Endothelial dysfunction in cardiac microvascular endothelial cells : an investigation into cellular mechanisms and putative role of oleanolic acid in reversing endothelial dysfunction

Mudau, Mashudu (Stellenbosch : University of Stellenbosch, 2010-12)

Thesis (MScMedSc (Biomedical Sciences. Medical Physiology))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: Introduction: The discovery of the endothelium as a regulator of vascular tone, and the subsequent discovery of nitric oxide (NO) as the major endothelium-derived relaxing factor (EDRF), has opened up vast possibilities in the continued efforts to prevent and manage cardiovascular disease. Endothelial dysfunction (ED) is defined as reduced NO bioavailability and hence the reduced ability of the endothelium to maintain vascular homeostasis. ED represents the first, reversible step in the initiation of atherosclerotic disease and is thus regarded as a strong predictive tool of ischaemic heart disease (IHD). ED and its underlying mechanisms have been largely under-investigated in myocardial capillary-derived endothelial cells (cardiac microvascular endothelial cells, CMECs), and this study aimed to address this gap in the literature. Oleanolic acid (OA) is a bioactive triterpenoid derived from leaf extracts of African medicinal plants such as Syzigium cordatum (Water berry tree), and has been reported to elicit vasodilatory, hypoglycaemic and hypolipidaemic properties. However its effects particularly on CMECs and its putative role in reversing ED remain unclear, and this study aimed to investigate such effects. Aims: The aims of this study were to: (1) Establish an in vitro model of ED in cultured myocardial capillary-derived CMECs by developing protocols for the induction of ED. (2) Asses ED induction by measurement of the following biomarkers: (i) intracellular NO production, (ii) superoxide (O2-) production, (iii) nitrotyrosine expression and (iv) NADPH oxidase expression. (3) Investigate underlying cellular mechanisms of our ED model by measuring and comparing eNOS and PKB/Akt expression and activation in control and dysfunctional CMECs. (4) Investigate the effects of OA derived from leaf extracts obtained from Syzigium cordatum (Hochst.) [Myrtaceace], in both control and dysfunctional CMECs. Methods: (1) To induce ED, hyperglycaemia and inflammation were simulated by incubation with 25 mM glucose (24 hours) and 1 ng/ml TNF-á (24 hours) or 5 ng/ml TNF-á (6 and 24 hours) respectively. Reduced intracellular NO production was used as the main indicator of ED. NO production and cell viability were quantified by FACS analysis of the fluorescent probes, DAF-2/DA and propidium iodide (PI) / Annexin V respectively. Cellular mechanisms were investigated by measurement of O2- levels via FACS analysis of DHE fluorescence, and measurement of total and activated PKB / Akt and eNOS, p22-phox, nitrotyrosine expression via Western blotting. (2) Effects of OA on CMECs were investigated by pre-treatment with 30 or 40 ìM OA for 5 and 20 min followed by NO production and cell viability measurements. To investigate the effects of OA on ED, CMECs were pre-treated with 40 ìM OA 1 hour prior ED induction followed by NO, cell viability, and eNOS expression / activation measurements. Results: (1) 25 mM glucose (24hours), 1 ng/ml TNF-á (24 hours) and 5 ng/ml TNF-á (6 hours) failed to induce ED as verified by an increase in NO production in the treated cells. A model of ED was successfully achieved by incubating CMECs with 5 ng/ml TNF-á (24 hours), as verified by a significant decrease in NO production. Investigations into cellular mechanisms underlying our TNF-á-induced ED model, showed that activated eNOS and PKB / Akt levels were reduced. Furthermore, O2- levels remained unchanged, however p22-phox (NADPH) expression was significantly increased suggesting oxidative stress. Nitrotyrosine levels (an oxidative / nitrosative stress marker and indirect measure of eNOS uncoupling) remained at control levels. (2) Investigations into the effects of OA on CMECs showed that 30 ìM OA increased NO production after 5 and 20 min of incubation whereas 40 ìM increased NO production after 20 min only. Pre-treatment with 40 ìM OA significantly reversed ED by restoring NO production back to control levels. Data from cellular mechanism investigations showed that 40 ìM OA significantly increased eNOS activation in both normal and dysfunctional CMECs. Cellular viability was not negatively affected by any of the above interventions. Discussion and Conclusions: Based on our findings, reduced activation of the PKB / Akt-eNOS pathway appears to be the primary mechanistic pathway of the TNF-á-induced model of ED. Though O2- levels remained at control levels, the significant increase in p22-phox is indicative of increased expression of the O2- producing enzyme, NADPH oxidase, thus suggesting oxidative stress. However, based on our nitrotyrosine expression data, there was no strong evidence of eNOS uncoupling in our ED model. OA significantly stimulated NO production in our model of CMECs. Furthermore, our findings showed that OA is able to reverse ED. The NO production stimulatory effects of OA in our cells appear to be achieved via the increased activation of eNOS. We have, for the first time as far as we are aware, developed a TNF-á-induced model of ED in myocardial capillary-derived endothelial cells. It appears that reduced activation of the PKB/Akt-eNOS pathway is the primary mechanism leading to decreased NO production in this model. However, we did find some evidence of elevated oxidative stress, which led us to believe that eNOS uncoupling cannot be excluded as a mechanism of ED in our model. In this study, we report for the first time convincing evidence that OA has powerful NO-increasing properties in myocardial capillary-derived CMECs. Our study also show novel data, which suggest that OA is able to reverse ED in this model. Follow-up investigations could shed more light on the exact mechanisms underlying OA.s effects in this model.

AFRIKAANSE OPSOMMING: Inleiding: Die ontdekking dat endoteel 'n reguleerder van vaskulêre tonus is, en die gevolglike ontdekking dat stikstofoksied (NO) die belangrikste endoteel-afgeleide verslappingsfaktor (EDRF) is, het verskeie moontlikhede in aangaande pogings om kardiovaskulêre siektes te voorkom en hanteer, ontsluit. Endoteel-disfunksie (ED), word gedefineer as verlaagde NO biobeskikbaarheid en dus 'n ingekorte vermoë van die endoteel om vaskulêre homeostase te handhaaf. ED verteenwoordig die eerste, omkeerbare stap in die ontstaan van aterosklerotiese siekte en word dus beskou as 'n sterk instrument waarmee isgemiese hartsiekte voorspel kan word. Studies oor ED en sy onderliggende meganismes, veral in miokardiale kapillêre-afgeleide endoteelselle (kardiale mikrovaskulêre endoteelselle, CMECs), word redelik afgeskeep in die literatuur, en hierdie studie het dit ten doel gehad om die gaping in die literatuur aan te spreek. Oleanoliese suur (OA) is 'n bio-aktiewe triterpenoïede wat gevind word in blaar ekstrakte van inheemse medisinale plante soos bv. Syzigium cordatum (Waterbessie boom). OA het bewese vasodilatoriese, hipoglukemiese en hipolipidemiese eienskappe. OA se effekte op CMECs, en sy moontlike rol in die omkering van ED, is egter onbekend, en hierdie studie het dit ten doel gehad om sulke effekte te ondersoek. Doelwitte: Die doelwitte van hierdie studie was: (1) Die vestiging van 'n in vitro model van ED in gekultuurde CMECs afkomstig van miokardiale kapillêre deur protokolle vir die induksie van ED te ontwikkel. (2) Die evaluering van ED induksie deur die volgende bio-merkers te meet: (i) intrasellulêre NO produksie, (ii) superoksied (O2-) produksie, (iii) nitrotirosien uitdrukking en (iv) NADPH oksidase uitdrukking. (3) Die ondersoek na onderliggende sellulere meganismes van ED in ons model deur die meting en vergelyking van eNOS and PKB/Akt uitdrukking en aktivering in kontrole en disfunksionele CMECs. (4) Ondersoek na die effekte van OA afkomstig van blaar ekstrakte