Control analysis of the action potential and its propagation in the Hodgkin-Huxley model

Du Toit, Francois (2010-12)

Thesis (MSc (Biochemistry))--University of Stellenbosch, 2010.

Thesis

ENGLISH ABSTRACT: The Hodgkin-Huxley model, created in 1952, was one of the first models in computational neuroscience and remains the best studied neuronal model to date. Although many other models have a more detailed system description than the Hodgkin-Huxley model, it nonetheless gives an accurate account of various high-level neuronal behaviours. The fields of computational neuroscience and Systems Biology have developed as separate disciplines for a long time and only fairly recently has the neurosciences started to incorporate methods from Systems Biology. Metabolic Control Analysis (MCA), a Systems Biology tool, has not been used in the neurosciences. This study aims to further bring these two fields together, by testing the feasibility of an MCA approach to analyse the Hodgkin-Huxley model. In MCA it is not the parameters of the system that are perturbed, as in the more traditional sensitivity analysis, but the system processes, allowing the formulation of summation and connectivity theorems. In order to determine if MCA can be performed on the Hodgkin-Huxley model, we identified all the discernable model processes of the neuronal system. We performed MCA and quantified the control of the model processes on various high-level time invariant system observables, e.g. the action potential (AP) peak, firing threshold, propagation speed and firing frequency. From this analysis we identified patterns in process control, e.g. the processes that would cause an increase in sodium current, would also cause the AP threshold to lower (decrease its negative value) and the AP peak, propagation speed and firing frequency to increase. Using experimental inhibitor titrations from literature we calculated the control of the sodium channel on AP characteristics and compared it with control coefficients derived from our model simulation. Additionally, we performed MCA on the model’s time-dependent state variables during an AP. This revealed an intricate linking of the system variables via the membrane potential. We developed a method to quantify the contribution of the individual feedback loops in the system. We could thus calculate the percentage contribution of the sodium, potassium and leak currents leading to the observed global change after a system perturbation. Lastly, we compared ion channel mutations to our model simulations and showed how MCA can be useful in identifying targets to counter the effect of these mutations. In this thesis we extended the framework of MCA to neuronal systems and have successfully applied the analysis framework to quantify the contribution of the system processes to the model behaviour.

AFRIKAANSE OPSOMMINMG: Die Hodgkin-Huxley-model, wat in 1952 ontwikkel is, was een van die eerste modelle in rekenaarmagtige neurowetenskap en is vandag steeds een van die bes-bestudeerde neuronmodelle. Hoewel daar vele modelle bestaan met ’n meer uitvoerige sisteembeskrywing as die Hodgkin-Huxley-model gee dié model nietemin ’n akkurate beskrywing van verskeie hoëvlak-sisteemverskynsels. Die twee velde van sisteembiologie en neurowetenskap het lank as onafhanklike dissiplines ontwikkel en slegs betreklik onlangs het die veld van neurowetenskap begin om metodes van sisteembiologie te benut. ’n Sisteembiologiemetode genaamd metaboliese kontrole-analise (MKA) is tot dusver nog nie in die neurowetenskap gebruik nie. Hierdie studie het gepoog om die twee velde nader aan mekaar te bring deurdat die toepasbaarheid van die MKA-raamwerk op die Hodgkin-Huxley-model getoets word. In MKA is dit nie die parameters van die sisteem wat geperturbeer word soos in die meer tradisionele sensitiwiteitsanalise nie, maar die sisteemprosesse. Dit laat die formulering van sommasie- en konnektiwiteitsteoremas toe. Om die toepasbaarheid van die MKA-raamwerk op die Hodgkin-Huxleymodel te toets, is al die onderskeibare modelprosesse van die neurale sisteem geïdentifiseer. Ons het MKA toegepas en die kontrole van die model-prosesse op verskeie hoëvlak, tydsonafhanklike waarneembare sisteemvlak-eienskappe, soos die aksiepotensiaal-kruin, aksiepotensiaal-drempel, voortplantingspoed en aksiepotensiaal-frekwensie, gekwantifiseer. Vanuit hierdie analise kon daar patrone in die proseskontrole geïdentifiseer word, naamlik dat die prosesse wat ’n toename in die natriumstroom veroorsaak, ook sal lei tot ’n afname in die aksiepotensiaal-drempel (die negatiewe waarde verminder) en tot ’n toename in die aksiepotensiaal-kruin, voortplantingspoed en aksiepotensiaalfrekwensie. Deur gebruik te maak van eksperimentele stremmer-titrasies vanuit die literatuur kon die kontrole van die natriumkanaal op die aksiepotensiaaleienskappe bereken en vergelyk word met die kontrole-koëffisiënte vanuit die modelsimulasie. Ons het ook MKA op die model se tydsafhanklike veranderlikes deur die verloop van die aksiepotensiaal uitgevoer. Die analise het getoon dat die sisteemveranderlikes ingewikkeld verbind is via die membraanpotensiaal. Ons het ’n metode ontwikkel om die bydrae van die individuele terugvoerlusse in die sisteem te kwantifiseer. Die persentasie-bydrae van die natrium-, kalium- en lekstrome wat tot die waarneembare globale verandering ná ’n sisteemperturbasie lei, kon dus bepaal word. Laastens het ons ioonkanaalmutasies met ons modelsimulasies vergelyk en getoon hoe MKA nuttig kan wees in die identifisering van teikens om die effek van hierdie mutasies teen te werk. In hierdie tesis het ons die raamwerk van MKA uitgebrei na neurale sisteme en die analise-raamwerk suksesvol toegepas om die bydrae van die sisteemprosesse tot die modelgedrag te kwantifiseer.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/5294
This item appears in the following collections: