Reactive absorption kinetics of CO2 in alcoholic solutions of MEA: fundamental knowledge for determining effective interfacial mass transfer area

Du Preez, Louis Jacobus (2014-04)

Thesis (PhD)--Stellenbosch University, 2014.

Thesis

ENGLISH ABSTRACT: The reactive absorption rate of CO2 into non-aqueous solvents containing the primary amine, mono-ethanolamine (MEA) is recognised as a suitable method for measuring the effective interfacial mass transfer area of separation column internals such as random and structured packing. Currently, this method is used under conditions where the concentration of MEA in the liquid film is unaffected by the reaction and the liquid phase reaction is, therefore, assumed to obey pseudo first order kinetics with respect to CO2. Under pseudo first order conditions, the effect of surface depletion and renewal rates are not accounted for. Previous research indicated that the effective area available for mass transfer is also dependent upon the rate of surface renewal achieved within the liquid film. In order to study the effect of surface depletion and renewal rates on the effective area, a method utilising a fast reaction with appreciable depletion of the liquid phase reagent is required. The homogeneous liquid phase reaction kinetics of CO2 with MEA n-Propanol as alcoholic solvent was investigated in this study. A novel, in-situ Fourier Transform Infra-Red (FTIR) method of analysis was developed to collect real time concentration data from reaction initiation to equilibrium. The reaction was studied in a semi-batch reactor set-up at ambient conditions (T = 25°C, 30°C and 35°C, P = 1 atm (abs)). The concentration ranges investigated were [MEA]:[CO2] = 5:1 and 10:1. The concentration range investigated represents conditions of significant MEA conversion. The reaction kinetic study confirmed the findings of previous research that the reaction of CO2 with MEA is best described by the zwitterion reactive intermediate reaction mechanism. Power rate law and pseudo steady state hypothesis kinetic models (proposed in literature) were found to be insufficient at describing the reaction kinetics accurately. Two fundamentally derived rate expressions (based on the zwitterion reaction mechanism) provided a good quality model fit of the experimental data for the conditions investigated. The rate constants of the full fundamental model were independent of concentration and showed an Arrhenius temperature dependence. The shortened fundamental model rate constants showed a possible concentration dependence, which raises doubt about its applicability. The specific absorption rates (mol/m2.s) of CO2 into solutions of MEA/n-Propanol (0.2 M and 0.08 M, T = 25°C and 30°C, P = ±103 kPa) were investigated on a wetted wall experimental setup. The experimental conditions were designed for a fast reaction in the liquid film to occur with a degree of depletion of MEA in the liquid film. Both interfacial depletion and renewal of MEA may be considered to occur. The gas phase resistance to mass transfer was determined to be negligible. An increase in liquid turbulence caused an increase in the specific absorption rate of CO2 which indicated that an increase in liquid turbulence causes an increase in effective mass transfer area. Image analysis of the wetted wall gas-liquid interface confirmed the increase in wave motion on the surface with an increase in liquid turbulence. The increase in wave motion causes an increase in both interfacial and effective area. A numerical solution strategy based on a concentration diffusion equation incorporating the fundamentally derived rate expressions of this study is proposed for calculating the effective area under conditions where surface depletion and renewal rates are significant. It is recommended that the reaction kinetics of CO2 with MEA in solvents of varying liquid properties is determined and the numerical technique proposed in this study used to calculate effective area from absorption rates into these liquids. From the absorption data an effective area correlation as a function of liquid properties may be derived in future.

AFRIKAANSE OPSOMMING: Die reaktiewe absorpsie van CO2 in nie-waterige oplossings van die primêre amien, monoetanolamien (MEA) word erken as ‘n geskikte metode om die effektiewe massaoordragsarea van gepakte skeidingskolomme te bepaal. Tans word die metode gebruik onder vinnige pseudo eerste orde reaksietoestande met betrekking tot CO2. Die pseudo eersteorde aanname beteken dat die konsentrasie van MEA in die vloeistoffilm onbeduidend beïnvloed word deur die reaksie en effektief konstant bly. Onder pseudo eerste orde toestande word oppervlakverarming- en oppervlakvernuwingseffekte nie in ag geneem nie, juis as gevolg van die konstante konsentrasie van MEA in die vloeistoffilm. Daar is voorheen bevind dat oppervlakverarming en oppervlakvernuwing ‘n beduidende invloed het op die beskikbare effektiewe massaoordragsarea. Hierdie invloed kan slegs bestudeer word met ‘n vinnige reaksie in die vloeistoffilm wat gepaard gaan met beduidende oppervlakverarming van die vloeistoffase reagens. Die homogene vloeistoffase reaksiekinetika van CO2 met MEA in die alkohol oplosmiddel, n- Propanol, is in hierdie studie ondersoek. ‘n Nuwe, in-situ Fourier Transform Infra-Rooi (FTIR) metode van analiese is ontwikkel in hierdie ondersoek. Die reaksie is ondersoek in ‘n semienkelladings reaktor met MEA wat gevoer is tot die reaktor om met die opgeloste CO2 te reageer. Die FTIR metode meet spesiekonsentrasie as ‘n funksie van tyd sodat die konsentrasieprofiele van CO2, MEA en een van die soutprodukte van die reaksie gebruik kan word om verskillende reaksiesnelheidsvergelykings te modelleer. Die reaksie is ondersoek onder matige toestande (T = 25°C, 30°C and 35°C, P = 1 atm (abs)). Die konsentrasiebereik van die ondersoek was [MEA]:[CO2] = 5:1 en 10:1. Hierdie bereik is spesifiek gebruik sodat daar beduidende omsetting van MEA kon plaasvind. Die reaksiekinetieka studie het, ter ondersteuning van bestaande teorie, bevind dat die reaksie van CO2 met MEA in nie-waterige oplosmiddels soos alkohole, beskyf word deur ‘n zwitterioon reaksiemeganisme. Die bestaande reaksiesnelheids modelle (eksponensiële wet en pseudo gestadigde toestand hipotese) kon nie die eksperimentele data met genoegsame akuraatheid beskryf nie. Twee nuwe reaksiesnelheidsvergelykings, afgelei vanaf eerste beginsels en gebaseer op die zwitterioon meganisme, word voorgestel. Hierdie volle fundamentele model het goeie passings op die eksperimentele data getoon oor die volledige temperatuur en konsentrasiebereik van hierdie studie. Die reaksiekonstantes van die fundamentele model was onafhanklik van konsentrasie en tipe oplosmiddel en het ‘n Arrhenius temperatuurafhanklikheid. Die verkorte fundamentele model se reaksiekonstantes het ‘n moontlike konsentrasieafhanlikheid gewys. Dit plaas onsekerheid op die fundamentele basis van hierdie model en kan dus slegs as ‘n eerste benadering beskou word. Die spesifieke absorpsietempos (mol/m2.s) van CO2 in MEA/n-Propanol oplossings (0.2 M en 0.08 M MEA, T = 25°C and 30°C, P = ±103 kPa) is ondersoek met ‘n benatte wand (‘wetted wall’) eksperimentele opstelling. Die eksperimentele toestande is gekies sodat daar ‘n vinnige reaksie in die vloeistoffilm plaasgevind het, met beide beduidende en nie-beduidende MEA omsetting. Die doel met hierdie eksperimentele ontwerp was om die invloed van intervlakverarming en intervlakvernuwing op die spesifieke absorpsietempo te ondersoek. Gas fase weerstand was nie-beduidend onder die eksperimentele toestande nie. Beide intervlakverarming en intervlakvernuwing gebeur gelyktydig en is waargeneem vanuit die eksperimentele data. ‘n Beeldverwerkingstudie van die gas-vloeistof intervlak van die benatte wand het bevind dat daar ‘n toename in golfaksie op die vloeistof oppervlak is vir ‘n toename in vloeistof turbulensie. Hierdie golfaksie dra by tot oppervlakvernuwing en ‘n toename in effektiewe massaoordragsarea. ‘n Numeriese metode word voorgestel om die effektiewe area van beide die benatte wand en gepakte kolomme te bepaal vanaf reaktiewe absorpsietempos. Die metode gebruik die fundamentele reaksiesnelheidsvergelykings, bepaal in hierdie studie, in a konsentrasie diffusievergelyking sodat oppervlakverarming en vernuwing in ag geneem kan word. Daar word voorgestel dat die reaksiekinetika van CO2 met MEA in oplossings met verskillende fisiese eienskappe (digtheid, oppervlakspanning en viskositeit) bepaal word sodat die numeriese metode gebruik kan word om ‘n effektiewe area korrelasie as ‘n funksie van hierdie eienskappe te bepaal.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/86656
This item appears in the following collections: