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Abstract 

A cornerstone of scientific progress is independent data verification. It is, therefore, necessary to 

develop robust analysis pipelines that can ensure reproducible and verifiable analyses. The 

pipeline should also record all steps and software that generated the results. The analysis of 

multiplexed ELISA data (Luminex data) can be challenging due to its complexity and variability. 

In particular, the data preprocessing stage has many steps and is often ad hoc, leading to 

inconsistency, non-standard approaches and lack of reproducibility. An existing in-house data 

preprocessing pipeline, the Luminex Pipeline, addresses some of the aforementioned challenges. 

However, there remains substantial work to extend its utility, robustness, and overall 

reproducibility. Thus, in this work, I improved the summary statistic reports by using 

Rmarkdown and implemented unit testing of pipeline components using the R Testthat package. 

Unit testing ensured the greater robustness of the code, which was compiled into an R package. 

The pipeline execution was also automated by using the Nextflow workflow management 

system. Finally, I deployed the pipeline in a Singularity container for execution on any platform 

including high-performance computing clusters. 
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Opsomming 

'n Hoeksteen van wetenskaplike vooruitgang is onafhanklike databevestiging. Dit is dus nodig 

om robuuste ontledingspyplyne te ontwikkel wat reproduseerbare en bevestigbare ontledings kan 

verseker. Die pyplyn moet ook alle stappe en sagteware wat die resultate gegenereer het, 

aanteken. Die ontleding van vermenigvuldige ELISA-data (Luminex-data) kan uitdagend wees 

weens die kompleksiteit en veranderlikheid daarvan. Die data-voorverwerkingstadium het veral 

baie stappe en is dikwels ad hoc, wat lei tot inkonsekwentheid, benaderings wat nie 

gestandardiseerd is nie en 'n gebrek aan reproduseerbaarheid. 'n Bestaande interne 

datavoorverwerkingspyplyn, die Luminex-pyplyn, spreek sommige van die voorgenoemde 

uitdagings aan. Die uitbreding van die bruikbaarheid, robuustheid en algehele 

reproduseerbaarheid van die huidige pyplyn vereis nog baie werk. In hierdie werk het ek dus die 

opsommende statistiese verslae verbeter deur Rmarkdown te gebruik en eenheidstoetsing van 

pyplynkomponente geïmplementeer deur die gebruik van R Testthat-pakket. Eenheidtoetsing 

verseker meer robuustheid van die kode, wat nou in 'n R-pakket saamgestel is. Die uitvoering 

van die pyplyn is ook geoutomatiseer deur die Nextflow-werkvloeibestuurstelsel te gebruik. 

Laastens het ek die pyplyn in 'n Singularity-houer ontplooi vir uitvoering op enige rekenaar 

platform, insluitend hoëprestasie-rekenaarklusters  
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CHAPTER 1: INTRODUCTION 

1.1 Executive summary 

Reproducibility is a key foundational component of science. The term as defined by (Gundersen, 

2021) is the “ability of independent investigators to draw the same conclusions from an 

experiment by following the documentation shared by the original investigators”. This ability is 

important in establishing the veracity of scientific conclusions which directly or indirectly impact 

our overall well-being, decision-making (informing policies) and our overall understanding of 

the world (Committee on Reproducibility and Replicability in Science, the National Academies 

of Science, Engineering and Medicine, 2019a). Despite the extreme importance of this tenet of 

science, there is a current reproducibility crisis where many scientific results or conclusions are 

not reproducible. For example, out of the 53 ‘landmark’ cancer studies subjected to 

reproducibility test, only six studies were found to be reproducible despite the replication studies 

being closely undertaken with the original authors (Begley & Ellis, 2012). The scientific process 

and methods therefore need more rigour, transparency (openness) and scrutiny to ensure that 

scientific results and conclusions are verifiable and can hold up to scrutiny. 

The rising concern of irreproducibility has been reported well in several disciplines. In Scientific 

Computing (the domain of this project), the reproducibility challenge is presented in poor 

consistency in achieving numerical stability across different computing environments, poor 

documentation practices and an inadequate number of robust tools to help improve 

reproducibility in certain specific domains e.g., Luminex data processing. 

Multiplexed enzyme-linked immunosorbent assay (ELISA) is a high-throughput alternative to 

conventional ELISA used in detecting and quantifying biological analytes (eg. proteins) in 

biomedical diagnostics and research purposes. The Luminex platform developed by the 

Luminex® corporation (https://www.luminexcorp.com/) is as such a multiplexed ELISA 

platform. Unlike conventional ELISA, Luminex can simultaneously quantify biological analytes 

through a specialised technology called the Luminex xMAP technology. The quantification of 

analytes often results in the generation of large and complex data sets which require multiple 

analytical and processing steps. The inherently large variance of Luminex data also accounts for 

the multiple-step processing and analyses — which opens a window for irreproducibility and 

inconsistency because these analytical steps and processing are usually performed ad hoc.  
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In this work, I present the LuminexPipeline, an in-house R-based pipeline that helps to improve 

the reproducibility and consistency of multiplexed ELISA data processing. The LuminexPipeline 

is an original work done by Ncite DaCamara as part of her PhD dissertation project. My MSc 

project aims to further extend the utility of her initial work. First, I addressed the risk of 

irreproducibility and inconsistency during the multiple-step processing with Nextflow (Di 

Tommaso et al., 2017), an automated workflow management system. This ensured minimal 

human intervention which is a major source of variation and irreproducibility during Luminex 

data processing. Second, I containerised the pipeline execution environment with Singularity 

(Kurtzer, Sochat & Bauer, 2017), which helps to guarantee numerical stability across different 

computing platforms and aids in cross-platform execution of code. Containerisation also helps to 

facilitate sharing and publishing of computational environments from which research analyses 

were done for independent reproduction and verification. Third, I performed unit testing with the 

R testthat package (Wickham, 2011) to ensure the robust and accurate functioning and 

maintainability of the pipeline components. Lastly, I extended the utility of the pipeline by the 

addition of a statistical summary report. 

Through the development of the LuminexPipeline, I contributed to strengthening open science 

by making this tool and all associated development code open source – freely available for use 

and further development by third-party individuals or organisations. Such open science promotes 

rigour, verification, and reproducibility. 

1.2 Introduction of concepts 

1.2.1 Reproducibility 

The concept of reproducibility is not new. In the 17th century, Robert Boyle on his controversial 

invention of the vacuum pump wrote, “that the person I addressed them to might, without 

mistake, and with as little trouble as possible, be able to repeat such unusual experiments” 

(Berkowitz, 2014; Kim, Poline & Dumas, 2018; Stark, 2018). The definition of the term 

“reproducibility” may vary across disciplines, but its underlying principle and concept is usually 

the same. For example, the National Academy of Sciences of the USA defines the term 

reproducibility as “obtaining consistent computational results using the same input data, 

computational steps, methods, code, and conditions of analysis” (Committee on Reproducibility 

and Replicability in Science, the National Academies of Science, Engineering and Medicine, 
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2019b). Another definition of the term is: “the ability of independent investigators to draw the 

same conclusions from an experiment by following the documentation shared by the original 

investigators” (Gundersen, 2021). Though implemented in different domains, e.g., 

computational and experimental (laboratory) domains, the concept is the same — results or 

conclusions from an analysis or study should be able to stand independent verification or 

confirmation upon the provision of sufficient information. Reproducibility is also associated with 

other terms like replicability, repeatability, generalisability, and robustness which may have 

slight variations in definitions. For example, in scientific computing, The Turing Way project (of 

the Alan Turing Institute; https://the-turing-way.netlify.app/) defines replicability as generating 

similar results with the same analysis (code) using different data sets. Robustness is defined as 

answering a research question with the same data set but with a different analytical workflow 

(e.g., using R instead of Python). Generalisability is defined as answering the same research 

question with different data sets and different analytical workflows (The Turing Way 

Community, 2022).  

 

Figure 1. Definition of reproducibility and its associated terms by the Turing Way Community, 

Alan Turing institute. Image used under permission allowed by the CC-BY 4.0 licence. DOI: 

https://doi.org/10.5281/zenodo.3332807 
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In the absence of a standardised definition, the American Society for Cell Biology (ASCB) has 

tried to define the terms to encapsulate all the various definitions using the following terms: 

direct replication — reproducing previous studies using the same experimental design and 

conditions in the earlier study; analytic replication — reanalysing the same data set to confirm 

scientific findings; systemic replication — confirming scientific findings under different 

experimental conditions (e.g., in a different model organism); and conceptual replication — 

validating a phenomenon with different methods or experimental conditions (ASCB Task Force, 

2014). Throughout this thesis, I use the term reproducibility to broadly encompass the ASCB 

definitions unless otherwise explicitly defined. 

Table 1. summary of the ASCB’s definitions for the different types of reproducibility (ASCB Task 

Force, 2014) 

Term Definition 

Direct replication Reproducing previous experiments with the same study design and 

conditions 

Analytic replication Re-analysing the same data set to confirm previously reported findings 

Systemic replication Confirming scientific findings in a different experimental condition 

Conceptual replication Verifying a phenomenon using different methods or experimental conditions 

 

The principle of reproducibility is one of the key foundational principles of science (Committee 

on Reproducibility and Replicability in Science, the National Academies of Science, Engineering 

and Medicine, 2019a). As humanity and the natural world are directly and indirectly impacted by 

scientific results, it is expedient that scientific findings and conclusions are able to stand the test 

of scrutiny and verification. Reproducibility facilitates the process of verification and scrutiny 

while ensuring transparency and openness of the scientific process. This is an extremely 

important principle for establishing and building upon scientific knowledge (Arunika, 2016) as 

well as improving public trust in science. However, there has been an alarming concern recently, 

regarding the lack of reproducibility in many published studies (Ioannidis, 2005; Begley & Ellis, 

2012; Baker, 2016) which may have grave implications for the knowledge generation process in 

science. It also wastes time and resources and risks losing public confidence in science. This 

problem, as widely documented in major scientific disciplines has been termed the 

“reproducibility crisis”. 
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One of the major contributing factors to the current reproducibility crisis is poor documentation 

practices. Unlike Robert Boyle, many scientists today do not collect or provide adequate 

information about their research to be independently used to reproduce their work. Such practises 

may include failure to share code or research data (Huang & Gottardo, 2013), and incomplete or 

erroneous description of methods, e.g., failure to document what software and which software 

versions were used for a certain computation. Another contributing factor to the reproducibility 

crisis, specifically in scientific computing, is poor adherence to current best practices, for 

example, unit testing of code. Failure to subject code to unit testing or third-party testing may 

render the analysis or code to be error-prone which may directly impact its ability to be 

reproduced in a different computing environment (Papin et al., 2020). 

Another closely related contributing factor to the reproducibility problem is the poor 

standardisation of experimental metadata collection. Standardising metadata collection involves 

the use of standard terms (e.g., ontological terms) and annotation methods to describe scientific 

methods and experimental conditions which facilitates reproducibility by improving 

documentation practices and increasing the coverage of individuals who can achieve 

reproducibility with such documented metadata because of the worldwide adoption of standard 

usage. 

I briefly introduce here, two methods relevant to this project (pipelines and the investigation, 

study and assay meta data framework), which help to improve reproducibility. I further provide 

an extensive review on the subject of reproducibility in section 1 of the Literature Review 

chapter (Chapter 2). 

1.2.1.1 Workflow management system (Pipelines) 

Many computationally intensive analyses involve a considerable number of processing steps 

which are often modularised (each step is self-contained). Performing these analyses 

interactively or ad hoc raises concerns about reproducibility because, the use of these methods 

(interactive or ad hoc analyses) often results in little or no record of the processing and analytical 

steps being implemented (Franceschi et al., 2014). Workflow management systems (pipelines) 

can address this challenge by automating data processing and analytical steps — which is 

achieved by streamlining or chaining together all analytical processes in an automated manner. 

Thus, the output of an analytical process or step can be programmed to serve as the input to 

another analytical process or step without requiring any human intervention or interactivity. 
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The use of an automated workflow management system in an analysis, therefore, helps to 

significantly improve reproducibility by eliminating human intervention (a major source of 

variation contributing to irreproducibility) during data processing and analysis; providing a better 

and reproducible alternative to ad hoc analytical approaches; keeping provenance information by 

allowing analytical results to be traced back to the analytical pipeline that generated the results 

(Committee on Reproducibility and Replicability in Science, the National Academies of Science, 

Engineering and Medicine, 2019a). It also contributes to improving the efficiency and speed of 

scientific knowledge generation. For example, an analytical framework (pipeline) can be 

constructed for a specific analysis in which different data inputs are subjected to the same set of 

computational instructions — this allows for newly generated data sets to be easily processed 

and analysed in an expedited manner. Additionally, most workflow management systems 

natively support the use of containers (one of the current best practices to achieve 

reproducibility); the scalability of heavy computations on the cloud or high-performance 

computing cluster and re-entrancy (resumption of computation after an unexpected break), which 

improves computational efficiency and speed in data processing and analyses. Some examples of 

the popular workflow management systems used in Bioinformatics are Nextflow (Di Tommaso 

et al., 2017), Snakemake (Koster & Rahmann, 2012), Galaxy (Afgan et al., 2018), and common 

workflow language (Amstutz et al., 2016)). In this project, I used the Nextflow workflow 

management system to automate and improve the reproducibility of multiplex ELISA data 

processing and analysis which involves multiple steps. 

1.2.1.2 The investigation, study, and assay (ISA) metadata framework 

A lot of interventions have been established to address the reproducibility crisis, among which is 

the investigation, study and assay (ISA) metadata framework (Rocca-Serra et al., 2012) for 

collecting experimental metadata for annotating research data to improve reproducibility in 

scientific experiments. The ISA framework collects ontological metadata in three tab-delimited 

or JSON file formats (Johnson et al., 2021). The first file is the investigation file, which is at the 

top of the ISA framework’s hierarchy. It collects contextual metadata of the project. This 

includes a brief description of the investigation, investigation-related publications, contact details 

of investigators as well as submission and publication dates. 

The study file (second of the hierarchy) collects ontological metadata of the study subjects such 

as sample type, sample characteristics, factors (an independent variable controlled by the 
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investigator to affect a biological system resulting in a measurable assay; https://isa-

specs.readthedocs.io/en/latest/isamodel.html) and the factor type. The type of study design used 

in the experiment is also recorded in the study file. 

The third file i.e., the assay file, records the measurements and types of measurement used in 

generating experimental results as well as the protocols used to process and analyse the samples. 

It also captures information about the type of instrument used for the measurement.  

All of this rich metadata information is important to attain reproducibility in published research, 

especially in this new era where research funders are requiring researchers to publicly make 

research data available to facilitate scientific discovery and re-use of data for new research 

questions (Committee on Reproducibility and Replicability in Science, the National Academies 

of Science, Engineering and Medicine, 2019a). The ISA metadata framework is thus important to 

provide rich and standardised contextual information about a research project to enable 

independent researchers to comprehend a scientific project, especially a published data set, and 

to facilitate the reproduction of experimental findings or conclusions (Rocca-Serra et al., 2010; 

González-Beltrán et al., 2015). The ISA software suite (Rocca-Serra et al., 2010) is one of the 

extensible utilities that facilitate the collection of ontological metadata. 

 

Table 2. Summary of the ISA hierarchical structure and the type of metadata information collected 

ISA file structure Content 

Investigation file Brief description of investigation, publications related to the investigation, 

contact details of investigators etc 

Study file Description of sample type, sample characteristics etc 

Assay file Description of variable measurements and instruments used for the 

measurements 

 

1.2.1.3 The FAIR guiding principles 

Another intervention to help circumvent the current reproducibility challenges is adherence to 

the findable, accessible, interoperable and reusable (FAIR) guiding principles (Wilkinson et al., 

2016) for sharing research metadata and data. The FAIR guiding principle requires that 

(meta)data are (i) Findable with a unique identifier (e.g., DOI) and (meta)data are indexed in 

searchable sources (search engines); (ii) Accessible by their identifiers and are open and freely 
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available for use but, when necessary, the appropriate authentications be applied; (iii) 

Interoperable using standardised vocabularies and broadly applicable languages; and (iv) 

Reusable with an accurate description of relevant attributes and provenance information. This 

principle enhances research metadata and data [(meta)data] to be automatically accessed and 

readily utilised by machines to facilitate reusability. Thus, this complements other efforts under-

way to improve the reusability (reproducibility) of research (meta)data — as they are increasing 

in numbers due to the increasing demand to make research (meta)data publicly available.,. 

1.2.2 ELISA and Multiplexed ELISA 

ELISA is a technique used to quantify and identify biological analytes e.g., cytokines, peptides, 

and hormones based on an antigen-antibody interaction. It was initially described by (Yalow & 

Berson, 1960) as an antibody-mediated detection technique using a radioactive signal. Because 

of health concerns with radioactivity, alternative approaches were later sought (Shah & 

Maghsoudlou, 2016). In 1971, two research groups (Engvall & Perlmann, 1971; Van Weemen & 

Schuurs, 1971) independently reported a detailed procedure for detecting analytes using an 

enzyme-labelled antibody,  a technique now known as an ELISA. This technique is now a widely 

used method and the gold standard for quantifying and detecting biological analytes because of 

its specificity and sensitivity as well as flexibility in its implementation chiefly because it has the 

capability to bind to a wide variety of organic and inorganic compounds. It also has an excellent 

specificity for the material (antigen) that binds to an antibody and it has the ability to detect and 

quantify the strength of antigen-antibody binding (Wild, 2013). Thus, this technique has been 

successfully applied in clinical diagnostics and biomedical research. There are many variations 

to the technique but generally, it starts with a coating step where sample antigens or capture 

antibodies (to bind with sample antigens) are immobilised on a polystyrene microwell plate, 

either directly (adsorption) or indirectly (Rattle et al., 2013). An antibody linked with an enzyme, 

usually, horseradish peroxidase (HRP) is then introduced to bind with the sample antigens (Cox 

et al., 2019). The antigen-antibody interaction is detected by a signalling system e.g., the 

enzyme-labelled activity in the presence of analytes. The intensity of the signal (e.g., coloured 

by-product) infers the amount of analyte present in the reaction. The various types of ELISA are 

categorised based on the method of coating (antigen or antibody immobilisation to plate) and by 

the method of detection (Figure 2). 
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1.2.2.1 Direct ELISA 

In direct ELISA (Figure 2), the coating step is done directly by immobilising the sample antigen 

to the microwell plate. An antibody linked with an enzyme binds to the immobilised antigen. 

This ELISA type is faster because it requires fewer steps which also makes it less prone to errors. 

On the other hand, direct ELISA may have a relatively high background noise because of its 

immobilisation step which allows all proteins (including target antigen) in the sample to bind to 

the plate. Assay sensitivity is also relatively low because of the absence of a secondary antibody 

to amplify the signal. It is also not flexible because every immobilised protein requires a specific 

conjugated antibody for binding. This type of ELISA is best suited for studying antigen immune 

response (Lin, 2015a). 

1.2.2.2 Indirect ELISA 

Indirect ELISA (Figure 2) has the same coating step as direct ELISA. However, the method of 

detection involves the binding of an unlabelled primary antibody to the immobilised antigen. An 

enzyme-labelled secondary antibody, directed at the primary antibody, enables signal 

amplification since more than one labelled secondary antibody can be directed to the primary 

antibody to improve overall sensitivity. This type of ELISA offers a lot of flexibility because one 

labelled secondary antibody can bind to different primary antibodies. A disadvantage is the 

increased possibility of cross-reactivity between the secondary antibody and the immobilised 

antigen which could increase the background noise. Additionally, indirect ELISA can be time-

consuming because of additional incubation steps, see (Lin, 2015b).  

1.2.2.3 Sandwich ELISA  

The sandwich ELISA (Figure 2) is the most widely used type of ELISA. In its setup, the coating 

step is done by immobilising a capture antibody to the ELISA plate. The sample antigen is 

allowed to bind to the capture antibody. A detection antibody (either labelled or unlabelled) then 

binds to the sample antigen to form a sandwich. Because both antibodies (capture and detection) 

bind to different epitopes on the same antigen, the assay is highly specific. This ELISA type is 

very sensitive and delivers great flexibility since both direct and indirect ELISA can be 

implemented. A disadvantage, however, is that in the absence of a standardised kit, optimisation 

to avoid cross-reactivity between capture and detection antibodies can be difficult. Sandwich 
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ELISA is useful in studying complex samples such as tissue lysates where the target analyte is 

part of an impure sample. 

1.2.2.4 Competitive ELISA 

Competitive ELISA (Figure 2) is used to detect and measure the concentrations of minute 

molecules, e.g., drugs. It is set up with a small concentration of antibodies, sample antigens and 

inhibitor antigens or tracers (labelled sample antigens). In this assay setup, there is competition 

between sample antigens and inhibitor antigens to bind with the limited antibodies present in the 

reaction. The proportion of inhibitor antigens or tracers that bind to the antibodies is indirectly 

proportional to the concentration of the sample antigens present in the reaction, see (Wild, 2013)  

 

 

Figure 2. An illustration of the different types of ELISA with highlights on the differences in the 

types of antigen immobilisation. Image source: Bosterbio 

1.2.2.5 Multiplexed ELISA (Luminex xMAP Technology) 

A high throughput, cost-effective, sample and labour-efficient alternative to the standard ELISA 

techniques described above is the multiplexed ELISA powered by the Luminex® corporation’s 

multi-analyte profiling (xMAP) technology — where “x” in xMAP represents the analytes to be 

investigated (Figure 3). This technique allows several analytes to be concurrently identified and 

quantified from the same sample by use of magnetic or polystyrene microspheres (beads) coated 

with carboxyl groups. The carboxyl groups on the beads facilitate the covalent conjugation of 

analytes to the beads (Carl et al., 2019). The beads are also uniquely dyed with different 

proportions of two or three fluorescent dyes to form spectral addresses, allowing the distinct 

identification of analytes (Dunbar, 2006). In a typical multiplexed ELISA (Luminex) assay, the 

configuration of sandwich ELISA is employed. That is, distinct capture antibodies are 
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conjugated to the beads whereas sample antigens of specific affinity to the capture antibodies 

bind to the bead-conjugated-capture antibodies. A bound-complex, is formed after a labelled 

detection antibody specific to the sample antigen binds to the antigen. The detection antibody is 

usually labelled with phycoerythrin or streptavidin (the reporter molecule) to serve as an enzyme 

substrate (signalling molecule) that fluoresces during analyte interrogation (Dunbar & 

Hoffmeyer, 2013; Bio-Rad, n.d.) 

Assay interrogation is done in a flow cytometer where analytes are identified and quantified 

simultaneously. In the flow cell, a red laser or light-emitting diode (LED) excites the fluorescent 

dye in the beads to uniquely identify the analyte. At the same time, a green laser or LED excites 

the reporter molecule. The intensity of fluorescence is used to infer the quantity or concentration 

of analytes since the observed fluorescence intensity is directly proportional to the concentration 

of the analyte. 

 

Figure 3. Distinctly dyed beads are used as spectral addresses to uniquely identify analytes (left). 

Analyte identification and quantification in a flow cytometer, where red and green lasers are used to 

identify and quantify analytes (right). Image source: Thermo Fisher Scientific Inc. 

Multiplex ELISA has been successfully applied in quantifying multiple biomarkers in clinical 

drug development studies of multifactorial diseases in which several analytes need to be 

measured to perform a comprehensive analysis of the biological molecules contributing to the 

disease pathogenesis (Tighe et al., 2015). It has also been broadly used in pathogen detection and 

typing; protein-protein interaction studies; gene expression studies; and for genotyping single 

nucleotide polymorphisms (SNP) (Dunbar, 2006; Dunbar & Li, 2010). 
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1.3 The Luminex Pipeline 

The Luminex Pipeline (Figure 4) is an R-based utility initially developed by Ncité Lima 

DaCamara as part of her PhD work. This utility is used for processing and analysing multiplexed 

(Luminex) ELISA assay data in a robust and reproducible manner. The functionalities of the 

pipeline include importing raw Luminex files (.txt files), data cleaning and tidying, recording 

metadata (e.g., values beyond detectable limits), imputation of missing values, and standardising 

analyte names with an analyte reference list to ensure consistency. The Luminex Pipeline 

performs these tasks while recording all the processing and analytical steps for record-keeping 

and reproducibility purposes. 

 

 

Figure 4. Flow chart of the Luminex Pipeline components 

1.4 Problem Statement 

Luminex data processing and analyses can be very challenging because of the complexity of the 

data due to multiplexing. Thus, the data can be highly dimensional and large. Luminex data are 

also characterised by an inherently high variance, missing values (e.g., concentrations beyond the 

detectable range of the Luminex instrument), duplicates and non-normality in the distribution of 

analyte concentrations. These challenges contribute to the complications of data processing and 

Stellenbosch University https://scholar.sun.ac.za



13 

analyses leading to non-standardised and inconsistent data processing and analytical approaches. 

Such ad hoc approaches limit the reproducibility of the data processing and analytical steps 

(methods)  

The Luminex pipeline was developed to address some of the aforementioned challenges in 

attaining reproducible methods and generating consistent and reproducible results. However, 

despite its current robust and reproducible implementation, there is still room for extension of its 

utility by implementing other robust and reproducible approaches. For example, it would be 

advisable to automate the pipeline’s execution with a workflow management system to 

circumvent human intervention and other sources of variation during the pipeline execution. 

Another area in need of extension is the ability to achieve numerical stability (consistent results) 

across different computing environments — one of the major challenges of analytical 

reproducibility. A containerised pipeline can help to address this challenge. Additionally, the 

robustness of the pipeline can further be extended to improve the way it handles errors 

(generating useful error messages) and to ensure accurate functionality which can be achieved 

with the help of unit testing. Furthermore, the pipeline components can be extended with a 

statistical summary report component to improve its utility. Lastly, additional utilities (R Shiny 

application) can be developed to help facilitate exploratory data analysis. 

1.5 Aim 

To extend the overall utility, robustness, consistency, and reproducibility of the Luminex 

Pipeline for analysing multiplex ELISA data. 

1.6 Objectives 

I. Write new R functions to generate a statistical summary report and compile them 

together with existing pipeline functions into an R package. 

II. Test and document the pipeline components to ensure the general robustness and accurate 

functionality of the pipeline. 

III. Automate pipeline execution with a workflow management system to improve 

reproducibility and ease of use. 

IV. Develop a containerised runtime environment for pipeline execution to improve 

reproducibility. 
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V. Develop an R Shiny application for ease of use in exploratory analysis of the pipeline’s 

output data. 

VI. Extend pipeline components with a statistical summary report to extend the overall utility 

of the pipeline. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter is divided into two sections. The first section gives a review of some of the major 

factors that contribute to the current reproducibility crisis and the efforts underway to alleviate 

them. The second section gives a review of Luminex data processing and analysis. 

2.1 Section 1 – Reproducibility 

2.1.1 Introduction 

One of the fundamental principles of science is the independent verification and 

“reproducibility” of scientific methods and results. A broad understanding of the reproducibility 

term is the ability to repeat published experiments or studies and be able to generate identical 

findings or draw identical conclusions as the original study. Thus, to achieve reproducibility, 

there needs to be transparency, openness and rigour in scientific methods and processes. This 

may be achieved by simply providing all the necessary information needed to reproduce a 

published work or by using technical approaches like setting stringent significance thresholds for 

novel discoveries to reproduced (Ioannidis, 2014). Reproducibility is extremely important for 

ensuring the credibility of scientific results and conclusions and for attaining societal trust in 

science (Committee on Reproducibility and Replicability in Science, the National Academies of 

Science, Engineering and Medicine, 2019c). Nevertheless, attaining reproducibility is no 

guarantee of the accuracy of research findings or conclusions (Ioannidis, 2014). For example, a 

study which is well documented (to achieve reproducibility) but utilises a wrong experimental 

design may have its biased or incorrect conclusions easily reproduced by an independent 

researcher. Thus, the main aim of reproducibility is to foster transparency and openness in the 

scientific process. Such transparency will allow for the identification and correction of mistakes 

(like the wrong experimental design example) during independent verification or peer review 

processes. Reproducibility is therefore important to significantly improve the credibility of 

research findings and conclusions, and to discourage scientific misconduct.  

In addition, despite its overarching importance in science, it is important to note that the concept 

of reproducibility may be subject to some philosophical and practical limitations in certain 

contexts, for example, sources of variation in experimental subjects that are difficult to control 

(e.g., study participant’s deliberate failure to disclose medical history) may render an experiment 
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difficult to reproduce (Casadevall & Fang, 2010). Nevertheless, reproducibility remains an 

indispensable component of doing good science. 

2.1.2 Current reproducibility crisis 

Reproducibility is increasingly becoming a subject of great concern. For example, a recent 

survey conducted by the international journal Nature (Baker, 2016) revealed that of the 1,576 

respondents surveyed, over 70% reported having failed in trying to reproduce the work of other 

scientists while a staggering 50% had tried and failed to reproduce their own work. The survey 

also reported that more than half of the respondents (52%) agreed that there is a significant 

reproducibility crisis in science. Several other studies have reported challenges in reproducing 

the work of others (Begley & Ellis, 2012; Arunika, 2016; Kim, Poline & Dumas, 2018; Mullard, 

2021) resulting in a heightened uptake of interest in the subject. Here, I review some of the 

leading contributors to the current reproducibility crisis. 

2.1.2.1 Transparency 

One of the major barriers to attaining reproducibility in science is poor record-keeping and 

documentation practices and the unwillingness of researchers to share research data, code, etc. 

Research findings can easily and independently be reproduced only when sufficient and detailed 

information about all research procedures is documented and made easily available and 

accessible. Thus, it represents transparent research. However, this is often not the practice, 

contributing to the current reproducibility crisis in a major way (Nuzzo, 2015). One of the 

reasons for poor transparency is the fear of researchers incriminating themselves when they 

provide enough details for reproducing their work. 

2.1.2.2 Cognitive bias 

Cognitive bias is one of the major reasons why research findings or conclusions may not be 

reproduced. Cognitive bias is the tendency of an individual’s subjective, subconscious, or 

personal beliefs to influence their decision-making and judgement processes (Tversky & 

Kahneman, 1974; Cooper & Meterko, 2019). Several types of cognitive bias have been 

identified. Confirmation bias is the unconscious tendency to interpret new evidence in a way that 

supports one's pre-existing beliefs or hypotheses (Munafò et al., 2017). This bias influences data 

collection and interpretation. Selection bias results from poor sampling techniques leading to 

sample data which are not representative of the population (Tripepi et al., 2010). Cluster illusion 
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results in the perception of patterns in data that are non-existent in reality. The bandwagon effect 

is a type of bias with the inclination to support a viewpoint without giving it enough thought to 

maintain group cohesion (Landucci & Lamperti, 2021). This type of bias results in the 

acceptance of ideas based on their popularity but which may not be necessarily accurate. Lastly, 

reporting bias is when research subjects withhold important information from researchers based 

on their subconscious drive (Munafò et al., 2017). Reporting bias is also true for researchers 

selectively reporting positive results. 

2.1.2.3 Low statistical power 

Another major concern for not attaining reproducibility has been attributed to low statistical 

power (Bishop, 2019). This is because there are very small odds of detecting minimal effects in 

underpowered studies (small sample size) even when an effect exists. Furthermore, simulation 

studies, see (Poldrack, 2022) have shown that when effects are detected in underpowered studies, 

the effect sizes reported are most likely to be grossly overestimated, a phenomenon termed the 

winner’s curse. This phenomenon is a major problem for replication studies which usually fail to 

detect earlier reported effects because the effect size of the original study was overestimated due 

to low statistical power. In discovery studies, this problem can be a major reason for not attaining 

reproducible findings in subsequent replication studies. 

2.1.2.4 Inappropriate or poor use of statistical tools 

P-values have widely been used to test hypotheses and estimate the likelihood of an observed 

result being attributed to chance. However, p-values on their own, cannot be used to draw 

scientific conclusions as their use is intended to be in conjunction with background knowledge 

— the plausibility of the hypothesis (Nuzzo, 2014). In this light, p-values have been used 

inappropriately by many scientists. According to (Chawla, 2017), p-values should be interpreted 

as “suggestive evidence” (especially for values between 0.05 and 0.005) and not necessarily as a 

basis for established knowledge, i.e., p-values are not definitive. Calculations have shown that a 

statistically significant result with a p-value of 0.01 has an 11% chance of being a false positive 

result. Also, there is a 29% chance of reporting a false positive result with a p-value of 0.05, see 

(Nuzzo, 2014). Furthermore, p-values do not indicate the magnitude or size of the effects. In 

addition to these constraints, p-values are generally over-relied on, misused and misinterpreted 

(Ioannidis, 2018) contributing to the current reproducibility crisis. 
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2.1.2.5 P-hacking 

Another problem, commonly known as p-value hacking, is the process whereby several 

statistical analyses are performed to attain significant results. This problem is embedded in the 

saying of Ronald Coase that “if you torture the data long enough, it will confess to anything” – 

i.e., scientists try every means possible to achieve significant results. P-hacking can be done in 

any of the following poor research practices (Poldrack, 2022): (i) excluding participants to attain 

significant p-values; (ii) analysing several variables but reporting only those that gave significant 

p-values; and (iii) concurrent analysis with data collection but the attainment of a significant p-

value prompts the end of data collection. These questionable research practices may significantly 

hamper the reproducibility of a scientific finding. Additionally, they have been shown to increase 

the rate of false-positive findings (Simmons, Nelson & Simonsohn, 2011). P-hacking may be one 

of the outcomes of publication bias where significant results are more likely to be published. 

2.1.2.6 HARK-ing 

Another reason for the poor reproducibility in science is the common practice of HARK-ing 

(“hypotheses after results are known”). Harking is defined as “presenting a post hoc hypothesis 

(i.e., one based on or informed by one's results) in one's research report as if it were, in fact, an 

a priori hypotheses” (Kerr, 1998). Here, researchers make new hypotheses after seeing the 

trends in the data and change their initial hypotheses. The problem has been described by 

(Poldrack, 2022) as moving a goalpost wherever the ball goes. The consequence of this is the 

difficulty of invalidating incorrect ideas since the goalpost can always be adjusted and 

manoeuvred to match the data. 

2.1.2.7 Publication bias and undue preference for novelty 

The current scientific culture has been biased against the null hypothesis (Bishop, 2019). It 

unduly favours statistically significant results or novel findings, rewarding them with a greater 

chance of publication. On the other hand, negative results (statistically non-significant) or 

replication studies (non-novel studies) are less likely to be published. This poor culture 

consequently leads to wasted time and resources and, to a certain degree, hinders scientific 

advancement because when only significant findings are published, nobody learns about the 

supposedly “failed” experiments and as such, efforts, time, and resources are wasted repeating 

such experiments. Also, the preference for novelty discourages replication studies which would 
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enhance the self-correcting nature of science and boosts confidence in scientific knowledge, for 

example, when a replication study confirms an earlier finding. 

2.1.2.8 Inconsistent definition of terms 

Another problem is the lack of a consistent definition of the terms for reproducibility 

(Gundersen, 2021). For example, in biology, reproducibility usually means a different laboratory 

attaining similar experimental results from scratch, while in computational sciences it often 

means the provision of sufficient details to repeat computations (Stark, 2018). Reproducibility 

has other associated terms which may be of varied definitions depending on the discipline. In 

computational sciences, reproducibility; replicability; robustness and generalisability are all 

terms associated with “reproducibility” but have different meanings. On top of this, these 

definitions are not standardised, for example, the definitions of reproducibility and replicability 

are interchanged by the Association for Computing Machinery (ACM) and Claerbout and 

Karrenbach – who first proposed definitions for the terms (Plesser, 2018) (Table 3). Non-

standardised definitions may lead to confusion and may further derail progress to alleviate the 

current reproducibility challenges. 

 
Table 3. Swapped term definitions by ACM and Claerbout & Karrenbach. Information used under 

permission allowed by the CC-BY 4.0 license. Source: https://github.com/alan-turing-institute/the-

turing-way 

Term Claerbout & Karrenbach ACM 

Reproducible “Authors provide all the 

necessary data and the 

computer codes to run the 

analysis again, re-creating the 

results” 

“(Different team, different experimental setup.) The 

measurement can be obtained with stated precision by 

a different team, a different measuring system, in a 

different location on multiple trials. For computational 

experiments, this means that an independent group 

can obtain the same result using artifacts which they 

develop completely independently” 

Replicable “A study that arrives at the 

same scientific findings as 

another study, collecting new 

data (possibly with different 

methods) and completing new 

“Different team, same experimental setup.) The 

measurement can be obtained with stated precision by 

a different team using the same measurement 

procedure, the same measuring system, under the 

same operating conditions, in the same or a different 
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analyses” location on multiple trials. For computational 

experiments, this means that an independent group 

can obtain the same result using the author’s artifacts” 

 

2.1.3 Reproducibility in scientific computing 

The challenge of reproducibility in scientific computing usually has to do with the unavailability 

of code. In a survey involving 400 Artificial Intelligence papers, only 6% of the papers made the 

code used in the paper available (Hutson, 2018). However, the challenge of reproducibility in 

computational science goes beyond just making available the code and data used in a 

computation. In their case study, (Kim, Poline & Dumas, 2018) outlined the challenges they 

encountered in trying to reproduce a published bioinformatics paper with available code and 

data. The authors defined reproducibility and its associated terminology used in their work 

(Figure 1) as: 

Reproducible – generating identical results with the same code and underlying data. 

Robust – using the same underlying data but with a different code to arrive at an identical 

result, e.g., using a Python script instead of an original R script from which analysis 

was carried out. 

Replicable – different data but the same code to attain similar results. 

Generalisable – use of different codes with different underlying data. 

The authors reported difficulties with hardware compatibility in their attempt to reproduce the 

results using the same underlying data and code as in the original work. The original authors had 

used a MATLAB library in their code which was dependent on the architecture of the operating 

system (OS). Running the analysis on a different OS, the new authors reported their hurdles in 

trying to recompile the library to be able to reproduce the original work. Additionally, the new 

authors experimented with the robustness of the code (different code, same data) by recoding the 

MATLAB code into a Python package — which, in contrast to MATLAB, is a free and open-

source alternative. They reported challenges in attaining robustness. These challenges included 

their inability to change the original file format from a MATLAB (.mat) file format to a 

hierarchical data format version 5 (HDF5) format in Python. Furthermore, they reported errors 

and challenges due to varying code parameters and arguments. For example, the default 

arguments of the functions used for clustering in the original MATLAB code differed 
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significantly from those of Python. This highlights the importance of having a thorough 

understanding of the behaviour of implemented functions or code in safeguarding the validity of 

results when recoding in a different programming environment or version. Although most of the 

hurdles encountered in their attempt to attain robustness can be easily overcome by using virtual 

container environments and by strict adherence to recommended guidelines, the authors 

acknowledged that developing container environments may be a difficult technical task for some 

researchers and may require additional training. Furthermore, strict adherence to recommended 

guidelines may take some time to be widely incorporated into the routine work of researchers. 

One essential element necessary for achieving reproducible methods and results in scientific 

computing is the development of robust tools. A “robust” tool in this context is defined as 

“software that works for people other than the original author and on machines other than its 

creator’s” (Taschuk & Wilson, 2017). In other words, a utility that can be easily installed on 

different computers and whose integration with other tools is possible. Robust tools are 

important to improve reproducible research and accelerate scientific research. In this regard, 

(Taschuk & Wilson, 2017) have proposed ten rules or best practices for developing robust 

research tools such as software to improve computational reproducibility. These rules are 

summarised below. 

2.1.3.1 Code documentation 

Good documentation practice is needed to help new users easily navigate and use the program. 

Thus, the utility should be properly documented. Documentation is usually done in a README 

file. The authors recommended some necessary minimal guidelines for good documentation 

practices, which include explaining the purpose of the program, listing all dependencies, 

providing installation instructions, describing input and output files, demonstrating usage with 

few examples and providing licensing information or information on how users can credit the 

work. 

2.1.3.2 Version control 

Software development versioning helps to keep track of all developmental changes and 

facilitates bug-fixes in isolation from the main development repository. This allows for working 

features (fixed bugs) to be merged with the main repository when needed. Versioning also allows 
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the developer to revert to a previous version of the program in the development phase and 

enhances collaboration. 

2.1.3.3 Seamless control of operations 

The program should make exploratory analysis easier by incorporating parameters that directly 

influence the results in the code. If a parameter is required, a reasonable default value should be 

provided. Furthermore, the program should be able to check, upon start-up, the correct input 

values or files and should be able to generate useful error messages when incorrect inputs are 

encountered. This makes the program easier to use. 

2.1.3.4 Include versions for every release 

As the program evolves with time, each release (i.e., update of the program) should be allocated 

a version stamp in incremental order. This identifier makes it easier for future retrieval of a 

specific release. The most common versioning semantic for open-source software is the 

“MAJOR.MINOR[.PATCH]” semantic, e.g., version 0.5.3. The “major” version number is 

updated as significant changes are made to the program while incrementing the “minor” version 

number is reflective of minor changes to improve the program, e.g., adding new features. Finally, 

the version of the program should be easily accessible, e.g., with the –version argument on the 

command line. 

2.1.3.5 Reusing other programs 

Sometimes, it is necessary and useful to not “reinvent the wheel” by reusing external code, 

functions, or programs in one’s software or program. However, the downside to this may be the 

introduction of complex dependencies which, often are hard to deal with. The authors propose 

that the reuse of supplementary programs should be based on a true need before they are 

incorporated into one’s program. Additionally, the developer should ensure that the auxiliary 

program is robust. 

2.1.3.6 Build-tools and package managers for installation 

The program should rely on build-tools (e.g., Make, Maven etc) or package managers (e.g., pip 

for Python) for installation since these sets of utilities can automatically determine and install the 

program’s dependencies. The developer, therefore, must document a machine-readable file of all 

the program’s dependencies. 
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2.1.3.7 No special or root privileges for installation 

Since most scientific software are of themselves not malicious, installing them should not require 

any special privileges (except for unusual circumstances). Furthermore, as much as possible, the 

installation of the program should be tested before deployment. This can be achieved by utilising 

virtualisation containers (e.g., Singularity) or simply asking colleagues to install the program on 

their computers. 

2.1.3.8 Avoid hard-coding file paths 

Hard-coding file paths or parameters into a program makes it difficult to execute the program on 

a different computing environment since hard-coded paths may not exist in the new computing 

environment. The program should, therefore, allow users to specify the input and output file 

locations as parameters or arguments to the program. 

2.1.3.9 Include test data 

The program should include small test datasets with which users can run or explore the 

program’s functionality after installation. The test data can also be used to demonstrate the 

program’s usage, for example, in the documentation. Aside from the inclusion of test data, the 

program should be subjected to unit testing. 

2.1.3.10 Identical inputs generate identical outputs 

A particular version of the program should produce the same results given a specific set of 

parameters and data. To further improve reproducibility, the program should print to standard 

output or a log file, the software version and the parameters used in an execution. 

2.1.4 Overcoming the reproducibility challenges 

Several measures are being taken by all stakeholders of science i.e., funders, publishers, research 

institutions and scientists to help address the reproducibility crisis. Below, I highlight some of 

the efforts being undertaken and recommendations to help improve reproducibility in science. 

2.1.4.1 Improve sharing, record-keeping and documentation practices 

Researchers should document and report all undertaken procedures with accompanying metadata 

including instruments used, measurements taken, and variables measured of the research project. 

That is, for example, giving a clear description of all analytical procedures and reasons for 

including or ignoring certain data; reporting on statistical power; and reporting on how 
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uncertainties were dealt with (Committee on Reproducibility and Replicability in Science, the 

National Academies of Science, Engineering and Medicine, 2019a).  

As a major component for achieving reproducibility, good documentation or record-keeping 

practice is also important to facilitate the self-correcting nature of science. For example, a recent 

study reported that eight out of the ten pioneer genome sequences of the Orangutan species 

initially published were mistakenly assigned to the wrong species (Kreier, 2022). The absence of 

good record-keeping and sharing practices may have left this mistake undiscovered, 

consequently impacting subsequent studies that would have relied on this “inaccurate” data. This 

highlights the importance of adopting reproducible methods such as good documentation, record 

keeping, and sharing to achieve rigour and verification of scientific results, as well as to facilitate 

the self-corrective nature of science. 

2.1.4.2 Training and Education 

Researchers need to be trained on the need for reproducible research and should be trained in 

utilising current best practices and tools available for improving reproducibility in their research. 

This measure has gained some traction as several institutions are incorporating reproducibility 

concepts in their curriculum (Committee on Reproducibility and Replicability in Science, the 

National Academies of Science, Engineering and Medicine, 2019a). For example, postgraduate 

training at the South African Tuberculosis Bioinformatics Initiative (SATBBI), Stellenbosch 

University emphasises the development of skills for attaining computational reproducibility as 

demonstrated by this reproducibility-themed MSc thesis. 

2.1.4.3 Pre-registration 

One of the undertaken measures to help to prevent questionable research practices and thus 

improve reproducibility is pre-registration — the provision of detailed experimental design and 

analytical steps of a research project before embarking on the research project (data collection or 

analyses). With this approach, researchers first publish their protocols before starting on the 

study and are then guaranteed a second publication of their final results regardless of the 

outcome of results (whether positive or negative), on the condition that they adhere to all the pre-

registered protocols. Pre-registering a research project can therefore help to minimise some 

questionable research practices (e.g., p-hacking, harking) and publication bias (Bishop, 2019). 
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2.4.1.4 Different analytical approaches 

One of the analytical approaches to help reveal and minimise certain cognitive biases during 

analytical procedures is crowd-sourced analysis — several teams answering the same research 

questions by analysing the same data. For example, this approach was applied in a study where 

29 different teams were asked to analyse the same data sets to answer the research question 

whether dark-skin-toned footballers are more likely to receive a red card in a football match. The 

results were that 69% of the teams reported significant effects while 31% found no statistically 

significant effects (Silberzahn et al., 2018). This sharp variation in the results may be a result of 

several biases that go into data analysis. Unfortunately, in most cases, only one team performs 

the analysis which increases the probability of having biased results in the publication. Although 

crowdsourced analysis may not be feasible to implement for every study, it can help to reveal 

biases in analyses and can also help to establish consensus in complex data analyses. 

Another method to help circumvent bias and achieve analytical reproducibility is performing 

blind data analysis. Here, a researcher or analyst is presented with deliberately altered data sets 

(e.g., swapping experimental groups). The analyst is blinded to all the alterations made to the 

data and proceeds with the analysis. The unaltered data is subsequently run through the initial 

analysis. This approach helps to achieve objective analytical procedures since analysts are less 

likely to halt the analysis upon the arrival of results that favour their predefined or subconscious 

thoughts (Nuzzo, 2015). 

2.1.4.5 Proper use of statistical tools 

The current misuse of statistical tools, especially, p-values for hypothesis testing has prompted 

the American Statistical Association (ASA) to provide clear guidelines for the interpretation and 

use of p-values. These guidelines include the definition and the extent of use of p-values: i) P-

values can reveal the degree to which the data contradict a certain statistical model; ii) p-values 

do not measure effect sizes or how relevant a result is; iii) scientific and business conclusions 

should not solely rely on whether p-values pass or fail to reach a specified threshold; and iv) p-

values do not measure the probability that data were randomly generated by chance alone nor do 

they measure the probability of a hypothesis being true, see (Committee on Reproducibility and 

Replicability in Science, the National Academies of Science, Engineering and Medicine, 2019a). 

Some proposals have suggested lowering the significance threshold in biomedical science from 

0.05 to 0.005 (Chawla, 2017; Ioannidis, 2018). This proposal aims to minimise the rate of false 
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positive results in published papers. Another aim is that the stringent threshold may lead 

researchers to better design their experiments to achieve statistically significant results 

(Ioannidis, 2018). Although this method has its limitations such as the likelihood of increasing 

false negative results (failure to detect an effect when there is indeed one), it has been applied 

with success with an even more stringent threshold (5𝑥 10−8) in genome-wide association 

studies (Chawla, 2017). Other proposals have suggested entirely abandoning p-values and 

instead reporting the magnitude of effects and confidence intervals, see (Ioannidis, 2018), 

whereas some proposals have suggested the use of more sophisticated approaches like Bayesian 

statistics (Goodman, 2001).  

2.1.4.6 Improve transparency 

Many research funders and publishers are beginning to demand that research data and analytical 

code be made publicly available to foster transparency, openness and verifiable research 

findings. These are important initiatives to help attain reproducibility in science and allow re-

analysis of existing data with the same and novel statistical tools. 

2.2 Section 2 – Immunoassay calibration and analytical tools 

2.2.1 Immunoassay setup 

Immunoassays are used by investigators to measure the concentration of analytes in a sample. A 

typical immunoassay will have standard samples with known concentrations, test samples with 

unknown concentrations and blank samples (usually a buffer solution to measure background 

noise) as part of the set up. The standards are serial dilutions of varying concentrations of 

analytes from which a standard curve for estimating the concentration of test samples is 

constructed. To ensure accurate measurement of analyte absorbance, the blanks are used to 

determine the baseline analyte absorbance. Theoretically, the blanks will have zero absorbance, 

but it is usually not the case in practice because of background noise or contamination (Sheehan, 

He & Smith, 2013). Correction for background noise is usually done by subtracting the baseline 

absorbance from the detected absorbance in the sample. 

2.2.2 Dose-response curves 

The relationship between the known standard concentrations (dose) and the observed 

fluorescence intensity (response) is used to construct a standard or calibration curve, also known 
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as the dose-response curve to calculate or extrapolate estimates of unknown concentrations in 

test specimens. Ideally, the standard curve should resemble or be close to the true curve which is 

the curve that accurately reflects the dose (concentration) – response (fluorescence intensity) 

relationship without any errors. In other words, the true curve is the resultant curve after 

measuring the response of an infinite number of concentrations with an infinite number of 

replicates (Dunn & Wild, 2013). This is, however, not attainable in practice where sample 

replicates and concentrations are limited, and the standard curve is drawn from a given number 

of responses. A mathematical function, known as the curve model, is used to approximate the 

true curve from the assay data by fitting, i.e., adjusting the curve model’s parameters to obtain 

the optimal curve closest to the true curve. During curve fitting (calibration), several fitting 

errors can be encountered which may have a direct impact on the quality of the true curve 

approximation, known as the quality of fit (Gottschalk & Dunn, 2005a). It is, thus, important to 

identify and address the sources of fitting errors when calibrating the standard curve. Two main 

sources of curve fitting errors have been identified: “pure error” and “lack-of-fit error”. The 

pure error arises from the inherent random variation of the data. Increasing the number of 

standard replicates used to derive the standard curve can be used to address the challenge of pure 

error. The lack-of-fit error is derived from using a curve model that does not reflect the shape of 

the data or does not correctly approximate the true curve, for example, using a straight line as the 

curve model to fit assay data that have a sigmoidal shape (the typical shape of most 

immunoassays). In this type of error, increasing the number of replicates will not reduce the 

lack-of-fit error (Gottschalk & Dunn, 2005a). 

2.2.3 The curve function or model 

According to (Gottschalk & Dunn, 2005a), an ideal curve model must have three qualities. First, 

the curve model should be able to correctly describe the observed dose-response relationship 

from the assay data, i.e., correctly approximate the true curve. Second, the curve model must be 

able to average out random noise and variation to generate estimated concentrations with the 

least minimal influence of pure errors. Last, the curve model must not only accurately estimate a 

concentration at fitted data points (standard data points) but should also be able to accurately 

predict estimated concentrations between the fitted data points (test sample data points). It is, 

therefore, imperative to choose the right curve model to improve the coverage and the accuracy 

of the estimated concentrations.  
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Many curve fitting functions have been used with varying degrees of success in attaining the 

three qualities of a good curve model described above. For example, the linear approach 

(straight-line) model cannot approximate the true curve of immunoassays which is typical of a 

sigmoidal shape (lack-of-fit error challenge). The logit-log curve model can fit the sigmoidal-

shaped immunoassay data, but its logit transformation intensifies the noise and variability in the 

standards. Additionally, the logit-log model is better suited for symmetric data and does not 

properly approximate the true curve of asymmetric data, see (Gottschalk & Dunn, 2005b). 

Another curve model that has been used to fit immunoassay data is the mass action model, but 

this model has the challenge of being unable to reduce noise in the data because of its many 

parameters, see (Raab, 1983; Gottschalk & Dunn, 2005a). Cubic splines (Guardabasso, Rodbard 

& Munson, 1987) have also been used to fit immunoassay data. The problem, however, with this 

curve fitting model is that its fitting passes through each data point failing to average out the 

variability and noise in the data. One of the widely used curve models is the four-parameter 

logistic (4pl) function, this model has been shown to perform very well with symmetric data but 

quite poorly with asymmetric data (Cumberland et al., 2015). The five-parameter logistic (5pl) 

curve model is an extension of the 4pl model with a fifth parameter to accommodate for 

asymmetry. This enables the 5pl model to be better suited to fit asymmetrical data. The model 

has also a similar performance to the 4pl model when used on symmetrical data (Cumberland et 

al., 2015). The 5pl curve model is given by the equation: 

𝑦 = 𝑑 +  
(𝑎 + 𝑏)

[1 + (𝑥/𝑐)𝑏]𝑔
 

Where a and d are the upper and lower asymptotic ends; b is a parameter for the slope of the 

curve (rate of change of response with increasing dose); c is a parameter for the point of curve 

inflection, and g is a parameter controlling for asymmetry. When g is 1, the 5pl curve model is 

equivalent to the 4pl (Dunn & Wild, 2013). 

Stellenbosch University https://scholar.sun.ac.za



29 

 

Figure 5. Illustration of a typical standard curve of a Luminex assay. Notably, the unequal variance in 

the response (y-axis) as the dose (x-axis) increases. This assay appears to have an increasing variation 

in response (y-axis) with increasing doses (x-axis). It is important to note that some assays may have 

non-uniform or random variations in the response (heteroscedasticity). Image used under permission 

allowed by the CC BY 3.0 license. Source: (Baker et al., 2014) 

2.2.3.1 Fitting the curve 

Upon deciding on the appropriate curve model, the next step is curve fitting. Curve fitting is 

done by adjusting the free parameters of the curve model until the best fitting curve out of many 

different possible curves is achieved (the curve closest to the true curve). In other words, the 

best-fitted curve is the “maximum likelihood estimate of the true curve” and it is selected by 

calculating the curve with the least “weighted sum of squared errors (SSE)” (Gottschalk & Dunn, 

2005a). The least SSE is one of the main methods in statistics used for assessing modelling 

errors. Errors, also known as residuals, are the differences between the observed responses and 

the predicted responses of the curve at each dose or concentration (Figure 6). Computing the 

least SSE is done by squaring the errors or residuals (to avoid negative and positive values from 

cancelling each other out) and then summing up the squared errors or residuals. This 

computation is done for all the possible curves that can be derived from the curve model. By the 

statistical regression principle, the curve whose parameters yielded the least sum of squared 

errors from the many derived curves is the curve that best models the data or is closest to the true 

curve. 
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2.2.3.2 Weighting 

The use of only the unweighted SSE in approximating the “maximum likelihood estimate of the 

true curve” is often inadequate and can impact the accuracy of the concentration estimates. This 

is because the calculation of the SSE does not account for the heteroscedasticity (non-uniform 

response variance also known as random errors) in the data (Figure 5).  It is common for the 

variance of the responses at the high and low ends of the curve to differ by three to four folds 

(Gottschalk & Dunn, 2005a). For example, as shown in Figure 6, fitting the standard curve for 

data without weighting the SSE will bias the curve towards the upper responses. That is, 

although the computed or predicted responses at the two (highlighted) doses in the illustration 

are both 5% lower than the observed response, the margin between their residual squares is too 

wide (250,000 against 25) which will result in the lower responses having very little contributing 

effects on the fitted curve.  

 

Figure 6. Equal percentage difference between the observed and computed response at doses 70 and 

1000 but a very wide difference in the residual squares. The image is not drawn to scale. Reproduced 

with permission from (Dunn & Wild, 2013) 
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The US Food and Drugs Administration and the European pharmacopoeia, thus, require all 

immunoassays to be weighted, due to the significant impact weighting has on the accuracy of 

results (Brendan Bioanalytics, n.d.).  

The response variance or random errors can be a result of the signal noise or errors in the 

instrument’s detector or the non-linear kinetics of antibody-antigen binding across different 

concentrations or doses (Dunn & Wild, 2013).  

Given the heteroscedastic nature of the responses in Luminex assays, (Dunn & Wild, 2013) 

argue that applying a transformation, e.g., Log of response, 1
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒⁄ , 1

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2⁄  cannot 

make the variance in the response constant, i.e., homoscedastic, thereby requiring the SSE to be 

weighted with the inverse variance of the response at the specific concentrations – according to 

regression theory, see (Gottschalk & Dunn, 2005a). A power function of the responses is 

classically used to estimate the response variance of standards by the equation:  

Variance = A(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)𝐵 

Where A is a function of the response magnitude and its average noise level and B ranges from 

1.2 to 2 (Gottschalk & Dunn, 2005a). 

The equation for calculating the weighted SSE of the standard curve is given: 

SSE =∑ 𝑤𝑖[𝑦𝑖 − 𝑦̂𝑖]2𝑁
𝑖=1  

Where 𝑤𝑖 =
1

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡
 , 𝑦𝑖 is the observed response of the standard and 𝑦̂𝑖 is 

the predicted response of the curve model. By weighting the SSE, the curve with the least 

weighted sum of square errors will best represent the true curve or standard curve. 

2.2.4 Luminex data processing utilities 

Several tools have been developed to analyse multiplexed ELISA data. In this section, I review 

two of the utilities used in calibrating and analysing Luminex data. 

2.2.4.1 drLumi R package 

drLumi (Sanz et al., 2017) is an R (R Core Team, 2021) based package with a general public 

licence (GPL >=2) used for management, calibration and quality assessment of Luminex bead 

assay data. The utility can also be generalised to accommodate other multiplexed ELISA assays. 

drLumi was adapted from other R-based non-linear curve fitting packages eg. ncal (Fong et al., 

2013) and it provides the utility for enhancing the precision and accuracy of assay data analysis. 
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The package achieves this by: (i) computation of quality control metrics; (ii) an automatic 

extraction of assay data generated from the Luminex xPONENT software; (iii) provision of 

different methods for handling background noise; and (iv) use of different limits of quantitation 

(LOQ) techniques. The drLumi package can automatically import Luminex xPONENT software 

generated Luminex data. However, assay data generated from other software may need some 

manual data preprocessing to be imported by the package. This, however, may be a limitation 

since data preprocessing may require some level of programming expertise on the part of the 

investigator. The package also provides the utility for computing metrics for quality control 

assessments, e.g., quality of fit of standard curve. This is important for the accurate estimation of 

unknown sample concentrations since, the use of an inappropriate curve model or a poorly fitted 

model can be one of the main sources of errors in immunoassay data analysis (Dudley et al., 

1985). Additionally, the package makes provision for the use of different methods for handling 

background noise. Ideally, the response for a solution (e.g., buffer solution) without an analyte 

should be zero or close to zero, however, this is usually not the case for most immunoassays 

because of background noise. Classically, background noise is subtracted from the standard 

response before fitting the standard curve. However, (Sanz et al., 2017) argue that in some 

situations, this approach may result in a poorly fitted curve. They, therefore, provide, in the 

drLumi package, different approaches to account for background noise to optimise standard 

curve calibration. Furthermore, the package can utilise different techniques to estimate the limits 

of quantitation (LOQ). LOQ are the boundaries, i.e., the minimum and maximum concentration 

thresholds on the standard curve from which unknown concentrations can be accurately 

estimated or interpolated. Since estimation or interpolation is reliably done from around the 

linear section of the standard curve, this functionality is essential in assessing the accuracy of 

estimated concentrations (Figure 7). 

After assay data has been imported, drLumi can fit the standard curve using three different curve 

models — the 5-parameter logistic curve model (5pl), the 4pl curve model and the exponential 

growth model to estimate unknown concentrations. The drLumi utility fits these curve models on 

a log base 10 transformed data (both dose and response) to minimise the heteroscedasticity and 

large variability in Luminex data. However, according to (Dunn & Wild, 2013), log 

transformation alone may not be an effective method for stabilising the variance, i.e., making the 

variance uniform or close to uniform. Thus, they recommend using the weighted response 
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variance at each concentration to fit an unbiased standard curve. Based on this argument, the sole 

use of log transformation by the drLumi package may inefficiently address the inherent 

heteroscedasticity in the assay data and may result in bias in its curve fitting as well its 

estimation of unknown concentrations. 

 

Figure 7. Illustration of limits of quantitation using the interval method with the drLumi package. 

The limits of quantitation for this method are marked by the blue vertical lines. Image used under 

permission allowed by the CC BY 4.0 license. Source: (Sanz et al., 2017) 

 

The drLumi implements four different ways of handling background noise: the subtract, ignore, 

include and constraint methods. The subtract method is what is traditionally used but it is 

sometimes inappropriate because usually the background noise approximates the lower 

asymptote of the standard curve. This means that subtracting the background noise from the 

observed response will translate to removing the lower asymptote of the curve which will result 

in an improperly fitted curve. The ignore method fits the standard curve without considering the 

background noise. The include method uses the geometric means of the blank controls 

(representative of the background noise) together with the standards to derive the standard curve. 

This method can be problematic by generating a heavily biased curve when blank controls are 

contaminated. However, it can be useful when there is accurate assaying of blanks with enough 
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standard dilutions. The final alternative is the constraint method which constrains the lower 

asymptote of the curve model to the background noise. 

Quality assessment or quality control methods implemented by the drLumi R package involve 

computing the goodness of fit test (Neil test p-value) and as well reporting the Akaike 

information criterion (AIC) for the fitted model. Additionally, the package provides the utility to 

plot the standard curve with confidence intervals – a good standard curve will have a narrow 

confidence interval with data points lying directly on the curve or close to the fitted standard 

curve while unreliable curves may have large confidence intervals and most data points further 

away from the predicted or fitted curve. Additionally, drLumi provides the utility to flag out data 

points as outliers after the user classifies them as such. This utility allows flagged data points or 

outliers to be excluded during curve fitting. The drLumi utility also provides functions to 

visualise the quality of fit of the curve model with a plot of residual errors and a quantile-

quantile plot.  

Additional functionality of the drLumi R package is its ability to estimate the limits of 

quantitation from which unknown sample concentrations can be reliably interpolated. The 

package provides three different methods, each dependent on a specific characteristic of the 

curve. These methods are the coefficients of variation method, derivative method and interval 

method. The interval method limits quantitation thresholds to the lower and upper values that are 

statistically significantly different from the two asymptotes. The derivative method restricts the 

boundary of quantitation of concentrations to the approximately linear portion of the standard 

curve. Finally, the coefficient of variation method uses a predefined cut-off value, determined by 

the user, usually set at 20%, to estimate the LOQ from the variability of the fitted concentrations. 

The authors of the package suggest that the optimal use of these methods is dependent on the 

specific assay and analyte being investigated. However, they propose that the ideal method will 

permit quantitating the most samples while keeping the background noise of the plate below the 

LOQ (Sanz et al., 2017). 

Overall, the drLumi package is a great tool for performing quality assessment and calibration of 

standard curves with varying options to optimise and improve calibration performance. The 

open-source license of the package makes it freely available for use and modification of code as 

well as contributes to open science. However, its flexibility (varying parameters) may render it 

somewhat suited for expert use only but not for investigators with non-linear modelling 
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experience — which may demand a steep learning curve for non-statisticians. Additionally, the 

package may demand users to be well-versed in R programming, especially for users using 

calibration software other than the Luminex xPONENT software, which has support for 

automatic data import.  

Nota Bene: As of April 2020, drLumi has been archived on the comprehensive R archive 

network (CRAN) site (https://cran.r-project.org/web/packages/drLumi/index.html) due to lack of 

continued development and support. Installing the package may therefore be challenging since it 

is not available for automatic installation in R. 

2.2.4.2 LabKey server tool for Luminex 

The LabKey server (Nelson et al., 2011) is a web-based utility for general research data 

management in Java for which an extended support for Luminex assay analysis was developed 

(Eckels et al., 2013). The server stores research data in the PostgreSQL relational database. 

Developed to facilitate large collaborative studies, the LabKey server provides a unified system 

or platform for managing research data. At its centre, is a central data repository allowing 

clinicians, statisticians, lab researchers, administrators etc. involved in a study, to interact, query 

or update the research data. The unified system also allows users or collaborators to track 

specimen records and request specimen information such as clinical data on the web-based 

utility. Being one of the few open-source utilities with a graphical user interface (GUI) for 

managing research data, its GUI allows users to flag or add scientifically-relevant attributes to 

data columns — a useful utility for quality control purposes. The GUI also helps to visualise 

missing values and relationships between tables, e.g., clinical data and metadata, and to filter 

metadata. Additionally, the LabKey server integrates clinical data with complex experimental 

data and specimen data through SQL queries and its GUI.  

Being a multi-purpose utility, the LabKey server has customisable assay templates for Luminex 

assays, microarray, enzyme-linked immunosorbent spot (ELISpot) assay, and ELISA assay data 

management and analysis (Nelson et al., 2011). 

Luminex assay analysis on the LabKey server is done by importing raw Luminex assay data and 

integrating the data with associated metadata.  Only the Bio-Plex Manager software output data 

and Excel data formats are supported for import. The assay analysis on the LabKey server tool 

for Luminex can be done automatically with an extensible and customisable R script that 

computes dose-response curves from standard dilutions, estimates unknown sample 
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concentrations, detects outliers, computes quality control metrics for curve fitting procedures and 

flags questionable experimental data for exclusion in further analysis (Eckels et al., 2013). 

During curve fitting, the LabKey server tool for Luminex provides an option to subtract or ignore 

background noise, as opposed to the drLumi utility which makes provision for four options to 

manage background noise. The LabKey server tool for Luminex also provides an option to log 

transform fluorescence intensities (FI) before calibrating the curve to reduce the noise and 

variability in the data. Two curve models, the 5pl and 4pl curve models are utilised to generate 

dose-response curves, from which unknown sample concentrations are estimated or interpolated. 

Unlike the drLumi package, the LabKey server tool for Luminex can apply weights (𝑤𝑒𝑖𝑔ℎ𝑡 =

1

𝐹𝐼1.8) to the squared errors to lower the heteroscedasticity of the response signals, improving the 

overall curve quality and the estimated concentrations by accounting for the unequal variance of 

the response signal. 

Overall, the integration of metadata in Luminex assay analysis can significantly improve 

reproducibility when the processed data are shared. The customisable R script implemented in 

the analysis and the web API improves the flexibility of the utility. Additionally, the open-source 

licence (Apache 2.0) of the source code promotes open science. Also, the GUI implementation of 

the LabKey server tool for Luminex is an important utility for ease of use, especially for 

researchers with little programming experience. Finally, the centralised data repository of the 

LabKey server, on which the Luminex tool runs, can facilitate secure data sharing between 

collaborators. 

Some of the limitations of the LabKey server for Luminex assay analysis include the limited 

compatibility for different assay file formats — the utility only recognises data outputs from the 

Bio-Plex Manager software and the Excel data format. Also, extensive expertise in R may be 

required to customise assay data analysis. Finally, the utility does not support the design of 

Luminex plate layout, thus, it cannot be used to run a Luminex instrument (Eckels et al., 2013). 
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CHAPTER 3: METHODS 

3.1 The R LuminexPipeline package 

An R package is the encapsulation of bundles of code, tests, documentation and data which 

functions as a shareable unit (Wickham, 2015). Thus, one of the most efficient ways of sharing R 

code and, to some extent data is by bundling them into an R package — ready to be shared and 

distributed (Merow, 2019). Most R packages are hosted on the comprehensive R archive network 

(CRAN) (https://cloud.r-project.org/) server for distribution. Outside the context of code sharing, 

R packages can also be a great way to organise and structure R code.  

Package development is an essential toolkit that can help to improve analytical reproducibility. 

This is because R packages utilise functions as a core component to automate repeated tasks 

which can be useful in reproducing analytical results. That is, given the same R version and 

function with the same arguments, analytical results, including graphs and tables etc., can be 

easily reproduced provided that the computational environment does not change. 

All pipeline components were written as R functions and bundled together into an R package 

(LuminexPipeline package) to achieve the aforementioned benefits including efficient code 

distribution as well as good code organisation. The R devtools v2.4.5 package (Wickham, 

Hester, et al., 2022) was used to compile together all the functions of the pipeline components 

into an R package. I utilised the best package development practices outlined in the R packages 

book (Wickham, 2015) in the package development procedures. I intend to submit this package 

to the comprehensive R archive network (CRAN) for broader use by the scientific community. 

Here, I describe briefly, a workflow used to develop the LuminexPipeline package.  

1. I started by loading the package development utility, devtools (Wickham, Hester, et al., 

2022) in the R v4.2.1 environment (R Core Team, 2021) on a Linux server. I then set up the 

rudiments of the new package with the usethis::create_package() function from the 

usethis v2.1.6 package (Wickham, Bryan, et al., 2022), one of the meta packages of the 

devtools package. This function automatically sets up the minimum required files and file 

system to develop an R package i.e., an R/ directory (to house all R code and functions), a 

man directory (which houses the package manual and all documentation), a DESCRIPTION 
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and a NAMESPACE file which collects information of package metadata and dependencies 

respectively (Merow, 2019). 

2. I edited the DESCRIPTION file with the necessary metadata for the package, i.e., the 

package name, title, version, authors and description fields etc, (Figure 8). I used the license 

helper usethis::use_mit_license() function to automatically edit the License field of the 

DESCRIPTION file with an MIT licence. This function also makes a copy of the full license 

in a markdown (.md) file. MIT license is an open-source license that permits users to freely 

use and modify the code in the package. Full permissions allowed by the MIT license are 

shown in Figure 15. 

 

Figure 8. Package metadata displayed in a DESCRIPTION file 

3. The NAMESPACE file was automatically updated with the usethis::use_package() 

helper function to import the namespace of all dependent packages I used in the 

LuminexPipeline package. 

4. I wrote and organised R functions with the usethis::use_r() helper function. This 

function automatically creates an Rscript named with its input argument and stores the script 

in the R/ directory of the package. 

5. I intermittently used the devtools::load_all() function to update the package when new 

changes were made. The function simulates the building, installation and attachment of the 

development package for experimentation. For example, the devtools::load_all() 

function makes available a newly created function for interactive use or experimenting 

without defining that function in the global environment. 
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6. I intermittently used the devtools::check() function to ensure the complete functionality 

of the package as well as detect possible package development problems for rectification. 

The devtools::check() function gives a large output of information with a summary of the 

number of errors, warnings and notes. Intermittent checks help to easily identify problems 

early and debug them as this may otherwise lead to difficulty in debugging incremental 

problems. The ideal aim of executing the devtools::check() function was to have zero 

errors and warnings. The R CMD check command on the command line is an alternative 

command to the devtools::check() function. 

7. A directory named inst/ext was created to host sample data sets which were used as examples 

in the package documentation as well as for package testing. This directory was also used to 

host the R markdown (Allaire et al., 2022) file that will be used to generate the statistical 

summary report. 

8. Once the package was complete and fully functional, I installed the package with the 

devtools::install() function and generated the source package from the build menu in 

Rstudio. The source package is a compressed .tar.gz file that can be easily distributed and 

installed with the R utils utils::install.packages() function or with R CMD INSTALL 

command on the Linux command line. 

library(devtools) 

#setup the package 

usethis::create_package(“path/to/new/package/directory”) 

#helper function to write R functions/code 

usethis::use_r(“name_of_function”) 

#load changes for interactive experimenting 

devtools::load_all() 

#update NAMESPACE FILE imported function/dependencies 

usethis::use_package(“name_of_package”) 

#assess package is in good functioning order 

devtools::check() 

#automatically edit license in description file 

usethis::use_gpl3_license() 

 

#install source package 

utils::install.packages(“path_to_source_file”, repos=NULL, type=“source”) 

 
Figure 9. An example of a simplified workflow that was used to develop the R LuminexPipeline 

package. 
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3.1.1 Package documentation 

I documented the LuminexPipeline package with the roxygen2 v7.2.1 package (Wickham, 

Danenberg, et al., 2022), one of the meta packages for devtools (Wickham, Hester, et al., 2022). 

I wrote Roxygen notes above every exported function. Exported functions are functions that are 

made available to the end user. Documenting the exported functions thus assists users in easily 

navigating and using the package. Roxygen notes are documentation notes that start with a “#'”. 

They are written above functions that need documentation such as exported functions. My use of 

Roxygen notes involved inserting an Roxygen skeleton from the Code menu in Rstudio. The 

Roxygen skeleton provides fields, e.g., function description, parameters, and details from which I 

populated the documentation. The helper devtools::document() function was used to 

document Roxygen notes. It triggers roxygen2 (Wickham, Danenberg, et al., 2022) to 

automatically convert the Roxygen notes into a “.Rd” documentation file in the man/ directory of 

the package. 

3.1.2 Unit testing 

Unit testing is one of the essential elements in package development to achieve robust and 

accurate code significantly impacting the efficiency, robustness, reproducibility and 

maintainability of the program or utility. The purpose of unit testing is to ensure that each unit of 

a program, the smallest testable component of the program executes exactly as purposed. In my 

use case, I refer to a unit as an R code or function written for use in the LuminexPipeline 

package. Usually, when functions are written, they are tested interactively in the console to 

ascertain the accuracy of their functionality. However, the problem is that these tests are not 

documented or automated. Thus, if the code or function needs to be refactored, it becomes 

difficult to determine whether the new changes alter the behaviour or functionality of the code or 

function (Wickham, 2015). This is where unit testing becomes useful in ensuring the accurate 

and reliable functionality of the code. Other benefits of unit testing include having fewer bugs 

and a robust code. This is due to the nature of unit testing, which requires some level of hostility. 

For example, exposing the functions and code to unexpected conditions (e.g., inputs) intended to 

break the function or code. The pre-exposure to possible errors helps to identify bugs early and 

to improve code and robustness. Additionally, unit testing forces the researcher and programmer 

to write modular code since it is much easier to write tests for modules or units of the program 

(Wickham, 2015). 
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I performed unit testing in the LuminexPipeline package by utilising the R testthat v3.1.4 

package (Wickham, 2011), one of the meta-packages of the devtools package (Wickham, 

Hester, et al., 2022). 

I initialised the system for unit testing by using the helper usethis::use_testthat() function 

to automatically set up a tests/testthat/ directory where all test files live in the package. Test files 

are files in which automated tests are written. They are, by convention, required to be prefixed 

with a “test” name. I used the helper usethis::use_test() function to create new test files. 

This function automatically prefixes the names of test files to have the “test” prefix. 

After setting up the appropriate file system for testing, the testthat::testhat() function was 

used to test for the accurate functionality and behaviour of package functions. The 

testthat::testthat() function has a structure starting with an input text description of what 

is being tested and a code section for the test code (Figure 10). Within the code section, several 

expectation functions (from the testthat package) were used to test for the expected behaviour 

of functions. Among the expectation functions I used were: testthat::expect_error(), to test 

for instances where error messages were expected; testthat::expect_equal(), where 

functions were expected to generate an output or behaviour equal to a specific value or 

behaviour; testthat::expect_match(), where specified outputs of functions were expected to 

match certain characters and testthat::expect_warning(), for instances where functions 

were expected to throw a warning message. 

#the testthat function structure 

 

test_that("description of test", { 

  code section with expectations of behaviour. 

}) 

#example of a unit test 

 

test_that("multiplication works", { 

  expect_equal(2 * 2, 4) 

}) 

#test a single test file 

devtools::test_file(“path/to/test/file”) 

#test the whole package 

devtools::test() 
 

Figure 10. An example of a code snippet for the usage of the R testthat function. The function has 

two major sections, the test description section and the code section where code expectations are 

documented. A demonstration of how to execute a test file is illustrated here. 
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Tests were run with the devtools::test_file() function for a single test file (the 

argument to the function is the test file’s path) and devtools::test() to test all the test 

files of the package. 

I tested for the following functionalities: 

• The behaviour with unexpected input, i.e., expectation of warning and error messages 

• The presence of output files written to specified directories. 

• The dimensions of output data frame or tibbles. 

• The expected column names in the output data frame or tibble. 

• The class of output data. 

• The class of output variables.  

• The case of variable names (UPPER, lower etc). 

• The presence or absence of white spaces in column names. 

• The presence of string characters in numeric-type variables and vice versa. 

3.1.2.1 Package test files 

I included raw Luminex text files as test data in the LuminexPipeline package as part of the 

recommended best practices (Taschuk & Wilson, 2017) to aid in package documentation and 

unit testing. The test data were de-identified sample Luminex data generated from the 

Stellenbosch University Immunology Research Group (SUN-IRG). I trimmed the original test 

data, extracting only a few rows while preserving the original structure of the data, to reduce the 

size of the package. The trimmed test data sets were placed in a directory named tests/test_data 

in the LuminexPipeline package.  

3.1.3 Quality control  

I borrowed and incorporated curve fitting functions from the drLumi R package (Sanz et al., 

2017) into the LuminexPipeline package. The major difference between these two packages is 

that while drLumi’s major utility is for quality control i.e., curve fitting and estimation of 

unknown analyte concentrations from Luminex data, the main purpose of the LuminexPipeline 

package is to standardise Luminex data processing steps after curve calibration. For example, 

data cleaning, recording metadata information and standardising analyte names. 
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The standard curve fitting utility incorporated into the LuminexPipeline is not included in the 

pipeline’s automation with Nextflow but serves as a quality control utility for certain use cases 

where Luminex data come without the estimated concentration values or when there is a need for 

validation of the estimated concentrations. The Luminex pipeline therefore utilises the full 

functionality of the drLumi R package to generate standard curves and estimate unknown 

concentrations from the median fluorescent intensity (MFI) using the ignore, include, subtract 

and the constraint methods of treating background noise employed by the drLumi package. It is 

important to note that the use of a different background treatment method other than the one 

employed by the Luminex instrument may result in different concentrations estimates compared 

to the estimated concentrations generated by the Luminex instrument.  

Code incorporation was done with the original drLumi functions but not as a package 

dependency because, during the development phase of the LuminexPipeline package (September 

2022), the drLumi package was not available for automatic installation on the comprehensive R 

archive network (CRAN) but was only available as an archived tarball. Thus, incorporating the 

drLumi package as a dependency would have caused complications in the subsequent installation 

of the LuminexPipeline package. 

3.2 Containerisation 

One of the major challenges in attaining reproducibility, especially in scientific computing is the 

challenge of inconsistent software versions, dependencies, as well as computational 

environments, which contribute to numerical instability and inconsistent results. To successfully 

reproduce published analytical results given the code and data, one will need to replicate the 

computational environment in which the original analysis was run. Replicating this environment 

will involve the use of the same OS, software and the exact software versions used in the original 

analysis. However, this process can be very challenging. For example, dealing with complicated 

software dependencies during installation and, to some extent, incompatible hardware 

environments (Kim, Poline & Dumas, 2018) as well as challenges with accessing the exact 

software versions. Different software versions can generate significantly different results (The 

Turing Way Community, 2022). Encountering these challenges may be a big barrier for 

scientists, especially, those with minimal computational background, to attain analytical 

reproducibility. 

Stellenbosch University https://scholar.sun.ac.za



44 

A containerised environment can efficiently address these challenges. A container is an isolated 

runtime environment independent of its host environment. One can think of it as an OS running 

on top of another OS. For example, running Ubuntu 18.04 on a host computer that runs on 

Ubuntu 22.04. A container, therefore, is a fully functional virtual environment with an 

independent OS that can encapsulate all software (the exact version), software dependencies, 

code, data etc., used in an analysis. This virtual environment is portable and can be shipped or 

shared with other researchers to facilitate analytical reproducibility by allowing analyses to be 

run in the same computational environment as the original, even after several years. The 

portability attribute of containers also circumvents the challenges encountered in managing 

software dependencies and versions during installation. Unlike other virtual environments like 

virtual machines (VM) whose OS kernel is independent of the host OS, containers do not have a 

full copy of their OS kernels. They utilise the host OS kernel and are, thus, “lightweight” (Mitra-

Behura, Fiolka & Daetwyler, 2022). Additionally, their design strips off the layer of the GUI to 

conserve computing resources.  

 

Figure 11. An illustration of an isolated containerised environment encapsulating installed 

software (the inner circle) independent of its host environment (the outer circle) 

 

Singularity containers can be developed in two ways. 1) Write a set of commands in a definition 

file, the “recipe file” (Figure 12). This definition file has all the commands to set up the container 

environment, install software or even copy files to the container. This is a highly reproducible 

approach since all the ingredients for building the container are documented in the definition or 
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recipe file. However, this is a non-interactive process, and therefore, may render its development 

a to be a bit limiting. 2) The sandboxing method on the other hand is an interactive process 

where a base container (usually with only the OS) is built as a writeable directory on the host 

computer. The developer can then interactively modify the base container (install software, add 

files etc.) and distribute it as a sandbox (writeable directory) or convert it into an unwritable 

image — singularity image file (.sif). The advantage of sandboxing is the convenience of 

modifying the container as well as its interactivity; however, reproducing a container built as a 

sandbox may be a challenge if modifications done to it are not appropriately recorded. 

 

Figure 12. Sample definition file containing the commands to build a container. The code is 

annotated to describe each code section. One only needs the “Bootstrap” and “From” sections to 

build a base container. Definition files have the extension (.def). See the appendix for the 

definition file used to build the LuminexPipeline container. 

3.2.1 Building the container 

To improve reproducibility in the Luminex pipeline’s execution, I developed a Singularity 

(Kurtzer, Sochat & Bauer, 2017) container that encapsulates all the pipeline’s software and 

dependencies. Below, I describe the steps used to build this container. 

1. I developed container 1 – a sandbox with Minideb (James Westby et al., 2022) as the base 

OS from a definition file (Figure 12). Minideb is a minimalist OS based on the Debian OS 

with wide compatibility with most Linux programs. 
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singularity build --fakeroot --sandbox name_of_sandbox  path_to_definition_file 

A snippet of the command we ran to build a Singularity sandbox. 

 

2. I then installed R (R Core Team, 2021) and all LuminexPipeline-dependent R packages in 

container 1. 

3. I ran the ldd (list dynamic dependencies) command on the R executable files in 

/usr/lib/R/bin/exec/R and kept a record of all the shared library dependencies, shared object 

files and program files from the ldd command output. 

4. I recursively followed each ldd output (i.e., shared object files and library dependencies) 

with another ldd command to determine all the dependencies and dynamic links needed to 

run R, while keeping the records of each ldd output. 

5. I built container 2 – a sandbox with Minideb as the base OS from a definition file (figure 12) 

6. I then copied all the program files (installed packages), binary files and shared object files 

(libraries) recorded in steps 3 & 4 (see Appendix for the full list) from container 1 to 

container 2. The copied files are the minimally required files necessary to run R (R Core 

Team, 2021).  

7. I ran the ldconfig command to cache and link the shared libraries. 

The above-described steps are an example of a manual multi-stage build process, utilised to build 

lightweight containers. This eliminates unnecessary software and dependencies, e.g., those 

automatically downloaded during installation to facilitate the installation process, but which are 

not required to run the installed program. Thus, the multi-stage build process typically uses two 

steps: an initial or development stage where software is installed and built, and the second, or 

deployment stage, where only the minimally required components necessary for the software’s 

full operation are copied from the initial or development stage. This process is used to build 

containers with significantly smaller sizes (Huls, 2022).  

3.3 Pipelines and workflow management systems 

Workflow management systems are used to manage, scale and dispatch multiple-step 

computational analyses which are typical of Bioinformatics and other scientific computing 

disciplines. The multiple-step computational analysis is usually referred to as a pipeline or a 

workflow. In Bioinformatics, these steps usually include trimming the data, data cleaning, 

alignment to reference genomes, recalibrating quality scores, quantification etc. Manual 
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execution of each of the computational steps in a reliable and reproducible manner can, however, 

be frustrating for the analyst or researcher, especially when the analytical steps are required to be 

executed in a specific order (Jackson, Kavoussanakis & Wallace, 2021). To worsen the 

frustrations, each analytical step may often require a specific software utility for its execution. 

Workflow management systems (WMS), therefore, join together the execution of multiple-step 

analyses in an automated and reproducible manner while facilitating a seamless execution. 

WMSs also capture provenance information such that certain analytical results can be easily 

attributed to a specific pipeline (Committee on Reproducibility and Replicability in Science, the 

National Academies of Science, Engineering and Medicine, 2019a). Additionally, many WMSs 

facilitate robust pipeline execution with support for re-entry or resumption of execution from 

where an error stopped execution, and can selectively execute only parts of a pipeline, contrary 

to classical shell scripts which do not support re-entry unless explicitly defined by the authors 

(Jackson, Kavoussanakis & Wallace, 2021). Furthermore, most WMSs can automatically scale 

computational pipelines from a single core PC to a large computational resource structure like 

the cloud or compute cluster environments such as high performance computers (HPC) without 

altering the code (Koster & Rahmann, 2012; Di Tommaso et al., 2017). This is made possible by 

the support for job schedulers, e.g., PBSpro, and Slurm, in many WMSs. WMSs can further 

enhance computational reproducibility through the support for containerised computations on 

HPC clusters, which allows for easy management of numerical instability (variation in 

computational results, across HPC environments), one of the main sources of computational 

irreproducibility (Di Tommaso et al., 2017). Many WMSs have been developed to facilitate 

reproducibility in scientific computing, especially in Bioinformatics. These include the common 

workflow language (CWL) (Amstutz et al., 2016), Biopipe (Hoon et al., 2003), Nextflow (Di 

Tommaso et al., 2017), Galaxy (Hérisson et al., 2022), and Snakemake (Koster & Rahmann, 

2012). 

3.3.1 Choosing a workflow management system 

Different WMSs have been developed based on different philosophies, functionalities, and 

implementations. I aimed to select a WMS framework which can dispatch production-ready 

workflows via both parallel and serial processing, accommodates a wide variety of software and 

complex data flow dependencies (the output of an upstream process as input for a downstream 

process), allows for a wide range of input data types and allows for fixed and customisable 
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parameters as recommended by (Leipzig, 2017). Additionally, I considered other factors such as 

scalability, ease of use, installation, documentation, technical support, development, 

implementation, stability, future support and popularity in the Bioinformatics community. I 

surveyed and reviewed 16 WMS which are: Nextflow, Big data scripting, Snakemake, Python 

corral, Bioqueue, Ruffus, Common workflow language, Script of scripts, Makeflow, Canonical 

workflow framework for research, Pegasus, Kepler, Airflow, VisTrails, Workflow description 

language, Bpipe and Pipeline pilot. I selected two, Snakemake and Nextflow for prototyping 

after reviewing all 16 WMSs against the selection criteria. Prototyping involved using simple R 

scripts and dummy data to assess the WMS functionality as similarly implemented by (Jackson, 

Kavoussanakis & Wallace, 2021). Prototyping also enabled us to thoroughly test the two selected 

WMSs against some of the selection criteria that is scalability, ease of installation, ease of use, 

and ease of development. 

Table 4: Summary of steps and procedures implemented for selecting a workflow management 

system. Adapted from (Jackson, Kavoussanakis & Wallace, 2021) 

Steps Tasks 

Identify potential WMS and 

narrow down candidates 

An online survey of available WMS that are likely tailored to our 

needs. That is the ease of use, HPC support, containerisation 

support, etc. 

Review of documentation of the surveyed WMS to further assess the 

eligibility of our set criteria. 

Weekly meetings to discuss, assess and shortlist potential 

candidates. 

Assess candidates using 

prototypes 

Prototype shortlisted candidates with sample R scripts and dummy 

data to assess the functionality. 

Further, assess each candidate’s suitability for the SATBBI group 

3.4 Luminex Pipeline with Nextflow 

I developed a customised Nextflow script to automate the Luminex pipeline execution. Unlike 

many Bioinformatics workflows e.g., the nfcore pipelines (https://nf-co.re/pipelines), which 

utilise different software whose invocation is through the command line e.g., FASTQC 

(Andrews, Krueger & Segonds-Pichon, 2020), or TrimGalore (Krueger et al., 2021), the 

Luminex pipeline was implemented using only the R statistical software (R Core Team, 2021) 
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utilising several different R-based packages for data wrangling (eg. dplyr), visualisation (eg. 

ggplot2), and reporting (e.g., Rmarkdown).  

Each modularised step (e.g., imputation, cleaning, reporting) of the Luminex pipeline was 

written as a Nextflow process. A Nextflow process is “the basic processing primitive to execute 

a user script” (Seqera Labs, 2022), that is, a module of the user’s script. A Nextflow process 

(Figure 13) usually has an input block (defines input files for the process), an output block 

(defines the output of the process) and a script or shell block (defines the command or script 

executed to process the input into the output). The Input and output files in the implementation 

were defined using a customisable configuration file (Figure 14) in line with current best 

practices (Taschuk & Wilson, 2017). The script block for each process was written to invoke R 

through the command line. Thus, all the commands for executing each Nextflow process were 

invoked from the LuminexPipeline package. To streamline the processes in an automated 

manner, the output of each Nextflow process was given as the input to the next Nextflow process 

(See the Appendix for the full Nextflow script). 
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Figure 13. Illustration of the input, output, and script code blocks in an excerpt Nextflow 

process used in the Luminex pipeline 

3.4.1 Configuration and parameterisation 

The ability to generalise a pipeline to accommodate other data sets is an important component 

for achieving reproducibility with pipelines. Parameterisation allows the main pipeline script to 

be unaltered while accommodating different datasets. It also allows one to specify the compute 

resources to execute a job (e.g., number of CPUs, threads), the type of job scheduler to use for 

HPC computations, as well as the specific containers to run the job. In Nextflow, a configuration 

file named nextflow.config, in the working directory is used to specify the parameters for the 

pipeline execution, e.g., inputs, outputs, executors, and containers. I, therefore, parameterised the 

input and output files, e.g., technical replicates, and analyte reference of the Luminex pipeline 

(Nextflow script) to facilitate ease of use and generalisability.  
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Figure 14. A sample of a simple configuration file content. A user of the pipeline only needs to 

change the parameter values to process and analyse different data sets and does not need to alter the 

pipeline script. 

 

3.5 Statistical summary report 

3.5.1 Distribution of analytes 

I created an R function that returns a summary table of the minimum value, maximum value, 

mean, quartiles (1st, 2nd and 3rd), and missingness for each analyte concentration using the R 

dplyr v1.0.10 groupby() function. Minimum and maximum values were computed with the 

min() and max() base R functions. I used the base R stats v4.2 quantile() function to 

calculate the quartiles of analyte concentrations. 

I also computed measures of central tendency with the arithmetic mean, which is the average of 

all the data points. This is a good representative value of all the data points in the absence of 

extreme values (outliers). However, because the mean is sensitive to outliers, the median (the 2nd 

quartile) is a good alternative for a representative value of the data points. I calculated the means 

using the base R mean() function. 

I provided a graphical alternative for visualising the summary of the data using boxplots and 

histograms. Visualisation helps with providing a generalised idea of the distribution of the data. 

Boxplots visualise the distribution by indicating the positions of the minimum value (below 

which data points are classified as extreme values), the 1st quartile, the 2nd quartile (median), the 

3rd quartile and the maximum value (above which data points are classified as outliers). A 

histogram visualises the distribution by creating bins (range of numbers) and representing the 

frequency of the bins with a bar. A histogram can give a good hint of the distribution of the data. 

I used the ggplot2 package for visualising the distributions. 
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3.5.2 Outliers  

An outlier is defined as an observation in a sample that differs significantly from other 

observations in the sample (Grubbs, 1969). Thus, for unidimensional data, they are the observed 

values at the extreme tails of the distribution of the underlying data (Salgado et al., 2016). An 

outlier may be observed due to one of two reasons. First, it could be a manifestation of the 

inherent random variation in the sample — in which case, the outlier observations should be 

maintained and treated or processed equally as the other sample observations. Second, it could be 

a manifestation of errors in the data collection process, e.g., instrument calibration errors, 

pipetting errors, or data entry errors. This situation warrants further investigation to determine 

the reason for the gross deviation. Based on the outcome of the investigation and the 

experimental context, outlier observations may be corrected and retained or may be removed 

from the data. Generally, the processing of outliers and the extent to which they are incorporated 

in an analysis should be reported (Grubbs, 1969). There are many methods for detecting outlying 

observations. 

In my statistical summary report, I employed three methods for reporting outliers; The z – 

scores, modified z-score and Tukey’s method. The z-score test transforms the data points as a 

scale of reference to the number of standard deviations away from the mean. The z-score test 

assumes the data are normally distributed. I computed the z-scored test using the equation: 

𝑧𝑖 = 
𝑥𝑖−𝑥̅

𝑠
 

Where 𝑥̅ is the arithmetic mean and s is the standard deviation of the data. 

I considered 𝑧𝑖 values >= 3 as outliers. Based on the assumption of a normal distribution, 3 

standard deviations away from the mean (0) of a standard normal curve will be at the extreme 

tails (outliers), beyond 99.7% of the data. 

Since the arithmetic mean used in the calculation of z-scores is sensitive to extreme values, the 

modified z-score method addresses this challenge by using the median and the median absolute 

deviation (MAD). This approach calculates the variation in terms of the MAD away from the 

median. The modified z-score also assumes that the underlying data are normally distributed 

(Salgado et al., 2016). I computed the modified z-score test using the equation: 

𝑀𝑖=
0.6745(𝑥𝑖−𝑥̃)

𝑀𝐴𝐷
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where 𝑥̃ is the median and 𝑀𝐴𝐷 =  𝑚𝑒𝑑𝑖𝑎𝑛{|𝑥𝑖 − 𝑥̃|}. We considered |𝑀𝑖| values >= 3.5 as 

outliers. 

Tukey’s method classifies outliers using a specific distance below the first quartile, Q1 (first 

25% of the ordered data points) and above the third quartile, Q3 (last 25% of the ordered data 

points, also known as the 75th percentile). The interquartile range (IQR) is the distance between 

Q1 and Q3. Inner fences are data points lying 1.5*IQR (1.5 multiplied by IQR) below Q1 and 

above Q3. Outer fences are demarcated with data points lying 3*IQR below Q1 and above Q3. 

Data points between the inner and outer fences are classified as possible outliers whereas those 

above the outer fences are classified as probable outliers (Salgado et al., 2016).  

In the statistical summary report, I used the probable outliers of Tukey’s method to identify 

outliers. Thus, I classified data points below or above 3*IQR as outliers. I extracted the number 

of outliers detected for each outlier detection method in a table. 

These methods of outlier detection are meant to inform the analyst of the possible outliers in the 

data. 

3.5.3 Correlation 

Correlation measures the association between variables. It answers the question of whether 

increasing one variable increases, decreases or does not have any relationship with another 

variable. The coefficients of correlation are between -1 and 1. Coefficients close to -1 indicate a 

strong negative correlation (opposite association), coefficients close to 0 are indicative of a weak 

association while correlation coefficients close to 1 indicate a strong positive association. 

Correlation can be measured in three different methods: the Pearson, Spearman, and Kendall 

correlation. Pearson correlation is a parametric method which is dependent on the distribution of 

the underlying data. The Spearman and Kendall methods are rank-based methods independent of 

the distribution of the underlying data. 

To compute the associations between analytes in the statistical summary report, I used the 

Spearman correlation method which is a generally more robust method for computing the 

correlation of variables whose underlying distributions are unknown. I used functions in the 

Hmisc v4.7 package in R to compute a correlation matrix (correlation between all analytes). I 

visualised the associations between all analytes in a correlogram using the corrplot() 

function from the corrplot v0.92 package in R. 
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3.5.4 Test of non-normality  

Many statistical tests such as the t-test assume a normal distribution of the residuals of the 

underlying data. Residuals, also known as errors, are the differences between the observed and 

predicted values in a regression analysis. More simply, residuals are the differences between the 

data points and the mean of univariable data. Thus, to ensure that certain statistical assumptions 

are not violated, it is useful to assess the normality of the residuals of the underlying data before 

the main analysis. I, therefore, utilised three methods of assessment of normality in the statistical 

summary report. These methods are numerical tests (kurtosis, skewness, the Shapiro-Francia 

test) and a graphical test (quantile-quantile plot). 

Kurtosis is a metric for measuring how extreme the tails of a distribution are relative to a normal 

distribution. Datasets with long or heavy tails are typically known of being highly kurtotic or 

having many outliers, whereas the opposite is true for light-tailed distributions. A standard 

normal distribution has a kurtosis of 3 (NIST/SEMATECH, 2012). This value is used as a 

reference for comparing the tails of distributions relative to a standard normal distribution. I 

computed the excess kurtosis using the Kurt() function from the DescTools v0.99.46 

package in R. 

Skewness measures the symmetry of distribution relative to a normal distribution. A symmetrical 

distribution has the left and the right sides of the distribution as divided by the centre point (the 

mean value for standard normal distribution) looking the same. A standard normal distribution 

has a skewness of zero. Negative values of skewness indicate a left-skewed distribution, i.e., 

heavy tails on the left of the distribution whereas positive skewness indicates skewness to the 

right, i.e., heavy tails on the right of the distribution. I computed skewness using the Skew() 

function from the DescTools v0.99.46 package in R. 

Shapiro-Francia test is one of the numerical tests for assessment of non-normality, the test 

statistic, W’, is the “square of the Pearson correlation coefficient between the ordered sample 

values and the expected standard normal order statistics (‘normal scores’)” (Royston, 1993). 

Small W’ values indicate non-normality. An associated p-value tests the null hypothesis that the 

data are normally distributed. I computed the Shapiro-Francia test for the statistical summary 

report using the DescTools::ShapiroFranciaTest() function in R. 

Quantile-Quantile (q-q) plot is a graphical approach (a scatter plot) for assessing the normality of 

the residuals of a distribution. A q-q plot orders the observed data in ascending order and plots its 
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quantiles against the ordered quantiles computed from a theoretical normal distribution (Clay 

Ford, 2015). I generated q-q plots for statistical summaries using the ggplot() and 

stat_qq() functions from the ggplot2 v3.6.6 R package. 

3.5.5 Comparison between groups 

I performed hypothesis tests to determine whether analyte concentrations are likely from the 

same distributions between certain groups e.g., Treatment vs Control. I used the Wilcoxon rank 

sum test, also known as the Mann-Whitney test employing the wilcox.test() function from 

the base R stats package for this test. This is a non-parametric alternative to the two-sample t-

test. This test assigns ranks to the ordered (smallest to the largest) observations. That is, the 

smallest observation or value is assigned the least rank while the largest observation or value is 

assigned the highest rank. Tied observations are assigned the average of the ranks (Wild & 

Seber, 1999). The Wilcoxon test is based on the ranks of all combined sample observations. The 

test statistic is the sum of ranks of the ordered observation in one sample of the data. 

3.5.6 Shiny app  

Shiny (Chang et al., 2022) is an R package and framework for creating interactive web 

applications and dashboards in R without any prior knowledge of JavaScript, CSS or HTML 

(Wickham, 2021). R shiny enables interactivity of the analyses by utilising reactive 

programming which automatically updates code outputs when its dependencies (inputs) are 

altered. The interactive feature of Shiny applications can be useful for reporting results and 

allows a user to easily sift through a large volume of report information to a specific portion of 

interest. This interactivity can facilitate and fast-track exploratory data analysis. To utilise the 

interactivity of R Shiny, I developed a Shiny application to report the statistical summaries and 

facilitate exploratory data analysis. I accomplished this by using the R Shiny V1.7.2 package 

(Chang et al., 2022) in R.  

3.6 Datasets 

In addition to unit testing, the pipeline was tested with real datasets. These datasets were 

collected from ongoing research by the SUN-IRG. The datasets included clinical data and 

participant data with a unique ID serving as a primary key to link the two data sets. The Luminex 

data had 45 distinct analytes with concentration values and fluorescent intensity values, dilution 
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values, plate numbers etc. The participant data had information on sex, and group (control or 

treatment). 

3.7 Materials and tools 

3.7.1 Hardware and Operating system  

Code was written with a Dell desktop computer with computing resources of intel core i7 (octa-

core processor), 16GB RAM, and 1TB storage. The operating system used was Kubuntu V22.04, 

a flavour of the Ubuntu OS.  

R package development was done on a Linux server running Ubuntu 22.04 using Rstudio server 

V22.02.3-492. 

3.7.2 List of tools and packages 

The following tools and software packages were used for the project: 

Draw (https://draw.io/) 

Nextflow V22.10.1 (https://www.nextflow.io/) 

R packages (corrplot, DescTools, dplyr, english, ggplot2, gsubfn, Hmisc, lubridate, magrittr, 

minpack.lm, msm, plyr, purrr, readr, reshape, stringr, tibble, tidyr, drLumi) 

R V4.2 (https://cran.r-project.org/) 

Rstudio IDE V22.07.2-576 

Rstudio server V22.02.3-492 

Singularity V3.5.3 (https://docs.sylabs.io/guides/3.5/user-guide/introduction.html) 

Visual Studio Code IDE V1.7.2 

Zotero (https://www.zotero.org/ ) 
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CHAPTER 4: RESULTS 

4.1 Improvements to the R LuminexPipeline package  

In my MSc research project, I focused on making important improvements to the R 

LuminexPipeline package.  

The LuminexPipeline package can be installed by either of the following two methods. 

The first option is to use the R environment and the install_github() function from the 

devtools R package (Wickham, Hester, et al., 2022). The parameter or argument to this function 

is the GitHub package package repository, “Asimeng/LuminexPipeline”. Using this 

method requires the user to have the devtools R package installed. The following code snippet 

can be used to install the package. 

devtools::install_github(“Asimeng/LuminexPipeline”) 

The second option to install the package is to do it via the Linux command line by using the 

already-built source file (compressed source code). This file is available for download at 

https://github.com/Asimeng/LuminexPipeline/blob/main/inst/package_source_code/LuminexPip

eline.tar.gz. Once downloaded, package installation can be initiated by executing the following 

command on the command line.  

R CMD INSTALL LuminexPipeline.tar.gz 

Note: This code snippet assumes that the binary package file is in the current working directory. 

One will need to provide the full path to the file if working from a different directory. 

Also, a different installation alternative with the built source file can be done in R with the 

following code snippet. 

install.packages(“path_to_source_file”,repos=NULL,type=“source”) 

The LuminexPipeline R package is publicly available at 

https://github.com/Asimeng/LuminexPipeline and its terms of use are licenced with the MIT 

license, which is one of the major open-source licenses. 
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Figure 15. The general terms of use and permissions granted by the MIT license.   

 

4.1.1 Package Documentation 

The major package functions are documented with descriptions, usage, and examples to facilitate 

ease of use (Figure 16). This is in line with current best practices to contribute to achieving 

reproducibility.  
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Figure 16. An example of documentation for one of the functions in the LuminexPipeline package 

 

 

4.1.2 Unit testing  

As part of best package development practices, the implementation of unit testing helped me to 

improve the LuminexPipeline package’s robustness. Thus, for example, in the instance of bad 

input, the package will not break with a cryptic error message but will instead generate a useful 

error message to help with debugging. Unit testing also helped me improve the package’s 

numerical accuracy by testing its functions to return the expected output and results. 
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Through unit testing, I improved the robustness of our functions by refactoring the code as well 

as introducing several if statements to robustly handle unexpected inputs –generation of useful 

error or warning messages. 

4.1.3 Quality control 

I used functions available in the drLumi R package (Sanz et al., 2017), to generate standard 

curves from standard dilution concentrations (Figure 17) to estimate the unknown 

concentrations. The LuminexPipeline package now has the full curve calibration utility of the 

drLumi package and can therefore provide the goodness of fit metrics and visualisation for 

quality assessment. 

 
Figure 17. An example of a standard curve generated from the LuminexPipeline package using 

functions borrowed from the drLumi package. This curve attained convergence with the 5-

parameter logistic curve function and it is plotted ignoring background noise. 

 

4.2 Containerisation  

The use of a containerised runtime environment in the pipeline execution significantly improves 

analytical reproducibility in Luminex data processing by addressing the challenge of numerical 

instability arising from software versioning and different computational environments. 

Furthermore, the implementation of containerised analyses fosters reproducibility through the 
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recording of provenance information and the portability and ease of sharing of the containerised 

environment to have results easily reproduced by an independent group or researcher. The 

containerised runtime environment runs on the bitnami/minideb 

(https://github.com/bitnami/minideb) OS image, which is a lightweight version of Debian OS. 

The deployed environment with all the necessary software needed to run the Luminex pipeline is 

available as a Singularity image file (.sif) — an easy-to-distribute file. To foster transparency, I 

provide the definition file, so called recipe file, to reproduce the container at 

https://github.com/Asimeng/LuminexPipeline_container. 

4.3 Pipelines and workflow management systems (WMS) 

The selection of a pipeline framework or WMS was to have one consistent framework to be used 

for the implementation of current and ongoing pipeline developments as well as for future 

pipeline development tasks undertaken at the SATBBI. Because of this, I selected a WMS 

framework that is highly generalisable to different programming languages and data file types. 

Also, I selected the WMS framework that is best meets our selection criteria, which were easy to 

install, use, develop and implement as well as requires minimal programming expertise. 

Based on the review of existing WMSs, I selected two WMS, namely Nextflow and Snakemake, 

for side-by-side comparison (Table 5). I chose the Nextflow WMS (Di Tommaso et al., 2017) to 

be used as the LuminexPipeline framework. Below, I summarise the findings in prototyping and 

reviewing the two WMS. 

 

Table 5: Summary of comparison of shortlisted WMS — Nextflow & Snakemake 

Evaluation criteria Nextflow Snakemake 

Log files Yes No 

Dry-run No Yes 

Citations (wide use) 980* 1861* 

License  Apache 2.0 (open source) MIT (open source) 

Re-entry Yes Yes 

Support for containers Yes Yes 

Support for HPC and Cloud Yes Yes 

Implementation Dataflow programming GNU Make build system 

Workflow parallelisation Yes Yes 

*Citations assessed using Google Scholar (https://scholar.google.com/) on September 2022 
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4.3.1 Implementation & ease of use 

I found Nextflow to be fairly straightforward with its execution of steps or processes as 

compared to Snakemake. Nextflow implements a data flow programming paradigm (from top to 

bottom) where executions automatically start with the availability of input data through input 

data channels (Di Tommaso et al., 2017). I favoured this approach to the GNU Make style 

implementation of Snakemake which pre-computes all workflow dependencies starting from the 

expected output file(s) through to the input file(s) in a directed acyclic graph DAG. In other 

words, Snakemake executes its tasks by first mapping out all dependencies or rules that lead to 

the generation of the specified output file — from the bottom up to the input data. If a dependent 

file is absent, Snakemake searches for defined tasks or rules that creates the file. Knowledge of 

this implementation is needed to guide the scripting of snakefiles (a Snakemake script). Since I 

had no prior GNU Make knowledge, I found this a bit confusing initially during prototyping in 

Snakemake, unlike Nextflow which was more intuitive and straightforward. Furthermore, 

Nextflow’s process execution is done in an isolated sub-directory which collects metadata of the 

execution process as log files — which is useful for debugging. This feature is absent in 

Snakemake. Both systems support workflow parallelisation. Snakemake has a “dry-run” feature 

that displays the commands that would be executed and can verify that input files are present 

without actually executing them (Jackson, Kavoussanakis & Wallace, 2021). This feature is 

absent in Nextflow. Both systems allow re-entrancy (resumption of execution after the 

unexpected exit of the job). Both WMSs also allow external scripts, e.g., Python, R, to run. 

4.3.2 Installation 

The major dependency required for installing Nextflow is Java ≥ 11 and BASH ≥ 3.2. Once these 

requirements are met, Nextflow can easily be installed and run on any “POSIX compliant” 

system (e.g., Solaris, Linux) as well as on Windows via the Windows Subsystem for Linux 

(WSL). Snakemake, on the other hand, requires Python to run and its installation can seamlessly 

be done with the Conda or Mamba package managers. However, these package managers can be 

challenging to deal with, especially for novice users. I found both WMS very easy to install. 

However, I preferred Nextflow because its installation is not natively bound or attached to the 

Conda or Mamba package managers, which sometimes can be challenging to deal with.  
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4.3.3 Wide use  

I found both WMSs to be very widely used in the Bioinformatics community. Although 

Snakemake has more citations, probably because it is older, Nextflow is equally widely used and 

used by major research institutions. For example, the Fred Hutchinson Cancer Center, a world-

leading biomedical research centre has adopted Nextflow as its workflow management, a strong 

indication of its high regard in the Bioinformatics community. 

4.3.4 Scalability 

Both systems can scale well, running workflows on a variety of hardware from a single core 

computer to HPC or cloud environments without changing the workflow script. 

4.3.4 Licensing  

Snakemake uses an MIT open-source license, whereas Apache 2.0 open-source license is used 

for Nextflow. These allow for the free use, development, and distribution of workflows with both 

workflow management systems. 

4.3.5 Future support 

Nextflow has a community of Bioinformatics pipeline creators, the nf-core. This growing 

community is a good indication of future stability and future support for Nextflow. Also, its nf-

core pipelines are free and open source (https://nf-co.re/pipelines) and can be easily adapted and 

tailored to suit a researcher’s needs. Additionally, they can help reduce the learning curve of 

Nextflow. Snakemake on the other hand has the Snakemake workflow catalogue 

(https://snakemake.github.io/snakemake-workflow-catalog/) with standardised Snakemake 

workflows. Under this criterion, I found both Snakemake and Nextflow to have great prospects 

for future support and stability with their increasing popularity and citations, see table 2. 

4.4 Luminex Pipeline with Nextflow  

Here I describe the running of the LuminexPipeline in the Nextflow framework. The Luminex 

pipeline execution is triggered by running the Nextflow script (see Appendix). Before executing 

the Nextflow script, the parameters for input files, instrument names, analyte references, and the 

directory of the container should be set up in the pipeline’s configuration file. Once the pipeline 

is dispatched with Nextflow, processing and execution are done in the container to achieve 

numerical stability and reproducibility. Within the container are all software (including the 
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LuminexPipeline R package) needed to run the analysis. The outputs of the execution are .rds 

files and an HTML or pdf report file written to a specified output directory (Figure 18). The 

pipeline can be automatically dispatched by running the following command on the command 

line. 

nextflow run path/to/nextflow/script 

Alternatively, it can be dispatched by setting the parameter values alongside the command to run 

the Nextflow script on the command line. 

 
 

Figure 18. Schematic flow of the LuminexPipeline execution. The pipeline is dispatched with the 

Nextflow workflow management system for execution in a Singularity container. The end of 

pipeline execution generates the pipeline outputs saved on the host computer. 

4.5 Inclusion of statistical summary reports to the LuminexPipeline 

One of the most important new functions to the LuminexPipeline that I developed was to 

program the pipeline to generate different types of statistical summary reports. Such reports 

would help the investigators to assess the quality of the multiplex ELISA data quickly and plan 

future experiments. 
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4.5.1 Distribution of analytes 

One useful summary report would be to see the distribution of the concentrations of the analytes 

studied by multiplex ELISA, In Table 7, I give an example of the pipeline outputs as part of the 

statistical summary report, after the pipeline’s execution. Here, one can get information on the 

range of each analyte’s distribution represented with the min (minimum) and max (maximum) 

columns. Information on the central tendency, the representative value of the distribution, can be 

assessed with the mean and the q2 (median) labelled columns. Measures of variability or spread 

of each analyte’s concentrations can be observed with the quartile columns, q1 (first quartile), q2 

(second quartile), and q3 (third quartile). Missingness can be assessed with the NAs (number of 

missing values), available_obs (available observations) and the total_obs (total observations) 

columns.  
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Table 6. Statistical summary of seven analytes generated from the LuminexPipeline package. From this output, information regarding spread, 

central tendency and missingness can be assessed 

       Observations (n) 

analyte min max mean q1 q2 q3 NAs Available Total 

CCL1/I-309 62 170,579 3,539 843 1,922 3,792 2 576 578 

ECM1 55 6,316 1,863 1,239 1,728 2,317 4 574 578 

Ferritin 25 179,740 19,688 4,275 8,230 19,149 0 578 578 

Fibrinogen 15 5,984,100 2,015,433 1,580,850 1,898,650 2,280,525 4 574 578 

Haptoglobin 346 25,811 7361 4,589 7,036 9,636 4 574 578 

IL-10 13 27,088 3620 1,364 2,777 4,744 1 576 577 

 

The distribution of analyte concentrations can also be visualised in a histogram (Figure 19). The histograms are superimposed with a 

density function to describe the shape of the distribution of analyte concentrations and to also inform normality. Each analyte is 

represented in a faceted plot. The y-axis is the probability density function whereas the x-axis is the log-transformed analyte 

concentrations. 

The R Shiny app allows for visualising the distribution after a power transformation (box-cox transformation). 
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Figure 19: Distribution of analytes concentrations in a histogram  

4.5.2 Reporting outliers 

Another feature that I added to the LuminexPipeline is to have it generate reports on the different 

outlier detection methods as a percentage of the number of outliers detected (Table 8). The 

analyte column represents all the analytes, and the modified z-score outlier detection method is 

reported in the mod_z(%) column. The z_score detection method is represented in the 

z_score(%) column. Tukey’s method of outlier detection is represented in the Tukey(%) column 

and the total number of observations are reported in the n column. 

 

Table 7. Report on the different outlier detection methods 

analyte mod_z(%) z_score(%) Tukey(%) n 

CCL1/I-309 6.944 0.868 0.000 576 

ECM1 1.394 1.394 0.174 574 

Ferritin 14.533 3.979 0.173 578 
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Fibrinogen 4.355 2.613 0.697 574 

Haptoglobin 0.174 0.523 0.174 574 

IL-10 3.125 1.910 0.174 576 

SAA 14.458 1.205 0.904 332 

 

4.5.3 Correlation between different analytes 

I also considered it important to add to the LuminexPipeline a function to report the relationships 

using Spearman correlation between analytes in the statistical summary report (Table 9). Here, 

column names, analyte_1 and analyte_2 are the paired analytes whose relationships are being 

computed. The Spearman correlation coefficient of each of the relationships is displayed in the 

column labelled ρ. The p-value of the relationship is presented in the p.value column. 

Table 8. Correlation between analytes in a flattened correlation matrix 

analyte_1 analyte_2 ρ p.value 

SAA Haptoglobin 0.419 9.786e-12 

IL-10 Ferritin 0.327 1.754e-14 

Fibrinogen Ferritin 0.320 5.684e-14 

SDF-1 alpha CCL1/I-309 0.303 1.082e-10 

Fibrinogen Haptoglobin 0.299 2.802e-13 

SAP Haptoglobin 0.283 7.229e-11 

Fibrinogen IL-10 0.276 2.383e-11 

 

Visualisation of the analyte relationships was done in a correlogram (Figure 20). Figure 20 

illustrates the upper triangle of the correlation matrix. The deep blue diagonal dots represent self-

correlation between the same analytes. Blue dots are indicative of a positive association, whereas 

the light brown dots represent negative correlations. The strengths of the associations are 

reflective of the sizes of the dots (both blue and light brown). The larger the dots, the stronger the 

association and vice versa. Furthermore, the intensity of the colour of the dots also reflects the 

strength of the association, with deep-coloured dots representing a strong association and vice 
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versa. The ladder on the far right of the correlogram is a legend mapping the colour of the dots to 

the correlation coefficients representing the strength of the association. 

 

Figure 20: Visualisation of all associations in a correlogram. For details, see text. 

 

4.5.4 Test of deviation from normality 

4.5.4.1 Numerical methods 

I included testing for normality in the statistical report summaries as another new feature in the 

LuminexPipeline (Table 10). Here, the specific analytes being tested for non-normality are in the 

analyte column. The excess kurtosis is reported in the kurtosis column, and the skewness of each 

analyte’s distribution is reported in the skewness column, The test statistics, W’, of the Shapiro-

Francia test, are reported in the Shapiro.Francia column. Finally, the p-values associated with 

the Shapiro-Francia test are reported in the p.value column. 
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Table 9. Report of test of non-normality with the tests of excess kurtosis, skewness and the Shapiro-

Francia test with its associated p-value 

analyte kurtosis skewness Shapiro.Francia p_value 

CCL1/I-309 230.873 13.616 0.239 2.6e-37 

ECM1 2.113 1.132 0.937 3.1e-13 

Ferritin 7.810 2.785 2.599 6.4e-30 

Fibrinogen 4.793 1.686 0.876 1.8e-18 

Haptoglobin 0.779 0.704 0.968 5.8e-09 

IL-10 11.066 2.697 0.763 2.1e-24 

SAA 109.604 10.115 0.108 2.9e-31 

 

4.5.4.2 Graphical methods (q-q plots) 

I also incorporated generation of q-q plots to the LuminexPipeline to further assess normality of 

the data. The results of nine analytes in a q-q plot are displayed in Figure 21. The quantiles of the 

observed concentrations of analytes are represented on the y-axis while the x-axis represents the 

quantiles of a theoretical normal distribution. 

 

Figure 21: A faceted q-q plot of nine analytes to visually assess non-normality. The image 

is output as part of the Luminex pipeline’s statistical summary report. 
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4.5.5 Comparison between study groups 

Another useful feature in an analysis pipeline would be a preliminary analysis of comparing the 

results of different study groups. To achieve this, I implemented a function in the 

LuminexPipeline to generate a table of results after testing for differences between different 

study groups (e.g., treatment vs control). The results of this comparison are shown in the 

statistical summary report (Table 11). The analytes being compared are displayed in the column 

labelled analyte. The p-value of the Wilcoxon-rank sum test is given in the p.value labelled 

column and the test statistic of the Wilcoxon-rank sum test is given in the column labelled 

w.statistic. 

Table 10. An output table of the Wilcoxon rank sum test between treated and untreated groups, generated 

from the LuminexPipeline package 

analyte p.value w.statistic 

CCL1/I-309 0.382 43,201 

ECM1 0.327 39,214 

Ferritin 0.142 44,689 

Fibrinogen 0.458 39,693 

Haptoglobin 0.595 42,217 

IL-10 0.658 42,338 

SAA 0.242 14,750 

 

4.5.6 Shiny app 

Another improvement I implemented for the statistical analyses in the LuminexPipeline included 

using the R Shiny LuminexApp. This function is useful for observing the distributions of the 

different analytes, determining the relationships between different analytes, and picking up 

general patterns in the data for further downstream analysis. The current version of the ShinyApp 

allows one to upload processed Luminex data (data output of pipeline) and explore certain 

statistical summaries: correlation (Pearson and Spearman), effects of Box-Cox and log 

transformation on analyte concentration as well as some visualisation (box plot, q-q plot and 

histograms). For training purposes, there is existing test data to help explore the functionality of 

the app and learn to use it effectively. 
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The current version of the Luminex ShinyApp is hosted on shinyapps.io and can be assessed 

with the link: https://asimeng.shinyapps.io/luminex_app/. The application code is also freely 

available on GitHub: https://github.com/Asimeng/LuminexPipeline_shinyApp .
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CHAPTER 5: DISCUSSION 

5.1 The LuminexPipeline and reproducibility 

There has been a tremendous uptake of interest recently in making scientific methods and 

processes more open, rigorous, and reproducible. This is in response to addressing the current 

reproducibility crisis in science (Ioannidis, 2005; Baker, 2016) which, if not addressed may have 

grave implications on scientific research translation into mainstream use and may even dent 

public trust in science. The reproducibility crisis has necessitated an unprecedented demand for 

rigour, transparency, verification and reproducibility of scientific methods and results which are 

being enforced by all stakeholders of science (e.g., funders, publishers, researchers, and research 

institutions). For example, many funders now require that all research data, code and other tools 

are made publicly available to facilitate reproducibility, transparency, rigour and verification of 

results and to expedite scientific discovery (Committee on Realizing Opportunities for Advanced 

and Automated Workflows in Scientific Research, 2022).  

In the wave of the current reproducibility crisis, which is also prominent in the Luminex data 

processing and analyses, my MSc work has contributed to attaining reproducible methods and 

results in this domain. I have extended the robustness, reproducibility and utility of the 

LuminexPipeline, an R-based pipeline, which researchers can use to improve the reproducibility 

of Luminex data processing and analyses. Reproducibility in scientific computing demands more 

than just sharing data and code. In this regard, first, the LuminexPipeline’s implementation was 

extended using an automated WMS to automate all data processing and analytical steps in the 

pipeline. This is an important utility to help achieve consistency and attain reproducibility of 

analytical results by minimising human intervention, a major source of variation and errors in 

multiple-step data processing and analyses. The use of an automated WMS also helps to improve 

reproducibility through the ability to keep records of provenance information (all data processing 

steps) to allow analytical results to be traced back to their specific analytical pipeline. Second, I 

extended the reusability of code by incorporating and compiling newly written R functions 

together with existing functions into an R package (LuminexPipeline package). Reusability of 

code can greatly improve reproducibility, especially in the context where repetitive tasks are 

applied to different data sets. Third, I improved the robustness of the pipeline through automated 
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unit testing. Unit testing is essential to improve the code structure and to efficiently handle errors 

(useful error messages) for ease of use. Fourth, I extended the pipeline’s reproducibility by 

developing an isolated runtime environment (containerised environment) for the pipeline’s 

execution. The use of containerised environments can greatly improve numerical stability during 

data processing and analyses by evading the impacts of variation in software versions and 

computational environments. For example, a common situation is that one’s code does not work 

on a different computer. Containerisation also significantly promotes reproducibility by 

facilitating the publishing and sharing of analytical runtime environments, code or data alongside 

research findings.  

Aside from attaining reproducibility of Luminex data processing and analyses, the pipeline 

development and extension procedures aimed at developing a robust utility, a program that runs 

on computers not owned by its developer and that can easily be used by other individuals other 

than the developer (Taschuk & Wilson, 2017). My work, therefore, utilised current best practices 

to develop a robust and reproducible pipeline in line with most of the (Taschuk & Wilson, 2017) 

ten rules for developing robust research software. Thus, when implementing the new functions to 

the pipeline I addressed the following points 1) there is version control during the development 

process with Git and Github; 2) good documentation practices (utilised Roxygen notes for 

package documentation); 3) unit testing and inclusion of test data set for users’ exploration; 4) 

avoiding hard-coding file paths in the code (utilised configuration files with parameters); 5) 

avoiding root privileges for installation (the pipeline can be installed and run without root 

privileges); and 6) and ease of installation (pipeline can easily be setup and dispatched with just a 

single line of code on the command line). 

5.2 Statistical summary extension 

One of the important enhancements that I implemented in the LuminexPipeline was to include 

statistical summaries. Statistical summaries are important to provide general information about 

variables in the data and to examine relationships between variables. They are also useful for 

exploratory analyses, so that one can have a general idea of the spread and variation and the 

symmetry of the data by simply looking at the minimum value, the median and the maximum 

value. 

Quartiles are three boundary points that divide a set of ordered data points into four equal parts. 

That is, the first quartile demarcates the first 25% of the data points. Thus, a 1st quartile value of 
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45 indicates that 25% of the data points are less than or equal to 45. Half (50%) of the data points 

are demarcated by the second quartile, which is also the median value. The 3rd quartile, also the 

75% percentile indicates the third quarter of the data points. Assessing the quartiles can give a 

good indication of the spread or dispersion in the data. Additionally, the minimum and maximum 

values are good indications of the spread. From these values, the range can be computed as the 

maximum minus the minimum values. 

Outliers are extreme data points or values that can uncover measurement errors especially when 

the observed data points are expected to be in a specific range. On the other hand, they can be a 

revelation of very interesting results. One of the methods of dealing with outliers is trimming and 

removing them. Trimming is usually done when the observed data are not in the expected range, 

and it is not possible to collect additional data as a replacement. When one cannot ascertain that 

observed values are a result of measurement errors, it is usually not recommended to remove 

outlying observations (Salgado et al., 2016). One of the statistical methods for dealing with such 

situations is winsorisation (Dixon & Yuen, 1974) where extreme values are pulled towards the 

centre of the data while maintaining the order of the data points. For example, the largest 

extreme value remains the largest value after winsorisation and the second largest value remains 

the second largest value, in that order. 

q-q plots are graphical methods for assessing non-normality. When the data points of a q-q plot 

are evenly aligned in a straight diagonal line, the interpretation is that the residuals of the input 

data are normally distributed, see figure 22. A q-q plot may also reveal skewness in the data 

when the scatter points are curved instead of aligning on a straight line. It is noteworthy that, q-q 

plots are subjective means of assessment of non-normality and therefore, their interpretation 

should be subjected to expert opinion. Despite their subjective interpretation, q-q plots can prove 

useful when numerical methods of assessment of non-normality are oversensitive or under 

sensitive (Mishra et al., 2019). 

Numerical alternatives for assessing non-normality are, for example, the Shapiro-Wilk, Shapiro-

Francia and Kolmogorov-Smirnoff tests (Arsenault, 2020). The Shapiro-Wilk test, for example, 

has been shown to have similar overall power in comparison to the Shapiro-Francia test 

(Royston, 1993). While both have approximately the same power, the Shapiro-Francia test is 

relatively easier to compute because it only requires the expected ordered normal scores for its 

computation rather than certain special coefficients used by the Shapiro-Wilk test (Royston, 
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1983). Both the Shapiro-Wilk and Shapiro-Francia test can compute their test statistic and 

respective p-values on samples of similar sizes in R (3-5000 vs 5-5000). I, therefore, use the 

Shapiro-Francia test for the numerical tests of non-normality because of its easy computation and 

power. However, unlike the Kolmogorov-Smirnoff test, the Shapiro-Francia and Shapiro-Wilk 

tests compare sample data to only a standard distribution and do not allow one to compare two 

samples (Arsenault, 2020). 

 

Figure 22: An example of a fairly normal distribution of residuals on a q-q plot (A). Plot (B) is an 

example of a non-normally distributed residuals on a q-q plot 

 

Since we cannot determine a priori, the underlying distribution of analytes, the two-sample t-test 

may not be appropriate for hypotheses testing because it assumes normality of the residuals of 

the underlying distributions (which may not always be the case). The Wilcoxon rank sum test, on 

the other hand, is a rank-based and non-parametric alternative to the two-sample t-test, which 

makes no assumptions on the distribution of the underlying data. Its advantage is that it is less 

sensitive to outliers compared to the two-sample t-test (Wild & Seber, 1999) and, it is also 
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asymptotically similar to the t-test and therefore has a similar statistical power. However, the 

power of the Wilcoxon rank sum test is lowered when there are ties in the data. The 

Interpretation of the Wilcoxon rank sum test statistic and p-value centres on whether the two 

samples being tested were drawn from the same distributions. This test does not test for the 

median difference between the two samples unless the two samples are unimodal or skewed in 

the same direction (Wild & Seber, 1999). 

I computed only the Spearman correlation between analytes in my statistical summary report 

because, unlike the Pearson correlation, which assumes the distribution of analytes to be 

normally distributed (which is usually not the case for certain analytes), the Spearman correlation 

test makes no such assumptions and uses a rank-based approach in computing its coefficients. 

This is a generally robust approach to computing associations in both continuous and ordinal 

data (Pearson correlation tests applies to only continuous data). Additionally, the coefficient of 

Pearson correlation is a measure of only the strength of the linear relationship between two 

variables whereas the Spearman correlation coefficient is a measure of the monotonic 

relationship between two variables. Thus, the rate of increase or decrease in the relationship is 

not necessarily always constant as is assumed for the linear relationship measured by the Pearson 

correlation (Ramzai, 2021). However, in the complementary Shiny app (for exploratory 

analysis), one can compute both the Pearson and Spearman correlation. During the interpretation 

of correlation results, it is important to note that correlation does not necessarily imply causation 

(Rohrer, 2018). 

Since Luminex data have an inherently large variance, one of the methods of dealing with this 

challenge is transformation. Transformation can draw extreme data points closer to the centre, 

significantly reduce noise and transform non-normally distributed data to be somewhat normal. 

However, the performance of different transformation methods may vary. I, therefore, provide 

the utility to explore the effects of transforming analyte distributions in the Shiny app. This 

utility involves the use of the log (Feng et al., 2014) or Box-Cox transformation (Sakia, 1992) to 

visualise the transformation effects of analyte distributions in a q-q plot, histogram, or box plot. 

However, this utility should be used for only exploratory purposes because of the risk of 

overfitting in downstream analysis.  
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5.3 Containerisation 

There are different types of software to build containerised environments. Docker (Rad, Bhatti & 

Ahmadi, 2017) is the most widely used. However, executing Docker containers requires root 

privileges which is a major challenge for use on shared computing systems like HPC. Docker is, 

therefore, discouraged from being used on HPC environments, because of the risk of 

compromising other users’ data with root privileges. To run containerised workflows on the 

HPC, a suitable alternative, Singularity (Kurtzer, Sochat & Bauer, 2017) is the popular go-to 

option. Additionally, Singularity can convert and utilise Docker images. I, therefore, developed 

the containerised LuminexPipeline with Singularity, which solves to accommodate execution on 

the HPC. 

5.4 Quality control 

I implemented quality control (fitting standard curves) by incorporating functions from the 

drLumi R package (Sanz et al., 2017) into the LuminexPipeline R package. Curve fitting is a 

utility for estimating unknown sample concentrations from the reported fluorescent intensities. 

Although most Luminex instruments automatically estimate unknown sample concentrations, 

having the utility to generate standard curves can prove useful as a quality assessment feature for 

detecting probable errors (usually pipetting) by observing the shape of the logistic growth curve 

(standard curve). Alternatively, depending on a specific analyte or experiment, a researcher may 

want to use a specific curve fitting method which may not be provided by the automated curve 

fitting software of the Luminex system. For example, the drLumi R package provides many 

alternatives for choosing the limits of quantitation on a standard curve. A specific experiment 

may be best suited for implementation by utilising a specific method of estimation of limits of 

quantitation which may not be available in the Luminex automated curve fitting software. 

Additionally, these are open-source tools which promote open science and remove layers of a 

black box. 

5.5 Limitations 

5.5.1 Test coverage and documentation 

The coverage of unit testing and package documentation focused only on the major functions 

involved in importing and processing Luminex. Future work should extend the coverage of unit 

testing and package documentation to other minor functions in the pipeline. 

Stellenbosch University https://scholar.sun.ac.za



79 

5.5.2 Automating multi-stage container build process 

One of the limitations of the methods described here was the use of a manual approach to the 

multi-stage build process to trim container size. Unlike an automated approach (script) for 

recording all shared library files and program files, the manual approach I utilised, may not be 

reproducible in other computing environments. Future work should, therefore, consider 

automating this process. However, in the absence of an automated script, I provide an alternative 

definition file which utilises the conventional container build process to achieve reproducibility 

but comes at the expense of having a relatively larger container size (see 

https://github.com/Asimeng/LuminexPipeline_container or the Appendix section for the 

definition or the recipe file). 
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CHAPTER 6: CONCLUSIONS 

Reproducibility is one of the fundamental principles for doing good science. However, this tenet 

of science has been subjected to a serious crisis in which many published scientific findings are 

not reproducible. The implications of this crisis can be wrong scientific findings and conclusions 

which can have devastating impact when translated to the industry. This crisis also poses the risk 

of losing public trust in science. Some of the major contributors to the current reproducibility 

crisis have been identified to be cognitive bias, p-hacking, misuse of p-values, underpowered 

studies, publication bias and preference for novelty culture. However, in the face of these 

challenges, there has been a tremendous uptake of interest recently by many stakeholders of 

science including researchers themselves, funders, research institutions, and publishing firms, to 

help remedy the current reproducibility crisis. Efforts are being put in place, for example, by 

funders to make the scientific process more open for scrutiny and verification by requiring 

researchers to make their research data publicly available. Publishing institutions are developing 

new approaches to facilitate the publishing of negative results through pre-registration of 

research. Many universities are incorporating concepts of reproducibility into their curricula, and 

there is increased scrutiny in published results demonstrated by the increased retraction of papers 

(https://retractionwatch.com/).  

Given the current reproducibility challenges, I present the LuminexPipeline, my contribution to 

help significantly improve reproducibility and robustness, specifically with the processing and 

analyses of multiplex ELISA data generated using the Luminex platform. The LuminexPipeline 

improves analytical reproducibility by utilising an automated workflow management system, a 

containerised workflow execution, extended robustness in utility through unit testing, and a 

statistical summary report to extend the overall utility of the pipeline. Furthermore, I improved 

reproducibility by reusing code through reusable functions in an R package applicable to all 

Luminex assay data.  

Through my MSc research project, I have contributed to open science by making the 

LuminexPipeline and its related utilities freely available for use. Additionally, they are licensed 

with open-source licenses which allow for unrestricted use and further improvement by third-

party organisations or individuals. 

As part of community efforts to improve reproducibility through the FAIR guiding principles, 

this contribution, the development of the LuminexPipeline will help to generate, with efficiency 
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and speed, standard compliant and ready-to-share datasets (cleaned and curated) for indexing and 

upload onto online data repositories (e.g., Zenodo) facilitating the findability and accessibility 

components of the FAIR guiding principles. The pipeline’s output data file format (.rds file) is 

versatile (machine readable) and can be read by many programming languages (e.g., Python) and 

software packages, attaining the interoperable component of the FAIR guiding principles. 

Finally, given that the drLumi R package has been archived on CRAN as of April 2020, the 

submission of the R LuminexPipeline package to CRAN, will make it the only available package 

on CRAN for Multiplexed ELISA data processing and analysis with continuous support. 
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APPENDICES 

Container definition file 

Bootstrap: docker 

From: bitnami/minideb:bullseye 

 

%post 

 

#install required utilities & dependencies necessary to add a new repo over 

https (for installing latest R version) 

  install_packages dirmngr gnupg apt-transport-https ca-certificates 

software-properties-common wget 

   

#Add the publicly singed CRAN repository key to the sources.list file 

  apt-key adv --keyserver keyserver.ubuntu.com --recv-key 

'95C0FAF38DB3CCAD0C080A7BDC78B2DDEABC47B7' 

   

  add-apt-repository 'deb http://cloud.r-project.org/bin/linux/debian 

bullseye-cran40/' 

 

#install shared library dependencies for R packages 

  install_packages libcurl4-openssl-dev libssl-dev libxml2-dev libblas-dev 

liblapack-dev libfontconfig1-dev 

  

#install R and packages 

  install_packages r-base r-base-dev 

 

  R --slave -e 'install.packages(c("dplyr", "ggplot2", "purrr", "readr", 

"stringr", "rmarkdown", "knitr", 

  "tidyr", "tibble", "magrittr", "lubridate", "plyr", "Hmisc", "DescTools", 

"gsubfn", "reshape",  

  "corrplot", "english", "minpack.lm", "msm" ), 

  repos="https://cloud.r-project.org/")' 

 

  wget 

https://github.com/Asimeng/LuminexPipeline/raw/main/inst/package_source%20cod

e/LuminexPipeline.tar.gz 

 

  R CMD INSTALL LuminexPipeline.tar.gz   

 

%test 

 

  R --version 

 

%labels 

 

  Author Jesse Asimeng 

 

Shared libraries 

/etc/alternatives/libblas.a-x86_64-linux-gnu 

/etc/alternatives/libblas.so.3-x86_64-linux-gnu 

/etc/alternatives/libblas.so-x86_64-linux-gnu 
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/etc/alternatives/liblapack.so.3-x86_64-linux-gnu 

/etc/R 

/lib64/ld-linux-x86-64.so.2 

/lib/x86_64-linux-gnu/ld-2.31.so 

/lib/x86_64-linux-gnu/libbz2.so.1 

/lib/x86_64-linux-gnu/libbz2.so.1.0 

/lib/x86_64-linux-gnu/libbz2.so.1.0.4 

/lib/x86_64-linux-gnu/libc.so.6 

/lib/x86_64-linux-gnu/libdl.so.2 

/lib/x86_64-linux-gnu/libgcc_s.so.1 

/lib/x86_64-linux-gnu/liblzma.so.5 

/lib/x86_64-linux-gnu/liblzma.so.5.2.5 

/lib/x86_64-linux-gnu/libm.so.6 

/lib/x86_64-linux-gnu/libpthread.so.0 

/lib/x86_64-linux-gnu/libreadline.so.8 

/lib/x86_64-linux-gnu/libreadline.so.8.1 

/lib/x86_64-linux-gnu/libtinfo.so.6 

/lib/x86_64-linux-gnu/libtinfo.so.6.2 

/lib/x86_64-linux-gnu/libz.so.1 

/lib/x86_64-linux-gnu/libz.so.1.2.11 

/usr/bin/R 

/usr/bin/Rscript 

/usr/lib/libR.so 

/usr/lib/R 

/usr/lib/x86_64-linux-gnu/blas 

/usr/lib/x86_64-linux-gnu/lapack 

/usr/lib/x86_64-linux-gnu/libblas.so 

/usr/lib/x86_64-linux-gnu/libblas.so.3 

/usr/lib/x86_64-linux-gnu/libbz2.so 

/usr/lib/x86_64-linux-gnu/libc.so 

/usr/lib/x86_64-linux-gnu/libdl.so 

/usr/lib/x86_64-linux-gnu/libgfortran.so.5 

/usr/lib/x86_64-linux-gnu/libgfortran.so.5.0.0 

/usr/lib/x86_64-linux-gnu/libgomp.so.1 

/usr/lib/x86_64-linux-gnu/libgomp.so.1.0.0 

/usr/lib/x86_64-linux-gnu/libicudata.so 

/usr/lib/x86_64-linux-gnu/libicudata.so.67 

/usr/lib/x86_64-linux-gnu/libicudata.so.67.1 

/usr/lib/x86_64-linux-gnu/libicui18n.so 

/usr/lib/x86_64-linux-gnu/libicui18n.so.67 

/usr/lib/x86_64-linux-gnu/libicui18n.so.67.1 

/usr/lib/x86_64-linux-gnu/libicuuc.so 

/usr/lib/x86_64-linux-gnu/libicuuc.so.67 

/usr/lib/x86_64-linux-gnu/libicuuc.so.67.1 

/usr/lib/x86_64-linux-gnu/libjpeg.so.62 

/usr/lib/x86_64-linux-gnu/libjpeg.so.62.3.0 

/usr/lib/x86_64-linux-gnu/liblapack.so.3 

/usr/lib/x86_64-linux-gnu/liblzma.so 

/usr/lib/x86_64-linux-gnu/libm.so 

/usr/lib/x86_64-linux-gnu/libpcre2-8.so 

/usr/lib/x86_64-linux-gnu/libpcre2-8.so.0 

/usr/lib/x86_64-linux-gnu/libpcre2-8.so.0.10.1 

/usr/lib/x86_64-linux-gnu/libpng16.so.16.37.0 

/usr/lib/x86_64-linux-gnu/libpthread.so 

/usr/lib/x86_64-linux-gnu/libquadmath.so.0.0.0 

/usr/lib/x86_64-linux-gnu/libreadline.so 

/usr/lib/x86_64-linux-gnu/libstdc++.so.6 
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/usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.28 

/usr/lib/x86_64-linux-gnu/libtinfo.so 

/usr/lib/x86_64-linux-gnu/libxml2.so.2 

/usr/lib/x86_64-linux-gnu/libxml2.so.2.9.10 

/usr/lib/x86_64-linux-gnu/libz.so 

/usr/local/lib/R 

/usr/share/R 

/usr/lib/x86_64-linux-gnu/libtcl8.6.so 

/usr/lib/x86_64-linux-gnu/libtk8.6.so 

/usr/lib/x86_64-linux-gnu/libXft.so.2 

/usr/lib/x86_64-linux-gnu/libXft.so.2.3.2 

/usr/lib/x86_64-linux-gnu/libfontconfig.so.1 

/usr/lib/x86_64-linux-gnu/libfontconfig.so.1.12.0 

/usr/lib/x86_64-linux-gnu/libX11.so.6 

/usr/lib/x86_64-linux-gnu/libX11.so.6.4.0 

/usr/lib/x86_64-linux-gnu/libXss.so.1 

/usr/lib/x86_64-linux-gnu/libXss.so.1.0.0 

/usr/lib/x86_64-linux-gnu/libfreetype.so.6 

/usr/lib/x86_64-linux-gnu/libfreetype.so.6.17.4 

/usr/lib/x86_64-linux-gnu/libXrender.so.1 

/usr/lib/x86_64-linux-gnu/libXrender.so.1.3.0 

/lib/x86_64-linux-gnu/libexpat.so.1 

/lib/x86_64-linux-gnu/libexpat.so.1.6.12 

/usr/lib/x86_64-linux-gnu/libxcb.so.1 

/usr/lib/x86_64-linux-gnu/libxcb.so.1.1.0 

/usr/lib/x86_64-linux-gnu/libXext.so.6 

/usr/lib/x86_64-linux-gnu/libXext.so.6.4.0 

/usr/lib/x86_64-linux-gnu/libbrotlicommon.so.1 

/usr/lib/x86_64-linux-gnu/libbrotlidec.so.1 

/usr/lib/x86_64-linux-gnu/libbrotlidec.so.1.0.9 

/usr/lib/x86_64-linux-gnu/libXau.so.6 

/usr/lib/x86_64-linux-gnu/libXau.so.6.0.0 

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6 

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6.0.0 

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6 

/usr/lib/x86_64-linux-gnu/libXdmcp.so.6.0.0 

/usr/lib/x86_64-linux-gnu/libbrotlicommon.so.1 

/usr/lib/x86_64-linux-gnu/libbrotlicommon.so.1.0.9 

/usr/lib/x86_64-linux-gnu/libbsd.so.0 

/usr/lib/x86_64-linux-gnu/libbsd.so.0.11.3 

/usr/lib/x86_64-linux-gnu/libmd.so.0 

/usr/lib/x86_64-linux-gnu/libmd.so.0.0.4 

/usr/share/tcltk/tcl8.6/init.tcl 

 

Nextflow script 

nextflow.enable.dsl=2 

 

params.aref = "/home/jesse/lum_analyte_ref.RData" 

params.data_dir = '/home/jesse/dataset01' 

params.tech_reps = 1 

params.instrument_names = 'bp, mp' 

params.facet = 5 

params.cor_type = "spearman" 

//params.instrument_name2 = "mp" 
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process CONFIG{ 

   

  input: 

  val data_dir 

  val aref 

  val tech_reps 

   

  script: 

  """ 

  #!/usr/bin/env Rscript 

   

  setwd("${projectDir}")  

   

  arefs <- "$aref" 

 

  LuminexPipeline::pipeline_config(wd = "${projectDir}", dd = "$data_dir", 

aref = arefs, tech_reps = $tech_reps)  

   

  """ 

} 

  process DATA_IMPORT{ 

   

  input: 

  val data_dir 

   

  output: 

  val "${projectDir}/rds/1_dta_import.rds" 

   

  script: 

  """ 

  #!/usr/bin/env Rscript 

 

  setwd("${projectDir}") 

   

  LuminexPipeline::data_import("$data_dir")  

  """ 

  } 

 

  process FILENAME_SEPARATE{ 

    input: 

    val "data_out" 

    val instrument_names 

    //val instrument_name2 

 

    output: 

    val "${projectDir}/rds/2_dta_separate.rds" 

 

    script: 

    """ 

    #!/usr/bin/env Rscript 

 

    setwd("${projectDir}") 

     

    dta <- readRDS("${data_out}") 

 

    instrument_names <- c("$instrument_names") 
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    LuminexPipeline::filename_separate(data = dta, instrument_names = 

instrument_names) 

    """ 

  } 

   

  process DATA_CLEAN{ 

   

  input: 

  val "data_out" 

 

  output: 

  val "${projectDir}/rds/3_dta_colnames_clean.rds" 

 

  script: 

  """ 

  #!/usr/bin/env Rscript 

 

  setwd("${projectDir}")   

 

  dta1 <- readRDS("${data_out}") 

 

  LuminexPipeline::colnames_clean(dta1) 

 

  dta2 <- readRDS("${data_out}") 

  """ 

} 

 

process ANALYTE_FIX{ 

   

  input: 

  val "data_out" 

  val aref 

 

  output: 

  val "${projectDir}/rds/4_dta_analyte_ref.rds" 

   

  script: 

  """ 

  #!/usr/bin/env Rscript 

 

  setwd("${projectDir}") 

 

  arefs <- "$aref" 

 

  attach("$aref") 

 

  dta2 <- readRDS("${data_out}") 

   

  LuminexPipeline::analyte_names_fix2(arefs, dta2) 

  """ 

} 

 

process DATA_SAVE { 

   

  input: 

  val "data_out" 
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  output: 

  val "${projectDir}/rds/5_dta_raw.rds" 

  val "${projectDir}/rds/6_dta_symbol_remove.rds" 

 

  script: 

  """ 

  #!/usr/bin/env Rscript 

 

  setwd("${projectDir}") 

 

  dta3 <- readRDS("${data_out}") 

 

  LuminexPipeline::save_raw(dta3) 

 

  LuminexPipeline::symbols_remove(dta3)  

  """ 

} 

 

process DATA_SPLIT { 

  input: 

  val "data_out" 

 

  output: 

  val "${projectDir}/rds/7_dta_list.rds" 

 

  script: 

  """ 

  #!/usr/bin/env Rscript 

 

  setwd("${projectDir}") 

 

  dta4 <- readRDS("${data_out}") 

 

  LuminexPipeline::data_split(dta = dta4) 

  """ 

 

} 

 

process REPORTS { 

  input: 

  val facet 

  val cor_type 

  val "input_data" 

 

  output: 

  val "${projectDir}/rds/statistical_report.html" 

 

  script: 

  """ 

  #!/usr/bin/env Rscript 

 

  setwd("${projectDir}")   

 

  dat <- readRDS("${input_data}") 

 

  library(knitr) 
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  rmarkdown::render( 

  input = paste0(system.file(package = "LuminexPipeline"), 

"/extdata/rmd/reports.Rmd"), 

  output_file = "${projectDir}/rds/statistical_report.html", 

  params = list(cor_type = "${cor_type}", facet = ${facet}, data = dat), 

  encoding     = 'UTF-8' 

) 

 

  """ 

} 

 

 

workflow{ 

 

  def analyte_ref_ch = Channel.value(params.aref) 

  def data_dir_ch = Channel.value(params.data_dir) 

  def data_out = Channel.value("${projectDir}/rds/dta.rds") 

  def tech_rep_ch = Channel.value(params.tech_reps) 

  def ins_names = Channel.value(params.instrument_names) 

  //def ins_name2 = Channel.value(params.instrument_name2) 

  def facet = Channel.value(params.facet) 

  def cor_type = Channel.value(params.cor_type) 

    

   

  CONFIG(data_dir_ch, analyte_ref_ch, tech_rep_ch) 

  DATA_IMPORT(data_dir_ch) 

  FILENAME_SEPARATE(DATA_IMPORT.out, ins_names) 

  DATA_CLEAN(FILENAME_SEPARATE.out) 

  ANALYTE_FIX(DATA_CLEAN.out, analyte_ref_ch) 

  DATA_SAVE(ANALYTE_FIX.out) 

  DATA_SPLIT(DATA_SAVE.out[1]) 

  REPORTS(facet, cor_type, DATA_SAVE.out[1]) 

} 

Statistical summary 

These functions together with old functions written by Ncité and curve-fitting functions from the 

drLumi package are compiled into an R package. The package is available at 

https://github.com/Asimeng/LuminexPipeline 

#' Summary table 

#' 

#' @param dta processed dataframe 

#' 

#' @return a table of summaries 

#' @export 

#' 

#' 

summ_table <- function(dta) { 

 

  options(scipen = 999, digits = 1) 

 

  summary_table <- dta %>% 

 

    group_by(analyte) %>% 
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    dplyr::summarise( 

      minimum = min(conc_obs_num, na.rm = TRUE), 

      maximum = max(conc_obs_num, na.rm = TRUE), 

      mean = mean(conc_obs_num, na.rm = TRUE), 

      first_quart = quantile(conc_obs_num,  probs = 0.25, na.rm = TRUE), 

      median = median(conc_obs_num, na.rm = TRUE), 

      third_quart = quantile(conc_obs_num, probs = 0.75, na.rm = TRUE), 

      NAs = sum(is.na(conc_obs_num)), 

      available_obs = sum(!is.na(conc_obs_num)), 

      total_obs = n()) %>% 

 

    ungroup() 

 

  #readr::write_rds(summary_table, "rds/summary_table.rds") 

 

  return(summary_table) 

 

} 

 

 

 

#' Histogram plot 

#' 

#' @param dta_prtc processed dataframe 

#' @param facet_rows numeric value indicating number of rows to facet. 

#' 

#' @return a plot of histogram 

#' @export 

#' 

#' 

#' 

histogram_plot <- function(dta_prtc, facet_rows = 5) { 

 

  dta_prtc %>% 

    ggplot2::ggplot(aes(x = conc_obs_num)) + 

    geom_histogram(aes(y = ..density..), colour = "black", fill = "grey", 

na.rm = TRUE) + 

    geom_density(colour = "blue") + 

    facet_wrap(~ analyte, nrow = facet_rows,  scales ="free") + 

    ggtitle("Plot with untransformed data") 

} 

 

 

 

#' Test for normality 

#' 

#' @param dat data to generate test of normality table from 

#' 

#' @return a table of normality test 

#' @export 

#' 

#' 

norm_tab <- function(dat){ 

 

  options(scipen = F, digits = 1) 
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  tab <-  dat %>% 

 

    group_by(analyte) %>% 

 

    summarise(kurtosis = DescTools::Kurt(conc_obs_num, na.rm = T), 

 

              skewness = DescTools::Skew(conc_obs_num, na.rm = T), 

 

              Shapiro.Francia = if(sum(!is.na(conc_obs_num)) >= 5) { 

 

                DescTools::ShapiroFranciaTest(conc_obs_num)[["statistic"]] 

 

              } else {NA 

              }, 

 

              p_val = if(sum(!is.na(conc_obs_num)) >= 5) { 

 

                DescTools::ShapiroFranciaTest(conc_obs_num)[["p.value"]] 

 

              } else{NA 

              } 

    ) 

 

  return(view(tab)) 

} 

 

 

 

#' Generate quantile-quantile plots to assess normality 

#' 

#' @param dta dataframe from pipeline 

#' @param facet_row numeric value indicating number of rows to facet 

#' 

#' @return A quantile-quantil graph 

#' @export 

#' 

#' 

qq_plot <- function(dta, facet_row = 5){ 

 

  dta %>% 

    ggplot2::ggplot(aes(sample = conc_obs_num)) + 

    stat_qq() + 

    stat_qq_line() + 

    ggplot2::facet_wrap(~ analyte, nrow = facet_row, scales = "free") 

} 

 

 

 

#' Comparison between groups being analysed 

#' 

#' @param dta_prtc participant data 

#' @param dta_clin clinical data 

#' 

#' @return A dataframe of comparison between groups summary 

#' @export 

#' 

#' 
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grp_test <- function(dta_prtc, dta_clin){ 

 

  grp_dat <- inner_join(dta_prtc, dta_clin, by = "description") %>% 

    select(analyte, conc_obs_num, age, group) %>% 

    mutate(group = as.factor(group) 

    ) %>% 

 

# Analytes with a single observation eg (IL-6 of test dataset) returns an 

error. work around to filter such data 

 

    group_by(analyte) %>% 

 

    summarise(p.value = wilcox.test(conc_obs_num ~ group )[["p.value"]], 

 

              w.statistic = wilcox.test(conc_obs_num ~ group)[["statistic"]]) 

 

  return(grp_dat) 

} 

 

 

 

#' Correlation tests 

#' 

#' @param dta dataframe from the pipeline 

#' @param cor_type type of correlation in string format. eg "pearson" 

#' 

#' @return a flatten correlation matrix (table) 

#' @export 

#' 

#' 

correlation <- function(dta, cor_type = "spearman"){ 

 

  piv_dat <- dta %>% 

 

    select(analyte, conc_obs_num) %>% 

 

    group_by(analyte) %>% 

 

    mutate(row = row_number()) %>% 

 

    tidyr::pivot_wider( 

      names_from = analyte, 

      values_from = conc_obs_num) %>% 

 

    dplyr::select(-row) 

 

  cor <- Hmisc::rcorr(as.matrix(piv_dat), type = cor_type) 

 

  flattenCorrMatrix <- function(cormat, pmat) { 

    ut <- upper.tri(cormat) 

    data.frame( 

      analyte_1 = rownames(cormat)[row(cormat)[ut]], 

      analyte_2 = rownames(cormat)[col(cormat)[ut]], 

      co.eff  = (cormat)[ut], 

      p.value = pmat[ut] 

    ) 

  } 
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  cor <- flattenCorrMatrix(cor$r, cor$P) 

 

  arr_cor <- arrange(cor, desc(abs(co.eff))) %>% 

    filter(!is.na(co.eff)) 

 

  return(arr_cor) 

} 

 

 

 

#' Visualise correlogram - analytes 

#' 

#' @param dta dataframe from pipeline 

#' @param cor_type character, type of correlation to compute 

#' 

#' @return A graph (correlogram) of correlations 

#' @export 

#' 

#' 

cor_plot <- function(dta, cor_type = "spearman"){ 

 

  piv_dat <- dta %>% 

 

    select(analyte, conc_obs_num) %>% 

 

    group_by(analyte) %>% 

 

    mutate(row = row_number()) %>% 

 

    tidyr::pivot_wider( 

      names_from = analyte, 

      values_from = conc_obs_num) %>% 

 

    dplyr::select(-row) 

 

 

  #res <- cor(piv_dat) 

 

  cor <- Hmisc::rcorr(as.matrix(piv_dat), type = cor_type) 

 

  #round(res, 2) 

  #corrplot(res, type = "upper", order = "hclust",tl.col = "black", tl.srt = 

45) 

 

  corrplot::corrplot(cor[["r"]], type="upper", order="alphabet", 

                     tl.cex = 0.6,tl.col="black", tl.srt=45) 

} 

 

#' render statistical summary report 

#' 

#' @param dta rds file with its extension 

#' 

#' @return an html report 

#' @export 

#' 

#' 
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render_report <- function(dta) { 

 

  rmarkdown::render( 

    input = "vignettes/reports.Rmd", 

    output_dir = "rds/statistical_summary_report.html", 

    params = list( 

      directory = "rds", 

      file = dta 

    ) 

  ) 

 

} 

 

Unit testing 

test_that("column names transform to lower cases after applying 

colnames_clean 

          function", { 

 

  dta_separate <- readRDS("rds/dta_separate.rds") 

 

  col_names <- names(colnames_clean(dta_separate)) 

 

  expect_equal(grep("^[[:upper:]]+$", col_names), integer(0) 

) 

 

}) 

 

test_that("colnames_clean function cleans white spaces in column names",{ 

 

  dta_separate <- readRDS("rds/dta_separate.rds") 

 

  col_names <- names(colnames_clean(dta_separate)) 

 

  expect_equal(grep("\\s", col_names), integer(0)) 

}) 

 

 

 

test_that("data_import function throws an error if input directory is empty", 

{ 

 

  expect_error(data_import("test_empty_dir/"), 

               "check input directory: misspelt or empty directory") 

}) 

 

test_that("files without .txt extensions throw a warning message", { 

 

  expect_warning(data_import("test_wrong_extension/"), 

                 "some files may have incorrect format") 

 

}) 
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test_that("data output of data_import function has correct dimensions(column 

length)", { 

 

  expect_equal(ncol(data_import("test_data_dir/")), 

               39) 

}) 

 

test_that("data_import function creates a filename column", { 

 

  col_names <- colnames(data_import("test_data_dir/")) 

 

  expect_equal("filename" %in% col_names, 

               TRUE) 

}) 

 

test_that("output of data_import function does not have a repeating header", 

{ 

 

  dat <- data_import("test_data_dir/") 

 

  expect_equal(which(dat$Analyte == "Analyte"), integer(0)) 

}) 

 

test_that("data_import function writes 3 files to rds directory", { 

 

  data_import("test_data_dir/") 

 

  expect_match(list.files("rds"), "dta_import.rds", all = FALSE) 

  expect_match(list.files("rds"), "rep_files.rds", all = FALSE) 

  expect_match(list.files("rds"), "rep_files_invalid.rds", all = FALSE) 

 

}) 

 

 

test_that("filename_separate function joins columns: 'date, kit, instrument, 

          plate, rerun' to output from preceding function (data_import)", { 

 

            dta_import <- readRDS("rds/dta_import.rds") 

 

            instrument_names <- c("bp", "mp") 

            #test_colnames <- c("date", "kit", "instrument", "plate", 

"rerun") 

 

            separated_filename <- filename_separate(dta_import, 

instrument_names) 

 

            expect_match(colnames(separated_filename), "date", all = FALSE) 

            expect_match(colnames(separated_filename), "kit", all = FALSE) 

            expect_match(colnames(separated_filename), "instrument", all = 

FALSE) 

            expect_match(colnames(separated_filename), "plate", all = FALSE) 

            expect_match(colnames(separated_filename), "rerun", all = FALSE) 

 

          }) 

 

test_that("parsed dates have the correct class", { 
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  dta_import <- readRDS("rds/dta_import.rds") 

 

  instrument_names <- c("bp", "mp") 

 

  separated_filename <- filename_separate(dta_import, instrument_names) 

 

  expect_equal(class(separated_filename$date), c("POSIXct", "POSIXt")) 

 

}) 

 

 

test_that("input data without a filename column stops with an error",{ 

 

  dta_import <- readRDS("rds/dta_test.rds") 

 

  instrument_names <- c("bp", "mp") 

 

  expect_error(filename_separate(dta_import, instrument_names), 

               "check input data: input may not have a 'filename' column") 

}) 

 

test_that("output of filename_separate function is of class tibble", { 

 

  dta_import <- readRDS("rds/dta_import.rds") 

 

  instrument_names <- c("bp", "mp") 

 

  separated_filename <- filename_separate(dta_import, instrument_names) 

 

  expect_equal(class(separated_filename), c("tbl_df","tbl","data.frame")) 

}) 

 

test_that("filename_separate function writes processed data to rds files", { 

 

  dta_import <- readRDS("rds/dta_import.rds") 

 

  instrument_names <- c("bp", "mp") 

 

  filename_separate(dta_import, instrument_names) 

 

  expect_match(list.files("rds"), "dta_separate.rds", all = FALSE) 

}) 

 

 

Shiny 

UI (user interface) 

shinyUI( 

  navbarPage( 

    title = "Luminex App", 

    theme = "styles.css", 

     

    tabPanel( 

      title = "Home", 
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      h1("About"), 

      h4(about), 

      imageOutput(outputId = "luminex_image" ) 

       

    ), 

     

    tabPanel( 

      title = "Analysis", 

       

      sidebarLayout( 

         

        sidebarPanel( 

           

          fileInput( 

            inputId = "upload_file", 

            label = "Upload your luminex rds file here: ", 

            placeholder = "No file selected yet", 

            multiple = FALSE, 

            accept = c(".rds") 

          ), 

                  

           

          checkboxInput( 

            inputId = "head_data", 

            label = "Display first 10 rows of your data? ", 

            value = FALSE 

          ), 

           

          selectInput( 

            inputId = "analyte_1", 

            label = "select first analyte for correlation test", 

            choices = NULL 

          ), 

           

          selectInput( 

            inputId = "analyte_2", 

            label = "select second analyte for correlation test", 

            choices = NULL 

          ), 

           

          selectInput( 

            inputId = "cor_type", 

            label = "correlation type", 

            choices = c("pearson", "spearman") 

          ), 

           

          checkboxInput( 

             

            inputId = "show_cor_tab", 

            label = "show correlation table ?", 

            value = FALSE 

          ), 

           

        ), 

       

        mainPanel( 
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          dataTableOutput("head_data_txt"), 

           

          h4(textOutput("cor_result")), 

           

          dataTableOutput("show_cor_tab"), 

        ) 

      ) 

    ), 

     

    tabPanel( 

      title = "Visualisation", 

       

      sidebarLayout( 

         

        sidebarPanel( 

           

          selectInput( 

            inputId = "graphs", 

            label = "select type of graph to visualise", 

            choices = graph_type 

          ), 

           

          selectInput( 

            inputId = "transform", 

            label = "Select transformation type", 

            choices = c("log", "box-cox", "no transformation") 

          ), 

           

          selectInput( 

            inputId = "analyte_plot", 

            label = "select analyte to visualise", 

            choices = NULL 

          ), 

          

          tabsetPanel( 

            id = "switch", 

            type = "hidden", 

            tabPanel("histogram", 

                      

                     sliderInput( 

                       inputId = "bins", 

                       label = "number of bins for histogram", 

                       min = 1, 

                       value = 30, 

                       max = 50) 

            ), 

             

            tabPanel("boxplot", 

                     NULL 

 

            ), 

 

            tabPanel("q-q plot", 

                 NULL 

            ) 

             

          ) 
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        ), 

         

        mainPanel( 

          plotOutput("individual_plot"), 

           

          h4(textOutput("graph")), 

        ) 

      ) 

       

    ) 

  ) 

) 

 

 

Server 

library(shiny) 

 

shinyServer(function(input, output){ 

   

  output$luminex_image <- renderImage( 

    list(src = "www/luminex_logo.png", 

         width = "300px") 

  ) 

   

  data <- reactive({ 

     

    if (!is.character(input$upload_file$datapath) && 

length(input$upload_file$datapath) < 1 ){ 

       

      data <- read_rds("www/dat.rds") 

       

      data 

       

      } else{ 

       

      req(input$upload_file) 

     

    ext <- tools::file_ext(input$upload_file$name) 

     

    switch(ext, 

           rds = read_rds(input$upload_file$datapath), 

            

           validate("Invalid file; Please upload a valid, processed and 

cleaned Luminex .rds file") 

    ) 

  } 

     

  }) 

   

   

  names_analytes <- reactive(unique(data()$analyte)) 

   

  observeEvent(data(), { 

Stellenbosch University https://scholar.sun.ac.za



109 

     

    updateSelectInput(inputId = "analyte_1", choices = names_analytes()) 

     

    updateSelectInput(inputId = "analyte_2", choices = names_analytes()) 

     

    updateSelectInput(inputId = "analyte_plot", choices = names_analytes()) 

     

  }) 

   

   

  piv_dat <- reactive({ 

     

    data() %>% 

       

      select(analyte, obs_conc) %>%  

       

      group_by(analyte) %>% 

       

      mutate(row = row_number()) %>%  

       

      pivot_wider( 

        names_from = analyte, 

        values_from = obs_conc) %>% 

       

      select(-row)  

     

  }) 

  

   

  output$head_data_txt <- renderDataTable({ 

     

    if (input$head_data == TRUE){ 

       

      head(data(), 10) 

     

    } else { 

       

       NULL 

    } 

  } 

  ) 

   

   

  output$show_cor_tab <- renderDataTable( 

    

    if (input$show_cor_tab == TRUE & input$cor_type == "spearman") { 

       

      correlation_table(data(), "spearman") 

       

    } else if(input$show_cor_tab == TRUE & input$cor_type == "pearson") { 

       

     correlation_table(data(), "pearson") 

       

    } else { 

       

      NULL 

    } 
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  ) 

   

  corr <- reactive(cor( 

     

    x = piv_dat()[input$analyte_1], 

     

    y = piv_dat()[input$analyte_2], 

     

    use = "pairwise.complete.obs", 

     

    method = input$cor_type)) 

   

  cor_text <-  reactive(paste0( 

     

    "The ", 

    input$cor_type, 

    " correlation coefficient of ", 

    input$analyte_1, " and ", input$analyte_2,  

    " is ", round(corr(), digits = 3))) 

   

   

  output$cor_result <- renderText({ 

     

    cor_text() 

     

    })   

   

  observeEvent(input$graphs, { 

     

    updateTabsetPanel(inputId = "switch", selected = input$graphs) 

     

  }) 

   

       

  bc_dat <- reactive(filter_analyte_bc(data(), anlyt_name = 

input$analyte_plot)) 

   

  log_dat <- reactive(filter_analyte_log(data(), anlyt_name = 

input$analyte_plot)) 

   

  new_dat <- reactive(filter(data(), analyte == input$analyte_plot)) 

  

   

  histo <- function(dat, num_var){ 

     

    ggplot(dat, aes(x = num_var)) + 

       

      geom_histogram(bins = input$bins, colour = "black", fill = "grey", 

na.rm = TRUE) + 

       

      labs(x = "conc", y = "count") 

  } 

   

  output$individual_plot <- renderPlot({ 

     

    if (input$transform == "log" & input$graphs == "boxplot") 

{boxp(log_dat(), log_dat()$log)} 
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   else if (input$transform == "log" & input$graphs == "histogram") 

{histo(log_dat(), log_dat()$log)} 

     

   else if (input$transform == "log" & input$graphs == "q-q plot") 

{qq(log_dat(), num_var = log_dat()$log)} 

     

   else if (input$transform == "box-cox" & input$graphs == "boxplot") 

{boxp(bc_dat(), bc_dat()$bc)} 

     

   else if (input$transform == "box-cox" & input$graphs == "histogram") 

{histo(bc_dat(), bc_dat()$bc)} 

     

   else if (input$transform == "box-cox" & input$graphs == "q-q plot") 

{qq(bc_dat(), num_var = bc_dat()$bc)} 

     

   else if (input$transform == "no transformation" & input$graphs == 

"boxplot") {boxp(new_dat(), new_dat()$obs_conc)} 

     

   else if (input$transform == "no transformation" & input$graphs == 

"histogram") {histo(new_dat(), new_dat()$obs_conc)} 

     

   else if (input$transform == "no transformation" & input$graphs == "q-q 

plot") {qq(new_dat(), num_var = new_dat()$obs_conc)} 

     

   else {NULL} 

       

  }, res = 96) 

   

  output$graph <- renderText( 

     

    paste("You are visualising", input$analyte_plot,  

          "in a", input$graphs, "with a",  

          input$transform, "transformation") 

  ) 

   

} 

 

R 

library(Hmisc) 

library(tidyr) 

library(dplyr) 

 

correlation_table <- function(dat, type){ 

   

  piv_dat <- dat %>%  

     

    select(analyte, obs_conc) %>%  

     

    group_by(analyte) %>% 

     

    mutate(row = row_number()) %>%  

     

    pivot_wider( 

      names_from = analyte, 
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      values_from = obs_conc) %>% 

     

    select(-row) 

     

   

  cor <- rcorr(as.matrix(piv_dat), type = type) 

   

  flattenCorrMatrix <- function(cormat, pmat) { 

    ut <- upper.tri(cormat) 

    data.frame( 

      row = rownames(cormat)[row(cormat)[ut]], 

      column = rownames(cormat)[col(cormat)[ut]], 

      cor  =(cormat)[ut], 

      p = pmat[ut] 

    ) 

  } 

   

  cor <- flattenCorrMatrix(cor$r, cor$P) 

   

  arr_cor <- arrange(cor, desc(abs(cor))) %>%  

     

    filter(!is.na(cor)) 

   

  arr_cor 

} 

 

library(car) 

 

filter_analyte_bc <- function(dt, anlyt_name){ 

   

  dat <- dt %>% filter(analyte == anlyt_name) %>%  

    select(analyte, obs_conc) 

   

  lambda <- powerTransform(dat$obs_conc)$lambda 

   

  dat <- dat %>% mutate(bc = ((obs_conc^lambda - 1)/lambda)) 

   

  return(dat) 

   

} 

 

filter_analyte_log <- function(dt, anlyt_name){ 

   

  dat <- dt %>% filter(analyte == anlyt_name) %>%  

    select(analyte, obs_conc) %>%  

     

    mutate(log = log(obs_conc)) 

   

  return(dat) 

   

} 

 

library(ggplot2) 

 

boxp <- function(dat, num_var){ 
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  ggplot(dat, aes(y = num_var)) +  

    geom_boxplot(na.rm = TRUE) + 

    labs(y = "conc") 

} 

 

qq <- function(dat, num_var){ 

  qqplot <-  ggplot(dat, aes(sample = num_var)) + 

    stat_qq()+ 

    stat_qq_line() 

   

  qqplot 

} 

 

 

library(shiny) 

library(readr) 

library(dplyr) 

library(Hmisc) 

 

graph_type <- c("histogram", "boxplot", "q-q plot") 

 

# data <- read_rds("www/dat.rds") 

 

 

about <- tags$div( 

   

  tags$p("The Luminex pipeline is an R-based pipeline that reads .txt  

files produced by Luminex instruments and outputs experimental data, quality 

control data and metadata. This app is created to visualise and explore 

statistical summaries 

from pipeline output (data).  More specifically, correlation analysis(Pearson 

and Spearman) between analytes 

and visualisation of the effects of transformation (Box-Cox and log) on 

analyte distributions"),  

   

  tags$p("USAGE: For purposes of exploration (assessing functionality of the 

app), a very small underlying data 

is provided. One can, however, upload their processed Luminex data for use on 

the app - this will override 

the underlying data."),  

   

  tags$p("WARNING: This app/utility is meant for exploratory analysis only 

and should only be used as such!") 

) 

 

luminex_image <- tags$img(src = "www/luminex_logo.png", width = "100px", 

height = "100px") 
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