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Abstract

Most speech recognition and language identification engines are based on hidden Markov

models (HMMs). Higher-order HMMs are known to be more powerful than first-order

HMMs, but have not been widely used because of their complexity and computational

demands. The main objective of this dissertation was to develop a more time-efficient

method of decoding high-order HMMs than the standard Viterbi decoding algorithm

currently in use.

We proposed, implemented and evaluated two decoders based on the Forward-Backward

Search (FBS) paradigm, which incorporate information obtained from low-order HMMs.

The first decoder is based on time-synchronous Viterbi-beam decoding where we wish

to base our state pruning on the complete observation sequence. The second decoder is

based on time-asynchronous A* search. The choice of heuristic is critical to the A* search

algorithms and a novel, task-independent heuristic function is presented. The experimen-

tal results show that both these proposed decoders result in more time-efficient decoding

of the fully-connected, high-order HMMs that were investigated.

Three significant facts have been uncovered. The first is that conventional forward

Viterbi-beam decoding of high-order HMMs is not as computationally expensive as is

commonly thought.

The second (and somewhat surprising) fact is that backward decoding of conventional,

high-order left-context HMMs is significantly more expensive than the conventional for-

ward decoding. By developing the right-context HMM, we showed that the backward

decoding of a mathematically equivalent right-context HMM is as expensive as the for-

ward decoding of the left-context HMM.

The third fact is that the use of information obtained from low-order HMMs signifi-

cantly reduces the computational expense of decoding high-order HMMs. The comparison

of the two new decoders indicate that the FBS-Viterbi-beam decoder is more time-efficient

than the A* decoder. The FBS-Viterbi-beam decoder is not only simpler to implement,

it also requires less memory than the A* decoder.

We suspect that the broader research community regards the Viterbi-beam algorithm

as the most efficient method of decoding HMMs. We hope that the research presented

in this dissertation will result in renewed investigation into decoding algorithms that are

applicable to high-order HMMs.
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Synopsis

Verskuilde Markov-modelle (VMM’s) vorm die basis van die meeste spraakherkenning- en

taalidentifikasie-stelsels. Dit is bekend dat hoër-orde-VMM’s kragtiger is as hul eerste-orde

ekwivalente, maar eersgenoemde word oor die algemeen vermy weens hul kompleksiteit en

verwerkingsvereistes. Die hoofdoel van hierdie proefskrif was om ’n meer tyd-effektiewe

metode te ontwikkel as die Viterbi-dekoderingsalgoritme waarmee VMM’s tans algemeen

ontsyfer word.

In hierdie verhandeling word twee dekodeerders voorgestel, beide gebaseer op die

Vorentoe-Agtertoe-Soektogbeginsel (VAS), en die voorgestelde tegnieke word ook prak-

ties gëımplementeer. Die VAS-beginsel inkorporeer inligting vanuit lae-orde VMM’s in

die soektog. Die eerste dekodeerder is gebaseer op tydsinkrone Viterbi-bundeldekodering,

waarin ons verlang om ons toestandsnoeïıng te grond op die volledig waargenome sekwen-

sie. Die tweede dekodeerder berus op ’n tyd-asinkrone A*-soektog. A*-soekalgoritmes

is besonder sensitief vir die keuse van ’n heuristiek, en ons stel vervolgens ook ’n nuwe,

taak-onafhanklike heuristiekfunksie voor. Eksperimentele resultate dui aan dat beide

dekodeerders die volverbinde, hoër-orde VMM’s wat in die ondersoek gebruik is, vinniger

kan dekodeerder.

Drie noemenswaardige bevindings is gemaak. Die eerste is dat die gebruiklike voor-

waartse Viterbi-bundeldekodering van hoër-orde VMM’s nie so berekeningsintensief is as

wat algemeen aanvaar word nie.

Die tweede (en ietwat verrassende) bevinding is dat truwaartse dekodering van kon-

vensionele hoër-orde, linkerkonteks-VMM’s aansienlik duurder is as die gebruiklike voor-

waartse dekodering. Deur die regterkonteks-VMM te ontwikkel, toon ons aan dat die

truwaartse dekodering van ’n wiskundig ekwivalente regterkonteks-VMM dieselfde ver-

werkingskoste het as die voorwaartse dekodering van die linkerkonteks-VMM.

Die derde bevinding is dat die gebruik van inligting wat uit laer-orde-VMM’s ontgin

word, die berekeningskoste van hoër-orde-VMM-dekodering aansienlik kan verlaag. Die

vergelyking van die twee dekodeerders dui aan dat die VAS-Viterbi-bundeldekodeerder

nie net eenvoudiger is om te implementeer nie, maar ook minder geheuespasie vereis as

die A*-dekodeerder.

Ons vermoed dat die breër navorsingsgemeenskap die Viterbi-bundelalgoritme as die

mees effektiewe VMM-dekoderingstegniek beskou. Ons hoop dat die navorsing vervat in

hierdie verhandeling sal lei tot hernieude ondersoek van dekoderingsalgoritmes toepaslik

tot hoër-orde-VMM’s.
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Chapter 1

Introduction

1.1 Motivation

Most speech recognition and language identification engines are based on hidden Markov

models (HMMs). HMMs concurrently model two stochastic processes, the underlying

temporal structure and the locally stationary character of the process being modelled.

Since efficient estimation and decoding algorithms exist for first-order HMMs, they are

almost universally used in modern automatic speech recognisers. However, first-order

HMMs have limitations which prevent them from properly modelling real-world stochas-

tic processes [19]. The limitations arise from the first-order Markov assumption and the

output-independence assumption. High-order HMMs are known to be more powerful,

because of their better ability to model the temporal structure of the stochastic process

by generalising the first-order Markov assumption [23, 24]. It has been shown that the

use of high-order HMMs reduces the language identification error by a factor of three [11].

However, high-order HMMs have not been widely used because of their complexity and

computational demands. In the past, HMMs have been decoded in a time-synchronous

fashion using the Viterbi or pruned Viterbi-beam algorithms, which are breadth-first

search algorithms. Breadth-first search algorithms are guaranteed to find the best solu-

tion, but might waste time by examining fruitless paths. In this dissertation we address

the need for efficient algorithms for decoding high-order HMMs.

1.2 Research Objectives

The main objective of this dissertation is to develop a more time-efficient method of

decoding high-order HMMs than the standard Viterbi decoding algorithm currently in

use. We will specifically investigate using low-order HMMs to reduce the search space the

decoder has to explore in order to find the optimal state sequence.

1
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1.3 Prior work on decoding of HMMs

HMMs have been used in the field of continuous speech recognition since 1975 [5, 17].

Recently, HMMs have been used in a variety of fields including handwriting recognition

[26, 27], pattern recognition in molecular biology [22, 13] and robotics [2]. Most of the

research regarding decoding has been performed in the field of speech recognition. Since

speech decoding can be viewed as the decoding of hierarchical, high-order HMMs1, we

will review some of the decoding strategies used for speech recognition as they might be

applicable to the decoding of high-order HMMs.

1.3.1 Speech decoding strategies

According to Nguyen et al. [31], the most commonly used search algorithms are time-

synchronous Viterbi-beam search and best-first stack search (a variant of A* search).

However, the majority of decoding strategies are implemented using first-order HMMs.

It is also important to realise that most speech decoding strategies do not use static

HMM-based networks. The speech decoders implement the language models as N-grams

and performs the decoding by dynamically creating (and destroying) the search graph.

Although the N-gram is a special degenerate case of the HMM, we suspect that they

are used because there exist efficient parameter estimation techniques for estimating N-

gram probabilities from large text corpora. When performing large-vocabulary continuous

speech recognition (LVCSR), the static HMM-based networks become too large for the

available storage space (memory) [34] and thus various techniques have been developed

for searching through a dynamically created search graph. Since the static and dynamic

network are equivalent with respect to finding the optimal state sequence, we will only

investigate the decoding of high-order HMMs using static networks.

The speech decoding search algorithms can be divided into the following categories

[31]:

Fast Match

Fast match is a method for the rapid computation of a list of candidates that constrain

successive search phases. Fast match is typically used in conjunction with a more accurate

and computationally expensive search algorithm. The purpose of a fast match algorithm

is to reduce the computational expense of performing the more complex search. In a

sense, fast match can be regarded as an additional pruning threshold to meet. A fast

match is admissible if the recognition errors that appear in a system using the fast match

1The language model represents the top-level, high-order HMM and the word or phone models repre-
sent lower-level, first-order HMMs.
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followed by a detailed match are those that would appear if only the detailed match was

performed [16].

Time-synchronous Viterbi search

The Viterbi search algorithm was first developed in 1967 [14, 45, 46]. Time-synchronous

search algorithms explore all areas of the search space that occur at a specific time frame

before moving onto the next time frame. All the states of the HMM are updated in

lock-step frame-by-frame as the speech is processed. The computation required for this

method is proportional to the number of states in the model and the number of frames in

the input. The Viterbi search is admissible and the Viterbi-beam search is inadmissible,

although it has been found that for suitably wide beams, the Viterbi-beam algorithm

rarely does not find the optimal state sequence [28]. Little benefit is gained from using

a fast match algorithm as the search considers starting all possible words at each time

frame. Thus, it would be necessary to run the fast match algorithm at each time frame,

which would be too expensive.

Best-first stack search

The stack decoder was first developed by IBM [4] and has been successfully used in LVCSR

systems [3, 18, 36, 37]. The true best-first search algorithm keeps a sorted stack of the

highest scoring hypotheses (or partial sequence through the HMM). At each iteration, the

hypothesis with the highest score is advanced by all possible next words, which results

in more hypotheses on the stack. The best-first search has the advantage that it can

theoretically minimise the number of hypotheses considered if there is a good (heuristic)

function to predict which theory to follow next. The heuristic function determines whether

the best-first stack search is admissible. The search can also take very good advantage

of a fast match algorithm at the point where it advances the best hypothesis. The main

disadvantage is that there is no guarantee as to when the algorithm will finish. In addition,

it is very hard to compare theories of different length.

Pseudo time-synchronous stack search

This search is a compromise between time-synchronous search and best-first search. In

this search, the shortest hypothesis (the one that ends earliest in the signal) is updated

first. All active hypotheses are within a short time delay of the end of the speech signal.

To keep the algorithm from requiring exponential time, a beam-type pruning is applied

to all hypotheses that end at the same time. Since the method advances one hypothesis

at a time, it can also take advantage of a fast match algorithm.
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N-Best paradigm

This paradigm was developed in 1989 as a way to integrate speech recognition with natural

language processing [41, 42]. It is a type of fast match at the sentence level, which reduces

the search space to a short list of likely whole-sentence hypotheses. The idea is to use

simple and fast knowledge sources to quickly determine a short list of likely sentences.

These likely sentences are then re-scored using more complex and detailed knowledge

sources. As with fast match algorithms, there is the possibility of pruning away the correct

sentence during the N-Best list generation, which causes the search to be inadmissible.

Forward-Backward Search Paradigm

The algorithm is a general paradigm developed in 1986 [1] in which inexpensive approxi-

mate time-synchronous search in the forward direction is used to speed up a more complex

search in the backwards direction. A disadvantage of most of the other decoding strategies

is that the pruning is only based on the partial observation sequence seen thus far. It can

happen that a state, occurring at an early time frame, might seem promising based on the

observations seen thus far. The state might be part of a path that is not very promising if

the rest of the observations are included. The forward-backward search incorporates the

complete observation at each time frame when the search space is pruned. The true power

of the algorithm is revealed when different models are used in the forward and backward

directions. In the forward direction approximate acoustic models can be used while in the

backward direction more detailed HMMs with more complex language models are used.

1.3.2 HMM types

Over the years a number of different types of HMMs have been developed. Bengio [7]

provides an excellent review of HMMs, the different types of HMMs and extensions to

HMMs and related models. The different types of HMMs usually only differ with respect

to the definition of the state output observations probability density functions (pdfs), the

definition of the state transition probabilities and the topology. The majority of speech

decoders use discrete-valued hidden states, and continuous or discrete output observation

pdfs conditioned on a single state.

Since both the high-order and low-order HMM share the same set of pdfs, we are not

overly concerned with HMM variants based on different pdfs. In this research we limit

our investigation to HMMs that use mixtures of diagonal-covariance Gaussian densities

as state output pdfs. Furthermore, we have only investigated topologies that initially

start as fully-connected in the first-order. By allowing state transition probabilities to

be dependent on previous states, and not only the current state, we obtain high-order

HMMs, which we are primarily concerned with in this research.
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1.3.3 High-order HMM algorithms

There are two approaches to using high-order HMMs in the literature. The first approach

is to extend the existing first-order algorithms to customised algorithms which is applicable

to specific orders and types of HMMs. The disadvantage of this custom approach is that

new algorithms need to be created for each different order of HMM. The second approach

is to reduce the high-order HMMs to first-order equivalent HMMs and then to use the

first-order algorithms. The advantage is that we only need to use the existing (and

well-understood) algorithms which are applicable to first-order HMMs (such as Viterbi,

Baum-Welch, Forward-Backward, etc.). In this research we favour the second approach,

since we have found that using first-order equivalent HMMs results in a deeper insight

into the behaviour of the high-order HMMs. However, both approaches are equally valid

and result in equivalent high-order behaviour.

It is surprising that the literature contains only a few high-order HMM algorithms.

The algorithms can be summarised as follows:

• ORder REDucing (ORED) algorithm [11]: This algorithm reduces arbitrary order

HMMs to their first-order equivalent HMMs, thereby enabling the use of all the

efficient algorithms that has been developed for first-order HMMs.

• Fast Incremental Training (FIT) of high-order HMMs [12]: This algorithm is used

to efficiently estimate the parameters of high-order HMMs.

• Time-synchronous Viterbi-beam: This is the standard first-order decoding algo-

rithm which is used to find the optimal state sequence which has generated a given

sequence of observations. He [15] was the first to extend the first-order Viterbi

algorithm to the second order.

• Time-synchronous Baum-Welch re-estimation: Krioule, Mari and Haton then ex-

tended the Baum-Welch re-estimation algorithm by deriving an algorithm specific

to second-order discrete HMMs [21].

We find it interesting that the only high-order decoding algorithm that seems to

be used is the time-synchronous Viterbi-beam algorithm. As previously mentioned, the

speech decoding problem can be viewed in terms of hierarchical, high-order HMMs. There-

fore, it follows that the algorithms that have been developed for speech recognition might

be applicable to the problem of decoding high-order HMMS. We will now consider the

applicability of the decoding strategies discussed in Section 1.3.1 to the task of decoding

high-order HMMs.
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Fast-match

Fast match is used to rapidly compile a short list to constrain successive search phases.

When fast match is used in speech decoding, the search space is already divided into

higher-level categories such as phones and words. The problem with decoding high-order

HMMs is that the decoder must find the optimal state sequence. In order to apply fast-

match to high-order HMMs, it would be necessary to divide the states of the high-order

HMMs into some form of sub-categories. Another possibility would be to use less complex

pdfs. However, applying fast match to the states of the high-order HMM will lead to the

same problems as are found when using fast match with time-synchronous Viterbi search.

Since the fast-match would need to be calculated at every time frame, we do not believe

fast match can be easily adapted to the decoding of general high-order HMMs.

Time-synchronous search

The time-synchronous Viterbi and pruned Viterbi-beam search are already used for decod-

ing high-order HMMs. Since the number of possible transitions of an N -emitting state,

Rth-order HMM increases exponentially with the order of the HMM as O(NR+1), this

causes the computational expense of the Viterbi algorithm to be O(TNR), for a T -length

observation sequence. The Viterbi-beam algorithm improves the computational efficiency

of finding the optimal state sequence, but it is difficult to predict the savings in expense.

The disadvantage of using the Viterbi search is the exponential increase in the expense of

decoding high-order HMMs.

Best-first stack search

The best-first stack search is essentially the A* search algorithm with the heuristic function

set to zero. The main disadvantage is that there is no guarantee as to when the algorithm

will finish. It should be possible to develop a heuristic function based on low-order HMMs.

The challenge is to develop a heuristic function that is admissible for high-order HMMs.

The heuristic function used for speech recognition is word-dependent and what is required

is a state-dependent heuristic function.

Pseudo time-synchronous stack search

This search is closely related to the best-first stack search, except that beam-pruning is

applied to states at the same time-frame. It would also be possible to incorporate low-

order HMMs into this search, but the same challenge remains of developing an admissible

heuristic function.
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N-Best paradigm

It should be possible to use a low-order HMM to generate an N-best list of state sequences.

The N-best list of state sequences could then be re-scored using the more complex high-

order HMM. The biggest problem with this approach is that N needs to be fairly large

to obtain state sequences which truly differ in the state identities. Typically the top N

entries in the N-best list is the same series of states, the entries simply differ in the exact

time frames that each state occupies. Informal experiments have shown that at the point

where N becomes large enough for truly different state series, the N-best list computation

becomes larger than the expense of using the Viterbi-beam search.

Forward-Backward Search Paradigm

The Forward-Backward search seems to be the most promising method of using low-order

HMMs to guide the search of high-order HMMs. A backward search could be performed on

the low-order HMMs to compute the probability of the partial path from a specific state to

the final state. When the forward search is performed using the more complex high-order

HMMs, the low-order backward probabilities can then be combined with the high-order

forward probabilities so that the complete observation sequence can be used for pruning

at each time frame. The backward search can be performed using the time-synchronous

Viterbi-beam algorithm, while the more detailed forward search could be performed using

either the Viterbi-beam search algorithm or the A*-based search algorithms.

1.4 Research Overview

This section provides a high-level overview of the work done in this research. Two de-

coding approaches based on the adaption of the Forward-Backward search paradigm to

the decoding of high-order HMMs are investigated. The first approach is based on the

time-synchronous, breadth-first, forward-backward search algorithm, where we wish to

base our state pruning on the complete observation sequence, instead of only basing the

state pruning on the partial observation sequence, as the Viterbi-beam algorithm does.

The second approach is based on the time-asynchronous, best-first, A* search algo-

rithm. In this approach we will still use state pruning based on complete observations,

but the order in which partial paths are examined differs from the previous approach as

a heuristic function is used to guide the search so that only the most likely paths are

considered. The choice of heuristic is critical to the A* search algorithms and a novel,

task-independent heuristic function will be presented.

The following subsections outline the research presented in this dissertation:
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1.4.1 High-order HMMs

In chapter 2 we give an overview of hidden Markov model theory by defining the general

left-context HMMs and the notation used to manipulate HMMs. This is followed by a

discussion on the different types of search algorithms and specifically the standard Viterbi-

beam decoder. Since the decoding behaviour of high-order HMMs are not well-known, we

end the chapter by performing an experiment to measure the computational expense of the

Viterbi-beam search algorithm, by decoding fully-connected, high-order HMMs. These

results will be used as the base-line to which the proposed decoders will be compared.

1.4.2 Forward-Backward search of high-order HMMs

In chapters 3 and 4 we discuss how the Forward-Backward search algorithm can be ex-

tended or adapted to the task of decoding high-order HMMs. Austin et al. [1, 41] used

a simplified algorithm in their forward search and a complicated algorithm in their back-

ward search. We suspect that their heuristic was calculated during the forward search

as they were interested in developing a real-time speech decoder. In their later work

[31, 32, 29] they used simplified models in the forward search and more complex models

in the backward search. In this research the heuristic function is first determined during

a backward search, using less complex, low-order HMMS. This is then combined with the

more complex high-order HMMs during a forward search.

The heuristic function is obtained by backward decoding derived, low-order HMMs.

We present two types of decoders, the first uses a time-synchronous Viterbi-beam de-

coder during the more complex forward search and the second decoder uses the time-

asynchronous A* decoder during the forward search. Since the heuristic function for the

A* decoder needs to be an accurate prediction of the actual scores that will result during

the forward pass, we present a novel, task-independent heuristic for the A* decoder. The

admissibility of our heuristic is proven in Appendix B.

Since the information used to guide the decoders (the heuristic function) is obtained

by backward decoding low-order HMMs, we continue the chapter by discussing the back-

ward Viterbi-beam decoding algorithm. There is an implicit assumption in the Forward-

Backward search paradigm that forward and backward search are computationally equiv-

alent. We test this assumption be measuring the computational expense of backward

decoding high-order, left-context HMMs. We are surprised to discover that pruned back-

ward decoding is significantly more expensive than pruned forward decoding, when the

same HMM and observations are used. This can cause serious problems for the Forward-

Backward search, since the search algorithm depends on the simplified backward search

being computationally less expensive than the forward search. We believe that backward

decoding is not fundamentally more expensive than forward decoding, but that this dis-
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crepancy is caused by the time-asynchronicity of observations and states processed during

backward Viterbi-beam decoding. This time-asynchronicity is a result of the definition

of left-context transition probabilities and is therefore fundamental to high-order, left-

context HMMs. The solution to this problem is the development of the right-context

HMM.

In chapter 4 we define a new type of HMM, of which the observations and states will

be synchronised in the backward direction. The difference between left-context and right-

context HMMs are that the transition probabilities are conditioned on the subsequent

states, and not the preceding states. We measure the computational expense of backward

decoding the right-context HMM and show that it is computationally equivalent to the

forward decoding of left-context HMMs, which allows the Forward-Backward search to

be applied to decoding high-order HMMs. In the rest of the chapter we continue to show

how the heuristic function, for left-context HMMs, can be determined using equivalent

right-context HMMs.

1.4.3 Implementation and Evaluation of decoders

In chapters 5 and 6 we discuss the practical implementation and evaluation of our proposed

decoders. Chapter 5 discuss some of the practical issues that needs to be addressed when

implementing the new decoders. The issues include efficient memory management as well

the choice of efficient data structures used during the decoding.

In Chapter 6 we present the experiments used to evaluate our proposed decoders. We

use the CallFriend speech corpus to investigate the influence of different types of pdfs as

well as the size of the high-order HMMs, on the computational expense of the decoders.

We show that both the proposed decoders are computationally less expensive than the

standard Viterbi-beam decoder, with the Forward-Backward search based Viterbi-beam

decoder (FBS-Viterbi-beam decoder) being the least expensive. Lastly, we analyse both

decoders in order to determine the ratio of the decoding time being spent on computing

the heuristic and on performing the search. This analysis also shows that the new decoders

are more consistent than the standard Viterbi-beam decoder.

Having shown that when the Forward-Backward search paradigm is adapted to the

task of decoding high-order HMMs, it results in search algorithms that are more compu-

tationally efficient than time-synchronous Viterbi-beam search, we conclude in Chapter 7

by mentioning some of the outstanding issues and discussing further topics of research.

1.5 Contributions

The contributions of this dissertation can be summarised as follows:
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• We show that the forward and backward Viterbi-beam decoding of high-order, left-

context HMMs are not computationally equivalent.

• We propose a new definition for the state transition probabilities of an HMM. This

leads to a new type of HMM we have termed the right-context HMM.

• We prove that the right-context HMM is mathematically equivalent to the conven-

tionally defined, left-context HMM.

• We show that performing backward Viterbi-beam decoding on the right-context

HMM is as efficient as performing forward Viterbi-beam decoding on the left-context

HMM.

• We propose two decoders based on the Forward-Backward search paradigm. These

decoders incorporate information obtained from decoding low-order derived HMMs.

The first decoder is a time-synchronous decoder based on the Viterbi-beam algo-

rithm while the second decoder is a time-asynchronous decoder based on the A*

search decoder.

• We propose a novel, task-independent heuristic function for the A* decoder and have

proven that the heuristic is admissible. When A* decoders are used in conjunction

with HMMs it is usually to perform the task of continuous speech recognition.

Heuristic functions have been defined which are specific to the task of continuous

speech recognition. Our proposed heuristic function is not specific to the task to

which the HMMs are applied and is therefore task-independent.

• We show that both decoders based on the Forward-Backward search paradigm are

computationally more efficient in finding the optimal state sequence than the stan-

dard time-synchronous Viterbi-beam decoder. When the two new decoders are

compared, we find that the time-synchronous, FBS-Viterbi-beam decoder is com-

putationally more efficient than the time-asynchronous A* decoder.

• By analysing the behaviour of the decoders we also show that the new decoders,

specifically the FBS-Viterbi-beam decoder, are computationally more consistent

than the Viterbi-beam decoder. This also shows that it is better to prune the search

space based on complete observations, rather than using partial observations.

The last two contributions show that we have met our stated research objective of

developing a more time-efficient search algorithm than the currently used Viterbi-beam

algorithm.



Chapter 2

Hidden Markov Models

Hidden Markov models are mathematical models which are used to model stochastic

processes. The purpose of this chapter is to define the mathematical notation used to

describe hidden Markov models (HMMs). We will shortly discuss the commonly used

first-order HMM, but the focus will be on high-order HMMs as well as their first-order

equivalent HMMs.

2.1 Conventional HMMs

A conventional HMM consists of a finite set of states that is traversed according to a

set of transition probabilities. The transition probabilities conventionally describe the

conditional probability of the HMM occupying a specific state, given a history of the

states that were previously occupied. The transition probabilities are usually assumed to

be homogeneous, i.e. the same for all time frames. Each state has an associated output

probability distribution, which defines the conditional probability that the HMM emits

an observation (or feature vector), given that the model is occupying a specific state.

An HMM concurrently models two stochastic processes: the temporal structure and the

locally stationary character of the system being modelled. The temporal structure is

modelled by the transition probabilities and the locally stationary character is modelled

by the output conditional pdf. Since only the sequence of output observations is known,

the state sequence is said to be hidden (hence the name hidden Markov model). The HMM

can be viewed as a doubly-embedded stochastic process with the underlying stochastic

process (the state sequence) not directly observable.

The two main components of an HMM is the set of probability distribution functions

(pdfs) with its corresponding state transition probabilities and the topology (the structure

dictating which states are coupled). HMMs can also be viewed as describing probable

trajectories in the observation space. The observation space is described by the pdfs

associated with the HMM. The trajectories are described by the topology of the HMM

11
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and the probabilities of the trajectories are influenced by the transition probabilities.

We now introduce the notation and conventions required when presenting the algo-

rithms used with HMMs.

2.1.1 Definition and Notation

XT
1 = {x1,x2, . . . ,xT} denotes the output observation sequence of length T that we want

to match to the HMM Φ. The HMM consists of N emitting states, each with an associated

conditional pdf. We add additional initial and terminating non-emitting (or null) states so

that the HMM consists of a total N +2 states. The initial state will always be indexed as

state 0 and the terminating state will always be indexed as state N + 1. The use of extra

initial state probabilities (πi) is commonly seen in the literature, but the additional initial

and terminating states make the use of these extra variables unnecessary as the parameters

are included in the state transition probabilities (πi = a0i). st = i denotes the occurrence

of state i at time t. The output pdf for state i is denoted by bi(xt) = f(xt|st = i). The

sequence Sm
n = {sn, sn+1, . . . , sm} denotes the occurrence of a sequence of states from

time n to time m.

The states are coupled with state transition probabilities indicated by the symbol a

with subscripts to index the states involved. In a conventional HMM the state transition

probabilities for a Rth-order HMM is defined as the conditional probability of making a

transition at time t to state i given the sequence of the R preceding states. Thus the con-

ditional probability of making a transition is dependent on the identity of the preceding

states. As the state transition is only influenced by the preceding states, we will refer to

conventionally defined state transition probabilities as left-context state transition proba-

bilities. Conventionally defined HMMs, which utilises left-context transition probabilities,

will also be referred to as left-context1 HMMs.

When processing HMMs in pattern recognition applications, there are three principle

issues that need that need to be addressed. Firstly, we need to be able to estimate new

model parameters from training observations. This issue is called the Learning problem.

Secondly, we need to compute the probability of the model given a set of observations.

This issue is commonly referred to as the Evaluation problem. Lastly, we need to be able

to determine the hidden state sequence that most probably produced a set of observations.

This issue is called the Decoding problem. These three principle issues can be formally

stated as:

1. The evaluation problem: given a model Φ and a sequence of observations XT
1 ,

1This is not to be confused with left-context biphone models, which are context-dependent phonemes
modelled with HMMs.
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what is the probability that the model generates the observations i.e. P (XT
1 |Φ)?

2. The learning problem: given a model Φ and a set of observations, how should

the model parameter Φ̃ be adjusted to maximise the joint likelihood
∏
X

P (X|Φ)?

3. The decoding problem: given a model Φ and a sequence of observations XT
1 ,

what state sequence ST
1 has the highest likelihood of producing the observations?

This dissertation is primarily concerned with solutions to the decoding problem. We are

specifically interested in solutions that are more time-efficient than the currently available,

standard solutions. The newly developed solutions to the decoding problem form the core

of this dissertation and will be discussed in detail in Chapter 3. The standard solution to

the decoding problem, namely the Viterbi algorithm, will be discussed later in this chapter.

Before we continue our discussion of HMMs, it is necessary to state the assumptions that

are required in order to make HMM computations tractable.

2.1.2 HMM Assumptions

Two simplifying assumptions regarding HMMs are made in order to make calculations

regarding the three principle issues tractable. The two assumptions are called the Obser-

vation Independence assumption and the Markov Order assumption.

2.1.2.1 Observation Independence Assumption

The first assumption is mathematically expressed as:

f
(
xt|Xt−1

1 ,St
1, Φ

)
= f (xt|st, Φ) (2.1)

This means that the likelihood of the tth observation is only dependent on the current

state st and is not affected by other states or observations. This assumption is not affected

by the order R of the HMM.

2.1.2.2 Markov Order Assumption

The Markov order assumption is mathematically expressed as:

P (st|St−1
1 ,XT−1

1 , Φ) = P (st|St−1
t−R, Φ) (2.2)

This means that the probability of occurrence of the next state is only affected by the

identity of the immediately preceding R states. Other states or observations do not affect

this probability of occurrence. This assumption is influenced by the order of the HMM.

Having presented the notations necessary to describe and manipulate HMMs we are

ready to discuss the most commonly used HMM: the first-order HMM.
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Figure 2.1: A two-emitting state, fully connected, first-order HMM.
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2.1.3 First-order HMMs

By fixing the order of the HMM to R = 1 we obtain the first-order HMM. The implication

of this for the Markov order assumption, is that the conditional probability of making a

transition is only dependent on the identity of the preceding state. The state transition

probabilities for a first-order HMM are defined as the conditional probability (denoted by
−→a ij) of making a transition at time t to state j given the preceding state st−1 = i:

−→a ij , P (st = j|st−1 = i) with
N+1∑
j=0

−→a ij = 1, i ∈ {0 · · · , N + 1} (2.3)

Figure 2.1 illustrates a typical two-emitting state, first-order HMM. We note in the figure

that any two states of a first-order HMM is only coupled by a single transition probability,

as the transition probability is only dependent on a single preceding state. Note that a

link from state i to state j is distinct from the link from state j to state i.

A conventional, N emitting-state, first-order HMM Φ1 is defined by the parameter set

Φ1,lc = {−→a ij, bi(x), i, j ∈ {0, · · · , N + 1}} (2.4)

where the subscript lc denotes that it is a left-context HMM.

For the processing of first-order HMMs standard algorithms have been developed that

efficiently solve the three principle issues. The Baum-Welch algorithm is the solution

for the Learning problem and the Forward algorithm is the solution for the Evaluation

problem. The Viterbi algorithm is the solution to the Decoding problem. All three these



Chapter 2 — Hidden Markov Models 15

algorithms are based on dynamic programming techniques [6], while the Baum-Welch

algorithm is an application of the Expectation Maximisation algorithm to HMMs [25].

2.1.3.1 Limitations of first-order HMMs

Currently, first-order HMMs have two main limitations. The first limitation is a result of

the first-order Markov assumption which states that being in a state only depends on the

identity of the previous state.

The second limitation is that HMMs are well defined only for processes that are a

function of a single independent variable, such as time or one-dimensional position.

The first limitation is not a fundamental one by any means. In principle, it is possible

to define high-order HMMs in which the dependence is extended to previous states (and

outputs). It is the general consensus that such high-order extensions complicate HMMs

and quickly results in intractable computation as the number of transitions can grow

exponentially with the order of the HMM.

2.1.4 High-order HMMs

By allowing the order of the HMM to be R ≥ 2 we obtain high-order HMMs. The

implication of this for the Markov order assumption is that the conditional probabil-

ity of making a transition is only dependent on the identity of the R preceding states.

This is formally stated as follows: The state transition probabilities for a Rth-order

HMM is defined as the conditional probability (denoted by −→a i1i2...iR+1
) of making a

transition at time t to state iR+1 given that the identity of the preceding states are

{st−1 = iR, . . . , st−R+1 = i2, st−R = i1}:

−→a i1i2...iR+1
, P (st = iR+1|st−1 = iR, . . . , st−R+1 = i2, st−R = i1) with

N+1∑
iR+1=0

−→a i1i2...iR+1
= 1, i1, i2, . . . , iR ∈ {0, · · · , N + 1} (2.5)

Fig. 2.2(a) illustrates a two emitting-state, second-order HMM with its initial and termi-

nating null states. Note that linked states are coupled with multiple transition probabil-

ities because the transition probabilities are dependent on the identity of two preceding

states.

A conventional, N emitting-state, Rth-order HMM ΦR is defined by the parameter set

ΦR,lc =
{−→a i1i2...iR+1

, bi1(x), i1, i2, . . . , iR+1 ∈ {0, · · · , N + 1}
}

(2.6)

For the processing of high-order HMMs it is possible to expand the standard first-order

algorithms to the higher-orders as has been done by Mari et al. in [24].
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Figure 2.2: (a) A second-order, two-emitting state, left-context HMM. (b) First-order

equivalent of (a).
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2.1.4.1 Limitations of high-order HMMs

Three limitations exist to the use of high-order HMMs in practical pattern recognition

systems. The first limitation is the computational expense of using high-order HMMs.

This computational expense is as a result of the exponential increase in the number of

transition probabilities, as the order of the HMM increases. This also requires an increase

in data to properly estimate the increased number of parameters.

The second limitation is the computational concerns when training high-order HMMs.

Unfortunately, due to the large number of parameters involved in high-order HMMs, di-

rectly training such HMMs (or their first-order equivalents) can be a very computationally

expensive task. Du Preez [12] also showed that directly training the high-order HMMs

results in poorly estimated transition probabilities. He went on to show that it is more

efficient to train high-order HMMs by starting at the first order and incrementally increas-

ing the order of the HMM. He called this method Fast Incremental Training (FIT) and it

avoids training redundant high-order probabilities by noting which lower-order transition

probabilities are zero. This considerably reduces the memory and processor requirements

during training. In addition, the resultant models have far fewer parameters and gener-

alise better on previously unseen data. The high-order HMMs used in this research will

therefore be trained using the FIT method of training.

The third limitation is the need to expand the standard first-order algorithms to each

order. If therefore becomes necessary to build a separate version of each algorithm for
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each order of HMM. This limitation can be negated by the use of first-order equivalent

HMMs.

2.1.4.2 First-order equivalent HMMs

In this research we use mathematically equivalent, first-order representations of high-

order HMMs. This allows us to use the standard, first-order algorithms on any order

HMM, instead of having to implement the decoding algorithms for each HMM order.

For example, a second-order HMM can be reduced to its first-order equivalent HMM by

mapping the states of the second-order HMM, to a first-order HMM, using a twofold

product of the original state space [15]. Du Preez [11] presented an algorithm to perform

this mapping and called it the Order REDucing (ORED) algorithm.

In Fig. 2.2(b) we show the first-order equivalent of the HMM shown in Fig. 2.2(a).

Note that any two states are coupled only with a single transition probability and that

multiple states share the same conditional output pdf.

We share Du Preez’s viewpoint of high-order HMMs in that

High-order transition probabilities are simply an elegant mathematical way of

specifying the topology of the model.

Thus, when we present the theory of high-order HMMs, we use the mathematically elegant

high-order transition probabilities. However, when using high-order HMMs, we reduce

the high-order HMMs to their first-order equivalents and use the standard first-order

algorithms for processing. We thereby avoid the laborious task of implementing the

standard (and newly proposed) decoding algorithms for each new order of HMM that we

wish to process. We have now established the notation required to manipulate high-order

HMMs.

2.2 Decoding of left-context HMMs

In this section we will discuss the standard algorithms used to decode conventional, left-

context HMMs.

2.2.1 Types of decoding

We view the decoding of HMMs as a graph search problem as illustrated in Fig. 2.3. The

search graph has a root node at time t = 1 with state index 0. The goal node occurs at

time t = T with state index N + 1. Emitting states transition from a node at time t to

a node at time t + 1 while non-emitting states transition to other states without causing

a change in the time index. The purpose of the decoding algorithm is to find the path
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Figure 2.3: HMM decoding viewed as a graph search problem.

through the graph from the initial node to the goal node, with the maximum likelihood

of generating the observation sequence XT
1 . Thus decoding can be seen as the process

of starting at the root node and “growing” the search graph until the search algorithm

terminates, preferably with the optimal path from the root to the goal node.

When conducting a decoding search through the graph, the search algorithms can be

categorised according to the strategy used to traverse (or grow) the search graph. The

nodes (the circles) represent HMM states occurring at specific time indexes. The arrows

between nodes represent the “cost” of transitioning from one node to another. This “cost”

includes both the observation-independent state transition probability, âi1i2···iR+1
and the

observation-dependent output observation likelihood biR+1
(xt). The two search categories

of primary interest in this dissertation are time-synchronous search and time-asynchronous

search.
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2.2.1.1 Time-asynchronous decoding

Time-asynchronous decoding grows the search graph by expanding a node occurring at

any time-index. Search algorithms that traverse the search graph in time-asynchronous

manner can grow the search graph in such a manner that not all states at a certain time

index exist in the graph. There are a number of time-asynchronous search algorithms,

for example depth-first search. We are interested in search algorithms that can be guided

with information obtained from low-order HMMs, therefore we are interested in the class

of informed searches. Informed searches traverse the search graph illustrated in Fig. 2.3

by first expanding the initial root node s1 = 0. The algorithms subsequently use some

form of heuristic, specific to the problem, to determine which node, at any time-index,

is the “best” node to expand next. The purpose is to expend the least amount of effort

in finding a path from the root node to the goal node, by expanding the “best” nodes

first. Fig. 2.4 illustrates how informed searches traverse the search graph. The dark gray

Figure 2.4: Time-asynchronous decoding of an HMM, when the decoding is viewed as a

graph search problem.
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circles represent nodes that have already been expanded. The light gray circles represent

leaf nodes of the search graph and have therefore not been expanded yet. The dashed

circles represent nodes that the search algorithm have not yet reached and the dashed

lines between circles represent parts of the search graph that the search algorithm has

not yet reached. When the search graph is grown, the “best” node to expand is always

selected from the set of leaf nodes.

The A* search algorithm is well suited for incorporating low-order HMM information.

We will discuss the A* search algorithm in more detail in Chapter 3.

2.2.1.2 Time-synchronous decoding

Time-synchronous decoding grows the graph by first expanding all nodes occurring at

a specific time-index. Thus, search algorithms that grow the search graph in a time-

synchronous manner consider all nodes at a specific time index before considering nodes

that occur at the next time index. Time-synchronous searches traverse the search graph

illustrated in Fig. 2.3 by first expanding the initial root node s1 = 0. The algorithms

next expand all nodes occurring at time t = 1 before increasing the time index t by one.

At any time in the search the set of leaf-nodes from which the search selects nodes to

expand, is solely determined by the time index under consideration. Time-synchronous

search algorithms are guaranteed to find an optimal path from the root node to the goal

node. A typical time-synchronous search is illustrated in Fig. 2.5. The dark gray circles

represent nodes that have already been expanded. The light gray circles represent leaf

nodes of the search graph and therefore have not yet been expanded. The dashed circles

represent nodes that the search algorithm have not yet reached and the dashed lines

between circles represent parts of the search graph that the search algorithm has not yet

reached.

Although the Viterbi decoder is a special case of dynamic programming, it can also be

viewed as a time-synchronous graph search algorithm. In the next section we will discuss

the Viterbi decoder in more detail.

2.2.2 Time-synchronous Viterbi decoding

The Viterbi decoding algorithm can be regarded as a special case of dynamic programming

applied to HMMs. The purpose of the decoding algorithm is to determine the state

sequence ST
1 that has the highest likelihood of producing the observation sequence XT

1

given the HMM Φlc. When decoding algorithms process the observation sequence in

increasing order of time (t = 1, 2, . . . , T ) we refer to such algorithms as forward decoders.

When decoding algorithms process the observation sequence in decreasing order of time

(t = T, T − 1, . . . , 2, 1) we refer to such algorithms as backward decoders. The Viterbi-
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Figure 2.5: Time-synchronous Viterbi decoding of an HMM, when the decoding is

viewed as a graph search problem.

beam decoder is conventionally defined to be a forward decoder.

We start by reviewing the standard algorithm as applied to first-order HMMs and

then show how it is generalised to high-order HMMs. Viterbi-beam decoders differ from

Viterbi decoders in that they prune the search graph to limit the number of evaluated

state sequences. This will be discussed in more detail in section 3.3.3.

The first-order, best-path forward probability is defined to be

−→
δ t(i) = max

St−1
1

[
P (Xt

1,S
t−1
1 , st = i|Φlc)

]
(2.7)

where
−→
δ t(i) is the probability of the most likely state sequence St

1, which has generated

the partial observation sequence Xt
1 and ends at time t in state st = i, given the HMM

Φlc. The back pointer
−→
Ψ

δ

t (i) of state i at time t points to the state most likely to precede

state i at time t− 1. The following induction procedure is used to calculate
−→
δ t(i):



Chapter 2 — Hidden Markov Models 22

1. Initialisation: (t = 1)

−→
δ 1(i) = −→a 0ibi(x1)
−→
Ψ

δ

1(i) = 0

}
i = 1, . . . , N (2.8)

2. Induction: (t = 2, 3, . . . , T )

−→
δ t(j) =

[
max

i

−→
δ t−1(i)−→a ij

]
bj(xt)

−→
Ψ

δ

t (j) = arg max
i

[−→
δ t−1(i)−→a ij

]  j = 1, . . . , N (2.9)

3. Termination:

−→
δ T = max

i

[−→
δ T (i)−→a i(N+1)

]
s∗

T = arg max
i

[−→
δ T (i)−→a i(N+1)

] (2.10)

4. Backtracking:

s∗
t =
−→
Ψ

δ

t+1(s
∗
t+1), t = T − 1, T − 2, . . . , 2, 1

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(2.11)

2.2.2.1 Generalisation to high-order HMMs

We define the Rth-order, best-path forward probability as

−→
δ t(i2, i3, . . . , iR+1)

= max
St−R

1

[
P (Xt

1,S
t−R
1 , st−R+1 = i2, st−R+2 = i3, . . . , st = iR+1|Φlc)

]
(2.12)

−→
δ t(i2, i3, . . . , iR+1) is the probability of the most likely state sequence St

1, which has

generated the partial observation sequence Xt
1 and ends in the state sequence St

t−R+1 =

{st−R+1 = i2, st−R+2 = i3, . . . , st−1 = iR, st = iR+1} at time t, given the HMM Φlc (if

we let R = 2 this definition of the best-path forward probability is equivalent to the

definition of the second-order, best-path forward probability
−→
δ t(i1, i2) found in [24]).

We define
−→
Ψ

δ

t−R+1(i2, i3, . . . , iR+1) to be the back pointer at time t of the state sequence

{st−R+1 = i2, st−R+2 = i3, . . . , st−1 = iR, st = iR+1} and denotes the most likely state to

precede the state sequence at time t − R. The following induction procedure is used to

calculate
−→
δ t(i2, i3, . . . , iR+1):

1. Initialisation: (t = 2, 3, . . . , R; i1, i2, . . . , iR = 1, 2, · · · , N)

−→
δ 1(i1) = −→a 0i1bi1(x1)
−→
δ t(i1, i2, . . . , it) =

−→
δ t−1(i1, . . . , it−1)−→a 0i1···itbit(xt)

−→
Ψ

δ

1(i1, i2, . . . , iR) = 0

(2.13)
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2. Induction: (t = R + 1, . . . , T − 1, T ; i2, i3, . . . , iR+1 = 1, · · · , N)

−→
δ t(i2, i3, . . . , iR+1) =

[
max

i1

−→
δ t−1(i1, . . . , iR)−→a i1i2···iR+1

]
biR+1

(xt)

−→
Ψ

δ

t−R+1(i2, i3, . . . , iR+1) = arg max
i1

[−→
δ t−1(i1, . . . , iR)−→a i1i2···iR+1

] (2.14)

3. Termination:

−→
δ T = max

i1,i2,...,iR

[−→
δ T (i1, i2, . . . , iR)−→a i1i2···iR(N+1)

]
(s∗

T−R+1, · · · , s∗
T−1, s

∗
T ) = arg max

i1,i2,...,iR

[−→
δ T (i1, . . . , iR)−→a i1i2···iR(N+1)

] (2.15)

4. Backtracking:

s∗
t =
−→
Ψ

δ

t+1(s
∗
t+1, s

∗
t+2, · · · , s∗

t+R), t = T −R, . . . , 2, 1

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(2.16)

2.2.3 Pruning the decoding search space

The Viterbi-beam decoder uses pruning to limit the number of evaluated state sequences.

Instead of retaining all candidates at every time frame, a threshold is used to keep only

a subset of promising candidates.

2.2.3.1 Pruned decoding of first-order HMMs

In the case of time-synchronous, beam-pruning search algorithms of first-order HMMs,

the subset of promising candidates is determined by calculating the probability of each

state at the previous time instance, given the observations seen thus far. Less probable

states at the previous time instance are omitted from the rest of the search at time t. For

pruned searches in the forward direction, the decoder needs to calculate the probabilities

at time t− 1 i.e.

P (st−1 = i|Xt−1
1 , Φlc) =

P (Xt−1
1 , st−1 = i|Φlc)

P (Xt−1
1 |Φlc)

(2.17)

The probability P (Xt−1
1 , st−1 = i|Φlc) is called the forward probability by Rabiner and

Juang [39] and is denoted by −→α t−1(i) and is used in the Forward algorithm when solving

the evaluation problem. Using the forward probability, we can rewrite Eq. 2.17 as follows:

P (st−1 = i|Xt−1
1 , Φlc) =

−→α t−1(i)

P (Xt−1
1 |Φlc)

(2.18)

In order to keep the most probable states at time t−1 the decoder does not need to directly

calculate P (st−1 = i|Xt−1
1 , Φlc), but instead can use the forward probability −→α t−1(i), as we

are only interested in the ranking of the states and P (st−1 = i|Xt−1
1 , Φlc) ∼ −→α t−1(i). When
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using forward Viterbi-beam decoders to decode the HMM, the decoder does not compute

the forward probability −→α t−1(i) as part of the search. However, according to Rabiner

and Juang [39] the dynamic range of the forward probability −→α t−1(i) is usually very large

and the best-path forward probability
−→
δ t−1(i) is usually the only significant term in the

summation for the forward probability. Therefore, we assume that −→α t−1(i) ≈
−→
δ t−1(i)

and use the best-path forward probability
−→
δ t−1(i) instead of the forward probability.

When using beam-pruned forward decoding, the most probable states can be ranked

by only using the best-path forward probability
−→
δ t−1(i), which is calculated as part of

the search.

The pruning is implemented as a logarithmic beam-width B. All states, whose best-

path forward probability does not fall within a certain threshold, are omitted from the

rest of the search. For forward decoding the threshold is calculated as

e−B max
k

−→
δ t−1(k), B ≥ 0 (2.19)

2.2.3.2 Pruned decoding of high-order HMMs

In the case of time-synchronous, beam-pruning search algorithms of Rth-order HMMs,

the subset of promising candidates is determined by calculating the joint probability of

sequences of states, ending at the previous time instance, given the observations seen thus

far. Less probable sequences of states, ending at the previous time instance, are omitted

from the rest of the search at time t. For pruned searches in the forward direction the

decoder needs to calculate

P (st−R = i1, . . . , st−1 = iR|Xt−1
1 , Φlc) =

P (st−R = i1, . . . , st−1 = iR,Xt−1
1 |Φlc)

P (Xt−1
1 |Φlc)

=
−→α t−1(i1, . . . , iR)

P (Xt−1
1 |Φlc)

(2.20)

In order to keep the most probable sequence of states at time t− 1 the decoder does not

need to directly calculate P (st−R = i1, . . . , st−1 = iR|Xt−1
1 , Φlc) but can instead use the

forward probability−→α t−1(i1, . . . , iR) as we are only interested in the ranking of the state se-

quences ending at time t−1, and P (st−R = i1, . . . , st−1 = iR|Xt−1
1 , Φlc) ∼ −→α t−1(i1, . . . , iR).

When using forward Viterbi-beam decoders to decode the HMM, the decoder does not

compute the forward probability −→α t−1(i1, . . . , iR), therefore the best-path forward proba-

bility
−→
δ t−1(i1, . . . , iR) is used instead, since according to Rabiner and Juang [39] we can

assume that −→α t−1(i1, . . . , iR) ≈ −→δ t−1(i1, . . . , iR). The forward Viterbi-beam pruning of

high-order, left-context HMMs is very similar to the decoding of first-order HMMs, except

that the high-order, best-path forward probability is used when pruning.

It is important to note that the beam-pruning used to limit the search space of the

Viterbi-beam decoder is based on partial observation sequences. It can be argued that

state pruning based on the complete observation sequence should result in a smaller
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search space and thus a computationally less expensive decoder. This idea will be further

explored in Chapter 3.

2.2.4 Evaluating forward Viterbi-beam decoding of HMMs

2.2.4.1 Corpus

We evaluate the computational expense of decoding left-context HMMs using the Call-

Friend [8] speech corpus. Left-context, high-order HMMs were trained with the 40 record-

ings which form the German training set of CallFriend. These HMMs were then evaluated

on both the 40 recordings which form the English development set of CallFriend and the

40 recordings which form the German development set. The evaluation performed on the

German development set represents the scenario where the training and evalution condi-

tions are matched. The evaluation performed on the English development set represents

the scenario where there is a mismatch between the training and evaluation conditions.

Due to memory constraints whole recordings were not used during training and decoding.

The recordings used for training were divided into 60s segments. The recordings used for

evaluation were divided into 20s segments for a total of 1410 segments that were decoded

using an HMM of each order.

2.2.4.2 Training of high-order HMMs

Instead of directly training R-th order HMMs on the data, we use the method of Fast

Incremental Training (FIT) [12]. This has the advantage of also training all the HMMs

with order lower than R. The density functions of an N emitting-state, first-order HMM

are initialised by first dividing the training data into N regions utilising vector quantisa-

tion. The means of the N regions are then used to initialise diagonal covariance Gaussian

output density functions. The transition probabilities are initialised to be equal. The

FIT algorithm trains the R-th order HMM by starting with a fully-connected, first-order

HMM and increasing the order incrementally. Between each increase in order the HMM

parameters are trained using the Viterbi-re-estimation2 algorithm. State transition prob-

abilities which drop below a threshold of 10−5 are removed from the HMM. The initial,

fully-connected, first-order HMM has a total of 40 emitting states and 1680 state transi-

tion probabilities.

2The Viterbi-re-estimation algorithm is similar to the Baum-Welch re-estimation algorithm except
that it only considers the most likely state sequence instead of considering the summation of all state
sequences. This re-estimation is suboptimal, but has the advantage of being significantly faster.
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2.2.4.3 Measuring decoder performance

We define the search cost Cs as the number of transition probabilities evaluated during

decoding, and us it as an implementation independent measure of the performance of the

decoder. The number of pdfs are independent of the order of the HMM. Over the 1410

segments decoded we compute the average number of evaluated transition probabilities.

We compute the normalised search cost Cs,n by normalising the number of evaluated

transition probabilities with the maximum number of transition probabilities that the

standard Viterbi decoder would evaluate. This maximum number of evaluated transi-

tion probabilities is equal to the total number of transition probabilities of the HMM,

multiplied by the length of the feature vector T , thus the normalised search cost can be

computed as

Cs,n =
number of evaluated transitions

(number of transitions of HMM)× T
(2.21)

As the number of transition probabilities increases exponentially with the order of the

HMM, we expect the number of transitions evaluated by standard Viterbi-decoding to also

increase exponentially. We measure the search cost for forward Viterbi-beam decoding.

As the decoders are not guaranteed to find an optimal state sequence, the following

three results occur when a segment is decoded:

(a) the decoder does not find any state sequence,

(b) the decoder finds a state sequence, but it is not the optimal state sequence, and

(c) the decoder finds the optimal state sequence.

The segment is regarded as being correctly decoded only when the decoding results in (c).

Result (a) occurs (the decoder does not find any state sequence) because the width of

the beam was too narrow, resulting in a too small search space in which no single state

sequence survives the beam-pruning. A decoder can recover from this error by simply

decoding the segment again, this time with a wider beam-width, so that a larger search

space is examined. The number of transitions evaluated when the decoder fails to find

a state sequence for a segment is added to the total number of transitions required to

decode that particular segment.

The only practical method for determining whether a decoded state sequence is opti-

mal, is by comparing it with a reference state sequence. It is therefore very difficult for

the decoder to distinguish whether result (b) or (c) occurred. Thus the decoders used in

this dissertation cannot recover from errors as a result of (b).
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2.2.4.4 Results

We examine the decoding performance of the forward Viterbi-beam decoders when decod-

ing high-order HMMs. For this experiment the following two beam-pruning configurations

are investigated, as the order of the HMMs is increased:

• The beam-width is set to a constant width of B = 20.0.

• The minimum integer beam-width, for which the decoder correctly decodes all seg-

ments, is determined.

Constant beam-width

Fig. 2.6(a) shows the search cost (the number of transition probabilities evaluated) when

decoding an ergodic, left-context HMM with a constant beam-width of B = 20.0. The

cases shown are Viterbi decoding (the special case of Viterbi-beam decoding with an

infinite beam) and forward Viterbi-beam decoding for both the German (matched) and

English (unmatched) development sets. Table 2.1 tabulates the accuracy of decoding the

different order HMMs, when using a constant beam. We can see that for a constant beam

the decoding accuracy remains fairly consistently above 96%.

Minimum computational expense of decoder when correctly decoding all seg-

ments

Fig. 2.7(a) shows the number of transition probabilities evaluated when decoding an

ergodic, left-context HMM and increasing the beam-width until all segments are decoded

correctly. The cases shown are Viterbi decoding (the special case of Viterbi-beam decoding

with an infinite beam) and forward Viterbi-beam decoding for both the German (matched)

Table 2.1: The computational expense of the Viterbi-beam decoder during the forward

decoding of high-order, left-context HMMs, when the decoder is using a constant

beam-width of B = 20.0.

Search cost Cs Norm. cost Cs,n [%] Decoding Accuracy [%]

Order English German English German English German

1 993,708 961,853 53.71 51.99 98.37 99.86

2 870,291 833,683 16.85 16.14 96.60 99.65

3 996,221 942,520 7.06 6.68 97.52 99.65

4 1,134,157 1,059,379 3.39 3.17 97.87 99.31

5 1,252,957 1,161,283 1.74 1.62 97.16 98.75

6 1,356,728 1,232,086 0.94 0.86 96.31 97.50
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Figure 2.6: (a) The search cost (Cs) of the Viterbi-beam decoder, during the forward

decoding of high-order, left-context HMMs, when the decoder is using a constant

beam-width of B = 20.0. (b) The normalised search cost (Cs,n) of the Viterbi-beam

decoder, during the forward decoding of high-order, left-context HMMs, when the decoder

is using a constant beam-width of B = 20.0.
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and English (unmatched) development sets. Table 2.2 tabulates the minimum integer

beam-width required to correctly decode all segments.

2.2.4.5 Discussion

It is usually accepted that the computational expense of using high-order HMMs will

increase exponentially with the order of the HMMs. This is true when Viterbi decoding is

used without any beam-pruning, which is guaranteed to always obtain the optimal state

sequence. However, the results show that a significant reduction in the computational

expense of high-order HMMs can be achieved when using the Viterbi-beam decoder. The
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Figure 2.7: (a) The minimum search cost of the Viterbi-beam decoder, during the

forward decoding of high-order, left-context HMMs, with beams set wide enough to decode

all segments correctly. (b) The normalised search cost (Cs,n) of the Viterbi-beam

decoder, during the forward decoding of high-order, left-context HMMs, with beams set

wide enough to decode all segments correctly.
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disadvantage is that the admissibility of the Viterbi decoder is sacrificed when pruning is

employed to reduce the search space.

When the beam-width is kept constant, it appears that the number of transitions that

need to be evaluated only increases approximately linearly with the order of the HMM.

The decoding accuracy also seems to remain fairly consistent and this is the scenario when

Viterbi-beam decoders are employed in practical pattern recognition systems.

When the decoder manages to decode all segments correctly of the German develop-

ment set (the matched scenario), the required beam-width seems to remain in the range

between 24.0 and 35.0, and is the largest when the order is R = 5. When the decoder
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Table 2.2: The minimum computational expense of the Viterbi-beam decoder during the

forward decoding of high-order, left-context HMMs, with beams set wide enough to decode

all segments correctly.

Search cost Cs Norm. cost Cs,n [%] Beam-width B

Order English German English German English German

1 1,348,668 1,190,010 72.90 64.32 29.0 25.0

2 2,544,329 1,878,172 49.25 36.36 40.0 33.0

3 2,748,162 1,356,217 19.53 9.60 33.0 24.0

4 2,645,305 2,071,982 7.91 6.20 29.0 27.0

5 5,778,786 1,965,489 8.04 2.74 37.0 25.0

6 18,659,796 5,201,435 12.88 3.62 54.0 35.0

manages to decode all segments correctly of the English development set (the unmatched

scenario), the required beam-width seems to remain in the range between 30.0 and 40.0,

but significantly increases when the order is larger than R = 5. We suspect this is a

result of inadequate training data for the high-order HMMs, resulting in poorly estimated

high-order transition probabilities. These poorly estimated transition probabilities could

result in the decoder requiring a much wider beam-width in order to find all the optimal

state sequences. Another possibility is that the mismatch between training and evaluation

conditions could be the cause of the increase in required beam-width, since the English

development set generally resulted in a wider beam-width in order to final all optimal

state sequences. We do note that this method of increasing the beam-width until all

segments are correctly decoded is sensitive to outliers.

2.3 Summary

In this chapter we have reviewed the standard theory of hidden Markov models. We

discussed the concept of first-order equivalents of high-order HMMs, a technique which

allows us to always use the standard first-order algorithms when working with high-order

HMMs. This removes the need for separate versions of the standard algorithms for each

different order HMM.

We then discussed different types of decoding algorithms and presented the standard

decoding algorithm for first-order HMMs, namely the Viterbi algorithm. We continued

by expanding the Viterbi algorithm to include the decoding of general Rth-order HMMs.

We also discussed the beam-pruning of the decoding search space, which is performed by

only considering the most likely states to occur at each time instance. We noted that

standard Viterbi-beam decoding bases its state pruning on partial observation sequences.
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Lastly, we measured the computational expense of forward Viterbi-beam decoding of

high-order HMMs. We noted that when the pruning beam-width is kept constant, the

decoding accuracy remains fairly consistent. However, when the beam-width is increased

until all segments are decoded correctly, a certain order of HMM is reached where the

minimum required beam-width increases significantly. We noted that this could be a

result of inadequate training data for high-order HMMs, but could also be caused by

a mismatch between the training and evaluation conditions. We now have a decoding

performance base-line to which we can compare the decoders we will propose in the next

chapter.



Chapter 3

Forward-Backward Search of

high-order HMMs

In this chapter we discuss the two newly proposed decoders. Both of the decoders at-

tempt to incorporate information gleaned from low-order HMMs in order to reduce the

computational expense of decoding high-order HMMs. The first decoder is and adaption

of the Viterbi-beam decoder while the second decoder is the application of A* search to

the task of decoding high-order HMMs.

3.1 Forward-Backward Search based Viterbi decod-

ing

In the previous chapter we mentioned that the Viterbi-beam decoder bases its beam-

pruning on partial observation sequences. We also mentioned that a decoder that bases

its state pruning on complete observation sequences might result in a smaller search space,

while still managing to decode the optimal state sequences. In the first part of this chapter

we examine pruning based on complete observations. The development of this idea led

to the first of our proposed decoders: the Forward-Backward Search based Viterbi-beam

decoder (FBS-Viterbi-beam decoder).

3.1.1 Description

The FBS-Viterbi-beam decoder is very similar to the standard Viterbi-beam decoder.

The difference is that we wish to replace the beam-pruning strategy based on partial

observations, with a beam-pruning strategy that is based on complete observations. Since

we are using the complete observation this causes the FBS-Viterbi-beam decoder to be a

two-pass decoder. During the first pass of the decoder a heuristic function is calculated

that is used to prune the search graph. The second pass of the decoder is identical to

32
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the standard Viterbi-beam decoder. We can therefore use the same equations for the

calculation of the Rth-order, best-path forward probability as is used by the standard

Viterbi-beam decoder (as discussed in Section 2.2.2).

The FBS-Viterbi-beam decoder is still a time-synchronous search algorithm. We are

simply guiding the state pruning by calculating a heuristic function. Thus, the FBS-

Viterbi-beam decoder is not an informed search, since it still grows the search graph in

a time-synchronous manner and does not select nodes for expansion based on a heuristic

function.

It is important to note that, whether the Viterbi-beam decoder prunes the search

space based on partial or complete observation sequences, the same search graph is being

explored. The decoders only differ in the information that is used when choosing which

states to omit from the rest of the search. In the next section we will develop the equations

that are required to prune the search graph based on complete observations.

3.1.2 A state pruning strategy based on complete observations

Instead of only using the partial observation sequence to determine the probability of a

state at a certain time frame, we propose a beam-pruning strategy based on the complete

observation sequence. The proposed decoder should determine the subset of promising

candidates by calculating the joint probability of sequences of states, ending at the previ-

ous time instance, given the complete observation sequence XT
1 . Thus, given the complete

observation sequence, the decoder needs to calculate the state sequence probability

−→γ t(i1, i2, . . . , iR)

= P (st−R = i1, . . . , st−1 = iR|XT
1 , ΦR,lc)

=
−→α t−1(i1, i2, . . . , iR)

−→
β t−1(i1, i2, . . . , iR)

P (XT
1 |ΦR,lc)

(3.1)

where −→α t−1(i1, i2, . . . , iR) is defined to be the Rth-order forward probability P (st−R =

i1, . . . , st−1 = iR,Xt−1
1 |ΦR,lc) and

−→
β t−1(i1, i2, . . . , iR) is defined to be the Rth-order back-

ward probability P (st−R = i1, . . . , st−1 = iR|XT
t , ΦR,lc) (which is just the general case of

the first-order forward and backward probabilities defined in [38, 39, 40]).

In order to keep the most probable sequence of states at time t − 1 the decoder

does not need to directly calculate −→γ (i1, i2, . . . , iR), but can instead use the Rth-order

forward probability and backward probability −→α t−1(i1, . . . , iR) and
−→
β t−1(i1, . . . , iR), as

we are only interested in the ranking of the state sequences ending at time t − 1, and

P (st−R = i1, . . . , st−1 = iR|XT
1 , Φlc) ∼ −→α t−1(i1, . . . , iR)

−→
β t−1(i1, . . . , iR). Assuming that

−→α t−1(i1, . . . , iR) and
−→
β t−1(i1, . . . , iR) are equally expensive to calculate, the decoder now

has to perform double the amount of calculations. Since low-order HMMs have signifi-

cantly less parameters, computing a backward probability on a low-order HMM should
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be significantly less expensive. Therefore, instead of using the computationally expensive

Rth-order backward probability, we propose that the decoder could use the (R−K)-order

backward probability
−→
β t−1(iK+1, . . . , iR) where K < R. Thus the decoder would base its

pruning on the following equation:

−→γ (i1, i2, . . . , iR) ∼ P (st−R = i1, . . . , st−1 = iR,Xt−1
1 , ΦR,lc)×

P (XT
t |st−R+K = iK+1, . . . , st−1 = iR, ΦR−K,lc)

= −→α t−1(i1, . . . , iR)
−→
β t−1(iK+1, . . . , iR) (3.2)

However, when decoding the HMM using a forward Viterbi-beam decoder, the decoder

does not compute the forward probability −→α t−1(i1, . . . , iR), therefore the Rth-order best-

path forward probability
−→
δ t−1(i1, . . . , iR) is used instead, since we assume that

−→α t−1(i1, . . . , iR) ≈ −→δ t−1(i1, . . . , iR).

In the same manner, let us define the Rth-order, best-path backward probability as

−→ε t(i1, i2, . . . , iR) = max
ST

t+1

[
P

(
XT

t+1,S
T
t+1|st−R+1 = i1, . . . , st = iR, Φlc

)]
(3.3)

The (R−K)-order, best-path backward probability −→ε t−1(iK+1, . . . , iR) could be used to

replace the (R−K)-order, backward probability
−→
β t−1(iK+1, . . . , iR), once again assuming

that
−→
β t−1(iK+1, . . . , iR) ≈ −→ε t−1(iK+1, . . . , iR).

Thus, given the complete observation and guided by a (R − K)-order HMM, the

estimate of the likelihood of a state sequence occurring at a specific time can be written

as:

−̂→γ t−1(i1, i2, . . . , iR) = −→α t−1(i1, i2, . . . , iR)
−̂→
β t−1(i1, i2, . . . , iR)

= −→α t−1(i1, i2, . . . , iR)
−→
β t−1(iK+1, . . . , iR)

≈ −→
δ t−1(i1, i2, . . . , iR)−→ε t−1(iK+1, . . . , iR) (3.4)

Eq. 3.4 forms the basis of the state pruning strategy used by the proposed FBS-Viterbi-

beam decoder.

3.1.3 Calculation of the heuristic function

The heuristic function used to estimate the state likelihood −̂→γ t−1(i1, i2, . . . , iR) requires

the calculation of the best-path, backward probability of the (R−K)-order HMM, given

the state sequence XT
t−1. It should be possible to efficiently calculate this backward

probability, if we use a Viterbi-beam decoder that starts decoding from the rear of the

observation sequence. We refer to such a decoder as a backward Viterbi -beam decoder

and will discuss the decoder in more detail in Section 3.3. In the following section we will

discuss the derivation of the (R − K)-order, left-context HMM, on which the backward

decoding will be performed.
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3.1.3.1 Derivation of the (R−K)-order, left-context HMM

The estimated best-path backward probability, calculated using the (R −K)-order, left-

context HMM, must be approximately equal to the actual best-path, backward proba-

bility calculated using the Rth-order, left-context HMM. When deriving the low-order,

left-context HMM we can make changes to the set of pdfs or to the state transition prob-

abilities. By requiring that the (R − K)-order HMM uses the same set of pdfs as the

Rth-order HMM, we can ensure that the estimated, best-path backward probability will

only differ with respect to the state transition probabilities, given a specific partial state

sequence.

Deriving (R−K)-order state transition probabilities directly from the Rth-order state

transition probabilities is not a trivial exercise. However, the Rth-order conditional state

transition probabilities can be written in terms of joint state transition probabilities:

−→a i1i2···iR+1
= P (st = iR+1|st−1 = iR, . . . , st−R+1 = i2, st−R = i1)

=
P (st−R = i1, st−R+1 = i2, . . . , st = iR+1)

P (st−R = i1, st−R+1 = i2, . . . , st−1 = iR)
(3.5)

If we had access to the Rth-order joint state probability, it would be possible to calculate

the (R−K)-order conditional state probability as:

−→a iK+1iK+2···iR+1
= P (st = iR+1|st−1 = iR, . . . , st−R+1+K = iK+2, st−R+K = iK+1)

=
P (st−R+K = iK+1, st−R+K+1 = iK+2, . . . , st = iR+1)

P (st−R+K = iK+1, st−R+K+1 = iK+2, . . . , st−1 = iR)

with

P (st−R+K = iK+1, st−R+K+1 = iK+2, . . . , st = iR+1)

=
∑

i1,i2,···,iK

P (st−R = i1, st−R+1 = i2, . . . , st = iR+1),

with i1, i2, . . . , iK ∈ {0, · · · , N} (3.6)

These joint state probabilities are estimated during the training of the Rth-order HMM.

Since the HMM state transition parameters are typically stored as conditional state transi-

tion probabilities, we derive all the (R−K)-order HMMs (with K = 1, 2, . . . , R−1) when

training the Rth-order HMM1. The derivation of the R − K-order HMM is illustrated

in Fig. 3.1, using first-order equivalent HMMs. In the figure it can be seen how three

first-order equivalent states of the second-order HMM map to a single state in the derived

first-order HMM. The second-order HMM has a total of 20 state transition probabilities,

while the first-order HMM has only 8 state transition probabilities.

1It would be possible to derive the (R−K)-order HMM during decoding, if the HMM state transition
parameters were stored as joint state probabilities.
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Figure 3.1: The derivation of a first-order HMM from a second-order HMM (which is

shown in the figure by its first-order equivalent HMM).
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In conclusion, by backward Viterbi-beam decoding the (R − K)-order, left-context

HMM, we can estimate the (R−K)-order, best-path backward probability
−→ε t−1(iK+1, . . . , iR). This backward probability can be combined with the Rth-order, best-

path forward probability −→α t−1(i1, . . . , iR) to give an estimate of the likelihood of a state

occurring at time t−1. Since this combined likelihood is based on the complete observation

sequence, it should result in a smaller search graph, and therefore less computationally

expensive decoding.

3.2 Forward-Backward-based A* decoding

In the second part of this chapter we will discuss the application of the A* search algorithm

to the task of decoding high-order HMMs.

Even though the Forward-Backward-based Viterbi-beam decoder is a two-pass de-

coder, it still explores the search space in a time-synchronous manner. Time-asynchronous

A* search is another search method capable of incorporating information from low-order

HMMs. A* search performs the same decoding task as the Viterbi algorithm; the differ-

ence is that the Viterbi algorithm is a dynamic programming algorithm, while A* search
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is a graph search algorithm. A significant portion of the A* search discussion will be

spent on the development of a novel, admissible heuristic, which is used to guide the A*

search. For an in-depth discussion of A* search refer to [16] and [33].

3.2.1 Description of A* search

Given an HMM Φ, A* search is a graph search procedure used to find the state sequence

(denoted by S∗) most likely to have generated the observation sequence XT
1 . The search

graph G consists of a set of nodes. Certain pairs of nodes in the graph are connected

by arcs, and these arcs are directed from one member of the pair to the other. The arc

is directed from the parent node to the successor node. The arcs represent the cost of

making a transition from one node to another. The root node of G has no parent and is

called the root node ns. The purpose of A* search is to find the best path from the root

node to a given node ng called the goal node. This is done by starting at the root node

and growing the search graph G by successively expanding nodes until the goal node is

reached. A* is typically used to find the path with the minimum cost, but when decoding

HMMs, we are looking for the most likely state sequence, given the observation sequence

XT
1 .

Each node n in the graph G has the following attributes:

• The cost function g(n), which is the accumulated probability of the best partial

path from the root node ns to the node n.

• The heuristic function h(n), which is the estimated probability of the remaining

best path from the node n to the goal node ng.

• The evaluation function f(n) = g(n)h(n), which is the estimated total probability

of the best path going through node n.

• p(n) is the parent node of node n.

• M(n) is the successor nodes of node n.

The A* search maintains two lists: OPEN, which stores the nodes waiting to be selected

for expansion; and CLOSE, which stores the already expanded nodes. The A* search

procedure is summarised in the text below.
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1. Initialisation: Create a search graph G. Put the root node ns in the OPEN list and

create an initially empty CLOSE list.

2. LOOP: If OPEN is empty, terminate with failure.

3. Select and remove the first node n from OPEN and put n in on CLOSE.

4. If n = ng, terminate successfully with the state sequence obtained by backtracking

along the parent pointers from n to ns in G.

5. Expand n, generating the set of successors nodes M(n).

6. ∀v ∈M(n):

(a) If v ∈ OPEN: Denote v ∈ M(n) by vM and denote v ∈ OPEN by vOPEN. If

the accumulated probability of the new node is bigger than that of the node

in OPEN i.e. g(vM) > g(vOPEN):

i. Redirect the parent pointer of vOPEN to p(vOPEN) = n.

ii. Adjust the accumulated probability of vOPEN to g(vOPEN) = g(vM) and

recalculate f(vOPEN)

(b) If v ∈ CLOSE: Denote v ∈M(n) by vM and denote v ∈ CLOSE by vCLOSE. If

the accumulated probability of the new node is bigger than that of the node

in CLOSE i.e. g(vM) > g(vCLOSE):

i. Redirect the parent pointer of vOPEN to p(vOPEN) = n.

ii. Adjust the accumulated probability of vCLOSE to g(vCLOSE) = g(vM) and

recalculate f(vCLOSE)

iii. For each descendent of v ∈ G, decide whether to redirect its parent pointer,

and adjust its accumulated probability and evaluation function f .

(c) If (v 6∈ OPEN and v 6∈ CLOSE): Let p(v) = n and put v onto OPEN.

7. Reorder the OPEN list in increasing order of the evaluation function f(n). Goto

(2).

3.2.2 Admissibility of A* search

Let h∗(n) denote the actual probability of the best path from the node n to the goal node

ng. It is usually stated in the literature that A* search is admissible if h(n) is an under-

estimate (or lower-bound) of h∗(n). In such cases the A* search is used to find the path

with the minimum “cost”. When decoding HMMs, we want the path with the maximum
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probability. Thus, the A* decoding search of HMMs is admissible if the heuristic function

h(n) is an over-estimate of h∗(n) i.e. h(n) ≥ h∗(n).

3.2.3 A* decoding of first-order HMMs

In the case of first-order HMMs, a node n in the graph G represents an HMM state i

occurring at a certain time t. We therefore define the node nt(i) , (st = i). The arc

between two nodes nt−1(i) and nt(j) represents the probability “cost” c [nt−1(i), nt(j)] of

making a transition from state i at time t− 1, to state j at time t, given the observation

sequence XT
1 . This cost can be calculated as:

c [nt−1(i), nt(j)] = −→a ijbj(xt) (3.7)

The set of successor nodes M [nt−1(i)], which is generated when the A* search expands

node nt−1(i), is defined as:

M(nt−1(i)) , {nt(j)|−→a ij 6= 0, j ∈ {1, 2, . . . , N + 1}} (3.8)

The cost function of the successor nodes is calculated as:

g [nt(j)] = g [nt−1(i)] c [nt−1(i), nt(j)]

= g [nt−1(i)]−→a ijbj(xt) (3.9)

When decoding a first-order HMM Φ1 given the observation sequence XT
1 , the exact es-

timate of the heuristic function of node nt(i) is simply the best-path backward probability

i.e.

h∗ [nt(i)] = −→ε t(i) with i ∈ {0, 1, . . . , N + 1} (3.10)

The first-order, best-path backward probability is defined to be

−→ε t , max
ST

t+1

[
P (XT

t+1|st = i, Φ1,lc)
]

(3.11)

3.2.4 A* decoding of high-order HMMs

In the case of Rth-order HMMs, a node n in the graph G represents a state sequence

(st−R+1 = i1, st−R+2 = i2, . . . , st = iR) ending in state iR at time t. We therefore define

the node nt(i1, i2, . . . , iR) , (st−R+1 = i1, st−R+2 = i2, . . . , st = iR). The arc between

two nodes na = nt−1(i1, i2, . . . , iR) and nb = nt(i2, i3, . . . , iR+1) represents the probability

“cost” c [na, nb] of making a transition, at time t − 1, from state iR to state iR+1 at

time t, given the observation sequence XT
1 and the state sequence (st−R+1 = i1, st−R+2 =

i2, . . . , st−1 = iR−1). This cost can be calculated as:

c [na, nb] = −→a i1i2···iRiR+1
biR+1

(xt) (3.12)
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When the A* search expands node na the set of successor nodes M(na) is defined is:

M(na) ,
{
nt(i2, i3, . . . , iR+1)|−→a i1i2···iRiR+1

6= 0, iR+1 ∈ {1, 2, . . . , N + 1}
}

(3.13)

The cost function of the successor nodes is calculated as:

g [nb] = g [na] c [na, nb]

= g [nt−1(i1, i2, . . . , iR)]−→a i1i2···iR+1
biR+1

(xt) (3.14)

When decoding a Rth-order, left-context HMM ΦR,lc given the observation sequence

XT
1 , the exact estimate of the heuristic function of node nt(i1, i2, . . . , iR) is the Rth-order,

best-path backward probability i.e.

h∗ [nt(i1, i2, . . . , iR)] = −→ε t(i1, i2, . . . , iR), with i1, i2, . . . , iR = 0, 1, . . . , N + 1 (3.15)

The Rth-order, best-path backward probability was defined in Eq. 3.3.

3.2.5 Calculation of the heuristic function

The exact estimate of the heuristic function can be obtained by using the backward Viterbi

algorithm to compute the best-path backward probability of a Rth -order HMM

ΦR,lc =
{−→a i1i2···iR+1

, biR+1
(xt)|i1, . . . , iR+1 ∈ {0, 1, . . . , N + 1

}
}

for all states at all times. Computing this exact estimate unfortunately requires the same

amount of work as simply using the Viterbi algorithm to perform the backward decoding.

As the computational complexity of the Viterbi-algorithm is dependent on the order of

the HMM, decoding HMMs with a Markov order lower than R, should be computationally

less expensive than directly decoding the Rth-order HMM. To calculate the heuristic

function for the A* decoder, we therefore propose using (R−K)-order, left-context HMMs

(where K < R), which are derived from the Rth-order HMM. This is similar to our

proposal of using (R−K)-order HMMs in Section 3.1.3, except that when the A* search

grows the search graph, it will use the heuristic to select which nodes to expand.

We cannot directly use the (R −K)-order HMMs derived in Section 3.1.3, since this

will result in an inadmissible heuristic function. In the next section we show how (R−K)-

order, pseudo HMMs can be derived from the Rth-order HMM. Calculating the heuristic

function using these pseudo HMMs will result in an admissible A* search decoder.

3.2.5.1 Derivation of the R−K-order, left-context pseudo HMM

We want to derive an (R−K) order pseudo-HMM,

Φ̂R−K,lc =
{
−̂→a iK+1···iR+1

, b̂iR+1
(xt)|iK+1, . . . , iR+1 ∈ {0, 1, . . . , N + 1}

}
,
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from the Rth-order HMM, which will result in an admissible A* search. The requirement

for admissibility is that the heuristic function, for any node, must be an overestimate

of the Rth-order, best-path backward probability. By requiring that the (R − K)-order

pseudo HMM uses the same set of pdfs as the Rth-order HMM, we can ensure that the

estimated, best-path backward probability −̂→ε t(iK+2, . . . , iR) will only differ with respect

to the state transition probabilities.

We can derive a (R −K)-order state transition probability from the Rth-order state

transition probability by ignoring the identity of the first K states on which the Rth-order

state transition probability is conditionally dependent. In other words, the set of Rth-

order state transitions −→a i1···iR+1
will all map to a single (R − K)-order state transition

i.e. {−→a i1i2···iK iK+1···iR+1

}
⇒ −̂→a iK+1···iR+1

where i1, i2, . . . , iR+1 ∈ {0, 1, . . . , N + 1} (3.16)

This concept is illustrated in Fig. 3.2.

Figure 3.2: An example of deriving a first-order transition from a fourth-order

transition.

Fourth-order, left-context HMM state First-order, left-context HMM state
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−→a 22245

−→a 12345
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−→a 32115

−̂→a 45

−̂→a 15
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Furthermore, we can ensure that the estimated (R − K)-order, best-path backward

probability, is always an over-estimate of the Rth-order, best-path backward probability,

by choosing the value of the (R−K) state transition probability −→a iK+1···iR+1
to be equal

to the maximum probability occurring in the set of Rth-order state transitions mapping

to that state i.e

−̂→a iK+1···iR+1
= max

i1,···,iK

[−→a i1i2···iR+1

]
(3.17)

This will cause the derived pseudo-HMM Φ̂R−K,lc to not be a true HMM, since the tran-

sition probabilities leaving a certain state will not sum to unity i.e.∑
iR+1

−̂→a iK+1···iR+1
=

∑
iR+1

[
max

i1,···,iK

[−→a i1i2···iR+1

]]
6= 1 (3.18)

This is not a concern, since the backward Viterbi-beam decoder does not require that the

transition probabilities sum to unity.

Thus, the parameters of the left-context pseudo-HMM Φ̂R−K,lc is derived from the

left-context HMM ΦR,lc in the following manner:

Φ̂R−K,lc ,


−̂→a 0i1i2···ik = −→a 0i1i2···ik , k = 1, 2, . . . , K − 1
−̂→a iK+1···iR+1

= max
i1,···,iK

[−→a i1i2···iR+1

]
b̂iR+1

(xt) = biR+1
(xt)

with i1, . . . , iR+1 ∈ {0, 1, . . . , N + 1} (3.19)

The N state output pdfs of the pseudo HMM Φ̂R−K,lc are identical to the N state output

pdfs of the Rth-order HMM ΦR,lc. The topology and state output pdfs of the (R −K)-

order, left-context pseudo HMM are identical to that of the (R −K)-order, left-context

HMM derived for the FBS-Viterbi-beam decoder. The only difference is in the values

assigned to the (R−K)-order state transition probabilities.

The heuristic function is formally defined to be the best-path backward probability

calculated using the derived pseudo-HMM Φ̂R−K,lc i.e.

h [nt(i1, i2, . . . , iR)] , −̂→ε t(iK+2, . . . , iR), with i1, i2, . . . , iR ∈ {0, 1, . . . , N + 1} (3.20)

The proof of the admissibility of the this heuristic function, defined to be the best-path

backward probability −̂→ε t(i2, . . . , iR) calculated using the lower-order pseudo HMM Φ̂R−1,lc,

is presented in Appendix B.1.

3.2.6 Pruning of the A* search space

In a manner similar to the Viterbi-beam decoder, the A* decoder can also use beam-

pruning to limit the number of evaluated state sequences. There are two available options

of implementing A* search pruning. The first option is to base the pruning strategy
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on partial observations, which effectively means that the A* search prunes using the

value of the cost function g(n). The second option is to base the pruning strategy on

complete observations, which effectively means that the A* search prunes on the value of

the evaluation function f(n). We are of the opinion that the second option will result in

less computationally expensive decoding, since this is been the case when the Forward-

Backward search paradigm has been applied to speech recognition [43].

The pruning is implemented as a logarithmic beam-width B. All nodes at a certain

time t − 1, whose evaluation function does not fall within a certain threshold from the

node at time t−1 with the best evaluation function (seen thus far by the A* decoder), are

omitted from the rest of the search. The nodes are created by the A* search decoder, but

omitted from the search by simply not inserting them onto the OPEN list. If it is found,

at some point later in the search, that the evaluation function of a node is adjusted so

that it does now fall within the pruning threshold, the fact that the node was created by

the search means that it can be efficiently inserted onto the OPEN list. The threshold at

time index t is calculated as e−B max
k

f [nt(k)] , B ≥ 0

3.2.6.1 Pruned decoding of high-order HMMs

In the case of time-asynchronous, beam-pruning search algorithms of Rth-order HMMs,

the subset of promising candidates is determined by calculating the joint probability of

sequences of states, ending at the previous time instance, given the complete observation

sequence XT
1 . Less probable sequences of states, ending at the previous time instance, are

omitted from the rest of the search at time t. Thus, the A* decoder needs to calculate

the state sequence probability at time t− 1 as

−→γ t−1(i1, i2, . . . , iR) = P (st−R = i1, . . . , st−1 = iR|XT
1 , ΦR,lc)

=
−→α t−1(i1, i2, . . . , iR)

−→
β t−1(i1, i2, . . . , iR)

P (XT
1 |ΦR,lc)

(3.21)

In order to keep the most probable sequence of states at time t − 1 the decoder does

not need to directly calculate −→γ (i1, i2, . . . , iR) but can instead use −→α t−1(i1, . . . , iR) and
−→
β t−1(i1, . . . , iR), since we are only interested in the ranking of the state sequences ending

at time t− 1 and P (st−R = i1, . . . , st−1 = iR|XT
1 , Φlc) ∼ −→α t−1(i1, . . . , iR)

−→
β t−1(i1, . . . , iR).

When using a forward A* decoder to decode the HMM, the decoder does not com-

pute the forward probability −→α t−1(i1, . . . , iR), therefore the best-path forward probability
−→
δ t−1(i1, . . . , iR) = g [nt−1(i1, . . . , iR)] is used instead.

The A* decoder also does not compute the backward probability or even the best-path

backward probability. However, the heuristic function is an over-estimate of the best-path

backward probability. Thus the A* decoder bases its pruning of a node nt−1(i1, . . . , iR)

on the estimated probability of the node at time t − 1 given the complete observation
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sequence XT
1 i.e.

−→γ t−1(i1, . . . , iR) ∼ −→α t−1(i1, . . . , iR)
−→
β t−1(i1, . . . , iR)

≈ −→
δ t−1(i1, . . . , iR)−→ε t−1(i1, . . . , iR)

≤ g [nt−1(i1, . . . , iR)] h [nt−1(i1, . . . , iR)]

= f [nt−1(i1, . . . , iR)] (3.22)

3.3 Backward Viterbi-beam decoding of left-context

HMMs

Guiding the proposed decoders with information obtained from low-order HMMs, requires

the calculation of best-path backward probabilities. In order to efficiently calculate these

backward probabilities we need a decoder similar to the forward Viterbi-beam decoder,

except that it calculates the probabilities in the backward direction. We call such a

decoder a backward Viterbi -beam decoder and will now discuss it in more detail.

3.3.1 Backward decoding of first-order HMMs

In a manner similar to the first-order, best-path forward probability
−→
δ t(i) we define a

new first-order, best-path backward probability2 to be

−→ε ′
t(i) = max

ST
t+1

[
P (XT

t ,ST
t+1|st = i, Φlc)

]
(3.23)

i.e. the probability of the most likely state sequence ST
t , which has generated the partial

observation sequence XT
t , given that the single state sequence starts at time t in state

st = i and the HMM Φlc. We define
−→
Ψ

ε

t(i) to be the “forward” pointer of state i at time t

and it denotes the state most likely to follow state i at time t+1. The following induction

procedure is used to calculate −→ε ′
t(i):

1. Initialisation: (t = T )

−→ε ′
T (i) = bi(xT)−→a iN+1

−→
Ψ

ε

T (i) = N + 1

}
i = 1, . . . , N (3.24)

2We define the best-path backward probability −→ε ′
t(j) to include the observation at time t. The

backward probability βt(j) = P (XT
t+1|st = j, Φlc) is conventionally defined not to include the observation

at time t. The motivation for this will become clear during the discussion on the backward pruning
strategy in Section 3.3.3.
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2. Induction: (t = T − 1, T − 2, . . . , 2, 1)

−→ε ′
t(i) = bi(xt) max

j

[−→a ij
−→ε ′

t+1(j)
]

−→
Ψ

ε

t(i) = arg max
j

[−→a ij
−→ε ′

t+1(j)
]

 i = 1, . . . , N (3.25)

3. Termination:

−→ε ′
1 = max

i

[−→a 0i
−→ε ′

1(i)
]

s∗
1 = arg max

i

[−→a 0i
−→ε ′

1(i)
] (3.26)

4. Backtracking:

s∗
t =
−→
Ψ

ε

t−1(s
∗
t−1), t = 2, 3, . . . , T − 1, T

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(3.27)

3.3.2 Generalisation to high-order HMMs

We redefine the Rth-order best-path backward probability as

−→ε ′
t(i1, i2, . . . , iR) = max

ST
t+1

[
P

(
XT

t ,ST
t+1|st−R+1 = i1, . . . , st = iR, Φlc

)]
(3.28)

i.e. the probability of the most likely state sequence ST
t−R+1, which has generated the

partial observation sequence XT
t , given that the single state sequence starts at time t−R+1

with state sequence St
t−R+1 = {st−R+1 = i1, st−R+2 = i2, . . . , st = iR} and the HMM Φlc

(if we let R = 2 this definition of the best-path probability is similar to the definition

of the second-order, backward function βt(i1, i2) found in [24], except for the inclusion of

the observation xt at time t).
−→
Ψ

ε

t(i1, i2, . . . , iR) is defined to be the “forward” pointer at

time t of the state sequence {st−R+1 = i1, st−R+2 = i2, . . . , st = iR} and denotes the most

likely state to follow the state sequence at time t + 1. The following induction procedure

is used to calculate the backward best-path probability:

1. Initialisation: (t = T ; i1, . . . , iR = 1, 2, · · · , N)

−→ε ′
T (i1, i2, . . . , iR) = biR(xT )−→a i1i2···iR(N+1)

−→
Ψ

ε

T (i1, i2, . . . , iR) = N + 1
(3.29)

2. Induction: (t = T − 1, T − 2, . . . , R; i1, . . . , iR = 1, 2, · · · , N)

−→ε ′
t(i1, i2, . . . , iR) = biR(xt) max

iR+1

[
−→a i1i2···iR+1

−→ε ′
t+1(i2, i3, . . . , iR+1)

]
−→
Ψ

ε

t(i1, i2, . . . , iR) = arg max
iR+1

[
−→a i1i2···iR+1

−→ε ′
t+1(i2, i3, . . . , iR+1)

] (3.30)
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3. Induction: (t = R− 1, . . . , 2, 1; i1, . . . , iR = 1, 2, · · · , N)

−→ε ′
t(i1, i2, . . . , it) = bit(xt) max

it+1

[−→a 0i1i2···it+1
−→ε ′

t+1(i1, i2, . . . , it+1)
]

−→
Ψ

ε

t(i1, i2, . . . , it) = arg max
it+1

[−→a 0i1i2···it+1
−→ε ′

t+1(i1, i2, . . . , it+1)
] (3.31)

4. Termination:

−→ε ′
1 = max

i1

[−→a 0i1
−→ε ′

1(i1)
]

s∗
1 = arg max

i1

[−→a 0i1
−→ε ′

1(i1)
] (3.32)

5. Backtracking:

s∗
t =
−→
Ψ

ε

t−1(s
∗
t−R, s∗

t−R+1, · · · , s∗
t−1), t = R + 1, R + 2, . . . , T − 1, T

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(3.33)

3.3.3 Pruning the decoding search space

The backward Viterbi-beam decoder also uses pruning to limit the number of evaluated

state sequences. Instead of retaining all candidates at every time frame, a threshold is

used to keep only a subset of promising candidates.

3.3.3.1 Pruned decoding of first-order HMMs

For pruned searches in the backward direction, the decoder needs to calculate the state

sequence probabilities at time t + 1, given the partial observation sequence XT
t+1:

P (st+1 = j|XT
t+1, Φlc) =

P (XT
t+1, st+1 = j|Φlc)

P (XT
t+1|Φlc)

=
bj(xt+1)

−→
β t+1(j)P (st+1 = j|Φlc)

P (XT
t+1|Φlc)

(3.34)

Therefore, in order to keep the most probable states at time t + 1 we do not need to

directly calculate P (st+1 = j|XT
t+1, Φlc) but can instead use bj(xt+1)

−→
β t+1(j)P (st+1 =

j|Φlc) as we are only interested in the ranking of the states and P (st+1 = j|XT
t+1, Φlc) ∼

bj(xt+1)
−→
β t+1(j)P (st+1 = j|Φlc).

We can already see that the equation used for state pruning during backward Viterbi-

beam decoding differs from the equation used for pruning during forward decoding. Since

the conventionally defined backward probability
−→
β t+1(j) does not include the contribution

of the observation at time t + 1, the pruning strategy needs to multiply
−→
β t+1(j) with

bj(xt+1). This problem can be solved by defining a new backward probability that does
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include the contribution of the observation xt+1. The new backward probability is defined

as

−→
β

′
t+1(j) , P (XT

t+1|st = j, Φlc)

= P (xt+1|st = j, Φlc)P (XT
t+2|st = j, Φlc)

= bj(xt+1)
−→
β t+1(j) (3.35)

The second problem with beam-pruned backward decoding is that, according to Eq. 3.34,

the backward search pruning needs to multiply the best-path backward probability
−→
β

′
j(t+1) with the state prior probability P (st+1 = j|Φlc). This extra prior multiplication

already decreases the computational efficiency of backward decoding. The third problem

is that conventional HMMs typically do not store this state prior probability information;

only the conditional state transition probabilities are stored. We will therefore investigate

the computational efficiency of backward Viterbi-beam pruning with and without these

extra state prior probabilities. We will denote the state pruning with the state priors

as maximum a posteriori (MAP) beam pruning and the state pruning without the state

priors as maximum likelihood (ML) beam pruning. MAP-beam pruning is equivalent to

ML-beam pruning if the state priors are uniformly distributed. Since the MAP-beam

pruning is similar to a Bayesian classifier, we expect the ML-beam pruning to be more

computationally expensive than the MAP-beam pruning.

When using backward Viterbi-beam decoders to decode the HMM, the decoder does

not compute the newly defined backward probability
−→
β

′
t+1(j), therefore the best-path

backward probability −→ε ′
t+1(j) (which is defined to include the observation xt+1) is used

instead, since we assume that
−→
β

′
t+1(j) = bj(xt+1)

−→
β t+1(j) ≈ −→ε

′
t+1(j). For backward

decoding the MAP pruning threshold is calculated as

e−B max
k

[−→ε ′
t+1(k)P (st+1 = k|Φlc)

]
, B ≥ 0 (3.36)

When we use the first-order, best-path backward probability −→ε ′
t+1(j) in the proposed

FBS-based decoders, we also need to define a new first-order, best-path forward probabil-

ity
−→
δ

′
t+1(j) that excludes the observation at time t + 1, otherwise when we combine the

forward and backward best-path probabilities the likelihood of the observation xt+1 will

be included twice. Therefore
−→
δ

′
t(j) is defined as:

−→
δ

′
t(j) , max

St−1
1

[
P (Xt−1

1 ,St−1
1 , st = j|Φlc)

]
(3.37)

3.3.3.2 Pruned decoding of high-order HMMs

In the case of time-synchronous, beam-pruning search algorithms of Rth-order HMMs,

the subset of promising candidates is determined by calculating the joint probability of

sequences of states, ending at the following time instance, given the observations seen thus
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far. Less probable sequences of states, ending at the following time instance, are omitted

from the rest of the search at time t. For pruned searches in the backward direction, the

decoder needs to calculate

P (st−R+2 = i2, . . . , st+1 = iR+1|XT
t+1, Φlc)

=
P (st−R+2 = i2, . . . , st+1 = iR+1,X

T
t+1|Φlc)

P (XT
t+1|Φlc)

=
bj(xt+1)

−→
β t+1(i2, . . . , iR+1)P (st−R+2 = i2, . . . , st+1 = iR+1|Φlc)

P (XT
t+1|Φlc)

(3.38)

In order to keep the most probable states at time t + 1 we therefore do not need to

directly calculate P (st−R+2 = i2, . . . , st+1 = iR+1|XT
t+1, Φlc) but can instead use

bj(xt+1)
−→
β t+1(i2, . . . , iR+1)P (st−R+2 = i2, . . . , st+1 = iR+1|Φlc) as we are only interested in

the ranking of the states and P (st−R+2 = i2, . . . , st+1 = iR+1|XT
t+1, Φlc) ∼

bj(xt+1)
−→
β t+1(i2, . . . , iR+1)P (st−R+2 = i2, . . . , st+1 = iR+1|Φlc)

The same problem of the extra multiplication to include the observation xt+1, occurs

with the pruned decoding of high-order HMMs. We therefore define a new Rth-order,

backward probability as

−→
β

′
t+1(i2, . . . , iR+1)

, P (XT
t+1|st−R+2 = i2, . . . , st+1 = iR+1, Φlc)

= P (xt+1|st = i2, Φlc)P (XT
t+2|st−R+2 = i2, . . . , st+1 = iR+1, Φlc)

= bj(xt+1)
−→
β t+1(i2, . . . , iR+1) (3.39)

Similar to the backward of first-order HMMs, the newly defined backward probabil-

ity needs to be multiplied with the following joint state prior probability P (st−R+2 =

i2, . . . , st+1 = iR+1|Φlc), according to Eq. 3.38.

When using backward Viterbi-beam decoders to decode the HMM, the decoder does

not compute the backward probability
−→
β t+1(i2, . . . , iR+1), therefore the best-path back-

ward probability −→ε t+1(i2, . . . , iR+1) is used instead since we assume that

−→
β

′
t+1(i2, . . . , iR+1) = bj(xt+1)

−→
β t+1(i2, . . . , iR+1) ≈ −→ε ′

t+1(i2, . . . , iR+1)

When we use the (R−K)-order, best-path backward probability −→ε ′
t+1(iK+2, . . . , iR+1)

in the proposed decoders, we also need to define a new Rth-order, best-path forward prob-

ability
−→
δ

′
t+1(i2, . . . , iR+1) that excludes the observation at time t + 1, otherwise when we

combine the forward and backward best-path probabilities the likelihood of the observa-

tion xt+1 will be included twice. Therefore
−→
δ

′
t(i2, . . . , iR+1) is defined as:

−→
δ

′
t(i2, . . . , iR+1) , max

St−R
1

[
P (Xt−1

1 ,St−R
1 , st−R+1 = i2, . . . , st = iR+1|Φlc)

]
(3.40)
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3.3.4 Evaluating backward decoding of HMMs

We have made the assumption that the backward decoding of high-order HMMs is com-

putationally equivalent to the forward decoding of the same high-order HMMs. We now

investigate the computational expense of backward decoding high-order HMMs to test

the validity of our assumption.

We repeat the previous decoding experiment performed in Section 2.2.4, using the same

high-order, left-context HMMs. We use the same experimental setup for decoding left-

context HMMs as was used in Section 2.2.4, except that we only evaluate the decoding

performance using the English development set. This represents a scenario where the

training and evaluation conditions are mismatched. In this experiment we investigate the

decoding performance of the backward Viterbi-beam decoders when decoding high-order,

left-context HMMs.

3.3.4.1 Measuring decoder performance

As before, we use the search cost Cs (the number of transition probabilities evaluated

during decoding) as an implementation independent measure of the performance of the

backward Viterbi-beam decoder. Over the 1410 segments decoded we compute the average

number of evaluated transition probabilities. We compute the normalised search cost

Cs,n by normalising the number of evaluated transition probabilities with the maximum

number of transition probabilities that the standard Viterbi decoder would evaluate.

We measure the search cost for backward Viterbi-beam decoding of high-order HMMs

and compare it to the search cost for forward Viterbi-beam decoding, as was measured in

the experiment in Section 2.2.4.

3.3.4.2 Results

As in the previous experiment, the following two beam-pruning configurations are inves-

tigated as the order of the HMMs increases:

• The beam-width is set to a constant B = 20.0.

• The minimum integer beam-width is determined for which the decoder correctly

decodes all 1410 segments.

Constant beam-width

Fig. 3.3(a) shows the search cost Cs (the number of transition probabilities evaluated)

when decoding a left-context HMM. The four cases shown are Viterbi decoding; forward

Viterbi-beam decoding; backward Viterbi-ML-beam decoding and backward Viterbi-MAP-

beam decoding. From the results we note that backward Viterbi-beam decoding, with
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Figure 3.3: (a) The number of transitions evaluated by the Viterbi-ML-beam and

Viterbi-MAP-beam decoders (the search cost Cs), during the backward decoding of

high-order, left-context HMMs, when the decoders are using a constant beam-width of

B = 20.0. (b) The normalised search cost Cs,n of the Viterbi-ML-beam and

Viterbi-MAP-beam decoders, during the backward decoding of high-order, left-context

HMMs, when the decoders are using a constant beam-width of B = 20.0.
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either MAP-beam or ML-beam state pruning, is computationally significantly more ex-

pensive than forward Viterbi-beam decoding. It is interesting to note that the use of the

MAP-beam pruning does reduce the search cost, but it still requires significantly more

transition evaluations than the forward Viterbi-beam decoder. Table 3.1 tabulates the

accuracy of decoding the different order HMMs, when using a constant beam.
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Table 3.1: The computational expense of the Viterbi-ML-beam and Viterbi-MAP-beam

decoders, during the backward decoding of high-order, left-context HMMs, when the

decoders are using a constant beam-width of B = 20.0.

Search cost Cs Norm. cost Cs,n [%] Accuracy [%]

Order ML-beam MAP-beam ML-beam MAP-beam ML-beam MAP-beam

1 993,708 987,825 53.71 53.40 98.37 98.87

2 2,051,637 1,707,791 39.71 33.06 98.51 97.87

3 4,421,159 3,470,106 31.31 24.58 99.22 98.94

4 8,783,532 6,528,919 26.27 19.53 98.87 97.80

5 16,069,948 11,499,049 22.36 16.00 97.45 94.68

6 27,887,726 19,366,932 19.25 13.37 94.96 80.78

Minimum computational expense of decoder when correctly decoding all seg-

ments

Fig. 3.4(b) shows the normalised search cost of forward and backward Viterbi-beam de-

coders. The difference in normalised search cost is initially about 20% and slowly decreases

with an increase in the order of the HMM. Table 3.2 tabulates the minimum integer beam-

width required to correctly decoded all segments. Once again, backward Viterbi-beam

decoding still requires significantly more transition evaluations than forward Viterbi-beam

decoding, in order to obtain the same optimal state sequence. Thus our assumption that

forward and backward Viterbi-beam decoding is computationally equivalent is not valid.

Table 3.2: The minimum computational expense of the Viterbi-ML-beam and

Viterbi-MAP-beam decoders, during the backward decoding of high-order, left-context

HMMs, with beams set wide enough to decode all segments correctly.

Search cost Cs Norm. cost Cs,n [%] Beam-width B

Order ML-beam MAP-beam ML-beam MAP-beam ML-beam MAP-beam

1 1,400,373 1,395,639 75.67 75.44 31.0 31.0

2 3,683,111 3,655,706 71.32 70.79 37.0 40.0

3 7,168,392 6,952,352 50.80 49.27 30.0 33.0

4 13,683,229 12,348,516 40.98 36.99 28.0 30.0

5 30,471,123 26,313,034 42.48 36.69 32.0 33.0

6 80,206,383 - 55.36 - 45.0 -
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Figure 3.4: (a) The minimum search cost of the Viterbi-ML-beam and

Viterbi-MAP-beam decoders, during the backward decoding of high-order, left-context

HMMs, with beams set wide enough to decode all segments correctly. (b) The normalised

search cost of the Viterbi-ML-beam and Viterbi-MAP-beam decoders, during the

backward decoding of high-order, left-context HMMs, with beams set wide enough to

decode all segments correctly.
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3.3.4.3 Discussion

In Section 3.3.3 we discussed some of the differences between forward and backward

Viterbi-beam decoding. Specifically, we mentioned that when decoding first-order HMMs

using forward Viterbi-beam searches, we can directly use the already calculated best-path

forward probability
−→
δ t(i). However when decoding first-order HMMs using backward

Viterbi-beam searches, the best-path backward probability −→ε t(j) (which we have defined

to include the contribution of the observation at t) must be multiplied with the state

prior probability P (st = j|Φlc). For first-order HMMs we saw that the inclusion (or
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Figure 3.5: An illustration of the ‘time-synchronicity’ of the observation sequence and

state sequence during forward Viterbi decoding.
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exclusion) of this state probability P (st = j|Φlc) does not have a significant impact on

the computational efficiency of decoding the fully-connected, left-context HMM. However,

when the order of the HMM is increased, the inclusion of the joint state prior probability

P (st−R+1 = i1, . . . , st = iR|Φlc) does not cause the backward Viterbi-beam decoding to be

as computationally efficient as the forward Viterbi-beam decoding. Therefore, using the

best-path probability at time t + 1

−→ε t+1(i2, · · · , iR+1) = max
ST

t+2

[
P (st−R+2 = i2, . . . , st+1 = iR+1|XT

t+1, Φlc)
]

(3.41)

for state pruning during backward Viterbi-beam decoding, is not as efficient as using the

best-path probability at time t− 1

−→
δ t−1(i1, · · · , iR) = max

ST
t−2

[
P (st−R = i1, . . . , st−1 = iR|Xt−1

1 , Φlc)
]

(3.42)

for state pruning during forward Viterbi-beam decoding. Upon closer examination of

Eq. 3.42, which is used for state pruning during forward decoding, we note that the state

sequence under consideration and the observations are ‘time-synchronised’, as illustrated

in Fig. 3.5. This is not the case when we examine Eq. 3.41, which is used for state

pruning during backward decoding, as illustrated in Fig. 3.6. This ‘time-synchronicity’

in the forward direction and ‘time-asynchronicity’ in the backward direction is a direct

result of the definition of the state transition probabilities and the states with which the

observation pdfs are associated.

We suspect the fact that the observations and states are not synchronised results in

the backward Viterbi-beam decoder being computationally less efficient than the forward

Viterbi-beam decoder. This problem can be solved by adding the contributions of the

“missing” observations when performing backward Viterbi-beam decoding; thereby cal-

culating max
ST

t+2

[
P (st−R+2 = i2, . . . , st+1 = iR+1|XT

t−R+2, Φlc)
]
. However, this requires even

more additional calculations. Furthermore, the number of “missing” observations is de-

pendent on the order R of the HMM, therefore adapting the backward Viterbi-beam
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decoder to include the observations will also make the algorithm dependent on the order

of the HMM being decoded. This is not desirable as it nullifies the advantage of using

first-order equivalent HMMs of high-order HMMs.

3.4 Summary

In this chapter we have proposed two new algorithms for decoding high-order HMMs.

The motivation for both decoders is to use information obtained from decoding low-

order HMMs and to exploit the fact the decoding of low-order HMMs is significantly less

expensive than the decoding high-order HMMs.

The first decoder is a time-synchronous decoder which is nearly identical to the Viterbi-

beam decoder. It incorporates information, obtained by decoding low-order HMMs, into

the state pruning strategy. This extra information results in the pruning strategy being

based on the complete observation sequence as opposed to being based on only the partial

observation sequence. This should result in a more aggressive pruning of the search space,

while still preserving the ability to decode the optimal state sequence.

The second decoder is a time-asynchronous decoder which is an application of the A*

search algorithm to the task of decoding high-order HMMs. The novelty of this decoder

is the use of low-order HMMs when calculating the heuristic function used to guide the

A* search.

Both decoders require the calculation of a best-path backward probability, (which is

similar to the best-path forward probability) on low-order HMMs. We have therefore

adapted the forward Viterbi-beam decoder so that we can calculate the Rth-order, best-

path backward probability, assuming that forward and backward decoding of high-order

HMMs are computationally equivalent. As the proposed decoders are attempting to

exploit the decoding of low-order HMMs, it is necessary that forward and backward

decoding of HMMs are computationally equivalent.

Figure 3.6: An illustration of the ‘time-asynchronicity’ of the observation sequence and

state sequence during backward Viterbi decoding.
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Lastly, we tested the validity of our assumption of computational equivalence be-

tween forward and backward Viterbi-beam decoding. This was done by measuring the

computational expense of backward decoding high-order HMMs. We compared the new

results to the computational expense of forward decoding the same high-order HMMs. To

our surprise we found that the backward Viterbi-beam decoding of high-order HMMs is

computationally significantly more expensive than forward Viterbi-beam decoding.

The question arises whether decoding is fundamentally more computationally expen-

sive when time-reversing the observation sequence, than when the observation sequence

is kept the same. We suspect that it is not fundamental to the time-reversal of the obser-

vation sequence, but that the extra computation is caused by the asynchronicity between

the observations and states under consideration, when backward decoding. However, this

is a direct result of the definition of the state transition probabilities. We therefore believe

that the backward Viterbi-beam decoding is fundamentally more expensive than forward

Viterbi-beam decoding, if the same left-context HMM specification is used. If a different

HMM specification is used, which is mathematically equivalent to the original left-context

HMM specification, we might find that backward decoding is not more expensive.

In the next chapter we will discuss a solution to this problem, by defining a new

HMM specification, and demonstrate how high-order HMMs can be backward decoded as

efficiently as they are forward decoded using this new HMM specification.



Chapter 4

Right-context, high-order HMMs

4.1 Motivation

In the previous chapter we demonstrated that decoding a high-order, left-context HMM

with the forward Viterbi-beam decoder is computationally more efficient than decod-

ing it with the backward Viterbi-beam decoder. The backward Viterbi-beam decoder

is a critical component of our newly proposed decoders, as it calculates the best-path

backward probability required to guide the decoding searches. If backward decoding is

fundamentally more expensive than forward decoding, then any reduction in search cost

that we might gain by using low-order HMMs will be negated by the computationally

more expensive backward decoding.

The right-context HMM was developed as a solution to this problem of computation-

ally more expensive backward decoding of high-order HMMs. The right-context HMM

effectively solves the problem by ‘time-synchronising’ the observations and the state se-

quence under consideration, without having to resort to extra calculations in order to add

“missing” observations or joint state probabilities. We will demonstrate in this chapter

that the right-context HMM, which is mathematically equivalent to the left-context HMM,

can be backward Viterbi-beam decoded as computationally efficiently as the left-context

HMM can be forward Viterbi-beam decoded.

In the first part of this chapter we will present the right-context HMM. We will show

how the Viterbi-beam decoder can be extended to include the decoding of high-order,

right-context HMMs. We will demonstrate the equivalence of the left- and right-context

HMM by measuring the forward- and backward Viterbi search cost.

In the second part of this chapter we will show how the right-context HMM can be used

to calculate the heuristic functions required by both the low-order guided Viterbi-beam

decoder and the A* search decoder.

56
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4.2 Derivation and Definition

Given a Rth-order HMM, we want to compute the probability of the state sequence St+R−1
t

given the observation sequence XT
t and the HMM Φ (we deliberately do not make any

assumptions regarding the model at this stage), i.e.

P (st = i1, . . . , st+R−1 = iR|XT
t , Φ) =

P (st = i1, . . . , st+R−1 = iR,XT
t |Φ)

P (XT
t |Φ)

(4.1)

The joint probability of the state sequence St+R−1
t and the observation sequence XT

t can

be calculated as:

P (st = i1, . . . , st+R−1 = iR,XT
t |Φ)

=
∑
ST

t+R

P (st = i1, . . . , st+R−1 = iR,ST
t+R,XT

t |Φ)

=
∑
ST

t+R

[
P (XT

t |st = i1, . . . , st+R−1 = iR,ST
t+R, Φ)×

P (st = i1, . . . , st+R−1 = iR,ST
t+R|Φ)

]

By applying the output independence assumption, we note that

P (XT
t |st = i1, . . . , st+R−1 = iR,ST

t+R, Φ) is simply the contributions of the state output

pdfs, i.e.

P (XT
t |st = i1, . . . , st+R−1 = iR,ST

t+R, Φ) = bi1(xt) · · · biR(xt+R−1)
T∏

τ=t+R

bsτ (xτ ) (4.2)

Furthermore, we note that by applying Bayes’ Theorem, we can calculate the state se-

quence probability P (st = i1, . . . , st+R−1 = iR,ST
t+R|Φ) as:

P (st = i1, . . . , st+R−1 = iR,ST
t+R|Φ)

= P (st = i1|st+1 = i2, . . . , st+R−1 = iR,ST
t+R, Φ)×

P (st+1 = i2, . . . , st+R−1 = iR,ST
t+R|Φ)

= P (st = i1|st+1 = i2, . . . , st+R−1 = iR,ST
t+R, Φ)×

P (st+1 = i2|st+2 = i3, . . . , st+R−1 = iR,ST
t+R|Φ) . . . P (sT−1|sT , Φ)P (sT |Φ) (4.3)

This calculation is very similar to the calculation of the forward probability, except that

the state transition probabilities are conditioned on the subsequent states. If we make

the further assumption that for a Rth-order, right-context HMM the state transitions are

only conditionally dependent on the subsequent R states i.e.

←−a i1i2...iR+1
, P (st = i1|st+1 = i2, . . . , st+R = iR+1) with

N+1∑
i1=0

←−a i1i2...iR+1
= 1, i2, . . . , iR ∈ {1, . . . , N + 1} (4.4)
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Figure 4.1: (a) A two emitting-state, second-order, right-context HMM. (b) First-order

equivalent of (a).
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then we can simplify the state sequence probability to be

P (st = i1, . . . , st+R−1 = iR,ST
t+R|Φ) =←−a i1i2···iRst+R

. . .←−a sT−1sT
←−a sT (N+1) (4.5)

If we define the Rth-order, backward probability of the right-context HMM to be

←−
β t(i1, i2, . . . , iR) = max

ST
t+R

[
P (XT

t , st = i1, . . . , st+R−1 = iR,ST
t+R|Φrc)

]
(4.6)

we can calculate P (st = i1, . . . , st+R−1 = iR|XT
t , Φ) as

P (st = i1, . . . , st+R−1 = iR|XT
t , Φ) =

P (st = i1, . . . , st+R−1 = iR,XT
t |Φ)

P (XT
t |Φ)

=

←−
β t(i1, i2, . . . , iR)

P (XT
t |Φ)

(4.7)

and therefore the most likely states at time t given the subsequent observations can be

determined without having to resort to extra calculations.

The definition of the right-context HMM is thus identical to the definition of the

left-context HMM except for the definition of the state transition probabilities. The

right-context HMM is obtained by redefining the conditional state transition probability

ai1i2...iR+1
.

A right-context, N emitting-state HMM Φrc is defined by the parameter set

Φrc =
{←−a i1i2...iR+1

, bi1(x), i1, i2, . . . , iR+1 ∈ {0, · · · , N + 1}
}

(4.8)
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Fig. 4.1(a) illustrates a two-state, right-context HMM of the second order. We see

that the right-context HMM is very similar to the left-context HMM shown in Fig. 2.2(a)

and once again two states are coupled by multiple transition probabilities. Fig. 4.1(b)

illustrates the first-order equivalent of the right-context HMM which bears a striking

resemblance to the first-order equivalent of the left-context HMM (shown in Fig. 2.2(b)).

4.3 Decoding of Right-context HMMs

In this section we will show how the forward- and backward Viterbi-beam decoders can be

adapted to the decoding of high-order, right-context HMMs. The forward Viterbi-beam

decoding of right-context HMMs is not strictly necessary, but we include the derivation

for completeness. We will see that forward decoding of right-context HMMs suffer from

the same problems as backward decoding of left-context HMMs.

4.3.1 Forward Viterbi-beam decoding of right-context HMMs

4.3.1.1 Forward Viterbi decoding of first-order, right-context HMMs

The right-context, best-path forward probability
←−
δ t(i) is defined as

←−
δ t(i) = max

St−1
1

[
P (Xt

1,S
t−1
1 |st = i, Φrc)

]
(4.9)

←−
δ t(i) is the probability of the most likely state sequence St−1

1 , which has generated the

partial observation sequence Xt
1, given that the state sequence ends at time t in state i

and the HMM Φrc.
←−
Ψ

δ

t (i) is the back pointer of state st = i and denotes the state most

likely to precede the state i at time t − 1. The following induction procedure is used to

calculate
←−
δ t(i):

1. Initialisation: (t = 1; i = 1, 2, . . . , N)

←−
δ 1(i) =←−a 0ibi(x1)
←−
Ψ

δ

1(i) = 0
(4.10)

2. Induction: (t = 2, 3, . . . , T ; j = 1, 2, . . . , N)

←−
δ t(j) =

[
max

i

←−
δ t−1(i)←−a ij

]
bj(xt)

←−
Ψ

δ

t (i) = arg max
i

[←−
δ t−1(i)←−a ij

] (4.11)

3. Termination:

←−
δ T = max

i

[←−
δ T (i)←−a i(N+1)

]
s∗

T = arg max
i

[←−
δ T (i)←−a i(N+1)

] (4.12)
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4. Backtracking:

s∗
t =
←−
Ψ

δ

t+1(s
∗
t+1), t = T − 1, T − 2, . . . , 2, 1

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(4.13)

4.3.1.2 Generalisation to high-order, right-context HMMs

The right-context, best-path forward probability
←−
δ t(i2, i3, . . . , iR+1) is defined as

←−
δ t(i2, i3, . . . , iR+1) = max

St−1
1

[
P (Xt

1,S
t−1
1 |st = i2, . . . , st+R−1 = iR+1, Φrc)

]
(4.14)

←−
δ t(i2, i3, . . . , iR+1) is the probability of the most likely state sequence St+R−1

1 , which has

generated the partial observation sequence Xt
1, given that the state sequence ends at

time t + R − 1 in St+R−1
t = {st = i2, st+1 = i3, . . . , st+R−1 = iR+1} and the HMM Φrc.

←−
Ψ

δ

t (i2, i3, . . . , iR+1) is the back pointer of state sequence {st = i2, st+1 = i3, . . . , st+R−1 =

iR+1} and denotes the state most likely to precede the state sequence at time t− 1. The

following induction procedure is used to calculate
←−
δ t(i2, i3, . . . , iR+1):

1. Initialisation: (t = 1; i1, i2, . . . , iR = 1, 2, . . . , N)

←−
δ 1(i1, i2, . . . , iR) =←−a 0i1i2iRbi1(x1)
←−
Ψ

δ

1(i1, i2, . . . , iR) = 0
(4.15)

2. Induction: (t = 2, 3, . . . , T −R; i2, . . . , iR+1 = 1, 2, . . . , N)

←−
δ t(i2, i3, . . . , iR+1) =

[
max

i1

←−
δ t−1(i1, i2, . . . , iR)←−a i1i2···iR+1

]
bi2(xt)

←−
Ψ

δ

t (i2, i3, . . . , iR+1) = arg max
i1

[←−
δ t−1(i1, i2, . . . , iR)←−a i1i2···iR+1

] (4.16)

3. Induction: (t = T −R + 1, . . . , T ; it−T+R, . . . , iR = 1, 2, . . . , N)

←−
δ t(it−T+R, it−T+R+1, . . . , iR) =

max
it−T+R−1

[ ←−
δ t−1(it−T+R−1, it−T+R, . . . , iR)×
←−a it−T+R−1it−T+R···iR(N+1)

]
bit−T+R

(xt)

←−
Ψ

δ

t (it−T+R+1, it−T+R+2, . . . , iR+1) =

arg max
it−T+R

[ ←−
δ t−1(it−T+R, it−T+R+1, . . . , iR + 1)×
←−a it−T+Rit−T+R+1···iRiR+1(N+1)

] (4.17)

4. Termination:

←−
δ T = max

i1

[←−
δ T (i1)←−a i1(N+1)

]
s∗

T = arg max
i1

[←−
δ T (i1)←−a i1(N+1)

] (4.18)
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5. Backtracking:

s∗
t =

{ ←−
Ψ

δ

t+1(s
∗
t+1, s

∗
t+2, · · · , s∗

T ), t = T − 1, T − 2, . . . , T −R + 1
←−
Ψ

δ

t+1(s
∗
t+1, s

∗
t+2, · · · , s∗

t+R), t = T −R, . . . , 2, 1

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(4.19)

Note that the Rth-order, best-path forward probability
←−
δ t(i2, i3, . . . , iR+1) of a right-

context HMM is now the conditional probability of the observation sequence given the

state sequence. It also excludes the contribution of the observation sequence Xt+R−1
t+1 ,

although it is given the information that the HMM occupies the state sequence St+R−1
t+1 =

(st+1 = i3 . . . , st+R−1 = iR+1). Thus
←−
δ t(i2, i3, . . . , iR+1) has the same time-asynchronicity

between the observations and the sequence of states under consideration as the Rth order,

best-path backward probability −→ε ′
t(i1, i2, . . . , iR) of a left-context HMM has. We therefore

suspect that the forward Viterbi-ML-beam decoding of a right-context HMM will be

significantly less efficient than the backward Viterbi-MAP-beam decoding (the opposite

is true when decoding left-context HMMs).

4.3.2 Backward Viterbi-beam decoding of right-context HMMs

In this section we present the backward Viterbi-beam decoding of right-context HMMs.

This decoding algorithm will be used to calculate heuristic functions using the derived

(R−K)-order HMMs in both the FBS-Viterbi-beam decoder and the A* search decoder.

4.3.2.1 Backward Viterbi decoding of first-order, right-context HMMs

In a manner similar to the first-order, best-path forward probability
←−
δ t(i) we define the

first-order, best-path backward probability to be

←−ε t(i) = max
ST

t+1

[
P (XT

t , st = i,ST
t+1|Φrc)

]
(4.20)

i.e. the probability of the most likely state sequence ST
t , which has generated the partial

observation sequence XT
t , and ends at time t in state st = i, given the HMM Φrc. We

define
←−
Ψ

ε

t(i) to be the “forward” pointer of state i at time t and it denotes the state most

likely to follow state i at time t+1. The following induction procedure is used to calculate
←−ε t(i):

1. Initialisation: (t = T )

←−ε T (i) = bi(xT )←−a i(N+1)
←−
Ψ

ε

T (i) = N + 1

}
i = 1, . . . , N (4.21)
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2. Induction: (t = T − 1, T − 2, . . . , 2, 1)

←−ε t(i) = bi(xt) max
j

[←−a ij
←−ε t+1(j)]

←−
Ψ

ε

t(i) = arg max
j

[←−a ij
←−ε t+1(j)]

 i = 1, . . . , N (4.22)

3. Termination:

←−ε 1 = max
i

[←−a 0i
←−ε 1(i)]

s∗
1 = arg max

i
[←−a 0i
←−ε 1(i)]

(4.23)

4. Backtracking:

s∗
t =
←−
Ψ

ε

t−1(s
∗
t−1), t = 2, 3, . . . , T − 1, T

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(4.24)

4.3.2.2 Generalisation to high-order, right-context HMMs

We define the Rth-order, best-path backward probability

←−ε t(i1, i2, . . . , iR) = max
ST

t+R

[
P

(
XT

t , st = i1, . . . , st+R−1 = iR,ST
t+R|Φrc

)]
(4.25)

i.e. the probability of the most likely state sequence ST
t , which has generated the partial

observation sequence XT
t and starts at time t with state sequence St+R−1

t = {st = i1, st+1 =

i2, . . . , st+R−1 = iR}, given the HMM Φrc.
←−
Ψ

ε

t(i1, i2, . . . , iR) is the “forward” pointer at

time t of the state sequence {st = i1, st+1 = i2, . . . , st+R−1 = iR} and denotes the most

likely state to follow the state sequence at time t + 1. The following induction procedure

is used to calculate the backward best-path probability:

1. Initialisation: (t = T − 1, . . . , T −R + 1; i1, . . . , iR = 1, 2, · · · , N)

←−ε T (iR) = biR(xT )←−a iR(N+1)

←−ε t(it−T+R, . . . , iR) = bit−T+R
(xt)←−a it−T+R···iR(N+1)

←−ε t+1(it−T+R+1, . . . , iR)
←−
Ψ

ε

T (i1, i2, . . . , iR) = N + 1

(4.26)

2. Induction: (t = T −R, T −R− 1, . . . , 1; i1, . . . , iR = 1, 2, · · · , N)

←−ε t(i1, i2, . . . , iR) = bi1(xt) max
iR+1

[
←−a i1i2···iR+1

←−ε t+1(i2, i3, . . . , iR+1)
]

←−
Ψ

ε

t+R−1(i1, i2, . . . , iR) = arg max
iR+1

[
←−a i1i2···iR+1

←−ε t+1(i2, i3, . . . , iR+1)
] (4.27)

3. Termination:

←−ε 1 = max
i1,...,iR

[←−a 0i1···iR
←−ε 1(i1, . . . , iR)]

{s∗
1, . . . , s

∗
R} = arg max

i1,...,iR
[←−a 0i1···iR

←−ε 1(i1, . . . , iR)]
(4.28)
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4. Backtracking:

s∗
t =
←−
Ψ

ε

t−1(s
∗
t−R, s∗

t−R+1, · · · , s∗
t−1), t = R + 1, R + 2, . . . , T − 1, T

S∗ = (s∗
1, s

∗
2, . . . , s

∗
T )

(4.29)

4.4 Evaluating decoding of right-context HMMs

Since we have defined the right-context HMM and have adapted the Viterbi-beam decoder

we are now ready to test whether the backward decoding of high-order, right-context

HMMs is computationally equivalent to the forward decoding of high-order, left-context

HMMs.

We repeat the previous decoding experiment using the equivalent right-context HMMs.

We use the same experimental setup for decoding right-context HMMs as was used in

Sections 2.2.4 and 3.3.4 when decoding left-context HMMs. We use both the German

and English development set to evaluate the decoding. The German development set

represents the scenario where the training and evalution conditions are matched. The

evaluation performed on the English development set represents the scenario where there

is a mismatch between the training and evaluation conditions.

The parameters of the right-context HMMs were estimated concurrently with the

parameters of the left-context HMMs, using the FIT algorithm. The purpose of the

experiment is to measure and compare the forward and backward search cost of right-

context, high-order HMMs.

4.4.1 Measuring decoder performance

As before, we use the search cost Cs (the number of transition probabilities evaluated

during decoding) as an implementation independent measure of the performance of the

backward Viterbi-beam decoder. Over the 1410 segments decoded we compute the average

number of evaluated transition probabilities. We compute the normalised search cost

Cs,n by normalising the number of evaluated transition probabilities with the maximum

number of transition probabilities that the standard Viterbi decoder would evaluate.

4.4.2 Results

As in the two previous experiments, the following two beam-pruning configurations are

investigated as the order of the HMMs increase:

• The beam-width is set to a constant B = 20.0.

• The minimum integer beam-width is determined for which the decoder correctly

decodes all 1410 segments.
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Constant beam-width

Figure 4.2: (a) The search cost (Cs) of the forward Viterbi-ML-beam and backward

Viterbi-MAP-beam decoders, during the decoding of high-order, right-context HMMs,

when the decoders are using a constant beam-width of B = 20.0. (b) The normalised

search cost (Cs,n) of the forward Viterbi-ML-beam and backward Viterbi-MAP-beam

decoders, during the decoding of high-order, right-context HMMs, when the decoders are

using a constant beam-width of B = 20.0.

1 2 3 4 5 6
0

5

10

15
x 10

7 (a)

S
ea

rc
h 

C
os

t C
s

HMM Order

1 2 3 4 5 6
0

20

40

60

80
(b)

N
or

m
. S

ea
rc

h 
C

os
t C

s,
n [%

]

Viterbi
Forward Viterbi−ML−beam (English)
Backward Viterbi−MAP−beam (English)
Backward Viterbi−MAP−beam (German)

Forward Viterbi−ML−beam (English)
Backward Viterbi−MAP−beam (English)
Backward Viterbi−MAP−beam (German)

Fig. 4.2 illustrates the results for Viterbi decoding, forward Viterbi-ML-beam decod-

ing and backward Viterbi-MAP-beam decoding when a logarithmic beam of B = 20.0.

Table 4.1 tabulates the accuracy of decoding the different order HMMs, when using a con-

stant beam. We have included the forward Viterbi-ML-beam decoding results in order

to test our prediction that forward Viterbi-ML-beam decoding is computationally more

expensive than backward Viterbi-MAP-beam decoding (of right-context HMMs).

As suspected the forward Viterbi-ML-beam decoder is significantly less efficient than

the backward Viterbi-MAP-beam decoder. The right-context HMM seems to exhibit
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Table 4.1: The minimum computational expense of the Viterbi-MAP-beam decoder,

during the backward decoding of high-order, right-context HMMs, when the decoder is

using a constant beam-width of B = 20.0.

Search cost Cs Norm. cost Cs,n [%] Decoding Accuracy [%]

Order English German English German English German

1 987,825 954,282 53.40 51.58 98.37 99.93

2 871,345 834,039 16.87 16.14 98.23 99.86

3 1,005,864 952,662 7.12 6.75 99.15 99.86

4 1,132,977 1,062,294 3.39 3.18 99.09 99.51

5 1,247,568 1,153,796 1.74 1.60 98.37 98.68

6 1,358,567 1,228,074 0.94 0.86 95.23 96.39

the same decoding behaviour as the left-context HMM when the order is increased. It

is interesting to note that, when the beam-width is kept constant, the search cost of

the matched scenario (the German development set) and the mismatched scenario (the

English development set) is very similar.

Minimum computational expense of decoder when correctly decoding all seg-

ments

Fig. 4.3 illustrates the results for Viterbi decoding, forward Viterbi-ML-beam and back-

ward Viterbi-MAP-beam decoding when all segments are decoded correctly. Table 4.2

tabulates the minimum integer beam-width required to correctly decode all segments.

Once again we see that, upto the order of R = 4, the backward search cost is similar in

both the matched and mismatched scenarios. When the HMM order is further increased,

the minimum required beam-width increases significantly for the German development

set (the matched scenario).

A comparison of the decoding of equivalent left- and right-context HMMs

Fig. 4.4 compares the search cost as well as the normalised search cost of equivalent left-

context and right-context HMMs, when a constant beam-width of B = 20.0 is used. It

can be clearly seen that the backward decoding of the right-context HMM is as efficient

as the forward decoding of the left-context HMM, when the beam-width is kept constant.

It is interesting to note that decoding the second-order HMM is computationally less

expensive than decoding the first-order HMM. Higher order HMMs are more complex and

are typically better able to model the training data, but with the increased complexity

comes the danger of having high-order transition probabilities that are poorly estimated

as a result of insufficient training data. We suspect that the second-order HMM is less
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Figure 4.3: (a) The minimum search cost (Cs) of the forward Viterbi-ML-beam and

backward Viterbi-MAP-beam decoders, during the decoding of high-order, right-context

HMMs, when the decoders correctly decode all segments. (b) The normalised search cost

(Cs,n)of the forward Viterbi-ML-beam and backward Viterbi-MAP-beam decoders, during

the decoding of high-order, right-context HMMs, with beams set wide enough to decode

all segments correctly.
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expensive to decode, since it is a better representation of the data than the first-order

HMM, and the order of the HMM is still low enough that the second-order transition

probabilities are well estimated.

Fig. 4.5 compares the search cost (the number of evaluated transitions) as well as

the normalised search cost of equivalent left-context and right-context HMMs, when all

segments are decoded correctly. It is interesting to note that, for the mismatched scenario

(the English development set), there is a much larger difference between the computational

expense of forward and backward decoding than in Fig. 4.4. It could be that backward

decoding the right-context HMM is fundamentally more efficient than forward-decoding
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the left-context HMM. Since increasing the beam-width until all segments are decoded

correctly is sensitive to outliers in the data, we suspect that it is more likely that the

difference in computational expense is random. This suspicion is supported by the results

of the matched scenario (the German development set), which shows an even bigger

difference between the computational expense of forward and backward decoding. In

order to verify this suspicion, it would be useful to repeat the comparison of backward

and forward decoding on some of the other language pairs of the CallFriend speech corpus.

4.4.3 Discussion

The results seem to indicate that the ‘time-synchronicity’ between observations at the

states under consideration is the reason why forward Viterbi-beam decoding is less ex-

pensive than backward decoding of left-context HMMs. This statement is supported

by the fact that, when the beam-widths are equal, backward Viterbi-beam decoding

of right-context HMMs is as efficient as forward decoding of left-context HMMs. The

fact that forward decoding of right-context HMMs, which now also suffer from time-

asynchronicity of observations and state sequences, is computationally more expensive

than backward decoding, also supports this statement. We now have a computation-

ally efficient method of determining the right-context, best-path backward probability.

Unfortunately, we cannot directly use the right-context, best-path backward probability

when using the proposed decoders to forward decode high-order, left-context HMMs, since
−→ε ′

t(i1, . . . , iR) 6= ←−ε t(i1, . . . , iR). In the following section we will derive the relationship

between left-context and right-context, best-path backward probabilities.

Table 4.2: The minimum computational expense of the Viterbi-MAP-beam decoder,

during the backward decoding of high-order, right-context HMMs, with beams set wide

enough to decode all segments correctly.

Search cost Cs Norm. cost Cs,n [%] Beam-width B

Order English German English German English German

1 1,400,373 1,051,089 75.70 56.82 31.0 22.0

2 2,369,132 1,051,343 45.86 20.35 38.0 23.0

3 1,994,318 2,147,897 14.12 15.23 28.0 30.0

4 2,439,604 2,453,055 7.30 7.34 28.0 29.0

5 5,010,755 6,415,398 6.97 8.93 35.0 40.0

6 11,466,957 20,042,568 7.91 13.96 45.0 58.0
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Figure 4.4: A comparison of (a) the search cost, and (b) the normalised search cost of

the Viterbi-MAP-beam decoder (during the forward decoding of high-order, left-context

HMMs) and the Viterbi-MAP-beam decoder (during the backward decoding of high-order,

right-context HMMs), when the decoders are using a constant beam-width of B = 20.0.
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4.5 Computing Heuristics by using Right-context

HMMs

We have managed to make the backward Viterbi-beam decoding of right-context HMMs

computationally efficient and the algorithm independent of the order of the HMM. Our

newly proposed decoders combines the left-context, best-path forward and backward prob-

abilities, when performing state pruning. We therefore need to relate the left-context,

best-path backward probability to the right-context, best-path backward probability.

For t = R,R + 1, . . . , T , the relationship between the two backward probabilities can
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Figure 4.5: A comparison of (a) the search cost, and (b) the normalised search cost of

the Viterbi-MAP-beam decoder (during the forward decoding of high-order left-context

HMMs) and the Viterbi-MAP-beam decoder (during the backward decoding of high-order,

right-context HMMs), with beams set wide enough to decode all segments correctly.
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be derived as follows:

←−ε t−R+1(i1, . . . , iR)

= max
ST

t+1

[
P (XT

t−R+1,S
T
t+1, st−R+1 = i1, . . . , st = iR|Φ)

]
= bi1(xt−R+1) . . . biR−1

(xt−1) max
ST

t+1

[
P (XT

t ,ST
t+1, st−R+1 = i1, . . . , st = iR|Φ)

]
= bi1(xt−R+1) . . . biR−1

(xt−1) max
ST

t+1

[
P (XT

t ,ST
t+1|st−R+1 = i1, . . . , st = iR, Φ)×

P (st−R+1 = i1, . . . , st = iR|Φ)

]
= bi1(xt−R+1) . . . biR−1

(xt−1)P (st−R+1 = i1, . . . , st = iR|Φ)×

max
ST

t+1

[
P (XT

t ,ST
t+1|st−R+1 = i1, . . . , st = iR, Φ)

]
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= bi1(xt−R+1) . . . biR−1
(xt−1)P (st−R+1 = i1, . . . , st = iR|Φ)−→ε ′

t(i1, . . . , iR) (4.30)

According to Section 4.3.2.2, for t = R − 1, R − 2, . . . , 2, 1 the left-context, best-path

backward probability is:

−→ε ′
t(i1, i2, . . . , it)

= bit(xt) max
it+1

[−→a 0i1···it+1
−→ε ′

t+1(i1, i2, . . . , it+1)
]

= max
it+1

[
bit(xt)−→a 0i1···itit+1bit+1(xt+1) max

it+2

[−→a 0i1···it+1it+2
−→ε ′

t+1(i1, . . . , it+1, it+2)
]]

= max
it+1,···,iR

[
bit(xt)−→a 0i1···itit+1bit+1(xt+1)−→a 0i1···itit+1it+2bit+2(xt+2) . . .

biR−1
(xR−1)−→a 0i1···itit+1···iR

−→ε ′
R(i1, i2, . . . , it, it+1, . . . , iR)

]

= max
it+1,···,iR


bit(xt)−→a 0i1···it+1bit+1(xt+1)−→a 0i1···it+2bit+2(xt+2) . . .

biR−1
(xR−1)−→a 0i1···itit+1···iR×←−ε 1(i1,i2,...,it,it+1,...,iR)

bi1
(x1)...bit (xt)bit+1

(xt+1)...biR−1
(xR−1)P (s1=i1,...,st=it,st+1=it+1,...,sR=iR|Φ)


= max

it+1,···,iR

[ −→a 0i1···itit+1
−→a 0i1···it+2

...
−→a 0i1···itit+1···iR

←−ε 1(i1,i2,...,it,it+1,...,iR)

bi1
(x1)...bit−1

(xt−1)P (s1=i1,...,st=it,it+1=it+1,...,sR=iR|Φ)

]
= max

it+1,···,iR

[
P (s1=0,s1=i1,...,st=it,st+1=it+1,...,sR=iR|Φ)

←−ε 1(i1,i2,...,it,it+1,...,iR)
P (s1=0,s1=i1,...,st=it|Φ)bi1

(x1)...bit−1
(xt−1)P (s1=i1,...,st=it,st+1=it+1,...,sR=iR|Φ)

]
= max

it+1,···,iR

[ ←−a 0i1···itit+1···iR
←−ε 1(i1, i2, . . . , it, it+1, . . . , iR)

bi1(x1) . . . bit−1(xt−1)P (s1 = i1, . . . , st = it|Φ)

]

=

max
it+1,···,iR

[←−a 0i1···sR
←−ε 1(i1, i2, . . . , it, it+1, . . . , sR)]

bi1(x1) . . . bit−1(xt−1)P (s1 = i1, . . . , st = it|Φ)
(4.31)

Thus, the left-context, best-path backward probability can be written in terms of the

right-context, best-path backward probability as follows:

t = T, T − 1, . . . , R :

−→ε ′
t(i1, i2, . . . , iR) =

←−ε t−R+1(i1, i2, . . . , iR)

bi1(xt−R+1) . . . biR−1
(xt−1)P (st−R+1 = i1, . . . , st = iR|Φ)

t = R− 1, . . . , 1 :

−→ε ′
t(i1, i2, . . . , it) =

max
it+1,···,iR

[←−a 0i1···sR
←−ε 1(i1, i2, . . . , it, it+1, . . . , sR)]

bi1(x1) . . . bit−1(xt−1)P (s1 = i1, . . . , st = it)
(4.32)

Upon examination of Eq. 4.32 we see that we need to convert the right-context, best-

path backward probability to a left-context, best-path backward probability, before we

can incorporate the probability into our new decoders. However, the conversion requires

extra multiplications and is also dependent on the order of the HMM being decoded.

Therefore, it might seem as if we have not gained anything by using a right-context HMM

to calculate the best-path backward probability. We could simply have performed the

extra multiplications when backward decoding the left-context HMM (as mentioned in

Section 3.3.4.3). However, this would require at least R extra calculations for each state
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in the search graph. In the worst-case scenario, where little or no state pruning occurs

during the backward Viterbi-beam decoding of the (R −K)-order HMM, the conversion

will require (Nfeq)T (R − K) extra calculations, where Nfeq is the number of emitting

states of the first-order equivalent (R−K)-order HMM.

We therefore propose an alternative method of converting the right-context, best-path

backward probabilities to left-context, best-path backward probabilities that will require

at most 2(Nfeq)T extra calculations. This alternative method uses the “forward” pointers
←−
Ψ

ε

t(i1, i2, . . . , iR) which are determined as part of the backward Viterbi-beam decoding

process. The process is similar to the backtracking that is used when obtaining the optimal

state sequence, except that backtracking is performed for all states and all time indexes.

4.5.1 Alternate conversion of best-path backward probability

If we are given the left-context, best-path “forward” pointers
−→
Ψ

ε

t(i1, i3, . . . , iR), we could

easily calculate the left-context, best-path backward probability −→ε ′
t(i1, i3, . . . , iR). This

is done by starting at the final state sT = N +1 and recursively calculating −→ε t(i1, . . . , iR)

as:

For t = T − 1, . . . , R :

−→ε ′
t(i1, . . . , iR) = biR(xt)−→a i1···iR+1

−→ε ′
t+1(i2, i3, . . . ,

−→
Ψ

ε

t(i1, . . . , iR))

For t = R− 1, . . . , 1 :

−→ε ′
t(i1, . . . , it) = bit(xt)−→a 0i1···it+1

−→ε ′
t+1(i1, i2, . . . ,

−→
Ψ

ε

t(i1, . . . , it)) (4.33)

and noting that

−→ε ′
T (i1, . . . , iR, N + 1) = 1.0

−→
Ψ

ε

T (i1, . . . , iR) = N + 1 (4.34)

In the previous section we have proven the relationship between the left-context, best-

path forward probability and the right-context, best-path forward probability. This can

be used to prove that the left-context forward pointers are equal to the right context

forward pointers
−→
Ψ

ε

t(i1, . . . , iR) =
←−
Ψ

ε

t(i1, . . . , iR). For t = T, T − 1, . . . , R the left-context

“forward” pointers can be determined as follows:

−→
Ψ

ε

t(i1, i2, . . . , iR)

= arg max
iR+1

[
−→a i1i2···iR+1

−→ε ′
t+1(i2, i3, . . . , iR+1)

]
= arg max

iR+1

[ −→a i1i2···iR+1
←−ε t−R+2(i2, i3, . . . , iR+1)

bi2(xt−R+2) . . . biR(xt)P (st−R+2 = i2, . . . , st+1 = iR+1|Φ)

]
= arg max

iR+1

[
−→a i1i2···iR+1

←−ε t−R+2(i2, i3, . . . , iR+1)

P (st−R+2 = i2, . . . , st+1 = iR+1|Φ)

]



Chapter 4 — Right-context, high-order HMMs 72

= arg max
iR+1

[
P (st−R+1 = i1, . . . , st+1 = iR+1|Φ)←−ε t−R+2(i2, i3, . . . , iR+1)

P (st−R+1 = i1, . . . , st = iR|Φ)P (st−R+2 = i2, . . . , st+1 = iR+1|Φ)

]
= arg max

iR+1

[
P (st−R+1 = i1, . . . , st+1 = iR+1|Φ)←−ε t−R+2(i2, i3, . . . , iR+1)

P (st−R+2 = i2, . . . , st+1 = iR+1|Φ)

]
= arg max

iR+1

[←−a i1...iR+1
←−ε t−R+2(i2, i3, . . . , iR+1)

]
=
←−
Ψ

ε

t−R+1(i1, i2, . . . , iR) (4.35)

Thus, for t ≥ R the left-context and right-context “forward” pointers are identical. For

t = R− 1, . . . , 1 the left-context “forward” pointers can be determined as follows:

−→
Ψ

ε

t(i1, i2, . . . , it)

= arg max
it+1

[−→a 0i1i2···it+1
−→ε ′

t+1(i1, i2, . . . , it+1)
]

= arg max
it+1

−→a 0i1i2···it+1 max
it+2,···,iR

[←−a 0i1···sR
←−ε 1(i1, . . . , it+1, it+2, . . . , sR)]

bi1(x1) . . . bit(xt)P (s1 = i1, . . . , st = it+1|Φ)


= arg max

it+1

[
max

it+2,···,iR

[−→a 0i1i2···it+1
←−a 0i1···it+1it+2···iR

←−ε 1(i1, i2, . . . , it+1, it+2, . . . , iR)

bi1(x1) . . . bit(xt)P (s1 = 0, s1 = i1, . . . , st+1 = it+1|Φ)

]]
= arg max

it+1

[
max

it+2,···,iR

[ ←−a 0i1···it+1it+2···iR
←−ε 1(i1, . . . , it+1, it+2, . . . , iR)

bi1(x1) . . . bit(xt)P (s1 = 0, s1 = i1, . . . , st = it|Φ)

]]
= arg max

it+1

[
max

it+2,···,iR

[←−a 0i1···it+1it+2···iR
←−ε 1(i1, . . . , it+1, it+2, . . . , iR)

]]
(4.36)

If we more close examine the result of Eq. 4.36, we note that an maximisation occurs with

regards to various state index variable i.e.

max
it+2,···,iR

[←−a 0i1···it+1it+2···iR
←−ε 1(i1, . . . , it+1, it+2, . . . , iR)

]
(4.37)

This maximisation bears a striking similarity to the maximisation that occurs as part of

the Viterbi algorithm. In the next chapter we will show that this maximisation can be

efficiently calculated using the Viterbi algorithm. In summary, the left-context “forward”

pointers can be written in terms of the right-context “forward” pointers as follows:

For t = T − 1, . . . , R :
−→
Ψ

ε

t(i1, . . . , iR) =
←−
Ψ

ε

t(i1, . . . , iR)

For t = R− 1, . . . , 1 : (4.38)

−→
Ψ

ε

t(i1, . . . , it) = arg max
it+1

[
max

it+2,···,iR

[←−a 0i1···it+1···iR
←−ε 1(i1, . . . , it+1, . . . , iR)

]]
Since the left-context forward pointers are equal to the right context forward point-

ers (except for t < R), we can use the computationally efficient backward Viterbi-beam

decoder on the right-context HMM to calculate
←−
Ψ

ε

T (i1, . . . , iR) and them efficiently cal-

culate the left-context, best-path backward probability −→ε t(i1, . . . , iR) recursively. This
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alternative method of calculating the left-context, best-path backward probability is used

in both the FBS-Viterbi-beam decoder and the A* search decoder when calculating the

respective heuristic functions.

4.5.2 Computing the Viterbi-beam heuristic with low-order, right-

context HMMs

In section 3.1.3.1 we discussed how an (R − K)-order, left-context HMM can be built

for use with the low-order guided Viterbi-beam decoder. The heuristic function was

calculated by backward Viterbi-beam decoding the (R − K)-order, left-context HMM

ΦR−K,lc. Since, it is computationally expensive to backward decode ΦR−K,lc, we propose

deriving an equivalent (R−K)-order, right-context HMM ΦR−K,rc. By backward decoding

ΦR−K,lc, we should be able to more efficiently calculate the heuristic function used to guide

the state pruning of the low-order guided Viterbi-beam decoder.

The pdfs of the ΦR−K,rc are identical to the pdfs of the Rth-order, left-context HMM

ΦR,lc. Furthermore, the right-context state transition probabilities are derived from the

same joint state probabilities that was used to derive the left-context state transition

probabilities of the (R−K)-order, left-context HMM.

←−a iK+1iK+2···iR+1
= P (st = iK+1|st+1 = iK+2, . . . , st−K+R = iR+1)

=
P (st = iK+1, st+1 = iK+2, . . . , st−K+R = iR+1)

P (st+1 = iK+2, . . . , st−K+R = iR+1)

with

P (st = iK+1, st+1 = iK+2, . . . , st−K+R = iR+1)

=
∑

i1,i2,···,iK

P (st = iK+1, . . . , st−K+R = iR+1), i1, i2, . . . , iK ∈ {0, · · · , N + 1}(4.39)

4.5.3 Computing the A* heuristic with right-context, pseudo

HMMs

The derivation of the (R−K)-order, right-context pseudo HMM Φ̂R−K,rc is not as simple as

that of the (R−K)-order, right-context HMM ΦR−K,rc (derived in the previous section).

This is because the parameters of the HMM Φ̂R−K,rc must be chosen so that the left-

context, best-path “forward” pointers are equal to the right-context, best-path “forward”

pointers at all time indexes t and for all states i.e.

−̂→
Ψ

ε

t(iK+1, iK+2, . . . , iR) =
←̂−
Ψ

ε

t(iK+1, iK+2, . . . , iR), where t = 1, 2, . . . , T

and iK+1, iK+2, . . . , iR ∈ {0, 1, . . . , N + 1} (4.40)
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If we ensure that the HMM Φ̂R−K,rc uses the same set of pdfs as the Rth-order, left

context HMM ΦR,lc, then only the state transition probabilities can cause the forward

pointers to differ.

The (R−K)-order, left-context pseudo transition probability is obtained by ignoring

the identity of the first K states on which the Rth-order, left-context transition probability

is dependent. The value of (R−K)-order transition probability −̂→a iK+1···iR+1
is associated

with a single Rth-order transition probability i.e.

−̂→a iK+1···iR+1
= −→a i∗1···i∗K iK+1···iR+1

=
P (st−R+1 = i∗1, · · · , st−R+K−1 = i∗K , st−R+K = iK+1, · · · , st = iR+1)

P (st−R+1 = i∗1, · · · , st−R+K−1 = i∗K , st−R+K = iK+1, · · · , st−1 = iR)

where

{i∗1, . . . , i∗K} = arg max
i∗1,...,i∗K

[−→a i1···iK iK+1···iR+1

]
(4.41)

In order to ensure that the right-context forward pointers are equal to the left-context

forward pointers, we want the (R−K)-order, right-context transition probabilities to be

associated with the same Rth-order state sequence.

If the parameters of the right-context, pseudo-HMM Φ̂R−K,rc are derived from the

left-context HMM ΦR,lc in the following manner:

Φ̂R−K,rc ,


←̂−a ik···iR(N+1) =←−a ik···iR(N+1), k = K + 1, . . . , R
←̂−a iK+1iK+2···iR+1

= −→a i∗1···i∗K iK+1···iR+1

P (st−R+K=iK+1,...,st−1=iR)

P (st−R+K+1=iK+2,...,st=iR+1)

b̂iR+1
(xt) = biR+1

(xt)

where i2, . . . , iR+1 ∈ {0, 1, . . . , N + 1}

(4.42)

which will result in the “forward” pointers being equal. This is proven in Appendix B.2.

The heuristic function for the A* search decoder is therefore calculated by first back-

ward Viterbi-beam decoding a (R − K)-order, right-context pseudo HMM Φ̂R−K,rc to

obtain the “forward” pointers
←̂−
Ψ

ε

t(iK+1, iK+2, . . . , iR). These “forward” pointers are then

used to calculate the (R−K)-order, left-context, best-path forward probability
←̂−ε

′
t(iK+1, iK+2, . . . , iR), which is the heuristic function required by the A* search decoder

h [nt(i1, i2, i3, . . . , iR)] = ←̂−ε
′
t(iK+1, iK+2, . . . , iR) (as described in Section 4.5.1).

4.6 Summary

This chapter started with the introduction of the right-context HMM. The new right-

context HMM is our proposed solution to the problem of computational discrepancy

between forward and backward Viterbi-beam decoding of high-order, left-context HMMs.
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After adapting the decoding algorithms to also include right-context HMMs, we demon-

strated that the mathematically equivalent right-context HMM can be backward Viterbi-

beam decoded as computationally efficiently as the left-context HMM can be forward

Viterbi-beam decoded. This supports our belief that backward decoding of HMMs is not

fundamentally more expensive than forward decoding of HMMs. This also leads us to

conclude that the conventional left-context HMM is only one way of viewing the under-

lying stochastic process. The newly derived right-context HMM is simply another way

of viewing the same underlying process. The left- and right-context HMMs differ in that

they are suited to different decoding approaches.

Since we are primarily interested in using information obtained from decoding low-

order HMMs to guide the decoding of high-order HMMs, we spent the rest of the chapter

discussing how the right-context HMM can be used to calculate the heuristic functions that

are used by the proposed decoders (as discussed in the previous chapter). We mentioned

that we cannot use the right-context, best-path backward probabilities directly. It would

also be prohibitively expensive to convert the already calculated right-context, best-path

backward probabilities to left-context, backward probabilities. We therefore showed that

it is possible to efficiently calculate the left-context, backward probabilities by using the

right-context, “forward” pointers, which are calculated as part of the backward decoding

process. Lastly we discussed how (R − K)-order, right-context HMMs can be derived

from the Rth-order HMM, so that the heuristic function can be calculated.

In the next chapter we will discuss some of the practical issues that need to be ad-

dressed when implementing the low-order guided decoders.
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Implementation Issues

In this section we will discuss some of the practical issues that arise when implementing the

newly proposed decoders. The first two issues are applicable to both decoders, while the

implementation of the A* decoder caused some issues unique to asynchronous decoders.

The first issue involves the conversion of the right-context, best-path backward proba-

bilities into left-context, best-path backward probabilities. Specifically the issue revolves

around obtaining a one-to-one mapping of states between the equivalent left- and right-

context HMMs. The second issue involves a method of avoiding redundant observation

likelihood calculations, and arose because the derived HMMs share the same set of pdfs

as the high-order HMM.

The A* decoder requires that additional bookkeeping overhead be performed to sort

the OPEN list and to determine which nodes in the search graph have already been

expanded. The first of the A* decoder implementation issues involves the choice of the

data structures used to represent the intermediate calculations, so that the overhead can

be kept to a minimum. Since the A* decoder is an asynchronous decoder it must store

information regarding the states occurring at any time instance. The second of the A*

implementation issues involves the efficient management of the memory space that is

occupied by nodes constructed during the search process.

5.1 Best-path backward probability conversion

In Section 4.5.1 we derived the left-context “forward” pointers in terms of the right-

context, best-path backward probabilities as follows:

For t = T − 1, . . . , R :
−→
Ψ

ε

t(i1, . . . , iR) =
←−
Ψ

ε

t(i1, . . . , iR)

For t = R− 1, . . . , 1 :

−→
Ψ

ε

t(i1, . . . , it) = arg max
it+1

[
max

it+2,···,iR

[←−a 0i1···it+1···iR
←−ε 1(i1, . . . , it+1, . . . , iR)

]]

76
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Figure 5.1: (a) The first-order equivalent HMM of a two emitting-state, second-order,

right-context HMM. (b) The first-order equivalent HMM of a two emitting-state,

second-order, right-context HMM, with the extra null states added to the beginning of the

HMM.
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Therefore, for t ≥ R we have a one-to-one mapping between states in the left-context

HMM and states in the equivalent right-context HMM. However, for t < R, we have a

many-to-one mapping of states, since we have to perform a maximisation over the state

sequence SR
t+2 = {st+2 = it+2, . . . , sR = iR}. For efficient implementation, it would be

preferable to have a one-to-one mapping between the left- and right-context HMMs at

every time index.

The problem is that a state sequence, which starts at time t = 1 and is shorter than

R i.e. St
1 = {s1 = i1, . . . , st = it}, corresponds to a unique state in the left-context, first-

order equivalent HMM, but does not correspond to a unique state in the right-context,

first-order equivalent HMM. However, the maximisation over the state sequence SR
t+2 can

be efficiently performed using the Viterbi algorithm. Therefore, the solution is to add

extra null states to the beginning of the right-context, first-order equivalent HMM, in

such a way that such a state sequence does correspond to a unique state. This concept

is illustrated in Fig. 5.1. We define the “extra” best-path backward probabilities of the

right-context HMM to be

←−ε 1(i1, i2, . . . , it) = max
it+1

[←−a 0i1···it+1
←−ε 1(i1, i2, . . . , it+1)

]
(5.1)
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with ←−a 0i1···it = 1 for t = 1, 2, . . . , R− 1. Note that this operation if similar to the normal

Viterbi maximisation step. The extra “forward” pointers can now be determined as

←−
Ψ

ε

1(i1, i2, . . . , it) = arg max
it+1

[←−a 0i1···it+1
←−ε 1(i1, i2, . . . , it+1)

]
= arg max

it+1

[
max

it+2,···,iR

[←−a 0i1···it+1···iR
←−ε 1(i1, . . . , it+1, . . . , iR)

]]
=
−→
Ψ

ε

1(i1, i2, . . . , it) (5.2)

Therefore, if the expanded right-context HMM is backward Viterbi-beam decoded,

the left-context “forward” pointers for t < R are calculated as part of the decoding

process. Therefore, the addition of extra null states to the right-context HMM allows

the backward Viterbi-beam algorithm to calculate and store all the “forward” pointers

necessary for calculating the heuristic function. During backward Viterbi-beam decoding

the extra null states will only be used at time t = 1, and therefore will not significantly

influence the computational expense of the decoder.

5.2 Observation density likelihood cache

High-order HMMs and their derived, low-order HMMs share the same set of pdfs. Since

the pdf likelihoods are all calculated when the heuristic function is determined (by back-

ward Viterbi-beam decoding of the low-order HMM), we store the pdf likelihoods in

a cache, so that the subsequent search algorithm (A* or forward Viterbi-beam on the

high-order HMM) does not have to recalculate the same pdf likelihoods. The cache is

implemented as a matrix of floating point values and has a size of N × T , where N is the

number of first-order emitting states and T is the length of the observation sequence.

5.3 A* Implementation

In this section we discuss some of the issues that need to be addressed when implementing

an A* search algorithm. The A* search does not create the complete search graph, but

constructs only the relevant section of the graph as the search progresses. This is done

by starting at the root node and creating new nodes as the search progresses. Unlike the

time-synchronous Viterbi-beam decoder, which only has to keep track of the search graph

at time indexes t and t− 1, the A* search needs to keep track of the whole search graph

that has been constructed thus far. In order to do this efficiently the data structures used

to implement the A* search need to be chosen carefully.
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5.3.1 Data Structures

We have decided to implement each node as a single object in memory. The node object

has the following attributes:

• t the time index of the node n.

• s the state index of the node n.

• The cost function g(n), which is the accumulated probability of the best partial

path from the root node ns to the node n.

• The heuristic function h(n), which is the estimated probability of the remaining

best path from the node n to the goal node ng.

• The evaluation function f(n) = g(n)h(n), which is the estimated total probability

of the best path going through node n.

• p(n) A pointer to the parent node of the node n.

• M(n) The set of pointers to the successor nodes of the node n.

• A boolean variable indicating if the node n has already been expanded.

which is also illustrated in Fig. 5.2.

In our implementation of A* search we use an OPEN and ALL list. The OPEN list

is the list of all nodes that can be expanded. The ALL list is a list of all the nodes that

already exists in the search graph (both expanded and unexpanded). The use of an ALL

list does not differ from the discussion of the A* algorithm in Section 3.2.1, since the ALL

Figure 5.2: The parameters of an A* node object.

t : time index
s : state index

p(n) : pointer to parent node

M(n) : set of pointers to successor nodes

g(n) : cost function
h(n) : heuristic function
f(n) : evaluation function
bool : indicates whether node

has been expanded
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list is simply the union of the OPEN and CLOSED list. We have chosen to use an ALL

list since it simplifies determining whether a node has been constructed.

The OPEN list must be sorted according to the evaluation function of the nodes on

the list. We also want to quickly remove the node with the highest evaluation function

from the OPEN list. Therefore, we have chosen to use a binary red-black tree to represent

the OPEN list. The binary red-black tree is sorted during the insertion of new entries

onto the list. Insertion into the list is of the order log2(d), where d is the size of the

list [44]. Removing the node with the highest evaluation function is not dependent on

the size of the list. The OPEN list does not contain the node objects themselves, but

contains references (pointers) to the node objects. Therefore it becomes necessary for a

node object to relay its state and time index information.

Since we wanted to quickly determine whether a node exists in the search graph, we

have chosen a data structure for the ALL list for which access is not dependent on the size

of the structure. The ALL list is therefore represented by a matrix of references (pointers)

to node objects. The time and state index information is used as indices into the matrix

representing the ALL list. If the pointer to the node object is NULL, it signifies that the

particular node has not been created. The maximum size of the ALL list for an Rth-order

HMM is NRT , where N is the number of first-order emitting states and T is the length of

the observation sequence. The data structures required for the A* search is illustrated in

Fig. 5.3 where Nf is the number of states of the equivalent first-order HMM and Nf,h is

the number of states of the equivalent first-order HMM of the derived, low-order HMM.

5.3.2 Memory Management

Searching the search graph using the A* search can result in the creation of a large number

of node objects. In the previous section we mentioned that the maximum size of the ALL

list, and therefore the maximum number of node objects, is equal to NRT . If we are

decoding a T = 2000 length observation sequence using fifth-order HMM with N = 10

first-order emitting states, this can result in the creation of a total of 200 million node

objects. Creating and destroying such a large number of node objects during the decoding

of each segment will result in a significant portion of the decoding time being spent on

managing the memory space the node objects occupy.

In order to reduce the time spent on managing memory, we have decided to create a

large pool of node objects during the initialisation of the A* decoder. When the A* search

process requires new nodes (as it does when a node is expanded), it simply retrieves a

reference (pointer) to an unused node object in the pool, and initialises the parameters of

the node object before using it. If there are no more unused node objects in the pool, the

pool simply doubles its size by creating new unused node objects and allocating memory

space for them. The pool only has to keep track of which nodes are used, thus when a new
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Figure 5.3: A graphic representation of the data structures used during the

implementation of the A* search algorithm.

t : time index
s : state index

p(n) : pointer to parent node

M(n) : set of pointers to successor nodes

g(n) : cost function
h(n) : heuristic function
f(n) : evaluation function
bool : indicates whether node

has been expanded

ALL list OPEN list

T
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Observation likelihood (bi(xt)) cache

d

Heuristic function (h(n)) cache

A* search is begun, the pool resets the number of used objects to zero. Thus, the use of

a pool of node objects avoids the redundant allocation and deallocation of memory space

and efficiently manages the memory. The pool of node objects is illustrated in Fig. 5.4.

5.4 Summary

In this chapter we discussed some of the practical issues that need to be addressed when

implementing the proposed decoders. A one-to-one mapping of states in the left-context

and equivalent right-context HMM was obtained by adding extra null states to the begin-

ning of the right-context HMM. This allows all the left-context “forward” pointers, which

are required when calculating the heuristic function, to be equivalent to the right-context

“forward” pointers that are determined during the backward decoding of the derived,

low-order, right-context HMMs. A pdf likelihood cache was introduced to the search al-

gorithms to avoid recalculating pdfs that were already determined during the calculation

of the heuristic function.

In order to minimise the bookkeeping overhead and memory management we discussed
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Figure 5.4: A graphic representation illustrating the pre-allocation of memory for the

pool of A* node objects.

}
}

Unused objects

unused object
Pointer to next

Used objects

the choice of data structures that were used for implementing the A* search. The memory

was efficiently managed by introducing a pool of node objects, for which memory is

allocated during the initialition of the A* search. This pool of node objects avoids the

wasteful allocation and deallocation of memory during the decoding of multiple segments.

In the next chapter we will present the experimental results of decoding high-order

HMMs using our newly developed decoders.
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Experimental investigation

The purpose of this chapter is to present the experimental evaluation results of the pro-

posed FBS-based decoders. The intention is not to build an accurate, practical pattern

recognition system, or even to show the benefit of using high-order HMMs. Therefore, the

focus is not on the modelling uses of high-order HMMs, but rather on the fact that using

high-order HMMs are not as computationally expensive as commonly accepted. When

decoding any order HMM, there exists a path through the HMM which is optimal, i.e.

most likely to have generated the observations. We are not concerned with the accuracy

of the optimal path when compared to the correct reference, or even if the optimal path

is representative of the observations. The optimal path is the best result that the partic-

ular HMM can deliver, and we are simply interested in finding that best path with the

minimum effort.

We first define the experimental setup that is used to evaluate the computational

efficiency of the proposed FBS-based decoders.

6.1 Experimental setup

We use the same experimental setup for all the experiments presented in this chapter. All

our experiments have been performed on a single language pair of the CallFriend speech

corpus. We have also limited our evaluation of high-order HMMs to topologies that are

initialised in the first-order as a fully-connected topology.

6.1.1 Corpus

We evaluate the computational expense of decoding high-order HMMs using the Call-

Friend [8] speech corpus.

High-order HMMs were trained with the 40 recordings which form the German training

set of CallFriend. These HMMs were then evaluated on the 40 recordings which form the

English development set of CallFriend. Due to memory constraints whole recordings were

83
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not used during training and decoding. The recordings used for training were divided

into 60s segments. The recordings used for evaluation were divided into 20s segments for

a total of 1410 segments that were decoded.

6.1.2 Observation Feature extraction

We use a variety of signal processing and feature extraction techniques that have become

fairly standard in speech processing literature [9, 16, 18, 40]. Each recording of speech

is blocked into 20ms frames and subsequent frames overlap by 10ms. Each frame is

windowed with an equal length Hamming function in order to reduce spectral leakage at

the ends of each frame.

Mel-frequence cepstral coefficients (MFCCs) are extracted by using a bank of 22 tri-

angular filters equally spaced according to the mel -frequency scale. For each frame the

energy of each filter is converted to 12th-order MFCCs by using the discrete cosine trans-

form. The features are post-processed with ceptral mean subtraction (CMS), augmented

with velocity (∆) and acceleration (∆∆) features, and reduced to 21-dimensional features

using a linear discriminant analysis (LDA) based dimension reduction technique [10, 20].

6.1.3 Training of high-order HMMs

Instead of directly training R-th order HMMs on the data, we use the method of Fast In-

cremental Training (FIT) [12]. This has the advantage of also training all the HMMs with

order lower than R. The state output pdfs of an N emitting-state, first-order HMM are

initialised by first dividing the training data into N regions utilising vector quantisation.

The means of the N regions are then used to initialise diagonal covariance Gaussian out-

put density functions. The variances of the Gaussian pdfs are initialised to be 1.0. The

transition probabilities are initialised to be equal. The FIT algorithm trains the R-th

order HMM by starting with a fully-connected, first-order HMM and increasing the order

incrementally. Between each increase in order the HMM parameters are trained using

the Viterbi-re-estimation algorithm. State transition probabilities which drop below a

threshold of 10−5 are removed from the HMM. As the order of the HMMs increases when

applying the method of FIT, transitions with low probabilities will be removed from the

high-order HMMs.

The Fast Incremental Training (FIT) algorithm can be summarised as follows [11]:

1. Set up a first-order HMM for the application at hand.

2. Run the training algorithm on the first-order model. Non-viable transitions will

disappear.
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3. Convert the optimised first-order model to a second-order model by expanding the

subscripts of the remaining non-zero transition probabilities with one extra prior

state. These expanded transition probabilities are initialised with the value of the

lower-order transition probability they were extended from.

4. Use the Order REDucing (ORED) algorithm to create a first-order equivalent of

this model.

5. Now, by repeating the algorithm from step 2, train this model. This will refine the

transition probabilities to their required higher-order values. Repeating this process

trains successively higher-order models.

6.1.4 Measuring computational expense of a decoder

We repeat the discussion of the method used for measuring decoder performance first

discussed in chapter 2. We use the total number of transition probabilities evaluated

during decoding as an implementation independent measure of the computational expense

of the decoder. In the case of the FBS-based decoders, the total decoding cost Ctot (i.e.

the total number of transitions evaluated) consists of three separate costs, namely the

heuristic cost Ch, the heuristic conversion cost Cc and the search cost Cs. The heuristic

cost Ch is the number of transitions that are evaluated when calculating the right-context,

best-path backward probability (as discussed in Section 4.3.2). The heuristic conversion

cost Cc is the total number of transitions evaluated when converting the right-context,

best-path backward probabilities into left-context, best-path backward probabilities (as

discussed in Section 4.5). The search cost Cs is the number of transitions evaluated when

performing the forward search of the graph by using either the forward Viterbi-MAP-

beam algorithm (see Section 3.1) or the A* search algorithm (see Section 3.2). Thus the

total decoding cost is equal to

Ctot = Cs + Ch + Cc (6.1)

There is no heuristic cost or conversion cost when using the forward Viterbi-MAP-beam

decoder, therefore the total decoding cost is equal to the search cost i.e. Ctot = Cs.

There are two main reasons why we want an implementation independent measure

of the decoders. The first reason is that we want a method of measuring expense with-

out having to resort to code optimisation techniques. If we only used decoding time (as

measured by the processing time required for the decoding), our computational expense

measure would be influenced by the amount of code optimisation that was performed on

the decoders. The second reason is that the A* decoder requires some computational over-

head for the bookkeeping associated with the OPEN and CLOSED lists. This overhead
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is generally more expensive than the bookkeeping associated with the standard Viterbi-

MAP-beam decoder (and the proposed FBS-Viterbi-beam decoder). Therefore, processing

a single transition probability during the search part of the A* search is computationally

more expensive than processing a single transition during the calculation of the heuristic

function. However, the exact ratio is once again dependent on the implementation of the

decoders. By only measuring the number of evaluated transition probabilities, we are

effectively ignoring the computational expense of the bookkeeping overhead. This does

give us an indication of the algorithmic behaviour of the decoders as the size and order

of the HMMs are increased. Since the computational expense of the overhead will never

completely disappear, we also measure the implementation dependent decoding time of

the decoders.

Over the total number of segments decoded, we compute the average number of eval-

uated transition probabilities and the total decoding time. We compute the normalised

total decoding cost Ctot,n by normalising the number of evaluated transition probabili-

ties Ctot with the maximum number of transition probabilities that the standard Viterbi

decoder would evaluate. This maximum number of evaluated transition probabilities is

equal to the total number of transition probabilities of the HMM, multiplied by the length

of the feature vector T .

As the decoders are not guaranteed to find an optimal state sequence, the following

three results occur when a segment is decoded:

(a) the decoder does not find any state sequence,

(b) the decoder finds a state sequence, but it is not the optimal state sequence, and

(c) the decoder finds the optimal state sequence.

The segment is regarded as being correctly decoded only when the decoding results in (c).

Result (a) occurs (the decoder does not find any state sequence) because the width of

the beam used for pruning was too narrow, resulting in a too small search space in which

no single state sequence survives the beam-pruning. A decoder can recover from this

error by simply decoding the segment again, this time with a wider beam-width, so that

a larger search space is examined. The number of transitions evaluated when the decoder

fails to find a state sequence for a segment is added to the total number of transitions

required to decode that particular segment.

The only practical method for determining whether a decoded state sequence is opti-

mal, is by comparing it with a reference state sequence. It is therefore very difficult for

the decoder to distinguish whether result (b) or (c) occurred. Thus the decoders used in

this dissertation cannot recover from errors as a result of (b).
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6.2 Expense of determining the heuristic function

Motivation

The heuristic function, used for state pruning in the FBS-Viterbi-beam decoder and used

for ranking nodes in the A* decoder, is calculated by backward decoding the low-order

right-context HMMs. We have shown in the previous chapters that high-order, right-

context HMMs can be efficiently backward decoded. As the HMM derived for the FBS-

Viterbi-beam decoder are true HMMs, they should exhibit the same decoding behaviour,

with respect to the number of transitions evaluated by the decoder, as was reported in

the previous chapter. However, the question remains whether the low-order, right-context

pseudo HMMs can also be decoded efficiently. The purpose of the experiments in this

section is to measure the computational expense of backward decoding the derived, low-

order HMMs, since this will directly influence the heuristic cost Ch of the FBS-based

decoders.

6.2.1 Decoding of derived low-order, right-context HMMs

Motivation

In Section 4.5.2 we discussed how (R − K)-order, right-context HMMs can be derived

from Rth-order, left-context HMMs. We also showed that right-context HMMs can be

backward decoded as efficiently as left-context HMMs can be forward decoded. The

purpose of this experiment is to verify that the derived right-context HMMs can also be

efficiently backward decoded, with respect to the number of transitions evaluated. Since

the derived, low-order right-context HMMs are true HMMs, we expect the backward

search cost to be similar to the cost of forward decoding equivalent order left-context

HMMs. The backward search cost of the low-order, right-context HMMs will give us an

indication of the heuristic cost of the FBS-Viterbi-beam decoder.

Experimental setup

Exactly the same experimental setup is used for decoding the low-order, right-context

HMMs, as was used in Sections 2.2.4, 3.3.4 and 4.4. The (R − K)-order, right-context

HMMs derived during the training of the high-order HMMs is backward decoded using

the Viterbi-MAP-beam decoder. The parameters of the derived, low-order right-context

HMMs were estimated concurrently with the parameters of the left-context HMMs using

the FIT algorithm.

As before, we use the search cost Cs (the number of transitions evaluated during

decoding) as an implementation independent measure of the computational expense of the
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Figure 6.1: (a) The normalised search cost of the Viterbi-MAP-beam decoder during

the backward decoding of the derived low-order, right-context HMMs, with beams set wide

enough to decode all segments correctly. (b) The difference in normalised search cost

between the backward Viterbi-MAP beam decoding of the derived low-order, right-context

HMMs and the forward Viterbi-MAP-beam decoding of the equivalent order left-context

HMM, with beams set wide enough to decode all segments correctly.
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backward Viterbi-MAP-beam decoder. Over the 1410 segments decoded, we compute the

average number of evaluated transition probabilities. We compute the normalised search

cost by normalising the number of evaluated transition probabilities with the maximum

number of transition probabilities that the standard Viterbi decoder would evaluate.

Results

Fig. 6.1(a) illustrates the search cost of backward decoding the derived HMMs. For

reference, the computational expense of backward decoding the derived low-order right-
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context HMMs are also tabulated in Table C.1. We can clearly see that the search cost

decreases as the derived order of the right-context HMMs is increased, which is similar to

the backward decoding behaviour of right-context HMMs illustrated in Fig. 4.3.

In Fig. 6.1(b) we show the difference in forward decoding the high-order, left-context

HMMs and backward decoding the derived right-context HMMs of equivalent order.

For example, the difference is calculated between backward decoding a third-order, left-

context HMM and the derived third-order, right-context HMMs (which are derived from

the fourth-, fifth- and sixth-order left-context HMMs).

Interpretation

The results verify our assumption that the backward decoding behaviour of the derived

right-context HMMs is similar to the forward decoding behaviour of the high-order, left-

context HMMs. We can see that the computational expense of backward decoding the

derived low-order, right-context HMMs does not increase by more than 10% when com-

pared to the search cost of forward decoding the high-order, left-context HMMs.

It is interesting to note that in some cases the backward search cost is actually less than

the forward search cost. For the case of second-order HMMs, we see that the search cost

for the derived right-context HMMs is more than 20% less than that of the left-context

HMM. This can be explained by the fact that the second-order HMM required quite a

large minimum beam-width of B = 40 in order to correctly decode all 1410 segments

(see Table 2.2). For correctly decoding all 1410 segments with the derived right-context

HMMs, the minimum required beam-widths are in the range of 25 ≤ B ≤ 28, which

would account for these large differences in decoding cost. For the fifth-order case, where

the minimum required beam-width for decoding the left-context HMM is the same for

decoding the derived right-context HMM, we see that there is very little difference in

search cost. Therefore, if the beam-width is kept constant, we suspect that the difference

in search cost between backward decoding the derived right-context HMMs and forward

decoding the left-context HMMs will be negligible.

6.2.2 Decoding of derived low-order, right-context pseudo

HMMs

Motivation

In Section 4.5.3 we discussed how (R − K)-order, right-context pseudo HMMs can be

derived from Rth-order, left-context HMMs. In Appendix B.2 we prove that the derived,

right-context pseudo HMM will result in the same “forward” pointers as the derived, left-

context pseudo HMMs. However, this does not imply that the backward search cost will

be similar to the forward search cost of left-context HMMs. Therefore, the purpose of
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this experiment is to verify that the derived right-context HMMs can also be efficiently

backward decoded, with respect to the number of transitions evaluated.

The backward search cost of the low-order, right-context pseudo HMMs will give us

an indication of the heuristic cost of the A* decoder.

Experimental setup

The same experimental setup is used for decoding the low-order, right-context HMMs,

as was used in Sections 2.2.4, 3.3.4 and 4.4, except that we only evaluate the decoding

performance using the English development set. The parameters of the derived, low-order

right-context HMMs were estimated concurrently with the parameters of the left-context

HMMs using the FIT algorithm.

As before, we use the search cost (the number of transition probabilities evaluated

during decoding) as an implementation independent measure of the computational ex-

pense of the backward Viterbi-MAP-beam decoder. Over the 1410 segments decoded we

compute the average number of evaluated transition probabilities. We compute the nor-

malised search cost by normalising the number of evaluated transition probabilities with

the maximum number of transition probabilities that the standard Viterbi decoder would

evaluate.

Results

Fig. 6.2(a) illustrates the search cost of the derived HMMs. For reference, the minimum

computational expense of backward decoding the derived, low-order, right-context pseudo

HMMs are tabulated in Table C.2. We can clearly see that the search cost also decreases

as the derived order of the right-context, pseudo HMMs is increased.

In Fig. 6.2(b) we show the difference in forward decoding the high-order, left-context

HMMs and backward decoding the derived, right-context, pseudo HMMs of equivalent

order. For example, the difference is calculated between backward decoding a third-order,

left-context HMM and the derived third-order, right-context, pseudo HMMs (which are

derived from the fourth-, fifth- and sixth-order, left-context HMMs).

Interpretation

The results again verify our assumption that the backward decoding behaviour of the

derived right-context, pseudo HMMs are similar to the forward decoding behaviour of the

high-order, left-context HMMs. We can see that the computational expense of backward

decoding the derived low-order, right-context HMMs does not increase by more than 10%

when compared to the search cost of forward decoding the high-order, left-context HMMs.
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Figure 6.2: (a) The normalised search cost of the Viterbi-MAP-beam decoder during

the backward decoding of the derived low-order, right-context pseudo HMMs, with beams

set wide enough to decode all segments correctly. (b) The difference in normalised search

cost between the backward Viterbi-MAP beam decoding of the derived low-order,

right-context pseudo HMMs and the forward Viterbi-MAP-beam decoding of the

equivalent order left-context HMM, with beams set wide enough to decode all segments

correctly.
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We again note the large difference in search cost for the case of second-order HMMs.

We believe this is also caused by the fact the second-order HMM minimum required a

beam-width of B = 40 (see Table 2.2), to correctly decode all the segments, while the

minimum required beam-widths for the derived, right-context, pseudo HMMs are in the

range of 25 ≤ B ≤ 32. For the fifth-order case, where the minimum required beam-

width of B = 37 (for decoding the left-context HMM) is the nearly same as the minimum

required beam-width of B = 36 (for decoding the derived right-context HMM), we again
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see that there is very little difference in search cost.

It is interesting to note that when the order of the derived, right-context pseudo HMMs

is much lower than the order of the left-context HMM from which it was derived, then the

minimum beam-width required for correctly decoding all segments is much smaller than

for the derived, right-context HMM. For example, in the fifth-order case, the minimum

required beam-width for the derived right-context, pseudo HMM is only B = 19, while the

minimum required beam-width for the derived, right-context HMM is B = 26. However,

the search cost for the right-context, pseudo HMM is 66.05% while the search cost for

the right-context HMM is 69.52%, which is only a difference of 3.47%. Thus, decoding

the pseudo HMM is nearly as expensive as decoding the normal HMM, although the

minimum required beam-width is smaller. This can be explained by the fact the transition

probabilities of the pseudo HMM do not sum to unity. This causes the probabilities of

states at a specific time index, given the partial observation sequence, to be closer to each

other than in the case of the true HMM, although the state probabilities are still ranked

in the same order as for the true HMM.

6.2.3 Summary

We have measured the computational expense (with respect to the number of evaluated

transitions) of both the derived, low-order HMM and the derived, low-order pseudo HMM.

In both cases the computational expense of backward decoding the derived HMMs is

similar to the computational expense of decoding the high-order, left- and right-context

HMMs reported in the previous chapters. We can therefore safely use the derived, low-

order HMMs to calculate heuristic functions for the FBS-based decoders, since we have

shown that the derived HMMs can be decoded efficiently.
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6.3 Forward-Backward Search of high-order HMMs

Motivation

The purpose of the following series of experiments is to determine the computational effi-

ciency of using the newly proposed FBS-based decoders to decode high-order, left-context

HMMs. Specifically, we want to determine whether the inclusion of information obtained

from decoding low-order HMMs does reduce the computational expense of decoding high-

order HMMs.

Experimental setup common to all experiments

The same experimental setup is used for decoding the left-context, high-order HMMs,

as was used in Sections 2.2.4, 3.3.4 and 4.4, except that we only evaluate the decoding

performance using the English development set. The parameters of the derived, low-order

right-context HMMs were estimated concurrently with the parameters of the left-context

HMMs using the FIT algorithm.

We define the total decoding cost Ctot to be the total number of transition probabilities

evaluated during decoding. This include the transition probabilities evaluated as part of

the calculation and conversion of the heuristic function. We use this total decoding

cost as an implementation independent measure of the computational expense of the

decoders. Over the 1410 segments decoded we compute the total decoding cost as the

average number of evaluated transition probabilities. We compute the normalised total

decoding cost by normalising the number of evaluated transition probabilities with the

maximum number of transition probabilities that the standard Viterbi decoder would

evaluate. Lastly, we also measure the implementation dependent total decoding time.

As it is not possible to compare the decoders based on the value of a common pruning

beam-width B, we have decided to compare the decoders at the point where each beam is

set wide enough so that all segments are correctly decoded. For the FBS-based decoders we

also determine the best total decoding cost for each order of derived HMM i.e. (R−K) =

1, 2, . . . , R− 1.

6.3.1 FBS-based decoding vs. Viterbi-MAP-beam decoding

Motivation

In Section 2.2.4 we have determined the computational efficiency of decoding high-order

HMMs using the base-line Viterbi-MAP-beam decoder. The purpose of this experiment

is to compare the computational expense of the newly proposed decoders against the

baseline expense of the Viterbi-MAP-beam decoder, with respect to the total decoding
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Figure 6.3: A comparison of (a) the total decoding cost (the total number of transitions

evaluated), (b) the normalised total decoding cost, and (c) the total decoding time of the

FBS-Viterbi-beam, A* and Viterbi-MAP-beam decoders, during the forward decoding of

high-order left-context HMMs, with beams set wide enough to decode all segments

correctly.
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cost and the total decoding time.

Experimental setup

The initial, fully-connected, first-order HMM has a total of 40 emitting states and 1,680

state transition probabilities (925 transitions after training). The first-order equivalent

HMM of the fifth-order HMM has a total of 15,335 emitting states (sharing 40 pdfs) and

35,927 state transition probabilities.
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Figure 6.4: The improvement in (a) the normalised total decoding cost, and (b) the

total decoding time of the FBS-Viterbi-beam and A* decoders, relative to the

Viterbi-MAP-beam decoder, during the forward decoding of high-order left-context

HMMs, with beams set wide enough to decode all segments correctly.
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Results

Fig. 6.3(a) illustrate the total decoding cost of each of the Viterbi-MAP-beam, A* and

FBS-based Viterbi-beam decoders. Fig. 6.3(b) illustrates the normalised total decoding

cost while Fig. 6.3(c) shows the implementation dependent total decoding time. For ref-

erence, the total computational expense of decoding the high-order HMMs are tabulated

in Table C.3.

Fig. 6.4(a) and (b) respectively illustrates the improvement in the normalised total

decoding cost and the total decoding time of the FBS-based decoders relative to the

Viterbi-MAP-beam decoder.
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Interpretation

Figs. 6.3(a) and (b) clearly indicate that, in order to correctly decode all segments, both

the A* and the FBS-based decoder evaluate significantly less transitions than the Viterbi-

MAP-beam decoder evaluates. When decoding the fourth-order HMM, the Viterbi-MAP-

beam decoder has nearly the same computational expense as the FBS-based decoders,

which is the case for which the Viterbi-MAP-beam decoder requires the smallest beam-

width of B = 29 in order to correctly decode all segments.

Fig. 6.3(c) shows that the FBS-based decoders correctly decodes all the investigated

HMMs faster than the Viterbi-MAP-beam decoder does. The FBS-Viterbi-beam decoder

is in the worst case approximately 20% faster than the Viterbi-MAP-beam decoder and

in the best case it is approximately 50% faster (it correctly decodes all the segments in

roughly half the time the Viterbi-MAP-beam decoder decodes them). As we can see when

the third-order HMM is decoded, although the A* search decoder always evaluates less

transitions than the Viterbi-MAP-beam decoder, it does not always decode the HMMs

faster. This is caused by the additional bookkeeping the A* decoder has to perform,

which is not taken into account when the number of evaluated transitions is measured.

It would also seem as if the FBS-Viterbi-MAP-beam decoder is computationally more

efficient than the A* search decoder. These results clearly indicate the advantage that

is gained when information, obtained from decoding low-order HMMS, is included in the

search algorithm.

6.3.2 The influence of the HMM emitting state size N

Motivation

In section 6.3.1 we showed that the FBS-based decoders are computationally more efficient

than the Viterbi-MAP-beam decoder, when decoding high-order HMMs. However, we

have only investigated high-order HMMs with N = 40 first-order emitting states and

DC-Gaussian state output pdfs. In this experiment we want to determine how sensitive

the new FBS-based decoders are to the number of emitting states N of the first-order

HMM, since this directly influences the size of the high-order HMMs, which are obtained

by applying the method of FIT when training high-order HMMs.

Experimental setup

We investigate the decoding of high-order HMMs for N = 10, N = 40 and N = 50. The

state output pdfs of an N emitting-state, first-order HMM are initialised by first dividing

the training data into N regions utilising vector quantisation. The means of the N regions

are then used to initialise diagonal covariance Gaussian output density functions. We have

chosen the simplest pdfs for this experiment so that the observation likelihood calculations
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Table 6.1: The number of transitions and states of N = 10, N = 40 and N = 50

first-order emitting state, high-order, left-context HMMs. All HMMs use diagonal

covariance state output pdfs.

HMM N = 10 N = 40 N = 50

order R # states Ctot # states Ctot # states Ctot

1 12 99 42 925 52 1,277

2 78 247 678 2,583 934 3,615

3 193 531 2,060 7,060 2,882 9,904

4 417 999 6,112 16,715 8,700 23,786

5 816 1,742 15,335 35,927 22,246 52,153

6 1,551 3,072 34,009 72,437 - -

7 2,781 5,159 - - - -

8 4,744 8,409 - - - -

9 7,901 13,445 - - - -

do not dominate the decoding. The transition probabilities are initialised to be equal.

The FIT algorithm trains the R-th order HMM by starting with a fully-connected, first-

order HMM and increasing the order incrementally. Between each increase in order the

HMM parameters are trained using the Viterbi-re-estimation algorithm. State transition

probabilities which drop below a threshold of 10−5 are removed from the HMM.

The sizes of the resultant high-order, left-context HMMs are shown in Table 6.1. Each

of the high-order, left-context HMMs are decoded with respectively the standard Viterbi-

MAP-beam decoder, the FBS-Viterbi-beam decoder and the A* search decoder. For

the FBS-based decoders we also determine the minimum computational expense for each

order of derived HMM i.e. (R−K) = 1, 2, . . . , R− 1.

Results

Figs. 6.5(a), 6.6(a) and 6.7(a) respectively illustrate the total decoding cost of each of

the Viterbi-MAP-beam, A* and FBS-based Viterbi-beam decoder, for N = 10, N = 40

and N = 50. Figs. 6.5(b), 6.6(b) and 6.7(b) illustrate the normalised total decoding cost

while Figs. 6.5(c), 6.6(c) and 6.7(c) show the implementation dependent total decoding

time. For reference, the total computational expense of decoding high-order HMMs with

N = 10, N = 40 and N = 50 are also respectively tabulated in Tables C.4, C.5 and C.6.

Figs. 6.8(a), (b) and (c) respectively illustrate the improvement in total decoding

cost of the FBS-based decoders relative to the Viterbi-MAP-beam decoder, for decoding

N = 10, N = 40, and N = 50 high-order HMMs. Figs. 6.9(a), (b) and (c) respectively

illustrate the improvement in total decoding cost of the FBS-based decoders relative to



Chapter 6 — Experimental investigation 98

Figure 6.5: A comparison of (a) total decoding cost, (b) the normalised total decoding

cost, and (c) the total decoding time of the FBS-Viterbi-beam, A* and

Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 10 emitting-state and DC-Gaussian state output pdfs, with beams set wide enough

to decode all segments correctly.
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the Viterbi-MAP-beam decoder, for decoding N = 10, N = 40, and N = 50 high-order

HMMs.

Interpretation

Figs. 6.5 and 6.6 indicate that for relatively small values of N and with fairly simple

state output pdfs, the FBS-based decoders are computationally more efficient than the

Viterbi-MAP-beam decoder. When decoding the seventh-order HMM, the Viterbi-MAP-

beam decoder has nearly the same computational expense as the FBS-based decoders.

However, this is the order for which the Viterbi-MAP-beam decoder is set to the smallest
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Figure 6.6: A comparison of (a) total decoding cost, (b) the normalised total decoding

cost, and (c) the total decoding time of the FBS-Viterbi-beam, A* and

Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 40 emitting-state and DC-Gaussian state output pdfs, with beams set wide enough

to decode all segments correctly.
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beam-width of B = 22, in order to correctly decode all segments. For eighth- and ninth-

order HMMs, the computational expense of the Viterbi-MAP-beam decoder increases

significantly. This could be caused by poorly estimated transition probabilities, which

is caused by insufficient training data for such high-order transition probabilities. These

poorly estimated transition probabilities could cause the Viterbi-MAP-beam decoder to

require a much wider beam-width in order to correctly decode all segments. Thus the

Viterbi-MAP-beam results for the eight- and ninth-order HMMs could be overly pes-

simistic.

In Fig. 6.5 we can see that at low orders, the total decoding cost of the A* decoder is
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Figure 6.7: A comparison of (a) the total decoding cost, (b) the normalised total

decoding cost, and (c) the total decoding time of the FBS-Viterbi-beam, A* and

Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 50 emitting-state and DC-Gaussian state output pdfs, with beams set wide enough

to decode all segments correctly.
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less than the total decoding cost of the FBS-Viterbi-beam decoder. However, when the

HMMs with orders larger than fourth-order are decoded, the FBS-Viterbi-beam decoder

is computationally less expensive than the A* decoder. This behaviour is not repeated

for N = 40, as can be seen in Fig. 6.6.

Fig. 6.8 shows the relative improvement in total decoding cost for the different size,

high-order HMMs. For N = 10 we can see that the relative improvement in total decoding

cost of the FBS-Viterbi-beam decoder seems to increase with the order of the HMMs. As

previously mentioned, this could be caused by an overly pessimistic view of the minimum

decoding expense of the Viterbi-MAP-beam decoder at high orders.
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Figure 6.8: The improvement in the normalised total decoding cost of the

FBS-Viterbi-beam and A* decoders, relative to the Viterbi-MAP-beam decoder, during

the forward decoding of high-order HMMs with (a) N = 10, (b) N = 40, and (c) N = 50

emitting states and DC-Gaussian state output pdfs, with beams set wide enough to

decode all segments correctly.
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Fig. 6.9 shows the relative improvement in total decoding time for the different size,

high-order HMMs. For N = 10 the FBS-Viterbi-beam decoder is always faster than the

rest of the decoders. The A* decoder is faster than the Viterbi-MAP-beam decoder,

except for fourth-order and seventh-order HMMs.

The results for N = 40 is the same as was reported in the previous experiment (Section

6.3.1). When the size of the HMM is further increased to N = 50, while still using simple

DC-Gaussian state output pdfs, Fig. 6.7 indicates that the Viterbi-MAP-beam decoder

is now computationally less expensive than the FBS-based decoders. This can also be

readily seen in Fig. 6.8(c) and Fig. 6.9(c).
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Figure 6.9: The improvement in the total decoding time of the FBS-Viterbi-beam and

A* decoders, relative to the Viterbi-MAP-beam decoder, during the forward decoding of

high-order HMMs with (a) N = 10, (b) N = 40, and (c) N = 50 emitting states and

DC-Gaussian state output pdfs, with beams set wide enough to decode all segments

correctly.
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Although the FBS-based decoders are computationally more efficient for relatively

small HMMs (N = 10 and N = 40), when the state output pdfs are kept the same, the

size of the HMM influences the efficiency of the FBS-based decoders. We suspect that as

the number of distinct emitting states N increases, the overlap of the state output pdfs

in the observation space increases. This decreases the ability of the state output pdfs

to discriminate between states, given an observation sequence. Since the model is now

less certain which models are more probable at a specific time, the heuristic function is

less able to guide the decoding search, thus causing the FBS-based decoders to be less

efficient. This matter of the state output pdfs will be further investigated in the next
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section.

6.3.3 The influence of the complexity of the output pdfs

Motivation

In the previous experiment we determined that the state output pdfs do influence the

computational efficiency of the FBS-based decoders. The purpose of this experiment is to

determine whether increasing the complexity of the state output pdfs, and therefore the

ability of the model to discriminate between states, will result in more computationally

efficient FBS-based decoding.

Experimental setup

Since the Viterbi-MAP-beam decoder was computationally more efficient when decoding

HMMs with N = 50 first-order emitting states and DC-Gaussian state output pdfs, we

will investigate varying state output pdfs using a high-order HMM with N = 50 first-

order emitting states. The density functions of the N = 50 emitting-state, first-order

HMM are initialised by first dividing the training data into N regions utilising vector

quantisation. The means of the N regions are then used to initialise diagonal covariance

Gaussian output density functions.

We then proceed to train the following three types of pdfs:

• Single diagonal-covariance Gaussian pdfs.

• 8 mixture, diagonal-covariance Gaussian Mixture Models (GMMs).

• 16 mixture, diagonal-covariance Gaussian Mixture Models (GMMs).

The GMMs are trained by employing the method of mixture-splitting on the single

diagonal-covariance Gaussians. During the training of the first-order HMM, the mix-

ture component with the largest weight is split along its principal axis. The training of

the first-order HMM continues until the desired number of mixtures are reached.

The transition probabilities are initialised to be equal. The FIT algorithm trains the

R-th order HMM by starting with a fully-connected, first-order HMM and increasing

the order incrementally. Between each increase in order the HMM parameters are trained

using the Viterbi-re-estimation algorithm. State transition probabilities which drop below

a threshold of 10−5 are removed from the HMM. The sizes of the resultant high-order,

left-context HMMs are shown in Table 6.2.

Each of the high-order, left-context HMMs were decoded with respectively the stan-

dard Viterbi-MAP-beam decoder, the FBS-Viterbi-beam decoder and the A* search de-

coder. For the FBS-based decoders we also determine the minimum computational ex-

pense for each order of derived HMM i.e. (R−K) = 1, 2, . . . , R− 1.
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Table 6.2: The number of transitions and states of high-order, left-context HMMs with

N = 50 first-order emitting states. The HMMs respectively use DC-Gaussian, 8-mixture

DC-Gaussian and 16-mixture DC-Gaussian state output pdfs.

HMM DC-Gaussian GMM 8 DC-Gaussian GMM 16 DC-Gaussian

order R # states Ctot # states Ctot # states Ctot

1 52 1,277 52 1,293 52 1,300

2 934 3,615 750 3,096 771 3,213

3 2,882 9,904 2,676 9,204 2,794 9,523

4 8,700 23,786 8,421 22,634 8,676 23,169

5 22,246 52,153 21,600 50,051 22,078 50,714

Results

Figs. 6.10(a), 6.11(a) and 6.12(a) respectively illustrate the total decoding cost (the total

number of transitions evaluated) of each of the Viterbi-MAP-beam, A* and FBS-based

Viterbi-beam decoder, for the DC-Gaussian, 8-mixture DC-Gaussian and 16-mixture DC-

Gaussian state output pdfs. Figs. 6.10(b), 6.11(b) and 6.11(b) illustrate the normalised

total decoding cost while Figs. 6.10(c), 6.11(c) and 6.12(c) show the implementation

dependent total decoding time. For reference, the computational expense of decoding

high-order HMMs with N = 50 and respectively DC-Gaussian, 8-mixture DC-Gaussian

and 16-mixture DC-Gaussian state output pdfs are tabulated in Table C.7.

Figs. 6.13(a), (b) and (c) illustrate the improvement in normalised total decoding

cost of the FBS-based decoders relative to the Viterbi-MAP-beam decoder, for decoding

high-order HMMs with N = 50 and respectively DC-Gaussian, 8-mixture DC-Gaussian

and 16-mixture DC-Gaussian state output pdfs. Figs. 6.14(a), (b) and (c) illustrate the

improvement in total decoding time of the FBS-based decoders relative to the Viterbi-

MAP-beam decoder, for decoding high-order HMMs with N = 50 and respectively DC-

Gaussian, 8-mixture DC-Gaussian and 16-mixture DC-Gaussian state output pdfs.

Interpretation

The results for decoding high-order HMMs with N = 50 and DC-Gaussian state pdfs

are the same as was reported in the previous experiment (Section 6.3.2). When the

complexity of the state output pdfs is increased to 8-mixture DC-Gaussian pdfs, we can

see in Fig. 6.11 that the Viterbi-MAP-beam decoder is still computationally more efficient

than the FBS-based decoders. However, the difference in computational efficiency is less

than when simple DC-Gaussian state pdfs are used. This can also be seen in Fig. 6.13,

which shows the relative improvement in the normalised total decoding cost of the FBS-

based decoders vs. the Viterbi-MAP-beam decoder. When the high-order HMMs use
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Figure 6.10: A comparison of (a) the total decoding cost, (b) the normalised total

decoding cost, and (c) the total decoding time of the FBS-Viterbi-beam, A* and

Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 50 emitting-states and DC-Gaussian state output pdfs, with beams set wide enough

to decode all segments correctly.
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simple DC-Gaussian state pdfs, the relative degradation is more than 50% for the A*

decoder. When the high-order HMMs use 8-mixture DC-Gaussian state pdfs, the relative

degradation decreases to be in the range 0− 30%.

If the complexity of the state output pdfs is further increased to 16-mixture DC-

Gaussian pdfs, Figs. 6.12(a) and (b) once again indicate that the FBS-based decoders

are computationally more efficient than the Viterbi-MAP-beam decoder. In Fig. 6.13(c)

we can see that the relative improvement in the normalised total decoding cost of the

FBS-based decoders vs. the Viterbi-MAP-beam decoder, is more than 50% for the FBS-

based decoders. If we examine the implementation dependent decoding time, we can also
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Figure 6.11: A comparison of (a) the total decoding cost, (b) the normalised total

decoding cost, and (c) the total decoding time of the FBS-Viterbi-beam, A* and

Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 50 emitting-states and 8-mixture DC-Gaussian state output pdfs, with beams set

wide enough to decode all segments correctly.
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see in Fig. 6.14 that increasing the complexity of the state output pdfs to 16-mixture

DC-Gaussian causes the FBS-based decoders to be at least 10% faster than the Viterbi-

MAP-beam decoder. The A* decoder is at least 30% faster than the Viterbi-MAP-beam

decoder, while for third- and fourth-order HMMs the FBS-Viterbi-beam decoder is more

than 30% faster than the Viterbi-MAP-beam decoder.

These results indicate that more detailed state output pdfs allow the heuristic function

to once again efficiently guide the decoding of high-order HMMs. Since more detailed state

output pdfs generally result in higher recognition accuracies, we are not overly concerned

that the FBS-based decoders are less computationally efficient than the Viterbi-MAP-
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Figure 6.12: A comparison of (a) the total decoding cost, (b) the normalised total

decoding cost, and (c) the total decoding time of the FBS-Viterbi-beam, A* and

Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 50 emitting-states and 16-mixture DC-Gaussian state output pdfs, with beams set

wide enough to decode all segments correctly.
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beam decoder, when simple pdfs are used.

6.3.4 What is the optimal choice of derived HMM order (R−K)?

Motivation

The purpose of this analysis is to examine the order of the derived, lower-order HMM

that will result in the most computationally efficient decoding. This will be determined

by analysing the total decoding cost Ctot to determine what percentage of the total cost

is attributed to respectively the search cost Cs, the heuristic cost Ch and the conversion
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Figure 6.13: The improvement in the normalised total decoding cost of the

FBS-Viterbi-beam and A* decoders, relative to the Viterbi-MAP-beam decoder, during

the forward decoding of high-order HMMs with N = 50 emitting-states and (a)

DC-Gaussian, (b) 8-mixture DC-Gaussian, and (c) 16-mixture DC-Gaussian state

output pdfs, with beams set wide enough to decode all segments correctly.
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cost Cc. We want to determine the conversion cost, since we are also interested in the

cost of converting the right-context, best-path backward probability into the left-context,

best-path backward probability, using the “forward” pointers that are determined when

backward decoding the right-context HMM (as discussed in Section 5.1). Since the ex-

periment with N = 10 and DC-Gaussian state output pdfs includes HMMs with orders

up to ninth-order, we will use the results of that experiment for our analysis.
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Figure 6.14: The improvement in the total decoding time of the FBS-Viterbi-beam and

A* decoders, relative to the Viterbi-MAP-beam decoder, during the forward decoding of

high-order HMMs with N = 50 emitting-states and (a) DC-Gaussian, (b) 8-mixture

DC-Gaussian, and (c) 16-mixture DC-Gaussian state output pdfs, with beams set wide

enough to decode all segments correctly.
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Experimental setup

During the FBS-based decoding experiments of high-order HMMs (that were presented

in the previous experiments), we collected the following information for each order R of

HMM and for each of the 1410 segments:

• The total number of transitions evaluated (the total decoding cost Ctot).

• The number of transitions evaluated by the forward search algorithm (the search

cost Cs).

• The number of transitions evaluated by the heuristic calculation (the heuristic cost
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Figure 6.15: The normalised heuristic conversion cost (the percentage of the total

decoding cost attributed to converting the heuristic) of (a) the A* decoder, and (b) the

FBS-Viterbi-beam decoder, when using information from varying low-order derived

HMMs that are derived from N = 10 emitting state high-order, left-context HMMs.
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Ch)

• The number of transitions evaluated during the conversion of the right-context,

best-path probabilities to left-context, best-path probabilities (the conversion cost

Cc).

• The total decoding time.

Results

We do not show the complete analysis of the total decoding cost for the second-order to

the ninth-order here. For reference, the complete analysis of the total decoding cost of
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Figure 6.16: (a) The normalised total decoding cost, and (b) the toal decoding time of

the A* decoder, during the forward decoding of high-order, left-context HMMs with

N = 10 emitting-states and varying order derived pseudo HMMs, with beams set wide

enough to decode all segments correctly.
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the A* decoder and FBS-Viterbi-beam decoder are respectively tabulated in Table C.9

and Table C.8. We note that during the FBS-Viterbi-beam decoding of the ninth-order

HMM, results could not be obtained when the order of the derived HMM was (R−K) = 6

and (R−K) = 7.

In Fig. 6.15(a) we show the normalised conversion cost (the percentage of the total

decoding cost attributed to converting the right-context heuristic to a left-context heuris-

tic) when using the A* decoder. In Fig. 6.15(b) we show the normalised conversion cost

when using the FBS-Viterbi-beam decoder.

Figs. 6.16(a) and (b) respectively illustrate the total decoding cost and total decoding

time, when using the A* decoder to decode high-order HMMs, when the order of the
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Figure 6.17: (a) The normalised total decoding cost, and (b) the toal decoding time of

the FBS-Viterbi decoder, during the forward decoding of high-order, left-context HMMs

with N = 10 emitting-states and varying order derived HMMs, with beams set wide

enough to decode all segments correctly.
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derived pseudo HMM is varied from (R−K) = 1, . . . , R− 1.

Figs. 6.17(a) and (b) respectively illustrate the total decoding cost and total decoding

time, when using the FBS-Viterbi-beam decoder to decode high-order HMMs, when the

order of the derived HMM is varied from (R−K) = 1, . . . , R− 1.

Interpretation

In Fig. 6.15 we see that the heuristic conversion cost is on average approximately 10%

of the total decoding cost and never more than 13% of the total decoding cost. This

result supports our statement in Section 4.5.1 that the method of using the “forward”

pointers to convert the right-context, best-path backward probability is computationally
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efficient. It is interesting to note that the heuristic conversion cost is generally lower for

the FBS-Viterbi-beam decoder than for the A* decoder.

If we examine the total decoding cost and total decoding time for the A* decoding

in Fig. 6.16, we see that the minimum total decoding cost is obtained when the derived,

low-order pseudo HMM has an order of approximately half the order of the left-context,

high-order HMM from which it is derived (i.e. R − K ≈ 1
2
R). When the order of the

derived pseudo HMM is much smaller than the high-order HMM, we find that most of the

total decoding cost can be attributed to the search cost. Since the A* search algorithm

requires additional bookkeeping, this causes the total decoding time to increase sharply.

If we examine the total decoding cost and total decoding time for the FBS-Viterbi-

beam decoding in Fig. 6.17, we see that the minimum total decoding cost is generally

obtained when the derived, low-order HMM is first- or second-order. We can also see

that there is a much stronger correlation between the total decoding cost and the total

decoding time.

6.3.5 The computational consistency of the FBS-based decoders

Motivation

We wish to analyse the decoding results of the FBS-based decoders in order to determine

whether they are more computationally consistent than the Viterbi-MAP-beam decoder,

with respect to the number of evaluated transitions and the total decoding time. We wish

to determine if the computational expense of the new decoders are more predictable than

the computational expense of the Viterbi-MAP-beam decoder. We answer this question

by performing a statistical analysis of the results obtained when the N = 10 first-order

emitting-state, high-order HMMs were decoded.

Experimental setup

When analysing the results we determine the minimum, maximum, average and the stan-

dard deviation of the number of transitions evaluated for each of the standard Viterbi-

MAP-beam decoder, the FBS-Viterbi-beam decoder and the A* search decoder. For the

FBS-Viterbi-beam decoder and the A* search decoder we only examine the low-order

derived HMM that was computationally the most efficient. For the number of transitions

evaluated, we compare the normalised total decoding cost, which is an implementation

independent performance measure. To include the A* overhead associated with the or-

dering of the lists, we also compare the normalised total decoding time (which is an

implementation dependent performance measure). The total decoding time is normalised

with the maximum decoding time of a single segment, when using the Viterbi-MAP-beam

decoder.
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Results

Figure 6.18: The histogram of the normalised total decoding cost of 1410 segments

when decoding an eight-order HMM with the (a) Viterbi-MAP-beam, (b) A*, and (c)

FBS-Viterbi-beam decoder, with beams set wide enough to decode all segments correctly.
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The complete analysis for the three different decoders is tabulated in Table C.10. The

analysis shown in Table C.10 shows that not only do the FBS-based decoders have a lower

average decoding cost, the standard deviation of the decoding cost is also significantly

smaller than that of the Viterbi-MAP-beam decoder. We do not show all the results

here, but have chosen to only present the analysis of the seventh- and eight-order HMM.

We have specifically chosen the seventh-order HMM, since this is the case where the

computational expense of the Viterbi-MAP-beam decoder is nearly the same as that of

the FBS-based decoders (see Fig. 6.5). The analysis of the eight-order HMM illustrates

the case where both FBS-decoders are computationally more efficient than the Viterbi-

MAP-beam decoder, but the A* decoder is slower. These two cases clearly illustrate the
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computational consistency of the FBS-based decoders, specifically the FBS-Viterbi-beam

decoder.

In Figs. 6.18 and 6.19 we respectively show the histogram of the normalised total

decoding cost and the normalised total decoding time of the 1410 segments, given the

eight-order HMM, when using the Viterbi-MAP-beam, A* and FBS-Viterbi-beam de-

coders.

Figure 6.19: The histogram of the normalised total decoding time of 1410 segments

when decoding an eight-order HMM with the (a) Viterbi-MAP-beam, (b) A*, and (c)

FBS-Viterbi-beam decoder, with beams set wide enough to decode all segments correctly.
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In Fig. 6.20 and Fig. 6.21 we respectively show the histogram of the total decoding

cost and the normalised total decoding time of the 1410 segments, given the seventh-order

HMM, when using the Viterbi-MAP-beam, A* and FBS-Viterbi-beam decoders.



Chapter 6 — Experimental investigation 116

Figure 6.20: The histogram of the normalised total decoding cost of the 1410 segments

when decoding a seventh-order HMM with the (a) Viterbi-MAP-beam, (b) A*, and (c)

FBS-Viterbi-beam decoder, with beams set wide enough to decode all segments correctly.
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Interpretation

The general trend of the analysis shows that the standard deviation of the decoding cost of

the FBS-Viterbi-beam decoder is less than half of the decoding cost of the Viterbi-MAP-

beam decoder, for most of the HMM orders. The standard deviation of the decoding cost

of the FBS-Viterbi-beam decoder is generally smaller than that of the A* decoder. This

is clearly illustrated by the decoding cost distributions shown in Fig. 6.18 and Fig. 6.20.

Even for the case of the seventh-order HMM, when the computational expense of the

decoders are nearly the same, we can clearly see that the FBS-Viterbi-beam decoder is

more consistent, with respect to the number of evaluated transitions, than the Viterbi-

MAP-beam decoder.

When we examine the total decoding time, we again see that the FBS-Viterbi-beam
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Figure 6.21: The histogram of the normalised total decoding time of the 1410 segments

when decoding a seventh-order HMM with the (a) Viterbi-MAP-beam, (b) A*, and (c)

FBS-Viterbi-beam decoder, with beams set wide enough to decode all segments correctly.
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decoder is more consistent, since the standard deviation of the total decoding time is also

generally half that of the Viterbi-MAP-beam decoder. However, the standard deviation

of the total decoding time of the A* decoder is sometimes much larger than that of the

Viterbi-MAP-beam decoder. This is illustrated by the distribution of the total decoding

time shown in Fig. 6.19 and Fig. 6.21. However, we can clearly see the narrow standard

deviation of the total decoding time of the FBS-Viterbi-beam decoder. We can thus

conclude that the FBS-Viterbi-beam decoder is not only computationally more efficient

than the Viterbi-MAP-beam decoder, it is also computationally more consistent.
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6.4 Summary

In this chapter we first verified our assumption that derived HMMs (both pseudo HMM

and true HMMs) exhibit similar backward decoding behaviour, with respect to the number

of evaluated transitions, as the HMM decoding results presented in previous chapters. It

was important to verify this assumption as it allows us to use the derived HMMs in our

FBS-based decoders, confident in the fact that decoding the derived HMMs will not add

unnecessary computational expense to the decoding of the high-order HMMs.

We then continued with our evaluation of the proposed FBS-based decoders by measur-

ing the computational expense of decoding high-order, left-context HMMs. We compared

these results to the baseline Viterbi-MAP-beam decoding results presented in chapter 2.

This was done for varying sizes of high-order HMMs as well as state output pdfs that

range from simple DC-Gaussian pdfs to more detailed 16-mixture DC-Gaussian GMMs.

These results have shown that including information obtained from decoding low-order

HMMs significantly reduces the computational expense of decoding high-order HMMs.

The decoding results obtained using the FBS-Viterbi-beam decoder indicate that state

pruning based on the complete observation also results in significantly smaller search

graphs being explored than state pruning based on partial observations. However, the

advantage of using low-order HMMs to guide the search is dependent on using state output

pdfs that are detailed enough to allow the heuristic to accurately predict the probability

of the best path from a given state to the final state. These results also show that the

FBS-Viterbi-beam decoder is computationally more efficient than the A* decoder. We

note that if the FBS-Viterbi-beam decoder is used in conjuction with a derived first-order

HMM, we can simply use a derived, left-context HMM instead of using a right-context

HMM, since we have shown that backward decoding left- and right-context, first-order

HMMs are computationally equivalent. By using a left-context HMM to calculate the

heuristic, we can avoid the added heuristic conversion cost and further reduce the total

decoding cost by approximately 10%.

Lastly, the distribution of the total decoding cost and total decoding time was analysed

and we showed that the FBS-based decoders, specifically the FBS-Viterbi-beam decoder,

is more computationally consistent than the Viterbi-MAP-beam decoder. Thus, not only

is the FBS-Viterbi-beam decoder computationally more efficient, it is also computationally

more consistent than the Viterbi-MAP-beam decoder.
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Conclusions

The preceding chapters presented the theoretical development and practical verification

of Forward-Backward search-based decoding of high-order HMMs. In this last part of

the dissertation, the specific results will again be related to the objective of this research.

The relevance of these results to the broader research community will be estimated, and

avenues for further research will be identified.

7.1 Concluding perspective

The objective of this research was to develop a more time-efficient method of decoding

high-order HMMs. The Forward-Backward search paradigm was identified as a method

that could incorporate information obtained from low-order HMMs, in order to reduce

the decoding time. We proposed, implemented and evaluated two decoders based on

the Forward-Backward search paradigm. The first decoder is based on time-synchronous

Viterbi-beam decoding and the second is based on time-asynchronous A* search. The

experimental results presented in the previous chapter show that both these proposed

decoders result in more time-efficient decoding of the fully-connected, high-order HMMs

that were investigated, thus fulfilling the objective of this research.

Three interesting facts were uncovered during the course of this research. The first is

that conventional forward Viterbi-beam decoding of high-order HMMs is not as compu-

tationally expensive as is commonly thought. The results presented in chapter 2 indicate

that the computational expense of Viterbi decoding high-order HMMs does increase ex-

ponentially with the order R of the HMM. The results in chapters 2 and 6 would seem

to indicate that the computational expense of Viterbi-beam decoding also increases expo-

nentially with the order R of the HMM, but that the rate of increase is significantly lower

than that of Viterbi decoding (keeping in mind that the decoding experiments were all

performed on a single language pair and that only a specific topology was investigated).

Although the computational expense sharply increases when decoding high-order HMMs

119



Chapter 7 — Conclusions 120

with large R, we suspect that this is a result of insufficient training data, thus resulting

in poorly estimated high-order transition probabilities. The Viterbi-beam decoder does

sacrifice admissibility, but the resultant reduction in decoding expense more than compen-

sates for this lack of admissibility. Furthermore, with a proper choice of beam-width, the

Viterbi-beam decoder finds the optimal sequence most of the time and the non-optimal

sequences are still quite close to the optimal state sequence.

The second interesting fact (uncovered in chapter 3) is that forward and backward

decoding of conventional, high-order left-context HMMs are not computationally equiva-

lent. Although forward and backward decoding results in the same optimal state sequence,

backward decoding is significantly more expensive than forward decoding of left-context

HMMs. We asked the question whether decoding, when time-reversing the observation se-

quence, is fundamentally more expensive than decoding when the observation sequence is

kept the same. We showed that time-reversed decoding is not fundamentally more expen-

sive, but that the extra computation is caused by the definition of the left-context state

transition probabilities. When backward decoding left-context HMMs, this conditioning

of previous states causes a time-asynchronicity between the observations and states under

consideration. By developing the right-context HMM, where the state transition proba-

bilities are conditioned on subsequent states, we showed that the backward decoding of a

mathematically equivalent high-order, right-context HMM is as expensive as the forward

decoding of the high-order, left-context HMM. This leads us to conclude that left- and

right-context HMMs are simply two different ways of viewing the same underlying hidden

Markov process.

The third interesting fact is that the use of information obtained from low-order HMMs

significantly reduces the computational expense of decoding high-order HMMs. In the

results presented in chapter 6, both the A* decoder and the FBS-Viterbi-beam decoder

outperformed the standard Viterbi-beam decoder. The results indicate that, when the

number of first-order emitting states (N) is large and less detailed state output pdfs

are used, the Viterbi-beam decoder is more time-efficient than the proposed FBS-based

decoders. However, when more detailed state output pdfs are used, the proposed FBS-

based decoders are once again more time-efficient than the Viterbi-beam decoder. This

does not cause us much concern, since more detailed state output pdfs generally result in

better pattern recognition performance.

The comparison of the performance of the two new decoders indicates that the FBS-

Viterbi-beam decoder is more time-efficient than the A* decoder. The FBS-Viterbi-beam

decoder is not only simpler to implement, it also requires less memory since it does not

need to perform the additional bookkeeping the A* decoder needs to perform. Further-

more, in order for the A* decoder to be admissible, the derived low-order HMMs are not

true HMMs. Since the transition probabilities of the pseudo HMMs do not sum to unity,
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decoding the pseudo HMM will result in a larger search graph than decoding the true

HMM, when a constant beam-width is used. The advantage of the pseudo HMM is that

all the transition “probabilities” will be well estimated, since they are derived from the

largest high-order HMM transition probabilities.

7.2 Comparison to prior work

The concept of transition probabilities defined on subsequent states also occurs in the field

of Markov processes, where it is called a reversible Markov process. A Markov process is

said to show detailed balance if the transition rates between each pair of states i and j in

the state space obey

Pijπi = Pjiπj (7.1)

where P is the Markov transition matrix (transition probability), i.e. Pij = P (st =

j|st−1 = i); and πi and πj are the equilibrium probabilities of being in states i and j,

respectively [35].

Thus, by more closely examining the properties of reversible Markov processes, we

might be able to predict the circumstances under which decoding the right-context HMM

will be computationally equivalent to decoding the left-context HMM.

Our decoding of high-order HMMs using information obtained from low-order HMMs

is based on the Forward-Backward search paradigm. The FBS paradigm was developed by

Austin et al. [1] in order to reduce the decoding time of more complex continuous speech

recognition algorithms. Although the speech recognition system used language models,

the HMMs were limited to first-order HMMs. Since they were interested in performing

real-time speech recognition, the forward search was the less complex search, while the

backward search was done using more complex algorithms or acoustic and language mod-

els. It seems that the HMMs were simply processed in reverse, without changing the state

transition or language model probabilities so that the probabilities are conditioned on the

subsequent states or words [30]. We suspect that if Austin et al. performed the backward

search first, and then performed a more detailed forward search, they might also have

discovered the discrepancy between forward and backward decoding.

Sixtus and Ortmans [43] adapted the Forward-Backward search paradigm to develop

a forward-backward word graph pruning algorithm. They showed that the forward-

backward pruning method resulted in smaller word graphs than the forward pruning

method. The results presented in this dissertation show that forward-backward pruning

of states also results in the exploration of a much smaller search graph than forward

pruning of states.
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7.3 Outstanding issues and further topics of research

The following are still issues that require further investigation:

• We have limited our evaluation of our decoders to topologies that start as a fully-

connected topology in the first order, which is an ergodic topology. The use of the

newly proposed decoders should be examined with topologies such as left-to-right,

ring, random-walk, etc. The biggest challenge is to show that the right-context

HMM can still be backward decoded as efficiently as the left-context HMM can be

forward decoded for these other topologies. From the field of Markov processes it

seems that the solution lies in determining which HMM topologies show detailed

balance, and thus are reversible.

• We have only examined one language pair of one speech corpus. The decoders need

to be evaluated on other speech corpora and tasks other than speech processing.

• We have limited our evaluation to observations lengths of T = 2000. Longer ob-

servation features require more memory to store the heuristic function and the ob-

servation likelihood cache. Apart from the increase in memory requirements, we do

not see any reason why the observation length should influence the computational

expense of the decoder, but it should still be investigated.

• It seems that the ability of the state output pdfs to discriminate between states

influences the computational expense of the FBS-based decoders. The influence

of the pdfs should be thoroughly investigated. This could be done by generating

random HMMs with state output pdfs which are initialised to have a specific overlap

in the observation space. These random HMMs can be used to generate artificial

data, which must then be used to quantify the influence of overlap between state

output pdfs on the computational expense of the FBS-based decoders.

• We mentioned that the Viterbi-beam decoding of high-order HMMs might have

suffered from transition probabilities which were estimated with insufficient train-

ing data. Since the transition probabilities of the derived, low-order HMMs were

well estimated, and our proposed decoders were guided by the decoding of these

well-estimated HMMs, it is possible that our proposed decoders might have an

advantage they would not have had if the high-order transition probabilities were

estimated with sufficient training data. This can be investigated via a (much) larger

experiment incorporating the full CallFriend database. This should ensure that all

high-order HMMs have well estimated parameters.

As previously mentioned, very little has been published on the efficient decoding of

high-order HMMs. When high-order HMMs are used, it seems that the decoding is most
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often done using the Viterbi-beam algorithm. We suspect that the broader research

community regards the Viterbi-beam algorithm as the most efficient method of decoding

HMMs. We hope that the research presented in this dissertation will result in renewed

investigation into decoding algorithms that are applicable to high-order HMMs.



Bibliography

[1] AUSTIN, S., SCHWARTZ, R., and PLACEWAY, P., “The Forward-Backward

Search Algorithm.” in Proc. of the IEEE Int. Conf. on Acoustics, Speech, and

Signal Processing, (Toronto, Canada), pp. 697–700, 1991.

[2] AYCARD, O., MARI, J.-F., and WASHINGTON, R., “Learning to automatically

detect features for mobile robots using second-order Hidden Markov Models.” Int.

Journal of Advanced Robotic Systems, December 2004, Vol. 1, No. 4, pp. 231–245.

[3] BAHL, L. et al., “Large Vocabulary Natural Language Continuous Speech

Recognition.” in Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing, (Glasgow, Scotland), pp. 465–467, 1989.

[4] BAHL, L., JELINEK, F., and MERCER, R., “A Maximum Likelihood Approach to

Continuous Speech Recognition.” in IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 2, pp. 179–190, 1983.

[5] BAKER, J., “Stochastic modelling for automatic speech understanding.” in Speech

Recognition (REDDY, D. (Ed.)), pp. 521–524, New York: Academic Press, 1975.

[6] BELLMAN, R., Dynamic Programming . Princeton: New Jersey: Princeton

University Press, 1957.

[7] BENGIO, Y., “Markovian Models for Sequential Data.” Neural Computing Surveys,

1999, Vol. 2, pp. 129–162.

[8] CANAVAN, A. and ZIPPERLEN, G., CALLFRIEND American

English-Non-Southern Dialect . Linguistic Data Consortium, Philadelphia, 1996.

[9] DELLER, J. R. J. et al., Discrete-Time Processing of Speech Signals . Upper Saddle

River, New Jersey: Prentice-Hall, 1993.

[10] DEVIJVER, D. and KITTLER, J., Pattern Recognition, a statistical approach.

Englewood Cliffs, New Jersey: Prentice-Hall International, 1982.

[11] DU PREEZ, J., Efficient High-Order Hidden Markov Modelling . PhD thesis,

University of Stellenbosch, November 1997.

124



BIBLIOGRAPHY 125

[12] DU PREEZ, J., “Efficient training of high-order hidden Markov models, using

first-order representations.” Computer Speech & Language, 1998, Vol. 12, No. 1,

No. 1, pp. 23–39.

[13] ENG, C., THIBESSARD, A., HERGALANT, S., MARI, J.-F., and LEBLOND, P.,

“Data Mining Using Hidden Markov Models (HMM2) to Detect Heterogeneities

into Bacteria Genomes.” Journes Ouvertes Biologie, Informatique et Mathmatiques

- JOBIM 2005, July 2005.

[14] FORNEY JR., G. D., “The Viterbi Algorithm: A Personal History.” 2005.

[15] HE, Y., “Extended Viterbi algorithm for second-order hidden Markov process.” in

Proc. of the IEEE 9th Intl. Conf. on Pattern Recognition, (Rome, Italy),

pp. 718–720, 1988.

[16] HUANG, X., ACERO, A., and HON, H., Spoken language processing: A guide to

theory, algorithm and system development . Upper Saddle River, New Jersey:

Prentice-Hall, 2001.

[17] JELINEK, F., “Continuous speech recognition by statistical methods.” in Proc. of

the IEEE, pp. 532–556, 1976.

[18] JELINEK, F., Statistical Methods for Speech Recognition. Massachusetts: The

Massachusetts Institute of Technology Press, 1997.

[19] JURAFSKY, D. and MARTIN, J., Speech and Language Processing - An

Introduction to Natural Language Processing, Computational Linguistics and Speech

Recognition. Upper Saddle River, New Jersey 07458: Prentice Hall, 2000.

[20] KITTLER, J. and YOUNG, P., “A new approach to feature selection based on the

Karhunen-Loeve expansion.” Pattern Recognition, 1973, Vol. 5, pp. 335–352.

[21] KRIOUILE, A., J.-F., M., and J.-P., H., “Some improvements in speech recognition

based on HMM.” in Proc. of the IEEE Int. Conf. on Acoustics, (Albuquerque,

USA), pp. 545–548, 1990.

[22] KROG, A., BROWN, M., MIAN, I., SJOLANDER, K., and HAUSSLER, D.,

“Hidden markov models in computational biology: Applications to protein

modeling.” Journal Molecular Biology, 1994, Vol. 235, pp. 1501–1531.

[23] MARI, J., FOHR, D., and JUNQUA, J., “A second-order HMM for

high-performance word and phoneme-based continuous speech recognition.” in

Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, (Atlanta,

USA), pp. 435–438, 1996.



BIBLIOGRAPHY 126

[24] MARI, J., HATON, J.-P., and KRIOUILE, A., “Automatic word recognition based

on second-order Markov models.” IEEE Trans. on Speech and Audio Processing,

1997, Vol. 5, No. 3, No. 3, pp. 22–25.

[25] MOON, T. K., “The Expectation-Maximation Algorithm.” IEEE Signal Processing

Magazine, November 1996, pp. 47–60.

[26] NAG, R., WONG, K., and FALLSIDE, F., “Script recognition using hidden

Markov models.” in Proc. Int. Cont. on Acoustics, Speech, and Signal Processing,

pp. 2017–2074, 1986.

[27] NEL, E.-M., DU PREEZ, J., and HERBST, B., “Estimating the Pen Trajectories

of Static Signatures Using Hidden Markov Models.” IEEE Trans. Pattern Anal.

Mach. Intell., 2005, Vol. 27, No. 11, No. 11, pp. 1733–1746.

[28] NEY, H., MERGEL, D., NOLL, A., and PAESELER, A., “Data Driven Search

Organisation for Continuous Speech Recognition.” IEEE Trans. on Signal

Processing, February 1992, Vol. 40, No. 2, pp. 272–281.

[29] NGUYEN, L. and SCHWARTZ, R., “Efficient 2-Pass N-Best Decoder.” in Proc. of

Eurospeech Conf., (Rhodes, Greece), pp. 167–170, September 1997.

[30] NGUYEN, L. and SCHWARTZ, R., “Single-tree method for grammar-directed

search.” in Proc. IEEE Int. Conf. on the Acoustics, Speech, and Signal Processing,

(Washington, DC, USA), pp. 613–616, IEEE Computer Society, 1999.

[31] NGUYEN, L., SCHWARTZ, R., KUBALA, F., and PLACEWAY, P., “Search

algorithms for software-only real-time recognition with very large vocabularies.” in

Proc. of the Workshop on Human Language Technology, (Morristown, NJ, USA),

pp. 91–95, Association for Computational Linguistics, 1993.

[32] NGUYEN, L., SCHWARTZ, R., ZHAO, Y., and ZAVALIAGKOS, G., “Is N-Best

Dead?.” in Proc. of the ARPA Workshop on Human Language Technology, (Merril

Lynch Conference Centre), pp. 411–414, 1994.

[33] NILSSON, N., Principles of Artificial Intelligence. Springer-Verlag, 1982.

[34] ODELL, J., VALTCHEF, V., WOODLAND, P., and YOUNG, S., “A One Pass

Decoder Design For Large Vocabulary Recognition.” in Proc. of the ARPA

Workshop on Human Language Technology, (Merril Lynch Conference Centre),

pp. 405–410, 1994.

[35] PAPOULIS, A. and PILLAI, S., Probability, Random Variables and Stochastic

Processes . New York, USA: McGraw-Hill, 2002.



BIBLIOGRAPHY 127

[36] PAUL, D., “Algorithms for an Optimal A* Search and Linearizing the Search in the

Stack Decoder.” in Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing, vol. 1, (Toronto, Ontario), pp. 693–696, 1991.

[37] PAUL, D., “An Efficient A* Stack Decoder Algorithm for Continuous Speech

Recognition with a Stochastic Language Model.” in Proc. of the IEEE Int. Conf.

on Acoustics, Speech, and Signal Processing, vol. 1, (San Francisco, California),

pp. 25–28, 1992.

[38] RABINER, L., “A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition.” Proc. of the IEEE, February 1989, Vol. 77, No. 2, pp. 257–286.

[39] RABINER, L. and JUANG, B., “An Introduction to Hidden Markov Models.”

IEEE ASSP Magazine, January 1986, Vol. 1, No. 3, pp. 4–16.

[40] RABINER, L. and JUANG, B., Fundamentals of Speech Recognition. Englewood

Cliffs, New Jersey: Prentice-Hall, 1993.

[41] SCHWARTZ, R. and AUSTIN, S., “Efficient, high-performance algorithms for

N-Best search.” in Proc. of the Workshop on Speech and Natural Language,

(Morristown, NJ, USA), pp. 6–11, Association for Computational Linguistics, 1990.

[42] SCHWARTZ, R. and CHOW, Y.-L., “The N-best algorithms: an efficient and exact

procedure for finding the N most likely sentence hypotheses.” in Proc. of the IEEE

Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 1, pp. 81–84, April 1990.

[43] SIXTUS, A. and ORTMANNS, S., “High quality word graphs using

forward-backward pruning.” in Proc. of the IEEE Int. Conf. on Acoustics, Speech,

and Signal Processing, (Washington, DC, USA), pp. 593–596, IEEE Computer

Society, 1999.

[44] T.H., C., LEISERSON, C., RIVEST, R., , and STEIN, C., Introduction to

Algorithms . 2nd edition. The MIT Press, 2001.

[45] VITERBI, A., “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm.” IEEE Trans. on Information Theory, 1967, Vol. 13,

No. 2, No. 2, pp. 260–269.

[46] VITERBI, A., “A Personal History of the Viterbi Algorithm.” IEEE Signal

Processing Magazine, 2006, Vol. 23, No. 4, No. 4, pp. 120–142.



Appendix A

Equivalence of Right-context HMM

A.1 Evaluation Problem Equivalence

Given the observation sequence XT
1 and a right-context HMM model Φrc we can compute

the probability that the model generated the observations P (XT
1 |Φrc) as:

P (XT
1 |Φrc) =

∑
all ST

1

P (XT
1 ,ST

1 |Φrc)

=
∑

all ST
1

P (ST
1 |Φrc)P (XT

1 |ST
1 , Φrc)

The proof consists of two parts: the first part is to show that, for a particular state

sequence ST
1 = (s1, s2, . . . , sT ), the state sequence probability of the right-context HMM

P (ST
1 |Φrc) is equal to the state sequence probability of the equivalent left-context HMM

P (ST
1 |Φlc). The second part of the proof is to show that the for the same state sequence

ST
1 the joint output observation probability of the right-context HMM along the state

sequence, P (XT
1 |ST

1 , Φrc), is equal to the joint output observation probability of the left-

context HMM, P (XT
1 |ST

1 , Φrc), along the same state sequence.

For a particular sequence ST
1 = (s1, s2, . . . , sT ) the state sequence probability

P (ST
1 |Φrc) can be rewritten by applying the right-context Markov assumption:

P (ST
1 |Φrc) = P (sT |Φrc)P (sT−1|sT , Φrc) . . . P (sT−R+1|sT−R+2, . . . , sT , Φrc)

×
1∏

t=T−R

P (st|st+1, . . . , st+R, Φrc)

= ←−a sT (N+1)
←−a s(T−1)sT

. . .←−a s(T−R+1)s(T−R+2)...sT

1∏
t=T−R

←−a sts(t+1)...s(t+R)

=

[
T−R∏
t=1

←−a sts(t+1)...s(t+R)

]
←−a s(T−R+1)s(T−R+2)...sT

. . .←−a s(T−1)sT
←−a sT (N+1)

which we can rewrite using Bayes’ Theorem and the joint state probabilities to be:

P (ST
1 |Φrc)

128
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=
P (s1, s2, . . . , s1+R|Φrc)

P (s2, s3, . . . , s1+R|Φrc)

P (s2, s3, . . . , s2+R|Φrc)

P (s3, s4, . . . , s2+R|Φrc)
· · · ×

=
P (sT−R, sT−R+1, . . . , sT |Φrc)

P (sT−R+1, sT−R+2, . . . , sT |Φrc)

P (sT−R+1, sT−R+2, . . . , sT |Φrc)

P (sT−R+2, sT−R+3, . . . , sT |Φrc)
×

P (sT−R+2, sT−R+3, . . . , sT |Φrc)

P (sT−R+3, sT−R+4, . . . , sT |Φrc)
· · · P (sT−2, sT−1, sT |Φrc)

P (sT−1, sT |Φrc)
×

P (sT−1, sT |Φrc)

P (sT |Φrc)
P (sT |Φrc)

=
P (s1, s2, . . . , s1+R|Φrc)

P (s2, s3, . . . , s1+R|Φrc)

P (s2, s3, . . . , s2+R|Φrc)

P (s3, s4, . . . , s2+R|Φrc)
· · · ×

P (sT−R, sT−R+1, . . . , sT−1|Φrc)

P (sT−R+1, sT−R+2, . . . , sT−1|Φrc)
P (sT−R, sT−R+1, . . . , sT |Φrc)

= P (s1, s2, . . . , s1+R|Φrc)
P (s2, s3, . . . , s2+R|Φrc)

P (s2, s3, . . . , s1+R|Φrc)

P (s3, s4, . . . , s3+R|Φrc)

P (s3, s4, . . . , s2+R|Φrc)

× · · · P (sT−R−1, sT−R, . . . , sT−1|Φrc)

P (sT−R−1, sT−R, . . . , sT−2|Φrc)

P (sT−R, sT−R+1, . . . , sT |Φrc)

P (sT−R, sT−R+1, . . . , sT−1|Φrc)

If the requirement is made that the joint state probabilities of the right-context HMM is

equal to the joint state probabilities of its equivalent left-context HMM, expressed as

P (st, st+1, . . . , st+R|Φrc) = P (st, st+1, . . . , st+R|Φlc) (A.1)

then the state sequence probability of the right-context HMM can be written in terms of

the parameters of its equivalent left-context HMM as:

P (ST
1 |Φrc)

= P (s1, s2, . . . , s1+R|Φlc)
P (s2, s3, . . . , s2+R|Φlc)

P (s2, s3, . . . , s1+R|Φlc)

P (s3, s4, . . . , s3+R|Φlc)

P (s3, s4, . . . , s2+R|Φlc)

· · · × P (sT−R−1, sT−R, . . . , sT−1|Φlc)

P (sT−R−1, sT−R, . . . , sT−2|Φlc)

P (sT−R, sT−R+1, . . . , sT |Φlc)

P (sT−R, sT−R+1, . . . , sT−1|Φlc)

= P (s1|Φlc)P (s2|s1, Φlc)P (s3|s2, s1, Φlc) · · ·P (s1+R|sR, . . . , s2, s1, Φlc)×

P (s2+R|s1+R, sR, . . . , s2, Φlc) . . . P (sT |sT−1, . . . , sT−R+1, sT−R, Φlc)

= P (s1|Φlc)P (s2|s1, Φlc)P (s3|s2, s1, Φlc) · · ·P (s1+R|sR, . . . , s2, s1, Φlc)×
T∏

t=2+R

P (st+R|st+R−1, st+R−2, . . . , st−1, st, Φlc)

= P (ST
1 |Φlc)

For the same state sequence ST
1 the joint output observation probability of the right-

context HMM along the state sequence, P (XT
1 |ST

1 , Φrc), can be rewritten by applying the

output independence assumption as:

P (XT
1 |ST

1 , Φrc) =
T∏

t=1

P (xt|st, Φrc) (A.2)
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If we make the further requirement that the right-context HMM and its equivalent left-

context HMM use the same set of probability density functions i.e.

P (xt|st, Φrc) = bst(xt|Φrc)

= bst(xt|Φlc) = P (xt|st, Φlc)

then the joint output observation probability of the right-context HMM along the state

sequence ST
1 is equal to the joint output observation probability of the equivalent left-

context HMM as shown by:

P (XT
1 |ST

1 , Φrc) =
T∏

t=1

P (xt|st, Φrc) =
T∏

t=1

P (xt|st, Φlc) = P (XT
1 |ST

1 , Φlc) (A.3)

Thus it is proven that the probability of the right-context HMM Φrc generating the

observation sequence XT
1 is equivalent to the probability of the left-context HMM Φlc

generating the same observation sequence as shown by:

P (XT
1 |Φrc) =

∑
all ST

1

P (XT
1 ,ST

1 |Φrc)

=
∑

all ST
1

P (ST
1 |Φrc)P (XT

1 |ST
1 , Φrc)

=
∑

all ST
1

P (ST
1 |Φlc)P (XT

1 |ST
1 , Φlc)

=
∑

all ST
1

P (XT
1 ,ST

1 |Φlc)

= P (XT
1 |Φlc)

A.2 Decoding Problem Equivalence

We will now prove that the right-context HMM results in the same partial paths as the

left-context HMM. This is done by proving that the back pointers of the forward Viterbi-

beam algorithm when decoding the left-context HMM is equal to the back pointers of the

forward Viterbi-beam algorithm when decoding the equivalent right-context HMM i.e.

−→
Ψ

δ

t (i2, i3, . . . , iR+1) =
←−
Ψ

δ

t (i2, i3, . . . , iR+1) (A.4)

The partial path equivalence will be proven by first proving through induction that:

←−
δ t(i2, i3, . . . , iR+1)

=

−→
δ t+R−1(i2, i3, . . . , iR+1)

bi3(xt+1) . . . biR+1
(xt+R−1)P (st = i2, . . . , st+R−1 = iR+1)

(A.5)
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When decoding a left-context HMM, we will refer to the best-path forward probability as

the left-context, best-path forward probability and when decoding a right-context HMM

we will refer to the right-context, best-path forward probability. The left-context best-

path forward probabilities for t ≤ R can be written as:

−→
δ R(i1, i2, . . . , iR) =

−→
δ R−1(i1, i2, . . . , iR−1)−→a 0i1i2···iRbiR(xR)

−→
δ R−1(i1, i2, . . . , iR−1) =

−→
δ R−2(i1, i2, . . . , iR−2)−→a 0i1i2···iR−1

biR−1
(xR−1)

...
−→
δ 2(i1, i2) =

−→
δ 1(i1)−→a 0i1i2bi2(x2)

−→
δ 1(i1) = −→a 0i1bi1(x1)

and thus the left-context best-path forward probability at time t = R can be rewritten

as:

−→
δ R(i1, i2, . . . , iR) = −→a 0i1bi1(x1)−→a 0i1i2bi2(x2) . . .−→a 0i1i2···iRbiR(xR)

= −→a 0i1
−→a 0i1i2 . . .−→a 0i1i2···iRbi1(x1)bi2(x2) . . . biR(xR)

= P (s1 = 0, s1 = i1, s2 = i2, . . . , sR = iR)×

bi1(x1)bi2(x2) . . . biR(xR)

The right-context best-path forward probability at time t = 1 can be written as:

←−
δ 1(i1, i2, . . . , iR) = ←−a 0i1i2···iRbi1(x1)

By applying Bayes’ Theorem to the right-context transition probabilities the right-context

best-path forward probability can be rewritten as:

←−
δ 1(i1, i2, . . . , iR) =

P (s1 = 0, s1 = i1, s2 = i2, . . . , sR = iR)

P (s1 = i1, s2 = i2, . . . , sR = iR)
bi1(x1)

=
P (s1 = 0, s1 = i1, s2 = i2, . . . , sR = iR)

P (s1 = i1, s2 = i2, . . . , sR = iR)
bi1(x1)

×bi2(x2) . . . biR(xR)

bi2(x2) . . . biR(xR)

=

−→
δ R(i1, i2, . . . , iR)

bi2(x2) . . . biR(xR)P (s1 = i1, . . . , st+R−1 = iR)

The left-context best-path forward probability at time t = R + 1 can be written as:

−→
δ R+1(i2, i3, . . . , iR+1) = max

i1

[−→
δ R(i1, i2, . . . , iR)−→a i1i2···iR+1

]
biR+1

(xR+1) (A.6)

thus
−→
δ R+1(i2, i3, . . . , iR+1) can be rewritten as:

−→
δ R+1(i2, i3, . . . , iR+1)

= max
i1

[−→a 0i1bi1(x1)−→a 0i1i2bi2(x2) . . .−→a 0i1i2···iRbiR(xR)−→a i1i2···iR+1

]
×
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biR+1
(xR+1)

= max
i1

[−→a 0i1
−→a 0i1i2 . . .−→a 0i1i2···iRbi1(x1)bi2(x2) . . . biR(xR)−→a i1i2···iR+1

]
×

biR+1
(xR+1)

= max
i1

[
P (st−R+1 = 0, st−R+1 = i1, st−R+2 = i2, . . . , st = iR|Φlc)×
bi1(x1)bi2(x2) . . . biR(xR)−→a i1i2···iR+1

]
×

biR+1
(xR+1)

= max
i1

[
P (st−R+1 = 0, st−R+1 = i1, . . . , st = iR|Φlc)bi1(x1)−→a i1i2···iR+1

]
×

bi2(x2) . . . biR(xR)biR+1
(xR+1) (A.7)

The right-context best-path forward probability at time t = 2 can be written as:

←−
δ 2(i2, i3, . . . , iR+1) = max

i1

[←−
δ 1(i1, i2, . . . , iR)←−a i1i2···iR+1

]
bi2(x2)

= max
i1

[←−a 0i1i2···iRbi1(x1)←−a i1i2···iR+1

]
bi2(x2) (A.8)

By applying Bayes’ Theorem to the right-context transition probabilities denoted by
←−a i1i2···iR+1

the best-path forward probability
←−
δ 2(i2, i3, . . . , iR+1) can be rewritten as:

←−
δ 2(i2, i3, . . . , iR+1)

= max
i1

[
P (st−R+1=0,st−R+1=i1,...,st−1=iR−1,st=iR)

P (st−R+1=i1,st−R+2=i2...,st=iR)
bi1(x1)×

P (st−R+1=i1,st−R+2=i2,...,st=iR,st+1=iR+1)

P (st−R+2=i2,st−R+3=i3...,st+1=iR+1)

]
bi2(x2)

= max
i1

[
P (st−R+1 = 0, st−R+1 = i1, . . . , st−1 = iR−1, st = iR)bi1(x1)×
P (st−R+1=i1,st−R+2=i2,...,st+1=iR+1)

P (st−R+1=i1,st−R+2=i2...,st=iR)

]
×

bi2(x2)

P (st−R+2 = i2, st−R+3 = i3 . . . , st+1 = iR+1)

= max
i1

[
P (st−R+1 = 0, st−R+1 = i1, . . . , st = iR)bi1(x1)−→a i1i2···iR+1

]
×

bi2(x2)

P (st−R+2 = i2, st−R+3 = i3 . . . , st+1 = iR+1)

=

−→
δ R+1(i2, i3, . . . , iR+1)

bi3(x3) . . . biR+1
(xR+1)P (st = i2, st+1 = i3 . . . , st+R−1 = iR+1)

The left-context best-path forward probability for time t = k + R can be written as:

−→
δ k+R(i2, i3, . . . , iR+1) = max

i1

[−→
δ k+R−1(i1, i2, . . . , iR)−→a i1i2···iR+1

]
biR+1

(xk+R) (A.9)

The right-context best-path forward probability at time t = k + 1 can be written as:

←−
δ k+1(i2, i3, . . . , iR+1) = max

i1

[←−
δ k(i1, i2, . . . , iR)←−a i1i2···iR+1

]
bi2(xk+1) (A.10)
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Assuming that the right-context best-path forward probability at time t = k can be

written as in terms of the left-context best-path forward probability at time t = k +R−1

as follows:

←−
δ k(i1, i2, . . . , iR) =

−→
δ k+R−1(i1, i2, . . . , iR)

bi2(xk+1) . . . biR(xk+R−1)P (sk−R+2 = i1, . . . , sk+1 = iR)
(A.11)

the right-context best-path forward probability at time t = k + 1 can be rewritten as:

←−
δ k+1(i2, i3, . . . , iR+1)

= max
i1

 −→
δ k+R−1(i1,i2,...,iR)

bi2
(xk+1)...biR

(xk+R−1)P (sk−R+2=i1,sk−R+3=i2...,sk+1=iR)
×

←−a i1i2···iR+1

 bi2(xk+1)

= max
i1

 −→
δ k+R−1(i1,i2,...,iR)

bi2
(xk+1)...biR

(xk+R−1)P (sk−R+2=i1,sk−R+3=i2...,sk+1=iR)
×

←−a i1i2···iR+1

 bi2(xk+1)

= max
i1

 −→
δ k+R−1(i1,i2,...,iR)

P (sk−R+2=i1,sk−R+3=i2...,sk+1=iR)
×

P (sk−R+2=i1,sk−R+3=i2...,sk+2=iR+1)

P (sk−R+3=i2,sk−R+3=i2...,sk+1=iR+1)

 biR+1
(xk+R)

bi3(xk+2) . . . biR(xk+R−1)biR+1
(xk+R)

= max
i1

[ −→
δ k+R−1(i1, i2, . . . , iR)P (sk−R+2=i1,sk−R+3=i2...,sk+2=iR+1)

P (sk−R+2=i1,sk−R+3=i2...,sk+1=iR)

]
×

biR+1
(xk+R)

bi3(xk+2) . . . biR+1
(xk+R)P (sk−R+3 = i2, sk−R+3 = i2 . . . , sk+1 = iR+1)

=
max

i1

[ −→
δ k+R−1(i1, i2, . . . , iR)−→a i1i2···iR+1

]
biR+1

(xk+R)

bi3(xk+2) . . . biR+1
(xk+R)P (sk−R+3 = i2, sk−R+3 = i2 . . . , sk+1 = iR+1)

=

−→
δ k+R(i2, i3, . . . , iR+1)

bi3(xk+2) . . . biR+1
(xk+R)P (sk−R+3 = i2, sk−R+3 = i2 . . . , sk+1 = iR+1)

(A.12)

Thus we have proven by induction that Eq. A.5 is true for t = 1, 2, . . . , T −R.

For t = T − R + 1, T − R + 2, . . . , T the right-context, best-path forward probability

is equal to

←−
δ t(it−T+R+1, it−T+R+1, . . . , iR+1)

= max
it−T+R

[←−
δ t−1(it−T+R, . . . , iR+1)←−a it−T+R···iR+1(N+1)

]
bit−T+R+1

(xt)

= max
it−T+R

 max
it−T+R−1

[←−
δ t−2(it−T+R−1, . . . , iR+1)←−a it−T+R−1···iR+1(N+1)

]
bit−T+R

(xt−1)
←−
δ t−1(it−T+R, . . . , iR+1)←−a it−T+R···iR+1(N+1)

 bit−T+R+1
(xt)

= max
i2,...,it−T+R

[ ←−
δ t−R+1(i2, . . . , iR+1)←−a i2···iR+1(N+1)bi3(xt−R+2) . . .
←−a it−T+R−1···iR+1(N+1)bit−T+R

(xt−1)←−a it−T+R···iR+1(N+1)

]
bit−T+R+1

(xt)

= max
i2,...,it−T+R


−→
δ T (i2,...,iR+1)

bi3
(xT−R+2)...biR+1

(xT )P (sT−R+1=i2,...,sT =iR+1|Φ)
×

←−a i2···iR+1(N+1)bi3(xt−R+2) . . .
←−a it−T+R−1···iR+1(N+1)bit−T+R

(xt−1)←−a it−T+R···iR+1(N+1)

 bit−T+R+1
(xt)
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= max
i2,...,it−T+R

 −→
δ T (i2,...,iR+1)

bit−T+R+2
(xt+1)...biR+1

(xT )P (sT−R+1=i2,...,sT =iR+1|Φ)
×

←−a i2···iR+1(N+1) . . .←−a it−T+R−1···iR+1(N+1)
←−a it−T+R···iR+1(N+1)


= max

i2,...,it−T+R

 −→
δ T (i2,...,iR+1)

bit−T+R+2
(xt+1)...biR+1

(xT )P (sT−R+1=i2,...,sT =iR+1|Φ)
×

P (sT−R+1=i2,...,sT =iR+1,sT =N+1|Φ)

P (st−T+R+1=it−T+R+1,...,sT =iR+1sT =N+1|Φ)


= max

i2,...,it−T+R

[ −→
δ T (i2,...,iR+1)

−→a i2···iR+1(N+1)

bit−T+R+2
(xt+1)...biR+1

(xT )P (st−T+R+1=it−T+R+1,...,sT =iR+1,sT =N+1|Φ)

]

=

max
i2,...,it−T+R

[−→
δ T (i2, . . . , iR+1)−→a i2···iR+1(N+1)

]
bit−T+R+2

(xt+1) . . . biR+1
(xT )P (st−T+R+1 = it−T+R+1, . . . , sT = iR+1, sT = N + 1|Φ)

The left-context back pointer at time t = 1 given the state sequence SR
1 is simply the

initial state 0. The left-context back pointer at time t given the state sequence St+R−1
1

can be written as:

−→
Ψ

δ

t (i2, i3, . . . , iR+1) = arg max
i1

[−→
δ t+R−1(i1, i2, . . . , iR)−→a i1i2···iR+1

]
(A.13)

The right-context back pointer at time t given the state sequence St+R−1
1 can be written

as:

←−
Ψ

δ

t (i2, i3, . . . , iR+1) = arg max
i1

[←−
δ t(i1, i2, . . . , iR)←−a i1i2···iR+1

]
(A.14)

By using Equation A.5 the right-context back pointer for t = 1, . . . , T − R can be

rewritten as:

←−
Ψ

δ

t (i2, i3, . . . , iR+1)

= arg max
i1

[ −→
δ t+R−1(i1, i2, . . . , iR)←−a i1i2···iR+1

bi2(xt+1) . . . biR(xt+R−1)P (st−R+1 = i1, . . . , st = iR)

]

= arg max
i1

[ −→
δ t+R−1(i1, i2, . . . , iR)←−a i1i2···iR+1

P (st−R+1 = i1, st−R+2 = i2 . . . , st = iR)

]

= arg max
i1

[ −→
δ t+R−1(i1, i2, . . . , iR)−→a i1i2···iR+1

P (st−R+2 = i2, st−R+3 = i3 . . . , st+1 = iR+1)

]
= arg max

i1

[−→
δ t+R−1(i1, i2, . . . , iR)−→a i1i2···iR+1

]
=
−→
Ψ

δ

t (i2, i3, . . . , iR+1) (A.15)

The right-context back pointer for t = T −R + 1, . . . , T − 1, T can be written as:

←−
Ψ

δ

t (it−T+R+1, . . . , iR+1)

= arg max
it−T+R

[←−
δ t+R−1(it−T+R, . . . , iR+1)←−a it−T+R···iR+1(N+1)

]

= arg max
it−T+R

 max
i2,...,it−T+R−1

»−→
δ T (i2,...,iR+1)

−→a i2···iR+1(N+1)

–
bit−T+R+1

(xt)...biR+1
(xT )P (st−T+R=it−T+R,...,sT =iR+1,sT =N+1|Φ)

×
←−a it−T+R···iR+1(N+1)


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= arg max
it−T+R

[
max

i2,...,it−T+R−1

»−→
δ T (i2,...,iR+1)

−→a i2···iR+1(N+1)

–
bit−T+R+1

(xt)...biR+1
(xT )P (st−T+R+1=it−T+R+1,...,sT =iR+1,sT =N+1|Φ)

]

= arg max
it−T+R

[
max

i2,...,it−T+R−1

[−→
δ T (i2, . . . , iR+1)−→a i2···iR+1(N+1)

]]
(A.16)

A.3 Parameter estimation

The parameters of the right-context HMM can be estimate by using the Baum-Welch

algorithm to gather joint state occupancy counts. The only difference lies in the re-

estimation equations for the state transition probabilities. The same state occupancy

probability counts that are used to reestimate the left-context transition probabilities are

used to estimate the right-context transition probabilities.



Appendix B

A* Admissibility

B.1 Proof of Admissibility of Heuristic Function

We will now show that the (R − K)-order, left-context best-path backward probability
−̂→ε t(iK+1, . . . , iR), computed using the (R−K)-order, left-context pseudo HMM Φ̂R−K,lc,

is an admissible heuristic when using A* search to decode the HMM ΦR,lc. This is done

by proving that

h [nt(i1, i2, . . . , iR)] = −̂→ε t(iK+1, . . . , iR)

≥ −→ε t(i1, i2, . . . , iR)

= h∗ [nt(i1, i2, . . . , iR)] , with i1, . . . , iR = 0, . . . , N (B.1)

At time t = T , the best-path backward probability of the pseudo HMM Φ̂R−K,lc is

−̂→ε T (iK+1, . . . , iR) = −̂→a iK+1iK+2···iR(N+1), with iK+1, . . . , iR = 0, . . . , N

and the best-path backward probability of the HMM ΦR,lc is

−→ε T (i1, . . . , iR) = −→a i1i2···iK iK+1···iR(N+1), with i1, . . . , iR = 0, . . . , N

According to Eq. 3.19, the (R − K)-order state transition pseudo probability is defined

to be

−̂→a iK+1iK+2···iR(N+1) = max
i1,···,iK

[−→a i1i2···iR(N+1)

]
≥ −→a i1i2···iR(N+1), ∀ i1, . . . , iR = 0, . . . , N

and therefore

−̂→ε T (iK+1, . . . , iR) = −̂→a iK+1iK+2···iR(N+1)

≥ −→a i1i2···iR(N+1)

= −→ε T (i1, i2, . . . , iR) ∀ i1 = 0, 1, . . . , N (B.2)

136
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As the pdfs of the (R − K)-order, pseudo HMM and the Rth-order HMM are identical

(and associated with the same state indexes), according to the definition of the pseudo

HMM in Eq. 3.19), we know that

−̂→a i2i3···iR+1
b̂iR+1

(xt+1) ≥ −→a i1i2···iR+1
biR+1

(xt+1)

(B.3)

We will prove by induction that the (R − K)-order, best-path backward probability at

time index t is an overestimate of the Rth-order, best-path backward probability at time

index t:

−̂→ε t(iK+1, . . . , iR) ≥ −→ε t(i1, . . . , iR) (B.4)

by first assuming that Eq. B.4 is true at time-index t + 1 i.e.

−̂→ε t+1(i2, . . . , iR) ≥ −→ε t+1(i1, . . . , iR) (B.5)

The best-path backward probability of the HMM ΦR,lc at time arbitrary time index t

is

−→ε t(i1, . . . , iR) = max
iR+1

[−→a i1i2···iR+1
biR+1

(xt+1)−→ε t+1(i2, i3, . . . , iR+1)
]

(B.6)

At the arbitrary time index t, with t = 0, . . . , T−1, the best-path backward probability

of the pseudo HMM Φ̂R−K,lc is

−̂→ε t(iK+1, . . . , iR) = max
iR+1

[
−̂→a iK+1iK+2···iR+1

b̂iR+1
(xt+1)−̂→ε t+1(iK+2, . . . , iR+1)

]
= max

iR+1

[
−̂→a iK+1iK+2···iR+1

biR+1
(xt+1)−̂→ε t+1(iK+2, . . . , iR+1)

]
≥ max

iR+1

[
−̂→a iK+1iK+2···iR+1

biR+1
(xt+1)−→ε t+1(i2, . . . , iR+1)

]
≥ max

iR+1

[−→a i1i2···iR+1
biR+1

(xt+1)−→ε t+1(i2, . . . , iR+1)
]

= −→ε t(i1, . . . , iR) ∀ i1, . . . , iR = 0, . . . , N (B.7)

Therefore, we have proven by induction that the heuristic function is an overestimate of

the best-path to the final state i.e.

−̂→ε t(iK+1, . . . , iR) = h [nt(i1, i2, . . . , iR)] ≥ h∗ [nt(i1, i2, . . . , iR)] = −→ε t(i1, . . . , iR)

B.2 Decoding Problem Equivalence

Suppose we have a Rth-order, left-context HMM ΦR,lc from which we derive a R−K-order,

left-context pseudo HMM Φ̂R−K,lc and a R−K order, right-context, pseudo HMM Φ̂R−K,rc.

The parameters of ΦR,lc, Φ̂R−K,lc and Φ̂R−K,rc are respectively defined in Eqs. (2.4), (3.19)
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and (4.42). Although it is possible to prove the decoding equivalence for the general case,

the proof is much easier to understand if we prove it for a value of K = 1

We now prove that Φ̂R−1,rc will result in the same partially decoded paths as Φ̂R−1,lc.

This is done by proving that

−̂→
Ψ

ε

t(i2, i3, . . . , iR) =
←̂−
Ψ

ε

t(i2, i3, . . . , iR), where i2, . . . , iR = 0, 1, . . . , N + 1 (B.8)

which requires that we first prove by induction that

−̂→ε
′
t(i2, i3, . . . , iR)

=
←̂−ε t−R+2(i2, i3, . . . , iR)

P (st−R+2 = i2, st−R+3 = i3, . . . , st = iR)bi2(xt−R+2) . . . biR−1
(xt−1)

(B.9)

When decoding the lower-order, left-context pseudo-HMM, we will refer to the best-path

backward probability as the left-context, best-path backward probability
−̂→ε t(i2, i3, . . . , iR) and when decoding the lower-order, right-context pseudo-HMM, we will

refer to the best-path backward probability as the right-context, best-path backward

probability ←̂−ε t(i2, i3, . . . , iR). The right-context, best-path backward probabilities for

time t ≥ T −R + 2 can be written as:

←̂−ε T−R+2(i2, i3, . . . , iR) = bi2(xT−R+2)←̂−a i2i3···iR(N+1)
←̂−ε T−R+3(i3, i4, . . . , iR)

←̂−ε T−R+3(i3, i4, . . . , iR) = bi3(xT−R+3)←̂−a i3i4···iR(N+1)
←̂−ε T−R+4(i4, i5, . . . , iR)

...

←̂−ε T−1(iR−1, iR) = biR−1
(xT−1)←̂−a iR−1iR(N+1)

←̂−ε T (iR)

←̂−ε T (iR) = biR(xT )←̂−a iR(N+1) (B.10)

and thus the right-context, best-path backward probability at time t = T −R + 2 can be

rewritten as:

←̂−ε T−R+2(i2, i3, . . . , iR)

= bi2(xT−R+2)←̂−a i2i3···iR(N+1)bi3(xT−R+3)←̂−a i3i4···iR(N+1)bi4(xT−R+4) . . .×
←̂−a iR−1iR(N+1)biR(xT )←̂−a iR(N+1)

= ←̂−a i2i3···iR(N+1)bi2(xT−R+3)bi3(xT−R+4) . . . biR(xT )←̂−a i3i4···iR(N+1) ×

. . . ←̂−a iR−1iR(N+1)
←̂−a iR(N+1) (B.11)

Using the definition in Eq. (4.42) we make the substitution

←̂−a i2i3···iR(N+1) = −→a i∗1i2i3···iR(N+1)
P (sT−R+1 = i2, sT−R+2 = i3, . . . , sT−1 = iR)

P (sT−R+2 = i3, sT−R+3 = i4, . . . , sT = N + 1)
(B.12)

and note that

←̂−a i3i4···iR(N+1) . . . ←̂−a iR−1iR(N+1)
←̂−a iR(N+1)

= P (sT−R+2 = i3, sT−R+3 = i4, . . . , sT = N + 1) (B.13)
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and therefore obtain:

←̂−ε T−R+2(i2, i3, . . . , iR)

= −→a i∗1i2i3···iR(N+1)P (sT−R+1 = i2, sT−R+2 = i3, . . . , sT−1 = iR)×

bi2(xT−R+2)bi3(xT−R+3) . . . biR(xT ) (B.14)

The left-context, best-path backward probability at time t = T can be written as:

−̂→ε
′
T (i2, i3, . . . , iR)

= biR(xT )−̂→a i2i3···iR(N+1)

= biR(xT )−→a i∗1i2i3···iR(N+1)

=
←̂−ε T−R+2(i2, i3, . . . , iR)

P (sT−R+2 = i2, sT−R+3 = i3, . . . , sT = iR)bi2(xT−R+1) . . . biR−1
(xT−1)

(B.15)

The left-context, best-path backward probability at time t = T − 1 can be written as:

−̂→ε
′
T−1(i2, i3, . . . , iR) = biR(xT−1) max

iR+1

[
−̂→a i2i3···iR+1

−̂→ε
′
T (i3, i4, . . . , iR+1)

]
= biR(xT−1) max

iR+1

[−→a i∗1i2i3···iR+1
biR+1

(xT )−→a i∗2i3···iR+1(N+1)

]
(B.16)

The right-context, best-path backward probability at time t = T −R + 1 can be written

as:

←̂−ε T−R+1(i2, i3, . . . , iR)

= bi2(xT−R+1) max
iR+1

[
←̂−a i2i3···iR+1

←̂−ε T−R+2(i3, i4, . . . , iR+1)
]

= bi2(xT−R+1) max
iR+1


←̂−a i2i3···iR+1

−→a i∗2i3···iR+1(N+1)×
P (sT−R+2 = i3, sT−R+3 = i4, . . . , sT = iR+1)×
bi3(xT−R+2)bi4(xT−R+3) . . . biR+1

(xT )



= bi2(xT−R+1) max
iR+1


−̂→a i∗1i2···iR+1

P (sT−R+1=i2,sT−R+2=i3,...,sT−1=iR)

P (sT−R+2=i3,sT−R+3=i4,...,sT =iR+1)
×

−→a i∗2i3···iR+1(N+1)×
P (sT−R+2 = i3, sT−R+3 = i4, . . . , sT = iR+1)×
bi3(xT−R+2)bi4(xT−R+3) . . . biR+1

(xT )


= bi2(xT−R+1) max

iR+1

[ −̂→a i∗1i2···iR+1
P (sT−R+1 = i2, sT−R+2 = i3, . . . , sT−1 = iR)

−→a i∗2i3···iR+1(N+1)bi3(xT−R+2) . . . biR+1
(xT )

]
= bi2(xT−R+1) . . . biR(xT−1) max

iR+1

[
−̂→a i∗1i2···iR+1

biR+1
(xT )−→a i∗2i3···iR+1(N+1)

]
×

P (sT−R+1 = i2, sT−R+2 = i3, . . . , sT−1 = iR)

= bi2(xT−R+1) . . . biR−1
(xT−2)−̂→ε

′
T−1(i2, i3, . . . , iR)×

P (sT−R+1 = i2, sT−R+2 = i3, . . . , sT−1 = iR) (B.17)
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Suppose that the following statement is true:

−̂→ε
′
t(i2, i3, . . . , iR)

=
←̂−ε t−R+2(i2, i3, . . . , iR)

P (st−R+2 = i2, st−R+3 = i3, . . . , st = iR)bi2(xt−R+2) . . . biR−1
(xt−1)

(B.18)

The left-context, best-path backward probability at time t = t− 1 can be written as:

−̂→ε
′
t−1(i2, i3, . . . , iR) = biR(xt−1) max

iR+1

[
−̂→a i2i3···iR+1

−̂→ε t(i3, i4, . . . , iR+1)
]

= biR(xt−1) max
iR+1

[
−→a i∗1i2i3···iR+1

−̂→ε t(i3, i4, . . . , iR+1)
]

(B.19)

The right-context, best-path backward probability at time t = t − R + 1 can be written

as:

←̂−ε t−R+1(i2, i3, . . . , iR)

= bi2(xt−R+1) max
iR+1

[
←̂−a i2i3···iR+1

←̂−ε t−R+2(i3, i4, . . . , iR+1)
]

= bi2(xt−R+1) max
iR+1


−̂→a i∗1i2i3···iR+1

P (st−R+1=i2,st−R+2=i3,...,st−1=iR)

P (st−R+2=i3,st−R+3=i4,...,st=iR+1)
×

P (st−R+2 = i3, st−R+3 = i4, . . . , st = iR+1)×
bi3(xt−R+2) . . . biR(xt−1)−̂→ε t(i3, i4, . . . , iR+1)


= bi2(xt−R+1) . . . biR(xt−1) max

iR+1

[
−̂→a i∗1i2i3···iR+1

−̂→ε t(i3, i4, . . . , iR+1)
]
×

P (st−R+1 = i2, st−R+2 = i3, . . . , st−1 = iR)

= bi2(xt−R+2) . . . biR−1
(xt−2)−̂→ε

′
t−1(i2, i3, . . . , iR)×

P (st−R+1 = i2, st−R+2 = i3, . . . , st−1 = iR) (B.20)

Thus we have proven by induction that Eq. (B.9) is true for t = T, T − 1, . . . , R− 1.

According to Section 4.3.2.2, for t = R−2, . . . , 2, 1 the left-context, best-path backward

probability is:

−̂→ε
′
t(i2, . . . , it)

= bit(xt) max
it+1

[
−̂→a 0i1···it+1

−̂→ε
′
t+1(i1, i2, . . . , it+1)

]
= max

it+1

[
bit(xt)−̂→a 0i1···itit+1bit+1(xt+1) max

it+2

[
−̂→a 0i1···it+1it+2

−̂→ε
′
t+1(i1, . . . , it+1, it+2)

]]
= max

it+1,···,iR−1

[
bit(xt)−̂→a 0i1···itit+1bit+1(xt+1)−̂→a 0i1···itit+1it+2bit+2(xt+2) . . .

biR−2
(xR−2)−̂→a 0i1···itit+1···iR−1

−̂→ε
′
R−1(i1, i2, . . . , it, it+1, . . . , iR−1)

]

= max
it+1,···,iR−1


bit(xt)−̂→a 0i1···it+1bit+1(xt+1)−̂→a 0i1···it+2bit+2(xt+2) . . .

biR−2
(xR−2)−̂→a 0i1···itit+1···iR−1

×
←̂−ε 1(i1,i2,...,it,it+1,...,iR−1)

bi1
(x1)...bit (xt)bit+1

(xt+1)...biR−2
(xR−2)P (s1=i1,...,st=it,st+1=it+1,...,sR−1=iR−1|Φ)


= max

it+1,···,iR−1

[ −̂→a 0i1···itit+1
−̂→a 0i1···it+2

...
−̂→a 0i1···itit+1···iR−1

←̂−ε 1(i1,i2,...,it,it+1,...,iR−1)

bi1
(x1)...bit−1

(xt−1)P (s1=i1,...,st=it,it+1=it+1,...,sR−1=iR−1|Φ)

]
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= max
it+1,···,iR−1

[ −→a 0i1···itit+1
−→a 0i1···it+2

...
−→a 0i1···itit+1···iR−1

←̂−ε 1(i1,i2,...,it,it+1,...,iR−1)

bi1
(x1)...bit−1

(xt−1)P (s1=i1,...,st=it,it+1=it+1,...,sR−1=iR−1|Φ)

]
= max

it+1,···,iR−1

[
P (s1=0,s1=i1,...,st=it,st+1=it+1,...,sR−1=iR−1|Φ)

←̂−ε 1(i1,i2,...,it,it+1,...,iR−1)

P (s1=0,s1=i1,...,st=it|Φ)bi1
(x1)...bit−1

(xt−1)P (s1=i1,...,st=it,st+1=it+1,...,sR−1=iR−1|Φ)

]
= max

it+1,···,iR−1

[←−a 0i1···itit+1···iR−1
←̂−ε 1(i1, i2, . . . , it, it+1, . . . , iR−1)

bi1(x1) . . . bit−1(xt−1)P (s1 = i1, . . . , st = it|Φ)

]

=

max
it+1,···,iR−1

[
←̂−a 0i1···sR−1

←̂−ε 1(i1, i2, . . . , it, it+1, . . . , sR−1)
]

bi1(x1) . . . bit−1(xt−1)P (s1 = i1, . . . , st = it|Φ)
(B.21)

The left-context, “forward” pointer at time t = T given the state sequence ST
T−R+2 is

simply the final state N +1. The left-context, “forward” pointer at time t given the state

sequence ST
t−R+2 can be written as:

−̂→
Ψ

ε

t(i2, i3, . . . , iR) = arg max
iR+1

[
−̂→a i2i3···iR+1

−̂→ε
′
t+1(i3, i4, . . . , iR+1)

]
= arg max

iR+1

[
−→a i∗1i2i3···iR+1

−̂→ε
′
t+1(i3, i4, . . . , iR+1)

]
(B.22)

The right-context, “forward” pointer at time T given the state sequence ST
T−R+2 is simply

the final state N+1. The right-context, “forward” pointer at time t = T, T − 1, . . . , R− 1

given the state sequence ST
t−R+2 can be written as:

←̂−
Ψ

ε

t(i2, i3, . . . , iR) = arg max
iR+1

[
←̂−a i2i3···iR+1

←̂−ε t−R+3(i3, i4, . . . , iR+1)
]

(B.23)

By using Eq. (B.9) the right-context, “forward” pointer for t = T, T − 1, . . . , R − 1 can

be rewritten as:

←̂−
Ψ

ε

t(i2, i3, . . . , iR) = arg max
iR+1

[
←̂−a i2i3···iR+1

←̂−ε t−R+3(i3, i4, . . . , iR+1)
]

= arg max
iR+1


−→a i∗1i2i3···iR+1

P (st−R+1=i2,st−R+2=i3,...,st−1=iR)

P (st−R+2=i3,st−R+3=i4,...,st=iR+1)
×

P (st−R+1 = i3, st−R+2 = i4, . . . , st = iR+1)×
bi3(xt−R+3) . . . biR(xt)−̂→ε ′

t+1(i3, i4, . . . , iR+1)


= arg max

iR+1

[
−→a i∗1i2i3···iR+1

−̂→ε
′
t+1(i3, i4, . . . , iR+1)

]
=
−̂→
Ψ

ε

t(i2, i3, . . . , iR) (B.24)

By using Eq. (B.21) the left-context, “forward” pointer for t = R − 2, . . . , 2, 1 can be

rewritten as:

−̂→
Ψ

ε

t(i1, i2, . . . , it)

= arg max
it+1

[
−̂→a i1i2···it+1

−̂→ε
′
t−R+1(i1, i2, . . . , it+1)

]
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= arg max
it+1

−̂→a 0i1···it+1

max
it+2,···,iR−1

[
←̂−a 0i1···sR−1

←̂−ε 1(i1, i2, . . . , it+1, it+2, . . . , sR−1)
]

bi1(x1) . . . bit(xt)P (s1 = i1, . . . , st+1 = it+1|Φ)


= arg max

it+1

 max
it+2,···,iR−1

[
←̂−a 0i1···sR−1

←̂−ε 1(i1, i2, . . . , it+1, it+2, . . . , sR−1)
]

bi1(x1) . . . bit(xt)P (s1 = i1, . . . , st = it|Φ)


= arg max

it+1

[
max

it+2,···,iR−1

[
←̂−a 0i1···sR−1

←̂−ε 1(i1, i2, . . . , it+1, it+2, . . . , sR−1)
]]

(B.25)
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Tables of decoding results

C.1 Expense of determining the heuristic function

C.1.1 Decoding of derived low-order, right-context HMMs

Table C.1: The computational expense of the Viterbi-MAP-beam decoder during the

backward decoding of the derived R−K-order, right-context HMMs, with beams set wide

enough to decode all segments correctly.

Order1R R−K Ctot Ctot,n [%] time [s] Beam B

2 1 1,498,473 80.91 281.64 36

3 1 1,055,876 73.73 140.45 29

2 1,497,585 28.97 762.49 28

4 1 890,071 65.06 119.49 24

2 1,161,390 27.26 615.29 26

3 1,945,270 13.79 1,111.33 28

5 1 940,822 69.28 119.96 26

2 1,203,410 29.32 629.96 27

3 2,301,432 18.43 1,279.71 32

4 3,493,832 10.46 2,342.95 33

6 1 941,274 69.52 120.04 26

2 1,064,792 26.25 579.88 25

3 2,981,605 24.67 1,546.07 37

4 4,558,258 14.68 2,938.76 38

5 5,683,323 7.91 4,583.46 37

1R −K is the order of the derived HMM. R is the order of the HMM from which the R −K-order
HMM is derived. Ctot is the total decoding cost and Ctot,n is the normalised total decoding cost.
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C.1.2 Decoding of derived low-order, right-context pseudo

HMMs

Table C.2: The computational expense of the Viterbi-MAP-beam decoder during the

backward decoding of the derived R−K-order, right-context pseudo HMMs, with beams

set wide enough to decode all segments correctly.

Order2R R−K Ctot Ctot,n [%] time [s] Beam B

2 1 1,527,958 82.50 285.27 36

3 1 1,005,315 70.20 137.85 24

2 1,910,982 36.96 916.60 32

4 1 979,414 71.59 122.79 23

2 1,262,777 29.64 655.19 26

3 2,260,267 16.02 1,253.54 30

5 1 877,581 64.62 116.74 19

2 1,270,029 30.95 649.41 26

3 2,247,430 17.97 1,241.44 31

4 3,498,269 10.47 2,326.00 33

6 1 894,352 66.05 117.86 19

2 1,222,064 30.13 649.33 25

3 3,011,492 24.92 1,568.34 36

4 4,656,233 15.00 2,965.03 38

5 5,266,305 7.33 4,289.06 36

2R −K is the order of the derived HMM. R is the order of the HMM from which the R −K-order
HMM is derived. Ctot is the total decoding cost and Ctot,n is the normalised total decoding cost.
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C.2 Forward-Backward Search of high-order HMMs

C.2.1 FBS-based decoding vs. Viterbi-beam decoding

Table C.3: A comparison of the computational expense of the FBS-Viterbi-beam, A*

and the base-line Viterbi-MAP-beam decoders, during the forward decoding of high-order

left-context HMMs, with beams set wide enough to decode all segments correctly.

Order3R Decoder Ctot Ctot,n [%] time [s] B R−K Bh

1 Viterbi-beam 1,348,668 72.90 138.64 29 - -

2 Viterbi-beam 2,544,329 49.25 998.92 40 - -

A* 1,837,265 35.56 872.63 17 1 34

FBS-Viterbi 1,781,124 34.48 630.26 14 1 36

3 Viterbi-beam 2,748,162 19.53 1,349.16 33 - -

A* 1,941,888 13.75 1,881.25 23 1 24

A* 2,090,642 14.80 1,194.74 18 2 28

FBS-Viterbi 1,804,384 12.78 677.58 21 1 29

FBS-Viterbi 2,028,973 14.37 949.40 17 2 28

4 Viterbi-beam 2,645,305 7.91 1,811.39 29 - -

A* 2,936,999 8.79 5,568.22 28 1 23

A* 2,907,273 8.94 3,969.82 27 2 26

A* 2,328,170 6.96 1,580.70 15 3 28

FBS-Viterbi 2,488,942 7.45 1,426.59 26 1 29

FBS-Viterbi 2,920,063 8.73 1,843.67 27 2 28

FBS-Viterbi 2,520,640 7.54 1,686.20 17 3 28

3R denotes the order of the left-context HMM. R −K denotes the order of the derived HMM. Ctot

is the total decoding cost and Ctot,n is the normalised total decoding cost. B is the beam-width used in
the decoder. Bh is the beam-width used in the heuristic decoder.
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C.2.2 The influence of the HMM emitting state size N

Table C.4: A comparison of the computational expense of the FBS-Viterbi-beam, A*

and Viterbi-MAP-beam decoders, during the forward decoding of high-order, N = 10

emitting-state left-context HMMs, which use DC-Gaussian state output pdfs, with beams

set wide enough to decode all segments correctly.

N R Decoder Ctot Ctot,n [%] time [s] B R−K Bh

10 1 Viterbi-beam 175,929 88.85 35.01 28 - -

2 Viterbi-beam 242,359 49.06 105.61 27 - -

A* 176,768 35.78 72.69 10 1 24

FBS-Viterbi 220,566 44.65 62.04 10 1 25

3 Viterbi-beam 242,411 22.83 130.31 23 - -

A* 192,201 18.10 113.13 12 1 26

FBS-Viterbi 202,693 19.09 65.77 11 1 24

4 Viterbi-beam 327,299 16.38 192.07 24 - -

A* 266,138 13.32 250.38 17 1 25

FBS-Viterbi 235,142 11.77 99.58 14 1 23

5 Viterbi-beam 536,773 15.41 301.43 28 - -

A* 320,991 9.21 196.39 14 2 28

FBS-Viterbi 270,107 7.75 142.58 15 1 27

6 Viterbi-beam 759,227 12.36 467.38 30 - -

A* 427,959 6.97 279.17 14 3 29

FBS-Viterbi 359,379 5.85 219.04 15 2 29

7 Viterbi-beam 497,350 4.82 414.85 22 - -

A* 507,189 4.92 773.01 21 1 26

FBS-Viterbi 381,641 3.70 336.76 18 1 24

8 Viterbi-beam 1,536,345 9.14 1,135.80 35 - -

A* 630,322 3.75 925.87 21 2 35

FBS-Viterbi 557,037 3.31 560.76 22 1 24

9 Viterbi-beam 2,500,879 9.30 1,832.07 40 - -

A* 850,278 3.16 988.80 22 3 36

FBS-Viterbi 602,495 2.24 733.39 20 2 34

4R denotes the order of the left-context HMM. R −K denotes the order of the derived HMM. Ctot

is the total decoding cost and Ctot,n is the normalised total decoding cost. B is the beam-width used in
the decoder. Bh is the beam-width used in the heuristic decoder.
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Table C.5: A comparison of the computational expense of the FBS-Viterbi-beam, A*

and Viterbi-MAP-beam decoders, during the forward decoding of high-order, N = 40

emitting-state left-context HMMs, which use DC-Gaussian state output pdfs, with beams

set wide enough to decode all segments correctly.

N R Decoder4 Ctot Ctot,n [%] time [s] B R−K Bh

40 1 Viterbi-beam 1,348,668 72.90 138.64 29 - -

2 Viterbi-beam 2,544,329 49.25 998.92 40 - -

A* 1,837,265 35.56 872.63 17 1 34

FBS-Viterbi 1,781,124 34.48 630.26 14 1 36

3 Viterbi-beam 2,748,162 19.46 1,349.16 33 - -

A* 1,941,888 13.75 1,881.25 23 1 24

FBS-Viterbi 1,804,384 12.78 677.58 21 1 29

4 Viterbi-beam 2,645,305 7.91 1,811.39 29 - -

A* 2,328,170 6.96 1,580.70 15 3 28

FBS-Viterbi 2,488,942 7.45 1,426.59 26 1 29

Table C.6: A comparison of the computational expense of the FBS-Viterbi-beam, A*

and Viterbi-MAP-beam decoders, during the forward decoding of high-order, N = 50

emitting-state left-context HMMs, which use DC-Gaussian state output pdfs, with beams

set wide enough to decode all segments correctly.

N R Decoder5 Ctot Ctot,n [%] time [s] B R−K Bh

50 1 Viterbi-beam 1,676,150 65.63 157.41 27 - -

2 Viterbi-beam 876,383 12.12 437.43 18 - -

A* 1,838,696 25.43 736.24 18 1 21

FBS-Viterbi 1,595,559 22.07 527.95 20 1 19

3 Viterbi-beam 1,275,166 6.44 795.51 21 - -

A* 2,027,399 10.24 1,715.12 22 2 21

FBS-Viterbi 1,227,369 6.20 544.46 16 1 16

4 Viterbi-beam 1,769,351 3.72 1,398.56 23 - -

A* 2,478,153 5.21 2,734.90 24 3 17

FBS-Viterbi 2,081,924 4.38 1,328.02 23 1 18
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C.2.3 The influence of the complexity of the output pdfs

Table C.7: A comparison of the computational expense of the FBS-Viterbi-beam, A*

and Viterbi-MAP-beam decoders, during the forward decoding of high-order HMMs with

N = 50 emitting-states, which use DC-Gaussian, 8-mixture DC-Gaussian and

16-mixture DC-Gaussian state output pdfs, with beams set wide enough to decode all

segments correctly.

R Pdf Decoder Ctot Ctot,n [%] time [s] B R−K Bh

1 DC Gaussian Viterbi-beam 1,676,150 65.63 157.41 27 - -

GMM 8 Viterbi-beam 1,147,181 44.36 276.68 19 - -

GMM 16 Viterbi-beam 1,675,814 64.45 430.76 28 - -

2 DC Gaussian Viterbi-beam 876,383 12.12 437.43 18 - -

A* 1,838,696 25.43 736.24 18 1 21

FBS-Viterbi 1,595,559 22.07 527.95 20 1 19

GMM 8 Viterbi-beam 711,437 11.49 654.72 19 - -

A* 821,334 13.26 566.02 12 1 19

FBS-Viterbi 854,731 13.80 819.07 13 1 18

GMM 16 Viterbi-beam 4,032,319 62.75 1,973.91 43 - -

A* 1,749,641 27.23 1,221.68 15 1 54

FBS-Viterbi 1,788,864 27.84 1,712.40 16 1 53

3 DC Gaussian Viterbi-beam 1,275,166 6.44 795.51 21 - -

A* 2,027,399 10.24 1,715.12 22 2 21

FBS-Viterbi 1,227,369 6.20 544.46 16 1 16

GMM 8 Viterbi-beam 886,762 4.82 807.69 20 - -

A* 1,130,802 6.14 932.42 17 1 19

FBS-Viterbi 1,051,967 5.71 1,072.89 17 1 18

GMM 16 Viterbi-beam 4,499,000 23.62 3,118.82 44 - -

A* 2,207,504 11.59 1,959.11 23 1 52

FBS-Viterbi 2,206,824 11.59 2,210.36 23 1 52

4 DC Gaussian Viterbi-beam 1,769,351 3.72 1,398.56 23 - -

A* 2,478,153 5.21 2,734.90 24 1 17

FBS-Viterbi 2,081,924 4.38 1,328.02 23 1 18

GMM 8 Viterbi-beam 1,216,626 2.69 1,474.17 22 - -

A* 2,732,023 6.04 6,476.07 30 1 20

FBS-Viterbi 1,211,580 2.68 1,589.86 18 1 19

GMM 16 Viterbi-beam 7,233,175 15.61 5,430.67 48 - -

A* 2,735,254 5.90 4,464.42 26 1 55

FBS-Viterbi 2,415,373 5.21 3,012.83 24 1 52
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C.2.4 What is the optimal choice of derived HMM order?

Table C.8: An analysis of the total FBS-Viterbi-beam decoding cost.

N R Ctot Cs [%] Ch [%] Cc [%] time [s] B R−K Bh

10 2 220,556 33.40 56.57 8.02 62.04 10 1 25

10 3 202,693 42.09 49.38 8.52 65.77 11 1 24

298,447 29.62 58.78 11.60 101.35 12 2 26

10 4 235,142 53.30 39.36 7.34 99.58 14 1 23

266,481 44.38 47.46 11.16 113.79 13 2 22

271,240 27.52 62.42 10.05 134.37 9 3 21

10 5 270,107 58.53 35.12 6.34 142.58 15 1 27

329,487 41.72 47.50 10.78 156.70 14 2 28

412,063 26.50 62.43 11.07 178.67 12 3 30

479,095 15.01 75.46 9.53 228.48 8 4 28

10 6 373,892 70.75 24.47 4.78 249.44 19 1 26

359,379 47.38 42.52 10.09 219.04 15 2 29

403,672 36.67 52.59 10.75 237.68 14 3 27

512,290 28.21 60.55 11.24 297.20 14 4 27

577,446 14.63 75.49 9.88 368.44 9 5 27

10 7 381,641 72.13 23.26 4.61 336.76 18 1 24

472,413 61.31 30.48 8.21 368.42 19 2 27

591,509 38.26 51.30 10.44 365.28 17 3 37

627,901 31.80 57.13 11.06 406.59 16 4 30

738,245 23.94 64.43 11.63 528.76 15 5 29

1,041,606 20.54 67.04 12.42 713.23 17 6 30

10 8 557,037 80.81 15.92 3.26 560.76 22 1 24

651,364 65.27 27.60 7.13 568.75 22 2 37

631,732 43.12 47.04 9.84 509.39 18 3 37

929,295 36.63 50.75 10.62 652.31 21 4 37

1,221,225 31.66 56.48 11.86 811.96 22 5 37

1,388,975 18.51 69.99 11.50 916.19 18 6 37

1,568,365 7.48 84.36 8.16 1,043.56 11 7 37

10 9 785,182 86.53 11.10 2.37 963.50 25 1 23

602,495 64.81 28.13 7.06 733.39 20 2 34

715,641 52.97 38.24 8.79 782.33 20 3 34

1,041,459 38.83 53.18 9.99 859.62 21 4 41

1,323,015 33.92 54.85 11.22 1,028.76 22 5 38

2,665,955 11.62 77.35 1.02 2,070.15 19 8 41
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Table C.9: An analysis of the total A* decoding cost.

N R Ctot Cs [%] Ch [%] Cc [%] time [s] B R−K Bh

10 2 176,768 30.55 59.42 10.02 72.69 10 1 24

10 3 192,201 38.07 52.95 8.98 113.13 12 1 26

229,000 19.82 68.07 12.11 104.66 9 2 25

10 4 266,138 57.11 36.04 6.85 250.38 17 1 25

268,737 30.92 56.61 12.47 164.74 12 2 25

278,380 21.91 66.99 11.10 185.76 10 3 22

10 5 411,422 72.14 23.31 4.55 401.30 22 1 27

320,991 38.83 49.39 11.78 196.39 14 2 28

344,444 26.25 62.12 11.63 204.91 12 3 25

485,252 13.69 75.73 10.58 250.58 10 4 28

10 6 579,540 80.13 16.58 3.29 706.43 25 1 27

430,324 52.14 37.92 9.93 378.17 18 2 29

427,959 30.81 57.47 11.72 279.17 14 3 29

520,445 26.52 61.56 11.92 352.56 15 4 27

543,817 10.03 80.32 9.65 370.89 8 5 27

10 7 507,189 77.50 18.84 3.66 773.01 21 1 26

519,902 62.41 29.24 8.35 637.43 20 2 26

617,213 34.94 54.14 10.92 452.36 17 3 39

650,775 31.03 57.36 11.61 511.06 17 4 30

641,760 14.33 75.00 10.67 469.16 11 5 29

868,913 10.15 79.79 10.06 662.83 11 6 30

10 8 704,128 83.75 15.59 2.66 1,263.92 24 1 26

630,322 63.25 29.08 7.67 925.87 21 2 35

756,447 48.52 41.63 9.85 705.94 21 3 37

1,026,979 41.01 48.08 10.91 846.47 23 4 37

957,342 15.51 74.08 10.40 556.75 14 5 37

1,244,891 11.37 78.57 10.06 734.68 14 6 37

1,550,039 6.78 84.59 8.63 1,008.33 12 7 37

10 9 1,266,676 90.97 7.50 1.53 2,433.41 30 1 25

1,288,352 82.01 13.59 4.40 2,192.54 30 2 32

850,278 54.98 36.11 8.91 988.80 22 3 36

927,048 38.18 51.30 10.52 852.62 20 4 36

1,135,832 26.74 61.99 11.27 890.14 19 5 37

1,277,383 20.46 67.86 11.68 996.87 18 6 35

1,783,326 14.01 74.78 11.21 1,394.17 18 7 38

2,062,004 7.23 83.70 9.07 1,660.68 14 8 38
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C.2.5 The computational consistency of the FBS-based decoders

Table C.10: The computational consistency of decoding high-oder HMMS with N = 10

first-order emitting states with respectively the Viterbi-MAP-beam, A* and

FBS-Viterbi-beam decoder.
Average Std. dev. Minimum Maximum

R Decoder Ctot,n t [s] Ctot,n t [s] Ctot,n t [s] Ctot,n t [s]

1 Viterbi-beam 88.47 62.08 3.29 12.81 76.41 25.00 97.41 100.00

2 Viterbi-beam 48.96 68.09 4.86 6.66 14.72 18.18 71.02 100.00

A* 35.52 46.87 2.03 7.08 21.44 18.18 41.65 72.73

FBS-Viterbi 44.30 40.00 2.21 4.67 24.94 18.18 50.46 45.45

3 Viterbi-beam 22.75 61.61 3.04 7.69 4.67 13.33 37.38 100.00

A* 18.47 36.74 1.26 5.25 9.40 6.67 22.22 53.33

FBS-Viterbi 18.96 31.10 1.18 3.83 8.21 13.33 22.25 40.00

4 Viterbi-beam 16.31 61.92 2.56 8.44 2.17 13.64 30.31 100.00

A* 13.24 80.72 1.45 13.00 3.75 13.64 19.49 136.36

FBS-Viterbi 11.69 32.10 1.05 3.31 3.20 13.64 14.83 40.91

5 Viterbi-beam 15.45 56.26 2.69 7.66 1.79 13.16 32.54 100.00

A* 9.20 36.65 1.21 7.33 1.37 13.16 30.75 226.32

FBS-Viterbi 7.72 26.61 0.85 3.41 2.28 13.16 18.98 102.63

6 Viterbi-beam 12.44 52.62 2.38 7.66 1.16 12.70 28.50 100.00

A* 6.96 28.48 1.06 5.66 0.79 12.70 20.27 152.38

FBS-Viterbi 5.84 24.66 0.70 2.36 1.10 14.29 9.57 55.56

7 Viterbi-beam 4.86 30.65 1.04 4.57 0.48 10.42 14.04 100.00

A* 4.96 57.11 1.00 14.09 0.64 10.42 23.15 361.46

FBS-Viterbi 3.71 24.88 0.59 3.03 0.52 13.54 10.64 92.71

8 Viterbi-beam 9.27 45.00 2.11 7.70 0.76 11.17 25.49 100.00

A* 3.79 36.68 0.77 10.56 0.31 8.94 15.70 221.79

FBS-Viterbi 3.34 22.22 0.65 3.13 0.41 11.17 9.16 77.65

9 Viterbi-beam 9.47 42.74 2.26 7.61 0.62 10.53 27.63 100.00

A* 3.20 23.07 0.58 5.02 0.28 7.57 9.16 102.96

FBS-Viterbi 2.26 17.11 0.39 2.27 0.27 9.88 5.67 59.88


	Declaration
	Abstract
	Synopsis
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	Chapter 2 Hidden Markov Models
	Chapter 3 Forward-Backward Search of high-order HMMs
	Chapter 4 Right-context, high-order HMMs
	Chapter 5 Implementation Issues
	Chapter 6 Experimental investigation
	Chapter 7 Conclusions
	Bibliography
	Appendix A Equivalence of Right-context HMM
	Appendix B A* Admissibility
	Appendix C Tables of decoding results