verkry van Syzigium cordatum (Hochst.) [Myrtaceace], in beide kontrole en disfunksionele CMECs. Metodes: (1) Daar was gepoog om ED te induseer deur hiperglukemie en inflammasie te simuleer met onderskeidelik 25 mM glukose (24 uur) en 1 ng/ml TNF-a (24 uur) of 5 ng/ml (6 en 24 uur) inkubasie. Verlaagde intrasellulere NO produksie was ingespan as die hoof indikator van ED. NO produksie en sellewensvatbaarheid was gekwantifiseer deur vloeisitometriese analises (FACS) van die fluoresserende agense, DAF-2/DA en propidium jodied (PI) / Annexin V onderskeidelik. Sellulere meganismes was ondersoek deur O2- vlakke via FACS analise van DHE fluoressensie te meet, asook die meting van totale en geaktiveerde PKB / Akt en eNOS, p22-phox, nitrotirosien uitdrukking via Western blot tegnieke. (2) Effekte van OA op CMECs was ondersoek deur vooraf-behandeling met 30 of 40 µM OA vir 5 en 20 min gevolg deur NO produksie en sellewensvatbaarheid metings. Resultate: (1) 25 mM glukose (24 uur), 1 ng/ml TNF-a (24 uur) and 5 ng/ml TNF-ƒaa (6 uur) kon nie daarin slaag om ED te induseer nie, soos blyk uit die verhoogde NO produksie waargeneem in die behandelde selle. 'n Model van ED was suksesvol verkry deur CMECs met 5 ng/ml TNF-a (24 uur) te inkubeer, soos waargeneem deur verlaagde NO produksie. Ondersoek na sellulere meganismes onderliggend tot ons TNF-a-geinduseerde ED model, het getoon dat geaktiveerde eNOS en PKB / Akt vlakke verlaag was. Verder is gevind dat O2- vlakke onveranderd gebly het hoewel p22-phox (NADPH) uitdrukking betekenisvol toegeneem het, wat 'n aanduiding van oksidatiewe skade is. Nitrotirosien vlakke (.n oksidatiewe / nitrosatiewe stres merker en indirekte maatstaf van eNOS ontkoppeling) het onveranderd rondom kontrole vlakke gebly. (2) Ondersoek na die effekte van OA op CMECs het getoon dat 30 µM OA tot verhoogde NO produksie na 5 en 20 min inkubasie gelei het, terwyl 40 µM slegs na 20 min NO-verhogende effekte gehad het. Vooraf behandeling met 40 µM OA het ED betekenisvol omgekeer deur NO terug na kontrole vlakke te laat herstel. Ondersoek na sellulere meganismes het getoon dat 40 µM OA eNOS aktivering betekenisvol verhoog het in beide normale en disfunksionele CMECs. Sellulere lewensvatbaarheid was nie negatief geaffekteer deur enige van bogeneemde ingrepe nie. Bespreking en afleidings: Gebaseer op ons bevindinge, blyk verlaagde aktivering van die PKB/Akt-eNOS pad die primere meganistiese pad in ons TNF-a-geïnduseerde model van ED te wees. Alhoewel O2- vlakke rondom kontrole vlakke gebly het, was die betekenisvolle toename in p22-phox .n aanduiding van verhoogde uitdrukking van die O2- produserende ensiem, NADPH oksidase, wat dus suggererend van oksidatiewe stres was. Aan die ander kant was daar nie sterk bewyse van eNOS ontkoppeling in ons ED model nie, gebaseer op die nitrotirosien uitdrukking data. OA het duidelik NO produksie in ons model van CMECs gestimuleer. Verder wys ons resultate dat OA in staat is om ED om te keer. Die NO produksie-stimulerende effekte van OA in ons selle blyk die gevolg te wees van verhoogde aktivering van die PKB / Akt-eNOS pad. Ons het hier vir die eerste keer, sover ons bewus is, 'n TNF-a-geinduseerde model van ED in CMECs afkomstig van miokardiale kapillere gevestig. Dit blyk dat verlaagde aktivering van die PKB/Akt-eNOS pad die primere meganisme was waardeur verlaagde NO produksie in ons model veroorsaak was. Ons het egter wel bewyse van verhoogde oksidatiewe stress gevind, wat ons laat glo dat eNOS ontkoppeling nie heeltemal as .n meganisme van ED in ons model uitgesluit kan word nie. In hierdie studie toon ons vir die eerste maal oortuigende bewyse dat OA kragtige NO-verhogende eienskappe in miokardiale kapillere-afgeleide CMECs het. Ons studie bring ook nuwe data na vore, wat suggereer dat OA in staat is om ED in hierdie model om te keer. Opvolgstudies sal meer lig kan werp op die onderliggende meganismes van OA in hierdie model.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/5297
This item appears in the following collections: