SUNScholar will be down for routine maintenance from 2018-12-11 10:00 SAST.

Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. Dominates south African commercial biooxidation tanks that operate at 40°C

Coram N.J. ; Rawlings D.E. (2002)


Iron-oxidizing bacteria belonging to the genus Leptospirillum are of great importance in continuous-flow commercial biooxidation reactors, used for extracting metals from minerals, that operate at 40°C or less. They also form part of the microbial community responsible for the generation of acid mine drainage. More than 16 isolates of leptospirilla were included in this study, and they were clearly divisible into two major groups. Group I leptospirilla had G+C moles percent ratios within the range 49 to 52% and had three copies of rrn genes, and based on 16S rRNA sequence data, these isolates clustered together with the Leptospirillum ferrooxidans type strain (DSM2705 or L15). Group II leptospirilla had G+C moles percent ratios of 55 to 58% and had two copies of rrn genes, and based on 16S rRNA sequence data, they form a separate cluster. Genome DNA-DNA hybridization experiments indicated that three similarity subgroups were present among the leptospirilla tested, with two DNA-DNA hybridization similarity subgroups found within group I. The two groups could also be distinguished based on the sizes of their 16S-23S rRNA gene spacer regions. We propose that the group II leptospirilla should be recognized as a separate species with the name Leptospirillum ferriphilum sp. nov. Members of the two species can be rapidly distinguished from each other by amplification of their 16S rRNA genes and by carrying out restriction enzyme digests of the products. Several, but not all, isolates of the group II leptospirilla, but none from group I (L. ferrooxidans), were capable of growth at 45°C. All the leptospirilla isolated from commercial biooxidation tanks in South Africa were from group II.

Please refer to this item in SUNScholar by using the following persistent URL:
This item appears in the following collections: