A subcritical and transcritical carbon dioxide refrigeration system utilizing multiple expansion devices

Fourie, Marna (2014-04)

Thesis (MScEng)--Stellenbosch University, 2014.

Thesis

ENGLISH ABSTRACT: Carbon dioxide is a natural gas that has been used as a refrigerant as far back as the 1850s. It was then primarily used because it was easily obtainable and non-toxic. Due to the high operating pressure and relatively low critical temperature (and high critical pressure) of CO2, it was gradually phased out and replaced with hydrochlorofluorocarbons and chlorofluorocarbons. With the discovery of the greenhouse effect, greenhouse gasses and ozone depleting gasses, the Montreal Protocol and the Kyoto Protocol were placed into effect. These two protocols call for the reduction in use of certain greenhouse gasses and the complete exclusion of others. The focus turned to natural gasses that are more environmentally friendly and easier to come by. Carbon dioxide is one such gas. However, CO2 has a low critical temperature and high pressure, 33.98 °C and 73.77 bar respectively. CO2 refrigeration systems are more effective, have a greater coefficient of performance and have a greater operating temperature difference (over the gas-cooler) when used under transcritical conditions. It is preferred to have transcritical CO2 refriger-ation systems. The drawback of such a system is the extreme operating conditions. A special system must be designed, built and commissioned at the University of Stellenbosch. The system will demand the use or manufacture of unique, special-ised components. Most of the components utilised are extremely expensive and/or difficult to come by, or designed and manufactured specifically for this system. The CO2 system at the University of Stellenbosch is exceptional and stands out from conventional systems in that: - it can operate under both the subcritical and transcritical conditions; - it has multiple expansion units, which can be alternated, giving a total of four different operating configurations; - the system can run with fully automated controllers or as a static system; - the internal heat exchanger can be included or excluded from the system; - all the heat exchangers can run in counter flow or parallel flow; and - The system has multiple testing points, for both temperature and pressure, to give the operator accurate measurements to be used in comparison with design software, etc. Three simulation programs are given that describe the physical system. The first simulation program is a steady-state simulator used to aid in the design of the heat exchangers and the capillary tube. The second simulator is a steady-state program that determines the mass flow rate in the capillary tube. The third simulation is a transient program, programmed to determine the steady-state conditions of a sys-tem, given set initial conditions and a transient start-up.

AFRIKAANSE OPSOMMING: Koolstofdioksied is 'n natuurlike gas wat gebruik word as 'n verkoelingsmiddel so ver terug as die 1850's. Dit is toe hoofsaaklik gebruik omdat dit maklik verkrygbaar en nie giftig is nie. As gevolg van die hoë werksdruk en relatief lae kritiese temperatuur (en hoë kritiese druk) van CO2, is dit geleidelik uitgefaseer en vervang met hidrochloorfluoorkoolstof en chloorfluoorkoolstowwe. Met die ontdekking van die kweekhuiseffek, kweekhuisgasse en osoon-afbrekende gasse, is die Montreal-protokol en die Kyoto-protokol in werking gestel. Hierdie twee protokolle vereis die afname in die gebruik van sekere kweekhuisgasse en die algehele uitsluiting van ander. Die fokus het verskuif na natuurlike gasse wat omgewingsvriendeliker en makliker is om te bekom. Koolstofdioksied is so 'n gas. Maar CO2 het 'n lae kritiese temperatuur en hoë kritiese druk, 33.98 °C en 73.77 bar onderskeidelik. CO2 verkoelingstelsels is meer effektief, het 'n groter koëffisiënt van werksverrigting en het 'n groter bedryfstemperatuur-verskil (oor die gas-verkoeler) wanneer dit gebruik word onder transkritiese toestande. Dit is dus verkieslik om transkritiese CO2 verkoelingstelsels te hê. Die nadeel van so 'n stelsel is die relatief uiterste bedryfstoestande. 'n Spesiale stelsel moet ontwerp word, dikwels met die gebruik of vervaardiging van unieke, hoogs gespesialiseerde komponente. So 'n stelsel is ontwerp vir die Universiteit van Stellenbosch. Die meeste van die komponente wat gebruik is, is baie duur en/of moeilik om te bekom, of is spesifiek ontwerp en vervaardig vir hierdie stelsel. Die CO2-stelsel by die Universiteit van Stellenbosch is uitsonderlik en staan uit bo konvensionele stelsels deurdat: - dit kan funksioneer onder beide subkritiese en transkritiese toestande; - dit verskeie gasuitsettings-eenhede het, wat afgewissel kan word, wat 'n totaal van vier verskillende bedryfskonfigurasies gee; - die stelsel bedryf kan word met volle outomatiese beheerders of as 'n statiese stelsel; - die interne hitte-uitruiler óf in-, óf uitgesluit kan word van die stelsel; - al die hitte-uitruilers bedryf kan word in kontra-vloei of parallelle vloei; en - die stelsel verskeie toetspunte het, vir beide temperatuur en druk, wat die operateur akkurate metings gee om te vergelyk met die ontwerp sagteware, ens., wat gebruik word. Drie gegewe simulasieprogramme beskryf die fisiese stelsel. In een simulasie word 'n bestendige toestand-simulator gebruik om te help met die ontwerp van die hitteruilers en die kapillêre buis. Die tweede simulasie program is 'n bestendige toestands-program wat die algehele vloeitempo in die kapillêre buis bepaal. Die laaste simulasie is 'n vlugtige program, geprogrammeer om die tydelike toestande van 'n stelsel te bepaal, gegewe vasgestelde aanvanklike toestande en 'n kortstondige aanskakeling.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/86380
This item appears in the following collections: