Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

Biber, P. ; Seifert, S. ; Zaplata, M. K. ; Schaaf, W. ; Pretzsch, H. ; Fischer, A. (2013-12-16)

CITATION: Biber, P. et al. 2013. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem. Biogeosciences, 10:8283-8303, doi:10.5194/bg-10-8283-2013.

The original publication is available at https://www.biogeosciences.net

Article

ENGLISH ABSTRACT: We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006–2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation–substrate feedback processes.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/91939
This item appears in the following collections: