ITEM VIEW

Analytic methods in combinatorial number theory

dc.contributor.advisorWagner, Stephanen_ZA
dc.contributor.authorBaker, Liam Bradwinen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Department Mathematical Sciences (Mathematics)en_ZA
dc.date.accessioned2015-12-14T07:43:49Z
dc.date.available2015-12-14T07:43:49Z
dc.date.issued2015-12
dc.identifier.urihttp://hdl.handle.net/10019.1/98017
dc.descriptionThesis (MSc)--Stellenbosch University, 2015en_ZA
dc.description.abstractENGLISH ABSTRACT : Two applications of analytic techniques to combinatorial problems with number-theoretic flavours are shown. The first is an application of the real saddle point method to derive second-order asymptotic expansions for the number of solutions to the signum equation of a general class of sequences. The second is an application of more elementary methods to yield asymptotic expansions for the number of partitions of a large integer into powers of an integer b where each part has bounded multiplicity.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : Ons toon twee toepassings van analitiese tegnieke op kombinatoriese probleme met getalteoretiese geure. Die eerste is ’n toepassing van die reële saalpuntmetode wat tweede-orde asimptotiese uitbreidings vir die aantal oplossings van die ‘signum’ vergelyking vir ’n algemene klas van rye aflewer. Die tweede is ’n toepassing van meer elementêre metodes wat asimptotiese uitbreidings vir die aantal partisies van ’n groot heelgetal in magte van ’n heelgetal b, waar elke deel ’n begrensde meervoudigheid het, afleweraf_ZA
dc.format.extentviii, 61 pages : illustrations (some colour)en_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.subjectCombinatoricsen_ZA
dc.subjectNumber theoryen_ZA
dc.subjectAsymptotic expansionsen_ZA
dc.subjectUCTDen_ZA
dc.subjectAnalytic methods -- Mathematicsen_ZA
dc.titleAnalytic methods in combinatorial number theoryen_ZA
dc.typeThesisen_ZA
dc.rights.holderStellenbosch Universityen_ZA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW