Oleanolic acid : a novel cardioprotective agent that blunts hperglycemia-induced contractile dysfunction

Mapanga, Rudo F. ; Rajamani, Uthra ; Dlamini, Nonkululeko ; Zungu-Edmondson, Makhosazane ; Kelly-Laubscher, Roison ; Shafiullah, Mohammed ; Wahab, Athiq ; Hasan, Mohamed Y. ; Fahim, Mohamed A. ; Rondeau, Phillipe ; Bourdon, Emmanuel ; Essop, M. Faadiel (2012-10-16)

CITATION: Mapanga, R. F., et al. 2012. Oleanolic acid : a novel cardioprotective agent that blunts hperglycemia-induced contractile dysfunction. PLoS ONE, 7(10): 1-17, doi: 10.1371/journal.pone.0047322.

The original publication is available at http://journals.plos.org/plosone

Publication of this article was funded by the Stellenbosch University Open Access Fund.

Article

Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP) and a dysfunctional ubiquitin-proteasome system (UPS) as potential mediators of this process. Since oleanolic acid (OA; a clove extract) possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS) and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1) H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose); and subsequently treated with two OA doses (20 and 50 mM) for 6 and 24 hr, respectively; 2) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 min reperfusion 6 OA treatment; 3) In vivo coronary ligations were performed on streptozotocin treated rats 6 OA administration during reperfusion; and 4) Effects of long-term OA treatment (2 weeks) on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These findings are promising since it may eventually result in novel therapeutic interventions to treat acute hyperglycemia (in non-diabetic patients) and diabetic patients with associatedcardiovascular complications.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/79623
This item appears in the following collections: