Process modelling of sugar mill biomass to energy conversion processes and energy integration of pyrolysis

Nsaful, Frank (2012-12)

Thesis

ENGLISH ABSTRACT: The sugar industry over the years has been producing sugarcane bagasse as part of the sugar milling process. Currently this sugar mill biomass is incinerated inefficiently as a means of their disposal to produce steam and electricity, which in most cases are only just enough to supply the energy required to run the mills, thereby leaving very little or no extra energy for sale to bring in extra income in addition to sales revenue from sugar. However, the recent instability and uncertainties in the price of sugar and the global call for a green and sustainable environment have necessitated the search for ways of making effective use of this biomass to supply sugar mill energy demands, while producing extra energy in the form of electricity and other energy products for sale and at the same time contributing towards environmental sustainability. The main objective of this work was to develop process models for the processing of sugar mill biomass into energy and energy products. Based on this, biomass to energy conversion process (BMECP) models have been developed for various process configurations of two thermochemical processes; Combustion and Fast Pyrolysis using the Aspen Plus® simulation software. The aim of process modelling was to utilizing sugar cane bagasse as an input energy source to supply the energy requirements of two sugar mill configurations (efficient and less efficient mills), while generating extra electricity and high valued energy products for sale. Four BMECP configurations; 30bar BPST, 40bar CEST, 63bar CEST and 82bar CEST systems were modelled for the combustion thermochemical process. For the fast pyrolysis thermochemical process, two process configurations: Pure Fast Pyrolysis BMECP and Partial Fast Pyrolysis BMECP were modelled. The former BMECP utilizes all available bagasse through fast pyrolysis to produce bio-oil and biochar alongside generating electricity as well as energy to run the sugar mill operations. In the latter BMECP model, only surplus bagasse after separation of the quantity needed to supply the sugar mill energy requirement and electricity production is used to produce bio-oil and biochar. The technical performance of the BMECP models have been analysed and compared based on steam and electricity production rates, process efficiencies and environmental impacts (based on CO2 savings). The effects of boiler operating pressure and bagasse moisture content on the performance of the combustion based BMECP models have also been investigated. Finally, detailed economic models have been developed using the Aspen Process Economic Analyzer (Icarus®) to assess the economic viability of the BMECP models and sensitivity analysis performed to study the response of the BMECP models to variations in economic parameters. Technical performance analysis shows the combustion based BMECP models perform better than the Pure Fast Pyrolysis and Partial Fast Pyrolysis BMECP models with regards to steam and electricity production, thereby giving them higher electrical efficiencies. The electricity generation rate has been shown to increase with increasing boiler operating pressure and decreasing bagasse moisture content while steam production rate has been shown to increase with decreasing bagasse moisture content and decreasing boiler operating pressure. Despite the lower electrical efficiencies of the fast pyrolysis based BMECP models, the analysis shows that their overall process efficiencies compare very well with those of the combustion based BMECP models due to the production of high energy value pyrolysis products. Based on common operating pressure and 50% bagasse moisture content, the Pure Fast Pyrolysis and the Partial Fast Pyrolysis models have proved to be more environmental friendly with hourly CO2 savings of 40.44 and 41.30 tons for the Partial Fast Pyrolysis BMECP and the Pure Fast Pyrolysis BMECP respectively based on a 300 ton of sugarcane/h (81 ton bagasse/h) plant size. From an economic point of view, biomass combustion based on the 63bar CEST BMECP model has proved to be the most economically viable option under current economic conditions. First order total capital investment estimate for this BMECP is about $116 million, producing NPV of $390 million at the end of a 20 year plant life and IRR of 34.51%. The Pure Fast Pyrolysis BMECP model is the least economic viable option. Sensitivity analysis shows this BMECP model is the most sensitive to changes in bagasse and electricity prices; recording -191.61/+446.86% change in NPV for a ±30% change in bagasse price and -91.5/+338.60% for a ±30% change in electricity price.

AFRIKAANSE OPSOMMING: Die afgelope jare het suikerriet-afval (bagasse) by suikermeule ‘n belangrik byproduk van die suiker-industie geraak. Tans word hierdie afval of biomasse verbrand in die suikermeule se poging om stoom en elektrisiteit op te wek; maar die die proses is oneffektief. Die hoeveelheid energie wat opgewek word, is skaars genoeg om die suikermeule self aan die gang te hou; daar is feilik geen sprake ‘n surplus energie waaruit ekstra inkomste verkry kan word toevoegend tot inkomste uit die suiker verkope self. Die huidige onstabiele suikerprys en gepaardgaande onsekerhede sowel as die werêldwye oproep vir ‘n groen- en volhoubare omgewing, noodsaak ‘n nuwe soeke na effektiewe manier om die afvalmateriaal sinvol te verwerk. Die tipe effektiwiteit van verwerking waarna gesoek word moet die volgende uitkomste hê: verskaffing van genoeg energie tydens produksie aan die suikermeuele self; vervaardiging van ekstra energie in die vorm van eletrisieteit en ander energie produkte. Terselfder moet die ook bydra tot die volhoubaarheid van die omgewing. Die grootste gedeelte van hierdie navorsing is gewy aan die ontwikkeling van “proses modelle” om suikemeule afval (bagasse) te omskep in energie en energie-produkte. Om hierdie doel te bereik, is biomassa-tot-energie omskeppingsproses- modelle (BMECP) ontwikkel om verskeie proses konfigurasies van twee termo-chemiese prosesse, naamlik Verbranding (Combustion), en Vinnige Pirolise (Fast Pyrolysis) deur die gebruik van die ‘Aspen Plus®’- simulasie sagteware. Die doel van die proses modelering was om suikerriet biomassa as ‘n bron van energie te gebruik om weer die energie benodighehede van twee denkbeeldige suikermeule vas te stel; een meul is voorgestel as effektief, die ander as minder effektief. Terselfdertyd is gekyk na die hoeveelheid ekstra energie wat elkeen sou opwek en ander hoogs waardevolle energie produkte om te verkoop (bv. ‘bio-olies en bio-char’). Vier “BMECP” konfigurasies (voorstellings) 30bar BPST, 40bar CEST, 63bar CEST en 82bar CEST sisteme is gemodelleer vir die Verbranding termo-chemiese proses. In die geval van die Pirolise (Pyrolysis) termo-chemiese proses, is twee proses konfigurasies gemodelleer: 1. Suiwer Vinnige Pyrolyise BMECP en 2. Gedeeltelik Vinnige Pirolise BMECP. In die geval van eersgenoemde, word alle beskikbare ‘bagasse’ deur vinnige pirolise omskep om ‘bio-olie’ en ‘bio-char’ te vervaardig.Verder wek dit ook elektrisiteit op so wel as die nodige energie om die suikermeule te laat opereer. In die geval van die Gedeeltlike Vinnige Pirolise BMECP , moet daar eers genoegsame ‘bagasse’ opsy gesit word om die suikermeule van genoegsame energie te voorsien vir die volle funskionering daarvan en elektrisiteit-opwekking. Van die surplus of oorblywende ‘bagasse’ kan dan gebruik word om ‘bio-olie’ en ‘biochar’ te produseer. Die tegniese prestasie van al die BMECP modelle is geanaliseer en vergelyk ten opsigte van stoom en elektrisiteits-opwekking; proses effektiewiteit asook die impak op die omgewing ( gebaseer op CO2 –besparings). Die effek van stoomkettel-druk tydens operering asook die bagasse se vog-inhoud. Op die prestasie van die verbrandingsgebaseerde modelle is ook ondersoek. Laastens, uitgebreide ekonomeidese modelle is ook ontwikkel deur die gebruik van die ‘Aspen Process Economic Analyser (Icarus®)’. Sodoende is die ekonomiese vatbaarheid van die BMECP modelle ondersoek. Hierdie sagteware help ook met. Sensitiwiteits-analise in die bestudering van die terugvoer van die BMECP modelle tot veranderlikes in ekonomiese parameters. Rakende effektiwiteit, toon die uitslae dat die verbrandings-gebaseerde BMECP modelle beter vaar as die met betrekking tot stoom- en elektrisiteits-opwekking. Verbrandings-gebaseerde-modelle toon hoër elektriese effektiwiteit. Indien die vog-inhoud van die bagasse laag was en die tempo van stoomketel operasie druk verhoog is, het die tempo van elektriesiteits-opwekking ook gestyg. Ten opsigte van stoom daarenteen, het die stoom-opwekking tempo verhoog in die die vogl inhou van diebagasse laag was asook verminderde stoomketel operering druk. Ten spyte van die laer elektriese effektiewiteit van die Suiwer Vinnig- en Gedeeltelik Vinnig BMECP modelle, dui die analise aan dat hul proses effektiewiteit in die geheel Goed vergelyk met die van die verbrandings-gebaseerde BMECP modelle. Dit is toe te skryf aan die produksie van die hoë-energie draende pirolise produkte. Gebaseer op algemene operering druk van 50% ‘bagasse’ vog-inhoud, het die bogenoemde twee modelle bewys om meer omgewings-vriendelik te wees met uurlikse CO2-besparings. In die geval van Gedeeltelike Vinnige Pirolise BMECP, 40.44 en vir die Suiwer Vinnige Pirolise BMECP 41.30 gebaseer op ‘n 300 ton suikerriet/h (81 ton bagasse/h) plantasie-grote. Ten slotte, vanuit ‘n ekonomiese oogpunt, blyk ‘n biomassa verbranding gebaseer op die 63 bar CEST BMECP model die mees ekonomies-vatbare opsie onder huidige ekonomiese omstandighede. Eerste orde totale kapitale belegging beraming vir hierdie BMECP is ongeveer $116 miljoen, produksie NPV is $390 miljoen aan die einde van ‘n 20 jaar tydperk vir ‘n suikerriet-aanleg. IRP is 34.51%. Die Suiwer Vinnige Pirolise BMECP is die mins-ekonomiese vatbare model. Sensitiewiteits-analises het getoon dat hierdie BMECP model baie sensitief is ten opsigte van verandering in die pryse van bagasse en elektrisieteit; in die geval van NPV is veranderinge van -191.61/+446.86% aangedui op ‘n ±30% verandering in bagasse pryse. In die geval van elektrisieteitspryse, is ‘n sensitiewiteit van van -91.5/+338.60% op ‘n ±30% prysverandering getoon.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/71879
This item appears in the following collections: