result in 
only minor changes in the analysis to follow. However they are left out primarily to avoid 
clutter of the results to follow and also because, depending on the aircraft’s configuration, their 
effect is often negligible for control system design purposes. 

In the model presented above it is assumed that the stability and control derivatives are not a 
function of the rigid body rotational dynamics states i.e. they are parameters in the rigid body 
rotational dynamics. In practice however, these derivatives can be a function of the rigid body 
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rotational dynamics states, especially for example when there is a fundamental change in the 
airflow over the aircraft at certain angles of attack. However, for many aircraft operating in the 
small incidence angle range, the assumption that the derivatives are independent of the rigid 
body rotational dynamics states is valid and greatly simplifies the manoeuvre autopilot 
analysis and design. Note that the derivatives can however still be a function of the point mass 
kinematics states given a timescale separation between the dynamics associated with these 
states and the rigid body rotational dynamics. For example, an aircraft’s natural yaw damping 
is dominated by the induced angle of attack on the fin but is also contributed towards by 
differential drag across the wings. Due to the nonlinear nature of dynamic pressure, the 
damping component due to differential drag will be a function of the velocity magnitude. 
However, with timescale separation arguments in place, this velocity magnitude dependency is 
not of concern and the rigid body rotational dynamics remain dynamically decoupled from the 
point mass kinematics. 

To conclude this section, it is noted that the rigid body rotational dynamics require the moment 
vector to be coordinated in body axes and not wind axes. Applying the appropriate 
transformation relationship yields the desired result, 
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3.1.2 Thrust model 

In section 2.2.3 of Chapter 2 it was argued that the propulsion force vector is typically a 
function of the following variables, 

 ( ), ,CT V ρ=T TF f  (3.11)

Depending on the specific propulsion source, many different propulsion models exist. In this 
section a very simple propulsion model that captures the main effects of a typical propulsion 
source is presented. 

Firstly, most propulsion sources have a significantly band-limited response. This can easily be 
modelled as a first order lag (low pass filter) from thrust command to thrust output. Secondly, 
the propulsion source is often dependent on the velocity magnitude. For example, in propeller 
driven aircraft, the angle of attack on the propeller blades is reduced with an increase in the 
velocity magnitude. However, the dynamic effect of the velocity coupling is often fairly 
negligible and can if necessary be dynamically inverted. For these reasons the velocity 
magnitude dependency is ignored in the model presented. Similar arguments could be applied 
to ignore air density dependence as well as any other low bandwidth dependencies such as 
temperature. Thus the propulsion source is simply modelled as a low pass filtered thrust vector 
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as shown below, 

 1 1
cT T T

τ τ
= − +  (3.12)

Assuming the thrust vector acts in the aircraft’s plane of symmetry, with a setting angle 
relative to the body axis system axial unit vector Tε  (a positive setting angle is defined as one 
that results in a pitched up thrust vector relative to the aircraft), and with a moment arm to the 
centre of mass Tm  (a positive moment arm is defined as one that would result in a positive 
pitching moment), then the thrust force and moment coordinates take on their simplest form 
when written in body axes, 
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The rigid body rotational dynamics however require the force vector to be coordinated in wind 
axes. Applying the necessary transformation yields the result, 
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3.1.3 Gravitational model 

In section 2.2.3 of Chapter 2, it was argued that the gravitational force vector is a function only 
of the aircraft’s mass, 

 ( )m=G GF f  (3.16)

Assuming an equipotential gravitational field, a standard flat earth model for the gravitational 
force vector is, 

 mg=G IF k  (3.17)

where g  is the gravitational force per unit mass. Due to its inertially fixed alignment, the 
gravitational force vector takes on its simplest form when coordinated into inertial axes as 
shown below, 
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However, the rigid body rotational dynamics require the gravitational force vector to be 
coordinated in wind axes. Applying the appropriate coordinate transformation yields the 
desired result, 
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Of course, with a uniform gravitational field, the moments produced by the gravitational force 
about the centre of mass are all zero. 

3.2 Towards linearisation and decoupling of the dynamics 
The purpose of this section is to analyse the nonlinearities and undesired couplings in the rigid 
body rotational dynamics. Arguments involving small incidence angles and typically weak 
couplings will be used to show that to a good approximation, almost all of the dynamics are 
linear and furthermore, that they can be decoupled into three distinct systems. The final step 
towards making the rigid body rotational dynamics completely linear will be discussed in 
section 3.3. 

The section begins by considering the trigonometric simplifications that result when the 
incidence angles are small and then analyses and illustrates the weakness of the remaining 
small angle couplings. It then moves on to analyse the nonlinear drag model where it is shown 
that under certain practically feasible controller design constraints, the effect of lift coupling 
into drag can be ignored. 

3.2.1 Trigonometric simplifications 

Equations (2.41) and (2.45) of the rigid body rotational dynamics and equations (3.10) and 
(3.15) of the aerodynamic moment and thrust force models respectively are all restated below 
with standard trigonometric small angle assumptions. The small angles are the two incidence 
angles, together with the thrust vector setting angle. Furthermore the assumption that products 
of small angles are negligible has also been made. 
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Considering now the remaining nonlinear couplings through the angle of attack and sideslip 
above. Firstly, it is noted that if the angle of sideslip is maintained negligibly small, then a 
number of the nonlinear couplings are removed. Most aircraft are designed to fly coordinated 
turns (i.e. zero lateral specific acceleration), which in turn typically implies very small angles 
of sideslip. Under the condition that the control system enforces coordinated turns, the angle 
of sideslip can be assumed negligibly small and the nonlinear couplings can thus reasonably 
be ignored. 

Continuing, the nonlinear couplings through angle of attack are considered individually. 
Firstly, in the angle of sideslip dynamics, the roll rate couples in though the angle of attack. 
This term can become significant when the angle of attack approaches the limits of the small 
angle range e.g. 10 to 15 deg (note these angles will be referred to as high or large for the 
arguments that follow), or when the roll rate is particularly high. Large angles of attack occur 
during high g (refers to large normal accelerations expressed in units of g ) manoeuvring flight 
or when flying at low speed. When flying slowly, high roll rates are not common, since the 
aerodynamic moments produced by the ailerons reduce with dynamic pressure. Furthermore, it 
is not common to roll fast during high g manoeuvres since the aircraft would tend to be pulled 
in the direction of the large lift vector during the roll. Thus, if the flight envelope of the aircraft 
is limited such that large roll rates do not commonly occur during high angle of attack flight, 
then ignoring the nonlinear coupling becomes acceptable. 

Considering the coupling of the yaw moment into the roll rate dynamics and the roll moment 
into the yaw rate dynamics. The couplings again only become significant at high angles of 
attack. At 12 deg of angle of attack, there is approximately a 20% cross coupling. This cross 
coupling will manifest itself in a Dutch Roll type motion. Thus, if the lateral controllers are 
designed to over-damp Dutch Roll type motions, then it is acceptable to simply neglect these 
terms. A second strategy would be to cancel the cross coupling through static inversion, by 
noting that aerodynamic actuators capable of directly producing both roll and yaw moments do 
exist. The adverse effect of the static inversion control law would be the excitement of the 
angle of sideslip dynamics through the force produced by the rudder. However, this force 
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would typically be negligible relative to the weathercock force of the entire fin and thus the 
adverse effects could arguably be ignored. 

The yaw rate couples into the wind axis system roll rate output through the angle of attack. 
Again, the coupling will only be significant at low speeds or during high g manoeuvres when 
the angle of attack is large. During low speed flight, the yaw rate is typically low due to the 
reduced control authority. During high g manoeuvres, an aircraft does not typically yaw at 
high rates e.g. during a steeply banked turn, the normal acceleration is high but the yaw rate is 
low due to the bank angle required to maintain a coordinated turn. Thus, limiting the flight 
envelope of the aircraft such that high yaw rates do not commonly occur simultaneously with 
high angles of attack, allows for the nonlinear coupling terms to be ignored. 

The nonlinear thrust couplings of equation (3.23) will be addressed in the following 
subsection. 

3.2.2 Thrust coupling simplifications 

With the angle of sideslip argued to be negligibly small, the thrust force in wind axes and 
thrust moment in body axes can be written as follows, 
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The coupling of the thrust force into the angle of attack dynamics (via the normal force) is 
undesirable both from a linearity and decoupling point of view. However, the coupling can be 
shown to be negligibly weak by considering the following two points together. Firstly, the 
thrust force couples into the total normal force via the sum of two small angles. With a total 
coupling angle of 20 deg for example (a fairly extreme example), approximately 35% of the 
thrust magnitude moves through to disturb the normal force. Secondly, the thrust is largely 
responsible for countering the drag in the system and thus its magnitude is on the order of that 
of the drag force. On the other hand, the normal force is dominated by lift which for most 
aircraft is an order of magnitude greater than the drag. Assuming a lift to drag ratio of 
approximately 10 (which is fairly poor for most aircraft), the effective thrust disturbance to the 
normal force is then 3.5%. In most flight conditions, it will be significantly less than this 
figure. The disturbance coupling is seen to be small thus justifying its neglection.  

The thrust force couples linearly into the pitch rate dynamics via the thrust moment arm. 
Although the coupling is linear, it is still undesirable from a decoupling point of view. There 
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are a number of possibilities that allow the coupling to be ignored. Firstly, the thrust moment 
arm for a large number of aircraft is negligibly small, thus solving the problem immediately. 
Secondly, the pitching moment drives into the dynamics that govern the normal specific 
acceleration. The normal specific acceleration can typically be regulated at a much higher 
bandwidth than that of the propulsion source. Thus, the coupling can simply be treated as a 
disturbance within the normal specific acceleration controller bandwidth to be rejected by the 
controller. Finally, the effect of the coupling can be removed through dynamic inversion using 
the elevator. Although the dynamic inversion control law will disturb the angle of attack 
dynamics through the direct force produced by the elevator, the disturbance is typically 
negligible and can be analysed on a case by case basis. Thus, if it is assumed that the aircraft 
to be controlled meets at least one of the three criteria listed above then the coupling can be 
ignored. 

3.2.3 Analysing the coupling of lift into drag 

With the small incidence angle simplifications, the wind axis system axial acceleration can be 
written as follows, 

 1 1
WA T D

m m
   = −      

 (3.26)

where, 

 A
W DD X qSC= − =  (3.27)

The axial specific acceleration is seen to be the difference between the thrust acceleration and 
the drag acceleration. The thrust component can be controlled via the thrust command variable 
while from equations (3.5) and (3.6), the drag component is a nonlinear function of the angle 
of attack, pitch rate, elevator deflection and dynamic pressure. From a decoupling point of 
view it would be desirable to ignore the effect of the drag term in equation (3.26). This would 
decouple the axial specific acceleration dynamics from the rest of the rigid body rotational 
dynamics. 

Considering the drag coupling in more detail, the low frequency portion could simply be 
viewed as a disturbance to the axial specific acceleration. Using the band-limited thrust 
actuator, an axial specific acceleration controller could be designed to provide sufficient 
disturbance rejection of the drag term up to some particular frequency. Assuming that effective 
low frequency disturbance rejection can take place up to the bandwidth of the thrust actuator, 
then only drag disturbance frequencies beyond this would leak through and influence the axial 
specific acceleration. 

Considering the point mass kinematics, it is clear from equation (2.47) that the axial specific 
acceleration drives solely into the velocity magnitude dynamics. Thus high frequency drag 
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disturbances will move directly into the velocity magnitude dynamics and result in changes in 
the velocity magnitude. These changes will in turn couple back into the rest of the rigid body 
rotational dynamics both kinematically and through the dynamic pressure. 

However, the natural integration process of the velocity magnitude dynamics will filter the 
high frequency part of the drag coupling. Thus, given acceptable deviations in the velocity 
magnitude, the thrust actuator need only reject enough of the low frequency portion of the 
drag disturbance for its total effect on the velocity magnitude to be acceptable. By acceptable 
it is meant that the velocity magnitude perturbations are small enough to result in a negligible 
coupling into the rigid body rotational dynamics. 

To obtain a mathematical hold on the above arguments, consider the closed loop transfer 
function from the normalised drag input to the axial specific acceleration output, 

 ( )
( )

( )
W

D
A s

S s
D s m

≡  (3.28)

Through proper control system design, the gain of the output sensitivity transfer function 
above can be kept below a certain threshold within the controller bandwidth. The bandwidth of 
the axial specific acceleration controller will however typically be limited to that of the 
propulsion source for actuator saturation reasons. For frequencies above the controller 
bandwidth, the sensitivity transfer function will display some form of transient and then settle 
to unity gain. Considering the velocity magnitude dynamics of equation (2.47), the total 
transfer function of the normalised drag input to velocity magnitude is then, 

 ( )( )
( )

DS sV s
D s m s

=  (3.29)

Note that the integrator introduced by the natural velocity dynamics will result in diminishing 
high frequency gains. Equation (3.29) can be used to determine whether drag perturbations 
will result in acceptable velocity magnitude perturbations. Conversely, given the expected drag 
perturbations and the acceptable level of velocity magnitude perturbations, the specifications 
on the sensitivity transfer function can be determined. 

To ease the process of determining acceptable levels of velocity magnitude perturbations and 
expected levels of drag perturbations, it is convenient to write these both in terms of normal 
specific acceleration. The return disturbance in normal specific acceleration due to a normal 
specific acceleration perturbation can then be used to specify acceptable coupling levels. To 
this end, the following useful relationship is stated, 

 A
W LL Z qSC= − =  (3.30)

where L  is the aircraft’s lift. As a result of the thrust simplification arguments of the previous 
section, the above equation can be well approximated as follows, 
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 WL mC≈ −  (3.31)

Relating now the normalised drag to the normal specific acceleration the following result is 
obtained, 

 1

W LD

D m
C R

= −  (3.32)

where LDR  is the aircraft’s lift to drag ratio. Equation (3.30) can then be used to capture the 
dominant relationship between velocity perturbations and the resulting normal specific 
acceleration perturbations. Partially differentiating equation (3.30) with respect to the velocity 
magnitude yields the desired result, 

 2W WL LC CqSC VSC
V V m m V

ρ∂ − −∂= ≈ =
∂ ∂

 (3.33)

Combining equations (3.29), (3.32) and (3.33) yields the return disturbance transfer function, 

 

( )( )
( )

( )
2

W
W

W

W D

LD

C V s D mC s
V D s m C

C S s
VR s

∂
∆ ≡ ⋅ ⋅

∂

= −
 (3.34)

Given an acceptable return disturbance level, the specifications of the sensitivity transfer 
function of equation (3.28) can be determined for a particular flight condition. With the 
velocity magnitude and lift to drag ratio forming part of the denominator of equation (3.34), 
the resulting constraints on the sensitivity function are mild for low operating values of normal 
specific acceleration. Only during very high g manoeuvres does the sensitivity specification 
become more difficult to practically realise. The mildness of the sensitivity function constraint 
will be further highlighted in Chapter 4 during the design of the associated inner loop 
controller and in Chapter 8 where a number of example aircraft are considered. 

With the above arguments, the drag coupling into the axial specific acceleration dynamics can 
be ignored if the associated sensitivity function constraint is adhered to when designing the 
axial specific acceleration control system. Furthermore, ignoring the effect of drag coupling 
and adopting the sensitivity function constraint does not significantly limit the practical 
applicability of the decoupled model. Finally, note that with the drag term ignored in the axial 
specific acceleration dynamics, the dynamics become independent of the velocity magnitude 
and the air density. Thus, there is no need for the axial specific acceleration controller to 
operate on a timescale much faster than these variables. Considering the significantly band-
limited nature of most thrust actuators, this greatly improves the practical viability of 
designing an axial specific acceleration control system. 
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3.2.4 Summary of simplified dynamics 

With the nonlinear cross couplings terms discussed in the above subsections removed, the 
rigid body rotational dynamics can be written as follows, 

 0 1 0 1 0 1 01 1
0 0 1 0 1 0 1
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 
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 (3.35)
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 (3.36)

with, 
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 (3.39)

where the coefficient of drag term has been left in the axial specific acceleration dynamics but 
its dependence on lift will be ignored. Barring the inertial cross coupling (or gyroscopic 
coupling) terms in equation (3.36), the dynamics presented above are completely linear. 
Furthermore, the arguments made in this section have shown that the assumptions required to 
linearise and decouple the dynamics up to this point do not significantly reduce the flight 
envelope of the aircraft or impose unachievable practical constraints on it. These arguments, 
particularly the lift into drag coupling arguments and analysis of section 3.2.3, serve as a 
contribution of this dissertation to the field of aircraft dynamics. In the following section, the 
inertial cross coupling terms are addressed. 

3.3 Handling the inertial cross coupling terms 
This section focuses on removing the nonlinear inertial cross coupling terms from the angular 
rate dynamics. It begins by developing a static inversion control law to feedback linearise the 
nonlinearities. Section 3.3.2 then provides a novel analysis of the adverse effects caused by the 
control law due to the direct forces that the aerodynamic actuators also produce. It is 
illustrated that the adverse effects are typically negligible except under extreme flight 
conditions where the cross coupling terms would instead have to be explicitly taken into 
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account in the rigid body rotational dynamics control laws. 

3.3.1 Static inversion of the inertial cross coupling terms 

A control law to feedback linearise the inertial cross coupling terms is made feasible by the 
assumption that aerodynamics actuators capable of producing moments about all three body 
axis unit vectors exist and that the angular rate coordinates in body axes can be 
measured/estimated. Begin by rewriting moment equation (3.7) as follows, 
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(3.40)

where the aerodynamic control inputs have been written as the sum of accented and non-
accented variables. The accented variables will be used to invert the inertial cross coupling 
terms through feedback. The above equation can be written in matrix form as follows, 

 ′= + + +
0 x δ δM M M M MC C C x C δ C δ  (3.41)

where the matrix assignment is obvious. The moment vector coordinated in body axes can be 
written as follows, 

 ( ) ( )
qS

qS qS

=

′= + + +

′= +
0 x δ δ

B M

M M M M

B B

M LC

L C C x C δ L C δ

M M

 (3.42)

where, 

 ( )qS= + +
0 x δB M M MM L C C x C δ  (3.43)

 ( )qS′ ′=
δB MM L C δ  (3.44)

and where L  is the diagonal matrix with reference lengths as used in equation (3.3). The 
rotational dynamics of equation (2.19) can thus be rewritten as follows, 

 ( )
( )

′= − + +

=

BI
B

BI -1 BI
B B B B B Bω

-1
B B

ω I S I ω M M

I M
 (3.45)

if, 

 ′− + =BI
B

BI
B B Bω

S I ω M 0  (3.46)



CHAPTER 3– SMALL INCIDENCE ANGLE SIMPLIFICATIONS  

 

40

Substituting for ′B
BM  from equation (3.44) gives the static inversion control law, 

 1
qS ′

′ = BIδ B

-1 -1 BI
M B Bω

δ C L S I ω  (3.47)

This control law removes the nonlinear inertial cross coupling terms from the angular velocity 
dynamics and in so doing reduces these dynamics to those of equation (3.45). Note that the 
inversion process is open loop (as with all inversion control laws) with the primary purpose of 
removing most of the cross coupling given that the system parameters and state estimates will 
display uncertainty. From equation (3.47), the aircraft parameters of primary importance for 
effective inversion are the control derivatives and the moments of inertia. However, it should 
be noted that for a large number of manoeuvre autopilot applications an inertial cross coupling 
inversion control law will not be necessary. This is because the control law responds to second 
order terms in the angular velocity components and thus only tends to produce significant 
actuator signals at very high angular rates or combinations thereof. With an appropriately 
limited angular rate flight envelope the inertial cross coupling terms can instead simply be 
ignored as negligible higher order terms. 

3.3.2 Direct force feed-through analysis 

The control law developed in the previous section removes the inertial cross coupling terms 
from the angular velocity dynamics. However, because the aerodynamic actuators not only 
produce moments but also produce direct forces on the aircraft, implementation of the control 
law will introduce disturbance inputs to the angle of incidence dynamics. However, for 
conventional aircraft the moment produced by the aerodynamic actuators is far more dominant 
than the force and as a result the disturbances introduced are expected to be negligible except 
in extreme angular velocity cases. This section analyses the direct force coupling as a result of 
the static inversion control law and in so doing provides a novel mathematical hold to 
determine the limiting angular rates for acceptable coupling. 

To begin the analysis the static inversion control law of equation (3.47) is written out in full 
below, 
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 (3.48)

where the moment of inertia matrix has been simplified by noting that the aircraft is 
symmetrical about the body axes XZ-plane. To simplify the analysis to follow, it is first 
assumed that the following cross coupling terms in equation (3.48) are negligible, 

 0
A Rxz n lI C C

δ δ
= = =  (3.49)
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These are reasonable assumptions for conventional aircraft since the inertia cross product is 
often negligibly small and the two aerodynamic control derivatives are usually not dominant 
(they typically quantify adverse yaw and adverse roll respectively). Note that these terms have 
only been assumed negligible for clarity of the analysis to follow and will not be neglected, 
unless otherwise stated, for the remainder of this document. With the simplifications of 
equation (3.49) in place the control law can be written as follows, 
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 (3.50)

From the aerodynamic force equation of (3.2) and with reference to equations (3.6) and (3.5), 
it is clear that the aerodynamic actuators couple directly into the normal and lateral force 
coordinates in wind axes and indirectly into the axial force through drag. Ignoring the changes 
in drag, based on the arguments of section 3.2.3, and noting that the lateral force due to aileron 
deflection is negligible, the following result is obtained, 
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 (3.51)

where the accented force variables indicate a perturbation to the respective variable. 
Substituting the elevator and rudder components of the feedback linearisation control law and 
normalising the forces to the aircraft’s mass gives, 
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 (3.52)

where Tl  is the effective length to the tail-plane and Fl  is the effective length to the fin with the 
following relationship to the control derivatives, 
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For most aircraft the effective length to the tail-plane and fin are very similar and for the 
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purposes of simplifying the analysis they will be considered equal and be denoted by l . 
Substituting the relationship into equation (3.52) and writing the moments of inertia in terms 
of mass and the roll, pitch and yaw radii of gyration ( xr , yr  and zr  respectively) yields, 

 

( )

( )

2 2

2 2

x z

W

W x y

r r
PRC l

B r r
PQ

l

 −
 ′   =   ′ −   
  

 (3.55)

Now, 
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 (3.56)

where /y zr  is the greater of the pitch and yaw radius of gyration. Equation (3.56) can be used to 
determine bounds on the products PR  and PQ  that will result in acceptable normal and lateral 
specific acceleration coupling levels. For conventional aircraft the squared term in parenthesis 
is typically small and so the acceptable products tend to be large. Using the parameters for a 
standard 5 kg aerobatic UAV (see Appendix A), it can be shown that for less than 0.1 g of 
direct acceleration disturbance coupling, the angular rate products are limited to be less than 
6.5 (rad/s)2. This constraint thus defines two hyperbolic boundaries in state space in the two 
angular rate products. 

To gain further insight into the above constraint the steady state case where the body and wind 
axis systems rotate together can be considered. Here the angular velocity relationship of 
equation (2.49) for the wind axis system can be used to substitute for the pitch and yaw 
angular velocities in equation (3.56). Doing this yields, 
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The lateral specific acceleration is usually regulated very close to zero so that the aircraft flies 
coordinated turns. Furthermore, each of the attitude parameters in equation (3.57) is bounded 
between plus and minus one. The maximum normal specific acceleration is bounded by the 
airframe limits and is most often significantly larger than g. Thus, to a good approximation 
equation (3.57) can be written as follows, 
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and so, 
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where maxn  is the maximum normal specific acceleration measured in g’s. The above equation 
reveals that the lateral acceleration perturbation resulting from direct force feed-through from 
the static inversion control law is potentially the most prominent. It is thus the most likely 
limiting factor for the implementation of the static inversion control law used to remove the 
inertial cross coupling terms. Analysing this equation it is noted that because the first squared 
term in parenthesis is usually small and V  usually large, large roll rate commands are required 
before the lateral specific acceleration perturbations start to become significant. For example, 
using the aircraft data from Appendix C for a typical aerobatic UAV travelling at 30 m/s with a 
maximum normal specific acceleration of 5 g’s, the relationship of equation (3.59) becomes, 

 max

200W
n g

B P′ ≤  (3.60)

If the maximum limit on the lateral acceleration perturbation is set to 0.1 g’s then roll rates of 
up to 4 rad/s can be handled when the aircraft is experiencing maximum normal acceleration 
(an extremely unlikely event in itself). Equation (3.59) thus provides a second useful measure 
as to whether the static inversion control law of equation (3.47) will cause unacceptable direct 
feed-through acceleration disturbances. The analysis however suggests that for all but very 
extreme flight conditions the acceleration disturbances will be negligible and the inertial cross 
coupling terms can either be effectively inverted or simply ignored from the rigid body 
rotational dynamics. 

3.4 The linear decoupled rigid body rotational dynamics 
With the linearising and decoupling simplifications of section 3.2 and the feedback 
linearisation control law and associated arguments of section 3.3, the rigid body rotational 
dynamics and the force and moment models can be combined and written as three sets of 
linear decoupled dynamic equations. The three sets are listed below and will be referred to as 
the axial, normal and lateral dynamics respectively, 

Axial: 
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Normal: 
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Lateral: 
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The barred stability and control derivatives of the lateral model are defined below as a 
function of the original aircraft stability derivatives and the moment and product of inertia 
terms, 
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with, 
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where the terms in parenthesis in equations (3.67) and (3.68) are taken from the set of states 
and controls, 

 { }, , , ,A RS P Rβ δ δ=  (3.70)

Being able to both linearise and decouple the rigid body rotational dynamics greatly simplifies 
the task of designing inner loop controllers to regulate the specific acceleration and angular 
rate signals of interest with dynamically invariant closed loop responses. Note that all terms 
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that form part of the system matrices above have been argued to display a timescale separation 
to the rigid body rotational dynamics and as a result can be considered parameters in the 
model. With linear, decoupled inner loop dynamics, the possibility of designing simple, closed 
form pole placement type control laws to provide exponential inner loop stability is opened up. 

3.4.1 Normal dynamics and the Short Period mode 

Considering the normal dynamics further, it is clear that barring the final gravitational 
coupling term, they are simply the dynamics generated by the standard Short Period mode 
approximation [43]. Arriving at the standard Short Period mode approximation dynamics in 
this unconventional manner illustrates the gross attitude independent nature of this mode of 
motion and forms part of the contribution of this dissertation to the field of aircraft dynamics. 
At any particular wind axis system attitude, the gravity term simply acts as a bias input to the 
normal dynamics. Thus, it can be seen that the Short Period mode approximation is valid for 
all gross attitudes. Intuitively this makes sense since the physical phenomenon that manifests 
itself into what is classically referred to as the Short Period mode is not gross attitude 
dependent. Whether an aircraft is flying straight and level, inverted or climbing steeply, the 
short period motion of the aircraft relative to the wind axis system remains the same, biased 
only through the gravity coupling term. 

Thus, the normal dynamics can simply be thought of as the short period mode dynamics. 
Typically these dynamics are fast, reasonably well damped and stable. Thus, as previously 
argued, these dynamics will most often naturally meet the timescale separation condition of 
Chapter 2. If however they do not, then the speed of these dynamics can be increased through 
feedback. There are however limitations on the upper bandwidth of the system, which will be 
discussed further in the chapters to follow. 

3.4.2 Lateral dynamics and the Roll/Dutch-Roll modes 

When considering the lateral dynamics, it is clear that barring the gravitational coupling term, 
these are simply the standard Roll/Dutch-Roll approximation dynamics [43]. Again, arriving at 
the standard Roll/Dutch-Roll mode approximation dynamics in this unconventional manner 
illustrates the gross attitude independent nature of these modes of motion and forms part of the 
contribution of this dissertation to the field of aircraft dynamics. The attitude dependent 
gravitational force term acts as a bias input to the dynamics for a particular gross attitude. 
Thus, the Roll/Dutch-Roll approximation is shown to be valid for all gross attitudes and the 
lateral dynamics can simply be thought of as describing these modes of motion. The gross 
attitude independence of the modes again makes intuitive sense when considering the 
phenomena that manifest themselves into the Roll/Dutch-Roll modes. These phenomena are 
not gross attitude dependent but rather are a function of the aircraft’s attitude relative to the 
wind axis system. 
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The Roll and Dutch Roll modes are also typically fast relative to the bandwidth (or desired 
bandwidth) of the outer loop point mass kinematics states. The speed of both modes however 
can be increased through feedback control. For example, the frequency of the typically 
oscillatory Dutch Roll mode may need to be artificially increased to meet timescale separation 
requirements. Limitations on the upper bandwidths of these systems will be explored in the 
chapters that follow. 

3.5 Conclusion 
This chapter began by expanding and structuring the force and moment models of Chapter 2. 
A standard aerodynamic model for small incidence angle flight was presented together with a 
simple thrust and standard flat earth gravitational model. The nonlinearities and cross 
couplings inherent in the rigid body rotational dynamics were then analysed. After small angle 
trigonometric assumptions were used to simplify the dynamics, cross coupling terms were 
removed by arguing that their effects would only become dominant during unlikely or very 
extreme flight conditions. The nonlinear coupling of lift into drag and in turn into the axial 
dynamics was replaced by a practically feasible sensitivity function constraint on the closed 
loop axial dynamics. The analysis of the nonlinear cross couplings and in particular the lift 
into drag coupling, forms part of the contribution of this dissertation to the field of aircraft 
dynamics. 

With the nonlinear and cross coupling terms removed, a feedback linearisation control law was 
derived to negate the inertial cross coupling terms. A novel analysis showed that the adverse 
effects of the control law’s direct force feed-through is typically negligible except under 
extreme flight conditions. With all of the above steps taken, the rigid body rotational dynamics 
were shown to be linear and to decouple into axial, normal and lateral dynamics. The normal 
dynamics were shown to be equivalent to those generated by the classical Short Period mode 
approximation barring the biasing gravitational acceleration term. Similarly, the lateral 
dynamics were shown to be equivalent to those generated by the classical Roll/Dutch-Roll 
mode approximation. Obtaining the Short Period and Roll/Dutch-Roll mode approximations in 
this alternative manner highlights the attitude independent nature of these modes of motion 
and serves as another contribution of this dissertation to the field of aircraft dynamics. 

With all of the initial mathematics in place, it is prudent to provide a graphical overview of the 
thesis content still to come. Figure 3.1 provides a block diagram overview of the individual 
controllers to be designed and analysed in the chapters that follow. On the right hand side of 
the dash-dotted line in Figure 3.1 are the inner loop, aircraft specific controllers. Over the 
course of Chapters 4 and 5, decoupled controllers will be designed to regulate the axial, 
normal and lateral specific acceleration as well as the roll rate about the velocity vector. The 
controller designs will be based on the linear, decoupled dynamics derived in this chapter. The 
linear dynamics significantly aid the design and associated analysis of the inner loop 
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controllers. 

In Chapter 6, the focus shifts to the design of an outer loop guidance controller, shown in the 
centre of Figure 3.1. This outer loop controller design is based on the point mass kinematics 
only and is thus aircraft independent. As illustrated in the figure, the guidance controller 
interfaces with the actual aircraft via the four inner loop controllers. The inner loop controllers 
thus serve to create virtual actuators for use at a guidance level. The guidance controller 
accepts a feasible reference trajectory and is responsible for using the virtual actuators to 
regulate the aircraft onto the trajectory. The generation of feasible reference trajectories will be 
the topic of Chapter 7 as denoted by the left most block of Figure 3.1. Chapter 8 provides the 
results of a number of application examples where the control structure of Figure 3.1 is 
applied to the aircraft. Finally, conclusions are drawn in Chapter 9. 

Figure 3.1 – Block diagram overview of the manoeuvre autopilot control system to be 
designed 
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Chapter 4 

Inner Loop Controllers: Axial and Normal 
Dynamics 

 

The detailed design and associated analysis of the inner loop axial and normal specific 
acceleration controllers is presented in this chapter. The controller designs are based on the 
linear, decoupled rigid body rotational dynamics models derived in the previous chapter. Pole 
placement is used to ensure stability, performance and an invariant dynamic response of the 
closed loop system. Guidelines for pole placement are also investigated, driven by either 
enforced or inherent constraints on the systems. A novel normalised non-dimensional time 
control system for normal specific acceleration is also introduced specifically to better handle 
inherent system performance constraints. All controllers are made generic by designing the 
control laws as a function of the aircraft parameters. This allows them to be easily applied to 
different aircraft as illustrated in Chapter 8. 

4.1 Axial specific acceleration controller 
In this section a controller capable of regulating the axial specific acceleration is designed. 
Attention will also be given to the closed loop sensitivity function constraint of equation (3.34) 
for a specific return disturbance level. Rewriting the axial dynamics of equations (3.61) and 
(3.62) below for convenience, 

 1 1
C

T T

T T T
τ τ

   
= − +   
   

 (4.1)

 1 1
WA T D

m m
   = + −      

 (4.2)

Define now the following Proportional-Integral (PI) control law with enough degrees of 
freedom to allow for arbitrary closed loop pole placement, 

 c A W E AT K A K E= − −  (4.3)

 
RA W WE A A= −  (4.4)
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where 
RWA  is the reference axial specific acceleration command. The integrator in the 

controller is essential for robustness towards uncertain steady state drag and thrust actuator 
offsets. Substituting the control law into the engine lag dynamics, 
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 (4.5)

Substituting the axial specific acceleration into the integrator dynamics and writing the 
integrator dynamics and thrust dynamics in state space form, 
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 (4.6)

The characteristic equation of the closed loop system is, 
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Given the desired characteristic equation, 

 2
1 0( )c s s sα α α= + +  (4.8)

the feedback gains become, 

 ( )1 1A TK m τ α= −  (4.9)

 0E TK mτ α=  (4.10)

These simple, closed form solution gains will ensure an invariant closed loop axial specific 
acceleration dynamic response as desired. The controller design freedom is reduced to that of 
selecting appropriate closed loop poles bearing in mind factors such as actuator saturation and 
the sensitivity function constraint of section 3.2.3. To investigate the closed loop sensitivity 
function for this particular control law, the feedback gains above are substituted back into 
equation (4.6), 
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Using the definition of the drag sensitivity function in equation (3.28) yields the following 
result, 
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For actuator saturation reasons the closed loop axial dynamics bandwidth is typically limited 
to being close to that of the open loop thrust actuator and thus for reasonable closed loop 
damping ratios the second order term in parenthesis in the sensitivity function above can be 
well approximated by a first order model to simplify the sensitivity function as follows, 
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Here, 
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is the approximating time constant and is calculated to match the actual and approximated 
high frequency sensitivity function asymptotes. Note that the approximate sensitivity function 
of equation (4.14) will not capture the extra overshoot experienced close to the bandwidth of 
the closed loop system that is required to satisfy Bode’s sensitivity function integrals. 
However, with well damped, stable closed loop poles and no right half plane zeros in the 
system, the extra overshoot will be negligible and the sensitivity function of equation (4.14) is 
expected to yield a good approximation to that of equation (4.13). The return disturbance 
transfer function of equation (3.34) can then be calculated by substituting equation (4.14) into 
equation (3.34) to yield, 
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Given the maximum allowable gain of the return disturbance transfer function γ , a lower 
bound constraint on the natural frequency ( nω ) of the closed loop axial control system can be 
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calculated, 
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where the subscript max in the above equation implies the maximum value of the right hand 
term above. Thus, 
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where, 
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is the open loop bandwidth of the thrust actuator. The novel sensitivity function based 
frequency constraint of equation (4.18) can be used to determine the minimum allowable 
closed loop axial specific acceleration bandwidth relative to the open loop thrust actuator 
bandwidth for a desired return disturbance level. For example, given that an aircraft is to fly 
with a minimum velocity of 20 m/s with a maximum normal acceleration of 4 g’s and a 
minimum lift to drag ratio of 10. Then, for more than 20 dB’s of return disturbance rejection, 
the natural frequency of the closed loop system should have the following relationship to the 
open loop thrust bandwidth, 

 2n
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ω τ
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≥  (4.20)

For this specific example, thrust actuators with a bandwidth of below 4 rad/s (time constant of 
greater than 0.25 s) will require that the closed loop natural frequency is greater than that of 
the thrust actuator. Despite the fairly extreme nature of this example (low velocity magnitude, 
high g’s and low lift to drag ratio), thrust time constants on the order of 0.25 s are still 
practically feasible for UAVs. The deduction is thus that the axial specific acceleration 
controller will be practically applicable to most UAVs. 

4.2 Normal specific acceleration controller 
The normal dynamics are restated below for convenience using dimensional stability 
derivative notation, 
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The dimensional stability and control derivative notation is standard as defined below, 
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where the length term l  in parenthesis is unity for the force derivatives, c  for the pitch 
moment derivatives and b  for the roll and yaw moment derivatives. The term n  is the non-
dimensionalising coefficient taken from equation (3.9). 

This section presents the design and associated analysis of a normal specific acceleration 
controller that yields an invariant dynamic response for all point mass kinematics states. As 
argued in section 2.3.1 the design of such a controller is dramatically simplified if the velocity 
magnitude and air density can be considered parameters in the normal dynamics and the 
coupling of the flight path angle can be rejected using dynamic inversion. To consider the 
velocity magnitude and air density as parameters rather than dependant variables, requires a 
timescale separation to exist between these two quantities and the normal dynamics. 
Therefore, it is important to investigate any upper limits on the allowable bandwidth of the 
normal dynamics as this will in turn clamp the upper bandwidth of the velocity magnitude and 
the air density (altitude) dynamics. Furthermore, it is important to investigate the eligibility of 
the normal dynamics for effective dynamic inversion of the gravity coupling term. Thus, 
before continuing with the normal specific acceleration controller design, the natural normal 
dynamics are analysed in more detail. 

4.2.1 Natural normal specific acceleration dynamics 

Consider the dynamics from the elevator control input to the normal specific acceleration 
output. The direct feed-through term in the normal specific acceleration output implies that the 
associated transfer function has as many zeros as it does poles. Investigating the poles first, 
Appendix B derives the standard [43] characteristic equation for the normal dynamics (Short 
Period mode) poles shown below, 
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where it has been assumed that, 

 1QL
mV

 (4.25)

Note that this assumption is valid for almost all aircraft and is commonly made in analysing 
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aircraft dynamics [43]. Considering equation (4.24) it is important to note that the normal 
dynamics poles are not influenced by the lift due to pitch rate or elevator deflection. The 
importance of this will be made clear later on in this section. The zeros from the elevator input 
to the normal specific acceleration output are shown in Appendix B to be the roots of the 
characteristic equation, 
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Note that in obtaining the novel result above, use was made of equation (4.25). Now define the 
following relationships, 
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where Nl  is the length to the neutral point, Tl  is the effective length to the tail-plane, Dl  is the 
effective damping arm length and all lengths are relative to the centre of mass. The 
characteristic equation for the zeros can then be written as follows, 
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Completing the square to find the roots of equation (4.30) gives, 
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For most aircraft the effective length to the tail-plane and effective damping arm lengths are 
very similar. This is because most of the damping arises from the tail-plane which is also 
typically home to the elevator control surface. Thus the moment arm lengths for pitch rate and 
elevator deflection induced forces are very similar. As a result, the first term on the right hand 
side of equation (4.31) is most often negligibly small and to a good approximation, the zeros 
from elevator input to normal specific acceleration output are, 
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Analysis of equation (4.32) reveals that the only effect of the lift due to pitch rate derivative on 
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the zeros is that of producing an offset along the real axis. As previously argued, the effective 
tail-plane and damping arms are typically very similar and as a result the offset is usually 
small. Thus, it can be seen that to a good approximation, the lift due to pitch rate plays no role 
in determining the elevator to normal specific acceleration dynamics. 

On the other hand, the effective length to the tail-plane and the length to the neutral point 
typically differ significantly. With this difference scaled by the lift due to angle of attack 
(which is typically far greater than the lift due to pitch rate) it can be seen that the second term 
in equation (4.32) will dominate the first in determining the zero positions. Thus although the 
lift due to elevator deflection played no role in determining the system poles, it plays a large 
role in determining the zeros. Knowing the positions of the zeros is important from a 
controller design point of view since not only will they affect the dynamic response of the 
system but they may also impose controller independent limitations on the practically 
achievable system bandwidth. 

To further illustrate this point, consider a conventional statically stable aircraft where the 
effective length to the tail-plane is many times greater than the length to the neutral point and 
very similar in magnitude to the effective damping arm length. In this situation, the first term 
in equation (4.32) is typically negligible and the second term is large and positive thus giving 
rise to two real zeros of opposite sign. The result, as intuitively expected, is that the dynamics 
from the elevator to normal specific acceleration are Non-Minimum Phase (NMP) since a 
Right Half Plane (RHP) zero exists. A RHP zero places severe restrictions on the practically 
attainable upper bandwidth of the closed loop normal specific acceleration dynamics. These 
restrictions are independent of the controller architecture employed [44,45]. Furthermore, 
designing a dynamic inversion control law in a system with NMP dynamics, will result in an 
impractical solution with internal dynamics that may or may not be stable [26,32]. 

Since this NMP dynamics case is by far the most common for aircraft, the limits imposed by it 
shall be investigated further in the following subsection. The goal of the investigation is to 
seek a set of conditions under which the effects of a RHP zero become negligible, equivalently 
allowing the NMP nature of a system to be ignored. With these conditions identified and 
satisfied, the design of the normal specific acceleration controller can continue based on a set 
of simplified dynamics that do not capture the NMP nature of the system. 

4.2.2 Analysis of the NMP dynamics case 

Ignoring the real axis offset term in the typical position of the zeros in equation (4.32), the 
transfer function from the elevator input to the normal specific acceleration is of the form, 
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However, the dynamic effect of the left half plane zero is of less interest and is furthermore 
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most often largely negated by un-modelled dynamics such as those introduced through servo 
lag. Thus, in the analysis to follow, the transfer function will be approximated as follows, 
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The transfer function of equation (4.34) can be written as follows, 
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where, 

 
2

2 2( )
2

n
n

n n

G s k
s s

ω
ζω ω

=
+ +

 (4.36)

is a nominal second order transfer function with no zeros. Equation (4.35) makes it clear that 
as the position of the zero tends to infinity, so the total system transfer function converges 
towards ( )nG s . The purpose of the analysis to follow is to investigate more precisely, the 
conditions under which ( )G s  can be well approximated by ( )nG s . To this end, two analysis 
methods are employed. The first is based on a time domain analysis while the second involves 
a frequency domain sensitivity function analysis. The results of the analyses form part of the 
contribution of this dissertation to the field of control systems. 

Beginning with the time response analysis, consider the Laplace transform of the system’s step 
response, 
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where ( )nY s  is the step response of the nominal system without any zeros. Equation (4.37) 
makes it clear that the total step response is the nominal step response less the impulse 
response of the system scaled by the inverse of the zero frequency. Since the nominal response 
gradient is always zero at the time of the step, the system must always exhibit undershoot. The 
level of undershoot will depend of the damping and speed of response of the system as well as 
the zero frequency. If the level of undershoot is small relative to unity then it is equivalent to 
saying that the second term of equation (4.37) has a negligible effect. Thus, by investigating 
the system undershoot further, conditions can be developed under which the total system 
response is well approximated by the nominal system response. 

A closed form solution for the exact level of undershoot experienced in response to a step 
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command for a system of the form presented in equation (4.34) is derived in Appendix B and 
simply stated below, 
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where, 
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Derivation of equations (4.38) through (4.41) involves inverse Laplace transforming equation 
(4.37) and finding the time response minima through calculus. The above equations make it 
clear that the undershoot is only a function of the ratio between the system’s natural frequency 
and the zero frequency ( r ) and the system’s damping ratio (ζ ). Figure 4.1 below provides a 
plot of the maximum percentage undershoot as a function of 1r−  for various damping ratios. 

 

Figure 4.1 – Maximum undershoot of a 2nd order system as a function of the 
normalised RHP zero frequency for various damping ratios 

It is clear from the figure that for low percentage undershoots, the damping ratio has very little 
influence. Thus, the primary factor determining the level of undershoot is the ratio of the 
system’s natural frequency to the zero frequency. Furthermore, it is clear that for less than 5% 
maximum undershoot, the natural frequency should be kept at least three times lower than the 
frequency of the zero. With only 5% undershoot, the response of the total system will be well 
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approximated by the response of the nominal system with no zero. Thus, by making use of the 
maximum undershoot as a measure of the NMP nature of the system, the following frequency 
domain design rule is proposed, 

 0

3n
zω <  (4.42)

for the NMP nature of the system to be considered negligible. This rule implies that the system 
poles must lie within a circle of radius 0 3z  in the s-plane. Thus, an upper bound is placed on 
the natural frequency of the system if its NMP nature is to be ignored. 

Being able to ignore the NMP nature of a system is essential for the dynamic inversion part of 
the normal specific acceleration control law. If this cannot be done, the dynamic inversion 
control law will attempt to negate the effect of the gravity coupling term by making direct use 
of the lift generated by elevator deflection. Not only is this practically infeasible, but as 
previously stated it will also result in first order internal dynamics that may or may not be 
stable. The frequency domain analysis to follow however also shows that if the natural 
frequency approaches that of the zero frequency, then a poor control system with practically 
infeasible actuator commands will result. This result is illustrated through analysis of one of 
Bode’s sensitivity function integrals [44,46]. By adapting the results presented in [45] to this 
specific case, it can be shown that the sensitivity function of a system with a real, right half 
plane zero and all poles strictly in the left half plane, must satisfy the following integral 
constraint, 
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Continuing to present results from [45], given that the sensitivity function magnitude is to 
satisfy, 

 ( ) 1S jω ε< <   [ ]0, lω ω∈  (4.44)

then a lower bound for the sensitivity function magnitude peak can be found such that the 
integral constraint of equation (4.43) is satisfied. Splitting the integration interval of equation 
(4.43) into two parts the following result is obtained, 
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Thus, 
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where use has been made of the fact that 1ε <  and it has been assumed that the frequency 
range over which equation (4.44) holds is up to the natural frequency. A plot of the lower 
bound of the sensitivity function versus the ratio of the RHP zero frequency to the natural 
frequency ( 1r− ) is provided in Figure 4.2 below. Here it has been assumed that the sensitivity 
magnitude is upper bounded by 1 1 2ε = −  i.e. the complementary sensitivity lies between 
0 and -3 dB up to the natural frequency. 

 

Figure 4.2 – Lower bound on the sensitivity function magnitude as a function of the 
RHP zero frequency normalised to the natural frequency 

In Figure 4.2 it is seen that as the RHP zero frequency approaches that of the natural 
frequency, the lower bound on the sensitivity function peak rises dramatically. Thus, 
disturbances with frequencies just greater than the natural frequency of the closed loop system 
(from sensor noise for example) will be significantly amplified and the control signals 
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commanded in response to these disturbances will saturate most actuators. When the RHP zero 
frequency is three times greater than the natural frequency then the lower bound on the 
sensitivity function peak is reduced to approximately 2.5 dB (amplification gain of 
approximately 1.33). This RHP zero to natural frequency ratio suggests a practically feasible 
design and supports the frequency domain design rule of equation (4.42). 

The situation worsens further when there are unstable plant poles. For more details on this 
specific situation see [44,45]. The clear result of the above analysis however is that restricting 
the natural frequency to well below the zero frequency is important not only for dynamic 
inversion purposes but for practical controller design reasons too. From Figures 4.1 and 4.2 
and their corresponding arguments, it is seen that enforcing the upper bound of equation (4.42) 
on the natural frequency of the system will allow the NMP nature of the system to be ignored 
and result in the design of a practically feasible control system. 

4.2.3 Frequency bounds on the normal specific acceleration controller 

Given the results of the previous two subsections, the upper bound on the natural frequency of 
the normal specific acceleration controller becomes, 

 ( )1
3n T N

yy

L
l l

I
αω < −  (4.47)

where the offset in the zero positions in equation (4.32) has been ignored. Adhering to this 
simple to calculate upper bound will allow the NMP nature of the system to be ignored and 
will thus ensure both practically feasible dynamic inversion of the flight path angle coupling 
and no large sensitivity function peaks in the closed loop system. 

It is important to note that the upper bound applies to both the open loop and closed loop 
normal specific acceleration dynamics. If the open loop poles violate the condition of equation 
(4.47) then moving them through control application to within the acceptable frequency region 
will require taking into account the effect of the system zeros. Thus, for an aircraft to be 
eligible for the normal specific acceleration controller of the next subsection, its open loop 
normal dynamics poles must at least satisfy the bound of equation (4.47). If they do not then 
an aircraft specific normal specific acceleration controller would have to be designed. 
However, most aircraft tend to satisfy this bound in the open loop because open loop poles 
outside the frequency bound of equation (4.47) would yield an aircraft with poor natural flying 
qualities i.e. the aircraft would be too statically stable and display significant undershoot and 
lag when performing elevator based manoeuvres. The frequency bound can thus also be 
utilised as a design rule for determining the forward centre of mass position of an aircraft. 

In terms of lower bounds, the normal dynamics must be timescale separated from the velocity 
magnitude and air density dynamics. Of these two signals, the velocity magnitude typically 
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has the highest bandwidth and is thus considered the limiting factor. Given the desired velocity 
magnitude bandwidth (where it is assumed here that the given bandwidth is achievable with 
the available axial actuator), then as a practical, commonly used design rule the normal 
dynamics bandwidth should be at least five times greater than this for sufficient timescale 
separation. Note that unlike in the upper bound case, only the closed loop poles need satisfy 
the lower bound constraint. However, if the open loop poles are particularly slow, then it will 
require a large amount of control effort to meet the lower bound constraint in the closed loop. 
This may result in actuator saturation and thus a practically infeasible controller. However, for 
typical aircraft parameters the open loop poles tend to already satisfy the timescale separation 
lower bound. 

With the timescale separation lower bound and the NMP zero upper bound, the natural 
frequency of the normal specific acceleration controller is constrained to lying within a 
circular band in the s-plane as shown in Figure 4.3 below. Note that the obvious stability 
constraints have not been illustrated. Note too that although the upper bound of equation 
(4.47) may be superseded by other upper bounds such as those introduced by actuator 
saturation, these too have been neglected from the figure. 

Figure 4.3 – Feasible pole placement region constrained by NMP upper bound and 
timescale separation lower bound 

The width of the circular band in Figure 4.3 is an indication of the eligibility of a particular 
airframe for the application of the normal specific acceleration controller to be designed in the 
following subsection. For most aircraft this band is acceptably wide and the control system to 
be presented can be directly applied. For less conventional aircraft, the band can become very 
narrow and the two constraint boundaries may even cross. In this case, the generic control 
system to be presented cannot be directly applied. One solution to this problem is to design an 
aircraft specific normal specific acceleration controller. However, this solution is typically not 
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desirable since the closeness of the bounds suggests that the desired performance of the 
particular airframe will not easily be achieved practically. Instead, redesign of the airframe 
and/or reconsideration of the outer loop performance bandwidths will constitute a more 
practical solution. 

4.2.4 Normal specific acceleration controller design 

Assuming that the frequency bounds of the previous section are met, the design of a 
practically feasible normal specific acceleration controller can proceed based on the following 
reduced normal dynamics, 
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The simplifications in the dynamics above arise from the analysis of subsection 4.2.1 where it 
was shown that to a good approximation, the lift due to pitch rate and elevator deflection only 
play a role in determining the zeros from elevator to normal specific acceleration. Under the 
assumption that the upper bound of equation (4.47) is satisfied, the zeros effectively move to 
infinity and correspondingly these two terms become zero. Thus, the simplified normal 
dynamics above will yield identical approximated poles to those of equation (4.24), but will 
display no finite zeros from elevator to normal specific acceleration. The design of a controller 
to dynamically invert the gravity coupling term and provide enough degrees of freedom to 
allow for arbitrary placement of the closed loop normal dynamics poles for all point mass 
kinematics states now follows. Only an abbreviated design is provided in this section with the 
detailed derivation provided in Appendix B. 

To dynamically invert the effect of the flight path angle coupling on the normal specific 
acceleration dynamics requires differentiating the output of interest until the control input 
appears in the same equation. The control can then be used to directly cancel the undesirable 
terms. Differentiating the normal specific acceleration output of equation (4.49) once with 
respect to time yields, 
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where the angle of attack dynamics of equation (4.48) have been used in the result above. 
Differentiating the normal specific acceleration a second time gives, 
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where use has been made of equations (4.48) to (4.50) in obtaining the result above. The 
elevator control input could now be used to cancel the effect of the attitude angle coupling 
terms on the normal specific acceleration dynamics. However, the output feedback control law 
to be implemented will make use of pitch rate feedback. Upon analysis of equation (2.28), it is 
clear that pitch rate feedback will reintroduce flight path angle coupling terms into the normal 
specific acceleration dynamics. Thus, the feedback control law is first defined and substituted 
into the dynamics, and then the dynamic inversion is carried out. A PI control law with enough 
degrees of freedom to place the closed loop poles arbitrarily and allow for dynamic inversion 
(through 

DIEδ ) is defined below, 

 
GE Q C W E C EK Q K C K Eδ δ= − − − +  (4.52)

 
RC W WE C C= −  (4.53)

with 
RWC  the reference normal specific acceleration command. The integral action of the 

control law is introduced to ensure that the normal specific acceleration is robustly tracked 
with zero steady state error. Offset disturbance terms such as those due to static lift and 
pitching moment can thus be ignored in the design to follow. It is best to remove the effect of 
terms such as these with integral control since they are not typically known to a high degree of 
accuracy and thus cannot practically be inverted along with the flight path angle coupling. 
Upon substitution of the control law above into the normal specific acceleration dynamics of 
equation (4.51), the closed loop normal dynamics become, 
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RC W WE C C= −  (4.55)

when, 
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and the static offset terms are ignored. Note that the dynamic inversion part of the control law 
is still a function of the yet to be determined pitch rate feedback gain. Given the desired closed 
loop characteristic equation for the normal dynamics, 

 ( ) 3 2
2 1 0c s s s sα α α α= + + +  (4.57)
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the closed form solution feedback gains can be calculated by matching characteristic equation 
coefficients to yield, 
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Substituting the pitch rate feedback gain into equation (4.56) gives, 
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where use has been made of equation (2.46) to remove the attitude parameter derivative. The 
controller design freedom is reduced to that of placing the three poles that govern the closed 
loop normal dynamics. The control system will work to keep these poles fixed for all point 
mass kinematics states and in so doing yield a dynamically invariant normal specific 
acceleration response at all times. Guidelines for placing the closed loop poles are provided in 
the following subsection. 

4.2.5 Placing the closed loop poles 

There are a number of factors that influence the selection of the closed loop normal dynamics 
poles. A lower bound constraint on the frequency of the closed loop poles exists to ensure a 
timescale separation between the closed loop normal dynamics and the velocity magnitude and 
air density dynamics. Upper bounds on the pole positions are imposed through the NMP zero 
constraint of equation (4.47) as well as actuator saturation and slew rate limits. Of course for 
the normal specific acceleration controller design to be feasible, these upper and lower bounds 
should not cross in the frequency domain as discussed in section 4.2.3. 

Considering the NMP zero upper frequency bound constraint further, it is clear from equation 
(4.47) that as the dynamic pressure is decreased, so the upper frequency bound constraint 
tightens. Thus, if a designer were to select a nominal fixed set of closed loop normal dynamics 
poles then the constraint of equation (4.47) would at some point be violated as the dynamic 
pressure is decreased. Intuitively, this is because the normal specific acceleration controller 
would attempt to obtain the nominal dynamic response at reduced dynamic pressures which 
becomes less and less feasible as dynamic pressure is reduced. This problem promotes two 
fundamentally different pole placement strategies for the normal specific acceleration 
controller. 
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The first strategy involves selecting appropriate closed loop poles for a particular dynamic 
pressure, in the knowledge that the aircraft to be controlled will continuously operate close to 
this nominal dynamic pressure. The normal specific acceleration controller would then work to 
ensure the same dynamic response for all dynamic pressure variations. This would provide a 
simple, clean interface to the outer guidance level controllers. A second strategy is to schedule 
the pole positions with the dynamic pressure (or in some other appropriate fashion) to ensure 
that the constraint of equation (4.47) is never violated, thus ensuring a practically feasible 
design. However, by scheduling the speed of the normal specific acceleration controller, its 
interface with the guidance level controllers is complicated since the closed loop response 
would no longer be dynamically invariant. This complication could however be handled 
through complementary scheduling of the outer guidance level controller bandwidths. 

Each of the pole placement strategies described above has its benefits. The fixed pole 
placement strategy is better suited to aircraft whose mission profile is to navigate and 
manoeuvre about a constant dynamic pressure. Adopting this strategy would provide the 
simplest interface to the guidance level controllers and consequently the simplest guidance 
level controllers. On the other hand, the variable pole placement strategy is better suited to 
aircraft that need to operate over a wide dynamic pressure range. This strategy constantly 
changes the normal specific acceleration speed of response so as not to violate the physical 
constraints imposed by the aircraft. Of course, a combination of the two strategies may 
provide the best solution to a specific problem. An aircraft that is accelerating up to speed and 
altitude could initially use variable pole placement. Once at the desired operating point, it 
could switch over to fixed pole placement to ensure that it operates consistently about the 
nominal flight condition. Once its mission has been completed it could revert back to variable 
pole placement for its return to base. 

The controller design of the previous section makes both the fixed and variable pole placement 
strategies feasible. For fixed pole placement a single set of characteristic equation coefficients 
would be selected and used throughout the flight. For variable pole placement, these 
coefficients would have to be appropriately updated during flight and then used to update the 
controller gains. One method for adjusting the pole positions (and thus characteristic equation 
coefficients) would be to schedule the natural frequency of the closed loop poles such that they 
remain a constant factor of the NMP zero frequency constraint of equation (4.47). This would 
ensure that the frequency constraint is never violated and thus provide a practically feasible 
design barring any other constraint violations. 

A second more direct method for implementing the variable pole placement strategy is 
described in the subsection that follows. Although the method involves more complicated 
concepts than those involved in the implementation method above, it presents a particularly 
elegant solution to the variable pole placement problem. The method involves normalising the 
states, controls and outputs of the normal dynamics and most importantly non-
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dimensionalising time. It is thus referred to as the Normalised Non-Dimensional Time 
(NNDT) variant of the normal specific acceleration controller. By appropriately non-
dimensionalising time, and consequently frequency, it will be seen that the transformed open 
loop normal dynamics become largely invariant with dynamic pressure. As a result, the NMP 
frequency bound constraint remains fixed in the non-dimensional frequency plane thus 
allowing for a fixed pole placement design for the NNDT system. The end result is a control 
law that implements variable pole placement for the dimensional system without the need to 
explicitly schedule poles. 

4.2.6 NNDT normal specific acceleration controller design 

Consider the normal dynamics of equations (4.21) and (4.22). Define the normalised states, 
controls, outputs, time and gravitational acceleration respectively, 
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Then define the derivative of a variable with respect to normalised time as follows, 
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With these definitions in place, the NNDT normal dynamics are shown in Appendix B to be, 
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where, 

 4Q Qk m V′ ′=  (4.71)
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and, 
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In equations (4.71) and (4.72), Qm′  is the aircraft’s mass normalised to a longitudinal reference 
air mass, V ′  is the relative ground to airspeed magnitude and yr′  is the normalised pitch radius 
of gyration. Note that it has been assumed that, 

 
QL QC k  (4.77)

which is equivalent to the standard aircraft assumption of equation (4.25). When the ground 
speed magnitude and the airspeed magnitude are equivalent, then yk  is constant and the 
normal dynamics are only a function of the air density through the gain Qk . Investigation of 
the characteristic equation for the NNDT open loop poles is shown in Appendix B to yield,  

 ( ) ( ) ( )2( )
Q QL y m y m L Q mp s s C k C s k C C k C

α α α
′ ′ ′= + − − +  (4.78)

From equation (4.78), it is clear that when the ground speed and airspeed magnitudes are equal 
(zero wind conditions) the NNDT normal dynamics poles are not a function of the velocity 
magnitude and that only the natural frequency of the open loop NNDT normal dynamics poles 
changes with the air density. Because air density changes slowly with altitude, the open loop 
NNDT normal dynamics poles can be thought of as fixed in the NNDT frequency plane when 
operating about a nominal altitude. Investigating the zeros from elevator to normal specific 
acceleration, the calculations in Appendix B show that the characteristic equation for the zeros 
is, 
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Define now the following normalised characteristic lengths, 
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where Nl′  is the normalised length to the neutral point, Tl′  is the effective normalised length to 
the tail-plane, Dl′  is the effective normalised damping arm length and all lengths are relative to 
the centre of mass. Completing the square on equation (4.79) and making use of the 
characteristic lengths defined above and the arguments provided in section 4.2.1, the zero 
positions in the NNDT frequency plane are shown in Appendix B to be, 

 ( ) ( )1,2
1
2 Qy L T D Q y L T Nz k C l l k k C l l

α
′ ′ ′ ′ ′= − ± −  (4.83)

Note that again, for typical aircraft parameters the second term in equation (4.83) tends to 
dominate the first. Investigation of equation (4.83) shows that similarly to the pole positions 
under zero wind conditions, the zero positions do not depend on the velocity magnitude and 
depend only on the air density through the gain Qk . Thus, about a nominal altitude, the zero 
positions remain largely unchanged. With reference to the analysis done in section 4.2.2, the 
NMP upper bound imposed on the natural frequency of the NNDT normal dynamics poles is, 

 ( )1
3n Q y L T Nk k C l l

α
ω′ ′ ′< −  (4.84)

Analysis of the natural elevator to normal specific acceleration dynamics shows that the 
frequency of the open loop poles and zeros changes only with the inverse of the square root of 
the air density. Thus, fixing the normal dynamics poles appropriately in the NNDT frequency 
plane would result in a practically feasible dimensional time normal specific acceleration 
controller for large dynamic pressure ranges. Fixed NNDT normal dynamics poles would only 
result in physical constraint violations if the air density was to change significantly. However, 
large dynamic pressure changes are most often due to large changes in airspeed magnitude 
(due to the quadratic relationship) and not to large changes in air density (since air density 
changes slowly with altitude). Thus for a large class of aircraft/mission combinations, fixed 
NNDT closed loop normal dynamics poles would be acceptable for the entire flight envelope. 
In aircraft where the altitude is to change significantly, the closed loop NNDT poles could be 
scheduled slowly with air density. 

Before continuing with the details of the control system design, note that a feedback control 
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law designed to fix the closed loop normal dynamics poles in the NNDT frequency plane 
would in general be a function of the air density. However, under the assumption that the flight 
envelope of interest is limited such that air density changes do not significantly affect the open 
loop NNDT normal dynamics, then a control law that fixes poles in the NNDT frequency 
plane would involve constant feedback gains that could be calculated offline. In comparison, a 
dimensional time pole scheduling technique would require a fair amount of online 
computation to determine the desired pole positions and varying feedback gains. Thus 
employing a controller that fixes the closed loop poles in the NNDT frequency plane provides 
a particularly simple, elegant solution to the variable pole placement problem. 

To design the NNDT controller the PI control law with freedom for dynamic inversion is 
defined below, 

 
GE Q C W E C EK Q K C K Eδ δ′ ′ ′ ′ ′ ′ ′ ′= − − − +  (4.85)

 
RC W WE C C′ ′ ′= −  (4.86)

where 
RWC ′  is the NNDT normal specific acceleration reference command. The control law has 

enough degrees of freedom to place the closed loop poles arbitrarily in the NNDT frequency 
plane. Appendix B shows that given the desired closed loop characteristic equation, 

 ( ) ( ) ( ) ( )3 2
2 1 0c s s s sα α α α′ ′ ′ ′= + + +  (4.87)

the feedback gains that will result in the desired poles are, 
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with the dynamic inversion term, 
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where, 
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To implement the control law, the signals required for feedback are normalised using equations 
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(4.63), (4.65), (4.67) and (4.92). The feedback gains of equations (4.88), (4.89) and (4.90) can 
be updated if the air density changes significantly or if the airspeed and ground speed 
magnitudes differ greatly. If these factors can be neglected then these feedback gains remain 
constant (where it is assumed the non-dimensional stability derivatives are constant). Given 
the NNDT normal specific acceleration reference command, the control law of equations 
(4.85) and (4.86) can be implemented to calculate the normalised elevator deflection. Equation 
(4.64) would then be used to calculate the dimensional elevator deflection. The end result is an 
elegant and efficient solution to the variable pole placement problem as will be illustrated in 
one of the simulation examples of Chapter 8. 

4.2.7 Integrator pole placement 

Both the dimensional time and non-dimensional time control laws discussed previously 
introduce the reference input signal via the integrator state. Doing this requires the closed loop 
integrator dynamics to be fast since they directly influence the system’s speed of response to a 
reference input. However, practically it is often not desirable to have an integrator with very 
fast dynamics. To allow for a slower integrator, it is straightforward to show that if the control 
law of equation (4.52) is changed to incorporate a feed-forward term as follows, 

 
R GE Q C W E C C W EK Q K C K E N Cδ δ= − − − + +  (4.93)

 
RC W WE C C= −  (4.94)

then the effect is to introduce a zero at, 
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C

K
s

N
= −  (4.95)

in the closed loop system from the reference input to the output. Similarly for the NNDT 
system if the control law of equation (4.85) is changed to, 

 
R GE Q C W E C C W EK Q K C K E N Cδ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − − + +  (4.96)

 
RC W WE C C′ ′ ′= −  (4.97)

then the effect is to introduce a zero at, 
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s
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′ = −
′

 (4.98)

in the NNDT frequency plane of the closed loop system from the reference input to the output. 
Selecting the feed-forward gain such that the zero lies on top of the closed loop integrator pole 
will have the effect of removing the closed loop integrator dynamics from the reference to 
output system. In turn this allows the closed loop integrator pole to be placed at a much lower 
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frequency than the two remaining dominant poles. Note that feed-forward cancellation of 
closed loop integrator dynamics is not a novel concept [47] and merely serves as a standard 
variation on the novel control laws introduced in sections 4.2.4 and 4.2.6. 

From a timescale separation point of view, slowing the closed loop integrator dynamics and 
cancelling them from the reference input via feed-forward is acceptable since the outer 
guidance level controllers interface with the inner loop controllers via the reference input. 
Note however that the slow closed loop integrator dynamics will be visible from disturbance 
inputs. Disturbances due to parameter uncertainty, un-modelled dynamics and wind will take 
longer to be fully rejected with a slow integrator than they would if the integrator was fast. 
Thus, although slowing down the integrator pole will result in a more practically manageable 
control system, it will decrease the disturbance rejection capabilities of the controller. The 
designer should consider both of these factors when selecting the integrator pole location and 
adopt the option best suited to the particular application. 

4.3 Conclusion 
This chapter covered the detailed design and associated analysis of the axial and normal 
specific acceleration controllers (top two controllers on the right hand side of Figure 3.1). 
These controllers and the analysis associated with their design forms part of the primary 
contribution of this dissertation to the field of aircraft flight control. In terms of analysis, of 
particular importance is the sensitivity function analysis of section 4.1, the analytical 
determination of the elevator to normal specific acceleration zeros in section 4.2.1 and the 
determination of the associated frequency bound constraints of section 4.2.3 through the NMP 
system analysis of section 4.2.2. 

To allow the controllers to be readily applied to different aircraft, closed form parameterised 
control laws were developed. Pole placement was the primary method used in the control 
system design together with a limited amount of dynamic inversion to handle the gravity 
coupling into the normal dynamics. Pole placement discussions for the normal specific 
acceleration controller lead to the concept of fixed and variable pole placement strategies. A 
novel NNDT variant of the normal specific acceleration control system was presented as an 
elegant solution to the variable pole placement problem. Finally, a variant of the normal 
dynamics control laws was presented to allow for slower closed loop integrator dynamics 
using standard feed-forward techniques. 

 

 



71 

Chapter 5 – Inner Loop Controllers: Lateral Dynamics 

 

 

Chapter 5 

Inner Loop Controllers: Lateral Dynamics 

 

In the previous chapter, inner loop controllers for axial and normal specific acceleration were 
designed. This chapter continues in a similar vein with the design of controllers for the lateral 
dynamics. After analysing the lateral dynamics in section 5.1 it is shown that under certain 
conditions, typically met by most conventional aircraft, the lateral dynamics can be decoupled 
into roll and directional dynamics. Two independent inner loop controllers are then designed 
based on the decoupled dynamics to regulate roll rate about the velocity vector and lateral 
specific acceleration. Pole placement for both controllers is considered which similarly to the 
previous chapter leads to a NNDT version of each controller. 

5.1 Analysis of natural lateral dynamics 
The lateral dynamics are restated below for convenience, 
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 (5.2)

where standard dimensional stability derivative notation has been used to avoid clutter as 
described by equation (4.23). The lateral dynamics constitute a Multiple Input Multiple Output 
(MIMO) system where it is desired to regulate the roll rate about the velocity vector and the 
lateral specific acceleration coordinate in wind axes. These two signals need to be regulated 
using the rudder and aileron control inputs and should display invariant dynamic responses for 
all point mass kinematics states. To gain insight into the lateral dynamics for control system 
design purposes they are investigated further. 
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In Appendix B, standard systems theory mathematics shows that the open loop poles of the 
lateral dynamics (Roll/Dutch-Roll modes) are the roots of the characteristic equation, 
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 (5.3)

where only the following standard aircraft assumptions [43] have been made, 
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Appendix B also shows that when the following additional, novel conditions hold, 
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the lateral dynamics characteristic equation can be further simplified to, 
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 (5.8)

The conditions of equations (5.6) and (5.7) are satisfied by most aircraft as supported by the 
arguments to follow. Note that the arguments assume the remaining cross product of inertia is 
negligible and thus that with reference to equations (3.67) and (3.68), barred stability 
derivatives are equivalent to un-barred derivatives. 

Consider the stability derivative ratio on the left hand side of equations (5.6) and (5.7). The 
roll moment due to roll rate in the denominator is due primarily to the differential lift caused 
by the induced angle of incidence across the aircraft’s wingspan as it rolls. The yaw moment 
due to roll rate in the numerator is primarily due to the differential drag across the wing as a 
result of the differential lift above. There is also a small contribution to the yaw moment due to 
the induced angle of incidence on the fin during a roll manoeuvre. However, ignoring this 
latter typically negligible effect, the following is true to a good approximation, 
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Thus, for most aircraft and flight conditions, 
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The terms on the right hand side of equations (5.6) and (5.7) are typically greater than unity or 
at least very close. In equation (5.6), the yaw damping coefficient is often of a very similar 
magnitude to the roll moment due to yaw rate coefficient. The yaw damping is dominated by 
the induced angles of incidence on the fin during yaw rate motion. The roll moment on the 
other hand is due to the differential lift across the wings caused by the yaw rate induced 
differential velocity as well as the roll axis offset of the yaw damping forces. In equation (5.7), 
the yaw moment due to sideslip is often very closely matched to the roll moment due to 
sideslip. In aircraft with a high wing, a large amount of dihedral and/or a large amount of wing 
sweep, this term can become significantly less than unity and the condition of equation (5.7) 
may not hold well. However for a very large class of aircraft this constraint will hold. 

It is important to note that with the conditions of equations (5.4) to (5.7), the natural modes of 
motion in the lateral dynamics are described by a set of typically complex poles (the Dutch 
Roll mode) and a single real pole (the Roll mode). Also notice that only the directional 
derivatives play a role in determining the complex set of poles while only the roll derivatives 
determine the location of the real pole. It thus seems feasible that the lateral dynamics could be 
decoupled into roll and directional dynamics. To investigate this possible decoupling further, 
three transfer functions are investigated in detail. Note that the analysis to follow is novel, in 
particular the analytic determination of the actuator to output zeros and the associated 
simplifying conditions, and forms part of the contribution of this dissertation to the field of 
aircraft dynamics. 

5.1.1 Aileron to roll rate transfer function 

The zeros from the aileron input to the roll rate are shown in Appendix B to be the roots of the 
following characteristic equation, 
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 (5.11)

where only the following commonly made aircraft assumption [43] has been made, 
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Analysing equation (5.11) further, it is shown in Appendix B that under the conditions, 
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the characteristic equation for the zeros reduces to, 

 2( ) A R R
z

xx zz zz zz

L Y Y NN N
s s s

I mV I mV I I
δ β β βα
   

= − + + +          
 (5.15)

The conditions of equations (5.13) and (5.14) are typically met by a very large class of aircraft. 
This can be seen by noting that the yaw to roll moment ratio due to aileron deflection on the 
left hand side of equations (5.13) and (5.14) is related through an inverse lift to drag ratio and 
thus satisfies the relationship, 
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 (5.16)

Following the arguments used in the analysis of equations (5.6) and (5.7), the relationship 
between the derivatives on the right hand side of equations (5.13) and (5.14) is typically close 
to unity thus supporting the argument above. When the conditions of equations (5.4) to (5.7) 
and (5.12) to (5.14) hold, the zeros of equation (5.15) cancel the directional poles of equation 
(5.8) and the transfer function from aileron deflection to roll rate reduces to the intuitive result, 
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Thus, if the conditions referred to above hold then to a good approximation, feedback from 
roll rate to ailerons will not affect the directional dynamics poles. 

5.1.2 Rudder to yaw rate transfer function 

The zeros from the rudder input to the yaw rate are shown in Appendix B to be the roots of the 
following characteristic polynomial, 
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where only the standard aircraft approximations of equations (5.4) and (5.5) have been used. It 
is also shown in Appendix B that under the condition of equation (5.7) and the following 
condition, 
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that the characteristic equation reduces to, 
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Considering equation (5.10), the condition of equation (5.19) requires that the yaw to roll 
moment ratio as a result of rudder deflections must be close to or greater than unity. This 
condition is easily satisfied by conventional aircraft where the yaw moment arm length to the 
rudder is far greater than the roll moment arm length. When the conditions of equations (5.4) 
to (5.7) and (5.19) hold then the transfer function from the rudder input to the yaw rate reduces 
to, 
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due to the pole-zero cancellation of the roll mode. Thus to a good approximation, feedback 
from yaw rate to rudder will not influence the roll dynamics. 

5.1.3 Rudder to lateral specific acceleration transfer function 

The zeros from the rudder input to the lateral specific acceleration output are shown in 
Appendix B to be the roots of the following polynomial, 
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under the conditions of equations (5.4) to (5.7) and  (5.19). Under these conditions, there is 
pole-zero cancellation of the Roll mode and the transfer function from the rudder input to the 
lateral specific acceleration output can be written as follows, 
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Thus, to a good approximation, feedback from lateral specific acceleration to rudder will not 
influence the roll dynamics. 

5.1.4 Summary of results 

In this section, it has been shown that under the conditions of equations (5.4) to (5.7), (5.12) to 
(5.14) and (5.19), feedback from roll rate to ailerons will only affect the roll dynamics and 
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feedback from both yaw rate and lateral specific acceleration to rudder will only affect the 
directional dynamics. Thus, for control system design purposes, the lateral dynamics can be 
split into roll and directional dynamics and the lateral closed loop poles can be positioned 
separately through feedback involving the inputs and outputs investigated in the transfer 
functions above. It is important to note however that the conditions above do not fully 
decouple the lateral dynamics and that aileron deflections will still stimulate the directional 
dynamics (adverse yaw) and rudder deflections will still stimulate the roll dynamics (rudder 
induced roll). However, the transfer function results above do show that these cross couplings 
will only occur via the direct input terms i.e. the side force and yaw moment due to ailerons 
and the roll moment due to rudder, and not indirectly through the roll and directional dynamics 
couplings. 

With the results of the novel analysis of the previous subsections in place, the lateral dynamics 
can be written as follows, 

Roll dynamics: 
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 WP P=  (5.25)

Directional dynamics: 
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 (5.26)
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 (5.27)

Aileron and rudder couplings into the directional and roll dynamics respectively will be 
considered disturbances. These disturbances will be examined explicitly when designing the 
roll rate and lateral specific acceleration controllers. By splitting the lateral dynamics into roll 
and directional dynamics, the complexity of designing a generic controller to regulate the roll 
rate and lateral specific acceleration is greatly decreased. Furthermore, as shall be seen, 
splitting the dynamics allows for a greater degree of insight into the lateral aircraft motion. Of 
course, if the parameters of a particular aircraft violate any of the conditions derived in this 
section then either active decoupling techniques should be employed or an aircraft specific 
MIMO controller should be designed. Conversely, the conditions listed above could be used as 
aircraft design constraints to ensure that the generic lateral controller to be developed in this 
chapter can be applied. 
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In the following two sections, controllers for roll rate and lateral specific acceleration will be 
designed. 

5.2 Roll rate controller 
The design of a controller capable of regulating the roll rate using the ailerons is presented in 
this section. The closed loop rudder to roll rate disturbance transfer function is also 
investigated. All design details are provided in Appendix B. 

5.2.1 Roll rate controller design 

With reference to the roll rate dynamics of equation (5.24), define a PI control law to provide 
the design freedom for the desired closed loop dynamic response and to counter any steady 
state disturbances due to asymmetry in the aircraft, 

 A P E PK P K Eδ = − −  (5.28)

 P RE P P= −  (5.29)

where RP  is the reference roll rate command. The closed loop dynamics in state space form are 
then, 

 0
1

1 0 0

A A RP
P E

R Rxx xx xx xx
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L L LL PP K K
PI I I IEE

δ δ δ

δ
   

  − −       = + +        −          

 (5.30)

Given the desired closed loop characteristic equation, 

 2
1 0( )c s s sα α α= + +  (5.31)

matching of the coefficients yields the following feedback gains, 

 ( )1
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P P xxK L I
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α= +  (5.32)

 0
A

xx
E

I
K

Lδ

α=  (5.33)

The design freedom is thus reduced to that of selecting suitable closed loop pole locations. 
Selection of closed loop poles will be discussed in section 5.2.2. To investigate the effects of 
rudder disturbances on the closed loop system, the rudder to roll rate transfer function is 
determined. This transfer function is shown in Appendix B to be, 

 2
1 0

( )
( )

R

R xx

LP s s
s I s s

δ

δ α α
=

+ +
 (5.34)



CHAPTER 5– INNER LOOP CONTROLLERS: LATERAL DYNAMICS 

 

78

The transfer function can be investigated in the closed loop to determine whether the rudder 
input couples unacceptably into the closed loop roll dynamics. However, for typical aircraft 
parameters and roll dynamics bandwidths, the coupling is negligible across the whole 
frequency range. 

5.2.2 Selection of the closed loop poles 

The upper bandwidth of the roll dynamics is typically limited by actuator saturation or slew 
rate limits and un-modelled structural dynamics. A lower bandwidth limit is imposed through 
the timescale separation requirement between the roll dynamics and the velocity magnitude 
and air density. By selecting a fixed set of closed loop roll dynamics poles, the controller will 
attempt to make the aircraft respond with the same dynamics in roll rate at all dynamic 
pressures. For aircraft operating about a nominal dynamic pressure flight condition, this 
strategy is ideal since it provides an invariant interface to the outer guidance level controllers. 
However, intuitively it is clear that as the dynamic pressure decreases, this strategy will result 
in very large control deflections and possibly even control surface saturation. 

To avoid the problems associated with large dynamic pressure variations, a similar variable 
pole placement strategy to that proposed in section 4.2.5 can be adopted. The roll dynamics 
poles can be placed in fixed positions in a NNDT frequency plane which in turn is equivalent 
to varying pole positions in the dimensional frequency plane. Varying the dimensional time 
dynamics will ensure that the aircraft’s dynamic response in roll is adjusted according to its 
current flight condition. This will tend to result in the controller utilising the same level of 
control deflections at all times and consequently will result in an increase in response times as 
the dynamic pressure decreases. 

In practice a combination of the fixed and varying pole placement controllers can be employed 
depending on the aircraft’s mission profile. The following subsection discusses the details of 
the NNDT pole placement controller for roll rate. 

5.2.3 NNDT roll rate controller design 

Considering the roll dynamics of equation (5.24), define the following non-dimensional states 
and controls, 

 
2 a

bP P
V

′ =  (5.35)

 A Aδ δ′ =  (5.36)

Then with the non-dimensional time variable defined by equation (4.66) and the derivative of 
a variable with respect to non-dimensional time defined by equation (4.68), the roll dynamics 
can be written in NNDT form as follows, 
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P Ax l x l AP k C P k C

δ
δ  ′ ′ ′= +     (5.37)

where, 
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′

 (5.38)

with, 

 x
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r
r

b
′ =  (5.39)

 xx
x

I
r

m
=  (5.40)

and V ′  from equation (4.74). In equation (5.39) xr′  is the normalised roll radius of gyration. 
Notice that under zero wind assumptions, xk  is a constant and the NNDT roll dynamics are 
time invariant. Define a PI control law of the form, 

 A P E PK P K Eδ ′ ′ ′ ′ ′= − −  (5.41)

 P RE P P′ ′ ′= −  (5.42)

where RP′  is the non-dimensional reference roll rate command. Given the desired closed loop 
NNDT characteristic equation, 

 ( )2
1 0( )c s s sα α α′ ′ ′= + +  (5.43)

the feedback gains that place the poles in the desired locations are easily shown to be, 

 1 P

A

x l
P

x l

k C
K

k C
δ

α +
′ =  (5.44)

 0

A

E
x l

K
k C

δ

α′ =  (5.45)

Note that for a fixed set of closed loop NNDT poles and with xk  a constant, the NNDT 
feedback gains are constant and can be calculated offline. To implement the controller the 
dimensional roll rate signal is simply normalised using equation (5.35). Then the control law 
of equations (5.41) and (5.42) is applied and the normalised aileron deflection is converted to 
its dimensional form using equation (5.36). 

5.2.4 Integrator pole placement 

Similarly to the normal specific acceleration controller integrator pole, the closed loop roll rate 
integrator pole need not be placed at timescale separation frequencies if the roll rate control 
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law is adapted to include a feed-forward term as follows, 

 A P E P P RK P K E N Pδ = − − +  (5.46)

 P RE P P= −  (5.47)

and in the NNDT case, 

 A P E P P RK P K E N Pδ ′ ′ ′ ′ ′ ′ ′= − − +  (5.48)

 P RE P P′ ′ ′= −  (5.49)

The effect of the feed-forward term in the control law is again to add a zero to the closed loop 
system from the reference input to the output at, 

 E

P

Ks
N

= −  (5.50)

and for the NNDT case, 

 E

P

Ks
N
′

′ = −
′

 (5.51)

If the feed-forward gain is selected such that the zero lies on top of the closed loop integrator 
pole then the closed loop integrator dynamics will not be visible from the reference input to 
the output. However, similarly to the normal specific acceleration controller case, the 
integrator dynamics will be seen from any disturbance input. It is thus the choice of the 
designer as to whether a slower integrator is desired for practical reasons or whether a faster 
integrator is desired to quickly fully reject disturbances and the effects of parameter 
uncertainty. 

5.3 Lateral specific acceleration controller 
The design of the lateral specific acceleration controller is covered in this section. The natural 
lateral specific acceleration dynamics are investigated first and the fundamental differences 
between the directional and normal dynamics are highlighted. These differences force the 
design of a very different controller to that employed in section 4.2.4. Selection of the closed 
loop poles is considered and a NNDT version of the controller is also presented. 

5.3.1 Natural lateral specific acceleration dynamics 

The directional dynamics of equations (5.26) and (5.27) are restated below for convenience, 
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 (5.52)
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= +     
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 (5.53)

Ignoring the aileron disturbance to the directional dynamics initially and comparing the 
directional dynamics to the normal dynamics of equations (4.21) and (4.22), it can be seen that 
the form of these two sets of dynamics is very similar. However, although the form of the two 
sets of dynamics is similar, for typical aircraft parameters, the dynamics governing the lateral 
specific acceleration differ greatly from those governing the normal specific acceleration. This 
is largely because there is no primary lateral lifting surface on conventional aircraft. As a 
result, the gain from rudder deflection through to lateral specific acceleration is typically low 
compared to that from elevator through to normal specific acceleration. Furthermore, with the 
fin dominating the directional forces and moments, the directional neutral point tends to lie far 
behind the centre of mass. As shall be seen in the analysis to follow, the position of the 
directional neutral point and the low rudder to lateral specific acceleration gain result in a 
significant difference between the directional and normal specific acceleration dynamics. As a 
result, a different control strategy needs to be employed in order to regulate the lateral specific 
acceleration. 

With reference to the transfer function of equation (5.23) it can be seen that the characteristic 
equation governing the poles of the directional dynamics is, 

 2( ) R R

zz zz zz

Y Y NN N
p s s s

mV I mV I I
β β β  

= − + + +       
 (5.54)

For typical aircraft parameters, these Dutch Roll mode poles are usually lightly damped with a 
frequency on the order of those of the Short Period mode poles. Analysing the transfer 
function of equation (5.23) further, it can be seen that similarly to the normal specific 
acceleration dynamics there are two rudder to lateral specific acceleration zeros. Define the 
following characteristic lengths, 
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where Wl  is the weathercock arm length, Dl  is the damping arm length, Fl  is the effective 
length to the fin and all lengths are relative to the centre of mass. Then, as shown in Appendix 
B, by completing the square and making similar simplifying assumptions to those made in 
section 4.2.1, the rudder to lateral specific acceleration zeros are at, 

 ( ) ( )
1,2

1
2

F WR F D

zz zz

Y l lY l l
z

I I
β− −−

= ±  (5.58)

In the normal dynamics case, it was argued that the second term in the zeros equation would 
typically dominate and result in two real zeros centred about a small real axis offset. The 
analysis of section 4.2.2 showed that the position of these zeros places a strict upper bound on 
the practically achievable bandwidth of the closed loop system. Comparing the second term of 
equation (5.58) to the second term of equation (4.32), two major differences are noted. Firstly, 
the difference in magnitude between the effective length to the fin and the weathercock arm 
length  is typically far smaller than the difference in magnitude between the effective length to 
the tail-plane and the length to the neutral point. This is because in conventional aircraft, most 
of the weathercock stiffness arises from the fin surface while the pitch stiffness arises due to a 
combination of both the wing and the tail-plane surfaces. 

Secondly, the latter term of equation (4.32) is scaled by the lift due to angle of incidence 
dimensional stability derivative while the latter term of equation (5.58) is scaled by the side 
force due to sideslip dimensional stability derivative. With no primary lateral lifting surface on 
conventional aircraft, the stability derivative LC

α
 is typically far greater in magnitude than the 

stability derivative YC
β

. Thus, ignoring any differences in the moments of inertia it is clear 
from the arguments above that the rudder to lateral specific acceleration zeros will lie at a far 
lower frequency than those of the elevator to normal specific acceleration dynamics. As a 
result, it is typical for the open loop directional dynamics poles to lie outside the frequency 
bound, 

 ( )1
3

F W
n

zz

Y l l
I

βω
− −

<  (5.59)

developed in section 4.2.2 and applied to equation (5.58) with the real axis offset ignored. 
Consequently, it is necessary to take into account the side force due to rudder deflection and 
yaw rate when moving these open loop poles thus making the controller design approach 
presented in section 4.2.4 inappropriate for regulation of the lateral specific acceleration. 
Furthermore, with the inclusion of these side force terms, dynamic inversion of the gravity 
coupling term, as was done in section 4.2.4, becomes practically infeasible [26,32]. To handle 
the gravity coupling problem consider the transfer function, derived in Appendix B, from the 
wind axis system attitude parameter ( 23

WIe ) through to the lateral specific acceleration, 
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 (5.60)

where equations (5.55) and (5.56) have been substituted to provide further insight. Equation 
(5.60) highlights two important facts regarding the gravity coupling into the lateral specific 
acceleration. Firstly, it is seen that the magnitude of the coupling is scaled by the side force 
due to sideslip dimensional stability derivative. In the normal dynamics, this term would be 
replaced by the lift due to angle of attack. Thus it is clear that the gravity coupling will have 
far less of an effect on the lateral specific acceleration dynamics than it does on the normal 
specific acceleration dynamics. Secondly, the damping arm length and the weathercock arm 
length are typically fairly similar in magnitude with both effects primarily arising from the fin. 
Thus, with typical Dutch Roll mode natural frequencies the low frequency gain from 23

WIe  to the 
lateral specific acceleration is usually very small. 

The points above show that the same phenomena that cause the rudder to lateral specific 
acceleration zeros to lie at low frequencies, also cause the gravity coupling into the lateral 
specific acceleration to be weak. The control strategy adopted in the following section is thus 
to simply ignore the gravity coupling term in the knowledge that it will act as a small 
disturbance input to the closed loop system that will ultimately be rejected. Of course the 
transfer function of equation (5.60) can be used on a case by case basis to determine the level 
of gravity coupling over frequency. If for a specific aircraft the level of coupling is deemed 
excessive, then alternative control strategies can be sought. 

Before proceeding with the directional controller design, the aileron disturbance coupling in 
equation (5.52) is considered. The coupling most often manifests itself in adverse yaw and 
results due to the differential drag across the wings during aileron deflections. Very often, due 
to the directional stiffness of conventional aircraft, the adverse yaw is negligible and can 
simply be ignored. In cases where the adverse yaw is not negligible, a human pilot would 
typically provide a transient rudder input to counter the moment generated by the wings. 
Motivated by this intuitive solution, a static inversion control law of the form, 
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R R A

N
N

δ

δ

δ δ δ= −  (5.61)

could be implemented to cancel the aileron moment disturbance. However, because the rudder 
also generates a pure side force, the control law does not completely eliminate the aileron 
coupling and instead results in the following closed loop system, 
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 (5.62)
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 (5.63)

where the gravity coupling term has been neglected. Thus, the control law of equation (5.61) is 
seen to remove the effect of the aileron moment disturbance in exchange for a pure lateral 
force disturbance. In Appendix B, it is shown that by implementing the static inversion control 
law, the steady state lateral specific acceleration will be reduced by a factor F Wl l  per unit of 
aileron deflection. As previously discussed, the weathercock arm length is often not 
significantly less than the effective length to the fin. Thus, the percentage reduction in the 
steady state lateral specific acceleration when the control law of equation (5.61) is 
implemented is typically quite limited and must be weighed up against the added complexity 
of implementing the control law at all. 

Given the arguments above, the aileron coupling into the directional dynamics will be ignored 
for the purposes of the lateral specific acceleration control system design. It will be assumed 
that either the coupling is naturally negligible (or at least constitutes a negligible disturbance 
to the lateral specific acceleration control system), or its effect can be made negligible by the 
static inversion control law of equation (5.61). For less conventional aircraft with a significant 
adverse yaw coupling, an alternative control strategy based on the full MIMO lateral dynamics 
should be sought. 

5.3.2 Lateral specific acceleration controller design 

Given the analysis of the previous section, the lateral specific acceleration controller design 
strategy is as follows. Firstly, with the gravity and aileron disturbances ignored, the full 
directional dynamics (including side force due to rudder and yaw rate) are used to design a 
controller that allows the Dutch Roll mode poles to be moved arbitrarily. The purpose of this 
controller is purely for stability augmentation and it does not seek to regulate the lateral 
specific acceleration at all. It is assumed that a timescale separation exists or can be enforced 
through feedback between the velocity magnitude and air density, thus allowing these states to 
be treated as parameters in the controller. 

A second, outer level controller is then designed with the sole purpose of regulating the lateral 
specific acceleration. The controller also ensures that the closed loop lateral specific 
acceleration regulation bandwidth does not exceed the frequency bound of equation (5.59), 
which in turn implies a practically feasible controller. For the design of this control system it is 
assumed that the stability augmentation controller above places the natural directional 
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dynamics poles such that a timescale separation exists to the outer regulating controller. This 
assumption allows the full dynamic model from rudder to lateral specific acceleration to be 
approximated by the steady state gain. Doing this significantly reduces the complexity of the 
lateral specific acceleration regulation controller. Furthermore, the assumption does not 
typically place unreasonable constraints on the stability augmentation controller since as 
discussed in section 5.3.1 the natural frequency of the Dutch Roll mode poles is typically 
already greater than the NMP zero frequency. 

Although a number of other control strategies do exist for regulating the lateral specific 
acceleration, the above approach results in a simple, generic control law that is practically 
feasible for most aircraft. The stability augmentation and regulation phases above could be 
combined into a single control law where the full directional dynamics model is taken into 
account at all times. However, this would result in an overly complicated controller with 
marginal improvement in pole placement accuracy. 

5.3.2.1 Directional stability augmentation 

Define the stability augmentation control law, 

 
RR R B W RK R K Bδ δ= − − +  (5.64)

where 
RRδ  will be used as an input for the regulation control law. Substituting the control law 

into the directional dynamics is shown in Appendix B to give, 
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 (5.65)

with, 

 
1

1 R
B

Y
X K

m
δ

−
 

= + 
 

 (5.66)
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m

′ = +  (5.67)

Appendix B shows that the closed loop poles are well approximated by the roots of the 
following characteristic equation, 
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 (5.68)

given that the following constraints hold, 
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These constraints become, 
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when the characteristic lengths of equations (5.55) to (5.57) are substituted. Both constraints 
are typically easily satisfied due to the similar length of the damping arm, weathercock arm 
and effective length to the fin in conventional aircraft. The similarity in these lengths implies 
that the denominators of the terms on the right hand side of equations (5.71) and (5.72) are 
small and thus that the terms themselves are large. Thus, although the designer needs to remain 
aware of the above bounds on the stability augmentation gains, for typical aircraft parameters 
and directional dynamics pole locations, these bounds do not come into effect. Continuing 
with the controller design, given the desired directional dynamics characteristic equation, 

 2
1 0( )c s s sα α α= + +  (5.73)

the coefficients of the characteristic polynomial of equation (5.68) can be matched to yield the 
stability augmentation feedback gains, 
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 (5.75)

A special case of the above control law is obtained when the lateral specific acceleration 
feedback gain is manually set to zero. When this is done, the characteristic equation of 
equation (5.68) becomes, 
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 (5.76)
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From this equation it is clear that the remaining yaw rate feedback does not affect the natural 
frequency of the open loop directional dynamics poles and therefore only affects the damping. 
Thus, this modified control law is particularly attractive when the open loop natural frequency 
of the directional dynamics is acceptable since it results in a significant reduction in the 
calculations required for the stability augmentation feedback gains. For typical aircraft, there 
is little need to change the Dutch Roll mode frequency other than for timescale separation 
purposes, making the simplified control law an attractive practical approach. Thus, for this 
special case of the stability augmentation control law, the feedback gains can be written as 
follows, 

 2
R

zz R
R n

zz

YI NK
N mV I
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δ

ζω
 

= + + 
 

 (5.77)

 0BK =  (5.78)

with, 
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Y NN
mV I I

β βω = +  (5.79)

where the design freedom is left to selecting only the damping ratio (ζ ) for the directional 
dynamics poles. If however, the full controller with feedback gains of equations (5.74) and 
(5.75) is used then the design freedom is left to fully selecting the desired closed loop pole 
positions such that the feedback gain constraints of equations (5.71) and (5.72) are satisfied. 
Selection of the closed loop poles will be discussed further in section 5.3.3. 

5.3.2.2 Lateral specific acceleration regulation 

With the stability augmentation controller of the previous section in place and the assumption 
that the closed loop directional dynamics poles operate on a much faster timescale than the 
lateral specific acceleration regulator will, the transfer function from rudder through to lateral 
specific acceleration can be well approximated as follows, 

 
RW ss RB K δ≈  (5.80)

Here, ssK  is the steady state gain of the transfer function and is calculated in Appendix B to be, 
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 (5.81)

given that the condition of equation (5.72) holds. Note that 0α  in equation (5.81) refers to the 
final term in the desired characteristic equation of equation (5.73). If the simplified stability 
augmentation controller with feedback gains of equations (5.77) and (5.78) is used then 0α  in 
the above equation should be replaced with 2

nω  from equation (5.79). 
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An integral controller is designed to regulate the lateral specific acceleration. Integral control 
will ensure that the closed loop system is insensitive to parameter uncertainty that will corrupt 
the steady state gain of equation (5.81). The frequency of the closed loop integrator pole is 
limited by the bound of equation (5.59). This pole will dominate the lateral specific 
acceleration response and ensure that a practically feasible controller is designed. The stability 
augmentation controller of the previous section will serve to provide fast disturbance rejection 
but will not dominate the gross lateral specific acceleration response. Define the control law, 

 
RR E BK Eδ = −  (5.82)

 
RB W WE B B= −  (5.83)

where 
RWB  is the reference lateral specific acceleration command. The closed loop dynamics 

are then, 

 [ ] [ ]1
RB ss E B WE K K E B= − + −  (5.84)

with closed loop characteristic equation, 

 0ss Es K K+ =  (5.85)

Given the desired characteristic equation or equivalently pole location, 

 0( )c s sα α= +  (5.86)

the integrator feedback gain can be calculated as follows, 

 0
E

ss

K
K
α

=  (5.87)

The design freedom is left to choosing the integrator pole bearing in mind the frequency 
constraint of equation (5.59). It should be noted that the frequency constraint of equation 
(5.59) will typically enforce a lateral specific acceleration regulation bandwidth that violates 
the timescale separation condition to velocity magnitude and air density. Practically however, 
this is not of major concern since the velocity magnitude and air density will be held relatively 
constant by outer guidance loop controllers. Thus, for the controller designed in this section, 
the velocity and air density can simply be updated by a low pass filtered version of the actual 
signal. 

5.3.3 Selection of the closed loop poles 

With the design freedom reduced to that of pole placement, the controller design of the 
previous subsections ensures that the closed loop directional dynamics remain invariant for all 
point mass kinematics states. For aircraft that operate about a nominal dynamic pressure this is 
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an ideal control strategy since it provides the simplest interface with the outer guidance level 
controllers. However, as discussed in sections 4.2.5 and 5.2.2, when the dynamic pressure 
changes significantly (more particularly when it is reduced significantly), then the controller 
design of the previous section would quickly result in problems such as actuator saturation. 

To avoid these problems, fixed and variable pole placement strategies can again be employed. 
For example, the bandwidth of the stability augmentation directional controller could be 
scheduled to be some factor (or multiple) of the NMP zero frequency. This would tend to 
ensure that the closed loop bandwidth remained practically feasible over large dynamic 
pressure ranges and thus avoid actuator saturation. A second strategy could be to schedule the 
stability augmentation bandwidth with the open loop natural frequency of the directional 
dynamics. This would have a very similar result to that of the previously mentioned strategy. 
However, an added advantage is that it would naturally lend itself to the simplified stability 
augmentation controller design with gains of equations (5.77) and (5.78). 

A final strategy for implementing variable pole placement is again to design the directional 
controller in a NNDT frequency domain. This strategy was employed for the normal specific 
acceleration controller in section 4.2.6 and the roll rate controller in section 5.2.3. The analysis 
of the following subsection will show that by normalising the states, controls, outputs and 
time, the directional dynamics become largely invariant. This allows a single controller to be 
designed to place the directional dynamics poles in a NNDT frequency plane which ultimately 
results in dimensional poles that remain practically feasible. 

5.3.4 NNDT lateral specific acceleration controller design 

Consider the directional dynamics of equations (5.52) and (5.53). Define the following non-
dimensional states, controls and outputs, 

 β β′ ≡  (5.88)

 
2 a

bR R
V

′ ≡  (5.89)

 R Rδ δ′ ≡  (5.90)

 W W
mB B
qS

′ ≡  (5.91)

Given the non-dimensional time definition of equation (4.66) and the non-dimensional time 
derivative definition of equation (4.68), the NNDT directional dynamics are shown in 
Appendix B to be, 
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 (5.92)
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where, 
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with, 
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and g ′  and V ′  from equations (4.67) and (4.74) respectively. In equations (5.94) and (5.95), 

Rm′  is the aircraft’s mass normalised to a lateral reference air mass and zr′  is the normalised 
pitch radius of gyration. Note that it has been assumed that, 

 
RY RC k  (5.99)

which is equivalent to the standard aircraft assumption of equation (5.5). When the ground 
speed magnitude and the airspeed magnitude are equivalent, then zk  is constant and the 
directional dynamics are only a function of the air density through the gain Rk . Investigation 
of the characteristic equation of the NNDT closed loop poles yields, 

 ( ) ( ) ( )2( )
R Ry z n z y n R np s s C k C s k C C k C

β β β
′ ′ ′= − + + +  (5.100)

From equation (5.100), it is clear that under zero wind conditions the NNDT directional 
dynamics poles are not a function of the velocity magnitude and that only the natural 
frequency of the open loop NNDT directional dynamics poles changes with the air density. 
Because air density changes slowly with altitude, the open loop directional dynamics poles can 
be thought of as relatively constant about a nominal altitude. Investigating the zeros from 
rudder to lateral specific acceleration, the calculations in Appendix B show that the 
characteristic equation for the zeros is, 
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Define now the following normalised characteristic lengths, 
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where Wl′  is the normalised weathercock arm length, Fl′  is the effective normalised length to 
the fin, Dl′  is the effective normalised damping arm length and all lengths are relative to the 
centre of mass. Completing the square and following the arguments provided in section 5.3.1 
yields the following equation for the zero positions in the NNDT frequency plane, 

 ( ) ( )1,2
1
2 Rz y F D R z y F Wz k C l l k k C l l

β
′ ′ ′ ′ ′= − ± − −  (5.105)

With reference to the analysis done in section 4.2.2, the NMP upper bound imposed on the 
natural frequency of the NNDT normal dynamics poles is, 

 ( )1
3n R z y F Wk k C l l

β
ω′ ′ ′< − −  (5.106)

Note that under zero wind conditions the zeros and thus the bound, change only with the air 
density through Rk . Thus, about a nominal altitude, the zeros remain relatively fixed in the 
NNDT frequency plane. With the rudder to lateral specific acceleration dynamics dependent 
only on air density i.e. not on velocity magnitude or any other point mass kinematics states, 
the normalised frequency domain provides a particularly useful design space for what will 
ultimately be a variable pole placement control system. Fixing the poles in the non-
dimensional frequency plane will have the effect of varying the poles appropriately in the 
dimensional frequency plane such that they remain practically feasible relative to the NMP 
frequency constraint. Note that when operating about a nominal air density, the feedback gains 
to fix the poles in the NNDT frequency plane will be constant and can be calculated offline. 

A controller of the same form as that designed in section 5.3.2 is designed to place the 
directional dynamics poles in the NNDT frequency plane. Define the stability augmentation 
control law, 

 
RR R B W RK R K Bδ δ′ ′ ′ ′ ′ ′= − − +  (5.107)

where 
RRδ ′  will be used as an input for the regulation part of the control law. It is shown in 

Appendix B that given the desired closed loop characteristic equation, 
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 ( )2
1 0( )c s s sα α α′ ′ ′= + +  (5.108)

the feedback gains that result in the desired poles are, 
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(5.110)

given that the following constraints hold, 
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These constraints are the NNDT equivalent of the constraints presented in equations (5.71) and 
(5.72). A special case of the above control law is obtained when the lateral specific 
acceleration feedback gain is manually set to zero. When this is done the feedback gains 
become, 

 ( )1 2
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R y z n n
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K C k C
k C β

δ

ζω′ ′= + +  (5.113)

 0BK ′ =  (5.114)

and the closed loop natural frequency in the NNDT frequency plane remains, 

 ( )Rn z y n R nk C C k C
β β

ω′ = +  (5.115)

Again note that this NNDT frequency will change only with large air density changes or large 
differences between the airspeed and ground speed. With the stability augmentation controller 
in place and the assumption that the closed loop directional dynamics poles are frequency 
separated from the desired closed loop bandwidth of the outer regulation control law, the 
transfer function from rudder through to lateral specific acceleration can be well approximated 
as follows, 

 
RW ss RB K δ′ ′ ′≈  (5.116)

Here ssK ′  is the steady state gain of the transfer function and is calculated in Appendix B to be, 
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given that the condition of equation (5.112) holds. Note that 0α  in equation (5.117) refers to 
the final term in the desired characteristic equation of equation (5.108). If the simplified 
stability augmentation controller with feedback gains of equations (5.113) and (5.114) is used 
then 0α  in the above equation should be replaced with 2

nω′  from equation (5.115). 

An integral controller is designed to regulate the lateral specific acceleration. The frequency of 
the closed loop integrator pole is limited by the bound of equation (5.106). The pole will thus 
dominate the lateral specific acceleration response and ensure a practically feasible control 
system. Define the control law, 

 
RR E BK Eδ ′ ′ ′= −  (5.118)

 
RB W WE B B′ ′ ′= −  (5.119)

where 
RWB′  is the reference non-dimensional lateral specific acceleration. Then given the 

desired characteristic equation, 

 0( )c s sα α′ ′= +  (5.120)

it is straightforward to show that the integrator feedback gain must be, 

 0
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ss

K
K
α′ =
′

 (5.121)

to place the pole as desired. 

5.4 Conclusion 
This chapter covered the detailed design and associated analysis of the roll rate and lateral 
specific acceleration controllers (bottom two controllers on the right hand side of Figure 3.1). 
These controllers together with the analysis that lead up to their design form part of the 
primary contribution of this dissertation to the field of aircraft flight control. Showing that 
under mild, practically feasible conditions the MIMO lateral dynamics decouple into roll and 
directional dynamics, was the primary analysis contribution of this chapter. This decoupling in 
turn greatly simplified the resulting decoupled system analysis and control law design. 

Pole placement was used for the roll control system with the rudder coupling analysed as a 
disturbance input. The directional control system was split into an inner stability augmentation 
part and outer acceleration regulation part. This split in the design was motivated by the far 
more harsh NMP zero frequency constraint that is typically found in the directional dynamics. 
NNDT variants of the roll rate and lateral specific acceleration controllers were also presented 
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as elegant solutions to the variable pole placement problem. All controllers were presented as 
closed form parameterised solutions to allow them to be readily applied to different aircraft. 
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Chapter 6 – Outer Loop Guidance Controllers 

 

 

Chapter 6 

Outer Loop Guidance Controllers 

 

With the inner loop controllers designed, the aircraft can now be viewed as a point mass under 
the influence of axial, lateral and normal specific accelerations and an inertially fixed 
gravitational acceleration. The attitude of the wind axis system determines the direction of 
application of the wind axes specific acceleration coordinates in inertial space. The roll rate 
inner loop controller provides the means with which to rotate this axis system about its axial 
unit vector i.e. the velocity vector. 

This chapter focuses on developing a guidance level controller to steer the aircraft through 
inertial space. The guidance controller commands the inner loop specific acceleration and roll 
rate controllers (virtual actuators) and consequently is abstracted from the details of the 
specific aircraft being controlled. The chapter begins in section 6.1 with a rigorous 
investigation of the guidance level dynamics. The section introduces the concept of a feasible 
reference trajectory and develops the guidance error dynamics. In section 6.2, a number of 
possible guidance level control strategies are briefly discussed. The strategies typically trade 
computational complexity for accuracy of guidance control. In section 6.3, one particular 
guidance controller discussed in section 6.2 is developed in detail. This novel controller has 
the advantage that it provides an intuitive, closed form, computationally efficient guidance 
control solution that is practically applicable to a large class of aircraft. 

6.1 Investigation of the guidance level dynamics 
The guidance level dynamics are the point mass kinematics of equations (2.46) to (2.50) 
together with four possible first order lag abstraction models for the virtual actuator signals 
regulated by the inner loop controllers. These dynamics are summarised below for 
convenience, 

Point mass kinematics: 
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 (6.1)
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 1 1z
W WW

y
W WW

Q Cg
R BV Vg

− −   
= +    

    
 (6.4)

 
13

23

33

x WI
W
y WI

W
z WI
W

g e
g e g
g e

   
   =   
      

 (6.5)

and potential virtual actuator lag models, 
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= − +  (6.7)
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= − +  (6.8)
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C C
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τ τ

= − +  (6.9)

The objective of the guidance level controller is to regulate the motion of the wind axis system 
about a feasible reference trajectory. In order to fly coordinated turns, this should be done 
using only the axial and normal specific acceleration inputs together with the roll rate about 
the velocity vector. A feasible reference trajectory is one that satisfies the guidance level 
dynamics above as well as any actuator/state constraints. Note that when all virtual actuator 
lag dynamics can be ignored then the guidance dynamics are completely kinematic and the 
reference trajectory need only be kinematically feasible. 

To incorporate the concept of a reference trajectory into the guidance dynamics, the total 
position, velocity and acceleration vectors of the aircraft’s centre of mass are written as the 
sum of a reference and error to reference vector as follows, 

 = +WI WR RIP P P  (6.10)

 = +WI WR RIV V V  (6.11)

 = +WI WR RIA A A  (6.12)
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where the superscript R  refers to a reference axis system. Substituting for WIP , WIV  and WIA  
into the kinematic relationships of equations (2.1) and (2.2) gives, 

 
I

d
dt

+ = +WR RI WR RIP P V V  (6.13)

 
I

d
dt

+ = +WR RI WR RIV V A A  (6.14)

For the reference trajectory to be feasible it must satisfy the kinematic relationships of 
equations (A.39) and (A.40), and thus, 

 
I

d
dt

=RI RIP V  (6.15)

 
I

d
dt

=RI RIV A  (6.16)

Combing equations (6.13) to (6.16) gives the position and velocity error dynamics, 

 
I

d
dt

=WR WRP V  (6.17)

 
I

d
dt

=WR WRV A  (6.18)

Further investigation of the total acceleration vector error in equation (6.12) yields the 
following relationship, 
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 (6.19)

where use of equations (2.40) and (2.3) has been made as well as the fact that the gravitational 
acceleration vector is inertially fixed and invariant with position i.e. a uniform gravitational 
field. In words, equation (6.19) states that the total acceleration of the wind axis system with 
respect to the reference axis system is equal to the specific acceleration of the wind axis 
system with respect to the reference axis system. Thus, equation (6.18) can be rewritten as 
follows, 

 
I

d
dt

=WR WRV Σ  (6.20)

To express the attitude error between the wind and reference axis systems, a number of 
techniques can be employed. One method would be to continue in the same manner as above 
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and write the unit vectors of the wind axis system as the vector sum of the respective unit 
vectors of the reference axis system and error vectors as follows, 

 = +W WR Ri i i  (6.21)

 = +W WR Rj j j  (6.22)

 = +W WR Rk k k  (6.23)

Then the wind axis system attitude dynamics become, 

 
I

d
dt
   + + + = × + + +   
WR R WR R WR R WI WR R WR R WR Ri i j j k k ω i i j j k k  (6.24)

The angular velocity of the wind axis system with respect to inertial space can be written as 
the sum of the angular velocity of the reference axis system with respect to inertial space and 
the angular velocity of the wind axis system with respect to the reference axis system as 
follows, 

 = +WI WR RIω ω ω  (6.25)

Substituting this into equation (6.24) and noting that for the reference trajectory to be feasible 
its unit vectors must also satisfy the attitude dynamics of equation (A.41) as follows, 

 
I

d
dt
   = ×   
R R R RI R R Ri j k ω i j k  (6.26)

then the wind axis system attitude dynamics of equation (6.24) reduce to the attitude error 
vector dynamics below, 
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d
dt
     = × + + + + ×     
WR WR WR WR WR R WR R WR R RI WR WR WRi j k ω i i j j k k ω i j k  (6.27)

Rewriting the vector derivative in the above equation so that the error vector dynamics are 
taken with respect to the reference axis system yields the final error vector dynamics, 

 R

d
dt
   = × + + +   

   = × + ×   

WR WR WR WR WR R WR R WR R

WR WR WR WR WR R R R

i j k ω i i j j k k

ω i j k ω i j k
 (6.28)

A second method of describing the wind axis system attitude via the reference axis system is 
to maintain the attitude of the reference axis system with respect to inertial space and then to 
maintain the attitude of the wind axis system with respect to the reference axes. The attitude 
dynamics of the wind axis system with respect to the reference axis system are by definition, 
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R

d
dt
   = ×   
W W W WR W W Wi j k ω i j k  (6.29)

where the angular velocity of the wind axis system with respect to the reference axis system 
can be obtained from equation (6.25). 

Although both attitude description methods described are equally valid, the attitude difference 
method described first displays a few complications and tends to provide a less intuitive 
solution compared to the relative attitude method described second. To see this, first consider 
that the attitude error vectors used in the attitude difference method can be orientated in any 
direction with respect to the reference axis system (even for very small attitude errors). Thus, 
more complicated non-singular attitude parameterisations would need to be used to maintain 
both the gross attitude (through the reference axis system) and the attitude error. On the other 
hand, when the guidance controllers are operating properly the relative attitude of the wind 
axis system with respect to the reference axis system will be small. Thus the relative attitude 
method allows for simple parameterisations with singularities to be used to describe the 
attitude of the wind axis system with respect to the reference axis system without penalty. A 
more complicated non-singular attitude parameterisation could instead be used for describing 
the reference axis system attitude which could potentially move through all attitudes with 
respect to inertial space. 

A second motivation for the relative attitude description (that is linked to the first) arises when 
the perturbations between the wind and reference axis systems are assumed small and the error 
dynamics are linearised about the reference trajectory for control system design purposes. In 
this case, both attitude description techniques result in attitude error dynamics that break down 
at some attitudes when the attitude is parameterised by a set of parameters that involve a 
‘background’ constraint e.g. quaternions with their normalisation constraint and generalised 
DCM parameters with their normalisation and orthogonality constraints. To see this for the 
DCM parameter case, consider that for small perturbations, the attitude difference and relative 
attitude dynamics of equations (6.28) and (6.29) would reduce to, 
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dt
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WR WR WR WR R R Ri j k ω i j k  (6.30)
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W W W WR W W Wi j k ω i j k  (6.31)

respectively, where the symbol ∆  has been used to denote a small perturbation in the vectors. 
Note that the first term of equation (6.28) has completely disappeared in the linearisation 
process since it was essentially a product of two sets of small perturbations. At certain 
reference attitudes, the cross products on the right hand side of equations (6.30) and (6.31) will 
yield zero. For example, when the wind, reference and inertial axis systems are all aligned, 
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then the three main diagonal elements on the right hand side of equations (6.30) and (6.31) 
will all be exactly zero. Thus, if general DCM parameters are used in each case, the three main 
diagonal attitude parameters will appear as uncontrollable open loop integrators in the 
linearised guidance dynamics. If a guidance controller architecture involving online pole 
placement or optimal control system synthesis was used then this problem would cause 
singularities in the online solution. Of course, these singularities are only as a result of the 
linearisation process and the attitude parameterisation used. The nonlinear system in actual 
fact remains completely controllable through the background constraint equations that the 
linear controllers ignore. 

The arguments of the previous paragraph show that both attitude description methods can 
break down when linearised using constraint based attitude parameterisations. However, as 
discussed in the first point on motivating the relative attitude description, for small attitude 
errors, the attitude of the wind axis system with respect to the reference axis system can be 
parameterised using a simple singular parameterisation such as Euler 3-2-1 angles without 
penalty. The Euler parameterisations do not have background constraints and can be shown to 
linearise without resulting in seemingly uncontrollable states. Although interesting singularity 
switching methods could be used to allow different sets of Euler angles to parameterise the 
attitude difference dynamics, the relative attitude method provides a mathematically sound, 
intuitive approach with no extra logic required. For this reason it will be used in the remaining 
analysis of this section. 

Finally, if virtual actuator lag dynamics are present then the reference trajectory will also 
include the lag states as part of the trajectory. With reference to equations (6.6) to (6.9), the lag 
states can be written as the sum of reference and perturbation states as follows, 

 
E RW W WP P P= +  (6.32)

 
E RW W WA A A= +  (6.33)

 
E RW W WB B B= +  (6.34)

 
E RW W WC C C= +  (6.35)

where the subscript R  denotes a reference variable and the subscript E  denotes a perturbation 
variable. The full command inputs can also be written as the sum of reference and perturbation 
command inputs as follows, 

 
C C CE RW W WP P P= +  (6.36)

 
C C CE RW W WA A A= +  (6.37)

 
C C CE RW W WB B B= +  (6.38)
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C C CE RW W WC C C= +  (6.39)

where the subscripts used have the same meaning as described above. Then, substituting 
equations (6.32) to (6.39) into the actuator lag dynamics of equations (6.6) to (6.9) and noting 
that for the reference trajectory to be feasible, 

 1 1
R R CRW W W

P P

P P P
τ τ

= − +  (6.40)

 1 1
R R CRW W W

A A

A A A
τ τ

= − +  (6.41)

 1 1
R R CRW W W

B B

B B B
τ τ

= − +  (6.42)

 1 1
R R CRW W W

C C

C C C
τ τ

= − +  (6.43)

then the error dynamics become, 

 1 1
E E CEW W W

P P

P P P
τ τ

= − +  (6.44)

 1 1
E E CEW W W

A A

A A A
τ τ

= − +  (6.45)

 1 1
E E CEW W W

B B

B B B
τ τ

= − +  (6.46)

 1 1
E E CEW W W

C C

C C C
τ τ

= − +  (6.47)

With all of the error dynamics derived they can now be summarised concisely. Firstly, the 
vector derivatives of equations (6.17) and (6.20) are converted such that they are taken with 
respect to the reference axis system. The vectors in these two equations are then coordinated 
into reference axes to give the coordinate vector dynamics below, 

 = − RI
R

WR WR WR
R R Rω

P V S P  (6.48)

 = − RI
R

WR WR WR
R R Rω

V Σ S V  (6.49)

with, 

 T
 = − 

WR WR WI RI
R W RΣ DCM Σ Σ  (6.50)

With reference to Appendix A, coordinating all of the vectors of the relative attitude dynamics 
of equation (6.29) into reference axes gives, 
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 d
dt
   = −   WR

W

WR WR
ω

DCM S DCM  (6.51)

with, 

  = −  
WR WI WR RI
W W Rω ω DCM ω  (6.52)

Expanding the coordinate vector guidance error dynamics of equations (6.48) to (6.52) and 
combining these with the optional actuator lag error dynamics of equations (6.44) to (6.47), 
the guidance error dynamics can be written as follows, 

 
0

0
0

WR WR WR
x x R R x
WR WR WR
y y R R y
WR WR WR
z z R R z

P V R Q P
P V R P P
P V Q P P

     − 
      = − −      
      −      

 (6.53)

 
0

0
0

WR WR WR
x x R R x
WR WR WR
y y R R y
WR WR WR
z z R R z

V A R Q V
V A R P V
V A Q P V

     − 
      = − −      
      −      

 (6.54)

 
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

0
0

0

WR WR WR WR WR WR WR WR
W W

WR WR WR WR WR WR WR WR
W W

WR WR WR WR WR WR WR WR
W W

e e e R Q e e e
e e e R P e e e
e e e Q P e e e

     −
     = − −     
     −     

 (6.55)

with, 

 
11 12 13

21 22 23

31 32 33

TWR WR WR WR
x W R
WR WR WR WR
y W R
WR WR WR WR
z W R

A e e e A A
A e e e B B
A e e e C C

       
       = −       
             

 (6.56)

 
11 12 13

21 22 23

31 32 33

WR WR WR WR
W W R
WR WR WR WR
W W R
WR WR WR WR
W W R

P P e e e P
Q Q e e e Q
R R e e e R

      
      = −      
            

 (6.57)

 ( )

31 13 32 23 33 33

21 13 22 23 23 33

11 12 13

WR RI WR RI WR RI
W

WR RI WR RI WR RI
WW

WR WR WR WR WR WR
W R x y z

Ce e e e e e
g

BQ e e e e e e
R V V e V e V e

− − − −  
+   + +    =  + + + 

 (6.58)

and, 

 1 1
E E CEW W W

P P

P P P
τ τ

= − +  (6.59)

 1 1
E E CEW W W

A A

A A A
τ τ

= − +  (6.60)
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 1 1
E E CEW W W

B B

B B B
τ τ

= − +  (6.61)

 1 1
E E CEW W W

C C

C C C
τ τ

= − +  (6.62)

where the definition of the coordinates used is straightforward to obtain from the coordinate 
vector equations of (6.48) to (6.52). Finally, note that the guidance error dynamics together 
with the reference trajectory dynamics are equivalent to original guidance dynamics of 
equations (6.1) to (6.9). 

6.2 Guidance controller design strategies 
The previous section investigated the guidance level dynamics. The notion of a feasible 
reference trajectory was introduced and the guidance dynamics were adapted to become 
guidance error dynamics. The objective of the guidance control system can now be modified 
to that of driving the guidance error states to zero with the desired dynamic response. Before 
continuing note that due to the largely kinematic nature of the guidance dynamics they contain 
very little uncertainty. The only uncertainty that exists is that associated with the virtual 
control inputs and their lags and that of the gravitational model. The gravitational model 
typically has very little uncertainty. Furthermore, it is one of the primary purposes of the inner 
loop controllers to ensure robust, predictable closed loop responses of the virtual control 
inputs and in so doing encapsulate any uncertainty before it leaks into the guidance dynamics. 

In this section three possible guidance control strategies are presented. Each strategy is 
discussed briefly in a purely qualitative fashion. The purpose of discussing a number of 
strategies is to sensitise the designer to the multitude of guidance level control strategies 
available within the manoeuvre autopilot architecture. Depending on the specific aircraft, 
mission profile and level of computational power available different guidance strategies can be 
adopted. In the following section, one of the guidance controllers discussed below is designed 
in detail. 

6.2.1 Receding horizon predictive control 

One possible strategy for regulating the guidance error dynamics is to employ RHPC [34-36]. 
This computationally intensive strategy allows the full nonlinear guidance error dynamics to 
be taken into account as well as any state and/or actuator constraints. 

The RHPC strategy involves solving a finite horizon optimal control problem at each sample 
instance of the controller. At a specific sample instance, the controller would seek to find the 
control input signal over the finite horizon that would result in optimal convergence of the 
guidance error state vector to the origin. To mathematically quantify the optimal solution, a 
cost function involving the state and control signals would typically be used. The RHPC 



CHAPTER 6– OUTER LOOP GUIDANCE CONTROLLERS 

 

104

strategy then uses only the initial portion of the optimal control solution before completely 
recalculating a new optimal convergence solution at some later stage. This new optimal 
solution would begin from the aircraft’s measured/estimated state and so incorporate feedback 
into the control solution. 

Although RHPC would arguably result in the most accurate guidance level controller, the 
computational burden of recalculating an optimal control solution to a nonlinear dynamics 
problem at each guidance control iteration would in most cases make its implementation 
impractical [13,36]. The control strategies presented in the following subsections will typically 
require far less computational power than that required by RHPC for a relatively small 
performance penalty. 

6.2.2 Linearisation and successive linearisation control 

When the guidance controller is functioning properly, the deviations of the wind axis system 
from the reference axis system should be small. Thus, for guidance controller design purposes, 
the nonlinear guidance error dynamics are well approximated by linearised guidance error 
dynamics about the reference trajectory. By constantly linearising about the reference 
trajectory, the Nonlinear Time Invariant (NTI) guidance control problem is converted to a 
Linear Time Varying (LTV) control problem. This is beneficial because far more formal 
methods exist for solving LTV problems than for NTI problems. Note it is here that it is 
important for the relative attitude description technique to be used in deriving the guidance 
attitude error dynamics of equation (6.51). This attitude description technique makes it feasible 
to use Euler angles, which linearise well, to parameterise the attitude of the wind axis system 
with respect to the reference axis system. 

With the guidance control problem reduced to a LTV regulation problem any appropriate LTV 
control strategy can be applied. Linear RHPC is one such strategy [45].  Another strategy is to 
constantly update the guidance feedback gains such that the closed loop poles of the LTV 
system remain invariant over time (although stability still needs to be investigated explicitly in 
this case since fixed pole placement is not a sufficient condition for stability of a LTV system 
[26]). A further strategy similar in nature to the preceding one is to design a Linear Quadratic 
Regulator (LQR) at each controller iteration. Finally, depending on the type of reference 
trajectory, the LTV dynamics may become Linear Time Invariant (LTI) e.g. during straight and 
level flight or a constant turn. With LTI dynamics, a constant feedback gain controller can be 
designed offline to solve the guidance control problem for a specific type of reference 
trajectory. These reference trajectory ‘building blocks’ can then be strung together to allow for 
full 3D manoeuvre guidance. 

Employing any of the above strategies is expected to result in a guidance controller that 
performs adequately. Successively linearising and designing an appropriate controller online at 
each guidance controller iteration can become computationally intensive. However, a fair 
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amount of the computational burden can be alleviated if as much as possible of the 
linearisation and controller design is done symbolically offline. 

6.2.3 Specific acceleration matching 

The design of all of the previously suggested guidance controllers is complicated by the fact 
that if turn coordination is desired then guidance accelerations can only be commanded in the 
plane instantaneously spanned by the Wi  and Wk  unit vectors. Thus, in order to reduce any 
lateral error between the wind and reference axis systems, the aircraft is required to roll the 
plane of acceleration via the roll rate command input. Consequently, the wind axis system 
attitude dynamics form an integral part of the guidance dynamics. 

Most aircraft however can roll to a specific bank angle very quickly. This is due to their 
typically low roll moment of inertia (relative to the other axes) and the large moment arm to 
the ailerons. If it is assumed that the time taken to roll to a specific bank angle is negligible in 
comparison to the time constants involved in the guidance level dynamics then the aircraft can 
be thought of as being capable of directing its specific acceleration vector instantaneously in 
three dimensional space. If it is further assumed that the axial and normal specific acceleration 
magnitudes are regulated by the inner loop controllers at bandwidths much greater than those 
involved in the guidance dynamics, then both the magnitude and direction of the aircraft’s 
specific acceleration vector in three dimensional space can be controlled instantaneously. 

Being able to instantaneously command the total specific acceleration vector in three 
dimensional space provides great potential for simplifying the guidance controller. It allows 
the aircraft to simply be viewed as a point mass, moving in inertial space under the influence 
of an instantaneously commandable specific acceleration vector. The guidance controller can 
thus operate using inertially coordinated vectors to generate the commanded specific 
acceleration coordinate vector in inertial axes. The aircraft then matches the desired specific 
acceleration immediately (relative to the position and velocity guidance bandwidths) by rolling 
to the correct angle and setting the axial and normal specific acceleration magnitudes 
appropriately. 

In the following section, a detailed design of the novel Specific Acceleration Matching (SAM) 
guidance controller is carried out. This guidance strategy yields a simple, closed form solution 
controller that is practically applicable to a large class of aircraft. Furthermore, it requires very 
little computing power and is capable of guiding an aircraft through the full kinematic flight 
envelope. 

6.3 Specific acceleration matching controller design 
The design of a guidance controller that orientates the aircraft to allow matching of the desired 
specific acceleration vector is carried out in this section. Critical to the design of this controller 
are the two assumptions listed below, 
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o The aircraft can direct its wind axis system normal unit vector in the plane 
perpendicular to the velocity vector at bandwidths much greater than those associated 
with the velocity and position dynamics. 

o The inner loop axial and normal specific acceleration controllers can regulate their 
respective accelerations at bandwidths much greater than those associated with the 
velocity and position dynamics. 

The first assumption essentially implies that the aircraft is capable of rolling to any ‘bank 
angle’ (although this is not strictly the correct term) in a negligibly small amount of time 
relative to the time constants involved with the point mass velocity and position dynamics. A 
frequency separation factor of approximately five between the respective controllers should be 
sufficient to ensure the timescale separation required. For a large class of aircraft, this 
assumption can be made to hold since aircraft roll dynamics are typically very fast. 

The second assumption implies that a timescale separation must exist between the regulated 
axial and normal specific acceleration dynamics and the regulated point mass velocity and 
position dynamics. Again a frequency separation factor of approximately five is typically 
sufficient. For most aircraft, the required timescale separation between the normal specific 
acceleration dynamics and the velocity and position dynamics can be made to hold. The 
timescale separation between the axial specific acceleration dynamics and the velocity and 
position dynamics on the other hand can be problematic. This is because the thrust actuator is 
most often significantly band-limited which in turn limits the practically achievable upper 
bandwidth of the axial specific acceleration controller. Thus, in all likelihood it is this 
timescale separation that will start to clip the maximum allowable velocity and position 
dynamics bandwidth if the SAM guidance controller is to be used. 

Methods of circumventing this problem do exist and will be the subject of future research as 
outlined in section 9.3. Briefly, the method of handling the problem involves using the axial 
specific acceleration to control only the velocity magnitude based on the dynamics of equation 
(2.47) and a combined dynamic inversion and pole placement control law. Two-dimensional 
cross track guidance is then achieved using specific acceleration matching with the remaining 
roll rate and normal specific acceleration actuators, where the timescale separation arguments 
hold well. This variation on the SAM control law also provides the opportunity for position 
based guidance (guidance errors determined as a function of the aircraft’s current position 
relative to the reference trajectory) as opposed to the time based guidance (guidance error 
determined by where the aircraft should be on the reference trajectory at a particular time) 
inherent in the control law to be introduced in this section. However, the control law in this 
section provides a good platform for the development of future guidance control laws and in a 
large number of cases will be practically feasible as seen in the examples of Chapter 8. 

With the two assumptions listed above in place the aircraft can be seen as capable of 
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immediately directing its specific acceleration vector in any direction in inertial space. To see 
this, consider that with no assumptions, the aircraft’s specific acceleration vector is 
constrained to lying in the wind axis system XZ-plane (for coordinated turns). With the second 
assumption in place, the specific acceleration vector can be commanded infinitely fast (relative 
to the velocity and position dynamics) but is still constrained to the wind axis system XZ-
plane. However, when the first assumption is added it implies that the XZ-plane can rotate 
about the wind axis system axial unit vector to any angle immediately (again relative to the 
velocity and position dynamics). With immediate rotation of the XZ-plane, it is clear that the 
specific acceleration vector can instantaneously be directed in any direction in inertial space.  

The above concept is critical to the simplicity of the SAM guidance controller. This is because 
it allows the controller to view the aircraft as a point mass moving in an inertial reference 
frame under the influence of an invariant gravity bias vector and the control of an 
instantaneously commandable three dimensional specific acceleration vector. The velocity and 
position controllers can thus be designed using inertially coordinated vectors which in turn 
results in linear, decoupled dynamics. Under the two assumptions stated at the beginning of 
this section, the commanded inertially coordinated specific acceleration vector is then simply 
transformed to axial and normal specific acceleration commands together with a normal 
specific acceleration direction command. An inner normal specific acceleration direction 
controller is then responsible for rolling the XZ-plane such that the desired specific 
acceleration can be realised. With this guidance controller architecture, the velocity and 
position controllers have no concern for the attitude of the aircraft (attitude of the wind axis 
system). The wind axis system attitude command results merely as a by-product of the 
commanded specific acceleration and velocity vector direction. This in turn greatly simplifies 
reference trajectory generation since no attitude dynamics need be satisfied by the reference 
trajectory. Reference trajectory generation will be the topic of Chapter 7. 

Subsections 6.3.1 to 6.3.3 discuss the three parts of the SAM guidance controller. In 
subsection 6.3.1, a normal specific acceleration vector direction controller is designed. This 
controller is responsible for steering the wind axis system normal unit vector in the plane 
perpendicular to the velocity vector i.e. perpendicular to the wind axis system axial unit vector. 
Although the final control law for this part of the controller is nonlinear, it will be seen that the 
core of the controller is a proportional feedback control law operating on a purely linear plant. 
Once this controller has been designed, subsection 6.3.2 develops a specific acceleration 
transformation algorithm. This algorithm is used to transform the coordinates of a desired 
specific acceleration vector in inertial axes to axial and normal specific acceleration 
commands in wind axes together with a normal specific acceleration direction command. 
Finally in subsection 6.3.3, outer velocity and position controllers are designed using inertially 
coordinated vectors with the specific acceleration coordinate vector as a virtual control input. 
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6.3.1 Normal specific acceleration vector direction controller 

The normal specific acceleration vector direction controller is responsible for steering the 
wind axis system normal unit vector Wk  in the plane perpendicular to the velocity vector i.e. 
normal to the wind axis system axial unit vector Wi . To this end, define the commanded wind 
axis system normal unit vector CWk . For this command vector to always remain in the plane 
perpendicular to Wi  the following constraint relationship must hold, 

 0⋅ =CW Wk i  (6.63)

There are a number of ways to quantify the error between the commanded and actual wind 
axis system normal unit vectors. One particularly simple way is to use the angle between the 
two vectors. Define the error angle φ  as the angle between Wk  and CWk  when Wk  is rotated 
positively about Wi . Note that the error angle is not in general equivalent to the commonly 
used bank/roll angle. The task is now reduced to designing a control system that drives the 
error angle to zero over time. As such, the normal specific acceleration vector direction 
controller will equivalently be referred to as the error angle controller in this document. 

Investigating the error angle dynamics, a relationship between the error angle and the 
commanded and actual wind axis system normal unit vectors can be obtained through the dot 
product operator as follows, 

 cos cosφ φ⋅ = =C CW WW Wk k k k  (6.64)

Taking the time derivative of the scalar quantities on both side of equation (6.64) gives, 

 ( )cosd d
dt dt

φ = ⋅CW Wk k  (6.65)

Expanding the right hand side and noting that the derivative of a scalar quantity can be taken 
with respect to an axis system of choice yields, 

 

( )

cos

C

W W

W

d d d
dt dt dt

d
dt

φ = ⋅ + ⋅

 
= + × ⋅  
 

= × ⋅

C C

C C C

C C

W WW W

W W W W W

W W W W

k k k k

k ω k k

ω k k

 (6.66)

where the derivatives have been taken with respect to wind axes to simplify the mathematics 
involved. The axis system CW  has been used in equation (6.66). This right handed orthogonal 
axis system is defined with its axial unit vector coinciding with Wi  and its normal unit vector 
coinciding with CWk . Returning to the constraint of equation (6.63) and noting that for this 
constraint to hold for all time its first time derivative must also be zero. Thus, 
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( )
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i ω k

 (6.67)

The above equation implies that the cross product in parenthesis must lie in the plane 
perpendicular to Wi . Since CWk  already lies in this plane, the only way the result of the cross 
product can remain in the plane is if CW Wω  only has a component in the Wi  direction. This 
result makes intuitive sense. Writing CW Wω  as follows, 

 ( )CW WP P

= −

= −

C CW W W I WI

W

ω ω ω

i
 (6.68)

where 
CWP  is the roll rate of the commanded normal specific acceleration unit vector. 

Substituting the result into equation (6.66) gives, 

 

( )( )
( )
( ) ( )

cos

cos / 2

C

C

C

W W

W W

W W

d P P
dt

P P

P P

φ

π φ

= − × ⋅

= − − ⋅

= − − −

C

C

WW W

W W

i k k

j k  (6.69)

Simplifying the left and right hand sides of equation (6.69) yields, 

 ( )sin sin
CW WP Pφ φ φ− = − −  (6.70)

and so, 

 ( ) sin
sinCW WP P φφ

φ
= −  (6.71)

For those values of φ  equal to nπ  where n∈ , L’Hospital’s rule can be used to show that the 
intuitive result below holds for all φ , 

 
CW WP Pφ = −  (6.72)

The linear dynamics of equation (6.72) are the error angle dynamics. These dynamics are 
applicable at all attitudes and require only that the constraint of equation (6.63) remains valid 
at all times. Assume now the following, 

o The roll rate about the velocity vector is available to the error angle controller as a zero 
lag virtual control input. 
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Although as discussed later in this section this assumption is not required for the design of the 
error angle regulator, it does result in a simpler, pole placement type control law when valid. 
Furthermore, since most aircraft have very fast roll rate dynamics, it is a practically feasible 
assumption. For these reasons, development of an error angle control law valid under the 
assumption listed above is deemed worthwhile. 

The assumption allows the virtual roll rate actuator lag dynamics of equation (6.6) to be 
ignored in the design of the error angle controller. With roll rate lag dynamics ignored, the 
closed loop error angle dynamics can be set arbitrarily through a proportional feedback control 
law. Defining the control law below, 

 
CW WP P Kφφ= +  (6.73)

where 
CWP  acts as a feed-forward term that will be determined by the specific reference 

trajectory being flown. With the feed-forward term in the control law, the feedback term is 
simply responsible for regulating the effects of any disturbances to the error angle. 
Substituting the control law of equation (6.73) into the dynamics of equation (6.72), the closed 
loop error angle dynamics become, 

 0Kφφ φ+ =  (6.74)

with a closed loop pole at, 

 s Kφ= −  (6.75)

The feedback gain is determined by selecting an appropriate error angle pole location. The 
closed loop bandwidth is limited from above through the zero lag virtual actuator assumption. 
It is also limited from below through the timescale separation assumption to the velocity and 
position dynamics. 

To complete the control law of equation (6.73), the error angle needs to be written in terms of 
the commanded and actual normal acceleration unit vectors. From equation (6.64) the error 
angle can be written as, 

 ( )1cosφ −= ⋅CW Wk k  (6.76)

However, due to the periodic nature of the cosine function, the arc cosine function is typically 
set to return an angle in the range [ )0,π . Thus, in equation (6.76) the sign of the error angle is 
lost. There are a number of ways in which the sign can be regained. The dot product of the CWk  
and Wj  returns, 

 ( )cos / 2 sinπ φ φ⋅ = + = −CW Wk j  (6.77)

Thus, 
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0        ,0,

φ π
φ φ π

φ π π

+ ∈
− ⋅ = = − ∈ −
 = −

CW Wk j  (6.78)

Thus combining equations (6.76) and (6.78), a formula for the error angle valid in the range 
( ),π π−  is, 

 ( ) ( )1sgn cosφ −= − ⋅ ⋅C CW WW Wk j k k  (6.79)

Another method is to note that, 

 sintan
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⋅= = −
⋅
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k k

 (6.80)

and so, 

 1tanφ −  − ⋅=  ⋅ 

C

C

W W

W W

k j
k k

 (6.81)

where a four quadrant arc tangent function can be used to yield a correctly signed error angle. 
Making use of the formula of equation (6.79) to avoid a divide operation, the control law of 
equation (6.73) becomes, 

 ( ) ( )1sgn cos
CW WP P Kφ

− = − ⋅ ⋅ 
C CW WW Wk j k k  (6.82)

Note that with the control law above, the feedback signal will go to zero if the error angle is 
precisely π± . This situation corresponds to the case where the controller cannot decide which 
way to roll in order to reduce the error angle since either way is equally efficient. Practically 
this situation would never occur since a disturbance or measurement error would ensure that a 
particular direction was chosen. However, to mathematically handle the problem, a preferred 
direction algorithm could be employed to handle cases where the error angle approaches π± . 

For implementation purposes, the vectors in the control law of equation (6.82) need to be 
coordinated into a specific axis system. Since the velocity and position controllers will 
command the specific acceleration coordinates in inertial axes, it is most useful for the normal 
acceleration unit vector CWk  to be coordinated in inertial axes too. This point will be further 
clarified in the following subsection when the specific acceleration transformation algorithm is 
developed. 

Coordinating all vectors in equation (6.82) into inertial axes, the control law for regulating the 
error angle becomes, 

 ( ) ( )1sgn cos
T T

CW WP P Kφ
− = −

 
C CW WW W

I I I Ik j k k  (6.83)
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The coordinate vectors required to implement the control law are CW
Ik , W

Ij  and W
Ik  together 

with the scalar feed-forward parameter 
CWP . The coordinate vectors W

Ij  and W
Ik  can be 

obtained from the parameters of the DCM matrix as illustrated in equation (2.10). These 
coordinate vectors are stated in terms of the wind-inertial DCM parameters below for 
convenience, 

 21 22 23

TWI WI WIe e e =  
W
Ij  (6.84)

 31 32 33

TWI WI WIe e e =  
W
Ik  (6.85)

The commanded normal acceleration unit vector CW
Ik  will be obtained through the specific 

acceleration vector transformation algorithm developed in the following subsection. The feed-
forward roll rate 

CWP  is obtained from reference trajectory information and will be discussed 
further in Chapter 7. 

Before continuing, a few points should be noted. Firstly, the control law of equation (6.83) is 
independent of the specific attitude parameterisation used. The appropriate DCM parameters 
are simply extracted and utilised directly in the control law. Secondly, although the control law 
of equation (6.83) appears nonlinear, the error angle dynamics have been shown to be linear. 
Consequently, the control law causes the error angle to converge in a well defined, stable 
manner as determined by the error angle closed loop pole. 

6.3.1.1 Taking the inner loop roll rate dynamics into account 

As previously stated, the zero lag roll rate actuator condition used above is not critical to the 
error angle controller design. Roll rate lag dynamics (whether the abstracted first order model 
of equation (6.6) or the actual inner loop closed loop dynamics are used) can easily be 
combined with the error angle dynamics of equation (6.72) to form the complete error angle 
dynamics. Of course, proportional feedback of the error angle alone provides only a single 
degree of feedback freedom in what would then be a second or third order system depending 
on the level of abstraction. Thus the closed loop error dynamics poles would be constrained to 
lying on a particular locus in the s-plane. However, combing the design of the roll rate and 
error angle controllers would allow the error angle dynamics to be set precisely. This 
combined design is the subject of this section. 

Considering equations (5.24), (5.28), (5.29), (6.72) and (6.73), the roll rate dynamics are, 

 AP
A

xx xx

LL
P P

I I
δ δ

  
= +   

    
 (6.86)

with feedback control law, 

 A P E P P RK P K E N Pδ = − − +  (6.87)
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 P RE P P= −  (6.88)

and the error angle dynamics are, 

 
CW WP Pφ = −  (6.89)

with feedback control law, 

 
CR WP P Kφφ= +  (6.90)

Note that in the control law of equation (6.90), WP  has been changed to RP  (the reference 
command to the roll rate controller) due to the removal of the timescale separation condition 
i.e. the roll rate command and actual roll rate are no longer considered equal. Also note with 
reference to equation (5.25) that under small incidence angle assumptions, 

 WP P=  (6.91)

Combining the dynamics above and substituting the two control laws yields, 

 

0 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1

1 0 1
1 0 0 1

A

C

A A A A

xxP xx

P P A R W

P xx P xx E xx P xx P xx

P

L IP L I P
E E P P

L I K L I K L I K N L I N L IP
K E

δ

δ δ φ δ δ

φ

δ
φ φ

φ

          
          = + + − +          
          −          

   − −  
    = − + −    
    −     

CWP

 (6.92)

Investigating the closed loop characteristic equation it is straightforward to show that, 

 ( ) ( ) ( )3 2( )
A A A Ac P xx P xx E xx P xx E xxs s K L I L I s K L I K N L I s K K L Iδ δ φ δ φ δα = + − + + +  (6.93)

Given the desired characteristic equation for the coupled system, 

 3 2
2 1 0( )c s s s sα α α α= + + +  (6.94)

the feedback gains to realise the desired poles can be found by matching the coefficients as 
follows, 

 2
A

xx P
P

xx

I L
K

L Iδ

α
 

= + 
 

 (6.95)

 0
1

intA

xx
E

I
K

L zδ

αα
 

= + 
 

 (6.96)
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 0

0
1

int

K

z

φ
α
αα

=
+

 
(6.97)

with PN  set to cancel the inner loop roll rate controller integrator pole as follows, 

 
int

E
P

K
N

z
= −  (6.98)

In the equations above intz  is the position of the zero used to cancel the inner loop integrator 
pole. Note that in the case where the feed-forward gain PN  is set to zero, intz  correspondingly 
moves to infinity and the gains of equations (6.96) and (6.97) simplify accordingly. 

With the feedback gains calculated in this manner, the error angle dynamics can be set 
precisely. Note that because the control architecture has been kept the same, the feedback 
gains acquired in this manner can be used in the decoupled designs to determine where the 
decoupled poles would need to have been placed to result in the exact error angle dynamics. It 
is in fact important to carry out this investigation for the roll rate controller since designing for 
fast error angle dynamics poles may result in unacceptably fast internal roll rate dynamics. 

In conclusion, the designer should weigh up the increased design accuracy of the coupled 
design approach with its added design complexity and the need to investigate the resulting 
inner loop roll dynamics. However, regardless of the design approach the fundamental 
consideration with the error angle controller is to ensure a well regulated closed loop response 
with a timescale separation to the outer velocity and position dynamics. 

6.3.2 Specific acceleration transformation algorithm 

The two assumptions stated at the beginning of section 6.3 imply that from a guidance point of 
view, the aircraft is capable of immediately directing and commanding the magnitude of its 
specific acceleration vector in three dimensional space. Thus, given the commanded specific 
acceleration vector CWIΣ  and the current wind axis system axial unit vector Wi , it is always 
possible to write the commanded specific acceleration vector as follows, 

 
C CW WA C= +C CWI WWΣ i k  (6.99)

where 
CWA  is the commanded axial specific acceleration, 

CWC  is the commanded normal 
specific acceleration and CWk  is the commanded normal unit vector direction. These three 
commands can be determined as follows, 

 
CWA = ⋅CWI WΣ i  (6.100)

 
CWC s= CWN  (6.101)
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 1

CWC
=C CW Wk N    0

CWC ≠  (6.102)

where, 

 { }1 1s∈ + −  (6.103)

is a sign constant and CWN  is the component of the specific acceleration vector normal to the 
axial unit vector and can be determined as follows, 

 
CWA= −C CW WI WN Σ i  (6.104)

Note that with CWk  calculated using equation (6.102), it always satisfies the constraint of 
equation (6.63) as shown below, 

 ( )

( )( )

1

1

1

0

C

C

C

C

W

W
W

W

C

A
C

C

⋅ = ⋅

= − ⋅

= ⋅ − ⋅ ⋅

=

C C

C

C C

W WW W

WI W W

WI WIW W W W

k i N i

Σ i i

Σ i Σ i i i

 (6.105)

The parameter s  in equation (6.101) dictates the sign of 
CWC  and in turn determines whether 

the vector CWN  is realised through a positive normal specific acceleration magnitude and an 
appropriately directed wind axis system normal unit vector or a negative normal specific 
acceleration magnitude and a wind axis system normal unit vector in the opposite direction. 
The parameter s  can thus be used to command the aircraft to fly a particular reference 
trajectory in a non-inverted or inverted fashion. It is important to note that inverted and non-
inverted flight is typically defined as a function of the trajectory being flown. For example, 
when flying a loop in the non-inverted fashion then at the top of the loop the aircraft would be 
in an orientation that would be considered inverted if it were flying straight and level. 
Assuming that the reference trajectory to be flown is always set up such that the reference axis 
system is orientated in a non-inverted fashion then CWk  should be selected such that the 
following constraint holds, 

 ( )sgn i⋅ =CW Rk k  (6.106)

where, 

 1        for non-inverted flight
1 for inverted flight

i
+= −

 (6.107)

Substituting for CWk  from equation (6.102) and making use of equation (6.101) yields, 
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 ( )sgn sgns s i
 
 ⋅ = ⋅ =
 
 

C
C

C

W
WR R

W

N k N k
N

 (6.108)

It is straightforward to show that s  should be selected as follows, 

 ( )sgns i= ⋅CW RN k  (6.109)

for the constraint of equation (6.106) to hold. 

With reference to equation (6.102), when the normal specific acceleration magnitude 
command becomes zero i.e. CWIΣ  is aligned with Wi , then the direction of the normal specific 
acceleration unit vector command is free in the plane perpendicular to the axial unit vector. 
This situation corresponds to a vertical climb/fall or simply a free fall, where the aircraft is 
free to roll about its velocity vector without influencing the resulting trajectory. The 
transformation algorithm of equations (6.100) to (6.104) thus results in an undefined 
commanded normal unit vector at this point. 

To practically handle this scenario, a default command direction or command signal could be 
given to the normal specific acceleration direction controller. For example, the aircraft could 
be commanded to hold its previous normal unit vector direction (a useful strategy when 
passing through the zero normal specific acceleration point) or to perform a specific 
manoeuvre such as roll slowly about the velocity vector. The major practical concern however 
is that if the aircraft was disturbed in a plane perpendicular to the reference trajectory when 
operating about the zero normal specific acceleration command condition, then very large 
jumps in the commanded normal unit vector direction would result. To see this, consider that 
with the specific acceleration vector constrained to lying in the wind axis system XZ-plane, 
the aircraft would have to roll the normal unit vector though 90 degrees in order to obtain 
specific acceleration lateral to its original orientation. 

One solution to this problem is to disengage the outer velocity and position controllers when 
operating about a zero normal specific acceleration condition. The aircraft will then continue 
to fly the reference trajectory in an open loop fashion until the magnitude of the normal 
specific acceleration increases past a certain threshold again. While the velocity and position 
controllers are disengaged, 

CWC  could be manually constrained to zero while CWk  could be set 
arbitrarily in the plane perpendicular to Wi . The value of 

CWC  that would have been requested 
from the velocity and position controllers can constantly be monitored and compared to a 
threshold value to determine when to re-engage the outer loop controllers. Although this 
strategy will stop any potential jumps in CWk , it will almost certainly result in some form of 
divergence from the reference trajectory if applied for any length of time. 

A second solution to the problem is to violate the coordinated turn constraint in these 
situations and allow lateral specific accelerations to be commanded. This would allow the 
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reference trajectory to still be tracked through closed loop control and at the same time render 
CWk  completely free in the plane perpendicular to Wi . Given the commanded specific 

acceleration vector CWIΣ , the current wind axis system axial unit vector Wi  and the desired 
normal specific acceleration direction vector CWk  (in the plane perpendicular to Wi ), it is 
always possible to write the commanded specific acceleration vector as follows, 

 ( )C C CW W WA C B= + + ×C C CWI W WW WΣ i k k i  (6.110)

where 
CWB  is the commanded lateral specific acceleration and given that CWk  satisfies the 

constraint of equation (6.63). The three specific acceleration coordinates in wind axes could be 
determined from the given vectors as follows, 

 
CWA = ⋅CWI WΣ i  (6.111)

 
CWC = ⋅C CW WN k  (6.112)

 ( )CWB = ⋅ ×C CW W WN k i  (6.113)

where CWN  is defined in equation (6.104). The above specific acceleration vector 
transformation could be used during certain applicable phases of the reference trajectory while 
the magnitude of the commanded normal specific acceleration in equation (6.104) is below a 
certain threshold. This threshold could be determined by the maximum allowable lateral 
specific acceleration. Note that the bandwidth of the lateral specific acceleration controller 
may also limit the feasibility of employing the above transformation algorithm. 

For practical implementation purposes, the vectors in the transformations of equations (6.100) 
to (6.104) and (6.111) to (6.113) are all coordinated into inertial axes to yield the final specific 
acceleration transformation algorithms: 

When 
CWC ε≥  and CWI

IΣ  and W
Ii  are given then the roll-to-turn guidance control law is, 

 
CWA =

T
CWI W

I IΣ i  (6.114)

 
CWC s= CW

IN  (6.115)

 1

CWC
=C CW W

I Ik N    0
CWC ≠  (6.116)

where, 

 
CWA= −C CW WI W

I I IN Σ i  (6.117)

When 
CWC ε<  and CWI

IΣ , CW
Ik  and W

Ii  are given then the skid-to-turn guidance control law is, 
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CWA =

T
CWI W

I IΣ i  (6.118)

 
CWC =

T
C CW W

I IN k  (6.119)

 
CWB =

T
C

WC
I

W W
I Ik

N S i  (6.120)

where, 

 
CWA= −C CW WI W

I I IN Σ i  (6.121)

In the algorithms above ε  is the positive parameter used to determine when to switch between 
the roll-to-turn (aircraft rolls to track back to the trajectory) and skid-to-turn (aircraft makes 
use of direct lateral specific acceleration to track back to the trajectory) algorithms. In both 
algorithms, the specific acceleration vector coordinated in inertial axes ( CWI

IΣ ) will be obtained 
from the outer velocity and position controllers. The coordinates of the wind axis system axial 
unit vector in inertial axes ( W

Ii ) can be obtained by inspecting the DCM of equation (2.10) and 
are provided below in terms of the wind-inertial DCM parameters for convenience, 

 11 12 13

TWI WI WIe e e =  
W
Ii  (6.122)

Note that similarly to the error angle controller, the specific acceleration transformation 
control law is independent of the attitude parameterisation used. 

6.3.3 Velocity and position controllers 

At this point, the guidance problem is reduced to that of regulating the point mass velocity and 
position states in inertial space about a predefined reference trajectory. The virtual control 
input to the system is the axial specific acceleration vector while the inertially fixed, invariant 
gravity vector simply acts as a bias to the system. 

The position and velocity error dynamics were derived in section 6.1 and are restated below 
for convenience, 

 
I

d
dt

=WR WRP V  (6.123)

 
I

d
dt

=WR WRV Σ  (6.124)

where, 

 = −WR WI RIΣ Σ Σ  (6.125)

Note, with the velocity and position controllers independent of the wind axis system attitude, 
the reference trajectory need only satisfy the position and velocity dynamics of equations 
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(6.123) and (6.124). This simplification greatly reduces the complexity of reference trajectory 
generation as will be discussed in Chapter 7. 

To design the velocity and position controllers all vectors in the above equations are 
coordinated into inertial axes to yield, 

 =WR WR
I IP V  (6.126)

 =WR WR
I IV Σ  (6.127)

where, 

 = −WR WI RI
I I IΣ Σ Σ  (6.128)

A successive loop closure architecture is adopted for the velocity and position controllers. 
Only proportional feedback will be used due to the natural integrators in the position and 
velocity dynamics. However, this strategy will still render the closed loop system susceptible 
to factors such as biases on the regulated normal and axial specific accelerations which could 
result from specific acceleration estimate/measurement biases. However, these problems are 
better dealt with through bias estimation and are left as the subject of future estimation 
research as discussed in section 9.3. 

Beginning with the design of the velocity control system. Define the control law, 

 ( )VK= − +CWRWI WR RI
I I I IΣ V V Σ  (6.129)

where CWR
IV  is the commanded velocity error coordinate vector and VK  is the velocity vector 

feedback gain. Note that by only working with a scalar feedback gain, the closed loop velocity 
regulation dynamics will be the same in all three axes. If desired it is possible, through the use 
of three separate feedback gains, to independently set the closed loop dynamics in each of the 
three inertial axis system unit vector directions. In equation (6.129), the commanded velocity 
error coordinate vector CWR

IV  will be used by the outer position control system to regulate the 
position error. The feed-forward term RI

IΣ  is the reference trajectory specific acceleration i.e. 
the specific acceleration command required to perfectly fly the reference trajectory. Generating 
reference trajectories will be the topic of Chapter 7. 

With the control law of equation (6.129), the closed loop velocity dynamics become, 

 
( )
( )

V

V

K

K

= − + −

= −

C

C

WRWR WR RI RI
I I I I I

WR WR
I I

V V V Σ Σ

V V
 (6.130)

or otherwise stated, 

 V VK K+ = CWRWR WR
I I IV V V  (6.131)
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If it is desired to regulate the velocity vector error only, then the feedback gain VK  can be 
chosen to place the poles of each decoupled, first order closed loop system by noting that, 

 Vs K= −  (6.132)

To regulate the position error define the proportional control law, 

 ( )PK= −C CWR WR WR
I I IV P P  (6.133)

where, CWR
IP  is set to zero to fly on the reference trajectory. Note that again a scalar position 

feedback gain has been used implying that the position error convergence dynamics will be 
identical in all three axes. Substituting the control law into equation (6.131), the closed loop 
position error dynamics become, 

 ( )V V PK K K+ = −CWRWR WR WR
I I I IV V P P  (6.134)

Rearranging the above equation and making use of equation (6.126), the position error 
dynamics can be written as follows, 

 V V P V PK K K K K+ + = CWRWR WR WR
I I I IP P P P  (6.135)

Given the desired position error dynamics characteristic equation that should be applied to all 
three axes, 

 2
1 0( )c s s sα α α= + +  (6.136)

the feedback gains VK  and PK  can be calculated as follows, 

 1VK α=  (6.137)

 0

1
PK

α
α

=  (6.138)

The upper bandwidth of the closed loop guidance dynamics is constrained from above through 
the timescale separation assumption that allows for instantaneous commanding of the specific 
acceleration vector in three dimensional space. Thus, when selecting the guidance dynamics 
poles it is important to ensure that this constraint is adhered to for proper functionality of the 
controller. 

6.3.4 Summary 

A schematic overview of the specific acceleration matching guidance controller is shown in 
Figure 6.1. On the left hand side of the diagram is the velocity and position controller. This 
linear controller operates purely with inertially coordinated vectors and uses the specific 
acceleration coordinates as virtual actuators. The specific acceleration transformation 
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algorithm then takes the inertially coordinated specific acceleration command vector and 
transforms it to wind axes. The algorithm also calculates the desired wind axis system normal 
unit vector and passed this to the error angle controller. The extra signals required by the 
specific acceleration transformation algorithm are shown as entering the block from above, 
with ε  used to determine which variant of the algorithm to use. Finally, the error angle 
controller compares the desired wind axis system normal unit vector with the actual wind axis 
system normal unit vector and commands a roll rate to drive this error to zero over time. The 
four signals on the right hand side of the diagram are then sent as commands to the respective 
inner loop controllers. 

Figure 6.1 – Block diagram overview of the SAM guidance controller 

It should be noted that if the inner loop controllers used are the NNDT variants then it may be 
necessary to schedule the guidance dynamics bandwidth in order for the timescale separation 
argument between the inner and outer loop controllers to hold. Given the non-dimensional 
natural frequency of the limiting NNDT controller ( nω′ ), the corresponding dimensional natural 
frequency can be calculated using the equation below, 

 n n
qS
mV

ω ω′=  (6.139)

This equation was obtained by making use of equation (4.66). The dimensional frequency of 
equation (6.139) can be used to appropriately schedule the bandwidth of the guidance 
dynamics such that the inner and outer loop bandwidth ratios remain invariant. 

6.4 Conclusion 
This chapter focused on the design of guidance level controllers capable of guiding the aircraft 
through the entire 3D flight envelope (middle block of Figure 3.1). A number of guidance 
control strategies were presented and analysed qualitatively. One particular guidance strategy, 
specific acceleration matching, was developed in detail and forms an important part of this 
dissertation’s contribution to the field of aircraft guidance and control. The strategy provides a 
particularly elegant, intuitive, computationally efficient guidance control solution that is well 
suited for use with the inner specific acceleration and roll rate controllers presented. The 
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controller architecture will be seen to also greatly simplify reference trajectory generation. 
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Chapter 7 – Reference Trajectories 

 

 

Chapter 7 

Reference Trajectories 

 

In the previous chapter, control strategies were investigated for regulation of the aircraft as a 
point mass about a feasible reference trajectory. In this chapter, the generation of feasible 
reference trajectories is considered. The chapter begins by setting up the general reference 
trajectory problem applicable to all of the guidance strategies discussed in section 6.2. It then 
moves on to adapt the dynamics that need to be satisfied by the reference trajectory given that 
the SAM guidance control law of section 6.3 is to be implemented. It shall be seen that 
generation of feasible reference trajectories for the SAM guidance controller is far simpler 
than generation of reference trajectories for the general guidance case. In section 7.2 a few 
simple reference trajectories suitable for the SAM guidance controller are derived. These 
simple trajectories serve as building blocks for navigation through inertial space and are used 
in the simulations of Chapter 8. 

7.1 Reference trajectory dynamics 
With reference to equations (6.15), (6.16), (6.26) and (6.40) to (6.43), a feasible reference 
trajectory for the general guidance dynamics developed in section 6.1 must satisfy the 
following constraints, 

 
I

d
dt

=RI RIP V  (7.1)

 
I

d
dt

=RI RIV A  (7.2)

 
I

d
dt
   = ×   
R R R RI R R Ri j k ω i j k  (7.3)

with the algebraic relationship, 

 = +RI RI RIA Σ G  (7.4)

together with the four possible actuator lag (low pass filter) constraints, 
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 1 1
R R CRW W W

P P

P P P
τ τ

= − +  (7.5)

 1 1
R R CRW W W

A A

A A A
τ τ

= − +  (7.6)

 1 1
R R CRW W W

B B

B B B
τ τ

= − +  (7.7)

 1 1
R R CRW W W

C C

C C C
τ τ

= − +  (7.8)

as well as any constraints imposed on the virtual control inputs and the reference state vector 
e.g. saturation or slew rate limits. Equations (7.1) and (7.2) imply that a feasible reference 
trajectory must satisfy the point mass position and velocity kinematics while equation (7.3) 
imposes attitude kinematics constraints on the reference axis system. Equations (7.5) to (7.8) 
only constrain the reference trajectory if the virtual actuator lags are significant. The reference 
trajectory generation problem is that of determining feasible reference state and control 
trajectories that most closely match the desired motion of the aircraft through space. 

7.1.1 Reference trajectories for the SAM guidance controller 

When the assumptions associated with the SAM guidance controller hold, then a feasible 
reference trajectory need only satisfy the following dynamics, 

 
I

d
dt

=RI RIP V  (7.9)

 
I

d
dt

=RI RIV A  (7.10)

with, 

 = +RI RI RIA Σ G  (7.11)

together with any reference trajectory state and control constraints. Note that in this case, the 
reference trajectory is no longer constrained by the attitude kinematics of equation (7.3) due to 
the assumption that the aircraft can roll to any ‘bank angle’ (not strictly the correct term) 
infinitely fast relative to the position and velocity dynamics. Furthermore, due to the 
assumption that the virtual actuator lags are negligible, the constraints of equations (7.5) to 
(7.8) also disappear. 

With the reference trajectories only required to satisfy equations (7.9) and (7.10) as well as any 
state/actuator constraints, generation of feasible reference trajectories is greatly simplified. To 
see this consider that if all vectors in the reference trajectory dynamics are coordinated into 
inertial axes then the dynamics are linear. The only nonlinearities that enter the reference 
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trajectory dynamics are those of the state and actuator constraints since they are typically 
expressed in terms of wind axis system coordinates. 

Once a kinematically feasible reference trajectory has been found, the fact that the specific 
acceleration vector is constrained to lying in the plane spanned by Ri  and Rk  can be used to 
calculate the roll rate RP  associated with the reference trajectory. This roll rate should then be 
assigned to the roll rate reference command 

CWP  in the normal specific acceleration vector 
direction controller of section 6.3.1. This feed-forward term will ensure that the feedback 
control in the normal acceleration vector direction controller is responsible only for regulating 
perturbations in the error angle due to disturbances or jumps in the reference axis system roll 
attitude. 

To determine the roll rate associated with the reference trajectory, begin with the angular 
velocity of the reference axis system with respect to inertial space, 

 R R RP Q R= + +RI R R Rω i j k  (7.12)

Taking the cross product of this vector with the Rk  vector yields, 

 R RP Q× = − +RI R R Rω k j i  (7.13)

Finally, taking the negative of the dot product of equation (7.13) with Rj  yields the result, 

 
( )R

I

P

d
dt

= − ⋅ ×

 
= − ⋅ 

 

R RI R

R R

j ω k

j k
 (7.14)

Intuitively, equation (7.14) implies that the reference axis system experiences a roll rate 
whenever the normal unit vector changes with respect to inertial space as long as the change 
does not occur in the reference axis system’s XZ-plane. In order to calculate RP , the unit 
vectors in equation (7.14) need to be expressed as a function of the reference trajectory 
vectors. The reference axes normal unit vector can be written as follows, 

 1

RC
=R RIk N  (7.15)

where, 

 RA= −RI RI RN Σ i  (7.16)

 RA = ⋅RI RΣ i  (7.17)

 1

RV
=R RIi V  (7.18)
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 RV = RIV  (7.19)

 R refC s= RIN  (7.20)

and, 

 ( )sgnrefs = ⋅ refRRN k  (7.21)

Note that refRk  is an appropriately selected reference vector that it used through equation (7.21) 
to set the direction of Rk  for a non-inverted reference trajectory. Note that equation (7.21) 
originates from the relationship, 

 ( )sgn 1⋅ =refRRk k  (7.22)

implying that Rk  will be made to point in the direction of refRk  for non-inverted flight. 
Returning to the task of determining the reference axis system roll rate, substituting equation 
(7.15) into equation (7.14) gives, 

 

1

1 1

1

R
R I

IR RI

IR

dP
dt C

d d
dt C C dt

d
C dt

 
= − ⋅  

 
 

= − ⋅ +  
 

 
= − ⋅ 

 

R RI

R RI RI

R RI

j N

j N N

j N

 (7.23)

where use has been made of the relationship, 

 0⋅ =R Rj N  (7.24)

Substituting for RIN  from equation (7.16) yields, 

 

1

1

1

1

R R
IR

R R

I IR R RI

R

IR R

R

IR R

dP A
C dt

A Ad d d
C dt dt V V dt

Ad
C dt V

Ad
C dt V

 
= − ⋅ − 

 
 

= − ⋅ − −  
 
 

= − ⋅ − 
 
 

= − ⋅ − 
 

R RI R

R RI RI RI

R RI RI

R RI RI

j Σ i

j Σ V V

j Σ A

j A G

 (7.25)

where use of equation (7.18) has been made and where it has been noticed that, 

 0⋅ =R RIj V  (7.26)
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 0⋅ =R RIj Σ  (7.27)

 0
I

d
dt

=RIG  (7.28)

Finally, to remove the lateral unit vector from the equation note that, 

 ( )
R R

R

R R

R R

C V

A

C V

C V

= ×

= ×

− ×
=

×=

R R R

RI RI

RI R RI

RI RI

j k i
N V

Σ i V

Σ V

 (7.29)

where use has been made of the relationship, 

 0× =R RIi V  (7.30)

Substituting equation (7.29) into equation (7.25) yields the final result, 

 2
R

R
RR R

A
P

VC V
 ×= − ⋅ − 
 

RI RI
RI RIΣ V J G  (7.31)

where the jerk vector is defined as follows, 

 
I

d
dt

≡RI RIJ A  (7.32)

Thus, with a feasible reference trajectory calculated, the corresponding velocity, acceleration 
and jerk vectors can be used to determine the roll rate associated with the reference trajectory. 
Typically, all vectors will be coordinated into inertial axes with the coordinate vector equations 
following naturally from the vector equations provided. 

7.2 Building block reference trajectories 
The SAM guidance controller of the previous chapter is capable of regulating the aircraft 
about any kinematically feasible reference trajectory. In practice, these reference trajectories 
could be generated either offline, as predefined manoeuvres for example, or online i.e. the 
trajectory could be generated based on obstacles to avoid, targets to track etc. To ease the 
process of both online and offline trajectory generation, defining base manoeuvre types is very 
useful. Definition of ‘building block’ trajectories serves to reduce the parameter space for 
higher level mission planning type algorithms. This section derives three fundamental building 
block reference trajectories for the SAM guidance controller. These are the straight line, 
vertical arc and horizontal spiral arc. All trajectories assume that no explicit actuator or state 
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constraints exist. The mathematics of the trajectories is developed in such a way that the 
trajectories can be easily strung together to form complex three dimensional manoeuvres. Such 
manoeuvres will be illustrated in the simulations of Chapter 8. 

7.2.1 Straight line flight 

For a straight line trajectory, the position vector is constrained as follows, 

 ( ) ( ) ˆt p t= +RI SIP P r  (7.33)

where SIP  is the starting position of the straight line, r̂  is the inertially fixed heading unit 
vector and p  is the position coordinate along this vector. Investigating the corresponding 
velocity vector, 

 ( ) ( )

( )

ˆ

ˆ
I

dt p t
dt
v t

=

=

RIV r

r
 (7.34)

where, 

 ( ) ( )v t p t≡  (7.35)

The corresponding acceleration vector is then, 

 ( ) ( )

( )

ˆ

ˆ
I

dt p t
dt
a t

=

=

RIA r

r
 (7.36)

where, 

 ( ) ( )a t v t≡  (7.37)

Limiting the acceleration to be a constant along the path ( 0a ) it is straightforward to show that 
the jerk vector is zero at all times, 

 ( )t =RIJ 0  (7.38)

Equations (7.35) and (7.37) can be used to solve for the position and velocity along the unit 
vector r̂  over time. Integrating equations (7.35) and (7.37) gives, 

 ( ) ( ) ( )0s sv t v t a t t= + −  (7.39)

 ( ) ( ) ( )( ) ( )2
0

1
2s s s sp t p t v t t t a t t= + − + −  (7.40)

The above equations can be rewritten as follows, 
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 ( ) ( ) ( )sv t v t v t= + ∆  (7.41)

 ( ) ( ) ( )sp t p t p t= + ∆  (7.42)

where, 

 ( ) ( )0v t a t t∆ = ∆  (7.43)

 ( ) ( ) ( ) ( )2
0

1
2sp t v t t t a t t∆ = ∆ + ∆  (7.44)

and, 

 ( ) st t t t∆ = −  (7.45)

Given the starting position of the straight line SIP , the straight line heading unit vector r̂ , the 
initial position and velocity states ( )sp t  and ( )sv t  respectively and the constant linear 
acceleration 0a , the position, velocity and acceleration vectors can be solved for as a function 
of time up until the chosen final time ft . These vectors can be substituted into equation (7.31) 
to determine the reference roll rate associated with the trajectory. However, it is 
straightforward to show that the reference roll rate is zero at all times, 

 ( ) 0RP t =  (7.46)

7.2.1.1 Linking the trajectory 

The initial position and velocity vectors for the trajectory ( ( )st
RIP  and ( )st

RIV  respectively) 
will be available from the previous section of the reference trajectory. These two vectors place 
the following continuity constraints on the parameters involved in the straight line trajectory, 

 ( ) ( ) ˆs st p t= +RI SIP P r  (7.47)

 ( ) ( ) ˆs st v t=RIV r  (7.48)

These constraints allow the parameters involved in the trajectory to be determined. From 
equation (7.47), 

 ( ) ( )( ) ˆs sp t t= − ⋅RI SIP P r  (7.49)

However, since SIP  is still free to be chosen, then without loss of generality it can be set as 
follows, 

 ( )st=SI RIP P  (7.50)

to yield, 
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 ( ) 0sp t =  (7.51)

independently of the bearing unit vector r̂ . From equation (7.48), the initial velocity 
magnitude can be calculated as follows, 

 ( ) ( )s sv t t= RIV  (7.52)

If it is assumed that the bearing unit vector is further constrained such that the initial velocity 
along the straight line is positive (this is the obvious choice) then the following relationship 
holds, 

 ( ) ( )s sv t v t=  (7.53)

From this, the bearing unit vector can be determined from equation (7.48) as follows, 

 

( )
( )
( )

( )

ˆ s

s

s

s

t
v t

t
v t

=

=

RI

RI

V
r

V
 (7.54)

The only parameters still to be provided are the constant acceleration along the straight line 0a  
and the final time ft . Although these parameters can be provided directly, it is often more 
convenient to specify the desired velocity magnitude at the end time ( )fv t  together with the 
length of the straight line ( )fp t∆ . Only the absolute values are required if it is further assumed 
that the velocity along the straight line never changes sign. This will in general be the case 
otherwise it would require the velocity magnitude to go through zero. Noting this, the 
relationship of equation (7.53) can be extended to all time to give, 

 ( ) ( )v t v t=   s ft t t≤ ≤  (7.55)

Thus, 

 ( ) ( )f fv t v t=  (7.56)

and providing the absolute value is equivalent to providing the signed value. Furthermore, 
through integration of equation (7.35) and substitution of equation (7.55) it can be shown that, 

 ( ) ( ) ( )
s s

t t

t t

p t v t dt v t dt∆ = =∫ ∫  (7.57)

Taking the absolute value yields the result, 
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 ( ) ( ) ( )
s s

t t

t t

p t v t dt v t dt∆ = =∫ ∫  (7.58)

Combining equations (7.57) and (7.58) shows that, 

 ( ) ( )p t p t∆ = ∆  (7.59)

and thus, 

 ( ) ( )f fp t p t∆ = ∆  (7.60)

which again shows that the absolute value is equivalent to the signed value. With ( )fv t  and 
( )fp t∆  available, the constant acceleration and final time can be calculated using equations 

(7.43) to (7.45), to yield, 

 ( )f s ft t t t= + ∆  (7.61)

 ( )
( ) ( ) ( )

0 2
f f

s
f

v t v t
a v t

p t

 ∆ ∆
 = +
 ∆  

 (7.62)

where, 

 ( ) ( )
( ) ( )

2

f
f

f
s

p t
t t

v t
v t

∆
∆ =

∆
+

 (7.63)

Coordination of the vectors in the above developments into inertial axes follows very simply 
and is thus omitted. 

7.2.1.2 Flight orientation reference vector 

By convention, non-inverted straight line flight corresponds to when the reference axis 
system’s normal unit vector has a component in the direction of the inertial down vector. Thus, 
with reference to equation (7.22), the flight orientation reference vector for the straight line is, 

 =refR Ik k  (7.64)

7.2.2 Vertical arc 

For vertical arc motion the position vector is constrained as follows, 

 ( ) ( )ˆt R t= +RI CIP P r  (7.65)

where CIP  is the centre of the arc, R  is the radius of the arc and r̂  is the radial unit vector and 
is parameterised using the arc angle θ  as follows, 
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 ( ) ( ) ( )ˆ ˆsin cost t tθ θ= + Ir ψ k  (7.66)

In equation (7.66), use has been made of the inertially fixed arc plane heading vector ψ̂ , a 
second unit vector orthogonal to Ik  that together with Ik  uniquely defines the vertical arc 
plane. The arc plane heading vector can be parameterised using the heading angle ψ  as 
follows, 

 ˆ cos sinψ ψ= +I Iψ i j  (7.67)

Investigating the corresponding velocity while on the vertical arc locus, 

 

( )

( )

( ) ( )

( ) ( )

ˆ

ˆsin cos

ˆ

I

I

I

dt
dt
d R t
dt

dR t t
dt

R t t

θ θ

ω

=

= +

= +

=

RI RI

CI

I

V P

P r

ψ k

θ

 (7.68)

where, 

 ( ) ( )t tω θ≡  (7.69)

and, 

 ( ) ( ) ( )ˆ ˆcos sint t tθ θ≡ − Iθ ψ k  (7.70)

Investigating the associated acceleration on the trajectory, 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )2

ˆ

ˆ ˆ

ˆ ˆ

I

I

dt R t t
dt

dR t t t t
dt

R t t t t

ω

α ω

α ω

=

 
= + 

 

= −

RIA θ

θ θ

θ r

 (7.71)

where α  is the angular acceleration defined below, 

 ( ) ( )t tα ω≡  (7.72)

Limiting the angular acceleration to be a constant ( 0α ), the jerk vector can be calculated as 
follows, 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2

3

3
0

ˆ ˆ

ˆˆ ˆ2

ˆˆ3

I

dt R t t t t
dt

R t t t t t t t t

R t t t t

α ω

α ω ω α ω

α ω ω

= −

= − − −

= − +

RIJ θ r

r r θ

r θ

 (7.73)

Integrating equations (7.69) and (7.72) to solve for the angular velocity and heading angle 
over time yields, 

 ( ) ( ) ( )0s st t t tω ω α= + −  (7.74)

 ( ) ( ) ( ) ( ) ( )2
0

1
2s s s st t t t t t tθ θ ω α= + − + −  (7.75)

The above equations can be rewritten as follows, 

 ( ) ( ) ( )st t tω ω ω= + ∆  (7.76)

 ( ) ( ) ( )st t tθ θ θ= + ∆  (7.77)

where, 

 ( ) ( )0t t tω α∆ = ∆  (7.78)

 ( ) ( ) ( ) ( )2
0

1
2st t t t t tθ ω α∆ = ∆ + ∆  (7.79)

and, 

 ( ) st t t t∆ = −  (7.80)

Given the centre of the arc CIP , the radius of the arc R , the heading angle ψ , the initial arc 
angle and angular velocity states ( )stθ  and ( )stω  respectively and the constant angular 
acceleration 0α , the position, velocity and acceleration vectors can be solved for as a function 
of time up until the chosen final time ft . These vectors can be substituted into equation (7.31) 
to determine the reference roll rate associated with the trajectory. However, due to the vertical 
nature of the arc it is straightforward to show that the reference roll rate is zero at all times, 

 ( ) 0RP t =  (7.81)

7.2.2.1 Linking the trajectory 

The initial position and velocity vectors for the trajectory ( ( )st
RIP  and ( )st

RIV  respectively) 
will be available from the previous section of the reference trajectory. These two vectors place 
the following continuity constraints on the parameters involved in the vertical arc, 
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 ( ) ( )ˆs st R t= +RI CIP P r  (7.82)

 ( ) ( ) ( )ˆ
s s st R t tω=RIV θ  (7.83)

These constraints allow a number of the parameters involved in the trajectory to be 
determined. Firstly, equations (7.82) and (7.83) constrain the centre position of the arc. Thus, 
although the centre position could be provided explicitly subject to the constraints of equations 
(7.82) and (7.83), it is more convenient to simply provide the arc radius and the desired 
direction of rotation about the unit vector normal to the arc plane, with the normal unit vector 
defined as follows, 

 ˆ ˆ= ×In k ψ  (7.84)

Given the arc radius and direction of rotation about n̂ , together with the initial position and 
velocity vectors, the centre position of the arc can be calculated. To see this, make the centre 
position of the arc the subject of the formula in equation (7.82), 

 ( ) ( )ˆs st R t= −CI RIP P r  (7.85)

In the above equation only the initial radial unit vector is unknown. Taking the cross product 
of equation (7.83) with the arc plane normal unit vector n̂  yields, 

 ( ) ( ) ( )
( ) ( )

ˆˆ ˆ

ˆ
s s s

s s

t R t t

R t t

ω
ω

× = ×

=

RIV n θ n

r
 (7.86)

Investigating the magnitude relationship of the above equation, 

 
( ) ( ) ( )

( )

ˆˆ ˆs s s

s

t R t t

R t

ω

ω

× = ×

=

RIV n θ n
 (7.87)

where it has been noted that, 

 0R >  (7.88)

Dividing equation (7.86) by equation (7.87) yields, 

 ( )
( )

( ) ( )
( )

ˆ ˆ
ˆ

s s s

ss

t R t t
R tt
ω

ω
×

=
×

RI

RI

V n r
V n

 (7.89)

which can be rewritten as follows, 
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( ) ( )

( )
( )
( )

( )
( )

ˆ
ˆ

ˆ

ˆ
ˆ

s s
s

s s

s

s

t t
t

t t

t
a

t

ω
ω

×
=

×

×
=

×

RI

RI

RI

RI

V n
r

V n

V n
V n

 (7.90)

where, 

 ( )
( )

ˆ1     for a positive rotation about 
ˆ1     for a negative rotation about 

s

s

t
a

t
ω
ω

+= = −

n
n

 (7.91)

With R  and a  given, the radial unit vector at the starting time can be calculated using 
equation (7.90) and the centre position of the arc can be calculated using equation (7.85). Use 
of equation (7.66) and the initial radial unit vector allows the initial arc angle to be calculated 
as follows, 

 ( ) ( )
( )

1 ˆ ˆ
tan

ˆ
s

s
s

t
t

t
θ −  ⋅

=   ⋅ 
I

r ψ
r k

 (7.92)

where a four quadrant arc tangent should be used. This in turn allows the initial arc angle unit 
vector to be calculated from equation (7.70), 

 ( ) ( ) ( )ˆ ˆcos sins s st t tθ θ= − Iθ ψ k  (7.93)

Taking the dot product of equation (7.83) with the initial arc angle unit vector yields the initial 
angular velocity, 

 ( ) ( ) ( )ˆ
s s

s

t t
t

R
ω

⋅
=

RIV θ  (7.94)

The only parameters still missing in the vertical arc trajectory are the constant angular 
acceleration 0α  and the final time ft . Although these parameters can be provided directly, it is 
often more convenient to specify the magnitude of the angle of the vertical arc to be subtended 

( )ftθ∆  as well as the velocity vector magnitude at the final time ( )ftRIV . To see why only 
the magnitude of these two quantities is required consider that the sign of the angular velocity 
does not change over the trajectory section. This must be true otherwise it would involve the 
magnitude of the velocity vector going to zero at some point along the trajectory. With this 
constraint, the relationship of equation (7.91) holds for all time as follows, 

 ( ) ( )t a tω ω=   s ft t t≤ ≤  (7.95)

where it has been noted that, 

 1a a−=  (7.96)
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Taking the magnitude of equation (7.68) and substituting for the angular velocity magnitude 
into equation (7.95) gives, 

 ( )
( )t

t a
R

ω =
RIV

 (7.97)

Thus, providing only the magnitude of the velocity vector at the final time is sufficient to 
determine the final angular velocity including its sign, 

 ( ) ( )f
f

t
t a

R
ω =

RIV
 (7.98)

Furthermore, through integration of equation (7.69) and substitution of equation (7.95) the 
following result is obtained, 

 
( ) ( )

( )

s

s

t

t

t

t

t t dt

a t dt

θ ω

ω

∆ =

=

∫

∫
 (7.99)

Taking the absolute value of both sides, 

 
( ) ( )

( )

s

s

t

t

t

t

t a t dt

t dt

θ ω

ω

∆ =

=

∫

∫
 (7.100)

Dividing equation (7.99) by equation (7.100) gives, 

 ( )
( )
t

a
t

θ
θ

∆
=

∆
 (7.101)

Thus, providing only the magnitude of the change in the arc angle at the final time is enough 
to determine the signed change in arc angle at the final time, 

 ( ) ( )f ft a tθ θ∆ = ∆  (7.102)

With the angular velocity at the final time and the change in arc angle at the final time 
available, the angular acceleration and final time can be determined using equations (7.78) to 
(7.80), 

 ( )f s ft t t t= + ∆  (7.103)
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 ( )
( ) ( ) ( )

0 2
f f

s
f

t t
t

t

ω ω
α ω

θ

 ∆ ∆
 = +

∆   
 (7.104)

where, 

 ( ) ( )
( ) ( )

2

f
f

f
s

t
t t

t
t

θ
ω

ω

∆
∆ =

∆
+

 (7.105)

Coordination of the vectors in the above developments into inertial axes follows very simply 
and is thus omitted. 

7.2.2.2 Flight orientation reference vector 

By convention, a non-inverted vertical arc is when the reference axis system’s normal unit 
vector points towards the outside of the arc i.e. away from the arc centre. Thus, with reference 
to equation (7.22), the flight orientation reference vector for the vertical arc is, 

 ˆ=refRk r  (7.106)

7.2.3 Horizontal spiral arc 

For a horizontal spiral arc trajectory the position vector is constrained as follows, 

 ( ) ( ) ( )ˆt R t p t= + +RI CI IP P r k  (7.107)

where CIP  is the centre point of the horizontal arc, R  is the radius of the arc, p  is the position 
coordinate along the Ik  unit vector and r̂  is the radial unit vector, parameterised by the 
heading angle ψ  as follows, 

 ( ) ( ) ( )ˆ cos sint t tψ ψ= +I Ir i j  (7.108)

Investigating the associated velocity vector, 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ

ˆ

sin cos

ˆ

dt R t p t
dt

dR t p t
dt

R t t t p t

R t t v t

ψ ψ ψ

ω

= + +

= +

 = − + + 
= +

RI CI I

I

I

I

I I I

I

V P r k

r k

i j k

ψ k

 (7.109)

where, 

 ( ) ( )v t p t≡  (7.110)

 ( ) ( )t tω ψ≡  (7.111)
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and, 

 ( ) ( ) ( )ˆ sin cost t tψ ψ= − +I Iψ i j  (7.112)

Limiting the vertical velocity to be constant, the acceleration on the locus is then, 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )2

ˆ

ˆ

ˆ ˆ

dt R t t v t
dt
d R t t
dt

R t t t t

ω

ω

α ω

= +

=

= −

RI I

I

I

A ψ k

ψ

ψ r

 (7.113)

where, 

 ( ) ( )t tα ω≡  (7.114)

Limiting the angular acceleration to be a constant ( 0α ), the jerk vector can be calculated as 
follows, 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2

3

3
0

ˆ ˆ

ˆ ˆ ˆ2

ˆ ˆ3

I

dt R t t t t
dt

R t t t t t t t t

R t t t t

α ω

α ω ω α ω

α ω ω

= −

= − − −

= − +

RIJ ψ r

r r ψ

r ψ

 (7.115)

The vertical position, angular velocity and heading angles can be solved for through 
integration of equations (7.110), (7.111) and (7.114) to yield, 

 ( ) ( ) ( )0s sp t p t v t t= + −  (7.116)

 ( ) ( ) ( )0s st t t tω ω α= + −  (7.117)

 ( ) ( ) ( )( ) ( )2
0

1
2s s s st t t t t t tψ ψ ω α= + − + −  (7.118)

where 0v  and 0α  are the constant vertical velocity and angular accelerations respectively and 

st  is the starting time of the horizontal spiral arc trajectory. The above equations can be 
rewritten as follows, 

 ( ) ( ) ( )sp t p t p t= + ∆  (7.119)

 ( ) ( ) ( )st t tω ω ω= + ∆  (7.120)

 ( ) ( ) ( )st t tψ ψ ψ= + ∆  (7.121)

where, 
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 ( ) ( )0p t v t t∆ = ∆  (7.122)

 ( ) ( )0t t tω α∆ = ∆  (7.123)

 ( ) ( ) ( ) ( )2
0

1
2st t t t t tψ ω α∆ = ∆ + ∆  (7.124)

and, 

 ( ) st t t t∆ = −  (7.125)

Given the centre of the arc CIP , the radius of the arc R , the initial position, heading angle and 
angular velocity states ( )sp t , ( )stψ  and ( )stω  respectively and the constant vertical velocity 0v  
and angular acceleration 0α , the position, velocity and acceleration vectors can be solved for 
as a function of time up until the chosen final time ft . These vectors can be substituted into 
equation (7.31) to determine the reference roll rate associated with the trajectory. In the case 
where both the vertical velocity is zero and the angular acceleration is zero, the reference roll 
rate can be shown to be zero. 

7.2.3.1 Linking the trajectory 

The initial position and velocity vectors for the trajectory ( ( )st
RIP  and ( )st

RIV  respectively) 
will be available from the previous section of the reference trajectory. These two vectors place 
the following continuity constraints on the parameters involved in the horizontal spiral arc 
trajectory, 

 ( ) ( ) ( )ˆs s st R t p t= + +RI CI IP P r k  (7.126)

 ( ) ( ) ( ) 0ˆs s st R t t vω= +RI IV ψ k  (7.127)

These constraints allow a number of the parameters involved in the trajectory to be 
determined. To obtain the initial position state, take the dot product of equation (7.126) with 
the Ik  unit vector, 

 ( ) ( )( )s sp t t= − ⋅RI CI IP P k  (7.128)

If the vertical position of the centre of the arc is chosen equal to that of the initial reference 
position then, 

 ( )st⋅ = ⋅CI I RI IP k P k  (7.129)

and equation (7.128) reduces to, 

 ( ) 0sp t =  (7.130)
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Taking the dot product of equation (7.127) with the Ik  unit vector yields the vertical velocity 
parameter, 

 ( )0 sv t= ⋅RI IV k  (7.131)

Equations (7.126) and (7.127) constrain the centre position of the arc. Thus, although the 
centre position could be provided explicitly subject to the constraints of equations (7.126) and 
(7.127), it is more convenient to simply provide the arc radius and the desired direction of 
rotation about the Ik  unit vector. These two pieces of information, together with the initial 
position and velocity vectors, allow the centre position of the arc to be calculated. To see this, 
make the centre position of the arc the subject of the formula in equation (7.126), 

 ( ) ( )ˆs st R t= −CI RIP P r  (7.132)

where it has been assumed that equation (7.130) holds. In the above equation only the initial 
radial unit vector is unknown. Taking the cross product of equation (7.127) with the Ik  unit 
vector yields, 

 ( ) ( ) ( )
( ) ( )

0ˆ

ˆ
s s s

s s

t R t t v

R t t

ω
ω

× = × + ×

=

RI I I I IV k ψ k k k

r
 (7.133)

Investigating the magnitude relationship of the above equation yields, 

 
( ) ( ) ( )

( )
ˆs s s

s

t R t t

R t

ω

ω

× =

=

RI IV k r
 (7.134)

where it has been noted that, 

 0R >  (7.135)

Dividing equation (7.133) by equation (7.134) yields, 

 ( )
( )

( ) ( )
( )

ˆs s s

ss

t R t t
R tt
ω

ω
×

=
×

RI I

RI I

V k r
V k

 (7.136)

which can be rewritten as follows, 

 
( ) ( )

( )
( )
( )

( )
( )

ˆ s s
s

s s

s

s

t t
t

t t

t
a

t

ω
ω

×
=

×

×
=

×

RI I

RI I

RI I

RI I

V k
r

V k

V k
V k

 (7.137)

where, 
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 ( )
( )

1     for a positive rotation about 
1     for a negative rotation about 

s

s

t
a

t
ω
ω

+= = 
−

I

I

k
k

 (7.138)

With R  and a  given, the radial unit vector at the starting time can be calculated using 
equation (7.137) and the centre position of the arc can be calculated using equation (7.132). 
Use of equation (7.108) and the initial radial unit vector allows the initial heading angle to be 
calculated as follows, 

 ( ) ( )
( )

1 ˆ
tan

ˆ
s

s
s

t
t

t
ψ −  ⋅

=   ⋅ 

I

I

r j
r i

 (7.139)

where a four quadrant arc tangent should be used. This in turn allows the initial heading unit 
vector to be calculated from equation (7.112), 

 ( ) ( ) ( )ˆ sin coss s st t tψ ψ= − +I Iψ i j  (7.140)

Taking the dot product of equation (7.127) with the initial heading unit vector yields the initial 
angular velocity, 

 ( ) ( ) ( )ˆs s
s

t t
t

R
ω

⋅
=

RIV ψ  (7.141)

The only parameters still missing in the horizontal spiral arc trajectory are the constant angular 
acceleration 0α  and the final time ft . Although these parameters can be provided directly, it is 
often more convenient to specify the magnitude of the angle of the horizontal arc to be 
subtended ( )ftψ∆  as well as the magnitude of the velocity vector at the final time ( )ftRIV . A 
similar analysis to that carried out in section 7.2.2.1 can be used to show that, 

 ( ) ( )f ft a tω ω=  (7.142)

 ( ) ( )f ft a tψ ψ∆ = ∆  (7.143)

where through taking the magnitude of equation (7.109) at the final time it can be shown that, 

 ( ) ( ) 2 2
0f

f

t v
t

R
ω

−
=

RIV
 (7.144)

Thus providing only the magnitudes of the velocity vector and change in heading angle at the 
final time is sufficient information, together with a , to determine the signed values of the 
angular velocity and heading angle at the final time. From the information above, the angular 
acceleration and final time can be determined using equations (7.123) to (7.125), 

 ( )f s ft t t t= + ∆  (7.145)
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 ( )
( ) ( ) ( )

0 2
f f

s
f

t t
t

t

ω ω
α ω

ψ

 ∆ ∆
 = +

∆   
 (7.146)

where, 

 ( ) ( )
( ) ( )

2

f
f

f
s

t
t t

t
t

ψ
ω

ω

∆
∆ =

∆
+

 (7.147)

Coordination of the vectors in the above developments into inertial axes follows very simply 
and is thus omitted. 

7.2.3.2 Flight orientation reference vector 

By convention, a non-inverted horizontal spiral arc is described when the reference axis 
system’s normal unit vector has a component in the direction of the inertial down vector. Thus, 
with reference to equation (7.22), the flight orientation reference vector for the horizontal 
spiral arc is, 

 =refR Ik k  (7.148)

7.3 Conclusion 
This chapter has addressed the problem of reference trajectory generation (left most block of 
Figure 3.1). The general reference trajectory problem was established in section 7.1 and 
simplified to the case applicable to the SAM guidance controller in section 7.1.1. There it was 
noted that reference trajectories for the SAM guidance controller need only satisfy linear 
second order position and velocity dynamics along all three inertial axes. The ease of defining 
this type of trajectory was again highlighted in section 7.2 where a number of building block 
reference trajectories were mathematically formulated. These trajectories were created in such 
a way so as to be easily strung together to form complex three dimensional manoeuvres. By 
defining building block reference trajectories the parameter space is reduced for higher level 
mission/manoeuvre planning algorithms. These algorithms would simply work with the set of 
available reference trajectories, linking them together to create a trajectory to achieve a desired 
goal. The SAM guidance controller would then track the trajectory, making use of the inner 
loop roll rate and specific acceleration controllers to steer the aircraft. 
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Chapter 8 

Simulation of Example Applications 

 

To verify the manoeuvre autopilot design and highlight its functionality and versatility, it is 
applied to three example aircraft with varied physical characteristics and reference trajectories. 
These are an aerobatic aircraft, a variable static stability blended-wing-body and a vertical 
takeoff and landing capable tail-stand fixed wing aircraft. All aircraft have been used at 
Stellenbosch University for various UAV research projects. 

The simulations conducted model all six degrees of aircraft freedom as well as all couplings 
and nonlinearities that were ignored in the autopilot design. The simulations do not however 
model sensor noise and it is instead assumed that the full state vector is known perfectly and is 
available for feedback. Estimation strategies are left for future research as outlined in section 
9.3. Effects such as wind and parameter uncertainty have also been neglected in the 
simulations so as not to cloud the fundamental differences between the actual and predicted 
responses that arise due to the simplifying assumptions made in the controller design. 

All simulations were run with continuous states propagated at 1 kHz using a fourth order 
Runge-Kutta numerical integration algorithm. The inner loop and normal specific acceleration 
direction controllers were run at 500 Hz while the outer velocity and position guidance 
controllers were run at 50 Hz. These controller sample rates were selected to ensure that the 
discrete implementation of the continuous controllers resulted in no visible deterioration in the 
closed loop system dynamic responses. With the effects of discretisation negligible in the 
dynamic responses, any remaining differences between the actual and expected dynamics 
could again be attributed to and correlated with the simplifying assumptions made in the 
controller designs. It should be noted however that in practice the respective controllers can 
safely be implemented discretely at sample rates up to an order of magnitude lower than those 
used in the simulations with only minor deterioration of the closed loop dynamic responses. 

Finally, unless otherwise stated, all units used in the design, analysis and simulations to follow 
are SI units with angles and angular rates in radians and radians per second respectively. 
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8.1 Manoeuvre control of an aerobatic aircraft 
The aerobatic aircraft used for simulation in this section is a CAP-232 0.90 size, methanol 
powered UAV shown in Figure 8.1. The aircraft model parameters were first obtained in [13] 
and are restated in Appendix C for convenience. The purpose of the aerobatic aircraft example 
is to verify the controller design and illustrate the full 3D flight potential of the manoeuvre 
autopilot. As such, a detailed application of the control system to the aircraft is documented in 
section 8.1.1. Here all of the conditions for application of the autopilot are investigated 
thoroughly together with pole placement regions, desired poles and actual closed loop poles. 
The simulated performance of the autopilot is then investigated in section 8.1.2. The dynamic 
responses of the individual controllers is investigated and compared to the expected design 
responses of section 8.1.1. Finally, a complex 3D reference trajectory is created and the 
tracking performance of the autopilot evaluated. 

 

Figure 8.1 – Picture of the aerobatic aircraft 

8.1.1 Application of the manoeuvre autopilot 

In this section the generic manoeuvre autopilot presented in this thesis is applied to the 
aerobatic aircraft. Dimensional time fixed pole placement versions of the inner loop 
controllers are utilised given that the aircraft is to operate close to its nominal trim velocity 
and air density during flights. The nominal velocity magnitude and air density values are, 

 30 m/snomV =  (8.1)

 31.225 kg/mnomρ =  (8.2)

The dimensional time fixed pole placement inner loop control strategy will ensure that from an 
outer loop guidance perspective the aircraft continues to operate with the same performance 
(dynamic response) for all variations about the nominal flight condition. This in turn provides 
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the simplest interface for the guidance level controllers. 

8.1.1.1 Axial specific acceleration controller design 

The lower bound on the bandwidth of the closed loop axial acceleration dynamics due to the 
sensitivity function constraint of equation (4.18) is calculated first. Given a minimum 
operating velocity magnitude of 25 m/s and a maximum normal specific acceleration 
magnitude of 5 g’s, then for a desired return disturbance rejection of at least 20 dB, the 
minimum closed loop bandwidth relative to the open loop thrust actuator bandwidth can be 
calculated using equation (4.18) to be, 

 0.99n

T

ω
ω

≥  (8.3)

Here a conservative estimate of 10 has been used for the minimum lift to drag ratio. The 
constraint above implies that the closed loop bandwidth should be at least equal to the open 
loop thrust actuator bandwidth of 4 rad/s. Selecting the desired closed loop poles with a 
natural frequency of 5 rad/s (provides a small buffer for uncertainty without overstressing the 
thrust actuator) and a conservative damping of 0.8 yields the desired characteristic equation, 

 2( ) 8 25c s s sα = + +  (8.4)

Figure 8.2 provides a Bode plot of the actual and approximated return disturbance transfer 
functions i.e. from equation (3.34) the return disturbance transfer function is, 

 1( ) 2 ( )W
W D

LD

C
C s S s

VR s
 

∆ = − 
 

 (8.5)

where substitution of the actual or approximated sensitivity function (equations (4.13) and 
(4.14)) yields the actual or approximated return disturbance respectively. Also plotted are the 
actual and approximated sensitivity functions themselves as well as the term in parenthesis in 
equation (8.5) i.e. the normalised drag to normalised velocity perturbation transfer function. 
Figure 8.2 clearly illustrates the greater than 20 dB’s of return disturbance rejection obtained 
over the entire frequency band due to the appropriate selection of the closed loop poles. The 
figure also shows how the return disturbance rejection is contributed towards by the controller 
at low frequencies and the natural velocity magnitude dynamics at high frequencies. The plot 
thus verifies the sensitivity function and return disturbance analysis done in sections 3.2.3 and 
4.1. 
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Figure 8.2 – Bode magnitude plot of the actual and approximated return disturbance 
transfer function and its constituents 

8.1.1.2 Normal specific acceleration controller design 

The aerobatic aircraft easily satisfies the standard aerodynamic assumption of equation (4.25) 
with, 

 0.0710 1QL
mV

=    ( )14 times smaller  (8.6)

As a result, the pole and zero approximation equations of section 4.2.1 are expected to yield 
good results. This is verified by the actual and approximated open loop poles and elevator to 
normal specific acceleration zeros listed below, 

 Actual:   1,2 10.62 7.85p i= − ±  1,2 46.72 ,  54.67z = −  (8.7)

 Approximated: 1,2 10.62 8.15p i= − ±  1,2 46.56 ,  54.51z = −  (8.8)

Equation (4.47) is then used to determine the NMP upper frequency bound constraint below, 

 16.84nω <  (8.9)

To illustrate the validity of this constraint the controller of section 4.2.4 is applied to the 
aircraft with the desired complex poles selected to have a damping ratio of 0.7 while the 
natural frequency is varied between 5 and 24 rad/s. The desired real pole is selected equal to 
the real value of the complex poles. The desired and corresponding actual closed loop poles 
are illustrated in Figure 8.3. Also shown in the figure are the actual and approximated open 
loop poles (denoted by blue and green crosses respectively – note they are almost exactly on 
top of each other), the NMP frequency bound constraint and the lower timescale separation 
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frequency constraint given a desired velocity magnitude bandwidth of 1 rad/s (a feasible user 
selected value). Importantly the locus of actual closed loop poles is seen to remain similar to 
that of the desired poles while the upper NMP frequency bound is adhered to. Outside the 
bound the actual poles are seen to diverge quickly from the desired values. Also notice both 
the large feasible pole placement region and the fact that the open loop poles naturally satisfy 
the NMP frequency constraint. 

 

Figure 8.3 – Actual and approximated open loop poles, desired and actual closed 
loop poles and upper and lower normal specific acceleration frequency bounds 

Figure 8.4 shows the corresponding feedback gains for the controller designs above. The gains 
are plotted as a function of the RHP zero position normalised to the desired natural frequency 
( 1r− ). The feedback gains are normalised such that their maximum value shown is unity. It is 
clear from the plot that the feedback gains start to grow very quickly, and consequently start to 
become impractical, when the RHP zero is less than 3 times the desired natural frequency. The 
results of Figures 8.3 and 8.4 are all consistent with the arguments developed in sections 4.2.2 
and 4.2.3. 
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Figure 8.4 – Normalised normal specific acceleration controller gains as a function 
of the RHP zero position normalised to the desired natural frequency 

Given the open loop pole positions and the frequency bound constraints illustrated in Figure 
8.3, the desired closed loop normal dynamics poles are selected as follows, 

 Desired CL: 1,2,3 10 8  ,  10p i= − ± −  (8.10)

In an attempt to avoid excessive control effort, the frequency of the desired poles has been 
chosen to be similar to the natural frequency of the open loop system. However, note that the 
poles are still chosen somewhat arbitrarily. Methods for intelligent pole placement are 
discussed in section 9.3 on future research. The above poles correspond to the desired 
characteristic equation below, 

 3 2( ) 30 364 1640c s s s sα = + + +  (8.11)

Applying the control algorithm of section 4.2.4 yields the actual closed loop poles, 

 Actual CL: 1,2,3 10.34 7.48  ,  10.21p i= − ± −  (8.12)

which are seen to be very similar to the desired poles. 

8.1.1.3 Analysis of the lateral dynamics 

Section 5.1 presented a number of conditions that should be satisfied by the lateral dynamics 
in order for them to decouple into roll and directional dynamics. The conditions of equations 
(5.4) to (5.7), (5.12) to (5.14) and (5.19) from section 5.1 are applied to the aerobatic aircraft 
below, 
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 0.0811 0PY = ≈  (8.13)

 2.1223 0
A

Yδ = − ≈  (8.14)

 0.0112 1RY
mV

=    ( )89 times smaller  (8.15)

 0.0591 2.7778P R

P R

n n

l l

C C
C C

= =   ( )47 times smaller  (8.16)

 0.0591 2.5982P

P

nn

l l

CC
C C

β

β

= =   ( )44 times smaller  (8.17)

 0.0591 14.1125P R

P R

nn

l l

CC
C C

δ

δ

= =   ( )239 times smaller  (8.18)

 0.0174 2.7778A R

RA

n n

l l

C C
C C

δ

δ

= =   ( )159 times smaller  (8.19)

 0.0174 2.5982A

A

n n

l l

C C

C C
δ β

δ β

= =   ( )149 times smaller  (8.20)

To quantify whether the numerical values in equations (8.13) and (8.14) are in fact negligible 
it is important to consider the units of the stability/control derivatives. For the stability 
derivative of equation (8.13), assuming a maximum roll rate of 180 deg/s, the corresponding 
lateral acceleration would be 0.05 m/s2 which can be considered negligible. For the control 
derivative of equation (8.14), assuming a maximum aileron deflection of 20 deg, the 
corresponding lateral acceleration would be 0.15 m/s2 which can again be considered 
negligible. 

It is clear from the equations above that the aerobatic aircraft easily satisfies all of the lateral 
decoupling constraints and thus that the decoupled controller designs of sections 5.2 and 5.3 
can be safely applied. To numerically verify an aspect of the lateral decoupling, the open loop 
lateral poles are listed together with the decoupled roll and directional dynamics poles below, 

 Lateral: 1,2,3 1.90 8.78  ,  29.19p i= − ± −  (8.21)

 Decoupled: 1,2,3 1.89 8.68  ,  29.20p i= − ± −  (8.22)

It is clear that the decoupled dynamics poles are very similar to the coupled lateral dynamics 
poles. 

8.1.1.4 Roll rate controller design 

Based on the open loop roll rate dynamics the desired closed loop roll rate poles are selected to 
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be, 

 Desired CL: 1,2 25 ,  20p = − −  (8.23)

which correspond to a desired characteristic equation, 

 2( ) 45 500c s s sα = + +  (8.24)

The open and closed loop rudder to roll rate coupling Bode diagrams are provided in Figure 
8.5. The control system is seen to significantly reject the low frequency coupling. The 
maximum closed loop coupling from rudder to roll rate is seen to be -7.5 dB at approximately 
25 rad/s. However, consider that the rudder will be used to control the directional dynamics 
whose closed loop bandwidth will be similar to its open loop bandwidth of approximately 
9 rad/s. The disturbance coupling at this frequency is only -10.6 dB which implies that a worst 
case 9 rad/s sinusoidal rudder disturbance with an amplitude of 20 deg would cause a 
sinusoidal roll rate disturbance with an amplitude of about 6 deg/s. This coupling is arguably 
negligibly low. 

 

Figure 8.5 – Open and closed loop rudder coupling gain into roll rate over frequency 

8.1.1.5 Lateral specific acceleration controller design 

Considering how well the aerobatic aircraft satisfies equation (5.5) the pole and zero 
approximation equations of section 5.3.1 are expected to yield excellent results. This is 
verified by the actual and approximated open loop poles and rudder to lateral specific 
acceleration zeros listed below, 

 Actual:   1,2 1.89 8.68p i= − ±  1,2 7.03 ,  6.48z = −  (8.25)

 Approximated: 1,2 1.89 8.73p i= − ±  1,2 7.02 ,  6.47z = −  (8.26)
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The fixed natural frequency variation of the stability augmentation control law discussed in 
section 5.3.2.1 is implemented since the open loop natural frequency of the directional 
dynamics is deemed sufficient. A prudent closed loop damping ratio of 0.9 is selected in the 
knowledge that the outer regulation loop does not take the full directional dynamics into 
account and will consequently result in a loss of overall directional damping when 
implemented. 

For the stability augmentation control law of section 5.3.2.1 to be implemented the gain 
relationships of equations (5.71) and (5.72) must be satisfied. Investigating these gain 
constraints for the nominal design yields the following results, 

 0 14.71B F

R R D F

K lm
K Y l l

= =
−

  ( )constraint always satisfied  (8.27)

 0.12 4.05
R

W
R

W F

lmVK
Y l lδ

= =
−

  ( )34 times smaller  (8.28)

Thus it is expected that the desired and actual closed loop poles will be very similar as is 
verified by the result below, 

 Desired: 1,2 8.04 3.89p i= − ±  (8.29)

 Actual:  1,2 8.04 4.07p i= − ±  (8.30)

For the design of the outer regulation control law the NMP upper frequency constraint of 
equation (5.59) is first calculated with the result shown below, 

 2.25nω <  (8.31)

The desired closed loop regulation pole is set to -1 rad/s, well within the NMP frequency 
bound above. Investigating now the desired and actual closed loop poles for the directional 
dynamics as a whole yields, 

 Desired: 1,2,3 8.04 3.89  ,  1p i= − ± −  (8.32)

 Actual:  1,2,3 6.54 4.60  ,  1.25p i= − ± −  (8.33)

with the results depicted graphically in Figure 8.6. The desired poles are denoted by black dots 
while the actual poles are denoted with blue crosses. The NMP upper frequency bound is also 
shown in red. 
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Figure 8.6 – Desired and actual closed loop directional dynamics 

It is clear that approximating the stability augmented directional dynamics by its steady state 
gain introduces error into the regulation pole placement algorithm. To solve this problem 
however requires deriving a far more mathematically complex control law that involves 
designing the stability augmentation and regulation control laws simultaneously, taking into 
account effects such as the side force due to rudder deflection and yaw rate. In contrast the 
lateral specific acceleration control law of section 5.3.2 provides a simple decoupled design 
solution that can easily be tailored to yield the desired results e.g. over damp the inner loop 
poles in the knowledge that the damping will be reduced by the outer loop. 

Considering the actual directional dynamics closed loop poles above, they are still deemed 
acceptable with the complex poles having a natural frequency of 8 rad/s and a damping 0.82 
and the integrator pole still well within the NMP frequency bound of equation (5.59). Finally, 
the Bode magnitude plots of the transfer functions from aileron deflection through to lateral 
specific acceleration and attitude parameter through to lateral specific acceleration are shown 
in Figure 8.7. 
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Figure 8.7 – Open and closed loop aileron and attitude parameter coupling gains into 
lateral specific acceleration over frequency 

The maximum aileron coupling gain is -30 dB which implies that a worst case 20 deg 
amplitude aileron deflection sinusoid will result in a negligible lateral specific acceleration 
disturbance of 0.011 m/s2. The maximum attitude parameter coupling gain is -6 dB which 
implies that a worst case unity amplitude attitude parameter sinusoid will result in a lateral 
specific acceleration disturbance of 0.5 m/s2. This disturbance is acceptably small. 

8.1.1.6 The actual closed loop lateral dynamics 

Figure 8.8 provides a plot of the desired lateral dynamics poles (as black dots), as taken from 
equations (8.23) and (8.32), and the actual closed loop poles (as blue crosses) when all of the 
cross coupling in the lateral dynamics is present. The directional dynamics NMP upper 
frequency bound is also shown in red. The pole positions are also provided numerically below, 

 Desired: 1,2 25.00 ,  20.00 ,  8.04 3.89  ,  1.00p i= − − − ± −  (8.34)

 Actual:  1,2 24.42 ,  20.43 ,  6.63 4.55  ,  1.22p i= − − − ± −  (8.35)

It is clear that for the aerobatic aircraft the lateral cross coupling is very weak and that most of 
the pole placement distortion takes place in the outer directional dynamics regulation control 
law as previously discussed. 
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Figure 8.8 – Desired and actual closed loop lateral dynamics poles 

8.1.1.7 Error angle controller design 

The error angle controller must ensure that the error angle dynamics are timescale separated 
from the outer guidance dynamics. Thus, given that the velocity dynamics bandwidth will be 
1 rad/s, the bandwidth of the error angle dynamics should be at least 5 rad/s. However, when 
considering the closed loop roll rate dynamics poles of equation (8.23), it is clear that in the 
case of the aerobatic aircraft, the roll rate dynamics will not be fully timescale separated from 
the error angle dynamics as required by the simplified, decoupled control law of section 6.3.1. 
To handle this problem, the coupled error angle control law of section 6.3.1.1 could be used 
instead to yield error angle dynamics that accurately match the desired dynamics. However, 
for the aerobatic aircraft example use of the simplified, decoupled controller will be illustrated, 
with candidate designs evaluated until satisfactory coupled closed loop poles are obtained. 

After a small amount of iteration, setting the desired error angle dynamics pole to -3 rad/s 
yields the actual (with roll rate dynamics included) closed loop error angle dynamics shown in 
Figure 8.9. It is clear from the figure that the roll rate dynamics have resulted in some 
distortion of the error angle dynamics with the dominant error angle dynamics pole now being 
slightly faster at, 

 Dominant: 1 5p = −  (8.36)

Thus the closed loop error angle dynamics will be sufficiently timescale separated from the 
guidance dynamics. Although the design method used was somewhat iterative, a satisfactory 
result was very quickly obtained. 
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Figure 8.9 – Desired and actual closed loop error angle dynamics poles 

8.1.1.8 Velocity and position controller designs 

The guidance dynamics poles are selected at, 

 1,2 0.5 0.2p i= − ±  (8.37)

which translates into a desired characteristic equation of, 

 2( ) 0.29c s s sα = + +  (8.38)

With the poles selected as in equation (8.37) the velocity dynamics bandwidth will be 1 rad/s 
as specified in the design of the inner loop controllers. 

8.1.2 Simulation 

To verify the autopilot design of the previous subsection a full nonlinear simulation of the 
aerobatic aircraft in its six degree of freedom environment was set up. Section 8.1.2.1 
investigates the actual and expected dynamic responses of the individual control loops and 
correlates any differences to the simplifying assumptions made during the specific controller 
design. Thereafter in section 8.1.2.2 the aircraft’s tracking of a complex 3D reference 
trajectory is investigated and used to evaluate the performance of the autopilot as a whole. 

8.1.2.1 Dynamic responses 

Investigating the dynamic responses of the inner loop controllers within a complete six degree 
of freedom simulation environment is a challenging task. Due to the nature of the signals that 
these controller regulate (acceleration and angular velocity), kinematically dependent states 
such as velocity and position very quickly diverge from their trim values. Of course when the 
full autopilot is armed it is the responsibility of the outer loop guidance controllers to regulate 
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these states via the inner loop controllers. Of the outer kinematic states the most important to 
be aware of is the velocity magnitude since high rates of this variable would violate the 
timescale separation condition used in the design of the inner loop controllers. 

Taking heed of the possible complication outlined above a simulation to test the inner loop 
dynamic responses was set up as follows. The simulation was begun with the aircraft trimmed 
for straight and level flight. With only the inner loop controllers armed a small step command 
was issued to one of the inner loop controllers. The simulation was concluded shortly after 
completion of the transient response before effects due to divergence of outer kinematic states 
could take effect. The simulation was then repeated until each inner loop controller had been 
stepped individually. The simulation results are presented in Figure 8.10 below. Note that the 
expected responses also plotted are the responses of the actual dynamics of the previous 
section and not the desired dynamics. 

 

Figure 8.10 – Simulated and expected step responses of inner loop controllers 

The results presented in Figure 8.10 verify the mathematics of the inner loop controllers. The 
axial specific acceleration, normal specific acceleration and velocity vector roll rate responses 
are almost identical to their expected responses. The actual lateral specific acceleration 
response shows a small reduction in damping when compared to the expected response. This 
damping reduction can most likely be attributed to finite roll-directional couplings and 
unaccounted for nonlinearities present in the six degree of freedom simulation. 

To investigate the dynamic response of the error angle controller the aircraft was again set up 
to fly straight and level with all inner loop controllers armed. An artificial error angle offset 
was then injected directly into the controller thus causing it to respond in such a way so as to 
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reduce the error to zero. Introducing the error directly into the controller greatly simplified the 
dynamic response test since it avoided having to generate a series of valid normal specific 
acceleration unit vector commands. The simulation results are shown in Figure 8.11. It is clear 
from the results that the error angle controller is responding as designed. 

 

Figure 8.11 – Simulated and expected error angle response to a 10 degree error 

To test the dynamic response of the inertially coordinated velocity controller, the simulation 
was again started with the aircraft flying straight and level north with all controllers except the 
position controllers armed. The velocity coordinates were then stepped individually to yield 
the results shown in Figure 8.12. 

 

Figure 8.12 – Simulated and expected inertial velocity coordinate step responses 

It is important to note that due to the architecture of the SAM guidance controller the dynamic 
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response of the velocity coordinates in inertial axes is dependent on the orientation of the 
aircraft relative to inertial space. This is clearly seen in the simulation results depicted in 
Figure 8.12. Considering the results, note firstly that all three responses closely match the 
desired dynamic response with the primary difference arising from the finite time responses of 
the inner loop controllers. Considering that the aircraft was set up to initially fly north, the 
north velocity response deterioration is due to the finite lag in the axial specific acceleration 
controller. The added lag in the east response arises primarily due to the finite bandwidth of 
the error angle and normal specific acceleration dynamics. The error angle dynamics are seen 
to be very similar to the closed loop axial specific acceleration dynamics thus explaining the 
similarity in the simulated north and east velocity responses. Finally, the added lag in the down 
velocity response is seen to be the smallest of the three. This is because with the initial aircraft 
orientation, the down velocity controller primarily makes use of the fast inner loop normal 
specific acceleration controller. 

The position step responses were obtained in a similar manner to the velocity step responses 
above. Note that position steps are relative to where the aircraft should be on the reference 
trajectory at a particular point in time. In this case the reference trajectory was a straight line in 
the northerly direction with a reference velocity of 30 m/s. The simulation  results are depicted 
in Figure 8.13. Note again the similarity between the expected and actual responses with the 
primary difference arising due to the finite bandwidth of the inner loop controllers. The 
difference between the north, east and down transient responses can be explained using the 
velocity step response arguments provided above. 

 

Figure 8.13 – Simulated and expected inertial position coordinate step responses 

8.1.2.2 Reference trajectory flight 

With the individual controller dynamic responses investigated and verified, this section 
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investigates the overall performance of the autopilot. To this end a full 3D flight reference 
trajectory was set up to demonstrate the manoeuvre flight capability of the autopilot. The 
reference trajectory is shown in Figure 8.14 and is described in point form below. 

 

Figure 8.14 – Aerobatic aircraft reference trajectory 

Reference trajectory description: 

o The aircraft starts at 100 m altitude flying straight and level north with a velocity 
magnitude of 30 m/s. 

o After 150 m the aircraft is commanded to turn east with a turn radius of 50 m. This turn 
radius corresponds to a steady state bank angle of just over 60 deg and consequently a 
normal specific acceleration of just over 2 g’s. 

o The aircraft then continues east for 30 m before it pulls up to a pitch angle of 45 deg 
with a pitching radius of 50 m. At the trim velocity this radius corresponds to a peak 
normal specific acceleration of 2.8 g’s . 

o The aircraft is then commanded to maintain the 45 deg climb at 30 m/s for 150 m 
before it is commanded to level out again with a downward pitching arc radius of 
50 m. 

o After flying a further 30 m straight and level the aircraft is commanded to fly south. 
The turn radius is again 50 m. 

o The aircraft flies 150 m straight and level south before it is commanded to fly an 
Immelmann manoeuvre i.e. a 180 deg vertical arc with a barrel roll to revert back to 
non-inverted straight and level flight at the apex. The Immelmann arc radius is 50 m. 

o  The aircraft exits the Immelmann flying north and is commanded to maintain altitude 
and heading for a further 150 m. 
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o The aircraft is then commanded to pull up to a pitch angle of 15 deg and enter into a 
left handed horizontal spiral arc with a radius of 50 m. The pitch angle of 15 deg 
corresponds to a climb rate of just over 7.5 m/s during the arc. 

o The aircraft is commanded to fly through one and a quarter horizontal spiral arc 
revolutions before levelling out again in a westerly direction. 

o After flying 50 m straight and level west, the velocity magnitude is ramped up to 
35 m/s over the next 75 m. This corresponds to an axial specific acceleration of a little 
over 2 m/s2. The aircraft then holds this velocity for another 125 m before the 
simulation concludes. 

Note that during the simulation the commanded thrust and commanded velocity vector roll 
rate were limited as follows, 

 [ ]0,70  NCT ∈  (8.39)

 [ ]300,300  deg/sWP ∈ −  (8.40)

The roll rate limit was imposed to avoid excessive roll rates during inversion manoeuvres. 
Furthermore, the normal specific acceleration lower limit used in section 6.3.2 to switch the 
guidance algorithm from roll-to-turn to skid-to-turn was set to, 

 22.5 m/sε =  (8.41)

In the case where direct lateral specific acceleration was used the autopilot was set to hold the 
current wind axis system normal unit vector direction. 

The simulation results for the reference trajectory are displayed in Figures 8.15 to 8.18. Figure 
8.15 plots the reference trajectory in 3D space together with the actual trajectory flown. The 
figure also includes time stamps to allow for easy comparison with the other figures. Figure 
8.16 provides a plot of the difference between the actual and reference position and velocity 
coordinates in inertial axes over time. The commands issued to the inner loop controllers 
together with the actual inner loop signal responses are shown in Figure 8.17. Finally, the 
actuator command signals are shown in Figure 8.18. 
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Figure 8.15 – Reference trajectory and actual trajectory flown 

With reference to Figures 8.15 and 8.16, the aircraft is seen to track the reference trajectory 
well. The aircraft is never more than about 5 m in error of the trajectory along a particular 
inertial unit vector. Slight overshoots are visible at the start of each horizontal and vertical arc. 
This is due to the finite inner loop and error angle dynamics that are ignored by the SAM 
guidance controller. The slight divergence from the trajectory at the top of the Immelmann 
manoeuvre is due to the roll orientation inversion that takes place there. The aircraft is 
commanded to roll very quickly to a non-inverted flight state but due to bandwidth constraints 
the normal and lateral specific acceleration controllers are not able to respond quickly enough 
to result in a pure roll motion. As a result the aircraft looses altitude during the manoeuvre and 
is pulled to the left of the trajectory due to the clockwise roll rotation. Finally, note that the 
small finite roll rate offset produced by the feed-forward term in the error angle controller 
during the horizontal spiral arc allows the aircraft to perfectly track this section of the 
trajectory with only the proportional feedback error angle architecture. The small positive roll 
rate offset is visible in Figure 8.17. 
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Figure 8.16 – Position and velocity errors relative to the reference trajectory 

Considering Figure 8.17 further, it is clear that the inner loop signals track their commanded 
values as expected. The axial specific acceleration diverges from the commanded value 
slightly for significant negative specific acceleration commands. This is due to the lower thrust 
limit and the finite amount of drag in the system. For most of the reference trajectory the 
lateral specific acceleration command is set to zero to enforce coordinated flight. The actual 
lateral specific acceleration is seen to be constantly disturbed by coupling from the roll 
dynamics but is effectively driven back to zero by the controller. Note the small lateral specific 
acceleration command near the 10 s mark. This command is issued because the normal 
specific acceleration magnitude becomes less than ε  in equation (8.41) thus placing the 
guidance controller into skid-to-turn mode. This situation again occurs very briefly close to the 
50 s mark. The normal specific acceleration and roll rate are seen to track their commanded 
values very well. The roll rate command displays some sensitivity close to the 50 s mark 
where the normal specific acceleration is close to zero with the guidance controller just outside 
the zone where direct lateral specific accelerations are commanded. However, the roll 
command sensitivity is seen to be short lived and does not cause any appreciable deterioration 
to the aircraft’s response. 
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Figure 8.17 – Commanded and actual inner loop signals over the reference trajectory 

Finally, Figure 8.18 illustrates the realistic nature of the actuator signals used over the 
reference trajectory. The thrust actuator does saturate against its upper and lower bounds a few 
times during the trajectory. However this situation is more a consequence of the highly 
aggressive reference trajectory than the underlying controller. The aerodynamic actuators are 
seen to be well within typical small angle limits. The aileron signal however can be reduced if 
desired by slowing the error angle controller and/or limiting the maximum roll rate 
commanded by the error angle controller. 

 

Figure 8.18 – Actuator signals over the reference trajectory 
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8.1.3 Comments 

The results of the previous three subsections verify the design of the manoeuvre autopilot and 
illustrate clearly its potential for full 3D kinematic flight control. As intuitively expected, the 
aerobatic aircraft is seen to be well suited to the manoeuvre autopilot, having large feasible 
pole placement regions and satisfying all conditions required for implementation of the control 
laws. 

8.2 Stabilisation and control of a variable stability aircraft 
The variable stability aircraft is an electrically powered, blended-wing-body UAV. The 
aircraft, know as Sekwa and shown in Figure 8.19, was designed and built by the Council for 
Scientific and Industrial Research (CSIR) in South Africa and was optimised for minimum 
drag. As part of the design, the aircraft was equipped with the ability to slowly adjust its centre 
of mass in flight (the avionics and battery pack are shifted inside the aircraft using an electric 
motor), thereby providing an extra degree of longitudinal trim freedom. Consequently, the 
elevon control surfaces can be trimmed to their optimal aerodynamic efficiency positions for 
different flight conditions. 

 

Figure 8.19 – Design diagram of Sekwa superimposed on a background 

However, shifting the centre of mass also affects the static stability of the aircraft. The 
aerodynamically useful adjustable centre of mass range corresponds to varying the static 
stability of the aircraft from stable to significantly unstable. The task of the control system is 
thus first to restore the aircraft’s static stability and then to regulate the aircraft’s motion 
variables for autonomous flight. In this section it will be shown that the manoeuvre autopilot 
of this thesis provides a particularly elegant and effective solution to the variable stability 
stabilisation and flight control problem. 

8.2.1 Application of the manoeuvre autopilot 

This section applies the manoeuvre autopilot to the variable stability aircraft. Given that the 
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aircraft is to operate about the following trim velocity and air density, 

 20 m/snomV =  (8.42)

 31.0588 kg/mnomρ =   (Altitude of 1500m above sea level)  (8.43)

the dimensional time variants of the inner loop controllers will be used. The focus of the 
application will be on the normal specific acceleration controller since the rest of the design is 
relatively standard. Feed-forward of the reference signal to cancel the closed loop integrator 
dynamics will also be illustrated in the normal specific acceleration controller design. Finally, 
note that the parameters for this aircraft were obtained from [48] and are summarised in 
Appendix C. 

8.2.1.1 Axial specific acceleration controller design 

Given the aircraft’s minimum operating velocity magnitude of 15 m/s, its maximum normal 
specific acceleration magnitude of 3 g’s and its minimum lift to drag ratio of 10, then for a 
desired return disturbance rejection of greater than 20 dB, the minimum closed loop axial 
specific acceleration bandwidth relative to the open loop thrust actuator bandwidth is, 

 0.89n

T

ω
ω

≥  (8.44)

The constraint above is easily satisfied by setting the closed loop axial specific acceleration 
bandwidth equal to the open loop thrust actuator bandwidth of 5 rad/s. With a conservative 
damping of 0.8 selected, the desired closed loop characteristic equation becomes, 

 2( ) 8 25c s s sα = + +  (8.45)

8.2.1.2 Normal specific acceleration controller design 

The variable stability aircraft’s normal dynamics will be a strong function of the centre of 
mass position. To provide initial insight into the normal dynamics, they are investigated with 
the centre of mass in its most forward position i.e. the aircraft in its most statically stable 
configuration. In this configuration, the standard aerodynamic assumption of equation (4.25) is 
easily satisfied with, 

 0.0323 1QL
mV

=    ( )31 times smaller  (8.46)

Since the lift due to pitch rate derivative will not be a strong function of the centre of mass 
position, and given how well the above constraint is satisfied, it will be assumed that it 
remains satisfied for all centre of mass positions. The actual and approximated open loop poles 
and zeros are listed below, 



CHAPTER 8– SIMULATION OF EXAMPLE APPLICATIONS  

 

166

 Actual:   1,2 4.70 6.74p i= − ±  1,2 20.52 ,  19.20z = −  (8.47)

 Approximated: 1,2 4.70 6.86p i= − ±  1,2 20.51 ,  19.19z = −  (8.48)

with the associated NMP upper frequency bound, 

 6.62nω <  (8.49)

Firstly, it is seen that the approximated poles and zeros very closely match the actual poles and 
zeros due to how strongly the constraint of equation (4.25) is satisfied. Secondly, note that the 
NMP upper frequency bound for this aircraft clamps the allowed normal specific acceleration 
bandwidth quite substantially. With a typical lower timescale separation frequency bound of 
4 to 5 rad/s (depending on the desired velocity dynamics), the acceptable region for closed 
loop pole placement is somewhat limited. The low NMP frequency bound is due to the 
aircraft’s exceptionally short effective length to the tail-plane as defined by equation (4.28). 
Finally, note that the open loop normal dynamics poles lie slightly outside the NMP upper 
frequency bound with a natural frequency of 8.22 rad/s. Thus it is expected that some 
distortion of the actual closed loop poles will occur during pole placement when the centre of 
mass is in its most forward position. 

Consider now the effect on the open loop normal dynamics when the centre of mass is shifted 
rearward. As the static stability is reduced it is expected that the normal dynamics poles (the 
short period mode) will move towards the origin and break into a saddle point with the real, 
unstable pole describing the divergence dynamics of the aircraft. With reference to equation 
(4.32), the elevator to normal specific acceleration zeros are expected to move slightly further 
from the origin due to the shortening of the length to the neutral point as defined in equation 
(4.27). These results are verified in Figure 8.20. The figure illustrates the open loop elevator to 
normal specific acceleration poles and zeros (denoted by blue crosses and circles respectively) 
for nine different centre of mass positions. These nine centre of mass positions span the 
aircraft’s entire allowable centre of mass range in increments of 2.5 mm. The centre of mass 
positions are measured relative to the stable flight configuration and thus 0 mm rearward 
corresponds to the most stable configuration and 20 mm rearward corresponds to the most 
unstable configuration. 
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Figure 8.20 – Open loop poles and zeros, desired and actual closed loop poles, 
additional closed loop zero and upper and lower pole placement frequency bounds 

Also shown in the figure is the NMP upper frequency bound (solid red line) and the lower 
timescale separation bound (dashed red line). The lower timescale separation bound has been 
set to 4 rad/s to allow for a velocity dynamics bandwidth of up to 0.8 rad/s. Finally, the figure 
also denotes the desired (black dot) and actual (green plus sign) closed loop poles and the 
additional closed loop integrator cancellation zero (green circle). The desired closed loop poles 
and additional zero have been set as follows, 

 Desired CL: 1,2,3 4 3  ,  2p i= − ± −  1 2z = −  (8.50)

Note that the dominant closed loop poles have been set to lie within the frequency bounds with 
the dynamic effect of the slower integrator pole to be cancelled by the reference feed-forward 
induced zero. 

Analysis of Figure 8.20 shows that for centre of mass position where the open loop poles lie 
within the NMP upper frequency bound constraint, there is little distortion in the placement of 
the closed loop poles. For centre of mass positions corresponding to very stable or very 
unstable flight, at least one of the open loop poles is seen to lie outside the NMP upper 
frequency bound and consequently there is significant distortion in the actual closed loop pole 
positions. The distortion in the two closed loop imaginary poles however is seen to have very 
little effect on their damping and thus the poles are still considered acceptable. Note however, 
that distortion to the slow closed loop integrator pole results in the feed-forward induced zero 
not perfectly cancelling the closed loop integrator dynamics. Thus, for very rearward centre of 
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mass positions it is expected that the effect of the slow integrator dynamics will start to 
become prominent in the closed loop normal specific acceleration response. Of course, the 
feed-forward gain could be appropriately adjusted to better cancel the closed loop integrator 
dynamics, but this level of fine adjustment is left for a more detailed application of the 
manoeuvre autopilot to the variable stability aircraft. 

In conclusion, it is seen that the normal specific acceleration control law is capable of 
effectively stabilising the variable stability aircraft for all centre of mass positions. In its most 
unstable configuration the aircraft has an over 4 rad/s unstable divergence mode (time to 
double of less than 0.17 s) which is stabilised by the controller. It must be highlighted however 
that if the centre of mass position is to be changed in flight, then the bandwidth of this motion 
must be timescale separated from the normal specific acceleration dynamics for the control 
architecture to work. In the variable stability aircraft of this example this is most certainly the 
case. With the normal dynamics regulated by the normal specific acceleration controller, the 
aircraft will appear to outer loop guidance controllers as a stable, well regulated airframe and 
consequently will allow conventional outer loop controllers to be utilised. It is thus seen that 
the manoeuvre autopilot provides a particularly elegant solution to the variable stability 
stabilisation and flight control problem. 

8.2.1.3 Analysis of the lateral dynamics 

The lateral analysis and design for the variable stability aircraft will be handled very briefly. 
Note that it is assumed that the lateral dynamics remain invariant with centre of mass motion. 
Due to the very short distances that the centre of mass moves, this approximation is accurate 
as verified by [48]. The conditions of equations (5.4) to (5.7), (5.12) to (5.14) and (5.19) from 
section 5.1 are investigated below, 

 0.7396PY = −  (8.51)

 7.6993
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Yδ = −  (8.52)

 0.0130 1RY
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=    ( )77 times smaller  (8.53)
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= =   ( )42 times smaller  (8.58)

It should be noted that for the variable stability aircraft the side force due to roll rate and side 
force due to aileron deflection derivatives are in fact significant. This can largely be attributed 
to the aircraft’s unconventional configuration. Although these larger than usual derivatives 
may suggest a coupled lateral controller design, the autopilot design will continue by 
neglecting these terms and any adverse effects will be noted in the simulation results. The 
actual open loop lateral dynamics poles are calculated to be, 

 Actual OL: 1,2,3 0.68 6.00  ,  15.02p i= − ± −  (8.59)

8.2.1.4 Combined roll rate and error angle controller design 

For the variable stability aircraft the error angle controller will be designed taking into account 
the roll rate dynamics. The combined design makes use of the feedback gains of equations 
(6.95) to (6.97). Given the approximated open loop roll rate dynamics, 

 Approximated OL: 1 14.87p = −  (8.60)

and the lower timescale separation bound of 4 rad/s, the closed loop error angle poles are 
chosen as follows, 

 Desired CL: 1,2,3 4 ,  12 9p i= − − ±  (8.61)

The error angle dynamics will thus be dominated by the stable real pole at 4 rad/s. For 
controller feasibility reasons it is prudent to investigate the resultant inner loop roll rate 
dynamics given the desired error angle poles. Upon investigation it is found that the closed 
loop roll rate dynamics poles are at, 

 Roll Rate CL: 1,2 14.00 11.18p i= − ±  (8.62)

Given the open loop roll rate bandwidth, these poles are practically feasible. 

8.2.1.5 Lateral specific acceleration controller design 

The actual and approximated open loop rudder to lateral specific acceleration poles and zeros 
lie at, 

 Actual:   1,2 0.75 5.97p i= − ±  1,2 1.64 ,  1.55z = −  (8.63)
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 Approximated: 1,2 0.75 6.01p i= − ±  1,2 1.64 ,  1.55z = −  (8.64)

The two degree of freedom pole placement variant of the directional stability augmentation 
controller is used for the variable stability aircraft. The stability augmented closed loop poles 
are selected at, 

 Desired: 1,2 6 2p i= − ±  (8.65)

and result in the following actual closed loop poles, 

 Actual:  1,2 6.00 2.00p i= − ±  (8.66)

To two decimal spaces the poles are seen to be exactly where desired. It is thus expected that 
the gain relationships of equations (5.71) and (5.72) will be well satisfied. Investigating these 
relationships yields the expected result, 

 0.0231 30.5326B F
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K Y l l

= =
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  ( )1320 times smaller  (8.67)
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   ( )83 times smaller  (8.68)

For the design of the outer regulation control law equation (5.59) is used to calculate the NMP 
upper frequency constraint below, 

 0.53nω <  (8.69)

The strictness of this upper bound is due to the variable stability aircraft’s unconventionally 
short effective length to the fin as defined in equation (5.57). Selecting the desired closed loop 
lateral specific acceleration regulation pole to be at -0.2 rad/s yields the final desired and 
actual closed loop directional dynamics poles, 

 Desired: 1,2,3 6 2  ,  0.2p i= − ± −  (8.70)

 Actual:  1,2,3 4.32 4.38  ,  0.21p i= − ± −  (8.71)

Note again how the outer lateral specific acceleration regulation control law causes significant 
distortion to the stability augmented directional dynamics. This is due to the decoupled 
directional stability augmentation and regulation designs as discussed in section 5.3.2. 

8.2.1.6 Velocity and position controller designs 

Finally, the guidance dynamics poles are selected at, 

 1,2 0.4 0.3p i= − ±  (8.72)
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These poles translate into velocity dynamics with a bandwidth of 0.8 rad/s, which in turn 
supports the 4 rad/s timescale separation bound used in the design of the inner loop 
controllers. 

8.2.2 Simulation 

To verify the autopilot design of the previous subsection and in particular the normal specific 
acceleration controller design, the dynamic responses of the various controllers are 
investigated in section 8.2.2.1. Then, in section 8.2.2.2, the variable stability autopilot is 
evaluated as a whole when the aircraft is made to fly a 3D reference trajectory while the centre 
of mass is slowly shifted from its most forward position to its most rearward position. 

8.2.2.1 Dynamic responses 

Figure 8.21 provides step response results of the four inner loop controllers when the aircraft 
has its centre of mass in its most forward position. It is clear from the figure that all controllers 
respond as expected with slight deviations due to ignored couplings and nonlinearities that are 
of course present in the six degree of freedom simulator. The small roll rate deviation from the 
expected response is most likely due to the greater than usual roll-directional coupling that 
exists in the variable stability aircraft due to is unconventional configuration. 

It should be noted that in obtaining the step responses of Figure 8.21, the velocity magnitude 
was artificially held constant in the six degree of freedom simulator. This was done to avoid 
significant distortion of the lateral and normal specific acceleration responses. Due to the very 
long settle time of the lateral specific acceleration controller, the velocity magnitude can 
diverge significantly during its transient response and influence the step response dramatically. 
Similarly, the slow closed loop normal specific acceleration integrator dynamics that are not 
fully negated by the reference feed-forward term also begin to couple with the velocity 
dynamics when no guidance laws are in place and would consequently result in undue 
distortion of the step response.  
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Figure 8.21 – Simulated and expected step responses of inner loop controllers with 
the centre of mass in its most forward position 

Figure 8.22 investigates the normal specific acceleration response for different centre of mass 
positions. Analysing the results it is seen that as the centre of mass moves aft, the initial 
frequency of response increases slightly (i.e. the complex poles get slightly faster) but the slow 
integrator dynamics become more prominent. These results correlate well with the s-plane 
plots of Figure 8.20. The feed-forward controller gain could be adjusted to improve the 
dynamic responses, particularly when the centre of mass is 15 and 20 mm back from the 
nominal position. However, as previously argued this level of fine tuning will be omitted for 
this example application with the results of Figure 8.22 deemed acceptable. 
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Figure 8.22 – Simulated step responses of the inner loop normal specific acceleration 
controller with the centre of mass in various positions 

The error angle controller response is shown in Figure 8.23. The response is seen to match the 
expected response very well with slight differences arising due to the distortions in the roll rate 
response as seen in Figure 8.21. 

 

Figure 8.23 – Simulated and expected error angle response to a 10 degree error 

The expected and actual north, east and down velocity and position step responses of the 
aircraft are shown in Figure 8.24. The simulation was set up with the aircraft flying straight 
and level north with the centre of mass in its most forward position. The responses match well 
with the general added lag and extra overshoot due to the finite bandwidths of the inner loop 
controllers. The slightly worse down response is most likely due to the ineffective cancellation 



CHAPTER 8– SIMULATION OF EXAMPLE APPLICATIONS  

 

174

of the slow closed loop integrator dynamics present in the normal specific acceleration 
response. However, the result is still considered more than acceptable. 

 

Figure 8.24 – Simulated and expected step responses of the velocity and position 
inertial coordinates 

8.2.2.2 Reference trajectory flight 

With the individual step responses investigated and verified, the aircraft is now commanded to 
fly the reference trajectory plotted in Figure 8.25 and described in point form below. 

 

Figure 8.25 – Variable stability aircraft reference trajectory 

Reference trajectory description: 

o The aircraft starts at the origin of the north-east axis system, flying north with a 
velocity of 20 m/s and an altitude of 1500 m. 
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o After 100 m the aircraft is commanded to pull up to a pitch angle of 15 deg by flying 
an appropriate vertical arc with a radius of 150 m. The aircraft then enters into a 
horizontal spiral arc that turns it through 90 deg to leave it climbing at just over 5 m/s 
and flying east. The turn radius is 70 m which corresponds to a steady state straight and 
level flight bank angle of 30 deg. 

o The aircraft then continues to climb and fly east for 100 m. It then reduces its pitch 
angle to 5 deg through an appropriate 150 m radius vertical arc and enters a 70 m 
radius horizontal spiral arc. The arc continues for one and a quarter revolutions before 
the aircraft levels out again by flying an appropriate 150 m radius vertical arc. 

o With the aircraft now straight and level in a southerly direction, it is commanded to 
hold its course for a further 150 m. It is then commanded to turn right while 
maintaining speed and altitude until it is facing west. The turn radius is again 70 m. 
The trajectory is concluded with the aircraft flying west for a final 150 m. 

Note that during the simulation the thrust command was limited as follows, 

 [ ]0, 20  NCT ∈  (8.73)

At the start of the simulation, the aircraft’s centre of mass is in its most forward position. Over 
the course of the first minute of the simulation (the simulation is a little over one minute long), 
the centre of mass is shifted backwards to its most extreme point. The results of the simulation 
are shown in Figures 8.26 to 8.29. 

 

Figure 8.26 – Reference trajectory and actual trajectory flown 

The 3D flight path of Figure 8.26 shows that the aircraft tracks the reference trajectory very 
well and shows no visible sign of the centre of mass even moving. The position and velocity 
tracking errors in Figure 8.27 verify this result with the position errors remaining within 3 m 
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along any inertial unit vector. 

 

Figure 8.27 – Position and velocity errors relative to the reference trajectory 

The commands to the inner loop controllers are seen to be well tracked in Figure 8.28. The 
small lateral specific accelerations induced by the roll rate controller are seen to be quickly 
damped by the inner loop directional stability augmentation controller with the slow lateral 
specific acceleration integrator dynamics only excited when a constant rudder command is 
required (such as during a steady turn). 

 

Figure 8.28 – Commanded and actual inner loop signals over the reference trajectory 

The most telling of the simulation graphs is that of the elevator actuator signal in Figure 8.29. 
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The average elevator angle is seen to increase steadily (elevator moves downwards) over the 
first 60 s of the simulation while the centre of mass is shifted rearward. Also, in comparison to 
the elevator perturbation signals during the first 20 s of the simulation when the aircraft is still 
relatively stable, note the increased aggression in the elevator signal when the normal 
dynamics are excited with the aircraft in an unstable configuration (see just before the 50 s 
mark where the aircraft levels out after the horizontal spiral arc). The rest of the control signals 
are seen to behave normally and are well within typical bounds. 

 

Figure 8.29 – Actuator signals over the reference trajectory 

8.2.3 Comments 

The simulation results of the previous section illustrate the ease and elegance with which the 
manoeuvre autopilot handles the variable stability stabilisation and flight control problem. The 
reference trajectory is seen to be flown without signs of the centre of mass even moving. In 
fact the only prominent visible sign that the centre of mass is actually moving to decrease the 
natural static stability of the aircraft is the elevator signal of Figure 8.29. 

8.3 Transition control of a VTOL aircraft 
As a final example the manoeuvre autopilot is applied to handle transition control of a Vertical 
Takeoff and Landing (VTOL) aircraft. The UAV, shown schematically in Figure 8.30, is a 
custom made tail-sitter aircraft with two electrically powered motors mounted on the wings 
and a number of aerodynamic control surfaces to allow for full control during both hover and 
forward flight. The aircraft model parameters were obtained from [16] and are restated in 
Appendix C for convenience. 
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Figure 8.30 – Schematic diagram of the VTOL aircraft [16] 

Broadly speaking, transition control involves guiding the aircraft from hover into forward 
flight and also from forward flight back to hover. Note that with the body axis system defined 
as for conventional aircraft, hover flight for the VTOL aircraft is equivalent to vertical flight. 
For the manoeuvre autopilot of this thesis to be applied to the transition control problem it is 
important that the transition trajectories satisfy the constraints of the autopilot. One of the 
constraints of importance to the transition trajectory is that the velocity magnitude should 
never become zero. At zero velocity magnitude the wind axis system becomes undefined, 
corresponding to a singularity in the control solution. Thus, to avoid this pitfall, it will be 
assumed that a hover and low speed flight controller is available to stabilise and guide the 
aircraft vertically up to speeds of 10 m/s. The transition controller thus need only guide the 
aircraft from this point forward and return it to this state for the transition system to be 
complete. A second point of concern during the transition trajectories is that of the incidence 
angles over the trajectories. To ensure that the incidence angles remain small as required by 
the autopilot (Chapter 3), vertical arc transition trajectories of sufficient radius will be used as 
in [16] to guide the aircraft from horizontal to vertical flight and back again. 

8.3.1 Application of the manoeuvre autopilot 

The example simulation will take place at sea level where the air density is, 

 31.225 kg/mnomρ =  (8.74)

and the velocity magnitude range is limited to, 

 [ ]10,30  m/sV ∈  (8.75)

Given that the forward flight trim velocity of the aircraft is 25 m/s, the transition control 
problem is one that involves considerable changes in velocity magnitude and consequently 
dynamic pressure. The VTOL aircraft transition control problem is thus well suited to the 
NNDT variants of the inner loop controllers. These controllers through their inherent 
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scheduling of the dimensional inner loop controller bandwidths will ensure the use of realistic 
actuator deflections throughout the transition manoeuvres. The sections that follow thus 
investigate the application of the NNDT variants of the inner loop controllers to the VTOL 
aircraft and show that these controllers can be used with the standard guidance controllers to 
effectively solve the transition control problem. It should be noted that for the purposes of 
simplifying the example application, propeller induced airflow effects over the aerodynamic 
surfaces will be ignored and instead it will be assumed that from 10 m/s onwards the airspeed 
over all of the actuators is equal to the velocity magnitude of the aircraft. Of course, a more 
detailed design could investigate adapting the inner loop dynamics slightly to cater for this 
effect and then use these new modified inner loop controllers to solve the transition control 
problem within the same manoeuvre autopilot architecture. 

8.3.1.1 Axial specific acceleration controller design 

Given the minimum operating velocity magnitude of 10 m/s, a maximum normal specific 
acceleration magnitude of 4 g’s and a minimum lift to drag ratio of 10, then for a desired 
return disturbance rejection of at least 20 dB, the minimum axial specific acceleration closed 
loop bandwidth relative to the open loop thrust actuator bandwidth is calculated using equation 
(4.18) to be, 

 1.40n

T

ω
ω

≥  (8.76)

It can be seen that due to the very low minimum speed of the VTOL aircraft the constraint 
above is on the borderline of practical feasibility. However, the constraint is somewhat 
misleading for this application since at very low speeds the aircraft will be flying close to 
vertical. With close to vertical flight, the aircraft will have very small angles of attack and thus 
produce very small normal specific accelerations. The coupling of lift into drag with thus be 
small during this phase of flight simply because the amount of lift produced is small. Setting 
the desired bandwidth of the axial specific acceleration controller to 5 rad/s (1.2 times the 
open loop thrust actuator bandwidth) is thus expected to yield satisfactory, practically 
achievable results. The desired characteristic equation is thus made, 

 2( ) 8 25c s s sα = + +  (8.77)

8.3.1.2 NNDT normal specific acceleration controller design 

The VTOL aircraft easily satisfies the standard aerodynamic assumption of equation (4.77) 
with, 

 8.1626 139.3445
QL QC k= =    ( )17 times smaller  (8.78)

As a result, the NNDT pole and zero approximation equations of section 4.2.6 are expected to 
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yield good results. This is verified by the actual and approximated open loop poles and 
elevator to normal specific acceleration zeros listed below, 

 Actual:   1,2 7.68 17.26p i′ = − ±  1,2 27.27 ,  33.47z′ = −  (8.79)

 Approximated: 1,2 7.68 17.81p i′ = − ±  1,2 27.11 ,  33.32z′ = −  (8.80)

with the NMP upper frequency bound constraint below, 

 10.07nω′ <  (8.81)

Note that the zeros and frequency bound above are for the case where only the elevator control 
surface is used (mixed using the four flaps on the tail structure as denoted in Figure 8.30). 
Considering the results it is noted that the open loop normal dynamics poles lie sufficiently far 
outside the NMP bound (at 18.32) to result in significant inaccuracies in the NNDT pole 
placement algorithm. This situation suggests that the aircraft’s centre of mass is placed too far 
forward and that it’s natural flying qualities will be poor i.e. its actuation from the elevator will 
appear significantly lagged with visible undershoot effects. To solve this problem without 
changing the centre of mass position, the elevator control surface is combined with the 
horizontal flaps on the wing section to form a new virtual elevator actuator with more 
desirable control characteristics. The mixing is done such that the horizontal flaps, which 
produce very little pitching moment, deflect in the opposite direction to the primary elevator 
surface on the tail structure to increase the effective normalised length to the tail-plane as 
defined in equation (4.81). Increasing the effective normalised length to the tail-plane is shown 
in equation (4.83) to drive the zeros further from the origin and thereby increase the NMP 
upper frequency bound constraint. With this mixing strategy implemented with a mixing ratio 
magnitude of 1, the new normal dynamics zeros lie at, 

 Actual:   1,2 38.42 ,  68.85z′ = −  (8.82)

 Approximated: 1,2 36.22 ,  66.65z′ = −  (8.83)

with the NMP upper frequency bound constraint, 

 17.14nω′ <  (8.84)

It can be seen that the open loop poles now lie only slightly outside the NMP frequency bound, 
but are deemed close enough to cause only a small amount of distortion to the closed loop 
poles. Selecting the desired poles in the NNDT frequency plane to be, 

 Desired CL: 1,2,3 10 10  ,  14p i′ = − ± −  (8.85)

and applying the control algorithm of section 4.2.6 yields the actual closed loop poles, 
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 Actual CL: 1,2,3 11.56 10.28  ,  10.49p i′ = − ± −  (8.86)

As expected, the actual closed loop poles have deviated somewhat from their desired positions 
but are still considered acceptable as a design. 

With the closed loop poles fixed in the NNDT frequency plane, it is important for lower bound 
timescale separation reasons to investigate the equivalent dimensional poles for various 
dynamic pressures. Given that the altitude variations in this example are small, this amounts to 
investigating the corresponding dimensional dynamics for various velocity magnitudes. It is 
straightforward to convert the NNDT control law to its dimensional equivalent by substituting 
the definitions of the normalised state, output and control variables into the NNDT control law 
and matching the result with the dimensional control law. The dimensional control law can 
then be applied to the dimensional system to yield the corresponding dimensional poles for a 
particular velocity magnitude. Figure 8.31 provides a plot of the closed loop dimensional poles 
corresponding to a range of velocity magnitudes of interest. Also shown in each plot is the 
corresponding dimensional NMP upper frequency bound (red circle) and a lower timescale 
separation frequency bound of 4 rad/s (green dashed circle). The timescale separation bound 
corresponds to a maximum velocity magnitude bandwidth of 0.8 rad/s. 

Figure 8.31 – Corresponding dimensional normal dynamics poles for various velocities 

Note how with fixed NNDT poles, the bandwidth of the dimensional system is scheduled with 
velocity magnitude. At 10 m/s the closed loop poles only just satisfy the lower timescale 
separation bound while at the trim velocity of 25 m/s they satisfy it with ease. It is thus clear 
that the NNDT normal specific acceleration controller design will work effectively with 
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dynamically invariant guidance controllers of an appropriate bandwidth over the velocity 
magnitude range of interest. 

8.3.1.3 Analysis of the lateral dynamics 

To test whether the lateral dynamics will decouple into roll and directional dynamics, the 
conditions of equations (5.4) to (5.7), (5.12) to (5.14) and (5.19) from section 5.1 are applied 
to the VTOL aircraft below, 

 0.2557 0
PYC = ≈  (8.87)

 0.0009 0
AYC

δ
= ≈  (8.88)

 1.1875 32.8392
RY RC k= =   ( )28 times smaller  (8.89)
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δ β

δ β

= =   ( )1301 times smaller  (8.94)

In equation (8.88) it is clear that the side force due to aileron deflection is negligible for this 
aircraft. However similarly to the variable stability aircraft of section 8.2, the side force due to 
roll rate is unconventionally large. This is due to the abnormally large amount of vertical 
surface area present on the aircraft as a result of the cruciform tail and vertical flaps. At the 
trim velocity of 25 m/s, a roll rate of 90 deg/s would result in a lateral specific acceleration 
disturbance of 0.3 m/s2. Although significant, this disturbance should quickly be damped by 
the lateral specific acceleration control system and as a result, its effect will be neglected for 
now and investigated in the simulations to follow. 

8.3.1.4 NNDT roll rate controller design 

With reference to section 5.2.3, when working with the decoupled roll rate system the actual 
and approximated dynamics are equivalent. The actual (and approximated) open loop NNDT 
roll rate dynamics are thus seen to be, 
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 Actual OL: 1 8.20p′ = −  (8.95)

The desired closed loop roll rate dynamics poles are selected at, 

 Desired CL: 1,2 10 5p i′ = − ±  (8.96)

in the NNDT frequency plane. Figure 8.32 shows the results of an investigation of the 
corresponding dimensional time poles for various velocity magnitudes. Also plotted in the 
figure is the lower timescale separation frequency bound of 4 rad/s used in Figure 8.31. The 
results motivate the selection of the desired closed loop poles since it is seen that even at the 
lowest velocity of 10 m/s the dimensional time frequency bound to the guidance controllers is 
still satisfied. 

Figure 8.32 – Corresponding dimensional roll dynamics poles for various velocities 

It should be noted however that with the architecture of the SAM guidance controller, a 
timescale separation also need exist between the roll rate and error angle dynamics which in 
turn need to be timescale separated from the guidance dynamics. It is thus clear that with the 
current selection of closed loop roll rate poles there will be significant coupling between the 
roll rate, error angle and guidance controllers when operating at low velocity magnitudes. One 
solution to this problem is to significantly increase the bandwidth of the NNDT roll rate 
controller. However, considering the open loop NNDT roll rate dynamics, the poles are 
already being moved a fair distance and it is expected that a further significant increase in the 
roll dynamics bandwidth will result in an impractical design with infeasible aileron 
commands. A second more practical solution is to keep the current roll rate controller design 
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and ensure that at low velocities the aircraft guides itself laterally using direct lateral specific 
acceleration. Intuitively this is how the aircraft should be controlled at low speeds with roll-to-
turn control only being implemented at higher velocities when the aircraft is flying in a 
conventional manner. This concept will be further investigated in the sections to come. 

8.3.1.5 NNDT lateral specific acceleration controller design 

The actual and approximated directional dynamics poles and zeros are listed below, 

 Actual:   1,2 2.36 11.56p i′ = − ±  1,2 6.90 ,  7.99z′ = −  (8.97)

 Approximated: 1,2 2.36 11.77p i′ = − ±  1,2 6.88 ,  7.97z′ = −  (8.98)

with the following NMP upper frequency bound, 

 2.48nω′ <  (8.99)

The zeros and the corresponding frequency bound listed above are for the case where only the 
rudder control surface is used (mixed using the four flaps on the tail structure as shown in 
Figure 8.30). Converting the frequency bound to its dimensional equivalent at a velocity 
magnitude of 10 m/s using equation (6.139) yields the result, 

 0.96n n
qS
mV

ω ω′= <  (8.100)

It is thus clear that if direct lateral specific acceleration is to be used for guidance at low 
velocities then the upper frequency bound constraint of equation (8.99) needs to be increased 
significantly through actuator mixing. This can be done by employing a similar actuation 
strategy to that employed in the normal specific acceleration controller design. Appropriately 
combining the rudder control surface with the vertical flaps on the wing section will result in a 
new virtual rudder actuator with more desirable characteristics. The mixing of the actuators is 
done such that the vertical flaps, which produce very little yaw moment, deflect in the opposite 
direction to the primary rudder surface on the tail structure to increase the effective normalised 
length to the fin as defined in equation (5.103). Increasing the effective normalised length to 
the fin is show by equation (5.105) to drive the zeros further from the origin and thereby 
increase the NMP upper frequency bound constraint. With this mixing strategy implemented 
with a mixing ratio magnitude of 2.5, the new directional dynamics zeros lie at, 

 Actual:   1,2 19.23 ,  32.17z′ = −  (8.101)

 Approximated: 1,2 18.40 ,  31.34z′ = −  (8.102)

with NMP upper frequency bound constraint, 

 8.29nω′ <  (8.103)
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Note that the lateral decoupling condition of equation (5.19) will be affected by the change in 
the effective length to the fin. However the change in the effective length to the fin will only 
strengthen how well the condition is satisfied. 

With the mixed rudder actuation in place the two degree of freedom pole placement stability 
augmentation control law of equations (5.109) and (5.110) is used. The two degree of freedom 
pole placement strategy is chosen because it allows the natural frequency of the open loop 
directional dynamics poles to be increased. This is desirable since if the outer lateral specific 
acceleration regulation controller is to have a bandwidth close to that of the upper NMP 
frequency bound (for timescale separation reasons at low velocity magnitudes) then the 
augmented directional dynamics bandwidth should be somewhat higher than the NMP bound 
to limit the distortion to the closed loop poles. The desired stability augmented NNDT 
directional dynamics poles are chosen at, 

 Desired: 1,2 15 10p i′ = − ±  (8.104)

For the stability augmentation control law of section 5.3.4 to be implemented the gain 
relationships of equations (5.111) and (5.112) must be satisfied. Investigating these gain 
constraints with the feedback gains calculated using the desired poles of equation (8.104) 
yields, 

 10.1326 1.0372
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  ( )5 times smaller  (8.106)

Due to the significant change in frequency of the closed loop poles relative to the open loop 
poles, it is seen that the constraints are marginally satisfied. Thus, it is expected that the actual 
closed loop poles will display some distortion. Investigating the actual closed loop poles 
yields, 

 Actual:  1,2 16.54 8.96p i′ = − ±  (8.107)

Although there is some distortion to the poles, it is not considered significant enough to 
warrant a redesign. Continuing with the control system design, after some iteration the desired 
lateral specific acceleration regulation control law pole is selected at -5 which results in the 
following desired and actual closed loop directional dynamics poles, 

 Desired: 1,2,3 15 10  ,  5p i′ = − ± −  (8.108)

 Actual:  1,2,3 11.44 9.14  ,  7.57p i′ = − ± −  (8.109)
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It is clear that there has been some coupling between the closed loop stability augmentation 
poles and the lateral specific acceleration regulation pole. However, the actual closed loop 
poles are considered acceptable with the lateral specific acceleration regulation pole still 
within the NMP upper frequency bound. 

Figure 8.33 shows the dimensional directional dynamics poles corresponding to the NNDT 
design. Also shown in each plot is the corresponding dimensional NMP upper frequency 
bound (red circle) and a lower timescale separation frequency bound of 4 rad/s (green dashed 
circle). It is seen that in all cases except the 10 m/s case, the dominant closed loop directional 
dynamics satisfy both the dimensional timescale separation and NMP frequency bounds. At 
10 m/s, the design only just fails to meet the lower timescale separation frequency constraint. 
The effect of this will be to cause slightly more overshoot than expected in the guidance 
controllers. However, the overall influence is expected to be negligible and the design is 
considered satisfactory. 

Figure 8.33 – Corresponding dimensional directional dynamics poles for various 
velocities 

8.3.1.6 Error angle controller design 

The simplified, decoupled error angle controller design of section 6.3.1 will be used for the 
VTOL aircraft. As previously mentioned, at low velocities there is expected to be very large 
amounts of coupling between the roll rate dynamics and the error angle dynamics. However, 
roll-to-turn control will only be used at higher velocities where the roll rate dynamics will be 
sufficiently decoupled from the desired error angle dynamics to allow for a decoupled design. 
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In the knowledge that the roll rate coupling will tend to increase the error angle dynamics 
bandwidth (as was seen in Figure 8.9), the desired error angle dynamics pole is selected at, 

 Desired: 1 2p = −  (8.110)

8.3.1.7 Velocity and position controller designs 

The guidance dynamics poles are selected at, 

 1,2 0.4 0.4p i= − ±  (8.111)

With the poles above, the velocity dynamics bandwidth will be 0.8 rad/s which justifies the 
4 rad/s timescale separation frequency bound used in Figures 8.31 to 8.33. 

8.3.2 Simulation 

To verify the autopilot design of the previous subsection the dynamic responses of the inner 
loop NNDT controllers is investigated together with the dynamic response of the guidance 
controllers. Thereafter, a simulation involving flight transitions is set up to evaluate the overall 
performance of the autopilot. 

8.3.2.1 Dynamic responses 

Figure 8.34 provides step response plots of the NNDT inner loop normal specific acceleration, 
lateral specific acceleration and roll rate controllers for three largely different velocity 
magnitudes. The top row of the figure plots the step responses in dimensional time i.e. how 
they would be experienced by the outer guidance loops, while the bottom row of the figure 
plots the inherent NNDT response of the controller. Also plotted on the bottom row are the 
expected NNDT responses of each controller. Note that the amplitude of the NNDT plots has 
not been normalised to allow for easy comparison with the dimensional plots. Also note that in 
obtaining the step responses of Figure 8.34, the velocity magnitude was artificially held 
constant in the six degree of freedom simulator so as not to distort the dimensional time 
responses through attitude induced changes to the velocity magnitude. 
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Figure 8.34 – Simulated and expected step responses of the NNDT inner loop 
controllers with corresponding dimensional time responses 

The step response results of Figure 8.34 support the results of Figures 8.31 to 8.33 and again 
reveal how a fixed dynamic response in non-dimensional time corresponds to a appropriately 
varying dynamic response in dimensional time. When the velocity magnitude is low, the 
dimensional time responses are slow and will thus tend not to cause actuator saturation. When 
the velocity magnitude is high, the dimensional time responses increase accordingly and will 
tend to result in similar levels of actuator signals as they did at the low velocity. The 
corresponding non-dimensional time responses however remain invariant with velocity 
magnitude and are seen to match the expected responses very well, thus verifying the designs 
of the previous section. 

Figures 8.35 and 8.36 show step response plots of the north, east and down inertial velocity 
and position coordinates at three largely different velocities. The difference between the two 
figures is that roll-to-turn was employed in the generation of Figure 8.35 while skid-to-turn (or 
direct lateral specific acceleration) was employed in generating Figure 8.36. The simulations 
were run with the aircraft initially flying straight and level north. Thus, north step responses 
will tend to use the axial specific acceleration controller, east step responses will tend to use 
the roll rate or lateral specific acceleration controllers and down step responses will tend to use 
the normal specific acceleration controller. 

Firstly, considering the two figures it is clear that for velocities greater than 10 m/s the actual 
step responses match the desired step responses relatively well with the extra lag and slightly 
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reduced damping as a result of the finite bandwidths of the inner loop controllers. At 10 m/s, 
the reduced stability in the roll-to-turn east step responses of Figure 8.35 is evident as 
discussed in section 8.3.1.4. However, by employing skid-to-turn at low velocities the lateral 
guidance stability is restored as expected as seen in Figure 8.36. 

 

Figure 8.35 – Simulated and expected inertial velocity coordinate step responses with 
roll-to-turn implemented 

 

Figure 8.36 – Simulated and expected inertial velocity coordinate step responses with 
skid-to-turn implemented 
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8.3.2.2 Reference trajectory flight 

With the step response results of the previous section verifying the functionality of the 
individual autopilot controllers, the aircraft is now made to fly a representative transition 
trajectory to allow its overall performance to be evaluated. The reference trajectory is shown 
in Figure 8.37 and described in point form below. 

 

Figure 8.37 – VTOL aircraft reference trajectory 

Reference trajectory description: 

o The aircraft starts at the origin of the NED axis system flying vertically at 10 m/s. 

o After 50 m the aircraft is commanded to fly a 90 deg vertical arc with a radius of 
100 m that will leave it flying north at the end of the manoeuvre. Along the arc the 
velocity magnitude is commanded to linearly increase from 10 m/s to 25 m/s. 

o The aircraft is then commanded to fly straight and level north for 150 m at 25 m/s 
before entering a constant speed and altitude right turn through 180 deg. The turn 
radius is 75 m which corresponds to an approximately 40 deg steady state bank angle 
during the turn. 

o Upon exiting the turn the aircraft is commanded to fly straight and level south for a 
further 150 m before being commanded to fly a 90 deg vertical arc upwards with an arc 
radius of 100 m. During the arc the velocity magnitude is commanded to decrease 
linearly from 25 m/s to 10 m/s. 

o Once the vertical arc is complete the aircraft is commanded to continue flying 
vertically at 10 m/s for a further 50 m before the simulation ends. 

Note that during the simulation the commanded thrust was limited as follows, 
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 [ ]0,120  NCT ∈  (8.112)

Furthermore, the normal specific acceleration lower limit used to switch the guidance 
algorithm from roll-to-turn to skid-to-turn in section 6.3.2 was set to, 

 25.0 m/sε =  (8.113)

In the case where direct lateral specific acceleration is used the autopilot was set to hold the 
current wind axis system normal unit vector direction. To illustrate the correct operation of the 
control system in skid-to-turn mode, the simulation was begun with the aircraft offset 10 m 
north and 5 m west from the reference trajectory. The initial orientation of the aircraft was 
vertical with the wind axis system normal unit vector facing north. The simulation results for 
the reference trajectory are shown in Figures 8.38 to 8.42. 

 

Figure 8.38 – Reference trajectory and actual trajectory flown 

Figure 8.38 shows the reference trajectory and actual trajectory flown in 3D space. Again time 
stamps are provided on the trajectory to allow for easy comparison with the other figures. The 
3D plot shows that the aircraft tracks the reference trajectory very well. Figure 8.39 plots the 
inertial coordinates of the position and velocity errors relative to the trajectory over time. The 
initial 10 m north and 5 m west position errors are seen to converge exponentially to zero. For 
the rest of the flight the trajectory is tracked to within 5 m with the position errors originating 
due to the finite bandwidths of the inner loop and error angle controllers. 
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Figure 8.39 – Position and velocity errors relative to the reference trajectory 

The polar coordinates of the simulated velocity vector are shown in Figure 8.40. It is clear that 
the aircraft tracks the desired velocity magnitude well. Note that since position is being 
regulated along the trajectory, the velocity magnitude deviations seen are also partly due to 
commands issued by the position controllers to drive their errors to zero. The large changes in 
the angle of attack and sideslip at the beginning of the simulation are due to the initial offset 
from the reference trajectory and the skid-to-turn control architecture. After the initial transient 
the angle of sideslip is seen to remain very close to zero throughout the flight. The angle of 
attack changes over a wide range during the trajectory but always has a magnitude of less than 
12 deg. With angles of attack close to 12 deg, the aircraft will be at risk of stalling in practice. 
The primary reason for these high angles of attack is not the aggressive trajectory but the 
aircraft’s very high level-flight wing loading of approximately 16. To solve this problem in 
practice the mass of the aircraft would need to be reduced significantly or the wingspan 
increased appropriately. 
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Figure 8.40 – Velocity magnitude, angle of attack and angle of sideslip over the 
reference trajectory 

The inner loop commands generated by the guidance controllers over the trajectory as well as 
the actual inner loop regulated signals are plotted in Figure 8.41. In the normal specific 
acceleration plot the roll/skid-to-turn threshold of equation (8.113) is also indicated. It is clear 
that all signals follow the commanded values well. Note how direct lateral specific 
acceleration is automatically commanded at the beginning of the simulation to regulate the 
west error to zero. Once level flight has been reached after approximately 15 s, roll rate 
commands are seen to be used in conjunction with the then significant normal specific 
acceleration offset to regulate lateral cross track errors. The two roll rate peaks seen in the roll 
rate plot correspond to entering and exiting the 180 deg turn respectively. Note how 
disturbances to the lateral specific acceleration are regulated to zero during this phase of the 
flight. 



CHAPTER 8– SIMULATION OF EXAMPLE APPLICATIONS  

 

194

 

Figure 8.41 – Commanded and actual inner loop signals over the reference trajectory 

The actuator commands during the reference trajectory are shown in Figure 8.42. The actuator 
signals commanded appear to be practically feasible and well balanced throughout the 
reference trajectory. However it should be noted that with the rudder to vertical flaps mixing 
ratio magnitude of 2.5, the vertical flap deflections would peak at approximately 30 deg when 
regulating the initial 5 m west offset. One method of handling this problem would be to reduce 
the rudder to flaps mixing. However, the consequence of this would be a reduction in the 
allowable bandwidth of the closed loop system. Of course the bandwidth of the guidance 
controllers could then simply be scheduled to handle the slower lateral specific acceleration 
response at low velocities. Other options include limiting the maximum allowable lateral 
specific acceleration command and modifying the aircraft itself to provide more effective 
control authority. 
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Figure 8.42 – Actuator signals over the reference trajectory 

8.3.3 Comments 

The VTOL aircraft example has effectively displayed the use of the NNDT inner loop 
controllers and illustrated the potential of the manoeuvre autopilot by elegantly solving the 
transition flight control problem. The autopilot was seen to naturally handle the transition from 
skid-to-turn to roll-to-turn lateral guidance and the NNDT inner loop controllers ensured 
realistic use of the actuators at all times. 

8.4 Conclusion 
This chapter illustrated the application of the acceleration based manoeuvre autopilot of this 
thesis to three vastly different aircraft. The aircraft and reference trajectories were chosen to 
allow the capability and versatility of the autopilot and its internal controller variants to be 
illustrated. The autopilot was seen in all three cases to solve the respective flight control 
problems elegantly and effectively. The example applications verify the mathematics of the 
autopilot and its associated application conditions. Where differences were seen between 
actual and desired/predicted responses, these could always be correlated to application 
conditions that were not fully satisfied by either the aircraft or a controller. The results of this 
chapter thus support the generic, practically feasible nature of the autopilot that has been 
motivated throughout this thesis. 
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Chapter 9 

Conclusion 

 

This chapter concludes the thesis with a summary of the work presented and highlights the 
fundamental results. Its original contributions to the field of aircraft dynamics, control and 
guidance are then noted in point form for convenience. Finally, further related research topics 
are discussed. 

9.1 Summary 
An acceleration based control strategy for the design of an autopilot capable of guiding an 
aircraft through the full 3D flight envelope has been presented. The core of the strategy 
involved the design of attitude independent specific acceleration controllers. Adoption of the 
control strategy was argued to provide a practically feasible, robust, effective and elegant 
solution to the manoeuvre flight control problem. Detailed analysis and design of the inner 
loop acceleration control system was carried out for the case where the incidence angles are 
small. A guidance algorithm well suited for use with the acceleration controllers was designed 
and the system verified through simulation with a number of different aircraft and reference 
trajectories. The closed form, non-iterative nature of the control laws developed also yield a 
computationally efficient solution to the 3D manoeuvre flight control problem, requiring only 
basic mathematical operations for implementation. 

The details of the manoeuvre autopilot architecture were provided in Chapter 2. There the 
feasibility of the manoeuvre autopilot design strategy was illustrated mathematically. It was 
shown that the aircraft dynamics could be decoupled into rigid body rotational dynamics and 
point mass kinematics if a timescale separation and dynamic inversion condition could be met. 
It was argued that for a very large class of aircraft these conditions could indeed be met, thus 
practically enabling the split dynamics design. No force and moment structure was enforced 
during the analysis of Chapter 2 with typical dependencies only highlighted. The purpose 
thereof was to illustrate the full scope of the manoeuvre autopilot design strategy. 

In Chapter 3, the force and moment models were structured for the case where the incidence 
angles are small. This model structure allowed for further detailed analysis and design of the 
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autopilot. It was shown that under certain practically feasible conditions the rigid body 
rotational dynamics become linear and decouple into axial, normal and lateral dynamics. The 
timescale separation condition required to dynamically decouple the point mass and rigid body 
rotational dynamics was shown not to apply to the axial dynamics, which, due to the band-
limited nature of thrust actuators, greatly increased the practical feasibility of the control 
strategy. The normal and lateral dynamics were also seen to correspond with the classic Short 
Period and Roll/Dutch Roll mode approximations respectively. 

The detailed design of the axial and normal specific acceleration controllers was handled in 
Chapter 4. During the axial specific acceleration controller design the decoupling sensitivity 
function constraint developed in Chapter 3 was investigated and found to be practically 
achievable. The natural elevator to normal specific acceleration dynamics were investigated in 
detail and found to be typically weakly NMP with the zero locations shown to be a function of 
the aircraft’s characteristic lengths. Time and frequency domain analyses resulted in an upper 
bound frequency constraint on the system poles for the NMP nature of the system to be 
ignored. Ignoring the system’s NMP nature was argued to be necessary for the dynamic 
inversion part of the pole placement control system and to avoid large closed loop sensitivity 
function peaks. A NNDT variant of the controller was then designed with the benefit of being 
able to handle large dynamic pressure changes much better than its dimensional counterpart. 
Integrator pole placement strategies were discussed for both variants of the controller and the 
mathematics to determine the feed-forward gain to cancel the closed loop integrator dynamics 
was presented. 

The lateral dynamics were analysed at the start of Chapter 5 and shown under practically 
feasible conditions to decouple into roll and directional dynamics. Both dimensional and 
NNDT roll rate controllers were designed with integrator pole placement and feed-forward 
gain issues discussed. A transfer function for the analysis of the closed loop rudder to roll rate 
cross coupling was also derived. The rudder to lateral specific acceleration dynamics were 
analysed in a similar fashion to the elevator to normal specific acceleration dynamics. 
Although the structure of these two sets of dynamics was seen to be similar, the typical natural 
dynamics were argued to differ greatly due to the lack of a primary lateral lifting surface. This 
difference lead to a fundamentally different control system design strategy with an inner 
stability augmentation law and an outer acceleration regulation law. No dynamic inversion was 
used in the control system after the gravity coupling was argued to typically be negligible. The 
chapter was concluded with the design of a NNDT variant of the controller. 

Aircraft guidance was handled in Chapter 6. With dynamically invariant inner loop 
acceleration controllers in place, the aircraft was shown to reduce to a point mass with a 
steerable acceleration vector from a guidance perspective. This in turn meant that control at a 
guidance level remained completely aircraft independent. After introducing a number of 
potential guidance strategies, the detailed design of a SAM strategy, well suited for use with 
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the inner acceleration controllers, was presented. A variant on the design for the case when the 
commanded normal specific acceleration magnitude tends to zero was also presented. Practical 
limitations of the strategy were discussed and methods to address the issues were provided. 

The subject of reference trajectory generation was addressed in Chapter 7. Due to the autopilot 
architecture it was illustrated how reference trajectories need only be kinematically feasible 
instead of being dynamically feasible as with many other manoeuvre autopilot designs. 
Generation of kinematically feasible reference trajectories for the SAM guidance controller 
was shown to be a straightforward process and a number of building block reference 
trajectories were derived. These building block trajectories were created to allow more 
complex manoeuvres to be easily created and to reduce the parameter space for potential 
higher level mission planning algorithms. 

Finally in Chapter 8 the complete autopilot was simulated using three different aircraft with 
very different dynamics and reference trajectories. The autopilot was found to perform well in 
all three cases and elegantly and effectively solved the respective flight control problems. All 
differences between actual and predicted/desired responses were well correlated with 
violations in the corresponding controller application conditions. The closed form, 
parameterised nature of the control system and the fact that controller design freedom is 
reduced to that of selecting appropriate closed loop poles, made its application to the different 
aircraft very straightforward. The example applications thus highlighted the autopilot’s generic 
nature and motivated its practical applicability. 

9.2 Contributions to the field 
To the best of the author’s knowledge, the unique contributions of this dissertation to the field 
of aircraft dynamics, control and guidance are summarised in point form below: 

o Development of the manoeuvre autopilot control strategy i.e. the manoeuvre autopilot 
architecture presented in Chapter 2. 

o Development of conditions/arguments to linearise and decouple the rigid body 
rotational dynamics, particularly the lift into drag decoupling condition (section 3.2). 

o Analysis of when feedback linearisation of inertial cross coupling terms in typically 
weakly NMP aircraft starts to have adverse effects (section 3.3.2). 

o Illustrating mathematically that under the linearising and decoupling conditions of 
Chapter 3, the classic Short Period, Roll and Dutch Roll modes of an aircraft are 
independent of gross attitude (sections 3.4.1 and 3.4.2). 

o Derivation of the lower bound bandwidth constraint for the closed loop axial specific 
acceleration dynamics (section 4.1). 
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o Determining analytically accurate approximations for the following zeros: elevator to 
normal specific acceleration (section 4.2.1), aileron to roll rate (section 5.1.1), rudder 
to yaw rate (section 5.1.2) and rudder to lateral specific acceleration (section 5.1.3). 

o Determination of a frequency bound constraint for the NMP nature of a system to be 
considered negligible (section 4.2.2). In turn this result, together with analytic 
knowledge of the zero positions (see point above), lead to the concept of a feasible 
pole placement region as a function of the aircraft parameters. This pole placement 
region was discussed in section 4.2.3 and applied to the normal and lateral specific 
acceleration controllers of sections 4.2.4 and 5.3.2 respectively. 

o Derivation of conditions for decoupling the MIMO lateral dynamics into roll and 
directional dynamics for control system design purposes (section 5.1).  

o Derivation of closed form, parameterised feedback control algorithms for arbitrary 
closed loop pole placement of the axial, normal, roll and directional dynamics (sections 
4.1, 4.2.4, 5.2.1 and 5.3.2 respectively). 

o Derivation of the NNDT variants of the normal specific acceleration, roll rate and 
lateral specific acceleration controllers above (sections 4.2.6, 5.2.3 and 5.3.4 
respectively). Coupled to this was the identification of the associated benefits and 
tradeoffs of the NNDT controller variants (sections 4.2.5, 5.2.2 and 5.3.3 respectively). 

o Development of a generic, computationally efficient, closed form specific acceleration 
matching guidance control law well suited for use with the inner acceleration based 
control system (section 6.3). 

9.3 Further research 
A number of future research topics arise directly from the results presented in this thesis. 
These topics are briefly discussed in the paragraphs that follow. 

The specific acceleration and roll rate controllers of Chapters 4 and 5 reduce the design 
freedom to that of selecting appropriate closed loop poles. Intelligent selection of these closed 
loop poles could be the subject of further research. When selecting closed loop poles, a 
designer is typically not concerned with the exact placement of the poles. More, the concern is 
that the poles lie within some acceptable region. Thus, given this acceptable region, an 
optimisation algorithm could be developed to minimise some form of cost function. A LQR 
type cost function is one option where control effort and system performance would be 
weighed against each other. A second option for a cost function could be the cumulative effect 
of parameter variation on the system given the statistical properties of the individual 
parameters. In cases where more than one actuator drives into each of the linear decoupled 
systems (e.g. in the normal dynamics when both an elevator and a set of canards are present), 
then the design optimisation freedom is further increased and the results of such research 
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would play a significant role in increasing overall controller robustness and efficiency. 

The incidence angles referred to in the inner loop dynamics are the incidence angles of the 
body axis system with respect to the body-inertial velocity vector (aircraft velocity vector with 
respect to inertial space). In the presence of wind, the aerodynamic forces and moments are of 
course a function of the incidence angles of the body axis system with respect to the body-air 
velocity vector (aircraft velocity vector with respect to the air mass). Future research should 
investigate expanding the manoeuvre autopilot controllers to explicitly take this difference into 
account. Wind could be modelled as having a constant (or slowly changing) component and a 
superimposed gust component. Only the constant component would need to be explicitly 
addressed in the context of the problem introduced above, with the gust component acting as a 
disturbance input to the system. With the air mass modelled as moving at a constant velocity 
relative to inertial space, it too could act as an inertial reference frame. Thus, it is expected that 
very few changes would be required to modify the controllers to function in the presence of 
constant wind. More care would however need to be taken at a guidance level where 
accelerations are mapped onto the aircraft, since the body-air and body-inertial velocity 
vectors could point in significantly different directions. 

The linear, decoupled, NNDT inner loop dynamics presented in Chapters 4 and 5 provide an 
excellent platform for further system identification research. The dynamics in this form are 
seen to expose the core of the normal, roll and directional dynamics with the non-dimensional 
stability and control derivatives directly exposed in the system matrices. In cases where the 
aircraft’s normalised mass and relative airspeed to ground speed remain close to constant, the 
NNDT dynamics become time invariant and are furthermore valid at any gross attitude. Thus, 
by recording appropriate normalised control inputs and normalised system outputs, system 
identification of the aircraft parameters could take place in NNDT state space with data 
recorded at any dynamic pressure and at any gross attitude. The normalisation of states and 
non-dimensionalising of time is thus seen to shape all recorded data for use in NNDT state 
space which can be viewed as the underlying, fundamental state space model for aircraft 
dynamics. Working with the NNDT dynamics not only provides an opportunity for simpler 
parameter identification but also makes self configuring and/or adaptive control possible since 
the control algorithms in this thesis allow poles to be placed as a function of the identified 
parameters. 

The SAM guidance algorithm of Chapter 6 requires a timescale separation to exist between the 
outer position and velocity dynamics and the inner axial specific acceleration dynamics. 
However, in practice this timescale separation often does not exist due to the band-limited 
nature of thrust actuators. To handle this a variant of the SAM guidance controller could be 
designed where the axial specific acceleration is used only to control the velocity magnitude. 
The control law for this would be based on the velocity magnitude and axial specific 
acceleration dynamics of equations (2.47), (3.61) and (3.62), and could involve a combination 
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of dynamic inversion and pole placement to ensure that the flight path angle coupling in 
equation (2.47) is rejected. The timescale separation requirement imposed by the SAM 
controller of section 6.3 on the axial specific acceleration would then fall away, with its lag 
dynamics taken into account in the velocity magnitude controller. Two dimensional cross track 
guidance would then be achieved using specific acceleration matching with the remaining roll 
rate and normal specific acceleration actuators, where the timescale separation arguments hold 
well. This variation on the SAM control law also provides the opportunity for position based 
guidance as opposed to the time based guidance inherent in the SAM control law. 

The building block reference trajectories developed in Chapter 7 reduce the parameter space 
for optimisation in higher level mission planning type algorithms. These mission planning 
algorithms will be the subject of future research. Given a global objective, the resources 
available and the system constraints, a mission planning algorithm would be responsible for 
generating appropriate reference trajectories for UAVs to complete a task. By limiting the set 
of available manoeuvres to a small fundamental set that can easily be strung together, the 
computational burden of mission planning algorithms is greatly decreased. 

Estimation of the feedback signals required by the autopilot developed in this thesis remains a 
topic for future research. Although the task of estimating the required states is not deemed a 
particularly difficult one, of interest from a future research perspective is the use of the split 
between the rigid body rotational dynamics and the point mass kinematics to simplify the state 
estimation procedure. The split in dynamics would allow two separate estimators to be 
designed instead of one large estimator. An aircraft dependent rigid body rotational dynamics 
estimator would accept actuator inputs and make use of body fixed angular rate gyroscopes 
and accelerometers to estimate the inner loop states. Due to the coupling from the point mass 
kinematics, this estimator would also require knowledge of the attitude angles, velocity 
magnitude and air density for its propagation phase. These signals would be obtained from an 
outer aircraft independent point mass kinematics state estimator that accepts wind axes 
specific acceleration and roll rate coordinates and uses GPS receiver and magnetometer 
measurements to bound position, velocity magnitude and gross attitude state estimates. Having 
two separated estimators instead of one large estimator would allow for a significant reduction 
in the computational burden associated with full state estimation algorithms. Furthermore, in 
certain cases, the linear decoupled inner loop dynamics could be used to further simplify the 
rigid body rotational dynamics estimator e.g. the normal dynamics could be used to estimate 
angle of attack on its own. 
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Rigid Body Dynamics 

 

A.1 Preliminaries 
This section introduces the vector and matrix notation used in this thesis as well as the vector 
and matrix operators. 

A.1.1 Axis systems, vectors and coordinate vectors 

An axis system A  is defined by an origin vector Ao  and three basis unit vectors Ai , Aj  and Ak  
that originate from Ao  and span three dimensional space. Note that vectors are denoted by 
boldface, italic symbols. Most often the basis vectors are chosen orthogonal for simplifying 
purposes. Unless otherwise stated, all axis systems referred to in this document will be 
assumed to have orthogonal basis vectors. 

For the developments that follow, consider axis systems A  and B , and the vector R . Vector R  
can be written as a linear combination of the basis vectors of any axis system, as shown for 
axis system A  below, 

 A A AX Y Z= + +A A AR i j k  (A.1)

Writing vector R  is this fashion is referred to as coordinating it into axis system A . Note, by 
convention the coordinate variables are denoted with the superscript of the respective axis 
system. The superscript notation is convenient when the same vector is coordinated into a 
number of different axis systems since the same coordinate symbols can be used. 

The full vector notation of equation (A.1) can become cumbersome. As a result, when 
coordinating R  into A , the basis vectors of A  will often be dropped and only the coordinates 
written in the following matrix form, 

 
A

A

A

X
Y
Z

 
 =  
  

AR  (A.2)

Here, a boldface, non-italic symbol is used to show that only the coordinates of the vector, in 
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the subscripted axis system, are being referred to and not the vector itself. Consequently, AR  is 
referred to as a coordinate vector. The difference between vectors and coordinate vectors is a 
source of much confusion in vector mathematics. Coordinating a vector R  into an axis system 
does not change the vector thus making it perfectly legal to write, 

 A A A B B BX Y Z X Y Z= + + = + +A A A B B BR i j k i j k  (A.3)

However, if only the coordinates of the vector in equation (A.3) are referred to then the 
following is true, 

 ≠A BR R  (A.4)

unless the two axis systems coincide. In order to provide a means with which to return from a 
coordinate vector to a vector, the square bracket operator is introduced, 

 [ ] A A A
A

X Y Z= = + +AR A A AR i j k  (A.5)

In words the operator appends, in order, each of the coordinates of the coordinate vector in 
square brackets to the basis vectors of the subscripted axis system. 

A.1.2 The dot and cross product operators 

This section defines two important vector operators. Consider axis system A  and the vectors 
P  and R . The dot or scalar product of P  and R  is defined as follows, 

 cos PRθ⋅ ≡P R P R  (A.6)

where PRθ  is the angle between the vectors and  is the vector magnitude or norm operator. If 
P  and R  are both coordinated in the same axis system, then the dot product can be written as 
a function of the respective coordinate vectors, 

 ⋅ = T
A AP RP R  (A.7)

This result is easily proved by making use of the fact that the dot product of orthogonal basis 
vectors is zero and the dot product of a basis vector with itself is unity. The cross or vector 
product of vectors P  and R  is defined as follows, 

 ( )sin PRθ× ≡ PRP R P R i  (A.8)

where PRθ  is the angle between the vectors and PRi  is a vector perpendicular to the plane 
spanned by P  and R . The positive sense of PRi  is defined by the right hand rule when P  is 
rotated through PRθ  to R . If P  and R  are both coordinated into the same axis system, then the 
cross product can be written as a function of the respective coordinate vectors, 



APPENDIX A– RIGID BODY DYNAMICS 

 

204

 
A

 ×  AP AS RP R =  (A.9)

where, 

 
0

0
0

A A

A A

A A

Z Y
Z X
Y X

 −
 = − 
 − 

APS  (A.10)

and AX , AY  and AZ  are the components of P  when coordinated in A . This result is also easily 
proved by noting that the cross product of two orthogonal basis vectors yields a vector in the 
subspace spanned by the third basis vector and that the cross product of a basis vector with 
itself is zero. Note that due to the properties of cross products, 

 = −
A AP A R AS R S P  (A.11)

A.1.3 Time derivative of a vector 

The time derivative of the vector R  with respect to axis system A  is defined as follows, 

 [ ]
0 0

( ) ( ) ( )
lim limA A

t t
A

t t t td
dt t t∆ → ∆ →

+ ∆ −
≡ =

∆ ∆

R R ∆R
R  (A.12)

where the notation used in the numerator of the limits denotes that the change is relative to 
axis system A . The vector R  can change in both magnitude and direction with respect to A . 
To assist in the derivation of a more useful formula for the derivative, R  is written as the 
product of a vector magnitude and a unit direction vector as follows, 

 R= RR i  (A.13)

The time derivative of R  can thus be written as, 

 
( ) ( ) ( ) ( )

0
lim A

t
A

R t t t t R t td
dt t∆ →

 + ∆ + ∆ − =
∆

R Ri i
R  (A.14)

Expanding each of the terms in t t+ ∆  in a Taylor series about t  gives, 

 ( ) ( ) ( ) ( )
2

2
2

1 . . .( )
2!A A

d dR t t R t R t t R t t h o t t
dt dt

+ ∆ = + ∆ + ∆ + ∆  (A.15)

 ( ) ( ) ( ) ( )
2

2
2

1 . . .( )
2!A A

d dt t t t t t t h o t t
dt dt

+ ∆ = + ∆ + ∆ + ∆R R R Ri i i i  (A.16)

where . . .( )h o t t∆  implies higher order terms in t∆ . Multiplying these terms together and 
substituting into equation (A.14) gives, 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

. . .
lim

. . .
lim

A A A

t
A

A A A

t

A

d dR t t R t t t R t t t h o t R t t
dt dtd

dt t

d dR t t t R t t t h o t
dt dt

t
dR t t R t t
dt

∆ →

∆ →

 
+ ∆ + ∆ + − 

 =
∆

 
∆ + ∆ + 

 =
∆

= +

R R R R

R R

R R

i i i i
R

i i

i i

 
(A.17)

where the time derivative of a scalar is denoted by a dot. The above equation is simply the 
product rule of differentiation. The final term of equation (A.17) denotes the change in R  due 
to its change in direction relative to A . This term can be simplified as follows, 

 ( ) ( )
A

d t t
dt

= ×R RA Ri ω i  (A.18)

where RAω  is the angular velocity of the unit vector Ri  with respect to axis system A , and is 
defined such that the above equation holds. Considering equations (A.18), (A.17) and (A.13) 
the following result is obtained, 

 ( ) ( ) ( )
A

d R t t t
dt

= + ×R RAR i ω R  (A.19)

In deriving the equations of motion of an aircraft, it is useful to be able to write the derivative 
of a vector with respect to one axis system in terms of the derivative of the same vector with 
respect to another axis system (typically one which rotates with the vector). Beginning with 
the derivative of R  with respect to A  and making use of equation (A.19) the following result 
is obtained, 

 

( )

( ) ( )
( ) ( )

B B B

A A

B B B B B B

A A A

B B B B B B

B B B B B B

B

d d X Y Z
dt dt

d d d d d dX Y Z X Y Z
dt dt dt dt dt dt

X Y Z X Y Z

X Y Z X Y Z

d
dt

= + +

   
= + + + + +   
   

= + + + × + × + ×

= + + + × + +

= + ×

B B B

B B B B B B

A A A

B B B BA B BA B BA B

B B B BA B B B

BA

R i j k

i j k i j k

i j k ω i ω j ω k

i j k ω i j k

R ω R

 (A.20)

A.1.4 Coordinate vector transformations 

Given a vector R , it is often very useful to be able to relate the coordinates of R  in A  to the 
coordinates of R  in B . This section derives a generalised transformation matrix that quantifies 
this relationship. Intuitively, it is expected that the transformation matrix would be a function 
of the basis vectors of the axis systems in question. This will be shown to be true in the 
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derivation below. 

Consider coordinating an arbitrary vector R  into orthogonal axis system A . This can be done 
using the dot product operator as follows,  

 ( ) ( ) ( ) A A AX Y Z= ⋅ + ⋅ + ⋅ = + +A A A A A A A A AR R i i R j j R k k i j k  (A.21)

Now, given the coordinates of R  in A , it is desired to find the transformation matrix that, 
through matrix multiplication, yields the coordinates of R  in B . Coordinating the basis 
vectors of A  into axis system B  using the dot product operator gives, 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

   

   

A A A

A

A

A

B B B

X Y Z

X

Y

Z

X Y Z

= + +

 = ⋅ + ⋅ + ⋅ + 
 ⋅ + ⋅ + ⋅ + 
 ⋅ + ⋅ + ⋅ 

= + +

A A A

A B B A B B A B B

A B B A B B A B B

A B B A B B A B B

B B B

R i j k

i i i i j j i k k

j i i j j j j k k

k i i k j j k k k

i j k

 (A.22)

Writing equation (A.22) in a matrix form gives, 

 
B A

B A

B A

X X
Y Y
Z Z

     ⋅ ⋅ ⋅
        = ⋅ ⋅ ⋅        
     ⋅ ⋅ ⋅     

A B A B A B

B B B B B B A B A B A B

A B A B A B

i i j i k i
i j k i j k i j j j k j

i k j k k k
 (A.23)

which yields the desired result, 

 
cos cos cos

cos cos cos

cos cos cos

A B A B A B

A B A B A B

A B A B A B

B A

B A

B A

A
i i j i k i

A
i j j j k j

A

i k j k k k

X X
Y Y
Z Z

X
Y
Z

θ θ θ

θ θ θ

θ θ θ

     ⋅ ⋅ ⋅
     = ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅     

       =         

A B A B A B

A B A B A B

A B A B A B

i i j i k i
i j j j k j
i k j k k k

 (A.24)

or, 

  =  
BA

B AR DCM R  (A.25)

The transformation matrix of equation (A.24) is know as a Direction Cosine Matrix (DCM) 
since each element is the cosine of the angle between the respective axis system basis vectors. 
The DCM is an orthonormal matrix and this property can be used to simplify its inverse 
calculation. To prove the orthonormal property, the vector R  in equation (A.22) could initially 
have been coordinated into axis system B  and the derivation continued as normal to yield, 
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A B

A B

A B

X X
Y Y
Z Z

     ⋅ ⋅ ⋅
     = ⋅ ⋅ ⋅     
     ⋅ ⋅ ⋅     

B A B A B A

B A B A B A

B A B A B A

i i j i k i
i j j j k j
i k j k k k

 (A.26)

or, 

  =  
AB

A BR DCM R  (A.27)

Noting that the DCMs of equations (A.24) and (A.26) are simply the transpose of each other, 
the following result is obtained, 

 T
     = =     

BA BA BA
B A BR DCM R DCM DCM R  (A.28)

Thus, 

 T
    =   

BA BADCM DCM I  (A.29)

Equation (A.29) shows that the inverse of a DCM relating the coordinates of two orthogonal 
axis systems is merely its transpose. This is a sufficient condition for orthonormality of a 
matrix [49]. 

A.1.4.1 A useful special case of the transformation matrix 

Often in aircraft modelling, the need arises to transform a coordinate vector from one axis 
system to another, where the only difference between the two axis systems is that one of them 
has been rotated through the angle θ  about a common unit vector. To more clearly describe the 
scenario, consider axis systems A  and B  where initially B  coincides with A . Let B  be 
rotated positively through the angle θ  about one of the common basis vectors of A  and B  i.e. 
after the rotation, only two of B ’s basis vectors differ from A ’s. 

Transforming the coordinates of a vector in A  to coordinates in B  can be done by using the 
appropriate DCM as shown in equation (A.25). However, in the special case when the 
difference between the two axis systems is parameterised by a single angle θ , the 
transformation matrix (or DCM) can be simplified as follows, 

 
1 0 0
0 cos sin
0 sin cos

θ θ
θ θ

 
 =  
 − 

i
θT  

cos 0 sin
0 1 0

sin 0 cos

θ θ

θ θ

− 
 =  
  

j
θT  

cos sin 0
sin cos 0
0 0 1

θ θ
θ θ

 
 = − 
  

k
θT  (A.30)

Here, the transformation matrix is denoted with a T  and has been derived by substituting the 
appropriate angles into equation (A.24). The superscript indicates the common axis about 
which axis system B  has been rotated relative to A . The subscript indicates the symbol used 
to parameterise the rotation angle. Thus for the three cases above the following 
transformations would be used, 
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  =  
i

B θ AR T R    =  
j

B θ AR T R    =  
k

B θ AR T R  (A.31)

A.1.4.2 Transforming the elements of a cross product matrix 

Consider the cross product, 

 = ×BAP ω R  (A.32)

Coordinating the above equation into axis systems A  and B  gives, 

 = BA
A

A Aω
P S R  (A.33)

 = BA
B

B Bω
P S R  (A.34)

Note that the cross product matrix in equation (A.33) makes use of the coordinates of BAω  in 
A  while the cross product matrix of equation (A.34) makes use of the coordinates of the same 
vector BAω  but in B . It is useful to be able to relate the two cross product matrices through the 
DCM describing the relative attitude of A  and B . To this end, equating the two equations 
above through the appropriate DCM gives, 

  =  BA BA
A B

AB
A Bω ω

S R DCM S R  (A.35)

Relating the coordinates of R  in each axis system through the appropriate DCM gives, 

    =    BA BA
A B

AB BA
A Aω ω

S R DCM S DCM R  (A.36)

This equation must hold for all AR  thus yielding the desired result, 

 T
   =    BA BA

A B

BA BA
ω ω

S DCM S DCM  (A.37)

A.2 Kinematics 
The mathematics of maintaining the position, velocity and acceleration of a point within a 
body is presented in this section. Various useful attitude parameterisations are introduced and 
discussed.  

A.2.1 The motion of a point through space 

Denote the position of a point P  in space relative to axis system A  with the position vector 
PAP . If P  forms part of a rigid body, then it is often more useful to refer to its position relative 

to some axis system centred at a reference point in the body, and then to maintain the position 
and attitude of the reference axes in space. Denote the reference axis system as B . The 
position of  P  can then be written as the vector sum, 

 = +PA BA PBP P P  (A.38)
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With P  fixed relative to B , maintaining the position of P  over time involves maintaining the 
position and attitude of axis system B  over time. Maintaining attitude is equivalent to 
maintaining the unit vectors of an axis system over time. 

In terms of position kinematics, the first and second time derivatives of a position vector are 
by definition the velocity and acceleration vectors as shown below for PAP , 

 
A

d
dt

≡PA PAV P  (A.39)

 
A

d
dt

≡PA PAA V  (A.40)

In rigid body modelling, it is only necessary to take time derivatives up to an acceleration level 
since the kinetic equations to be discussed in section A.3 relate forces to acceleration. 

In terms of attitude kinematics, equation (A.18) shows that the time derivatives of the basis 
vectors of B  are by definition related to the angular velocity between axis systems B  and A  
as follows, 

 
A

d
dt
   = ×   
B B B BA B B Bi j k ω i j k  (A.41)

Equations (A.39), (A.40) and (A.41) are the three fundamental kinematic vector equations 
used to describe the motion of an arbitrary point fixed relative to a translating, rotating axis 
system. To gain further insight and develop useful relationships for the body of this document, 
the vector equations (A.39) and (A.40) are expanded by substituting equation (A.38). The 
velocity of P  relative to A  is then, 

 

A

A A

A B

d
dt
d d
dt dt
d d
dt dt

= +

= +

= + + ×

= + ×

PA BA PB

BA PB

BA PB BA PB

BA BA PB

V P P

P P

P P ω P

V ω P

 (A.42)

where the fact that P  is fixed in position relative to B  has been used to simplify the equation. 
The acceleration of P  relative to A  is then, 
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( )

A

A A

A A

d
dt
d d
dt dt

d d
dt dt

= + ×

= + ×

= + × + ×

= + × + × ×

PA BA BA PB

BA BA PB

BA BA PB BA PB

BA BA PB BA BA PB

A V ω P

V ω P

A ω P ω P

A α P ω ω P

 (A.43)

where the angular acceleration vector BAα  is defined as follows, 

 
A

d
dt

≡BA BAα ω  (A.44)

Note that the fact that P  is fixed in position relative to B  has again been used to simplify the 
equation. Equations (A.38), (A.42) and (A.43) describe the position, velocity and acceleration 
of point P  over time given the position of P  relative to B  and the position, translational 
velocity, translational acceleration, rotational velocity and rotational acceleration of axis 
system B  relative to A . 

To practically work with equations (A.38), (A.42) and (A.43), they need to be coordinated into 
an axis system. Most often, in the case of aircraft modelling, the vectors are coordinated into 
axis system B . Carrying out the coordination gives, 

 ( ) = +  BA
B

PA AB BA PB
A B Bω

P DCM V S P  (A.45)

 ( ) = + +  BA BA BA
B B B

PA AB BA PB PB
A B B Bα ω ω

V DCM A S P S S P  (A.46)

Returning to equation (A.41) and coordinating all vectors into axis system A  gives, 

 d
dt
   =   BA

A

B B B B B B
A A A A A Aω

i j k S i j k  (A.47)

Considering the DCM of equation (A.26), with the vectors used in the dot products 
coordinated into axis system A , the following relationship is obtained, 

 
   
   

         = = =        
      

T T T T

T T T T

T T T T

A B A B A B A
A A A A A A A

AB A B A B A B A B B B B B B
A A A A A A A A A A A A A

A B A B A B A
A A A A A A A

i i i j i k i

DCM j i j j j k j i j k i j k

k i k j k k k

 (A.48)

The DCM is shown to concisely maintain the attitude of an axis system. Substituting this 
relationship into equation (A.47) gives, 

 d
dt
   =   BA

A

AB AB
ω

DCM S DCM  (A.49)
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Transposing both sides and applying the relationship of equation (A.37) gives, 

 d
dt
   = −   BA

B

BA BA
ω

DCM S DCM  (A.50)

Note that the six DCM constraints of equation (A.29) imply that only three of the nine 
differential equations need be integrated. Equations (A.45), (A.46) and (A.50) form a set of 
kinematic equations up to an acceleration level. Kinematics up to this level are all that is 
necessary since the kinetic equations developed in section A.3 relate forces to accelerations. 

A.2.2 Attitude parameterisations 

Maintaining the attitude of axis system A  with respect to axis system B  involves maintaining 
the basis vectors of A  relative to B  at all time. The DCM was shown in the previous section 
to do just this. However, equation (A.29) shows that the nine DCM parameters are related 
through six constraint equations describing the orthonormal nature of the basis vectors that the 
DCM parameters describe. Thus it is desirable to seek alternative attitude parameterisations 
that use a reduced number of parameters that inherently satisfy the orthonormal constraint 
equations. This section is devoted to describing two of the more commonly used attitude 
parameterisations. 

A.2.2.1 Euler angles 

The philosophy behind Euler angles is to use three angles and a predefined order of rotation to 
describe the attitude of axis system B  with respect to axis system A . The Euler 3-2-1 
sequence is most commonly used. To describe the attitude of B  relative to A , begin with a 
temporary axis system 0B  coinciding with A  and carry out the following sequence of rotations 
in order, 

o Yaw 0B  through the angle Ψ  positively about the vector 0Bk . Denote this new axis 
system 1B . 

o Pitch 1B  through the angle Θ  positively about the vector 1Bj . Denote this new axis 
system 2B . 

o Roll 2B  through the angle Φ  positively about the vector 2Bi . Denote this new axis 
system B . 

The Euler angles attitude parameters are thus concisely defined by the ordered set, 

 { , , }= Φ Θ ΨBAE  (A.51)

To relate the Euler angles to the nine generic DCM parameters begin with equation (A.48), 

    =   
AB B B B

A A ADCM i j k  (A.52)
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From the definition of Euler angles, each of the unit coordinate vectors of the DCM above can 
be written as follows, 

 

   =   
   =    
 =  

AB 1 2 3 A 1 2 3 A 1 2 3 A
Φ Θ Ψ A Φ Θ Ψ A Φ Θ Ψ A

1 2 3 A A A
Φ Θ Ψ A A A

1 2 3
Φ Θ Ψ

DCM T T T i T T T j T T T k

T T T i j k

T T T

 (A.53)

Expanding this equation gives, 

 

( )() ()

1 0 0 cos 0 sin cos sin 0
[ ] 0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

     cos      s
C C S C S

C S S S C S S S C C C S C S
C S C S S S S C C S C C

Ψ Θ Ψ Θ Θ

Ψ Θ Φ Ψ Φ Ψ Θ Φ Ψ Φ Θ Φ

Ψ Θ Φ Ψ Φ Ψ Θ Φ Ψ Φ Θ Φ

Θ − Θ Ψ Ψ     
     = Φ Φ − Ψ Ψ     
     − Φ Φ Θ Θ     

− 
 = − + ≡ ≡ 
 + − 

BADCM

( )in

 (A.54)

which inherently satisfies all six orthonormality constraints for any choice of Euler angles. 
This together with its intuitive nature is the major advantage of the Euler angle 
parameterisation. Equation (A.50) could be used to relate the time rate of change of the Euler 
angles to the coordinates of the angular velocity vector in axis system B . However, the 
relationship is more easily derived as follows, 

 ˆ ˆˆ= Φ +Θ +ΨBAω Φ Θ Ψ  (A.55)

where Φ̂ , Θ̂  and Ψ̂  are the unit vectors about which the respective Euler angle rotations 
occur. Considering the temporary axis systems used when defining the Euler angles, it is 
straightforward to see that, 

 ˆ = 2BΦ i   ˆ = 1BΘ j   ˆ = 0BΨ k  (A.56)

Coordinating all of the vectors into axis system B  gives, 

 
= Φ +Θ +Ψ

= Φ +Θ +Ψ

02 1

02 1

2 1 0

BB BBA
B B B B

BB B1 1 2 1 2 3
Φ B Φ Θ B Φ Θ Ψ B

ω i j k

[T ]i [T T ]j [T T T ]k
 (A.57)

which expanded gives the coordinate relationship, 

 
1 0 sin
0 cos cos sin
0 sin cos cos

 − Θ Φ 
  = Φ Θ Φ Θ  
  − Φ Θ Φ Ψ   

BA
Bω  (A.58)

Inverting the above equation provides the desired kinematic relationship, 
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1 sin tan cos tan
0 cos sin           

2
0 sin sec cos sec

π
 Φ Φ Θ Φ Θ 
   Θ = Φ − Φ Θ ≠   
   Ψ Φ Θ Φ Θ  

BA
Bω  (A.59)

The singularity in the above result highlights the main disadvantage of using Euler angles. For 
more information on Euler angles see [43,50]. 

A.2.2.2 Quaternions 

The philosophy behind quaternions is based on Euler’s theorem which states that the 
orientation of axis system B  relative to A  can be uniquely described by rotating B  from A  
about a vector λ  through a rotation angle µ . For mathematical singularity reasons, the 
quaternion parameters are defined to be, 

 

1

2

3

4

sin 2
sin 2
sin 2

cos 2

x

y

z

q
q
q
q

λ µ
λ µ
λ µ

µ

   
   
   = =
   
   

  

q  (A.60)

where, 

 x y zλ λ λ= + +A A Aλ i j k  (A.61)

and are further constrained by the relationship, 

 2 2 2 2
1 2 3 4 1q q q q+ + + =  (A.62)

In [50] it is shown that the DCM matrix can be written in terms of quaternions as follows, 

 
2 2 2 2
4 1 2 3 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 4 1 2 3 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 4 1 2 3

2( ) 2( )
[ ] 2( ) 2( )

2( ) 2( )

q q q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q q q q q q q

 + − − + −
 = − − + − + 
 + − − − + 

BADCM  (A.63)

Note that the nine DCM parameters and the six constraints have been reduced to four 
parameters with a single constraint. The other five constraints are inherently satisfied for any 
choice of quaternions. 

For details on relating the coordinates of the angular velocity vector to the quaternion 
parameters see [50]. The result however is simply stated below, 

 1
2

=BA BA BA
Bq Ω ω  (A.64)

and in expanded form yields, 
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4 3 21

3 4 12

2 1 43

1 2 34

1
2

q q qq
q q qq
q q qq
q q qq

−  
   −   =
   −
   − − −   

BA
Bω  (A.65)

The advantage of parameterising attitude with quaternions over Euler angles is that there are 
no singularities in the resulting attitude kinematics. However, Quaternions do require the use 
of an extra parameter and have an associated constraint equation. Furthermore, unlike Euler 
angles, the physical meaning of the quaternion parameters is difficult to readily interpret. 
Thus, for most applications that do not involve large pitch angles, the Euler 3-2-1 attitude 
parameterisation is used. For further details regarding quaternions, see [50]. 

A.3 Kinetics 
The previous section investigated the kinematic equations describing the motion of a point 
through space. The topic of kinetics is now considered. This topic involves how forces acting 
upon a body translate into accelerations. Once the accelerations have been determined the 
kinematic equations describe how they propagate into attitude, velocity and position over time. 
With the scope limited to rigid bodies, Newton’s equations of motion for a point mass particle 
are used to develop the kinetic equations relating resultant forces and moments acting upon a 
rigid body to the acceleration of the body. 

A.3.1 Newton’s laws of motion for mass particles 

Newton provides three laws that govern the motion of infinitely small mass elements or 
particles. Denote a mass particle by dm . The three laws are stated below, 

o A mass particle dm  will continue with rectilinear motion at a constant velocity V  with 
respect to inertial space unless acted upon by a force vector dF . This law provides a 
test to determine whether a space is in fact and inertial space. 

o A mass particle dm  acted on by a force dF  moves such that the time rate change with 
respect to inertial space of the particle’s momentum ( dmdmIV ) is equal to the force 
vector (where dmIV  is the particle’s velocity with respect to inertial space). 

o If mass particle A exerts a force on mass particle B then mass particle B exerts an equal 
and opposite force on mass particle A. Because the focus is limited to infinitely small 
mass elements, the forces are collinear.  

A.3.2 Modelling a rigid body 

Consider a body made up of a number of infinitely small mass particles dm . Describing the 
motion of the body requires being able to describe the motion of each mass element within the 
body. Due to the infinitely small nature of the mass elements, it would be impossible to 
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maintain each of their position trajectories over time. However, if the scope is limited to rigid 
bodies then to determine the position trajectory of any mass element it is only necessary to 
maintain the position trajectory of one mass element together with the attitude of the body 
over time. 

To obtain a mathematical hold on the problem two axis systems are introduced. They are, 

o The Inertial Axis System ( I ): Newton’s laws of motion can be applied in this axis 
system. It is typically chosen in some convenient manner appropriate to the specific 
application. 

o The Body Axis System ( B ): This right handed axis system has its origin coinciding 
with the aircraft’s centre of mass. The Bi  unit vector runs along a selected reference 
line in the plane of symmetry of the aircraft (typically parallel to the chord of the wing, 
facing forwards). The Bj  unit vector lies normal to the aircraft’s plane of symmetry in 
the direction of the starboard wing. The Bk  unit vector completes the right handed axis 
system. 

A third axis system that will not be used in this section but will be used significantly 
throughout this thesis is, 

o The Wind Axis System (W ): This right handed axis system has its origin coinciding 
with the aircraft’s centre of mass. The Wi  unit vector is parallel to the aircraft’s velocity 
vector. The Wk  unit vector is orthogonal to Wi  and lies in the aircraft’s plane of 
symmetry. The Wj  unit vector completes the right handed axis system and for typical 
angles of attack and sideslip points in the direction of the starboard wing. 

With these axis systems in place, and with reference to equation (A.38) the position of an 
arbitrary particle in the body with respect to inertial space can be written as follows, 

 = +dmI BI dmBP P P  (A.66)

Taking the time derivative of the above equation with respect to inertial space provides the 
velocity of that particle with respect to inertial space, 

 

I

I I

B

d
dt
d d
dt dt

d
dt

=

= +

= + + ×

= + + ×
= + ×

dmI dmI

BI dmB

BI dmB BI dmB

BI dmB BI dmB

BI BI dmB

V P

P P

V P ω P

V V ω P
V ω P

 
(A.67)

since, 
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 =dmBV 0  (A.68)

for a rigid body. From equation (A.67) it is clear that for a rigid body, where dmBP  for each 
mass element is fixed, the velocity of every mass element is uniquely described by the 
translational velocity of the origin of the body axis system with respect to inertial space (i.e. 
the mass element that coincides with the origin), and the angular velocity of the body axis 
system with respect to inertial space. The motion of each mass element can thus be considered 
the superposition of the translational and rotational motions of the body axis system. 

With the above ideas fixed, define now for a single mass element the incremental linear 
momentum vector and the incremental angular momentum vector about the origin of B . 

 Linear:  d dm≡ dmIL V  (A.69)

 Angular: d d dm≡ × = ×B dmB dmB dmIH P L P V  (A.70)

Although both types of momentum use the absolute velocity of a mass element ( dmIV ), when 
the momentum is integrated over the volume of the body (V ), the following is found, 

 Linear:  
V

V

V V

dm

dm

dm dm

=

= + ×

= + ×

∫

∫

∫ ∫

dmI

BI BI dmB

BI BI dmB

L V

V ω P

V ω P

 (A.71)

 Angular: ( )

( )

V

V

V V

dm

dm

dm dm

= ×

= × + ×

= × + × ×

∫

∫
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B dmB dmI
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P V P ω P

 (A.72)

If the origin of the body axis system B  is selected such that, 

 
V

dm =∫ dmBP 0  (A.73)

then the expressions for the linear and angular momentums of the entire body reduce to, 

 Linear:  
V

dm= ∫BIL V  (A.74)

 Angular: ( )
V

dm= × ×∫B dmB BI dmBH P ω P  (A.75)

When the origin of B  is chosen to satisfy equation (A.73), it is referred to as coinciding with 
the body’s centre of mass i.e. the mass weighted average position of the body. With this 
choice, equations (A.74) and (A.75) show that the linear momentum quantifies only the 
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translational momentum of the body i.e. consider the body non-rotating with all particles 
moving at the same velocity BIV , while the angular momentum about B  quantifies the 
momentum due to rotational motion only i.e. consider the centre of mass stationary while the 
body rotates at BIω . It will now be shown that the linear and angular momentums of a body are 
useful quantities because of their relationships to the external forces and moments acting on 
the body. Taking the time derivative of the respective total momentums with respect to inertial 
space and making use of Newton’s laws yields the following results, 

 Linear:  

I V I

IV
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d d dm
dt dt

d dm
dt
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=

=

=

∫

∫

∫

dmI

dmI

dmI

L V

V

A

 (A.76)

 Angular: ( )
( ) ( )
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∫
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∫ ∫
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H P V

P V

P V P V
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ω P V ω P P A
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 
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∫

mI
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dmB dmI

ω P V P A

ω P V P A
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 (A.77)

Note that to get to the simple expression of equation (A.77), use has been made of equations 
(A.68) and (A.73). Newton’s second law is now applied to each mass element in the integrals 
of equations (A.76) and (A.77) to give, 

 Linear:  
I V

d d
dt

= ∫L F  (A.78)

 Angular: 
I V

d d
dt

= ×∫B dmBH P F  (A.79)

To proceed, the forces acting on each mass element are now considered. In any body, both 
internal and external forces act on the mass particles. Thus, the forces acting on a particle can 
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be written as follows, 

 d d d= +E IF F F  (A.80)

where the superscript E  stands for external and the superscript I  stands for internal. Newton’s 
third law states that for every internal force exerted by mass particle A on mass particle B, 
there will be an equal and opposite internal force exerted by particle B on particle A. These 
forces are also collinear. Thus, integrating the incremental force vector over the volume of the 
body yields the following result, 

 

V

V V

V

d

d d

d

=

= +

=

=

∫

∫ ∫

∫

E I

E

E

F F

F F

F

F

 (A.81)

Furthermore, define the incremental moment that the incremental force element dF  produces 
about B  to be, 

 d d≡ ×B dmBM P F  (A.82)

Integrating the incremental moment vector over the volume of the body yields, 

 

V

V V
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d

d d

d

= ×

= × + ×

= ×

=

∫

∫ ∫

∫

B dmB

dmB E dmB I

dmB E

BE

M P F

P F P F

P F

M

 (A.83)

Combining equations (A.81) and (A.83) with equations (A.78) and (A.79) gives the kinetic 
equations for a rigid body where the origin of B  is the centre of mass and the force and 
moment vectors are due to the external forces only, 

 Linear:  
I

d
dt

=F L      with  
V

dm= ∫BIL V  (A.84)

 Angular: 
I

d
dt

=B BM H      with  ( )
V

dm= × ×∫B dmB BI dmBH P ω P  (A.85)

A.3.2.1 Insight into the linear and angular momentum integrals 

To gain insight into the linear and angular momentum integrals they are further simplified. 
First define the total mass of the body as follows, 
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V

m dm≡ ∫  (A.86)

Thus, 

 m= BIL V  (A.87)

To further simplify the angular momentum it is required to coordinate the vectors involved 
into an axis system. It is usually most convenient to coordinate the angular momentum about 
B  into axis system B . Thus, 

 

( )
( )

V

V

V

dm

dm

dm

=

= −

 
= − 
 

=

∫

∫

∫

B BI
B B

dmB dmB
B B

dmB dmB
B B

B dmB
B BP ω

BI
BP P

BI
BP P

B BI
B B

H S S P

S S ω

S S ω

I ω

 (A.88)

where, 

 
V

dm≡ −∫ dmB dmB
B B

B
B P P

I S S  (A.89)

B
BI  is known as the moment of inertia matrix about B , coordinated into B . Due to the fact that 

in aircraft modelling, unless otherwise stated the moments and moments of inertia are always 
taken about the centre of mass (origin of the body axis system), the superscript indicating this 
will be omitted to avoid clutter. To gain insight into the form of BI  (note the superscript has 
been omitted), denote the coordinates of the position of an incremental mass element in B  as 
follows, 

 x y z= + +dmB B B BP i j k  (A.90)

Then, 
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2 2
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2 2
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(A.91)

The inertia properties of the body are thus concisely summarised by the mass m  and the 
moment of inertia matrix BI . 
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Appendix B – Detailed Derivations 

 

 

Appendix B 

Detailed Derivations 

 

B.1 Non-minimum phase system analysis 
The maximum undershoot of a stable second order system with a single right half plane zero is 
determined in this section as a function of the system parameters. Consider the second order 
NMP system below, 

 

2
0

2 2
0

0

( )
2

( ) ( )

n

n n

n n

z s
G s k

zs
sG s G s
z

ω
ζω ω

−
=

+ +

= −
 (B.1)

where, 

 
2

2 2( )
2

n
n

n n

G s k
s

ω
ζω ω

=
+ +

 (B.2)

is a classical second order system with no zeros. For simplicity, the analysis continues with 
1k = . The exact value of the DC gain makes no difference to the result. The Laplace transform 

of the NMP system’s step response is, 

 1 2( ) ( ) ( )Y s Y s Y s= −  (B.3)

where, 

 1 1
1( ) ( )Y s G s
s

=  (B.4)

 2 1
0

1( ) ( )Y s G s
z

=  (B.5)

Inverse Laplace transforming through partial fraction expansion the step response equations 
(B.4) and (B.5) above yields the intermediate results, 
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*

1( )
d d

A A BY s
s j s j sσ ω σ ω

= + +
+ − + +

 (B.6)

 
*

2 ( )
d d

C CY s
s j s jσ ω σ ω

= +
+ − + +

 (B.7)

with, 

 
2 1 1

2
n

d d

A
j j

ω
ω σ ω

=
− +

 (B.8)

 1B =  (B.9)

 
2

0

1 1
2

n

d

C
z j
ω
ω

=  (B.10)

Continuing to inverse Laplace transform equations (B.6) and (B.7) yields the time signals, 
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 (B.11)
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 (B.12)

The complete step response time domain signal is thus, 
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 (B.13)

where, 

 
0

nr
z
ω

=  (B.14)

 
2

1 1
tan

r
ζφ

ζ
−
 −
 =
 + 

 (B.15)

To solve for the minimum undershoot point, equation (B.13) is differentiated with respect to 
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time, 
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sin sin
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 (B.16)

Setting the derivative to zero and solving allows the peak undershoot time to be solved for, 
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1 tan d
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ω φ

ω σ
θ φ
ω
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 (B.17)

where, 
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−

−
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 =
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=

 (B.18)

Substituting the peak undershoot time into equation (B.13) allows the peak undershoot to be 
calculated, 
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min min
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d
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e
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θ
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=
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(B.19)

B.2 Normal dynamics 
The normal dynamics can be written as follows, 

 33
WI

E eδ= + + +1 2x Ax B B B  (B.20)

 W EC Dδ= +Cx  (B.21)

where, 

 
Q
α 
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 

x  (B.22)

and, 
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 QLL
m m
α 

= − − 
 

C  E
L

D
m
δ 

= − 
 

 (B.24)

The following standard aircraft assumption has been used to simplify the dynamics [43], 

 1QL
mV

 (B.25)

B.2.1 Characteristic equation for the poles 

The poles of the system in equation (B.20) are the roots of the characteristic equation, 

 ( )( ) detp s s= −I A  (B.26)

Expanding this equation yields, 
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B.2.2 Characteristic equation for the zeros 

The zeros from elevator through to normal specific acceleration are the roots of the 
characteristic equation, 

 ( ) ( )( ) adj detz s s D s= − + −C I A B I A  (B.28)

Expanding the first term of equation (B.28) gives, 
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The determinant of the second term in equation (B.28) has already been evaluated in equation 
(B.27). Thus, the characteristic equation for the zeros becomes, 
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(B.30)

where the simplifying assumption of equation (B.25) has again been used. Since only the roots 
of equation (B.30) are desired, the characteristic equation for the zeros becomes, 
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B.2.3 Normal specific acceleration controller design 

As argued in section 4.2.4 the normal dynamics reduce to, 
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 (B.32)
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 (B.33)

when the effect of the zeros of section B.2.2 can be neglected. To dynamically invert the effect 
of the gravity coupling on the normal specific acceleration dynamics requires differentiating 
the output of interest until the control input appears in the same equation. The control can then 
be used to directly cancel the undesirable terms. Beginning with the normal specific 
acceleration output equation, 

 0
W

L L
C

m m
α α   = − + −      

 (B.34)

Differentiating this equation once with respect to time, remembering that all quantities inside 
the matrices of equations (B.32) and (B.33) are considered parameters due to either their static 
nature or the timescale separation condition yields, 
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where the fact that, 
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has been used. Differentiating the normal specific acceleration a second time gives, 
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(B.37)

To eliminate the Q  term equation (B.36) is rewritten with Q  as the subject of the formula and 
α  is substituted from equation (B.35) to give, 
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Thus, 
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           = − + + + − + − + + −                              
 (B.39)

The elevator control input could now be used to cancel the effect of the gravity coupling terms 
on the normal specific acceleration dynamics. However, the output feedback control law to be 
implemented will make use of pitch rate feedback. Upon analysis of equation (B.38), it is clear 
that pitch rate feedback will reintroduce gravity coupling terms into the normal specific 
acceleration dynamics. Thus, the feedback control law is first defined and substituted into the 
dynamics, and then the dynamic inversion is carried out. 

The feedback control law is defined below, 

 
0

R G

t

E Q C W E W W E
t

K Q K C K C C dtδ δ= − − − − +∫  (B.40)

The control law is of a PI form with enough degrees of freedom to allow for arbitrary pole 
placement. The integral action of the control law is introduced to ensure that the normal 
specific acceleration is tracked with zero error in the steady state. Provision is also made in the 
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control law for dynamic inversion of the gravity coupling terms through the introduction of 

GEδ . The control law can be rewritten as follows, 

 
GE Q C W E C EK Q K C K Eδ δ= − − − +  (B.41)

where, 

 
RC W WE C C= −  (B.42)

Substituting the control law into the normal specific acceleration dynamics of equation (B.39) 
and ignoring the static offset terms gives, 
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 (B.43)

The normal specific acceleration dynamics become, 
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yy yy yy yy yy yy yy
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 (B.44)

 
RC W WE C C= −  (B.45)

when, 

 33 33 0E E

G

Q WI WI
E Q

yy yy yy

L M L M gL M g L g
K e e

mI mVI mVI mV
α δ α δα αδ

     − + − + − =            
 (B.46)

Thus, the dynamic inversion part of the control law is, 
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δ
    
 = − −           
       +
 = − + +                  

 (B.47)

where use of equations (2.46) and (2.49) has been made to eliminate the attitude parameter 
derivative. Note that the control law is a function of the still to be determined pitch rate 
feedback gain. The closed loop system with the dynamic inversion control law in place can be 
written in spate space form as follows, 
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 (B.48)

Noting that because the system is in control canonical form, the characteristic equation is, 

 3 2 0E E E EQ Q
Q C Q E

yy yy yy yy yy yy yy
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 (B.49)

Given the desired closed loop characteristic equation, 

 ( ) 3 2
2 1 0c s s s sα α α α= + + +  (B.50)

the feedback gains can be calculated by matching coefficients, 

 2
EQ

Q
yy yy

MM L
K

I mV I
δαα

 
= − − −  

 
 (B.51)
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 (B.53)

Thus, 
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 (B.54)
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 (B.55)

 0
E

yy
E

mI
K

L Mα δ

α= −  (B.56)

Substituting the pitch rate feedback gain into the dynamic inversion control law gives, 

 33
2 33 13 23G

E

WI
yy WI WI WIW

E W

I g L C e g
e e P e

M V mV V
α

δ

δ α
   + = − + +           

 (B.57)

With the controller above, the design freedom is reduced to that of placing the three poles that 
govern the closed loop normal dynamics. 
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B.2.4 Deriving the NNDT normal dynamics 

The normalising definitions of equations (4.62) to (4.68) can be written as follows, 

 ′ = xx T x  (B.58)

 E u ETδ δ′ =  (B.59)

 W y WC T C′ =  (B.60)

 dT=x x  (B.61)

with, 

 
Q
α′ ′ =  ′ 

x  (B.62)

and x  from equation (B.22), with transformation matrices, 

 
1 0

0
2 a

c
V

 
 =  
  

xT   1uT =   y
mT
qS

=   d
mVT
qS

=  (B.63)

Substituting the above relationships into the normal dynamics of equations (B.20) and (B.21) 
yields, 

 1 1
33
WI

d u ET T eδ− −′ ′ ′= + + +-1 -1
x x 1 2T x AT x B B B  (B.64)

 1 1
y W u ET C DT δ− −′ ′ ′= +-1

xCT x  (B.65)

where it has been noted that all transformation matrices are static relative to the normal 
dynamics. Rearranging above gives, 

 1 2 33
WI

E eδ′ ′ ′ ′ ′ ′ ′= + + +x A x B B B  (B.66)

 W EC D δ′ ′ ′ ′ ′= +C x  (B.67)

with, 

 dT′ = -1
x xA T AT  1

d uT T −′ = xB T B  dT′ =1 x 1B T B  dT′ =2 x 2B T B  (B.68)

 yT′ = -1
xC CT  1

y uD T DT −′ =  (B.69)

Multiplying the above matrices out gives, 
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QL LC C

α
 ′ = − − C  

ELD C
δ

′ = −  (B.71)

where, 

 4Q Qk m V′ ′=  (B.72)

 2

1
2y

y

Vk
r
′

=
′

 (B.73)

 mgg
qS

′ =  (B.74)

and, 

 Q
mm
Scρ

′ =  (B.75)

 
a

VV
V

′ =  (B.76)

 y
y

r
r

c
′ =  (B.77)

with, 

 yy
y

I
r

m
=  (B.78)

In equations (B.72) and (B.73), Qm′  is the aircraft’s mass normalised to a longitudinal reference 
air mass, V ′  is the relative ground to airspeed magnitude and yr′  is the normalised pitch radius 
of gyration. Note that it has been assumed that, 

 
QL QC k  (B.79)

which is equivalent to the standard aircraft assumption of equation (B.25). 

B.2.5 Characteristic equation for the NNDT poles 

The poles of the system in equation (B.66) are the roots of the characteristic equation, 

 ( )( ) detp s s′ ′ ′= −I A  (B.80)

Expanding this equation, 
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 (B.81)

B.2.6 Characteristic equation for the NNDT zeros 

The NNDT zeros from the elevator through to normal specific acceleration are the roots of the 
characteristic equation, 

 ( ) ( )( ) adj detz s s D s′ ′ ′ ′ ′ ′ ′ ′= − + −C I A B I A  (B.82)

Expanding the first term in the above equation yields, 
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 (B.83)

where 1T  has been used to denote the first term. The determinant of the second term of 
equation (B.82) has already been calculated in equation (B.81) and so the characteristic 
equation for the zeros becomes, 
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(B.84)

where equation (B.79) has been used to simplify the result. Since only the roots of equation 
(B.84) are desired the characteristic equation can be simplified to, 

 ( ) ( )2 Q E E

Q

Q E E

m mm m
y L Q y L

L L L L

C CC C
z s s k C s k k C

C C C C
δ δα

α

δ α δ

   
   ′ ′ ′= − − − −
   
   

 (B.85)

B.2.7 NNDT normal specific acceleration controller design 

Following similar arguments to those provided in section 4.2.4, the NNDT normal dynamics 
reduce to, 
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0 0W L E LC C C
Qα

α
δ

′    ′ ′= − + + −    ′ 
 (B.87)

when the effect of the zeros of section B.2.6 are neglected. It is desired to dynamically invert 
the effect of the gravity coupling on normal specific acceleration. This is achieved by 
differentiating the normal specific acceleration until the control input appears in the dynamics. 
The control is then used to directly cancel the undesired terms. Beginning with the NNDT 
normal specific acceleration output equation, 

 
0W L LC C C

α
α′ ′= − −  (B.88)

Differentiating this equation once with respect to non-dimensional time, remembering that all 
quantities inside the matrices of equations (B.66) and (B.67) are considered parameters due to 
either their static nature or the timescale separation condition, 
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 (B.89)

Differentiating the normal specific acceleration a second time gives, 
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 (B.90)

To eliminate the Q′  term equation (B.89) is rewritten with Q′  as the subject of the formula, 
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Substituting into equation (B.90) gives, 
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 (B.92)

Define the PI control law with freedom for dynamic inversion, 

 
GE Q C W E C EK Q K C K Eδ δ′ ′ ′ ′ ′ ′ ′ ′= − − − +  (B.93)
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RC W WE C C′ ′ ′= −  (B.94)

Substituting the control law into the NNDT normal specific acceleration dynamics of equation 
(B.92) and ignoring the static offset terms (due to the integrator in the control law) gives, 
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(B.95)

The normal specific acceleration dynamics become, 
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RC W WE C C′ ′ ′= −  (B.97)

when, 
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Thus, the dynamic inversion control law is, 
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   ′ ′  = − +
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( )33 13 23
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  ′ ′ ′ + +   

 (B.99)

where use of equations (B.61), (2.46) and (2.49) has been made and the non-dimensional roll 
rate about the axial wind axis system unit vector is defined as, 

 W W
mVP P
qS

′ =  (B.100)

Note that the dynamic inversion control law is a function of the still to be determined pitch 
rate feedback gain. The closed loop system with the dynamic inversion control law in place 
can be written in state space form as follows, 
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 (B.101)

where, 

 11 Q Ey m L y m Qa k C C k C K
α δ
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 12 Q E Ey m Q y m L y m L Q C y m L Qa k C k k C C k C C k K k C C K
α α δ α δ α

′ ′= + + −  (B.103)

 13 Ey m L Q Ea k C C k K
δ α

′=  (B.104)

Noting that the system is in control canonical form the characteristic equation is, 

 ( ) ( )3 2
11 12 13 0s a s a s a′ ′ ′− − − =  (B.105)

Given the desired closed loop characteristic equation, 

 ( ) ( ) ( ) ( )3 2
2 1 0c s s s sα α α α′ ′ ′ ′= + + +  (B.106)

the feedback gains can be calculated by matching the coefficients, 
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α δ
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Thus, 
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 0

E

E
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α δ

α′ = −  (B.112)

Substituting the pitch rate feedback gain into the dynamic inversion part of the control law 
gives, 
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δ α
′   ′ ′ ′ ′= − + + +    (B.113)
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With the controller above, the design freedom is reduced to that of placing the three poles in 
the NNDT frequency plane. 

B.3 Lateral dynamics 
With reference to equations (5.1) and (5.2) the lateral dynamics can be written as, 

 23
WIe= + + 1x Ax Bu B  (B.114)

 = +y Cx Du  (B.115)

where, 
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u  (B.117)

 W
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B
P
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y  (B.118)

and, 
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D  (B.120)

and the following standard aircraft assumptions have been used to simplify the dynamics [43], 

 0PY ≈  (B.121)

 0
A

Yδ ≈  (B.122)

 1RY
mV

 (B.123)

B.3.1 Characteristic equation for the poles 

The characteristic equation for the lateral dynamics poles is, 
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 ( )( ) detp s s= −I A  (B.124)

Expanding this equation yields, 
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 (B.125)

under the following conditions, 
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B.3.2 Aileron to roll rate zeros characteristic equation 

The characteristic equation for the zeros from ailerons to roll rate is, 
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where the adjoint matrix above is, 
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 (B.129)

Using this result in equation (B.128) yields the following characteristic equation, 
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under the conditions below, 
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B.3.3 Rudder to yaw rate zeros characteristic equation 

The characteristic equation for the zeros from the rudder to the yaw rate is, 
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where the adjoint matrix is provided by equation (B.129). Expanding equation (B.133) yields, 
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 (B.134)

under the condition of equation (B.127) and the condition below, 
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B.3.4 Rudder to lateral specific acceleration zeros characteristic equation 

The characteristic equation for the zeros from rudder to lateral specific acceleration is, 
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where the adjoint matrix is provided by equation (B.129) and the determinant by equation 
(B.125). Denoting the first term in the above equation as 1T  and expanding it yields, 
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subject to the conditions of equations (B.126), (B.127) and (B.135). The characteristic 
equation for the zeros then becomes, 
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 (B.138)

where the assumption of equation (B.123) has been used to simplify the result. 

B.4 Roll dynamics 
With reference to section 5.1.4, the roll dynamics are, 



APPENDIX B– DETAILED DERIVATIONS 

 

239

 A RP
A R

xx xx xx

L LLP P
I I I

δ δδ δ
    

= + +    
        

 (B.139)

 WP P=  (B.140)

The details of the roll rate controller design and the derivation of the closed loop disturbance 
transfer function from rudder through to roll rate are provided in this section. 

B.4.1 Roll rate controller design 

Define a PI control law to provide the desired dynamic response and counter any steady state 
disturbances due to asymmetry in the aircraft, 

 A P E PK P K Eδ = − −  (B.141)

 P RE P P= −  (B.142)

Then the closed loop dynamics become, 

 A A RP
P E P R

xx xx xx xx

L L LL
P K P K E

I I I I
δ δ δ δ

     
= − + − +     
          

 (B.143)

The closed loop dynamics in state space form are, 

 0
1

1 0 0

A A RP
P E

R Rxx xx xx xx
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L L LL PP K K
PI I I IEE

δ δ δ

δ
   

  − −       = + +        −          

 (B.144)

with characteristic equation, 

 2 0A AP
P E

xx xx xx

L LL
s K s K

I I I
δ δ   

− − − − =      
   

 (B.145)

Given the desired closed loop characteristic equation, 

 2
1 0( )c s s sα α α= + +  (B.146)

The feedback gains can be calculated by matching the coefficients, 

 1
AP

P
xx xx

LL
K

I I
δα

 
= − −  

 
 (B.147)

 0
A

E
xx

L
K

I
δα

 
= − −  

 
 (B.148)

Thus, 
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 ( )1
1

A

P P xxK L I
Lδ

α= +  (B.149)

 0
A

xx
E

I
K

Lδ

α=  (B.150)

and the design freedom is reduced to that of selecting appropriate closed loop poles.  

B.4.2 Rudder to roll rate disturbance transfer function 

To investigate the disturbance to the closed loop system due to rudder inputs begin with the 
closed loop state space model of equation (B.144), 

 1 0 0
1 0 1

0

R

R Rxx
PP

L
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P IEE

δα α
δ

 
− −        = + +        −        

 (B.151)

The transfer function from the rudder input through to roll rate is then, 
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=
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 (B.152)

B.5 Directional dynamics 
The directional dynamics are, 

 23
WI

R A eδ δ= + + +1 2x Ax B B B  (B.153)

 W RB Dδ= +Cx  (B.154)

where, 
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x  (B.155)

and, 
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2B  (B.156)
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 RY Y
m m
β 

=  
 

C   R
Y

D
m
δ=  (B.157)

B.5.1 Directional dynamics gravity coupling transfer function 

The transfer function from the attitude angle coupling through to the lateral specific 
acceleration is, 

 ( )
( )23

adj( )
det( )

W
WI

sB s
se s
−

=
−

2C I A B
I A

 (B.158)

The adjoint matrix is easily shown to be, 
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Expanding the numerator of equation (B.158) gives, 
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 (B.160)

where use of equations (5.55) and (5.56) has been made. The denominator of equation (B.158) 
is easily shown to be, 

 ( ) 2det R R

zz zz zz

Y Y NN N
s s s

mV I mV I I
β β β  
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I A  (B.161)

Thus the transfer function becomes, 
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 (B.162)
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B.5.2 Analysis of adverse yaw static inversion  

To analyse the effect of implementing the static inversion control law for adverse yaw, the 
aileron to lateral specific acceleration transfer function is investigated for both the case when 
the control law is implemented and when it is not. The ratio of these two transfer functions 
will then provide insight into the usefulness of implementing the control law at all. Beginning 
with the nominal transfer function i.e. no static inversion control law, 

 ( )
( )

adj( )
( ) det

W
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−
=

−
1C I A B

I A
 (B.163)

Expanding the numerator first using the adjoint matrix of equation (B.159) gives, 
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 (B.164)

where the simplifying approximation of equation (B.123) has been used. With reference to 
equation (B.161), the transfer function becomes, 
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 (B.165)

Now, with the static inversion control law of equation (5.61) enforced, 

 A

R

R R A

N
N

δ

δ

δ δ δ′= −  (B.166)

the closed loop system becomes, 

 1 23
WI

R A eδ δ′ ′= + + + 2x Ax B B B  (B.167)

 1W R AB D Dδ δ′ ′= + +Cx  (B.168)

with, 
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 

B  (B.169)

 1
R A

R

Y N
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m N
δ δ

δ

′ = −  (B.170)

The transfer function from aileron deflection through to lateral specific acceleration then 
becomes, 

 ( ) ( )
( )

1adj det( )
( ) det

W

A

s D sB s
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 (B.171)

Expanding the first term of the numerator making use of the adjoint matrix of equation 
(B.159) gives, 
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(B.172)

Making use of equations (B.172), (B.170) and (B.161), the numerator of equation (B.171) 
becomes, 
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 (B.173)

where the approximation of equation (B.123) has been used. Substituting equation (B.173) and 
(B.161) into equation (B.171) yields the result, 
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 (B.174)

Now divide the transfer function of equation (B.174) by the transfer function of equation 
(B.165) to provide a transfer function that describes the ratio of aileron to lateral specific 
acceleration gains with frequency, 
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 (B.175)

Investigating only the steady state gain of this transfer function yields the result, 

 (0) R
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W
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Y N l
N Y l
δ β

δ β

∆ = =  (B.176)

where use of equations (5.55) and (5.57) has been made. 

B.5.3 Directional stability augmentation 

Define the stability augmentation control law, 

 
RR R B W RK R K Bδ δ= − − +  (B.177)

Substituting for the lateral specific acceleration from equation (B.154) gives, 
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 (B.178)

with, 
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Substituting the control law into the directional dynamics of equation (B.153) gives, 
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The closed loop poles are the roots of the characteristic equation, 
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Expanding the determinant above yields, 
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where, 
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Expanding the above coefficients yields, 
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given the simplifying assumption of equation (B.123) and the constraints below, 
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These constraints become, 
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when the characteristic lengths of equations (5.55) to (5.57) are substituted. Given the desired 
directional dynamics characteristic equation, 
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the coefficients of the characteristic polynomials of equations (B.183) and (B.192) can be 
matched, 
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to yield the feedback gains, 
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Considering now the special case of the control law when the lateral specific acceleration 
feedback gain is manually set to zero. The closed loop characteristic equation becomes, 
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zz zz zz zz

NY Y NN Ns s K s
mV I I mV I I

δβ β βα
   

= − + − + +        
 (B.197)

and the feedback gain RK  only influences the closed loop system’s damping. Given the desired 
damping ratio ζ  the feedback gains are, 

 2
R

zz R
R n

zz

YI N
K

N mV I
β

δ

ζω
 

= + + 
 

 (B.198)

 0BK =  (B.199)

with the natural frequency equal to its open loop value of, 

 R
n

zz zz

Y NN
mV I I

β βω = +  (B.200)

B.5.4 Steady state gain from rudder to lateral specific acceleration 

With reference to equation (B.181), the closed loop dynamics after the stability augmentation 
control law has been implemented can be written as follows, 

 
RRδ= +x Ax B  (B.201)

 
RW RB Dδ= +Cx  (B.202)

where the state space matrices are, 

 
1R R

R R

B R

R
B R

zz zz zz zz

Y YY Y
K X K X

mV m mV mV
N NN Y N

K X K X
I m I I I

δ δβ β

δ δβ β

 
′− − − 

 =
 

′− − 
  

A  
R

R

zz

Y
X

mV
N

X
I

δ

δ

 
 
 =
 
 
  

B  (B.203)

 RR
R

YY Y
X K X

m m m
δβ  

= −  
   

C    R
Y

D X
m
δ=  (B.204)

and the aileron and attitude angle couplings have been ignored. The steady state gain from the 
rudder input through to the lateral specific acceleration output can be written as follows, 

 ( ) ( )
( )

adj det
detss

D
K

− + −
=

−
C A B A

A
 (B.205)

The determinant in the above equation is simply obtained by substituting 0s =  into equation 
(B.183). Calculating the first term in the numerator of equation (B.205) yields, 
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( ) 2

2

1
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R R R

R

RR R

R R

R

R R

R
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zz zzR
R

B B
zzzz zz
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zz zzR
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N Y YN K X K X
YY I I mV mVY

X K
Nm m m N YN Y Y Y
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Y NN
YY mV I IYX K

m m m N YY N
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δ δ δ

δβ
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δ δ
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δ δβ β

   ′ ′− +        − = − −          − + −
     
 

+
  = − −     −



C A B

2

2

R R R R R

R R R R R

R R R

R R
R

zz zz zz zz

R R
R

zz zz zz zz

Y N Y N YY Y NN YX K
m mV I I m m I mV mV I

Y N N Y NY Y Y N Y NN Y
X K

m mV I I Y I mV Y Y mV I Y Y

δ δ δ δ δβ β β

δ δ δ δ δβ β β β β β

δ β δ β δ







     
= − + + − −              

    
= − − + − − −            

 (B.206)

The complete numerator calculation is then, 

 

2

1

R R R R

R R RR

R R R R

R R

R R
R

zz zz zz zz

R R
R B

zz zz zz zz

N N Y NY Y Y N Y NN Y
K

mV I I Y I mV Y Y mV I Y YY
N X

m Y N Y NY N Y N Y NN Y
K K

mV I I mV I Y Y m I Y Y mV

X

δ δ δ δβ β β β β β

δ β δ β δδ

δ δ δ δβ β β β β β

β δ β δ

    
− − + − − −           =  

     + + + − + − +              

= 2 1

1

R R R R R

R R R

R R

R

R R

R

R R
B

zz zz zz

R

zz

zz

Y N N Y NY N Y N Y NY Y
K

m I Y Y I mV Y Y m I Y Y mV

Y NY N Y
X

m I Y Y mV

Y NY N
X

m I Y Y

δ δ δ δ δβ β β β β β

β δ β δ β δ

δ δβ β

β δ

δ δβ β

β δ

       − + − + − +                    
  = − +     
 

≈ −  
 

 (B.207)

where the numerator has been denoted by N . Note that the determinant was substituted from 
equation (B.183) before any of the simplifying assumptions were made and thus the only 
simplifying assumption used to arrive at the result above is that of equation (B.123). 
Combining equations (B.207) and (B.192) gives the steady state gain, 

 
1

0

1 1R R R

R

ss B
zz

Y N YY N
K K

m I Y Y m
δ δ δβ β

β δ α

−   
= − +       

 (B.208)

where the constraint of equation (B.191) is required if 0α  is to be used in the equation above. 

B.5.5 Deriving the NNDT directional dynamics 

The normalising definitions of equations (5.88) to (5.91) and (4.68) can be written as follows, 

 ′ = xx T x  (B.209)
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 R u RTδ δ′ =  (B.210)

 W y WB T B′ =  (B.211)

 dT=x x  (B.212)

with, 

 
R
β ′ ′ =  ′ 

x  (B.213)

and x  from equation (B.155) and with transformation matrices, 

 
1 0

0
2 a

b
V

 
 =  
  

xT   1uT =   y
mT
qS

=   d
mVT
qS

=  (B.214)

Substituting the above relationships into the directional dynamics of equations (B.153) and 
(B.154) yields, 

 1 1
33
WI

d u R AT T eδ δ− −′ ′ ′= + + +-1 -1
x x 1 2T x AT x B B B  (B.215)

 1 1
y W u RT B DT δ− −′ ′ ′= +-1

xCT x  (B.216)

where it has been noted that all transformation matrices are static relative to the normal 
dynamics. Rearranging above gives, 

 1 2 33
WI

R A eδ δ′ ′ ′ ′ ′ ′ ′ ′= + + +x A x B B B  (B.217)

 W RB D δ′ ′ ′ ′ ′= +C x  (B.218)

with, 

 dT′ = -1
x xA T AT  1

d uT T −′ = xB T B  dT′ =1 x 1B T B  dT′ =2 x 2B T B  (B.219)

 yT′ = -1
xC CT  1

y uD T DT −′ =  (B.220)

where the definition for NNDT aileron deflection comes from equation (5.36). Multiplying the 
above matrices out gives, 

 
R

y R

z n z n

C k

k C k C
β

β

− 
′ =  

  
A  R

R

y

z n

C

k C
δ

δ

 
′ =  

  
B  

0

Az nk C
δ

 
′ =  

  
1B  

0
g ′ ′ =  
 

2B  (B.221)

 
Ry yC C

β
 ′ =  C   

RyD C
δ

′ =  (B.222)

where, 
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 4R Rk m V′ ′=  (B.223)

 2

1
2z

z

Vk
r
′

=
′

 (B.224)

with, 

 R
mm
Sbρ

′ =  (B.225)

 z
z

r
r

b
′ =  (B.226)

 zz
z

Ir
m

=  (B.227)

and g ′  and V ′  from equations (B.74) and (B.76) respectively. In equations (B.223) and 
(B.224), Rm′  is the aircraft’s mass normalised to a lateral reference air mass and zr′  is the 
normalised pitch radius of gyration. Note that it has been assumed that, 

 
RY RC k  (B.228)

which is equivalent to the standard aircraft assumption of equation (B.123). 

B.5.6 Characteristic equation for the NNDT poles 

The poles of the system in equation (B.217) are the roots of the characteristic equation, 

 ( )( ) detp s s′ ′ ′= −I A  (B.229)

Expanding this equation, 

 
( )

( ) ( ) ( )2

det
R

R R

y R

z n z n

y z n z y n R n

s C k
p s

k C s k C

s C k C s k C C k C

β

β

β β β

′ −  
 ′ =  

′ − −   

′ ′= − + + +

 (B.230)

B.5.7 Characteristic equation for the NNDT zeros 

The zeros from rudder through to lateral specific acceleration are the roots of the characteristic 
equation, 

 ( ) ( )( ) adj detz s s D s′ ′ ′ ′ ′ ′ ′ ′= − + −C I A B I A  (B.231)

Expanding the first term in the above equation yields, 
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 ( ) ( )
1

RR

R

R

R RR R R R

R R R

R R R RR

R R R

yz n R
y y

z nz n y

y y z n R z n y z n y z n y

n n n
y y y z z y n y n R y y y

y y y

Cs k C k
T C C

k Ck C s C

C C s k C k k C C k C C k C s C

C C C
C C C k s k C C C C k C C C

C C C

δ

β

δβ β

β δ δ β δ δ β

δ δ δ

δ β β β β β

δ δ δ

′   − −
 =     ′ −      

  ′ ′= − − + + −   

  
  ′= + − − + +
 
  

 
 

   

 (B.232)

where 1T  has been used to denote the first term. The determinant of the second term of 
equation (B.231) has already been calculated in equation (B.230) and so the characteristic 
equation for the zeros becomes, 

 

( )
( ) ( ) ( )

( )

2

2

R R R

R R R R

R R R
R

R R

R R R

RR
R R R

n n n
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δ δ δ

β β β β β

δ δ δδ

β β β

δ δβ

δ β

δ β δ

    
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   
   ′ ′= − − + −
   
   

( )

( )2

R

R R R
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R R R

R y

n nnn
y z y R z y

y y y y

C

C CCC
C s k C s k k C

C C C C
δ δβ

δ β

δ β δ

 
 +
  
    
    ′ ′≈ − − + −

        

 
(B.233)

where equation (B.228) has been used to simplify the result. Since only the roots of equation 
(B.233) are desired the characteristic equation can be simplified to, 

 ( ) ( )2 R R R

R

R R R

n nnn
z y R z y

y y y y

C CCC
z s s k C s k k C

C C C C
δ δβ

β

δ β δ

   
   ′ ′ ′= − − + −
   
   

 (B.234)

B.5.8 NNDT directional stability augmentation 

Define the stability augmentation control law, 

 
RR R B W RK R K Bδ δ′ ′ ′ ′ ′ ′= − − +  (B.235)

Substituting for the lateral specific acceleration from equation (B.218) gives, 

 
RR B y R RX K C K

Rβ

β
δ δ

′   ′ ′ ′ ′ ′= − − +    ′  
 (B.236)

with, 

 ( ) 1
1

RB yX K C
δ

−
′ ′= +  (B.237)

 
RR R B yK K K C′ ′ ′= +  (B.238)

Substituting the control law into the directional dynamics of equation (B.217) gives, 
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 RR R

R

R RR R

yy B y y R R y

R
z nz n B y z n z n R z n

C XC K C C X k K C X

R k C Xk C K C k C X k C K k C XR
δβ β δ δ

δβ β δ δ

ββ δ
′′ ′ ′ ′ − − −  ′ ′   ′ = +     ′ ′′ ′ ′ ′′ − −        

 (B.239)

The closed loop poles are the roots of the characteristic equation, 

 ( ) det 0R R

RR R

y B y y R R y

c
z n B y z n z n R z n

s C K C C X k K C X
s

k C K C k C X s k C K k C X
β β δ δ

β β δ δ

α
 ′ ′ ′ ′ − + +
 ′  = =

′ ′ ′ ′ − + − +   
 (B.240)

Expanding the determinant above yields, 

 ( )2
1 0( )c s s a s aα ′ ′ ′= + +  (B.241)

where, 

 ( ) ( )1 R R Ry z n z n R y y Ba C k C k C K C C K X
β δ β δ

′ ′ ′= − + + +  (B.242)

 ( ) ( ) ( )( )0 R RR R R Rz y n R n z n y n y R n y y R y n Ba k C C k C k C C C C K C C C k C C K X
β β β δ δ β β δ β δ

′ ′ ′= + + − − +  (B.243)

Expanding the above coefficients yields, 
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 (B.244)
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          
  
   ′ ′≈ + + −

    

 (B.245)

given the simplifying assumption of equation (B.228) and the constraints below, 

 1R R R

R

RR R

y nn B
y

n y y R

C CC K
C

C C C K
δ δ

δ δ

  ′
 −
  ′ 

 (B.246)
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R

R

ny n
y R R

n y y

CC C
C K k

C C C
δβ β

δ

β β δ

 
  ′−
 
 

 (B.247)
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These constraints become, 

 1

R

B F

R y D F

K l
K C l l
′ ′
′ ′ ′−

 (B.248)

 
( )

R

WR
R

y W F

lk
K

C l l
δ

′
′

′ ′−
 (B.249)

when the characteristic lengths of equations (5.102) to (5.104) are substituted. Given the 
desired directional dynamics characteristic equation, 

 ( )2
1 0( )c s s sα α α′ ′ ′= + +  (B.250)

the coefficients of the characteristic polynomials of equations (B.241) and (B.250) can be 
matched, 

 ( )1 R Ry z n z n RC k C k C K X
β δ

α ′ ′= − + −  (B.251)

 0
R

R R

R

nn
z y n R n R y y B

y y

CC
k C C k C k C C K X

C C
δβ

β β δ β

β δ

α
  
   ′ ′= + + −

    
 (B.252)

to yield the feedback gains, 

 ( )1
1 1

R R

R

R y z n B y
z n

K C k C K C
k C β δ

δ

α ′ ′= + + +   (B.253)
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0

R

R

R

R

z y n z R n
B

nn
y R z y

y y

k C C k k C
K

CC
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β β
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β δ

α

α

+ −
′ =

  
  − −

    

 
(B.254)

Considering now the special case of the control law when the lateral specific acceleration 
feedback gain is manually set to zero. The closed loop characteristic equation becomes, 

 ( ) ( ) ( )2( )
R RRc y z n z n R z y n R ns s C k C k C K s k C C k C

β δ β β
α ′ ′ ′ ′= − + − + +  (B.255)

and the feedback gain RK ′  only influences the closed loop system’s damping . Given the 
desired damping ratio ζ  the feedback gains are, 

 ( )1 2
R

R

R y z n n
z n

K C k C
k C β

δ

ζω′ ′= + +  (B.256)

 0BK ′ =  (B.257)

with the natural frequency equal to its open loop value of, 
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 ( )Rn z y n R nk C C k C
β β

ω′ = +  (B.258)

B.5.9 NNDT rudder to lateral specific acceleration steady state gain 

The closed loop dynamics after the stability augmentation control law has been implemented 
can be written as follows, 

 
RRδ′ ′ ′ ′ ′= +x A x B  (B.259)

 
RW RB D δ′ ′ ′ ′ ′= +C x  (B.260)

where the state space matrices are, 

 R R

RR R

y B y y R R y

z n B y z n z n R z n

C K C C X k K C X

k C K C k C X k C K k C X
β β δ δ

β β δ δ

′ ′ ′ ′ − − −
′  =

′ ′ ′ ′− −  
A   R

R

y

z n

C X

k C X
δ

δ

′ 
′ =  

′  
B  (B.261)

 ( )R Ry y R yC X C K C X
β δ

 ′ ′ ′ ′= − C     
RyD C X

δ
′ ′=  (B.262)

and the aileron and attitude angle couplings have been ignored. The steady state gain from the 
rudder input through to the lateral specific acceleration can be written as follows, 

 ( ) ( )
( )

adj det
detss

D
K

′ ′ ′ ′ ′− + −
′ =

′−
C A B A

A
 (B.263)

The determinant in the above equation is simply obtained by substituting 0s′ =  into equation 
(B.241). Calculating the first term in the numerator of equation (B.263) yields, 

 

( ) ( )

( )

( )

2

2

2

adj R RR R

R R

RR R

RR R

R R

R R

R

yz n R z n R R y

y y R y
z nz n B y z n y B y y

y n R n

z y y R y
n y y n

z y y n

Ck C K k C X k K C X
X C C K C

k Ck C K C k C X C K C C X

C C k C
k X C C K C

C C C C

k X C C C

δδ δ

β δ

δβ β δ β β δ

δ δ

β δ

δ β δ β

β δ

′ ′ ′ ′ − +  
 ′ ′  − = − −    ′ ′ ′ ′− + −     

 +
 ′ ′  = − −  −  

′= −

C A B

( ) ( )( )
( )2

R RR R R R

R R R

R RR R

R R R

R n y R y n y y n

n n nn n
z y y n R y y y y y R

y y y y y

k C C K C C C C C

C C CC C
k X C C C k C C C C C K

C C C C C

δ δ δ β δ β

δ δ δβ β

δ β β β δ β

δ β δ β δ

 ′+ + − − 
    
    ′ ′= − − + − − −

        

 (B.264)

The complete numerator calculation is then, 
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 (B.265)

where the numerator has been denoted by N . Note that the determinant was substituted from 
equation (B.241) before any of the simplifying assumptions were made and thus the only 
simplifying assumption used to arrive at the result above is that of equation (B.228). 
Combining equations (B.265) and (B.250) gives the steady state gain, 

 ( ) 1

0

1 1R

R R

R

nn
ss R z y y B y

y y

CC
K k k C C K C

C C
δβ

δ β δ

β δ
α

− 
 ′ ′= − +
 
 

 (B.266)

where the constraint of equation (B.249) is required if 0α  is to be used in the equation above. 
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Appendix C – Example Aircraft Data 

 

 

Appendix C 

Example Aircraft Data 

 

The geometric, inertial, aerodynamic and propulsion parameters of the three example aircraft 
used in Chapter 8 are provided in this appendix. 

C.1 Aerobatic aircraft 
The aerobatic aircraft is a CAP 232 0.90 size model aircraft fitted with a GMS 1.20 cubic inch 
methanol engine. The parameters for this UAV were extracted from [13]. They are summarised 
below. 

Inertia: 

 5.0 kgm =  (C.1)

 2

0.200 0 0
0 0.360 0  kgm
0 0 0.525

 
 =  
  

BI  (C.2)

Geometry: 

 0.30 mc =  (C.3)

 1.73 mb =  (C.4)

 20.50 mS =  (C.5)

 5.97A =  (C.6)

Aerodynamic: 

 0.85e =  
0

0.0200DC =  (C.7)

 
0

0.0LC =  5.1309LC
α
=  7.7330

QLC =  0.7126
ELC

δ
=  (C.8)

 
0

0.0mC =  0.2954mC
α
= −  10.281

QmC = −  1.5852
EmC

δ
= −  (C.9)
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 0.2777YC
β
= −  0.0102

PYC =  0.2122
RYC =  0.0077

AYC
δ
= −  0.2303

RYC
δ
=  (C.10)

 0.0331lC
β
= −  0.4248

Pl
C = −  0.0450

Rl
C =  0.3731

AlC
δ
= −  0.0080

RlC
δ
=  (C.11)

 0.0860nC
β
=  0.0251

PnC = −  0.1250
RnC = −  0.0065

AnC
δ
= −  0.1129

RnC
δ
= −  (C.12)

Propulsion: 

 0.25 sTτ =  (C.13)

 max 70 NT =  (C.14)

C.2 Variable stability aircraft 
The variable stability aircraft is an electrically powered, blended-wing-body UAV with an in 
flight adjustable centre of mass. Varying the centre of mass position changes the longitudinal 
static stability of the aircraft. Consequently the longitudinal aerodynamic stability and control 
derivatives listed below are a function of the centre of mass position. The parameters for this 
aircraft were obtained from [48]. 

Inertia: 

 3.2 kgm =  (C.15)

 2

0.192 0 0
0 0.055 0  kgm
0 0 0.251

 
 =  
  

BI  (C.16)

Geometry: 

 0.25 mc =  (C.17)

 1.70 mb =  (C.18)

 20.385 mS =  (C.19)

 7.50A =  (C.20)

Aerodynamic: 

 0.85e =  
0

0.0183DC =  (C.21)

 
0

0.0633LC =  ( )L L cgC f
α α
= ∆  ( )

Q QL L cgC f= ∆  ( )
E EL L cgC f

δ δ
= ∆  (C.22)

 
0

0.0mC =  ( )m m cgC f
α α
= ∆  ( )

Q Qm m cgC f= ∆  ( )
E Em m cgC f

δ δ
= ∆  (C.23)

 0.5404yC
β
= −  0.2136

PyC = −  0.2399
RyC =  0.0945

AyC
δ
= −  0.3682

RyC
δ
=  (C.24)



APPENDIX C– EXAMPLE AIRCRAFT DATA 

 

258

 0.2381lC
β
= −  0.4851

Pl
C = −  0.1694

Rl
C =  0.3521

AlC
δ
= −  0.1058

RlC
δ
=  (C.25)

 0.0654nC
β
=  0.0020

PnC = −  0.0350
RnC = −  0.0023

AnC
δ
=  0.0477

RnC
δ
= −  (C.26)

where, 

 ( ) ( )24.3000 1.2828 8.7407L cg cg cgf
α
∆ = + ∆ − ∆  (C.27)

 ( ) ( )4.0543 34.9717
QL cg cgf ∆ = + − ∆  (C.28)

 ( ) ( )21.6524 0.6603 5.0574
EL cg cg cgf

δ
∆ = + ∆ − ∆  (C.29)

 ( ) ( )0.1286 17.0453m cg cgf
α
∆ = − + ∆  (C.30)

 ( ) ( )21.6945 16.5444 133.2634
Qm cg cg cgf ∆ = − + ∆ − ∆  (C.31)

 ( ) ( )0.4582 6.4093
Em cg cgf

δ
∆ = − + ∆  (C.32)

with cg∆  the change in the centre of mass position relative to the nominal, most forward centre 
of mass position. The centre of mass change is controlled to lie in the range, 

 [ ]0.0,0.02  mcg∆ ∈  (C.33)

Notice that the variation in the lateral parameters with the centre of mass position has been 
ignored in the model due to its weak dependency. The functions of equations (C.27) to (C.32) 
are all least squared fits of an appropriate order to the longitudinal aerodynamic data over 
centre of mass position. 

Propulsion: 

 0.2 sTτ =  (C.34)

 max 20 NT =  (C.35)

C.3 VTOL aircraft 
The Vertical Takeoff and Landing (VTOL) aircraft is an experimental custom made tail-sitter 
UAV. The aircraft has two electric motors mounted on the wings and a number of aerodynamic 
actuators to allow for control in both hover and forward flight states. The aircraft parameters 
were obtained from [16].  

Inertia: 

 9.0 kgm =  (C.36)
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 2

0.888 0 0
0 0.421 0  kgm
0 0 1.243

 
 =  
  

BI  (C.37)

Geometry: 

 0.37 mc =  (C.38)

 1.57 mb =  (C.39)

 20.57 mS =  (C.40)

 4.29A =  (C.41)

Aerodynamic: 

 0.85e =  
0

0.0272DC =  (C.42)

 
0

0.0LC =  4.1877LC
α
=  8.1626

QLC =  
E ET FHL L E LC C k C

δ δ δ
= +  (C.43)

 
0

0.0mC =  1.6147mC
α
= −  7.6367

QmC = −  
E ET FHm m E mC C k C

δ δ δ
= +  (C.44)

 1.7190YC
β
= −  0.2557

PYC =  1.1875
RYC =  0.0009

AYC
δ
=  

R RF FVY Y R YC C k C
δ δ δ
= +  (C.45)

 0.0043lC
β
= −  0.6566

Pl
C = −  0.1039

Rl
C =  0.2193

AlC
δ
= −  

R RF FVl l R lC C k C
δ δ δ
= +  (C.46)

 0.4745nC
β
=  0.0689

PnC = −  0.3359
RnC = −  0.0186

AnC
δ
=  

R RF FVn n R nC C k C
δ δ δ
= +  (C.47)

with, 

 1.2434
ETLC

δ
=   0.7479

FHLC
δ

=  (C.48)

 1.8088
ETmC

δ
= −   0.0827

FHmC
δ

= −  (C.49)

 1.0078
RFYC

δ
=   0.3113

FVYC
δ

=  (C.50)

 0.0410
RFlC

δ
= −   0.0033

FVlC
δ

= −  (C.51)

 0.3885
RFnC

δ
= −   0.0173

FVnC
δ

= −  (C.52)

and, 

 1Ek = −  (C.53)

 2.5Rk = −  (C.54)
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Propulsion: 

 0.25 sTτ =  (C.55)

 max 120 NT =  (C.56)
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