A brief introduction to basic multivariate economic statistical process control

Mudavanhu, Precious (2012-12)

Thesis (MComm)--Stellenbosch University, 2012.

Thesis

ENGLISH ABSTRACT: Statistical process control (SPC) plays a very important role in monitoring and improving industrial processes to ensure that products produced or shipped to the customer meet the required specifications. The main tool that is used in SPC is the statistical control chart. The traditional way of statistical control chart design assumed that a process is described by a single quality characteristic. However, according to Montgomery and Klatt (1972) industrial processes and products can have more than one quality characteristic and their joint effect describes product quality. Process monitoring in which several related variables are of interest is referred to as multivariate statistical process control (MSPC). The most vital and commonly used tool in MSPC is the statistical control chart as in the case of the SPC. The design of a control chart requires the user to select three parameters which are: sample size, n , sampling interval, h and control limits, k.Several authors have developed control charts based on more than one quality characteristic, among them was Hotelling (1947) who pioneered the use of the multivariate process control techniques through the development of a 2 T -control chart which is well known as Hotelling 2 T -control chart. Since the introduction of the control chart technique, the most common and widely used method of control chart design was the statistical design. However, according to Montgomery (2005), the design of control has economic implications. There are costs that are incurred during the design of a control chart and these are: costs of sampling and testing, costs associated with investigating an out-of-control signal and possible correction of any assignable cause found, costs associated with the production of nonconforming products, etc. The paper is about giving an overview of the different methods or techniques that have been employed to develop the different economic statistical models for MSPC. The first multivariate economic model presented in this paper is the economic design of the Hotelling‟s 2 T -control chart to maintain current control of a process developed by Montgomery and Klatt (1972). This is followed by the work done by Kapur and Chao (1996) in which the concept of creating a specification region for the multiple quality characteristics together with the use of a multivariate quality loss function is implemented to minimize total loss to both the producer and the customer. Another approach by Chou et al (2002) is also presented in which a procedure is developed that simultaneously monitor the process mean and covariance matrix through the use of a quality loss function. The procedure is based on the test statistic 2ln L and the cost model is based on Montgomery and Klatt (1972) as well as Kapur and Chao‟s (1996) ideas. One example of the use of the variable sample size technique on the economic and economic statistical design of the control chart will also be presented. Specifically, an economic and economic statistical design of the 2 T -control chart with two adaptive sample sizes (Farazet al, 2010) will be presented. Farazet al (2010) developed a cost model of a variable sampling size 2 T -control chart for the economic and economic statistical design using Lorenzen and Vance‟s (1986) model. There are several other approaches to the multivariate economic statistical process control (MESPC) problem, but in this project the focus is on the cases based on the phase II stadium of the process where the mean vector, and the covariance matrix, have been fairly well established and can be taken as known, but both are subject to assignable causes. This latter aspect is often ignored by researchers. Nevertheless, the article by Farazet al (2010) is included to give more insight into how more sophisticated approaches may fit in with MESPC, even if the mean vector, only may be subject to assignable cause. Keywords: control chart; statistical process control; multivariate statistical process control; multivariate economic statistical process control; multivariate control chart; loss function.

AFRIKAANSE OPSOMMING: Statistiese proses kontrole (SPK) speel 'n baie belangrike rol in die monitering en verbetering van industriële prosesse om te verseker dat produkte wat vervaardig word, of na kliënte versend word wel aan die vereiste voorwaardes voldoen. Die vernaamste tegniek wat in SPK gebruik word, is die statistiese kontrolekaart. Die tradisionele wyse waarop statistiese kontrolekaarte ontwerp is, aanvaar dat ‟n proses deur slegs 'n enkele kwaliteitsveranderlike beskryf word. Montgomery and Klatt (1972) beweer egter dat industriële prosesse en produkte meer as een kwaliteitseienskap kan hê en dat hulle gesamentlik die kwaliteit van 'n produk kan beskryf. Proses monitering waarin verskeie verwante veranderlikes van belang mag wees, staan as meerveranderlike statistiese proses kontrole (MSPK) bekend. Die mees belangrike en algemene tegniek wat in MSPK gebruik word, is ewe eens die statistiese kontrolekaart soos dit die geval is by SPK. Die ontwerp van 'n kontrolekaart vereis van die gebruiker om drie parameters te kies wat soos volg is: steekproefgrootte, n , tussensteekproefinterval, h en kontrolegrense, k . Verskeie skrywers het kontrolekaarte ontwikkel wat op meer as een kwaliteitseienskap gebaseer is, waaronder Hotelling wat die gebruik van meerveranderlike proses kontrole tegnieke ingelei het met die ontwikkeling van die T2 -kontrolekaart wat algemeen bekend is as Hotelling se 2 T -kontrolekaart (Hotelling, 1947). Sedert die ingebruikneming van die kontrolekaart tegniek is die statistiese ontwerp daarvan die mees algemene benadering en is dit ook in daardie formaat gebruik. Nietemin, volgens Montgomery and Klatt (1972) en Montgomery (2005), het die ontwerp van die kontrolekaart ook ekonomiese implikasies. Daar is kostes betrokke by die ontwerp van die kontrolekaart en daar is ook die kostes t.o.v. steekproefneming en toetsing, kostes geassosieer met die ondersoek van 'n buite-kontrole-sein, en moontlike herstel indien enige moontlike korreksie van so 'n buite-kontrole-sein gevind word, kostes geassosieer met die produksie van niekonforme produkte, ens. In die eenveranderlike geval is die hantering van die ekonomiese eienskappe al in diepte ondersoek. Hierdie werkstuk gee 'n oorsig oor sommige van die verskillende metodes of tegnieke wat al daargestel is t.o.v. verskillende ekonomiese statistiese modelle vir MSPK. In die besonder word aandag gegee aan die gevalle waar die vektor van gemiddeldes sowel as die kovariansiematriks onderhewig is aan potensiële verskuiwings, in teenstelling met 'n neiging om slegs na die vektor van gemiddeldes in isolasie te kyk synde onderhewig aan moontlike verskuiwings te wees.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/71679
This item appears in the following collections: