Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups

Fourie G. ; Steenkamp E.T. ; Gordon T.R. ; Viljoen A. (2009)

Article

Fusarium oxysporum f. sp. cubense, the causal agent of fusarium wilt of banana (Musa spp.), is one of the most destructive strains of the vascular wilt fungus F. oxysporum. Genetic relatedness among and within vegetative compatibility groups (VCGs) of F. oxysporum f. sp. cubense was studied by sequencing two nuclear and two mitochondrial DNA regions in a collection of 70 F. oxysporum isolates that include representatives of 20 VCGs of F. oxysporum f. sp. cubense, other formae speciales, and nonpathogens. To determine the ability of F. oxysporum f. sp. cubense to sexually recombine, crosses were made between isolates of opposite mating types. Phylogenetic analysis separated the F. oxysporum isolates into two clades and eight lineages. Phylogenetic relationships between F. oxysporum f. sp. cubense and other formae speciales of F. oxysporum and the relationships among VCGs and races of F. oxysporum f. sp. cubense clearly showed that F. oxysporum f. sp. cubense's ability to cause disease on banana has emerged multiple times, independently, and that the ability to cause disease to a specific banana cultivar is also a polyphyletic trait. These analyses further suggest that both coevolution with the host and horizontal gene transfer may have played important roles in the evolutionary history of the pathogen. All examined isolates harbored one of the two mating-type idiomorphs, but never both, which suggests a heterothallic mating system should sexual reproduction occur. Although, no sexual structures were observed, some lineages of F. oxysporum f. sp. cubense harbored MAT-1 and MAT-2 isolates, suggesting a potential that these lineages have a sexual origin that might be more recent than initially anticipated. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/9895
This item appears in the following collections: