Thermodynamic and kinetic modelling of iron (III) reduction with sulfur dioxide gas

Biley, Chris (2015-03)

Thesis (PhD)--Stellenbosch University, 2015.

Thesis

ENGLISH ABSTRACT: Recent developments in the atmospheric treatment of low-grade nickel laterite ores at Anglo American plc has culminated in the conceptual iron-focused laterite (ARFe) process. In addition to the recovery of nickel and cobalt from laterite ore, this process uniquely aims to recover iron as a saleable by-product. The reduction of soluble iron(III) (Fe(III)) by sulfur dioxide gas (SO2) is central to the ARFe concept and represents a complex, multiphase system involving simultaneous gas-liquid mass transfer, thermodynamic speciation and chemical reaction. The chemistry of iron-containing systems is generally poorly understood and accurately predicting their behaviour is challenging, especially under aggressive hydrometallurgical conditions. The primary objective of this work is the development of an engineering model capable of describing the rate and extent of ferric reduction with SO2 under conditions typical of the ARFe process. Thermodynamic considerations provide a rigorous framework for the interpretation of chemical reactions, however little experimental data are openly available for the associated solution species in acidic iron sulfate systems. A key contribution of this work, and critical for the development of the overall model, is the direct measurement of speciation in iron sulfate solutions. Raman and UV-vis spectroscopy were utilised to make direct speciation measurements in the various subsystems of the Fe2(SO4)3-FeSO4-H2SO4-H2O system that were previously unavailable in the open literature. The FeSO+4 and Fe(SO4)– 2 species were explicitly identified and measurements were supported and rationalised by static computational quantum mechanical calculations and ultimately permit the calibration of a robust, ion-interaction solution model with the explicit recognition of the important solution species up to 1.6 mol/kg Fe2(SO4)3, 0.8 mol/kg H2SO4 over 25 – 90 C. Batch and continuous Fe(III) reduction kinetics were measured and the effects of initial Fe2(SO4)3 and H2SO4 concentrations, temperature and in-situ neutralisation quantified. The retardation effect of sulfuric acid was observed to be the most significant factor influencing the initial reaction rate and the achievable extent of reduction at fixed residence time, which varied between about 20 and 80 % after 180 minutes of reaction. A reaction mechanism that is limited by the slow ligand-to-metal electron transfer in the FeIIISO+3 solution species’ decomposition is proposed and spectroscopic measurements and computational quantum mechanical calculations are used to support this mechanism. A kinetic model, comprising a system of differential mass-balance equations, is incorporated into the thermodynamic framework. This reaction model permits the prediction of kinetic profiles over the full range of experimental conditions and can be incorporated into more elaborate simulation models of the ARFe circuit. The specific original contributions of this work are • The direct measurement of aqueous speciation in the Fe2(SO4)3-H2SO4-H2O system by Raman and UV-vis spectroscopy • The development of a modelling framework to characterise speciation, activity coefficients and solubility in the mixed Fe2(SO4)3-FeSO4-H2SO4-H2O system. • The measurement of Fe(III) reduction kinetics using SO2 in concentrated sulfate solutions as a function of initial composition and temperature. • The development of a solution reaction model of Fe(III) reduction with SO2 that accurately predicts the solution speciation and reaction rate with time as a function of composition and temperature. Lastly, the vast complexity of industrial systems will nearly always result in a lack of specific experimental data that are required for the development of phenomenological models. This work emphasises the crucial role that engineering studies hold in the generation of such data to derive maximum practical value for industrial process development and optimisation.

AFRIKAANSE OPSOMMING: Onlangse ontwikkelinge in die atmosferiese behandeling van lae-graad nikkel lateriet erts by Anglo American plc het gelei tot die konseptuele yster gefokus lateriet (ARFe) proses. Bykommend tot die herwinning van nikkel en kobalt uit laterite erts is hierdie proses uniek en daarop gemik om yster te herwin as ’n verkoopbare by-produk. Die vermindering van oplosbare yster(III) (Fe(III)) met swaeldioksied (SO2) is sentraal tot die ARFe konsep en verteenwoordig ’n komplekse, multifase stelsel wat gelyktydige gas-vloeistof massa-oordrag, termodinamiese spesiasie en chemiese reaksie behels. Die oplossingschemie van ysterstelsels word, oor die algemeen, swak verstaan en om hul gedrag akuraat te voorspel is ’n uitdaging, veral onder aggressiewe hidrometallurgiese kondisies. Die primêre doel van hierdie werk is die ontwikkeling van ’n ingenieursmodel wat die tempo en omvang van yster(III) vermindering met SO2 onder tipiese ARFe proses toestande beskryf. Termodinamiese oorwegings stel ’n streng raamwerk voor vir die interpretasie van chemiese reaksies, alhoewel daar egter min eksperimentele data openlik beskikbaar is vir die gepaardgaande oplossing spesies in suur yster(III) sulfaat stelsels. ’n Belangrike bydrae van hierdie werk, en van kritieke belang vir die ontwikkeling van die algehele model, is die direkte meting van spesiasie in yster(III) sulfaat oplossings. Raman en UV-vis spektroskopie is gebruik om direkte spesiasie metings te maak in die verskillende subsisteme van die Fe2(SO4)3-FeSO4-H2SO4-H2O stelsel wat voorheen nie in die oop literatuur beskikbaar was nie. Die FeSO+4 en Fe(SO4)– 2 spesies is ekplisiet geïdentifiseer, terwyl die metings ondersteun en gerasionaliseer is deur statiese kwantummeganiese berekeninge wat uiteindelik die kalibrasie van ’n robuuste, ioon-interaksie model tot gevolg hê wat ook die belangrike oplossingspesies duidelik beklemtoon tot en met 1.6 mol/kg Fe2(SO4)3, 0.8 mol/kg H2SO4 en tussen 25 – 90°C. Enkellading en kontinue yster(III) verminderingskinetika is gemeet en die gevolge van die aanvanklike Fe2(SO4)3 en H2SO4 konsentrasies, temperatuur en in-situ neutralisasie is gekwantifiseer. Die waargeneemde vertragingseffek van swaelsuur is die mees beduidende faktor wat die aanvanklike reaksietempo en die haalbare reaksie omvangsvermindering na ’n vaste residensietyd van 180 minute bepaal, wat wissel tussen ongeveer 20 en 80%. ’n Reaksiemeganisme word voorgestel wat beperk word deur die stadige ligand-totmetaal elektronoordrag in ontbinding van die Fe(III)SO+3 oplossing-spesies en wat verder deur spektroskopiese metings en kwantummeganiese berekenings ondersteun word. A kinetiese model, wat bestaan uit ’n stelsel van gedifferensieerde massa-balans vergelykings, is in die termodinamiese raamwerk geïnkorporeer. Hierdie reaksie-model laat die voorspelling van kinetiese profiele toe oor die volle omvang van die eksperimentele toestande en kan in meer uitgebreide simulasie modelle van die ARFe proces geinkorporeer word. Die spesifieke en oorspronklike bydraes van hierdie werk is • Die direkte meting van die spesiasie in die Fe2(SO4)3-H2SO4-H2O stelsel deur Raman en UV-vis spektroskopie • Die ontwikkeling van ’n modelraamwerk om spesiasie, aktiwiteitskoëffisiënte en oplosbaarheid in die gemengde Fe2(SO4)3-FeSO4-H2SO4-H2O stelsel te karakteriseer. • Die meting van yster(III) vermideringskinetieka deur SO2 in gekonsentreerde sulfate oplossings te gebruik as ’n funksie van die aanvanklike samestelling en temperatuur. • Die ontwikkeling van ’n oplossingsreaksie-model van yster(III) vermindering met SO2 wat die oplossing-spesiasie en reaksietempo met die tyd as ’n funksie van samestelling en temperatuur akkuraat voorspel. Laastens, die oorgrote kompleksiteit van industriële stelsels sal byna altyd lei tot ’n gebrek van spesifieke eksperimentele data wat nodig is vir die ontwikkeling van fenomenologiese modelle. Hierdie werk beklemtoon die belangrike rol wat ingenieursstudies speel in die generasie van data wat sodanig tot maksimum praktiese waarde vir industriële prosesontwikkeling en optimalisering lei.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/97120
This item appears in the following collections: