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ABSTRACT 

 

The conservation of biodiversity is becoming increasingly challenging as habitats are 

disturbed, fragmented or destroyed. Although nature reserves now cover more than 10 % 

of the earths’ surface it has become clear that more will have to be done to ensure the 

long-term survival of species. Therefore, focus is increasingly shifting towards 

conserving biodiversity in natural and semi-natural remnants in human-influenced areas. 

This study aimed to determine the contribution of remnants in human-influenced areas to 

the conservation of biodiversity in the Cape Floristic Region (CFR) lowlands, using 

ground-dwelling arthropods, specifically ants, as the focal taxon. Initially, base-line 

information of arthropods and in particular ants was obtained. Sampling arthropods 

generally involves a large sample effort. Therefore maximizing sampling effort for ants 

in the CFR was investigated by trapping ground-dwelling ants at a single locality. 

Doubling the number of grids of pitfall traps was found to be more effective in trapping a 

greater number of species than doubling the duration of sampling. Therefore increasing 

spatial sampling intensity rather than sampling duration maximizes sample effort for CFR 

ants. Also, the seasonal changes of ground-dwelling arthropods, including ants, were 

determined by sampling four times during the year at a single locality. Overall arthropod 

abundance was found to peak in summer while dropping to a minimum in winter. This 

pattern was mirrored by that of the ants, indicating that ant results have a broader 

relevance than to ants only. The ground-dwelling fauna was dominated by ants 

emphasizing their importance in the CFR lowlands, and demonstrating that ants are an 

appropriate flagship taxon for epigaeic arthropod diversity in the CFR. Finally the 

contribution of remnants in human-influenced areas to the conservation of the CFR was 

investigated. A nested hierarchical approach was used, where five localities were selected 

across the CFR, each containing one reserve site and one site with natural remnants. Ants 

were sampled, along with environmental variables, namely weather, vegetation and soil. 

Overall, remnants were found to support similar ant assemblages to those of reserves. 

However for individual localities some remnants were significantly different to their 

reserve counterparts. Differences in ant assemblages were found to be greater between 

localities than between reserves and remnants. The relatively high heterogeneity of ants 
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found in this study emphasizes the conservation significance of invertebrates along with 

that of plants in the CFR. Remnants clearly show the potential to conserve ant 

assemblages, however correct management is needed for these areas to maximize their 

potential. Disturbances such as the presence of the invasive Argentine ant and increasing 

soil nutrients by fertilization, pose a distinct threat to the ability of remnants to conserve 

ant assemblages. This study has shown that remnants currently support ant assemblages 

representative of those present in the CFR today. Therefore, some remnant patches of 

habitat in agricultural areas currently do contribute highly to the conservation of a 

functional important taxon in this global biodiversity hotspot, and if managed correctly, 

may continue to do so in the future. 
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OPSOMMING  

 

Die vernietiging en fragmentering van habitatte maak die bewaring van biodiversiteit al 

hoe meer van ‘n uitdaging. Alhoewel natuur reservate reeds meer as 10 % van die aarde 

se oppervlak beslaan is dit duidelik dat meer gedoen sal moet word vir die lang-termyn 

voortbestaan van spesies. Dus word die fokus van biodiversiteit-bewaring toenemend 

gerig op bewaring van natuurlike en semi-natuurlike fragmente in menslik-beinvloede 

gebiede. Die doel van hierdie studie was om te bepaal wat die bydrae van fragmente van 

natuurlike veld in menslik-beinvloede gebiede is tot die bewaring van die streek. Dit is 

gedoen deur van grond-lewende geleedpotiges en spesifiek, miere in die Kaapse floraryk 

(CFR) gebruik te maak. Aanvanklik is kennis ingewin oor die geleedpotiges en spesifiek 

miere in die omgewing. Omdat die versameling van geleedpotige diere gewoonlik baie 

moeite vereis is ‘n maksimum steekproef gedoen by ‘n enkele lokaliteit. Daar is gevind 

dat ‘n verdubbling van die aantal ruitsteekproefnemings met vanggate meer effektief is 

om miere te vang as ‘n verdubbling in die tydperiode wat vanggate oop is. Dus, is ‘n hoër 

ruimtelike steekproef intensiteit meer effektief in vergelyking met ‘n langer tydsduur vir 

miere in die CFR. Die seisoenale veranderinge van grond-lewende geleedpotiges, sowel 

as miere, was ook bepaal. Dit was gedoen deur vier seisoenale steekproewe te doen by ‘n 

enkele lokaliteit. Die totale geleedpotige-talrykheid was die meeste gedurende die somer 

en die minste in die winter. Die miertalrykheid het ook hierdie patroon weerspieël.  Dit 

dui daarop dat veranderinge in mier versamelings van breër belang is vir alle grond-

lewende geleedpotiges. Miere was die dominante grond-lewende geleedpotiges en 

beklemtoon die belangrikheid van miere in die CFR, sowel as hulle toepaslikheid as 

vlagskip taksa vir grond-lewende geleedpotige diversiteit in die CFR. Laastens was die 

bydrae van gefragmenteerde natuurlike veld in menslik–beinvloede gebiede tot die 

bewaring van die CFR ondersoek. ’n Krimpende/ genestelde hiërargies benadering is 

gebruik in vyf geselekteerde lokaliteite, elk het bestaan uit ‘n area in ‘n natuur reservaat 

en ‘n area in ‘n naasliggende fragment. Miere was versamel saam met ‘n verskeidenheid 

omgewings veranderlike, naamlik weer, plantegroei en grond. In die algemeen is gevind 

dat fragmente en reservate gelyksoortige mier versamelings het. Daar was wel gevind dat 

party fragmente aansienlik verskillend was van die reservaat teenstuk. Verskille in mier 
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versamelings tussen lokaliteite was groter as verskille tussen reservate en fragmente. Die 

relatief hoë heterogeniteit van miere beklemtoon die bewaringsbelang van invertebrate 

saam met dié van plante in die CFR. Dit is duidelik dat fragmente wel ‘n potensiale 

bydrae kan maak om die mier versamelinge te bewaar, maar gepaste bestuur is nodig om 

hierdie potentiaal te maksimaliseer. Versteurings soos die teenwoordigheid van die 

indringer Argentynse mier en toenemende grondvoedingstofkonsentrasie as gevolg van 

bemesting is ‘n groot bedreiging tot die vermoë van fragmente om mier versamelings te 

bewaar. Hierdie studie wys dat mier versamelings in gefragmenterde areas 

verteenwordigend is van die algemene mier versamlings wat op die oomblik in die CFR 

is. Dus lewer party fragmente in landbou gebiede op die oomblik ‘n wesenlike bydrae tot 

die bewaring van ‘n funksioneel belangrike takson in hierdie globale 

biodiversiteitsbrandpunt en die bydra sal volhoubaar wees met korekte bestuur.  
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CHAPTER 1 

GENERAL INTRODUCTION  

 

The conservation of biodiversity is becoming progressively more challenging as the 

human population continues to expand, and with it the demand for resources (Chown et 

al. 2003, Rouget et al. 2003). Agriculture, pollution and resource withdrawal have and 

continue to transform vast amounts of land (Bestelmeyer & Wiens 1996, Laurance & 

Cochrane 2001) leaving behind disturbed habitat patches scattered across the landscape in 

various shapes and sizes (Saunders et al. 1991, Banks 2000). Indeed the correlated 

processes of habitat loss and fragmentation are described as the most important ongoing 

threats to biodiversity (Laurance & Cochrane 2001, Tscharntke et al. 2002). At the same 

time, the number of protected areas has increased exponentially since the 1900s and 

reserves now cover around 13.2 million km2 of the earth’s surface (Gaston & Spicer 

2004). However it has become clear that protected areas alone will not prevent global 

biodiversity loss (Rodrigues et al. 2004) and hence conservation is increasingly shifting 

to focus on and include areas outside of protected areas (Knight 1999, Norton 2000, 

Goodman 2003, Solomon et al. 2003, Dudley et al. 2005).   

Problems with current protected areas and reserve networks include the suboptimal 

layout of reserves, i.e. they are poorly sited with little planning to optimize their 

conservation value, especially in the face of climate change, and they are mostly too 

small to sustain the long-term survival of viable populations (Saunders et al. 1991, 

Margules & Pressey 2000, Reyers et al. 2002, Chown et al. 2003, Goodman 2003, 

Gaston & Spicer 2004, Opdam & Wascher 2004). Additionally, reserves are often 

incompatibile with surrounding land-uses resulting in alien vegetation encroachment and 

poaching by neighboring human community members (Pimentel & Stachow 1992, 

Reyers et al. 2002, Goodman 2003). Prospects of gaining sufficiently more land for 

formal reserve networks to be effective is improbable due to the increasing and 

conflicting demand for land by a growing human population and lack of sufficient 

available funds (Perrings et al. 2006). The possibility of establishing links to other areas 

of protected or conserved land in order to increase the conservation status of protected 

areas is frequently unattainable, or where this is feasible these areas are privately or 
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communally owned (Chown et al. 2003, Perrings et al. 2006). Exceptions are 

Transfrontier Conservation Areas, which connect reserves across international boundaries 

(Hanks 2003). Nonetheless, since many species have at least a part of their distribution in 

semi-natural habitats, such as those amongst agricultural and urban areas,  these habitats 

have the potential to provide invaluable links between reserves and thereby to greatly 

enhance long term conservation success (Bush 1997, Farina 2000, Goodman 2003, 

Gaston & Spicer 2004, Dudley et al. 2005).  

Successful conservation in human-influenced areas has many benefits (Duelli & 

Obrist 2003, Perrings et al. 2006), such as reducing erosion, benefiting hydrological 

processes and improving biological control of pest species (Kemper et al. 1999, Rieux et 

al. 1999, Speight et al. 1999, Tscharntke et al. 2002, Alkorta et al. 2003), by supporting 

and enhancing predators and parasitoid populations which prevent large pest outbreaks 

(Booij & Noorlander 1992, Bommarco & Ekbom 2000). Most importantly these areas 

potentially provide a natural reservoir of biodiversity from which disturbed areas can be 

restored (Kemper et al. 1999). Natural remnants in agricultural lands are therefore 

economically important (Kemper et al. 1999) and essential to both the long-term 

sustainability of agricultural production systems and biodiversity (Saunders et al. 1991, 

Bestelmeyer & Wiens 1996, Kemper et al. 1999, McGeoch 2002, Major et al. 2003). 

Successful conservation in human-influenced areas requires knowledge of 

processes that drive and determine biodiversity in these areas (Parker & Nally 2002). 

Habitat loss and fragmentation of the remaining habitat (Saunders et al. 1991, 

Ovaskainen & Hanski 2003) as well as other habitat disturbances, such as livestock 

grazing, pesticides, invasion of foreign species, hydrological changes, changes in fire 

regimes, and pollutant effects such as acid rain are processes which characterize human-

influences landscapes (Laurance & Cochrane 2001). These processes may act 

synergistically (McIntyre & Hobbs 1999, Laurance & Cochrane 2001) leading to a 

degradation of ecosystems, modifying the composition, structure and functioning of 

communities (Saunders et al. 1991). Although processes in human-influenced areas 

influence species negatively, many are nonetheless able to persist in these areas. This 

may however be due to a time delay in their response to the changing environmental 

conditions, a phenomenon known as extinction debt (Tilman et al. 1994). If 
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environmental conditions fall below a threshold required by species for their long term 

survival, a “debt” is created, which has to be “paid” either by an improvement in 

environmental conditions or an extinction of the species (Hanski & Ovaskainen 2002). 

Extinction debt information is important for determining what is required in these areas to 

allow for long-term persistence of species and to develop effective management strategies 

to maximize biodiversity. However this information is currently unknown. Furthermore, 

for effective conservation of human-influenced areas, information on how observed 

patterns change with spatial scales is also important. Ecological patterns and processes 

are known to be strongly scale dependent, with patterns observed at local scales being 

quite different to those observed at regional scale (Lennon et al. 2001, Crist et al. 2003). 

Additionally, both regional and local-scale processes may generate local scale patterns 

(Noda 2004). Determining which spatial scale is responsible for generating the greatest 

variability in biodiversity is important for effective management and conservation 

strategies (Boyero 2003, Gering et al. 2003) and has received great emphasis recently 

(Wagner et al. 2000, Crist et al. 2003, Gering et al. 2003, Tylianakis et al. 2006). An 

example is a study of arboreal beetles in the eastern deciduous forest of the USA 

conducted by Gering et al. (2003), which found that species richness turnover between 

ecoregions as well as sites was significantly higher than expected by randomly allocating 

sites to the ecoregions and stands to sites respectively. From this they could deduce that 

the most effective way of preserving beetle diversity in this region is to protect multiple 

sites in different ecoregions, rather than investing effort in local-scale management 

approaches that strive to increase tree diversity within stands.  

Although the importance of these natural remnants to conservation is well known in 

theory and many studies have emphasized the importance and role of human-influenced 

areas in conservation strategies (Samways et al. 1997, Kemper et al. 1999, Whitmore et 

al. 2002), in practice they are still poorly understood and the magnitude of the 

contribution that they play in regional biodiversity conservation is currently unknown. 

The broad aim of this study was therefore to determine the current contribution of natural 

remnants in human-influenced areas to conservation. 
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The study area 

A region that lends itself to determine the conservation contribution of human-

influence landscapes is the Cape Floristic Region (CFR). The CFR is a major biodiversity 

hotspot of global significance (Myers et al. 2000, van Wyk & Smith 2001, Cowling et al. 

2003). Situated on the southern tip of Africa, covering an area of 90 000 km2, this region 

has a high concentration of endemic taxons, particularly plants (around 70 %) (van Wyk 

& Smith 2001, Goldblatt & Manning 2002). Although plant species richness within an 

area at local scale is not very high compared to some other areas of the world, beta 

diversity in the CFR is exceptionally high (Goldblatt & Manning 2002). The region is 

however extensively transformed, currently 30 % of the total area, and continues to be 

increasingly threatened by factors such as urban development, (currently transforming 1.6 

% of the area), agriculture (25.9 %) and dense stands of alien plant invasions (1.6 %) (van 

Wyk & Smith 2001, Rouget et al. 2003). Other contributing factors, which are less easily 

defined, are unsustainable harvesting of natural resources, such as wild flowers and 

mining and quarrying activities as well as poor grazing practices (van Wyk & Smith 

2001, Rouget et al. 2003). Transformation of the region is however not evenly spread 

across the CFR, with low-lying mesic areas having received the greatest impacts (more 

than 90 % is transformed). In areas such as Sand Plain Fynbos, more than 50 % has been 

lost due to urbanization and less than 20 % of Coastal Renosterveld remains due to the 

impacts of agriculture (Rouget et al. 2003). Protected areas in contrast are focused on 

higher lying areas, with up to 90 % of mountain fynbos protected in nature reserves and 

mountain catchment areas, however less than 3 % of the easier accessible lowland fynbos 

and renosterveld are formally protected (van Wyk & Smith 2001). It is thus clear that in 

low-lying areas, available habitat is less than is required for any long-term conservation 

target (Rouget et al. 2003). High land values in most parts of the CFR along with high 

fragmentation makes establishment of new formal reserves mostly unachievable 

(Fairbanks et al. 2004). Hence involving landowners, especially farmers outside of 

protected areas to manage and protect remnants of natural or semi-natural vegetation on 

their land, is an important alternative or perhaps even the only option for achieving 

conservation targets for low lying regions of the CFR (Kemper et al. 1999, Cowling et al. 

2003, Fairbanks et al. 2004).  
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The taxa  

Although the plant diversity of the CFR is well studied, comparatively little is 

known about the arthropod assemblages (Picker & Samways 1996, Visser et al. 1999, 

Giliomee 2003). It has been thought that insect diversity in the CFR is especially low in 

comparison to the rich plant diversity (Giliomee 2003). However a recent study showed 

that this is not the case, with arboreal insect species in the CFR being no less diverse than 

that of neighbouring biomes or what could be expected in insect diversity at that 

particular latitude (Proches & Cowling 2006). Arthropods are an integral part of 

ecosystems as their abundance and biomass dominate the biodiversity in most areas of the 

world (Major et al. 2003). They regulate many essential ecosystem processes, such as 

maintaining plant community composition, improving soil structure, nutrient cycling, 

pollination, seed dispersal and preying on other animals, thereby keeping their 

populations under control (Majer & Nichols 1998). Arthropods are also in general 

sensitive to disturbances (Madden & Fox 1997, Bolger et al. 2000, Witt & Samways 

2004), however in the CFR little is known about their response to disturbances (Picker & 

Samways 1996, Donaldson et al. 2003, Major et al. 2003). Arthropods play a vital role in 

the CFR, where for example, ants (Formicidae) are responsible for dispersing seeds of 

more than 20 % of the plants in the region (Bond & Slingsby 1983) or seeds of more than 

1300 taxa (Johnson 1992). For this reason and also due to their high abundance, ants were 

used as a target taxon. Ants are well studied in many areas of the world and frequently 

used as indicators in studies assessing impacts of management practices, habitat 

disturbances and rehabilitation successes (Andersen 1990, Majer & Kock 1992, Lobry 

DeBruyn 1993, Bestelmeyer & Wiens 1996, Samways et al. 1996, Samways et al. 1997, 

Majer & Nichols 1998, Peck et al. 1998, Bestelmeyer & Wiens 2001, French & Major 

2001, Andersen et al. 2002, Perfecto & Vandermeer 2002, Hoffmann & Andersen 2003, 

Armbrecht et al. 2005, Bestelmeyer 2005, Underwood & Fisher 2006). Thus determining 

changes in ant assemblages could provide valuable information as to the contribution that 

remnants are able to make to conservation of the CFR.  
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Objectives and thesis outline 

Research in biodiversity conservation is typically a crisis science, needing reliable 

answers faster than in-depth studies can provide them (Parr & Chown 2001). Hence rapid 

assessment protocols are important as they seek to optimize the sampling effort (in terms 

of person power, time and finances) and the reliability and representivity of the samples 

collected (Jones & Eggleton 2000, Parr & Chown 2001, Leponce et al. 2004). Typically 

invertebrate studies involve large sampling effort (Andersen et al. 2004) and hence an 

initial step was to determine an optimal sampling effort for arthropods in the CFR, this 

was done in Chapter 2. To determine the reliability of a “snap-shot” view of a single 

sample, in representing broader arthropod assemblage patterns across the year, seasonal 

sampling was conducted in a single area and the outcome of this study is reported in 

Chapter 3. This base-line information is important not only for this study, but also in 

general since there is very little seasonal information available on ants or other ground-

dwelling arthropods in the CFR. Finally in Chapter 4 the current contribution of remnants 

in human-influenced areas of the CFR to the overall conservation of the CFR was 

determined, using ground-foraging ants as a target taxon. Additionally the spatial scale 

which contributes most to generating ant diversity in the CFR was also determined 

(Chapter 4). Chapters in this thesis were written as individual manuscripts and there is 

thus some repetition. Finally a general conclusion (Chapter 5) provides a brief summary 

of the main findings of this study and their contribution to the broader theoretical and 

conservation arena.  
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CHAPTER 2 

FINE SCALE TEMPORAL AND SPATIAL DYNAMICS OF EPIGAEIC ANTS 

IN FYNBOS: SAMPLING IMPLICATIONS 

 

INTRODUCTION 

A fundamental element of conservation and biodiversity management is information 

on species richness, i.e. the number of species in a unit area or assemblage (Gotelli & 

Colwell 2001, Cao et al. 2004, Magurran 2004). Although biodiversity can be 

measured in a variety of ways, the most commonly used is species richness (Lande 

1996, Arita & Rodrígues 2002, Gaston & Spicer 2004). Reasons for this are that 

species richness is a relatively practical and simple measure to take in the field (Lande 

1996, Gaston & Spicer 2004). Also, vast amounts of species richness information can 

be found in the literature and in museums (Gaston & Spicer 2004). Additionally, as a 

measure, species richness is widely used by managers, legislators and politicians, who 

often inadvertently equate biodiversity to species richness (Buchs 2003, Gaston & 

Spicer 2004). Species richness estimates across time and space can also be used to 

determine other measures underlying conservation strategies, such as species turnover 

rates, species extinction and colonization (Cao et al. 2004). Species richness and 

evenness values are also commonly employed to compare sites and to assess their 

conservation value, as well as to determine the effects of disturbances, human or 

natural, on biodiversity (Longino 2000, Cao et al. 2004, Colwell et al. 2004). 

Information on species richness is especially valuable for helping to prioritize 

specific areas for conservation efforts in regions which are highly diverse and 

threatened by factors such as habitat destruction, invasive species and climate change 

(Rodrigues & Gaston 2002, Rouget et al. 2003, Cao et al. 2004, Magurran 2004, 

Opdam & Wascher 2004). One such area is the Cape Floristic Region (CFR), South 

Africa, which is considered a global biodiversity hotspot (Myers et al. 2000). 

Although much is known about plant species richness in the region (Cowling & 

Hilton-Taylor 1994), insect diversity is relatively poorly understood (Giliomee 2003). 

Arthropods are, however, critically important in the region, functioning, amongst 

others, as pollinators, seed dispersers and natural predators (Donaldson et al. 2003, 

Giliomee 2003, Witt & Samways 2004), and arthropod diversity information is 

therefore invaluable for the conservation of biodiversity in the region.  
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However, to ensure confidence in conservation decisions and to meaningfully 

compare sites, species richness counts need to be accurate (Gotelli & Colwell 2001). 

Although, species richness is the oldest and simplest measure used to describe 

biodiversity, it is notoriously difficult to obtain an accurate measure of it, particularly 

for arthropods (Colwell & Coddington 1994, Magurran 2004). Reasons for this are 

that assemblages are often very diverse and a large sampling effort is required to 

represent all species (Magurran 2004). Also, assemblages frequently have a high 

proportion of rare species, which are underrepresented in samples (Gotelli & Colwell 

2001, Magurran 2004). Additionally, high levels of temporal heterogeneity (e.g. 

seasonal variation) especially in invertebrates can result in seasonal specialist not 

being trapped (Magurran 2004). Finally, a high local heterogeneity in some areas, to 

the extent that two areas within the same habitat type at a local scale are significantly 

different in terms of the assemblage structure for a given taxon, can lead to inaccurate 

species richness measures (Gotelli & Colwell 2001). 

Due to the problems associated with obtaining accurate species richness 

measures, techniques have been developed that provide comparable richness estimates 

with quantified degrees of certainty for situations where sample representivity is 

insufficient (Cao et al. 2004, Chao et al. 2005). These species richness estimators thus 

provide comparable richness estimates where sample effort across sites is unequal or 

insufficient (Colwell & Coddington 1994). Nonetheless, sampling diverse 

assemblages with low evenness values, such as arthropod assemblages, requires large 

sampling effort which is highly resource intensive in terms of person power, finances 

and time (Colwell & Coddington 1994, Sutherland 1996, Longino 2000, Colwell et al. 

2004). At the same time large samples result in collection of more material than 

necessary, which is not only time-consuming to sort, but also unethical (New 1998, 

Jones & Eggleton 2000). Hence, there are several important advantages to optimizing 

sampling effort such that maximum sampling representivity is achieved with 

minimum sampling effort. 

Most studies that aim to quantify the species richness and composition of a 

region rely on taxon-appropriate sampling methods replicated within that particular 

region. In addition, biodiversity estimate studies, due to time constraints, commonly 

sample on a single occasion, where the timing of the sample coincides with the peak 

activity period of the taxon of interest (Davis et al. 1999, van Rensburg et al. 1999, 
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McGeoch et al. 2002). This study therefore aimed to determine the optimal sampling 

effort in a given season, for a given taxon in the CFR, namely ants (Formicidae).  

Ants form an important component of the fauna of the CFR and fulfill a critical 

role as seed dispersers for more than 20 % of the plant species in the region (Johnson 

1992). The most widely used and standard method for trapping ground-foraging ants 

is pitfall-trapping (Andersen 1986, Lobry DeBruyn 1993, Southwood & Hendersen 

2000, Parr & Chown 2001). Although this method is know to have biases in 

estimating population parameters (Samways et al. 1996, Bestelmeyer et al. 2000, 

James 2004), it is nonetheless reliable for trapping epigaeic fauna and useful for 

comparative studies (Samways 1990, Southwood & Hendersen 2000). Increasing 

sampling effort using pitfall trapping includes an increase in sampling intensity or an 

increase in trapping duration (Delabie et al. 2000, Brown et al. 2004, James 2004). An 

increase in sampling intensity can be brought about by increasing the sampling 

coverage (proportion of sampling extent represented) and/or the sample number 

within the extent of a given grain size, as sampling intensity is given by the product of 

these two (McGeoch & Gaston 2002). Increased duration generally involves leaving 

the traps open for longer periods of time, or temporal repetition of trapping. Both of 

these measures increase sampling effort and have been demonstrated to increase the 

number of, especially rare, species captured (Sutherland 1996, James 2004).  

This study thus investigated sampling effort options for maximizing gound-

foraging ant species representivity, i.e. obtaining a species list that is representative of 

the ants in the area, when sampling a component of the CFR, namely the lowland 

fynbos biome. The aims were to determine, i) whether doubling the sampling duration 

results in a significant increase in species richness, ii) the relative effects of increased 

spatial versus temporal sampling effort on diversity estimates and iii) what the effect 

of an additional trapping method, in this case tuna baiting, is on the species richness 

obtained.  

 

MATERIAL AND METHODS 

 

Study site and sample design 

This study took place on Elandsberg Private Nature Reserve (33.27° S, 19.03° 

E) and surrounding Bartholomeus Klip Farm, near Hermon, Western Cape Province. 

The reserve, lying at the foothills of the Elandskloof Mountain range, was proclaimed 
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in 1973 and encompasses approximately 3600 of the 5000 ha Farm (Midoko-Iponga 

2004). The surrounding farmlands include wheat fields, and cattle and sheep grazed 

areas. Elandsberg has two main vegetation types, namely Swartland Alluvium Fynbos 

and Swartland Shale Renosterveld, both of which are critically endangered (Mucina & 

Rutherford 2004). Elandsberg receives a mean annual rainfall of about 500 mm.  

The sample design used consisted of 10 grids, each containing 10 pitfall traps 

spaced 10 m apart in two rows (2 x 5). The position of each grid was randomly chosen 

and marked using a Garmin GPS. Sites were chosen to represent the Elandsberg area, 

including the reserve and natural remnants scattered between wheat fields (Fig. 1). 

Four of the grids were situated in Swartland Alluvium Fynbos-dominated vegetation 

and another in Swartland Shale Renosterveld-dominated vegetation. Two grids fell on 

road and field side verges with relatively intact natural vegetation remaining, although 

cattle were allowed to graze the area. A further two grids were on old fields with 

limited natural vegetation and the final one was in a vlei area surrounded by wheat 

fields with relatively rich plant species diversity. All grids were between altitudes of 

71 - 170 m.a.s.l. and were placed between 200 and 250 m apart.  

 

Sampling 

Sampling was conducted in summer between 20 February and 1 March 2004, as 

this time has been recorded to include the peak activity period for ants in the Cape 

Floristic Region (Johnson 1992). The pitfalls used were plastic containers (150 ml, 55 

mm diameter, 70 mm deep) with screw-on caps. These were dug in level with the 

surrounding soil surface. The pitfalls remained covered for the first five days, to 

reduce the digging-in effect (Greenslade 1973, Abensperg-Traun & Steven 1995, 

Southwood & Hendersen 2000), after which they were opened for a period of five 

days per sampling event. To set the traps, 50 ml of 50 % propylene glycol solution 

was poured into the opened pitfalls (Bestelmeyer et al. 2000). This preservative is 

non-toxic to vertebrates (Bestelmeyer et al. 2000), and neither attracts or repels ants 

(Abensperg-Traun & Steven 1995). After the first sampling period of five days, 

pitfalls were carefully removed and new pitfalls were inserted into the same holes and 

reset. Pitfalls were set and removed in the same order over as short a period as 

possible, typically between 10h00-15h00, to ensure that they were open for equal 

lengths of time. The contents of the pitfalls were washed by pouring it into a net and 
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gently rinsing off the loose soil and propylene glycol with water. The remaining 

content was then preserved in 70 % alcohol. 

Baiting was used as an additional sampling technique for ants. Tuna baiting was 

used, as this is the most commonly used food substance to attract ants (Bestelmeyer et 

al. 2000), see also Addison & Samways (2000). One teaspoon of shredded, tinned 

tuna was placed 20 – 30 cm from a pitfall trap in each grid. This was done after the 

first sampling period pitfalls had been removed and new ones had just been inserted. 

The baits were left for 45-60 min between 10h00 and 15h00 (leaving baits for longer 

does not increase the number of species found (Delabie et al. 2000)), after which all 

ants feeding on the tuna were collected and placed in 70 % ethanol. 

The fauna of both pitfall traps and tuna baiting were identified under a Leica-M 

Series Stereo-microscope. The ants (Hymenoptera: Formicidae) were identified to 

genus and species level where possible, or assigned morphospecies using Bolton 

(1994) and Hölldobler & Wilson (1990). For each species collected voucher 

specimens are held at the University of Stellenbosch. 

 

Data analyses 

All pitfall data were analysed at the grid level (n = 10). To estimate sampling 

representivity (Gotelli & Colwell 2001), rarefaction curves were compiled separately 

for the first five days, second five day and full 10 day data sets using EstimateS V7, 

R.K. Colwell 2005, http://viceroy.eeb.uconn.edu/estimates. Species rank abundance 

curves were constructed (Magurran 2004) to compare the rank abundance 

distributions of the first and second trapping periods.  

To investigate the effects of the three sampling options, data were subdivided 

into different categories: 1. To investigate the effects of increased sampling duration, 

pitfall data were divided into first five days, second five days and a combined first 

plus second trapping period (10 day sampling period), using all 10 grids data. 2. The 

effects of the increase in sampling intensity was investigated using the mean of five 

randomly chosen grids (5 grids were randomly chosen 1000 times) and comparing it 

to that of the full 10 grid data set, using only the first five days trapping period data. 

To compare the effects of increased sampling duration and intensity, rarefaction 

curves were compiled using sample-based rarefaction curves (Gotelli & Colwell 

2001). Sample-based rarefaction curves, also known as expected accumulation curves, 

were compiled using the analytically calculated Sobs (Mao Tao) of EstimateS, which 
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does not require resampling methods (Colwell 2005). This was done for the first five, 

second five and full 10 day sampling period data sets. Note that due to the way in 

which rarefaction curves are calculated, the mean of the randomly chosen five grid 

data as well as that of the full 10 grid data, for the first five days, are given by the first 

five day curve. Sample-based rarefaction curves were used to compare data sets on 

the basis of species density, i.e. number of species per unit area (Gotelli & Colwell 

2001). To compare species richness for a given number of individuals, sample-based 

rarefaction curves must be standardized by the number of individuals (Gotelli & 

Colwell 2001), and hence Sobs was plotted against calculated number of individuals 

for species richness comparisons.  

Additionally, a spatially constrained curve for the total data set was generated 

manually using the full 10 day data set, to investigate the effect of spatial 

autocorrelation on the rarefaction curves. This was done by starting at a randomly 

selected grid (for example A) and then determining the cumulative number of species 

for the nearest neighbouring grid (for example C), determined from the map of the 

GPS coordinates (Fig. 1), followed by the next nearest grid and so on. The process 

was repeated starting at each of the 10 grids in turn. The mean values for each of the 

10 grid runs were then used to construct the curve. The shapes of the rarefaction 

curves were compared visually with that of the spatially constrained model. To 

formally test for the presence of spatial autocorrelation in richness and abundance, 

SAAP v 4.3 and Moran’s I were used (Wartenberg 1989).  

To estimate the total (sensu Hortal et al. 2006) ant species richness for 

Elandsberg, a series of non-parametric species estimators, provided by EstimateS, was 

used. This approach was used because observed species richness obtained from 

sampling is considered to provide a biased estimate of total richness (Colwell & 

Coddington 1994). Determining which of these estimators is least bias and most 

accurate and precise for the specific set of data is complex, and dependent on factors 

such as community evenness and sampling intensity (Brose et al. 2003). Colwell & 

Coddington (1994) suggest that Chao 2 and Jack 2 (Jacknife 2) perform best for small 

sample sizes. Michaelis-Menten and incidence-based coverage estimator (ICE) are 

two additional estimators that perform well for small samples sizes (Magurran 2004). 

Since datasets differed in their underlying species abundance distributions and, 

therefore, influenced the performance of different estimators in different ways, all 

four of the above estimators were used for comparison (Brose et al. 2003). Species 
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richness estimators were calculated using 1000 randomisations, with sample 

replacement. Although randomisation without replacement provides a more accurate 

species richness estimate, for statistical comparison purposes using sample 

replacement gives variances for the full number of samples (Colwell 2005). The ICE 

values were then also used in z-tests to determine significant differences between five 

and ten days (both using 10 grids) and also five grids and ten grids (using 10 days). 

The tuna baiting data are summarized as a footnote in the appendix, and were 

excluded from all the above analyses. 

 

RESULTS 

 

A total of 8207 individuals, comprising five genera and 42 species were 

captured in total across all grids over the 10 day sampling period (Appendix A). The 

first and second trapping periods both yielded 38 species, with four species not shared 

between the two. However, the second five day sampling period yielded fewer 

individuals than the first (Appendix A). The highest species richness for a grid was 18 

and the lowest was 6 species. Approximate asymptotes to species richness were 

reached (Fig. 2). Estimates of total species richness ranged between 43.55 ± 4.04 

(ICE) and 48.52 (MMMean) (Table 1). All four species richness estimators showed 

similar trends for species richness across the sampling options, with the first five days 

having a marginally lower species richness estimate than the second five days (Table 

1).   

The species captured in the first trapping period showed a clear dominance 

structure, with Pheidole sp.1 being most abundant (Fig. 2). The relative abundance 

distribution in the second trapping period was similar to the first, although Pheidole 

sp.1 and Anoplolepis steingroeveri (Forel) were both equally dominant. In the first 

five and second five trapping days, 26 and 27 species respectively had a relative 

abundance of less than one percent.   

Species accumulated more rapidly across samples in the first trapping period 

than in the second period (Fig. 3A). However, more species were found per individual 

for the second compared to the first trapping period (Fig. 3B). For an increase in 

sampling duration (5 days vs 10 days), species richness increased from 38 to 42 

species (or an estimated 4.1 species increase using ICE) (Table 1), which was a non-

significant increase (z = -1.50, p (one tailed) = 0.067). An increase from one randomly 
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selected set of five grids to 10 grids using all 10 days showed an estimated 10.72 

species increase (using ICE), which was significant (z = -3.88, p (one tailed) = 0.001).  

Comparing sampling effort options, Fig. 4 shows that increasing effort from a 

mean five-day, five-grid pitfall sample leads to an almost identical increase in species 

richness for both sampling intensity (spatial, 38 species) and duration (temporal, 38.3 

species). However, species turnover, or the number of species not shared between 

replicates was lower for temporal (1st 5 days and 2nd 5 days) than for spatial (5 

randomly selected grids and 5 remaining grids) replicates (Fig. 5). Most of the species 

that were found in only one replicate were also rare in the overall sampling (Appendix 

A). Results of the spatial autocorrelation analysis, using Moran’s I, showed that 

species richness and abundances of sites closer together were not more similar than 

would be expected by chance, as the correlograms (for each species in each period 

and in total) were non-significant (p > 0.05 in all cases). The third sampling option, 

tuna baiting, added no new species to those already caught in pitfall traps (Appendix 

A). 

 

DISCUSSION 

 

This study investigated three different sampling options for increasing and 

ultimately maximizing sampling representivity of the ant assemblage in a low-lying 

area of the CFR. The results show that, at this local site scale, increases in sampling 

effort in terms of increasing the sampling duration and sampling intensity (number of 

sampling units in an extent) result in a similar increase in ant species richness 

captured. Thus both sampling options appear to be equally effective for measuring 

species richness. However, species shared between spatial replicates was much lower 

than that between temporal replicates, indicating a higher turnover between spatial 

replicates compared to temporal ones.  

Species richness of ants at Elandsberg was similar to that of other studies 

conducted in the CFR using pitfall trapping. Across 14 sites in the CFR moderately 

infested with Acacia saligna, 47 Formicidae species were found, using 10 pitfalls per 

site, 5 m apart, left open for 7 days (French & Major 2001). In the Proteoid Fynbos of 

the Cederberg, using a pitfall sampling design much like the one used in this study 

with sampling being representative of the area, 47 species were found (Botes et al. 

2006). In the Jonkershoek Valley, 45 species were captured across six sites using 20 
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pitfalls per site which were left open for 1 month in 24 hour intervals (Donnelly & 

Giliomee 1985). The sampling conducted in this study is thus considered effective as 

a means of estimating the local species richness of Formicidae. Sampling during 

spring may result in higher species richness for Elandsberg, however species richness 

of samples was nonetheless typical for the CFR and hence sampling can be considered 

to approximate total species richness for the area.  

Comparing the two consecutive five-day trapping periods, more individuals 

were captured during the first trapping period than in the second trapping period. 

However the number of species was the same for both trapping periods, therefore 

resulting in species accumulating faster per number of individuals for the second 

trapping period compared to the first. Also, the second trapping period had many 

more species caught in only one grid, i.e. more unique species. The reason for lower 

numbers of individuals during the second period may be a trapping-out effect 

(Bestelmeyer et al. 2000). However, the cooler weather conditions (a low of 11°C and 

rain on one day) during the second trapping period, which is likely to have reduced 

ant foraging activity, is more likely (Andersen 1997, Bestelmeyer et al. 2000). The 

first trapping period, by contrast, had temperatures greater than 30°C, favouring 

thermophilic species such as Ocymyrmex species (Hölldobler & Wilson 1990).   

Comparing the rarefaction curves of the 5 versus 10 grids (using the 1st 5 days 

data) and 1st 5 days and 10 days (using 5 grids) permitted a direct comparison of the 

effect of a doubling in sampling duration with that of doubling in spatial replicates. 

The results showed an equal increase in species richness for both sampling options, 

but a greater number of species were replaced between spatial replicates than between 

temporal replicates. This turnover was greater than could be explained by spatial 

autocorrelation alone, as the latter analysis was non-significant. This was also 

apparent in the spatially constrained model’s curve, where species accumulated more 

rapidly in the rarefaction curves than the spatially constrained model predicted. Hence 

the spatial turnover in species was apparently determined more by habitat 

heterogeneity than by spatial autocorrelation.  

The greater species turnover between spatial replicates compared to temporal 

replicates indicates that if sampling efforts in this area were to be increased further, 

increasing spatial replicates is likely to be more effective than relative increases in the 

number of sampling days within a season. A study aimed at comparing various 

methods and sampling efforts for collecting ants in the Brazilian cocoa plantations, 
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supports this idea. In this study, increasing the sampling duration from 24 hours to 7 

days, for 10 samples, lead to a 0.6 % increase in the total estimated species richness 

captured. However increasing the number of samples over a 7 day period, from 10 to 

20 and 40 lead to a 15.2 % and 35.9 % increase in total estimated species richness 

respectively (Delabie et al. 2000). This suggests that our finding applies more 

generally.  

The third technique, implementing an additional collecting technique, although 

recommended when sampling invertebrate assemblages (New 1998, Bestelmeyer et 

al. 2000), did not trap any new species. This has also been found in a previous study 

in the CFR where various baits, including banana/rum mixture, rotten pork and human 

faeces were found to be ineffective for trapping additional species (Koen & 

Breytenbach 1988). Reasons for tuna baiting being ineffective could be due to the 

tendency of baits to be monopolized by mass-recruiting dominant species 

(Bestelmeyer et al. 2000), which are then already present in pitfall traps. Leaving 

baits out for a shorter time period such as 5 - 15 min, could limit species dominating 

baits. Baiting is nonetheless useful for studying ant behaviour (Bestelmeyer et al. 

2000), but since we were interested in gaining species richness estimates, tuna-baits 

were not a successful additional method to use with pitfall trapping. 

It is important to note that this study was not aimed at catching all the species at 

the site, but rather at maximising richness for a set effort. In order to obtain a 

complete estimate of the species richness of an area sampling would have to be 

conducted throughout the year (New 1998, James 2004). This would ensure that 

species that are highly seasonal would also be captured (New 1998, Delabie et al. 

2000, Magurran 2004). However due to time constraints and limited resources, 

species richness measures in comparative studies are most often obtained using a 

single sampling period and trapping method (McGeoch et al. 2002).  

In conclusion this study shows that sampling efforts of ants in the CFR are 

maximised by increasing the spatial sampling intensity rather than increasing sample 

duration. Therefore, it is more beneficial to sample using more grids than to sample 

over a longer time interval. Studies such as this are important for increasing the 

efficiency of sampling.  
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Table 1 Ant species richness, number of individuals, number of species found only in 
one grid, and species richness estimates based on incidence-based coverage estimator 
(ICE), Chao 2, Jackknife 2 and Michaelis Menton Mean (MMMean).  
 

 1st five days 2nd five days Total 

Observed species richness (S) 38 38 42 

Number of individuals 5065 3142 8207 

Number of unique species 4 ± 3.57 5.52 ± 4.56 4.48 ± 4.1 

Species richness estimators ± sd 

ICE 39.44 ± 3.46 40.59 ± 6.07 43.55 ± 4.04 

Chao 2 39.25 ± 3.56 40.92 ± 6.07 46.01 ± 4.37 

Jackknife 2 39.41± 6.56 39.98 ± 9.1 43.71 ± 7.91 

MMMean  43.67 45.64 48.52 
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Figure 1 Map showing study grids at Elandsberg, Western Cape Province, South 

Africa. 
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Figure 2 Formicidae species rank abundance bar charts for two consecutive 5 - day 
periods. Phe1 = Pheidole sp.1, Ocy1, 2 = Ocymyrmex sp.1, 2, A.ste = Anoplolepis 
steingroeveri, Tqua = Tetramorium quadrispinosum, Tet7, 1, = Tetramorium sp. 7, 1,   
Lep2, 4 = Lepisiota sp.2, 4, Mon1, 8, 3 = Monomorium sp.1, 8, 3, Mcap = Messor 
capensis. The species which had a relative abundance less than 1 % for both trapping 
periods were summed and given in the last column (< 1 %). 
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Figure 3 Sample-based rarefaction curves for ant pitfall catches at Elandsberg over 
two consecutive 5-day periods, using Sobs (Mao Tao) (A) and samples and (B) 
individual. SC is a spatially constrained model that was generated manually.  
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Figure 4 Sample-based rarefaction curves showing the effects of increased sampling 
intensity and increased sampling duration of Formicidae pitfall catches. Base line = 
sampling for 5 days using 5 grids. Doubling sampling intensity = sampling for 5 days 
using 10 grids. Doubling sampling intensity = sampling for 10 days using 5 grids and 
total = sampling for 10 days using 10 grids. 
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Figure 5 Number of unique (outer half circles) and shared (area of overlap) 
Formicidae species for one temporally replicated set and two spatially replicated sets. 
Spatial replicates were obtained by a random selection of 5 grids and the remaining 5 
were then used as the complement per set, i.e. 1.1 and 1.2. 
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APPENDIX 

Appendix A. Formicidae species and number of individuals collected using pitfall 

traps at Elandsberg over a 10 day period. Symbols *  = only present in 1st 5 days, ° = 

only present in 2nd 5 days. 

Species 1st 5 days 2nd5 days Total 

Dolichoderinae    

Technomyrmex sp. 1 * 5 0 5 

Dorylinae    

Dorylus helvolus (Linneaus) ° 0 1 1 

Formicinae    

Anoplolepis steingroeveri (Forel) 874 709 15831 

Anoplolepis sp.1 18 2 20 

Anoplolepis sp. 3 4 6 10 

Camponotus fulvopilosus (DeGeer) 7 2 9 

Camponotus sp. 1 6 4 10 

Camponotus sp. 2 4 6 102 

Camponotus vestitus  (F. Smith) 15 21 36 

Camponotus mystaceus (Emery) ° 0 2 2 

Camponotus sp. 5 2 1 3 

Camponotus sp. 6 1 1 2 

Lepisiota sp. 2 281 203 484 

Lepisiota sp. 3 12 1 13 

Lepisiota sp. 4 90 26 116 

Lepisiota sp. 5 12 18 30 

Myrmicinae     

Crematogaster sp. 1 20 3 23 

Messor sp. 1 18 11 29 

Messor capensis (Mayr) 51 48 99 

Monomorium sp. 1 202 128 330 

Monomorium sp. 2 * 3 0 4 

Monomorium sp. 3 39 61 100 

Monomorium sp. 4 1 3 4 
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Monomorium sp. 5 * 13 0 13 

Monomorium havilandi (Forel) ° 0 1 1 

Monomorium sp. 7 38 23 61 

Monomorium sp. 8 57 73 130 

Ocymyrmex sp. 1 1029 481 15101 

Ocymyrmex sp. 2 351 194 545 

Pheidole sp. 1 1173 717 18903 

Rhoptromyrmex sp. 1 6 2 8 

Tetramorium sp.1 57 20 77 

Tetramorium quadrispinosum (Emery) 499 292 7912 

Tetramorium sp. 3 44 13 57 

Tetramorium sp. 5 10 12 22 

Tetramorium sp. 7 95 39 134 

Tetramorium sp. 8 4 2 6 

Tetramorium sp. 9 5 1 6 

Tetramorium sp. 10 * 1 0 1 

Cardiocondyla sp. 1 ° 0 1 1 

Ponerinae    

Anochetus levaillanti (Emery) 1 1 2 

Pachycondyla sp. 1 17 13 30 

Total 5065 3142 8207 

 

1 An additional 134 individuals were caught using tuna bait trapping 

2 One individual was caught using tuna baiting 

3 An additional 275 individuals were caught using tuna baiting 
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CHAPTER 3 
SEASONAL CHANGES IN ARTHROPOD ASSEMBLAGES IN LOWLAND 

FYNBOS OF THE CFR 
 

 
INTRODUCTION  
 
The Cape Floristic Region (CFR) has been listed as a biodiversity hotspot of global 

significance (Cowling et al. 2003). With over 9000 plant species occurring in this 

region, 70 % of which are endemic (van Wyk & Smith 2001, Goldblatt & Manning 

2002) and 1406 Red Data Book plant species, this area boasts the greatest 

concentration of rare species in the world (Cowling & Hilton-Taylor 1994). The 

region is also an Endemic Bird Area as well as a centre of endemism and diversity for 

mammals, fish, amphibians, reptiles and many invertebrate groups (Picker & 

Samways 1996, Cowling et al. 2003). This region is however highly threatened by 

factors such as urban development, agriculture, dense stands of alien plant invasions, 

unsustainable harvesting of natural resources (such as wild flowers and mining and 

quarrying activities) as well as poor grazing practices (van Wyk & Smith 2001, 

Rouget et al. 2003). These transformations have been particularly severe in the 

lowlands (Rouget et al. 2003). Although, much is known about the plant diversity of 

the region, comparatively little is known about the arthropod assemblages (Picker & 

Samways 1996, Visser et al. 1999, Giliomee 2003). South African Museum records 

show 111 invertebrate species to be endemic to the Cape Peninsula, with the majority 

of the species living in upper-reach forest streams, riverine forest and caves (Picker & 

Samways 1996). However not much is known about the invertebrate diversity in other 

parts of the CFR and hence the possibility of finding many more endemic species 

exists (Picker & Samways 1996).  

Arthropods are well known to play a crucial role in ecosystems and a change in 

their assemblages can potentially affect the entire ecosystem (Wilson 1987, Madden 

& Fox 1997, Bolger et al. 2000, Major et al. 2003). Functions performed by 

arthropods include pollination, seed dispersal, improving the soil structure, nutrient 

cycling, and control of pest species by arthropod predators (Bestelmeyer & Wiens 

1996, Majer & Nichols 1998). Arthropods also perform vital functions in the CFR, 

where for example, ants are responsible for dispersing seeds of over 20 % of the plant 

species (Bond & Silingsby 1983). Hence determining base-line information on 

arthropods assemblages and their variability is of great value to the CFR.  
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A prominent feature of assemblages is their variation in both time and space 

(Samways 1990). Arthropod species and their abundances are known to change, often 

dramatically, across seasons, because they are influenced directly or indirectly by 

changing weather conditions such as temperature, day-length, sunlight, precipitation 

and wind (New 1998, Speight et al. 1999). Mediterranean climates, such as that of the 

CFR, are characterized by large temperature and humidity fluctuations across seasons, 

as well as great variability in availability of food resources (Retana & Cerdá 2000, 

Stamou et al. 2004). These fluctuations are known to be mirrored by the arthropod 

assemblages (Retana & Cerdá 2000). However, in the CFR very few published studies 

have monitored seasonal changes in arthropod (Schlettwein & Giliomee 1987, Wright 

& Giliomee 1990, Visser et al. 1999, Wright & Samways 1999). The aim of this study 

was thus to quantify seasonal changes in ground-dwelling arthropod taxa, in a low–

lying area of the CFR. Additionally, specific focus was placed on changes in ant 

(Hymenoptera: Formicidae) assemblages, because they are numerically dominant in 

ground dwelling assemblages in this region.  

 

MATERIAL AND METHODS 

 

Sample design 

This study took place on the Elandsberg Private Nature Reserve (19.03° E, 

33.27° S) and surrounding Bartholomeus Klip Farm, near Hermon in the Western 

Cape Province. The Reserve was proclaimed in 1973, and encompasses 

approximately 3900 of the 6500 ha farm (Midoko-Iponga 2004). The reserve lies at 

the foothills of the Elandskloof Mountain range and is surrounded in the lowlands by 

farmland, including wheat fields and cattle and sheep grazed areas. Elandsberg has 

two main vegetation types, Swartland Alluvium Fynbos and Swartland Shale 

Renosterveld, both of which are critically endangered (Mucina & Rutherford 2004). 

This reserve protects the largest remaining unploughed lowland area of these two 

vegetation types in the CFR.   

The sample design used consisted of ten 20 x 50 m grids, five on the Elandsberg 

Private Nature Reserve and five on adjacent degraded remnants of lowland fynbos 

found between the farmlands (referred to as remnants from now on). The position of 

each grid was randomly determined and marked using a Garmin GPS (see Chapter 1, 

Fig.1). The remnants included two grids on road and field side verges with relatively 
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intact natural vegetation remaining, although cattle were allowed to graze the area. A 

further two grids were on old fields, with limited natural vegetation. The fifth grid 

was in a vlei area surrounded by wheat fields with relatively rich plant species 

diversity. In the reserve, grids were also chosen to represent some of the heterogeneity 

of the vegetation, including a Swartland Shale Renosterveld vegetation dominated 

grid and four Swartland Alluvium Fynbos vegetation dominated grids. One of the 

reserve grids was situated inside a BIOTA Observatory. BIOTA is a long-term 

research project analysing biodiversity and its change along a transect in Namibia and 

the western parts of South Africa. Cooperative research is conducted on 35 

standardized monitoring sites, BIOTA Observatories, by African as well as German 

scientists, with the goal of generating knowledge for effective maintenance and 

sustainable use for biodiversity (Schmiedel & Jürgens 2005). 

All grids in this study were between 71 - 170 m.a.s.l. and were placed 

approximately 200 to 250 m apart. Sampling was conducted on four occasions during 

2004: 20 - 25 February (late summer/autumn, referred to as autumn from now on), 2 - 

7 June (winter), 6 - 11 October (spring) and 8 - 13 December (summer). 

 

Weather data sampling 

Weather data for Elandsberg were obtained from the Diemerskraal Weather 

Station, Paarl (33.35°S, 18.55°E). This included rainfall, maximum and minimum 

temperatures as well as relative humidity and mean wind speed. Data were provided 

by the AgroMet-ISCW Agricultural Research Council.  

 

Vegetation Sampling 

For each of the four sampling events, vegetation structure around each of the 

pitfalls (see arthropod sampling below) was sampled. To estimate the percentage 

vegetation cover, the following categories were used: bare soil, litter, grass, 

herbaceous component and woody plants. A square (1 m2) was placed over each 

pitfall and then the percentage of each category in the square was estimated. 

Vegetation height profiles, also referred to as foliage height profiles (FHP), around 

each pitfall were also measured to determine the vertical density of the vegetation at 

different heights (Bestelmeyer & Wiens 1996). This was done by taking four 

measurements with a measuring rod. The rod was placed at four points located 90° 

apart on a 1 m radius circle with the centre at the pitfall. Measurements were divided 
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into 7 height classes of 0.25 m intervals, with plants above 1.50 m assigned to the last 

height class. All parts of the plant that touched the measuring pole within a certain 

height class were recorded (Bestelmeyer & Wiens 1996, Bestelmeyer et al. 2000). 

 

Arthropod sampling 

Pitfall sampling was used to trap ground-dwelling arthropods. The pitfalls used 

were plastic containers (150 ml, 55 mm diameter, 70 mm deep) with screw-on caps. 

These were dug in level with the surrounding soil surface. The pitfalls remained 

covered for the first five days to reduce the digging-in effect (Greenslade 1973, 

Abensperg-Traun & Steven 1995, Southwood & Hendersen 2000), after which they 

were opened for a period of five days per sampling event. To set the traps 50 ml of 50 

% propylene glycol solution was poured into the opened pitfalls (Bestelmeyer et al. 

2000). This preservative is non-toxic to vertebrates (Bestelmeyer et al. 2000), and 

neither attracts nor repels ants (Abensperg-Traun & Steven 1995). Pitfalls were set 

and removed in the same order over as short a period as possible, typically between 

10h00-15h00, to ensure that they were open for equal lengths of time. Sets of closed 

empty pitfalls were inserted in non-trapping times to ensure pitfall traps were set in 

the same position for each of the four trapping events. The content of the pitfalls was 

washed by pouring it into a fine-meshed net and gently rinsing off the loose soil and 

propylene glycol with water. The remaining content was then preserved in 70 % 

alcohol. 

The fauna were identified under a Leica-M Series Stereo-microscope and 

identified to order level. The ant specimens (Hymenoptera: Formicidae) were sorted 

to species, and named where possible. For each ant species collected, voucher 

specimens are held at the University of Stellenbosch. Sunspiders (Arachnida: 

Solifugae) and scorpions (Arachnida: Scorpiones) were sent to the American Museum 

of Natural History, for identification by L. Prendini.  

 

Data Analyses 

 Weather data (rainfall and ambient temperature) were plotted for both the year 

in which sampling was conducted (2004) and the individual five-day sampling 

periods. Mean (± sd) values across the five day sampling period for maximum and 

minimum temperatures and wind, as well as median (± range) percentage relative 

humidity were compared across the seasons, using one-way ANOVA. 
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Median (± range) percentage covers for each of the vegetation categories; bare, 

litter, grass, herbs and woody were used for each grid. The foliage height profile data 

was summarised as the total number of hits per four readings per pitfall, and then the 

mean number of hits per grid was determined (Bestelmeyer & Wiens 2001). Kruskal-

Wallis tests were run for both cover and FHP’s to determine significant differences 

between the seasons using the median and mean values per site.   

Data from the pitfall traps were pooled into a single sample per grid. Although a 

variety of taxa were trapped in the pitfalls, only those taxa which could be classified 

as ground-dwelling were used (Uys & Urban 1998, Standen 2000). In the order 

Coleoptera, only individuals from the Tenebrionidae, Staphylinidae, Carabidae and 

Scarabidae families were considered. Arthropod data for each season, excluding ants, 

were grouped into functional groups, namely predators, herbivores, detiritivores, 

omnivores and others, which included arthropod taxa that could be assigned to more 

than one group (Scholtz & Holm 1996, Uys & Urban 1998, Picker et al. 2002). 

Beetles, which are functionally diverse, were separated into the previously mentioned 

families and then assigned to functional groups. Arthropod abundances were 

compared across the four seasonal sampling periods, by constructing rank abundance 

distributions for all arthropods across the four sampling periods (Magurran 2004). 

Additionally, rank abundance curves were constructed separately for ants and all other 

arthropods.  

Only the ants were determined to species level and hence more in-depth 

analyses were able to be performed. To estimate sampling representivity of the ants, 

sample-based rarefaction curves were compiled separately for each of the four 

sampling events and also for the combined 2004 data set, using EstimateS V7, R.K. 

Colwell 2000, http://viceroy.eeb.uconn.edu/estimates. To compare species richness 

between seasons, sample-based rarefaction curves were rescaled to individuals, i.e. 

plotting observed species richness against individuals rather than samples (Gotelli & 

Colwell 2001). Species richness and abundance of ants were compared statistically 

across seasons using non-parametric Kruskal-Wallis tests and post-hoc Multiple 

Comparisons tests. To compare rank abundance distributions of various seasons, 

species rank abundance curves for ants were constructed. These curves were then 

further separated into reserve and remnant grids. Additionally, the numerically 

dominant ant species in each seasonal sample for each individual grid was tabulated. 

Simpson’s (inverse) measure (calculated by Estimate S) was used to calculate an 
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evenness value (
S

D
E D

1
1 = , where D is the Simpson’s Index and S the species 

richness) (Magurran 2004).  

To determine whether species were characteristic of a season, Indicator values 

were determined using Dufrêne & Legendre (1997) Indicator Value Method.  This 

method combines specificity (the uniqueness of a species in a season) with the fidelity 

(frequency in that season) and then provides an Indicator Value (IndVal) as a 

percentage for each species. High values indicate that the species is characteristic of 

the site, with species having significant values above 70 % regarded as a benchmark 

for indicator species (van Rensburg et al. 1999, McGeoch et al. 2002). 

The ant genera were assigned to functional groups following Andersen (1995). 

Functional groups included, Sub-ordinate Camponotini (behaviourally submissive to 

more abundant, aggressive species), Hot Climate Specialists (adapted to arid 

environments), Cryptic Species (small body size, predominantly forage in soil and 

litter), Opportunists (unspecialized species, characteristic of disturbed sites, or other 

habitats supporting low ant diversity), Generalized Myrmicinae (ubiquitous, highly 

competitive taxa occurring in most habitats) and Specialist Predators (specialized diet, 

large body size and small colony size) (Hoffmann & Andersen 2003). Ant abundance 

was correlated with the abundance of other arthropod taxa, using Spearman’s R, to 

determine whether ant abundance patterns mirrored those of other ground-dwelling 

arthropods.  

To determine differences between ant assemblage structure of individual grids 

across seasonal samples, cluster analysis was used in Primer v5 (Clarke & Gorley 

2001). Cluster analysis was based on group averaging and Bray Curtis similarity 

metric was used as a similarity measure (Clarke & Warwick 1994). Abundance data 

was standardized and fourth root transformed prior to analysis, so that common and 

rare species would be weighted equally (Clarke & Warwick 1994). To test for 

significant differences between seasonal samples, analysis of similarity (ANOSIM) 

was used. This non-parametric permutation procedure calculates a global R statistic 

from rank similarity matrices underlying sample ordinations. A significant global R 

close to 1 indicates distinct differences between assemblage structures of groups 

(Clarke & Warwick 1994). Non-metric multi-dimensional scaling (MDS) was used to 

display the relationship between assemblages of various seasons. 
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RESULTS 

 

Weather data 

During 2004, ambient temperature reached a maximum in autumn and a 

minimum in winter. Rainfall was highest during winter and only 0.1 mm fell in 

autumn (Fig. 1A). During the four five-day sampling periods, mean, maximum and 

minimum ambient temperatures were all significantly higher during autumn and 

summer than during winter and spring sampling periods (ANOVA,  Fmean temp 1,3 = 

23.03, p < 0.001;  Fmax temp 1,3 = 241.87, p < 0.001, Fmin temp 1,3 = 30.45, p < 0.001). 

Seasonal temperature fluctuated within the five day sampling periods, with summer 

having the highest range (26.3 °C) and spring the smallest range (21.18 °C) (Fig. 1B).  

Rainfall during the winter sampling period was 27 mm (over 3 days) and during 

the spring sampling period was 36 mm (over 3 days). Even though rainfall affects 

foraging activity of arthropods, rainfall was seen as part of the seasonal fluctuations 

and hence data of the winter and spring samples was still used. Mean wind speed and 

relative humidity did not differ significantly between seasons (ANOVA, F1,3 = 0.50, p 

> 0.05 and ANOVA, F1,3 = 2.19, p > 0.05 respectively) (Fig 2). Overall, a total of 370 

mm rain fell during 2004, which is considerably less than the average annual rainfall 

of 500 mm (Midoko-Iponga 2004).   

 

Vegetation 

Percentage vegetation cover differed significantly over the seasons for litter 

(Kruskal-Wallis test; H = 38.28, df = 399, p < 0.001), for grass (Kruskal-Wallis test; 

H = 19.19, df = 399, p < 0.001), herbaceous component (Kruskal-Wallis test; H = 

71.69, df = 399, p < 0.001) and the woody component (Kruskal-Wallis test; H = 

24.67, df = 399, p < 0.001) (Fig.3). However overall percentage bare ground did not 

change significantly (Kruskal Wallis test: H = 1.77, df = 399, p = 0.62) (Fig. 3). There 

was significantly less litter in spring than all the other sampling periods and 

significantly more litter cover in winter than in summer. The percentage cover of the 

herbaceous component was significantly highest in spring compared to all other 

seasons and winter had a significantly lower herbaceous component than autumn and 

summer (Fig. 3).   

Vegetation Height Profiles showed significant changes during the seasons in all 

lower height classes (up to 1.00 m) but not in the higher height classes (> 1.0 m) (Fig. 
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4). Vegetation was most dense in the layer 0 - 0.25 m during spring.  Summer 

vegetation had the highest density in the height classes 0.25 - 1.25 m and 1.50 m + of 

all the seasons and in the autumn sampling period density was highest for the height 

class 1.25 - 1.50 (Fig. 4). In general there was an increase in grass and litter in winter, 

while spring and summer had an increase in herbaceous and woody cover. Foliage 

density directly above the ground (0 - 0.25 m) was at its lowest in autumn and 

increased until spring after which it declined again.   

 

Arthropods 

A total of 28 839 ground-dwelling arthropod individuals were captured during the 

four sampling periods in Elandsberg. Sampling in summer yielded the highest number 

of individuals (14 251) and winter the lowest (1 566) (Table1). Overall, ants were the 

most abundant taxon trapped across all seasons (90 % in autumn, 84 % in winter and 

91 % in spring and summer). Spiders (Arachnida: Araneae) were the second most 

abundant taxa captured in all samples except in spring, where beetles (Insecta: 

Coleoptera) were more abundant (Fig. 5 & 6). Peaks in arthropod abundances were 

different between orders across the seasons: scorpions (Scorpiones) and sunspiders 

(Solifugae) abundances peaked in autumn, earwigs (Dermaptera), millipedes 

(Diplopoda) and isopods in winter, termites (Isoptera), beetles (Coleoptera) and 

centipedes (Chilopoda) in spring, and finally bristletails (Archeognatha), silverfish 

(Thysanura), ants, pseudoscorpions and spiders in summer (Table1).  

Sunspiders, scorpions and pseudoscorpiones were absent from the winter samples 

(Table1). Three scorpion species of the family Buthidae were found, namely 

Parabuthus capensis (Ehrenberg, 1831), P. planicauda (Pocock, 1889) and 

Uroplectes variegates (C.L. Koch, 1844). All scorpion species were present in the 

autumn samples, while P. planicauda and Uroplectes variegates were also present in 

spring and Parabuthus capensis was present in summer. All scorpion species were 

trapped in one reserve grid and only one species was trapped in a fragment grid. Five 

of the nine scorpions trapped were juveniles and two scorpions were female. 

Sunspiders could unfortunately not be identified to genus due to mostly juveniles 

being trapped and almost no adult males, which are necessary for identification 

(Prendini, personal communication). However it was possible to determine that some 

individuals were from the family Ceromidae. These sunspiders are very seldom 

Stellenbosch University  http://scholar.sun.ac.za



 43 

collected and are distinguished from all other sunspiders by possessing tarsal claws on 

the reduced first pair of legs (Prendini, personal communication).   

Excluding ants, more than half of the individuals captured across all seasons were 

predators, except for spring, where detiritivores had a slightly higher relative 

abundance (Fig. 7). Detiritivores were the second relatively most abundant group, 

peaking in summer and declining in winter. Herbivores were relatively more abundant 

during winter and spring than during the summer sampling periods. However, 

herbivore abundance was expected to be low in general, as herbivores are 

predominantly plant-dwelling and hence not likely to be caught in pitfall traps. Thus 

fluctuations in herbivore data could not be taken as reliable estimates of general 

fluctuations in herbivore abundance. Omnivore relative abundance was highest during 

winter (Fig. 7). 

 

Ants 

A total of 59 species were trapped at Elandsberg. Across combined seasonal and 

within seasonal samples, the ant species sampled were a representative sample of the 

fauna of Elandsberg, with rarefaction curves approaching asymptotes (Fig. 8A & B) 

(see also Chapter 1). Both ant abundance and species richness were highest in summer 

and lowest in winter, with significantly higher species richness in autumn and summer 

compared to winter (Kruskal Wallis test, H = 18.37, d.f. = 3, p < 0.001) (Table 2). 

Species density (i.e. number of species per sample) increased similarly for reserve and 

remnant sites during the summer months, while during winter and spring, species 

density of remnant sites was higher than reserve sites (Fig. 8A). Remnant sites 

showed a steeper accumulation of species richness (i.e. number of species per 

individual) compared to reserve sites, for spring and summer and for overall species 

richness (Fig. 8B). The rank abundance curves for ants changed across the seasons 

with relative dominance being low during autumn and winter sampling periods, 

compared to the spring and summer sampling periods (Fig. 9). This was confirmed by 

the Simpson’s evenness values; autumn (0.189) and winter (0.107) had values closer 

to one than spring (0.060) and summer (0.057).  

Anoplolepis steingroeveri was numerically dominant in spring and summer, while 

in autumn and winter it was the second most abundant ant (Fig. 9, Appendix A).  

Pheidole sp.1 was numerically dominant in winter, but also retained a relatively high 

abundance across the other seasons (Fig. 9, Appendix A). Dominance of individual 
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species per grid changed across seasons, with the exception of three grids, two of 

which were dominated by Anoplolepis steingroeveri and one dominated by Pheidole 

sp.1 (Table 3). The spring samples had six species that were not trapped in any of the 

other seasons, whereas in winter there was only one such species (Table 2). One 

species was a characteristic indicator of spring samples (Messor sp. 2, IndVal = 70.36, 

p < 0.05) and one of autumn samples (Ocymyrmex sp. 1, IndVal = 72.07, p < 0.05). 

No species were characteristic of winter or summer samples. When including 

significant Indicator Values above 50 (i.e. lowering the subjective benchmark), two 

species were characteristic of summer samples (Camponotus vestitus, IndVal = 54.09, 

p < 0.05 and Ocymyrmex sp. 2, IndVal = 63.46, p < 0.05) and two additional species 

of autumn samples (Lepisiota sp.2, IndVal = 50.89, p < 0.05 and Monomorium sp.1, 

IndVal = 58.31, p < 0.05).  

Assemblage structure differed significantly, but only by a small amount, between 

seasons (Global R = 0.18, p < 0.001, Fig. 10). Autumn assemblage structure was 

significantly different to that of winter (R = 0.30, p < 0.01) and spring (R = 0.25, p < 

0.001), but not summer (R = 0.02, p > 0.05). Summer assemblage structure was also 

significantly different to winter (R = 0.28, p < 0.01) and spring R = (0.24, p < 0.01). 

Winter assemblage structure did not differ significantly from spring samples (R = -

0.025, p > 0.05). Assemblage structure was also significantly different between 

pooled autumn and summer samples and pooled spring and winter samples (Global R 

= 0.28, p < 0.01). Large differences, i.e. high R-values, between ant assemblage 

structures of seasonal samples were not observed, but they were nonetheless 

significant.   

The composition of functional groups changed across seasons (Fig. 11A & B). 

Generalised Myrmicinae had the highest relative abundance during autumn and 

spring, while Hot Climate Specialists were proportionally most abundant in spring 

and summer (Fig 11A). Proportional abundances of Cryptic species, Subordinate 

Camponotini and Specialist Predators remained rare throughout the four seasonal 

samples. Opportunist species had their highest proportional abundance in autumn. 

Proportional species richness showed a different pattern, with Opportunist Species 

having the highest proportion of species across all seasons (Fig. 11B). Cryptic Species 

were absent from autumn and winter samples (Fig. 11B).  

Ant abundance data per pitfall (n = 400) across the four seasonal samples were 

significantly positively related to several taxa, namely silverfish (rs = 0.40, p < 0.05), 
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bristletails (rs = 0.16, p < 0.05), beetles (rs = 0.20, p < 0.05), pseudoscorpions (rs = 

0.20, p < 0.05) and spiders (rs = 0.36, p < 0.05). Isopods (rs = -0.15, p < 0.05), 

sunspiders (rs =-0.20, p < 0.05) and millipede (rs = -0.15, p < 0.05) abundances were 

significantly negatively correlated with ant abundance. Termites, cockroaches, 

earwigs, scorpions and centipedes were not significantly correlated with ant 

abundance (p > 0.05). 

 

DISCUSSION 

 

Arthropods 

Substantial seasonal variation in abundance and composition was observed in the 

ground-dwelling arthropod community of this area of the CFR. Arthropod abundance 

generally exhibited a peak in summer and a trough in the winter; a pattern that is well 

known for arthropods in Mediterranean habitats and has been previously quantified 

for epigaeic fauna (Andersen 1986, Magagula 2003, Stamou et al. 2004). Abundance 

peaks in summer and troughs in winter are generally related to temperature 

fluctuations, as arthropod growth rates and adult reproductive activity are determined 

and influenced by temperature (Wolda 1988, Speight et al. 1999).  

However, seasonality patterns tend to be much more complex than simply related 

to temperature and reflect responses to not only weather conditions but also biotic 

conditions such as predator/parastitoid presence and food resources (Wolda 1988). 

Peaks in abundances, as exhibited by termites, beetles and centipedes in this study, are 

most likely responses to a combination of rainfall and temperature and resulting 

increased food resources (Newell 1997, Bolger et al. 2000) (Fig 1A).Vegetation 

(including litter) density, complexity and diversity have also been shown to affect 

arthropod assemblages (Visser et al. 1999, Bolger et al. 2000, Retana & Cerdá 2000, 

Harris et al. 2003, Magagula 2003), although effects vary between taxa. Increased 

cover and density of the herbaceous component and woody species during spring may 

provide an increase in food resources for herbivorous species, such as certain beetles 

and termites. This was found in a previous study in the CFR, where insect biomass, 

mainly including herbivorous taxa, showed spring peaks (Schlettwein & Giliomee 

1987).   

Winter peaks in abundances were seen for earwigs, millipedes and isopods in this 

study. Millipedes are dependent on moisture and many species avoid direct sunlight 

Stellenbosch University  http://scholar.sun.ac.za



 46 

and dry heat (Druce et al. 2004), hence cooler, wetter winter months are likely to be 

most favourable for this taxon. The response of individual orders to seasonal changes 

is complicated, because individual species within orders frequently have different 

responses depending on their life history characteristics to biotic and abiotic variables 

(Wolda 1988, Pinheiro et al. 2002). Also abundance fluctuation within seasons and 

across years may vary, a trend which was not investigated in this study (Wolda 1988, 

Tylianakis et al. 2005). 

Functional group composition, excluding ants, showed clear seasonal variation. 

Predators were the dominant group throughout the four seasons, while relative 

abundances of detiritivores and omnivores varied considerably across seasons. The 

abundance of detritivores, which are reliant on food resources found in the litter layer, 

showed no obvious relationship with the percentage litter cover at each sampling grid; 

the percentage litter layer was highest during winter, however the relative abundance 

of detritivores was lowest. It may however be that litter depth is a better correlate to 

detritivore abundance than percentage litter cover. Alternatively a more accurate 

collection method for detritivores would have been litter sampling. Nonetheless, some 

of the detritivore taxa, namely millipede and isopod abundances did peak in winter 

with a peak in the litter component.  

The high relative abundance of predators is a consequence of high spider 

abundance with spiders being the second most abundant order found in Elandsberg. 

Spiders and predatory beetles, such as Carabids, are known to be abundant and 

dominate ground dwelling arthropods in regions of Europe, USA and Australia 

(Bolger et al. 2000, Woinarski et al. 2002). They are commonly found in agricultural 

lands, playing an important role in controlling pest species, and are known to be 

active all year round (Booij & Noorlander 1992, Dippenaar-Schoeman & Jocqué 

1997). The high number of predators in Elandsberg is a positive sign for the pest 

management of agricultural landscapes. Other predators such as sunspiders, 

pseudoscorpions and scorpions appear to be dependent on higher temperatures for 

activity (Leeming 2003), explaining why none were found during winter sampling.  

 

Ants 

The Formicidae dominated the epigaeic fauna across all seasons. A total of 59 

species were captured in Elandsberg, which is higher than that reported for other areas 

of the CFR (see Chapter 1); many of these studies however only conducted sampling 
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in one season. Two studies, which investigate ant assemblages across more than one 

season, were conducted in Jonkershoek, Cape Floristic Region and captured only 45 

and 31 species (Donnelly & Giliomee 1985, Schlettwein & Giliomee 1987), however 

Dietrick Vacuum Sampling was used in the second study which may have 

underrepresented ant species richness of the area. In the semi-arid Karoo, samples 

were taken in summer and winter resulting in 45 species caught in pitfall traps 

(Lindsey & Skinner 2001). A study in the Cederberg, CFR, sampled ants in autumn 

and spring and captured 45 species in the Proteoid fynbos (Botes et al. 2006). Species 

richness of the ants from the CFR is estimated to be 100 species, although this is most 

likely an underestimate (Giliomee 2003). Nonetheless it indicates that Elandsberg ant 

richness is comparatively high. 

The patterns of seasonal variation in ants resembled that of epigaeic arthropods in 

general, with ant abundance and species richness peaking in summer and declining in 

winter. This pattern has been found in several other studies (Andersen 1986, Lobry 

DeBruyn 1993, Newell 1997, Lindsey & Skinner 2001). Ants are a thermophilic taxa 

with activity strongly linked to temperature (see Andersen 1997, Kaspari 2000). In 

addition, temperature in Mediterranean areas has been shown to control the structure 

and composition of epigaeic ant assemblages (Cerdá et al. 1998, Retana & Cerdá 

2000). Hence increased ant abundance and richness in the summer can be attributed in 

part to higher temperatures which favour increased foraging and activity. Ant 

assemblage composition structure showed similar results, with the warmer months 

(summer and autumn) having similar composition structures, but differing from those 

of cooler months (spring and winter).  

Individual species however differed in their response to temperature fluctuations.  

Some appeared to be directly related to temperature, such as the strongly thermophilic 

genera, Ocymyrmex (Marsh 1988). For these species optimal ground surface 

temperatures for foraging activity are above 50 °C (Witt & Giliomee 1999). 

Ocymyrmex sp.1 dominated numerically during autumn in general and Ocymyrmex 

spp 1 & 2 were the numerically dominant species in six of the ten grids in autumn or 

summer or in both seasons. Ocymyrmex sp.1 was a characteristic indicator species for 

autumn samples, while Ocymyrmex sp. 2 was characteristic for summer samples. 

Hence the species abundance patterns reflected that of temperature increases. 

For other species, seasonal fluctuations in abundance appeared to be controlled 

both by weather conditions and food availability. This is characteristic for ant 
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assemblages in strongly seasonal climates (Andersen 1986). Food availability is likely 

to have increased during spring and summer, as vegetation cover of particularity the 

herbaceous and woody component increased. Hence ant richness and abundance were 

expected to peak in spring, a pattern shown in several other studies, some of which 

were conducted in Mediterranean regions (Schlettwein & Giliomee 1987, Samways 

1990, Kaspari 2000). However overall spring peaks for ant abundance and species 

richness were not seen in this study. Temperatures for spring in this study may have 

been lower than that of other studies and rainfall may have been responsible for  

reduced forager activity (Andersen 1997, Bestelmeyer et al. 2000, Kaspari 2000).  

Nonetheless certain species did show abundance peaks during spring, such as 

Messor species, which are known seed-harvesters (Hölldobler & Wilson 1990). These 

species were numerically dominant during spring in two grids, and Messor sp. 2 was 

shown to be characteristic of spring samples. This was probably due to the availability 

of seeds during spring (Johnson 1992). Cryptic Species, including Solenopsis and 

Plagiolepis species, were found only during spring and summer, possibly also 

responding to increased temperatures and food availability. However these species are 

mostly soil and litter foragers (Hoffmann & Andersen 2003) and hence would not 

have been adequately trapped by pitfall traps. Thus no clear conclusion can be drawn 

from these. 

Another example of an ant species controlled by both weather and climate 

variability, was Anoplolepis steingroeveri, the most dominant ant species trapped in 

this study. This pugnacious species is widespread throughout southern Africa and 

known to dominate pitfall traps where it occurs (Addison & Samways 2000). 

Anoplolepis species are able to forage over a wide range of soil temperature, from 10 

– 54 °C, although they appear to prefer soil temperatures between 20 - 24°C  (Witt & 

Giliomee 1999). In this study, A. steingroeveri was overwhelmingly numerically 

dominant in spring and summer samples and was also dominant in two grids 

throughout the year. This species was also the main contributor to the high relative 

abundance of Hot Climate Specialists during summer and spring. High abundances of 

A. steingroeveri in spring and summer thus appear to response to an increase in 

temperature as well as food availability. 

Studies have shown temperature to be more important in structuring ant 

assemblages than interspecific competition, especially if thermal variations are high 

(Cerdá et al. 1998, Retana & Cerdá 2000).  Species vary in their thermal tolerances so 
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that different species are active during different times of the day and year, which 

reduces competition and allows species to co-exist. In the assemblage studied here, 

the reduction of A. steingroeveri abundance during autumn may be explained by this 

species thermal tolerance levels. Autumn samples were taken during the warmest 

month (February) and ground temperatures are likely to have been highest during this 

sampling period. Although summer ambient temperatures were higher than in autumn 

during the five-day trapping period, shading (represented by an increase in woody 

component and vegetation density above 1.5 m) was greater in summer than autumn 

and hence reduced soil temperatures, which affects ants more directly (Retana & 

Cerdá 2000, Lassau & Hochuli 2004). Therefore too high temperatures may have 

been the cause of reduced A. steingroeveri abundance during autumn. Declines in this 

dominant species, resulted in greater assemblage evenness during this month 

(evenness was highest in autumn), allowing the relative abundance of other species to 

increase. Some of the species that increased in abundance during autumn were 

Opportunist Species, including Tapinoma, Technomyrmex, Lepisiota, Cardiocondyla 

and Tetramorium. These species are generally unspecialized and poor competitors. 

Their distribution is known to be highly influenced by the presence of other ants, and 

they predominate only where conditions for other ants are unfavourable (Andersen 

2000). Hence high temperatures during autumn allowed Opportunist Species to 

increase in relation to dominant species such as A. steingroeveri.   

Thermal tolerance levels may also have limited the abundance of Pheidole sp.1 

which in this study was numerically dominant in winter. Pheidole species appear to be 

intolerant of surface temperatures above 35 °C (Witt & Giliomee 1999) and would 

thus be mostly active during the cooler seasons of the year. Since this species was one 

of the main contributors to the Generalized Myrmicinae, this would also explain the 

relative increase in GM abundance during winter. For most other species, decreased 

temperatures in winter, led to reduced ant abundance and foraging activity. 

Therefore in general, summer peaks in ant abundance and species richness may be 

seen as a general optimal combination of ground surface temperature and food 

availability. Spring was still relatively cool, while autumn was possibly too warm for 

several species.  

Ant abundance cycles across the seasons were most closely followed by that of 

silverfish and spiders. Since many ant species are also predators it is not surprising to 

find seasonal cycles in abundance of spiders and ants to be similar. Although we were 
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unable to compare whether species richness of ants mirrored that of the remaining 

ground-dwelling arthropods species (due to arthropods not being identified to species 

level) studies conducted in Australia, showed species richness of ants to be 

significantly positively correlated to that of collembola, beetles and termites (Alonso 

2000). However this result is dependent on the habitat in which sampling is 

conducted, since other studies found beetles species richness to have no correlation 

with ant species richness and termites to be negatively correlated to ant species 

richness (Alonso 2000). 

In conclusion, seasonal variation in epigaeic arthropods in Elandsberg is 

characterized by a general abundance peak in summer and trough in winter. 

Abundance peaks for individual taxa however differed across the year. Ants 

dominated the arthropod fauna, while spiders and beetles were also abundant, 

emphasizing the importance of ants in the CFR lowlands. Ant species richness as well 

as abundance fluctuations mirrored that of the general arthropod pattern and reflected 

a response to fluctuations in temperature and food availability. Thus results for ants 

have a broader relevance for ground dwelling arthropods in the region.  
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Table 1 Mean ± standard deviation and occupancy (percentage of grids at Elandsberg occupied) of ground-dwelling arthropod abundances 
captured using pitfall trapping at Elandsberg, Western Cape during 2004 in four seasonal samples. Functional Groups (FG) are as follows D = 
detiritivore, O = omnivore, H = herbivore and P = predator. 
 

 
 

Taxa       Autumn      Winter    Spring        Summer     Total FG 
 Mean ± sd Occ Mean ± sd Occ Mean ± sd Occ Mean ± sd Occ Mean ± sd Occ  

CLASS INSECTA            
Order Archaeognatha 0 0 0 0 5.8 ± 7.1 70 7.0 ± 8.9 80 3.2 ± 6.4 37.5 D 
Order Thysanura 14.8 ± 5.2 100 0.1 ± 0.3 10 2.80 ± 1.9 80 27.5 ± 15.1 100 11.3 ± 13.4 72.5 D 
Order Blattodea 0.4 ± 1.0 20 0.2 ± 0.6 10 0 0 0.5 ± 0.7 40 0.3 ± 0.7 17.5 O 
Order Isoptera 0.8 ± 2.2 20 1.9 ± 2.7 40 3.8 ± 7.4 50 0.4 ± 0.5 40 1.7 ± 4.2 37.5 H 
Order Dermaptera 0 0 1.6 ± 1.3 80 0.5 ± 0.7 40 0.1 ± 0.3 10 0.6 ± 1.0 32.5 O 
Order Coleoptera 8.3 ± 6.8 100 6.8 ± 5.3 90 32.9 ± 29.4 100 27.4 ± 34.5 100 18.9 ± 25.0 97.5 P & D 
Order Hymenoptera 
(Formicidae) 

506.5 ± 
158.8 

100 
131.9 ± 
102.0 

100 669.2 ± 
1216.9 

100 1298.5 ± 
2455.2 

100 651.5 ± 
1386.8 

100 - 

OTHER HIGHER TAXA            
CLASS ARACHNIDA            

Order Solifugae 4.3 ± 3.4 90 0 0 0.1 ± 0.3 10 1.4 ± 1.1 80 1.5 ± 2.5 45 P 
Order Scorpiones 0.5 ± 0.7 40 0 0 0.2 ±  0.6 10 0.1 ± 0.3 10 0.2 ± 0.5 15 P 
Order Pseudoscorpiones 4.8 ± 5.2 90 0 0 0.8 ± 1.1 40 5.2 ± 5.4 80 2.7 ± 4.3 52.5 P 
Order Araneae 24.9 ± 12.7 100 9.8 ± 4.1 100 16.10 ± 7.6 100 56.60 ± 40.8 100 26.8 ± 27.8 100 P 

CLASS DIPLOPODA 0.1 ± 0.3 100 3.1 ± 5.1 40 1.30 ± 2.7 30 0.3 ± 0.3 20 1.2 ± 3.1 25 D 
CLASS CHILOPODA 0.1 ± 0.3 100 0.3 ± 0.7 20 3.10 ± 4.2 70 0.1 ± 0.7 10 0.9 ± 2.4 27.5 P 

CLASS MALOCOSTRACA              
Order Isopoda 0 0 0.9 ± 1.1 50 0.1 ± 0.3 10 0 0 0.3 ± 0.7 15 D 

TOTAL 59.0 ± 17.6 100 24.7 ± 9.6 100 67.5 ± 35.1 100 126.6 ± 56.6 100 69.5 ± 50.0 100  
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Table 2 Species richness and abundance of ants captured in Elandsberg across four 
seasons. Means with no letters in common are statistically different (p < 0.05).  
 

Season Observed 
species 
richness 

Mean ± standard 
deviation (n = 10) 

Predicted 
species richness 

(Chao 2) 

Number of 
individuals 

Number 
of unique 
species 

      
Summer 46 18.4 ± 4.62 a 46.63 ± 1.36 12985 5 

      
Autumn 43 16.4 ± 2.63 a 43.57 ± 0.85 5065 2 

      
Spring 42  13.2 ± 5.25 ab 43.02 ± 0.98 6692 6 

      
Winter 32  8.7 ± 3.23  b 32.61 ± 0.99 1319 1 

      
All 59  59.16 ± 0.15 26061  
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Table 3 Sampling grid description and dominant Formicinae species (relative 
abundance (percentage) per grid) present at each of the four seasonal sampling 
periods. A. ste = Anoplolepis steingroevri, Ocy = Ocymyrmex, Phe = Pheidole, Mes = 
Messor, Tet = Tetramorium 
 

Grid Description of grid Dominant ant species 

  Autumn Winter Spring Summer 

Reserve      

A BIOTA observatory 
Swartland Alluviam Fynbos 

A. ste 
(39.7%) 

A.ste 
(59.1%) 

A.ste 
(50.5%) 

A. ste 
(59.8%) 

 
     

B Swartland Alluviam Fynbos 
Ocy sp.1 
(39.6%) 

Phe sp.1 
(69.5%) 

Phe sp.1 
(44.6%) 

Tet sp.2 
(24.9%) 

 
     

C Swartland Shale 
Resnosterveld 

A.ste 
(83.2%) 

A.stei 
(99.4%) 

A.stei 
(99.9%) 

A.stei 
(99.2%) 

      

D 
Swartland Alluvium Fynbos 

Ocy sp.1 
(40.7%) 

Phe sp.1 
(51.7%) 

Phe sp.1 
(49.4%) 

Ocy sp.2 
(44.9%) 

      

E 
Swartland Alluvium Fynbos 

Ocy sp.1 
(27.1%) 

Phei sp.1 
(60.8%) 

Phe sp.1 
(57.0%) 

Ocy sp.2 
(37.3%) 

      

Remnant      
      

F Fragment on rocky ridge 
surrounded by wheat fields 

Phe sp.1 
(41.8%) 

Phe sp.1 
(76.0%) 

Phei sp.1 
(50.6%) 

Phe sp.1 
(24.9%) 

      

G Old field with recovering 
vegetation 

Ocy sp.1 
(25.4%) 

Phe sp.1 
(81.5%) 

Phei sp.1 
(40.1%) 

Tet sp.2 
(22.5%) 

      

H Old field with recovering 
vegetation 

Tet sp.2 
(22.2%) 

Phe sp.1 
(30.0%) 

Mes sp.2 
(47.5%) 

Phe sp.1 
(18.2%) 

      

I Vlei area surrounded by 
wheat fields 

Ocy sp.2 
(31.5%) 

Phe sp.1 
(24.0%) 

Mes sp.2 
(61.5%) 

Ocy sp.1 
(41.0%) 

      

J Fragment surrounded by 
wheat fields 

Ocy sp.1 
(31.3%) 

Ph sp.1 
(53.8%) 

Phei sp.1 
(47.6%) 

Ocy sp.2 
(30.0%) 
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Figure 1A Total rainfall and ambient temperatures (mean, maximum and minimum) 
in 2004 and B temperatures (mean, max and min) over four, five-day sampling 
periods in Elandsberg. Means bearing the same letter indicate values that are not 
significantly different at the 5% level. Data from Diemerskraal Weather Station 
(33.35°S, 18.55°E), provided by AgroMet-ISCW Agricultural Research Council. 
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Figure 2A Mean wind speed and B median relative humidity of five day sampling 
periods across seasonal samples at Elandsberg 2004. Data from Diemerskraal Weather 
Station (33.35°S, 18.55°E), provided by AgroMet-ISCW Agricultural Research 
Council. 
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Figure 3 Median percentage vegetation covers for bare, litter, grass, herbaceous 
component and woody, across four seasons. The bars bearing the same letter indicate 
medians that are not significantly different at the 5 % level. 
    

Stellenbosch University  http://scholar.sun.ac.za



 62 

   

autumn winter spring summer
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n 
(±

 S
.E

.)
 n

um
be

r 
of

 h
its

 0-25
 25-50
 50-75
 75-100
 100-125
 125-150
 150+

a

b
ab b

ab

ab

b

a

a

a

b

b

ab

b
b

ab

 

Figure 4 Mean number of hits for each of seven height classes (in cm) across the four 
seasons at Elandsberg (n = 10). The bars for each height class bearing the same letter 
indicate means that are not significantly different at the 5 % level. 
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Figure 6 Relative arthropod abundance distribution, excluding ants. Diagonally 
striped bars = reserve grids, horizontally striped bars = remnant grids and solid bars = 
complete data sets. Arane = Araneae, Archa = Archaeognatha, Blatt = Blattodea, 
Chilo = Chilopoda, Coleo = Coleoptera, Derma = Dermaptera, Diplo = Diplopoda, 
Isopo = Isopoda, Isopt = Isoptera, Pseud = Pseudoscorpiones, Scorp = Scorpiones, 
Solif = Solifugae, Thysa = Thysanura. 
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Figure 7 Relative abundances of arthropod functional groups (excluding ants) across 
the four seasons. 
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Figure 8 Sample-based rarefaction curves of A species richness and samples and B 
species richness and individuals for ants caught across four seasons at Elandsberg. 
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Figure 9 Ant relative abundance distributions across four seasons in Elandsberg. 
Species with a relative abundance of less than one percent were added together in the 
last column (< 1 %). See Appendix A for species abbreviations. 
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Figure 10 Non-metric multi-dimensional scaling (MDS) ordination of ant assemblage 
structure at Elandsberg across four seasons. Grids from the same seasonal sample are 
given the same symbol (Global R = 0.175; p < 0.01; stress = 0.17). 

 

Stellenbosch University  http://scholar.sun.ac.za



 69 

A 

autumn winter spring summer
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
na

l a
bu

nd
an

ce
 o

f 
fu

nc
tio

na
l g

ro
up

s

CS
GM
OPP
SP
SC
HCS

 
      
B 

autumn winter spring summer
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P
ro

po
rt

io
na

l s
pe

ci
es

 r
ic

hn
es

s 
of

 f
un

ct
io

na
l

gr
ou

ps

 CS
 GM
 OPP
 SP
 SC
 HCS

 
 
 
Figure 11A Relative abundance and B species richness of ant functional groups at 
Elandsberg, across four seasons. CS = Cryptic species, GM = Generalized 
Myrmicinae, OPP = Opportunists, SP = Specialist Predators, SC = Subordinate 
Camponotini and HCS = Hot Climate Specialists. 
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APPENDIX 

 

Appendix A: Ant species and their abundances at Elandsberg across four seasons. 

 
Species abbrev Autumn Winter Spring Summer Total 
Cerapachynae       
Cerapachys sp.1 Cer1 0 0 2 0 2 
Dolichoderinae       
Tapinoma  sp.1 Tap1 0 0 0 12 12 
Technomyrmex albipes 
(F. Smith) 

Talb 
0 0 8 1 9 

Technomyrmex sp.1 Tec1 5 0 0 1 6 
Formicinae       
Anoplolepis custodiens 
(F.Smith) 

Aste 
874 480 4310 8942 14606 

Anoplolepis sp.1 Ano1 18 0 1 0 19 
Anoplolepis sp.2 Ano2 4 0 0 0 4 
Camponotus sp.1 
(emarginatus gp) 

Cam1 
6 6 6 7 25 

Camponotus sp.2 Cam2 4 2 6 10 22 
Camponotus vestitus (F. 
Smith) 

Cam3 
15 0 2 55 72 

Camponotus mystaceus 
(Emery) 

Cam4 
0 4 3 4 11 

Camponotus sp.5 Cam5 2 0 0 1 3 
Camponotus maculatus-
group 

Cam6 
1 1 0 3 5 

Camponotus angusticeps 
(Emery) 

Cam9 
0 0 0 6 6 

Camponotus sp.12 Cam12 0 0 1 0 1 
Camponotus sp.13 Cam13 0 0 1 2 3 
Camponotus fulvopilosus 
(DeGeer) 

Cful 
7 1 0 2 10 

Lepisiota sp.1 Lep1 4 0 5 8 17 
Lepisiota sp.2 Lep2 279 10 31 187 507 
Lepisiota sp.3 Lep3 8 2 4 28 42 
Lepisiota sp.4 Lep4 87 10 42 159 298 
Lepisiota sp.5 Lep5 13 0 4 25 42 
Lepisiota sp.6 Lep6 1 0 0 2 3 
Lepisiota sp.7 Lep8 3 0 0 1 4 
Plagiolepis sp.1 Pla1 0 0 2 0 2 
Myrmicinae       
Cardiocondyla sp.1 Car1 0 4 3 10 17 
Crematogaster sp.1 Cre1 20 27 58 49 154 
Crematogaster sp.3 Cre3 0 1 0 0 1 
Messor sp.1 Mes1 18 3 60 13 94 
Messor capensis (Mayr) Mcap 51 71 650 75 847 
Monomorium sp.1 Mon1 202 0 12 68 282 
Monomorium sp.2 Mon2 3 5 8 9 25 
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(monomorium gp) 
Monomorium sp.3 
(monomorium gp) 

Mon3 
39 1 0 20 60 

Monomorium sp.4 Mon4 1 7 4 0 12 
Monomorium sp.5 Mon5 13 0 3 0 16 
Monomorium havilandi 
(Forel) 

Mon6 
0 0 2 0 2 

Monomorium sp.7 Mon7 38 0 2 0 38 
Monomorium sp.8 
(salomonis gp) 

Mon8 
57 5 10 78 147 

Monomorium sp.11 Mon11 0 0 18 0 18 
Monomorium sp.13 Mon13 0 0 0 1 1 
Ocymyrmex sp.1 Ocy1 1029 6 27 400 1462 
Ocymyrmex sp.2 Ocy2 351 10 37 734 1132 
Pheidole sp.1 Phe1 785 503 801 687 2776 
Pheidole sp.2 Phe2 388 62 224 403 1077 
Rhoptromyrmex sp.1 Rho1 6 9 2 0 17 
Solenopsis sp.1 Sol1 0 0 1 1 2 
Solenopsis sp.2 Sol2 0 0 3 0 3 
Tetramorium sp.1 Tet1 57 12 67 99 235 
Tetramorium 
quadrispinosum (Emery) 

Tqua 
499 56 222 736 1513 

Tetramorium frigidum 
(Arnold) 

Tet3 
44 2 5 50 101 

Tetramorium sp.5 
(simillimum gp) 

Tet5 
10 4 5 9 28 

Tetramorium sp.7 
(smillimum gp) 

Tet7 
94 11 31 60 196 

Tetramorium sp.8 
(?smillimum gp) 

Tet8 
4 1 0 5 10 

Tetramorium sp.9 
(smillimum gp) 

Tet9 
5 1 1 12 19 

Tetramorium erectum 
(Emery) 

Tet10 
1 0 0 1 2 

Tetramorium sp.12 Tet12 0 0 0 1 1 
Tetramorium sp.13 
(?smillimum gp) 

Tet13 
1 0 0 1 2 

Ponerinae       
Anochetus levaillanti 
(Emery) 

Ano1 
1 1 1 1 4 

Pachycondyla berthoudi 
(Forel) 

Pber 
17 1 9 1 36 

Total abundance  5065 1319 6692 12985 26061 
Species richness  43 32 42 46 59 
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CHAPTER 4: 

CONSERVATION VALUE OF REMNANTS IN HUMAN-INFLUENCED 

LANDSCAPES: ANTS IN THE CAPE FLORISTIC REGION LOWLANDS 

 

INTRODUCTION 

 
The global network of protected areas now encompasses in excess of 20 000 

reserves, covering a total of 11.5% of the earth’s surface (Gaston & Spicer 2004, 

Rodrigues et al. 2004). Nonetheless it has become clear that more is required for the 

long term survival of species (Rodrigues et al. 2004) and increasing importance is 

being placed on conservation outside of formally protected areas (Knight 1999, 

Norton 2000, Goodman 2003, Solomon et al. 2003, Dudley et al. 2005). Since many 

species occur on or at least have part of their distribution in semi-natural habitats, for 

example that occur in amongst agricultural and urban areas, these habitats have the 

potential to greatly enhance long-term conservation success (Pimentel & Stachow 

1992, Dudley et al. 2005). Among the benefits of successful biodiversity conservation 

in human-influenced areas are promotion of ecological resilience, increased local 

diversity in general and enhanced beneficial organisms for biological control of pest 

species (Duelli & Obrist 2003, Perrings et al. 2006). 

Current protected area networks have several flaws. One of these is their layout, 

which is frequently suboptimal for conserving biodiversity. Reserves are often too 

small to sustain viable populations or poorly sited with little planning to optimize 

their conservation value (Saunders et al. 1991, Reyers et al. 2002, Goodman 2003, 

Gaston & Spicer 2004). Few reserves are placed in areas ideal for long-term survival 

of species, especially in the face of climate change (Gaston et al. 2001, Chown et al. 

2003, Gaston & Spicer 2004, Opdam & Wascher 2004, Webb et al. 2006). 

Additionally, reserves are often surrounded by land-uses which are incompatible with 

biodiversity conservation, resulting in alien vegetation and land-use encroachment 

into reserves (Pimentel & Stachow 1992, Reyers et al. 2002). 

 The possibility of gaining sufficiently more land to increase the conservation 

status of protected area networks is challenging, if not unfeasible (Chown et al. 2003, 

Perrings et al. 2006). Vast amounts of land are continually transformed by agriculture, 

pollution and resource withdrawal (Bush 1997, Laurance & Cochrane 2001), leaving 

behind disparate, disturbed habitat patches scattered across the landscape in various 
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shapes and sizes (Saunders et al. 1991, Banks 2000). Indeed the correlated processes 

of habitat loss and fragmentation are described as the most important ongoing threats 

to biodiversity (Laurance & Cochrane 2001, Tscharntke et al. 2002). Additionally, the 

increasing and conflicting demand for land by an expanding human population and 

lack of sufficient funds for conservation initiatives make the establishment of more 

reserves unlikely (Saunders et al. 1991, Reyers et al. 1998, Gaston & Spicer 2004). 

However, conservation outside of protected areas is a viable option, whereby 

remnants of natural or semi-natural vegetation between agricultural lands and urban 

areas can provide invaluable links between reserves, greatly enhancing protected area 

networks (Bush 1997, Farina 2000, Goodman 2003, Gaston & Spicer 2004, Dudley et 

al. 2005).  

To successfully conserve natural areas outside of protected areas, it is essential 

to gain fundamental knowledge of which processes drive and maintain diversity in 

human-influence landscapes (Parker & Nally 2002, Perrings et al. 2006). Human-

influenced landscapes are largely characterized by habitat loss, both in terms of 

quantity and quality and fragmentation of the remaining habitat (Saunders et al. 1991, 

Ovaskainen & Hanski 2003). These processes are known to have negative effects on 

biodiversity and modify or change ecosystems with regard to their structural and 

biotic composition as well as functioning (Saunders et al. 1991). The severity of the 

impact of fragmentation on biodiversity depends on several characteristics of habitat 

fragments such as size, isolation, proportion of edges and habitat quality, as well as 

characteristics of the surrounding landscape (Bush 1997, Laurance & Cochrane 2001, 

Perfecto & Vandermeer 2002). These factors influence population abundance and 

diversity of communities (Laurance & Cochrane 2001, Parker & Nally 2002, 

Tscharntke et al. 2002). Other characteristics of human–influenced landscapes 

include habitat disturbances, such as pesticides, livestock grazing, invasion of alien 

species, hydrological changes, changes in fire regimes, and pollutant effects such as 

acid rain. All of these tend to lead to a degradation of the habitat and may act 

synergistically with the effects of habitat fragmentation processes (McIntyre & Hobbs 

1999, Laurance & Cochrane 2001).  Even though remnants are negatively affected by 

all these processes, human-influenced landscapes remain vital habitats for many 

species (Kemper et al. 1999).  

 Protecting natural vegetation in agricultural areas has proven to be beneficial 

for both biodiversity conservation and farming successes. Maintaining remnants of 

Stellenbosch University  http://scholar.sun.ac.za



 74 

natural veld can reduce erosion and benefit hydrological processes (Kemper et al. 

1999). Additionally, remnants are able to support and enhance predator and parasitoid 

populations, thereby improving biological control of potential agricultural pest 

species by preventing large outbreaks (Booij & Noorlander 1992, Bommarco & 

Ekbom 2000). Most importantly these areas potentially provide a natural reservoir of 

biodiversity from which disturbed areas can be restored. Natural remnants in 

agricultural lands are therefore economically important (Kemper et al. 1999) and 

essential to the long-term sustainability of agricultural production systems as 

biodiversity (Saunders et al. 1991, Bestelmeyer & Wiens 1996, Kemper et al. 1999, 

McGeoch 2002, Major et al. 2003). 

Although the importance of these natural remnants to conservation is well 

known in theory, in practice they are still poorly understood and the magnitude of the 

contribution that they play in regional biodiversity conservation is currently 

unknown. Many species may be able to survive in these remnants simply due to a 

time delay in their response to the changing environmental conditions, a phenomenon 

known as extinction debt (Tilman et al. 1994). If environmental conditions fall below 

a threshold required by species for their long term survival, a “debt” is created, which 

has to be “paid” either by an improvement in environmental conditions or an 

extinction of the species (Hanski & Ovaskainen 2002). The extinction debt for 

human-influenced areas is unknown. This information however is vital in determining 

what needs to be done in these areas to allow for the long-term persistence of species 

and to develop effective management strategies to maximize biodiversity. At the 

same time, to further understand human-influenced landscapes, it is important to 

determine how observed patterns change across spatial scales. Ecological patterns and 

processes are known to be strongly scale dependent, with patterns observed at local 

scales being quite different to those observed at regional scale (Lennon et al. 2001, 

Crist et al. 2003). Additionally, local scale patterns may be generated by both 

regional and local-scale processes (Noda 2004). Determining which spatial scale is 

responsible for generating the greatest variability in biodiversity is important for 

effective management and conservation strategies (Boyero 2003, Gering et al. 2003).  

A region that lends itself to study the conservation value of human-influence 

landscape to the overall conservation of the area, is the Cape Floristic Region (CFR). 

The CFR is one of the world’s 25 biodiversity hotspot, due to its high concentration of 

endemic taxa, particularly plants and its great vulnerability to processes such as 
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habitat fragmentation and habitat loss (Myers et al. 2000, van Wyk & Smith 2001, 

Cowling et al. 2003). The CFR is situated on the southern tip of Africa and covers an 

area of about 90 000 km2 (van Wyk & Smith 2001). The region is extensively 

transformed, currently 30 % of the total area and continues to be increasingly 

threatened by factors such as urban development, (currently transforming 1.6 % of the 

area), agriculture (25.9 %) and dense stands of alien plant invasions (1.6 %) (van Wyk 

& Smith 2001, Rouget et al. 2003). Other contributing factors, which are less easily 

defined, are unsustainable harvesting of natural resources, such as wild flowers and 

mining and quarrying activities as well as poor grazing practices (van Wyk & Smith 

2001, Rouget et al. 2003). Transformation of the region is not evenly spread across 

the CFR, with low-lying mesic areas having received the greatest impacts. In areas 

such as Sand Plain Fynbos, more than 50 % has been lost due to urbanization and less 

than 20 % of Coastal Renosterveld remains due to the impacts of agriculture (Rouget 

et al. 2003).  Protected areas are not evenly distributed across the region, with up to 

90 % of the mountain fynbos protected in nature reserves and mountain catchment 

areas, however less than 3 % of the easier accessible lowland fynbos and renosterveld 

are formally protected (van Wyk & Smith 2001). It is clear that in such areas available 

habitat is less than that required for any long-term conservation target (Rouget et al. 

2003). As the land value is high in most parts of the CFR and is also highly 

fragmented, establishment of new formal reserves is mostly unachievable (Fairbanks 

et al. 2004). Hence involving landowners, especially farmers outside of protected 

areas, to manage and protect remnants on their land, appears to be the only option for 

achieving conservation targets for low lying regions of the CFR (Kemper et al. 1999, 

Cowling et al. 2003, Fairbanks et al. 2004). 

Research in the CFR has focused mainly on the plant diversity, however 

comparatively little is known about the arthropod assemblages (Picker & Samways 

1996, Visser et al. 1999, Giliomee 2003). Arthropods are an integral part of 

ecosystems (Major et al. 2003), regulating many essential ecosystem processes, such 

as maintaining plant community composition, improving soil structure, nutrient 

cycling, pollination, seed dispersal and preying on other animals, thereby keeping 

their populations under control (Majer & Nichols 1998). Little is known about the 

effects of anthropogenic transformed landscapes on the structure and functioning of 

arthropod communities in the CFR (Picker & Samways 1996, Donaldson et al. 2003, 

Major et al. 2003), although it has been shown that insects in general are sensitive to 
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ecosystem changes or disruption (Magagula 2003), especially to vegetation cover, 

which in turn influences microclimate conditions (Donaldson et al. 2003). Although 

the diversity of arthropods and particularly herbivorous insects is thought to be low in 

the CFR compared to the high plant diversity (see Giliomee 2003 for possible reasons 

for this) arthropods play an important role in the CFR. An example of this is the 

dispersal of seed by ants, termed myrmecochory. A great proportion of plant species 

in the CFR, around 20 % according to Bond & Silingsby (1983) or 1 300 taxa 

(Johnson 1992) are known to rely on ants for seed dispersal. The seeds produced by 

myrmechorous plants have detachable protrusions on their surfaces (elaiosomes), 

which are high in lipids and fatty acids and contain some proteins. The seeds are 

carried to ant nests and left underground to germinate there, while the elaiosomes are 

eaten (Speight et al. 1999, Giliomee 2003).   

Ants are an appropriate taxon for studies of arthropod diversity in the CFR as 

they dominate the epigaeic fauna (see Chapter 2). Additionally, ants are well studied 

and frequently used as indicators in studies assessing impacts of management 

practices, habitat disturbances and rehabilitation successes (Underwood & Fisher 

2006). The ant diversity in the CFR is thought to be relatively poor, with an estimated 

100 species occurring in the region (Giliomee 2003). This is comparable to the 

Californian chapparal and other Mediterranean areas, although southern Australia has 

a much higher (about 10 times) species richness (Koen & Breytenbach 1988, 

Giliomee 2003). Ants are also known to be common in agricultural areas of the CFR. 

In vineyards they are considered pest, as they tend mealybugs which cause 

considerable damage to vines (Addison & Samways 2000).  

The objectives of this study were therefore, 1) to determine the current 

contribution of remnants in human-influenced areas to the overall conservation of the 

lowlands of the Cape Floristic Region using ground-foraging ants as the target taxon 

(i.e. is there a difference in the abundance, species richness, species composition and 

or functional groupings of ant assemblages in reserves and in adjacent remnant sites 

in human-influenced areas?), 2) which environmental variables explain ant 

assemblage patterns, and 3) what is the effect of spatial scale on the differences 

between ant assemblages of reserve and remnant sites, and which spatial scale is most 

responsible for generating ant diversity in the CFR lowlands, i.e. the change in ant 

diversity across areas of increasing extent.  
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MATERIAL AND METHODS  

 

Study site and design 

This study was conducted in the lowlands of the Cape Floristic Region, Western 

Cape Province. A nested hierarchical structure was used with 5 levels, region, 

localities, sites, grids and pitfalls. The region was taken as the CFR lowlands and 

within the region five localities were chosen. Each locality contained two sites (pairs), 

one a nature reserve and the other an adjacent or near-by remnant site in an 

agricultural area. Within each site, five independent grids were chosen, approximately 

200 - 500 m apart. Finally within each grid there were 10 pitfalls. Appendix 1 gives 

the localities, study sites and grids and Fig. 1 a map (Appendix 8 shows photos of 

each grid).  

Pitfalls were dug into the ground, in a cross-array with pitfalls spaced 10 m 

apart (Fig. 2), according to the design suggested by Perner & Schueler (2004). 

However in one of the localities (Elandskloofberge sites, see below), pitfalls were dug 

in a 2 x 5 grid (pitfalls 10 m apart) to allow results to be compared to previous studies 

conducted there (Fig. 2).  

Sites were selected so as to represent some of the heterogeneity of the region. 

All sites were at an altitude below 400 m.a.s.l.. Although the aim was to use remnants 

adjacent to reserves, this was not always practically feasible, so remnant sites were 

chosen as close to reserves as possible. Remnant sites selected were placed on farms, 

where owners/managers have shown an interest in conservation and have either joined 

conservancies and/or in-cooperated some measures of conservation into their 

agricultural management practices. The traditional approach to fragmentation, 

including size and shape of remnants, distance to nearest mainland, and distance 

between remnants was not adopted in this study due to the landscape complexity and 

absence of distinct remnants boundaries in the CFR.  

The most northern locality was Elandskloofberge (EB). The reserve site was 

situated in the Elandsberg Private Nature Reserve. This 3900 ha reserve was 

proclaimed in 1973 and protects the largest remaining unploughed lowland area of 

two critically endangered vegetation types, namely Swartland Alluvium Fynbos and 

Swartland Shale Renosterveld (Midoko-Iponga 2004, Mucina & Rutherford 2004). 

The remnant site was situated in the neighbouring farmland, with remnants lying 

between wheat fields and cattle and sheep grazed areas. Farming practices include 
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merino sheep, cattle, wheat, oats, barley, canola, lupines, clover and other feed- crops 

(Midoko-Iponga 2004). Two of the remnants were exposed to cattle and sheep 

grazing although relatively intact natural vegetation remained. A further two were 

situated on old fields and the final remnant was in a vlei area surrounded by wheat 

fields.   

The second most northerly locality was Malmesbury (MB). Riverlands Nature 

Reserve was selected as the reserve site for this locality. This reserve is approximately 

1000 ha and is thought to protect the highest number of plants classified as Red Data 

Species of any Western Cape Province nature reserve. It is currently the only reserve 

(besides a few natural heritage sites) protecting the critically endangered Sand Plain 

Fynbos vegetation type (68) of which less than 1.05 % is conserved (Rebelo 2006). It 

is however largely surrounded by alien vegetation. The remnant site in this case was 

taken as Pella Nature Reserve. It is in essence one large remnant (269 ha) surrounded 

by farmland, heavily invaded by alien vegetation (Jarman & Mustart 1988). This area 

was subject to frequent fires pre-1960 and since then has been used as natural grazing 

for livestock (Brownlie & Mustart 1988). However, this has stopped in the recent past 

and no livestock grazing occurred in Pella Nature Reserve during the sampling period. 

The natural vegetation appeared to be pristine. 

 In the Grabouw (GR) locality, the reserve site was situated in the Hottentots-

Holland Nature Reserve. This reserve (about 42 000 ha) is mountainous with altitudes 

reaching up to 1590 m and is important in conserving mountain fynbos (CapeNature 

2006). Sampling grids in the reserve were situated in the lower lying areas between 

the mountains and the Theewaterskloofdam. In this locality the reserve and remnant 

site were situated about 23 km apart.  The GW remnant site was situated on a farm 

under various farming practices, with vineyards and orchards being the main focus. 

Orchards include apples, pears and plums. The farm forms part of the Groenlandberg 

Conservancy, which covers an area of about 34 000 ha and stretches from the 

Grabouw/Elgin Valley to Botrivier and across to the Hottentots Holland Reserve 

(IUCN 2006). It is also a member of the Biodiversity and Wine Initiative, a 

partnership between South Africa wine industry and the conservation sector 

(Anonymous 2006). All the remnants were heavily invaded by alien vegetation. One 

remnant was placed in an area cleared of alien trees about a year or two prior to 

sampling and another was subject to trampling by antelope. 
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Jonkershoek Nature Reserve was chosen as the reserve site in the Stellenbosch 

(STB) locality. The reserve, about 9800 ha in extent, includes the Jonkershoek 

Mountains and part of the upper Jonkershoek valley and is an important water 

catchment area. A number of the known 1100 plant species in the reserve are endemic 

and or rare (CapeNature 2006). The corresponding remnant site in the locality was 

about 24 km away, on a wine farm.  The farm is situated on the edge of the Bottelary 

Hills Conservancy (Anonymous 2002). Remnants were relatively undisturbed. 

However, a frequently used 4 x 4 track runs through the natural area containing the 

remnants and surrounding areas were intensely utilized. The vegetation in the 

remnants was relatively old and moribund and occasionally alien invasive plants were 

present.  

The final locality was Somerset West. The Municipal Helderberg Nature 

Reserve was chosen as the reserve site. This reserve, around 380 ha in size, is the 

smallest of the ones selected, and encompasses the Helderberg Mountain 

(HelderbergNatureReserve 2006). Parts of the reserve were and in some places still 

are under alien tree plantations. The remnant site was situated on the opposite side of 

the mountain on a wine farm with a keen interest in conservation. One remnant was 

situated in an old vineyard, where natural vegetation had been planted. Another 

remnant was located at the edge of a large sheep enclosure and a further one was 

severely invaded by alien vegetation. The remaining two remnants were largely 

undisturbed.   

  

Abiotic variables 

For each grid, GPS readings were taken using a GARMIN GPS and aspect and 

slope (a qualitative scale was used) were recorded. Climate data for each site, 

including rainfall, wind speed and relative humidity, from adjacent weather stations 

were obtained from AgroMet – Institute for Soil, Climate and Water (ISCW) as well 

as the Water Research Commission (WRC), Council of Scientific and Industrial 

Research (CSIR) and Western Cape Nature Conservation Board (WCNCB). Weather 

data for both the 5 - day sampling period as well as means across 2004 were used. The 

ground temperature for each grid was measured during the five day trapping period. 

This was done by inserting two temperature loggers, Thermocron iButtons 

(Semiconductor Corporation, Dallas/Maxim), roughly in the centre of the grid 2 cm 

beneath the surface of the soil. Care was taken that temperature loggers were not 
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placed in heavily shaded areas, unless the grid was also exposed to such conditions. 

Soil moisture was determined gravimetrically. Samples were dried at 100ºC for a 

minimum of 48 hours and percentage soil moisture ((wet soil mass – dry soil 

mass/wet mass)*100) was determined. To determine the nutrient content and particle 

fraction of the soil, samples from the top 0.5 - 0.10 m soil next to each pitfall were 

taken with a small shovel to gain a representative soil sample for the plot. The soil 

was then oven dried at 60 °C and sent to BemLab (Pty Ltd.), South Africa, for testing. 

The soil samples were analysed for composition (sand, silt, clay), pH (McLean 1982), 

extractable cations namely K, Na, Ca, Mg (Chapman 1965), extractable phosphorus 

(Bray & Kurtz 1945), organic carbon (C) (Nelson & Sommers 1982), total nitrogen 

(N) and soil resistance (R) (STAFF 1954). 

 

Vegetation and litter sampling 

Relative percentage vegetation cover around each pitfall was estimated using 

the following categories: bare soil, litter, grass, herbaceous and woody plants. A 

quadrat (1 m2) was placed over the pitfall and the percentage of each category in the 

square was estimated. Foliage height profiles (FHP) around each pitfall were also 

measured to determine the vertical complexity of the vegetation (Bestelmeyer & 

Wiens 1996). A measuring rod was placed at four points 90° apart on a 1 m radius 

circle with the centre at the pitfall.  Measurements were divided into 7 height classes 

at 0.25 m intervals; starting at a height of 0.25 m and ending at 1.50 m. Plants above 

1.50 m were all assigned to the last height class. All parts of the plant that touched the 

measuring pole, i.e. number of hits, within a certain height class were recorded 

(Bestelmeyer & Wiens 1996, Bestelmeyer et al. 2000, Botes et al. 2006). Dominant 

plant species as well as alien invasives at each plot were recorded. Additionally plants 

present in each cross-array were identified to determine an estimate of plant species 

richness per grid (det. B. Walton). 

While retrieving pitfalls at the end of the 5 - day period, litter samples were 

taken. Three 0.1 m2 square sampling grids were randomly placed around each pitfall 

and all dead plant material within the three squares was collected and placed into 

separate brown paper bags. These were oven dried at 60 ºC for a minimum of 72 

hours. The dried litter was sieved using a sieve (4 mm diameter circular holes) to 

separate litter into coarse and fine material which were then weighed separately.  
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Ant sampling 

Sampling was conducted in late spring (October 2004), which falls within the 

peak activity and biomass period for ants in the Cape Floristic Region (Schlettwein & 

Giliomee 1987, Johnson 1992b). Pitfalls traps, plastic containers (150 ml, 55 mm 

diameter, 70 mm deep) with screw-on caps, were used. These were dug in level with 

the surrounding soil surface. The pitfalls remained covered for at least five days, to 

reduce the “digging-in effect” (Greenslade 1973, Abensperg-Traun & Steven 1995, 

Southwood & Hendersen 2000), after which they were opened for a period of five 

days. To set the traps 50 ml of a 50 % propylene glycol solution was poured into the 

opened pitfalls (Bestelmeyer et al. 2000). This preservative is non-toxic to vertebrates 

(Bestelmeyer et al. 2000), and neither attracts or repels ants (Abensperg-Traun & 

Steven 1995). Pitfalls within a site were set and removed in the same order over as 

short a period as possible, typically between 10h00-15h00, to ensure that they were 

open for equal lengths of time. The two sites in a region were sampled during the 

same five day period were possible (otherwise a day apart), to reduce the effects of 

weather on paired sites. The pitfall contents were washed and preserved in 70 % 

alcohol.  

The fauna were identified under a Leica-M Series Stereo-microscope. The ants 

(Hymenoptera: Formicidae) were identified to genus and species level where possible, 

or assigned to morphospecies. For each ant species collected voucher specimens are 

held at the University of Stellenbosch. 

 
Data analyses 

 
Environmental data 

Weather (rainfall, relative % humidity, wind speed and ground temperature), 

soil (% moisture content, nutrient concentrations, particle composition and pH) and 

vegetation (% vegetation cover, foliage height profiles and litter) data were 

summarised per site and, where sufficiently detailed data was available, per grid. 

Variables were compared statistically across sites using non-parametric Kruskal-

Wallis tests and post-hoc, multiple comparisons of mean ranks for all groups, tests. 

Mean, maximum and minimum ground temperature data were further analysed by 

taking four readings per day, 0h00, 6h00, 12h00 and 18h00 and comparing these 

across sites using one-way ANOVA. 
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 Due to the large number of environmental variables, principal component 

analysis (PCA) was used to reduce variables to fewer principal component axes. This 

method allows one to include all environmental variables so that even variables which 

appear to be weak, but potentially biologically important are included. Resultant axes 

are able to adequately summarize the original information and are un-correlated and 

independent of each other (Quinn & Keough 2002). PCA’s were run for three groups 

of variables, namely climate, soil and vegetation, and for all variables together.  Since 

the former gave results which were easier to interpret than those of a single PCA 

including all variables, it was decided to use the PCA’s for each of the three 

explanatory groups. To aid the interpretation of the PCA axes (see Vaughan & 

Ormerod (2005)) prior to the PCA, variable clustering was conducted to group data 

more effectively. Agglomerative hierarchical cluster analyses, however, did not 

produce more meaningful clusters that those selected (i.e. soil, climate and vegetation) 

and hence this method was omitted.   

Initially, another method for reducing variables based on Botes et al. (2006) was 

used, where collinearity in variables was determined using Spearman’s correlations. 

Variables were again divided into three groups, climate, soil and vegetation. In each 

case, where variables were significantly correlated (and with rs > 0.7), one of the two 

was excluded based on the presumed biological relevance. This method however only 

reduced the 52 variables to 16 (in the case of site scale variables) across all three 

groups compared, while the PCA method reduced information to less than 12 

variables. Hence the latter method was used. Determining which axes to use for 

subsequent analyses was done based on a broken-stick method (Legendre & Legendre 

1998, Peres-Neto et al. 2003) and/or based on % variance explained by the individual 

axes.  

 

Ant species richness, abundance & composition 

Data from the pitfall traps was pooled into a single sample per grid, so that 

samples were independent of each other, or grouped together into a single sample per 

site by pooling grid data. Site data was also summarised into locality (paired sites 

data). Data were then analysed at three hierarchical levels, using grid data (n = 50 

grids), site data (n = 10 sites) and locality data (n = 5 localities, i.e. 5 reserve-remnant 

pairs). Comparisons were made between reserve and remnants using i) reserve grids 

(n = 25 grids) vs. remnant grids (n = 25 grids), ii) pooled reserve grids (5 sites) vs. 
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pooled remnant grids (n = 5 sites) and iii) for each locality, reserve (n = 5 grids) vs. 

remnant (n = 5 grids). Additionally, comparisons were made between i) sites (n = 10 

sites) and ii) between localities (n = 5 localities) across the region. 

To determine if sampling effort was adequate, sample-based rarefaction curves 

were compiled using grid data for each site, each region and for all sites together 

using EstimateS V7.5, Colwell 2000, http://viceroy.eeb.uconn.edu/etsimates. Sample-

based rarefaction curves compare species density, i.e. number of species per unit area, 

of the different sites and localities (Gotelli & Colwell 2001). To compare species 

richness of various sites and localities, sample-based rarefaction curves were re-scaled 

to individuals, i.e. curves were compiled plotting species richness against number of 

individuals for the sites, localities and overall area (Gotelli & Colwell 2001).  

Species richness estimators, calculated by EstimateS (with replacement) were 

used, to determine the predicted species richness of each site, locality and the total 

area. There are a host of different species richness estimators each with a different 

accuracy, i.e. combination of precision and bias (Walther & Moore 2005). Due to the 

incongruence in the literature as well as recommendations to use several estimators 

rather than a single one, we decided to use four different non-parametric estimators 

based on incidence-values only (Hortal et al. 2006). Abundance data for ants is 

problematic, as ants are social insects and their distribution is aggregated in space. 

Samples from pitfall traps may therefore result in an extreme abundance of an 

otherwise rare ant in the assemblage being caught (Lobry DeBruyn 1993, Longino 

2000, Leponce et al. 2004). Hence using presence/absence incidence data is more 

reliable than abundance data for ant species (Bestelmeyer & Wiens 2001). Four 

incidence-based estimator, ICE, Jack1 & 2 and Chao2, were thus used. Although non-

parametric species richness estimators are known to have drawbacks and potential 

inaccuracies, they nonetheless provide useful information of at least a minimum 

estimate of true species richness in areas were no inventories are available (Longino 

et al. 2002, O'Hara 2005, Hortal et al. 2006). 

Shared species were calculated between localities and between paired reserve 

and remnant sites in a locality, using observed values. SPADE, Species Prediction 

And Diversity Estimation program (Chao et al. 2000, Chao & Shen (2003-2005)) was 

used to determine the estimated number of species shared.  

Rank abundance and occupancy distributions were constructed for sites and the 

overall data set, using both abundance and occupancy data (calculated from 
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presence/absence in pitfalls). Although, as previously mentioned, abundance data is 

problematic, occupancy data is only logical for individual species occurrence in traps 

and not for the collective abundance of ants. Hence both abundance and occupancy 

were used for analyses, but where occupancy simply reduced to species richness, only 

abundance data was used.  

  To determine which species were characteristic of reserve and remnants, as 

well as individual localities and sites, indicator values were determined using  the 

Indicator Value Method, proposed by Dufrêne & Legendre (1997). This method 

combines specificity (the uniqueness of a species at a site) with the fidelity (frequency 

at that site) and then provides an Indicator Value (IndVal) as a percentage for each 

species. High values indicate that the species is characteristic of the site, with species 

having significant values above 70 % regarded as a benchmark for indicator species 

(van Rensburg et al. 1999, McGeoch et al. 2002). Indicator species were determined 

for combined reserve and remnant sites, individual sites and localities. 

The ant genera were assigned to functional groups following Andersen (1995) 

to determine compositional differences between reserve and remnant ant assemblages. 

Functional groups included, Dominant Dolichoderinae (generally abundant, active 

and aggressive), Sub-ordinate Camponotini (co-occur but behaviourally submissive to 

Dominant Dolichoderinae), Hot Climate Specialists (adapted to arid environments), 

Tropical Climate Specialists (distribution mainly in humid tropics, occur where 

Dominant Dolichoderinae is not abundant), Cryptic Species (small body size, 

predominantly forage in soil and litter), Opportunists (unspecialized species, 

characteristic of disturbed sites, or other habitats supporting low ant diversity), 

Generalized Myrmicinae (ubiquitous, highly competitive taxa occurring in most 

habitats) and Specialist Predators (specialized diet, large body size and small colony 

size) (Andersen 1997a, Hoffmann & Andersen 2003).  

Analysis of Similarity (ANOSIM, 1000 permutations), using the Bray-Curtis 

similarity measure, was performed in PRIMER v 5.0 (Clarke & Gorley 2001), to 

determine whether there was a significant difference between the ant assemblage 

structures of reserve and remnant paired sites. Data were fourth root transformed and 

standardised prior to analysis so as to reduce the contribution made by more common 

species to the similarity measure (Clarke & Gorley 2001).  
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Environmental determinants of ant assemblages 

 To determine the proportion of variation in ant species richness and abundance 

explained by spatial and environmental variables, trend surface analysis and partial 

regression approaches were used following Legendre & Legendre (1998), with the 

exception of using generalized linear rather than least-squares models (see McGoech 

& Price (2004)). Generalized Linear Models (GLZ) assuming a Poisson error 

distribution (log-link function, Type III model: Dobson 2002) were performed using 

pooled grids within sites (n = 10), individual grids (n = 50) and locality data (n = 5) 

separately.  

Trend surface analysis was performed to determine the best-fit combination of 

spatial variables that contributed significantly to explaining the variation in the 

dependent variables. A third order polynomial of the longitude and latitude records of 

the sites/grids was used as a model for the spatial component of the variation in 

species richness and abundance, as this extracts linear as well as more complex 

features from the data (following Legendre & Legendre (1998)). Multiple regression 

(ordinary least squares) were used, and abundance data were log10-transformed to 

improve data distribution, while species richness data were left untransformed. 

Initially, GLZ’s (maximum likelihood) were run, however most likely due to too few 

degrees of freedom, the log-likelihood could not be maximised and hence GLZ results 

were not used. Parameter estimates for the abundance models were corrected for over 

dispersion in the residual deviance (Dobson 2002). 

Generalized Linear Models were then performed for the environmental 

variables on ant species richness and abundance. Instead of using individual 

environmental variables, PCA axes were used. For the combined site and grid models, 

all four PCA axes for each of the climate, vegetation and soil PCA’s were used. For 

the locality level models, only the first axes were used for each climate, vegetation 

and soil variable PCA. Initially, individual environmental terms were included in the 

GLZ. However the individual variable combinations always explained less of the 

variability in the dependent variable than the PCA axes, therefore the PCA axes were 

used. The best subset of PCA axes were selected as the significant model with the 

fewest terms (although one of each climate, vegetation and soil PCA axes was kept in 

the sites and grid models) and lowest deviance. Analysis of deviance was conducted 

to determine significant differences between models, whereby the critical χ
2 value on 
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the difference in the degrees of freedom and deviance between the models was used 

(McCullagh & Nelder 1989).  

Initially the proportion of variation in estimates of species richness and 

abundance (Jack 2 species richness estimator and number of individuals estimated by 

EstimateS), explained by environmental and spatial variables at the site level were 

also analysed. However, since observed species richness and Jack 2 values gave 

similar results, as did observed and estimated number of individuals, only observed 

species richness and abundance results are shown.  

Canonical Correspondence Analysis (CCA) (CANOCO v4.5: ter Braak & 

Šmilauer (2002)) was used to determine the response of ant assemblages to gradients 

in the environmental variables. This analysis was selected after examination of Direct 

Gradient Analysis (DCA) gradient lengths (Lepš & Šmilauer 2003).  CCA is a form 

of multivariate, direct gradient analysis, where axes extracted are constrained to be 

linear combinations of the variables measured (ter Braak & Šmilauer 2002). Grid data 

was used for the analysis and the species data was log10-transformed prior to analysis. 

A forward selection procedure of environmental data was then used to determine 

which of the variables significantly explained ant assemblage structure. The 

significance of the variables was tested using a Monte Carlo simulation (1000 

permutations). CCA ordination results were given as biplots using the first two 

canonical axes, where significant environmental variables are depicted as arrows and 

sites as symbols (Lepš & Šmilauer 2003). The lengths of the arrows indicate the 

relative importance of the individual environmental variables in explaining species 

composition. The direction of the arrows indicates the direction of the steepest 

increase of the contribution (Lepš & Šmilauer 2003). Biplots of the samples (sites) 

and species were also plotted, to investigate which species contributed most to the 

assemblage structure. Only ants which had more than 30 % of their variability 

explained by the ordination subspace were shown. Finally, the CCA with 

environmental variables was repeated, but the invasive Argentine ant (Linepithema 

humile) was excluded from the ant species data and included as an environmental 

variable, as a presence or absence of the Argentine ant. Again a forward selection 

procedure was used to determine which of the variables significantly explained ant 

assemblage structure (now excluding the Argentine ant) and the results were plotted 

on a biplot similar to the initial CCA with environmental variables. 
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Beta diversity 

Beta-diversity was calculated using two methods. The first is based on the 

additive partitioning of diversity, where regional diversity (γ) = local diversity (α) + 

beta diversity (β) (Lande 1996). In this study observed species richness was used as a 

diversity measure. For each level i, βi was calculated as αi+1 – α1, where α1 is the mean 

species richness found in samples at that level. Therefore, beta-diversity for the 

additive approach is the average number of species absent from a sample at a certain 

level (Veech et al. 2002) or the difference in species richness of a level and the 

average species richness found in the next lowest level. Mean beta diversity was 

calculated for each nested hierarchical level, pitfalls, grids, sites, localities and overall 

region. Total additive partitioning of species richness across the region was therefore 

given by γ = αpitfalls + βpitfalls + βgrids + βsites + βlocalities and γ = αpitfalls + βpitfalls + βgrids + 

βsites for reserve and remnants additive partitioning. Note that for example αgrids = 

αpitfalls + βpitfalls (Veech et al. 2002, Crist et al. 2003, Gering et al. 2003).  

The observed beta diversities of the various levels were compared to null 

models at each level, to determine whether observed values differed significantly 

from those expected by chance. The computer program, PARTITION (Gering & Crist 

2002, Veech et al. 2002, Crist et al. 2003) was used. This program calculates 

expected values for each sampling level, by randomly allocating the next lowest 

level’s samples within those of the next higher sampling level, e.g. to determine 

expected alpha and beta diversity at the grid level, pitfalls are randomly allocated to 

grids within the same site. Probability values (p values), which are the proportion of 

randomized data sets that are greater or less than the observed are also calculated, e.g. 

if 6 out of 1000 randomizations are greater than the observed, the probability of 

obtaining an estimate greater than the observed value by chance is 0.006 (Crist et al. 

2003, Summerville et al. 2003). In this study, four separate randomization events (10 

000 randomizations) were conducted. Individual-based randomization, randomly 

allocating individuals to pitfalls that belong to the same grid, was used to determine 

expected species richness values at the pitfall level. For grids and sites, sample-based 

randomization was used, whereby grids were randomly allocated within sites, sites 

were randomly allocated within localities and sites were randomly allocated within 

the region. Species abundance and sample-size distribution are maintained so that 

even though each randomization produces different number of species in individual 
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samples, overall species richness across each hierarchical level remains the same as 

the observed data (Summerville et al. 2003).  

The second method is based on the multiplicative partitioning of diversity, 

where γ = α x β. The βsim measure was used (Lennon et al. 2001),  
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β , where a is the number of species shared 

between two quadrates, b is the number of species present in only the neighbouring 

quadrate and c the number of species in only the focal quadrate. This measure 

provides a direct assessment of turnover in species composition, measuring species 

gains and losses (Koleff et al. 2003). βsim was also calculated for all hierarchical 

levels. This was done by calculating the mean βsim value between pitfalls for each grid 

first (from a, b and c values for each pair of pitfalls from that specific grid) and then 

averaged across the 50 grids. For between grids, βsim was calculated for each grid 

within a site first (from a, b and c values for each pair of grids within a site), and then 

averaged across all 10 sites. This was then also done for between paired sites of 

localities and between sites within the region and between localities within the region. 

General linear models were used to determine significant differences between 

hierarchical levels and reserve and remnant. Due to the large number of data points 

for β sim for pitfalls in relation to those of grids and sites, only 50 data points were 

selected randomly for each site. The Factorial ANOVA showed level to be significant, 

while reserve/remnant was not significant and hence a model including only level was 

used. 

 

 RESULTS 

 

Environmental variables 

Between reserve and remnants 

There were no significant differences in weather variables between the reserve 

and remnant paired sites within each locality (referred to as between pairs from now 

on) (Appendix 2A - C). There were however significant differences in soil variables 

between pairs (Appendix 3A - E). These were restricted to the Grabouw and 

Stellenbosch localities. At the Grabouw locality, the remnant site had significantly 

higher clay (Kruskal-Wallis test, H = 35.96, d.f. = 49, p < 0.001) and silt content 

(Kruskal Wallis test, H = 36.63, d.f. = 49, p < 0.01) and significantly lower sand 
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content (Kruskal Wallis test, H = 41.97, d.f. = 49, p < 0.001) (Appendix 3B). The soil 

of the Grabouw reserve site was significantly more acidic (Kruskal Wallis test, H = 

33.63, d.f. = 49, p < 0.01) (Appendix 3C) and had a significantly higher soil resistance 

than that of the remnant site (Kruskal Wallis test, H = 38.74, d.f. = 49, p < 0.001) 

(Appendix 3A). The Grabouw reserve site also had significantly lower exchangeable 

cations (Ca, Mg, Na, K) (Kruskal Wallis tests, d.f. = 49, HCa = 42.16, p < 0.001, HMg = 

43.88, p < 0.001, HNa = 36.13, p < 0.001, HK = 42.94, p < 0.001) and % base 

saturation (Mg and Na) (Kruskal Wallis tests, d.f. = 49, HMg = 40.08, p < 0.001, HNa = 

26.15, p < 0.01) than the remnant site (Appendix 3A). The Stellenbosch remnant site 

had significantly higher % base saturation (Ca) than the reserve site (Kruskal Wallis 

test, H = 33.82, d.f. = 49, p < 0.001) (Appendix 3A). 

There were no significant differences between pairs for vegetation cover 

(Appendix 4A). However, the foliage height profile at the Stellenbosch locality 

showed a significant difference in foliage density between pairs at the below 0.25 m 

category (Kruskal-Wallis test, H = 28.16, d.f. = 49, p < 0.001) (Appendix 4B). There 

were also no differences in the amount of litter collected, both coarse and fine 

between pairs (Appendix 4 C). 

In summary, only two pairs had significant differences in environmental 

variables measures. In the Grabouw pair, soil variables were mainly different, while 

in the Stellenbosch pair there was a difference in a single soil and single vegetation 

variable.  

 

Between sites 

There were significant differences across sites for the majority of the 

environmental variables (Appendix 2A – 4C). The Elandskloofberge sites received 

the highest rainfall during the five-day sampling period, while the Somerset West 

remnant site received no rain during the sampling period (Appendix 2A). Ground 

temperatures were highest in the Malmesbury sites (Appendix 2B & 2C) and 

significantly so compared to all other sites at 12h00 and 18h00 (ANOVA, F1,9 = 

20.86, p < 0.001 and ANOVA, F1,9 = 17.27, p < 0.001 respectively). Significant 

differences were also found between sites at 6h00 (ANOVA F1,9 = 3.99, p < 0.001) 

and 0h00 (ANOVA, F1,9 = 8.84, p < 0.001) (Appendix 2C).  

All soil characteristics differed across sites (Appendix 3A - E). The Grabouw 

remnant site had loam soil, while the other sites had predominantly sandy soils. The 
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component of clay, soil and silt differed significantly across the sites (Appendix 3B) 

(Kruskal-Wallis test, Hclay = 35.96, d.f. = 49, p < 0.001, Hsilt = 36.63, d.f. = 49, p < 

0.01 and Hsand = 41.97, d.f. = 49, p < 0.001). The acidity (pH) differed across sites 

(Kruskal Wallis test, H = 39.45, d.f. = 49, p < 0.001) (Appendix 3C). The Somerset 

West sites had significantly higher soil moisture content than those of the 

Malmesbury sites (Kruskal Wallis test, H = 39.45, d.f. = 49, p < 0.001) (Appendix 

3D). T-value, which is an estimate of the cation exchange capacity (CEC) value, was 

significantly different across sites (Kruskal Wallis test, H = 43.87, d.f. = 49, p < 

0.001) (Appendix 3E). Cation exchange capacities for Na, K, Ca and Mg and 

(Kruskal Wallis tests, d.f. = 49, HNa = 36.13, p < 0.001, HK = 42.94, p < 0.001 HCa = 

42.16, p < 0.001, HMg = 43.88, p < 0.001) and % base saturation for Na, K, Ca and Mg 

also differed significantly across sites (Appendix 3A) (Kruskal Wallis tests, d.f. = 49, 

HNa = 26.15, p < 0.01, HK = 27.36, p < 0.01, HCa = 33.82, p < 0.001, HMg = 40.08, p < 

0.001). The following soil variables also differed across sites, soil resistance (Kruskal 

Wallis test, H = 38.74, d.f. = 49,  p < 0.001), H+ concentration (Kruskal Wallis test, H 

= 33.14, d.f. = 49,  p < 0.001), % N (Kruskal Wallis test, H = 39.75, d.f. = 49,  p < 

0.001), and % C (Kruskal Wallis test, H = 38.34, d.f. = 49,  p < 0.001) (Appendix 

3A). 

Percentage vegetation cover was significantly different between sites for all 

categories, bare ground, (Kruskal Wallis test, H = 18.63, d.f. = 49, p < 0.05), litter 

(Kruskal Wallis test, H = 28.82, d.f. = 49, p < 0.001), grass (Kruskal Wallis test, H = 

20.45, d.f. = 49, p < 0.05), herbaceous component (Kruskal Wallis test, H = 31.17, d.f. 

= 49, p < 0.001) and woody vegetation (Kruskal Wallis test, H = 27.94, d.f .= 49, p < 

0.05) (Appendix 4A). Foliage height densities differed significantly for the lower 

categories 0 - 0.25 m (Kruskal Wallis, H9,50 = 28.16, p < 0.001), 0.25 - 0.50 m 

(Kruskal Wallis, H9,50 = 17.38, p = 0.04), 0.50 - 0.75 m (Kruskal Wallis, H9,50 = 

23.07, p < 0.01) and 0.75 - 0.10 m (Kruskal Wallis, H9,50 = 21.57, p = 0.01), but not 

for the higher classes, 0.10 m – 150 + m. 

Mean litter weight, as well as coarse and fine weight per site was also 

significantly different across sites (ANOVA, F1,9 = 4.47, 4.24 and 4.59 respectively, p 

< 0.001) (Appendix 4 C). Median percentage litter cover was not significantly 

correlated to mean weight of litter but was significantly positively correlated to the 

percentage fine weight (total fine weight/ total weight) (rs = 0.34, p < 0.05). In general 

there were many significant differences across sites for environmental variables 
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measured, with a greater difference in environmental variables between sites than 

between pairs.  

 

Reducing environmental variables 

Principal component analysis reduced the environmental variables to four 

principal components for each category, i.e. climate, vegetation and soil. Using 

climate site data, the first principal component (PC) captured 30.5 % of the variance 

and the first two, 51.4 %. The first PC mainly represented an increase in ground 

temperature (mean, mean maximum, absolute maximum and range) and a decrease in 

humidity. The second PC mainly represented an increasing rainfall across 2004 

gradient and decreasing number of rain days during the five day sampling period and 

an increasing minimum ground temperature (Appendix 5A & E). Using the grid 

climate data, 70.6 % of the variation in the climate data was captured by the first PC 

and 97.4 % by the second PC (Appendix 5F). Using locality data, the first axes 

explained between 64.1 % (Elandskloofberge) and 79.1 % (Malmesbury) of the 

variation. The first and second axis combined explained between 96.9 % 

(Malmesbury) and 99.2 % (Grabouw) (Appendix 5G). 

PCA for sites, using vegetation data, the first PC explained 42.9 % of the 

variance in the vegetation data and the first two PC’s explained 64.6 %. The first 

principle component mainly represented an increasing gradient in litter (mean, coarse 

and fine and % cover) and foliage density above 0.5 m and a decrease in foliage 

density below 0.25 m. The second axis represented mainly an increase in plant species 

richness and % herbaceous component (Appendix 5E). Grid vegetation data PCA 

results showed the first PC and first two PC’s to explain 31.8 and 45.3 % of the 

variance (Appendix 5F). Using vegetation, locality data the first PC captured between 

33.5 % of the variance (Malmesbury) and 46.6 % (Somerset West). The first two axes 

captured between 58.3 % (Malmesbury) and 70.2 % (Somerset West) (Appendix 5G).  

Using soil site data, 65.5 % of the variance was captured by the first PC and 

82.3 % by the first two principle axes (Appendix 5E). The loadings on the first PCA 

axes showed that the axes represented mainly an increasing gradient of soil moisture 

and nutrients (many soil nutrient variables), clay and silt content and decreasing sand 

component, while PC2, mainly represents soils with an increasing hydrogen ion 

concentration. Using grid soil data, PC1 captured 56.4 % of the variance, mainly 

representing a decreasing gradient of soil nutrient, clay and silt content and increasing 
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sand component and resistance in the soils (Appendix 5D). The first two PCs together 

captured 71.7 % of the variance (Appendix 5F). Using individual locality soil data, 

the first PC captured between 38.7 % of the variance in the case of Malmesbury sites 

to 74.8 % for Grabouw sites of the variance. The first two PCs together captured from 

62.8 % (Malmesbury) to 89 % (Grabouw) of the variation (Appendix 5G).  

For vegetation and soil data, where the same variables were used at site and grid 

level, very similar PCA ordination plots were obtained and therefore only the ones 

using grid data are shown (Appendix 5C & D). However for climate data, where 

different variables were used at grid and site level, both ordination plots were given 

(Appendix 5A & B). Climate variables PCA, using site level data, showed a negative 

relationship between temperature and humidity. Vegetation variables PCA using grid 

data, showed a positive relationship between % woody component and foliage density 

above 0.25 m and mean, coarse and fine litter mass. Soil variables PCA, using grid 

data, showed a clear positive relationship between % silt and % clay and the 

concentration of exchangeable cations and % base saturations as well as other 

nutrients such as carbon, nitrogen and phosphorus. 

 

Ant species richness, abundance and composition 

A total of 13 493 ant individuals representing 83 species from 24 genera were 

collected across the 10 sites. Most species and genera belonged to the subfamily 

Myrmicinae with 43 species 11 genera, followed by the subfamily Formicinae, with 

25 species and four genera.  The genus Monomorium contained most of the species 

(15), followed by Tetramorium (14) and Camponotus (12).   

Samples from individual sites, localities and the overall area were representative 

of the ant fauna expected at sites and across the localities as is indicated by the 

approximate asymptotes reached by the sample-based rarefaction curves (Fig. 3A). 

The results of all four species richness estimators generally did not differ markedly 

from the observed species richness, with Chao2 predicting the highest species 

richness and Jack1 the lowest (Table 1). Elandskloofberge and Stellenbosch reserves 

and Malmesbury remnant site had the greatest difference between observed and 

predicted species richness estimated, with estimates predicting an increase of 18, 16 

and 12 % in the species richness respectively (Chao2) (Table 1).  

Assemblages in sites and localities all showed a clear numerical dominance 

structure. Dominance ranged from around 90 % (Anoplolepis steingroeveri in 
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Elandskloofberge reserve site) to less than 30 % (Linepithema humile in the Somerset 

West sites) (Fig. 4A). Overall A. steingroeveri was the numerically most abundant ant 

species, however Tetramorium quadrispinosum had the highest occupancy, occurring 

in all sites (Fig. 4A & B, see also Appendix 6). The invasive Argentine ant 

(Linepithema humile) was the second most abundant species trapped, although it was 

only found at 5 sites. The species dominated in the Somerset West sites, as well as in 

the Grabouw remnant site. Sites where the Argentine ant was present, had a 

significantly lower species richness than those where it was absent, when using grids 

level data (ANOVA F1,1 = 4.95, p < 0.05). Of the 82 other species, 24 only occurred 

at sites where the Argentine was not present (Appendix 6), such as Anoplolepis 

custodiens and 37 species only occurred at grids where the Argentine ant was absent. 

 

Between reserve and remnants 

In the pooled reserves 69 species were captured and 66 species in the combined 

remnants (Appendix 6, Table 1). There was no significant difference in observed 

species richness between pooled reserve and pooled remnant sites (GLM, F1,48 = 2.02, 

p > 0.05). Species richness estimates for pooled reserve sites and pooled remnant sites 

were also not significantly different (Wilcoxon Matched pairs Test, T = 4.00, Z = 

0.94, p = 0.34, N = 5). However, significant differences were found between estimates 

(using Jack 2) of species richness between pairs for Elandskloofberge (t = 2.029, d.f. 

= 24, p < 0.05), Grabouw (t = 2.834, d.f. = 24, p < 0.05) and Stellenbosch (t = 2.183, 

d.f. = 24, p < 0.05), but not between pairs of Malmesbury and Somerset West 

localities (p > 0.05). Individual-based as well as sample-based rarefaction curves 

revealed species richness of reserve sites to be higher than the corresponding paired 

site, except for the Elandskloofberge sites, where the opposite was true ( Fig. 3B).  

Of the 83 species observed, 63 % were observed in both reserves and remnants, 

17 occurred only in reserves and 14 only in remnants. Of those only 4 occurred in 

more than one reserve site and only 3 occurred in more than one remnant site 

(Appendix 6). Reserve and remnant sites shared the highest percentage of species in 

the Elandskloofberge locality and the lowest in the Stellenbosch locality. Estimated 

number of species shared was very similar to that observed for all localities, except 

Elandskloofberge and Somerset West, which had an estimated seven species more 

shared than observed (Table 2).  
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No indicator species were found for combined reserves, however for the 

remnants, the Argentine ant was noted (Table 4). Although this species is not an 

indicator species by definition of the subjective benchmark, it was the only species 

with an significant indicator value above 50. The next highest indicator value was 

Meranoplus peringueyi with 29.9, which was not significant. 

Grouping species into functional groups, using species richness data, showed 

little difference between reserve and remnant sites, except that no Tropical Climate 

Specialist (TCS) were found in remnant sites (Fig. 5A). The greatest proportion of 

species were Opportunist Species (OPP) for both reserves and remnants (Fig. 5A). 

Relative abundance was markedly different between reserve and remnants, with 

reserves having a higher proportional abundance of Hot Climate Specialists (HCS) 

and a proportionally lower abundance of Generalized Myrmicinae (GM), Dominant 

Dolichoderinae (DD) and Opportunist Species (Fig. 5B). These results are however 

biased by the overwhelming abundance (4050 individuals) of Anoplolepis 

steingroeveri in a single reserve grid. This species contributed heavily to the large 

proportion of Hot Climate Specialists (HCS) in reserves.  

Differences in ant assemblage structures between pooled reserve and pooled 

remnant sites, although significant, were very weak (low R-value) (Global R = 0.071, 

p = 0.03) and assemblages could not be clearly separated (Clarke & Gorley 2001). For 

individual localities, ant assemblage structure differed significantly between pairs in 

Grabouw (Global R = 0.916, p < 0.05), Stellenbosch (Global R = 0.864, p < 0.05) and 

Malmesbury (Global R = 0.852, p < 0.05), but not between the Elandskloofberge 

(Global R = 0.02, p = 0.44), and Somerset West pairs (Global R = 0.176, p = 0.08). 

In summary, ant assemblages showed no overall differences between reserves 

and remnants, in terms of species richness, abundance, composition and only very 

weak differences between assemblage structures. Some individual pairs however had 

significant differences between ant species richness, composition and assemblage 

structure.  

 

Between sites and localities 

Observed species richness and number of individuals differed significantly 

between sites (Kruskal Wallis test, H = 20.98, d.f. = 9, p < 0.05 and H = 22.40, d.f. = 

9, p < 0.05). The Elandskloofberge reserve site had the highest number of individuals 

(4601), while the Elandskloofberge remnant site had the highest species richness (36) 
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(Table 1). The Somerset West remnant site had both the lowest number of individuals 

(447) and species (18) (Table 1). Grabouw and Stellenbosch localities shared the 

highest % of species (48.39), while Malmesbury and Somerset West shared the lowest 

% of species (10.71 %) (Table 3). Estimated number of species shared did not differ 

greatly from those observed (Table 3).  

Several species were identified as indicator species (i.e. with significant 

indicator values above 70 %) for individual localities, namely Messor capensis and 

Pheidole sp.2 for Elandskloofberge, and Camponotus angustice for the Malmesbury 

locality (Table 4). Further, Messor capensis and Messor sp.1 were indicator species 

for the Elandskloofberge remnant site, Monomorium sp.1 for Malmesbury reserve site 

and Linepithema humile for the Grabouw remnant site (Table 4).  

Assemblages structure differed significantly between sites and localities 

(ANOSIM, Global R = 0.851, p = 0.001 and Global R = 0.611, p = 0.001 

respectively). Overall there were thus significant differences in species richness, 

composition and structure between sites in the region and between localities.  

 

Environmental determinants of ant assemblages 

Species richness and abundance 

A significant amount of variation in species richness across sites (pooled grid 

data within sites) as well as grids was explained by soil variables (soilAX1) (Table 5). 

Ant species richness was negatively related to an increase in an axis that represented 

mainly decreasing soil resistance and increasing soil moisture, nutrients and % silt 

component in the soil (Appendix 5D, E & F).  Variation in species richness of grids 

was also significantly explained by sites (Table 5). Ant species richness of individual 

localities was not significantly explained by any of the PCA axes, except in the 

Elandskloofberge and Grabouw localities. In the Elandskloofberge locality, 

climateAX1 and soilAX1 contributed significantly to explaining ant species richness. 

Hence species richness was positively related to axes representing mainly increasing 

temperature, increasing soil moisture and increasing soil nutrients (Table 5, Appendix 

5G). In the Grabouw locality, soilAX1 and vegetationAX1 were significant in 

explaining variations in ant species richness. Species richness at this locality was 

positively related to mainly increasing litter and vegetation height density above 1.5 

m, as well as decreasing pH, decreasing soil nutrients and increasing % sand 

component (Table 5, Appendix 5C).  
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Thus overall, sites and soil variables were important in explaining the variation 

in species richness across sites and grids, with increasing ant species richness being 

related to decreasing soil nutrient concentrations. Explanatory variables for individual 

localities varied, with three localities having no significant explanatory variables and 

the other two having a combination of the climate, vegetation and soil variables.  

Ant abundance for sites (pooled grids per site) as well as grids was significantly 

related to vegetation AX1, so that abundance was negatively related to an increase in 

vegetation density greater than 0.5 m as well as to mean litter weight and total coarse 

and fine litter weight (Table 5, Appendix 5A & B). Variation in ant abundance for 

grids was also significantly explained by sites (Table 5). All ant abundance models for 

individual localities were significant in explaining ant abundance variation (Table 5). 

The abundance of ants in the Elandskloofberge locality was negatively related to 

climate AX1 (i.e. ant abundance was negatively related to mainly an increase in soil 

temperature). Ant abundance in the Grabouw locality was significantly related to 

climate AX1 (ant abundance was negatively related to mainly decreasing soil 

temperature), soil AX1 (ant abundance was negatively related to mainly an increase in 

sand and a decrease in soil nutrients and moisture) and vegetation AX1 (abundance 

was negatively related to a decrease in % bare ground and positively to litter weight, 

% woody component, plant density above 1.5 m, mean litter weight, total coarse and 

fine litter weight and % fine litter component). In the Stellenbosch locality, abundance 

was significantly related to soilAX2 (i.e. abundance was positively related to mainly a 

decreasing % base saturation of Na). 

Variations in abundance across sites and grids were significantly explained by 

sites and vegetation variables, with abundance being negatively related to an increase 

in vegetation density above 0.5 m and litter content. For individual localities, climate, 

vegetation and soil were significant explanatory variables for abundance variations, 

although their role differed for each locality. 

None of the spatial terms were significant when using species richness (p > 

0.05), indicating that no coarse-scale spatial trends were present in ant species 

richness. For abundance, x and x2 were significant (F2,47 = 6.63, p < 0.01, R2 = 0.19, 

x: beta = -234.18, t = -3.60, d.f. = 49, p < 0.001, x2: beta = 235.25, t = 3.60, d.f. = 49, 

p < 0.001). However none of the spatial terms were significant, when adding these 

terms to the environmental terms in the GLZ (p > 0.05). Hence spatial polynomial 
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terms were omitted from further analyses and the final models and best fit models 

were run including only the environmental PCA axes. 

 

Assemblage structure 

The first canonical axis in the CCA biplot of ant assemblage and sites (Fig. 6A) 

explained 11.7 % of the variation in the ant assemblage (F = 5.322, p = 0.002) and the 

first and second axes together explained 20.05 % of the variation. The first axis 

broadly separated the Malmesbury sites from the Elandskloofberge sites, while the 

second axis separated the more northerly sites (with the exception of the Stellenbosch 

reserve site) from the southerly sites. The second axis site separation coincides with 

the presence or absence of the Argentine ant, with sites on the right having the 

Argentine ant present and those on the left without the Argentine ant (Fig. 6A). 

For the CCA biplot of ant assemblages and environmental variables (Fig. 6B), 

the first canonical axis explained 11.1 % of the variation in ant assemblages across the 

all sites (F = 4.862, p = 0.001) and the first and second axes together explained 18.7 

%. Soil nutrients (T-value) (F = 5.01, p = 0.001), % silt component (F = 1.79, p = 

0.002), soil moisture (F = 1.52, p = 0.018), soil resistance (F = 2.56, p = 0.001), % 

base saturation Mg (F = 1.78, p = 0.006) and exchangeable cations Mg (F = 1.56, p = 

0.014),  % woody component cover (F = 1.50, p = 0.019), foliage height density 

between 0.25 – 0.50 m (F = 1.75, p = 0.003), plant species richness (F = 3.27, p = 

0.001) and mean soil surface temperature (F =1.66, p = 0.007) added significantly to 

explaining the variance in ant assemblages. The first axis represents an environmental 

gradient of increasing soil nutrients, % silt component, soil moisture and 

exchangeable Mg cation concentration. The second axis represents a decrease in plant 

species richness and vegetation density between 0.25 – 0.50 m (Fig. 6B). Soil 

nutrients (T-value), plant species richness and soil resistance together were the most 

important environmental variable in explaining variance in ant assemblage structure 

(Fig. 6B).  

For the final CCA, where the Argentine ant was removed from the ant 

assemblage and included as an environmental variables, the first canonical axis 

explained 10.0 % of the variation in ant assemblages across the all sites (F = 4.201, p 

= 0.001) and the first and second axes together explained 17.3 %. Presence or absence 

of the Argentine ant (F = 4.68, p = 0.001), Soil nutrients (T-value) (F = 1.88, p = 

0.001), % silt component (F = 1.67, p = 0.007), soil moisture (F = 1.54, p = 0.015), 
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soil resistance (F = 1.88, p = 0.001), % base saturation Mg (F = 1.40, p = 0.039) and 

exchangeable cations Mg (F = 1.81, p = 0.004),  % woody component cover (F = 

1.66, p = 0.006), foliage height density between 0.25 – 0.50 m (F = 1.65, p = 0.005), 

plant species richness (F = 3.11, p = 0.001) and mean soil surface temperature (F 

=1.56, p = 0.011) added significantly to explaining the variance in ant assemblages. 

The first axis represents an environmental gradient of increasing presence of 

Argentine ant, % silt component, soil moisture, soil nutrients (T-value) and 

exchangeable Mg cation concentration. The second axis represents an increase in 

plant species richness, vegetation density between 0.51 - 0.75 m and increasing mean 

ground temperature (Fig. 6C).  

Ant assemblages were therefore separated on the basis of their regions rather 

than reserve and remnants. Six soil variables as well as two vegetation and one 

weather variable were significant in separating sites. Excluding the Argentine ant 

from the ant assemblages and including it as an environmental variable resulted in 

simply the addition of the presence or absence of the Argentine ant to the previously 

significant variables. 

 

Beta diversity  

More than half of the ant beta diversity was generated at the locality level when 

using additive partitioning of species richness (Fig. 7, Appendix 7). The betaadd 

(species richness turnover) increased approximately linearly with increasing spatial 

scale when using three hierarchical levels, namely pitfalls, grids and sites (Appendix 

7). Both reserves and remnants had similar partitioning of species richness (Fig. 7, 

Appendix 7). The betaadd between pitfalls in a grid was significantly lower than 

expected (p < 0.001) by randomly allocating individuals to pitfalls. Species richness 

turnover between grids in a site and between sites in a locality was higher than 

expected (p < 0.001) by randomly allocating pitfalls to grids, while keeping them in 

their sites and randomly allocating grids to sites within their set localities respectively. 

However the species richness turnover between localities in the region was not 

significantly higher than expected (p = 0.054). Thus the grid and site within locality 

as well as sites in the region level were found to be important for generating species 

richness.  

Beta diversity, using βsim, (compositional turnover), changed across scales 

depending on the number of hierarchical levels used. The difference between reserve 
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and remnant βsim across spatial scale was determined using three levels (between sites 

in a region, between grids in a site and between pitfalls in a grid). For each of the 

three levels, βsim was similar for reserve and remnant sites. Additionally across all 

three levels there was no significant difference in βsim between reserve and remnants 

(GLM, MS = 0.010, d.f. = 1, p = 0.687) (Fig. 8A). However, compositional turnover 

was significantly higher between sites in a region than between grids in a site and 

between pitfalls in a grid (Fig. 8B) (GLM: MS = 0.430, d.f. = 2, p = 0.002). However 

when including four hierarchical levels (between localities in a region, between sites 

in a locality, between grids in a site and between pitfalls in a grid), there were no 

significant differences in βsim across scales (Fig. 8C) (GLM: MS = 0.030, d.f. = 3, p = 

0.73). Compositional turnover was highest between localities in a region, when using 

the four levels, although this was not significant (Fig. 8C). Thus the site within the 

region level was the most important for generating ant compositional diversity in this 

study. 

 

DISCUSSION 

 

Ant species richness in the CFR lowlands 

The 83 species sampled in this study compares well with the ant species 

richness values in related studies for the region. For example, a longer term study with 

greater sample effort conducted across an altitudinal gradient from 0 - 2000 m.a.s.l 

and down to 500 m.a.s.l. again, across three vegetation types, in the northern Cape 

Floristic Region, found 85 species (Botes et al. 2006). Most other studies on ants 

conducted in the CFR have covered a much smaller sampling extent and hence 

trapped considerably fewer species. However, these are comparable to the individual 

localities that were sampled in this study. For example, 49 species were trapped at the 

Stellenbosch locality including the Jonkershoek Nature Reserve, while another study 

conducted in the Jonkershoek Valley captured 45 species in total (Donnelly & 

Giliomee 1985). Studies conducted in other locations in the CFR included 47 ant 

species across 14 sites in an area moderately infested with Acacia saligna (French & 

Major 2001) and 27 species captured across three sites along a gradient of Hakea 

sericea infestation in mountain fynbos near George (Koen & Breytenbach 1988). The 

sampling conducted in this study is thus considered representative of the local species 

richness of ants. This is strongly supported by the approximate asymptotes to species 
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richness reached by rarefaction curves (see also Chapter 1). However, the absence of 

seasonal specialists from a “snap-shot” sample such as this one would have affected 

sample representivity. Based on the results of the seasonal variation in ant 

assemblages that was found at one of the sites, i.e. Elandsberg (Chapter 2), about 22 

additional species or a 27 % increase in species richness can be expected if sampling 

is conducted throughout the year, rather than only during spring. Additionally, 75 % 

of the species that were sampled in spring were not assigned species names, due to a 

lack of available taxonomic classification, but were left as morphospecies. Systematic 

changes of ant species may thus still result in either the addition or loss of species to 

the current total. Nonetheless, because estimated species richness values were very 

close to those observed, and because richness values obtained were similar to those of 

previous studies, the richness recorded in this study is considered representative of the 

spring-active component of the ant fauna in the CFR.  

 

Ant assemblages of reserves and remnants 

Species richness and abundance 

This study was the first to explicitly examine the differences in ant assemblages 

between reserve and remnant pairs. In the present study, overall there was no 

significant difference in ant species richness between reserves and remnants. There 

were also only small differences in estimated species richness values between 

reserves and remnants, with a maximum of 5.71 (Jack2) additional species predicted 

in reserves. Overall, remnants supported 95.7 % of the observed ant species richness 

that was found in reserve sites. Thus, assuming that ant assemblages are resident in 

the remnants, overall assemblages in remnants are able to withstand the disturbance 

levels that have to date been associated with them. Since reserves may themselves be 

considered as larger remnants of a once continuous landscape, our results could be 

compared to previous studies investigating species richness changes across remnants 

of various sizes. Two studies, have shown that ant species richness was similar across 

remnants of sizes varying from 0.2, 3 and 9 ha (grassland remnants in Sweden 

(Dauber et al. 2006)) and 50, 100 and 300 ha (forest remnants in Brazil (Ribas et al. 

2005)). These results thus indicate that in other regions of the world, remnants (i.e. 

small remnants) have been found to support similar ant species richness to that found 

in reserves (i.e. larger remnants) (Ribas et al. 2005, Dauber et al. 2006). 
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Although there were no overall significant differences between reserves and 

remnants in ant species richness and abundance, there was variation between localities 

in the differences between reserves and remnants, i.e. two reserve-remnant pairs had 

significantly lower species richness in remnants, two pairs had no significant 

difference and one pair had significantly higher species richness in the remnants. 

Previous studies from across the world have found mixed effects of disturbances on 

ant species richness (Hoffmann & Andersen 2003, Underwood & Fisher 2006). 

Generally, significant declines in ant species richness have occurred only in heavily 

disturbed areas, such as land-use changes from natural to agricultural habitats (Lobry 

DeBruyn 1993, Gómez et al. 2003, Witt & Samways 2004), while disturbances such 

as grazing and fire have shown both no effects and in some cases positive effects on 

species richness (Abensperg-Traun et al. 1996, Kotze & Samways 1999, Read & 

Andersen 2000, York 2000, Parr et al. 2004). A study in Mexico, for example, found 

ant species richness to significantly decline from forest fragments to conventionally 

farmed coffee plantations, however there was no significant decline between 

fragments and organically grown coffee plantations where many forest tree species 

remained (Perfecto & Vandermeer 2002). In our study the mixed effects observed in 

the localities may thus also be due to local differences in levels and intensities of 

disturbances between localities.  

Grading sites according to their disturbance levels is difficult as not only current 

disturbance, but also historical disturbance regimes play a role (Lunt & Spooner 

2005). Based on subjective observations (see study site descriptions), the number of 

alien plant species present and the presence or absence of the invasive Argentine ant 

(the effects of this ant are discussed in greater detail later on), Stellenbosch and 

Grabouw localities showed the greatest differences in disturbance levels between 

reserve and remnant. Note that although the remnant of the Somerset West locality 

was probably more disturbed than that of the Stellenbosch and Grabouw locality, the 

Somerset West reserve condition was considerable poorer than that of either the 

Stellenbosch or the Grabouw reserve and therefore the difference between reserve and 

remnants was smaller for this locality than for the other two. Stellenbosch and 

Grabouw were also those localities where species richness was significantly lower in 

remnants than in reserves, indicating that the intensity of disturbance may be the 

reason for observed variation in localities. Reasons for the significantly higher species 

richness in the remnant of the Elandskloofberge site may be due to the overwhelming 
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abundance of the native pugnacious ant, Anoplolepis steingroeveri, in the reserve site. 

This species dominated the grids in the reserve which may have resulted in reduced 

species richness through the competitive exclusion of other ant species (Andersen 

1992). Thus variation between localities in the differences between reserves and 

remnants may be due to the intensity of disturbance as well as natural ant assemblage 

patterns. Also, although overall no species richness differences were found between 

reserve and remnants, higher levels of local disturbance to remnants do appear to 

result in a significant loss of ant species richness. 

 

Species Composition and Assemblage Structure 

Although the general result supports the hypothesis that ants as a taxon are 

relatively robust to disturbances (Parr et al. 2004, Underwood & Fisher 2006), species 

richness may be too coarse a measure to discriminate overall differences between 

reserves and remnants, and ant species composition and assemblage structure may be 

more informative of differences present (Majer & Nichols 1998, Fleishman et al. 

2005). Disturbances are important in determining the composition and structure of ant 

communities (Andrew et al. 2000, York 2000), with some species increasing in 

abundance (eurotypic species), while others decrease (stenotypic) (Samways 1981). 

Functional groups have been shown to respond similarly to disturbances across 

continents (Andersen 1995), although care should be taken in assigning species to 

functional groups when scaling down to smaller geographical areas as some species 

change their functional role within the regional context (Andersen 1997b, Hoffmann 

& Andersen 2003). Opportunist species (OPP) are known to, in most cases, increase 

in disturbed habitats and are common in anthropogenic habitats  (Bestelmeyer & 

Wiens 1996, Andersen 1997a, York 2000, Gómez et al. 2003, Hoffmann & Andersen 

2003). In this study, the OPP species group had the highest species richness of all the 

functional groups, both overall and in reserves and remnants. One of the OPP species, 

Tetramorium quadrispinosum, was found to be present in every site (reserve and 

remnant). Although it is an opportunist, this species is an important seed disperser of 

myrmecochorous plants (Bond & Slingsby 1983) and thus critical for the CFR. The 

relative number of species per functional group did not differ greatly between reserves 

and remnants, except for tropical climate specialists (TCS), which were only present 

in the reserve sites. The two species that contributed to the TCS were Dorylus 

helvolus and Aenictus rotundatus (aenictine army ants), both of which occur 
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throughout Africa (Taylor 2006). However both these species were present in low 

abundance (5 individuals for both species combined) and therefore TCS differences 

were not interpreted further. The relative abundance of individual functional groups 

was substantially different between reserves and remnants, but as mentioned before, 

these results were biased by the overwhelming abundance of one species, Anoplolepis 

steingroeveri in one grid. Although in other studies functional groups have been 

found to show marked responses to disturbances (York 2000, Hoffmann & Andersen 

2003), here very small differences between reserve and remnant assemblages were 

found. One reasons for this may be that the functional groups (Andersen 1990, 1995, 

1997a) are not sufficiently sensitive or appropriate to detect differences in South 

African ant fauna. Alternatively, it suggests that in general remnants currently support 

ant assemblages that are functionally very similar to those of reserves.  

 Assemblage structure as a measure is generally more sensitive to disturbance 

than species richness (Majer & Nichols 1998, Fleishman et al. 2005). For example, 

clear differences in ant assemblage structure have been shown between burnt and 

unburnt plot ant assemblages (York 2000, Parr et al. 2004) and grazed and ungrazed 

plots (Abensperg-Traun et al. 1996, Bestelmeyer & Wiens 2001, Woinarski et al. 

2002, Sobrinho et al. 2003). However, in this study, assemblage structures were 

similar for the overall reserves and remnants, and sites were not clearly separated into 

reserve and remnants, based on their assemblage structure (CCA). Also only very 

weak differences were found in ant assemblage structure between pooled reserves and 

pooled remnants (ANOSIM). Thus overall compositional differences were small 

between reserve and remnants. 

However, similar to the results of species richness, individual localities varied in 

the structural assemblage differences between reserve and remnant pairs. The 

localities which had significantly less species in the remnants than in the reserves pair 

also had significantly different assemblage structures. For the two localities with 

similar species richness in the reserve and remnant pair, one had similar assemblage 

structures while the other had significantly different assemblage structures. This 

emphasises that low species richness differences do not necessarily imply similar ant 

assemblages. Finally, the locality which had a significantly higher species richness in 

the reserve than in the remnant, had no significant difference in the assemblage 

structures, indicating that the reserve and remnant in this locality were similar with 

many (almost half) shared species. Therefore as was seen with species richness, 
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overall differences were small between reserve and remnants, however distinct 

differences were found in some of the localities, indicating that remnants have the 

potential to conserve ant assemblages similar to those found in reserves, but this 

potential is not necessarily realized and is likely to be influenced by local disturbance 

histories. 

 

Ant assemblages between sites and localities  

Although overall differences between reserves and remnants were generally 

weak, ant assemblages differed markedly between localities and across sites, in terms 

of species richness (observed and estimated), abundance and assemblage structure. 

Additionally, a significant portion of the variation in species richness was explained 

by sites. Regional separation of sites by their ant assemblages was thus much stronger 

than that between reserve and remnant. On average 44 % of species were shared 

between reserves and remnants, while only 30 % of species were shared on average 

between localities. Contrasting results have been found in other studies for the relative 

importance of disturbance and natural underlying spatial variability in a region 

(Bestelmeyer & Wiens 2001, Woinarski et al. 2002). An Australian study concluded 

land-use to be of greater importance in structuring ant assemblages than differences 

between sites due to natural spatial variability (Woinarski et al. 2002), while in the 

United States, differences in natural environmental variables were more important in 

explaining ant richness and compositional variation than changes caused by different 

grazing intensities  (Bestelmeyer & Wiens 2001). Our findings appear to support 

those of the latter study, where ant assemblages were affected more by natural spatial 

variability than by disturbances. The CFR is known to be highly heterogeneous, both 

in terms of  its geology and flora (Cowling 1990), and this heterogeneity was mirrored 

by the ant fauna. Site and locality differences in ant assemblages may therefore be due 

to natural geological, climatic and floral heterogeneity. However, as mentioned 

previously, reserves and remnants varied in the intensity of disturbance and therefore 

some of the variation between sites and localities may also come from variation in 

disturbance intensities across sites and localities.  

 

Beta diversity 

Beta diversity is known to change with spatial scale (Wagner et al. 2000, 

Lennon et al. 2001, Koleff & Gaston 2002, Gering et al. 2003). Generally studies 
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using the additive partitioning of species richness of various taxa have found species 

richness turnover to increase with spatial scale (Wagner et al. 2000, Gering et al. 

2003, Tylianakis et al. 2006). This is not surprising, as one would expect that, based 

on the species-area relationship (Lomolino 2001), as species richness increases with 

increasing scale, species richness differences between scales would also increase. This 

study found, species richness turnover (βadd) to increase almost linearly with 

increasing scale, i.e. at three hierarchical scales, from between microhabitats (between 

pitfalls), to between reserve patches/remnants (between grids) and finally to between 

reserves/farms in the region (between sites in a region). However, when dividing the 

highest level (between reserves/farms in the region) into turnover between reserve and 

farm for each pair (between sites in a locality) and turnover between the reserves with 

their surrounding farms (between localities), species richness turnover was no longer 

linear. Turnover between the reserves and remnants was considerably smaller than 

that between localities. This confirms the overall relatively small species richness 

difference between reserves and remnants.  

In contrast to the linear increase in species richness turnover with increasing 

scale, the pattern of compositional turnover (βsim) was more complex. Turnover 

decreased from between pitfalls to between grids and from there increased to between 

sites and between localities. Compositional turnover in British birds has also been 

found to both decrease with an increase in spatial scale (10 – 90 km2) (Lennon et al. 

2001) and to increase with increasing scale (200 – 1000 km2) (Koleff & Gaston 

2002). The two bird studies together show an initial decrease at small scales and then 

an increase at larger scales, a pattern resembling that of our study. Reasons for 

observing a relatively high compositional turnover between pitfalls, i.e. within a 

reserve patch/remnant, could be interspecific competition, resulting in a patchy 

distribution of ant species at this scale (Andersen 1997b, James 2004). The relatively 

low compositional turnover between reserve patches/remnants indicates that 

individual ant species generally occurred throughout the reserve/farm. Compositional 

turnover was highest between reserves/farms in the region as was found for species 

richness turnover, again emphasizing the importance of the large scale heterogeneity 

of the region, as has been found in another region (Pfeiffer et al. 2003).  

The level or spatial scale which is most important for generating diversity 

differs between taxa and regions (Wagner et al. 2000, Gering et al. 2003, Chandy et 

al. 2006, Tylianakis et al. 2006). Studies using the additive partitioning of species 
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diversity approach have obtained mixed results, with one study showing greater 

turnover between plots within a land-use, than between land-uses (Tylianakis et al. 

2006), while the opposite was seen for vascular plants (Wagner et al. 2000). Both 

these studies however did not investigate whether this turnover was higher than 

expected and therefore significant. However, a study conducted in the eastern 

deciduous forest of the USA, found species richness turnover of arboreal beetles 

between ecoregions was significantly higher than expected and hence factors such as 

soil type and land-use management were primary in structuring the beetles richness 

and composition (Gering et al. 2003). In our study, the highest, albeit non-significant, 

species richness turnover occurred between localities in a region. The non-significant 

results may have been due to the small sample size at this level (n = 5). Typically 

broad scale heterogeneity of environmental variables would be important in 

structuring ant assemblages at this level. These variables would also be important for 

turnover between reserve/farms in the region, which was higher than expected. 

Environmental variables differed significantly between reserves/farms in the region as 

well as localities and played a significant role in structuring ant assemblages (see 

following section). The other levels that were significantly larger than expected were 

between patches/remnants and between reserves and farms in a locality. Higher 

species richness turnover between patches/remnants in a site is most probably due to 

smaller scale variations in environmental variables, while turnover between reserves 

and farms is likely to be influenced by land-use management and intensity of 

disturbances (but see following section).  

The levels which were most important for generating compositional diversity 

differed to those generating species richness, with the exception of the between 

reserve/farms within the region level. The contrasting results of high species richness 

turnover and low compositional turnover between patches/remnants could be obtained 

by a high variability in species richness between patches/remnants in a site as well as 

a high number of shared species between patches/remnants. Thus some 

patches/remnants may contain only a subset of species that occur in patches/remnants 

with a higher species richness. This may arise from having a large suite of generalist 

species which occur throughout the reserve/farm resulting in a low compositional 

turnover, while one or two individual patches/remnants had a large suite of additional 

species present, resulting in a high species richness turnover between 

patches/remnants. These results indicate that not all remnants are equally valuable for 
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conservation purposes, as some may contain only subsets of species that occur in 

other remnants on the farm. Contrasting results of compositional and species richness 

were also found between reserve and remnants in a locality, with significantly high 

species richness turnover but not significantly higher compositional turnover. This 

may be due to similar reasons as mentioned above, with many generalist species 

occurring in reserves and remnants, but with some additional species occurring on 

either the reserve or remnant. These contrasting results of species richness and 

compositional turnover for certain levels emphasize the importance of using more 

than one type of beta diversity measure, as was emphasized by Koleff et al. (Koleff et 

al. 2003). Turnover between reserves/farms in the region was however high for both 

compositional and species richness turnover. Thus this level is essential for generating 

ant diversity and mirrors the well-known geological and faunal heterogeneity within 

the CFR (Cowling 1990). 

Finally, human-impacts, especially agricultural intensification, has been found 

to reduce beta diversity, by reducing heterogeneity of the natural landscape (Benton et 

al. 2003). However neither species richness nor compositional turnover had a 

significantly lower beta diversity for remnants than for reserves at any level in our 

study. This suggests that for ants remnants in general are no less heterogeneous than 

the larger reserve areas in the CFR.    

 

Mechanisms underlying ant assemblages including environmental correlates and 

invasive species 

Environmental variables 

Many studies have emphasized the effects of changes in vegetation complexity, 

soil structure and temperature on ant assemblages (Andersen 1986, Lobry DeBruyn 

1993, Cerdá et al. 1998, Andrew et al. 2000, Armbrecht et al. 2005, Botes et al. 

2006).  Therefore it is not surprising that soil, vegetation and climate variables in this 

study significantly explained variation in ant assemblage composition, species 

richness and abundance.  

Soil variables have both direct and indirect effects on ants. Direct effects 

include the influence of soil texture on ant nest building, while indirect effects occur 

via the vegetation (Johnson 1992a, Lobry DeBruyn 1993). Ant species differ in their 

soil preference and are known to nest in soils ranging from hard clay to pure sand 

(Kaspari 2000). In this study soil variables were important in explaining ant species 
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richness variation and assemblage composition. The silt component was significant in 

separating ant assemblages, a result also found in a study conducted in the mountain 

fynbos of the CFR, about 130 km north this study (Botes et al. 2006). This may be a 

reflection of differences in soil texture preference for nesting in ant species (Kaspari 

2000). The mountain fynbos study found ant species richness to be negatively related 

to phosphorous concentration and positively to pH and that carbon content, clay and 

silt components and pH were significant in separating ant assemblages (Botes et al. 

2006). Although the present study did not identify these specific soil variables, a 

general trend of increasing nutrients (amongst them P) and pH was also related to a 

decrease in ant species richness. The exact reason for declining species richness with 

increasing soil nutrients is unclear, but is probably related to the relationship between 

vegetation and soil variables.  

Vegetation variables are known to play a large role in shaping ant assemblages, 

not only by altering food availability and resources, but also by changing 

microclimatic conditions for ants (Bestelmeyer & Wiens 1996, Samways et al. 1996, 

Beattie & Hughes 2002). Vegetation variables explained a significant portion of the 

variation in ant abundance and were significant in separating ant assemblage structure 

in this study. In the mountain fynbos study, % vegetation cover and vegetation age 

since last fire, were important in structuring ant assemblages, while % bare ground 

was significant in explaining species richness (Botes et al. 2006). Further, % litter, % 

vegetation cover, vegetation density and vegetation age since last fire were significant 

in explaining ant abundance variations (Botes et al. 2006). Similar vegetation 

variables were found to be important in this study. However the measures used in this 

study were separated into individual constituents, for example % vegetation cover was 

separated into % grass, % herbaceous component and % woody. Litter was one of the 

vegetation variables that contributed significantly to explaining ant abundance in this 

study. Several studies have shown a negative relationship between ant abundance and 

litter cover (Bestelmeyer & Wiens 1996, York 2000), as was observed in this study. 

Since litter reduces the efficiency of epigaeic ants in finding, retrieving and 

safeguarding resources (Andersen 2000), abundance is expected to decline. An 

increase in litter may also reduce the trapping efficiency of ants using pitfall traps and 

hence may have reduced trapped ant abundances (Bestelmeyer et al. 2000, York 

2000). This may explain the significant negative relationship of ant abundance with 

litter. However the mountain fynbos study showed the opposite trend (Botes et al. 
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2006). Reasons for this are not clear. Not only litter, but also vegetation density was 

important in structuring ant assemblages, with ant abundance being negatively related 

to vegetation density above 0.5 m. A possible reason is that an increase in foliage 

density above 0.5 m could increase the shade in the grid, thereby reducing ground 

temperatures and so reduce forager abundances (Retana & Cerdá 2000, Lassau & 

Hochuli 2004).  

Ants are a known thermophilic taxon (Hölldobler & Wilson 1990), increasing 

with increasing temperature, although most are not able to withstand extreme hot and 

dry conditions (Kaspari 2000). Low temperatures are thought to be primary in 

structuring ant assemblages globally (Andersen 2000) and were also important in 

structuring ant assemblages across an altitudinal gradient in the CFR (Botes et al. 

2006). In this study, overall species richness and abundance variation was not 

significantly explained by weather variables, including temperature. However ant 

assemblages were structured by mean ground temperature and in two localities 

weather variables were significant explanatory variables for species richness and/or 

abundance.  

Environmental explanatory variables differed within localities, but played an 

important role in explaining variation between localities in differences between 

reserve and remnant ant assemblages. For example, ant assemblages (species richness 

and assemblage structure) differed significantly between reserve and remnant pairs for 

Grabouw and Stellenbosch localities. These localities however also had significant 

differences in soil variables (both localities) and vegetation variables (Stellenbosch 

only), which were significant in explaining the variation in ant species richness and 

/or abundance and in separating ant assemblages in the two localities. In contrast, in 

localities for which ant assemblages of reserve and remnant pairs were similar, 

Somerset West and Malmesbury, there were no significant differences in 

environmental variables and no individual environmental variables significantly 

explained variations in ant species richness and abundance. Whether the significant 

differences in environmental variables between reserve and remnant in some localities 

are due to natural heterogeneity in the landscape or rather as an effect of disturbances 

on the remnants is not entirely clear. Disturbances are known to alter soil, vegetation 

and microhabitat variables (Saunders et al. 1991), however as mentioned earlier, the 

CFR is also a highly heterogeneous environment (Goldblatt & Manning 2002) and the 

greater distance between reserve and remnants in the Stellenbosch and Grabouw 
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localities, compared to the other locality pairs, may also have contribute to 

significantly different environmental factors. 

This study supports the general findings of the importance of environmental 

variables in structuring ant assemblages. The large significance of soil variables, 

especially soil nutrients, and smaller roles of vegetation and temperature were 

particularly clear. 

 

Invasive species 

The Argentine ant, a globally important invasive species, has invaded most of 

the world’s Mediterranean ecosystems, among them the CFR (Suarez et al. 1998, 

Addison & Samways 2000, Walters 2006). In this study, the Argentine ant was 

present in the southern localities, but absent from the northern localities (Malmesbury 

and Elandskloofberge). The species is known to prefer moister, cooler areas (15 -19 

°C) (Witt & Giliomee 1999, Holway 2005, Thomas & Holway 2005). Since 

Malmesbury and Elandskloofberge have a lower rainfall and warmer temperatures 

(Malmesbury locality had significantly higher temperatures compared to the other 

localities) this may limit the distribution ability of the Argentine ant in these regions 

(Addison & Samways 2000, Menke & Holway 2006).  

The Argentine ant is globally notorious for displacing native ant species 

(Holway 1998, Suarez et al. 1998, Christian 2001). In this study, sites were clearly 

separated on the basis of the presence or absence of the Argentine ant and species 

richness was significantly lower where the species occurred compared to sites where 

it was absent. Tetramorium quadrispinosum is known to be able to co-occur with the 

Argentine ant, while Anoplolepis custodiens is thought to be negatively affected by 

the presence of the Argentine ant (Witt & Giliomee 1999, Addison & Samways 

2000). In this study, A. custodiens was found only in sites where the Argentine ant 

was absent, possibly indicating that there is competitive exclusion by the Argentine 

ant, while T. quadrispinosum occurred in every site (both with Argentine ant absent 

and present), indicating its tolerance to the presence of the Argentine ant.  

A study conducted in southern California, found that the Argentine ant had 

invaded fragments completely, while only the edges of larger unfragmented areas 

were invaded (Suarez et al. 1998). Based on the Californian study, reserves could be 

expected to be largely uninvaded, while remnants are severely invaded. In this study, 

occupancy of the Argentine ant was higher in remnants than reserves in all localities 
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were it was found. Also, the Argentine ant was a characteristic species of remnant 

sites, indicating that indeed remnants in the CFR are likely to be more susceptible to 

the invasion of this species. 

The presence or absence of the Argentine ant may also explain the differences 

or lack of differences observed between reserve and remnants of individual localities, 

as mentioned previously. The Grabouw locality had a higher abundance and 

occupancy of the Argentine ant in remnants than reserves, which may explain the 

significantly lower species richness in reserves to remnants and also the significant 

differences in assemblage structure between reserve and remnant. In contrast the 

Somerset West locality had an equally high relative abundance of the Argentine ant in 

reserves and remnants and hence no significant difference is observed between ant 

species richness and assemblage structure. Thus the Argentine ant has a distinct 

negative impact on ant assemblages of the CFR and reduces the ability of remnants to 

conserve ant species diversity. 

 

Conclusion  

Overall ant assemblages were similar for reserve and remnants, in terms of 

species richness, assemblage structure and beta diversity and thus remnants can be 

considered to contribute highly to the conservation of ant assemblages in the CFR 

lowlands. This is encouraging for conservation strategies in this biodiversity hotspot, 

especially since studies of other taxa in the CFR have shown similar results. Even 

small remnants (< 1 ha or ± 4 ha) were shown to be able to support vegetation that is 

very similar to that of larger remnants (> 30 ha), provided fire regimes are maintained 

in the smaller remnants (Bond et al. 1988, Cowling & Bond 1991, Kemper et al. 

1999). A study of insect pollinators on fragments of renosterveld between agricultural 

fields in the CFR lowlands, showed no significant differences in species richness 

between fragments of > 30 ha, 3 -10 ha  and 0.5 - 2 ha (Donaldson et al. 2003). Ants 

are important seed dispersers in the CFR and therefore their persistence in human-

influenced areas also has important implications for plant genera such as 

Leucospermum, Leucodendron and Mimetes, and their long-term survival (Beattie & 

Hughes 2002).  

However, individual localities show that the potential that these remnants have 

to conserve biodiversity is diminished considerably by increasing levels of 

disturbance, such as invasion by the Argentine ant and increasing soil nutrients by 
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fertilization. Although the negative effects of the Argentine ant on native ant 

assemblages are known from other regions, the mechanism by which increased soil 

nutrients affects ant assemblages is not clear. This implies that careful management of 

remnants is important in order to realize the potential of these areas for conservation. 

Additionally, the beta diversity results suggest that not all remnants on a farm have 

equal value for conservation. Thus care should be taken in selecting remnants for 

conservation attention. 

There are however two possible reasons for small differences found between 

reserves and remnants. The first is that remnants are in fact able to conserve ant 

assemblages. Alternatively the reserves, themselves only larger remnants, may have 

already lost many specialist species and only generalist species remain (Samways 

1990, Tscharntke et al. 2002, Woinarski et al. 2002, Major et al. 2003). Although for 

example the Hottentotsholland and Stellenbosch reserves are large including 

mountain ranges, others like the reserve of the Somerset West locality is relatively 

small and surrounded by urban development and the reserve of the Malmesbury 

locality is surrounded by alien vegetation. Comparing current species list with 

historical ones is difficult, as there are only very few historical records of ant species 

in the CFR and identification to morphospecies only, does not allow for accurate 

comparisons. The only study which sampled in an area similar to one of the sites 

sampled here, used Dietrick’s Vacuum sampling and sampled throughout the year 

(Schlettwein & Giliomee 1987), which makes a once off comparison difficult. 

Reserve sites did however appear to be dominated by species that were also able to 

persist in remnants and disturbed areas, indicating that perhaps specialist species have 

already been lost (Gaston et al. 2001, Rodrigues & Gaston 2001, Deguise & Kerr 

2006). Nonetheless, although it is not possible to say with certainty whether sensitive 

species have already been lost, this study does indicate that remnants currently 

contribute highly to the conservation of ant assemblages that are present in reserves 

today.  

In conclusion, overall ant assemblages of the CFR lowlands were similar 

between reserves and remnants. Ant assemblages showed greater differences between 

localities than between reserve and remnants, with soil variables, such as 

concentration of nutrients as well as amount of litter being primary in structuring ant 

assemblages. Also, diversity of ant assemblages was mainly generated between sites 

in the region, rather than between reserves and remnants in a locality. The relatively 
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high heterogeneity of ants found in this study emphasizes the conservation 

significance of invertebrates along with that of plants in the CFR. Although some 

remnants clearly show the potential to conserve ant assemblages, these areas need to 

be managed correctly so as to maximize the potential. Disturbances such as the 

presence of the invasive Argentine ant and increasing soil nutrients by fertilizing, 

pose a distinct threat to the ability of remnants to conserve ant assemblages. Although 

it is not clear whether remnants are able to support ant assemblages that were once 

present of the broader CFR, this study showed that some remnants of natural habitat 

in human-influenced areas currently support ant assemblages representative of those 

in the CFR today. Therefore currently some remnants do contribute highly to the 

conservation of a functionally important taxon in this global biodiversity hotspot and 

if remnants can be managed correctly, may continue to do so in the future.  
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Table 1 Species richness estimates ± standard deviation of estimators (Jack 2, Jack 1, 
ICE and Chao2), as calculated by Estimate S (with replacement), across the various 
hierarchical levels. Different letters for paired sites indicate significant differences at 
the 0.05 level.  
 

Hierarchical 

level S(obs) Jack 2 Jack1 ICE Chao2 

      

Region 83 84.59 ±9.34 86.15 ± 4.38 83.31 ± 4.96 83.16 ± 2.67 

Reserve  69 71.82 ± 9.91 a 72.7 ± 4.84 70.38 ±  5.1 69.98± 2.91 

Remnants  66 66.11 ± 9.38 a 69.36 ± 4.12 67.65 ± 4.57 66.46 ± 2.21 

Localities      

Elandskloofberge 

(EB) 42 43.99 ± 8.56 44.85 ± 3.96 44.23 ± 5.15 43.8 ± 3.04 

Malmesbury 

(MB) 38 39.64 ± 6.5 40.1 ± 3.22 39.21 ± 3.75 38.7 ± 2.45 

Grabouw  

(GW) 43 45.52 ±10.06 46.31 ± 4.49 45.7 ± 6.24 45.88 ± 3.71 

Stellenbosch 

(STB) 49 51.56 ± 8.9 52.51 ± 4.19 51.25 ± 4.91 50.88 ± 3.16 

Somerset West 

(SW) 24 24.98 ± 4.71 25.09 ± 1.97 24.39 ± 2.57 24.68 ± 2.04 

Sites      

EB reserve 26 28.15 ± 8.12 a 27.91 ± 3.76 29.36 ± 11.14 30.71 ± 5.03 

EB remnant  36 38.19 ± 7.52 b 38.52 ± 3.56 38.06 ± 5.13 39.83 ± 4.09 

MB reserve 30 31.93 ± 6.88 a 31.67 ± 3.26 31.28 ± 4.76 32.61 ± 3.89 

MB remnant 29 31.43 ± 8.18 a 30.99 ± 3.91 31.86 ± 7.49 33.73 ± 5.03 

GW reserve 34 35.26 ± 7.27 a 36.01 ± 2.82 35.54 ± 4.57 37.13 ± 3.5 

GW remnant 21 22.38 ± 7.1  b 22.7 ± 2.49 23.67 ± 6.73 24.25 ± 3.57 

STB reserve 34 35.81 ± 7.55 a 36.25 ± 3.46 35.89 ± 5.37 38.19 ± 4.4 

STB remnant 25 26.61 ± 5.64 b 26.79 ± 2.32 26.6 ± 3.90 27.32 ± 3.04 

SW reserve 22 23.1 ± 5.73 a 23.23 ± 2.15 23.21 ± 4.01 24.07 ± 2.87 

SW remnant 18 18.71 ± 3.83 a 18.67 ± 1.74 18.29 ± 2.68 18.23 ± 1.77 
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Table 2 Shared species richness, observed, % observed of total and estimates (using 
SPADE) for paired reserve and remnant sites in five localities across the Western 
Cape Province. 
 
Locality % Shared 

(observed) 
Observed 
shared 

Estimated 
shared 

Elandskloofberge 47.62 20 26.53 
Malmesbury 55.3 21 21.66 
Grabouw 27.91 12 12.00 
Stellenbosch 20.41 10 10.67 
Somerset West 66.67 16 23.02 

 

 

 

 

 

 

 

 

Table 3 Number of species shared between five localities across the Western Cape 
Province, showing observed (lower left) (% of total given in brackets) and estimated 
(upper right) (using SPADE (Chao & Shen (2003-2005))) values. 
  
 Elandskloof- 

berge 
Malmesbury Grabouw Stellenbosch Somerset 

West 
Elandskloofberge  23.65 27.64 29.18 23.65 
Malmesbury 20 (33.33)  25.43 25.50 6.00 
Grabouw 24 (39.34) 19 (30.65)  31.91 23.13 
Stellenbosch 27 (42.19) 22 (33.85) 30 (48.39)  19.58 
Somerset West 20 (24.53) 6 (10.71) 21 (45.65) 19 (35.19)  
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Table 4 Significant Indicator Values for pooled reserves and pooled remnants, 
localities and sites. Species for each site and locality are in descending order of 
Indicator Values. Only Indicator Values above 50% are shown. 
 
Hierarchical Level Species % IndVal 

Regional   
Remnant sites combined Linepithema humile 54.83 
Reserve sites combined none  

LOCALITIES   
Elandskloofberge locality Messor capensis 79.15* 
 Pheidole sp.2 70.99* 
 Crematogaster sp.1 64.44 
 Anoplolepis steingroeveri 58.80 
 Tetramorium sp.1 50.00 
Malmesbury locality Camponotus angustice 90.00* 
 Ocymyrmex sp. 2 63.74 
 Camponotus niveosetosus 60.00 
 Lepisiota sp. 2 55.81 
Grabouw locality Tetramorium sp. 9 64.51 
 Linepithema humile 50.19 
Stellenbosch locality none  
Somerset West locality Tetramorium sp. 3 61.63 
 Tetramorium sp.12 53.33 

SITES   
Elandskloofberge remnant site Messor sp.1 80.00* 
 Messor capensis 77.69* 
 Tetramorium sp.1 54.63 
 Pheidole sp.2 54.58 
Malmesbury reserve site Monomorium sp.1 75.86* 
 Monomorium sp.3 60.00 
 Anoplolepis custodiens 59.09 
Malmesbury remnant site Camponotus angustice 59.62 
 Ocymyrmex sp.2 51.77 
Grabouw remnant site Linepithema humile 83.29* 
 Tetramorium sp.9 52.10 
Stellenbosch reserve site Tapinoma sp.2 60.00 
 Camponotus sp.11 58.18 
 Solenopsis sp.2 55.47 
Stellenbosch remnant site Meranoplus peringueyi 66.27 
 Tapinoma sp.3 60.00 

 
*Indicator Values above 70 % (subjective benchmark for indicator species (van 
Rensburg et al. 1999, McGeoch et al. 2002). 
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Table 5 Generalized Linear Model (Poisson error distribution, log-link function, Type 
III results) results for relationship between species richness and abundance of ant 
assemblages with environmental variables (PCA axes). Abundance models were 
corrected for over dispersion. Estimates are given in brackets and significant axes are 
bold. Two separate models were run for grids one with environmental variables and 
the other with sites as a categorical factor. 
 

Model 
Hierarchical 
level 

d.f. Dev 
Selected 
environmental 
terms 

χ
2 p 

% 
deviance 
explained 

 Species richness      
        
1 Sites  

(pooled grids) 
6 3.24 climAX1 (-0.11) 

soil AX1*(-0.24) 
veg AX1 (0.01) 

9.22 0.03 74.0 

        
2 Grids 46 59.96 climAX1 (-0.04) 

soilAX1* (0.11) 
vegAX1 (0.01) 

10.87 0.012 15.3 

        
3 Grids 40 40.79 sites**    42.4 
        
 Localities       
        
4 Elandskloof-

berge 
6 13.00 climAX1*(0.37) 

soil AX1** 
(0.26) 
veg AX1 (-0.22) 

8.48 
 

0.04 40.0 

        
5 Malmesbury 6 4.42 climAX1 (0.09) 

soil AX1 (0.10) 
veg AX1 (-0.01) 

2.10 0.55  

        
6 Grabouw 6 2.05 climAX1 (-0.08) 

soilAX1* (0.29) 
vegAX1*(0.27) 

18.84 <0.001 90.2 

        
7 Stellenbosch 5 2.16 climAX1 (-0.03) 

soilAX1 (-0.12) 
vegAX1 (-0.12) 

1.70 0.64  

        
8 Somerset 

West 
6 2.39 climAX1 (-0.29) 

soilAX1 (-0.20) 
vegAX1 (0.14) 

3.91 0.27  

        
 Abundance       
        
9 Sites 

(pooled grids) 
6 2949.59 climAX1 (-0.14) 

soil AX1 (0.03) 
veg AX1* (-0.71) 

5378.26 <0.001 64.58 
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Model 
Hierarchical 
level 

d.f. Dev 
Selected 
environmental 
terms 

χ
2 p 

% 
deviance 
explained 

        
10 Grids 45 15001.3 clim AX1(0.22) 

soil AX1 (0.10) 
veg AX1* (-0.58) 

4454.14 <0.001 20.00 

        
11 Grids 40 12137.1 sites**   41.2 
        
 Localities       
        
12 Elandskloof-

berge 
6 5139.1 climAX1*(-1.95) 

soil AX1 (-0.63) 
veg AX1 (1.13) 

6798.18 <0.001 60.0 

        
13 Malmesbury 6 88.7 climAX1 (-0.12) 

soil AX1 (-0.17) 
veg AX1 (0.05) 

77.19 <0.001 46.5 

        
14 Grabouw 6 97.1 climAX1*(-0.29) 

soilAX1**(-0.49) 
vegAX1** (-0.31) 

169.1 <0.001 91.1 

        
15 Stellenbosch 5 74.58 climAX1 (0.15) 

soilAX1 (0.02) 
soilAX2** (0.45) 
vegAX1 (-0.19) 

228.74 <0.001 75.41 

        
16 Somerset 

West 
6 93.6 climAX1 (-0.23) 

soilAX1 (0.18) 
vegAX1 (-0.35) 

177.76 <0.001 65.50 

 
* P < 0.05, ** P < 0.01 
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Figure 1 Map of study sites in the Western Cape, South Africa. Shaded areas indicate 
localities, open triangles indicate remnant sites and filled triangles represent reserve 
sites. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 131 

 

Figure 2 A Pitfall cross array used in all grids except for those in Elandskloofberge 
sites, where a (2 x 5) grid was used B. 
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Figure 3 Sample-based rarefaction curves A of species and samples and B species 
and individuals using EstimateS calculated Sobs (Mao Tao), sampling without 
replacement, for the region, localities, and the corresponding paired reserve and 
remnant sites.  
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Figure 4A Rank abundance and B rank occupancy distribution of ants for the overall 
region, and reserve-remnant pairs for each of the five localities. Open bars = nature 
reserve and filled bars = remnant sites. See Appendix 6 for ant species abbreviations. 
Species which had a relative abundance of less than 2 % and occupancy less than 5 % 
for the area were summed together in the last bar (< 2 % and < 5 % respectively). 

 

Stellenbosch University  http://scholar.sun.ac.za



 136 

A 

All Reserve Remnant
0

20

40

60

80

100
R

el
at

iv
e 

sp
ec

ie
s 

ric
hn

es
s

 SP
 SC
 OPP
 TCS
 HCS
 GM
 DD
 CS

 
B 

All Reserve Remnant
0

20

40

60

80

100

R
el

at
iv

e 
ab

un
da

nc
e

 SP
 SC
 OPP
 TCS
 HCS
 GM
 DD
 CS

 
 
Figure 5 Ant functional groups using A species richness data and B abundance data 
for all sites and for reserve and remnant sites separately. SP = Specialist Predators, SC 
= Subordinate Camponotini, OPP = Opportunists, TCS = Tropical Climate Specialist, 
HCS = Hot Climate Specialist, GM = Generalized Myrmicinae, DD = Dominant 
Dolichoderinae, CS = Cryptic Species. 
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Figure 6 Canonical Correspondence Analysis (CCA) biplots of A) ant species and 
sites, B) environmental variables (sites are for illustrative purposes) and C) same as 
B, except excluding Argentine ant for species matrix and adding it as an 
environmental variable. Only ant species (Appendix 6) which had more than 30 % of 
their variability explained by the ordination subspace were shown in Fig 6B. 
Significant environmental variables for B) are soil nutrients (T-value), % silt 
component, %  base saturation Mg, Exchangeable Mg cations (Mg conc.), % soil 
moisture, soil resistance, % woody plant cover, vegetation density (0.25 - 0.50 m), 
plant species richness (plant S) and mean ground temperature (mean temp). For C) 
same variables as for B) and Argentine ant presence/absence (A.ant). Locality names: 
EB = Elandskloofberge, MB = Malmesbury, GW = Grabouw, STB = Stellenbosch, 
SW = Somerset West. Reserve sites of localities are indicated in black and remnant 
sites in grey circles. 
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Figure 7 Additive partitioning of species richness. Percentage of total species 
richness explained by alpha and beta components of diversity at four sampling scales: 
within pitfalls (alpha 1), between pitfalls (beta1), between grids (beta 2), between 
sites (beta 3) and between localities (beta 4) for all data combined, reserves and 
remnants. Since there were reserve and remnant sites in each locality, no locality data 
is given. 
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Figure 8 Compositional turnover (ßsim) A) for reserve and remnants,  B) across three 
hierarchical levels, between pitfalls in grids, between grids within sites and between 
sites within the region  and C) across four hierarchical levels, between pitfalls in a 
grid, between grids in a site and between sites in a locality, between localities in the 
region. Note that scaling on the y-axis differs between graphs. 
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Appendix 1 Sampling sites and broad vegetation types (taken from the new vegetation map (Mucina & Rutherford 2004)) across the lowlands for the 
Cape Floristic Region.  Slope is graded 1 – flat, 2 - gradual, 3 - intermediate, 4 - steep, 5 - very steep.  
 

Locality Sites Plots 
GPS Coordinates 

Decimal degrees  
(WGS 84) 

Elevation Aspect Slope Broad vegetation type 

Elandskloofberge 
EB 

Reserve 
(Elandsberg)  

EBR 
1 33.43714 S, 19.03837 E 71 / 1 Swartland Alluvium Fynbos 

 
 2 

 
33.44709 S, 19.04528 E 

 
85 / 1 Swartland Alluvium Fynbos 

 
 3 

 
33.44606 S, 19.05520 E 

 
100 / 1 Swartland Shale Renosterveld 

 
 4 

 
33.44842 S 19.06482 E 

 
132 W 2 Swartland Alluvium Fynbos 

 
 5 

 
33.45431 S, 19.06647 E 

 
170 W 3 Swartland Alluvium Fynbos 

 Remnants  
EBF 

1 
 

33.44815 S, 19.02773 E 
 

103 / 1 Swartland Shale Renosterveld 

 
 2 

 
33.44345 S, 19.0294 E 

 
79 / 1 Swartland Alluvium Fynbos 

 
 3 

 
33.44214 S, 19.02223 E 

 
73 / 1 Swartland Shale Renosterveld 

 
 4 

 
33.45412 S, 19.01676 E 

 
84 E 2 Swartland Shale Renosterveld 

 
 5 

 
33.45640 S, 19.02723 E 

 
109 E 2 Swartland Shale Renosterveld 
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Locality Sites Plots 
GPS Coordinates 

Decimal degrees  
(WGS 84) 

Elevation Aspect Slope Broad vegetation type 

Malmesbury 
MB 

Reserve 
(Riverlands) 

 MBR 
1 33.49324 S, 18.58664 E 110 / 1 Atlantis Sand Fynbos 

 
 2 

 
33.49283 S, 18.58384 E 

 
112 / 1 Atlantis Sand Fynbos 

 
 3 33.49489 S, 18.58316 E 110 / 1 Atlantis Sand Fynbos 

 
 4 

 
33.49764 S, 18.58674 E 

 
108 / 1 Atlantis Sand Fynbos 

 
 5 

 
33.49426 S, 18.59241 E 

 
96 / 1 Atlantis Sand Fynbos 

 Remnants 
(Pella Nature Reserve) 

MBF  
1 33.52153 S, 18.55004 E 126 / 1 Atlantis Sand Fynbos 

 
 2 

 
33.51969 S, 18.54834 E 

 
150 / 1 Atlantis Sand Fynbos 

 
 3 

 
33.52008 S, 18.54624 E 

 
162 / 1 Atlantis Sand Fynbos 

 
 4 

 
33.52212 S, 18.54572 E 

 
168 SE 2 Atlantis Sand Fynbos 

 
 5 

 
33.52296 S, 18.54772 E 

 
 

160 / 1 Atlantis Sand Fynbos 
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Locality Sites Plots 
GPS Coordinates 

Decimal degrees  
(WGS 84) 

Elevation Aspect Slope Broad vegetation type 

Grabouw 
GW 

Reserve  
(Hottentots Holland) 

GWR 
1 33.96367 S, 19.16108 E 339 W 2 Kogelberg Sandstone Fynbos 

 
 2 

 
33.9674 S, 19.15308 E 

 
344 S 2 Kogelberg Sandstone Fynbos 

 
 3 

 
33.97699 S, 19.13786 E 

 
338 SE 2 Kogelberg Sandstone Fynbos 

 
 4 

 
33.98328 S, 19.12955 E 

 
353 / 1 Kogelberg Sandstone Fynbos 

 
 5 

 
33.9864 S, 19.13306 E 

 
335 / 1 Kogelberg Sandstone Fynbos 

 Remnants  
GWF 

1  
34.16872 S, 19.09512 E 359 SW 2 Elgin Shale Fynbos 

 
 2 34.17307 S, 19.09923 E 339 SW 4 Elgin Shale Fynbos 

 
 3 

 
34.17519 S, 19.09379 E 

 
318 NE 3 Elgin Shale Fynbos 

 
 4 

 
34.16449 S, 19.09379 E 

 
381 NE 3 Elgin Shale Fynbos 

 
 5 

 
34.1604 S, 19.10625 E 

 
376 SE 2 Elgin Shale Fynbos 
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Locality Sites Plots 
GPS Coordinates 

Decimal degrees  
(WGS 84) 

Elevation Aspect Slope Broad vegetation type 

Stellenbosch 
STB 

Reserve 
(Jonkershoek)  

STBR 
1 33.99158 S, 18.97195 E 382 SW 2 Boland Granite Fynbos 

 
 2 

 
33.99265 S, 18.97469 E 

 
387 N 2 Boland Granite Fynbos 

 
 3 

 
33.99151 S, 18.96856 E 

 
368 NE 4 Boland Granite Fynbos 

 
 4 

 
33.9906 S, 18.96525 E 

 
342 N 2 Boland Granite Fynbos 

 
 5 

 
33.98968 S, 18.97099 E 

 
366 SW 3 Boland Granite Fynbos 

 Remnants  
STBF 

1 
 

33.92157 S, 18.72264 E 
 

215 SW 4 Swartland Granite Renosterveld 

 
 2 

 
33.92367 S, 18.72826 E 

 
309 W 2 Boland Granite Renosterveld 

 
 3 

 
33.92423 S, 18.73129 E 

 
333 N 3 Boland Granite Renosterveld 

 
 4 

 
33.9189 S, 18.73094 E 

 
214 NW 3 Swartland Granite Renosterveld 

 
 5 33.92048 S, 18.72859 E 243 W 4 Swartland Granite Renosterveld 
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Locality Sites Plots 
GPS Coordinates 

Decimal degrees  
(WGS 84) 

Elevation Aspect Slope Broad vegetation type 

Somerset West 
SW 

Reserve 
(Helderberg) 

SWR 
1 34.06201 S, 18.87568E 163 SW 2 Lourensford Alluvium Fynbos 

 
 2 

 
34.05836 S, 18.87628 E 

 
188 SW 2 Lourensford Alluvium Fynbos 

 
 3 

 
34.05591 S, 18.87609 E 

 
210 SW 2 Lourensford Alluvium Fynbos 

 
 4 

 
34.05699 S, 18.86770 E 

 
230 SE 3 Cape Winelands Shale Fynbos 

 
 5 

 
34.05565 S, 18.86949 E 

 
232 E 3 Cape Winelands Shale Fynbos 

 Remnants 
SWF 

1 
 

34.03158 S, 18.84770 E 
 

285 SW 5 Cape Winelands Shale Fynbos 

 
 2 

 
34.03428 S, 18.84764 E 

 
280 NW 4 Cape Winelands Shale Fynbos 

 
 3 

 
34.03267 S, 18.85042 E 

 
280 NW 4 Cape Winelands Shale Fynbos 

 
 4 

 
34.03126 S, 18.85570 E 

 
310 SW 5 Cape Winelands Shale Fynbos 

 
 5 

 
34.03109 S, 18.84216 E 

 
260 NE 2 Swartland Granite Renosterveld 
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Appendix 2A Weather data for the 10 sites provided by AgroMet – ISCW Agricultural Research Council as well as the WRC, CSIR and WCNCB 

over the five day trapping periods at each site. 
 

Site Weather station 
Dates sampled 

 

Mean wind 

speed  (m/s) 

Total rain 

 (mm) 

Mean 

humidity  

(% relative 

humidity) 

Elandskloofberge Diemierskraal, Paarl  (-33.35S; 18.55E) 6-10 Oct 2.26 ± 0.71 36 (4 days) 72.95 ± 9.04 

Malmesbury Skaapkraal, Malmesbury (-33.53S; 18.633E) 29 Oct – 3 Nov not available 1.8 (1 day) 54.92 ± 4.47 

Grabouw Reserve LaMotte, Franschhoek (-33.88S; 19.072E) 28 Oct -2 Nov 2.08 ± 0.68 11.94 (1 day) 61.19 ± 8.68 

Grabouw Remnant Oak Valley, Grabouw  (-34.16S; 19.06E) 27 Oct – 1 Nov 2.82 ± 0.84 3.5 (1 day) 63.98 ± 5.34 

Stellenbosch Reserve Alto, Stellenbosch (-34.02S;18.55E) 15-20 Oct 2.67 ± 1.33 0.4 (2 days) 64.12 ± 13.43 

Stellenbosch Remnant Jacobsdal, Kuilsrivier (-33.97S; 18.73E) 14-19 Oct < 0.01 1.6 (2 days) 64.97 ± 9.55 

Somerset West Reserve  Vergelegen, Somerset West (-34.08S; 18.90E) 13-18 Oct 2.0 ± 0.85 2.6 (4 days) 66.6 ± 6.60 

Somerset West Remnant Fleurbaix, Stellenbosch (-33.95S; 18.83E) 13-18 Oct < 0.01 0 62.08 ± 3.64 
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Appendix 2B Mean (n = 5 days) daily ground surface temperatures for all 10 sites. Paired sites are given in the same colours, with reserve sites (solid 
lines) and remnant sites (dotted lines). See Appendix 1 for site abbreviations. 
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Appendix 2C Mean temperature (n = 5 days) for four time intervals, 6:00, 12:00, 18:00 and 24:00 for each of the 10 sites. The whiskers bearing the 
same letters indicate values that are not significantly different at the 5 % level. See Appendix 1 for site abbreviations. 
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Appendix 3A Soil variables (mean/median ± stdev/range) for 10 sites of five localities. Bold 
letters for each soil variables which do not have letters in common are significantly different 
across sites at p < 0.05. *  indicates significant differences between paired sites. 
 
Locality Site Mean Soil 

Resistance 
(Ohms) 

Mean H+ 
conc. 
(cmol/kg) 

Median  
% N 

Median  
% C 

Elandskloofberge Res 2462 ± 778 ab 1.2 ± 0.6 ab 0.04 ± 0.07 ab 1.35 ± 1.94 ab 
 Rem 1476 ± 700 ab 1.0 ± 0.5 ab 0.06 ± 0.05 ab 1.64 ± 1.16 ab 
Malmesbury Res 3120 ± 1345 ab 0.6 ± 0.1 b 0.02 ± 0.01 b 0.40 ± 0.11 b 
 Rem 3902 ± 466 ac 0.7 ± 0.1 cb 0.03 ± 0.01 bc 0.68 ± 0.37 b 
Grabouw Res 5596 ± 2005 ac* 1.8 ± 1.2 ab 0.03 ± 0.14 ab 1.21 ± 6.31 ab 
 Rem 848 ± 387 b*  1.3 ± 0.6 ab 0.13 ± 0.06 ac 2.78 ± 2.53 ab 
Stellenbosch Res 4366 ± 718 a 2.0 ± 0.3 ac 0.07 ± 0.02 ab 2.13 ± 0.73 ab 
 Rem 1594 ± 483 ab 1.3 ± 0.3 ab 0.12 ± 0.02 ac 2.68 ± 0.71 ab 
Somerset West Res 1804 ± 507 ab 2.9 ± 1.0 a 0.14 ± 0.07 ac 5.35 ± 1.98 a 
 Rem 1312 ± 247 bc 1.3  ± 0.5 ab 0.17 ± 0.09 a 4.4 ± 2.31 a 
      
  Exchangeable cations (mean) 
  Na K Ca Mg 
Elandskloofberge Res 0.06 ± 0.05 ab 0.12 ± 0.10 ab 1.07 ± 0.52 ab 0.52 ± 0.36 ab 
 Rem 0.21 ± 0.35 ab 0.16 ± 0.06 ab 1.41 ± 0.67 ab 0.70 ± 0.39 ab 
Malmesbury Res 0.06 ± 0.04 bc 0.04 ± 0.02 b 0.48 ± 0.06 b 0.16 ± 0.04 b 
 Rem 0.04 ± 0.01 bc 0.04 ± 0.01 b 0.71 ± 0.33 ab 0.16 ± 0.04 b 
Grabouw Res 0.02 ± 0.01 b* 0.04 ± 0.02 b*  0.61 ± 0.38bc* 0.21 ± 0.13 b*  
 Rem 0.72 ± 0.52 a* 0.46 ± 0.14 a* 4.79 ± 1.21 a* 2.39 ± 0.64 a* 
Stellenbosch Res 0.05 ± 0.01 ac 0.13 ± 0.04 b 0.59 ± 0.23 ab 0.25 ± 0.08 b 
 Rem 0.11 ± 0.03 ab 0.32 ± 0.06 ab 3.65 ± 0.38 ac 1.17 ± 0.15 ab  
Somerset West Res 0.17 ± 0.04 ac 0.30 ± 0.07 ab 2.27 ± 0.89 ab 1.26 ± 0.34 ab 
 Rem 0.18 ± 0.10 ac 0.51 ± 0.19 a 5.28 ± 1.31 a 2.66 ± 1.26 a 
  % Base saturation (median) 
  Na K Ca Mg 
Elandskloofberge Res 1.8 ± 1.0 ab  3.73 ± 2.4 ab 37.8 ± 11.0 ab 16.29 ± 4.7 ab 
 Rem 1.8 ± 21.8 ab 5.1 ± 2.9 ab 35.7 ± 30.0 ab 17.6 ± 16.7 ab 
Malmesbury Res 3.4 ± 6.5 a 3.1 ± 3.4 ab 36.0 ± 14.0 ab 11.62 ± 5.2 ab 
 Rem 2.4 ± 2.9 ab 2.3 ± 1.5 ab 39.2 ± 21.4 ab 9.27 ± 2.57 b 
Grabouw Res 1.0 ± 0.7 b*  1.7 ± 1.3 b 21.9 ± 14.6 bc 7.57 ± 2.92 b*  
 Rem 4.9 ± 13.8 a* 4.8 ± 3.8 ab 49.4 ± 22.0 ac 23.1± 11.0 a* 
Stellenbosch Res 1.7 ± 0.7 ab 3.9 ± 2.9 ab 16.5 ± 16.5 b*  7.7 ± 5.6 b 
 Rem 1.5 ± 0.9 ab 5.0 ± 1.6 a 54.9 ± 5.9 a*  18.7 ± 4.9 ab 
Somerset West Res 2.7 ± 1.9 ab 3.9 ± 3.4 ab 34.0 ± 26.9 ab 19.4 ± 9.3 ab 
 Rem 1.3 ± 3.0 ab 5.5 ± 3.5 a 49.9 ± 24.1 a 27.0 ± 16.8 a 
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Appendix 3B Median percentage sand, silt and clay across each of the 10 sites. Bars bearing 
the same letters are not significantly different at the 5% level (n=5). See Appendix 1 for site 
abbreviations 
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Appendix 3C Mean (± standard error) pH (KCl) across 10 sites (n = 5). Bars bearing the 
same letters are not significantly different at the 5% level. See Appendix 1 for site 
abbreviations. 
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Appendix 3D Median % soil moisture content across 10 sites (n = 5). See Appendix 1 for site 
abbreviations. Bars bearing the same letters are not significantly different at the 5% level  
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Appendix 3E Mean T-value (estimate of CEC-value) across ten sites (n = 5). Bars bearing the 
same letters are not significantly different at the 5% level. See Appendix 1 for site 
abbreviations. 
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Appendix 4A: Median (± range) % vegetation cover for each of the ten sites (n = 50). Bars 
bearing the same letters were not significantly different at the 5% level. See Appendix 1 for 
site abbreviations. 
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Appendix 4B Foliage Height Profiles (FHP) across the 10 sites (n = 50). Mean (± standard 
error) number of hits per height class (given in the legend) for paired sites. Letters were 
omitted when there were no significant differences at the 5% level between groups; otherwise 
different letters indicate significant differences between sites within a height class (p < 0.05). 
See Appendix 1 for site abbreviations. 
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Appendix 4C Mean (± SE) weight of litter samples (n = 150), including total, course and fine 
weights across 10 sites. Bars having no letters in common indicate significant differences 
between sites at the 5% level within the total, course and fine. See Appendix 1 for site 
abbreviations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stellenbosch University  http://scholar.sun.ac.za



 156 

-1.0 1.0

-0
.8

0.
8

total rain (5d)

No rain days

humidity

rainfall (2004)

mmax temp
abs  max

mean min

abs min temp range

iMMax temp

iMMin temp

iabsmax

iabsmin

iMean temp

itemp range

 
Appendix 5A PCA ordination plots of weather variables at site scale, number of days that 
rain fell during the 5 day sampling period (No rain days), total rainfall over the 5 day 
sampling period (total rain (5d)), total rainfall during 2004 (rainfall(2004)), mean relative 
humidity across 5 day sampling period (humidity), mean ambient temperatures in 2004: mean 
minimum (mean min), absolute min (abs min), mean maximum (mmax temp), absolute 
maximum (abs max), temperature range (temp range), ground temperatures: absolute 
minimum (iabsmin), mean minimum (iMMin temp), mean (iMean temp), mean maximum 
(iMMax temp), absolute maximum (iabs max) and temperature range (itemp range). 
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Appendix 5B PCA ordination plots of mean (n = 5 days) ground soil temperature variables, 
mean (mean temp), maximum (max temp), minimum (min temp) and range (temp range) 
using grid data. 
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Appendix 5C PCA ordination plots of vegetation variables, using grid data, % cover: % bare, 
% grass, % litter, herbaceous component (% herbs) and % woody. Foliage height profiles: 0 – 
0.25 m (0-25)…1.5 m and above (h150+), plant species richness (plant S), Alien plant species 
richness (Alien plant S). Litter: % course and % fine, total weight of fine litter (fine (sum)), 
total weight of course litter (course (sum)) and mean weight of litter (mean litter). 
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Appendix 5D PCA ordination plots of soil variables using grid data, soil moisture, soil 
resistance, H+ concentration, pH, % sand, % silt and % clay composition, Nutrients, carbon 
(C), nitrogen (N), Phosphorus (P), exchangeable cations (ExMg, ExCa, ExK, ExNa) and % 
base saturation (Mgbase, Cabase, Kbase, Nabase).  
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Appendix 5E: Eigenvector coefficients (loadings) of a standardized principal component 
analysis of original environmental variables across 10 sites. Percentage variances explained 
by each axis is given in bold.  
 
Site level Variables used  Axis 1 Axis 2 Axis 3 Axis 4 
Climate * % variance explained 

Total rain (5-day) 
No. of rain days 
Humidity (2004) 
Rainfall (2004) 
Mean max temp (2004) 
Abs max temp (2004) 
Mean min temp (2004) 
Abs min temp (2004) 
Range temp (2004) 
ground mean max temp (5- day) 
ground mean min temp (5- day) 
ground abs max temp (5- day) 
ground min max temp (5- day) 
ground mean temp (5- day) 
ground temp range (5- day) 

31.6 
-0.48 
-0.22 
-0.80 
0.32 
0.09 
0.29 
-0.25 
-0.24 
0.50 
0.92 
0.41 
0.85 
0.25 
0.92 
0.75 

22.3 
-0.45 
-0.45 
-0.07 
0.68 
0.47 
0.55 
0.28 
0.32 
0.30 
-0.32 
0.76 
-0.46 
0.71 
-0.09 
-0.60 

20 
-0.70 
-0.68 
-0.47 
-0.37 
-0.63 
-0.72 
-0.00 
0.04 
-0.75 
-0.05 
0.22 
-0.13 
0.31 
0.05 
-0.20 

14.1 
-0.21 
0.42 
0.26 
0.38 
-0.42 
-0.22 
-0.52 
-0.90 
0.20 
-0.16 
0.34 
0.03 
0.32 
-0.28 
-0.03 

      
Soil % variance explained 

Soil moisture 
pH 
Resistance 
H+ 
P 
Exchangeable Na 
Exchangeable K 
Exchangeable Ca 
Exchangeable Mg 
% N 
% C 
% base saturation (Na) 
% base saturation (K) 
% base saturation (Ca) 
% base saturation (Mg) 
T-value 
% Clay 
% Silt 
% Sand  

65.5 
0.82 
0.70 
-0.92 
0.31 
0.69 
0.79 
0.98 
0.95 
0.98 
0.93 
0.76 
0.38 
0.77 
0.60 
0.89 
0.96 
0.87 
0.91 
-0.78 

16.8 
0.44 
-0.60 
0.34 
0.92 
-0.09 
-0.23 
0.05 
-0.06 
-0.00 
0.31 
0.63 
-0.65 
-0.20 
-0.65 
-0.29 
0.22 
0.28 
0.16 
-0.06 

9.38 
0.03 
-0.21 
-0.05 
0.10 
-0.59 
0.53 
-0.13 
-0.19 
-0.11 
-0.16 
-0.16 
0.59 
-0.10 
-0.30 
-0.11 
-0.10 
0.28 
0.30 
-0.58 

3.28 
 0.10 
-0.19 
 0.04 
-0.17 
-0.01 
 0.15 
 0.03 
 0.17 
 0.13 
 0.05 
-0.01 
-0.12 
-0.59 
 0.22 
-0.01 
 0.08 
-0.20 
 0.04 
-0.13 

      
Vegetation % variance explained 

Plant species richness 
Alien plant species richness 
% bare ground  
% litter cover 
% grass cover 
% herb cover 
% woody cover 
FHP 0-25cm 

42.9 
 0.40 
 0.05 
-0.64 
0.66 
-0.32 
-0.22 
0.51 
-0.47 

21.7 
0.58 
-0.65 
0.10 
-0.02 
-0.59 
0.81 
0.18 
0.30 

17.6 
-0.58 
0.06 
-0.59 
-0.62 
0.50 
0.32 
-0.66 
0.79 

7.1 
0.28 
0.62 
-0.39 
-0.23 
-0.43 
0.30 
-0.14 
0.12 
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FHP 26-50cm 
FHP 51-75cm 
FHP 76-100cm 
FHP 101-125cm 
FHP 126-150cm 
FHP 151+ cm 
Mean litter 
Course litter (total) 
Fine litter (total) 
% course litter 
% fine litter 

0.35 
0.87 
0.82 
0.83 
0.65 
0.74 
0.94 
0.91 
0.87 
-0.65 
0.64 

0.91 
0.23 
-0.23 
-0.43 
-0.62 
-0.44 
-0.04 
-0.14 
0.26 
-0.42 
0.52 

 0.19 
-0.18 
-0.23 
 0.21 
 0.29 
 0.22 
 0.08 
 0.00 
 0.27 
-0.51 
 0.48 

0.06 
0.16 
0.18 
0.18 
0.16 
-0.31 
-0.05 
0.01 
-0.25 
0.20 
-0.19 

 
* Climate variables were taken either only for the period that sampling was conducted (5- 
day) or means from across the year (2004). 
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Appendix 5F: Eigenvector coefficients (loadings) of a standardized principal component 
analysis of original environmental variables across 50 grids belonging to 10 sites. 
Percentage variances explained by each axis is given in bold.  
      

Grid level Variables used Axis 1 Axis 2 Axis 3 Axis 4 
      

Climate % variance explained 
Max ground temperature (5 –day) 
Min ground temperature (5 –day) 
Mean ground temperature (5–day) 
Ground temperature range (5–day) 

70.6 
-0.99 
0.13 
-0.93 
-0.98 

26.8 
0.00 
-0.99 
-0.28 
0.14 

2.5 
-0.141 
-0.09 
0.25 
-0.14 

0.1 
0.04 
0.00 
-0.01 
-0.04 

      

Soil % variance explained 
Soil moisture 
pH 
Resistance 
H+ 
P 
Exchangeable Na 
Exchangeable K 
Exchangeable Ca 
Exchangeable Mg 
N 
C 
%base saturation (Na) 
%base saturation (K) 
%base saturation (Ca) 
%base saturation (Mg) 
T-value 
%Clay 
%Silt 
%Sand 

56.4 
-0.75 
-0.60 
0.81 
-0.31 
-0.63 
-0.64 
-0.94 
-0.93 
-0.96 
-0.88 
-0.75 
-0.28 
-0.64 
-0.49 
-0.85 
-0.95 
-0.77 
-0.85 
0.74 

15.3 
0.25 
-0.66 
0.34 
0.90 
-0.08 
-0.28 
0.04 
-0.09 
-0.01 
0.36 
0.59 
-0.51 
-0.18 
-0.62 
-0.32 
0.22 
0.23 
0.13 
-0.08 

11.5 
0.04 
-0.24 
-0.27 
0.14 
-0.56 
0.64 
-0.17 
-0.25 
-0.10 
-0.16 
-0.14 
0.75 
-0.18 
-0.42 
-0.09 
-0.09 
0.29 
0.23 
-0.49 

0.04 
0.24 
-0.13 
-0.02 
-0.11 
0.12 
0.18 
-0.12 
0.14 
0.11 
0.09 
0.02 
0.00 
-0.68 
0.14 
0.02 
0.09 
-0.28 
0.00 
0.03 

      

Vegetation % variance explained 
plant species richness 
alien plant species richness 
% bare ground  
% litter cover 
% grass cover 
% herb cover 
% woody cover 
FHP 0-25cm 
FHP 26-50cm 
FHP 51-75cm 
FHP 76-100cm 
FHP 101-125cm 
FHP 126-150cm 
FHP 151+ cm 
Mean litter 
Course litter (total) 
Fine litter (total) 
% course litter 
% fine litter 

31.8 
 0.08 
-0.26 
 0.49 
-0.07 
 0.11 
-0.19 
 0.18 
-0.50 
 0.20 
 0.74 
 0.67 
 0.76 
 0.73 
 0.74 
 0.89 
 0.88 
 0.76 
-0.53 
 0.53 

13.5 
0.35 
0.26 
0.04 
-0.28 
 0.08 
 0.20 
-0.08 
-0.40 
-0.29 
 0.21 
 0.48 
 0.47 
 0.44 
 0.10 
-0.17 
-0.02 
-0.53 
 0.64 
-0.75 

13.1 
-0.66 
 0.43 
-0.36 
 0.69 
 0.45 
-0.48 
-0.18 
 0.06 
-0.66 
-0.32 
 0.07 
 0.28 
 0.29 
 0.28 
 0.04 
 0.06 
-0.06 
-0.13 
-0.03 

8.6 
 0.37 
 0.20 
-0.23 
-0.05 
 0.61 
 0.43 
-0.79 
-0.02 
 0.06 
-0.06 
 0.02 
-0.01 
-0.16 
-0.12 
 0.22 
 0.22 
 0.22 
-0.01 
 0.16 
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Appendix 5G: Eigenvector coefficients (loadings) of a standardized principal component analysis of original environmental variables across 50 grids 
belonging to 10 sites. Cumulative percentage variances explained by each axis is given in bold. Climate data gives ground surface temperature across the 
five-day sampling period. 

 Elandskloofberge Malmesbury Grabouw Stellenbosch Somerset West 

 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 
CLIM *                     
Max 
temp  

 0.98 -0.14  0.12 -0.03 -0.97 0.16  0.16 -0.01 -0.98 -0.16  0.05  0.04 -0.98 -0.10 -0.15  0.01 -0.99 0.10 0.06 -0.04 

Min 
temp 

 0.60 -0.78  0.18  0.01 0.65 0.75  0.08  0.00 -0.34  0.94  0.05 -0.01  0.64 -0.76 -0.12 -0.00 0.44 0.90 0.05  0.00 

Mean 
temp 

 0.50 -0.85 -0.18  0.00 -0.90 0.34 -0.27  0.00 -0.98  0.16 -0.13  0.00 -0.86 -0.46  0.23 -0.00 -0.93 0.32 -0.16  0.00 

Temp 
range 

 0.99  0.09  0.07  0.03 -0.99 0.02  0.14  0.01 -0.94 -0.34  0.06 -0.04 -0.99 0.00 -0.14 -0.02 -0.99 -0.00 0.12  0.04 

% var  64.1 97.9 100 100 79.1 96.9 100 100 73.2 99.2 99.9 100 77.5 97.3 100 100 75.8 98.7 99.9 100 
SOIL                     
Soil 
moist 

 0.84  0.37 -0.33  0.31  0.78 -0.10  0.46  0.30 -0.77  0.19 -0.36  0.36 0.38 0.43 0.08  0.48 -0.00 -0.34 -0.83 -0.19 

pH  0.29  0.58 -0.87 -0.03 -0.08  0.74  0.02 -0.08 -0.92 -0.31  0.20 -0.08 0.88 0.32 -0.13 -0.13 -0.90  0.40 -0.03  0.06 
Resist. -0.58 -0.70  0.57 -0.58 -0.87 -0.46 -0.04 -0.06  0.94  0.10  0.24  0.17 -0.95 0.22 -0.03  0.16  0.52  0.53 -0.08 -0.38 
H+  0.32 -0.62  0.01  0.89 -0.48  0.69 -0.07  0.15  0.16  0.95 -0.19 -0.02 -0.81 -0.43 0.22  0.21  0.92 -0.31  0.08 -0.04 
P  0.45 -0.11 -0.39 -0.60 -0.63  0.50 -0.51 -0.07 -0.80  0.27  0.34 -0.20 0.94 -0.14 0.14  0.04 -0.83  0.16 -0.31 -0.16 
Exc. Na  0.32  0.67 -0.41 -0.48  0.77  0.55 -0.13  0.08 -0.82 -0.28 -0.42 -0.24 0.85 -0.39 0.12 -0.18  0.10 -0.79 -0.43  0.26 
Exc. K  0.92 -0.36  0.65 -0.34  0.63  0.74  0.08 -0.16 -0.94  0.04  0.10  0.22 0.97 0.03 -0.14 -0.14 -0.83 -0.36  0.32  0.24 
Exc. Ca  0.88 -0.21 -0.06  0.21 -0.51  0.38  0.72 -0.24 -0.98  0.06  0.15 -0.09 0.99 -0.00 -0.04  0.04 -0.93  0.07  0.03 -0.23 
Exc. Mg  0.93  0.28  0.25  0.36  0.31  0.63  0.63  0.03 -0.97  0.09  0.08  0.07 0.99 0.00 0.04 -0.03 -0.89 -0.37  0.22 -0.09 
N  0.86 -0.43  0.43  0.32 -0.60  0.53 -0.06  0.20 -0.79  0.59 -0.06  0.04 0.96 -0.03 -0.04  0.19 -0.54 -0.59 -0.20 -0.41 
C  0.61 -0.47 -0.15  0.18 -0.69  0.54 -0.14  0.26 -0.47  0.86  0.04 -0.07 0.72 -0.40 0.05 -0.06  0.40 -0.69  0.21 -0.36 
%base 
sat Na 

 0.21  0.89 -0.14 -0.24  0.80  0.36 -0.28   0.14 -0.85 -0.37 -0.36 -0.15 -0.07 -0.70 0.39 -0.51  0.57 -0.55 -0.39  0.36 

%base 
sat K 

 0.54 -0.52 -0.19 -0.27  0.80  0.44 -0.27 -0.08 -0.89 -0.19  0.07  0.35 0.47 0.47 -0.23 -0.42 -0.45 -0.22  0.32  0.74 

%base 
sat Ca 

 0.11 -0.25  0.22 -0.18 -0.59 -0.07  0.66 -0.27 -0.90 -0.24  0.27 -0.09 0.96 0.15 -0.06  0.03 -0.82  0.29 -0.06 -0.09 

%base 
sat  Mg 

 0.61  0.71  0.38 -0.15  0.89  0.06  0.21   0.20 -0.97 -0.03  0.07  0.11 0.97 0.20 0.10 -0.05 -0.85 -0.34  0.24  0.14 

* Climate data gives ground surface temperature across the five-day sampling period. 

Stellenbosch University  http://scholar.sun.ac.za



 

 Elandskloofberge Malmesbury Grabouw Stellenbosch Somerset West 

 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 AX1 AX2 AX3 AX4 
SOIL                     
%Clay  0.73 -0.35 -0.18 -0.23  0.59 -0.36  0.38 -0.29 -0.94 -0.24  0.04  0.09 0.58 -0.03 0.62  0.39  0.75 -0.04  0.55 -0.08 
%Silt  0.73  0.16 -0.43 0.05 -0.52  0.10  0.14  0.72 -0.98  0.12  0.00 -0.10 -0.01 -0.48 -0.87  0.07  0.12  0.48 -0.38  0.42 
%Sand -0.87  0.11 -0.41 -0.08 -0.08  0.43 -0.59 -0.52  0.97  0.12  0.04 -0.05 -0.52 0.55 0.31 -0.51 -0.84  0.17 -0.35  0.16 
% var 45.3 69.3 87.7 94.6 38.7 62.8 78.2 85.4 74.8 89 93.2 96.1 63.5 75 83.4 90.1 48.8 66.2 77.4 86.6 
VEG                     
Plant S  0.22 -0.84  0.34 -0.14 -0.54 -0.21 -0.11  0.34 -0.40  0.14 0.79 -0.24 -0.79 -0.10 -0.23 -0.48  0.03 -0.03 -0.36 0.74 
Alien 
plant S 

-0.55 0.75  0.04 -0.06 -0.48 -0.26  0.11  0.81 -0.51 -0.19 -0.76 -0.08 -0.72  0.56 -0.01 -0.21 -0.86  0.22  0.27 -0.03 

% bare 
ground 

 0.65 0.39  0.19 -0.59  0.19 -0.02 -0.91  0.12 -0.26 -0.76 -0.06  0.02  0.80 -0.25 -0.18 -0.09  0.72 0.42 -0.57 0.24 

% litter  -0.38 0.12 -0.59  0.53  0.96  0.11  0.09  0.03  0.77 -0.22 -0.32 -0.25  0.53  0.22 -0.51  0.20 -0.41  0.12  0.80  0.28 
% grass  -0.21 0.05  0.84  0.22 -0.34 -0.13 -0.54 -0.09 -0.25  0.70 -0.40 0.36 -0.67  0.25  0.62 -0.20 -0.57  0.28  0.70  0.24 
% herb    0.65 -0.23 -0.45 -0.52 -0.81  0.02  0.57  0.00 -0.58  0.46  0.46 -0.15  0.48 -0.64 -0.16  0.40 -0.10 -0.74 -0.45 -0.38 
% wood   0.5 -0.77 -0.49 -0.23  0.84 -0.29 -0.23 -0.02  0.79 -0.44 -0.26 -0.17  0.35 -0.19 -0.68 -0.40  0.88  0.00 -0.09  0.34 
FHP 1 - 0.07 0.35 -0.52  0.45  0.16 -0.26  0.79 -0.38  0.14  0.83  0.01 -0.28  0.34 -0.91  0.17 -0.07 -0.93 -0.07  0.06  0.12 
FHP 2   0.74 -0.31  0.27  0.14  0.59 -0.17  0.51  0.52  0.59 -0.24  0.58 -0.45  0.25 -0.87  0.01 -0.11  0.07 -0.96  0.03  0.02 
FHP 3   0.79 0.14  0.32  0.41  0.59 -0.35 -0.07  0.57  0.69 -0.42 -0.26 -0.45 -0.14 -0.19 -0.86 -0.11  0.95  0.20 -0.05  0.05 
FHP 4   0.75 0.24  0.23  0.52  0.70 -0.49  0.06  0.16  0.55  0.32 -0.60 -0.36 -0.52  0.30 -0.66 -0.11  0.57  0.73 -0.04  0.26 
FHP 5   0.85 0.33  0.29 -0.08  0.43 -0.86  0.14 -0.05  0.31  0.71 -0.44 -0.26 -0.92 -0.17  0.20 -0.22  0.72  0.68  0.15  0.03 
FHP 6   0.76 0.41 -0.12 -0.29  0.53 -0.60  0.15 -0.36  0.53  0.54 -0.14 -0.33 -0.26  0.33 -0.01  0.74  0.71  0.63  0.07 -0.15 
FHP 7   0.74 0.49 -0.13 -0.32  0.70 -0.31  0.46 -0.10            0.78  0.08  0.45 -0.09 
Mean 
litter 

  0.89 -0.01 -0.21  0.39  0.34  0.85  0.15 -0.03  0.88  0.22 0.26 0.31  0.54  0.83 -0.03 -0.07  0.92 -0.17  0.19 -0.20 

Course 
litter (T) 

  0.91 -0.07 -0.20  0.33 -0.15  0.75  0.54  0.14  0.85  0.26 0.28 0.32  0.34  0.91 -0.11 -0.01  0.91  0.03  0.12 -0.28 

Fine 
litter (T) 

  0.41 0.74 -0.16 -0.19  0.65  0.69  0.01  0.19  0.95  0.01 0.17 0.17  0.87  0.38  0.16 -0.18  0.73 -0.60  0.30  0.05 

%  
course 
litter 

  0.23 -0.76 -0.13  0.09 -0.67 -0.32  0.48  0.26 -0.57  0.19 0.47 -0.52 -0.88  0.00 -0.31  0.31 -0.54  0.68 -0.32 -0.36 

% fine 
litter 

-0.50 0.85 -0.09  0.04  0.68  0.51 -0.06  0.27  0.85 -0.18 0.41 -0.06  0.88  0.00  0.31 -0.31  0.54 -0.68  0.32  0.36 

% var 39.8 63.5 75.6 86.8 33.5 57.1 73.4 83.0 41.2 60.2 77.9 86.9 38.1 65.2 79.4 87.6 49.6 71.8 85.6 93.3 

Stellenbosch University  http://scholar.sun.ac.za



 163 

Appendix 6 Ant species occupancy across 5 localities’ (EB = Elandskloofberge, MB= Malmesbury, GW = Grabouw, STB= Stellenbosch and SW = 
Somerset West) sites (Res= reserve, Rem = Remnant), within the lowland Cape Floristic Region. Presence of species in site is indicated by X. CS = 
cryptic species, HCS= Hot climate specialist, TCS = Tropical Climate Specialists, DD = Dominant Dolichoderinae, SC= Subordinate Camponitini, SP 
= Specialized Predators, OPP = Opportunist and GM = Generalized Myrmicinae (Functional Group (FG)’s given by C.L. Parr) 
 

Species abrev EB MB GW STB SW 
# of sites 
present 

FG 
(biology) 

  Res Rem Res Rem Res Rem Res Rem Res Rem   

              

Aenictinae              

Aenictus rotundatus (Mayr) X Aen1       X    1 TCS 

Cerapachyinae              

Cerapachys sp.1 Cer1 X       X   2 SP 

Cerapachys sp.2 Cer2        X   1 SP 

Cerapachys sp. 3 Cer3         X  1 SP 

Dolichoderinae              

Tapinoma sp.1 Tap1   X X  X     3 OPP 

Tapinoma sp.2 Tap2       X    1 OPP 

Tapinoma sp.3 Tap3        X   1 OPP 

Technomyrmex albipes (F.Smith) ? * X Talb X X   X  X  X  5 OPP 

Technomyrmex sp.1 Tec1     X  X  X X 4 OPP 

Linepithema humile (Mayr) * ° X Lhum     X X  X X X 5 DD 

Dorylus helvolus (Linneaus) X Dor1     X  X    2 TCS 

Formicinae              
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Species abrev EB MB GW STB SW 
# of sites 
present 

FG 
(biology) 

  Res Rem Res Rem Res Rem Res Rem Res Rem   

Anoplolepis custodiens (F.Smith) X Acus   X    X    2 HCS 

Anoplolepis steingroeveri  (Forel) X Aste X X   X    X  4 HCS 

Anoplolepis sp.1 Ano1  X         1 HCS 

Camponotus sp.1 (emarginatus gp) Cam1 X X X X X  X    6 SC 

Camponotus sp.2 Cam2 X X         2 SC 

Camponotus vestitus (F. Smith) Cves  X     X    2 SC 

Camponotus mystaceus (Emery) Cam4 X X  X       3 SC 

Camponotus sp.5 Cam5   X X   X    3 SC 

Camponotus (maculates gp) Cmac   X X X X X    5 SC 

Camponotus angusticeps (Emery) Cang   X X       2 SC 

Camponotus niveosetosus (Forel) Cniv   X X X  X    4 SC 

Camponotus sp.11  Cam11       X  X X 3 SC 

Camponotus sp.12 Cam12  X         1 SC 

Camponotus sp.13 Cam13  X  X X      3 SC 

Camponotus sp.14 Cam14    X  X     2 SC 

Lepisiota sp.1 Lep1  X X X X      4 OPP 

Lepisiota sp.2 Lep2 X X X X X X X X   8 OPP 

Lepisiota sp.3 Lep3  X X X X  X    5 OPP 

Lepisiota sp.4 Lep4 X X X X       4 OPP 

Lepisiota sp.5 Lep5  X X X X      4 OPP 
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Species abrev EB MB GW STB SW 
# of sites 
present 

FG 
(biology) 

  Res Rem Res Rem Res Rem Res Rem Res Rem   

Lepisiota sp.6 Lep6   X        1 OPP 

Lepisiota sp.7 Lep6   X        1 OPP 

Lepisiota sp.8 Lep8    X       1 OPP 

Lepisiota sp.9 Lep9     X  X    2 OPP 

Plagiolepis sp.1 Pla1  X X  X X X X X X 8 CS 

Myrmicinae              

Cardiocondyla sp.1 Car1  X  X       2 OPP 

Crematogaster sp.1 Cre1 X X      X   3 GM 

Crematogaster sp.2 Cre2   X     X   2 GM 

Meranoplus peringueyi (Emery) Mper     X X  X X X 5 HCS 

Messor sp.1 Mes1  X         1 HCS 

Messor capensis (Mayr) X Mcap X X    X X    4 HCS 

Monomorium sp.1 Mon1 X  X   X X X   5 GM 

Monomorium sp.2 (monomorium gp) Mon2 X X   X X X X X X 8 GM 

Monomorium sp.3 (monomorium gp) Mon3   X        1 GM 

Monomorium sp.4 Mon4 X X X X    X   5 GM 

Monomorium sp.5 Mon5  X         1 GM 

Monomorium havilandi (Forel) X Mon6 X     X  X   3 GM 

Monomorium sp.7 Mon7     X    X  2 GM 

Monomorium sp.8 (salomonis gp) Mon8 X X X X X X X  X X 9 GM 
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Species abrev EB MB GW STB SW 
# of sites 
present 

FG 
(biology) 

  Res Rem Res Rem Res Rem Res Rem Res Rem   

Monomorium sp.10 (monomorium gp) Mon10       X    1 GM 

Monomorium sp.11 Mon11  X      X   2 GM 

Monomorium sp.12 Mon12   X     X   2 GM 

Monomorium sp.13 Mon13   X X   X    3 GM 

Monomorium sp.14 Mon14   X X       2 GM 

Monomorium sp.15 Mon15     X      1 GM 

Monomorium fridae (Forel) Mon16     X      1 GM 

Oligomyrmex sp.1 Oli1      X     1 CS 

Ocymyrmex sp.1  Ocy1 X X X     X   4 HCS 

Ocymyrmex sp.2 Ocy2 X X X X X  X X X X 9 HCS 

Pheidole sp.1 Phe1 X X X X X  X    6 GM 

Pheidole sp.2 Phe2 X X X X X  X    6 GM 

Rhoptromyrmex sp.1 Rho1 X    X  X   X 4 OPP 

Solenopsis sp.1 Sol1  X X X X   X X X 7 CS 

Solenopsis sp.2 Sol2 X   X   X    3 CS 

Tetramorium sp.1 Tet1 X X         2 HCS 

Tetramorium quadrispinosum (Emery)X Tqua X X X X X X X X X X 10 OPP 

Tetramorium frigidum (Arnold) X Tet3 X X   X X X X X X 8 OPP 

Tetramorium sp.5 (simillimum gp) Tet5  X    X X  X  4 OPP 

Tetramorium sp.7 (smillimum gp) Tet7 X X   X   X  X 5 OPP 
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Species abrev EB MB GW STB SW 
# of sites 
present 

FG 
(biology) 

  Res Rem Res Rem Res Rem Res Rem Res Rem   

Tetramorium sp.8 (?smillimum gp) Tet8    X X X X X X X 7 OPP 

Tetramorium sp.9 (smillimum gp) Tet9  X   X X X X X X 7 OPP 

Tetramorium erectum (Emery) X Tet10     X X X X X X 6 OPP 

Tetramorium sp.11 Tet11     X    X X 3 OPP 

Tetramorium sp.12 Tet12      X  X X X 4 OPP 

Tetramorium sp.13 (?smillimum gp) Tet13     X      1 OPP 

Tetramorium sp.14 Tet14         X  1 OPP 

Tetramorium sp.15 (?smillimum gp) Tet15       X    1 OPP 

Tetramorium sp.16 (?smillimum gp) Tet16   X X       2 OPP 

Ponerinae              

Anochetus levaillanti (Emery) Ano1  X         1 SP 

Hypoponera sp.1 Hyp1      X     1 CS 

Pachycondyla berthoudi (Forel) Pber X          1 SP 

Pachycondyla strigulosa (Emery) Pstr    X       1 SP 

Species Richness  26 36 30 29 34 25 34 23 22 18   

 
* = tramp species (Schultz & McGlynn 2000) 
° = known invasive species (Schultz & McGlynn 2000) 
X = known to forage in vineyards (Addison & Samways 2000) 
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Appendix 7 Diversity components calculated using additive partitioning of diversity (S) (γ = 
α + β) across the hierarchically scaled sampling design, and mean βsim (a multiplicative beta 
diversity index). 
 
Diversity component Mean S ± s.d. Mean βsim ± s.d. 

   

ALL   

Within pitfalls β1(n = 500) 4.19 ± 2.11 - 

Between pitfalls β2 (n = 500) 8.89 ± 2.11 0.388 ± 0.292 

Between grids β3 (n = 50) 14.42 ± 4.22 0.338 ± 0.160 

Between sites β4 (n = 10) within region 55.50 ± 6.11 0.500 ± 0.149 

   

Between sites within localities (n = 10) 11.7 ± 6.11 0.398 ± 0.148 

Between localities (n = 5) within region 43.8 ± 0.92 0.402 ± 0.172 

   

RESERVE   

Within pitfalls β1(n = 250) 4.21 ± 2.09 - 

Between pitfalls β2 (n = 250) 9.71 ± 2.09 0.381 ± 0.296 

Between grids β3 (n = 25) 15.28 ± 4.31 0.358 ± 0.177 

Between sites β4 (n = 5) within region 39.8 ± 5.22 0.505 ± 0.154 

   

   

REMNANTS   

Within pitfalls β1(n = 250) 4.17 ± 2.14 - 

Between pitfalls β2 (n = 250) 8.07 ± 2.14 0.396 ± 0.287 

Between grids β3 (n = 25) 13.56 ± 4.03 0.318 ± 0.139 

Between sites β4 (n = 5) within region 40.20 ± 7.05 0.520 ± 0.158 
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APPENDIX 8 Site photos of 10 sites across the lowland Cape Floristic Region 
 
Elandskloofberg Nature Reserve 
Grid 1           Grid 2 

    
 
Grid 3            Grid 4 

     
 

Grid 5 
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Elandskloofberge Remnants 
 
Grid 1             Grid 2 
 

    
 
Grid 3      Grid 4 

    
 

Grid 5 

 

Stellenbosch University  http://scholar.sun.ac.za



 171 

Malmesbury Nature Reserve 
 
Grid1      Grid 2 

     
 
Grid 3       Grid 4 

      
 

Grid 5 
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Malmesbury Remnants  
 
Grid 1                 Grid 2 

     
 
 
Grid 3       Grid 4 

     
 
 

Grid 5 
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Grabouw Nature Reserve 
 
Grid 1         Grid 2 

     
 
Grid 3      Grid 4 

      
 

Grid 5 
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Grabouw Remnants 
 
Grid 1                Grid 2 

        
 
 
Grid 3                Grid 4 

    
 
 

Grid 5 
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Stellenbosch Nature Reserve 
 
Grid 1             Grid2 

        
 
Grid 3        Grid 4 

                   
 

Grid 5 
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Stellenbosch Remnants 
 
Grid 1         Grid 2 

     
 
Grid 3           Grid4 

  
 

Grid 5 
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SomersetWest Nature Reserve 
 
Grid 1           Grid 2 

    
 
 
 
Grid 3            Grid 4 
 

    
 
 

Grid 5 
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Somerset West Remnants 
 
Grid 1                               Grid 2 

     
 
Grid 3          Grid 4 

   
 

Grid 5 
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CHAPTER 5  

CONCLUSION 

 

The conservation of biodiversity in natural and semi-natural remnants in human-

influenced areas is essential (Knight 1999, Norton 2000, Goodman 2003, Solomon et 

al. 2003, Dudley et al. 2005). Although this concept is well understood in theory, the 

practical aspects, such as the magnitude of the contribution of remnants in regional 

biodiversity conservation is frequently unknown. This study investigated the 

contribution that remnants in the Cape Floristic Region (CFR) lowlands make to the 

overall conservation of this global biodiversity hotspot, by using ants as a flagship 

taxon.  

Ants are a well studied taxon, particularly in Australia, where they have been 

used extensively in monitoring the environment (Andersen 1990, Bestelmeyer & 

Wiens 1996, Andersen 1997, Andersen et al. 2004, Andersen & Majer 2004). 

Although ants are not commonly used in environmental monitoring in South Africa, 

several studies have investigated the effects of  various disturbances on ants 

(Donnelly & Giliomee 1985, Koen & Breytenbach 1988, Majer & Kock 1992, 

Tshiguvho et al. 1999, French & Major 2001, Fabricius et al. 2003, van Hamburg et 

al. 2004, Netshilaphala et al. 2005). The ant species richness of the CFR was 

estimated at about 100 species (Giliomee 2003). However this is likely to be a 

considerable underestimate, as this study which focused only on ground-foraging ant 

assemblages in the low-lying areas and only covered a relatively small part of the 

region’s extent, already recorded 85 species. This study demonstrated that ants are an 

appropriate taxon to use as a flagship for epigaeic arthropod diversity in the CFR. 

They not only dominated the ground-dwelling fauna in the CFR (Chapter 2 & 3), but 

also reflected the seasonal fluctuations of the overall ground-dwelling arthropods 

(Chapter 3). Thus changes in ant assemblages have a broader relevance than to ants 

only, but reflect changes in ground-dwelling arthropods in general. Also, ants were 

found to be highly heterogeneous (Chapter 4), mirroring the well-known high 

heterogeneity of fauna and geology in the CFR (Cowling 1990). This highlights the 

conservation significance of ants and of arthropods in general in the CFR in addition 

to that of plants.  
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A key component of using ants as a flagship taxon is determining ways to 

maximize sampling efforts. Although many studies have focused on effective 

methods for sampling ants (Bestelmeyer et al. 2000, Lindsey & Skinner 2001, Parr & 

Chown 2001, James 2004), the aspect of whether to sample for longer or rather use 

more pitfall traps has not previously been looked at. This study found that increasing 

the spatial sampling intensity rather than increasing the sample duration maximized 

sampling efforts of ants in the CFR (Chapter 2). This adds a valuable aspect to the 

growing literature on effective ant sampling. Additionally this study found that 

sampling ants and ground-dwelling arthropods in general in the CFR was the most 

effective during summer (December) when ant species richness and abundance are 

highest (Chapter 3).  

Finally, using ants, the contribution of remnants in the CFR lowlands to the 

regional conservation was investigated (Chapter 4). Overall, ant assemblages were 

similar between reserves and remnants, indicating the importance of remnants in the 

conservation of the CFR lowlands. More importantly however, this study highlighted 

that this potential is not necessarily realized. Several factors pose a distinct threat to 

the capacity of remnants to conserve ant assemblages, among them disturbances such 

as the presence of the Argentine ant and increasing soil nutrients by fertilizing. 

Additionally, beta diversity results suggested that not all remnants are always equally 

valuable and care should be taken in selecting remnants for conservation attention 

(Chapter 4). Furthermore, the future contribution of remnants to conservation is 

threatened by the fact that for the most part remnants occur on privately owned or 

communal land, and therefore have no official protection.  

Although little successful progress has been made in managing or controlling 

the Argentine ant distribution since its introduction (Klotz et al. 2002, Soeprono & 

Rust 2004), great advances have been made for the formal protection of remnants in 

the CFR, by cooperative initiatives between nature conservation and the agricultural 

sector. A prime example is the Biodiversity and Wine Initiative (BWI) (Anonymous 

2006). This initiative is a partnership between wine producers of the CFR and the 

conservation sector, which allows wine producers to enlist as members or champions, 

and thereby committing to conserving critical ecosystems and adopting biodiversity 

enhancing farming practices. In return wine producers benefit by amongst others 

using their membership as a unique marketing advantage. In August 2006, 29 % of 

the area covered by vineyard in the CFR was conserved (Anonymous 2006). This 
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study adds to the BWI by suggesting that in order to maximize conservation efforts, 

many farms are needed across the region, rather than conserving many remnants in a 

few farms.  

This study highlighted the importance of remnants in ant assemblage 

conservation and gave some general guidelines, however more information will be 

needed before detailed management decisions can be made. Although ants in the CFR 

lowlands are known to occur in agricultural fields, such as vineyards (Addison & 

Samways 2000) and orchards (Witt & Samways 2004), the extent to which ants make 

use of and rely on various crops in between remnants is still unknown. This 

information will be needed to determine the effects of different land-use and 

agricultural practices on ant species foraging behaviour and their migration between 

remnants (Perfecto & Vandermeer 2002).  

Although overall remnants support ant assemblages similar to those of the 

reserves, it is not clear whether they are able to support ant assemblages that were 

once present in the broader CFR. Comparisons to previous records are mostly not 

possible and species lists of ants for nature reserves or the larger region are generally 

non-existent. This study generated species lists for the various localities in the CFR 

(Chapter 4), as well as taxa level abundances for a single locality (Chapter 3), which  

will be useful for future monitoring programs in the area.  

In conclusion, this study added valuable information to our knowledge of ant 

diversity patterns in the CFR lowlands, as an important basis both for sampling 

effectively and future monitoring. Further, the study showed that overall remnants 

support ant assemblages representative of those present in the CFR today. Therefore 

some remnants in human-influenced areas currently contribute highly to the 

conservation of this global biodiversity hotspot and if managed correctly, may 

continue to do so in the future. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 183 

REFERENCES  
 
ADDISON, P. & SAMWAYS, M. J. 2000. A survey of ants (Hymenoptera: Formicidae) that forage in 

vineyards in the Western Cape Province, South Africa. African Entomology 8: 251-260. 

ANDERSEN, A. N. 1990. The use of ant communities to evaluate change in Australian terrestrial 

ecosystems: a review and a recipe. Proceedings of the Ecological Society of Australia? 16: 

347-357. 

ANDERSEN, A. N. 1997. Using ants as bioindicators: multiscale issues in ant community ecology. 

Conservation Biology 1: 8, Available at: http://www.consecol.org/vol1/iss1/art8/. 

ANDERSEN, A. N., FISHER, A., HOFFMANN, B. D., READ, J. L. & RICHARDS, R. 2004. Use of 

terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular 

reference to ants. Austral Ecology 29: 87-92. 

ANDERSEN, A. N. & MAJER, J. D. 2004. Ants show the way Down Under: invertebrates as 

bioindicators in land management. Frontiers in Ecology and the Environment 2: 291-298. 

ANONYMOUS. 2006. Biodiversity and Wine Initiative - a pioneering partnership between the South 

African wine industry and the conservation sector. Available from: 

http://www.bwi.co.za/index.asp, accessed August 2006. 

BESTELMEYER, B. T., AGOSTI, D., ALONSO, L. E., BRANDAO, C. R. F., BROWN, W. L., 

DELABIE, J. H. C. & SILVESTRE, R. 2000. Field techniques for the study of ground-

dwelling ants: an overview, description, and evaluation. In: AGOSTI, D., MAJER, J. D., 

ALONSO, L. E. & SCHULTZ, T. R. (Ed.) Ants: Standard methods for measuring and 

monitoring biodiversity. 122-144. Smithsonian Institution, Washington and London. 

BESTELMEYER, B. T. & WIENS, J. A. 1996. The effects of land use on the structure of ground-

foraging ant communities in the Argentine Chaco. Ecological Applications 6: 1225-1240. 

COWLING, R. M. 1990. Diversity components in a species-rich area of the Cape Floristic Region. 

Journal of Vegetation Science 1: 699-710. 

DONNELLY, D. & GILIOMEE, J. H. 1985. Community structure of epigaeic ants (Hymenoptera: 

Formicidae) in fynbos vegetation in the Jonkershoek Valley. Journal of the Entomological 

Society of southern Africa 48: 247-257. 

DUDLEY, N., BALDOCK, D., NASI, R. & STOLTON, S. 2005. Measuring biodiversity and 

sustainable management in forest and agricultural landscapes. Philosophical Transactions of 

the Royal Society of London B 360: 457-470. 

FABRICIUS, C., BURGER, M. & HOCKEY, P. A. R. 2003. Comparing biodiversity between 

protected areas and adjacent rangeland in xeric succulent thicket, South Africa: arthropods and 

reptiles. Journal of Applied Ecology 40: 392-403. 

FRENCH, K. & MAJOR, R. E. 2001. Effect of an exotic Acacia (Fabaceae) on ant assemblages in 

South African Fynbos. Austral Ecology 26: 303-310. 

GILIOMEE, J. H. 2003. Insect diversity in the Cape Floristic Region. African Journal of Ecology 41: 

237-244. 

GOODMAN, P. S. 2003. Assessing management effectiveness and setting priorities in protected areas 

in KwaZulu-Natal. Bioscience 53: 843-851. 

Stellenbosch University  http://scholar.sun.ac.za



 184 

JAMES, C. D. 2004. Trapping intensities for sampling ants in Australian rangelands. Austral Ecology 

29: 78-86. 

KLOTZ, J. H., RUST, M. K., COSTA, H. S., REIERSON, D. A. & KIDO, K. 2002. Strategies for 

controlling Argentine ants (Hymenoptera: Formicidae) with spray and baits. Journal of 

Agricultural and Urban Entomology 19: 85-94. 

KNIGHT, R. L. 1999. Private lands: the neglected geography. Conservation Biology 13: 223-224. 

KOEN, J. H. & BREYTENBACH, W. 1988. Ant species richness of fynbos and forest ecosystems in 

the southern Cape. South African Journal of Zoology 23: 184-188. 

LINDSEY, P. A. & SKINNER, J. D. 2001. Ant composition and activity patterns as determined by 

pitfall trapping and other methods in three habitats in the semi Karoo. Journal of Arid 

Environments 48: 551-568. 

MAJER, J. D. & KOCK, A. E. 1992. Ant recolonization of sand mines near Richards Bay, South 

Africa. South African Journal of Science 88: 31-36. 

NETSHILAPHALA, N. M., MILTON, S. J. & ROBERTSON, H. G. 2005. Response of an ant 

assemblage to mining on the arid Namaqualand coast, South Africa. African Entomology 13: 

162-167. 

NORTON, D. A. 2000. Conservation biology and private land: shifting the focus. Conservation 

Biology 14: 1221-1223. 

PARR, C. L. & CHOWN, S. L. 2001. Inventory and bioindicator sampling: testing pitfall and Winkler 

methods with ants in a South African Savanna. Journal of Insect Conservation 5: 27-36. 

PERFECTO, I. & VANDERMEER, J. 2002. Quality of agroecological matrix in a tropical montane 

landscape: ants in coffee plantations in southern Mexico. Conservation Biology 16: 174-182. 

SOEPRONO, A. M. & RUST, M. K. 2004. Strategies for controlling Argentine ants (Hymenoptera: 

Formicidae). Sociobiology 44: 669-682. 

SOLOMON, M., VAN JAARSVELD, A. S., BIGGS, H. C. & KNIGHT, M. H. 2003. Conservation 

targets for viable species assemblages. Biodiversity and Conservation 12: 2435-2441. 

TSHIGUVHO, T. E., DEAN, W. R. J. & ROBERTSON, H. G. 1999. Conservation value of road 

verges in the semi-arid Karoo, South Africa: ants (Hymenoptera: Formicidae) as bio-

indicators. Biodiversity and Conservation 8: 1683-1695. 

VAN HAMBURG, H., ANDERSEN, A. N., MEYER, W. J. & ROBERTSON, H. G. 2004. Ant 

community development on rehabilitated ash dams in the South African highveld. Restoration 

Ecology 12: 552-558. 

WITT, A. B. R. & SAMWAYS, M. J. 2004. Influence of agricultural land transformation and pest 

management practices on the arthropod diversity of a biodiversity hotspot, the Cape Floristic 

Region, South Africa. African Entomology 12: 89-95. 

 

 

Stellenbosch University  http://scholar.sun.ac.za




