
PIPELINE AND TOOLS FOR THE ANALYSIS OF MULTIPLEXED ELISA DATA

Jesse A. Asimeng

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science

(Molecular Biology) in the Faculty of Medicine and Health Sciences at Stellenbosch University.

Supervisors:

Prof. Gerard Tromp

Dr. Elizna Maasdorp

Prof. Gian van der Spuy

March 2023

i

DECLARATION

By submitting this thesis electronically, I declare that the entirety of the work contained therein

is my own, original work, that I am the sole author thereof (save to the extent explicitly

otherwise stated), that reproduction and publication thereof by Stellenbosch University will not

infringe any third party rights and that I have not previously in its entirety or in part submitted it

for obtaining any qualification.

March 2023

Copyright © 2023 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

List of research outputs

1) Poster presentation at the sixty-sixth Annual Academic Day, Faculty of Medicine and

Health Sciences, Stellenbosch University, August 2022.

2) Oral presentation at the Division of Molecular Biology and Human Genetics Seminar,

Stellenbosch University, May 2022.

3) Poster presentation at the BIO2022: Bioscience, Big Data & the 4th Industrial Revolution

Conference, Stellenbosch, April 2022.

4) Oral presentation at the South African Society for Bioinformatics & South African

Genetics Society Students' Symposium, Stellenbosch, April 2022.

5) Flash oral presentation at the Division of Molecular Biology and Human Genetics

Research Retreat, Stellenbosch University, February 2022.

6) ePoster presentation at the sixty-fifth annual academic day, Faculty of Medicine and

Health Sciences, Stellenbosch University, September 2021.

Stellenbosch University https://scholar.sun.ac.za

iii

Abstract

A cornerstone of scientific progress is independent data verification. It is, therefore, necessary to

develop robust analysis pipelines that can ensure reproducible and verifiable analyses. The

pipeline should also record all steps and software that generated the results. The analysis of

multiplexed ELISA data (Luminex data) can be challenging due to its complexity and variability.

In particular, the data preprocessing stage has many steps and is often ad hoc, leading to

inconsistency, non-standard approaches and lack of reproducibility. An existing in-house data

preprocessing pipeline, the Luminex Pipeline, addresses some of the aforementioned challenges.

However, there remains substantial work to extend its utility, robustness, and overall

reproducibility. Thus, in this work, I improved the summary statistic reports by using

Rmarkdown and implemented unit testing of pipeline components using the R Testthat package.

Unit testing ensured the greater robustness of the code, which was compiled into an R package.

The pipeline execution was also automated by using the Nextflow workflow management

system. Finally, I deployed the pipeline in a Singularity container for execution on any platform

including high-performance computing clusters.

Stellenbosch University https://scholar.sun.ac.za

iv

Opsomming

'n Hoeksteen van wetenskaplike vooruitgang is onafhanklike databevestiging. Dit is dus nodig

om robuuste ontledingspyplyne te ontwikkel wat reproduseerbare en bevestigbare ontledings kan

verseker. Die pyplyn moet ook alle stappe en sagteware wat die resultate gegenereer het,

aanteken. Die ontleding van vermenigvuldige ELISA-data (Luminex-data) kan uitdagend wees

weens die kompleksiteit en veranderlikheid daarvan. Die data-voorverwerkingstadium het veral

baie stappe en is dikwels ad hoc, wat lei tot inkonsekwentheid, benaderings wat nie

gestandardiseerd is nie en 'n gebrek aan reproduseerbaarheid. 'n Bestaande interne

datavoorverwerkingspyplyn, die Luminex-pyplyn, spreek sommige van die voorgenoemde

uitdagings aan. Die uitbreding van die bruikbaarheid, robuustheid en algehele

reproduseerbaarheid van die huidige pyplyn vereis nog baie werk. In hierdie werk het ek dus die

opsommende statistiese verslae verbeter deur Rmarkdown te gebruik en eenheidstoetsing van

pyplynkomponente geïmplementeer deur die gebruik van R Testthat-pakket. Eenheidtoetsing

verseker meer robuustheid van die kode, wat nou in 'n R-pakket saamgestel is. Die uitvoering

van die pyplyn is ook geoutomatiseer deur die Nextflow-werkvloeibestuurstelsel te gebruik.

Laastens het ek die pyplyn in 'n Singularity-houer ontplooi vir uitvoering op enige rekenaar

platform, insluitend hoëprestasie-rekenaarklusters

Stellenbosch University https://scholar.sun.ac.za

v

Acknowledgements

I would like to express my sincerest gratitude to my supervisors; Prof. Gerard Tromp, Dr Elizna

Maasdorp and Prof. Gian van der Spuy for their expertise and guidance in my learning process,

their contributions to this work, and their mentorship.

I would like to also say a special thank you to Prof. Helena Kuivaniemi whose mentorship,

support and counsel has been very impactful in this academic journey.

I acknowledge and thank Ncité Lima DaCamara, for her initial work on the Luminex Pipeline,

which facilitated a smooth start for this project.

I also acknowledge the German Academic Exchange Services (DAAD) for funding my MSc

studies. Additionally, I acknowledge the Centre for High Performance Computing (CHPC),

South Africa, for providing computational resources to this research project.

I am grateful to my family and friends especially my fiancée, Dorcas for their love and support

during this phase of my education.

Many thanks to all staff and students at the Division of Molecular Biology and Human Genetics,

Stellenbosch University, I learnt a lot from all the wonderful presentations. Also, I would like to

thank the Division’s head, Prof. Gerhard Wazl, for creating such a stimulating scientific

environment.

Finally, I would like to acknowledge God for bringing me this far and for His sustenance during

my MSc studies.

Stellenbosch University https://scholar.sun.ac.za

vi

Table of Contents

DECLARATION ... i

List of research outputs ... ii

Abstract .. iii

Opsomming .. iv

Acknowledgements ... v

Table of Contents ... vi

List of figures ... viii

List of tables .. x

List of abbreviations .. xi

CHAPTER 1: INTRODUCTION ... 1

1.1 Executive summary ... 1

1.2 Introduction of concepts ... 2

1.2.1 Reproducibility .. 2

1.2.2 ELISA and Multiplexed ELISA ... 8

1.3 The Luminex Pipeline ... 12

1.4 Problem Statement .. 12

1.5 Aim ... 13

1.6 Objectives ... 13

CHAPTER 2: LITERATURE REVIEW .. 15

2.1 Section 1 – Reproducibility .. 15

2.1.1 Introduction .. 15

2.1.2 Current reproducibility crisis ... 16

2.1.3 Reproducibility in scientific computing ... 20

2.1.4 Overcoming the reproducibility challenges ... 23

2.2 Section 2 – Immunoassay calibration and analytical tools ... 26

2.2.1 Immunoassay setup .. 26

2.2.2 Dose-response curves ... 26

2.2.3 The curve function or model .. 27

2.2.4 Luminex data processing utilities .. 31

CHAPTER 3: METHODS .. 37

3.1 The R LuminexPipeline package .. 37

Stellenbosch University https://scholar.sun.ac.za

vii

3.2 Containerisation .. 43

3.3 Pipelines and workflow management systems .. 46

3.4 Luminex Pipeline with Nextflow .. 48

3.5 Statistical summary report .. 51

3.6 Datasets ... 55

3.7 Materials and tools .. 56

CHAPTER 4: RESULTS .. 57

4.1 Improvements to the R LuminexPipeline package ... 57

4.2 Containerisation .. 60

4.3 Pipelines and workflow management systems (WMS)... 61

4.4 Luminex Pipeline with Nextflow .. 63

4.5 Inclusion of statistical summary reports to the LuminexPipeline ... 64

CHAPTER 5: DISCUSSION .. 73

5.1 The LuminexPipeline and reproducibility .. 73

5.2 Statistical summary extension ... 74

5.3 Containerisation .. 78

5.4 Quality control .. 78

5.5 Limitations .. 78

CHAPTER 6: CONCLUSIONS ... 80

REFERENCES ... 82

APPENDICES .. 92

Container definition file .. 92

Shared libraries ... 92

Nextflow script.. 94

Statistical summary ... 98

Unit testing .. 103

Shiny ... 105

UI (user interface) ... 105

Server .. 108

R .. 111

Stellenbosch University https://scholar.sun.ac.za

viii

List of figures

Figure 1. Definition of reproducibility and its associated terms by the Turing Way Community, Alan

Turing institute. Image used under permission allowed by the CC-BY 4.0 licence. DOI:

https://doi.org/10.5281/zenodo.3332807 .. 3

Figure 2. An illustration of the different types of ELISA with highlights on the differences in the

types of antigen immobilisation. Image source: bosterbio .. 10

Figure 3. Distinctly dyed beads are used as spectral addresses to uniquely identify analytes (left).

Analyte identification and quantification in a flow cytometer, where red and green lasers are used to

identify and quantify analytes (right). Image source: ThermoFisher .. 11

Figure 4. Flow chart of the Luminex Pipeline components .. 12

Figure 5. Illustration of a typical standard curve of a Luminex assay. Notably, the unequal variance

in the response (y-axis) as the dose (x-axis) increases. This assay appears to have an increasing

variation in response (y-axis) with increasing doses (x-axis). It is important to note that some assays

may have non-uniform or random variations in the response (heteroscedasticity). Image used under

permission allowed by the CC BY 3.0 license. Source: (Baker et al., 2014) .. 29

Figure 6. Equal percentage difference between the observed and computed response at doses 70 and

1000 but a very wide difference in the residual squares. The image is not drawn to scale. Reproduced

with permission from (Dunn & Wild, 2013) ... 30

Figure 7. Illustration of limits of quantitation using the interval method with the drLumi package.

The limits of quantitation for this method are marked by the blue vertical lines. Image used under

permission allowed by the CC BY 4.0 license. Source: (Sanz et al., 2017) ... 33

Figure 8. Package metadata displayed in a DESCRIPTION file .. 38

Figure 9. An example of a simplified workflow that was used to develop the R LuminexPipeline

package. .. 39

Figure 10. An example of a code snippet for the usage of the R testthat function. The function has

two major sections, the test description section and the code section where code expectations are

documented. A demonstration of how to execute a test file is illustrated here. .. 41

Figure 11. An illustration of an isolated containerised environment encapsulating installed software

(the inner circle) independent of its host environment (the outer circle). ... 44

Figure 12. Sample definition file containing the commands to build a container. The code is

annotated to describe each code section. One only needs the “Bootstrap” and “From” sections to

build a base container. Definition files have the extension (.def). See the appendix for the definition

file used to build the LuminexPipeline container. .. 45

Stellenbosch University https://scholar.sun.ac.za

ix

Figure 13. Illustration of the input, output, and script code blocks in an excerpt Nextflow process

used in the Luminex pipeline .. 50

Figure 14. A sample of a simple configuration file content. A user of the pipeline only needs to

change the parameter values to process/analyse different data sets and does not need to alter the

pipeline script. ... 51

Figure 15. The general terms of use and permissions granted by the MIT license. 58

Figure 16. An example of documentation for one of the functions in the LuminexPipeline package 59

Figure 17. An example of a standard curve generated from the LuminexPipeline package using

functions borrowed from the drLumi package. This curve attained convergence with the 5-parameter

logistic curve function and it is plotted ignoring background noise. .. 60

Figure 18. Schematic flow of the LuminexPipeline execution. The pipeline is dispatched with the

Nextflow workflow management system for execution in a Singularity container. The end of pipeline

execution generates the pipeline outputs saved on the host computer. ... 64

Figure 19: Distribution of analytes concentrations in a histogram ... 67

Figure 20: Visualisation of all associations in a correlogram. For details, see text. 69

Figure 21: A faceted q-q plot of nine analytes to visually assess non-normality. The image is output

as part of the Luminex pipeline’s statistical summary report. .. 70

Figure 22: An example of a fairly normal distribution of residuals on a q-q plot (left). Plot (right) is

an example of a right-skewed residuals plot on a q-q plot .. 76

Stellenbosch University https://scholar.sun.ac.za

x

List of tables

Table 1. summary of the ASCB’s definitions for the different types of reproducibility 4

Table 2. Summary of the ISA hierarchical structure and the type of metadata information collected 7

Table 3. Swapped term definitions by ACM and Claerbout & Karrenbach. Information used under

permission allowed by the CC-BY 4.0 license. Source: https://github.com/alan-turing-institute/the-

turing-way ... 19

Table 4: Summary of steps and procedures implemented for selecting a workflow management

system. Adapted from (Jackson, Kavoussanakis & Wallace, 2021) ... 48

Table 5: Summary of comparison of shortlisted WMS – Nextflow & Snakemake 61

Table 7. Statistical summary of seven analytes generated from the LuminexPipeline package. From

this output, information regarding spread, central tendency and missingness can be assessed 66

Table 8. Report on the different outlier detection methods .. 67

Table 9. Correlation between analytes in a flattened correlation matrix .. 68

Table 10. Report of test of non-normality with the tests of excess kurtosis, skewness and the Shapiro-

Francia test with its associated p-value ... 70

Table 11. An output table of the Wilcoxon rank sum test between treated and untreated groups,

generated from the LuminexPipeline package .. 71

Stellenbosch University https://scholar.sun.ac.za

xi

List of abbreviations

.mat – Matlab file

.rds – R data file

AIC – Akaike information criterion

API – Application programming interface

BASH – Bourne again shell

CRAN – Comprehensive R archive network

CSS – Cascading style sheet

DAG – Directed acyclic graph

DOI – Digital object identifier

ELISA – Enzyme-linked immunosorbent assay

FI – Fluorescence intensity

FMHS – Faculty of medicine and health sciences, Stellenbosch University

GUI – Graphical user interface

HDF5 – Hierarchical data format version 5

HPC – High-performance computing

HRP – Horseradish peroxidase

HTML – HyperText markup language

IDE – Integrated development environment

JSON – JavaScript object notation

LED – Light emitting diode

MIT - Massachusetts Institute of Technology

OS – Operating system

PBS – Portable batch system

PC – Personal computer

PDF – Portable document format

POSIX – Portable Operating System Interface

q-q – Quantile - Quantile

RAM – Random access memory

SATBBI – South African Tuberculosis Bioinformatics Initiative

SIF – Singularity image file

Stellenbosch University https://scholar.sun.ac.za

xii

SNP – Single nucleotide polymorphism

SSE – Sum of square errors

URL – Uniform resource locator

VM – Virtual machine

WMS – Workflow management system

Stellenbosch University https://scholar.sun.ac.za

1

CHAPTER 1: INTRODUCTION

1.1 Executive summary

Reproducibility is a key foundational component of science. The term as defined by (Gundersen,

2021) is the “ability of independent investigators to draw the same conclusions from an

experiment by following the documentation shared by the original investigators”. This ability is

important in establishing the veracity of scientific conclusions which directly or indirectly impact

our overall well-being, decision-making (informing policies) and our overall understanding of

the world (Committee on Reproducibility and Replicability in Science, the National Academies

of Science, Engineering and Medicine, 2019a). Despite the extreme importance of this tenet of

science, there is a current reproducibility crisis where many scientific results or conclusions are

not reproducible. For example, out of the 53 ‘landmark’ cancer studies subjected to

reproducibility test, only six studies were found to be reproducible despite the replication studies

being closely undertaken with the original authors (Begley & Ellis, 2012). The scientific process

and methods therefore need more rigour, transparency (openness) and scrutiny to ensure that

scientific results and conclusions are verifiable and can hold up to scrutiny.

The rising concern of irreproducibility has been reported well in several disciplines. In Scientific

Computing (the domain of this project), the reproducibility challenge is presented in poor

consistency in achieving numerical stability across different computing environments, poor

documentation practices and an inadequate number of robust tools to help improve

reproducibility in certain specific domains e.g., Luminex data processing.

Multiplexed enzyme-linked immunosorbent assay (ELISA) is a high-throughput alternative to

conventional ELISA used in detecting and quantifying biological analytes (eg. proteins) in

biomedical diagnostics and research purposes. The Luminex platform developed by the

Luminex® corporation (https://www.luminexcorp.com/) is as such a multiplexed ELISA

platform. Unlike conventional ELISA, Luminex can simultaneously quantify biological analytes

through a specialised technology called the Luminex xMAP technology. The quantification of

analytes often results in the generation of large and complex data sets which require multiple

analytical and processing steps. The inherently large variance of Luminex data also accounts for

the multiple-step processing and analyses — which opens a window for irreproducibility and

inconsistency because these analytical steps and processing are usually performed ad hoc.

Stellenbosch University https://scholar.sun.ac.za

https://www.luminexcorp.com/

2

In this work, I present the LuminexPipeline, an in-house R-based pipeline that helps to improve

the reproducibility and consistency of multiplexed ELISA data processing. The LuminexPipeline

is an original work done by Ncite DaCamara as part of her PhD dissertation project. My MSc

project aims to further extend the utility of her initial work. First, I addressed the risk of

irreproducibility and inconsistency during the multiple-step processing with Nextflow (Di

Tommaso et al., 2017), an automated workflow management system. This ensured minimal

human intervention which is a major source of variation and irreproducibility during Luminex

data processing. Second, I containerised the pipeline execution environment with Singularity

(Kurtzer, Sochat & Bauer, 2017), which helps to guarantee numerical stability across different

computing platforms and aids in cross-platform execution of code. Containerisation also helps to

facilitate sharing and publishing of computational environments from which research analyses

were done for independent reproduction and verification. Third, I performed unit testing with the

R testthat package (Wickham, 2011) to ensure the robust and accurate functioning and

maintainability of the pipeline components. Lastly, I extended the utility of the pipeline by the

addition of a statistical summary report.

Through the development of the LuminexPipeline, I contributed to strengthening open science

by making this tool and all associated development code open source – freely available for use

and further development by third-party individuals or organisations. Such open science promotes

rigour, verification, and reproducibility.

1.2 Introduction of concepts

1.2.1 Reproducibility

The concept of reproducibility is not new. In the 17th century, Robert Boyle on his controversial

invention of the vacuum pump wrote, “that the person I addressed them to might, without

mistake, and with as little trouble as possible, be able to repeat such unusual experiments”

(Berkowitz, 2014; Kim, Poline & Dumas, 2018; Stark, 2018). The definition of the term

“reproducibility” may vary across disciplines, but its underlying principle and concept is usually

the same. For example, the National Academy of Sciences of the USA defines the term

reproducibility as “obtaining consistent computational results using the same input data,

computational steps, methods, code, and conditions of analysis” (Committee on Reproducibility

and Replicability in Science, the National Academies of Science, Engineering and Medicine,

Stellenbosch University https://scholar.sun.ac.za

3

2019b). Another definition of the term is: “the ability of independent investigators to draw the

same conclusions from an experiment by following the documentation shared by the original

investigators” (Gundersen, 2021). Though implemented in different domains, e.g.,

computational and experimental (laboratory) domains, the concept is the same — results or

conclusions from an analysis or study should be able to stand independent verification or

confirmation upon the provision of sufficient information. Reproducibility is also associated with

other terms like replicability, repeatability, generalisability, and robustness which may have

slight variations in definitions. For example, in scientific computing, The Turing Way project (of

the Alan Turing Institute; https://the-turing-way.netlify.app/) defines replicability as generating

similar results with the same analysis (code) using different data sets. Robustness is defined as

answering a research question with the same data set but with a different analytical workflow

(e.g., using R instead of Python). Generalisability is defined as answering the same research

question with different data sets and different analytical workflows (The Turing Way

Community, 2022).

Figure 1. Definition of reproducibility and its associated terms by the Turing Way Community,

Alan Turing institute. Image used under permission allowed by the CC-BY 4.0 licence. DOI:

https://doi.org/10.5281/zenodo.3332807

Stellenbosch University https://scholar.sun.ac.za

https://the-turing-way.netlify.app/

4

In the absence of a standardised definition, the American Society for Cell Biology (ASCB) has

tried to define the terms to encapsulate all the various definitions using the following terms:

direct replication — reproducing previous studies using the same experimental design and

conditions in the earlier study; analytic replication — reanalysing the same data set to confirm

scientific findings; systemic replication — confirming scientific findings under different

experimental conditions (e.g., in a different model organism); and conceptual replication —

validating a phenomenon with different methods or experimental conditions (ASCB Task Force,

2014). Throughout this thesis, I use the term reproducibility to broadly encompass the ASCB

definitions unless otherwise explicitly defined.

Table 1. summary of the ASCB’s definitions for the different types of reproducibility (ASCB Task

Force, 2014)

Term Definition

Direct replication Reproducing previous experiments with the same study design and

conditions

Analytic replication Re-analysing the same data set to confirm previously reported findings

Systemic replication Confirming scientific findings in a different experimental condition

Conceptual replication Verifying a phenomenon using different methods or experimental conditions

The principle of reproducibility is one of the key foundational principles of science (Committee

on Reproducibility and Replicability in Science, the National Academies of Science, Engineering

and Medicine, 2019a). As humanity and the natural world are directly and indirectly impacted by

scientific results, it is expedient that scientific findings and conclusions are able to stand the test

of scrutiny and verification. Reproducibility facilitates the process of verification and scrutiny

while ensuring transparency and openness of the scientific process. This is an extremely

important principle for establishing and building upon scientific knowledge (Arunika, 2016) as

well as improving public trust in science. However, there has been an alarming concern recently,

regarding the lack of reproducibility in many published studies (Ioannidis, 2005; Begley & Ellis,

2012; Baker, 2016) which may have grave implications for the knowledge generation process in

science. It also wastes time and resources and risks losing public confidence in science. This

problem, as widely documented in major scientific disciplines has been termed the

“reproducibility crisis”.

Stellenbosch University https://scholar.sun.ac.za

5

One of the major contributing factors to the current reproducibility crisis is poor documentation

practices. Unlike Robert Boyle, many scientists today do not collect or provide adequate

information about their research to be independently used to reproduce their work. Such practises

may include failure to share code or research data (Huang & Gottardo, 2013), and incomplete or

erroneous description of methods, e.g., failure to document what software and which software

versions were used for a certain computation. Another contributing factor to the reproducibility

crisis, specifically in scientific computing, is poor adherence to current best practices, for

example, unit testing of code. Failure to subject code to unit testing or third-party testing may

render the analysis or code to be error-prone which may directly impact its ability to be

reproduced in a different computing environment (Papin et al., 2020).

Another closely related contributing factor to the reproducibility problem is the poor

standardisation of experimental metadata collection. Standardising metadata collection involves

the use of standard terms (e.g., ontological terms) and annotation methods to describe scientific

methods and experimental conditions which facilitates reproducibility by improving

documentation practices and increasing the coverage of individuals who can achieve

reproducibility with such documented metadata because of the worldwide adoption of standard

usage.

I briefly introduce here, two methods relevant to this project (pipelines and the investigation,

study and assay meta data framework), which help to improve reproducibility. I further provide

an extensive review on the subject of reproducibility in section 1 of the Literature Review

chapter (Chapter 2).

1.2.1.1 Workflow management system (Pipelines)

Many computationally intensive analyses involve a considerable number of processing steps

which are often modularised (each step is self-contained). Performing these analyses

interactively or ad hoc raises concerns about reproducibility because, the use of these methods

(interactive or ad hoc analyses) often results in little or no record of the processing and analytical

steps being implemented (Franceschi et al., 2014). Workflow management systems (pipelines)

can address this challenge by automating data processing and analytical steps — which is

achieved by streamlining or chaining together all analytical processes in an automated manner.

Thus, the output of an analytical process or step can be programmed to serve as the input to

another analytical process or step without requiring any human intervention or interactivity.

Stellenbosch University https://scholar.sun.ac.za

6

The use of an automated workflow management system in an analysis, therefore, helps to

significantly improve reproducibility by eliminating human intervention (a major source of

variation contributing to irreproducibility) during data processing and analysis; providing a better

and reproducible alternative to ad hoc analytical approaches; keeping provenance information by

allowing analytical results to be traced back to the analytical pipeline that generated the results

(Committee on Reproducibility and Replicability in Science, the National Academies of Science,

Engineering and Medicine, 2019a). It also contributes to improving the efficiency and speed of

scientific knowledge generation. For example, an analytical framework (pipeline) can be

constructed for a specific analysis in which different data inputs are subjected to the same set of

computational instructions — this allows for newly generated data sets to be easily processed

and analysed in an expedited manner. Additionally, most workflow management systems

natively support the use of containers (one of the current best practices to achieve

reproducibility); the scalability of heavy computations on the cloud or high-performance

computing cluster and re-entrancy (resumption of computation after an unexpected break), which

improves computational efficiency and speed in data processing and analyses. Some examples of

the popular workflow management systems used in Bioinformatics are Nextflow (Di Tommaso

et al., 2017), Snakemake (Koster & Rahmann, 2012), Galaxy (Afgan et al., 2018), and common

workflow language (Amstutz et al., 2016)). In this project, I used the Nextflow workflow

management system to automate and improve the reproducibility of multiplex ELISA data

processing and analysis which involves multiple steps.

1.2.1.2 The investigation, study, and assay (ISA) metadata framework

A lot of interventions have been established to address the reproducibility crisis, among which is

the investigation, study and assay (ISA) metadata framework (Rocca-Serra et al., 2012) for

collecting experimental metadata for annotating research data to improve reproducibility in

scientific experiments. The ISA framework collects ontological metadata in three tab-delimited

or JSON file formats (Johnson et al., 2021). The first file is the investigation file, which is at the

top of the ISA framework’s hierarchy. It collects contextual metadata of the project. This

includes a brief description of the investigation, investigation-related publications, contact details

of investigators as well as submission and publication dates.

The study file (second of the hierarchy) collects ontological metadata of the study subjects such

as sample type, sample characteristics, factors (an independent variable controlled by the

Stellenbosch University https://scholar.sun.ac.za

7

investigator to affect a biological system resulting in a measurable assay; https://isa-

specs.readthedocs.io/en/latest/isamodel.html) and the factor type. The type of study design used

in the experiment is also recorded in the study file.

The third file i.e., the assay file, records the measurements and types of measurement used in

generating experimental results as well as the protocols used to process and analyse the samples.

It also captures information about the type of instrument used for the measurement.

All of this rich metadata information is important to attain reproducibility in published research,

especially in this new era where research funders are requiring researchers to publicly make

research data available to facilitate scientific discovery and re-use of data for new research

questions (Committee on Reproducibility and Replicability in Science, the National Academies

of Science, Engineering and Medicine, 2019a). The ISA metadata framework is thus important to

provide rich and standardised contextual information about a research project to enable

independent researchers to comprehend a scientific project, especially a published data set, and

to facilitate the reproduction of experimental findings or conclusions (Rocca-Serra et al., 2010;

González-Beltrán et al., 2015). The ISA software suite (Rocca-Serra et al., 2010) is one of the

extensible utilities that facilitate the collection of ontological metadata.

Table 2. Summary of the ISA hierarchical structure and the type of metadata information collected

ISA file structure Content

Investigation file Brief description of investigation, publications related to the investigation,

contact details of investigators etc

Study file Description of sample type, sample characteristics etc

Assay file Description of variable measurements and instruments used for the

measurements

1.2.1.3 The FAIR guiding principles

Another intervention to help circumvent the current reproducibility challenges is adherence to

the findable, accessible, interoperable and reusable (FAIR) guiding principles (Wilkinson et al.,

2016) for sharing research metadata and data. The FAIR guiding principle requires that

(meta)data are (i) Findable with a unique identifier (e.g., DOI) and (meta)data are indexed in

searchable sources (search engines); (ii) Accessible by their identifiers and are open and freely

Stellenbosch University https://scholar.sun.ac.za

https://isa-specs.readthedocs.io/en/latest/isamodel.html
https://isa-specs.readthedocs.io/en/latest/isamodel.html

8

available for use but, when necessary, the appropriate authentications be applied; (iii)

Interoperable using standardised vocabularies and broadly applicable languages; and (iv)

Reusable with an accurate description of relevant attributes and provenance information. This

principle enhances research metadata and data [(meta)data] to be automatically accessed and

readily utilised by machines to facilitate reusability. Thus, this complements other efforts under-

way to improve the reusability (reproducibility) of research (meta)data — as they are increasing

in numbers due to the increasing demand to make research (meta)data publicly available.,.

1.2.2 ELISA and Multiplexed ELISA

ELISA is a technique used to quantify and identify biological analytes e.g., cytokines, peptides,

and hormones based on an antigen-antibody interaction. It was initially described by (Yalow &

Berson, 1960) as an antibody-mediated detection technique using a radioactive signal. Because

of health concerns with radioactivity, alternative approaches were later sought (Shah &

Maghsoudlou, 2016). In 1971, two research groups (Engvall & Perlmann, 1971; Van Weemen &

Schuurs, 1971) independently reported a detailed procedure for detecting analytes using an

enzyme-labelled antibody, a technique now known as an ELISA. This technique is now a widely

used method and the gold standard for quantifying and detecting biological analytes because of

its specificity and sensitivity as well as flexibility in its implementation chiefly because it has the

capability to bind to a wide variety of organic and inorganic compounds. It also has an excellent

specificity for the material (antigen) that binds to an antibody and it has the ability to detect and

quantify the strength of antigen-antibody binding (Wild, 2013). Thus, this technique has been

successfully applied in clinical diagnostics and biomedical research. There are many variations

to the technique but generally, it starts with a coating step where sample antigens or capture

antibodies (to bind with sample antigens) are immobilised on a polystyrene microwell plate,

either directly (adsorption) or indirectly (Rattle et al., 2013). An antibody linked with an enzyme,

usually, horseradish peroxidase (HRP) is then introduced to bind with the sample antigens (Cox

et al., 2019). The antigen-antibody interaction is detected by a signalling system e.g., the

enzyme-labelled activity in the presence of analytes. The intensity of the signal (e.g., coloured

by-product) infers the amount of analyte present in the reaction. The various types of ELISA are

categorised based on the method of coating (antigen or antibody immobilisation to plate) and by

the method of detection (Figure 2).

Stellenbosch University https://scholar.sun.ac.za

9

1.2.2.1 Direct ELISA

In direct ELISA (Figure 2), the coating step is done directly by immobilising the sample antigen

to the microwell plate. An antibody linked with an enzyme binds to the immobilised antigen.

This ELISA type is faster because it requires fewer steps which also makes it less prone to errors.

On the other hand, direct ELISA may have a relatively high background noise because of its

immobilisation step which allows all proteins (including target antigen) in the sample to bind to

the plate. Assay sensitivity is also relatively low because of the absence of a secondary antibody

to amplify the signal. It is also not flexible because every immobilised protein requires a specific

conjugated antibody for binding. This type of ELISA is best suited for studying antigen immune

response (Lin, 2015a).

1.2.2.2 Indirect ELISA

Indirect ELISA (Figure 2) has the same coating step as direct ELISA. However, the method of

detection involves the binding of an unlabelled primary antibody to the immobilised antigen. An

enzyme-labelled secondary antibody, directed at the primary antibody, enables signal

amplification since more than one labelled secondary antibody can be directed to the primary

antibody to improve overall sensitivity. This type of ELISA offers a lot of flexibility because one

labelled secondary antibody can bind to different primary antibodies. A disadvantage is the

increased possibility of cross-reactivity between the secondary antibody and the immobilised

antigen which could increase the background noise. Additionally, indirect ELISA can be time-

consuming because of additional incubation steps, see (Lin, 2015b).

1.2.2.3 Sandwich ELISA

The sandwich ELISA (Figure 2) is the most widely used type of ELISA. In its setup, the coating

step is done by immobilising a capture antibody to the ELISA plate. The sample antigen is

allowed to bind to the capture antibody. A detection antibody (either labelled or unlabelled) then

binds to the sample antigen to form a sandwich. Because both antibodies (capture and detection)

bind to different epitopes on the same antigen, the assay is highly specific. This ELISA type is

very sensitive and delivers great flexibility since both direct and indirect ELISA can be

implemented. A disadvantage, however, is that in the absence of a standardised kit, optimisation

to avoid cross-reactivity between capture and detection antibodies can be difficult. Sandwich

Stellenbosch University https://scholar.sun.ac.za

10

ELISA is useful in studying complex samples such as tissue lysates where the target analyte is

part of an impure sample.

1.2.2.4 Competitive ELISA

Competitive ELISA (Figure 2) is used to detect and measure the concentrations of minute

molecules, e.g., drugs. It is set up with a small concentration of antibodies, sample antigens and

inhibitor antigens or tracers (labelled sample antigens). In this assay setup, there is competition

between sample antigens and inhibitor antigens to bind with the limited antibodies present in the

reaction. The proportion of inhibitor antigens or tracers that bind to the antibodies is indirectly

proportional to the concentration of the sample antigens present in the reaction, see (Wild, 2013)

Figure 2. An illustration of the different types of ELISA with highlights on the differences in the

types of antigen immobilisation. Image source: Bosterbio

1.2.2.5 Multiplexed ELISA (Luminex xMAP Technology)

A high throughput, cost-effective, sample and labour-efficient alternative to the standard ELISA

techniques described above is the multiplexed ELISA powered by the Luminex® corporation’s

multi-analyte profiling (xMAP) technology — where “x” in xMAP represents the analytes to be

investigated (Figure 3). This technique allows several analytes to be concurrently identified and

quantified from the same sample by use of magnetic or polystyrene microspheres (beads) coated

with carboxyl groups. The carboxyl groups on the beads facilitate the covalent conjugation of

analytes to the beads (Carl et al., 2019). The beads are also uniquely dyed with different

proportions of two or three fluorescent dyes to form spectral addresses, allowing the distinct

identification of analytes (Dunbar, 2006). In a typical multiplexed ELISA (Luminex) assay, the

configuration of sandwich ELISA is employed. That is, distinct capture antibodies are

Stellenbosch University https://scholar.sun.ac.za

https://www.bosterbio.com/protocol-and-troubleshooting/elisa-principle

11

conjugated to the beads whereas sample antigens of specific affinity to the capture antibodies

bind to the bead-conjugated-capture antibodies. A bound-complex, is formed after a labelled

detection antibody specific to the sample antigen binds to the antigen. The detection antibody is

usually labelled with phycoerythrin or streptavidin (the reporter molecule) to serve as an enzyme

substrate (signalling molecule) that fluoresces during analyte interrogation (Dunbar &

Hoffmeyer, 2013; Bio-Rad, n.d.)

Assay interrogation is done in a flow cytometer where analytes are identified and quantified

simultaneously. In the flow cell, a red laser or light-emitting diode (LED) excites the fluorescent

dye in the beads to uniquely identify the analyte. At the same time, a green laser or LED excites

the reporter molecule. The intensity of fluorescence is used to infer the quantity or concentration

of analytes since the observed fluorescence intensity is directly proportional to the concentration

of the analyte.

Figure 3. Distinctly dyed beads are used as spectral addresses to uniquely identify analytes (left).

Analyte identification and quantification in a flow cytometer, where red and green lasers are used to

identify and quantify analytes (right). Image source: Thermo Fisher Scientific Inc.

Multiplex ELISA has been successfully applied in quantifying multiple biomarkers in clinical

drug development studies of multifactorial diseases in which several analytes need to be

measured to perform a comprehensive analysis of the biological molecules contributing to the

disease pathogenesis (Tighe et al., 2015). It has also been broadly used in pathogen detection and

typing; protein-protein interaction studies; gene expression studies; and for genotyping single

nucleotide polymorphisms (SNP) (Dunbar, 2006; Dunbar & Li, 2010).

Stellenbosch University https://scholar.sun.ac.za

https://www.thermofisher.com/blog/behindthebench/luminex-bead-based-immunoassays-drive-immunoassays-towards-higher-content-biomarker-discovery/

12

1.3 The Luminex Pipeline

The Luminex Pipeline (Figure 4) is an R-based utility initially developed by Ncité Lima

DaCamara as part of her PhD work. This utility is used for processing and analysing multiplexed

(Luminex) ELISA assay data in a robust and reproducible manner. The functionalities of the

pipeline include importing raw Luminex files (.txt files), data cleaning and tidying, recording

metadata (e.g., values beyond detectable limits), imputation of missing values, and standardising

analyte names with an analyte reference list to ensure consistency. The Luminex Pipeline

performs these tasks while recording all the processing and analytical steps for record-keeping

and reproducibility purposes.

Figure 4. Flow chart of the Luminex Pipeline components

1.4 Problem Statement

Luminex data processing and analyses can be very challenging because of the complexity of the

data due to multiplexing. Thus, the data can be highly dimensional and large. Luminex data are

also characterised by an inherently high variance, missing values (e.g., concentrations beyond the

detectable range of the Luminex instrument), duplicates and non-normality in the distribution of

analyte concentrations. These challenges contribute to the complications of data processing and

Stellenbosch University https://scholar.sun.ac.za

13

analyses leading to non-standardised and inconsistent data processing and analytical approaches.

Such ad hoc approaches limit the reproducibility of the data processing and analytical steps

(methods)

The Luminex pipeline was developed to address some of the aforementioned challenges in

attaining reproducible methods and generating consistent and reproducible results. However,

despite its current robust and reproducible implementation, there is still room for extension of its

utility by implementing other robust and reproducible approaches. For example, it would be

advisable to automate the pipeline’s execution with a workflow management system to

circumvent human intervention and other sources of variation during the pipeline execution.

Another area in need of extension is the ability to achieve numerical stability (consistent results)

across different computing environments — one of the major challenges of analytical

reproducibility. A containerised pipeline can help to address this challenge. Additionally, the

robustness of the pipeline can further be extended to improve the way it handles errors

(generating useful error messages) and to ensure accurate functionality which can be achieved

with the help of unit testing. Furthermore, the pipeline components can be extended with a

statistical summary report component to improve its utility. Lastly, additional utilities (R Shiny

application) can be developed to help facilitate exploratory data analysis.

1.5 Aim

To extend the overall utility, robustness, consistency, and reproducibility of the Luminex

Pipeline for analysing multiplex ELISA data.

1.6 Objectives

I. Write new R functions to generate a statistical summary report and compile them

together with existing pipeline functions into an R package.

II. Test and document the pipeline components to ensure the general robustness and accurate

functionality of the pipeline.

III. Automate pipeline execution with a workflow management system to improve

reproducibility and ease of use.

IV. Develop a containerised runtime environment for pipeline execution to improve

reproducibility.

Stellenbosch University https://scholar.sun.ac.za

14

V. Develop an R Shiny application for ease of use in exploratory analysis of the pipeline’s

output data.

VI. Extend pipeline components with a statistical summary report to extend the overall utility

of the pipeline.

Stellenbosch University https://scholar.sun.ac.za

15

CHAPTER 2: LITERATURE REVIEW

This chapter is divided into two sections. The first section gives a review of some of the major

factors that contribute to the current reproducibility crisis and the efforts underway to alleviate

them. The second section gives a review of Luminex data processing and analysis.

2.1 Section 1 – Reproducibility

2.1.1 Introduction

One of the fundamental principles of science is the independent verification and

“reproducibility” of scientific methods and results. A broad understanding of the reproducibility

term is the ability to repeat published experiments or studies and be able to generate identical

findings or draw identical conclusions as the original study. Thus, to achieve reproducibility,

there needs to be transparency, openness and rigour in scientific methods and processes. This

may be achieved by simply providing all the necessary information needed to reproduce a

published work or by using technical approaches like setting stringent significance thresholds for

novel discoveries to reproduced (Ioannidis, 2014). Reproducibility is extremely important for

ensuring the credibility of scientific results and conclusions and for attaining societal trust in

science (Committee on Reproducibility and Replicability in Science, the National Academies of

Science, Engineering and Medicine, 2019c). Nevertheless, attaining reproducibility is no

guarantee of the accuracy of research findings or conclusions (Ioannidis, 2014). For example, a

study which is well documented (to achieve reproducibility) but utilises a wrong experimental

design may have its biased or incorrect conclusions easily reproduced by an independent

researcher. Thus, the main aim of reproducibility is to foster transparency and openness in the

scientific process. Such transparency will allow for the identification and correction of mistakes

(like the wrong experimental design example) during independent verification or peer review

processes. Reproducibility is therefore important to significantly improve the credibility of

research findings and conclusions, and to discourage scientific misconduct.

In addition, despite its overarching importance in science, it is important to note that the concept

of reproducibility may be subject to some philosophical and practical limitations in certain

contexts, for example, sources of variation in experimental subjects that are difficult to control

(e.g., study participant’s deliberate failure to disclose medical history) may render an experiment

Stellenbosch University https://scholar.sun.ac.za

16

difficult to reproduce (Casadevall & Fang, 2010). Nevertheless, reproducibility remains an

indispensable component of doing good science.

2.1.2 Current reproducibility crisis

Reproducibility is increasingly becoming a subject of great concern. For example, a recent

survey conducted by the international journal Nature (Baker, 2016) revealed that of the 1,576

respondents surveyed, over 70% reported having failed in trying to reproduce the work of other

scientists while a staggering 50% had tried and failed to reproduce their own work. The survey

also reported that more than half of the respondents (52%) agreed that there is a significant

reproducibility crisis in science. Several other studies have reported challenges in reproducing

the work of others (Begley & Ellis, 2012; Arunika, 2016; Kim, Poline & Dumas, 2018; Mullard,

2021) resulting in a heightened uptake of interest in the subject. Here, I review some of the

leading contributors to the current reproducibility crisis.

2.1.2.1 Transparency

One of the major barriers to attaining reproducibility in science is poor record-keeping and

documentation practices and the unwillingness of researchers to share research data, code, etc.

Research findings can easily and independently be reproduced only when sufficient and detailed

information about all research procedures is documented and made easily available and

accessible. Thus, it represents transparent research. However, this is often not the practice,

contributing to the current reproducibility crisis in a major way (Nuzzo, 2015). One of the

reasons for poor transparency is the fear of researchers incriminating themselves when they

provide enough details for reproducing their work.

2.1.2.2 Cognitive bias

Cognitive bias is one of the major reasons why research findings or conclusions may not be

reproduced. Cognitive bias is the tendency of an individual’s subjective, subconscious, or

personal beliefs to influence their decision-making and judgement processes (Tversky &

Kahneman, 1974; Cooper & Meterko, 2019). Several types of cognitive bias have been

identified. Confirmation bias is the unconscious tendency to interpret new evidence in a way that

supports one's pre-existing beliefs or hypotheses (Munafò et al., 2017). This bias influences data

collection and interpretation. Selection bias results from poor sampling techniques leading to

sample data which are not representative of the population (Tripepi et al., 2010). Cluster illusion

Stellenbosch University https://scholar.sun.ac.za

17

results in the perception of patterns in data that are non-existent in reality. The bandwagon effect

is a type of bias with the inclination to support a viewpoint without giving it enough thought to

maintain group cohesion (Landucci & Lamperti, 2021). This type of bias results in the

acceptance of ideas based on their popularity but which may not be necessarily accurate. Lastly,

reporting bias is when research subjects withhold important information from researchers based

on their subconscious drive (Munafò et al., 2017). Reporting bias is also true for researchers

selectively reporting positive results.

2.1.2.3 Low statistical power

Another major concern for not attaining reproducibility has been attributed to low statistical

power (Bishop, 2019). This is because there are very small odds of detecting minimal effects in

underpowered studies (small sample size) even when an effect exists. Furthermore, simulation

studies, see (Poldrack, 2022) have shown that when effects are detected in underpowered studies,

the effect sizes reported are most likely to be grossly overestimated, a phenomenon termed the

winner’s curse. This phenomenon is a major problem for replication studies which usually fail to

detect earlier reported effects because the effect size of the original study was overestimated due

to low statistical power. In discovery studies, this problem can be a major reason for not attaining

reproducible findings in subsequent replication studies.

2.1.2.4 Inappropriate or poor use of statistical tools

P-values have widely been used to test hypotheses and estimate the likelihood of an observed

result being attributed to chance. However, p-values on their own, cannot be used to draw

scientific conclusions as their use is intended to be in conjunction with background knowledge

— the plausibility of the hypothesis (Nuzzo, 2014). In this light, p-values have been used

inappropriately by many scientists. According to (Chawla, 2017), p-values should be interpreted

as “suggestive evidence” (especially for values between 0.05 and 0.005) and not necessarily as a

basis for established knowledge, i.e., p-values are not definitive. Calculations have shown that a

statistically significant result with a p-value of 0.01 has an 11% chance of being a false positive

result. Also, there is a 29% chance of reporting a false positive result with a p-value of 0.05, see

(Nuzzo, 2014). Furthermore, p-values do not indicate the magnitude or size of the effects. In

addition to these constraints, p-values are generally over-relied on, misused and misinterpreted

(Ioannidis, 2018) contributing to the current reproducibility crisis.

Stellenbosch University https://scholar.sun.ac.za

18

2.1.2.5 P-hacking

Another problem, commonly known as p-value hacking, is the process whereby several

statistical analyses are performed to attain significant results. This problem is embedded in the

saying of Ronald Coase that “if you torture the data long enough, it will confess to anything” –

i.e., scientists try every means possible to achieve significant results. P-hacking can be done in

any of the following poor research practices (Poldrack, 2022): (i) excluding participants to attain

significant p-values; (ii) analysing several variables but reporting only those that gave significant

p-values; and (iii) concurrent analysis with data collection but the attainment of a significant p-

value prompts the end of data collection. These questionable research practices may significantly

hamper the reproducibility of a scientific finding. Additionally, they have been shown to increase

the rate of false-positive findings (Simmons, Nelson & Simonsohn, 2011). P-hacking may be one

of the outcomes of publication bias where significant results are more likely to be published.

2.1.2.6 HARK-ing

Another reason for the poor reproducibility in science is the common practice of HARK-ing

(“hypotheses after results are known”). Harking is defined as “presenting a post hoc hypothesis

(i.e., one based on or informed by one's results) in one's research report as if it were, in fact, an

a priori hypotheses” (Kerr, 1998). Here, researchers make new hypotheses after seeing the

trends in the data and change their initial hypotheses. The problem has been described by

(Poldrack, 2022) as moving a goalpost wherever the ball goes. The consequence of this is the

difficulty of invalidating incorrect ideas since the goalpost can always be adjusted and

manoeuvred to match the data.

2.1.2.7 Publication bias and undue preference for novelty

The current scientific culture has been biased against the null hypothesis (Bishop, 2019). It

unduly favours statistically significant results or novel findings, rewarding them with a greater

chance of publication. On the other hand, negative results (statistically non-significant) or

replication studies (non-novel studies) are less likely to be published. This poor culture

consequently leads to wasted time and resources and, to a certain degree, hinders scientific

advancement because when only significant findings are published, nobody learns about the

supposedly “failed” experiments and as such, efforts, time, and resources are wasted repeating

such experiments. Also, the preference for novelty discourages replication studies which would

Stellenbosch University https://scholar.sun.ac.za

19

enhance the self-correcting nature of science and boosts confidence in scientific knowledge, for

example, when a replication study confirms an earlier finding.

2.1.2.8 Inconsistent definition of terms

Another problem is the lack of a consistent definition of the terms for reproducibility

(Gundersen, 2021). For example, in biology, reproducibility usually means a different laboratory

attaining similar experimental results from scratch, while in computational sciences it often

means the provision of sufficient details to repeat computations (Stark, 2018). Reproducibility

has other associated terms which may be of varied definitions depending on the discipline. In

computational sciences, reproducibility; replicability; robustness and generalisability are all

terms associated with “reproducibility” but have different meanings. On top of this, these

definitions are not standardised, for example, the definitions of reproducibility and replicability

are interchanged by the Association for Computing Machinery (ACM) and Claerbout and

Karrenbach – who first proposed definitions for the terms (Plesser, 2018) (Table 3). Non-

standardised definitions may lead to confusion and may further derail progress to alleviate the

current reproducibility challenges.

Table 3. Swapped term definitions by ACM and Claerbout & Karrenbach. Information used under

permission allowed by the CC-BY 4.0 license. Source: https://github.com/alan-turing-institute/the-

turing-way

Term Claerbout & Karrenbach ACM

Reproducible “Authors provide all the

necessary data and the

computer codes to run the

analysis again, re-creating the

results”

“(Different team, different experimental setup.) The

measurement can be obtained with stated precision by

a different team, a different measuring system, in a

different location on multiple trials. For computational

experiments, this means that an independent group

can obtain the same result using artifacts which they

develop completely independently”

Replicable “A study that arrives at the

same scientific findings as

another study, collecting new

data (possibly with different

methods) and completing new

“Different team, same experimental setup.) The

measurement can be obtained with stated precision by

a different team using the same measurement

procedure, the same measuring system, under the

same operating conditions, in the same or a different

Stellenbosch University https://scholar.sun.ac.za

https://github.com/alan-turing-institute/the-turing-way
https://github.com/alan-turing-institute/the-turing-way

20

analyses” location on multiple trials. For computational

experiments, this means that an independent group

can obtain the same result using the author’s artifacts”

2.1.3 Reproducibility in scientific computing

The challenge of reproducibility in scientific computing usually has to do with the unavailability

of code. In a survey involving 400 Artificial Intelligence papers, only 6% of the papers made the

code used in the paper available (Hutson, 2018). However, the challenge of reproducibility in

computational science goes beyond just making available the code and data used in a

computation. In their case study, (Kim, Poline & Dumas, 2018) outlined the challenges they

encountered in trying to reproduce a published bioinformatics paper with available code and

data. The authors defined reproducibility and its associated terminology used in their work

(Figure 1) as:

Reproducible – generating identical results with the same code and underlying data.

Robust – using the same underlying data but with a different code to arrive at an identical

result, e.g., using a Python script instead of an original R script from which analysis

was carried out.

Replicable – different data but the same code to attain similar results.

Generalisable – use of different codes with different underlying data.

The authors reported difficulties with hardware compatibility in their attempt to reproduce the

results using the same underlying data and code as in the original work. The original authors had

used a MATLAB library in their code which was dependent on the architecture of the operating

system (OS). Running the analysis on a different OS, the new authors reported their hurdles in

trying to recompile the library to be able to reproduce the original work. Additionally, the new

authors experimented with the robustness of the code (different code, same data) by recoding the

MATLAB code into a Python package — which, in contrast to MATLAB, is a free and open-

source alternative. They reported challenges in attaining robustness. These challenges included

their inability to change the original file format from a MATLAB (.mat) file format to a

hierarchical data format version 5 (HDF5) format in Python. Furthermore, they reported errors

and challenges due to varying code parameters and arguments. For example, the default

arguments of the functions used for clustering in the original MATLAB code differed

Stellenbosch University https://scholar.sun.ac.za

21

significantly from those of Python. This highlights the importance of having a thorough

understanding of the behaviour of implemented functions or code in safeguarding the validity of

results when recoding in a different programming environment or version. Although most of the

hurdles encountered in their attempt to attain robustness can be easily overcome by using virtual

container environments and by strict adherence to recommended guidelines, the authors

acknowledged that developing container environments may be a difficult technical task for some

researchers and may require additional training. Furthermore, strict adherence to recommended

guidelines may take some time to be widely incorporated into the routine work of researchers.

One essential element necessary for achieving reproducible methods and results in scientific

computing is the development of robust tools. A “robust” tool in this context is defined as

“software that works for people other than the original author and on machines other than its

creator’s” (Taschuk & Wilson, 2017). In other words, a utility that can be easily installed on

different computers and whose integration with other tools is possible. Robust tools are

important to improve reproducible research and accelerate scientific research. In this regard,

(Taschuk & Wilson, 2017) have proposed ten rules or best practices for developing robust

research tools such as software to improve computational reproducibility. These rules are

summarised below.

2.1.3.1 Code documentation

Good documentation practice is needed to help new users easily navigate and use the program.

Thus, the utility should be properly documented. Documentation is usually done in a README

file. The authors recommended some necessary minimal guidelines for good documentation

practices, which include explaining the purpose of the program, listing all dependencies,

providing installation instructions, describing input and output files, demonstrating usage with

few examples and providing licensing information or information on how users can credit the

work.

2.1.3.2 Version control

Software development versioning helps to keep track of all developmental changes and

facilitates bug-fixes in isolation from the main development repository. This allows for working

features (fixed bugs) to be merged with the main repository when needed. Versioning also allows

Stellenbosch University https://scholar.sun.ac.za

22

the developer to revert to a previous version of the program in the development phase and

enhances collaboration.

2.1.3.3 Seamless control of operations

The program should make exploratory analysis easier by incorporating parameters that directly

influence the results in the code. If a parameter is required, a reasonable default value should be

provided. Furthermore, the program should be able to check, upon start-up, the correct input

values or files and should be able to generate useful error messages when incorrect inputs are

encountered. This makes the program easier to use.

2.1.3.4 Include versions for every release

As the program evolves with time, each release (i.e., update of the program) should be allocated

a version stamp in incremental order. This identifier makes it easier for future retrieval of a

specific release. The most common versioning semantic for open-source software is the

“MAJOR.MINOR[.PATCH]” semantic, e.g., version 0.5.3. The “major” version number is

updated as significant changes are made to the program while incrementing the “minor” version

number is reflective of minor changes to improve the program, e.g., adding new features. Finally,

the version of the program should be easily accessible, e.g., with the –version argument on the

command line.

2.1.3.5 Reusing other programs

Sometimes, it is necessary and useful to not “reinvent the wheel” by reusing external code,

functions, or programs in one’s software or program. However, the downside to this may be the

introduction of complex dependencies which, often are hard to deal with. The authors propose

that the reuse of supplementary programs should be based on a true need before they are

incorporated into one’s program. Additionally, the developer should ensure that the auxiliary

program is robust.

2.1.3.6 Build-tools and package managers for installation

The program should rely on build-tools (e.g., Make, Maven etc) or package managers (e.g., pip

for Python) for installation since these sets of utilities can automatically determine and install the

program’s dependencies. The developer, therefore, must document a machine-readable file of all

the program’s dependencies.

Stellenbosch University https://scholar.sun.ac.za

23

2.1.3.7 No special or root privileges for installation

Since most scientific software are of themselves not malicious, installing them should not require

any special privileges (except for unusual circumstances). Furthermore, as much as possible, the

installation of the program should be tested before deployment. This can be achieved by utilising

virtualisation containers (e.g., Singularity) or simply asking colleagues to install the program on

their computers.

2.1.3.8 Avoid hard-coding file paths

Hard-coding file paths or parameters into a program makes it difficult to execute the program on

a different computing environment since hard-coded paths may not exist in the new computing

environment. The program should, therefore, allow users to specify the input and output file

locations as parameters or arguments to the program.

2.1.3.9 Include test data

The program should include small test datasets with which users can run or explore the

program’s functionality after installation. The test data can also be used to demonstrate the

program’s usage, for example, in the documentation. Aside from the inclusion of test data, the

program should be subjected to unit testing.

2.1.3.10 Identical inputs generate identical outputs

A particular version of the program should produce the same results given a specific set of

parameters and data. To further improve reproducibility, the program should print to standard

output or a log file, the software version and the parameters used in an execution.

2.1.4 Overcoming the reproducibility challenges

Several measures are being taken by all stakeholders of science i.e., funders, publishers, research

institutions and scientists to help address the reproducibility crisis. Below, I highlight some of

the efforts being undertaken and recommendations to help improve reproducibility in science.

2.1.4.1 Improve sharing, record-keeping and documentation practices

Researchers should document and report all undertaken procedures with accompanying metadata

including instruments used, measurements taken, and variables measured of the research project.

That is, for example, giving a clear description of all analytical procedures and reasons for

including or ignoring certain data; reporting on statistical power; and reporting on how

Stellenbosch University https://scholar.sun.ac.za

24

uncertainties were dealt with (Committee on Reproducibility and Replicability in Science, the

National Academies of Science, Engineering and Medicine, 2019a).

As a major component for achieving reproducibility, good documentation or record-keeping

practice is also important to facilitate the self-correcting nature of science. For example, a recent

study reported that eight out of the ten pioneer genome sequences of the Orangutan species

initially published were mistakenly assigned to the wrong species (Kreier, 2022). The absence of

good record-keeping and sharing practices may have left this mistake undiscovered,

consequently impacting subsequent studies that would have relied on this “inaccurate” data. This

highlights the importance of adopting reproducible methods such as good documentation, record

keeping, and sharing to achieve rigour and verification of scientific results, as well as to facilitate

the self-corrective nature of science.

2.1.4.2 Training and Education

Researchers need to be trained on the need for reproducible research and should be trained in

utilising current best practices and tools available for improving reproducibility in their research.

This measure has gained some traction as several institutions are incorporating reproducibility

concepts in their curriculum (Committee on Reproducibility and Replicability in Science, the

National Academies of Science, Engineering and Medicine, 2019a). For example, postgraduate

training at the South African Tuberculosis Bioinformatics Initiative (SATBBI), Stellenbosch

University emphasises the development of skills for attaining computational reproducibility as

demonstrated by this reproducibility-themed MSc thesis.

2.1.4.3 Pre-registration

One of the undertaken measures to help to prevent questionable research practices and thus

improve reproducibility is pre-registration — the provision of detailed experimental design and

analytical steps of a research project before embarking on the research project (data collection or

analyses). With this approach, researchers first publish their protocols before starting on the

study and are then guaranteed a second publication of their final results regardless of the

outcome of results (whether positive or negative), on the condition that they adhere to all the pre-

registered protocols. Pre-registering a research project can therefore help to minimise some

questionable research practices (e.g., p-hacking, harking) and publication bias (Bishop, 2019).

Stellenbosch University https://scholar.sun.ac.za

25

2.4.1.4 Different analytical approaches

One of the analytical approaches to help reveal and minimise certain cognitive biases during

analytical procedures is crowd-sourced analysis — several teams answering the same research

questions by analysing the same data. For example, this approach was applied in a study where

29 different teams were asked to analyse the same data sets to answer the research question

whether dark-skin-toned footballers are more likely to receive a red card in a football match. The

results were that 69% of the teams reported significant effects while 31% found no statistically

significant effects (Silberzahn et al., 2018). This sharp variation in the results may be a result of

several biases that go into data analysis. Unfortunately, in most cases, only one team performs

the analysis which increases the probability of having biased results in the publication. Although

crowdsourced analysis may not be feasible to implement for every study, it can help to reveal

biases in analyses and can also help to establish consensus in complex data analyses.

Another method to help circumvent bias and achieve analytical reproducibility is performing

blind data analysis. Here, a researcher or analyst is presented with deliberately altered data sets

(e.g., swapping experimental groups). The analyst is blinded to all the alterations made to the

data and proceeds with the analysis. The unaltered data is subsequently run through the initial

analysis. This approach helps to achieve objective analytical procedures since analysts are less

likely to halt the analysis upon the arrival of results that favour their predefined or subconscious

thoughts (Nuzzo, 2015).

2.1.4.5 Proper use of statistical tools

The current misuse of statistical tools, especially, p-values for hypothesis testing has prompted

the American Statistical Association (ASA) to provide clear guidelines for the interpretation and

use of p-values. These guidelines include the definition and the extent of use of p-values: i) P-

values can reveal the degree to which the data contradict a certain statistical model; ii) p-values

do not measure effect sizes or how relevant a result is; iii) scientific and business conclusions

should not solely rely on whether p-values pass or fail to reach a specified threshold; and iv) p-

values do not measure the probability that data were randomly generated by chance alone nor do

they measure the probability of a hypothesis being true, see (Committee on Reproducibility and

Replicability in Science, the National Academies of Science, Engineering and Medicine, 2019a).

Some proposals have suggested lowering the significance threshold in biomedical science from

0.05 to 0.005 (Chawla, 2017; Ioannidis, 2018). This proposal aims to minimise the rate of false

Stellenbosch University https://scholar.sun.ac.za

26

positive results in published papers. Another aim is that the stringent threshold may lead

researchers to better design their experiments to achieve statistically significant results

(Ioannidis, 2018). Although this method has its limitations such as the likelihood of increasing

false negative results (failure to detect an effect when there is indeed one), it has been applied

with success with an even more stringent threshold (5𝑥 10−8) in genome-wide association

studies (Chawla, 2017). Other proposals have suggested entirely abandoning p-values and

instead reporting the magnitude of effects and confidence intervals, see (Ioannidis, 2018),

whereas some proposals have suggested the use of more sophisticated approaches like Bayesian

statistics (Goodman, 2001).

2.1.4.6 Improve transparency

Many research funders and publishers are beginning to demand that research data and analytical

code be made publicly available to foster transparency, openness and verifiable research

findings. These are important initiatives to help attain reproducibility in science and allow re-

analysis of existing data with the same and novel statistical tools.

2.2 Section 2 – Immunoassay calibration and analytical tools

2.2.1 Immunoassay setup

Immunoassays are used by investigators to measure the concentration of analytes in a sample. A

typical immunoassay will have standard samples with known concentrations, test samples with

unknown concentrations and blank samples (usually a buffer solution to measure background

noise) as part of the set up. The standards are serial dilutions of varying concentrations of

analytes from which a standard curve for estimating the concentration of test samples is

constructed. To ensure accurate measurement of analyte absorbance, the blanks are used to

determine the baseline analyte absorbance. Theoretically, the blanks will have zero absorbance,

but it is usually not the case in practice because of background noise or contamination (Sheehan,

He & Smith, 2013). Correction for background noise is usually done by subtracting the baseline

absorbance from the detected absorbance in the sample.

2.2.2 Dose-response curves

The relationship between the known standard concentrations (dose) and the observed

fluorescence intensity (response) is used to construct a standard or calibration curve, also known

Stellenbosch University https://scholar.sun.ac.za

27

as the dose-response curve to calculate or extrapolate estimates of unknown concentrations in

test specimens. Ideally, the standard curve should resemble or be close to the true curve which is

the curve that accurately reflects the dose (concentration) – response (fluorescence intensity)

relationship without any errors. In other words, the true curve is the resultant curve after

measuring the response of an infinite number of concentrations with an infinite number of

replicates (Dunn & Wild, 2013). This is, however, not attainable in practice where sample

replicates and concentrations are limited, and the standard curve is drawn from a given number

of responses. A mathematical function, known as the curve model, is used to approximate the

true curve from the assay data by fitting, i.e., adjusting the curve model’s parameters to obtain

the optimal curve closest to the true curve. During curve fitting (calibration), several fitting

errors can be encountered which may have a direct impact on the quality of the true curve

approximation, known as the quality of fit (Gottschalk & Dunn, 2005a). It is, thus, important to

identify and address the sources of fitting errors when calibrating the standard curve. Two main

sources of curve fitting errors have been identified: “pure error” and “lack-of-fit error”. The

pure error arises from the inherent random variation of the data. Increasing the number of

standard replicates used to derive the standard curve can be used to address the challenge of pure

error. The lack-of-fit error is derived from using a curve model that does not reflect the shape of

the data or does not correctly approximate the true curve, for example, using a straight line as the

curve model to fit assay data that have a sigmoidal shape (the typical shape of most

immunoassays). In this type of error, increasing the number of replicates will not reduce the

lack-of-fit error (Gottschalk & Dunn, 2005a).

2.2.3 The curve function or model

According to (Gottschalk & Dunn, 2005a), an ideal curve model must have three qualities. First,

the curve model should be able to correctly describe the observed dose-response relationship

from the assay data, i.e., correctly approximate the true curve. Second, the curve model must be

able to average out random noise and variation to generate estimated concentrations with the

least minimal influence of pure errors. Last, the curve model must not only accurately estimate a

concentration at fitted data points (standard data points) but should also be able to accurately

predict estimated concentrations between the fitted data points (test sample data points). It is,

therefore, imperative to choose the right curve model to improve the coverage and the accuracy

of the estimated concentrations.

Stellenbosch University https://scholar.sun.ac.za

28

Many curve fitting functions have been used with varying degrees of success in attaining the

three qualities of a good curve model described above. For example, the linear approach

(straight-line) model cannot approximate the true curve of immunoassays which is typical of a

sigmoidal shape (lack-of-fit error challenge). The logit-log curve model can fit the sigmoidal-

shaped immunoassay data, but its logit transformation intensifies the noise and variability in the

standards. Additionally, the logit-log model is better suited for symmetric data and does not

properly approximate the true curve of asymmetric data, see (Gottschalk & Dunn, 2005b).

Another curve model that has been used to fit immunoassay data is the mass action model, but

this model has the challenge of being unable to reduce noise in the data because of its many

parameters, see (Raab, 1983; Gottschalk & Dunn, 2005a). Cubic splines (Guardabasso, Rodbard

& Munson, 1987) have also been used to fit immunoassay data. The problem, however, with this

curve fitting model is that its fitting passes through each data point failing to average out the

variability and noise in the data. One of the widely used curve models is the four-parameter

logistic (4pl) function, this model has been shown to perform very well with symmetric data but

quite poorly with asymmetric data (Cumberland et al., 2015). The five-parameter logistic (5pl)

curve model is an extension of the 4pl model with a fifth parameter to accommodate for

asymmetry. This enables the 5pl model to be better suited to fit asymmetrical data. The model

has also a similar performance to the 4pl model when used on symmetrical data (Cumberland et

al., 2015). The 5pl curve model is given by the equation:

𝑦 = 𝑑 +
(𝑎 + 𝑏)

[1 + (𝑥/𝑐)𝑏]𝑔

Where a and d are the upper and lower asymptotic ends; b is a parameter for the slope of the

curve (rate of change of response with increasing dose); c is a parameter for the point of curve

inflection, and g is a parameter controlling for asymmetry. When g is 1, the 5pl curve model is

equivalent to the 4pl (Dunn & Wild, 2013).

Stellenbosch University https://scholar.sun.ac.za

29

Figure 5. Illustration of a typical standard curve of a Luminex assay. Notably, the unequal variance in

the response (y-axis) as the dose (x-axis) increases. This assay appears to have an increasing variation

in response (y-axis) with increasing doses (x-axis). It is important to note that some assays may have

non-uniform or random variations in the response (heteroscedasticity). Image used under permission

allowed by the CC BY 3.0 license. Source: (Baker et al., 2014)

2.2.3.1 Fitting the curve

Upon deciding on the appropriate curve model, the next step is curve fitting. Curve fitting is

done by adjusting the free parameters of the curve model until the best fitting curve out of many

different possible curves is achieved (the curve closest to the true curve). In other words, the

best-fitted curve is the “maximum likelihood estimate of the true curve” and it is selected by

calculating the curve with the least “weighted sum of squared errors (SSE)” (Gottschalk & Dunn,

2005a). The least SSE is one of the main methods in statistics used for assessing modelling

errors. Errors, also known as residuals, are the differences between the observed responses and

the predicted responses of the curve at each dose or concentration (Figure 6). Computing the

least SSE is done by squaring the errors or residuals (to avoid negative and positive values from

cancelling each other out) and then summing up the squared errors or residuals. This

computation is done for all the possible curves that can be derived from the curve model. By the

statistical regression principle, the curve whose parameters yielded the least sum of squared

errors from the many derived curves is the curve that best models the data or is closest to the true

curve.

Stellenbosch University https://scholar.sun.ac.za

30

2.2.3.2 Weighting

The use of only the unweighted SSE in approximating the “maximum likelihood estimate of the

true curve” is often inadequate and can impact the accuracy of the concentration estimates. This

is because the calculation of the SSE does not account for the heteroscedasticity (non-uniform

response variance also known as random errors) in the data (Figure 5). It is common for the

variance of the responses at the high and low ends of the curve to differ by three to four folds

(Gottschalk & Dunn, 2005a). For example, as shown in Figure 6, fitting the standard curve for

data without weighting the SSE will bias the curve towards the upper responses. That is,

although the computed or predicted responses at the two (highlighted) doses in the illustration

are both 5% lower than the observed response, the margin between their residual squares is too

wide (250,000 against 25) which will result in the lower responses having very little contributing

effects on the fitted curve.

Figure 6. Equal percentage difference between the observed and computed response at doses 70 and

1000 but a very wide difference in the residual squares. The image is not drawn to scale. Reproduced

with permission from (Dunn & Wild, 2013)

Stellenbosch University https://scholar.sun.ac.za

31

The US Food and Drugs Administration and the European pharmacopoeia, thus, require all

immunoassays to be weighted, due to the significant impact weighting has on the accuracy of

results (Brendan Bioanalytics, n.d.).

The response variance or random errors can be a result of the signal noise or errors in the

instrument’s detector or the non-linear kinetics of antibody-antigen binding across different

concentrations or doses (Dunn & Wild, 2013).

Given the heteroscedastic nature of the responses in Luminex assays, (Dunn & Wild, 2013)

argue that applying a transformation, e.g., Log of response, 1
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒⁄ , 1

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2⁄ cannot

make the variance in the response constant, i.e., homoscedastic, thereby requiring the SSE to be

weighted with the inverse variance of the response at the specific concentrations – according to

regression theory, see (Gottschalk & Dunn, 2005a). A power function of the responses is

classically used to estimate the response variance of standards by the equation:

Variance = A(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)𝐵

Where A is a function of the response magnitude and its average noise level and B ranges from

1.2 to 2 (Gottschalk & Dunn, 2005a).

The equation for calculating the weighted SSE of the standard curve is given:

SSE =∑ 𝑤𝑖[𝑦𝑖 − 𝑦̂𝑖]2𝑁
𝑖=1

Where 𝑤𝑖 =
1

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡
 , 𝑦𝑖 is the observed response of the standard and 𝑦̂𝑖 is

the predicted response of the curve model. By weighting the SSE, the curve with the least

weighted sum of square errors will best represent the true curve or standard curve.

2.2.4 Luminex data processing utilities

Several tools have been developed to analyse multiplexed ELISA data. In this section, I review

two of the utilities used in calibrating and analysing Luminex data.

2.2.4.1 drLumi R package

drLumi (Sanz et al., 2017) is an R (R Core Team, 2021) based package with a general public

licence (GPL >=2) used for management, calibration and quality assessment of Luminex bead

assay data. The utility can also be generalised to accommodate other multiplexed ELISA assays.

drLumi was adapted from other R-based non-linear curve fitting packages eg. ncal (Fong et al.,

2013) and it provides the utility for enhancing the precision and accuracy of assay data analysis.

Stellenbosch University https://scholar.sun.ac.za

32

The package achieves this by: (i) computation of quality control metrics; (ii) an automatic

extraction of assay data generated from the Luminex xPONENT software; (iii) provision of

different methods for handling background noise; and (iv) use of different limits of quantitation

(LOQ) techniques. The drLumi package can automatically import Luminex xPONENT software

generated Luminex data. However, assay data generated from other software may need some

manual data preprocessing to be imported by the package. This, however, may be a limitation

since data preprocessing may require some level of programming expertise on the part of the

investigator. The package also provides the utility for computing metrics for quality control

assessments, e.g., quality of fit of standard curve. This is important for the accurate estimation of

unknown sample concentrations since, the use of an inappropriate curve model or a poorly fitted

model can be one of the main sources of errors in immunoassay data analysis (Dudley et al.,

1985). Additionally, the package makes provision for the use of different methods for handling

background noise. Ideally, the response for a solution (e.g., buffer solution) without an analyte

should be zero or close to zero, however, this is usually not the case for most immunoassays

because of background noise. Classically, background noise is subtracted from the standard

response before fitting the standard curve. However, (Sanz et al., 2017) argue that in some

situations, this approach may result in a poorly fitted curve. They, therefore, provide, in the

drLumi package, different approaches to account for background noise to optimise standard

curve calibration. Furthermore, the package can utilise different techniques to estimate the limits

of quantitation (LOQ). LOQ are the boundaries, i.e., the minimum and maximum concentration

thresholds on the standard curve from which unknown concentrations can be accurately

estimated or interpolated. Since estimation or interpolation is reliably done from around the

linear section of the standard curve, this functionality is essential in assessing the accuracy of

estimated concentrations (Figure 7).

After assay data has been imported, drLumi can fit the standard curve using three different curve

models — the 5-parameter logistic curve model (5pl), the 4pl curve model and the exponential

growth model to estimate unknown concentrations. The drLumi utility fits these curve models on

a log base 10 transformed data (both dose and response) to minimise the heteroscedasticity and

large variability in Luminex data. However, according to (Dunn & Wild, 2013), log

transformation alone may not be an effective method for stabilising the variance, i.e., making the

variance uniform or close to uniform. Thus, they recommend using the weighted response

Stellenbosch University https://scholar.sun.ac.za

33

variance at each concentration to fit an unbiased standard curve. Based on this argument, the sole

use of log transformation by the drLumi package may inefficiently address the inherent

heteroscedasticity in the assay data and may result in bias in its curve fitting as well its

estimation of unknown concentrations.

Figure 7. Illustration of limits of quantitation using the interval method with the drLumi package.

The limits of quantitation for this method are marked by the blue vertical lines. Image used under

permission allowed by the CC BY 4.0 license. Source: (Sanz et al., 2017)

The drLumi implements four different ways of handling background noise: the subtract, ignore,

include and constraint methods. The subtract method is what is traditionally used but it is

sometimes inappropriate because usually the background noise approximates the lower

asymptote of the standard curve. This means that subtracting the background noise from the

observed response will translate to removing the lower asymptote of the curve which will result

in an improperly fitted curve. The ignore method fits the standard curve without considering the

background noise. The include method uses the geometric means of the blank controls

(representative of the background noise) together with the standards to derive the standard curve.

This method can be problematic by generating a heavily biased curve when blank controls are

contaminated. However, it can be useful when there is accurate assaying of blanks with enough

Stellenbosch University https://scholar.sun.ac.za

34

standard dilutions. The final alternative is the constraint method which constrains the lower

asymptote of the curve model to the background noise.

Quality assessment or quality control methods implemented by the drLumi R package involve

computing the goodness of fit test (Neil test p-value) and as well reporting the Akaike

information criterion (AIC) for the fitted model. Additionally, the package provides the utility to

plot the standard curve with confidence intervals – a good standard curve will have a narrow

confidence interval with data points lying directly on the curve or close to the fitted standard

curve while unreliable curves may have large confidence intervals and most data points further

away from the predicted or fitted curve. Additionally, drLumi provides the utility to flag out data

points as outliers after the user classifies them as such. This utility allows flagged data points or

outliers to be excluded during curve fitting. The drLumi utility also provides functions to

visualise the quality of fit of the curve model with a plot of residual errors and a quantile-

quantile plot.

Additional functionality of the drLumi R package is its ability to estimate the limits of

quantitation from which unknown sample concentrations can be reliably interpolated. The

package provides three different methods, each dependent on a specific characteristic of the

curve. These methods are the coefficients of variation method, derivative method and interval

method. The interval method limits quantitation thresholds to the lower and upper values that are

statistically significantly different from the two asymptotes. The derivative method restricts the

boundary of quantitation of concentrations to the approximately linear portion of the standard

curve. Finally, the coefficient of variation method uses a predefined cut-off value, determined by

the user, usually set at 20%, to estimate the LOQ from the variability of the fitted concentrations.

The authors of the package suggest that the optimal use of these methods is dependent on the

specific assay and analyte being investigated. However, they propose that the ideal method will

permit quantitating the most samples while keeping the background noise of the plate below the

LOQ (Sanz et al., 2017).

Overall, the drLumi package is a great tool for performing quality assessment and calibration of

standard curves with varying options to optimise and improve calibration performance. The

open-source license of the package makes it freely available for use and modification of code as

well as contributes to open science. However, its flexibility (varying parameters) may render it

somewhat suited for expert use only but not for investigators with non-linear modelling

Stellenbosch University https://scholar.sun.ac.za

35

experience — which may demand a steep learning curve for non-statisticians. Additionally, the

package may demand users to be well-versed in R programming, especially for users using

calibration software other than the Luminex xPONENT software, which has support for

automatic data import.

Nota Bene: As of April 2020, drLumi has been archived on the comprehensive R archive

network (CRAN) site (https://cran.r-project.org/web/packages/drLumi/index.html) due to lack of

continued development and support. Installing the package may therefore be challenging since it

is not available for automatic installation in R.

2.2.4.2 LabKey server tool for Luminex

The LabKey server (Nelson et al., 2011) is a web-based utility for general research data

management in Java for which an extended support for Luminex assay analysis was developed

(Eckels et al., 2013). The server stores research data in the PostgreSQL relational database.

Developed to facilitate large collaborative studies, the LabKey server provides a unified system

or platform for managing research data. At its centre, is a central data repository allowing

clinicians, statisticians, lab researchers, administrators etc. involved in a study, to interact, query

or update the research data. The unified system also allows users or collaborators to track

specimen records and request specimen information such as clinical data on the web-based

utility. Being one of the few open-source utilities with a graphical user interface (GUI) for

managing research data, its GUI allows users to flag or add scientifically-relevant attributes to

data columns — a useful utility for quality control purposes. The GUI also helps to visualise

missing values and relationships between tables, e.g., clinical data and metadata, and to filter

metadata. Additionally, the LabKey server integrates clinical data with complex experimental

data and specimen data through SQL queries and its GUI.

Being a multi-purpose utility, the LabKey server has customisable assay templates for Luminex

assays, microarray, enzyme-linked immunosorbent spot (ELISpot) assay, and ELISA assay data

management and analysis (Nelson et al., 2011).

Luminex assay analysis on the LabKey server is done by importing raw Luminex assay data and

integrating the data with associated metadata. Only the Bio-Plex Manager software output data

and Excel data formats are supported for import. The assay analysis on the LabKey server tool

for Luminex can be done automatically with an extensible and customisable R script that

computes dose-response curves from standard dilutions, estimates unknown sample

Stellenbosch University https://scholar.sun.ac.za

https://cran.r-project.org/web/packages/drLumi/index.html

36

concentrations, detects outliers, computes quality control metrics for curve fitting procedures and

flags questionable experimental data for exclusion in further analysis (Eckels et al., 2013).

During curve fitting, the LabKey server tool for Luminex provides an option to subtract or ignore

background noise, as opposed to the drLumi utility which makes provision for four options to

manage background noise. The LabKey server tool for Luminex also provides an option to log

transform fluorescence intensities (FI) before calibrating the curve to reduce the noise and

variability in the data. Two curve models, the 5pl and 4pl curve models are utilised to generate

dose-response curves, from which unknown sample concentrations are estimated or interpolated.

Unlike the drLumi package, the LabKey server tool for Luminex can apply weights (𝑤𝑒𝑖𝑔ℎ𝑡 =

1

𝐹𝐼1.8) to the squared errors to lower the heteroscedasticity of the response signals, improving the

overall curve quality and the estimated concentrations by accounting for the unequal variance of

the response signal.

Overall, the integration of metadata in Luminex assay analysis can significantly improve

reproducibility when the processed data are shared. The customisable R script implemented in

the analysis and the web API improves the flexibility of the utility. Additionally, the open-source

licence (Apache 2.0) of the source code promotes open science. Also, the GUI implementation of

the LabKey server tool for Luminex is an important utility for ease of use, especially for

researchers with little programming experience. Finally, the centralised data repository of the

LabKey server, on which the Luminex tool runs, can facilitate secure data sharing between

collaborators.

Some of the limitations of the LabKey server for Luminex assay analysis include the limited

compatibility for different assay file formats — the utility only recognises data outputs from the

Bio-Plex Manager software and the Excel data format. Also, extensive expertise in R may be

required to customise assay data analysis. Finally, the utility does not support the design of

Luminex plate layout, thus, it cannot be used to run a Luminex instrument (Eckels et al., 2013).

Stellenbosch University https://scholar.sun.ac.za

37

CHAPTER 3: METHODS

3.1 The R LuminexPipeline package

An R package is the encapsulation of bundles of code, tests, documentation and data which

functions as a shareable unit (Wickham, 2015). Thus, one of the most efficient ways of sharing R

code and, to some extent data is by bundling them into an R package — ready to be shared and

distributed (Merow, 2019). Most R packages are hosted on the comprehensive R archive network

(CRAN) (https://cloud.r-project.org/) server for distribution. Outside the context of code sharing,

R packages can also be a great way to organise and structure R code.

Package development is an essential toolkit that can help to improve analytical reproducibility.

This is because R packages utilise functions as a core component to automate repeated tasks

which can be useful in reproducing analytical results. That is, given the same R version and

function with the same arguments, analytical results, including graphs and tables etc., can be

easily reproduced provided that the computational environment does not change.

All pipeline components were written as R functions and bundled together into an R package

(LuminexPipeline package) to achieve the aforementioned benefits including efficient code

distribution as well as good code organisation. The R devtools v2.4.5 package (Wickham,

Hester, et al., 2022) was used to compile together all the functions of the pipeline components

into an R package. I utilised the best package development practices outlined in the R packages

book (Wickham, 2015) in the package development procedures. I intend to submit this package

to the comprehensive R archive network (CRAN) for broader use by the scientific community.

Here, I describe briefly, a workflow used to develop the LuminexPipeline package.

1. I started by loading the package development utility, devtools (Wickham, Hester, et al.,

2022) in the R v4.2.1 environment (R Core Team, 2021) on a Linux server. I then set up the

rudiments of the new package with the usethis::create_package() function from the

usethis v2.1.6 package (Wickham, Bryan, et al., 2022), one of the meta packages of the

devtools package. This function automatically sets up the minimum required files and file

system to develop an R package i.e., an R/ directory (to house all R code and functions), a

man directory (which houses the package manual and all documentation), a DESCRIPTION

Stellenbosch University https://scholar.sun.ac.za

https://cloud.r-project.org/

38

and a NAMESPACE file which collects information of package metadata and dependencies

respectively (Merow, 2019).

2. I edited the DESCRIPTION file with the necessary metadata for the package, i.e., the

package name, title, version, authors and description fields etc, (Figure 8). I used the license

helper usethis::use_mit_license() function to automatically edit the License field of the

DESCRIPTION file with an MIT licence. This function also makes a copy of the full license

in a markdown (.md) file. MIT license is an open-source license that permits users to freely

use and modify the code in the package. Full permissions allowed by the MIT license are

shown in Figure 15.

Figure 8. Package metadata displayed in a DESCRIPTION file

3. The NAMESPACE file was automatically updated with the usethis::use_package()

helper function to import the namespace of all dependent packages I used in the

LuminexPipeline package.

4. I wrote and organised R functions with the usethis::use_r() helper function. This

function automatically creates an Rscript named with its input argument and stores the script

in the R/ directory of the package.

5. I intermittently used the devtools::load_all() function to update the package when new

changes were made. The function simulates the building, installation and attachment of the

development package for experimentation. For example, the devtools::load_all()

function makes available a newly created function for interactive use or experimenting

without defining that function in the global environment.

Stellenbosch University https://scholar.sun.ac.za

39

6. I intermittently used the devtools::check() function to ensure the complete functionality

of the package as well as detect possible package development problems for rectification.

The devtools::check() function gives a large output of information with a summary of the

number of errors, warnings and notes. Intermittent checks help to easily identify problems

early and debug them as this may otherwise lead to difficulty in debugging incremental

problems. The ideal aim of executing the devtools::check() function was to have zero

errors and warnings. The R CMD check command on the command line is an alternative

command to the devtools::check() function.

7. A directory named inst/ext was created to host sample data sets which were used as examples

in the package documentation as well as for package testing. This directory was also used to

host the R markdown (Allaire et al., 2022) file that will be used to generate the statistical

summary report.

8. Once the package was complete and fully functional, I installed the package with the

devtools::install() function and generated the source package from the build menu in

Rstudio. The source package is a compressed .tar.gz file that can be easily distributed and

installed with the R utils utils::install.packages() function or with R CMD INSTALL

command on the Linux command line.

library(devtools)

#setup the package

usethis::create_package(“path/to/new/package/directory”)

#helper function to write R functions/code

usethis::use_r(“name_of_function”)

#load changes for interactive experimenting

devtools::load_all()

#update NAMESPACE FILE imported function/dependencies

usethis::use_package(“name_of_package”)

#assess package is in good functioning order

devtools::check()

#automatically edit license in description file

usethis::use_gpl3_license()

#install source package

utils::install.packages(“path_to_source_file”, repos=NULL, type=“source”)

Figure 9. An example of a simplified workflow that was used to develop the R LuminexPipeline

package.

Stellenbosch University https://scholar.sun.ac.za

40

3.1.1 Package documentation

I documented the LuminexPipeline package with the roxygen2 v7.2.1 package (Wickham,

Danenberg, et al., 2022), one of the meta packages for devtools (Wickham, Hester, et al., 2022).

I wrote Roxygen notes above every exported function. Exported functions are functions that are

made available to the end user. Documenting the exported functions thus assists users in easily

navigating and using the package. Roxygen notes are documentation notes that start with a “#'”.

They are written above functions that need documentation such as exported functions. My use of

Roxygen notes involved inserting an Roxygen skeleton from the Code menu in Rstudio. The

Roxygen skeleton provides fields, e.g., function description, parameters, and details from which I

populated the documentation. The helper devtools::document() function was used to

document Roxygen notes. It triggers roxygen2 (Wickham, Danenberg, et al., 2022) to

automatically convert the Roxygen notes into a “.Rd” documentation file in the man/ directory of

the package.

3.1.2 Unit testing

Unit testing is one of the essential elements in package development to achieve robust and

accurate code significantly impacting the efficiency, robustness, reproducibility and

maintainability of the program or utility. The purpose of unit testing is to ensure that each unit of

a program, the smallest testable component of the program executes exactly as purposed. In my

use case, I refer to a unit as an R code or function written for use in the LuminexPipeline

package. Usually, when functions are written, they are tested interactively in the console to

ascertain the accuracy of their functionality. However, the problem is that these tests are not

documented or automated. Thus, if the code or function needs to be refactored, it becomes

difficult to determine whether the new changes alter the behaviour or functionality of the code or

function (Wickham, 2015). This is where unit testing becomes useful in ensuring the accurate

and reliable functionality of the code. Other benefits of unit testing include having fewer bugs

and a robust code. This is due to the nature of unit testing, which requires some level of hostility.

For example, exposing the functions and code to unexpected conditions (e.g., inputs) intended to

break the function or code. The pre-exposure to possible errors helps to identify bugs early and

to improve code and robustness. Additionally, unit testing forces the researcher and programmer

to write modular code since it is much easier to write tests for modules or units of the program

(Wickham, 2015).

Stellenbosch University https://scholar.sun.ac.za

41

I performed unit testing in the LuminexPipeline package by utilising the R testthat v3.1.4

package (Wickham, 2011), one of the meta-packages of the devtools package (Wickham,

Hester, et al., 2022).

I initialised the system for unit testing by using the helper usethis::use_testthat() function

to automatically set up a tests/testthat/ directory where all test files live in the package. Test files

are files in which automated tests are written. They are, by convention, required to be prefixed

with a “test” name. I used the helper usethis::use_test() function to create new test files.

This function automatically prefixes the names of test files to have the “test” prefix.

After setting up the appropriate file system for testing, the testthat::testhat() function was

used to test for the accurate functionality and behaviour of package functions. The

testthat::testthat() function has a structure starting with an input text description of what

is being tested and a code section for the test code (Figure 10). Within the code section, several

expectation functions (from the testthat package) were used to test for the expected behaviour

of functions. Among the expectation functions I used were: testthat::expect_error(), to test

for instances where error messages were expected; testthat::expect_equal(), where

functions were expected to generate an output or behaviour equal to a specific value or

behaviour; testthat::expect_match(), where specified outputs of functions were expected to

match certain characters and testthat::expect_warning(), for instances where functions

were expected to throw a warning message.

#the testthat function structure

test_that("description of test", {

 code section with expectations of behaviour.

})

#example of a unit test

test_that("multiplication works", {

 expect_equal(2 * 2, 4)

})

#test a single test file

devtools::test_file(“path/to/test/file”)

#test the whole package

devtools::test()

Figure 10. An example of a code snippet for the usage of the R testthat function. The function has

two major sections, the test description section and the code section where code expectations are

documented. A demonstration of how to execute a test file is illustrated here.

Stellenbosch University https://scholar.sun.ac.za

42

Tests were run with the devtools::test_file() function for a single test file (the

argument to the function is the test file’s path) and devtools::test() to test all the test

files of the package.

I tested for the following functionalities:

• The behaviour with unexpected input, i.e., expectation of warning and error messages

• The presence of output files written to specified directories.

• The dimensions of output data frame or tibbles.

• The expected column names in the output data frame or tibble.

• The class of output data.

• The class of output variables.

• The case of variable names (UPPER, lower etc).

• The presence or absence of white spaces in column names.

• The presence of string characters in numeric-type variables and vice versa.

3.1.2.1 Package test files

I included raw Luminex text files as test data in the LuminexPipeline package as part of the

recommended best practices (Taschuk & Wilson, 2017) to aid in package documentation and

unit testing. The test data were de-identified sample Luminex data generated from the

Stellenbosch University Immunology Research Group (SUN-IRG). I trimmed the original test

data, extracting only a few rows while preserving the original structure of the data, to reduce the

size of the package. The trimmed test data sets were placed in a directory named tests/test_data

in the LuminexPipeline package.

3.1.3 Quality control

I borrowed and incorporated curve fitting functions from the drLumi R package (Sanz et al.,

2017) into the LuminexPipeline package. The major difference between these two packages is

that while drLumi’s major utility is for quality control i.e., curve fitting and estimation of

unknown analyte concentrations from Luminex data, the main purpose of the LuminexPipeline

package is to standardise Luminex data processing steps after curve calibration. For example,

data cleaning, recording metadata information and standardising analyte names.

Stellenbosch University https://scholar.sun.ac.za

43

The standard curve fitting utility incorporated into the LuminexPipeline is not included in the

pipeline’s automation with Nextflow but serves as a quality control utility for certain use cases

where Luminex data come without the estimated concentration values or when there is a need for

validation of the estimated concentrations. The Luminex pipeline therefore utilises the full

functionality of the drLumi R package to generate standard curves and estimate unknown

concentrations from the median fluorescent intensity (MFI) using the ignore, include, subtract

and the constraint methods of treating background noise employed by the drLumi package. It is

important to note that the use of a different background treatment method other than the one

employed by the Luminex instrument may result in different concentrations estimates compared

to the estimated concentrations generated by the Luminex instrument.

Code incorporation was done with the original drLumi functions but not as a package

dependency because, during the development phase of the LuminexPipeline package (September

2022), the drLumi package was not available for automatic installation on the comprehensive R

archive network (CRAN) but was only available as an archived tarball. Thus, incorporating the

drLumi package as a dependency would have caused complications in the subsequent installation

of the LuminexPipeline package.

3.2 Containerisation

One of the major challenges in attaining reproducibility, especially in scientific computing is the

challenge of inconsistent software versions, dependencies, as well as computational

environments, which contribute to numerical instability and inconsistent results. To successfully

reproduce published analytical results given the code and data, one will need to replicate the

computational environment in which the original analysis was run. Replicating this environment

will involve the use of the same OS, software and the exact software versions used in the original

analysis. However, this process can be very challenging. For example, dealing with complicated

software dependencies during installation and, to some extent, incompatible hardware

environments (Kim, Poline & Dumas, 2018) as well as challenges with accessing the exact

software versions. Different software versions can generate significantly different results (The

Turing Way Community, 2022). Encountering these challenges may be a big barrier for

scientists, especially, those with minimal computational background, to attain analytical

reproducibility.

Stellenbosch University https://scholar.sun.ac.za

44

A containerised environment can efficiently address these challenges. A container is an isolated

runtime environment independent of its host environment. One can think of it as an OS running

on top of another OS. For example, running Ubuntu 18.04 on a host computer that runs on

Ubuntu 22.04. A container, therefore, is a fully functional virtual environment with an

independent OS that can encapsulate all software (the exact version), software dependencies,

code, data etc., used in an analysis. This virtual environment is portable and can be shipped or

shared with other researchers to facilitate analytical reproducibility by allowing analyses to be

run in the same computational environment as the original, even after several years. The

portability attribute of containers also circumvents the challenges encountered in managing

software dependencies and versions during installation. Unlike other virtual environments like

virtual machines (VM) whose OS kernel is independent of the host OS, containers do not have a

full copy of their OS kernels. They utilise the host OS kernel and are, thus, “lightweight” (Mitra-

Behura, Fiolka & Daetwyler, 2022). Additionally, their design strips off the layer of the GUI to

conserve computing resources.

Figure 11. An illustration of an isolated containerised environment encapsulating installed

software (the inner circle) independent of its host environment (the outer circle)

Singularity containers can be developed in two ways. 1) Write a set of commands in a definition

file, the “recipe file” (Figure 12). This definition file has all the commands to set up the container

environment, install software or even copy files to the container. This is a highly reproducible

approach since all the ingredients for building the container are documented in the definition or

Stellenbosch University https://scholar.sun.ac.za

45

recipe file. However, this is a non-interactive process, and therefore, may render its development

a to be a bit limiting. 2) The sandboxing method on the other hand is an interactive process

where a base container (usually with only the OS) is built as a writeable directory on the host

computer. The developer can then interactively modify the base container (install software, add

files etc.) and distribute it as a sandbox (writeable directory) or convert it into an unwritable

image — singularity image file (.sif). The advantage of sandboxing is the convenience of

modifying the container as well as its interactivity; however, reproducing a container built as a

sandbox may be a challenge if modifications done to it are not appropriately recorded.

Figure 12. Sample definition file containing the commands to build a container. The code is

annotated to describe each code section. One only needs the “Bootstrap” and “From” sections to

build a base container. Definition files have the extension (.def). See the appendix for the

definition file used to build the LuminexPipeline container.

3.2.1 Building the container

To improve reproducibility in the Luminex pipeline’s execution, I developed a Singularity

(Kurtzer, Sochat & Bauer, 2017) container that encapsulates all the pipeline’s software and

dependencies. Below, I describe the steps used to build this container.

1. I developed container 1 – a sandbox with Minideb (James Westby et al., 2022) as the base

OS from a definition file (Figure 12). Minideb is a minimalist OS based on the Debian OS

with wide compatibility with most Linux programs.

Stellenbosch University https://scholar.sun.ac.za

46

singularity build --fakeroot --sandbox name_of_sandbox path_to_definition_file

A snippet of the command we ran to build a Singularity sandbox.

2. I then installed R (R Core Team, 2021) and all LuminexPipeline-dependent R packages in

container 1.

3. I ran the ldd (list dynamic dependencies) command on the R executable files in

/usr/lib/R/bin/exec/R and kept a record of all the shared library dependencies, shared object

files and program files from the ldd command output.

4. I recursively followed each ldd output (i.e., shared object files and library dependencies)

with another ldd command to determine all the dependencies and dynamic links needed to

run R, while keeping the records of each ldd output.

5. I built container 2 – a sandbox with Minideb as the base OS from a definition file (figure 12)

6. I then copied all the program files (installed packages), binary files and shared object files

(libraries) recorded in steps 3 & 4 (see Appendix for the full list) from container 1 to

container 2. The copied files are the minimally required files necessary to run R (R Core

Team, 2021).

7. I ran the ldconfig command to cache and link the shared libraries.

The above-described steps are an example of a manual multi-stage build process, utilised to build

lightweight containers. This eliminates unnecessary software and dependencies, e.g., those

automatically downloaded during installation to facilitate the installation process, but which are

not required to run the installed program. Thus, the multi-stage build process typically uses two

steps: an initial or development stage where software is installed and built, and the second, or

deployment stage, where only the minimally required components necessary for the software’s

full operation are copied from the initial or development stage. This process is used to build

containers with significantly smaller sizes (Huls, 2022).

3.3 Pipelines and workflow management systems

Workflow management systems are used to manage, scale and dispatch multiple-step

computational analyses which are typical of Bioinformatics and other scientific computing

disciplines. The multiple-step computational analysis is usually referred to as a pipeline or a

workflow. In Bioinformatics, these steps usually include trimming the data, data cleaning,

alignment to reference genomes, recalibrating quality scores, quantification etc. Manual

Stellenbosch University https://scholar.sun.ac.za

47

execution of each of the computational steps in a reliable and reproducible manner can, however,

be frustrating for the analyst or researcher, especially when the analytical steps are required to be

executed in a specific order (Jackson, Kavoussanakis & Wallace, 2021). To worsen the

frustrations, each analytical step may often require a specific software utility for its execution.

Workflow management systems (WMS), therefore, join together the execution of multiple-step

analyses in an automated and reproducible manner while facilitating a seamless execution.

WMSs also capture provenance information such that certain analytical results can be easily

attributed to a specific pipeline (Committee on Reproducibility and Replicability in Science, the

National Academies of Science, Engineering and Medicine, 2019a). Additionally, many WMSs

facilitate robust pipeline execution with support for re-entry or resumption of execution from

where an error stopped execution, and can selectively execute only parts of a pipeline, contrary

to classical shell scripts which do not support re-entry unless explicitly defined by the authors

(Jackson, Kavoussanakis & Wallace, 2021). Furthermore, most WMSs can automatically scale

computational pipelines from a single core PC to a large computational resource structure like

the cloud or compute cluster environments such as high performance computers (HPC) without

altering the code (Koster & Rahmann, 2012; Di Tommaso et al., 2017). This is made possible by

the support for job schedulers, e.g., PBSpro, and Slurm, in many WMSs. WMSs can further

enhance computational reproducibility through the support for containerised computations on

HPC clusters, which allows for easy management of numerical instability (variation in

computational results, across HPC environments), one of the main sources of computational

irreproducibility (Di Tommaso et al., 2017). Many WMSs have been developed to facilitate

reproducibility in scientific computing, especially in Bioinformatics. These include the common

workflow language (CWL) (Amstutz et al., 2016), Biopipe (Hoon et al., 2003), Nextflow (Di

Tommaso et al., 2017), Galaxy (Hérisson et al., 2022), and Snakemake (Koster & Rahmann,

2012).

3.3.1 Choosing a workflow management system

Different WMSs have been developed based on different philosophies, functionalities, and

implementations. I aimed to select a WMS framework which can dispatch production-ready

workflows via both parallel and serial processing, accommodates a wide variety of software and

complex data flow dependencies (the output of an upstream process as input for a downstream

process), allows for a wide range of input data types and allows for fixed and customisable

Stellenbosch University https://scholar.sun.ac.za

48

parameters as recommended by (Leipzig, 2017). Additionally, I considered other factors such as

scalability, ease of use, installation, documentation, technical support, development,

implementation, stability, future support and popularity in the Bioinformatics community. I

surveyed and reviewed 16 WMS which are: Nextflow, Big data scripting, Snakemake, Python

corral, Bioqueue, Ruffus, Common workflow language, Script of scripts, Makeflow, Canonical

workflow framework for research, Pegasus, Kepler, Airflow, VisTrails, Workflow description

language, Bpipe and Pipeline pilot. I selected two, Snakemake and Nextflow for prototyping

after reviewing all 16 WMSs against the selection criteria. Prototyping involved using simple R

scripts and dummy data to assess the WMS functionality as similarly implemented by (Jackson,

Kavoussanakis & Wallace, 2021). Prototyping also enabled us to thoroughly test the two selected

WMSs against some of the selection criteria that is scalability, ease of installation, ease of use,

and ease of development.

Table 4: Summary of steps and procedures implemented for selecting a workflow management

system. Adapted from (Jackson, Kavoussanakis & Wallace, 2021)

Steps Tasks

Identify potential WMS and

narrow down candidates

An online survey of available WMS that are likely tailored to our

needs. That is the ease of use, HPC support, containerisation

support, etc.

Review of documentation of the surveyed WMS to further assess the

eligibility of our set criteria.

Weekly meetings to discuss, assess and shortlist potential

candidates.

Assess candidates using

prototypes

Prototype shortlisted candidates with sample R scripts and dummy

data to assess the functionality.

Further, assess each candidate’s suitability for the SATBBI group

3.4 Luminex Pipeline with Nextflow

I developed a customised Nextflow script to automate the Luminex pipeline execution. Unlike

many Bioinformatics workflows e.g., the nfcore pipelines (https://nf-co.re/pipelines), which

utilise different software whose invocation is through the command line e.g., FASTQC

(Andrews, Krueger & Segonds-Pichon, 2020), or TrimGalore (Krueger et al., 2021), the

Luminex pipeline was implemented using only the R statistical software (R Core Team, 2021)

Stellenbosch University https://scholar.sun.ac.za

https://nf-co.re/pipelines

49

utilising several different R-based packages for data wrangling (eg. dplyr), visualisation (eg.

ggplot2), and reporting (e.g., Rmarkdown).

Each modularised step (e.g., imputation, cleaning, reporting) of the Luminex pipeline was

written as a Nextflow process. A Nextflow process is “the basic processing primitive to execute

a user script” (Seqera Labs, 2022), that is, a module of the user’s script. A Nextflow process

(Figure 13) usually has an input block (defines input files for the process), an output block

(defines the output of the process) and a script or shell block (defines the command or script

executed to process the input into the output). The Input and output files in the implementation

were defined using a customisable configuration file (Figure 14) in line with current best

practices (Taschuk & Wilson, 2017). The script block for each process was written to invoke R

through the command line. Thus, all the commands for executing each Nextflow process were

invoked from the LuminexPipeline package. To streamline the processes in an automated

manner, the output of each Nextflow process was given as the input to the next Nextflow process

(See the Appendix for the full Nextflow script).

Stellenbosch University https://scholar.sun.ac.za

50

Figure 13. Illustration of the input, output, and script code blocks in an excerpt Nextflow

process used in the Luminex pipeline

3.4.1 Configuration and parameterisation

The ability to generalise a pipeline to accommodate other data sets is an important component

for achieving reproducibility with pipelines. Parameterisation allows the main pipeline script to

be unaltered while accommodating different datasets. It also allows one to specify the compute

resources to execute a job (e.g., number of CPUs, threads), the type of job scheduler to use for

HPC computations, as well as the specific containers to run the job. In Nextflow, a configuration

file named nextflow.config, in the working directory is used to specify the parameters for the

pipeline execution, e.g., inputs, outputs, executors, and containers. I, therefore, parameterised the

input and output files, e.g., technical replicates, and analyte reference of the Luminex pipeline

(Nextflow script) to facilitate ease of use and generalisability.

Stellenbosch University https://scholar.sun.ac.za

51

Figure 14. A sample of a simple configuration file content. A user of the pipeline only needs to

change the parameter values to process and analyse different data sets and does not need to alter the

pipeline script.

3.5 Statistical summary report

3.5.1 Distribution of analytes

I created an R function that returns a summary table of the minimum value, maximum value,

mean, quartiles (1st, 2nd and 3rd), and missingness for each analyte concentration using the R

dplyr v1.0.10 groupby() function. Minimum and maximum values were computed with the

min() and max() base R functions. I used the base R stats v4.2 quantile() function to

calculate the quartiles of analyte concentrations.

I also computed measures of central tendency with the arithmetic mean, which is the average of

all the data points. This is a good representative value of all the data points in the absence of

extreme values (outliers). However, because the mean is sensitive to outliers, the median (the 2nd

quartile) is a good alternative for a representative value of the data points. I calculated the means

using the base R mean() function.

I provided a graphical alternative for visualising the summary of the data using boxplots and

histograms. Visualisation helps with providing a generalised idea of the distribution of the data.

Boxplots visualise the distribution by indicating the positions of the minimum value (below

which data points are classified as extreme values), the 1st quartile, the 2nd quartile (median), the

3rd quartile and the maximum value (above which data points are classified as outliers). A

histogram visualises the distribution by creating bins (range of numbers) and representing the

frequency of the bins with a bar. A histogram can give a good hint of the distribution of the data.

I used the ggplot2 package for visualising the distributions.

Stellenbosch University https://scholar.sun.ac.za

52

3.5.2 Outliers

An outlier is defined as an observation in a sample that differs significantly from other

observations in the sample (Grubbs, 1969). Thus, for unidimensional data, they are the observed

values at the extreme tails of the distribution of the underlying data (Salgado et al., 2016). An

outlier may be observed due to one of two reasons. First, it could be a manifestation of the

inherent random variation in the sample — in which case, the outlier observations should be

maintained and treated or processed equally as the other sample observations. Second, it could be

a manifestation of errors in the data collection process, e.g., instrument calibration errors,

pipetting errors, or data entry errors. This situation warrants further investigation to determine

the reason for the gross deviation. Based on the outcome of the investigation and the

experimental context, outlier observations may be corrected and retained or may be removed

from the data. Generally, the processing of outliers and the extent to which they are incorporated

in an analysis should be reported (Grubbs, 1969). There are many methods for detecting outlying

observations.

In my statistical summary report, I employed three methods for reporting outliers; The z –

scores, modified z-score and Tukey’s method. The z-score test transforms the data points as a

scale of reference to the number of standard deviations away from the mean. The z-score test

assumes the data are normally distributed. I computed the z-scored test using the equation:

𝑧𝑖 =
𝑥𝑖−𝑥̅

𝑠

Where 𝑥̅ is the arithmetic mean and s is the standard deviation of the data.

I considered 𝑧𝑖 values >= 3 as outliers. Based on the assumption of a normal distribution, 3

standard deviations away from the mean (0) of a standard normal curve will be at the extreme

tails (outliers), beyond 99.7% of the data.

Since the arithmetic mean used in the calculation of z-scores is sensitive to extreme values, the

modified z-score method addresses this challenge by using the median and the median absolute

deviation (MAD). This approach calculates the variation in terms of the MAD away from the

median. The modified z-score also assumes that the underlying data are normally distributed

(Salgado et al., 2016). I computed the modified z-score test using the equation:

𝑀𝑖=
0.6745(𝑥𝑖−𝑥̃)

𝑀𝐴𝐷

Stellenbosch University https://scholar.sun.ac.za

53

where 𝑥̃ is the median and 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑖 − 𝑥̃|}. We considered |𝑀𝑖| values >= 3.5 as

outliers.

Tukey’s method classifies outliers using a specific distance below the first quartile, Q1 (first

25% of the ordered data points) and above the third quartile, Q3 (last 25% of the ordered data

points, also known as the 75th percentile). The interquartile range (IQR) is the distance between

Q1 and Q3. Inner fences are data points lying 1.5*IQR (1.5 multiplied by IQR) below Q1 and

above Q3. Outer fences are demarcated with data points lying 3*IQR below Q1 and above Q3.

Data points between the inner and outer fences are classified as possible outliers whereas those

above the outer fences are classified as probable outliers (Salgado et al., 2016).

In the statistical summary report, I used the probable outliers of Tukey’s method to identify

outliers. Thus, I classified data points below or above 3*IQR as outliers. I extracted the number

of outliers detected for each outlier detection method in a table.

These methods of outlier detection are meant to inform the analyst of the possible outliers in the

data.

3.5.3 Correlation

Correlation measures the association between variables. It answers the question of whether

increasing one variable increases, decreases or does not have any relationship with another

variable. The coefficients of correlation are between -1 and 1. Coefficients close to -1 indicate a

strong negative correlation (opposite association), coefficients close to 0 are indicative of a weak

association while correlation coefficients close to 1 indicate a strong positive association.

Correlation can be measured in three different methods: the Pearson, Spearman, and Kendall

correlation. Pearson correlation is a parametric method which is dependent on the distribution of

the underlying data. The Spearman and Kendall methods are rank-based methods independent of

the distribution of the underlying data.

To compute the associations between analytes in the statistical summary report, I used the

Spearman correlation method which is a generally more robust method for computing the

correlation of variables whose underlying distributions are unknown. I used functions in the

Hmisc v4.7 package in R to compute a correlation matrix (correlation between all analytes). I

visualised the associations between all analytes in a correlogram using the corrplot()

function from the corrplot v0.92 package in R.

Stellenbosch University https://scholar.sun.ac.za

54

3.5.4 Test of non-normality

Many statistical tests such as the t-test assume a normal distribution of the residuals of the

underlying data. Residuals, also known as errors, are the differences between the observed and

predicted values in a regression analysis. More simply, residuals are the differences between the

data points and the mean of univariable data. Thus, to ensure that certain statistical assumptions

are not violated, it is useful to assess the normality of the residuals of the underlying data before

the main analysis. I, therefore, utilised three methods of assessment of normality in the statistical

summary report. These methods are numerical tests (kurtosis, skewness, the Shapiro-Francia

test) and a graphical test (quantile-quantile plot).

Kurtosis is a metric for measuring how extreme the tails of a distribution are relative to a normal

distribution. Datasets with long or heavy tails are typically known of being highly kurtotic or

having many outliers, whereas the opposite is true for light-tailed distributions. A standard

normal distribution has a kurtosis of 3 (NIST/SEMATECH, 2012). This value is used as a

reference for comparing the tails of distributions relative to a standard normal distribution. I

computed the excess kurtosis using the Kurt() function from the DescTools v0.99.46

package in R.

Skewness measures the symmetry of distribution relative to a normal distribution. A symmetrical

distribution has the left and the right sides of the distribution as divided by the centre point (the

mean value for standard normal distribution) looking the same. A standard normal distribution

has a skewness of zero. Negative values of skewness indicate a left-skewed distribution, i.e.,

heavy tails on the left of the distribution whereas positive skewness indicates skewness to the

right, i.e., heavy tails on the right of the distribution. I computed skewness using the Skew()

function from the DescTools v0.99.46 package in R.

Shapiro-Francia test is one of the numerical tests for assessment of non-normality, the test

statistic, W’, is the “square of the Pearson correlation coefficient between the ordered sample

values and the expected standard normal order statistics (‘normal scores’)” (Royston, 1993).

Small W’ values indicate non-normality. An associated p-value tests the null hypothesis that the

data are normally distributed. I computed the Shapiro-Francia test for the statistical summary

report using the DescTools::ShapiroFranciaTest() function in R.

Quantile-Quantile (q-q) plot is a graphical approach (a scatter plot) for assessing the normality of

the residuals of a distribution. A q-q plot orders the observed data in ascending order and plots its

Stellenbosch University https://scholar.sun.ac.za

55

quantiles against the ordered quantiles computed from a theoretical normal distribution (Clay

Ford, 2015). I generated q-q plots for statistical summaries using the ggplot() and

stat_qq() functions from the ggplot2 v3.6.6 R package.

3.5.5 Comparison between groups

I performed hypothesis tests to determine whether analyte concentrations are likely from the

same distributions between certain groups e.g., Treatment vs Control. I used the Wilcoxon rank

sum test, also known as the Mann-Whitney test employing the wilcox.test() function from

the base R stats package for this test. This is a non-parametric alternative to the two-sample t-

test. This test assigns ranks to the ordered (smallest to the largest) observations. That is, the

smallest observation or value is assigned the least rank while the largest observation or value is

assigned the highest rank. Tied observations are assigned the average of the ranks (Wild &

Seber, 1999). The Wilcoxon test is based on the ranks of all combined sample observations. The

test statistic is the sum of ranks of the ordered observation in one sample of the data.

3.5.6 Shiny app

Shiny (Chang et al., 2022) is an R package and framework for creating interactive web

applications and dashboards in R without any prior knowledge of JavaScript, CSS or HTML

(Wickham, 2021). R shiny enables interactivity of the analyses by utilising reactive

programming which automatically updates code outputs when its dependencies (inputs) are

altered. The interactive feature of Shiny applications can be useful for reporting results and

allows a user to easily sift through a large volume of report information to a specific portion of

interest. This interactivity can facilitate and fast-track exploratory data analysis. To utilise the

interactivity of R Shiny, I developed a Shiny application to report the statistical summaries and

facilitate exploratory data analysis. I accomplished this by using the R Shiny V1.7.2 package

(Chang et al., 2022) in R.

3.6 Datasets

In addition to unit testing, the pipeline was tested with real datasets. These datasets were

collected from ongoing research by the SUN-IRG. The datasets included clinical data and

participant data with a unique ID serving as a primary key to link the two data sets. The Luminex

data had 45 distinct analytes with concentration values and fluorescent intensity values, dilution

Stellenbosch University https://scholar.sun.ac.za

56

values, plate numbers etc. The participant data had information on sex, and group (control or

treatment).

3.7 Materials and tools

3.7.1 Hardware and Operating system

Code was written with a Dell desktop computer with computing resources of intel core i7 (octa-

core processor), 16GB RAM, and 1TB storage. The operating system used was Kubuntu V22.04,

a flavour of the Ubuntu OS.

R package development was done on a Linux server running Ubuntu 22.04 using Rstudio server

V22.02.3-492.

3.7.2 List of tools and packages

The following tools and software packages were used for the project:

Draw (https://draw.io/)

Nextflow V22.10.1 (https://www.nextflow.io/)

R packages (corrplot, DescTools, dplyr, english, ggplot2, gsubfn, Hmisc, lubridate, magrittr,

minpack.lm, msm, plyr, purrr, readr, reshape, stringr, tibble, tidyr, drLumi)

R V4.2 (https://cran.r-project.org/)

Rstudio IDE V22.07.2-576

Rstudio server V22.02.3-492

Singularity V3.5.3 (https://docs.sylabs.io/guides/3.5/user-guide/introduction.html)

Visual Studio Code IDE V1.7.2

Zotero (https://www.zotero.org/)

Stellenbosch University https://scholar.sun.ac.za

https://draw.io/
https://www.nextflow.io/
https://cran.r-project.org/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://www.zotero.org/

57

CHAPTER 4: RESULTS

4.1 Improvements to the R LuminexPipeline package

In my MSc research project, I focused on making important improvements to the R

LuminexPipeline package.

The LuminexPipeline package can be installed by either of the following two methods.

The first option is to use the R environment and the install_github() function from the

devtools R package (Wickham, Hester, et al., 2022). The parameter or argument to this function

is the GitHub package package repository, “Asimeng/LuminexPipeline”. Using this

method requires the user to have the devtools R package installed. The following code snippet

can be used to install the package.

devtools::install_github(“Asimeng/LuminexPipeline”)

The second option to install the package is to do it via the Linux command line by using the

already-built source file (compressed source code). This file is available for download at

https://github.com/Asimeng/LuminexPipeline/blob/main/inst/package_source_code/LuminexPip

eline.tar.gz. Once downloaded, package installation can be initiated by executing the following

command on the command line.

R CMD INSTALL LuminexPipeline.tar.gz

Note: This code snippet assumes that the binary package file is in the current working directory.

One will need to provide the full path to the file if working from a different directory.

Also, a different installation alternative with the built source file can be done in R with the

following code snippet.

install.packages(“path_to_source_file”,repos=NULL,type=“source”)

The LuminexPipeline R package is publicly available at

https://github.com/Asimeng/LuminexPipeline and its terms of use are licenced with the MIT

license, which is one of the major open-source licenses.

Stellenbosch University https://scholar.sun.ac.za

https://github.com/Asimeng/LuminexPipeline/blob/main/inst/package_source_code/LuminexPipeline.tar.gz
https://github.com/Asimeng/LuminexPipeline/blob/main/inst/package_source_code/LuminexPipeline.tar.gz
https://github.com/Asimeng/LuminexPipeline

58

Figure 15. The general terms of use and permissions granted by the MIT license.

4.1.1 Package Documentation

The major package functions are documented with descriptions, usage, and examples to facilitate

ease of use (Figure 16). This is in line with current best practices to contribute to achieving

reproducibility.

Stellenbosch University https://scholar.sun.ac.za

59

Figure 16. An example of documentation for one of the functions in the LuminexPipeline package

4.1.2 Unit testing

As part of best package development practices, the implementation of unit testing helped me to

improve the LuminexPipeline package’s robustness. Thus, for example, in the instance of bad

input, the package will not break with a cryptic error message but will instead generate a useful

error message to help with debugging. Unit testing also helped me improve the package’s

numerical accuracy by testing its functions to return the expected output and results.

Stellenbosch University https://scholar.sun.ac.za

60

Through unit testing, I improved the robustness of our functions by refactoring the code as well

as introducing several if statements to robustly handle unexpected inputs –generation of useful

error or warning messages.

4.1.3 Quality control

I used functions available in the drLumi R package (Sanz et al., 2017), to generate standard

curves from standard dilution concentrations (Figure 17) to estimate the unknown

concentrations. The LuminexPipeline package now has the full curve calibration utility of the

drLumi package and can therefore provide the goodness of fit metrics and visualisation for

quality assessment.

Figure 17. An example of a standard curve generated from the LuminexPipeline package using

functions borrowed from the drLumi package. This curve attained convergence with the 5-

parameter logistic curve function and it is plotted ignoring background noise.

4.2 Containerisation

The use of a containerised runtime environment in the pipeline execution significantly improves

analytical reproducibility in Luminex data processing by addressing the challenge of numerical

instability arising from software versioning and different computational environments.

Furthermore, the implementation of containerised analyses fosters reproducibility through the

Stellenbosch University https://scholar.sun.ac.za

61

recording of provenance information and the portability and ease of sharing of the containerised

environment to have results easily reproduced by an independent group or researcher. The

containerised runtime environment runs on the bitnami/minideb

(https://github.com/bitnami/minideb) OS image, which is a lightweight version of Debian OS.

The deployed environment with all the necessary software needed to run the Luminex pipeline is

available as a Singularity image file (.sif) — an easy-to-distribute file. To foster transparency, I

provide the definition file, so called recipe file, to reproduce the container at

https://github.com/Asimeng/LuminexPipeline_container.

4.3 Pipelines and workflow management systems (WMS)

The selection of a pipeline framework or WMS was to have one consistent framework to be used

for the implementation of current and ongoing pipeline developments as well as for future

pipeline development tasks undertaken at the SATBBI. Because of this, I selected a WMS

framework that is highly generalisable to different programming languages and data file types.

Also, I selected the WMS framework that is best meets our selection criteria, which were easy to

install, use, develop and implement as well as requires minimal programming expertise.

Based on the review of existing WMSs, I selected two WMS, namely Nextflow and Snakemake,

for side-by-side comparison (Table 5). I chose the Nextflow WMS (Di Tommaso et al., 2017) to

be used as the LuminexPipeline framework. Below, I summarise the findings in prototyping and

reviewing the two WMS.

Table 5: Summary of comparison of shortlisted WMS — Nextflow & Snakemake

Evaluation criteria Nextflow Snakemake

Log files Yes No

Dry-run No Yes

Citations (wide use) 980* 1861*

License Apache 2.0 (open source) MIT (open source)

Re-entry Yes Yes

Support for containers Yes Yes

Support for HPC and Cloud Yes Yes

Implementation Dataflow programming GNU Make build system

Workflow parallelisation Yes Yes

*Citations assessed using Google Scholar (https://scholar.google.com/) on September 2022

Stellenbosch University https://scholar.sun.ac.za

https://github.com/bitnami/minideb
https://github.com/Asimeng/LuminexPipeline_container

62

4.3.1 Implementation & ease of use

I found Nextflow to be fairly straightforward with its execution of steps or processes as

compared to Snakemake. Nextflow implements a data flow programming paradigm (from top to

bottom) where executions automatically start with the availability of input data through input

data channels (Di Tommaso et al., 2017). I favoured this approach to the GNU Make style

implementation of Snakemake which pre-computes all workflow dependencies starting from the

expected output file(s) through to the input file(s) in a directed acyclic graph DAG. In other

words, Snakemake executes its tasks by first mapping out all dependencies or rules that lead to

the generation of the specified output file — from the bottom up to the input data. If a dependent

file is absent, Snakemake searches for defined tasks or rules that creates the file. Knowledge of

this implementation is needed to guide the scripting of snakefiles (a Snakemake script). Since I

had no prior GNU Make knowledge, I found this a bit confusing initially during prototyping in

Snakemake, unlike Nextflow which was more intuitive and straightforward. Furthermore,

Nextflow’s process execution is done in an isolated sub-directory which collects metadata of the

execution process as log files — which is useful for debugging. This feature is absent in

Snakemake. Both systems support workflow parallelisation. Snakemake has a “dry-run” feature

that displays the commands that would be executed and can verify that input files are present

without actually executing them (Jackson, Kavoussanakis & Wallace, 2021). This feature is

absent in Nextflow. Both systems allow re-entrancy (resumption of execution after the

unexpected exit of the job). Both WMSs also allow external scripts, e.g., Python, R, to run.

4.3.2 Installation

The major dependency required for installing Nextflow is Java ≥ 11 and BASH ≥ 3.2. Once these

requirements are met, Nextflow can easily be installed and run on any “POSIX compliant”

system (e.g., Solaris, Linux) as well as on Windows via the Windows Subsystem for Linux

(WSL). Snakemake, on the other hand, requires Python to run and its installation can seamlessly

be done with the Conda or Mamba package managers. However, these package managers can be

challenging to deal with, especially for novice users. I found both WMS very easy to install.

However, I preferred Nextflow because its installation is not natively bound or attached to the

Conda or Mamba package managers, which sometimes can be challenging to deal with.

Stellenbosch University https://scholar.sun.ac.za

63

4.3.3 Wide use

I found both WMSs to be very widely used in the Bioinformatics community. Although

Snakemake has more citations, probably because it is older, Nextflow is equally widely used and

used by major research institutions. For example, the Fred Hutchinson Cancer Center, a world-

leading biomedical research centre has adopted Nextflow as its workflow management, a strong

indication of its high regard in the Bioinformatics community.

4.3.4 Scalability

Both systems can scale well, running workflows on a variety of hardware from a single core

computer to HPC or cloud environments without changing the workflow script.

4.3.4 Licensing

Snakemake uses an MIT open-source license, whereas Apache 2.0 open-source license is used

for Nextflow. These allow for the free use, development, and distribution of workflows with both

workflow management systems.

4.3.5 Future support

Nextflow has a community of Bioinformatics pipeline creators, the nf-core. This growing

community is a good indication of future stability and future support for Nextflow. Also, its nf-

core pipelines are free and open source (https://nf-co.re/pipelines) and can be easily adapted and

tailored to suit a researcher’s needs. Additionally, they can help reduce the learning curve of

Nextflow. Snakemake on the other hand has the Snakemake workflow catalogue

(https://snakemake.github.io/snakemake-workflow-catalog/) with standardised Snakemake

workflows. Under this criterion, I found both Snakemake and Nextflow to have great prospects

for future support and stability with their increasing popularity and citations, see table 2.

4.4 Luminex Pipeline with Nextflow

Here I describe the running of the LuminexPipeline in the Nextflow framework. The Luminex

pipeline execution is triggered by running the Nextflow script (see Appendix). Before executing

the Nextflow script, the parameters for input files, instrument names, analyte references, and the

directory of the container should be set up in the pipeline’s configuration file. Once the pipeline

is dispatched with Nextflow, processing and execution are done in the container to achieve

numerical stability and reproducibility. Within the container are all software (including the

Stellenbosch University https://scholar.sun.ac.za

https://nf-co.re/pipelines
https://snakemake.github.io/snakemake-workflow-catalog/

64

LuminexPipeline R package) needed to run the analysis. The outputs of the execution are .rds

files and an HTML or pdf report file written to a specified output directory (Figure 18). The

pipeline can be automatically dispatched by running the following command on the command

line.

nextflow run path/to/nextflow/script

Alternatively, it can be dispatched by setting the parameter values alongside the command to run

the Nextflow script on the command line.

Figure 18. Schematic flow of the LuminexPipeline execution. The pipeline is dispatched with the

Nextflow workflow management system for execution in a Singularity container. The end of

pipeline execution generates the pipeline outputs saved on the host computer.

4.5 Inclusion of statistical summary reports to the LuminexPipeline

One of the most important new functions to the LuminexPipeline that I developed was to

program the pipeline to generate different types of statistical summary reports. Such reports

would help the investigators to assess the quality of the multiplex ELISA data quickly and plan

future experiments.

Stellenbosch University https://scholar.sun.ac.za

65

4.5.1 Distribution of analytes

One useful summary report would be to see the distribution of the concentrations of the analytes

studied by multiplex ELISA, In Table 7, I give an example of the pipeline outputs as part of the

statistical summary report, after the pipeline’s execution. Here, one can get information on the

range of each analyte’s distribution represented with the min (minimum) and max (maximum)

columns. Information on the central tendency, the representative value of the distribution, can be

assessed with the mean and the q2 (median) labelled columns. Measures of variability or spread

of each analyte’s concentrations can be observed with the quartile columns, q1 (first quartile), q2

(second quartile), and q3 (third quartile). Missingness can be assessed with the NAs (number of

missing values), available_obs (available observations) and the total_obs (total observations)

columns.

Stellenbosch University https://scholar.sun.ac.za

66

Table 6. Statistical summary of seven analytes generated from the LuminexPipeline package. From this output, information regarding spread,

central tendency and missingness can be assessed

 Observations (n)

analyte min max mean q1 q2 q3 NAs Available Total

CCL1/I-309 62 170,579 3,539 843 1,922 3,792 2 576 578

ECM1 55 6,316 1,863 1,239 1,728 2,317 4 574 578

Ferritin 25 179,740 19,688 4,275 8,230 19,149 0 578 578

Fibrinogen 15 5,984,100 2,015,433 1,580,850 1,898,650 2,280,525 4 574 578

Haptoglobin 346 25,811 7361 4,589 7,036 9,636 4 574 578

IL-10 13 27,088 3620 1,364 2,777 4,744 1 576 577

The distribution of analyte concentrations can also be visualised in a histogram (Figure 19). The histograms are superimposed with a

density function to describe the shape of the distribution of analyte concentrations and to also inform normality. Each analyte is

represented in a faceted plot. The y-axis is the probability density function whereas the x-axis is the log-transformed analyte

concentrations.

The R Shiny app allows for visualising the distribution after a power transformation (box-cox transformation).

Stellenbosch University https://scholar.sun.ac.za

67

Figure 19: Distribution of analytes concentrations in a histogram

4.5.2 Reporting outliers

Another feature that I added to the LuminexPipeline is to have it generate reports on the different

outlier detection methods as a percentage of the number of outliers detected (Table 8). The

analyte column represents all the analytes, and the modified z-score outlier detection method is

reported in the mod_z(%) column. The z_score detection method is represented in the

z_score(%) column. Tukey’s method of outlier detection is represented in the Tukey(%) column

and the total number of observations are reported in the n column.

Table 7. Report on the different outlier detection methods

analyte mod_z(%) z_score(%) Tukey(%) n

CCL1/I-309 6.944 0.868 0.000 576

ECM1 1.394 1.394 0.174 574

Ferritin 14.533 3.979 0.173 578

Stellenbosch University https://scholar.sun.ac.za

68

Fibrinogen 4.355 2.613 0.697 574

Haptoglobin 0.174 0.523 0.174 574

IL-10 3.125 1.910 0.174 576

SAA 14.458 1.205 0.904 332

4.5.3 Correlation between different analytes

I also considered it important to add to the LuminexPipeline a function to report the relationships

using Spearman correlation between analytes in the statistical summary report (Table 9). Here,

column names, analyte_1 and analyte_2 are the paired analytes whose relationships are being

computed. The Spearman correlation coefficient of each of the relationships is displayed in the

column labelled ρ. The p-value of the relationship is presented in the p.value column.

Table 8. Correlation between analytes in a flattened correlation matrix

analyte_1 analyte_2 ρ p.value

SAA Haptoglobin 0.419 9.786e-12

IL-10 Ferritin 0.327 1.754e-14

Fibrinogen Ferritin 0.320 5.684e-14

SDF-1 alpha CCL1/I-309 0.303 1.082e-10

Fibrinogen Haptoglobin 0.299 2.802e-13

SAP Haptoglobin 0.283 7.229e-11

Fibrinogen IL-10 0.276 2.383e-11

Visualisation of the analyte relationships was done in a correlogram (Figure 20). Figure 20

illustrates the upper triangle of the correlation matrix. The deep blue diagonal dots represent self-

correlation between the same analytes. Blue dots are indicative of a positive association, whereas

the light brown dots represent negative correlations. The strengths of the associations are

reflective of the sizes of the dots (both blue and light brown). The larger the dots, the stronger the

association and vice versa. Furthermore, the intensity of the colour of the dots also reflects the

strength of the association, with deep-coloured dots representing a strong association and vice

Stellenbosch University https://scholar.sun.ac.za

69

versa. The ladder on the far right of the correlogram is a legend mapping the colour of the dots to

the correlation coefficients representing the strength of the association.

Figure 20: Visualisation of all associations in a correlogram. For details, see text.

4.5.4 Test of deviation from normality

4.5.4.1 Numerical methods

I included testing for normality in the statistical report summaries as another new feature in the

LuminexPipeline (Table 10). Here, the specific analytes being tested for non-normality are in the

analyte column. The excess kurtosis is reported in the kurtosis column, and the skewness of each

analyte’s distribution is reported in the skewness column, The test statistics, W’, of the Shapiro-

Francia test, are reported in the Shapiro.Francia column. Finally, the p-values associated with

the Shapiro-Francia test are reported in the p.value column.

Stellenbosch University https://scholar.sun.ac.za

70

Table 9. Report of test of non-normality with the tests of excess kurtosis, skewness and the Shapiro-

Francia test with its associated p-value

analyte kurtosis skewness Shapiro.Francia p_value

CCL1/I-309 230.873 13.616 0.239 2.6e-37

ECM1 2.113 1.132 0.937 3.1e-13

Ferritin 7.810 2.785 2.599 6.4e-30

Fibrinogen 4.793 1.686 0.876 1.8e-18

Haptoglobin 0.779 0.704 0.968 5.8e-09

IL-10 11.066 2.697 0.763 2.1e-24

SAA 109.604 10.115 0.108 2.9e-31

4.5.4.2 Graphical methods (q-q plots)

I also incorporated generation of q-q plots to the LuminexPipeline to further assess normality of

the data. The results of nine analytes in a q-q plot are displayed in Figure 21. The quantiles of the

observed concentrations of analytes are represented on the y-axis while the x-axis represents the

quantiles of a theoretical normal distribution.

Figure 21: A faceted q-q plot of nine analytes to visually assess non-normality. The image

is output as part of the Luminex pipeline’s statistical summary report.

Stellenbosch University https://scholar.sun.ac.za

71

4.5.5 Comparison between study groups

Another useful feature in an analysis pipeline would be a preliminary analysis of comparing the

results of different study groups. To achieve this, I implemented a function in the

LuminexPipeline to generate a table of results after testing for differences between different

study groups (e.g., treatment vs control). The results of this comparison are shown in the

statistical summary report (Table 11). The analytes being compared are displayed in the column

labelled analyte. The p-value of the Wilcoxon-rank sum test is given in the p.value labelled

column and the test statistic of the Wilcoxon-rank sum test is given in the column labelled

w.statistic.

Table 10. An output table of the Wilcoxon rank sum test between treated and untreated groups, generated

from the LuminexPipeline package

analyte p.value w.statistic

CCL1/I-309 0.382 43,201

ECM1 0.327 39,214

Ferritin 0.142 44,689

Fibrinogen 0.458 39,693

Haptoglobin 0.595 42,217

IL-10 0.658 42,338

SAA 0.242 14,750

4.5.6 Shiny app

Another improvement I implemented for the statistical analyses in the LuminexPipeline included

using the R Shiny LuminexApp. This function is useful for observing the distributions of the

different analytes, determining the relationships between different analytes, and picking up

general patterns in the data for further downstream analysis. The current version of the ShinyApp

allows one to upload processed Luminex data (data output of pipeline) and explore certain

statistical summaries: correlation (Pearson and Spearman), effects of Box-Cox and log

transformation on analyte concentration as well as some visualisation (box plot, q-q plot and

histograms). For training purposes, there is existing test data to help explore the functionality of

the app and learn to use it effectively.

Stellenbosch University https://scholar.sun.ac.za

72

The current version of the Luminex ShinyApp is hosted on shinyapps.io and can be assessed

with the link: https://asimeng.shinyapps.io/luminex_app/. The application code is also freely

available on GitHub: https://github.com/Asimeng/LuminexPipeline_shinyApp .

Stellenbosch University https://scholar.sun.ac.za

https://asimeng.shinyapps.io/luminex_app/
https://github.com/Asimeng/LuminexPipeline_shinyApp

73

CHAPTER 5: DISCUSSION

5.1 The LuminexPipeline and reproducibility

There has been a tremendous uptake of interest recently in making scientific methods and

processes more open, rigorous, and reproducible. This is in response to addressing the current

reproducibility crisis in science (Ioannidis, 2005; Baker, 2016) which, if not addressed may have

grave implications on scientific research translation into mainstream use and may even dent

public trust in science. The reproducibility crisis has necessitated an unprecedented demand for

rigour, transparency, verification and reproducibility of scientific methods and results which are

being enforced by all stakeholders of science (e.g., funders, publishers, researchers, and research

institutions). For example, many funders now require that all research data, code and other tools

are made publicly available to facilitate reproducibility, transparency, rigour and verification of

results and to expedite scientific discovery (Committee on Realizing Opportunities for Advanced

and Automated Workflows in Scientific Research, 2022).

In the wave of the current reproducibility crisis, which is also prominent in the Luminex data

processing and analyses, my MSc work has contributed to attaining reproducible methods and

results in this domain. I have extended the robustness, reproducibility and utility of the

LuminexPipeline, an R-based pipeline, which researchers can use to improve the reproducibility

of Luminex data processing and analyses. Reproducibility in scientific computing demands more

than just sharing data and code. In this regard, first, the LuminexPipeline’s implementation was

extended using an automated WMS to automate all data processing and analytical steps in the

pipeline. This is an important utility to help achieve consistency and attain reproducibility of

analytical results by minimising human intervention, a major source of variation and errors in

multiple-step data processing and analyses. The use of an automated WMS also helps to improve

reproducibility through the ability to keep records of provenance information (all data processing

steps) to allow analytical results to be traced back to their specific analytical pipeline. Second, I

extended the reusability of code by incorporating and compiling newly written R functions

together with existing functions into an R package (LuminexPipeline package). Reusability of

code can greatly improve reproducibility, especially in the context where repetitive tasks are

applied to different data sets. Third, I improved the robustness of the pipeline through automated

Stellenbosch University https://scholar.sun.ac.za

74

unit testing. Unit testing is essential to improve the code structure and to efficiently handle errors

(useful error messages) for ease of use. Fourth, I extended the pipeline’s reproducibility by

developing an isolated runtime environment (containerised environment) for the pipeline’s

execution. The use of containerised environments can greatly improve numerical stability during

data processing and analyses by evading the impacts of variation in software versions and

computational environments. For example, a common situation is that one’s code does not work

on a different computer. Containerisation also significantly promotes reproducibility by

facilitating the publishing and sharing of analytical runtime environments, code or data alongside

research findings.

Aside from attaining reproducibility of Luminex data processing and analyses, the pipeline

development and extension procedures aimed at developing a robust utility, a program that runs

on computers not owned by its developer and that can easily be used by other individuals other

than the developer (Taschuk & Wilson, 2017). My work, therefore, utilised current best practices

to develop a robust and reproducible pipeline in line with most of the (Taschuk & Wilson, 2017)

ten rules for developing robust research software. Thus, when implementing the new functions to

the pipeline I addressed the following points 1) there is version control during the development

process with Git and Github; 2) good documentation practices (utilised Roxygen notes for

package documentation); 3) unit testing and inclusion of test data set for users’ exploration; 4)

avoiding hard-coding file paths in the code (utilised configuration files with parameters); 5)

avoiding root privileges for installation (the pipeline can be installed and run without root

privileges); and 6) and ease of installation (pipeline can easily be setup and dispatched with just a

single line of code on the command line).

5.2 Statistical summary extension

One of the important enhancements that I implemented in the LuminexPipeline was to include

statistical summaries. Statistical summaries are important to provide general information about

variables in the data and to examine relationships between variables. They are also useful for

exploratory analyses, so that one can have a general idea of the spread and variation and the

symmetry of the data by simply looking at the minimum value, the median and the maximum

value.

Quartiles are three boundary points that divide a set of ordered data points into four equal parts.

That is, the first quartile demarcates the first 25% of the data points. Thus, a 1st quartile value of

Stellenbosch University https://scholar.sun.ac.za

75

45 indicates that 25% of the data points are less than or equal to 45. Half (50%) of the data points

are demarcated by the second quartile, which is also the median value. The 3rd quartile, also the

75% percentile indicates the third quarter of the data points. Assessing the quartiles can give a

good indication of the spread or dispersion in the data. Additionally, the minimum and maximum

values are good indications of the spread. From these values, the range can be computed as the

maximum minus the minimum values.

Outliers are extreme data points or values that can uncover measurement errors especially when

the observed data points are expected to be in a specific range. On the other hand, they can be a

revelation of very interesting results. One of the methods of dealing with outliers is trimming and

removing them. Trimming is usually done when the observed data are not in the expected range,

and it is not possible to collect additional data as a replacement. When one cannot ascertain that

observed values are a result of measurement errors, it is usually not recommended to remove

outlying observations (Salgado et al., 2016). One of the statistical methods for dealing with such

situations is winsorisation (Dixon & Yuen, 1974) where extreme values are pulled towards the

centre of the data while maintaining the order of the data points. For example, the largest

extreme value remains the largest value after winsorisation and the second largest value remains

the second largest value, in that order.

q-q plots are graphical methods for assessing non-normality. When the data points of a q-q plot

are evenly aligned in a straight diagonal line, the interpretation is that the residuals of the input

data are normally distributed, see figure 22. A q-q plot may also reveal skewness in the data

when the scatter points are curved instead of aligning on a straight line. It is noteworthy that, q-q

plots are subjective means of assessment of non-normality and therefore, their interpretation

should be subjected to expert opinion. Despite their subjective interpretation, q-q plots can prove

useful when numerical methods of assessment of non-normality are oversensitive or under

sensitive (Mishra et al., 2019).

Numerical alternatives for assessing non-normality are, for example, the Shapiro-Wilk, Shapiro-

Francia and Kolmogorov-Smirnoff tests (Arsenault, 2020). The Shapiro-Wilk test, for example,

has been shown to have similar overall power in comparison to the Shapiro-Francia test

(Royston, 1993). While both have approximately the same power, the Shapiro-Francia test is

relatively easier to compute because it only requires the expected ordered normal scores for its

computation rather than certain special coefficients used by the Shapiro-Wilk test (Royston,

Stellenbosch University https://scholar.sun.ac.za

76

1983). Both the Shapiro-Wilk and Shapiro-Francia test can compute their test statistic and

respective p-values on samples of similar sizes in R (3-5000 vs 5-5000). I, therefore, use the

Shapiro-Francia test for the numerical tests of non-normality because of its easy computation and

power. However, unlike the Kolmogorov-Smirnoff test, the Shapiro-Francia and Shapiro-Wilk

tests compare sample data to only a standard distribution and do not allow one to compare two

samples (Arsenault, 2020).

Figure 22: An example of a fairly normal distribution of residuals on a q-q plot (A). Plot (B) is an

example of a non-normally distributed residuals on a q-q plot

Since we cannot determine a priori, the underlying distribution of analytes, the two-sample t-test

may not be appropriate for hypotheses testing because it assumes normality of the residuals of

the underlying distributions (which may not always be the case). The Wilcoxon rank sum test, on

the other hand, is a rank-based and non-parametric alternative to the two-sample t-test, which

makes no assumptions on the distribution of the underlying data. Its advantage is that it is less

sensitive to outliers compared to the two-sample t-test (Wild & Seber, 1999) and, it is also

Stellenbosch University https://scholar.sun.ac.za

77

asymptotically similar to the t-test and therefore has a similar statistical power. However, the

power of the Wilcoxon rank sum test is lowered when there are ties in the data. The

Interpretation of the Wilcoxon rank sum test statistic and p-value centres on whether the two

samples being tested were drawn from the same distributions. This test does not test for the

median difference between the two samples unless the two samples are unimodal or skewed in

the same direction (Wild & Seber, 1999).

I computed only the Spearman correlation between analytes in my statistical summary report

because, unlike the Pearson correlation, which assumes the distribution of analytes to be

normally distributed (which is usually not the case for certain analytes), the Spearman correlation

test makes no such assumptions and uses a rank-based approach in computing its coefficients.

This is a generally robust approach to computing associations in both continuous and ordinal

data (Pearson correlation tests applies to only continuous data). Additionally, the coefficient of

Pearson correlation is a measure of only the strength of the linear relationship between two

variables whereas the Spearman correlation coefficient is a measure of the monotonic

relationship between two variables. Thus, the rate of increase or decrease in the relationship is

not necessarily always constant as is assumed for the linear relationship measured by the Pearson

correlation (Ramzai, 2021). However, in the complementary Shiny app (for exploratory

analysis), one can compute both the Pearson and Spearman correlation. During the interpretation

of correlation results, it is important to note that correlation does not necessarily imply causation

(Rohrer, 2018).

Since Luminex data have an inherently large variance, one of the methods of dealing with this

challenge is transformation. Transformation can draw extreme data points closer to the centre,

significantly reduce noise and transform non-normally distributed data to be somewhat normal.

However, the performance of different transformation methods may vary. I, therefore, provide

the utility to explore the effects of transforming analyte distributions in the Shiny app. This

utility involves the use of the log (Feng et al., 2014) or Box-Cox transformation (Sakia, 1992) to

visualise the transformation effects of analyte distributions in a q-q plot, histogram, or box plot.

However, this utility should be used for only exploratory purposes because of the risk of

overfitting in downstream analysis.

Stellenbosch University https://scholar.sun.ac.za

78

5.3 Containerisation

There are different types of software to build containerised environments. Docker (Rad, Bhatti &

Ahmadi, 2017) is the most widely used. However, executing Docker containers requires root

privileges which is a major challenge for use on shared computing systems like HPC. Docker is,

therefore, discouraged from being used on HPC environments, because of the risk of

compromising other users’ data with root privileges. To run containerised workflows on the

HPC, a suitable alternative, Singularity (Kurtzer, Sochat & Bauer, 2017) is the popular go-to

option. Additionally, Singularity can convert and utilise Docker images. I, therefore, developed

the containerised LuminexPipeline with Singularity, which solves to accommodate execution on

the HPC.

5.4 Quality control

I implemented quality control (fitting standard curves) by incorporating functions from the

drLumi R package (Sanz et al., 2017) into the LuminexPipeline R package. Curve fitting is a

utility for estimating unknown sample concentrations from the reported fluorescent intensities.

Although most Luminex instruments automatically estimate unknown sample concentrations,

having the utility to generate standard curves can prove useful as a quality assessment feature for

detecting probable errors (usually pipetting) by observing the shape of the logistic growth curve

(standard curve). Alternatively, depending on a specific analyte or experiment, a researcher may

want to use a specific curve fitting method which may not be provided by the automated curve

fitting software of the Luminex system. For example, the drLumi R package provides many

alternatives for choosing the limits of quantitation on a standard curve. A specific experiment

may be best suited for implementation by utilising a specific method of estimation of limits of

quantitation which may not be available in the Luminex automated curve fitting software.

Additionally, these are open-source tools which promote open science and remove layers of a

black box.

5.5 Limitations

5.5.1 Test coverage and documentation

The coverage of unit testing and package documentation focused only on the major functions

involved in importing and processing Luminex. Future work should extend the coverage of unit

testing and package documentation to other minor functions in the pipeline.

Stellenbosch University https://scholar.sun.ac.za

79

5.5.2 Automating multi-stage container build process

One of the limitations of the methods described here was the use of a manual approach to the

multi-stage build process to trim container size. Unlike an automated approach (script) for

recording all shared library files and program files, the manual approach I utilised, may not be

reproducible in other computing environments. Future work should, therefore, consider

automating this process. However, in the absence of an automated script, I provide an alternative

definition file which utilises the conventional container build process to achieve reproducibility

but comes at the expense of having a relatively larger container size (see

https://github.com/Asimeng/LuminexPipeline_container or the Appendix section for the

definition or the recipe file).

Stellenbosch University https://scholar.sun.ac.za

https://github.com/Asimeng/LuminexPipeline_container

80

CHAPTER 6: CONCLUSIONS

Reproducibility is one of the fundamental principles for doing good science. However, this tenet

of science has been subjected to a serious crisis in which many published scientific findings are

not reproducible. The implications of this crisis can be wrong scientific findings and conclusions

which can have devastating impact when translated to the industry. This crisis also poses the risk

of losing public trust in science. Some of the major contributors to the current reproducibility

crisis have been identified to be cognitive bias, p-hacking, misuse of p-values, underpowered

studies, publication bias and preference for novelty culture. However, in the face of these

challenges, there has been a tremendous uptake of interest recently by many stakeholders of

science including researchers themselves, funders, research institutions, and publishing firms, to

help remedy the current reproducibility crisis. Efforts are being put in place, for example, by

funders to make the scientific process more open for scrutiny and verification by requiring

researchers to make their research data publicly available. Publishing institutions are developing

new approaches to facilitate the publishing of negative results through pre-registration of

research. Many universities are incorporating concepts of reproducibility into their curricula, and

there is increased scrutiny in published results demonstrated by the increased retraction of papers

(https://retractionwatch.com/).

Given the current reproducibility challenges, I present the LuminexPipeline, my contribution to

help significantly improve reproducibility and robustness, specifically with the processing and

analyses of multiplex ELISA data generated using the Luminex platform. The LuminexPipeline

improves analytical reproducibility by utilising an automated workflow management system, a

containerised workflow execution, extended robustness in utility through unit testing, and a

statistical summary report to extend the overall utility of the pipeline. Furthermore, I improved

reproducibility by reusing code through reusable functions in an R package applicable to all

Luminex assay data.

Through my MSc research project, I have contributed to open science by making the

LuminexPipeline and its related utilities freely available for use. Additionally, they are licensed

with open-source licenses which allow for unrestricted use and further improvement by third-

party organisations or individuals.

As part of community efforts to improve reproducibility through the FAIR guiding principles,

this contribution, the development of the LuminexPipeline will help to generate, with efficiency

Stellenbosch University https://scholar.sun.ac.za

https://retractionwatch.com/)

81

and speed, standard compliant and ready-to-share datasets (cleaned and curated) for indexing and

upload onto online data repositories (e.g., Zenodo) facilitating the findability and accessibility

components of the FAIR guiding principles. The pipeline’s output data file format (.rds file) is

versatile (machine readable) and can be read by many programming languages (e.g., Python) and

software packages, attaining the interoperable component of the FAIR guiding principles.

Finally, given that the drLumi R package has been archived on CRAN as of April 2020, the

submission of the R LuminexPipeline package to CRAN, will make it the only available package

on CRAN for Multiplexed ELISA data processing and analysis with continuous support.

Stellenbosch University https://scholar.sun.ac.za

82

REFERENCES

Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements,

D., et al. 2018. The Galaxy platform for accessible, reproducible and collaborative

biomedical analyses: 2018 update. Nucleic Acids Research. 46(Web Server issue):W537–

W544. DOI: 10.1093/nar/gky379.

Allaire, J.J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J.,

et al. 2022. Available: https://CRAN.R-project.org/package=rmarkdown [2022, November

14].

Amstutz, P., Crusoe, M.R., Nebojša Tijanić, Chapman, B., Chilton, J., Heuer, M., Kartashov, A.,

Leehr, D., et al. 2016. DOI: 10.6084/M9.FIGSHARE.3115156.V2.

Andrews, S., Krueger, F. & Segonds-Pichon, A. 2020. Available:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Arsenault, M.-O. 2020. Kolmogorov–Smirnov test. Available:

https://towardsdatascience.com/kolmogorov-smirnov-test-84c92fb4158d [2022, November

02].

Arunika, D. 2016. Reproducibility in science. Available:

https://www.ascb.org/careers/reproducibility-in-science/ [2021, December 24].

ASCB Task Force. 2014. ASCB task force report on reproducibility in science. Available:

https://www.ascb.org/science-policy-public-outreach/advocacy-policy/ascb-examines-

difficulty-reproducing-research-data/ [2022, November 02].

Baker, M. 2016. 1,500 scientists lift the lid on reproducibility. Nature. 533(7604):452–454. DOI:

10.1038/533452a.

Baker, K.S., Suu‐Ire, R., Barr, J., Hayman, D.T.S., Broder, C.C., Horton, D.L., Durrant, C.,

Murcia, P.R., et al. 2014. Viral antibody dynamics in a chiropteran host. The Journal of

Animal Ecology. 83(2):415. DOI: 10.1111/1365-2656.12153.

Begley, C.G. & Ellis, L.M. 2012. Raise standards for preclinical cancer research. Nature.

483(7391):531–533. DOI: 10.1038/483531a.

Berkowitz, C. 2014. Pumped up. Available:

https://www.sciencehistory.org/distillations/pumped-up [2021, December 22].

Bio-Rad. n.d. Luminex xMAP technology. Available: https://www.bio-

rad.com/featured/en/luminex-xmap-technology.html [2022, April 04].

Stellenbosch University https://scholar.sun.ac.za

83

Bishop, D. 2019. Rein in the four horsemen of irreproducibility. Nature. 568(7753):435–435.

DOI: 10.1038/d41586-019-01307-2.

Brendan Bioanalytics. n.d. Weighting in logistic curve regressions. Available:

https://www.brendan.com/curve-weighting/ [2022, July 08].

Carl, P., Ramos, I.I., Segundo, M.A. & Schneider, R.J. 2019. Antibody conjugation to carboxyl-

modified microspheres through N-hydroxysuccinimide chemistry for automated

immunoassay applications: a general procedure. PLoS ONE. 14(6). DOI:

10.1371/journal.pone.0218686.

Casadevall, A. & Fang, F.C. 2010. Reproducible science. Infection and Immunity. 78(12):4972–

4975. DOI: 10.1128/IAI.00908-10.

Chang, W., Cheng, J., Allaire, J.J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., et

al. 2022. Available: https://CRAN.R-project.org/package=shiny [2022, October 31].

Chawla, D.S. 2017. P-value shake-up proposed. Nature. 548:16–17.

Clay Ford. 2015. Understanding Q-Q plots. Available:

https://data.library.virginia.edu/understanding-q-q-plots/ [2022, September 28].

Committee on Realizing Opportunities for Advanced and Automated Workflows in Scientific

Research. 2022. Automated research workflows for accelerated discovery: closing the

knowledge discovery loop. Washington, D.C.: National Academies Press. DOI:

10.17226/26532.

Committee on Reproducibility and Replicability in Science, the National Academies of Science,

Engineering and Medicine. 2019a. Improving reproducibility and replicability. In

Reproducibility and replicability in science. Washington, D.C.: National Academies Press

(US). DOI: https://doi.org/10.17226/25303.

Committee on Reproducibility and Replicability in Science, the National Academies of Science,

Engineering and Medicine. 2019b. Reproducibility and Replicability in Science.

Washington, D.C.: National Academies Press. DOI: 10.17226/25303.

Committee on Reproducibility and Replicability in Science, the National Academies of Science,

Engineering and Medicine. 2019c. Confidence in science. In Reproducibility and

replicability in science. Washington, D.C.: National Academies Press (US). DOI:

https://doi.org/10.17226/25303.

Cooper, G.S. & Meterko, V. 2019. Cognitive bias research in forensic science: a systematic

review. Forensic Science International. 297:35–46. DOI: 10.1016/j.forsciint.2019.01.016.

Stellenbosch University https://scholar.sun.ac.za

84

Cox, K.L., Devanarayan, V., Kriauciunas, A., Montrose, C. & Sittampalam, S. 2019.

Immunoassay methods. (July, 8):39. Available:

https://www.ncbi.nlm.nih.gov/books/NBK92434/.

Cumberland, W.N., Fong, Y., Yu, X., Defawe, O., Frahm, N. & De Rosa, S. 2015. Nonlinear

calibration model choice between the four and five-parameter logistic models. Journal of

Biopharmaceutical Statistics. 25(5):972–983. DOI: 10.1080/10543406.2014.920345.

Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E. & Notredame, C. 2017.

Nextflow enables reproducible computational workflows. Nature Biotechnology. 35(4):316–

319. DOI: 10.1038/nbt.3820.

Dixon, W.J. & Yuen, K.K. 1974. Trimming and winsorization: a review. Statistische Hefte.

15(2):157–170. DOI: 10.1007/BF02922904.

Dudley, R.A., Edwards, P., Ekins, R.P., Finney, D.J., McKenzie, I.G., Raab, G.M., Rodbard, D.

& Rodgers, R.P. 1985. Guidelines for immunoassay data processing. Clinical Chemistry.

31(8):1264–1271. DOI: 10.1093/clinchem/31.8.1264.

Dunbar, S.A. 2006. Applications of Luminex® xMAPTM technology for rapid, high-throughput

multiplexed nucleic acid detection. Clinica Chimica Acta; International Journal of Clinical

Chemistry. 363(1):71–82. DOI: 10.1016/j.cccn.2005.06.023.

Dunbar, S. & Li, D. 2010. Introduction to Luminex® xMAP® technology and applications for

biological analysis in China. Asia Pacific Biotech. 14:26–30.

Dunbar, S.A. & Hoffmeyer, M.R. 2013. Chapter 2.9 - Microsphere-Based Multiplex

Immunoassays: Development and Applications Using Luminex® xMAP® Technology. In

The Immunoassay Handbook (Fourth Edition). D. Wild, Ed. Oxford: Elsevier. 157–174.

DOI: 10.1016/B978-0-08-097037-0.00012-9.

Dunn, J. & Wild, D. 2013. Chapter 3.6 - calibration curve fitting. In The Immunoassay

Handbook (Fourth Edition). D. Wild, Ed. Oxford: Elsevier. 323–336. DOI: 10.1016/B978-

0-08-097037-0.00022-1.

Eckels, J., Nathe, C., Nelson, E.K., Shoemaker, S.G., Nostrand, E.V., Yates, N.L., Ashley, V.C.,

Harris, L.J., et al. 2013. Quality control, analysis and secure sharing of Luminex®

immunoassay data using the open source LabKey Server platform. BMC Bioinformatics.

14(1):145. DOI: 10.1186/1471-2105-14-145.

Engvall, E. & Perlmann, P. 1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative

assay of immunoglobulin G. Immunochemistry. 8(9):871–874. DOI: 10.1016/0019-

2791(71)90454-x.

Stellenbosch University https://scholar.sun.ac.za

85

Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y. & Tu, X.M. 2014. Log-transformation and

its implications for data analysis. 26(2):5.

Fong, Y., Sebestyen, K., Yu, X., Gilbert, P. & Self, S. 2013. nCal: an R package for non-linear

calibration. Bioinformatics. 29(20):2653–2654. DOI: 10.1093/bioinformatics/btt456.

Franceschi, P., Mylonas, R., Shahaf, N., Scholz, M., Arapitsas, P., Masuero, D., Weingart, G.,

Carlin, S., et al. 2014. MetaDB a data processing workflow in untargeted MS-based

metabolomics experiments. Frontiers in Bioengineering and Biotechnology. 2. DOI:

10.3389/fbioe.2014.00072.

González-Beltrán, A., Li, P., Zhao, J., Avila-Garcia, M.S., Roos, M., Thompson, M., van der

Horst, E., Kaliyaperumal, R., et al. 2015. From peer-reviewed to peer-reproduced in

scholarly publishing: the complementary roles of data models and workflows in

bioinformatics. PLOS ONE. 10(7):e0127612. DOI: 10.1371/journal.pone.0127612.

Goodman, S.N. 2001. Of p-values and Bayes: a modest proposal. Epidemiology. 12(3):295–297.

Available:

https://journals.lww.com/epidem/Fulltext/2001/05000/Of_P_Values_and_Bayes__A_Modes

t_Proposal.6.aspx [2022, October 30].

Gottschalk, P.G. & Dunn, J.R. 2005a. The five-parameter logistic: a characterization and

comparison with the four-parameter logistic. Analytical Biochemistry. 343(1):54–65. DOI:

10.1016/j.ab.2005.04.035.

Gottschalk, P.G. & Dunn, J.R. 2005b. Measuring parallelism, linearity, and relative potency in

bioassay and immunoassay data. Journal of Biopharmaceutical Statistics. 15(3):437–463.

DOI: 10.1081/BIP-200056532.

Grubbs, F.E. 1969. Procedures for detecting outlying observations in samples. Technometrics.

11(1):1–21. DOI: 10.1080/00401706.1969.10490657.

Guardabasso, V., Rodbard, D. & Munson, P.J. 1987. A model-free approach to estimation of

relative potency in dose-response curve analysis. American Journal of Physiology-

Endocrinology and Metabolism. 252(3):E357–E364.

Gundersen, O.E. 2021. The fundamental principles of reproducibility. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

379(2197):20200210. DOI: 10.1098/rsta.2020.0210.

Hérisson, J., Duigou, T., du Lac, M., Bazi-Kabbaj, K., Sabeti Azad, M., Buldum, G., Telle, O.,

El Moubayed, Y., et al. 2022. The automated Galaxy-SynBioCAD pipeline for synthetic

biology design and engineering. Nature Communications. 13(1):5082. DOI:

10.1038/s41467-022-32661-x.

Stellenbosch University https://scholar.sun.ac.za

86

Hoon, S., Ratnapu, K.K., Chia, J., Kumarasamy, B., Juguang, X., Clamp, M., Stabenau, A.,

Potter, S., et al. 2003. Biopipe: a flexible framework for protocol-based bioinformatics

analysis. Genome Research. 13(8):1904–1915. DOI: 10.1101/gr.1363103.

Huang, Y. & Gottardo, R. 2013. Comparability and reproducibility of biomedical data. Briefings

in Bioinformatics. 14(4):391–401. DOI: 10.1093/bib/bbs078.

Huls, M. 2022. Using multi-stage builds to make your docker image 10x smaller. Available:

https://towardsdatascience.com/using-multi-stage-builds-to-make-your-docker-image-

almost-10x-smaller-239068cb6fb0 [2022, November 01].

Hutson, M. 2018. Missing data hinder replication of artificial intelligence studies. Available:

https://www.science.org/content/article/missing-data-hinder-replication-artificial-

intelligence-studies [2022, August 22].

Ioannidis, J.P.A. 2005. Why most published research findings are false. PLoS Medicine.

2(8):e124. DOI: 10.1371/journal.pmed.0020124.

Ioannidis, J.P.A. 2014. How to make more published research true. PLoS Medicine.

11(10):e1001747. DOI: 10.1371/journal.pmed.1001747.

Ioannidis, J.P.A. 2018. The proposal to lower p value thresholds to .005. JAMA. 319(14):1429–

1430. DOI: 10.1001/jama.2018.1536.

Jackson, M., Kavoussanakis, K. & Wallace, E.W.J. 2021. Using prototyping to choose a

bioinformatics workflow management system. PLOS Computational Biology.

17(2):e1008622. DOI: 10.1371/journal.pcbi.1008622.

James Westby, Daniel Arteaga, Carlos Rodríguez Hernández, Alessandro Chitolina, Alejandro

Ruiz, Joseda Rios, Beltran Rubo, John Kristensen, et al. 2022. Available:

https://github.com/bitnami/minideb [2022, August 29].

Johnson, D., Cochrane, K., Davey, R.P., Etuk, A., Gonzalez-Beltran, A., Haug, K., Izzo, M.,

Larralde, M., et al. 2021. ISA API: an open platform for interoperable life science

experimental metadata. bioRxiv. DOI: 10.1101/2020.11.13.382119.

Kerr, N.L. 1998. HARKing: hypothesizing after the results are known. Personality and Social

Psychology Review. 2(3):196–217. DOI: 10.1207/s15327957pspr0203_4.

Kim, Y.-M., Poline, J.-B. & Dumas, G. 2018. Experimenting with reproducibility: a case study

of robustness in bioinformatics. GigaScience. 7(7). DOI: 10.1093/gigascience/giy077.

Koster, J. & Rahmann, S. 2012. Snakemake--a scalable bioinformatics workflow engine.

Bioinformatics. 28(19):2520–2522. DOI: 10.1093/bioinformatics/bts480.

Stellenbosch University https://scholar.sun.ac.za

87

Kreier, F. 2022. Orangutan genome mix-up muddies conservation efforts. Nature.

610(7933):617–618. DOI: 10.1038/d41586-022-03193-7.

Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. 2021. DOI:

10.5281/zenodo.5127899.

Kurtzer, G.M., Sochat, V. & Bauer, M.W. 2017. Singularity: scientific containers for mobility of

compute. PLoS ONE. 12(5):e0177459. DOI: 10.1371/journal.pone.0177459.

Landucci, F. & Lamperti, M. 2021. A pandemic of cognitive bias. Intensive Care Medicine.

47(5):636–637. DOI: 10.1007/s00134-020-06293-y.

Leipzig, J. 2017. A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics.

18(3):530–536. DOI: 10.1093/bib/bbw020.

Lin, A.V. 2015a. Direct ELISA. In ELISA. V. 1318. R. Hnasko, Ed. (Methods in Molecular

Biology). New York, NY: Springer New York. 61–67. DOI: 10.1007/978-1-4939-2742-5_6.

Lin, A.V. 2015b. Indirect ELISA. In ELISA: Methods and Protocols. R. Hnasko, Ed. (Methods

in Molecular Biology). New York, NY: Springer. 51–59. DOI: 10.1007/978-1-4939-2742-

5_5.

Merow, C. 2019. Quickstart guide to R package building. Available:

https://cmerow.github.io/RDataScience/Quickstart_RPackages.html [2022, October 31].

Mishra, P., Pandey, C., Singh, U., Gupta, A., Sahu, C. & Keshri, A. 2019. Descriptive statistics

and normality tests for statistical data. Annals of Cardiac Anaesthesia. 22(1):67. DOI:

10.4103/aca.ACA_157_18.

Mitra-Behura, S., Fiolka, R.P. & Daetwyler, S. 2022. Singularity containers improve

reproducibility and ease of use in computational image analysis workflows. Frontiers in

Bioinformatics. 1:757291. DOI: 10.3389/fbinf.2021.757291.

Mullard, A. 2021. Half of top cancer studies fail high-profile reproducibility effort. Nature.

600(7889):368–369. DOI: 10.1038/d41586-021-03691-0.

Munafò, M.R., Nosek, B.A., Bishop, D.V.M., Button, K.S., Chambers, C.D., Percie du Sert, N.,

Simonsohn, U., Wagenmakers, E.-J., et al. 2017. A manifesto for reproducible science.

Nature Human Behaviour. 1(1):1–9. DOI: 10.1038/s41562-016-0021.

Nelson, E.K., Piehler, B., Eckels, J., Rauch, A., Bellew, M., Hussey, P., Ramsay, S., Nathe, C.,

et al. 2011. LabKey Server: an open source platform for scientific data integration, analysis

and collaboration. BMC Bioinformatics. 12(1):71. DOI: 10.1186/1471-2105-12-71.

Stellenbosch University https://scholar.sun.ac.za

88

NIST/SEMATECH. 2012. Measures of skewness and kurtosis. In NIST/SEMATECH e-handbook

of statistical methods. Available: https://doi.org/10.18434/M32189.

Nuzzo, R. 2014. Scientific method: statistical errors. Nature. 506(7487):150–152. DOI:

10.1038/506150a.

Nuzzo, R. 2015. How scientists fool themselves – and how they can stop. Nature.

526(7572):182–185. DOI: 10.1038/526182a.

Papin, J.A., Mac Gabhann, F., Sauro, H.M., Nickerson, D. & Rampadarath, A. 2020. Improving

reproducibility in computational biology research. PLOS Computational Biology.

16(5):e1007881. DOI: 10.1371/journal.pcbi.1007881.

Plesser, H.E. 2018. Reproducibility vs. replicability: a brief history of a confused terminology.

Frontiers in Neuroinformatics. 11:76. DOI: 10.3389/fninf.2017.00076.

Poldrack, R.A. 2022. Statistical thinking for the 21st century. Available:

https://statsthinking21.github.io/statsthinking21-core-site/doing-reproducible-research.html

[2022, October 15].

R Core Team. 2021. Available: https://www.R-project.org/.

Raab, G.M. 1983. Comparison of a logistic and a mass-action curve for radioimmunoassay data.

Clinical chemistry. 29(10):1757–1761.

Rad, B.B., Bhatti, H.J. & Ahmadi, M. 2017. An introduction to docker and analysis of its

performance. International Journal of Computer Science and Network Security (IJCSNS).

17(3):228.

Ramzai, J. 2021. Clearly explained: Pearson vs Spearman correlation coefficient. Available:

https://towardsdatascience.com/clearly-explained-pearson-v-s-spearman-correlation-

coefficient-ada2f473b8 [2022, November 02].

Rattle, S., Hofmann, O., Price, C.P., Kricka, L.J. & Wild, D. 2013. Chapter 2.10 - lab-on-a-chip,

micro- and nanoscale immunoassay systems, and microarrays. In The Immunoassay

Handbook (Fourth Edition). D. Wild, Ed. Oxford: Elsevier. 175–202. DOI: 10.1016/B978-

0-08-097037-0.00013-0.

Rocca-Serra, P., Brandizi, M., Maguire, E., Sklyar, N., Taylor, C., Begley, K., Field, D., Harris,

S., et al. 2010. ISA software suite: supporting standards-compliant experimental annotation

and enabling curation at the community level. Bioinformatics. 26(18):2354–2356. DOI:

10.1093/bioinformatics/btq415.

Rocca-Serra, P., Maguire, E., Taylor, C., Field, D., Wittenberger, T., Santarsiero, A., Gonzalez-

Beltran, A. & Sansone, S.-A. 2012. Investigation-study-assay, a toolkit for standardizing

Stellenbosch University https://scholar.sun.ac.za

89

data capture and sharing. In Open Source Software in Life Science Research. Elsevier. 173–

188. DOI: 10.1533/9781908818249.173.

Rohrer, J.M. 2018. Thinking clearly about correlations and causation: graphical causal models

for observational data. Advances in Methods and Practices in Psychological Science.

1(1):27–42. DOI: 10.1177/2515245917745629.

Royston, J.P. 1983. A simple method for evaluating the Shapiro-Francia W’ test of non-

normality. The Statistician. 32(3):297. DOI: 10.2307/2987935.

Royston, P. 1993. A pocket-calculator algorithm for the shapiro-francia test for non-normality:

An application to medicine. Statistics in Medicine. 12(2):181–184. DOI:

10.1002/sim.4780120209.

Sakia, R.M. 1992. The Box-Cox transformation technique: a review. Journal of the Royal

Statistical Society: Series D (The Statistician). 41(2):169–178.

Salgado, C.M., Azevedo, C., Proença, H. & Vieira, S.M. 2016. Noise versus outliers. In

Secondary Analysis of Electronic Health Records. MIT Critical Data, Ed. Cham: Springer

International Publishing. 163–183. DOI: 10.1007/978-3-319-43742-2_14.

Sanz, H., Aponte, J.J., Harezlak, J., Dong, Y., Ayestaran, A., Nhabomba, A., Mpina, M., Maurin,

O.R., et al. 2017. drLumi: an open-source package to manage data, calibrate, and conduct

quality control of multiplex bead-based immunoassays data analysis. PLOS ONE.

12(11):e0187901. DOI: 10.1371/journal.pone.0187901.

Seqera Labs. 2022. Processes — Nextflow 22.04.0 documentation. Available:

https://www.nextflow.io/docs/latest/process.html [2022, September 10].

Shah, K. & Maghsoudlou, P. 2016. Enzyme-linked immunosorbent assay (ELISA): the basics.

British Journal of Hospital Medicine. 77(7):C98–C101. DOI:

10.12968/hmed.2016.77.7.C98.

Sheehan, C., He, J. & Smith, M. 2013. Chapter 5.2 - method evaluation—a practical guide. In

The Immunoassay Handbook (Fourth Edition). D. Wild, Ed. Oxford: Elsevier. 395–402.

DOI: 10.1016/B978-0-08-097037-0.00026-9.

Silberzahn, R., Uhlmann, E.L., Martin, D.P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š., Bai,

F., et al. 2018. Many analysts, one data set: making transparent how variations in analytic

choices affect results. Advances in Methods and Practices in Psychological Science.

1(3):337–356. DOI: 10.1177/2515245917747646.

Simmons, J.P., Nelson, L.D. & Simonsohn, U. 2011. False-positive psychology: undisclosed

flexibility in data collection and analysis allows presenting anything as significant.

Psychological Science. 22(11):1359–1366. DOI: 10.1177/0956797611417632.

Stellenbosch University https://scholar.sun.ac.za

90

Stark, P.B. 2018. Before reproducibility must come preproducibility. Nature. 557(7707):613.

DOI: 10.1038/d41586-018-05256-0.

Taschuk, M. & Wilson, G. 2017. Ten simple rules for making research software more robust.

PLOS Computational Biology. 13(4):e1005412. DOI: 10.1371/journal.pcbi.1005412.

The Turing Way Community. 2022. The Turing way: a handbook for reproducible, ethical and

collaborative research. Available: https://the-turing-way.netlify.app/reproducible-

research/reproducible-research.html.

Tighe, P.J., Ryder, R.R., Todd, I. & Fairclough, L.C. 2015. ELISA in the multiplex era:

potentials and pitfalls. PROTEOMICS – Clinical Applications. 9(3–4):406–422. DOI:

10.1002/prca.201400130.

Tripepi, G., Jager, K.J., Dekker, F.W. & Zoccali, C. 2010. Selection bias and information bias in

clinical research. Nephron. Clinical Practice. 115(2):c94-99. DOI: 10.1159/000312871.

Tversky, A. & Kahneman, D. 1974. Judgment under uncertainty: heuristics and biases. Science.

185(4157):1124–1131. DOI: 10.1126/science.185.4157.1124.

Van Weemen, B.K. & Schuurs, A.H.W.M. 1971. Immunoassay using antigen-enzyme

conjugates. FEBS letters. 15(3):232–236. DOI: 10.1016/0014-5793(71)80319-8.

Wickham, H. 2011. testthat: get started with testing. The R Journal. 3(1):5. DOI: 10.32614/RJ-

2011-002.

Wickham, H. 2015. R packages. O’Reilly Media, Inc. Available: https://r-pkgs.org/.

Wickham, H. 2021. Mastering Shiny. O’Reilly Media, Inc. Available: https://mastering-

shiny.org/.

Wickham, H., Hester, J., Chang, W., Bryan, J. & RStudio. 2022. Available: https://CRAN.R-

project.org/package=devtools [2022, October 31].

Wickham, H., Bryan, J., Barrett, M. & RStudio. 2022. Available: https://CRAN.R-

project.org/package=usethis [2022, October 31].

Wickham, H., Danenberg, P., Csárdi, G., Eugster, M. & RStudio. 2022. Available:

https://CRAN.R-project.org/package=roxygen2 [2022, October 31].

Wild, D. 2013. Chapter 1.2 - Immunoassay for beginners. In The Immunoassay Handbook

(Fourth Edition). D. Wild, Ed. Oxford: Elsevier. 7–10. DOI: 10.1016/B978-0-08-097037-

0.00002-6.

Stellenbosch University https://scholar.sun.ac.za

91

Wild, C.J. & Seber, G.A.F. 1999. Chapter 10 supplements: the Wilcoxon test. In Chance

encounters: a first course in data analysis and inference. Wiley. Available:

https://www.stat.auckland.ac.nz/~wild/ChanceEnc/Ch10.wilcoxon.pdf.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J.J., Appleton, G., Axton, M., Baak, A.,

Blomberg, N., Boiten, J.-W., et al. 2016. The FAIR guiding principles for scientific data

management and stewardship. Scientific Data. 3:160018. DOI: 10.1038/sdata.2016.18.

Yalow, R.S. & Berson, S.A. 1960. Immunoassay of endogenous plasma insulin in man. Journal

of Clinical Investigation. 39(7):1157–1175. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC441860/ [2022, October 23].

Stellenbosch University https://scholar.sun.ac.za

92

APPENDICES

Container definition file

Bootstrap: docker

From: bitnami/minideb:bullseye

%post

#install required utilities & dependencies necessary to add a new repo over

https (for installing latest R version)

 install_packages dirmngr gnupg apt-transport-https ca-certificates

software-properties-common wget

#Add the publicly singed CRAN repository key to the sources.list file

 apt-key adv --keyserver keyserver.ubuntu.com --recv-key

'95C0FAF38DB3CCAD0C080A7BDC78B2DDEABC47B7'

 add-apt-repository 'deb http://cloud.r-project.org/bin/linux/debian

bullseye-cran40/'

#install shared library dependencies for R packages

 install_packages libcurl4-openssl-dev libssl-dev libxml2-dev libblas-dev

liblapack-dev libfontconfig1-dev

#install R and packages

 install_packages r-base r-base-dev

 R --slave -e 'install.packages(c("dplyr", "ggplot2", "purrr", "readr",

"stringr", "rmarkdown", "knitr",

 "tidyr", "tibble", "magrittr", "lubridate", "plyr", "Hmisc", "DescTools",

"gsubfn", "reshape",

 "corrplot", "english", "minpack.lm", "msm"),

 repos="https://cloud.r-project.org/")'

 wget

https://github.com/Asimeng/LuminexPipeline/raw/main/inst/package_source%20cod

e/LuminexPipeline.tar.gz

 R CMD INSTALL LuminexPipeline.tar.gz

%test

 R --version

%labels

 Author Jesse Asimeng

Shared libraries

/etc/alternatives/libblas.a-x86_64-linux-gnu

/etc/alternatives/libblas.so.3-x86_64-linux-gnu

/etc/alternatives/libblas.so-x86_64-linux-gnu

Stellenbosch University https://scholar.sun.ac.za

93

/etc/alternatives/liblapack.so.3-x86_64-linux-gnu

/etc/R

/lib64/ld-linux-x86-64.so.2

/lib/x86_64-linux-gnu/ld-2.31.so

/lib/x86_64-linux-gnu/libbz2.so.1

/lib/x86_64-linux-gnu/libbz2.so.1.0

/lib/x86_64-linux-gnu/libbz2.so.1.0.4

/lib/x86_64-linux-gnu/libc.so.6

/lib/x86_64-linux-gnu/libdl.so.2

/lib/x86_64-linux-gnu/libgcc_s.so.1

/lib/x86_64-linux-gnu/liblzma.so.5

/lib/x86_64-linux-gnu/liblzma.so.5.2.5

/lib/x86_64-linux-gnu/libm.so.6

/lib/x86_64-linux-gnu/libpthread.so.0

/lib/x86_64-linux-gnu/libreadline.so.8

/lib/x86_64-linux-gnu/libreadline.so.8.1

/lib/x86_64-linux-gnu/libtinfo.so.6

/lib/x86_64-linux-gnu/libtinfo.so.6.2

/lib/x86_64-linux-gnu/libz.so.1

/lib/x86_64-linux-gnu/libz.so.1.2.11

/usr/bin/R

/usr/bin/Rscript

/usr/lib/libR.so

/usr/lib/R

/usr/lib/x86_64-linux-gnu/blas

/usr/lib/x86_64-linux-gnu/lapack

/usr/lib/x86_64-linux-gnu/libblas.so

/usr/lib/x86_64-linux-gnu/libblas.so.3

/usr/lib/x86_64-linux-gnu/libbz2.so

/usr/lib/x86_64-linux-gnu/libc.so

/usr/lib/x86_64-linux-gnu/libdl.so

/usr/lib/x86_64-linux-gnu/libgfortran.so.5

/usr/lib/x86_64-linux-gnu/libgfortran.so.5.0.0

/usr/lib/x86_64-linux-gnu/libgomp.so.1

/usr/lib/x86_64-linux-gnu/libgomp.so.1.0.0

/usr/lib/x86_64-linux-gnu/libicudata.so

/usr/lib/x86_64-linux-gnu/libicudata.so.67

/usr/lib/x86_64-linux-gnu/libicudata.so.67.1

/usr/lib/x86_64-linux-gnu/libicui18n.so

/usr/lib/x86_64-linux-gnu/libicui18n.so.67

/usr/lib/x86_64-linux-gnu/libicui18n.so.67.1

/usr/lib/x86_64-linux-gnu/libicuuc.so

/usr/lib/x86_64-linux-gnu/libicuuc.so.67

/usr/lib/x86_64-linux-gnu/libicuuc.so.67.1

/usr/lib/x86_64-linux-gnu/libjpeg.so.62

/usr/lib/x86_64-linux-gnu/libjpeg.so.62.3.0

/usr/lib/x86_64-linux-gnu/liblapack.so.3

/usr/lib/x86_64-linux-gnu/liblzma.so

/usr/lib/x86_64-linux-gnu/libm.so

/usr/lib/x86_64-linux-gnu/libpcre2-8.so

/usr/lib/x86_64-linux-gnu/libpcre2-8.so.0

/usr/lib/x86_64-linux-gnu/libpcre2-8.so.0.10.1

/usr/lib/x86_64-linux-gnu/libpng16.so.16.37.0

/usr/lib/x86_64-linux-gnu/libpthread.so

/usr/lib/x86_64-linux-gnu/libquadmath.so.0.0.0

/usr/lib/x86_64-linux-gnu/libreadline.so

/usr/lib/x86_64-linux-gnu/libstdc++.so.6

Stellenbosch University https://scholar.sun.ac.za

94

/usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.28

/usr/lib/x86_64-linux-gnu/libtinfo.so

/usr/lib/x86_64-linux-gnu/libxml2.so.2

/usr/lib/x86_64-linux-gnu/libxml2.so.2.9.10

/usr/lib/x86_64-linux-gnu/libz.so

/usr/local/lib/R

/usr/share/R

/usr/lib/x86_64-linux-gnu/libtcl8.6.so

/usr/lib/x86_64-linux-gnu/libtk8.6.so

/usr/lib/x86_64-linux-gnu/libXft.so.2

/usr/lib/x86_64-linux-gnu/libXft.so.2.3.2

/usr/lib/x86_64-linux-gnu/libfontconfig.so.1

/usr/lib/x86_64-linux-gnu/libfontconfig.so.1.12.0

/usr/lib/x86_64-linux-gnu/libX11.so.6

/usr/lib/x86_64-linux-gnu/libX11.so.6.4.0

/usr/lib/x86_64-linux-gnu/libXss.so.1

/usr/lib/x86_64-linux-gnu/libXss.so.1.0.0

/usr/lib/x86_64-linux-gnu/libfreetype.so.6

/usr/lib/x86_64-linux-gnu/libfreetype.so.6.17.4

/usr/lib/x86_64-linux-gnu/libXrender.so.1

/usr/lib/x86_64-linux-gnu/libXrender.so.1.3.0

/lib/x86_64-linux-gnu/libexpat.so.1

/lib/x86_64-linux-gnu/libexpat.so.1.6.12

/usr/lib/x86_64-linux-gnu/libxcb.so.1

/usr/lib/x86_64-linux-gnu/libxcb.so.1.1.0

/usr/lib/x86_64-linux-gnu/libXext.so.6

/usr/lib/x86_64-linux-gnu/libXext.so.6.4.0

/usr/lib/x86_64-linux-gnu/libbrotlicommon.so.1

/usr/lib/x86_64-linux-gnu/libbrotlidec.so.1

/usr/lib/x86_64-linux-gnu/libbrotlidec.so.1.0.9

/usr/lib/x86_64-linux-gnu/libXau.so.6

/usr/lib/x86_64-linux-gnu/libXau.so.6.0.0

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6.0.0

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6.0.0

/usr/lib/x86_64-linux-gnu/libbrotlicommon.so.1

/usr/lib/x86_64-linux-gnu/libbrotlicommon.so.1.0.9

/usr/lib/x86_64-linux-gnu/libbsd.so.0

/usr/lib/x86_64-linux-gnu/libbsd.so.0.11.3

/usr/lib/x86_64-linux-gnu/libmd.so.0

/usr/lib/x86_64-linux-gnu/libmd.so.0.0.4

/usr/share/tcltk/tcl8.6/init.tcl

Nextflow script

nextflow.enable.dsl=2

params.aref = "/home/jesse/lum_analyte_ref.RData"

params.data_dir = '/home/jesse/dataset01'

params.tech_reps = 1

params.instrument_names = 'bp, mp'

params.facet = 5

params.cor_type = "spearman"

//params.instrument_name2 = "mp"

Stellenbosch University https://scholar.sun.ac.za

95

process CONFIG{

 input:

 val data_dir

 val aref

 val tech_reps

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 arefs <- "$aref"

 LuminexPipeline::pipeline_config(wd = "${projectDir}", dd = "$data_dir",

aref = arefs, tech_reps = $tech_reps)

 """

}

 process DATA_IMPORT{

 input:

 val data_dir

 output:

 val "${projectDir}/rds/1_dta_import.rds"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 LuminexPipeline::data_import("$data_dir")

 """

 }

 process FILENAME_SEPARATE{

 input:

 val "data_out"

 val instrument_names

 //val instrument_name2

 output:

 val "${projectDir}/rds/2_dta_separate.rds"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 dta <- readRDS("${data_out}")

 instrument_names <- c("$instrument_names")

Stellenbosch University https://scholar.sun.ac.za

96

 LuminexPipeline::filename_separate(data = dta, instrument_names =

instrument_names)

 """

 }

 process DATA_CLEAN{

 input:

 val "data_out"

 output:

 val "${projectDir}/rds/3_dta_colnames_clean.rds"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 dta1 <- readRDS("${data_out}")

 LuminexPipeline::colnames_clean(dta1)

 dta2 <- readRDS("${data_out}")

 """

}

process ANALYTE_FIX{

 input:

 val "data_out"

 val aref

 output:

 val "${projectDir}/rds/4_dta_analyte_ref.rds"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 arefs <- "$aref"

 attach("$aref")

 dta2 <- readRDS("${data_out}")

 LuminexPipeline::analyte_names_fix2(arefs, dta2)

 """

}

process DATA_SAVE {

 input:

 val "data_out"

Stellenbosch University https://scholar.sun.ac.za

97

 output:

 val "${projectDir}/rds/5_dta_raw.rds"

 val "${projectDir}/rds/6_dta_symbol_remove.rds"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 dta3 <- readRDS("${data_out}")

 LuminexPipeline::save_raw(dta3)

 LuminexPipeline::symbols_remove(dta3)

 """

}

process DATA_SPLIT {

 input:

 val "data_out"

 output:

 val "${projectDir}/rds/7_dta_list.rds"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 dta4 <- readRDS("${data_out}")

 LuminexPipeline::data_split(dta = dta4)

 """

}

process REPORTS {

 input:

 val facet

 val cor_type

 val "input_data"

 output:

 val "${projectDir}/rds/statistical_report.html"

 script:

 """

 #!/usr/bin/env Rscript

 setwd("${projectDir}")

 dat <- readRDS("${input_data}")

 library(knitr)

Stellenbosch University https://scholar.sun.ac.za

98

 rmarkdown::render(

 input = paste0(system.file(package = "LuminexPipeline"),

"/extdata/rmd/reports.Rmd"),

 output_file = "${projectDir}/rds/statistical_report.html",

 params = list(cor_type = "${cor_type}", facet = ${facet}, data = dat),

 encoding = 'UTF-8'

)

 """

}

workflow{

 def analyte_ref_ch = Channel.value(params.aref)

 def data_dir_ch = Channel.value(params.data_dir)

 def data_out = Channel.value("${projectDir}/rds/dta.rds")

 def tech_rep_ch = Channel.value(params.tech_reps)

 def ins_names = Channel.value(params.instrument_names)

 //def ins_name2 = Channel.value(params.instrument_name2)

 def facet = Channel.value(params.facet)

 def cor_type = Channel.value(params.cor_type)

 CONFIG(data_dir_ch, analyte_ref_ch, tech_rep_ch)

 DATA_IMPORT(data_dir_ch)

 FILENAME_SEPARATE(DATA_IMPORT.out, ins_names)

 DATA_CLEAN(FILENAME_SEPARATE.out)

 ANALYTE_FIX(DATA_CLEAN.out, analyte_ref_ch)

 DATA_SAVE(ANALYTE_FIX.out)

 DATA_SPLIT(DATA_SAVE.out[1])

 REPORTS(facet, cor_type, DATA_SAVE.out[1])

}

Statistical summary

These functions together with old functions written by Ncité and curve-fitting functions from the

drLumi package are compiled into an R package. The package is available at

https://github.com/Asimeng/LuminexPipeline

#' Summary table

#'

#' @param dta processed dataframe

#'

#' @return a table of summaries

#' @export

#'

#'

summ_table <- function(dta) {

 options(scipen = 999, digits = 1)

 summary_table <- dta %>%

 group_by(analyte) %>%

Stellenbosch University https://scholar.sun.ac.za

https://github.com/Asimeng/LuminexPipeline

99

 dplyr::summarise(

 minimum = min(conc_obs_num, na.rm = TRUE),

 maximum = max(conc_obs_num, na.rm = TRUE),

 mean = mean(conc_obs_num, na.rm = TRUE),

 first_quart = quantile(conc_obs_num, probs = 0.25, na.rm = TRUE),

 median = median(conc_obs_num, na.rm = TRUE),

 third_quart = quantile(conc_obs_num, probs = 0.75, na.rm = TRUE),

 NAs = sum(is.na(conc_obs_num)),

 available_obs = sum(!is.na(conc_obs_num)),

 total_obs = n()) %>%

 ungroup()

 #readr::write_rds(summary_table, "rds/summary_table.rds")

 return(summary_table)

}

#' Histogram plot

#'

#' @param dta_prtc processed dataframe

#' @param facet_rows numeric value indicating number of rows to facet.

#'

#' @return a plot of histogram

#' @export

#'

#'

#'

histogram_plot <- function(dta_prtc, facet_rows = 5) {

 dta_prtc %>%

 ggplot2::ggplot(aes(x = conc_obs_num)) +

 geom_histogram(aes(y = ..density..), colour = "black", fill = "grey",

na.rm = TRUE) +

 geom_density(colour = "blue") +

 facet_wrap(~ analyte, nrow = facet_rows, scales ="free") +

 ggtitle("Plot with untransformed data")

}

#' Test for normality

#'

#' @param dat data to generate test of normality table from

#'

#' @return a table of normality test

#' @export

#'

#'

norm_tab <- function(dat){

 options(scipen = F, digits = 1)

Stellenbosch University https://scholar.sun.ac.za

100

 tab <- dat %>%

 group_by(analyte) %>%

 summarise(kurtosis = DescTools::Kurt(conc_obs_num, na.rm = T),

 skewness = DescTools::Skew(conc_obs_num, na.rm = T),

 Shapiro.Francia = if(sum(!is.na(conc_obs_num)) >= 5) {

 DescTools::ShapiroFranciaTest(conc_obs_num)[["statistic"]]

 } else {NA

 },

 p_val = if(sum(!is.na(conc_obs_num)) >= 5) {

 DescTools::ShapiroFranciaTest(conc_obs_num)[["p.value"]]

 } else{NA

 }

)

 return(view(tab))

}

#' Generate quantile-quantile plots to assess normality

#'

#' @param dta dataframe from pipeline

#' @param facet_row numeric value indicating number of rows to facet

#'

#' @return A quantile-quantil graph

#' @export

#'

#'

qq_plot <- function(dta, facet_row = 5){

 dta %>%

 ggplot2::ggplot(aes(sample = conc_obs_num)) +

 stat_qq() +

 stat_qq_line() +

 ggplot2::facet_wrap(~ analyte, nrow = facet_row, scales = "free")

}

#' Comparison between groups being analysed

#'

#' @param dta_prtc participant data

#' @param dta_clin clinical data

#'

#' @return A dataframe of comparison between groups summary

#' @export

#'

#'

Stellenbosch University https://scholar.sun.ac.za

101

grp_test <- function(dta_prtc, dta_clin){

 grp_dat <- inner_join(dta_prtc, dta_clin, by = "description") %>%

 select(analyte, conc_obs_num, age, group) %>%

 mutate(group = as.factor(group)

) %>%

Analytes with a single observation eg (IL-6 of test dataset) returns an

error. work around to filter such data

 group_by(analyte) %>%

 summarise(p.value = wilcox.test(conc_obs_num ~ group)[["p.value"]],

 w.statistic = wilcox.test(conc_obs_num ~ group)[["statistic"]])

 return(grp_dat)

}

#' Correlation tests

#'

#' @param dta dataframe from the pipeline

#' @param cor_type type of correlation in string format. eg "pearson"

#'

#' @return a flatten correlation matrix (table)

#' @export

#'

#'

correlation <- function(dta, cor_type = "spearman"){

 piv_dat <- dta %>%

 select(analyte, conc_obs_num) %>%

 group_by(analyte) %>%

 mutate(row = row_number()) %>%

 tidyr::pivot_wider(

 names_from = analyte,

 values_from = conc_obs_num) %>%

 dplyr::select(-row)

 cor <- Hmisc::rcorr(as.matrix(piv_dat), type = cor_type)

 flattenCorrMatrix <- function(cormat, pmat) {

 ut <- upper.tri(cormat)

 data.frame(

 analyte_1 = rownames(cormat)[row(cormat)[ut]],

 analyte_2 = rownames(cormat)[col(cormat)[ut]],

 co.eff = (cormat)[ut],

 p.value = pmat[ut]

)

 }

Stellenbosch University https://scholar.sun.ac.za

102

 cor <- flattenCorrMatrix(corr, corP)

 arr_cor <- arrange(cor, desc(abs(co.eff))) %>%

 filter(!is.na(co.eff))

 return(arr_cor)

}

#' Visualise correlogram - analytes

#'

#' @param dta dataframe from pipeline

#' @param cor_type character, type of correlation to compute

#'

#' @return A graph (correlogram) of correlations

#' @export

#'

#'

cor_plot <- function(dta, cor_type = "spearman"){

 piv_dat <- dta %>%

 select(analyte, conc_obs_num) %>%

 group_by(analyte) %>%

 mutate(row = row_number()) %>%

 tidyr::pivot_wider(

 names_from = analyte,

 values_from = conc_obs_num) %>%

 dplyr::select(-row)

 #res <- cor(piv_dat)

 cor <- Hmisc::rcorr(as.matrix(piv_dat), type = cor_type)

 #round(res, 2)

 #corrplot(res, type = "upper", order = "hclust",tl.col = "black", tl.srt =

45)

 corrplot::corrplot(cor[["r"]], type="upper", order="alphabet",

 tl.cex = 0.6,tl.col="black", tl.srt=45)

}

#' render statistical summary report

#'

#' @param dta rds file with its extension

#'

#' @return an html report

#' @export

#'

#'

Stellenbosch University https://scholar.sun.ac.za

103

render_report <- function(dta) {

 rmarkdown::render(

 input = "vignettes/reports.Rmd",

 output_dir = "rds/statistical_summary_report.html",

 params = list(

 directory = "rds",

 file = dta

)

)

}

Unit testing

test_that("column names transform to lower cases after applying

colnames_clean

 function", {

 dta_separate <- readRDS("rds/dta_separate.rds")

 col_names <- names(colnames_clean(dta_separate))

 expect_equal(grep("^[[:upper:]]+$", col_names), integer(0)

)

})

test_that("colnames_clean function cleans white spaces in column names",{

 dta_separate <- readRDS("rds/dta_separate.rds")

 col_names <- names(colnames_clean(dta_separate))

 expect_equal(grep("\\s", col_names), integer(0))

})

test_that("data_import function throws an error if input directory is empty",

{

 expect_error(data_import("test_empty_dir/"),

 "check input directory: misspelt or empty directory")

})

test_that("files without .txt extensions throw a warning message", {

 expect_warning(data_import("test_wrong_extension/"),

 "some files may have incorrect format")

})

Stellenbosch University https://scholar.sun.ac.za

104

test_that("data output of data_import function has correct dimensions(column

length)", {

 expect_equal(ncol(data_import("test_data_dir/")),

 39)

})

test_that("data_import function creates a filename column", {

 col_names <- colnames(data_import("test_data_dir/"))

 expect_equal("filename" %in% col_names,

 TRUE)

})

test_that("output of data_import function does not have a repeating header",

{

 dat <- data_import("test_data_dir/")

 expect_equal(which(dat$Analyte == "Analyte"), integer(0))

})

test_that("data_import function writes 3 files to rds directory", {

 data_import("test_data_dir/")

 expect_match(list.files("rds"), "dta_import.rds", all = FALSE)

 expect_match(list.files("rds"), "rep_files.rds", all = FALSE)

 expect_match(list.files("rds"), "rep_files_invalid.rds", all = FALSE)

})

test_that("filename_separate function joins columns: 'date, kit, instrument,

 plate, rerun' to output from preceding function (data_import)", {

 dta_import <- readRDS("rds/dta_import.rds")

 instrument_names <- c("bp", "mp")

 #test_colnames <- c("date", "kit", "instrument", "plate",

"rerun")

 separated_filename <- filename_separate(dta_import,

instrument_names)

 expect_match(colnames(separated_filename), "date", all = FALSE)

 expect_match(colnames(separated_filename), "kit", all = FALSE)

 expect_match(colnames(separated_filename), "instrument", all =

FALSE)

 expect_match(colnames(separated_filename), "plate", all = FALSE)

 expect_match(colnames(separated_filename), "rerun", all = FALSE)

 })

test_that("parsed dates have the correct class", {

Stellenbosch University https://scholar.sun.ac.za

105

 dta_import <- readRDS("rds/dta_import.rds")

 instrument_names <- c("bp", "mp")

 separated_filename <- filename_separate(dta_import, instrument_names)

 expect_equal(class(separated_filename$date), c("POSIXct", "POSIXt"))

})

test_that("input data without a filename column stops with an error",{

 dta_import <- readRDS("rds/dta_test.rds")

 instrument_names <- c("bp", "mp")

 expect_error(filename_separate(dta_import, instrument_names),

 "check input data: input may not have a 'filename' column")

})

test_that("output of filename_separate function is of class tibble", {

 dta_import <- readRDS("rds/dta_import.rds")

 instrument_names <- c("bp", "mp")

 separated_filename <- filename_separate(dta_import, instrument_names)

 expect_equal(class(separated_filename), c("tbl_df","tbl","data.frame"))

})

test_that("filename_separate function writes processed data to rds files", {

 dta_import <- readRDS("rds/dta_import.rds")

 instrument_names <- c("bp", "mp")

 filename_separate(dta_import, instrument_names)

 expect_match(list.files("rds"), "dta_separate.rds", all = FALSE)

})

Shiny

UI (user interface)

shinyUI(

 navbarPage(

 title = "Luminex App",

 theme = "styles.css",

 tabPanel(

 title = "Home",

Stellenbosch University https://scholar.sun.ac.za

106

 h1("About"),

 h4(about),

 imageOutput(outputId = "luminex_image")

),

 tabPanel(

 title = "Analysis",

 sidebarLayout(

 sidebarPanel(

 fileInput(

 inputId = "upload_file",

 label = "Upload your luminex rds file here: ",

 placeholder = "No file selected yet",

 multiple = FALSE,

 accept = c(".rds")

),

 checkboxInput(

 inputId = "head_data",

 label = "Display first 10 rows of your data? ",

 value = FALSE

),

 selectInput(

 inputId = "analyte_1",

 label = "select first analyte for correlation test",

 choices = NULL

),

 selectInput(

 inputId = "analyte_2",

 label = "select second analyte for correlation test",

 choices = NULL

),

 selectInput(

 inputId = "cor_type",

 label = "correlation type",

 choices = c("pearson", "spearman")

),

 checkboxInput(

 inputId = "show_cor_tab",

 label = "show correlation table ?",

 value = FALSE

),

),

 mainPanel(

Stellenbosch University https://scholar.sun.ac.za

107

 dataTableOutput("head_data_txt"),

 h4(textOutput("cor_result")),

 dataTableOutput("show_cor_tab"),

)

)

),

 tabPanel(

 title = "Visualisation",

 sidebarLayout(

 sidebarPanel(

 selectInput(

 inputId = "graphs",

 label = "select type of graph to visualise",

 choices = graph_type

),

 selectInput(

 inputId = "transform",

 label = "Select transformation type",

 choices = c("log", "box-cox", "no transformation")

),

 selectInput(

 inputId = "analyte_plot",

 label = "select analyte to visualise",

 choices = NULL

),

 tabsetPanel(

 id = "switch",

 type = "hidden",

 tabPanel("histogram",

 sliderInput(

 inputId = "bins",

 label = "number of bins for histogram",

 min = 1,

 value = 30,

 max = 50)

),

 tabPanel("boxplot",

 NULL

),

 tabPanel("q-q plot",

 NULL

)

)

Stellenbosch University https://scholar.sun.ac.za

108

),

 mainPanel(

 plotOutput("individual_plot"),

 h4(textOutput("graph")),

)

)

)

)

)

Server

library(shiny)

shinyServer(function(input, output){

 output$luminex_image <- renderImage(

 list(src = "www/luminex_logo.png",

 width = "300px")

)

 data <- reactive({

 if (!is.character(input$upload_file$datapath) &&

length(input$upload_file$datapath) < 1){

 data <- read_rds("www/dat.rds")

 data

 } else{

 req(input$upload_file)

 ext <- tools::file_ext(input$upload_file$name)

 switch(ext,

 rds = read_rds(input$upload_file$datapath),

 validate("Invalid file; Please upload a valid, processed and

cleaned Luminex .rds file")

)

 }

 })

 names_analytes <- reactive(unique(data()$analyte))

 observeEvent(data(), {

Stellenbosch University https://scholar.sun.ac.za

109

 updateSelectInput(inputId = "analyte_1", choices = names_analytes())

 updateSelectInput(inputId = "analyte_2", choices = names_analytes())

 updateSelectInput(inputId = "analyte_plot", choices = names_analytes())

 })

 piv_dat <- reactive({

 data() %>%

 select(analyte, obs_conc) %>%

 group_by(analyte) %>%

 mutate(row = row_number()) %>%

 pivot_wider(

 names_from = analyte,

 values_from = obs_conc) %>%

 select(-row)

 })

 output$head_data_txt <- renderDataTable({

 if (input$head_data == TRUE){

 head(data(), 10)

 } else {

 NULL

 }

 }

)

 output$show_cor_tab <- renderDataTable(

 if (input$show_cor_tab == TRUE & input$cor_type == "spearman") {

 correlation_table(data(), "spearman")

 } else if(input$show_cor_tab == TRUE & input$cor_type == "pearson") {

 correlation_table(data(), "pearson")

 } else {

 NULL

 }

Stellenbosch University https://scholar.sun.ac.za

110

)

 corr <- reactive(cor(

 x = piv_dat()[input$analyte_1],

 y = piv_dat()[input$analyte_2],

 use = "pairwise.complete.obs",

 method = input$cor_type))

 cor_text <- reactive(paste0(

 "The ",

 input$cor_type,

 " correlation coefficient of ",

 input$analyte_1, " and ", input$analyte_2,

 " is ", round(corr(), digits = 3)))

 output$cor_result <- renderText({

 cor_text()

 })

 observeEvent(input$graphs, {

 updateTabsetPanel(inputId = "switch", selected = input$graphs)

 })

 bc_dat <- reactive(filter_analyte_bc(data(), anlyt_name =

input$analyte_plot))

 log_dat <- reactive(filter_analyte_log(data(), anlyt_name =

input$analyte_plot))

 new_dat <- reactive(filter(data(), analyte == input$analyte_plot))

 histo <- function(dat, num_var){

 ggplot(dat, aes(x = num_var)) +

 geom_histogram(bins = input$bins, colour = "black", fill = "grey",

na.rm = TRUE) +

 labs(x = "conc", y = "count")

 }

 output$individual_plot <- renderPlot({

 if (input$transform == "log" & input$graphs == "boxplot")

{boxp(log_dat(), log_dat()$log)}

Stellenbosch University https://scholar.sun.ac.za

111

 else if (input$transform == "log" & input$graphs == "histogram")

{histo(log_dat(), log_dat()$log)}

 else if (input$transform == "log" & input$graphs == "q-q plot")

{qq(log_dat(), num_var = log_dat()$log)}

 else if (input$transform == "box-cox" & input$graphs == "boxplot")

{boxp(bc_dat(), bc_dat()$bc)}

 else if (input$transform == "box-cox" & input$graphs == "histogram")

{histo(bc_dat(), bc_dat()$bc)}

 else if (input$transform == "box-cox" & input$graphs == "q-q plot")

{qq(bc_dat(), num_var = bc_dat()$bc)}

 else if (input$transform == "no transformation" & input$graphs ==

"boxplot") {boxp(new_dat(), new_dat()$obs_conc)}

 else if (input$transform == "no transformation" & input$graphs ==

"histogram") {histo(new_dat(), new_dat()$obs_conc)}

 else if (input$transform == "no transformation" & input$graphs == "q-q

plot") {qq(new_dat(), num_var = new_dat()$obs_conc)}

 else {NULL}

 }, res = 96)

 output$graph <- renderText(

 paste("You are visualising", input$analyte_plot,

 "in a", input$graphs, "with a",

 input$transform, "transformation")

)

}

R

library(Hmisc)

library(tidyr)

library(dplyr)

correlation_table <- function(dat, type){

 piv_dat <- dat %>%

 select(analyte, obs_conc) %>%

 group_by(analyte) %>%

 mutate(row = row_number()) %>%

 pivot_wider(

 names_from = analyte,

Stellenbosch University https://scholar.sun.ac.za

112

 values_from = obs_conc) %>%

 select(-row)

 cor <- rcorr(as.matrix(piv_dat), type = type)

 flattenCorrMatrix <- function(cormat, pmat) {

 ut <- upper.tri(cormat)

 data.frame(

 row = rownames(cormat)[row(cormat)[ut]],

 column = rownames(cormat)[col(cormat)[ut]],

 cor =(cormat)[ut],

 p = pmat[ut]

)

 }

 cor <- flattenCorrMatrix(corr, corP)

 arr_cor <- arrange(cor, desc(abs(cor))) %>%

 filter(!is.na(cor))

 arr_cor

}

library(car)

filter_analyte_bc <- function(dt, anlyt_name){

 dat <- dt %>% filter(analyte == anlyt_name) %>%

 select(analyte, obs_conc)

 lambda <- powerTransform(dat$obs_conc)$lambda

 dat <- dat %>% mutate(bc = ((obs_conc^lambda - 1)/lambda))

 return(dat)

}

filter_analyte_log <- function(dt, anlyt_name){

 dat <- dt %>% filter(analyte == anlyt_name) %>%

 select(analyte, obs_conc) %>%

 mutate(log = log(obs_conc))

 return(dat)

}

library(ggplot2)

boxp <- function(dat, num_var){

Stellenbosch University https://scholar.sun.ac.za

113

 ggplot(dat, aes(y = num_var)) +

 geom_boxplot(na.rm = TRUE) +

 labs(y = "conc")

}

qq <- function(dat, num_var){

 qqplot <- ggplot(dat, aes(sample = num_var)) +

 stat_qq()+

 stat_qq_line()

 qqplot

}

library(shiny)

library(readr)

library(dplyr)

library(Hmisc)

graph_type <- c("histogram", "boxplot", "q-q plot")

data <- read_rds("www/dat.rds")

about <- tags$div(

 tags$p("The Luminex pipeline is an R-based pipeline that reads .txt

files produced by Luminex instruments and outputs experimental data, quality

control data and metadata. This app is created to visualise and explore

statistical summaries

from pipeline output (data). More specifically, correlation analysis(Pearson

and Spearman) between analytes

and visualisation of the effects of transformation (Box-Cox and log) on

analyte distributions"),

 tags$p("USAGE: For purposes of exploration (assessing functionality of the

app), a very small underlying data

is provided. One can, however, upload their processed Luminex data for use on

the app - this will override

the underlying data."),

 tags$p("WARNING: This app/utility is meant for exploratory analysis only

and should only be used as such!")

)

luminex_image <- tags$img(src = "www/luminex_logo.png", width = "100px",

height = "100px")

Stellenbosch University https://scholar.sun.ac.za

	DECLARATION
	List of research outputs
	Abstract
	Opsomming
	Acknowledgements
	Table of Contents
	DECLARATION i
	List of research outputs ii
	Abstract iii
	Opsomming iv
	Acknowledgements v
	Table of Contents vi
	List of figures viii
	List of tables x
	List of abbreviations xi
	CHAPTER 1: INTRODUCTION 1
	CHAPTER 2: LITERATURE REVIEW 15
	CHAPTER 3: METHODS 37
	CHAPTER 4: RESULTS 57
	CHAPTER 5: DISCUSSION 73
	CHAPTER 6: CONCLUSIONS 80
	REFERENCES 82
	APPENDICES 92
	List of figures
	List of tables
	List of abbreviations
	CHAPTER 1: INTRODUCTION
	1.1 Executive summary
	1.2 Introduction of concepts
	1.2.1 Reproducibility
	1.2.1.1 Workflow management system (Pipelines)
	1.2.1.2 The investigation, study, and assay (ISA) metadata framework
	1.2.1.3 The FAIR guiding principles

	1.2.2 ELISA and Multiplexed ELISA
	1.2.2.1 Direct ELISA
	1.2.2.2 Indirect ELISA
	1.2.2.3 Sandwich ELISA
	1.2.2.4 Competitive ELISA
	1.2.2.5 Multiplexed ELISA (Luminex xMAP Technology)

	1.3 The Luminex Pipeline
	1.4 Problem Statement
	1.5 Aim
	1.6 Objectives

	CHAPTER 2: LITERATURE REVIEW
	2.1 Section 1 – Reproducibility
	2.1.1 Introduction
	2.1.2 Current reproducibility crisis
	2.1.2.1 Transparency
	2.1.2.2 Cognitive bias
	2.1.2.3 Low statistical power
	2.1.2.4 Inappropriate or poor use of statistical tools
	2.1.2.5 P-hacking
	2.1.2.6 HARK-ing
	2.1.2.7 Publication bias and undue preference for novelty
	2.1.2.8 Inconsistent definition of terms

	2.1.3 Reproducibility in scientific computing
	2.1.3.1 Code documentation
	2.1.3.2 Version control
	2.1.3.3 Seamless control of operations
	2.1.3.4 Include versions for every release
	2.1.3.5 Reusing other programs
	2.1.3.6 Build-tools and package managers for installation
	2.1.3.7 No special or root privileges for installation
	2.1.3.8 Avoid hard-coding file paths
	2.1.3.9 Include test data
	2.1.3.10 Identical inputs generate identical outputs

	2.1.4 Overcoming the reproducibility challenges
	2.1.4.1 Improve sharing, record-keeping and documentation practices
	2.1.4.2 Training and Education
	2.1.4.3 Pre-registration
	2.4.1.4 Different analytical approaches
	2.1.4.5 Proper use of statistical tools
	2.1.4.6 Improve transparency

	2.2 Section 2 – Immunoassay calibration and analytical tools
	2.2.1 Immunoassay setup
	2.2.2 Dose-response curves
	2.2.3 The curve function or model
	2.2.3.1 Fitting the curve
	2.2.3.2 Weighting

	2.2.4 Luminex data processing utilities
	2.2.4.1 drLumi R package
	2.2.4.2 LabKey server tool for Luminex

	CHAPTER 3: METHODS
	3.1 The R LuminexPipeline package
	3.1.1 Package documentation
	3.1.2 Unit testing
	3.1.2.1 Package test files

	3.1.3 Quality control

	3.2 Containerisation
	3.2.1 Building the container

	3.3 Pipelines and workflow management systems
	3.3.1 Choosing a workflow management system

	3.4 Luminex Pipeline with Nextflow
	3.4.1 Configuration and parameterisation

	3.5 Statistical summary report
	3.5.1 Distribution of analytes
	3.5.2 Outliers
	3.5.3 Correlation
	3.5.4 Test of non-normality
	3.5.5 Comparison between groups
	3.5.6 Shiny app

	3.6 Datasets
	3.7 Materials and tools
	3.7.1 Hardware and Operating system
	3.7.2 List of tools and packages

	CHAPTER 4: RESULTS
	4.1 Improvements to the R LuminexPipeline package
	4.1.1 Package Documentation
	4.1.2 Unit testing
	4.1.3 Quality control

	4.2 Containerisation
	4.3 Pipelines and workflow management systems (WMS)
	4.3.1 Implementation & ease of use
	4.3.2 Installation
	4.3.3 Wide use
	4.3.4 Scalability
	4.3.4 Licensing
	4.3.5 Future support

	4.4 Luminex Pipeline with Nextflow
	4.5 Inclusion of statistical summary reports to the LuminexPipeline
	4.5.1 Distribution of analytes
	4.5.2 Reporting outliers
	4.5.3 Correlation between different analytes
	4.5.4 Test of deviation from normality
	4.5.4.1 Numerical methods
	4.5.4.2 Graphical methods (q-q plots)

	4.5.5 Comparison between study groups
	4.5.6 Shiny app

	CHAPTER 5: DISCUSSION
	5.1 The LuminexPipeline and reproducibility
	5.2 Statistical summary extension
	5.3 Containerisation
	5.4 Quality control
	5.5 Limitations
	5.5.1 Test coverage and documentation
	5.5.2 Automating multi-stage container build process

	CHAPTER 6: CONCLUSIONS
	REFERENCES
	APPENDICES
	Container definition file
	Shared libraries

	Nextflow script
	Statistical summary
	Unit testing

	Shiny
	UI (user interface)
	Server
	R

