Latent heat thermal energy storage for solar water heating using flat heat pipes and aluminum fins as heat transfer enhancers

Malan, Daniel Johannes (2014-12)

Thesis (MEng) -- Stellenbosch University, 2014.

Thesis

ENGLISH ABSTRACT: Solar energy is a time dependent, high-temperature radiant energy resource. The utility of a solar thermal energy system increases if the hot temperature source is available when it is needed most. This is realized by the thermal storage of the solar energy. Thermal storage gives greater versatility to a solar energy system by decoupling the heat source from the heat sink. A large quantity of energy may be stored during the melting process in a phase change material (PCM) within a small temperature range. This molten PCM can then deliver its absorbed heat at a constant temperature in a heating application. In this study a phase change storage system (PCS) is developed and proposed for a solar water heating application. This PCS system stores more heat per unit mass than would be possible with water across the same temperature range. The heat transfer rate in and out of many PCMs is slow because of the low thermal conductivity of the PCM. However, heat transfer enhancers (HTE), such as heat pipes and fins may be added to enhance heat absorption and heat removal rates. Heat pipes have the inherent capability to transfer heat at high rates across large distances, even where the temperature difference is small. In this thesis a description is given of a PCS system consisting of paraffin wax as the PCM and which uses rectangular heat pipes in conjunction with aluminium fins to enhance heat transfer. The storage design is modular and each module has the characteristic that enhanced heat transfer in and out of the PCM is possible when the module is heated or cooled. It also has the capability to quickly absorb or alternatively to supply heat at a nearly constant temperature during the phase change of the module. A rectangular module was designed and built. The module was then analysed under controlled heat absorption and heat removal cycles. The heat up experiment involved an electrical kettle as the hot temperature source. The heat sink was a mains water heat exchanger. The experimental results were compared to those of a transient numerical model, which calculates theoretically how the module will perform thermally under the given test conditions. The numerical model of the experimental set-up was validated when it was found that the numerical model results resemble the experimental results. The numerical model was then adapted to simulate a novel solar water heater (SWH) with an additional PCS container. The improvement over previous designs is that the additional storage container can be heated to a higher temperature than the allowable geyser temperature. The system also heats up and cools down at a faster rate than would be possible without the HTEs. From the numerical simulation the size and performance of such a system is determined. This numerical analysis indicated that a phase change storage system in a SWH application will increase the hot water delivered by a given solar collector and geyser by increasing the storage capacity and by heating up the geyser overnight for early morning hot water use.

AFRIKKANSE OPSOMMING: Son energie is ‘n tyd afhanklike, hoë temperatuur radiasie energiebron. Die bruikbaarheid van ‘n sontermiese energie sisteem verhoog indien die hoë temperatuur bron beskikbaar is wanneer dit die meeste benodig word. Dit kan verwesenlik word deur die sonenergie termies te stoor. Termiese storing bied groter veelsydigheid aan ‘n sontermiese stelsel deur effektief die hittebron te ontkoppel van die hitte sink. ‘n Groot hoeveelheid energie kan, gedurende die smeltingsproses in ‘n faseveranderingsmateriaal binne ‘n nou temperatuurband gestoor word. Hierdie gesmelte materiaal kan weer op sy beurt in die waterverhittingstoepassing, die geabsorbeerde hitte teen ‘n konstante temperatuur oordra. In hierdie studie word ‘n sonwaterverwarmer stelsel wat aangepas is deur ‘n addisionele latente hittestoor daaraan te heg, voorgestel. Hierdie faseverandering hittestoor kan meer hitte stoor as wat water in dieselfde temperatuur band sou kon. Die hitteoordrag tempo na en van baie van die faseveranderingsmateriale (FVM) is egter as gevolg van die lae termiese geleidingskoëfisient, stadig. Hierdie eienskap kan gelukkig verbeter word deur hittepype en hitteoordrag verhogings materiaal soos vinne by te voeg. Hittepype het die inherente eienskap om hitte teen ‘n hoë tempo oor groot afstande, oor te dra, selfs oor ‘n klein temperatuurverskil. In hierdie tesis word ‘n ondersoek rakende ‘n faseverandering storingsisteem wat bestaan uit paraffien was as die FVM en reghoekige hittepype wat te same met met aluminium finne gebruik word om die hitteoordragtempo te verhoog, beskryf. Die stoorontwerp is modulêr en elke module het die kenmerk van hoë hitteoordrag na en van die FVM. Die module het verder ook die eienskap om vining hitte te absorbeer of hitte af te gee. Dit gebeur teen ‘n konstante temperatuur gedurende die faseverandering van die FVM. Presies so ‘n reghoekige module is ontwerp en gebou en onder beheerde hitte absorbering- en hitte verwyderingsiklusse analiseer. Tydens die verhittings eksperiment is ‘n elektriese ketel van gebruik gemaak wat gedien het as die hoë temperatuur bron. Die hitte sink was ‘n hitteruiler wat kraanwater van ‘n konstante hoogte tenk ontvang het. Die resultate van die volledige toets is met die resultate van tydafhanklike numeriese model vergelyk. Hierdie numeriese model bereken teoreties wat die module se storing verrigting onder gegewe toets omstandighede sal wees. Die numeriese model se resultate het goed vergelyk met die resultate van die eksperimente. Die numeriese model van die module is toe aangepas om ‘n sonwaterverwarmer met addisionele stoortenk wat fase verandering materiaal gebruik, te simuleer. Hierdie ontwerp is anders as vorige ontwerpe in die sin dat hoër temperature as wat die warmwatertoestel kan hanteer, in die faseverandering storingstenk, bereik kan word. Die sisteem kan ook as gevolg van die hitteoordrag verhoging materiaal, vinniger verhit of afkoel en teen ‘n vinniger tempo. Die simulasie van die sonwaterverwarmer met FVM word gebruik om die grootte en verrigting van die sisteem te bepaal. Hierdie numeriese model toon aan dat wanneer ‘n addisionele faseverandering storingstelsel in ‘n sonwaterverwarmer toepassing gebruik word, die warm water wat die verbruiker uit die sisteem kan verkry, kan verhoog. Die rede hiervoor is dat meer hitte gestoor kan word, wat beskikbaar gemaak word aan die warm water tenk.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/96140
This item appears in the following collections: