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SUMMARY 

DRUG REPURPOSING AND OPTIMISATION TO IMPROVE TUBERCULOSIS TREATMENT 

Tuberculosis, a leading infectious cause of mortality, morbidity, and reduced quality of life with loss 

of income, remains a huge public health burden particularly in resource-limited settings. The golden 

thread throughout this dissertation, was improving tuberculosis treatment through repurposing and 

optimisation of existing medicines. For that purpose, we sought to improve our understanding of the 

pharmacokinetics and pharmacodynamics of selected anti-tuberculosis drugs. 

CHAPTER 1 

Clinical pharmacokinetics and pharmacodynamics of rifampicin in human tuberculosis 

In this review, spanning 51 years, we summarised rifampicin pharmacokinetic and pharmacodynamic 

data across a range of doses in adult healthy volunteers, tuberculosis patients, and special patient 

populations. We included 170 articles, and pharmacokinetic data extracted from 69 studies that 

enrolled 3666 participants who received rifampicin over a dose range of 2-35 mg/kg. We found 

considerable inter- and intra-individual variability in rifampicin exposure, which can be reduced by 

administration under fasting conditions. Factors that alter rifampicin exposure and/or efficacy include 

malnutrition, human-immunodeficiency virus infection, diabetes mellitus, dosing, pharmacogenetic 

polymorphisms, hepatic cirrhosis, and substandard medicinal products. Area under the concentration-

time curve (from time zero to 24 h) [AUC0-24]/ minimum inhibitory concentration (MIC) is the 

pharmacokinetic/pharmacodynamic parameter that correlates best with rifampicin bactericidal 

activity. Higher rifampicin doses compared to the standard adult 10 mg/kg oral may be required for 

some indications such as tuberculous meningitis, where higher rifampicin exposure has been 

associated with reduced mortality. Therapeutic drug monitoring integrated with Bayesian priors could 

allow dose individualisation and attainment of optimal drug exposure quicker. 
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CHAPTER 2 

The pharmacokinetics of para-aminosalicylic acid and its relationship to efficacy and 

intolerance 

This chapter expanded on a previous review of the development of para-aminosalicylic acid (PAS) 

regarding formulations, dosing practices and their relationship to the prevention of resistance in 

companion drugs and intolerance, and reviewed the pharmacokinetics of PAS in greater depth, in 

particular focusing on the lack of relationship between PAS plasma concentrations and intolerance. 

This chapter also presented previously unappreciated evidence that PAS may well have some 

bactericidal efficacy. Available evidence suggest PAS Cmax, AUC, and, by extension Cmax/MIC and/or 

AUC/MIC rather than proportion of time PAS concentration is above MIC (%T>MIC) of 1 mg/L are 

the most important determinants of efficacy and suppression of resistance development in companion 

drugs. Therefore, there is need for a prospective study to re-evaluate PAS 

pharmacokinetics/pharmacodynamics using modern methodologies.  

 

CHAPTER 3 

Probability of mycobactericidal activity of para-aminosalicylic acid with novel dosing regimens 

In chapter 2, we provided evidence to support high once-daily dosing of PAS. In particular, a granular 

slow-release PAS formulation (PASER® GRANULES [Aminosalicylic Acid Delayed-Release 

Granules], JACOBUS PHARMACEUTICAL COMPANY, INC.Princeton, NJ, USA), at the current 

dosing regimen of 8-12 g per day administered in 2-3 divided doses will not achieve PAS 

concentrations likely reached in the early clinical trials supporting the introduction of PAS. The 

optimal use of PASER requires adequate understanding of PAS dose-exposure-response relationship. 

We, therefore, established a representative population pharmacokinetics model for PASER and 

evaluated the probability of bactericidal and bacteriostatic target attainment with different dosing 

regimens. The pharmacokinetic model included both inter-individual and inter-occasion variability 

in PAS bioavailability and allometric scaling with total body weight on disposition parameters. 
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Assuming a PAS MIC of 1 mg/L, the proposed target Cmax/MIC of at least 100 was achieved in 53%, 

65%, 72% and 84% of the 1000 virtual patients each administered 12, 14, 16 and 20 g once-daily 

PASER, respectively. In addition, for the typical individual, the exposure remained above 1 mg/L for 

≥98% of the dosing interval. A prospective study should evaluate the tolerability and early 

bactericidal activity of 14, 16, and 20 g once-daily dosing of PASER, and determine the 

pharmacokinetic/pharmacodynamic parameters linked to the bactericidal activity. 

 

CHAPTER 4 

Drug concentration at the site of disease in children with pulmonary tuberculosis 

Effective tuberculosis treatment that results in cure and sterilisation of tuberculous lesions requires 

adequate exposure of antituberculosis drugs at the site of disease. Site of disease, also referred to as 

site of infection, is the compartments where the Mycobacterium tuberculosis (M. tuberculosis) bacilli 

reside and where the relevant antituberculosis drug exerts it antimycobacterial effect. There are no 

data for site of disease pharmacokinetics of antituberculosis drugs in children. In this chapter, we 

aimed to characterise the concentrations of first-line antituberculosis drugs at the site of disease in 

children with complicated intrathoracic tuberculosis. This was a prospective study in children with 

severe intrathoracic tuberculosis requiring bronchoscopy or transthoracic surgical lymph node 

decompression (SD). Patients administered rifampicin, isoniazid, pyrazinamide, with or without 

ethambutol for at least 10 days had plasma samples collected at approximately pre-dose, 2, 4, and 6 

hours post-dose. Site of disease samples were targeted to be collected at 2, 4, or 6 hours post-dose for 

bronchoscopy, and at 2 hours post-dose for the SD group. A population pharmacokinetics modelling 

approach was used to reconstruct the entire plasma pharmacokinetic profiles. Similarly, site of disease 

data was modelled by an additional compartment for each site, and the rate and extent of distribution 

of each drug from plasma to the sites determined. To our knowledge, this is the first study to provide 

pharmacokinetic data in children with pulmonary tuberculosis, the most common form of tuberculosis 

in children and adults, on site of disease-focused exposure of antituberculosis drugs and addresses 
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important questions regarding site of disease drug-exposure relationships. We found the extent of 

distribution of first-line antituberculosis drugs to sites of disease to be drug- and site-specific, and 

that numerous bacilli in hard-to-reach lesions such centres of caseous granuloma are exposed to 

periods of monotherapy with key sterilising drugs rifampicin and pyrazinamide, despite being on 

combination treatment for at least a month. Overall, drug penetration of tuberculosis sites of disease 

seems to be better in children than in adults. In addition, we provided first time data in humans, on 

the ethambutol penetration of tuberculous sites of disease. Except for isoniazid, all first-line 

antituberculosis drugs had lower plasma exposure in children compared to adults. We, therefore, 

suggest that these drugs should be dosed at the higher end of the World Health Organisation’s (WHO) 

dosing range to increase overall systemic exposures. Furthermore, higher doses of rifampicin should 

be explored, and the pharmacokinetic/pharmacodynamic parameter(s) of efficacy at site of disease be 

determined. This could allow treatment stratification or shortening of treatment duration depending 

on disease severity. 

 

CHAPTER 5 

The population pharmacokinetics of meropenem in adult patients with rifampicin-sensitive 

pulmonary tuberculosis 

Meropenem, a carbapenem, is being investigated for repurposing as an antituberculosis drug. 

Understanding the pharmacokinetic/pharmacodynamic parameters of carbapenem efficacy, is key to 

its optimal use, and to the programmatic translation of research findings using parenteral formulations 

of carbapenems to novel, oral carbapenems in development. A population pharmacokinetics model 

of meropenem in patients with pulmonary tuberculosis is the first step in performing an integrated 

pharmacokinetics/pharmacodynamics analysis linking carbapenem exposure to early bactericidal 

activity. This chapter aimed to develop such a model and identify covariates improving predictive 

performance.  A 2-compartment model with first-order elimination process adequately described the 

observed meropenem concentration-time data from a phase 2a study. The model was parameterised 
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with clearance from the central compartment, intercompartmental clearance, central and peripheral 

volumes of distribution. The uncertainty in parameters estimates were low (3.8-35%). Similarly, the 

combined additive and proportional errors were low. Furthermore, covariates found to improve model 

fit were size-standardised creatinine clearance on clearance and total body weight on all disposition 

parameters. Rifampicin and age had no significant influence on meropenem clearance. The final 

model can be used as the pharmacokinetic component of future exposure-response analyses of early 

bactericidal activity data. 
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OPSOMMING 
 

HEROORMERKING EN OPTIMISERING VAN MIDDELS VIR DIE VERBETERING VAN 
TUBERKULOSE BEHANDELING 

 

Tuberkulose, ‘n hoofoorsaak van infeksiesiekte mortaliteit, morbiditeit en verlaagte lewenskwaliteit 

met verlies aan inkomste, bly ‘n enorme publieke gesondheidslas, veral in omgewings met beperkte 

hulpbronne. Ons het met hierdie tesis deurlopend beoog om tuberkulose behandeling deur die 

heroormerking en optimisering van bestaande medisynes te verbeter. Ten einde hierdie doel te bereik, 

het ons dit ten doel gestel om ons begrip van die farmakokinetika en farmakodinamika van gekose 

teen-tuberkulose middels te bevorder.  

 

HOOFSTUK 1 

Kliniese farmakokinetika en farmakodinkamika van rifampisien in menslike tuberkulose 

In hierdie oorsig, wat 51 jaar strek, word die data rakende rifampisien farmakokinetika en 

farmakodinamika oor ‘n reeks dosisse in gesonde vrywilligers, tuberkulose pasiënte en spesiale 

pasiëntpopulasies opgesom. Ons het 170 artikels ingesluit en farmakokinetika data is ontgin uit 69 

studies waarby 3666 deelnemers betrek is, en wat rifampisien teen ‘n doseringsreeks van 2-35 mg/kg 

ontvang het.  Ons het ‘n beduidende inter- en intra-individuele veranderlikheid in rifampisien 

blootstelling gevind, wat deur toediening onder vastende toestande beperk kan word. Faktore wat 

rifampisien blootstelling en/of effektiwiteit kan verander, sluit wanvoeding, menslike 

immuniteitsgebreksvirusinfeksie, diabetes mellitus, dosering, farmakogenetiese polimorfismes, 

lewersirrose en ondergeskikte medisinale produkte in. Area onder die konsentrasie-tydkurwe (vanaf 

tydpunt 0 tot 24h) [AOK0-24]/ minimum inhiberende konsentrasie (MIK) was die 

farmakokinetiese/farmakodinamiese parameter wat die beste met rifampisien bakteriedodende 

aktiwiteit gekorrelleer het. Rifampisien dosisse hoër as die standaard dosis van 10mg/kg oraal mag 

benodig word vir sekere indikasies soos tuberkulose breinvliesontsteking, waar verhoogde 

rifampisien blootstelling geassosieer word met verlaagde mortaliteit. Terapeutiese middelmonitering 
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geïntegreer met ‘n Bayes-verspreidingsvooruitskatting mag vinniger dosis individualisering en die 

verkryging van optimale middelblootstelling bewerkstellig.  

 

HOOFSTUK 2 

Die farmakokinetika van para-aminosalisielsuur ten opsigte van effektiwiteit en 

onverdraagsaamheid  

Hierdie hoofstuk het uitgebrei op ‘n vorige oorsig van die ontwikkeling van para-aminosalisielsuur 

(PAS)-verwante formulasies, doseringspraktyke en hul verwantskap met voorkoming van 

weerstandigheid in metgeselmiddels en onverdraagsaamheid, en evalueer die farmakokinetika van 

PAS in groter diepte, met spesifieke fokus op die gebrek aan verwantskap tussen PAS 

plasmakonsentrasies en onverdraagsaamheid. Hierdie hoofstuk lê ook voorheen ongewaardeerde 

bewyse voor wat toon dat PAS wel ‘n mate van bakteriedodende effektiwiteit het. Beskikbare bewyse 

dui aan dat PAS maksimale konsentrasies (Kmaks), AOK, en, ter uitbreiding, Kmaks/MIK en/of 

AOK/MIK, eerder as die proporsie van tyd wat PAS konsentrasie bo MIK (%T>MIK) van 1mg/L is, 

die belangrikste bepalers van effektiwiteit en onderdrukking van weerstandigheidsontwikkeling tot 

metgeselmiddels is. Daarom is daar ‘n behoefte vir ‘n prospektiewe studie om PAS 

farmakokinetika/farmakodinamika te ondersoek met moderne metodologie.  

 

HOOFSTUK 3 

Waarskynlikheid van mikobakteriedodende aktiwiteit van para-aminosalisielsuur met nuwe 

doseringstrategieë 

In hoofstuk 2 het ons bewyse voorgelê wat hoë een keer per dag dosering met PAS ondersteun. In die 

besonder, ‘n korrelvormige, stadig-vrystellingsformulasie van PAS (PASER® GRANULES 

[Aminosalicylic Acid Delayed-Release Granules], JACOBUS PHARMACEUTICAL COMPANY, 

INC.Princeton, NJ, VSA) teen die huidige doseringstrategie van 8-12 g per dag, toegedien in 2 tot 3 

verdeelde dosisse, sal heel moontlik nie PAS konsentrasies wat in vroeër kliniese proewe bereik is, 
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en wat die gebruik van PAS ondersteun het, tot gevolg hê nie. Die optimale gebruik van PASER is 

afhanklik van ‘n omvattende begrip van PAS se dosis-blootstelling-respons verhouding. Ons het 

daarom ‘n verteenwoordigende bevolkingsfarmakokinetiese model vir PASER ingestel en die 

waarskynlikheid vir bakteriedodende- of bakteriostatiese effek teikenbehaling met verskillende 

doseringstrategieë ge-evalueer. Die farmakokinetiese model het beide inter-individuele en inter-

geleentheid veranderlikheid in PAS biobeskikbaarheid in ag geneem, asook ‘n allometriese glyskaal 

vir totale liggaamsgewig in geneigtheidsparameters.  Met die veronderstelling van ‘n PAS MIK van 

1 mg/L, is die voorgestelde teiken Kmaks/MIK van minstens 100 behaal in onderskeidelik 53%, 65%, 

72% en 84% van die 1000 virtuele pasiënte aan wie elk 12, 14, 16 en 20 g PASER as eenmalige 

daaglikse dosis toegdien is. Verder, vir die tipiese individu, het die blootstelling bo 1 mg/L gebly vir 

≥98% van die doseringsinterval. ‘n Prospektiewe studie moet poog om die verdraagsaamheid en 

vroeë bakteriedodende aktiwiteit van 14, 16 en 20 g PASER as een keer per dag daaglikse dosis te 

evalueer, en die farmakokinetiese/farmakodinamiese parameters wat met bakteriedodende aktiwiteit 

verbind word, te bepaal.  

 

HOOFSTUK 4 

Middelkonsentrasie by die siekteteikenareas in kinders met pulmonêre tuberkulose  

Effektiewe tuberkulose behandeling wat genesing en sterilisering van tuberkuloseletsels tot gevolg 

het, is afhanklik van voldoende blootstelling aan teen-tuberkulose middels by die siekteteikenarea. 

Siekteteikenarea, ook genoem area van infeksie, is die kompartemente waar die Mycobacterium 

tuberculosis (M. tuberculosis) basille voorkom en waar die relevante teen-tuberkulose middels hulle 

teen-tuberkulose effek moet uitoefen. Daar is tans geen data vir siekteteikenareafarmakokinetika vir 

teen-tuberkulose middels in kinders nie.  In hierdie hoofstuk het ons gepoog om die konsentrasies 

van eerste-linie teen-tuberkulose middels by die siekteteikenarea in kinders met gekompliseerde 

intratorakale tuberkulose uit te beeld. Hierdie was ‘n prospektiewe studie in kinders met erge 

intratorakale tuberkulose wat brongoskopie of transtorakale chirugiese limfnode dekompressie (SD 
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groep) benodig het. Plasmamonsters is van pasiënte geneem aan wie rifampisien, isoniasied en 

pirasinamied, met of sonder etambutol, vir minstens 10 dae toegedien is, by tydpunte ongeveer  voor-

dosis, 2, 4 en 6 uur na dosering. Siekteteikenareabiopsies is sover moontlik geneem teen 2, 4, of 6 

uur na dosering vir brongoskopie pasiënte, en 2 uur na dosering vir die SD groep.  ‘n 

Bevolkingsfarmakokinetiese modelleringsaanslag is gebruik om die algehele plasma 

farmakokinetiese profiel weer op te bou. Op ‘n soortgelyke manier is siekteteikenarea data 

gemodelleer deur ‘n ekstra kompartement vir elke area, asook die spoed en omvang van verspreiding 

van elke middel vanaf plasma na hierdie areas, te bepaal. Sover ons kennis strek, is hierdie die eerste 

studie wat farmakokinetiese data verskaf in kinders met pulmonêre tuberkulose, die mees algemene 

vorm van tuberkulose in beide kinders en volwassenes, rakende siekteteikenarea-gefokusde 

blootstelling aan teen-tuberkulose middels, en spreek ons belangrike vrae aan omtrent 

siekteteikenarea-middel blootstellingverhoudings. Ons het bevind dat die omvang van verspreiding 

van eerste-linie teen-tuberkulose middels na siekteteikenareas beide middel- en area-spesifiek is, en 

dat meertallige basille in moeilik bereikbare letsels (soos die kern van kaasagtige granulome) 

blootgestel is aan tydperke van monoterapie met sleutelmiddels rifampisien en pirasinamied, ten spyte 

daarvan dat kombinasie behandeling vir minstens ‘n maand toegedien is.  Oor die algemeen blyk dit 

of middel deurdringbaarheid in die tuberkulose siekteteikenareas beter is in kinders as in volwassenes. 

Verder verskaf ons ook vir die eerste keer data uit menslike studies aangaande die deurdringbaarheid 

van etambutol na siekteteikenareas. Met die uitsondering van isoniasied het alle getoetsde teen-

tuberkulose middels laer plasma blootstelling in kinders as in volwassenes getoon. Ons stel daarom 

aan die hoër kant van die huidig voorgestelde doseringsreikwydte, om algehele sistemiese 

blootstelling te verhoog. Verder behoort die gebruik van hoër dosisse van rifampisien ondersoek te 

word en die farmakokinetiese/farmakodinamiese parameters van effektiwiteit by elke 

siekteteikenarea bepaal te word.  Dit mag verskillende behandelingstrategieë of verkorte 

behandlingstydperke toelaat, afhangende van die erns van die siektegraad.  
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HOOFSTUK 5 

Die bevolkingsfarmakokinetika van meropenem in volwasse pasiënte met rifampisien-

sensitiewe pulmonêre tuberkulose  

Meropenem, ‘n karbapenem-klas geneesmiddel, word tans ondersoek vir heroormerking as teen-

tuberkulose middel. Begrip van die farmakokinetiese/farmakodinamiese parameters van 

karbapenem effektiwiteit is die sleutel tot optimale gebruik daarvan, en vir die programmatiese 

vertaling van navorsingsbevindinge vir nie-orale formulasies van karbapenems, na nuwe, orale 

karbapenems wat ontwikkel word. ‘n Bevolkingsfarmakokinetiese model van meropenem in 

pasiënte met pulmonêre tuberkulose is die eerste stap na die uitvoering van ‘n geïntegreerde 

farmakokinetiese/farmakodinamiese ontleding wat karbapenemblootstelling aan vroeë 

bakteriedodende effektiwiteit verbind. Die werk in hierdie hoofstuk het ten doel gehad om so ‘n 

model te ontwikkel, en kovariate wat voorspellingsprestasie verbeter te identifiseer. ‘n Twee-

kompartement model met eerste-orde eliminasie het die waargenome meropenem konsentrasie-tyd 

data uit ‘n fase 2a studie voldoende beskryf.  Die model is geparametriseer met opruiming uit die 

sentrale kompartement, interkompartementele opruiming en sentrale en perifere volumes van 

verspreiding. Die onsekerheidsvlak in parameter skattings was laag (3.8-35%). Soortgelyk hieraan 

was die gekombineerde bygevoegde en proporsionele foute ook klein. Kovariate wat die model se 

pas verbeter het was grootte-gestandaardiseerde kreatinienopruiming vir opruiming en totale 

liggaamsmassa vir alle geneigtheidsparameters. Rifampisien en ouderdom het geen betekenisvolle 

invloed op meropenem opruiming gehad nie. Die finale model kan gebruik word as die 

farmakokinetiese komponent in toekomstige blootstelling-respons analises van vroeë 

bakteriedodende aktiwiteitsdata. 
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INTRODUCTION 

Background 

Tuberculosis (TB) is a leading infectious cause of morbidity, mortality, and poor quality of life in the 

world.1,2 According to the 2020 WHO global TB report, TB incidence in relation to population size 

varies widely between countries, and with disproportionately higher burden in low and middle income 

countries (LMIC) than in high-income countries.2 Only 4.9% of the 2019 global TB cases occurred 

in the WHO regions of Europe and the Americas, whereas the remaining 95.1% were reported in the 

WHO regions of South East Asia, Africa, Western Pacific and the Eastern Mediterranean, mainly 

affecting LMIC.2 In addition, two-thirds of the 2019 global TB cases occurred in eight countries: 

India, Indonesia, China, the Philippines, Pakistan, Nigeria, Bangladesh and South Africa.2 In the same 

year, 10 million (range, 8.9-11.0) new cases of TB were estimated to have occurred.2 The major TB 

risk factors identified were undernourishment, infection with the human immunodeficiency virus 

(HIV), alcohol, smoking, and diabetes mellitus (DM), which in 2019 predisposed an estimated 2.2 

million, 0.76 million, 0.72 million, 0.7 million, and 0.35 million people, respectively, to develop TB.2 

In 2019, approximately 8.2% of new TB cases globally were estimated to be HIV positive.2 Africa 

accounted for the vast majority of the global HIV-associated TB, with the proportion coinfected 

exceeding 50% in some parts of South Africa.3 The WHO Africa and South-East Asia regions 

accounted for 85% of the combined total of global TB deaths in HIV-negative and HIV-positive 

people.2 It is however reassuring that the global TB mortality rate reduced by 45% between 2000 and 

2019.2 Use of multidrug regimens is a vital component of the currently adopted strategy in ensuring 

successful outcome (cure and prevention of relapse) for not only the patient but also public health 

benefit of TB control and suppression of emergence of resistant strains.2 

The choice of treatment regimens and their individual drug dosages are dependent on drug 

susceptibility, site of infection, age, comorbidities such as HIV, DM, malnutrition, renal or hepatic 

impairment, and the severity of disease. Therefore, understanding the dose-exposure and exposure-
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response properties of antituberculosis drugs and the factors that influence them is critical to 

successful TB therapy, and in the future construction of shorter regimens. 

 

The traditional industry-sponsored drug discovery and development process is expensive, time-

consuming (may take up to 15 years from discovery to obtaining marketing authorisation), and carries 

huge risks.4,5 On the contrary, drug repurposing and optimisation of existing drugs deals with drugs 

already marketed for some indications. Because the repurposed drugs have been in clinical use for 

years or decades, there is safety and efficacy data for labelled or off-label indications available.5,6 In 

addition, it is relatively cheaper and faster to repurpose and optimise existing drugs than to develop 

new ones.6 Drug repurposing and optimisation holds the promise as an alternative to the costly, high-

risk drug development process, or could be used to construct new regimens in combination with old 

or novel agents. 

 

Rifampicin 

Rifampicin, a rifamycin in clinical use for over 50 years, is a key drug in the treatment of drug-

sensitive TB.7 The excellent sterilizing property of rifampicin at standard adult dose of about 10 

mg/kg per day permits TB treatment duration shortening to 9 months and when combined with 

pyrazinamide, to 6 months.7–9 The 10 mg/kg per day rifampicin dosing is not optimal, and was chosen 

not based contemporary methods of assessing antimycobacterial effects of TB drugs, but based on 

considerations of cost and toxicity.10,11 Studies evaluating rifampicin at doses higher than 10 mg/kg 

per day, indicate that at this dose, rifampicin efficacy is at the lower end of the dose-exposure-

response curve.10,11   
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Para-aminosalicylic acid (PAS) 

PAS is an important reserve drug for patients with highly resistant TB. The recommended dose of a 

widely available slow-release, granular PAS formulation (PASER) is “8-12 g daily in two to three 

divided doses”.12–14  However, there has been little consideration to the optimal dosage of PAS and 

limited research has been performed on the optimal application of PASER, a gastro-friendly 

formulation. Jindani et al found substantial 2-day early bactericidal activity (EBA) of a PAS 

preparation (15 g once daily), which was comparable to the 2-day EBA of rifampicin at 10 mg/kg 

body weight.15 This “suggests that, although usually thought bacteriostatic, PAS has meaningful 

bactericidal activity if high enough concentrations are reached”.16 In addition, early British Medical 

Research Council (MRC) trials from the 1950s showed that PAS, when given in individual doses of 

no less than 5 g at least twice a day, prevents resistance to companion drugs.17–21 The mean peak 

concentrations (Cmax) likely observed in those studies was approximately 100 mg/L and the lowest 

Cmax around 50 mg/L.22 The authors suggested these to be the concentration ranges to be targeted in 

order to  prevent resistance to companion drugs and/or possibly provide bactericidal activity.16  

While the exposure levels mentioned above were achieved with older PAS salt preparations, PAS is 

currently available in a granular, slow-release formulation, including an enteric coating, PASER, 

which seems better tolerated than the salt preparations.23 Approximately 12 g of PASER corresponds 

to 14.5 g and 20 g of acid PAS and sodium PAS, respectively.23 The antituberculosis activity of this 

formulation has never been formally assessed, but it is unlikely that the maximal concentrations 

achieved in the historical trials can be matched with the current dosing schemes that are the same as 

previously used with the salt formulations. The PASER formulation has the advantages of better 

tolerability on the account of its slow release, and the consequent prolonged period that PAS 

concentrations remain above the MIC of 1-2 mg/L.16 Theoretically, once daily dosing with high-dose 

PASER might achieve higher Cmax with associated bactericidal activity, while retaining a long time 

above MIC (%T>MIC) for bacteriostatic activity, with the advantage of simplified supervision of 

drug intake and reduced side effects from the enteric formulation. 
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Much has been written about gastro-intestinal intolerance of PAS and yet very little is known about 

the contribution of different drug formulations and drug metabolites to intolerability. A highly 

relevant finding is that better or equivalent tolerance with PAS once daily, at higher single doses, was 

noted by several studies compared with the same dose divided across the day.24–27 This may be related 

to saturation of acetylation of the amino group of the PAS molecule to acetyl-PAS by N-acetyl 

transferase 1 (NAT1), hypothesizing that the metabolite is an important contributor to development 

of gastro-intestinal intolerance and that once daily dosing may lead to a smaller proportion of drug 

being metabolized due to the mentioned saturation.16,28  

The optimal dose and dosing regimen of PASER needs to be determined, and will require an urgent 

investigation of the safety, tolerability, and efficacy of high once daily dosing of PASER.  

 

First-line antituberculosis drug concentrations at the site of disease in children 

For the successful treatment of TB, drugs used in antituberculosis regimens need to reach their targets 

at the site of disease at adequate concentrations and for the duration of time required to exert their 

intended bactericidal or bacteriostatic effect, as well as protecting companion drugs from 

development of resistance.29 The complex and heterogeneous nature of TB pathology in humans, 

poses a barrier to antituberculosis drugs’ access to bacilli at sites of disease especially cavitary 

lesions.29 In adults, most antituberculosis drugs poorly penetrate cavitary lesions resulting in 

suboptimal drugs concentrations at site of disease and a risk of poor TB outcomes.29 However, little 

is known regarding the pharmacokinetics (PK) of antituberculosis drugs at the target site of disease 

in children, including tissue penetration in the lung and intrathoracic lymph nodes. Indeed, there are 

no data regarding site of disease PK of first-line antituberculosis drugs (rifampicin, isoniazid, 

pyrazinamide and ethambutol) in children with tuberculosis, and no data on site of disease PK of 

ethambutol in humans.  Understanding the rate and extent of drug distribution at the site of infection 
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could lead to better dosing of current antituberculosis drugs and facilitate the design of more effective 

drug regimens relevant to the spectrum of TB disease in children. 

 

Carbapenem drug repurposing 

M. tuberculosis, is historically considered intrinsically resistant to β-lactam antibiotics, because of 

chromosomally encoded production of a broad-spectrum β-lactamase BlaC.30 It was recently shown 

that M. tuberculosis contains L,D-transpeptidases that catalyses 3->3 linkages (rather than the 4->3 

linkages catalysed by classical D,D-transpeptidases) and are critical for its cell wall biosynthesis.31 

Carbapenems including meropenem and ertapenem have in vitro activity against M. 

tuberculosis.32,33This activity is potentiated in combination with clavulanate, which has been found 

to irreversibly inhibit BlaC.30,32 In addition, unlike penicillins and cephalosporins, carbapenems are 

relatively resistant to BlaC.32 The combination of carbapenems and clavulanate have MIC of < 1 

mg/L against M. tuberculosis, and this combination is active against both fast-growing metabolically 

active organisms, and slow-growing persisters.32 The addition of amoxicillin to 

meropenem/clavulanate resulted in further reduction in MIC by an average of 3.2 dilutions.34 

Rifampicin combination with meropenem exhibited synergistic effect on rifampicin-sensitive M. 

tuberculosis.35 Besides, in rifampicin-resistant M. tuberculosis, the MICs for rifampicin were lowered 

by 10-100 fold in the presence of sub-inhibitory concentration of meropenem.35 

A recent individual patient data meta-analysis of observational studies in patients with multidrug-

resistant TB (MDR-TB, defined as resistance to at least rifampicin and isoniazid) found a significant 

association of carbapenem use with treatment success compared to non-use of the drug.36 Further 

evidence of carbapenem use in TB patients is provided by Diacon et al, who conducted a randomized 

controlled study of the 14-day EBA of meropenem plus amoxicillin/clavulanate in adults with newly 

diagnosed sputum smear-positive, drug-sensitive pulmonary TB as part of NCT02349841.37 

Participants randomized to the meropenem plus amoxicillin/clavulanate arm received meropenem 2 
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g thrice daily by intravenous bolus, with amoxicillin 500 mg/clavulanate 125 mg administered orally 

thrice daily, for 14 days.37 Participants randomized to the control arm received standard 

antituberculosis therapy with daily oral isoniazid, rifampicin, pyrazinamide, and ethambutol 

according to South African National Treatment Programme guidelines.37 Meropenem plus 

amoxicillin/clavulanate reduced the mean mycobacterial load by 0.11 (95% CI 0.09 to 0.13) log10 

colony forming units (CFU) per mL of sputum per day and thereby exhibited robust 14-day EBA 

(reference control regimen reduced mean mycobacterial load by 0.17 (95% CI 0.15 to 0.19)).37 A 

carbapenem formulated for oral administration would have the greatest impact on feasibility provided 

adequate drug exposures can be reached. To this end, Diacon et al also randomized participants in 

another arm of the same trial (NCT02349841) to receive faropenem sodium 600 mg with amoxicillin 

500 mg/clavulanate 125 mg, each administered orally thrice daily, for 14 days.37 In contrast to 

meropenem, faropenem plus amoxicillin/clavulanate did not reduce the mean mycobacterial load at 

all (unpublished data). A better understanding of the PK drivers of activity and the optimal, as well 

as minimal PK targets would inform the development of more feasible meropenem dosing strategies 

in the short term, as well as appropriate dosing strategies for novel oral carbapenems used for TB 

treatment in the medium and longer term. 

 

Introduction to pharmacometrics 

Pharmacometrics is a relatively new discipline that can be used to solve therapeutic challenges of the 

huge burden of diseases facing Africa.38 About four decades ago Sheiner et al contributed 

significantly to the literature about a new method of PK data analysis that was eventually called 

population PK.39 In contrast to PK analysis using traditional SHAM (Slope, Height, Area, Moments) 

or non-compartmental analysis (NCA), pharmacometrics methods allow for better understanding of 

clinical pharmacology.38 Nonlinear mixed-effect (NLME) modelling, also known as population 

modelling, has the advantage of not only providing typical population parameters represented as 
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fixed-effects, but also estimating the influence of individual-specific characteristics, and the random 

variability with specific distributions to describe individuals.40 It allows identification and 

quantification of the sources of variability in drug exposure and response, even when data is sparse 

(however, more than one sample per patient is generally needed to separate levels of variability).   

In the early 1980s, Sheiner et al introduced a computer software called NONMEM, an acronym for 

NON-linear Mixed-Effects Modelling, which has capability for performing complex statistical 

analysis.39,41 The command line is used to invoke NONMEM through a control file. This is written 

in a unique modelling language that NONMEM translator (NM-TRAN) converts to Fortran code 

understood and implemented by NONMEM.41   

NLME modelling using NONMEM and auxiliary software will be exploited in our study to (a) 

characterize, understand, and predict a drug’s PK and pharmacodynamic (PD) behaviour, (b) quantify 

uncertainty of information about that behaviour, and (c) arrive at rational decision in drug 

development process and pharmacotherapy of TB. This will ultimately provide improved clarity on 

how best to optimize antituberculosis drug dosing regimens for the best clinical outcome with an 

acceptable safety margin in the future. By using pharmacometrics, researchers can model the 

characteristics of new, existing and repurposed drugs to simulate and predict their behaviour, which 

can enable more efficient and optimal drug development.38 Model-building strategy generally entails 

sequential development of the structural model, stochastic model and covariate model.39,40 The 

structural model is a framework or function that describes the time-course of drug concentration or 

effect, which is represented by algebraic or differential equations.42 The stochastic model quantify 

the extent of random variability in the pharmacokinetic parameters, e.g. between-subject variability 

and between-occasion variability.39,42 Population models unlike classical linear regression can have 

several levels of variability, commonly two. The first level is then the individual and the second level 

the samples variability (residual unexplained variability).39,42 Covariates are characteristics such as 

age, body weight, renal function that can explain variability in drug exposure or response. A covariate 
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model quantifies the influence of covariates (example body weight) on a population parameter 

(example clearance).39,40,42 A full model with the structural, stochastic and statistical components can 

be used to define the optimal dosing regimen of existing or repurposed antituberculosis drugs. 
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HYPOTHESES OF THE DISSERTATION 

i. Several factors influence rifampicin’s PK and PD. 

ii. PAS is not optimally used in the treatment of TB. 

iii. A population pharmacokinetics approach could assist in optimising PAS dosing. 

iv. Understanding the concentrations of first-line antituberculosis drugs at site of disease in 

children could assist in optimising TB treatment.  

v. A population pharmacokinetics approach could be used to repurpose meropenem use in 

TB patients. 

AIM AND OBJECTIVES OF THE DISSERTATION 

The overall aim of the dissertation was to improve TB treatment by accelerating repurposing and 
optimisation of existing antituberculosis drugs.  

The objectives of the dissertation include the following:  

i. To conduct a review summarizing rifampicin pharmacokinetic and pharmacodynamic data 

across a range of doses in adult healthy volunteers, tuberculosis patients, and special patient 

populations (Chapter 1). 

ii. To review the development of PAS regarding formulations, dosing practices and their 

relationship to the prevention of resistance in companion drugs and intolerance (Chapter 2). 

iii. To review the PK of PAS in greater depth, focusing on the relationship of PAS 

concentrations to intolerance (Chapter 2). 

iv. To externally validate a previously published PAS population PK model,43 (Chapter 3)  

v. To optimize this PAS population PK model if needed (Chapter 3) and  

vi. To evaluate the probability of target attainment with once-daily PASER regimens that could 

achieve bactericidal targets while not dropping below the bacteriostatic target during the 

dosing interval (Chapter 3). 
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vii. To characterise the concentrations of first-line anti-tuberculosis drugs at the site of disease 

in children with complicated intrathoracic tuberculosis (Chapter 4). 

viii. To develop meropenem population pharmacokinetics model and identify covariates 

improving predictive performance of the model (Chapter 5). 

  

Stellenbosch University  https://scholar.sun.ac.za



11 
 

METHODOLOGY AND RESULTS 
 

Detailed methodology as well as results of this dissertation are submitted in the format of five chapters 

/ manuscripts.  
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CHAPTER 1 

Clinical pharmacokinetics and pharmacodynamics of rifampicin in human tuberculosis 

Clin Pharmacokinet. 2019;58(9):1103-1129. doi:10.1007/s40262-019-00764-2. 
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Abstract
The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the 
treatment duration for patients with pulmonary TB to 6 months when combined with pyrazinamide in the first 2 months. 
Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and 
expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600 mg 
(8–12 mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of ≥ 95% and relapse rates of < 5%. How-
ever, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines 
of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We 
conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and 
highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and 
intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, 
HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal 
products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when 
dosed at 600 mg. Rifampicin maximum (peak) concentration (Cmax) > 8.2 μg/mL is an independent predictor of sterilizing 
activity and therapeutic drug monitoring at 2, 4, and 6 h post-dose may aid in optimizing dosing to achieve the recommended 
rifampicin concentration of ≥ 8 µg/mL. A higher rifampicin Cmax is required for severe forms TB such as TB meningitis, with 
Cmax ≥ 22 μg/mL and area under the concentration–time curve (AUC) from time zero to 6 h (AUC​6) ≥ 70 μg·h/mL associ-
ated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current 
standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is 
encouraging that daily rifampicin doses up to 35 mg/kg were found to be safe and well-tolerated over a period of 12 weeks. 
High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The stud-
ies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such 
as Cmax/MIC (minimum inhibitory concentration) and AUC/MIC.

 * Ahmed Aliyu Abulfathi
aaabulfathi@sun.ac.za

Extended author information available on the last page of the article

1  Introduction

Tuberculosis (TB) is associated with significant morbidity, 
mortality, and poor quality of life [1, 2]. The use of multid-
rug regimens is a vital strategy for ensuring relapse-free cure 
for patients as well as ensuring TB control and suppression 
of resistant strains [2]. The choice of treatment regimens and 
the dosage of their components is dependent on drug suscep-
tibility, site of infection, patient age, and co-morbidities such 

as HIV infection, diabetes mellitus (DM), malnutrition, renal 
impairment, hepatic impairment, and TB severity [3–6].

Rifampicin (rifampin) was first introduced into clini-
cal use in 1968 and remains a key drug for the treatment 
of TB disease caused by bacilli susceptible to it [2, 7, 8]. 
Rifampicin was introduced at a relatively low dose of 
600 mg (about 8–12 mg/kg body weight). This choice of a 
low dose of rifampicin can be explained by the exorbitant 
cost at the time, dose-dependent toxicity concerns, and evi-
dence that rifampicin concentrations were achieved above 
the minimum inhibitory concentrations (MICs) of Myco-
bacterium tuberculosis (M. tuberculosis) [7, 8]. Several dec-
ades ago, a series of clinical trials evaluated rifampicin in 
treatment regimens for drug-sensitive pulmonary TB (PTB), 
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Key Points 

AUC​24 (area under the concentration–time curve [AUC] 
from time zero to 24 h)/MIC (minimum inhibitory 
concentration) is the pharmacokinetic/pharmacodynamic 
parameter that correlates best with rifampicin (rifampin) 
bactericidal activity.

Therapeutic drug monitoring integrated with Bayesian 
priors could allow dose individualization and attainment 
of optimal pharmacokinetic/pharmacodynamic param-
eters quicker.

Higher rifampicin doses may be required at least for 
some indications such as tuberculous meningitis where 
a clear rifampicin exposure–response relationship exists, 
with AUC from time zero to 6 h (AUC​6) of ≥ 70 μg·h/
mL and maximum (peak) concentration (Cmax) of ≥ 
22 µg/mL associated with reduced mortality.

2 � Methods

2.1 � Search Strategy and Study Selection

We searched PubMed from inception to 12 April 2018 in 
order to identify studies in adults that report on the phar-
macokinetics and/or pharmacodynamics of rifampicin 
in healthy volunteers, patients, and special populations 
(such as those with malnutrition, HIV co-infection, DM, 
and hepatic and renal impairment). The search terms 
used in various combinations were: Rifampin[Mesh] OR 
rifampicin OR rifampin OR antitubercul* OR antimyco-
bacterial OR antimycobacterial activit* OR Antitubercu-
lar Agents[Mesh] AND Pharmacokinetics[Mesh] OR PK 
OR pharmacokinetic* OR PK PD OR pharmacodynamic* 
OR Pharmacology[Mesh] OR Treatment Outcome[Mesh] 
OR Tuberculosis[Mesh] OR Tubercul* OR Critical 
Illness[Mesh] OR Hepatic Insufficiency[Mesh] OR Renal 
Insufficiency[Mesh] OR Renal Insufficiency, chronic[Mesh] 
OR Acute Kidney Injury[Mesh] OR renal failure OR chronic 
renal failure OR Diabetes Mellitus[Mesh] OR Diabetes Mel-
litus OR Malnutrition[Mesh] OR malnutrition.

Studies were included if one or more of the following 
metrics were reported: rifampicin maximum (peak) plasma 
or serum concentrations (Cmax), or concentrations at any 
time, AUC from time zero to time t (AUC​t), and an out-
come measure such as time to sputum culture conversion, 
cure rate, relapse rate, rate of treatment failure, sterilizing 
activity, or early bactericidal activity (EBA) defined as the 
daily log10 decline in viable colony-forming units (CFU) of 
M. tuberculosis per mL of sputum collected overnight within
up to 14 days. The identified articles were screened by title
and abstract. We identified additional articles from related
citations in PubMed and referenced articles.

3 � Results and Discussion

One hundred and seventy articles were included in this 
review. Pharmacokinetic data were extracted from 69 stud-
ies with 3666 participants with a dosage of rifampicin rang-
ing from 2 to 35 mg/kg (Table 1, Figs. 1, 2). A considerable 
body of data relating to rifampicin pharmacokinetics and 
pharmacodynamics in both healthy volunteers and patients 
have been accumulated since its introduction into clinical 
use. Pharmacokinetic data interpretations are, however, 
complicated by different laboratory analytical methods, 
uncertainty as to whether or not the studied individuals 
were established or not on rifampicin (defined as being on 
daily rifampicin for at least 3 days or fewer than 3 days, 
respectively) and the lack of uniformity in data presentation. 
While some papers report results as rifampicin AUC​t, and 

which ultimately allowed shortening of the treatment dura-
tion to 6 months when combined with pyrazinamide in the 
first 2 months, with a success rate in excess of 95% and a 
relapse rate of less than 5% [9–11]. However, outside the 
clinical trial environment, the treatment success rate is less 
impressive. The standard short course based on rifampicin 
is estimated to cure 83% of HIV-negative patients and only 
78% of patients with HIV-associated TB [2]. Preclusion of 
rifampicin because of either resistance or hypersensitiv-
ity effectively condemns a patient to prolonged multidrug 
regimens that are expensive, toxic, and less effective than 
rifampicin-containing regimens.

Exceeding the current standard rifampicin dose range 
might result in better bactericidal and sterilizing activities 
with increased prevention of resistance. Preclinical data 
from experimental in vitro and in vivo TB models pro-
vide an indication that area under the concentration–time 
curve (AUC) from time zero to 24 h (AUC​24) over MIC 
(AUC​24/MIC) is the pharmacokinetic/pharmacodynamic 
parameter that correlates best with rifampicin’s bactericidal 
effect [12, 13]. There is a heightened interest in studying 
the dose–exposure and exposure–response relationships of 
high-dose rifampicin and the factors that influence them. 
The objective of this review is to summarize rifampicin 
pharmacokinetic and pharmacodynamic data across a range 
of doses in adult healthy volunteers, TB patients, and special 
patient populations.
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Cmax, others provide only serum concentrations at certain 
timepoints after dosing. Similar challenges were experienced 
when pharmacodynamics were reported. Differences in EBA 
study reports included duration from 2 to 14 days; how-
ever, many of the 14-day EBA studies include 2-day reports. 
Other pharmacodynamic outcome measures were time to 
sputum culture conversion reported on solid or liquid media, 
and inconsistencies in definitions of cure rate, relapse rate, 
and rate of treatment failure.  

4 � Pharmacokinetics

4.1 � Dose, Serum Concentrations, and Sources 
of Variability

Hepatic esterases are responsible for rifampicin metabo-
lism into desacetyl rifampicin [14]. Both rifampicin and 
its metabolite undergo biliary excretion [14, 15], with only 
about 17% of rifampicin 600 mg recovered unchanged in 
urine [15]. Organic anion-transporting polypeptide 1B1 
(OATP1B1) is primarily responsible for the hepatocellular 
uptake of rifampicin [14].

Rifampicin exhibits a dose-dependent increase in serum 
concentration [16–20]. In 1967, Furesz et al. [20] reported 
patients on rifampicin for less than 3 days to have an increase 
in rifampicin Cmax from 0.94 to 27.7 μg/mL over a dose 
range of 100 mg (2 mg/kg) to 900 mg (18 mg/kg) [20]. 
Other studies have replicated these findings [15–17, 19, 
21–24]. A near quadrupling of AUC was observed when the 
rifampicin dose was increased from 300 to 600 mg [25, 26]. 
Ruslami et al. [27] confirmed the dose-dependent increase in 
rifampicin AUC (79.7 vs. 48.5 µg·h/mL; p < 0.001) and Cmax 
(15.6 vs. 10.5 µg/mL; p < 0.001) values [27]. Of interest is 
that beyond a 300–450 mg dose in individuals established 
on rifampicin, the serum rifampicin concentration assumes a 
non-linear increase [17, 22]. Recent evaluation of high-dose 
rifampicin by Boeree et al. [16] found an almost ten-fold 
increase in average rifampicin exposure with dose increase 
from 10 to 35 mg/kg. This more than dose-proportional 
increase in rifampicin exposure is probably due to satura-
ble biliary excretion or a transport saturation of rifampicin 
across the liver being reached and a dose-dependent increase 
in rifampicin bioavailability [19, 22, 28]. The non-linear 
rifampicin concentrations when increasing doses should 
be taken into account while dose adjusting rifampicin in 
response to a sub-therapeutic concentration during thera-
peutic drug monitoring (TDM) (see Sect. 6).

Constans et al. [29] reported one of first studies that 
demonstrated auto-induction with a reduction in the 
rifampicin serum concentration over time. This might be 
explained by rifampicin’s potent induction of drug-metab-
olizing enzymes and transporters that results in increased 

rifampicin clearance [15, 17–19, 22, 30–33]. Rifampicin 
activates nuclear pregnane X receptors (PXRs) that in turn 
lead to amplified gene transcriptions [19]. Thus, compared 
to serum rifampicin concentrations on day 1, concentra-
tions are expected to be lowest from day 15 onwards, when 
maximum induction is expected to have been attained [19, 
29, 34]. Smythe et al. [34] and Svensson et al. [19] have 
demonstrated that maximum induction of drug-metabolizing 
enzymes/transporters is achieved within 24–40 days using 
rifampicin pharmacokinetic-enzyme turnover models. 
Svensson et al. [19] also evaluated the impact of rifampicin 
auto-induction on its apparent clearance (CL/F) over a wide 
range of doses. Compared to subjects not established on 
rifampicin, the CL/F of rifampicin upon repeated daily dos-
ing was found to increase by 1.73-, 1.89-, 1.91-, 1.94-, 1.97-, 
and 1.99-fold at doses of 10, 20, 25, 30, 35, and 40 mg/
kg of rifampicin, respectively [19]. The authors found the 
magnitude of rifampicin auto-induction to be dose and con-
centration dependent [19, 35]. The lag time to achieve full 
enzyme induction with additional dose- and concentration-
dependent induction is important to take into consideration 
when co-administering other medicines with rifampicin. 
Rifampicin drug interaction studies are needed to provide 
clarity on the impact of high doses of rifampicin on co-
administered medicines. In addition, rifampicin’s induction 
of its own metabolism progressively shortens the half-life 
(t½) with repeated daily dosing [17, 18, 36]; this is already 
evident after the first few days of treatment but continues up 
to day 24 when maximum induction is anticipated [19, 22, 
37]. The t½in patients with normal liver function is 2–5 h, 
and appears to be dose dependent with the lower and upper 
end of the spectrum seen with a dose range of 8 and 16 mg/
kg, respectively [17, 32]. Return of enzymes and transporters 
to pre-treatment levels is anticipated within 24 days after the 
end of treatment [19]. Co-administered medicines induced 
by rifampicin may therefore require dose adjustment up to 
3–4 weeks after discontinuation of rifampicin.

In an attempt to evaluate sources of pharmacokinetic vari-
ation of anti-TB drugs, McIlleron et al. [38] enrolled 142 
patients with PTB into a pharmacokinetic study and found 
wide variations in plasma rifampicin concentrations. The 
authors also brought to the fore the menace of substandard 
medicinal products. Fifty-four (38%) of the patients received 
rifampicin batches that were later withdrawn from the mar-
ket by the local medicine regulatory authority on the basis of 
insufficient bioavailability data being submitted [38, 39]. The 
median rifampicin Cmax values in patients who received the 
substandard batches versus approved batches were 3.8 and 
5.9 µg/mL, respectively, while the median rifampicin AUC 
from time zero to 8 h (AUC​8) in patients who received the 
substandard batches versus approved batches were 13.7 and 
21.5 µg·h/mL, respectively [38]. Thus, the rifampicin manu-
facturing process can be an important factor contributing to 
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not only low concentrations but also the variations in plasma 
rifampicin concentrations. Medicine regulatory authorities 
have a crucial role in protecting public health by ensuring 
only good-quality medicines are marketed.

4.2 � Protein Binding

Rifampicin has a high plasma protein binding, with about 
70–80% plasma protein bound [40, 41], but at doses ≥ 
600 mg, the free rifampicin Cmax is usually higher than the 
MIC [44].

4.3 � Concentrations in Compartments Other 
than Serum

Free serum rifampicin distributes well throughout body tis-
sues [36] but concentrations in various tissues vary, with 
concentrations often lower than those in blood. Compared 
to serum, average cerebrospinal fluid (CSF) rifampicin con-
centrations rarely exceed 1 μg/mL in patients with TB men-
ingitis (TBM) [20, 42–48], which is only slightly above the 
rifampicin MIC of M. tuberculosis [43]. Studies by Ruslami 
et al. [5] and Te Brake et al. [6] found lower mortality in 
TBM patients when high-dose rifampicin was administered 
intravenously for the first 14 days of treatment than with 

Fig. 1   Straight-line regression, 
weighted for number of study 
participants, of rifampicin Cmax 
in healthy volunteers and tuber-
culosis patients, established and 
not established on rifampicin, 
administered with or without 
food. Cmax maximum (peak) 
concentrations

Fig. 2   Straight-line regression, 
weighted for number of study 
participants, of rifampicin AUC 
in healthy volunteers and tuber-
culosis patients, established and 
not established on rifampicin, 
administered with or without 
food. AUC​ area under the 
concentration–time curve, AUC​
∞ AUC from time zero to infin-
ity (comprised of both AUC​24 
and AUC​∞), AUC​t AUC from 
time zero to time t (comprised 
of AUC​6, AUC​8, AUC​10, and 
AUC​12)
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orally administered standard dose rifampicin. The rifampicin 
plasma and CSF exposures in patients receiving high-dose 
intravenous rifampicin dose of 13 mg/kg were approximately 
three times that of those receiving an oral standard dose 
of 10 mg/kg (p < 0.0001) [5]. The rifampicin AUC from 
time zero to 6 h (AUC​6) had a significant correlation with 
the highest CSF concentrations (Spearman’s ρ = 0.720; p < 
0.001) [6]. Future studies should assess whether rifampicin 
administered intravenously should be the preferred option 
for TBM. Nau et al. [47] reported that in patients with “unin-
flamed” meninges, the CSF rifampicin t½ was 9–21 h, which 
is significantly longer than that in serum. The clinical rel-
evance of the increased rifampicin t½ in CSF of patients with 
intact meninges is unclear.

Gurumurthy et al. [49] studied patients with pulmonary 
and intestinal TB and found the mean rifampicin Cmax fol-
lowing a dose of 12 mg/kg to be 7 μg/mL, while the cor-
responding salivary rifampicin concentration was 0.8 μg/
mL. Patients with intestinal TB may have impaired absorp-
tion of rifampicin, requiring TDM of rifampicin and dose 
adjustment.

A sparse and intensive pharmacokinetic sampling of peri-
cardial fluid and plasma were undertaken as substudies of 
the IMPI (Investigation of the Management of Pericardi-
tis) trial [50]. In this study of patients with TB pericarditis, 
Shenje et al. [50] found only about 20% of the total plasma 
rifampicin concentration is achieved in pericardial fluid. In 
addition, the median free rifampicin concentrations found 
in pericardial fluid were lower than the median rifampicin 
MIC (0.125 vs. 0.208 µg/mL, respectively; p < 0.001) [50]. 
Higher than current standard rifampicin doses may be 
required to achieve higher exposure in pericardial fluid.

In contrast, rifampicin concentrations closer to those 
in blood are achieved in walls of tuberculous cavities and 
fibrous tissues [51, 52]. A pulmonary pharmacometrics 
model was developed by Clewe et al. [35] in order to deter-
mine the rate and extent of rifampicin distribution from 
plasma to epithelial lining fluid (ELF) and alveolar cells 
(ACs) [35, 53]. Forty participants without TB were enrolled 
and pharmacokinetic samples taken at 2 and 4 h post dos-
age of rifampicin, while bronchoalveolar lavage (BAL) was 
performed at only 4 h post rifampicin dosage [35, 53]. The 
model predicted the extent of rifampicin distribution into 
ELF as the ratio of the rifampicin concentration in the ELF/
plasma (RELF/plasma), which was 0.26, while that into AC is 
the ratio of the rifampicin concentration in the AC/plasma 
(RAC/plasma), which was 1.1 [35]. However, when rifampicin 
protein binding in the different compartments was taken into 
account, the model predicted a higher extent of rifampicin 
distribution into ELF and AC: 1.28 for unbound RELF/plasma 
and 5.5 for unbound RAC/plasma [35].

4.4 � Impact of Food

Ingestion of rifampicin with food results in delayed absorp-
tion with prolongation of the time to Cmax (tmax) to 3–4 h 
compared with 1.5–2  h when given without food [21, 
54–57]. Food decreases the rifampicin Cmax [54, 55, 57] by 
up to 36–40% [57–59] and decreases the rifampicin AUC by 
about 6–26% [57, 59]. The concentration-lowering influence 
of food on rifampicin pharmacokinetics seems to be more 
likely with high-carbohydrate than high-lipid food [56]. 
Rifampicin is therefore recommended to be taken without 
food, to ensure not only optimal absorption is achieved but 
also a reduction in variability in absorption.

4.5 � Impact of Antacids

In 1968 Vello and Vittori [60] reported that gastric pH has 
considerable influence on rifampicin absorption as serum 
rifampicin concentrations after gastric acidification were 
twice those found after alkalinization with sodium bicar-
bonate; however, more recent studies have found that the 
antacids aluminium/magnesium hydroxide and ranitidine do 
not alter rifampicin pharmacokinetics significantly [57, 61].

4.6 � Impact of Sex

Males are more likely to have lower plasma rifampicin con-
centrations than females [62–65]. McIlleron et al. [63] sug-
gested that “higher lean-body/total-weight ratios in males 
might partly account for this finding”. However, lean body 
mass, or fat-free mass, appears to correlate with rifampicin 
clearance and volume of distribution [19] and sex is not 
taken into account when dosing rifampicin.

4.7 � Pharmacogenetics

The inter-individual variability in plasma rifampicin expo-
sure may be partly explained by single nucleotide poly-
morphism (SNP) of genes that encode for influx or efflux 
transporters of rifampicin into the liver or bile, respectively. 
Weiner et  al. [66] performed a multivariate analysis of 
rifampicin blood samples obtained from 72 adult patients 
with PTB and 16 healthy volunteers, and found individuals 
with SLCO1B1 genotype c.463CA (rs11045819) to have a 
lower mean rifampicin AUC​24 than those with SLCO1B1 
genotype c.463CC (29.8 vs. 46.7 µg·h/mL, respectively; p = 
0.001). Similarly, Chigutsa et al. [67] found lower rifampicin 
AUC​24 values in patients homozygous or heterozygous for 
SLCO1B1 rs4149032 polymorphism than in those with the 
wild-type genotype (43 vs. 56 µg·h/mL, respectively; p < 
0.05). The genotypes associated with lower rifampicin expo-
sure were more frequently found in Black African partici-
pants [66, 67].
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Sloan et al. [14] recently used a population pharmacoki-
netics model to evaluate the influence of SLCO1B1 SNPs 
on the variability of the rifampicin AUC from time zero 
to infinity (AUC​∞) [14]. In this Malawian study, 174 adult 
patients with PTB were sampled at 2 and 6 h post-dose 
[14]. The SLCO1B1 rs4149032 polymorphism tested could 
not account for the observed inter-individual variability in 
rifampicin exposure [14]. This is contrary to the findings in 
South African populations where the same SNP was found 
to be associated with risk of low plasma rifampicin exposure 
[62, 66, 67]. The frequency of SLCO1B1 rs4149032 poly-
morphism is high (70%) in the South African study [67] but 
low (32%) in the Malawian study [14]. Thus, a large sam-
ple size may be required in order to determine the impact 
of this genotype in the Malawian population. In addition, 
the genetic determinants of variability in rifampicin plasma 
exposure may differ considerably amongst Black Africans 
or the plasma rifampicin variability may be due to presence 
of unknown confounders.

A rifampicin dose higher than the current doses is 
required in patients with SLCO1B1 rs4149032 polymor-
phism if exposures similar to those with wild-type geno-
types are to be achieved. Evidence from population phar-
macokinetic model simulations found giving an additional 
150 mg of rifampicin will result in doubling of the number 
of patients reaching the target Cmax of ≥ 8 µg/mL [67].

4.8 � Malnutrition

Malnutrition, defined as a body mass index (BMI) < 18.5 kg/
m2 [65], may result in low, high, or no change in rifampicin 
plasma concentrations. Malnutrition can result in low 
rifampicin Cmax, AUC, and protein binding in both ‘healthy’ 
volunteers and patients [68]. Impaired absorption can lead to 
low rifampicin plasma concentrations and a risk of treatment 
failure, relapse, or development of resistance. This might 
not be limited only to rifampicin, but might also affect com-
panion drugs. Low BMI combined with normal absorption 
may result in patients receiving relatively higher mg/kg in 
the dose range and subsequently higher plasma concentra-
tions [69]. Malnutrition may be accompanied by low plasma 
protein concentrations resulting in higher free rifampicin 
plasma concentrations and a subsequent increase in its CL/F 
[68, 69], equilibrium reached, and normal concentrations. In 
practice, the impact of malnutrition on rifampicin pharma-
cokinetics can be challenging to determine as a combination 
of these scenarios may occur. Rifampicin TDM can identify 
low plasma rifampicin exposure and inform subsequent dose 
adjustment in a patient with suspected malabsorption.

4.9 � HIV Infection

Several studies [62, 70–74] and case reports [75, 76] indi-
cate that HIV-positive patients are likely to have low serum 
concentrations of anti-TB drugs, which may be attributed to 
gastrointestinal factors such as gastric hypoacidity, enter-
opathy, opportunistic bowel infections, or diseases that may 
predispose to malabsorption or to drug–drug interactions 
(DDIs) [77]. A study by Sahai et al. [74] evaluated the phar-
macokinetics of isoniazid, ethambutol, pyrazinamide, and 
rifampicin in healthy volunteers and HIV-positive patients. 
In this study, the serum rifampicin Cmax in participants with 
HIV was lower than 8 μg/mL [64, 71]. Rifampicin was given 
at a dose of 600 mg daily, corresponding to 7.5–9.2 mg/
kg in both groups. In a South African study, the multiple 
linear regression model used explained 36% variability in 
plasma rifampicin AUC​8 and found HIV infection to reduce 
the AUC​8 by 8.34 µg·h/mL (p = 0.051) [38]. This result 
should be interpreted with caution given the small num-
ber of HIV-positive patients (14/141) in the study [38]. A 
Kenyan study in 29 TB patients, 14 of whom were HIV 
positive, found serum rifampicin Cmax to be uniformly low 
(4.1–4.3 μg/mL) following a dose of 600 mg/day (8.6 mg/
kg) [78], irrespective of HIV status. Similarly, a study con-
ducted in Thailand in eight patients with AIDS administered 
rifampicin 600 mg/day (11.3 mg/kg) had a mean (± standard 
deviation [SD]) serum rifampicin Cmax of 9.81 (± 4.41) μg/
mL and a mean (± SD) AUC​24 of 60.25 (± 36.88) μg·h/mL 
[79]. However, their findings may be confounded by lower 
body weight and higher mg/kg dosing. Even though both 
the Thai and Kenyan patients received rifampicin 600 mg/
day, the Thai patients received higher mg/kg doses because 
of their lower body weight [78, 79]. This could, at least in 
part, explain the higher rifampicin Cmax seen in the Thai 
study than in the Kenyan study [78, 79]. In summary, when 
weight is taken into account, rifampicin concentrations in 
HIV-positive patients without malabsorption are likely simi-
lar to concentrations in those without HIV. A high index of 
suspicion is therefore required to identify subsets of HIV-
positive patients at risk of low rifampicin exposure that may 
benefit from TDM.

4.10 � Hepatic Impairment

Serum concentrations of rifampicin were significantly 
higher in patients with liver disease than in healthy volun-
teers [37, 80]. Acocella et al. [37, 80] reported findings of 
repeated administration of rifampicin 600 mg for 7 days in 
patients with hepatic cirrhosis and healthy volunteers. Serum 
rifampicin concentrations on day 7 were lower than those 
on day 1 in healthy volunteers, whereas day 7 rifampicin 
concentrations in hepatic cirrhotic patients were higher than 
concentrations on day 1, suggesting impaired rifampicin 
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clearance and possibly rifampicin accumulation [37, 80]. 
The finding of higher serum rifampicin concentrations in 
patients with hepatic cirrhosis were replicated by Capelle 
et al. [81]. This may imply that hepatic cirrhosis counter-
acts the anticipated time-dependent reduction in rifampicin 
concentrations due to auto-induction.

Liver disease poses a significant challenge for combina-
tion treatments including potentially hepatotoxic agents such 
as isoniazid and pyrazinamide combined with rifampicin. 
Guidelines for management of TB in patients with pre-
existing liver disease aim to maintain rifampicin as part of 
treatment but replace pyrazinamide and isoniazid with less 
hepatotoxic agents [3]. The risk of drug-induced hepatitis is 
amplified in the presence of pre-existing hepatitis [3, 82]. 
Treating TB in patients with liver disease requires consul-
tation with experts and careful monitoring for drug toxic-
ity utilizing both clinical and laboratory parameters such 
as alanine aminotransferase (ALT), total bilirubin, and the 
international normalized ratio (INR) every 1–4 weeks for at 
least the first 2–3 months of treatment [3, 83, 84]. In addi-
tion, rifampicin TDM offers a unique opportunity to ensure 
inadvertent toxic concentrations are detected or avoided 
[3]. It is, however, important to note that rifampicin toxic 
concentrations are yet to be defined. No specific stopping 
rule based on ALT or total bilirubin elevation is available 
to decide when to interrupt or stop therapy in patients with 
severe pre-existing hepatic disease, including cirrhosis or 
encephalopathy [3]. However, some authors recommend this 
threshold to be a three-fold increase in ALT [3].

Regimens are suitable for patients with pre-existing 
hepatic impairment when pyrazinamide or isoniazid are 
omitted, as follows:

•	 Regimen without pyrazinamide: isoniazid–rifampicin–
ethambutol for 2 months, followed by 7 months of iso-
niazid–rifampicin [3, 85, 86].

•	 Regimen without isoniazid and pyrazinamide: 
rifampicin–ethambutol with a fluoroquinolone, amino-
glycosides, or cycloserine for 12–18 months depending 
on disease extent and response [3, 87].

•	 Regimen without isoniazid: rifampicin–ethambutol– 
pyrazinamide with or without a fluoroquinolone could 
be considered for a total duration of 6 months [3, 88].

•	 In severe cases of liver disease rifampicin might have to 
be left out altogether [3, 89].

4.11 � Renal Impairment

In patients with renal impairment no dose adjustment is nec-
essary with the rifampicin 600 mg daily dose in the presence 
of normal liver function [3, 90, 91]. It may be reasonable 
to consider TDM when rifampicin is administered at doses 
beyond 600 mg, since the renal excretion of unchanged 

rifampicin appears to be dose dependent, at least between 
the 450 and 600 mg dose range [15].

4.12 � Diabetes Mellitus

DM is an important risk factor for the development of TB, 
accounting for about 7.7% of the global incident cases 
in 2016 [2, 92]. TB patients with DM have higher treat-
ment failure or relapse rates than non-diabetic patients [93, 
94]. This negative impact of DM on TB treatment out-
comes might in part be due to altered pharmacokinetics of 
rifampicin and other anti-TB drugs. There are, however con-
trasting reports regarding low plasma rifampicin exposure in 
patients with DM [94, 95]. Ruslami et al. [94] compared the 
pharmacokinetics of rifampicin during the intensive phase of 
TB treatment in patients with and without DM. Both groups 
had similar oral bioavailability of rifampicin of 69% versus 
74% (p = 0.41), with no delay in absorption as indicated by 
a tmax of 0.5–4 h (p = 0.28) [94]. In addition, rifampicin the 
AUC​24, Cmax, t½, clearance, and volume of distribution were 
similar in TB patients with or without DM (p = 0.81) [94].

While Nijland et al. [95] and Babalik et al. [96] found 
plasma rifampicin exposure in TB patients with DM to be 
reduced by about two-fold compared with those without 
DM, Ruslami et al. [94] did not find any association between 
the presence of DM and altered rifampicin pharmacokinet-
ics. In the studies by Nijland et al. [95] and Babalik et al. 
[96], TB patients with DM have a higher body weight than 
those without DM, whereas in the Ruslami et al. [94] study 
the two groups were matched for weight, thus avoiding this 
bias. The observed differences might be explained by the 
fact that the studies were conducted at different phases of 
TB treatment. Rifampicin administration was daily during 
the intensive phase followed by three times per week during 
the continuation phase according to the Indonesian National 
Tuberculosis program [94, 95]. Hence, in these settings one 
would expect a larger magnitude of rifampicin auto-induc-
tion of its clearance and a consequent lower plasma exposure 
at steady state during the intensive phase than during the 
continuation phase. In addition, commencement of insulin 
in TB patients with DM could result in weight gain which 
is likely to be more marked with the passing of time [94]. 
Therefore, an increased rifampicin dose may be required. 
More prospective studies with a design similar to that of 
Ruslami et al. [94]. but with additional pharmacokinetic 
samplings during the continuation phase of TB treatment 
and in different patient populations are needed to better 
assess the clinical relevance and further management.

In summary, DM may have negative impacts on TB treat-
ment. We therefore recommend meticulous evaluation of TB 
patients with DM complications predisposing to malabsorp-
tion in order to detect and avoid low rifampicin concentra-
tions. Rifampicin dosing in DM patients should be based on 
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mg/kg and weight gain as a result of insulin administration 
should be taken into account.

5 � Pharmacodynamics

5.1 � Mechanism of Action

At recommended doses rifampicin is a bactericidal drug that 
inhibits DNA-dependent RNA polymerase in M. tubercu-
losis [97–99]. It binds to the β-subunit of this enzyme and 
suppresses RNA synthesis [13, 97]. Rifampicin is active 
against both extracellular and intracellular organisms even 
when replication is slow [11]. The desacetyl-rifampicin 
metabolite retains about 20% of rifampicin’s activity against 
M. tuberculosis [98].

5.2 � Physiological Changes

Several physiological changes may occur during rifampicin 
administration, including orange discoloration of body flu-
ids, particularly at high doses [100], and non-pathological 
changes of biochemical markers of liver function [101]. A 
study by McColl et al. [101] in seven healthy volunteers 
given rifampicin 600 mg daily for 4 weeks showed that 
serum total bilirubin increased to 31 ± 5.2 µmol/L from 
pre-treatment levels of 9.4 ± 1.4 µmol/L within the first 24 h 
of treatment (three-fold increase; p < 0.01) [101]. This was 
due to an increase in the unconjugated bilirubin fraction. 
But even with continued rifampicin dosing, the serum total 
bilirubin level decreased to the pre-treatment level by day 7 
and to below pre-treatment levels during the third and fourth 
week of treatment [101]. One healthy volunteer was studied 
more extensively, and following each dose of rifampicin the 
serum total bilirubin peaked at about 12 h post-dose but 
returned to pre-treatment level within 24 h [101]. Competi-
tion of rifampicin for binding to plasma proteins, hepatic 
uptake, and conjugation in the liver might be responsible 
for the initial rise in serum unconjugated bilirubin. The find-
ing that serum unconjugated bilirubin decreases during the 
third and fourth weeks of rifampicin use (when maximum 
induction of drug-metabolizing enzymes and transporters 
occur) suggests increased activity of a rate-limiting step in 
bilirubin clearance. Similar findings of a rifampicin-induced 
increase in serum total bilirubin at the beginning of therapy, 
which declines over time, have been reported [17, 37, 81, 
101], and are considered reversible with discontinuation of 
treatment [81]. Hence, isolated elevation of unconjugated 
serum bilirubin is most likely rifampicin induced, perhaps 
by competition for binding to serum albumin or hepatic 
uptake, but importantly may not require treatment cessation 
or interruption.

Verbist and Rollier [102] evaluated the effect of intermit-
tent high doses of rifampicin 30 mg/kg administered with 
isoniazid 15 mg/kg (group A, treatment-naïve patients) or 
with ethambutol 100 mg/kg (group B, previously treated 
patients) on days 1, 3, 5, and 8, and once weekly thereafter. 
The authors reported that approximately 55, 30, and 15% 
of group A patients had serum total bilirubin of < 20.5, 
20.5–30.8, and > 30.8 µmol/L, respectively on the first 
day of treatment, while approximately 37, 42, and 21% 
of group B patients had serum total bilirubin of < 20.5, 
20.5–30.8, and > 30.8 µmol/L, respectively, also on the 
first day of treatment [102]. This increase in serum biliru-
bin occurred in the first week and was almost entirely due 
to the conjugated bilirubin, suggesting that rifampicin (or 
rather desacetyl-rifampicin) competes for excretion [102]. 
Compared to group A, the higher proportion of patients 
in group B with abnormal serum total bilirubin might be 
explained by previous treatment with multiple drugs (in 
some for up to 5 years), and perhaps less capacity for liver 
adaptation [102].

Similar to the findings of McColl et al. [101], the Cmax 
of total and conjugated bilirubin levels attained in serum 
occurred between 8 and 12 h after rifampicin administration, 
and did not correlate with the rifampicin tmax of 2–4 h [102]. 
The distribution of serum total bilirubin levels on day 10 of 
treatment (i.e., 48 h after the previous dose of rifampicin) 
were no different from those at baseline.

Serum concentrations of γ-glutamyl transpeptidase 
(GGT) progressively increased during the first 3 weeks of 
rifampicin administration from 18 ± 5 to 35 ± 3.9 IU/L (1.9-
fold increase; p < 0.02) [101]. Furthermore, elevated aspar-
tate transaminase (AST) were seen in 44% of patients taking 
a rifampicin and isoniazid combination, but these were typi-
cally transient and of no clinical significance [103]. The var-
ious changes described in this section are physiological and 
should be differentiated from those that are drug induced.

5.3 � Toxicity

The first-line regimen for treatment of drug-sensitive TB 
includes rifampicin, isoniazid, and pyrazinamide, all of 
which are potentially hepatotoxic, making it difficult to iden-
tify the causative agent. Rifampicin at a dose of 450–750 mg 
daily appears to be well-tolerated, with only 3.3% of adverse 
reactions reported to require discontinuation, even when 
combined with isoniazid [103]. Clinical jaundice or hepatitis 
are seen in < 0.6 to 11.5% of patients treated with rifampicin, 
isoniazid, and pyrazinamide [36, 82, 104–106]; they seem 
to be idiosyncratic but could be dose related in the presence 
of pre-existing liver disease [104]. The rate at which drug-
induced hepatitis develops can vary considerably between 
countries, with higher rates observed in resource-limited 
countries than in high-income countries [82, 106]. A study 
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reported by Bright-Thomas et al. [82] found drug-induced 
hepatitis to be more likely in White patients than those of 
Asian origin (adjusted odds ratio [aOR] of 2.13; p < 0.008). 
It is, however, important to note that the study population 
comprised about 75% Asians, 21% Whites, and < 1.7% Afri-
cans [82]. This study also identified advancing age as a risk 
factor of drug-induced hepatitis (aOR 1.16; p = 0.02) [82]. 
Other risk factors for drug-induced hepatitis include pre-
existing liver disease, alcoholism, malnutrition, female sex, 
HIV, and slow acetylator status [3, 105–107]. In the study by 
Kaneko et al. [105], the incidence of drug-induced hepatitis 
in patients with chronic hepatitis taking a rifampicin, iso-
niazid, and pyrazinamide combination ranged from 11.1% 
to 27.8% depending on the etiology, while the incidence in 
the control group without liver disease was 6.9%. However, 
in patients taking a rifampicin and isoniazid combination 
without pyrazinamide, the incidence of drug-induced hepa-
titis was 4.1%, irrespective of the presence or absence of 
chronic hepatitis [105].

Adverse effects due to hypersensitivity are idiosyncratic 
and may be minor (cutaneous, gastrointestinal, or influenza-
like syndrome) or major (anaphylaxis, serum sickness, 
hemolytic anemia, thrombocytopenia, shock, acute inter-
stitial nephritis, or acute renal failure) [3, 104, 108, 109]. 
Rifampicin can trigger drug rash with eosinophilia and 
systemic symptoms (DRESS) syndrome, a Type 4b delayed 
hypersensitivity reaction [110, 111]. Re-challenge should 
not to be attempted in patients experiencing severe cutane-
ous adverse reactions with or without internal organ involve-
ment, and such cases should be discussed with specialists. 
Flu-like symptoms seen with rifampicin have been attributed 
to intermittent regimens rather than high daily dosing [112, 
113], and were associated with the presence of circulating 
rifampicin-dependent antibodies [112]. A cholestatic pattern 
with elevated alkaline phosphatase may occur [36, 114].

5.4 � Pharmacokinetic–Pharmacodynamics 
Considerations and Target Concentrations

Shortly following the introduction of rifampicin into clinical 
use, animal experiments found it to have exceptional steriliz-
ing activity [115] and dose-dependent bactericidal activity 
[21]. The work of Jayaram et al. [12] on a murine TB model 
indicated a potential link between rifampicin exposure 
and bactericidal activity. More recently, Gumbo et al. [13] 
evaluated the pharmacokinetic–pharmacodynamic index of 
rifampicin using an in vitro pharmacokinetic–pharmacody-
namic TB model, and found that rifampicin AUC​24/MIC cor-
relates best with bactericidal activity, while free rifampicin 
Cmax/MIC and post-antibiotic effect were associated with 
resistance prevention.

The bactericidal activity of rifampicin in EBA studies 
is dose related, with a continuous trend to higher activity 

with increasing doses [16]. EBA studies of rifampicin at 
doses of 150–1200 mg, corresponding to 3–20 mg/kg, found 
an increase of EBA with increasing dose [26, 116–119]. 
In one such 2-day EBA study by Chan et al. [117], dou-
bling of the rifampicin dose from 300 to 600 mg resulted in 
increased EBA and a more than dose-proportional increase 
in serum rifampicin concentrations. When the dose was fur-
ther increased to 1000 mg (20 mg/kg) in studies by Jindani 
et al. [116] and Diacon et al. [119], a greater increase in 
2-day EBA was found (0.41 and 0.44 log10 CFU/mL/day; p
< 0.05 and p < 0.01, respectively) [116, 119]. Replication
of these findings was observed in a recent phase II clinical
trial by Boeree et al. [16], which evaluated the 14-day EBA
of rifampicin at doses of 10, 20, 25, 30, and 35 mg/kg.

In a Hong Kong study rifampicin in doses of 150, 300, 
and 600 mg given on day 1 of a 2-day EBA study were 
associated with mean 2  h rifampicin concentrations of 
1.96, 3.21, and 9.25 μg/mL, respectively [117]. In a South 
African study in which the same doses were used as in the 
Hong Kong study, serum rifampicin concentrations were 
determined not only on day 1 of treatment but also on day 
5 [26]. This yielded Cmax values of 2.53, 3.19, and 13 μg/
mL, respectively on day 1 of treatment, and by day 5 fol-
lowing rifampicin auto-induction, 150, 300, and 600 mg of 
rifampicin resulted in lower Cmax values of 1.49, 2.89, and 
9.53 μg/mL, respectively. The associated EBA was none at 
a dose of 150 mg, but for a dose of 300 mg the EBA was 
0.16 log10 CFU/mL/day in Hong Kong and 0.12 log10 CFU/
mL/day in South Africa, and for a dose of 600 mg the EBA 
was 0.29 and 0.22 log10 CFU/mL/day in Hong Kong and 
South Africa, respectively [26, 117]. Thus, although a 
detectable EBA was associated with a rifampicin Cmax of 
approximately 3 μg/mL, a much higher EBA is found with 
concentrations of approximately 9 μg/mL. Little bactericidal 
activity was observed at a rifampicin dose of 5 mg/kg, but an 
appreciable increase was seen when the rifampicin dose was 
increased to 10 and 20 mg/kg (0.19 and 0.41 log10 CFU/mL/
day, respectively; p < 0.05) [116]. The study by Diacon et al. 
[119] found the mean 2-day EBA of rifampicin at a dose of
20 mg/kg to be almost double that found at a dose of 12 mg/
kg (0.43 and 0.221 log10 CFU/mL/day, respectively; p = 
0.02). Thus, bactericidal activity is dose dependent.

Diacon et al. [119] noted that since EBA studies reflect 
bactericidal and not necessarily sterilizing activity, more 
studies are needed to evaluate the potential of a higher dose 
of rifampicin to further reduce treatment duration to less 
than 6 months. A very early study by Kreis et al. [120] lends 
credence to this suggestion. This study evaluated a 3-month 
regimen with daily rifampicin 1200 mg, isoniazid 900 mg, 
and streptomycin 1000 mg, and achieved near-complete spu-
tum culture negativity after 90 days, but with a recurrence 
rate of 11.4% during the first year after treatment [120]. 
Drawing on data from studies in both healthy volunteers and 
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TB patients receiving standard doses of rifampicin, some 
authors have suggested that a serum rifampicin concentra-
tion 2 h post-dose of between 8 and 24 μg/mL is desirable 
for successful TB treatment and 2 h concentrations of < 
4 μg/mL were identified as very low [121, 122]. Rifampicin 
pharmacokinetic studies carried out in association with 
EBA studies provided guidance as to the desirable serum 
concentrations.

Several studies gave an early indication that a rifampicin 
dose < 9 mg/kg/day may be inadequate for the treatment of 
PTB. At a dose < 9 mg/kg, the rifampicin Cmax is likely < 
8 μg/mL [26, 116, 117]. Although a number of early stud-
ies used a daily rifampicin dose of 900 mg, the majority of 
later studies used a daily dose of 600 mg. Several studies 
have provided evidence of a dose-related clinical response 
to rifampicin [103, 120, 121]. In one such study by Long 
et al. [103], rifampicin was given in dosages of 450, 600, 
or 750 mg in combination with isoniazid [103]. This study 
showed that weekly sputum cultures not only became nega-
tive, significantly faster in patients receiving 600 mg than 
amongst those receiving 450 mg, but also that the rate of 
treatment failure was higher in those receiving 450 mg: at 
20 weeks 7.7% versus 0.5% of patients on rifampicin 450 
and 600 mg had positive cultures, respectively (p < 0.01) 
[103]. However, no significant difference was found between 
600 and 750 mg of rifampicin [103]. In 1972 Jeanes et al. 
[15] reported their evaluation of two rifampicin doses:
600 or 450 mg in combination with ethambutol in PTB
patients resistant to all three major anti-TB drugs of the
time. Faster sputum culture conversion rate was achieved
with the 600 mg dose of rifampicin [15]. Boeree et  al.
[100] recently reported that compared to standard dosing of
10 mg/kg, daily rifampicin at 35 mg/kg resulted in a more
than dose-proportional increase in plasma rifampicin Cmax
and AUC​24 values with a consequent shortening of time to
stable culture conversion on liquid media from 62 to 48 days
(adjusted hazard ratio [HR] 1.78; 95% confidence interval
[CI] 1.22–2.58).

Chigutsa et al. [123] studied the pharmacokinetic–phar-
macodynamic relationship of 54 patients with PTB [124] 
and two distinct slopes, α (bactericidal activity) and β (ster-
ilizing activity), were observed following analysis of the 
rate of decline in sputum bacillary load. The authors used 
multivariate adaptive regression splines (MARS) analyses 
that simultaneously performed linear and non-linear anal-
yses in order to identify relationships between predictors 
and sterilizing activity [123]. Chigutsa et al. [123] found 
a rifampicin Cmax of > 8.2 μg/mL, but not AUC, to be an 
independent predictor of rifampicin’s sterilizing activity. 
This is consistent with a rifampicin Cmax of 8–24 μg/mL, 
which is often cited as the recommended target concentra-
tion to be achieved 2 h post-dose [98, 122]. Interestingly, a 
reduction in sterilizing activity was seen with an increase 

in the isoniazid Cmax in patients with rifampicin AUC​24 < 
35.4 µg·h/mL [123]. This suggests that in the face of low 
rifampicin exposure, a higher isoniazid Cmax may further 
compromise sterilizing activity by antagonism [123]. This 
is in keeping with isoniazid dose-dependent antagonism to 
the sterilizing activity of rifampicin and pyrazinamide in 
murine TB [125, 126].

Studies have found no mortality benefit following the 
introduction of rifampicin-containing regimens at standard 
dose of about 10 mg/kg in adults with TBM and this might 
be explained by the low rifampicin concentrations achieved 
in CSF, and, thus, higher doses of rifampicin or intrave-
nous administration may be necessary to improve treatment 
outcome in TBM [51, 127–130]. This exposure–response 
relationship was found in clinical trials evaluating high-dose 
versus standard-dose rifampicin in patients with TBM [5, 
6]. These clinical trials found reduced mortality in patients 
with TBM that achieved high plasma and CSF rifampicin 
concentrations [5, 6]. In a phase II trial Ruslami et al. [5] 
randomized patients to receive high-dose intravenous 
rifampicin (13 mg/kg) or standard-dose rifampicin (10 mg/
kg), and found a reduction in mortality in the high-dose 
group (adjusted HR 0.42; 95% CI 0.20–0.87). Each patient 
in the group with reduced mortality had a rifampicin Cmax 
of at least 8 μg/mL, while in the group with higher mortality 
only half of the patients had a Cmax of at least 8 μg/mL (p 
< 0.0001) [5]. In line with this exposure–response relation-
ship of rifampicin and TBM outcome, Te Brake et al. [6] 
concluded that there should be a target rifampicin AUC​24 of 
at least 116 μg·h/mL (equivalent to AUC​6 of 70 μg·h/mL) 
and Cmax of 22 μg/mL in patients with TBM. The limitation 
of this study is that rifampicin MIC was not determined, 
and, thus, Cmax/MIC and AUC/MIC were not calculated. In 
contrast, Heemskerk et al. [131] found no mortality benefit 
of intensified treatment of orally administered rifampicin 
15 mg/kg/day and levofloxacin 20 mg/kg/day compared with 
standard-dose rifampicin 10 mg/kg/day (HR 0.94; 95% CI 
0.73–1.22). This study did not report on rifampicin exposure 
[131]; it is likely that the exposure with 15 mg/kg/day of 
orally administered rifampicin is lower than that with 13 mg/
kg/day of intravenously administered rifampicin.

Considering the increasing body of evidence for the need 
to increase rifampicin doses, at least for some indications 
such as TBM [5, 6], it is reassuring that the safety and toler-
ability of high doses of daily rifampicin up to 35 mg/kg for 
up to 12 weeks are comparable to standard dose of 10 mg/kg 
[16, 48, 100, 132]. In addition, the plasma rifampicin expo-
sure in patients who experienced adverse effects were not 
different from those without adverse effects [27, 48, 132].
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5.5 � Therapeutic Drug Monitoring

TDM is a standard clinical technique that measures plasma 
or serum concentrations of drugs and thus provides an objec-
tive measure to inform dose adjustments. There are no pro-
spective clinical trials showing rifampicin TDM improves 
TB outcomes. Nevertheless, TDM may be useful in patients 
who fail or are slow to respond to treatment with or without 
co-morbidities (such as HIV and DM) that predispose to 
malabsorption; patients with malnutrition; those with drug-
resistant TB; anticipated DDIs that may put patients at risk 
of low plasma concentrations; or in those at risk of toxicity 
(such as hepatic impairment) [3, 77].

There are indications that most patients with a slow 
response to anti-TB treatment had low 2 h post-dose con-
centrations of rifampicin and isoniazid [70, 77, 133], and 
appropriate dose adjustment based on TDM can aid in 
attaining the therapeutic concentrations and may shorten the 
period of non-response and ultimately result in faster cure 
[77, 134, 135]. Studies have found an association between 
low plasma concentrations of rifampicin, isoniazid, etham-
butol, and pyrazinamide and poor clinical outcomes such as 
treatment failure, relapse, or acquired drug resistance [70, 
77, 123, 136, 137].

For practical purposes, some authors recommend a two-
point sample collection; the first is a 2 h post-dose sample 
which will approximate the Cmax of rifampicin and most anti-
TB drugs, and the second is a 6 h post-dose sample which 
will provide information on delayed drug absorption [77]. 
The target rifampicin concentration should be ≥ 8 μg/mL. 
When both 2 and 6 h post-dose samples are subtherapeutic, 
this may imply malabsorption, and increasing rifampicin 
dose may be required. However, when the 2 h post-dose 
sample is low, but the 6 h post-dose sample is ‘therapeutic’, 
this implies delayed absorption as seen in subset of patients, 
and requires no dose adjustment.

Drawing from the body of evidence in preclinical experi-
ments, AUC​24/MIC is probably the most important pharma-
cokinetic/pharmacodynamic parameter linked to rifampicin 
bactericidal activity. In the absence of prospectively vali-
dated AUC​24 target in humans, some authors suggest using 
an average AUC​24 of 41.1–41.5 μg·h/mL as the “target” 
AUC​24 [138, 139]. These AUC​24 ‘targets’ were obtained 
from rifampicin population pharmacokinetics studies [138, 
139]. A higher AUC​24 target of at least 116 μg·h/mL is 
recommended in TBM [6]. In general, the intensive phar-
macokinetic sampling required to obtain AUC​24 is cumber-
some and not suitable for routine clinical care. One way of 
addressing this problem is to use limited (or optimal) plasma 
sampling and integrating it with Bayesian-TDM tools to esti-
mate the AUC​24 [140]. Magis-Escurra et al. [138] provided 
an alternative approach of using limited sampling strategy 
to obtain the AUC​24. The authors conducted an intensive 

pharmacokinetic sampling at two Dutch centers to obtain 
the rifampicin AUC​24 [138]. This was followed by multiple 
linear regression analyses being performed to derive limited 
sampling equations [138]. The best performing limited sam-
pling equations were AUC​24 = –4.75 + 1.74 × C1 + 3.76 × 
C4 + 4.83 × C6 for C1, C4, and C6 timepoints, followed by 
AUC​24 = –2.22 + 2.05 × C2 + 2.25 × C4 + 4.93 × C6 for 
C2, C4, and C6, where C1, C2, C4, and C6 are rifampicin 
pharmacokinetic samples collected at 1, 2, 4, and 6 h post-
dose, respectively [138]. Patients were required to fast prior 
to rifampicin administration [138]. The limited sampling 
equation is implementable through Microsoft Excel®, which 
is widely available even in low-income countries. Therefore, 
when AUC​24 is to be estimated, the three-point sample col-
lection (C2, C4, C6) should be preferred to C1, C4, and C6 
in order to estimate the Cmax [138].

Conventionally, TDM samples are collected by venous 
blood sampling that requires appropriate processing: prompt 
centrifugation, harvesting, and freezing of serum or plasma 
[77], followed by analysis using high-performance liquid 
chromatography (HPLC) or liquid chromatography–tan-
dem mass spectrometry (LC–MS/MS) that are prohibitively 
expensive. Cost is an important limitation to utilization of 
TDM in low- and middle-income countries that bear the 
greatest burden of TB—there is an urgent need for cheaper 
alternatives. Dried blood spot testing is a promising method 
that, when compared to conventional ones, requires a smaller 
blood volume of about 0.1 mL, has easier processing, stor-
age, and transportation, and a lower cost and biohazardous 
risk [141, 142]. Vu et al. [141, 143] found no significant 
difference in rifampicin concentrations in dried blood spot 
testing and in plasma. This study validated dried blood spot 
testing as an alternative to plasma for rifampicin TDM, with 
a high correlation of 0.9076 [143].

6 � Conclusion

Our review of the literature on rifampicin pharmacokinetics 
and pharmacodynamics in adults spanning 51 years included 
170 articles involving pharmacokinetic data extracted from 
69 studies that enrolled 3666 participants who received 
rifampicin over a dose range of 2–35 mg/kg. We found con-
siderable inter- and intra-individual variability in rifampicin 
exposure, which can be reduced by administration in a fast-
ing state. Several factors including malnutrition, HIV, DM, 
mg/kg dosing, certain pharmacogenetic polymorphisms, 
hepatic cirrhosis, and substandard medicinal products are 
factors that can alter rifampicin exposure and/or efficacy. 
TDM may aid in optimizing dosing in carefully selected 
scenarios.

We found dose–exposure–response relationships for 
rifampicin particularly in TBM, but more studies are needed 
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to confirm whether doses higher than the current standard 
of care could translate into a faster sputum conversion rate, 
higher cure rate, lower relapse and death rates, and poten-
tially treatment shortening. Daily rifampicin doses up to 
35 mg/kg for 12 weeks were safe and well-tolerated.
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Following its introduction as an antituberculosis agent close to 75 years ago, the use

of para-aminosalicylic acid (PAS) has been limited by gastrointestinal intolerance and

multiple formulations were produced in attempts to reduce its occurrence. More

recently, an enteric-coated, granular, slow-release PAS formulation (PASER) was

introduced and is now in wide-spread use for the treatment of drug-resistant

tuberculosis. The current PASER dosing regimen is based on recommendations

derived from older studies using a variety of different PAS formulations and relegate

PAS to a role as an exclusively bacteriostatic agent. However, there is ample

evidence that if sufficiently high serum concentrations are reached, PAS can be bac-

tericidal and that intolerance following once daily dosing, that aids the achievement

of such concentrations, is no worse than that following intermittent daily dosing. In

particular, prevention of resistance to companion drugs appears to be dependent on

the size of the single dose, and hence the peak concentrations, and not on

maintaining serum levels consistently above minimum inhibitory concentration. We

present a narrative review of the development of PAS formulations, dosing practices,

and published data regarding pharmacokinetics and pharmacodynamics and the

relationship of PAS dosage to intolerance and efficacy. Our conclusions suggests that

we are at present not using PAS to its maximum ability to contribute to regimen

efficacy and protect companion drugs.

K E YWORD S

efficacy, intolerance, para-aminosalicylic acid, pharmacokinetics

1 | INTRODUCTION

In 1943, Jorgen Lehmann proposed that para-aminosalicylic acid (PAS)

might have antituberculosis activity1–4; and, by 1944, PAS was

successfully used in Sweden to treat pulmonary tuberculosis (PTB)

patients.5

At almost the same time, streptomycin (SM) was discovered

and its activity studied in the USA by Schatz, Bugie and Waksman

and other clinicians6–8 in parallel to a series of randomized con-

trolled studies conducted by the British Medical Research Council

(BMRC) between 1948 and 1952.9–12 Although initially significant

improvement in the condition of PTB patients was documented

following SM monotherapy, SM resistance emerged within the first

months of treatment, and, by 3 months, 85% (35/41) of the

patients remaining sputum culture-positive were producing viable

bacilli resistant to SM.13 The combination of sodium PAS (NaPAS)

with SM and, later isoniazid (INH),9,11,12,14,15 inhibited the

emergence of resistance to SM and INH and created an efficacious

antituberculosis regimen that was the backbone of TB

chemotherapy for approximately 30 years. PAS disappeared from

many pharmacies after ethambutol was found to be effective and

better tolerated.16,17
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The emergence of human immunodeficiency virus infection, how-

ever, and the concomitant multidrug-resistant (MDR) and extensively

drug-resistant (XDR) TB epidemics, led to a renewed interest for PAS

to protect companion drugs within regimens comprised of second-

and third-line agents. Amongst the formulations introduced in

response to this need was an enteric-coated PAS formulation, PASER

(Jacobus Pharmaceuticals, Princeton, NJ, USA). Assuming that PAS is

essentially a bacteriostatic agent, PASER was designed to provide a

slow-release of PAS allowing a prolonged period of PAS concentra-

tions above the minimum inhibitory concentration (MIC) of Mycobac-

terium tuberculosis of 1–2 μg/mL when given in divided daily

doses,18–23 and with less intolerance. This formulation is now widely

used to manage certain forms of drug-resistant TB.21,22,24,25

Other older antituberculosis drugs such as rifampicin are now

undergoing re-evaluation using modern techniques and parent mole-

cules26,27; the recommendations for PAS dosing are seldom

questioned and have not been reassessed by methodologies that

might be now considered routine, such as determination of early bac-

tericidal activity (EBA), evaluation of the maximum tolerated dose or

the relationship between dosage, pharmacokinetics (PK), activity and

intolerance. The knowledge from older studies regarding these

aspects of PAS use is commonly ignored as is the fact that the intro-

duction of PASER requires old dogmas to be challenged, because its

PK is very different from the formulations used when the principles of

PAS usage were established. Irrespective of the formulation used, it

could be argued that PAS therapy with PASER should aim at providing

exposures similar to those achieved by the most successful NaPAS

treatments used in the BMRC studies.9,11,12,14,15

In 2018, the World Health Organization revised its treatment rec-

ommendation on MDR-TB, partly based on a recent meta-analysis

investigating the relationship of individual antituberculosis agents

with treatment success and death.28–30 This meta-analysis found PAS

to contribute little or nothing to treatment success in patients with

MDR-TB susceptible to PAS,28 but it should be noted that those

patients with MDR-TB isolates resistant to PAS had worse outcome.28

Other reports, however, do provide a more positive picture of the

value of PAS in managing drug-resistant TB patients.31 This empha-

sizes the need to re-examine all existing data on PAS to determine if

we are currently using PASER optimally.

In this paper, we expand our previous review of the development

of PAS regarding formulations, dosing practices and their relationship

to the prevention of resistance in companion drugs and intolerance22

and review the PK of PAS in greater depth and in particular regarding

the lack of relationship of PAS concentrations to intolerance. We also

present previously unappreciated evidence that PAS may well have

some bactericidal efficacy.

2 | METHODS

We conducted a literature search in PubMed to identify articles on

the PK, pharmacodynamics (PD), safety, and tolerability of PAS. The

search terms used in various combinations were: “Aminosalicylic

Acid”[MeSH], “para-aminosalicylic acid”, “PAS”, “efficacy”, “intoler-

ance”, “dosage”, “dose”, “intravenous”, “PK”, “PD”, “PK PD”, “Pharmaco-

kinetic*”, “Pharmacokinetics”[MeSH], “Pharmacodynamic*”,

“Pharmacology”[MeSH], “Tuberculosis”[MeSH], “Tubercul*”. The iden-

tified articles were screened by title and abstract. Additional articles

were identified from referenced articles and related citations in

PubMed. Data on PAS PK/PD including intolerance were assessed

with particular emphasis on comparison between single-daily doses vs

the same dose but in divided smaller doses; we also noted the PK and

intolerance related to intravenous administration of NaPAS. R version

3.5.1 and WebPlotDigitizer version 4.2 were used to reconstruct fig-

ures from 2 studies.32–35

3 | RESULTS AND DISCUSSION

3.1 | PAS formulations

In the face of severe intolerance noted soon after its introduction var-

ious formulations of PAS were manufactured, including PAS acid and

various PAS salts such as NaPAS, potassium PAS (KPAS), and calcium

PAS (CaPAS).22,36 Several granular and enteric coated formulations

also became available in an attempt to reduce the gastrointestinal

intolerance to PAS but were often associated with lower peak con-

centrations (Cmax) and total exposure (area under the curve, AUC)

compared to PAS salts.22,37–39 Similarly, the PASER formulation of

PAS was designed to be better tolerated than earlier formulations and

does appear to cause less gastrointestinal intolerance.20–23,40,41 Multi-

ple other PAS formulations have been reported in the literature, few

of which have less gastrointestinal intolerance when compared to

NaPAS.22,37–39,42–51

3.2 | The dose of PAS

Several PAS dosing regimens use oral and intravenous routes of

administration, ranging from once daily to multiple daily doses.

3.2.1 | Intravenous dosing regimens

As early as the 1950s, intravenous NaPAS at 24–25 g was utilized in

patient care.3,52

3.2.2 | Oral dosing regimens

PAS in multiple daily doses has been in use from its first introduction

into clinical use.5,9,11,14,15,53 The dosage of NaPAS in the earliest stud-

ies was 20 g/dadministered orally in 4 divided 5-g doses.9,11 Subse-

quent studies evaluated lower doses including NaPAS dosages of 5 g,

and 10 g/d administered orally in 4 divided 1.25- and 2.5-g doses,

respectively.11 In a later BMRC study, NaPAS dose of 10 g/d was

2 ABULFATHI ET AL.
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administered orally but in 2 divided 5-g doses.14 Other PAS regimens

investigated in clinical studies are 3.3 g twice or thrice daily or 6.6 g

twice daily, and 4 g PASER twice daily.18,21,40,54

Various researchers have studied single daily PAS administration.

The doses include PASER at 6 g single dose and 8 g once daily21,23,41;

NaPAS at 15 and 17 g once daily39,55; and, Neopasalate 12 g once

daily.47

For use in the clinic, current recommendation is for PAS to be

used as 4 g twice or thrice daily.24,56 Similarly, the World Health Orga-

nization recommends 8–12 g/d in 2 or 3 divided doses.30

It is important to note that 1 g of PAS acid is equivalent to 1.19 g

of NaPAS, 1.37 g of crystalline NaPAS and 1.12 g of CaPAS.3 To com-

plicate matters, these conversion factors could vary between formula-

tions of the same generic. For example, 1 g of PAS acid is equivalent

to 1.43–1.7 g of NaPAS,44,45 1.12–1.54 g of CaPAS and 1.54 g of

KPAS.3,44

3.3 | PAS PK

The absorption of PAS salts including NaPAS and KPAS is rapid and

complete following oral administration, which usually produces higher

PAS concentrations than a PAS acid formulation.44 PAS acid is poorly

soluble in acidic environments, tends to be slowly released while still

in the stomach, and is therefore readily acetylated during first-pass

metabolism.22 Compared to the PAS acid, NaPAS, KPAS and CaPAS

formulations are more water soluble, and more easily absorbed and

more easily saturate the N-acetyltransferase-1 (NAT1) acetylation

capacity of the gut and liver.22,44,51

PASER administration with food results in 1.5 and 1.7-fold higher

PAS Cmax and AUC from time zero to infinity, respectively, compared

to its administration when fasting.41 In addition to the better absorp-

tion when given with food, intolerance to PASER might be less.41 The

plasma protein binding of PAS ranges between 50 and 73%.2,22,57

PAS distribution to various sites of disease was shown in animal stud-

ies to depend on how high the concentrations were in the blood.51,57

The elimination half-life of PAS varies from about 0.5 to 2.5 hours

depending on the PAS formulation and administration with or without

food or antacid.21,24,41,45 Following oral administration, PAS is

metabolised in the gut to acetyl-PAS, and in the liver to both acetyl-

PAS and glycine-PAS.18,22,51 About 80–90% of an administered dose

is excreted in urine following glomerular filtration and tubular secre-

tion as PAS, glycine-PAS and acetyl-PAS.2,18,22,44,45,51,58 Although,

previously considered monomorphic, NAT1 is now proven to be poly-

morphic just like N-acetyl transferase-2 (NAT2).23,59,60 A

South African study in patients with MDR- or XDR-TB, found

NAT1*4/*10 genotype in 44%, NAT1*14A genotype in 6%, NAT1*10/

*3 genotype in 3%, and heterozygotes or homozygotes NAT2*5 geno-

type in 37% of the study population, all of which are slow acetylators.

Whereas, 66% of the study population were heterozygotes or homo-

zygotes for the rapid acetylator NAT2*4 genotype.23 A population PK

modelling that included NAT1 and NAT2 alleles as covariates, found

NAT1*3, NAT1*14 and NAT2*5 alleles to result in significant reduction

in the oral clearance of PAS by 17, 14 and 27%, respectively.23

It is important to note that more PAS is inactivated when adminis-

tered in repeated small doses in comparison to same daily dose

administered as a single large dose. Lehmann in a 1969 paper,

reported the PK of a microgranulate PAS formulation (PASolac, A/B

Ferrosan) that was designed to be rapidly absorbed.51 The micro-

granulate was administered orally either as 4 g thrice daily or as a sin-

gle 12-g dose.51 This study showed the excretion of acetyl-PAS was

larger with repeated small doses (4 g × 3) than with a single large dose

(12 g × 1).51 This is probably because at high PAS concentrations, ace-

tyl coenzyme A depletion contributes to the suppressed transforma-

tion to acetyl-PAS.22,38,51

Some PK parameters of various PAS formulations are provided in

Table 1 and it is clear that the plasma PAS concentrations achieved

following administration of different PAS formulations vary greatly.

Furthermore, the considerable interindividual and interoccasion vari-

ability found with different PAS formulations contributes to the chal-

lenges of using PAS.21,23,37,43–45

PAS can be a subject of drug interactions at both PK and PD

levels. PAS absorption could be interfered with by antacid such as alu-

minium hydroxide because of its adsorption effect,58 a later study,

however, showed negligible effect on overall PAS exposure when

PASER formulation was administered with a combination of alumin-

ium hydroxide and magnesium hydroxide/simethicone.41 In addition,

digoxin could reduce PAS absorption and vice versa.62,63 PAS, by

competing with INH for acetylation possibly through depletion of

coenzyme A, could result in elevated INH concentrations.51,58 The

oral clearance of PAS is increased by efavirenz.21,23 A recent in vitro

study reported PAS to be a substrate of multiple organic and cation

transporters.64 In this study, nonsteroidal anti-inflammatory drugs

such as diclofenac and indomethacin, and proton pump inhibitors such

omeprazole inhibit PAS uptake through OAT1 and OAT3 inhibition.64

Similarly, in vitro study showed metformin inhibits OCT1 and OCT2

mediated PAS uptake. At the PD level, PAS combination with

ethionamide/prothionamide could increase the risk of reversible thy-

roid dysfunction.62,65

3.4 | Efficacy

PAS is structurally related to para-aminobenzoic acid, a substrate for

dihydropteroate synthase.2,64 PAS mechanism of action is thought to

involve PAS incorporation into the folate biosynthetic pathway by

dihydropteroate synthase and dihydrofolate synthase to generate a

hydroxyl dihydrofolate antimetabolite that in turn inhibits

dihydrofolate reductase.2,64 In addition, PAS is hypothesized to also

inhibit synthesis of mycobactin, a mycobacterial cell wall

component.24

3.4.1 | Early studies of PAS in the prevention of
resistance in companion drugs

There is in vitro evidence of a concentration-related bacteriostatic

effect of PAS; an early study by Singh and Mitchison demonstrated

ABULFATHI ET AL. 3
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the failure of PAS in combination with either SM or INH to protect

these companion drugs against resistance emergence at low PAS con-

centrations of 10 μg/mL, but that PAS concentrations of 100 μg/mL

were effective in preventing emergence of resistant organisms.66

Mitchison later described this effect attained at higher PAS dosages

as bactericidal.67 Other in vitro studies demonstrated a concentration-

related bacteriostatic effect of PAS.36,51,68,69 In addition, in vivo

guinea pig and mouse TB models also showed a dose and

concentration-related bacteriostatic effect of PAS.68

In early clinical studies of PAS, SM and INH, all the drugs were

given in divided daily dosages as was then the practice with infectious

diseases, it being considered necessary to maintain the constant pres-

ence of inhibitory concentration of the relevant drug.9,11,14,15,53 The

dosage of NaPAS in the earliest studies was 20 g/d but administered

in 5-g doses.9,11 In later studies, NaPAS dosages of 5, 10 and 20 g

were evaluated, and a NaPAS dosage of 20 g (5 g × 4) used in combi-

nation with SM was more efficacious in the prevention of resistance

to SM than 10 g (2.5 g × 4) or 5 g (1.25 g × 4) daily.11 When used

combined with INH, efficacy in prevention of INH resistance was simi-

lar whether a daily PAS dosage of 10 g (5 g × 2) or 20 g (5 g × 4) was

used.14 This suggests a dose-related gradient for PAS efficacy in the

prevention of resistance developing in companion drugs, with a 5-g

NaPAS single dose being more efficacious than 1.25- or 2.5-g doses.

When discussing these studies Singh and Mitchison suggested that it

was possible the doses used rather than the total daily dosage that

was responsible for the improved prevention of resistance in compan-

ion drugs that accompanied the use of 5 g single doses of PAS. In

other words, it is likely that the PAS Cmax rather than just AUC or per-

centage of time above MIC (%T > MIC) was responsible for suppres-

sion of resistance in companion drugs.

3.4.2 | Studies documenting the efficacy of PAS
monotherapy in reducing sputum acid-fast bacilli
counts

It is important to note that a neglected, blinded randomized,

placebo-controlled early study also evaluated the efficacy of PAS

monotherapy in causing a fall in the percentage of patients

coughing sputum containing acid-fast bacilli (AFB) seen on micros-

copy. In total, 176 patients were randomized to receive either pla-

cebo (n = 82) or an enteric-coated PAS granulate (n = 94).34 The

enteric-coated PAS granulate was given in 4 daily doses of 5, 2,

2 and 5 g.34 In comparison to placebo, the percentage of PTB

patients with sputum smears positive for AFB fell significantly from

62.2% (standard error ±5.35) to 18.9% (±3.27) during the first

8 weeks of PAS monotherapy; no similar response occurred in

patients receiving placebo (Figure 1).34

In 1969, the results of 2 studies were published during which a

research group in Berlin assessed the efficacy of the new potential

antituberculosis agents, thiocarlide and morphazinamide, in compari-

son to the established agents such as PAS, isoniazid, rifampicin and

ethambutol by measuring the fall in counts of AFB/mL of sputum

quantified by Gaffky counts, a recognized manner of quantifying

AFB/mL of sputum.35 The response to treatment was thus assessed

in a manner similar to that of today's EBA studies. In the first study,

the activity of thiocarlide was compared to that of PAS at a NaPAS

dosage of 12 g given orally 3 times daily in 4 g doses. During the sec-

ond, similar study, morphazinamide, was assessed in comparison to

INH, ethionamide and cycloserine and PAS given intravenously35 and

the results are illustrated in Figure 2.

Although PAS serum concentrations were not determined in

either of the studies, the mean peak concentrations reached in

patients during the first study (4 g × 3) would probably have been

50–100 μg/mL.44,45 During both studies, a significant fall in log counts

of AFB/mL of sputum in the patients receiving PAS was docu-

mented.35 Remarkably, the fall in AFB in the second study after intra-

venous PAS, following which PAS concentrations of well over

200–300 μg/mL would probably be reached, matches the fall in AFB

counts associated with INH the most bactericidal of our currently

available antituberculosis agents.

During the well-known, first comprehensive study of the EBA of

antituberculosis agents carried out in Nairobi by Jindani et al. in 1980,

a small group of patients received NaPAS 15 g once daily for

14 days.55 During the first 2 days (2-day EBA), a fall in log10 counts of

viable colony forming units of 0.259 per mL of sputum per day was

found, a value similar to that of 10 mg/kg rifampicin in this same

study.55 Plasma PAS concentrations were not measured in this study;

but the mean Cmax achieved was probably close to 190–240 μg/mL,

based on the results of investigation by Frostad in few patients that

were administered 12 g PAS formulation equivalent to 17 g NaPAS as

a single dose.39

F IGURE 1 Percentage of patients with sputum smears positive
for acid-fast bacilli after receiving a placebo or enteric-coated para-
aminosalicylic acid (PAS) granulate given in 4 daily doses of 5, 2,
2, and 5 g (redrawn from34)
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A study by Reisner over a 6-month period showed similar PAS

efficacy was achieved irrespective of PAS administration as a single

daily dose of 6 g, or as a 12-g daily dose (4 g × 3), in combination

with INH.70 Efficacy in this study was defined as improvement in

chest X-ray abnormalities, cavity closure, and the disappearance of

tubercle bacilli from previously positive sputum.70 Even though

plasma PAS concentrations were not measured in this study, one

could assume that the Cmax achieved with 6 g is probably higher than

with 4 g PAS doses. Indeed, early researchers and clinicians, including

Jorgen Lehmann, the discoverer of PAS recommended single daily

dosing of PAS, if this could be tolerated.39,43,61,71

The usual PAS recommendation for divided daily doses is mainly

to ensure that its plasma concentrations between dosing intervals are

above the MIC of 1–2 μg/mL,18–22,54 and to ensure that less

intolerance is experienced. This is in keeping with the understanding

that %T > MIC is the most important PAS PK/PD parameter of

efficacy.52 However, Charles, in 1955, suggested PAS Cmax and/or its

overall systemic exposure were more important determinants of

efficacy, and not necessarily %T > MIC.52 In his study, 25 g NaPAS

solution administered as intravenous infusions 3 times a week,

produced at least 10-fold higher PAS blood concentrations compared

to oral PAS administration, and he claimed, with a better treatment

outcome in the former.52

Furthermore, the designs of the aforementioned BMRC

studies9,11,14 suggest that individual PAS doses and, by extension

Cmax, might be linked to suppression of resistance emergence.

Although, no PAS PK data are available from the studies,9,11,14 Citron

and Kuper later reported that a mean Cmax of approximately

100 μg/mL was achieved following 5 g oral doses of NaPAS, this being

the dose used in the most successful arms of the BMRC studies with

the lowest Cmax being 50 μg/mL.22,37 It is reasonable to propose

a clinical equipoise; that PAS Cmax of at least 100 μg/mL may be desir-

able to achieve suppression of resistance-emergence in companion

drugs, and that at high doses and by implication high PAS

concentrations, bactericidal activity may be achieved as can be

inferred from the study by Jindani et al.55

Studies by Peloquin et al.,18,41 Liwa et al.40 and Sy et al.23

provided evidence that much lower plasma PAS Cmax is achieved with

PASER (Table 1). Indeed, we found that despite increasing PASER

dose to 8 g once daily, the median Cmax was 80 μg/mL.23 PASER at

the currently recommended dosing regimen of 8–12 g/d given in 2 or

3 divided doses of 4 g provides Cmax values considerably lower than

those reached with the NaPAS formulation used during the BMRC

studies. There is, therefore, an urgent need to reconsider the current

dosing of PASER, and to perform a prospective evaluation of its

PK/PD using the current methodologies. We propose evaluating the

PK/PD of high, once daily administration of PASER, as this facilitates

use and simplifies supervision of drug intake.

3.5 | PAS intolerance

It is essential to distinguish between the toxicity and gastrointestinal

intolerance of PAS. A major problem with intolerance is that it carries

the liability of nonadherence and a risk of not completing treatment

and following these, treatment failure, relapse and further develop-

ment of drug resistance.

The frequency and severity of gastrointestinal intolerance includ-

ing nausea, vomiting and diarrhoea vary with different PAS formula-

tions, dose, route of administration and administration as a single daily

dose or in divided daily doses, and, possibly, when taken with or with-

out food.3,9,11,41,47,52 In the BMRC studies, the gastrointestinal

F IGURE 2 Behaviour of the Gaffky values in
response to the treatment of cavitary pulmonary
tuberculosis with different therapeutic modalities
in the lung clinic Heckeshorn (redrawn from35)
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intolerance to NaPAS administered orally in divided daily doses was

reported to occur in 12–58% of patients, with higher NaPAS doses

associated with more frequent intolerance.9,11,22 By contrast, intoler-

ance to PASER formulation seems to be low following its administra-

tion at dosing regimens of 8 g once daily or at 4 g once, twice, or

thrice daily.18,23,72 Peloquin et al. found that <4% of patients reporting

intolerance with this formulation.18 Other studies also reported

PASER to be well tolerated by patients.23,72 The better tolerability to

PASER could be because of PAS release in the small intestine rather

than in the stomach and the reduced production of meta-

aminophenol.20,24 Furthermore, the enteric-coating of PASER proba-

bly prevents direct gastric irritation by PAS.20

Yue and Cohen reported fewer patients having gastrointestinal

symptoms when a Neopasalate PAS formulation was administered

orally as a 12-g single daily dosage than following the same total daily

dosage, but in divided doses.47 Gastrointestinal symptoms were

reported in 6.9% (5/72), 10.7% (3/28) and 4.5% (1/22) of patients

administered oral Neopasalate at 4 g thrice daily, 6 g twice daily and

12 g once daily, respectively.47 Similarly, gastrointestinal symptoms

were reported in 14.8% (4/27), 12.5% (3/24), and 10.5% (2/19) of

patients administered oral NaPAS at 4 g thrice daily, 6 g twice daily

and 12 g once daily, respectively.47 Importantly, a single daily dose of

12 g Neopasalate/NaPAS compared to the same total daily dosage in

2 or 3 divided doses did result in similar sputum culture conversion

rate, despite failure to maintain PAS concentrations above 1–2 μg/mL

throughout the dosing interval in those receiving single daily doses.47

Similar observations were made by other investigators using various

PAS formulations.23,73

Of further interest, the Yue and Cohen study provided evidence

that intolerance to PAS is formulation related. Gastrointestinal symp-

toms were seen in 7.4% (9/112) of patients on Neopasalate, 12.3%

(18/146) on Rezipas, 19.3% (23/119) on Phenyl PAS, 20.8% (35/168)

on NaPAS, 24.8% (25/101) on CaPAS and in 50.9% (27/53) of

patients on KPAS.47

Also in the study by Yue and Cohen, a mean Cmax of

169.8 μg/mL was reached in patients administered 12 g once daily

Neopasalate compared to a mean Cmax of 40.6 μg/mL and

108.9 μg/mL in those administered 4 g thrice daily, and 6 g twice

daily, respectively.47 In spite of the higher Cmax achieved with 12 g

once daily, intolerance was lowest at 4.5% (1/22) compared to

6.9% (5/72) and 10.7% (3/28) in the 4 g × 3 (12 g/d) and 6 g × 2

(12 g/d) regimens, respectively.47 Similarly, Riska also found NaPAS

orally administered as a single daily dose rather than divided daily

doses was associated with fewer side-effects and better tolerabil-

ity, in spite of achieving very high PAS blood concentrations.43,61

Earlier mentioned BMRC studies found an association between

PAS dosage and intolerance. However, gastrointestinal intolerance

to PAS seems to be independent of its plasma concentrations, as

demonstrated in several PAS studies.3,21,23,40,47,69 More recently,

no association was found between PAS concentration and intoler-

ance when PASER was given as 4 g twice daily or 8 g once

daily.21,23,40 Adams et al. found no relationship between plasma

PAS, acetyl-PAS or glycine-PAS concentrations and gastrointestinal

intolerance, irrespective of PASER administration as 4 g twice daily

or 8 g once daily.74

In addition, Jones administered 4.8–5.0% solution of crystalline

NaPAS (equivalent to 24-25 g NaPAS), intravenously to TB patients

and found it well tolerated with only mild gastrointestinal symptoms

seen in about 7.4% (2/27) of patients, despite very high plasma PAS

concentrations.3 Charles, in his 1955 paper, found no gastrointestinal

intolerance in any of the 50 patients administered 25 g NaPAS intra-

venously.52 In this study, each patient received on average, 50 infu-

sions over a 4-month period. PAS concentrations reached were not

provided, but based on similar dose and formulation used by Riska,

the mean (range) PAS Cmax would probably be about 323 μg/mL

(190–570).52,61 Therefore, PAS plasma concentrations probably play

little role in gastrointestinal intolerance to PAS. Data from intravenous

PAS administration show that if gastrointestinal tract is bypassed,

intolerance to PAS is minimized; because gastrointestinal intolerance

requires the presence of PAS in the gastrointestinal tract.74

3.6 | PAS toxicity

The overall incidence of adverse events (AEs) ascribed to PAS varies

from 10 to 30%,2 and several studies reported PAS to have minimal

toxicity even at very high doses, with the most pressing concern being

gastrointestinal intolerance.3,21,40–43,51,61 PAS is associated with

reversible hypothyroidism that is amplified when used at high doses

and when combined with ethionamide or prothionamide.3,75 Other

potentially serious AEs associated with PAS include hepatitis,

haemolytic anaemia, granulocytopenia, polyneuritis, psychosis and

angioedema.3 Furthermore, hypersensitivity reactions to PAS are

experienced in about 5–10% of patients, but can be managed and

PAS can usually be reintroduced.2

It is important to note that PAS overall appears to be safer than

several other antituberculosis agents used in treatment of MDR- or

XDR-TB. Potentially serious AEs such as central nervous system and

haematologic disorders have been associated with other agents.75,76

Moreover, serious toxicities such as peripheral neuropathy, optic neu-

ritis, and hearing loss following the use of other agents can be irre-

versible.75 Thus, if tolerated, PAS appears to have a safety profile

comparable, if not better, than that of several other agents used in

MDR- or XDR-TB treatment.

4 | CONCLUSION

In summary, available evidence summarized above suggests that PAS

Cmax, AUC and, by extension, Cmax/MIC and/or AUC/MIC rather than

%T > MIC are the more important determinants of efficacy and sup-

pression of resistance development in companion drugs. Data

obtained from studies using PASER in healthy volunteers and TB

patients suggest that PAS exposures with currently used dosing regi-

mens are lower than those expected to have been achieved in the

BMRC studies of the 1950s and that we are not using the PASER for-

mulation optimally.18,21,40,41 Importantly it appears that PAS at higher
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dosages that achieve higher blood concentrations has a hitherto

unappreciated bactericidal effect that is not currently exploited.

Future PAS investigations should focus on exploring the relation-

ships between PAS dose, PK and pharmacogenetics and the efficacy

and tolerability of PAS in its different formulations. The slow-release

formulation of PASER may well offer an acceptable compromise

between intolerance and efficacy if dosed once daily. The demonstra-

tion of bactericidal activity by PAS, as is suggested by some of the

studies summarised above and better knowledge of the relationship

of PAS intolerance and efficacy to pharmacokinetic factors and dose

might enable the far greater rational use of PAS in community-based

programmes for patients otherwise therapeutically destitute. Resis-

tance to several of the newly introduced drugs for the management

of MDR- and XDR-TB has already been reported77,78; toxicity to sev-

eral of the currently recommended agents for managing MDR- and

XDR-TB patients is also not infrequent.75,76 PAS remains an attractive

orally administered, alternative agent for these patients, but we

urgently need to be better informed regarding the most efficacious

manner in which to administer PAS and the appropriate doses to use.

Should further studies confirm that PAS once daily is acceptable, both

as regards efficacy and intolerance, one might envisage a possible reg-

imen where PAS is given once daily in the evening with the

evening meal.

4.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY.
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Abstract
Purpose Para-aminosalicylic acid (PAS) is currently one of the add-on group C medicines recommended by the World Health
Organization for multidrug-resistant tuberculosis treatment. At the recommended doses (8–12 g per day in two to three divided
doses) of the widely available slow-release PAS formulation, studies suggest PAS exposures are lower than those reached with
older PAS salt formulations and do not generate bactericidal activity. Understanding the PASER dose-exposure–response
relationship is crucial for dose optimization. The objective of our study was to establish a representative population pharmaco-
kinetics model for PASER and evaluate the probability of bactericidal and bacteriostatic target attainment with different dosing
regimens.
Methods To this end, we validated and optimized a previously published population pharmacokinetic model on an extended
dataset. The probability of target attainment was evaluated for once-daily doses of 12 g, 14 g, 16 g and 20 g PASER.
Results The final optimized model included the addition of variability in bioavailability and allometric scaling with body weight
on disposition parameters. Peak PAS concentrations over minimum inhibitory concentration of 100, which is required for
bactericidal activity are achieved in 53%, 65%, 72% and 84% of patients administered 12, 14, 16 and 20 g once-daily
PASER, respectively, when MIC is 1 mg/L. For the typical individual, the exposure remained above 1 mg/L for ≥ 98% of the
dosing interval in all the evaluated PASER regimens.
Conclusion The pharmacokinetic/pharmacodynamic parameters linked to bactericidal activity should be determined for 14 g,
16 g and 20 g once-daily doses of PASER.

Keywords Para-aminosalicylic acid . Tuberculosis . Pharmacokinetics .Modelling . PK/PD

Introduction

Para-aminosalicylic acid (PAS) is one of the essential add-on
Group C medicines recommended by the World Health
Organization for the treatment of drug resistant tuberculosis

(TB) [1]. Early British Medical Research Council studies doc-
umented successful use of sodium PAS to treat pulmonary TB
[2–5]. In addition, the combination of sodium PAS with strep-
tomycin or isoniazid prevented resistance emergence in com-
panion drugs [2–5]. Soon following PAS introduction to
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clinical use, however, the problem of gastrointestinal intoler-
ance to PAS became apparent [2–4]. In attempts to address
this problem, many different PAS formulations including phe-
nyl PAS, Neopasalate, calcium, potassium or sodium salts of
PAS were manufactured, to mention only but a few [6].
Compared to PAS salts, the granular slow-release PAS formu-
lation (PASER, Jacobus, Princeton, USA) that became recent-
ly available is regarded to be better tolerated but the dosing
required to achieve optimal antimycobacterial activity and
protection of companion drugs still needs to be evaluated [7].

Mycobactericidal activity and protection of companion
drugs have been linked to exceeding peak plasma PAS con-
centrations (Cmax) of 100 mg/L, and thus, a Cmax over mini-
mum inhibitory concentration (MIC) of at least 100, assuming
typical MIC of ≤ 1 mg/L. The Cmax target is based on extrap-
olating concentrations from the British Medical Research
Council studies where sodium PAS administered at 5 g indi-
vidual doses could have resulted in an average Cmax of
100 mg/L, and the lowest Cmax reached was approximately
50 mg/L [8, 9]. A recent review supports the notion that PAS
prevention of resistance emergence in companion drugs is
concentration-related and that at high concentrations, PAS
may exhibit bactericidal activity [10]. Several studies sug-
gested that once-daily dosing regimen of PAS could have
similar or better antimycobacterial activity than its administra-
tion in divided doses and with improved tolerability [10–13].
To date, PAS is considered a bacteriostatic agent and dosing
regimens are designed to maintain plasma concentrations
above MIC throughout the dosing interval [7]. The current
dosing recommendation for PASER is to administer 8–12 g
per day in two to three divided doses [14, 15]. Not surprising-
ly, available evidence suggests that much lower PAS concen-
trations are reached with PASER compared to PAS salts
[16–19]. Importantly, the recommended Cmax/MIC target of
≥ 100 is generally not achieved with the 4 g, 6 g or 8 g PASER
doses [16–18, 20]. It is, therefore, crucial that the optimal
PASER dosing regimen is determined to maximize the
chances ofmycobactericidal activity and cure while protecting
companion drugs against the risk of resistance emergence, as
was established for PAS salts in the past. Understanding the
dose-exposure and exposure-response relationships of high-
doses of PASER is critical for its optimization.

There is limited information on the pharmacokinetics (PK)
of the now widely available PASER formulation. De Kock
et al. present one of few investigations of the PK of PASER
in adult TB patients with or without human immunodeficiency
virus (HIV) co-infection. The authors developed a one-
compartment disposition model with 3-transit absorption
compartments in series to describe the population PK of
PASER in South African patients with drug-resistant TB that
received PASER together with acidic beverages [7]. The ob-
jectives of our study were to (i) externally validate the previ-
ously published PAS population PK model [7], (ii) optimize

this PAS population PK model if needed and (iii) evaluate the
probability of target attainment with once-daily PASER regi-
mens that could achieve bactericidal targets while not
dropping below the bacteriostatic target during the dosing
interval.

Methods

External validation

We used the final parameter estimates from the PAS popula-
tion PKmodel developed by deKock et al. [7] and applied this
model to a separate dataset obtained in a similar population
[18]. Refer to the online methods (supplementary materials)
for details on the external validation.

Model optimization

The PK information from De Kock et al. and Liwa et al. [7, 18]
was pooled to be used for the model optimization. Table 1 sum-
marizes the patient characteristics of the joint dataset. Model
refinement was done using nonlinear mixed effects modeling
(NONMEM) software (version 7.4) with first-order conditional
estimation with interaction (FOCE-I), and the model parameters
re-estimated on the joint dataset. The best model was chosen
based on drop in objective function value (OFV) of at least
3.84 at a P value of 0.05 for nested models, or based on
Akaike information criterion (AIC) for non-nested models, and
by graphical techniques such as visual predictive checks (VPCs),
goodness-of-fit plots, biological plausibility and parsimony.
Allometric scaling of disposition parameters with body weight

Table 1 Patient
characteristics in the joint
dataset enrolled from
studies of the
pharmacokinetics of
para-aminosalicylic acid
in tuberculosis patients
with or without HIV in-
fection [7, 18]

Value (N = 85)

Age (years)

Median (Q1, Q3) 32 (27, 43)

Min-max 18–64

Sex

Female 42 (49.4%)

Race/ethnicity

Coloured 64 (75.3%)

Black 21 (24.7%)

Weight (kg)

Median (Q1, Q3) 57 (47, 63)

Min-max 33.0–85.5

HIV status

Positive 28 (32.9%)

HIV human immunodeficiency virus, Q1
lower quartile, Q3 upper quartile, Min
minimum, Max maximum
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was included. We sequentially explored the addition of inter-
individual variability (IIV), inter-occasion variability (IOV) or
both, on bioavailability. Additive, proportional and combined
residual error models were assessed. Other aspects of the model
optimization process included correlation between IIV in CL and
V, covariate effect of study on residual error and different func-
tions for including the effect of efavirenz (EFV) on CL. Finally,
the performance of the optimized model was evaluated using
posterior predictive checks of noncompartmental analysis
(NCA) metrics. The NONMEM control stream of the optimized
model is available in the supplementary material.

Probability of target attainment

The simulation dataset consisted of 1000 virtual patients created
from the pooled dataset (random sampling with replacement)
plus 10% extra uniform variability in body weight. Dosing and
observation records were created using dplyr R package.

The optimized population PK model was used to simulate
steady-state concentration-time profiles of PAS in the virtual
patients, each administered 12, 14, 16 and 20 g once-daily
PASER regimens. The simulation study was implemented
through PsN [21]. A Cmax of 100 mg/L and by extension Cmax/
MIC of at least 100 whenMIC is 1 mg/L or lower were selected

as the desired targets. Model-predicted plasma PAS Cmax was
estimated, and the probability of target attainment for the Cmax/
MIC target with varying PAS MIC was calculated for each dos-
ing regimen [7, 8]. The typical PAS MIC is 1 mg/L [7, 22, 23].
The range of PASMICs explored was that reported over the past
seven decades, ranging from 0.25 to 4 mg/L [7, 22–28].
Concentration-time plots were created using R.

Results

External validation

The VPCs stratified on EFV administration showed that the de
Kock et al. PAS population PK model [7] describes the external
data [18] reasonablywell (Fig. S1). However, the goodness-of-fit
plots displayed in Fig. S2 and the posterior predictive checks
demonstrated a bias in model predictions (Fig. 1).

Model optimization

The introduction of IIV and IOV on bioavailability resulted in
a significantly better data fit and a reduction of both IIV and
IOV on apparent oral clearance (CL/F), as well as IIV on

Fig. 1 Histogram of the
population mean of AUClast and
Cmax obtained from 1000
simulated studies using the base
(published) model. The red and
black solid vertical lines represent
the population mean of the NCA
metric obtained from the ob-
served data (n = 12) and that of
the same NCA metric obtained
from the simulated data (n = 12,
but the simulated study repeated
1000 times), respectively. The
black dashed vertical lines repre-
sent the 95% nonparametric pre-
diction interval for the population
mean of the NCA metrics obtain-
ed from the simulated data.
AUClast is the area under the
concentration-time curve from
time 0 to time of the last measured
concentration (that is 12 h) and
Cmax the peak plasma
concentration
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apparent volume of distribution (V/F). We found no impact of
study on residual error magnitude. The final model incorpo-
rated allometric scaling with bodyweight and fixed theoretical
exponents of 0.75 for CL and 1 for V, centred at 70 kg. The
final optimized model had 90.1 points lower OFV compared
to the published model [7]. Figure 2 and Fig. S3 display the
VPC and basic goodness-of-fit plots of the optimized model
(Table 2), respectively.

As expected, the posterior predictive checks with the opti-
mized model found the mean Cmax and AUClast of the ob-
served dataset fell within the 95% npi of the simulated datasets
(Fig. 3).

Probability of target attainment

Plasma PAS exposure increased with dose, as expected
(Fig. 4). The Cmax/MIC target of ≥ 100 was reached in 53%,
65%, 72% and 84% of patients administered 12, 14, 16 and
20 g once-daily PASER, respectively, assuming the typical
MIC of 1 mg/L (Fig. 5). At the lowest evaluated MIC of
0.25 mg/L, this target was reached in approximately 100%
of patients irrespective of the dosing regimen received. On
the contrary, the target was reached in < 6% of patients at

Fig. 2 Visual predictive check for the optimized model stratified by
study. The solid blue lines represent the 97.5th and 2.5th percentiles of
the observed para-aminosalicylic acid concentration data (open grey cir-
cles), the solid red line connects the median (50th percentile) of the

observed data (n = 85). The blue shaded areas represent 95% confidence
intervals of the 97.5th and 2.5th percentile of the predicted simulated data
(n = 1000), whereas the red shaded area represents 95% confidence inter-
val of the median (50th percentile) of the predicted simulated data

Table 2 Population pharmacokinetic model parameters of the final
optimized model

Parameter Population estimate (%RSEa)

Structural model parameter
CL/Fb (L/h) 12.4 (5.5)
V/Fb (L) 58.2 (7.6)
ktr (h

−1) 0.57 (5.9)
Number of transit compartments 3

Inter-individual variability (IIV) as %CVc

IIV CL/F 24.4 (19.6)
IIV ktr 39.1 (14.3)
IIV bioavailability (F) 29.6 (13.1)

Inter-occasion variability (IOV) as %CVc

IOV CL/F 20.9 (28.6)
IOV ktr 43.2 (12.7)
IOV F 30.6 (9.5)

Residual variability
Proportional residual error 0.318 (12.2)
Additive residual error (mg/L) 5.36 (20.6)

Covariates
Efavirenz on CL/F 0.401 (33.9)

Apparent oral clearance (CL/F), apparent volume of distribution (V/F),
transit rate constant (ktr)
a Relative standard error (%RSE) was calculated as standard error/
population estimate from the covariance step
b Population parameter estimates are centred on a typical patient weighing
70 kg
c Coefficient of variation (%CV) for IIV and IOV was calculated as
(SQRT(EXP(OMEGA) − 1) * 100
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MIC of 4 mg/L, notwithstanding the dosing regimen received.
In addition, for the typical individual, the exposure remained
above 1 mg/L for ≥ 98% of the dosing interval in all the eval-
uated PASER regimens (Fig. 6).

Discussion

Our modelling and simulation study demonstrates that bacte-
ricidal PAS exposures can be achieved in most patients when
14, 16 or 20 g once-daily PASER are administered. To allow
optimal use of this long-established antituberculosis agent,
these dosages should urgently be evaluated clinically to en-
sure that optimal tolerability, bactericidal activity and protec-
tion of companion drugs are achieved in clinical practice.

The PAS population PKmodel developed by deKock et al.
required optimization prior to performing simulation studies
focused on maximal and minimal concentrations. The main
differences between the original and the optimized models

were the introduction of variability in bioavailability and allo-
metric scaling on disposition parameters to account for varia-
tion in body size.

EFV resulted in 40.1% (95% confidence interval [CI] of
26.5 to 53.7%) increase in PAS CL with the optimized model
compared to 52% (95% CI: 32.4 to 74.6%) found with the
published model [7]. EFV, a known inducer of several phase I
and II drugmetabolizing enzymes, and transporters [7, 29–31]
is postulated to induce N-acetyl transferase-1 and 2 enzymes
involved in PAS metabolism [7]. Although, non-enzymatic
processes of PAS CL contribute little to the overall PAS CL,
EFV-mediated induction of transporters in the kidneys and
biliary tract could also play a role. PASER administration with
an EFV-containing regimen will reduce PAS exposures and
upward dose-adjustment of PASER by approximately 40%
may be required to mitigate the effect. However, caution
should be exercised in the interpretation of this finding since
the study was not designed to characterize drug-drug interac-
tions. A prospective study is required to determine the

Fig. 3 Histogram of the
population mean of AUClast and
Cmax obtained from 1000
simulated studies using the
optimized model. The red and
black solid vertical lines represent
the population mean of the NCA
metric obtained from the
observed data (n = 12) and that of
the same NCA metric obtained
from the simulated data (n = 12,
but the simulated study repeated
1000 times), respectively. The
black dashed vertical lines
represent the 95% nonparametric
prediction interval for the
population mean of the NCA
metrics obtained from the
simulated data. AUClast is the area
under the concentration-time
curve from time 0 to time of the
last measured concentration (that
is 12 h) and Cmax the peak plasma
concentration
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Fig. 4 Simulated median plasma
PAS concentrations with novel
dosing regimens. PAS is para-
aminosalicylic acid, Cmax is the
peak plasma concentration and
MIC the minimum inhibitory
concentration. The simulation
study consists of 1000 virtual pa-
tients per dosing regimen

Fig. 5 Probability of target
attainment when aiming for peak
concentration over minimum
inhibitory concentration (MIC) of
≥ 100 with varying MIC. The
horizontal, red dashed line corre-
sponds to a probability of target of
attainment value of 90% with
each dosing regimen. The simu-
lation study consists of 1000 vir-
tual patients per dosing regimen
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magnitude of EFV-induced PAS CL and to elucidate the path-
way(s) involved.

The optimized model was used to predict plasma PAS con-
centrations following several PASER dosing scenarios not yet
investigated in patients. Contrary to the widespread under-
standing that PAS is essentially a bacteriostatic agent, there
is clear evidence that if high enough concentrations are
achieved, PAS has bactericidal activity [2–5, 9, 11]. An early
bactericidal activity study by Jindani et al. provided evidence
in four patients that a 15-g once-daily dose of PAS has bacte-
ricidal activity similar to that of rifampicin at 10 mg/kg [11].
The British Medical Research Council studies of the 1940s
and 1950s demonstrated the dose-dependent increase in sodi-
um PAS efficacy when used together with streptomycin or
isoniazid [2–5]. Efficacy in terms of resistance suppression
in the companion drug, streptomycin, increased incrementally
across sodium PAS doses of 5 g, 10 g and 20 g per day
administered in four divided doses; by the sixth month, strep-
tomycin resistance emerged in 36%, 30% and 7% of patients
on 5 g, 10 g and 20 g sodium PAS per day, respectively [2, 3].
A subsequent study showed similar protection of companion
drugs between sodium PAS doses of 10 g and 20 g given in
two and four divided doses, respectively [4, 5]. It is important
to note that regimens that protected companion drugs well
were linked by the use of single sodium PAS doses of at least
5 g, suggesting that high peak concentrations are responsible
for this effect. These studies did not report the PAS concen-
trations reached.

Most simulated patients on 14 g, 16 g and 20 g once-daily
regimens achieved the Cmax/MIC target withMICs lower than
1 mg/L. However, this study shows the difficulty in achieving
the Cmax/MIC target when MIC values are at least 1 mg/L.
That said, the simulation studies provide evidence of target
attainment with novel dosing regimens of PASER. This pro-
vides support that high once-daily PASER regimens could
achieve the Cmax/MIC target, while still maintaining PAS con-
centration of at least 1 mg/L over 24 h (Fig. 6). De Kock et al.
concluded that 4 g twice-daily PASER is sufficient to main-
tain PAS concentrations above MIC of 1 mg/L for 90% of the
dosing interval, if %T >MIC is the pharmacodynamic target
[7]. De Kock et al. outlined possible advantages related to
improved efficacy and ease of programmatic implementation
of once-daily doses of PASER. In addition, once-daily dosing
will simplify the supervision of drug intake.

Historically, gastrointestinal intolerance to PAS has been
linked to the dose, frequency of dosing, formulation type, route
of administration and administration with or without food [2, 3,
6, 10, 16, 32, 33]. PAS intolerance was seen in 12%, 15% and
58% of patients who received sodium PAS at 5 g, 10 g and 20 g
per day in four divided doses, respectively [2, 3]. Several stud-
ies have documented PAS tolerance to be better or at least not
worse, when ingested as a single daily dose compared to the
same daily dose but divided over several administrations [6, 17,
34, 35]. In the same manner, PASER administration of 8 g
once-daily was similarly or better tolerated than 4 g twice-
daily [17]. Of interest is that PAS intolerance is low following

Fig. 6 Probability of target
attainment when aiming for
trough concentrations ≥ 1 mg/L
with varying minimum inhibitory
concentration (MIC). The
horizontal, red dashed line
corresponds to a probability of
target of attainment value of 90%
with each dosing regimen. The
simulation study consists of 1000
virtual patients per dosing
regimen
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intravenous administration, in spite of the very high plasma
concentrations reached [12, 32]. This is likely because intrave-
nous PAS administration circumvents the direct gastric irrita-
tion effects of PAS and/or metabolites produced while in the
gastrointestinal tract. In our study, the mean Cmax of 197.2 mg/
L reached with highest dose of 20 g once-daily is similar to
180.0 mg/L reached with oral PAS-resin complex and much
lower than 323.0 mg/L reached with intravenous sodium PAS
for infusion (Ferrosan) [33, 35]. Both formulations were well
tolerated in spite of the high PAS concentrations reached, an
indication that intolerance may not be concentration-related
[17, 33, 35]. Hence, we do not anticipate that the suggested
dosing regimens will be significantly worse than the current
standard of care solely because of increased exposure.
However, a prospective study is required to confirm the safety
and tolerability of high once-daily PASER regimens.

Our study has several limitations: firstly, the target used in
our study is based on extrapolation from historic data and
needs to be validated in a prospective study. Secondly, the
target attainment rates were obtained by simulations and
should be confirmed in real patients. Thirdly, we used proto-
col time rather than actual time of PK sampling for the anal-
yses. Finally, the population upon which the population PK
model was built included only South African patients, and this
may limit generalization to other populations.

Conclusion

The target PAS concentrations were achieved in most patients
administered 14, 16 and 20 g once-daily PASER. We suggest
that a prospective PK study, preferably including assessment
of early bactericidal activity, should be performed to confirm
our findings and determine the safety and tolerability of the
proposed regimens.
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Figure S2a  

Figure S2b 

Figure S3 

NONMEM control stream 

 

Online methods 

External validation 

Twelve adult South African patients diagnosed with drug resistant TB with or without human immunodeficiency 

virus (HIV) coinfection were enrolled by Liwa et al.[1] In this two-period study, patients were administered oral 

PASER 4 g twice daily together with acidic beverages for at least four weeks prior to the first PK sampling 

occasion.[1] The same dosing regimen was continued for at least a week prior to the second PK sampling 

occasion.[1] PK samples were collected at pre-dose, 2, 3, 4, 5, 6, 8 and 12 h post-dose.[1]  

The performance of the model was evaluated through a posterior predictive checks of non-compartmental analysis 

(NCA) metrics and standard goodness-of-fit plots.[2] It is essential that the model captures NCA metrics well since 

they are the basis of the target attainment evaluation. The nonlinear mixed effects modeling (NONMEM) software 

(version 7.4) was used for the implementation of the model.[3] The model was used to simulate concentration-time 

profiles of each individual 1000 times through Perl-Speaks-NONMEM (PsN, version 4.8.1).[4] R, an open-source 

statistical software (version 3.5.1)[5] was employed for data management. The ncappc package in R[6] was used to 

perform NCA calculations and simulation-based posterior predictive checks. The NCA metrics of Cmax and area 

under the concentration-time curve from time zero to the time of last measured concentration (AUClast, which is 

the same as AUC 0 to 12 hours) were estimated from both observed and simulated datasets. The population mean 

of each NCA metric was estimated from a set of observed and simulated data. The distribution of the simulated 

population means of each NCA metric was graphically compared to the corresponding observed population mean. 

Diagnostics were based on the observed population mean falling within the 95% nonparametric prediction interval 

(npi) of the distribution of the simulated population means, suggesting general performance of a population PK 

model to reproduce drug exposure. Additionally, PsN and Xpose[7] were used to create visual predictive checks 

(VPCs)[8] and plots of predictions versus observations, and/or residuals. Pirana was used to keep record of model 

evaluations.[9] 
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Online results 

External validation 

Fig. S2 showed a systematic deviation between observed concentrations and population predictions and the 

posterior predictive checks demonstrated a bias in NCA metrics derived from the model (Fig. 1). The population 

mean of Cmax and AUClast of the observed dataset fell outside the 95% npi of the simulated datasets (Fig. 1). 

These findings lead to the conclusion that the published model needed optimization before it could be used in 

probability of target attainment simulations.  

69

Stellenbosch University  https://scholar.sun.ac.za



 

 

Fig. S1 Visual Predictive Check of the base (published) model[10] on the Liwa et al[1] data stratified by concomitant administration with or 

without efavirenz. The solid blue lines represent the 97.5th and 2.5th percentiles of the observed para-aminosalicylic acid concentration data 

(open grey circles), the solid red line connects the median (50th percentile) of the observed data (n=12). The blue shaded areas represent 95% 

confidence intervals of the 97.5th and 2.5th percentile of the predicted simulated data (n=1000), whereas the red shaded area represents 95% 

confidence interval of the median (50th percentile) of the predicted simulated data. 
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Fig. S2a Basic goodness of fit plot of the base (published) model on the Liwa et al[1] data, showing the observed para-aminosalicylic acid 

concentrations (mg/L) versus the population predictions (mg/L). The blue dots are the observed concentrations. The grey dashed line is the 

line of identity (if the predictions were 100% perfect, all the blue dots will fall on this line). The red dashed line is the trend line that shows 

systematic deviation between observed concentrations (y-axis) and population predicted concentrations (x-axis). The observed and predicted 

concentrations are from the 12 adult patients in the Liwa et al study.[1] 
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Fig. S2b Basic goodness of fit plot of the base (published) model on the Liwa et al[1] data, showing the observed para-aminosalicylic acid 

concentrations (mg/L) versus the individual predictions (mg/L). The blue dots are the observed concentrations. The grey dashed line is the line 

of identity (if the predictions were 100% perfect, all the blue dots will fall on this line). The red dashed line is the trend line that shows 

systematic deviation between observed concentrations (y-axis) and individual predicted concentrations (x-axis). The observed and predicted 

concentrations are from the 12 adult patients in the Liwa et al study.[1] 
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Fig. S3 Basic goodness of fit plots of the final optimized model on the combined data from de Kock et al and Liwa et al studies[1,10] showing 

the observed concentration (of para-aminosalicylic acid in mg/L) versus the individual predicted concentration in mg/L (upper left) or 

population predicted concentration in mg/L (upper right). CWRES versus population predicted concentration in mg/L (lower left) or time after 

dose in hours (lower right). CWRES, conditional weighted residuals. The blue open circles are the observed concentrations. The solid black 

lines are the lines of identity (top) and zero lines (bottom) if the predictions were 100% perfect, all the blue open circles will fall on these black 

solid lines. The red solid lines are the trend lines. The horizontal black dashed lines (bottom plots) correspond to +2 and -2 where most of data 

points should be evenly scattered around the zero line. The observed and predicted concentrations were from the 85 individuals in the de Kock 

et al and Liwa et al studies.[1,10] 

 

NONMEM control stream 

NONMEM code can be found in run001_final_optimized_model.mod. 
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;; 1. Based on: run#0xx
;; Date of model run#
$PROBLEM PAS Population pharmacokinetic model optimization.
;COMMENTS: Using combined data Liwa and de Kock et al studies.

$INPUT ID TIME DV LDV AMT EVID II SS MDV CMT DOSE OCC WTKG EFV STUD

$DATA dataxx.csv IGNORE=@ 

$SUBROUTINE ADVAN6 TOL=9

$MODEL      
COMP=(DEPOT,DEFDOSE) 
COMP=(TRANS2) 
COMP=(TRANS3)
COMP=(CENTRAL,DEFOBS)

$PK
Q1 =0
Q2 =0
IF(OCC.EQ.1) Q1 = 1
IF(OCC.EQ.2) Q2 = 1

     TVCL=THETA(1)*(1+EFV*THETA(6))  ;Apparent 
clearance of the typical individual in population PLUS EFV COVARIATE EFFECT ON 
CL
TVV=THETA(2)  ;Apparent volume
of distribution of the typical individual inpopulation
TVKTR=THETA(3)  ;KTR is transfer
constant of the transit compartments of the typical individual in the population
TVF1=THETA(7) ;F1 is the 
bioavailability of the typical individual in the population

 CL=TVCL*((WTKG/70)**0.75)*EXP(ETA(1)+Q1*ETA(4)+Q2*ETA(5))  ;Individual 
apparent clearance, and between‐subject variability (BSV) and between‐occasion 
variability (BOV)
V=TVV*(WTKG/70)*EXP(ETA(2))   ;Individual 
apparent volume of distribution, and BSV and BOV
KTR=TVKTR*EXP(ETA(3)+ Q1*ETA(6)+Q2*ETA(7))  ;Individual 
transfer rate contant of the transit compartment, and BSV and BOV
F1=TVF1*EXP(ETA(8)) +Q1*ETA(9) + Q2*ETA(10)  ;Individual 
bioavailability, and BSV and BOV

K=CL/V ;Elimination 
rate constant 
S2=V

$DES
DADT(1)=‐KTR*A(1) ;DEPOT COMP
DADT(2)=KTR*A(1)‐KTR*A(2)   ;TRANS2 COMP
DADT(3)=KTR*A(2)‐KTR*A(3)  ;TRANS3 COMP
DADT(4)=KTR*A(3)‐K*A(4)    ;CENTRAL COMP
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$ERROR  ;Residual error 
model
IPRED=A(4)/V 
IRES=DV‐IPRED
W=SQRT(IPRED**2*SIGMA(1,1) + SIGMA(2,2)) ;For additive + 
proportional error
IWRES=IRES/W
Y=IPRED + IPRED*EPS(1) + EPS(2)

$THETA (0,10.4507)  ; 1.CL
$THETA (0,46.2624)  ; 2.V
$THETA (0,0.575129)  ; 3.KTR
$THETA 0 FIX  ; 4.ADDITIVE 
ERROR
$THETA 0 FIX  ; 5.PROPORTIONAL
ERROR
$THETA 0.392677  ; 6.COVARIATE 
EFFECT OF EFV ON CL
$THETA 1 FIX  ; 7.F1

$OMEGA 0.0640999   ; 1.BSV_CL
$OMEGA 0  FIX   ; 2.BSV_V
$OMEGA 0.136443   ; 3.BSV_KTR
$OMEGA BLOCK(1) 0.0386029   ; 4.BOV_CL in 
occasion 1
$OMEGA BLOCK(1) SAME ; 5.BOV_CL in 
occasion 2
$OMEGA BLOCK(1) 0.167344   ; 6.BOV_KTR in 
occasion 1
$OMEGA BLOCK(1) SAME ; 7.BOV_KTR in 
occasion 2
$OMEGA 0.0791436   ; 8.BSV_F1
$OMEGA BLOCK(1) 0.0896854   ; 9.BOV_F1 in 
occasion 1
$OMEGA BLOCK(1) SAME ;10.BOV_F1 in 
occasion 2

$SIGMA 0.100808 28.7776   ; Proportional 
and additive errors

$ESTIMATION METHOD=1 INTER MAXEVAL=9999 PRINT=1 SORT NSIGDIGITS=3 MSFO=00x.msf
;;standard error estimates calculated

$COVARIANCE
$TABLE ID TIME IPRED IWRES CWRES CWRESI EVID MDV OCC CMT NOPRINT ONEHEADER 
FILE=sdtab00x
$TABLE ID CL V KTR ETA(1) ETA(2) ETA(3) ETA(4) ETA(5) ETA(6) ETA(7) ETA(8) 
NOPRINT ONEHEADER FILE=patab00x
$TABLE ID EFV WTKG NOPRINT ONEHEADER FILE=cotab00x
;Xpose can read these tables

;there must be one empty line after the last command line
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Impact of the research: A better understanding of the penetration of each first-line 

antituberculosis drug into different parts of affected lymph node tissue and lesions is a 

necessary first step required to potentially select pediatric doses that achieve appropriate 

concentrations at these sites, accounting for pediatric disease severity. This has the 

potential for tuberculosis treatment stratification and for potential future shorter treatment 

duration. Our approach provides unique and valuable data which will inform pediatric 

dose optimization and treatment trials in children.  
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Summary   

Rationale: Adequate exposure of antituberculosis drugs at the site of disease is required 

for sterilisation of tuberculous lesions.  

Objective: To characterize, for the first time,  the concentrations of first line 

antituberculosis drugs at the site of disease in children with intrathoracic tuberculosis.  

Measurements and Methods: Prospective study in children with severe intrathoracic 

tuberculosis routinely requiring bronchoscopy or transthoracic surgical lymph node 

decompression (SD). We aimed to collect a) plasma samples at predose, 2, 4 and 6 

hours post-dose, b) site of disease samples at 2, 4, or 6 hours post-dose for the 

bronchoscopy, and c) samples at 2 hours post-dose for the SD group. Entire plasma 

pharmacokinetic profiles were reconstructed using a population pharmacokinetic 

modelling approach. Site of disease data were modelled by an additional compartment 

for each lesion, and the rate and extent of distribution of each drug from plasma to 

lesions determined. 

Main Results: We enrolled 13 children, median age 8.6 months. Four of seven SD 

samples were culture positive. Exposures of antituberculosis drugs varied widely 

amongst compartments and between participants. The penetration coefficients for 

isoniazid, rifampin and pyrazinamide showed lower penetration in most lymph node 

areas compared to plasma. Despite similar penetration coefficients compared to adults, 

overall low plasma exposures led to low site of disease exposures for all drugs except 

for isoniazid.  

Conclusions: Dose optimization of first-line antituberculosis drugs to increase site of 

disease exposures could facilitate more rapid culture conversion, and potentially allow 
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for improved treatment strategies and future treatment shortening across the disease 

spectrum. 

Words: 250 

Key words: tuberculosis, drugs, pediatric, pharmacokinetics, nodes 
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Introduction   

Only half of the estimated one million incident pediatric tuberculosis (TB) cases globally 

are treated each year,1 partly due to the reluctance of clinicians to initiate lengthy 

treatment regimens without bacteriological confirmation, which is challenging to achieve, 

especially in young children.2  

The treatment of paediatric pulmonary TB, including the drug regimen, dosing and 

duration, is extrapolated from efficacy trials in adults, with limited consideration to 

differences in the clinical spectrum of disease or the pharmacokinetic (PK) variability 

observed in children. While many children with pulmonary (intrathoracic) TB have 

paucibacillary disease limited to the mediastinal lymph nodes, some have extensive 

disease, including miliary TB, parenchymal pathology or complicated lymph node 

involvement with breakthrough to endobronchial disease.3 Even though it is likely that 

shorter treatment, given in a targeted way, to children with paucibacillary disease would 

be effective, all children with pulmonary TB are currently treated with the same regimen, 

regardless of disease spectrum, severity and bacillary burden. The only exception is the 

addition of ethambutol for children with severe pulmonary disease and in HIV-infected 

children.4 Children typically have lower plasma concentrations for the same milligram 

per kilogram dose compared to adults for most first-line antituberculosis drugs, and 

particularly for rifampin, a key first-line sterilizing drug.5,6 Low exposure to rifampin, is 

associated with worse treatment outcomes in children.7–11   

To date, attempts to shorten treatment duration in adults with pulmonary TB have resulted 

in unacceptably high treatment failure and/or recurrence rates, possibly due to sub-

optimal drug penetration into the diverse lung lesions.12–14 Subtherapeutic 

antituberculosis drug concentrations in lung cavities in adults are associated with 

acquisition of mycobacterial drug resistance and also predict unfavourable TB treatment 
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outcomes.7,15 For the successful treatment of pulmonary TB, drugs need to reach 

molecular targets at adequate concentrations and for adequate duration, particularly inside 

the center of complex granulomas where phenotypically drug tolerant quiescent bacteria 

may remain secluded.12 Antituberculosis drug dosing is based on target drug 

concentrations measured in plasma, despite evidence showing a low correlation between 

drug concentration measured  in plasma vs. at sites of disease, where penetration may be 

both lesion- and drug-specific.13,16 To date, few studies in humans have evaluated the 

penetration of drugs into intrathoracic TB lesions. The  limited studies to date have been 

in adults and have focused on lung tissue,15–17 despite the fact that TB can be thought of 

as a lymphatic disease.18,19 Lymph nodes serve as sites of antigen presentation and 

immune activation during infection, helping to contain the spread of mycobacteria.19 

Lymph nodes also serve as important sites for mycobacterial persistence, with 

Mycobacterium tuberculosis (M.tb) ready to emerge from a non-replicating state if 

immunological containment fails.19 Understanding factors that drive drug penetration, 

particularly of the sterilizing drugs (rifampin and pyrazinamide), into affected lymph 

nodes, could facilitate the design of more effective and potentially shorter regimens in 

children across the disease spectrum, but may also have broader implications for adults. 

We aimed to characterize  the concentrations of first-line antituberculosis drugs at the site 

of disease in children with complicated intrathoracic TB.   

 

Methods  

Study design and procedures  

From November 2018 through March 2019, we prospectively enrolled children with 

complicated intrathoracic TB routinely referred to Tygerberg Hospital, Cape Town, South 

Africa, for the management of severe airway obstruction. Children underwent one of the 
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following routine procedures to establish airway patency: bronchoscopic decompression 

or transthoracic surgical lymph node decompression (SD). Children were eligible if they 

were on a rifampin-containing regimen for at least 10 days. The Health Research Ethics 

Committee at Stellenbosch University (N18/05/059) approved this study.  

On the day of the procedure, antituberculosis treatment was administered after an 

overnight fast with dosing times planned at 2 hours before SD, or randomized at 2, 4, or 

6 hours prior to bronchoscopy. Treatment consisted of weight-banded once-daily doses 

of isoniazid (10-15 mg/kg), rifampin (10-20 mg/kg) and pyrazinamide (30-40 mg/kg). 

Ethambutol (15-25 mg/kg) was added to the regimen for children with severe disease or 

if they were HIV-coinfected using fixed-dose dispersible pediatric combinations (Table 

E1).4,20 Venous or arterial blood samples were collected pre-dose, and at approximately 

2, 4 and 6 hours post-dose. During the procedure, site of disease samples were collected 

in theatre. Bronchoalveolar lavage (BAL) samples were taken from children undergoing 

bronchoscopy and, when available, endobronchial lymph node biopsy specimens were 

collected for PK analysis and TB microbiology. Lymph node tissue samples were 

collected during SD for PK, histology and microbiology. Depending on the size and 

consistency of lymph node fragments, samples were collected in either homogenizing 

tubes or in Cryomold for the PK analysis. Further details are described in the online 

supplement.  

Analytical methods 

PK assays for rifampin, isoniazid, pyrazinamide and ethambutol in plasma, BAL and 

lymph node tissue were performed using validated methods.16 Lymph node material 

obtained through endobronchial biopsy and liquefied lymph nodes from SD were 

collected in homogenizing tubes and analyzed using previously described validated high-

performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
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method.16,17 Solid SD specimens larger than 5mm were further classified by histology on 

frozen section into cellular, necrotic, and mixed lesions. For these specimens, drug 

concentrations were measured from pathologically distinct regions using laser capture 

microdissection (LCM) combined with LC-MS/MS as previously described.17  

PK modelling  

Published rifampin, isoniazid and pyrazinamide population PK models in children and an 

adult ethambutol model were optimized, and the final models were fit to the new data.21,22 

All drug PK models included weight based allometric scaling on clearance and volume 

and the inclusion of postmenstrual maturation for isoniazid and rifampin. Initial estimates 

for the ethambutol model used allometrically scaled parameters from a validated adult 

population PK model. The final plasma PK model was linked to each site of disease 

assessed by modelling an additional compartment. Using an established method,13 site of 

disease PK was described by equation 1. 

𝑑𝐶𝑆𝑂𝐷

𝑑𝑡
= 𝑘𝑝𝑙−𝑆𝑂𝐷 × (𝑅𝑆𝑂𝐷−𝑝𝑙 ×

𝐴𝑝𝑙𝑎𝑠𝑚𝑎

𝑉𝑝𝑙𝑎𝑠𝑚𝑎
− 𝐶𝑆𝑂𝐷)                                         (1) 

CSOD represent the drug concentration in lymph nodes or BAL, kpl-SOD are inter-

compartment rate constants for the transfer of drug from the plasma to the site of disease, 

RSOD-pl are the penetration coefficients (ratios) between site of disease and plasma, and 

Aplasma/Vplasma is the drug concentration in plasma at time t. Penetration values equal to 

one show equal distribution between plasma and tissue, greater than one show 

accumulation into the tissue, and less than one show lower penetration in the tissue 

compared to plasma. When the rate parameter could not be estimated reliably, we 

assumed a fast penetration rate which was more in line with previous models, for 

example, the slowest penetration half-life previously published in adults occurred within 

3 hours,13 and for rabbits, penetration half-lives were within 90 minutes.7,23  
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To date, studies on outcomes and related target serum concentrations have been limited 

to the adult population.8,24,25 Thus, we compared our data to existing adult drug exposures 

from the similar population using published population PK models.22,26–28 The plasma 

and site of disease drug exposures were compared to target minimum inhibitory 

concentration (MIC), intracellular macrophage IC50
24,29–32 and minimum bactericidal 

concentration in caseum (caseum MBC)33 (see online methods).  

 

Results  

Participant characteristics 

We enrolled thirteen children who collectively underwent 15 procedures including eight 

bronchoscopies and seven SDs. Baseline clinical and radiological characteristics are 

shown in Table 1, and individual participant characteristics in Table E2. The median age 

was 8·6 months (interquartile range [IQR]: 3·5-20·2) with median weight of 8·2 kg (IQR 

7·1-10·5). All children had evidence of severe (extensive) intrathoracic disease on chest 

imaging (Figure E1). The median time on antituberculosis treatment was 64 and 34 days 

for the bronchoscopy and SD groups, respectively. All cases were bacteriologically 

confirmed; one child had isoniazid mono-resistant TB and a second had multidrug-

resistant TB which was only diagnosed following the procedure.  

Sample characteristics  

Drug concentrations in BAL could only be determined in 4/8 (50%) of patients due to 

urea concentrations below the limit of quantification in BAL, a requirement for dilution 

factor calculation, and were thus excluded from the modeling. Lymph node samples 

were obtained in 4/8 (50%) of the bronchoscopy cases through endobronchial biopsy, 

and in all seven (100%) SD cases (Table E2). Histological examination of all SD tissue 

fragments showed that most specimens were characterized by necrotizing 
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granulomatous inflammation. None to very little residual normal lymph node tissue was 

identified in lymph nodes, and only one had preserved architecture displaying reactive 

follicular hyperplasia. Ziehl-Neelsen staining revealed acid-fast bacilli in four of the 

seven samples and two had numerous bacilli, which were typically more abundant in 

necrotic foci. While none of the BAL samples were culture-positive, four of seven SD 

cases were culture-positive. MICs were obtained for two of the M.tb isolates and values 

were within the range of normal MIC (isoniazid < 0·03 mg/L, rifampin <0·06 mg/L; 

ethambutol 1 mg/L) (Table E2).  

LCM was performed in nine frozen lymph node specimens from four participants 

allowing the spatial quantification of drugs within the spectrum of different tissue 

compartments identified (necrotic, cellular, or mixed lymphoid) (Figure 1).  

Plasma and tissue PK profiles  

The concentrations of rifampin, isoniazid, pyrazinamide and ethambutol were measured 

in 44 plasma and in 65 BAL and lymph node samples collected at 2 to 8 hours post-dose 

(Figure 2). There was large variability in the concentrations of all drugs amongst site of 

disease compartments, between participants, and even within similar compartments in the 

same participant.  

Modeling of plasma PK and tissue distribution  

Plasma model and simulations 

The final PK estimates are shown in Table 2 and the structural model is shown in Figure 

E2. The rate and penetration coefficient estimates for each drug are shown in Table 3. 

Estimates for the plasma PK model were similar to previously published pediatric models 

(Table E3). Figure 3 shows the simulated concentration-time profiles relative to published 

concentrations observed in adults.22,26–28 Mean values of the steady-state AUC0–24 in 

children compared to adults for plasma, cellular and necrotic lesions are shown in Table 
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4. The values for other compartments where there was no adult reference for comparison 

(BAL, homogenized lymph node and mixed regions) are shown in Table E4 and Figure 

E3.  

 

Rifampin 

Plasma rifampin exposures were similar to adult reference values (AUC0–24 of 41.7 vs. 

38.3 mg*h/L).28 However, only 15% of the 1000 simulated rifampin AUC0–24 in plasma 

were above the proposed adults target of approximately 42 mg*h/L (obtained based on 

adult rifampin dose of 8-12 mg/kg per day).34–36 That said, children appeared to have 

more favourable drug penetration in lymph nodes compared to penetration into lung 

lesions observed in adults, particularly in cellular regions, where the penetration 

coefficient was 1·4 (95% CI: 0.66 to 3.54) resulting in an AUC0–24 of 55.2 mg*h/L. Mixed 

tissue, BAL and homogenized lymph node showed similar concentrations compared to 

plasma (penetration coefficients ranging from 0.9 to 1.0), while cellular and necrotic 

regions were more diverse (penetration coefficient of 1.4 vs. 0.5). Rifampin 

concentrations were below the upper end of the MIC range for >50% of the dosing 

interval in all tissue compartments except the cellular region (Figure 3 and E3). In necrotic 

areas, exposure was well below the selected efficacy target (caseum minimum 

bactericidal concentrations [casMBC]).   

 

Isoniazid 

Plasma concentrations were similar in children compared to the simulated AUC values 

for adults (AUC0–24 of 25.3 vs. 27.7 mg*h/L). The penetration coefficient was particularly 

high in necrotic areas (0.84), consistent with adult data. The penetration coefficient was 

lower in the cellular region of granulomas (0.56), but was twice as high as that observed 
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in adults. Penetration into BAL was high (2.9). Overall, isoniazid exposure was above 

MIC for approximately 50% of the dosing interval for all tissue compartments except in 

necrotic lesions (Figure E3). 

 

Pyrazinamide 

Particularly low plasma pyrazinamide exposures were observed compared to adult data 

(AUC0–24 of 248 vs. 466 mg*h/L). Compared to adults, there was a lower ratio in cellular 

lesions (0.42 vs. 0.70), but a higher ratio in mixed lesions (1.40 vs. 0.61). The penetration 

into BAL was the highest for pyrazinamide compared to other drugs. Despite the low 

plasma pyrazinamide concentrations, our simulations showed pyrazinamide exposure 

was above the “acidic” macrophage MIC for approximately 54% of the dosing interval in 

cellular compartments, but below adult target values in homogenised lymph node and 

necrotic lesions.  

 

Ethambutol 

The overall plasma ethambutol exposure was low. However, there were high penetrations 

into all compartments, ranging from 1.1 in necrotic lesions, to 6 in cellular components. 

The AUC in children was six-fold lower than the simulated adult value of 78.5 mg*h/L, 

and as a consequence, the AUC was above MIC for only approximately 29% of the dosing 

interval, using the lowest range of the MIC distribution. In all compartments except for 

necrotic lesions, ethambutol appeared to accumulate compared to plasma. There are no 

prior adult data on ethambutol concentrations at pulmonary site of disease to allow for 

comparison with this pediatric data.   
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Discussion  

In this proof-of-concept study, we report data, for the first time, on first-line 

antituberculosis drug penetration into the site of disease in children with pulmonary TB. 

Specifically, we show drug penetration into intrathoracic lymph nodes and BAL in 

children with severe forms of pulmonary TB. The penetration coefficients for isoniazid, 

rifampin and pyrazinamide showed lower penetration in most lymph node areas 

compared to plasma. Conversely, rifampin accumulated in cellular regions, while 

ethambutol showed a particularly high accumulation into all tissues compared to plasma. 

Simulations to investigate drug exposures in lymph node lesions in children compared to 

adult lung lesions showed that overall, penetration into the site of disease was similar in 

children compared to adults. However, the standard antituberculosis drug dosing resulted 

in low plasma and consequently, low site of disease exposures for all drugs evaluated 

except for isoniazid. Because only 15% of simulated plasma rifampin AUC0-24 in children 

reached the proposed adults target34–36 and given that rifampin was administered at lower 

end of the 10-20 mg/kg range, possibly indicate the need for use of higher end of dose 

range (20 mg/kg). Several ongoing trials are evaluating higher doses of rifampin up to 50 

mg/kg in adults and 70 mg/kg in children. Higher doses of key first-line drugs would 

likely result in higher plasma exposures, and consequently more optimal exposures in 

other relevant compartments.37  

The current long 6-month standard duration of antituberculosis treatment is a result of the 

proportion of the bacilli that remain dormant in a non-replicating state.33,38 To guide better 

decision-making for improved antituberculosis regimens, a better understanding of the 

potency of each drug against bacilli in different lesions is required. Important factors to 

consider include the location, state (i.e. quiescence and presence of cell wall) and quantity 

of M.tb bacilli during treatment, all of which are still poorly understood. Our results offer 
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new data on lesion-focused penetration of antituberculosis drugs and lay the foundation 

for future research addressing important questions on the exposure-relationship in 

children at the site where disease needs to be effectively treated, across the spectrum of 

severe and non-severe TB. 

 

Lymph nodes are critical in primary M.tb infection in children and adults, and are the 

primary disease site in children, particularly in the very young, who are at highest risk of 

severe TB and mortality. However, the bacterial dynamics and the effect of M.tb infection 

on lymph node structure and function remain understudied. In our study, 

histopathological examination of SD tissue fragments showed predominantly necrotizing 

granulomatous inflammation, with little residual lymph node tissue. This was probably a 

reflection of the nature of the procedure (decompression rather than complete lymph node 

excision) and disease severity, as these lymph nodes were affected to the extent of causing 

airway compression. The effect of corticosteroid therapy on lymph node histology is 

uncertain. Acid-fast bacilli were still seen on Ziehl-Neelsen staining in four of seven SD 

samples after at least four weeks of TB therapy. Although Ziehl-Neelsen staining does 

not differentiate viable from non-viable organisms, positive culture results in four of the 

seven (including two that were acid-fast bacilli negative) demonstrated that at least some 

viable organisms remained in lymph nodes after more than a month of treatment. Bacilli 

were more numerous in necrotic foci. This is similar to data previously reported in animal 

models39 and in adult humans40 and highlights the need to optimize drug concentrations 

in this hard-to-reach compartment. Both these findings (extensive destruction of lymph 

node tissue and viable M.tb, particularly in necrotic foci) are consistent with recent 

macaque studies suggesting that standard antituberculosis treatment regimens provide 

poor killing of M.tb in lymph nodes compared to that in lung granulomas.19  
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The histological spectrum of the tissue samples between adults and children was similar, 

despite different excision locations. Considering that pediatric dosing is extrapolated 

from adults, we compared drug exposures in lesions in children to those in adults.  The 

penetration coefficients of necrotizing lymph nodes in children were remarkably similar 

to what has been described in adult lung granulomas, suggesting that penetration 

properties could be scaled between children and adults for these lesions, which in turn 

could inform future regimen and dosing strategies. The vascular supply of these infection 

sites could possibly be different for cellular lesions, with necrotic foci being avascular. 

The penetration was highest for the two drugs with limited activity against quiescent 

mycobacteria: isoniazid and ethambutol. Conversely, the two drugs with sterilizing 

activity, rifampin and pyrazinamide, had penetration coefficients of 0.55 and 0.40, 

respectively, with exposures in the caseum below their target concentrations (CasMBC). 

A recent ex vivo model has shown that only rifampin fully sterilizes bacilli in caseum33 

with a CasMBC of 6.5 mg/L. A higher or different dosing schedule could achieve 

desirable concentrations in children.  

All of the first-line drugs other than rifampin accumulated in the epithelial lining fluid of  

BAL compared to plasma. For isoniazid, the results were consistent with previous reports 

(2.36-2.57).41 For rifampin, we observed a 4-fold higher penetration coefficient than in 

adult reports (0.86 vs. range 0.22-0.34).42–44 Differences could be due to lysis of the 

alveolar cells during sample collection and processing, leading to a false increase in the 

epithelial lining fluid drug concentrations.45 Indeed, adult studies typically report higher 

rifampin concentrations in alveolar cells than in epithelial lining fluid. With the exception 

of ethambutol, the drug concentrations in BAL were above the MIC ranges explored, in 

line with our microbiological data showing all eight BAL samples that were Xpert 

MTB/RIF positive but culture negative.  
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We present, to our knowledge, the first human data on the penetration of ethambutol into 

pulmonary compartments. Ethambutol is an important component of first-line 

antituberculosis treatment in adults and in children, despite its poor plasma-based 

PK/pharmacodynamic (PD) profile. Our results support the hypothesis that the efficacy 

of ethambutol might be explained by the favourable penetration of this drug into M.tb 

lesions.17 We observed ethambutol accumulation in all compartments relative to plasma, 

but particularly in the cellular areas (penetration coefficient 6.17) where ethambutol 

targets intracellular bacilli.29 Overall, ethambutol exposures in different compartments 

were limited by the low plasma concentrations, which were significantly lower than in 

adults (Cmax 2.3 vs. 11.3 mg/L) and below the theoretical MIC target. This is consistent 

with previous pediatric studies which show erratic absorption and low concentrations of 

ethambutol in children dosed at 10-20mg/kg per day.46 Given the favourable penetration 

into lymph nodes, our results suggest that ethambutol should be dosed at 25 mg/kg (i.e. 

at the higher end of the dosing range of 15-25 mg/kg) to achieve higher site of disease 

exposure. Such doses are considered safe and are associated with very low risk of ocular 

toxicity. 

Although the nonlinear mixed effects approach utilized in our study is useful to evaluate 

sparse PK data, further studies are required to characterize the dynamics of diffusion into 

caseum over time, including better characterization of the rate of movement of drugs into 

lesions compared to plasma. For all four drugs, the absorption models had to be adapted. 

This could be due to the different drug formulations used and/or not having enough data 

available during the absorption phase. Isoniazid had different peripheral volume and 

intercompartmental clearance estimates, which were not in line with what has been 

previously reported, but data were collected only up to six hours making this compartment 

difficult to parameterize. Therefore, isoniazid simulations used previously published PK 
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parameters with lesion parameters from our model to ensure accurate prediction of 

terminal concentrations. 

Our cohort included young children with severe forms of pulmonary TB undergoing 

surgery at one single site which may have introduced selection bias. However, this is the 

most vulnerable population where optimized antituberculosis treatment strategies are 

most needed. All children were anaesthetized at the time of the procedure, and particularly 

those from the SD group received a significant number of concomitant drugs and 

intravenous fluids, all of which could have affected drug disposition. An additional 

limitation in our simulation study is that total but not unbound plasma concentrations 

were quantified thus, protein binding in plasma and tissues were not taken into account. 

However, isoniazid, pyrazinamide and ethambutol are small polar antibiotics that exhibit 

low protein binding. Importantly, the macrophage IC50 and caseum MBC potency assays 

used to measure drug potency at the site of disease both correct for protein binding, as 

they are performed in matrices that reproduce in vivo drug binding. The classification of 

the lymph node histology on the fresh frozen tissue selected for PK into cellular, mixed 

(cellular but necrosis in the background) and necrotic was challenging in some of our 

study samples due to freezing artefact, absence of clear area demarcation and the 

fragmented nature of the tissue samples. However, routine histology samples (formalin-

fixed paraffin-embedded) were usually available and provided guidance on interpretation 

in areas that were difficult to classify on frozen section. Finally, our PK-PD simulations 

in BAL should be interpreted with caution given the limited number of patients in whom 

BAL urea concentration was successfully measured and the technical caveats such as 

dwelling time and volume of instilled lavage fluid. 

In conclusion, we have shown that measuring the penetration of antituberculosis drugs in 

intrathoracic lymph node compartments and BAL in young children was feasible and that 
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the penetration coeficients of first-line antituberculosis drugs into these compartments 

was similar to adults. Nevertheless, the overall plasma exposures of all the drugs were 

low, particularly for ethambutol. Similarly, all the first-line drugs had exposure in 

necrotic tissue at levels lower than target concentrations. Our results support the 

hypothesis that exposure of first-line antituberculosis drugs is both lesion and drug 

specific, and  indicate that current pediatric dosing guidelines are not likely to result in 

target exposures at sites of disease. With an improved understanding of site of disease 

penetration, and using a data-driven modelling approach, it could be possible to model 

optimized doses to result in increased exposures of drugs at the site of disease. This in 

turn can lay the ground for a more appropriate dosing in children and consequently 

improve the efficacy and duration of antituberculosis drugs and regimens at relevant sites 

of disease across the disease spectrum.    
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Tables and Figures 

 

Figure 1. LCM in a representative lymph node specimen. 

 

Haematoxylin and eosin stained lymph node (frozen section) containing two lesions (A) 

and its corresponding serial section taken for laser capture microdissection (B). Regions 

1-3 represent the areas dissected for drug quantitation by LC-MS/MS. Example 

histology of the different areas dissected are shown and correspond to necrotic areas of 

the lesion (A/B1 and C), the cellular layer of the lesion (A/B2 and D), and a lymphocyte 

rich region (A/B3 and E). 
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Figure 2: Raw PK data for each drug in each lesion type. 

 

Log-scale Concentration–time profiles are shown for five lesion types and four drugs by 

respective panel. Plasma concentrations over time for each individual were measured at 

multiple time points after the time of drug administration and before bronchoscopy or 

surgical decompression and are shown as individual lines of different colours. Lesion 

concentrations were measured at a single time point (time of resection) per subject and 

are represented by circles of different colours that correspond to their individual subject 

plasma line. 

The number of patients (and observations) for each lesion and drug are shown in 

bottom, right corner of each image.  

Abbreviations: BAL, bronchoalveolar lavage; LN, lymph node; INH, isoniazid; RIF, 

rifampicin; PZA, pyrazinamide; EMB, ethambutol. 
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Figure 3: Simulated concentration-time profiles of children and adults relative to 

exposure target. 

 

Simulations for 1000 patients with the same representative characteristics were 

performed and their steady state concentration-time profiles taken over 24 hr. Red 

represents an 8.2 kg, 8.6 month child with median and 95% CI. Blue represents 

simulated 60 kg adult profiles with available parameters from plasma (RIF, INH, PZA 

and EMB  from  Smythe et al., Wilkins et al 2011, Wilkins et al 2006,  Jönsson et al, 

respectively) and lesion parameters (from Strydom et al). Dosing for child was H =  120 

mg, R  =  120 mg, Z  =  250 mg, E  = 200 mg and adult, H = 300, R = 600, Z = 1600, E 

= 1100.  Yellow bands represent the distribution of PD exposure target selection: wild 

type MIC for homogenised lymph node; intracellular macrophage IC50 for cellular 
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lesions (orange dashed line) and caseum MBC for the necrotic tissue (black dashed 

line).    

Abbreviations: INH, isoniazid; RIF, rifampicin; PZA, pyrazinamide; EMB, 

ethambutolM PD, pharmacodynamics; MIC, minimum inhibitory concentration; MBC, 

minimum bactericidal concentration. 
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Table 1. Patient characteristics at time of procedure by study group 

 

  

Bronchoscopy 

(N=8) 

Surgical Decompression 

(N=7) 

Male Sex (% ) 3/5 (37.5) 4/3 (57.1) 

Median age in months (IQR) 17.6 (6.3-41.0) 6.9 (3.4-17.2) 

Median weight in kg (IQR) 9.9 (8.2-12.4) 7.1 (4.1-8.3) 

Median weight-for-age Z-score 

(IQR)* 

0.1 (-1.3, 0.8) -1.0 (-4.2, -0.1) 

HIV-positive, † N (%) 1 (12.5) 0 (0.0) 

Child has current TB source case, 

N (%)  

5 (62.5) 5 (71.4) 

TB disease type, N (%) 
  

PTB only  6 (75.0) 6 (85.7) 

PTB and EPTB ‡   2 (25.0) 1 (14.3) 

Previous TB episode, N (%) 1 (12.5) 0 (0.0) 

Median days on treatment (IQR) 64 (60-73) 34 (28-74) 

Regimen, N (%) 
  

HR§, 2 (25.0) 0 (0.0) 

HRZ ll  2 (25.0) 1 (14.3) 

HRZE 3 (37.5) 5 (71.4) 

RZEL** 1 (12.5) 1 (14.3) 

Median dose in mg/kg (IQR) 
  

Rifampin 12.8 (12.1-16.0) 12.3 (11.1-15.0) 

Isoniazid 12.8 (11.4-14.8) 12.2 (11.1-12.7) 
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Pyrazinamide 28.5 (23.8-30.9) 30.5 (25.3-34.2) 

Ethambutol 20.2 (18.6-22.8) 20.8 (20.2-24.1) 

Receiving oral steroids, N (%) 6 (75.0) 7 (100.0) 

Chest X-ray characteristics, N (%) 
  

Consolidation 7  (87.5) 4 (57.1) 

Collapse 3 (37.5) 1 (14.3) 

Cavity 1  (12.5) 0 (0.0) 

Paratracheal nodes 3 (37.5) 4 (57.1) 

Hilar nodes 6 (75.0) 5 (71.4) 

Airway Compression 6 (75.0) 6 (85.7) 

Pleural effusion  1 (12.5) 0 

 

Abbreviations: IQR, Inter quartile range; EPTB, extrapulmonary TB; PTB, pulmonary 

TB; TB, tuberculosis; H, isoniazid; R, rifampicin; Z, pyrazinamide; E, ethambutol; L, 

levofloxacin; HIV, human immunodeficiency virus. 

Footnote:  *Anthropometric Z scores were calculated based on WHO growth standards. 

†HIV infected child on abacavir, lamivudine and Lopinavir/ritonavir; ‡ EPTB included: 

group 1- disseminated (N=1) and miliary (N=1); group2 -abdominal (N=1); §One case 

without prior bacteriological confirmation was diagnosed with multi-drug resistant TB 

detected on the day of the procedure; ll  One child received HRZ plus ethionamide for 

disseminated disease; ** One case of isoniazid mono-resistance diagnosed at the time of 

TB treatment initiation. 
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Table 2. Final plasma PK parameters 

 

Abbreviations: Tlag, lag in absorption time; Mtt, mean transit time; NA, Not applicable; 

NN, number of transit compartments; ka, rate of absorption; CL, clearance; Vc, central 

volume; Q, inter-compartmental clearance; Vp,  peripheral volume;  F, bioavailability.  

TM50, post-menstrual age at 50% of adult clearance; Hill, steepness of the maturation 

function; IIV, inter-individual variability. Footnote:  Parameters scaled to 8·6 month, 

8·2 kg individual.  Individual clearance and volume values were adjusted according 

to allometric scaling on weight, CLi = CLstd•(WT/8.2)0.75, V1i = V1std•(WT/8.2)1, 

Qi = Qstd•(WT/8.2)0.75, V2i = V2std•(WT/8.2)1,      

 

Isoniazid Rifampin Pyrazinamide Ethambutol 

Tlag (h) 0.4 (1.00)* 0.961 (14.3) NA 0.493 (13.8) 

ka (1/h) 0.654 (15.1) 0.592 (13.3) 0.586 (14.9) 0.324 (7.00) 

CL/F 

(L/h) 

7.36 (29.8) 4.64 (8.90) 0.977 (9.90) 15.8 (18.0) 

Vc/F (L) 8.72 (36.8) 8.27 (11.2) 5.23 (13.3) 8.59 (5.60) 

Q (L/h) 

0.0751 

(76.2) 

NA NA 7.65 (2.30) 

Vp/F (L) 12.1 (59.5) NA NA 87.2 (2.30) 

TM50 

(weeks) 

49.0 (FIXED 58.2 (FIXED)   

Hill 

2.19 

(FIXED) 

2.21 

(FIXED) 

  

IIV CL/F 0.817 (41.5) 0.187 (47.9) 0.0538 (59.7) 0.24 (36.8) 

IIV Vc/F  0.48 (48.3) 0.0629 (68.2)  
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*Values in parenthesis = percentage relative standard error (RSE).
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Table 3.  Final site of disease PK parameters according to site of disease 

INH RIF PZA EMB 

Lesion Rate Ratio Rate Ratio Rate Ratio Rate Ratio 

Present 

study 

Adult 

reference 

Present 

study 

Adult 

reference 

Present 

study 

Adult 

reference 

BAL 

20* 2.86 

(1.53 – 

2.91) 

20* 1.13 

(0.998 – 

1.262) 

0.218 

(0.124 – 

0.314) 

20.4 

(16 – 25) 

20* 1.34 

(0.248 – 

2.92) 

Homogenised 

lymph node  

20* 0.513 

 (0.28 – 

0.75) 

20* 1.17 

(1.044 – 

1.296) 

20 * 0.753 

(0.63 – 0.88) 

20* 3.16 ( 0.16 

– 6.74)

Cellular 

20* 0.556 

(0.32 – 

0.79) 

[0.228] 

(0.223 – 

0.233) 

0.639 

(0.568-

1.008) 

1.37 

(0.874 – 

1.866) 

[0.348] 

(0.122 – 

0.574) 

20* 0.416 

(0.36 – 0.48) 

[0.698] 

(0.597 –

0.799) 

0.574 

(0.384 – 

1.368) 

6.17 

(0.914 – 

14.4) 

Necrotic 

20* 0.843 

(0.80 – 

0.88) 

[0.824] 

(0.776 – 

1.01) 

20* 0.552 

(0.477 – 

0.641) 

[0.443] 

(0.251 – 

0.635) 

20* 0.395 

(0.30 – 0.50) 

[0.394] 

(0.266 – 

0.5219) 

20* 1.11 

(0.430 – 

1.95) 

Mixed 

2.58 

(0.684 

– 

4.416) 

0.486 

(0.46 –0.80) 

20* 0.873 

(0.725 – 

1.065) 

20* 1.40 

(0.91 – 1.9) 

20* 5.44 (2.15 

– 10.5)

Abbreviations: BAL: bronchoalveolar lavage; NA, Not applicable 

The rate (kpl in hr-1, inter-compartmental rate constants for the transfer of drug from the plasma to the lesion) and ratio (Rpl, the penetration 

coefficients (ratios) between lesion and plasma.) for each drug and lesion are shown together with the adult ratio coefficient (Strydom et al)13 in 

parenthesis, when available.   
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The following definitions were used for adult lesion: Cellular (defined as small cellular nodules); necrotic (caseum from closed nodule) 

*Values with asterisk were fixed in model to assume an almost instantaneous penetration of the drug.  

Values in parenthesis = 95% Confidence interval 

Square parenthesis= adult reference. 
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Table 4: Area under the curve (0-24 hours.) values comparing adults and children 

exposure 

Area under the curve0-24 (mg*h/L) (95% CI) 

Plasma Cellular Necrotic 

Isoniazid Adult23 27.7 (23.8 - 32) 11.8 (10.1 - 13.6) 23.3 (20 - 26.9) 

Child 25.3 (22.4 - 28.6) 10.8 (9.53 - 12.1) 21.6 (19.1 - 24.3) 

Rifampicin Adult24 41.7 (35.8 - 49.4) 14.5 (12.5 - 17.2) 18.5 (15.9 - 21.9) 

Child 38.3 (33.5 - 43.7) 55.2 (48.3 - 63) 21.2 (18.5 - 24.1) 

Pyrazinamide Adult22 466 (395 - 539) 194 (165 - 225) 184 (157 - 214) 

Child 248 (213 - 294) 103 (88.6 - 122) 97.9 (84.1 - 116) 

Ethambutol Adult21 105 (91.6 - 124) NA NA 

Child 12.3 (10.6 - 14.6) 76.8 (66.6 - 91.1) 13.7 (11.9 - 16.3) 

Abbreviations: CI, confidence intervals; NA, Not applicable; 

Footnote: Median of simulation of 1000 individuals with individual variability is shown 

with 95% CI as shaded area. Adults received South Africa standard of care doses 

assuming 60 kg patient (doses were:rifampicin 600 mg; isoniazid 300 mg; pyrazinamide 

1600 mg and ethambutol 1100mg). Children were 8.2 kg and received: rifampicin 120 

mg, isoniazid: 120 mg, pyrazinamide:250 mg, ethambutol:200 mg 
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1. Supplementary Online Methods 

 

Study setting and population  

This study was conducted at Tygerberg Hospital, a large academic referral hospital in 

Cape Town, Western Cape Province, South Africa, with an estimated provincial 

tuberculosis (TB) incidence of 681 per 100,000 population in 2015.1 The paediatric 

pulmonology department at Tygerberg Hospital serves as referral unit for complicated 

TB cases and manages approximately 400 cases per year with approximately 20% of 

confirmed TB cases routinely undergoing diagnostic or therapeutic bronchoscopy.2 

 

The standard clinical management of children with intrathoracic TB in South Africa, 

based on current World Health Organization (WHO) and national guidelines, is weight-

banded once-daily doses of isoniazid (10-15 mg/kg), rifampin (10-20 mg/kg) and 

pyrazinamide(30-40 mg/kg). Ethambutol  (15-25 mg/kg) is added in children with severe 

disease or those HIV-coinfected (Table E1).3,4 Children with severe intrathoracic TB 

complicated by significant airway obstruction receive prednisone (2 mg/kg daily) and 

frequently undergo therapeutic interventions to establish airway patency either through 

bronchoscopy, or surgical relief via surgical transthoracic lymph node decompression 

(SD), according to local protocols at Tygerberg Hospital.5–7  

 

Flexible bronchoscopy is performed under general anaesthesia. Following evaluation of 

the airways, bronchoalveolar lavage (BAL) is completed with a weight-based volume of 

1 mL/kg per aliquot of 0.9% saline. If lymph nodes have ulcerated into the airway, the 

117

Stellenbosch University  https://scholar.sun.ac.za



BAL is completed in that specific airway. In cases where no ulceration has occurred, the 

bronchoscope is wedged into the most involved lobe or segment as determined 

radiologically, and the lavage performed. Two 1-2mL BAL samples are routinely 

obtained, one for mycobacterial smear microscopy and automated liquid culture, and one 

for Xpert MTB/RIF-Ultra (Xpert; Cepheid, Sunnyvale, CA, USA). Visible intraluminal 

tissue is biopsied (endobronchial biopsy) and specimens are analysed microbiologically.6 

Children with life-threatening airway obstruction undergo transthoracic SD, performed 

according to a standard protocol which involves thoracotomy and lung compression to 

expose the relevant lymph nodes.5 Suction or forceps are used to remove the nodal 

contents, often extracted in a piecemeal manner, which is then analysed histologically 

and microbiologically.  

Study design and clinical procedures 

In this study, we excluded children below 3 kg and those with haemoglobin <8g/dL due 

to safety considerations. Written informed consent was obtained from parents/legal 

guardians after obtaining approval of the relevant Health Research Ethics Committee. 

On the day of the bronchoscopy or surgery, the study team administered antituberculosis 

treatment, antiretrovirals (ARVs) and prednisone, as relevant, after a standard overnight 

fast. Antituberculosis drugs consisted of a weight-band fixed-dose combination tablet of 

rifampin and isoniazid (60:60), 500 mg pyrazinamide and 400 mg ethambutol (Sandoz, 

Sanofi Aventis and Pharmacodynamics, respectively), administered as crushed tablets, 

diluted in a maximum 5 mL of water. The exact timing of antituberculosis and ARV drug 

administration on pharmacokinetic (PK) sampling day and the preceding 2 days was 
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documented. Participants receiving other concomitant medications were given these on 

the evening after the procedure, or on the following day.  

  

The study was designed so that different participants contributed samples at different time 

points to attempt to reconstruct the entire PK profile for BAL and tissue samples. Thus, 

dosing times were planned at approximately 2 hours before surgical decompression or 

randomized, at 2, 4, or 6 hours prior to bronchoscopy.  The exact time of the blood sample 

targeted to be coupled to the site-of-disease sample was recorded in relation to the time 

of bronchoscopy/SD.   

 

Blood samples were collected in ethylenediaminetetraacetic acid-coated tubes, 

centrifuged, and the plasma frozen at -80℃ within 30 minutes of sampling. An additional 

blood sample was collected within 4 hours of bronchoscopy to determine the urea 

concentration. BAL was collected in polypropylene tubes, immediately placed on ice, and 

frozen at -80℃, within 1 hour of collection.  

 

Lymph node samples were collected, and depending on size and quality were divided for 

PK analysis, routine histology, and TB microbiology. Small lymph node tissue obtained 

through endobronchial biopsy at the time of bronchoscopy and liquefied lymph node 

obtained at the time of SD were collected in pre-weighed homogenizing tubes and frozen 

at -80℃ within 1 hour of collection until PK analysis was performed. Larger, solid lymph 

node fragments (>5 mm) from SD were divided into samples for routine histology, TB 

microbiology and PK analysis. Tissue for routine histology was submitted in a tube 

containing 10% neutral buffered formalin. Tissue submitted for TB microbiology was 

collected in a non-additive tube. Tissue submitted for PK analysis was placed in a 
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cryomold, wrapped with aluminium foil and immediately frozen in liquid nitrogen vapour 

for at least 5 minutes. All samples were stored within an hour of collection at -80℃ until 

analysis.  

Analytical methods 

Plasma pharmacokinetics 

The concentrations of rifampin, isoniazid, pyrazinamide and ethambutol were quantified 

in plasma using a validated high-performance liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) assay.8,9 Quality control analysis showed good 

reproducibility with a coefficient of variation of ≤15% and accuracy, and inter-sample 

differences of <15%. The lower limit of quantification (LLOQ) in plasma for both 

isoniazid and ethambutol were 2 ng/mL, 1 ng/mL for rifampicin, and 50 ng/mL for 

pyrazinamide.  

Bronchoalveolar lavage PK 

BAL samples were analysed by LC-MS/MS using a validated method.8,9 The ratio of urea 

concentration in BAL and serum was determined to calculate the volume of epithelial 

lining fluid recovered.10 The LLOQ in BAL for both isoniazid and ethambutol were 

2ng/mL, 1ng/mL for rifampicin, and 50 ng/mL for pyrazinamide.  

Lymph node PK 

All lymph node samples obtained through endobronchial biopsy (bronchoscopy group) 

and necrotic liquid lymph node contents from SD group were collected in homogenizing 

tubes, and analyzed using a validated LC-MS/MS method previously described and 
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labelled as “homogenized LN”.8,9 Larger (>5 mm) and solid tissue specimens obtained 

from SD were further classified by histology on frozen section and labelled into, cellular, 

necrotic, and mixed (cellular with necrosis in the background). We measured drug 

concentrations in tissues using LC-MS/MS with tissue imaging by laser capture 

microdissection (LCM) as previously described.8 The LLOQ in tissues was 200 ng/g for 

rifampin, 50 ng/g for isoniazid, 500 ng/g for pyrazinamide, and 100 ng/g for ethambutol. 

 

Mycobacteriological examination 

BAL and tissue samples were sent to on-site nationally accredited routine TB laboratory 

(National Health Laboratory Services, NHLS) for acid-fast bacilli smear, liquid culture 

(Mycobacteria Growth Indicator Tube (MGIT), Becton-Dickinson, USA), and drug 

susceptibility testing using line probe assays (GenoType MTBDRplus and MTBDRsl; 

Hain Lifescience, Nehren, Germany) as per standard of care. . We estimated  minimum 

inhibitory concentrations (MIC) to first- and second-line antituberculosis drugs for 

mycobacterial isolates from lymph node samples by using Sensititre Mycobacterium 

tuberculosis MYCOTB Plate (Thermo Fisher, Waltham, MA, USA).11  

 

Clinical data  

We collected data on demographic and clinical characteristics, the duration of 

antituberculosis therapy prior to initiation of the observed study doses, concomitant 

medications, age, weight and height on the day of the procedure, human 

immunodeficiency virus (HIV) infection and exposure status, sex, ethnicity, TB disease 

spectrum and severity, TB microbiology and other routine laboratory data. TB disease 

severity was classified using modified Wiseman criteria.12 Chest radiographic data and 
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chest computed tomography data were collected as standard of care. Chest radiographs 

(AP and lateral) were reported by a pediatric pulmonologist (PG). 

Statistical considerations  

Randomization assignment for PK sampling  

Assignment to different dosing times was done by simple randomisation with an equal 

number of participants per group. We prepared a single list of identity numbers with the 

three dosing times (2, 4 and 6 hours prior to bronchoscopy) permuted randomly across 

them, and assigned identity numbers consecutively to enrolled participants. 

Sample size calculation 

Given the lack of any previous pediatric data on which to base calculations, we estimated 

that a sample size of approximately 15 cases would provide reasonable data for the 

population PK model and drug penetration ratio estimates, based on two adult studies 

which included sample sizes of 14, and 15, respectively.9,13 

Pharmacokinetic modeling 

PK modeling  

Concentration-time data for each drug in plasma were modelled using a population PK 

approach to best capture the expected variability between participants. Nonlinear mixed-

effects (NLME) models with first-order conditional estimation with interaction as 

implemented in NONMEM (version 7.4.2; ICON Development Solutions, Ellicott City, 

MD, United States) were used to estimate PK parameters. Simulations were performed 

with R software using the mlxR package from Lixoft (version 2019R1; Antony, France: 

Lixoft SAS, 2019).  
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Initial estimates used rifampin, isoniazid, and pyrazinamide parameters from existing 

plasma population models based on data from South African children.14 In addition, 

rifampin and isoniazid had postmenstrual age as a covariate on clearance according to 

Zvada et al.14  To model ethambutol in children, South African adult PK parameters from 

Jönsson et al, were scaled allometrically to the weights of the children.14,15 The parameters 

from these models were fixed and the model fit to data evaluated and subsequently re-

estimated where necessary. Structural model changes were made when model parameters 

could not be reliably estimated due to the sparse nature of the data. For example, transit 

compartments were excluded and simplified to a lag in absorption time for isoniazid, 

rifampin and ethambutol, Figure E2.  

 

The process of model selection and evaluation was guided by physiological plausibility, 

clinical relevance, basic goodness of fit plots, visual predictive check (VPC) plots, 

(Figure E4) parsimony, and statistical significance using likelihood ratio test (LRT) for 

nested models.  Assuming the LRT is χ2 distributed, a p-value of 0.05  was defined 

statistically significant which equals a reduction in LRT ≥ 3.84 for each additional model 

parameter. 

 

Exposure simulations 

Concentration time profiles and derived area under the concentration-time curve from 0 

to 24 h (AUC0–24) at steady state were simulated for the average age and weight of 

children in the cohort (8.6 months, 8.2 kg) for all tissue types using our cohort plasma 

and tissue estimates. To best compare these outputs to adult exposure from the same 

population we used published population PK models from South African adults for 

rifampin, isoniazid, pyrazinamide and ethambutol.16–19 Cavity from caseum and small 
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cellular nodule rate and ratio estimates from clinical lesion data,20 were added to the South 

African adult plasma models to simulate necrotic and cellular lesion exposures and 

compared with children. We further compared the simulated time concentration profiles 

for the four drugs in the different compartments to appropriate inhibitory and bactericidal 

target concentrations, adjusting the target potency values to reflect drug tolerance of local 

bacterial populations in each compartment. For plasma, BAL, homogenized LN and 

mixed tissue, we used published distributions of wild type minimum inhibitory 

concentration (MIC)21–24 since these compartments potentially harbor a mix of 

intracellular, extracellular, replicating and non-replicating bacteria; intracellular 

macrophage IC50
25 was used in cellular lesions where bacilli reside mostly in 

macrophages and caseum MBC26 was used in necrotic tissue or caseum where non 

replicating persisters reside (Table E4). 
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3. Supplementary Figures 

  

Figure E1. Chest X-ray and accompanying CT scan image and lymph node sample 

 

Chest X Ray and CT Scan show bilateral mediastinal necrotic hilar lymph node and 

compression of left main bronchus and bronchus intermedium (90%) and collapse 

consolidation of  right upper and middle lobe with multiple scattered nodules 

(endobronchial spread). Resected hilar lymph node frozen with liquid nitrogen and 

placed on cryomold for pharmacokynetic analysis.  
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Figure E2: Schematic of structural model 

 

 

 

 

First-line drugs R, H, Z and E with parameters CL, V on the central compartment and 

ka from an absorption compartment (A). Z required a transit model to capture 

absorption, and H and E required an additional compartment (P) with Q to model 

plasma data. Tissue concentration–time profiles were modelled with the addition of 2 

parameters to describe the rate of drug absorption into the tissue compartment and the 

partition coefficient of observed tissue concentration to plasma concentration.  

Abbreviations: A, absorption compartment; CL, clearance; Cp, plasma concentration; E, 

ethambutol; H, isoniazid; ka, rate of absorption; P, peripheral compartment; PK, 

pharmacokinetic; Z, pyrazinamide; Q, intercompartmental clearance; R, rifampicin; 

Tlag, lag time before absorption; V, volume; KL1-5, inter-compartmental rate constants 
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for the transfer of drug from the plasma to the lesions 1-5; RL1-5, the penetration 

coefficients (ratios) between lesions 1-5 and plasma. 
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Figure E3: Simulated concentration profiles of children 

Simulations for 1000 patients were performed and their steady state concentration time 

profiles taken over 24 hrs. Red represents an 8·2 kg, 8·6 month child with median and 

95 percentile shaded area.  Yellow bands represent the distribution of  exposure target 

selection: wild type MIC21–24 for homogenized LN; intracellular macrophage MIC21 for 

cellular (orange) and caseum MBC26 for the necrotic tissue (black).  

Abbreviations: INH, isoniazid; RIF, rifampicin; PZA, pyrazinamide; EMB, ethambutol; 

PD, pharmacodynamics; LN, lymph node; MIC, minimum inhibitory concentration; 

MBC, minimum bactericidal concentration. 
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Figure E4. Visual predictive check of PK model 

 

 

 

Black line is the median prediction from the model, grey ribbons represent the 

prediction interval for the median (95% CI) and black circles represent original data. 

INH, isoniazid; RIF, rifampicin; PZA, pyrazinamide; EMB, ethambutol; BAL, 

bronchoalveolar lavage. 
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4. Supplementary Tables

Table E1. Weight-band doses used for the treatment of complicated tuberculosis in 

children <8kg or <30 kg 

Body 

weight 

Rifampicin/ 

Isoniazid 

60mg/60mg 

Pyrazinamide 

150mg tablet or 

150 mg/3ml 

OR Pyrazinamide 

(Z) 500 mg

Ethambutol 400mg or 

400mg/8ml  

2-2.9 kg 1/4 tablet 1.5 ml (75 mg) 1ml (50 mg) 

3-3.9 kg 3/4 tablet 

2.5 ml (125 mg) 

or 1/4 tablet (125 mg) 1.5 ml (75 mg) 

4-5.9 kg 1 tablet 3 ml (150 mg) or 1/4 tablet (125 mg) 2ml (100mg) 

6-7.9 kg 1 + 1/2 tablets 1/2 tablet (250 mg) 3 ml (150 mg) 

8-11.9 kg 2 tablets 1/2 tablet (250 mg) 1/2 tablet (200 mg) 

12-14.9 kg 3 tablets 1 tablet (500 mg) 3/4 tablet (300mg) 

15-19.9 kg 3 + 1/2 tablets 1 tablet (500 mg) 1 tablet (400mg) 

20-24.9 kg 4 + 1/2 tablets 

1+1/2 tablet (750 

mg) 1 tablet (400mg) 

25-29.9 kg 5 tablets 2 tablet (1000 mg) 

1 + 1/2 tablets 

(600mg) 

Excluding tuberculosis meningitis and miliary tuberculosis. 
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Table E2. Individual clinical features of study participants in bronchoscopy (ID 1-8) and surgical decompression (ID 9-15) groups. 

 

ID Sex Age 

Weight 

in Kg 

(WAZ-

score) 

Days on 

treatment and 

regimen  

AP 

Microbiological characteristics 

baseline                procedure 

Site of disease 

sample 

Histology 

1 F 20·2 8·1 (-3·0) 70 HRZ S Xpert -; C+   

BAL: Xpert +; C 

- 

2h: BAL λ 

NA 2 # F 6·6 8·21 (0·1) 64 RZELa 

N/

A 

Xpert +; C+   

BAL: Xpert +; C 

- 

4h: BAL λ 

3 * F  17·4 

10·5 (-

0·3) 

62 HRZE S Not available 

BAL: Xpert +; C 

- 

6h: BAL + 1 LN 

(hiliar)  
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4 ⱡ M  61·8 

16·4 (-

0·7) 

102 HR  F  C+ 

BAL: Xpert +; C 

- 

6h: BAL + 1 LN 

(hiliar)  

5* F 17·8 11·0 (0·1) 76 HRZE S Not available 

BAL: Xpert +; C 

- 

2h: BAL + 1 LN 

(hiliar) 

6 M 1·4 7·1 (3·4) 64 HRb S Not available 

GA: Xpert +; C+ 

BAL: Xpert 

trace; C -   

4h: BAL 

7 F 6·1 9·4 (1·5) 17 HRZE I Xpert +; C+   

BAL: Xpert +; C 

- 

2h: BAL λ 

8 γ M 64·5 

13·9 (-

1·9) 

58 HRZ+ Eto I C+ 

BAL: Xpert +; C 

- 

4H BAL λ 

9 M 3·4 5·4 (-1·0) 48 HRZE S Xpert + LN: C +c 

4 LN (hiliar, 

subcarinal) 2 ◊ 

NGI, Langhan’s cells, 

ZN+ 

136

Stellenbosch University  https://scholar.sun.ac.za



10 F 3·5 4·0 (-4·2) 32 HRZE S C+ LN: Xpert +; C - 1 LN (hiliar) NGI, ZN+++ 

11 M 37·9 

7·11 (-

5·2) 

81 HRZE S C+ LN:  C + 

2 LN (hiliar, 

subcarinal) 

NGI, Langhan’s cells, 

ZN- 

12 M 17·2 9·9 (-0·1) 11 HRZE S Xpert +; C+   LN: C + 

3 LN (paratracheal, 

hiliar, subcarinal) 

NGI, foreign body 

cells, ZN- 

13 M 8·6 7·3 (-0·9) 34 HRZE S Xpert +; C+   LN:  C - 

2 LN (hiliar, 

subcarinal) 2◊ 

NGI, foreign body 

cells, calcification, 

ZN+++ 

14 # F 6·9 8·3 (0·0) 74 RZELa 

N/

A 

Xpert +; C+   LN: C - 

2 LN (paratracheal 

subcarinal) 

GI without necrosis, 

reactive lesion 

15 F 3·1 4·1 (-3·7) 28 HRZ S C+ LN: C +d 

2 LN (paratracheal, 

subcarinal) 

NGI, ZN+,  
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Abbreviations: AP, acetylator phenotype; C+, culture positive for M. tuberculosis; E, EMB, Ethambutol; Eto, Ethionamide; F, fast acetylator 

phenotype; GI, granulomatous inflammation; H, INH, isoniazid; HIV, human immunodeficiency virus; I, intermediate acetylator phenotype; L, 

levofloxacin; LN, lymph node; MDR-TB, multi-drug resistant tuberculosis; NA Not applicable; NGI, necrotizing granulomatous inflammation; 

R, RIF, rifampicin; S, slow acetylator phenotype; TB, tuberculosis; Xpert +, Xpert MTB/RIF Ultra positive for M. tuberculosis; Z, 

pyrazinamide; ZN, Ziehl Nielsen.  

Footnote:  * and # represent same individual; ⱡ HIV co-infected on antiretroviral therapy (abacavir, lamivudine and lopinavir/ritonavir).  

γ recurrent TB; Age is shown in months; Days on TB treatment represent the total number of days since the initial regimen was started and 

regimen shows the specific drugs present at the time of the procedure. Acetylator phenotype was inferred from estimated individual clearance 

values. 

All cases were bacteriologically confirmed for drug susceptible M.tuberculosis except for:  a -one child with INH mono resistant TB and b a child 

diagnosed with MDR-TB at the time of the procedure who did not have prior bacteriological confirmation. MIC values were obtained for 2 

isolates c,d and were:  INH: < 0·03 mg/Lc and <0·06 mg/L d ; RIF <0·06 mg/L; EMB 1 mg/L.  

λ BAL samples in which urea dilution factor could not be calculated. 

◊ surgical decompression nodes processed as homogeneized LN, either due to liquid nature of the sample or logistic constrains.

Total number of homogeneized LN: 7 (3 bronchoscopy biopsies from ID 3, 4 and 5 plus 4 LN from ID 9 and 13). 
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Total number of LN for LCM analysis 9 LN from 4 distinct patients (11, 12, 14, 15) 
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Table E3: Reference table of plasma pharmacokinetic parameters estimates 

INH RIF PZA EMB 

New 

Zvada 

2014 

New 

Zvada 

2014 

New Zvada 2014 New Jönsson 2011* 

Tlag (hr) 0·4 (1·00) NA 0·961 (14·3) NA NA - 0·493 (13·8) - 

Mtt NA 0·179 (10·9) NA 1·04 (6·10) NA 0·10 (17·7) - 0·78 (7)

NN NA 4 (FIX) NA 8·04 (11·9) NA 3·94 (8·00) - 1 (FIX)

ka (1/hr) 0·654 (15·1) 2·47 (12·6) 0·592 (13·3) NA 0·586 (14·9) 4·48 (6·10) 0·324 (7·00) 0·474 (24)

CL/F (L/h) 7·36 (29·8) 6·52 (13·9)** 4·64 (8·90) 5·94 (9·00) 0·977 (9·90) 0·787 (5·60) 15·8 (18·0) 10·5 (3·1)

Vc/F (L) 8·72 (36·8) 7·22 (10·2) 8·27 (11·2) 10·6 (10·2) 5·23 (13·3) 6·32 (2·60) 8·59 (5·60) 13·4 (42)

Q (L/h) 0·0751 (76.2) 1·46 (26·3) NA NA NA NA 7·65 (2·30) 8·75 (10)

Vp/F (L) 12·1 (59·5) 3·30 (33·9) NA NA NA NA 87·2 (2·30) 102 (22) 

Abbreviations: INH, isoniazid; RIF, rifampicin; PZA, pyrazinamide; EMB, ethambutol; Tlag, lag in absorption time; Mtt, mean transit time; NA 

Not applicable; NN, number of transit compartments; ka, rate of absorption; CL, clearance; Clint, intermediate acetylator; Vc, central volume; Q, 

intercompartmental clearance; Vp,  peripheral volume;  F, bioavailability.  
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Footnote: Parameters shown represent a child with a median weight of 8.2 kg. RSE (%) values in parenthesis 

* Adult CL, Vc, Q and Vp parameters allometrically scaled to median cohort weight 

** Cl intermediate acetylator 
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Table E4: Area under the curve values for matrixes in children 

Area under the curve (mg/L.h) 

Plasma BAL Homogenized LN Cellular Necrotic 

INH 23·4 (14·5 - 37·8) 67·1 (41·7 - 108) 12·5 (7·75 - 20·1) 13·3 (8·26 - 21·4) 19·6 (12·2 - 31·6) 

RIF 38·3 (33·5 - 43·7) 32·9 (28·8 - 37·5) 38·1 (33.3 - 43·4) 55·2 (48·3 - 63) 21·2 (18·5 - 24·1) 

PZA 248 (213 - 294) 5057 (4343 - 5995) 187 (160 - 221) 103 (88·6 - 122) 97·9 (84·1 - 116) 

EMB 12·3 (10·6 - 14·6) 34·6 (30 - 41·1) 39·1 (33·8 - 46·4) 76·8 (66·6 - 91·1) 13·7 (11·9 - 16·3) 

Abbreviations: INH, isoniazid; RIF, rifampicin; PZA, pyrazinamide; EMB, ethambutol; BAL, bronchoalveolar lavage; LN, lymph node. 

Footnote: Median area under the curve is shown with 95% confidence interval (CI) in parenthesis, simulated in population of n=1000 with 

interindividual clearance for isoniazid, rifampicin, pyrazinamide, ethambutol.  
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Table E5:  Exposure target selection (mg/L) 

MIC 21–24 Macrophage IC50 25 Caseum MBC26 

Isoniazid 0·025 - 0·2  0·04 >128

Rifampicin  0·06 - 0.5  0·26 6·5 

Pyrazinamide  25 - 100 >2·46  30 

Ethambutol  0·5 - 5 >4·09 >128

Abbreviations: MIC, minimum inhibitory concentration (wild type); caseum MBC,  caseum minimum bactericidal concentration. 

Footnote: Values and distribution of pharmacodynamic exposure target selection selected.  
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Abstract 

Background  

Meropenem is being investigated for repurposing as an anti-tuberculosis drug. This study aimed 

to develop a meropenem population pharmacokinetics model in patients with pulmonary 

tuberculosis and identify covariates explaining inter-individual variability.  

Methods  

Patients were randomized to one of four treatment groups: meropenem 2g thrice daily plus oral 

rifampicin 20 mg/kg once daily, meropenem 2g thrice daily, meropenem 1g thrice daily, and 

meropenem 3g once daily. Meropenem was administered by intravenous infusion over 0.5-1h. 

All patients also received oral amoxicillin/clavulanate together with each meropenem dose, and 

treatments continued daily for 14 days. Intensive plasma pharmacokinetics sampling over 8h 

was conducted on 14th day of the study. Nonlinear mixed-effects modelling was used for data 

analysis. The best model was chosen based on likelihood metrics, goodness-of-fit plots and 

parsimony. Covariates were tested stepwise. 

Results  

A total of 404 concentration measurements from 49 patients were included in the analysis. A 

2-compartment model parameterized with clearance (CL), inter-compartmental clearance (Q), 

central (V1) and peripheral (V2) volumes of distribution fitted the data well. Typical values of 

CL, Q, V1 and V2 were 11.8 L/h, 3.26 L/h, 14.2 L, and 3.12 L, respectively. The relative 

standard errors of the parameter estimates ranged from 3.8 to 35.4%. The covariate relations 

included in the final model were creatinine clearance on CL, and allometric scaling with body 

weight on all disposition parameters. An effect of age on CL as previously reported could not 

be identified.  
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Conclusion  

A 2-compartment model described meropenem population pharmacokinetics in patients with 

pulmonary tuberculosis well. Covariates found to improve model fit were creatinine clearance 

and body weight but not rifampicin treatment. The final model will be used for an integrated 

pharmacokinetics/pharmacodynamics analysis linking meropenem exposure to early 

bactericidal activity. 
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Introduction 

The epidemic rise in multi-drug resistant (MDR) and extensively-drug resistant tuberculosis 

(XDR-TB) threatens the progress made in reducing morbidity, mortality and efforts in 

tuberculosis eradication[1]. Medicines included in the current World Health Organization’s 

guideline for MDR- and XDR-TB treatment may be inaccessible in resource-limited settings 

and many older second-line anti-tuberculosis agents have significant toxicity, some of which 

could be life threatening and/or irreversible[1]. Drug repurposing or the optimized use of existing 

drugs or combination of drugs is a cheaper alternative to development of new chemical entities 

and could accelerate the process of finding good alternative treatments. 

 

Mycobacterium tuberculosis is historically considered resistant to β-lactam antibiotics 

including carbapenems because of the constitutive production of a broad-spectrum β-lactamase 

called BlaC[2,3]. The addition of a β-lactamase inhibitor such as clavulanate prevents BlaC-

mediated breakdown of β-lactams[3]. Furthermore, meropenem is both a poor substrate and 

inhibitor of BlaC, thus, administering meropenem together with clavulanate is an attractive 

combination[4]. Recent evidence from in vitro and in vivo experiments show that carbapenems 

including meropenem in combination with amoxicillin/clavulanate have synergistic 

antimycobacterial activity[2,4]. Similarly, the combination of meropenem with rifampicin shows 

synergistic activity against not only rifampicin-sensitive Mycobacterium tuberculosis, but also 

against rifampicin-resistant strains in vitro[5]. Considering the important role of rifampicin in 

shortening treatment duration of drug-sensitive pulmonary tuberculosis to 9 months and then 

to 6 months when combined with pyrazinamide[6,7], any strategy that increases or even restores 

rifampicin susceptibility could improve treatment options in patients with drug-resistant 

tuberculosis.     
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Case reports and observational studies show that regimens containing meropenem, amoxicillin 

and clavulanate has been safely used in the successful treatment of patients with MDR-/XDR-

TB[8–10]. In addition, an influential meta-analysis of individual patient data provided evidence 

of better treatment outcome in MDR-TB patients receiving regimens containing 

carbapenems[11]. A limitation of the meta-analysis is the observational nature of the included 

studies, necessitating the need for robust clinical trials to validate the findings[11]. Diacon and 

colleagues recently investigated the early bactericidal activity (EBA) of meropenem 

administered intravenously (IV) at 2g thrice daily together with oral amoxicillin/clavulanate 

500mg/125mg as part of NCT02349841[12].  The meropenem arm resulted in mean decline of 

14-day EBA, log10 colony-forming units (CFU) per mL of sputum of 0.11 (95% confidence 

interval [CI], 0.09 to 0.13) versus 0.17 (95% CI, 0.15 to 0.19) obtained following administration 

of first-line combination of rifampicin, isoniazid, pyrazinamide and ethambutol in the same 

study[12]. Faropenem, an orally administered carbapenem, failed to demonstrate measurable 

EBA in the same study (NCT02349841), likely owing to drug concentrations below required 

levels (unpublished report). Novel oral carbapenems are in development for tuberculosis. It is 

therefore crucial that pharmacokinetics/pharmacodynamics determinants of efficacy for 

carbapenems be evaluated. A population pharmacokinetics model of meropenem in patients 

with pulmonary tuberculosis is the first step in performing an integrated 

pharmacokinetics/pharmacodynamics analysis linking carbapenem exposure to EBA. This 

work aimed to develop such a model and identify covariates improving predictive performance 

within the COMRADE trial (NCT03174184). 

 

Methods 
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Pharma-Ethics (Ethics reference number: 170516584) and Stellenbosch University Health 

Research Ethics Committee (Ethics reference number: S19/01/007) approved the clinical study 

and this analysis, respectively. 

 

Study population and design 

COMRADE is a phase 2, open-label randomized clinical trial enrolling South African male and 

female patients aged 18-65 years with sputum smear-positive pulmonary tuberculosis. The 

eligibility criteria are detailed in the supplementary materials. Participants with Mycobacterium 

tuberculosis strains without rifampicin-resistance conferring rpoB mutations were randomized 

into one of four study arms receiving daily treatments for 14 days: MACR2X3 received 

meropenem 2g IV over 0.5h thrice daily and oral rifampicin 20 mg/kg once daily; MAC2X3 

received meropenem 2g IV over 0.5h thrice daily; MAC1X3 received meropenem 1g IV over 

0.5h thrice daily; and MAC3X1 received meropenem 3g IV over 1h once daily. All participants 

were administered oral amoxicillin/clavulanate together with each meropenem dose at doses of 

500mg/125mg in the thrice daily dose arms and at 875mg/125mg in the once daily dose arm. 

Intensive pharmacokinetics samples were collected at pre-dose and at 0.5, 1, 1.5, 2, 3, 4, 6, and 

8h post-dose at day 14 of treatment. At the end of the study, participants received Directly-

Observed Treatment, Short course (DOTS) to treat pulmonary tuberculosis as recommended in 

the South African National Tuberculosis Treatment Guidelines. 

Participants’ data recorded included age, sex, race, weight, height, body mass index (BMI), fat-

free mass (FFM), serum creatinine, creatinine clearance calculated based on Cockcroft-Gault 

equation (CLCR), and human immunodeficiency virus (HIV) status.    

 

Bioanalytical method 
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Plasma meropenem concentrations were measured using a validated Liquid Chromatography 

with Tandem Mass Spectrometry (LC-MS/MS) at FARMOVS (Pty) Ltd, South Africa (see 

supplementary materials). The quality control analysis showed acceptable reliability and 

reproducibility with precision and accuracy ≤15%. The lower limit of quantification (LLOQ) 

for meropenem was 0.5 mg/L.  

 

Population pharmacokinetics modeling 

We used nonlinear mixed-effect modeling and the first-order conditional estimation with 

interaction (FOCE-I) method in the software NONMEM, version 7.4 for all analyses to describe 

the population pharmacokinetics of meropenem[13]. The execution of NONMEM control stream 

was implemented through Perl-speaks-NONMEM (PsN, version 4.9.0)[14,15]. 

Data formatting  

Data assembly, formatting, and visualizations were conducted with R (an open source statistical 

software, version 3.5.1)[16] and Phoenix® WinNonlin™ (version 8.1)[17]. 

Structural and stochastic models 

One- and 2-compartment models were evaluated for the best model fit to the data. Two levels 

of variability were evaluated: inter-individual variability (IIV) and residual unexplained 

variability (representing reporting errors, assay errors, model misspecification). The IIV in 

pharmacokinetic parameters was assumed to be log-normally distributed. Additive, 

proportional, and combined error models were explored to characterize the residual 

unexplained variability. 

Covariate model 
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Age, body weight and CLCR are covariates previously shown to impact meropenem 

disposition, whereas, rifampicin is a potent inducer of drug metabolizing enzymes and 

transporters[6,21–25]. For this reason, these covariates were tested first, and those found to impact 

meropenem disposition were included in the model used as base for further covariate 

exploration using stepwise covariate model (SCM) building.  

Prior to the SCM procedure, the base model with both structural and stochastic components 

was assessed using stepwise generalized additive modeling (GAM) implemented in Xpose to 

identify potential candidate Empirical Bayes estimates (EBEs) and covariate relationships[20].  

Finally, SCM was implemented through PsN[14,15]. The potential parameter-covariate 

relationships were tested one at a time, and the likelihood ratio test (LRT) used to discriminate 

between two nested models at a statistical significance level of 5% and 1% for the forward 

inclusion and backward elimination procedures, respectively. The investigated covariates’ 

influence on meropenem pharmacokinetics parameters included those of age, height, HIV 

status, race and sex on clearance from the central compartment (CL) and those of race and sex 

on central volume of distribution (V1).  

Model selection and evaluation  

The process of model selection for nested models was based on LRT. Thus, for each additional 

parameter, a reduction in objective function value (OFV) of ≥3.84 corresponding to a 

significance level of 5% was considered statistically significant. Akaike information criterion 

(AIC) was used to choose between non-nested models. In addition to the goodness-of-fit 

statistics, the process of model selection and evaluation was guided by visual predictive checks 

(VPCs), prediction- and residual based goodness-of-fit plots, and also biological plausibility, 

clinical relevance and parsimony[18,19]. The  basic goodness-of-fit plots and VPCs were 

visualized with the Xpose package (version 4) and Pirana[18,20]. Pirana was also used to manage 

run records. 
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Model validation through non-parametric bootstrapping was utilized to establish the reliability 

and stability of the final model[26]. The bootstrapping procedure entails random sampling with 

replacement of each patient to form a new dataset stratified on study arm to retain proportions 

of the same sample size as the original dataset. We fitted the final model to each of the 1000 

generated bootstrap datasets. The point estimates and their corresponding 95% CI were 

calculated for the model parameters. 

 

Results 

Sixty participants with drug-sensitive pulmonary tuberculosis aged between 20 and 63 years, 

of whom 75% (45/60) were males, participated in the study. Of the 60 participants, 11 withdrew 

from the study prior to the intensive pharmacokinetic sampling visit, thus, 49 participants 

provided plasma samples for analysis. The demographics of the 49 participants are reported in 

Table 1. Of the 441 concentration observations available, 404 were included in the analysis. 

Whereas 34 plasma samples were below the quantification limit (BQL), three samples (one at 

pre-dose and two at 8 hours after dose) were excluded with the motivation that the 

concentrations were at least 10-fold higher than expected, and their conditional weighted 

residuals (CWRES) ≥4. Figure 1 displays the individual meropenem concentration-time 

profiles per study arm. 

 

The meropenem concentration-time data were fitted best with a 2-compartment model (Figure 

2). Table 2 provides the estimated typical values of the structural pharmacokinetic parameters 

with low uncertainty in parameter estimates ranging from 3.8 to 27.5%.  
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We estimated a relatively low IIV in CL and V1 with coefficient of variation (CV) of 20% and 

13.1%, respectively. No significant variability could be detected in inter-compartmental 

clearance (Q) while for peripheral volume of distribution (V2) the variability between 

individuals was high (CV of 106%). 

Combined additive and proportional error model was used to quantify the residual unexplained 

variability (Table 2). 

 

The addition of allometric scaling with body weight on disposition parameters, normalized to 

70kg with fixed theoretical exponents of 1 for volume of distribution and 0.75 for clearance, 

resulted in 22.2 points OFV reduction[27]. A further 14.4 points reduction in OFV occurred with 

the inclusion of size-standardized CLCR normalized to the median population value of 115 

mL/min. Conversely, both age and rifampicin had insignificant impact on meropenem CL. 

Following the SCM’s three forward selection and two backward elimination procedures, none 

of the other parameter-covariate relationships met the criteria for inclusion in the full final 

model.  

The final model provides good fit to the observed population distribution of concentration-time 

data (Figure 3), and the observed individual concentration-time profiles (Figure S1). Figures 

S2a and S2b display plots of residual-based diagnostics, whereas, Figure 4 display the VPCs of 

the final model.   

 

Model validation through non-parametric bootstrap procedure demonstrates the final model’s 

robustness in describing meropenem pharmacokinetics (Table 2). 
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Discussion 

To our knowledge, we describe for the first time, the population pharmacokinetics of 

meropenem in patients with tuberculosis. A two-compartment model fit the data best. We 

estimated with good precision the typical values of CL, Q, V1 and V2. The IIV in V2 was high, 

but low for CL and V1. The structural, stochastic and covariate parameter estimates of the 

typical individual obtained from NONMEM analysis fell within 95% CI of the non-parametric 

bootstrapping procedure, an indication of the model robustness in predicting meropenem 

concentrations (Table 2). However, the uncertainty in the estimate of IIV on V2 was high (Table 

2). The difficulty in estimating the IIV on V2 did not affect the model’s purpose of describing 

meropenem population pharmacokinetics. Further, rifampicin did not affect meropenem CL in 

the current study. While this is not surprising, because meropenem is predominantly excreted 

unchanged in urine, rifampicin, a potent inducer of both metabolizing enzymes and transporters, 

could theoretically increase meropenem CL by inducing renal drug transporters. This provides 

reassurance that these two drugs can be used together, as needed, without need for dose 

adjustment to mitigate a drug interaction. 

 

In the current study, meropenem CL of 11.8 L/h to a 70 kg individual with CLCR of 115 

mL/min confirms previous reports that renal elimination of meropenem involves both the 

processes of glomerular filtration and tubular secretion[23,28]. Meropenem is a polar carbapenem 

that distributes into extracellular fluid, with approximately 70% of a dose excreted unchanged 

in urine[23,28]. It is biologically plausible to expect meropenem clearance to change with body 

weight and renal function. To this end, the inclusion of allometric scaling with body weight on 

disposition parameters resulted in drop in OFV by 22.2 points, and thus, improving the model 

fit[27]. The allometric scaling with centering at 70 kg was done to allow comparison of the 

disposition parameters with results of other studies in adults or children. For example, Rapp 
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and colleagues reported the typical value of clearance of 6.82 L/h normalized to 70 kg adult[23]. 

Reasons for the lower clearance in this population of critically ill children compared to 11.8 

L/h in the current study could include renal impairment and/or maturation in organ function in 

the very young. 

 

Other investigators sequentially evaluated the covariate effect of body weight on disposition 

parameters and found significant impact on only V1[21]. This contrast with our approach, and 

that of others[23], in which body weight was included as the allometric size-descriptor 

simultaneously on all disposition parameters. This is based on the understanding that volumes 

increase linearly with body weight (fixed theoretical exponent of 1) while clearance increases 

following a power function (fixed theoretical exponent of 0.75)[27]. 

 

Because of the polar nature of meropenem, it is reasonable to expect better model fit when 

allometric scaling is with FFM rather than total body weight. On the contrary, the model with 

FFM resulted in a lesser (20.4 points) OFV reduction, than that with body weight (22.2 points). 

For this reason and that of parsimony, we chose to keep the model with total body weight. The 

finding is not entirely surprising given the data: the median weight in the current study 

population is 52.7 kg (range, 39.3-76.3), and no patient was obese. The model with FFM could 

be more useful when describing patients with extreme body weights[29].  

 

We found creatinine clearance to account for some variability in meropenem clearance between 

individuals and to provide an improvement in goodness of fit statistics. The covariate effect co-

efficient of size-standardized creatinine clearance on CL is 0.416 (95% CI of 0.171 to 0.661) 

in the current study and is similar to 0.62 (95% CI of 0.34 to 0.83) reported by Li and 
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colleagues[21]. Other investigators documented similar results in children[22,23]. The clinical 

implication of the estimated effect of creatinine clearance on CL is that in a 70 kg patient with 

severe renal impairment (CLCR of 5-30 mL/min), about 40-70% reduction in meropenem doses 

would be required. Compared to other studies[21,22], the relatively low IIV in CL and V1 in the 

current study might be explained by the homogeneous patient population.  

 

Few investigators reported a significant effect of age on meropenem CL, no such effect was 

seen in the current study[21,22].  It should be noted however, that the age range in our study was 

20-63 years, but 18-93 years in the study by Li and colleagues[21], whereas the study by Du and 

colleagues enrolled children aged 0.08 to 17.3 years[22]. The significant impact of age on drug 

clearance in children could be  explained in part by the effect on drug elimination of size and 

maturation of organ function[30]. 

 

The study has limitations. Firstly, the model was developed in adult tuberculosis patients and 

cannot be extrapolated to children. Secondly, the sample size might not provide enough power 

to pick up covariate relations with weak effects or occurring very rarely. However, such 

covariate effects are of limited clinical importance.  

 

Conclusion 

A 2-compartment population pharmacokinetics model described the pharmacokinetics of 

meropenem well with good precision in parameter estimates. The addition of both allometric 

scaling with body weight on disposition parameters and creatinine clearance on meropenem 

clearance increased the model’s predictive performance. Rifampicin exposure did not influence 

meropenem parameters. The model will be used for integrated 
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pharmacokinetics/pharmacodynamics analysis linking meropenem exposure to early 

bactericidal activity. 
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Table 1 Characteristics of patients who participated in pharmacokinetic sampling 

Characteristics MACR2X3 (n=12) MAC2X3 (n=13) MAC1X3 (n=12) MAC3X1 (n=12) Overall (n=49) 

Age (years) 

Median (Q1, Q3) 32.3 (27.6, 40.2) 36.5 (33.2, 45.4) 40.9 (28.6, 45.8) 34.0 (28.2, 39.1) 36.0 (28.6, 45.4) 

Max-min 21.1-58.6 23.1-61.2 20.0-62.7 20.3-55.6 20.0-62.7 

Sex 

Female 3 (25.0%) 6 (46.2%) 2 (16.7%) 1 (8.3%) 12 (24.5%) 

Race 

Black 2 (16.7 %) 2 (15.4 %) 5 (41.7 %) 7 (58.3 %) 16 (32.7 %) 

Coloured 10 (82.3 %) 11 (84.6 %) 7 (58.3 %) 5 (41.7 %) 33 (67.3 %) 

HIV status 

Positive 1 (8.3 %) 3 (23.1 %) 3 (25.0 %) 4 (33.3 %) 11 (22.4 %) 

Weight (kg) 

Median (Q1, Q3) 52.3 (48.2, 55.9) 50.3 (48.3, 55.5) 55.2 (51.6, 62.1) 49.6 (45.8, 56.8) 52.7 (47.5, 57.1) 

Max-min 39.3-62.4 40.3-65.9 45.1-65.5 43.0-76.3 39.3-76.3 
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Height (m)      

Median (Q1, Q3) 1.65 (1.60, 1.68) 1.62 (1.57, 1.71) 1.73 (1.67, 1.7) 1.66 (1.62, 1.69) 1.66 (1.60, 1.71) 

Max-min 1.54-1.76 1.54-1.82 1.58-1.76 1.59-1.73 1.54-1.82 

Creatinine clearance 

(mL/min) 

     

Median (Q1, Q3) 126 (90.3, 145) 109 (83.3, 139) 98.6 (94.1, 129) 112 (99.5, 127) 115 (94.3, 137) 

Max-min 76.7-203 57.7-173 61.9-187 93.9-185 57.7-203 

 

MACR2X3, intravenous meropenem 2g 8-hourly plus oral rifampicin 20 mg/kg once daily; MAC2X3, intravenous meropenem 2g 8-hourly; 

MAC1X3, intravenous meropenem 1g 8-hourly; MAC3X1, intravenous meropenem 3g once-daily; HIV, human immunodeficiency virus; Q1, lower 

quartile; Q3, upper quartile; Min, minimum; Max, maximum. 
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Table 2 Meropenem population pharmacokinetic model parameters. 

Parameter Population estimate (%RSEa)  Bootstrap median (95% CI) 
Structural model parameter   

CL (L/h/70 kg)  11.8 (4.9) 11.9 (10.5 to 12.8) 

V1 (L/70 kg) 14.2 (3.8) 14.6 (13.4 to 16.4) 

Q (L/h/70 kg)  3.26 (27.5) 3.15 (0.777 to 4.84) 

V2 (L/70 kg) 3.12 (10.8) 3.17 (1.54 to 78.4) 

   

Inter-individual variability (IIV) as %CVb   

IIV CL 20 (15.5) 19.3 (13.7 to 25.4) 

IIV V1 13.1 (35.4) 12.7 (0.131 to 21.2) 

IIV V2 106 (30.7) 111 (0.868 to 710) 

   

Residual variability   

Proportional residual error (%) 0.178 (14.8) 0.178 (0.127 to 0.229) 

Additive residual error (mg/L) 1.16 (19.6) 1.13 (0.388 to 1.54) 

   

Covariate   

Creatinine clearance on CL 0.416 (30.5) 0.403 (0.203 to 0.704) 

 

aRelative standard error (%RSE) was calculated as standard error from the covariance step/population estimate.  
bCoefficient of variation (%CV) for IIV was calculated as (SQRT(EXP(OMEGA)-1)*100. 

Confidence interval (CI), clearance from the central compartment (CL), central volume of distribution (V1), intercompartmental clearance (Q), and 

peripheral volume of distribution (V2). The bootstrap median and 95% CI were calculated from fitting of the final model to the 1000 bootstrap 

datasets. 

TVCL = THETA(1)*((WTKG/70)**0.75)*((CLCR*70/WTKG)/115)**THETA(7); TVCL is the meropenem clearance in the typical individual. 

TVV1 = THETA(2)*WTKG/70 ; TVV1 is the meropenem volume of distribution in the central compartment in the typical individual. 

TVQ = THETA(3)*((WTKG/70)**0.75);  TVQ is the meropenem inter-compartmental clearance in the typical individual. 

TVV2 = THETA(4)*WTKG/70; TVV2 is the meropenem volume of distribution in the peripheral compartment in the typical individual. 
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Figure 1. Meropenem plasma concentration-time profile stratified by study arm 

 

MACR2X3, intravenous meropenem 2g thrice daily plus oral rifampicin 20 mg/kg once daily; MAC2X3, intravenous meropenem 2g thrice daily; 

MAC1X3, intravenous meropenem 1g thrice daily; MAC3X1, intravenous meropenem 3g once daily. 
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Figure 2. Structural model schema 

 

Meropenem amount in the central compartment (A1), central volume of distribution (V1), intercompartmental clearance (Q), meropenem amount in 

the peripheral compartment (A2), peripheral volume of distribution (V2), total plasma clearance (CL), meropenem concentration in the central 

compartment (A1/V1), meropenem concentration in the peripheral compartment (A2/V2), elimination rate constant is CL/V1, transfer rate constant 

from central to peripheral compartment (Q/V1), and transfer rate constant from peripheral to central compartment (Q/V2). 
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Figure 3. Basic goodness-of-fit plots of the final model 

 

Basic goodness of fit plots of the final model showing the observed meropenem concentration versus the individual predicted concentration (right) or 

population predicted concentration (left). The observed and predicted concentrations are from the 49 individuals in the study.  
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Figure 4. Visual Predictive Check of the final model stratified by study arms. 

The dashed red lines represent the 97.5th and 2.5th percentiles of the observed meropenem concentration data (open black circles), the solid red line 

connects the median (50th percentile) of the observed data (n=49). The blue shaded areas represent 95% confidence intervals of the 97.5th and 2.5th 

percentile of the predicted simulated data (n=1000), whereas the red shaded area represents 95% confidence interval of the median (50th percentile) of 

the predicted simulated data.  
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NONMEM control stream of the final model 

 

 

 

 

Methods 

Eligibility Criteria 

Inclusion criteria for participation in this study 
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• New or recurrent pulmonary tuberculosis (TB) with one or both of the following:

o Sputum positive for acid-fast bacilli on direct microscopy of at least grade 1+

(International Union Against Tuberculosis and Lung Disease [IUATLD] scale) on

at least one pre-treatment sputum sample.

o Sputum positive for M. tuberculosis by Xpert MTB/RIF testing, semiquantitative

result of “medium” or “high” on at least pre-treatment sputum sample.

• Age ≥18 and ≤65 years at screening.

• Ability and willingness to provide informed consent.

• Body weight 40 kg to 90 kg, inclusive.

• Laboratory values obtained within 30 days prior to or at study screening:

o Absolute neutrophil count (ANC) ≥750 cells/mm3.

o Hemoglobin ≥7.0 g/dL.

o Platelet count ≥50,000/ mm3.

o Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) ≤3

X upper limit of normal (ULN).

o Serum total bilirubin ≤2.5 X ULN.

o Serum creatinine <1.5 X ULN.

• Human immune-deficiency virus (HIV) infection must be documented as either absent or

present.

• For HIV-positive participants, only: CD4+ cell count of ≥100 cells/mm3, performed

within 30 days prior to or at study screening.

• For females of reproductive potential, negative serum or urine pregnancy test within 7

days prior to study screening. Female participants who are engaging in sexual activity that

could lead to pregnancy must agree to use one reliable non-hormonal method of

contraception (condoms or an intra-uterine contraceptive device), or another method
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(diaphragm or cervical cap) if it is approved by the national regulatory authority and used 

according to package insert, while receiving study medications. 

• Willingness to be hospitalized for a minimum of 16 consecutive days. 

• Ability to produce an overnight sputum sample of sufficient quality and quantity. As a 

guideline, this should be 10 mL or more during a 16-hour collection period.  

• Xpert MTB/RIF result performed on sputum within 14 days prior to or at study screening 

that shows either “Rifampicin resistance detected” or “Rifampicin resistance not 

detected”. 

Exclusion criteria 

• Treatment with any drug active against M. tuberculosis within the 3 months prior to 

study screening. 

• Breast-feeding. 

• Known allergy or sensitivity to any of the study drugs. 

• Participants receiving valproate sodium or probenecid. 

• Karnofsky score <60 or poor general condition such that, in the opinion of the 

investigator at screening, any delay in initiation of definitive TB treatment cannot be 

tolerated. 

• Known current neurological TB or seizure disorder. 

• Any condition as determined by physical examination, medical history, laboratory 

data, or chest x-ray which, in the opinion of the investigator, would interfere with 

safety or endpoint assessments in the study. 

 

Bioanalytical method 
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Meropenem was quantified by a validated analytical method using Liquid Chromatography 

with Tandem Mass Spectrometry (LC-MS/MS). The validated method was developed to 

simultaneously quantify meropenem and ertapenem in human dipotassium 

ethylenediaminetetraacetic acid (K2EDTA) plasma over the range of 0.5-256 μg/mL. 

The analytes were extracted from the biological matrix (i.e., plasma) using protein precipitation 

with methanol. This was followed by dilution of the supernatant with a mixture of acetonitrile 

and formic acid solution.  

The liquid chromatographic separation was with Phenomenex® Kinetex XB-C18, 150 x 4.6 

mm, 5 μm analytical column. Mobile phases: mobile phase A (formic acid solution) and B 

(acetonitrile) were delivered using a gradient flow. The autosampler, equipped with a 96-well 

tray, was used to inject 2 μL of each sample onto the column, at a temperature of approximately 

5 ºC. Meropenem retention time was ~1.44 minutes. 

 

Mass spectrometer, Sciex API4000 coupled to Watson LIMS™ software version 7.4.2 and 

Analyst® software version 1.6.2 was used. Ionization mode was with electrospray Ionization 

(ESI) in positive mode. Meropenem protonated precursor ion with m/z 384.0 and product ion 

with m/z 141.0. The internal standard working solution with a concentration of ~12 μg/mL 

meropenem-d6 in methanol was prepared in a polypropylene container by dissolving the 

reference substance directly in the methanol. The internal standard working solution was added 

to each sample (excluding blank samples). Calibration standards (STDs) in human K2EDTA 

plasma and quality control samples (QCs) in human K2EDTA plasma and in stabilized human 

lithium heparin (LH) plasma, were prepared gravimetrically in human plasma.  

The validation process comprised of three accuracy and precision validation runs during which 

the accuracy and precision of the method was established and evaluated against acceptance 

criteria as defined by the regulatory guidelines. The meropenem regression model used was: 

log-log linear calibration curve (log y = a logx + b. The Response Type was peak area ratio. 
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Absolute recovery (extraction efficiency) for meropenem was 90.4% (mean % coefficient of 

variation [%CV] = 4.7), whereas, the relative recovery was 0.903 (mean %CV = 4.0). The 

average Signal-to-Noise Ratio at lower limit of quantification (LLOQ) was 54.4. No inherent 

carry-over was detected in the blank samples. In addition, no interfering peaks from endogenous 

and other matrix components were observed at the retention times of meropenem or the internal 

standard.  

 

Meropenem was accurately quantified in the presence of commonly used over-the-counter 

drugs (paracetamol, ibuprofen, cyclizine, cetirizine, pseudoephedrine, codeine and diclofenac). 

A multi-component analysis confirmed that meropenem can be accurately determined in the 

presence of amoxicillin, clavulanic acid, rifampicin and each other. The variability of the 

internal standard-normalized matrix factor (IS-MF) was <15% at both low and high analyte 

concentrations, indicating that the analysis is reproducible in the various matrices. 

Dilution integrity: the following dilutions were successfully validated; 

1. 2-fold dilution: K2EDTA plasma samples diluted with K2EDTA plasma. 

2. 2-fold dilution: stabilized LH plasma samples diluted with stabilized LH plasma. 

3. 5-fold dilution: stabilized LH plasma samples diluted with K2EDTA plasma. 

4. 15-fold dilution: K2EDTA plasma samples diluted with K2EDTA plasma. 

Plasma samples with meropenem concentration above the upper limit of quantification can be 

analyzed by applying 2-fold, 5-fold and 15-fold dilutions. 

Finally, the 3 consecutive accuracy and precision validation runs met the acceptance criteria: 

1. The between-run accuracy calculated over all 3 consecutive validation runs (expressed 

as %Bias) must be within 15% over the range and within 20% of at the LLOQ, and 

2. The between-run precision calculated over all 3 consecutive validation runs (expressed 

as %CV) must be ≤15% (20% at the LLOQ). 
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Figure S1. Meropenem population pharmacokinetics model fit to individual data 
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DV, observed meropenem concentration (mg/L); IPRED, individual prediction (mg/L); 

PRED, population prediction (mg/L).  
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Figure S2a. CWRES versus population prediction in mg/L 

CWRES, conditional weighted residuals. The blue open circles are the observed 

concentrations. The solid black horizontal line is the zero line. If the predictions were 100% 

perfect, all the blue open circles will fall on the solid black line. The solid red line is the trend 

line. 
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Figure S2b. CWRES versus time after dose 

 

CWRES, conditional weighted residuals. The blue open circles are the observed 

concentrations. The solid black horizontal line is the zero line. If the predictions were 100% 

perfect, all the blue open circles will fall on the solid black line. The solid red line is the trend 

line.  
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NONMEM control stream of the final model 

 

$PROBLEM Meropenem population pharmacokinetics modeling in patients with pulmonary 

tuberculosis. 

$INPUT  ID USUBJID DAT2=DROP TIME TAD TAD2 SAMPT=DROP DURHR 

AMT MDV EVID DV BLQP CMT RATE SS=DROP DOMAIN=DROP 

VISIT EXCL  EXCL2 PAGE CLDV PCSP AGE SEXF RACEB HTM 

WTKG BMI FFM LBW HIVP RIFGPS RIF1 AMXCLV G2ARM DOSE 

CREAT CLCR SDAY SUBJECT=DROP STAD=DROP LASTDOSE=DROP 

$DATA       Datasetxx.csv IGNORE=@ IGNORE=(EXCL2.EQ.1) 

IGNORE=(EXCL2.EQ.4) IGNORE=(EXCL2.EQ.5) 

$SUBROUTINE ADVAN13 TOL=9 

$MODEL       COMP (COMP1) ;Central compartment 

             COMP (COMP2) ;Peripheral compartment 

$PK 

D1=DURHR 

TVCL = THETA(1)*((WTKG/70)**0.75)*(((CLCR*70/WTKG)/115)**THETA(7))

 ;TVCL is the clearance of the typical individual in the population    

 ;+ allometric scaling with body weight centered at 70 kg     

 ;+ Covariate effect of size-standardized creatinine clearance centered at 115 mL/min 

TVV1 = THETA(2)*WTKG/70       

 ;TVV1 is the central volume of distribution for the typical individual in the population  

;plus allometric scaling with body weight centered at 70 kg 
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TVQ = THETA(3)*((WTKG/70)**0.75) 

;TVQ is the intercompartmental clearance of the typical individual in the population

;in the population  plus allometric scaling with body weight centered at 70 kg  

TVV2 = THETA(4)*WTKG/70 

;TVV2 is the peripheral volume of distribution for the typical individual in  

; the population  plus allometric scaling with body weight centered at 70 kg 

CL = TVCL*EXP(ETA(1)) 

;Individual clearance, and inter-individual variability (IIV) 

V1 = TVV1*EXP(ETA(2)) 

;Individual volume of distribution of the central compartment, and IIV 

Q = TVQ*EXP(ETA(3)) 

;Individual intercompartmental clearance, and IIV 

V2 = TVV2*EXP(ETA(4)) 

;Individual volume of distribution of the peripheral compartment, and IIV 

$DES 

CENTRAL_DES = A(1) 

PERIPHERAL_DES = A(2) 

CC_DES = (CENTRAL_DES/V1) 

DADT(1) = (((-(Q)*(A(1)/V1))+(Q*(A(2)/V2))-(CL*(A(1)/V1)))) 

DADT(2) = ((Q*(A(1)/V1))-(Q*(A(2)/V2))) 
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$ERROR      ;Residual error model 

CENTRAL = A(1)    ;Amount in central compartment 

PERIPHERAL = A(2)   ;Amount in peripheral compartment 

CC = (CENTRAL/V1)   ;Concentration in the central compartment 

IPRED = CC     ;Individual prediction 

IRES = DV - IPRED 

W = SQRT((THETA(5)*IPRED)**2 + THETA(6)**2) ;For proportional and additive error  

IWRES = IRES/W 

Y = IPRED+W*EPS(1) 

 

$THETA   

(0.0,11.8026)       ; 1. TVCL 

(0.0,14.2024)       ; 2. TVV1 

(0.0,3.26491)       ; 3. TVQ 

(0.0,3.11527)       ; 4. TVV2 

(0,0.178409)       ; 5. Proportional error 

(0,1.15559)       ; 6. Additive error 

0.415838       ; 7. Covariate effect of CLCR 
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$OMEGA  

0.0392918  ; 1. IIV_CL 

0.0170819  ; 2. IIV_V1 

0 FIX  ; 3. IIV_Q 

0.753935  ; 4. IIV_V2 

$SIGMA 1.0 FIX 

$ESTIMATION METHOD=COND INTER NSIG=3 SIGL=9 MAXEVALS=9999 

PRINT=10 NOABORT MSFO=xx.msf 

$COVARIANCE 

$TABLE      ID USUBJID TAD MDV EVID AMT RATE AGE WTKG CLCR HTM BMI 

FFM LBW RACEB SEXF HIVP G2ARM DOSE BLQP PRED IPRED RES 

IRES IWRES WRES CWRES CIPRED CIRES CIWRES Y DV NOAPPEND 

NOPRINT ONEHEADER FILE=sdtabxx 

$TABLE      ID CL V1 Q V2 ETA(1) ETA(2) ETA(3) ETA(4) NOAPPEND NOPRINT 

ONEHEADER FILE=patabxx 

$TABLE      ID AGE WTKG FFM LBW CLCR HTM BMI NOAPPEND NOPRINT 

ONEHEADER FILE=cotabxx 
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$TABLE      ID RACEB SEXF HIVP G2ARM RIF1 NOAPPEND NOPRINT 

ONEHEADER FILE=catabxx 
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187  

SUMMARY OF FINDINGS 
 

CHAPTER 1 

Clinical pharmacokinetics and pharmacodynamics of rifampicin in human tuberculosis 

Clin Pharmacokinet. 2019;58(9):1103-1129. doi:10.1007/s40262-019-00764-2. 

Key findings 

This chapter reviewed rifampicin data spanning five decades since its introduction into TB treatment. 

Rifampicin was crucial in shortening treatment to six months when combined with pyrazinamide in 

the first 2 months. AUC0-24 (area under the concentration-time curve [AUC] from time 0 to 24 

hours)/MIC (minimum inhibitory concentration) is the PK/PD parameter best linked to rifampicin’s 

bactericidal activity. 

 

Rifampicin exposure is complicated by its nonlinear PK, the auto-induction of its own metabolism, 

and considerable inter- and intra-individual variability that could be reduced by administration under 

fasting conditions. In addition, therapeutic drug monitoring integrating Bayesian priors could account 

for variability and allow dose individualisation, and attainment of PK/PD targets faster. Several 

factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic 

polymorphisms, hepatic cirrhosis, and substandard medicinal products can alter rifampicin exposure 

and/or efficacy. 

 

The clinical use of rifampicin at 600 mg (10-12 mg/kg) once daily dosing was selected partly because 

of cost and toxicity concerns at the time of its introduction. Recent studies suggest higher rifampicin 
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doses can be used to optimise TB treatment. For example, a clear exposure-response relationship has 

been defined to treat TB meningitis.   

 

Conclusion 

Understanding factors influencing rifampicin disposition are key to its optimal use. Available 

evidence suggest current rifampicin dosing of 8-12 mg/kg is at the lower end of the dose-exposure-

response curve, and that higher doses should be considered. It is reassuring that daily rifampicin doses 

up to 35 mg/kg for 12 weeks were safe and well tolerated.  

 

Limitations 

Firstly, PK data interpretations were complicated by use of different laboratory analytical methods in 

the published studies. Secondly, while some papers report results as rifampicin AUC (from time 0 to 

t) or Cmax, others provide only serum concentrations at certain timepoints after dosing. Thirdly, none 

of the EBA studies reported rifampicin MICs needed to calculate AUC/MIC. Finally, the included 

studies have heterogenous designs, outcome measures, and do not take into account variability in 

drug formulations.  

 

Future research 

More studies are needed to confirm whether doses higher than the current standard of care could 

translate to treatment shortening and/or stratification.  
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Daily rifampicin at dose of at least 35 mg/kg should be investigated in novel regimens with new or 

repurposed drugs to optimise TB treatment in terms of shortening treatment duration, improved cure, 

and relapse rates. The PK/PD determinants of efficacy, and the role of therapeutic drug monitoring 

should be prospectively investigated. In addition, future studies in patients with TB meningitis should 

confirm effect on mortality of high rifampicin exposures and further investigate the optimal route of 

administrations.  
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CHAPTER 2 

The pharmacokinetics of para-aminosalicylic acid and its relationship to efficacy and 

intolerance 

Br J Clin Pharmacol. May 2020; 86(11):2123-2132. doi:10.1111/bcp.14395.  

Key findings 

The most important finding of this chapter is unravelling the clinical equipoise regarding the historical 

view of PAS as an exclusively bacteriostatic agent. Available evidence suggests PAS Cmax, AUC, 

and, by extension Cmax/MIC, and/or AUC/MIC rather than %T>MIC are the most important 

determinants of efficacy and suppression of resistance development in companion drugs. 

 

PAS at high single-daily dosages that achieve high blood concentrations has a hitherto unappreciated 

bactericidal effect, similar to that of 10 mg/kg rifampicin, and this is not currently exploited. In 

addition, the size of individual PAS doses administered at each dosing interval rather than total daily 

dose is important in protecting companion drugs from resistance emergence. Assuming a typical PAS 

MIC of 1 mg/L, a Cmax/MIC of ≥100 may be required to replicate the findings seen during the series 

of clinical trials conducted in 1950s by the British MRC. The contemporary dosing of the widely 

available PASER formulation makes it highly unlikely to reach Cmax of ≥100 mg/L. PASER and 

indeed any formulation of PAS have not been re-assessed by modern methodologies of TB drug 

development, optimisation, and repurposing.  

 

Gastrointestinal intolerance to PAS is dependent on PAS formulation, and route of administration, 

which could be avoided if the gastrointestinal tract is bypassed as seen with intravenous 

administration, which is not a feasible option. Gastrointestinal intolerance seems to not be related to 

how high the blood PAS concentration is, which is re-assuring. 
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Conclusion 

Substantial evidence are available to question the traditional role of PAS as an exclusively 

bacteriostatic agent. We are at present not using PASER optimally, necessitating a need for re-

evaluation of PAS PK/PD. 

 

Limitations 

This chapter has several limitations, firstly, the pivotal British MRC studies did not include 

quantification of PAS in the serum/plasma. Therefore, extrapolating from a later study that used 

similar PAS dose and formulation as did the British MRC studies, a Cmax of 100 mg/L was proposed 

to have been reached. Secondly, only four patients were included in the PAS EBA study that found 

PAS to have bactericidal activity similar to that of rifampicin at 10 mg/kg. Finally, PAS MICs were 

not reported, and no prospective PK/PD study of PAS using PASER formulation was available. 

 

Future research 

Future PAS studies should focus on exploring the relationship between PAS dose, PK and 

pharmacogenetics and the efficacy and tolerability of PAS in different formulations. PAS EBA study 

should investigate high once-daily PASER dosing regimens, and the exposure determinants of 

efficacy should be confirmed. 
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CHAPTER 3 

Probability of mycobactericidal activity of para-aminosalicylic acid with novel dosing regimens 

Eur J Clin Pharmacol. 2020; 76(11):1557-1565. doi:10.1007/s00228-020-02943-8. 

Key findings 

This chapter presents results of a modelling and simulation study of PASER. Four novel PASER 

dosing regimens not previously investigated were evaluated. 

 

We found a previously published PAS population pharmacokinetics model needed optimisation prior 

to being used for target attainment simulations.43 The model was refined using combined data from 

two studies in adults.43,44 The addition of variability in bioavailability and allometric scaling with 

total body weight on disposition parameters improved the final model fit to the combined data, 

resulting in a 90.1 points reduction of goodness-of-fit statistic (objective function value, OFV) 

compared to the published model.43 

 

The simulation study in 1000 virtual patients each administered single once-daily 12 g, 14 g, 16 g and 

20 g PASER regimens showed the expected dose-dependent increase in exposure. The proposed 

target for bactericidal activity Cmax/MIC of ≥100 was reached in 53%, 65%, 72% and 84% of patients 

administered 12, 14, 16 and 20 g once-daily PASER, respectively, assuming typical PAS MIC of 1 

mg/L. Irrespective of the dosing regimen, PAS concentrations remained above 1 mg/L (proposed 

target for bacteriostatic activity) for >98% of the dosing interval.  

Conclusion 

Target PAS concentrations were achieved in most patients administered 14, 16 and 20 g once-daily 

PASER. When PAS MIC is < 1 mg/L compared with ≥ 1 mg/L, the potential for attaining the 
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proposed target with high once-daily PASER is increased, while ensuring PAS concentrations remain 

above the target for its traditional bacteriostatic effect. 

 

Limitations 

Firstly, the target used in the study is based on extrapolation from historic data and needs to be 

evaluated in a prospective study. Secondly, target attainment rates were obtained from simulations in 

virtual patients. Thirdly, protocol time rather than actual time of PK sampling were used for the 

analyses. Finally, the population upon which the model was built included only 85 South African 

pulmonary TB patients, and this may limit generalization to other populations. 

 

Future research 

A prospective pharmacokinetic study, preferably with assessment of early bactericidal activity and 

individual MICs, should be performed to confirm our predictions and determine the safety and 

tolerability of the proposed regimens.  

 

   

CHAPTER 4 

Drug concentration at the site of disease in children with pulmonary tuberculosis 

Key findings 

This chapter reports on the results of a prospective pilot study investigating the concentrations of 

first-line antituberculosis drugs (rifampicin, isoniazid, pyrazinamide and ethambutol) at the site of 

disease in children with severe intrathoracic tuberculosis requiring bronchoscopy or trans-thoracic 
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surgical lymph node decompression (SD group). A population PK model was therefore developed to 

reconstruct the full plasma concentration-time profile of the relevant drug in each patient. 

Furthermore, an additional compartment was modelled to represent each site of disease, and then 

linked to the plasma PK models 

 

Compared to historical data, the plasma exposure of the first-line drugs were uniformly low except 

isoniazid. We found the site of disease penetration of antituberculosis drugs to be drug- and lesion-

specific. The penetration coefficients of rifampicin, isoniazid and pyrazinamide into most lymph node 

compartments are <1, an indication of less penetration into tissues compared to plasma. Whereas 

those for ethambutol are >1 indicating accumulation in the different lymph node compartments. Of 

note, the key sterilizing drugs rifampicin and pyrazinamide, well known for their antimycobacterial 

activity against both non-replicating and slowly replicating bacilli, have low penetration into necrotic 

tissues with a penetration coefficient of approximately 0.5. In addition, rifampicin and pyrazinamide 

exposures in necrotic tissues were lower than in plasma. Besides, while rifampicin exposure in 

cellular compartment was higher than in plasma, that of pyrazinamide was lower than in plasma. 

Thus, creating a potential scenario for monotherapy against “persisters” M. tuberculosis population 

and higher risk of resistance development.  

Isoniazid has a low penetration coefficient of 0.56 in cellular regions of granuloma albeit twice that 

in adults. It is within this compartment that isoniazid is thought to exert its bactericidal activity against 

rapidly dividing bacilli within the first few days of treatment. Except for BAL, the overall simulated 

isoniazid exposure in all sites of disease compartments were lower than in plasma. 

 

Furthermore, the penetration coefficients of the first-line antituberculosis drugs in several lymph node 

compartments were similar to those in adults in several lung tissue compartments. To our knowledge 
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this is the first human data on ethambutol at sites of disease, and thus, there are no adult data to 

compare. 

 

Conclusion 

Except for isoniazid, plasma exposures of all first-line antituberculosis drugs were low compared to 

historical data. The proportional distribution to site of disease compartments of rifampicin, isoniazid 

and pyrazinamide in children are comparable to or higher than in adults for most compartments. 

Optimising dosing to increase site of disease exposures in children could improve tuberculosis 

treatment outcomes. Increased knowledge on the PK and PD of first-line drugs may allow treatment 

stratification or shortening depending on disease severity.  

 

Limitations 

This study had several limitations, firstly, selection bias might have been introduced because our 

study included young children with severe forms of pulmonary TB routinely undergoing surgery at a 

single site. Secondly, all children were anaesthetized at the time of the procedure, and particularly 

those in SD group received large number of concomitant drugs and intravenous fluids, all of which 

could have affected antituberculosis drug disposition. Thirdly, total plasma concentrations of the 

antituberculosis drugs were measured, and thus, protein binding was not accounted for. Fourthly, the 

presence of freezing artefacts, absence of clear areas of demarcation and fragmented nature of the 

tissue samples made classification of the lymph node histology challenging in some of our samples. 

Fifthly, the VPCs provided do not fully allow evaluation of the variability components since we do 

not have enough observations to do full confidence interval VPCs. Finally, the precision of the 

estimated distribution coefficient is generally low due small sample size, and this is particularly true 
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for BAL whose PK-PD simulations should be interpreted with caution given the limited number of 

patients in whom BAL urea concentration was successfully measured.  

 

Future research 

More prospective studies with larger sample size and varying site of disease sampling timepoints are 

needed to better characterize the rate and extent of drug transfer between plasma and tissue 

compartments. The studies should evaluate higher rifampin doses as well as higher end of the dosing 

range for other first-line antituberculosis agents to ultimately optimise their exposures at the site of 

disease. In addition, the studies should preferably be powered to investigate relationship between 

drug exposures in plasma, site of disease, and important clinical outcomes such as cure rate, relapse 

rate, treatment failure, and mortality. 

A more sensitive method of quantifying urea in bronchoalveolar lavage fluid is urgently required to 

allow for drug measurement in the alveolar fluid. 
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CHAPTER 5 

The population pharmacokinetics of meropenem in adult patients with rifampicin-sensitive 

pulmonary tuberculosis 

Key findings 

This chapter presents the results of the first meropenem population pharmacokinetics modelling 

analysis in pulmonary tuberculosis patients. The data for this chapter was obtained from a prospective 

phase 2a clinical trial. 

 

A 2-compartment model with first-order elimination process adequately described the observed 

meropenem concentration-time data. The model was parameterised with clearance (CL) from the 

central compartment, intercompartmental CL (Q), central volume of distribution (V1) and peripheral 

volume of distribution (V2). We found low uncertainty in parameter estimates with relative standard 

errors ranging from 3.8% to 35.4%. Similarly, we found low combined additive and proportional 

errors of 1.16 mg/L and 0.178%, respectively.  

 

Size-standardised creatinine clearance on CL and allometric scaling with total body weight on all 

disposition parameters were the only covariates found to have significant impact meropenem 

disposition and were included in the final model. On the contrary, age, HIV coinfection, and 

concomitant rifampicin administration did not significantly influence meropenem clearance. 
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Conclusion 

The developed model could adequately describe meropenem population pharmacokinetics in patients 

with pulmonary tuberculosis. Covariates found to improve model fit were creatinine clearance and 

body weight but not concomitant rifampicin treatment or age. 

 

Limitations 

A major limitation of this analysis is the high uncertainty in the parameter estimates of the peripheral 

volume of distribution represented by the wide 95% confidence interval of the 1000 bootstrap 

estimates. 

 

Future research 

Future work should focus on an integrated pharmacokinetics-pharmacodynamics analysis linking 

meropenem exposure to EBA. The PK-PD indices linked to meropenem EBA should be determined. 
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Appendix A 
 

 

RESEARCH OUTPUTS OF THE DISSERTATION 

The first three manuscripts have been published in international peer reviewed journals. Parts of 

the results of chapter three, four and five were presented at one local and three international 

conferences in 2019. Chapter five has been accepted for presentation at the World Conference on 

Pharmacometrics 2022, and the abstract published in CPT: pharmacometrics and system 

pharmacology supplement. The manuscripts from chapters four and five have been submitted to 

international peer reviewed journals for publication. A revised version of the manuscript for chapter 

four has been resubmitted to AJRCCM in response to reviewers’ comments. 

Published manuscripts and abstracts: 

 

1. Abulfathi AA, Decloedt EH, Svensson EM, Diacon AH, Donald P, Reuter H. Clinical 

Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. 

Clin Pharmacokinet. 2019;58(9):1103-1129. doi:10.1007/s40262-019-00764-2. 

 
2. Abulfathi AA, Donald PR, Adams K, Svensson EM, Diacon AH, Reuter H. The 

pharmacokinetics of para-aminosalicylic acid and its relationship to efficacy and 

intolerance. Br J Clin Pharmacol. May 2020; 86(11):2123-2132. doi:10.1111/bcp.14395. 

3. Abulfathi AA, Assawasuwannakit P, Donald PR, Diacon AH, Reuter H, Svensson EM. 

Probability of mycobactericidal activity of para-aminosalicylic acid with novel dosing 

regimens. 

Eur J Clin Pharmacol. 2020; 76(11):1557-1565. doi:10.1007/s00228-020-02943-8. 
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4. Abulfathi AA, De Jager V, Van Brakel E, Reuter H, Gupte N, Vanker N, Barnes GL, 

Nuermberger E, Dorman SE, Diacon AH, Dooley KE, Svensson EM. The population 

pharmacokinetics of meropenem in adult patients with rifampicin-sensitive pulmonary 

tuberculosis. 

CPT Pharmacometrics Syst. Pharmacol. (2020) 9, S9-S226; doi:10.1002/psp4.12497. 

 
5. Abulfathi AA, Assawasuwannakit P, Donald PR, Reuter H, Diacon AH, Svensson EM. 

External validation of a para-aminosalicylic acid population pharmacokinetics model using 

the ncappc R package. 

PAGE2019 Poster Abstract, 1-06: Page 24. 

 
6. Abulfathi AA, Feyt H, Gupte N, Vanker N, De Jager V, Barnes GL, Van Brakel E, 

Nuermberger E, Dorman SE, Diacon A, Svensson EM, Dooley KE. Pharmacokinetics and 

Early Bactericidal Activity of Meropenem (with Amoxicillin/Clavulanate), With and 

Without Rifampicin, for Drug-Susceptible TB. 12th International Workshop on Clinical 

Pharmacology of Tuberculosis Drugs, 10 September 2019, London, UK. 

7. Abulfathi AA, Donald PR, Reuter H, Diacon AH, Svensson EM. Simulation studies of 

novel PASER dosing regimens. Faculty of Medicine and Health Sciences Annual 

Academic Year Day, 21 August 2019, Stellenbosch University, Cape Town, South Africa. 

8. De Jager V, Abulfathi AA, Feyt H, Gupte N, Vanker N, Barnes GL, Van Brakel E, 

Nuermberger E, Dorman SE, Diacon A, Svensson EM, Dooley KE. Early bactericidal 

activity of meropenem (+ AMOX/CLAV) with & without rifampin for TB. CROI 2020, 

Abstract number 732, Session number P-N03. 
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