A feasibility study to establish the preferred environmentally-friendly utilisation option in respect of waste tyre materials in South Africa

Van Staden, Percy Alfred Jarvis (2012-03)

Thesis (MBA)--Stellenbosch University, 2012.


Tyre waste from end-of-life tyres (ELTs), sometimes erroneously defined as a type of waste, in fact represents a renewable energy resource that is highly competitive as replacement fuel to coal in the form of tyre-derived fuel (TDF) or useable as rubber crumb in other products. In this research study, the main utilisation options considered were based on rubber crumbing through ambient and cryogenic processing. Pyrolysis, the so-called ‘holy grail’ of tyre technologies, rubberised asphalt products, TDF options and various other product options from tyre crumb as basis were considered. Although pyrolysis technology is highly commendable and environmentally friendly, it is still a process with too many variants and presents an unstable economic model that is not attractive to entrepreneurs. Rubberised asphalt depends on policy decisions from local and national authorities supporting initial higher spending and allowances on budgets to acquire future savings from the longevity in the product. The policy requirements and the instability that politically-inspired decisions carry with them are contributing to the unattractiveness of this solution to the entrepreneurial fraternity. Through government requiring a certain percentage of asphalt pavements to contain rubber (like in the United States of America (USA)), rubberised asphalt could be a very useful and viable option to produce. In the USA, the Environmental Protection Agency (EPA) recently avoided the return to coal in industrial kilns currently using TDF based on its beneficial carbon dioxide (CO2) emission and cost structures by defining TDF as Reasonably Available Control Technology (RACT) to existing coal-burning industrial kilns. In South Africa, the usage of TDF should be of interest to Eskom and the cement industry. TDF (produced from end-of-life tyres), defined as a renewable energy resource due to its proven biomass component and with its high calorific value, presents higher energy output values in comparison to coal and furthermore presents the industry with lower input costs per ton and reduces the CO2 emission factor. Entrepreneurial intervention involving Eskom and/or the cement industry in South Africa with the utilisation of end-of-life tyres as renewable energy resource is an overdue business opportunity. With more than ten million tyres per year available in South Africa and a stockpile of more than fifty million waste tyres, sustainability of TDF supplies is a reality. TDF is much cheaper per ton than coal and emits approximately 20 percent less CO2 and/or CO2e than low-grade coal to produce the same electricity output. From all the information gathered, it is clear that in countries where coal energy is extensively used, TDF utilisation not only reduces the tyre waste issues, but it also serves as an environmentally-friendly renewable energy resource in electricity production and cement kilns; the industry with some of the highest CO2 emission risks. The final chapter of this report presents a schedule representing the choice of tyre processing and disposal methods ranked by environmental preference and defining the priorities linked to process and product choice.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/79337
This item appears in the following collections: