ITEM VIEW

Low-Pass filtering approach via empirical mode decomposition improves short-scale entropy-based complexity estimation of QT interval variability in long QT syndrome type 1 patients

dc.contributor.authorBari, Vlastaen_ZA
dc.contributor.authorMarchi, Andreaen_ZA
dc.contributor.authorDe Maria, Beatriceen_ZA
dc.contributor.authorGirardengo, Giuliaen_ZA
dc.contributor.authorGeorge, Alfred L.en_ZA
dc.contributor.authorBrink, Paul A.en_ZA
dc.contributor.authorCerutti, Sergioen_ZA
dc.contributor.authorCrotti, Liaen_ZA
dc.contributor.authorSchwartz, Peter J.en_ZA
dc.contributor.authorPorta, Albertoen_ZA
dc.date.accessioned2016-05-03T09:13:26Z
dc.date.available2016-05-03T09:13:26Z
dc.date.issued2014-09-05
dc.identifier.citationBari, V. et al. 2014. Low-Pass filtering approach via empirical mode decomposition improves short-scale entropy-based complexity estimation of QT interval variability in long QT syndrome type 1 patients. Entropy, 16(9):4839-4854, doi:10.3390/e16094839.en_ZA
dc.identifier.issn1099-4300 (online)
dc.identifier.otherdoi:10.3390/e16094839
dc.identifier.urihttp://hdl.handle.net/10019.1/98957
dc.descriptionCITATION: Bari, V. et al. 2014. Low-Pass filtering approach via empirical mode decomposition improves short-scale entropy-based complexity estimation of QT interval variability in long QT syndrome type 1 patients. Entropy, 16(9):4839-4854, doi:10.3390/e16094839.en_ZA
dc.descriptionThe original publication is available at http://www.mdpi.com/journal/entropy
dc.description.abstractEntropy-based complexity of cardiovascular variability at short time scales is largely dependent on the noise and/or action of neural circuits operating at high frequencies. This study proposes a technique for canceling fast variations from cardiovascular variability, thus limiting the effect of these overwhelming influences on entropy-based complexity. The low-pass filtering approach is based on the computation of the fastest intrinsic mode function via empirical mode decomposition (EMD) and its subtraction from the original variability. Sample entropy was exploited to estimate complexity. The procedure was applied to heart period (HP) and QT (interval from Q-wave onset to T-wave end) variability derived from 24-hour Holter recordings in 14 non-mutation carriers (NMCs) and 34 mutation carriers (MCs) subdivided into 11 asymptomatic MCs (AMCs) and 23 symptomatic MCs (SMCs). All individuals belonged to the same family developing long QT syndrome type 1 (LQT1) via KCNQ1-A341V mutation. We found that complexity indexes computed over EMD-filtered QT variability differentiated AMCs from NMCs and detected the effect of beta-blocker therapy, while complexity indexes calculated over EMD-filtered HP variability separated AMCs from SMCs. The EMD-based filtering method enhanced features of the cardiovascular control that otherwise would have remained hidden by the dominant presence of noise and/or fast physiological variations, thus improving classification in LQT1.en_ZA
dc.description.urihttp://www.mdpi.com/1099-4300/16/9/4839
dc.format.extent16 pages
dc.language.isoen_ZAen_ZA
dc.publisherMDPIen_ZA
dc.subjectHeart beat -- Measurementen_ZA
dc.subjectLong QT syndromeen_ZA
dc.titleLow-Pass filtering approach via empirical mode decomposition improves short-scale entropy-based complexity estimation of QT interval variability in long QT syndrome type 1 patientsen_ZA
dc.typeArticleen_ZA
dc.description.versionPublisher's versionen_ZA
dc.rights.holderMDPIen_ZA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW