Novel materials for VOC analysis

Malan, Mareta (2012-12)

Thesis (MSc)--Stellenbosch University, 2012.

Thesis

ENGLISH ABSTRACT: The need to analyse and detect volatile organic compounds (VOCs) at trace levels has led to the development of specialized sample preparation techniques. The requirement for trace analysis of VOCs stems from the negative effects they have on the environmental and human health. Methods for the analysis of non-polar VOCs commonly found as trace contaminants in water and analysis of more polar oxygenated compounds commonly found in zero-VOC water-based paints were developed. Solid phase micro extraction (SPME) was employed and extraction of the majority of the target analytes could be achieved at levels below 0.3 μg.l-1. In an attempt to further improve the detection of these two target analyte groups, novel materials based on poly(dimethyl siloxane) (PDMS) were investigated as possible extraction phases for VOCs, with the focus specifically on the analysis of the polar analytes in paint. Conventional free radical polymerization was used to synthesize poly(methyl methacrylate-graft-poly(dimethyl siloxane) (PMMA-g-PDMS), poly(methacrylic acid)-graft-poly(dimethyl siloxane) (PMAA-g-PDMS), polystyrene-graftpoly( dimethyl siloxane) (PSty-g-PDMS) and poly(butyl acrylate)-graft–poly(dimethyl siloxane) (PBA-g-PDMS). These polymers have a copolymer functionality which presents a series of different polarities. The MMA-g-PDMS and MAA-g-PDMS as well as the homopolymers were electrospun into nanofibers. The low glass transition temperature and molecular weight of the PBAg- PDMS meant that this polymer could not be electrospun. Scanning electron microscopy (SEM) was used to study the fiber morphology of the electrospun fibers and the non-beaded fibers were further investigated. Polyacrylonitrile-graft-poly(dimethyl siloxane) (PAN-g-PDMS) previously synthesized and electrospun by another member of the group were also investigated for use as possible extraction material in volatile analysis. The thermal stability of the nanofibers at 200°C was studied using thermal gravimetric analysis (TGA). This property is important since after the target analytes are extracted using the nanofibers, elevated temperatures are used to thermally desorp the volatile analytes from the extraction materials prior to GC analysis. The PAN-g-PDMS, MMA-g-PDMS and PMMA showed no significant weight loss during thermal evaluation, however, it was observed that the PMMA and PMMA-g-PDMS nanofibers looses their nanostructure and that the PAN-g-PDMS nanofibers changes colour from white to yellow to rust brown. The polymers based on MAA showed weight losses of more than 10% after one hour of exposure to the elevated temperatures, but the nanostructure remained intact. The PAN-g-PDMS, PMAA-g-PDMS and PMAA nanofibers were evaluated as possible extraction materials for VOC analysis. The nanofibers were evaluated using a similar approach to that of stir bar sorptive extraction (SBSE). Headspace sorptive extraction (HSSE) using a commercially available PDMS stir bar and the novel materials were used to evaluate the extraction efficiency of the different materials. The optimized extraction method developed using SPME were employed for the extraction using the nanofibers and PDMS stir bar. It was noted that the nanofibers lose their extraction capabilities during the first extraction/desorption cycle possibly due to thermal degradation therefore each of the materials can only be used in a single extraction. The majority of the non-polar analytes were extracted using the nanofibers at levels of 500 μg.l-1, however it was noted that the commercially available SPME extraction materials and the PDMS stir bar had superior extraction efficiencies for the specific target analytes. In the evaluation of the nanofibers for extraction of the more polar oxygenated analytes it was noted that 2-Ethylhexylacrylate was the only analyte to be extracted by all of the materials. The PAN-g-PDMS extracted three of the four analytes at levels of 100 μg.l-1. At lower analyte concentrations of 10 μg.l-1 only two of the four acrylate compounds were detected using the PAN-g-PDMS nanofibers. Ethyl acrylate was not extracted by any of the novel materials, whereas in SPME using the CAR/PDMS fiber, the LOD was determined to be below 1 μg.l-1. Although these materials were not superior to the commercially available phases, this is only the case for the specific target analytes analyzed.

AFRIKAANSE OPSOMMING: Die behoefte vir die analiese van vlugtige organiese verbindings (VOS) op spoorvlak, het gelei tot die ontwikkeling van gespesialiseerde monster voorbereidingstegnieke. Die vereiste vir die spoor analiese van die VOS het ontstaan uit die negatiewe uitwerking wat hierdie stowwe het op die omgewing en menslike gesondheid. Metodes vir die analiese van nie-polêre VOS wat algemeen voorkom as spoorkontaminante in water en polêre suurstofryke verbindings wat algemeen voorkom in nul-VOS water-gebaseerde verf was ontwikkel. Soliede fase mikro-ekstraksie (SFME) was gebruik, en die ekstraksie van die meerderheid van die teikenstowwe kon gedoen word op vlakke laer as 0,3 μg.l-1. In 'n poging om die opsporing van hierdie twee teiken analietgroepe verder te verbeter, is nuwe materiale gebaseer op polidimetielsiloksaan (PDMS), ondersoek as moontlik ekstraksiefases vir VOS, met die fokus spesifiek op die analiese van die polêre stowwe in verf. ’n Konvensionele vrye radikaal polimerisasieproses was gebruik om poli (metiel- metakrilaat)-entpoli( dimetielsiloksaan) (PMMA-g-PDMS), poli(metakrilaatsuur)-ent–poli (dimetielsiloksaan) (PMAA-g-PDMS), polistireen-ent-poli(dimetielsiloksaan) (PSty-g-PDMS) en poli(butielakrilaat)- ent-poli(dimetielsiloksaan) (PBA-g-PDMS) te sintetiseer. Hierdie ko-polimere het 'n kopolimeer funksionaliteit wat 'n reeks van verskillende polariteite bied. Die MMA-g-PDMS en MAA-g-PDMS sowel as die homopolimere was ge-elektrospin in orde om nanovesels te vorm. Die lae glasoorgangstemperatuur en molekulêre gewig van die PBA-g-PDMS het beteken dat hierdie polimeer nie elektrospin kon word nie. Skandeerelektronmikroskopie (SEM) was gebruik om die veselmorfologie van die ge-elektrospinde vesels te bestudeer en die nanovesels wat ’n eweredige oppervlak gehad het, was verder ondersoek. Poliakrilonitriel-ent-poli(dimetielsiloksaan) (PAN-g- PDMS) wat voorheen gesintetiseer en ge-elektrospin was deur 'n ander lid van die groep is ook ondersoek vir gebruik as moontlik ekstraksiemateriaal vir die analiese van vlugtige stowwe. Die termiese stabiliteit van die nanovesels was by 200°C bestudeer met behulp van ‘n termiese gravimetriese analiese (TGA) instrument. Hierdie eienskap is belangrik, aangesien die teikenstowwe by hoë temperature van die nanovesels gedesorbeer word voor die GC-analiese. Die PAN-g-PDMS, MMA-g-PDMS en PMMA het geen beduidende gewigsverlies tydens termiese evaluering gehad nie, alhoewel dit egter waargeneem was dat die PMMA en PMMA-g-PDMS nanovesels hulle nanostruktuur verloor en dat die PAN-g-PDMS nanovesels se kleur verander van wit na geel na roesbruin gedurende die termiese analiese. Die polimere wat gebaseer was op MAA het ’n gewigs-verlies van meer as 10% getoon na 'n uur van blootstelling aan die verhoogde temperature, maar die nanostruktuur het ongeskonde gebly. Die PAN-g-PDMS, PMAA-g-PDMS en PMAA nanovesels was geëvalueer as moontlike ekstraksiemateriale vir VOS-analiese. Die nanovesels was geëvalueer met 'n soortgelyke benadering tot dié van “stir bar“ sorpsie ekstraksie (SBSE). Bo-ruimte sorpsie ekstrasie is gebruik om die ekstraksie-doeltreffendheid van die verskillende materiale (kommersiële PDMS en nanovesels) te evalueer. Die geoptimaliseerde ekstraksiemetode ontwikkel in SFME was gebruik vir die ekstraksie van die VOS met die nanovesels en die PDMS “stir bar“. Dit was waargeneem dat die nanovesels hul ekstraksievermoë verloor tydens die eerste ekstraksie/desorpsie siklus, moontlik as gevolg van termiese degradasie dus, kon die materiale slegs ‘n enkele maal gebruik word vir die ekstraksie. Die meerderheid van die nie-polêre stowwe was ge-ëkstraeer deur gebruik te maak van die nanovesels op vlakke van 500 μg.l -1, maar die kommersieel beskikbare SFME ekstraksie materiale en die PDMS “stir bar“ se ekstraksie-doeltreffendheid vir die spesifieke stowwe was beter. In die evaluering van die nanovesels vir die ekstraksie van die meer polêre suurstofryke stowwe was daar waargeneem dat 2- etielheksielakrilaat die enigste analiet was wat ge-ëkstraeer was deur al die materiale. Die PAN-g- PDMS kon drie van die vier polêre stowwe op vlakke van 100 μg.l-1 opspoor. By laer analietkonsentrasies van 10 μg.l-1 kon slegs twee van die vier akrilaat verbindings opgespoor word deur gebruik te maak van hierdie nanovesels. Etielakrilaat was nie ge-ëkstraeer deur enige van die nuwe materiale nie, terwyl in SFME met die gebruik van die CAR/ PDMS vesel, die analiet op vlakke onder 1 μg.l-1 opgespoor kon word. Alhoewel hierdie nuwe materiale nie beter is as die kommersieel beskikbare ekstraksiemateriale nie is dit net die geval vir die spesifieke teiken analietgroepe wat ondersoek was in hierdie studie.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/71646
This item appears in the following collections: